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ΠΕΡΙΛΗΨΗ

Το τελευταίο χρονικό διάστημα υπάρχει μεγάλο ενδιαφέρον για τη χρήση

αναμεταδοτών (relays) για τη μετάδοση σημάτων με σκοπό την βελτίωση της

επίδοσης των συστημάτων ασύρματων επικοινωνιών και την επίτευξη  διαφορικής

λήψης μέσω συνεργασίας (cooperative diversity), η οποία μπορεί να καταπολεμήσει

προβλήματα όπως οι διαλείψεις στα ασύρματα συστήματα επικοινωνιών. Επίσης, η

τεχνολογία των πολλαπλών αναμεταδοτών (multi-hop relaying) έχει αποδειχθεί ως

ένα αποτελεσματικό εργαλείο για την αύξηση της φασματικής απόδοσης αλλά και της

επέκτασης της κάλυψης σε κυψελωτά και ad hoc ασύρματα δίκτυα. Ειδικότερα, το

multi-hop relaying έχει τη δυνατότητα να επιτρέψει στον πομπό και στο δέκτη να

επικοινωνήσουν μέσα από μια σειρά συνεργαζόμενων κόμβων αναμετάδοσης, με

στόχο την επέκταση της ραδιοκάλυψης και τη βελτίωση της επίδοσης του δικτύου.

Για παράδειγμα, οι αδρανείς σταθμοί μεταξύ της πηγής και του προορισμού μπορούν

να χρησιμοποιηθούν ως κόμβοι αναμετάδοσης για την παροχή επιπλέον συνδέσμων

στο δίκτυο για την δημιουργία εναλλακτικών μονοπατιών ραδιο-μετάδοσης.

Στην παρούσα διδακτορική διατριβή, αποδεικνύουμε αναλυτικές εκφράσεις για

διάφορα κριτήρια επίδοσης των συστημάτων πολλαπλών αναμεταδοτών σε

περιβάλλοντα διάδοσης που χαρακτηρίζονται από σύνθετα μοντέλα διάλειψης. Στο

Κεφάλαιο 1 κάνουμε μία επισκόπηση των μοντέλων διάλειψης μικρής και μεγάλης

κλίμακας για το ασύρματο κανάλι. Σε αυτή τη διατριβή χρησιμοποιούμε τη

Γενικευμένη-Κ κατανομή για να μοντελοποιήσουμε τη διάλειψη στο κανάλι

επικοινωνίας, διότι η συγκεκριμένη κατανομή συνδυάζει την επίδραση μικρής και

μεγάλης κλίμακας διάλειψης στο σήμα λήψης. Στο Κεφάλαιο 2 δίνουμε μία

επισκόπηση των κυριότερων συστημάτων αναμεταδοτών που έχουν προταθεί για τα

ασύρματα συστήματα με βάση την ενίσχυση που χρησιμοποιείται και τον τρόπο

συνδεσμολογίας αλλά και επιλογής των αναμεταδοτών.  Στο Κεφάλαιο 3,

αποδεικνύουμε νέες και εύκολα υπολογίσιμες μαθηματικές εκφράσεις για την

πιθανότητα σφάλματος σε συστήματα που υποστηρίζουν πολλαπλούς αναμεταδότες

σε παράλληλη συνδεσμολογία και απευθείας διαδρομή με maximal ratio combining

στο δέκτη. Επειδή είναι αρκετά δύσκολο να βρεθεί μια έκφραση κλειστής μορφής για

τη moment generating function (MGF) του συνολικού (end-to-end) σηματο-

θορυβικού λόγου (ΣΘΛ) στον τελικό προορισμό, χρησιμοποιούμε δύο διαφορετικές



iv

προσεγγίσεις για το άνω φράγμα του συνολικού ΣΘΛ, εκ των οποίων η πρώτη

υλοποιείται με βάση το ελάχιστο ΣΘΛ των δύο ζεύξεων για κάθε αναμεταδότη και η

δεύτερη βασίζεται στο γεωμετρικό μέσο όρο των ΣΘΛ των δύο ζεύξεων. Στη

συνέχεια αποδεικνύουμε τα αντίστοιχα κατώτερα όρια για την πιθανότητα σφάλματος

συμβόλου και bit για διάφορες ψηφιακές διαμορφώσεις χρησιμοποιώντας την MGF

προσέγγιση. Οι τελικές εκφράσεις είναι χρήσιμες για την αξιολόγηση των επιδόσεων

της τεχνικής αναμετάδοσης ενίσχυση-και-προώθηση (ΕΠ) σε ένα σύνθετο

περιβάλλον διάδοσης.

Στο Κεφάλαιο 4, παρουσιάζουμε νέες μαθηματικές σχέσεις για την αξιολόγηση της

επίδοσης ενός δικτύου με αναμετάδοση δύο ζεύξεων και επιλογή του καλύτερου

αναμεταδότη σε περιβάλλον με ανεξάρτητα κανάλια διάλειψης. Δεδομένου ότι είναι

δύσκολο να βρεθεί μια κλειστής μορφής έκφραση για τη συνάρτηση πυκνότητας

πιθανότητας για το συνολικό ΣΘΛ στον κόμβο προορισμού ακόμη και για την

περίπτωση ενός ΕΠ αναμεταδότη, χρησιμοποιούμε ένα άνω όριο για το ΣΘΛ.

Χρησιμοποιώντας την προσεγγιστική σχέση για το συνολικό ΣΘΛ, βρίσκουμε

εκφράσεις για τη στατιστική του ΣΘΛ, για τη μέση πιθανότητα σφάλματος συμβόλου

και bit, καθώς και για την εργοδική χωρητικότητα ενός συστήματος με ένα ΕΠ

αναμεταδότη σε κανάλι με Γενικευμένη-Κ διάλειψη. Στη συνέχεια, για ανεξάρτητες

αλλά  μη-ταυτόσημες συνθήκες διάλειψης, βρίσκουμε την επίδοση για ένα σύστημα

με πολλαπλούς αναμεταδότες δύο ζεύξεων που χρησιμοποιεί επιλογή του καλύτερου

αναμεταδότη. Οι τελικές εκφράσεις είναι χρήσιμες για την αξιολόγηση των

επιδόσεων των ΕΠ συστημάτων με επιλογή αναμεταδότη σε ένα σύνθετο περιβάλλον

διάδοσης. Επίσης, δίνουμε αποτελέσματα Monte Carlo προσομοίωσης για την

επαλήθευση των αναλυτικών αποτελεσμάτων.

Στο Κεφάλαιο 5, αποδεικνύουμε νέες μαθηματικές σχέσεις μέτρων επίδοσης για

συστήματα πολλαπλών αναμεταδοτών (multi-hop relays) που λειτουργούν σε ένα

σύνθετο περιβάλλον διαλείψεων, το οποίο μοντελοποιείται με τη Γενικευμένη-Κ

κατανομή. Χρησιμοποιώντας την προσέγγιση του συνολικού ΣΘΛ για το σύστημα

πολλαπλών αναμεταδοτών το οποίο δίνεται από το ελάχιστο ΣΘΛ όλων των ζεύξεων,

παρέχεται ένας εύκολος τρόπος υπολογισμού για την πιθανότητα διακοπής και της

μέσης πιθανότητας σφάλματος συμβόλου και bit για διάφορες ψηφιακές

διαμορφώσεις. Τα αποτελέσματα από τον υπολογισμό των αναλυτικών εκφράσεων

για τα κάτω όρια επίδοσης συγκρίνονται  με εκείνα της προσομοίωσης της ακριβής
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επίδοσης των συστημάτων πολλαπλών αναμεταδοτών, από όπου φαίνεται η ακρίβεια

της προσέγγισης.

Στο Κεφάλαιο 6, αποδεικνύουμε κατώτερα όρια κλειστής μορφής για την επίδοση

των συστήματα πολλαπλών αναμεταδοτών που λειτουργούν σε ένα Nakagami-m

κανάλι διαλείψεων. Το συνολικό ΣΘΛ στον προορισμό προσεγγίζεται από το

γεωμετρικό μέσο όρο όλων των ζεύξεων. Με αυτή την προσέγγιση, βρίσκουμε

μαθηματικές εκφράσεις κλειστής μορφής για τις στατιστικές του συνολικού ΣΘΛ.

Αυτές, με τη σειρά τους, χρησιμοποιούνται για να υπολογίσουμε την πιθανότητα

διακοπής, τη μέση πιθανότητα σφάλματος συμβόλου και ένα ανώτερο όριο για τη

μέση εργοδική χωρητικότητα του συστήματος πολλαπλών αναμεταδοτών.

Τέλος, στο Κεφάλαιο  7  εξετάζουμε την επίδραση ομοδιαυλικής παρεμβολής στην

πιθανότητα διακοπής ενός ασύρματου συστήματος με ένα ΕΠ αναμεταδότη  σε

περιβάλλον με Rayleigh διάλλειψη. Χρησιμοποιούμε ένα μοντέλο με τέσσερις

παραμέτρους, στο οποίο δύο παράμετροι προσδιορίζουν τον τύπο της ενίσχυσης στον

αναμεταδότη και οι άλλες δύο την ύπαρξη θορύβου και παρεμβολών στο δέκτη

προορισμού. Για το παραμετροποιημένο αυτό μοντέλο αποδεικνύουμε μαθηματικές

εκφράσεις της πιθανότητας διακοπής συναρτήσει του ολοκληρώματος Weber, το

οποίο μπορεί να υπολογιστεί αριθμητικά εύκολα και με ακρίβεια.



Abstract

There is growing interest in the use of relay-assisted transmission schemes to provide sys-

tem performance improvement in terms of system reliability and cooperative diversity.

Cooperative diversity can combat channel impairments due to fading in wireless commu-

nication systems. The cooperative diversity through multihop relaying technology has

emerged as an effective tool to enhance the spectral efficiency and extend the coverage

of cellular and ad hoc wireless networks. In particular, multihop relaying can enable

source and destination nodes to communicate through a set of cooperating relay nodes

in which the transmitted signals propagate through cascaded relay nodes, with the aim

of extending coverage and improving the performance of the network. In addition, idle

mobile stations between the source and destination may be employed as relay nodes to

provide extra diversity links.

In this dissertation, we investigate the performances of multihop relaying systems in

composite fading environments. A review of small and large-scale fading for the wireless

channel is given in Chapter 1, where the statistical characterization of various channel

models is presented. In this work, we consider the generalized-K fading channel, which is

a composite fading model that considers the effects of both small- and large-scale fading

on the received signal. Then, in Chapter 2 we review various relay systems that have

been proposed for wireless communications according to the relay gain employed and

the selection of the relays utilized. In Chapter 3, we present novel and easy-to-evaluate

expressions for the error rate performance of cooperative dual-hop relaying with maximal

ratio combining operating over independent generalized-K fading channels. As it is hard

to obtain a closed-form expression for the moment generating function (MGF) of the

end-to-end signal-to-noise ratio (SNR) at the destination, even for the case of a single

dual-hop relay link, we employ two different upper bound approximations for the output

SNR, of which one is based on the minimum SNR of the two hops for each dual-hop

relay link and the other is based on the geometric mean of the SNRs of the two hops.

Lower bounds for the symbol and bit error rates for a variety of digital modulations can
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then be evaluated using the MGF based approach. The final expressions are useful in the

performance evaluation of amplify-and-forward (AF) relaying in a generalized composite

radio environment.

In Chapter 4, we present novel and easy-to-evaluate expressions for the performance of

dual-hop relaying with best relay selection operating over generalized-K fading channels.

Since it is hard to find a closed-form expression for the probability density function (PDF)

of the exact SNR at the destination node even for the single dual-hop system with amplify-

and-forward relaying, we use a tight upper bound value instead. Using the approximate

value for the end-to-end SNR, closed-form expressions for the statistics of the SNR, the

average bit and symbol error probabilities, and the ergodic capacity for the single dual-

hop AF relay system, are derived. Moreover, assuming independent nonidentical fading

conditions across multiple dual-hop relay links, we derive lower performance bounds for

the single relay selection scheme with AF relaying. The final expressions are useful in

the performance evaluation of AF opportunistic relaying in a generalized composite radio

environment. Simulation results are also given to verify the analytical results.

In Chapter 5, we evaluate performance measures of multihop relaying systems oper-

ating in a composite fading environment modeled by the generalized-K distribution. By

approximating the end-to-end signal-to-noise ratio of the multihop relay system by the

minimum SNR of all the links, we provide easy to compute analytical expressions for

the outage probability and the average bit and symbol error rates for a variety of digital

modulation schemes. The derived expressions are validated by computer simulation and

provide tight lower bounds to the exact performance of multihop relaying transmissions

in a generalized fading environment.

In Chapter 6 we derive closed-form lower bounds on the performance of multihop

communication systems with non-regenerative relays operating in a Nakagami-m fading

channel. The relay gains are assumed to be chosen to maximize the end-to-end SNR,

which is bounded by the geometric mean of the positive random variables. Closed-form

expressions are then derived for the statistics of the geometric mean of the optimum
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end-to-end SNR. These, in turn, are used to derive tight bounds for the outage as well as

average error performances of the system. An upper bound is also derived for the mean

ergodic capacity of the end-to-end SNR.

Finally, in Chapter 7 we study the effect of co-channel interference on the outage

probability of dual-hop wireless communication systems with amplify-and-forward relay-

ing operating in a Rayleigh fading channel. A four-parameter model for the dual-hop

AF relay system is introduced, in which two of the parameters specify the type of gain

adopted at the relay node while the other two parameters account for the presence of

channel noise and co-channel interference at the destination node. We then derive the

exact outage probability in terms of the well-known incomplete Weber integral, which

can be easily and accurately evaluated numerically.
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Chapter 1

Fading Channels Characterization

and Stochastic Modeling

T
he wireless radio channel is consider to be a very important part of the high-speed

communication systems. However, Radiowave propagation through wireless channels

is a complicated phenomenon characterized by various effects, including multipath fading,

shadowing, and path loss. Path loss is caused by dissipation of the power radiated by

the transmitter as well as effects of the propagation channel. Path loss models generally

assume that path loss is the same at a given transmit-receive distance. Shadowing is

caused by obstacles between the transmitter and receiver that attenuate signal power

through absorption, reflection, scattering, and diffraction. When the attenuation is very

strong, the signal is blocked. Variation due to path loss occurs over very large distances

(100-1000 meters), whereas variation due to shadowing occurs over distances proportional

to the length of the obstructing object (10-100 meters in outdoor environments and less

in indoor environments). Variation due to multipath occurs over very short distances,

on the order of the signal wavelength, so these variations are sometimes refered to as

small-scale propagation effects. In Fig. 1.1, the ratio of the received-to-transmit power in

dB versus log-distance for the combined effects of path loss, shadowing, and multipath

is depicted.

The primary purpose of this chapter is to briefly review the principal characteristics

and models for multipath fading and/or shadowing channels. A precise mathematical

1



1.1. Large Scale Fading-Shadowing
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Figure 1.1: Path loss, shadowing and multipath fading versus log-distance

description of these phenomena is either unknown or too complex for tractable communi-

cation systems analyses. However, considerable efforts have been devoted to the statistical

modeling and characterization of these different effects. The result is a range of relatively

simple and accurate statistical models for fading channels that depend on the particu-

lar propagation environment and the underlying communication scenario. The primary

purpose of this chapter is to briefly review the principal characteristics and models for

fading channels and provide their statistical metrics.

1.1 Large Scale Fading-Shadowing

A signal transmitted through a wireless channel will typically experience random vari-

ation due to blockage from objects in the signal path, giving rise to random variations

of the received power at a given distance. Such variations are also caused by changes in

reflecting surfaces and scattering objects. Thus, a model for the random attenuation due

to these effects is also needed. Since the location, size, and dielectric properties of the
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1.2. Small Scale Fading-Multipath

blocking objects as well as the changes in reflecting surfaces and scattering objects that

cause the random attenuation are generally unknown, statistical models must be used

to characterize this attenuation. The most common model for this additional attenua-

tion is log-normal shadowing. This model has been confirmed empirically to accurately

model the variation in received power in both outdoor and indoor radio propagation

environments (see e.g. [1], [2].)

In the log-normal shadowing model the ratio of transmit-to-receive power ψ = Pt/Pr

is assumed random with a log-normal distribution given by

p(ψ) =
ξ√

2πσψdB
ψ
exp

[
−(10 log(ψ)− µψdB

)2

2σ2
ψdB

]
, ψ ≥ 0 (1.1)

where ξ = 10/ ln 10, µψdB
is the mean of ψdB = 10 log10 ψ in dB and σψdB

is the standard

deviation of ψdB, also in dB. The mean can be based on an analytical model or empirical

measurements. For empirical measurements µψdB
equals the empirical path loss, since

average attenuation from shadowing is already incorporated into the measurements. For

analytical models, µψdB
must incorporate both the path loss (e.g. from free-space or a

ray tracing model) as well as average attenuation from blockage. Note that if the ψ is

log-normal, then the received power and receiver signal-to-noise ratio (SNR) will also

be log-normal since these are just constant multiples of ψ. For received SNR the mean

and standard deviation of this log-normal random variable are also in dB. In Fig. 1.2 the

small-scale fading and the slower large-scale variations for an indoor radio communication

system are illustrated. It is noted in this figure that the signal fades rapidly as the receiver

moves, but the signal fades more slowly with distance.

1.2 Small Scale Fading-Multipath

Small scale fading or multipath fading is used to describe the rapid fluctuation of the

amplitude of a radio signal over a short period of time or travel distance, so that larger-

scale path loss effects may be ignored. Fading is caused by interference between two or

Department of Digital Systems 3
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Figure 1.2: Small-scale and large-scale fading

more versions of the transmitted signal which arrive at the receiver at slightly different

times. These waves, called multipath waves, combine at the receiver antenna to give

a resultant signal which can vary widely in amplitude and phase, depending on the

distribution of the intensity and relative propagation time of the waves and the bandwidth

of the transmitted signal. Multipath in the radio channel creates small-scale fading effects.

The three most important effects are:

• Rapid changes in signal strength over a small travel distance or time interval.

• Random frequency modulation due to varying Doppler shifts on different multipath

signals.

• Time dispersion (echoes) caused by multipath propagation delays.

In built-up urban areas, fading occurs because the height of the mobile antennas are

well below the height of surrounding structures, so there is no single line-of-sight (LoS)

path to the base statio. Even when a LoS exists, multipath still occurs due to reflections

from the ground and surrounding structures. The incoming radio waves arrive from dif-

ferent directions with different propagation delays. The signal received by the mobile at

Department of Digital Systems 4



1.2. Small Scale Fading-Multipath

any point in space may consist of a large number of plane waves having randomly dis-

tributed amplitudes, phases and angles of arrival. These multipath components combine

vectorially at the receiver antenna, and can cause the signal received by the mobile to

distort or fade. Even when a mobile receiver is stationary, the received signal may fade

due to movement of surrounding objects in the radio channel.

If objects in the radio channel are static and motion is consider to be only due to that

of the mobile, then fading is purely a spatial phenomenon. The spatial variations of the

resulting signal are seen as temporal variations by the receiver as it moves through the

multipath field. Due to the constructive and destructive effects of multipath waves

summing at various points in space, a receiver moving at high speed can pass through

several fades in a small period of time. In a more serious case a receiver may stop at a

particular location at which the received signal is in a deep fade. Maintaining good com-

munications can then become very difficult, although passing vehicles or people walking

in the vicinity of the mobile can often disturb the field pattern, thereby diminishing the

likelihood of the received signal remaining in a deep null for a long period of time. Due

to the relative motion between the mobile and the base station, each multipath wave

experiences an apparent shift in frequency. The shift in received signal frequency due to

motion is called Doppler shift, and is directly proportional to the velocity and direction

of motion of the mobile with respect to the direction of arrival of the received multipath

wave. In Fig. 1.3, the rapid variations of the small scale fading power are plotted as a

function of the distance.

1.2.1 Factors Influencing Small-Scale Fading

Many physical factors in the radio propagation channel influence small-scale fading.

These include the following:

• Multipath Propagation: The presence of reflecting objects and scatterers in

the channel creates a constantly changing environment that dissipates the signal

energy in amplitude, phase and time. These effects result in multiple versions of

Department of Digital Systems 5
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Figure 1.3: Power (in dB) of small-scale fading

the transmitted signal that arrive at the receiving antenna, displaced with respect

to one another in time and spatial orientation. The random phase and amplitudes

of the different multipath components cause fluctuations in signal strength thereby

inducing small-scale fading, signal distortion or both.

• Speed of the mobile: The relative motion between the base station and the mo-

bile results in random frequency modulation due to different Doppler shifts on each

of the multipath components. Doppler shift will be positive or negative depending

on whether the mobile receiver is moving toward or away from the base station.

• Speed of surrounding objects: If objects in the radio channel are in motion, they

induce a time varying Doppler shift on multipath components. If the surrounding

objects move at a greater rate than the mobile, then this effect dominates the small-

scale fading.Otherwise motion of surrounding objects may be ignored and only the

speed of the mobile need to be considered.

• The transmission bandwidth of the signal: If the transmitted radio signal

bandwidth is greater than the ”bandwidth” of the multipath channel, the received

Department of Digital Systems 6



1.2. Small Scale Fading-Multipath

signal will be distorted, but the received signal strength will not fade much over

a local area, i.e., the small-scale fading will not be significant.If the transmitted

signal has a narrow bandwidth as compared to the channel, the amplitude of the

signal will change rapidly, but the signal will not be distorted. Thus the statistics

of small-scale signal strength and the likelihood of signal smearing appearing over

small-scale distances are very much related to the specific amplitudes and delays of

the multipath channel, as well as the bandwidth of the transmitted signal.

1.2.2 Envelope and Phase Fluctuations

When a received signal experiences fading during transmission, both its envelope and

phase fluctuate over time. For coherent modulations, the fading effects on the phase

can severely degrade performance unless measures are taken to compensate for them at

the receiver. Most often, analyses of systems employing such modulations assume that

the phase effects due to fading are perfectly corrected at the receiver resulting in what

is referred to as ”ideal” coherent demodulation. For noncoherent modulations, phase

information is not needed at the receiver and therefore the phase variation due to fading

does not affect the performance. Hence, performance analyses for both ideal coherent

and noncoherent modulations over fading channels requires knowledge of only the fading

envelope statistics and will be the case most often considered in this text.

1.2.3 Slow and Fast Fading

The distinction between slow and fast fading is important for the mathematical mod-

eling of fading channels and for the performance evaluation of communication systems

operating over these channels. This notion is related to the coherence time Tc of the

channel, which measures the period of time over which the fading process is correlated

(or equivalently, the period of time after which the correlation function of two samples of

the channel response taken at the same frequency but different time instants drops below

a certain predetermined threshold). The coherence time is also related to the channel

Department of Digital Systems 7



1.3. Stochastic Modeling of Flat-Fading Channels

Doppler spread fd by Tc ≃ 1/fd. The fading is said to be slow if the symbol time duration

Ts is smaller than the channel”s coherence time Tc; otherwise it is considered to be fast.

In slow fading a particular fade level will affect many successive symbols, which leads to

burst errors, whereas in fast fading the fading decorrelates from symbol to symbol. In

this latter case and when the communication receiver decisions are based on an observa-

tion of the received signal over two or more symbol times (such as differentially coherent

or coded communications), it becomes necessary to consider the variation of the fading

channel from one symbol interval to the next.

1.2.4 Frequency-Flat and Frequency-Selective Fading

Frequency selectivity is also an important characteristic of fading channels. If all the

spectral components of the transmitted signal are affected in a similar manner, the fading

is said to be frequency-nonselective or equivalently frequency-flat. This is the case for

narrowband systems, in which the transmitted signal bandwidth is much smaller than

the channel”s coherence bandwidth fc. This bandwidth measures the frequency range

over which the fading process is correlated and is defined as the frequency bandwidth

over which the correlation function of two samples of the channel response taken at

the same time but different frequencies falls below a suitable value. In addition the

coherence bandwidth is related to the maximum delay spread τmax by fc ≃ 1/τmax. On

the other hand, if the spectral components of the transmitted signal are affected by

different amplitude gains and phase shifts, the fading is said to be frequency selective.

This applies to wideband systems in which the transmitted bandwidth is bigger than the

channel”s coherence bandwidth.

1.3 Stochastic Modeling of Flat-Fading Channels

When fading affects narrowband systems, the received carrier amplitude is modulated

by the fading amplitude X, where X is a RV with mean-square value Ω = E < X2 >

and probability density function (PDF) fX(x), which is dependent on the nature of the

Department of Digital Systems 8



1.3. Stochastic Modeling of Flat-Fading Channels

radio propagation environment. After passing through the fading channel, the signal is

perturbed at the receiver by additive white Gaussian noise (AWGN), which is typically

assumed to be statistically independent of the fading amplitude X, and which is charac-

terized by a one-sided power spectral density N0 Watts/Hertz. Equivalently, the received

instantaneous signal power is modulated by X2. Thus, we define the instantaneous SNR

per symbol by γ = X2Es/N0 and the average SNR per symbol by γ = ΩEs/N0, where

Es is the energy per symbol.

1.3.1 Small Scale Fading Stochastic Modeling

Multipath fading is due to the constructive and destructive combination of randomly

delayed, reflected, scattered, and diffracted signal components. This type of fading is

relatively fast and is therefore responsible for the short-term signal variations. Depending

on the nature of the radio propagation environment, there are different models describing

the statistical behavior of the multipath fading envelope.

1.3.1.1 Rayleigh

The Rayleigh distribution is frequently used to model multipath fading with no direct

LOS path. In this case, the channel fading amplitude X is distributed according to

fx(x) =
2x

Ω
exp

(
−x

2

Ω

)
, x ≥ 0 (1.2)

where Ω is distribution scaling parameter. The instantaneous SNR per symbol of the

channel γ is distributed according to

fγ(γ) =
1

γ
exp

(
−γ
γ

)
, γ ≥ 0 (1.3)

with cumulative distribution function (CDF) given by

Fγ(γ) = 1− exp

(
−γ
γ

)
, γ ≥ 0. (1.4)
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1.3. Stochastic Modeling of Flat-Fading Channels

The moments generating function (MGF) for this fading model is given by1

Mγ(s) =
1

1 + sγ
(1.5)

while the moments are given by

µγ(n) = Γ(1 + n)γn (1.6)

where Γ(·) is Gamma function [4, eq. (8.310.1)]. The Rayleigh fading model therefore

has an AF equal to 1, and typically agrees very well with experimental data for mobile

systems where no LOS path exists between the transmitter and receiver antennas [3]. It

also applies to the propagation of reflected and refracted paths through the troposphere

[5] and ionosphere [6], and to ship-to-ship [7] radio links.

1.3.1.2 Nakagami-m

The Nakagami-m PDF is in essence a central chi-square distribution given by [8, eq. (11)]

fR(x) =
2mmx2m−1

ΩmΓ(m)
exp

(
−mx

2

Ω

)
, x ≥ 0 (1.7)

where m is the Nakagami-m fading shaping parameter, 0.5 ≤ m <∞ [8]. The PDF of γ

can be obtained as

fγ(γ) =
mmγm−1

γmΓ(m)
exp

(
−mγ

γ

)
, γ ≥ 0 (1.8)

with the corresponding CDF given by

Fγ(γ) = 1− Γ (m,mγ/γ)

Γ(m)
(1.9)

where Γ(·, ·) is the upper incomplete Gamma function [4, eq. (8.350/2)]. The MGF is

given by

Mγ(s) =

(
1 +

sγ

m

)−m

(1.10)

1It is noted that the definition of all the MGF expressions presented in this theses is Mγ(s) ,
E ⟨exp(−sγ)⟩, [3, eq. (5.62)].
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and the moments are equal to

µγ(n) =
Γ(m+ n)

Γ(m)mn
γn. (1.11)

Nakagami-m distribution includes as special cases the Gaussian distribution for m = 0.5

and Rayleigh form = 1. As a limiting case, form→ ∞, Nakagami-m converge to AWGN

channel. Finally, the Nakagami-m distribution often gives the best fit to land•mobile and

indoor•mobile [9] multipath propagation, as well as scintillating ionospheric radio links

[10].

1.3.1.3 Weibull

The Weibull distribution [11] is yet another mathematical description of a probability

model for characterizing amplitude fading in a multipath environment, particularly that

associated with mobile radio systems operating in the 800/900 MHz frequency range

[12, 13]. The PDF of the Weibull distribution is given by

fR(x) = β

[
Γ(1 + 2/β)

Ω

]β/2
xβ−1 exp

[
−
(
x2

Ω
Γ

(
1 +

2

β

))β/2]
, x ≥ 0 (1.12)

where β is a parameter that is chosen to yield a best fit to measurement results and as

such affords the shape flexibility of the Nakagami distributions. Furthermore, for β = 2

(1.12) becomes equal to the Rayleigh PDF. The PDF of γ is given by

fγ(γ) =
β

2

[
Γ (1 + 2/β)

γ

]β/2
γβ/2−1 exp

[
−
(
γ

γ
Γ

(
1 +

2

β

))β/2]
, γ ≥ 0 (1.13)

and the CDF is

Fγ(γ) = 1− exp

[
−
(
γ

γ
Γ

(
1 +

2

β

))β/2]
, γ ≥ 0. (1.14)
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1.3. Stochastic Modeling of Flat-Fading Channels

The MGF is given by [14]

Mγ(s) =

[
Γ(1 + 2/β)

γs

]β/2 β λβ/2
√
κ/λ

2
(√

2π
)κ+λ−2

Gκ,λ
λ,κ

[(
Γ(1 + 2/β)

γ

)κβ/2
λλ

sλκκ

∣∣∣∣∣∆(1,1−β/2)

∆(κ,0)

]
(1.15)

where G[·] is the Meijer-G fuction [4, eq.(9.301)] and ∆(x, y) is given by ∆(x, y) =

y/x, (y+1)/x, . . . , (y+x−1)/x. Furthermore, in (1.15) κ, λ are positive integers properly

chosen in order to satisfy

λ

κ
=
β

2
. (1.16)

More specifically, depending upon the specific value of β, a set of minimum values of κ

and λ can be properly chosen (e.g., for β = 3.5, we have to choose κ = 2 and λ = 7).

Finally the moments of γ following Weibull distribution are given by

µγ(n) =

[
γ

Γ(1 + 2/β)

]n
Γ

(
1 +

2n

β

)
. (1.17)

1.3.1.4 Generalized-Gamma

The generalized-Gamma distribution (GG), is a very general distribution for modeling

small scale fading, which included all the preceding fading channel models. This distri-

bution was introduced by Stacy, back in 1962, as a generalization of the (two-parameter)

Gamma distribution [15]. Interestingly enough, despite its ability to characterize so many

different fading channel models, only very recently it has been applied in the context of

wireless communications [16, 17]. The PDF of the random variable (RV) R following the

ΓG distribution is given by

fR(x) =
βmmxmβ−1

ΩmΓ(m)
exp

(
−m
Ω
xβ
)
, x ≥ 0 (1.18)

while the corresponding expression for the PDF of the SNR is given by

fγ(γ) =
βγmβ/2−1

2Γ(m) (τγ)mβ/2
exp

[
−
(
γ

τγ

)β/2]
, γ ≥ 0 (1.19)
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1.3. Stochastic Modeling of Flat-Fading Channels

where τ = Γ(m)/Γ(m + 2/β). Setting different values to m and β, (1.19) simplifies to

several important distributions for fading channel modeling. More specifically, for β = 2

and m = 1, it becomes Rayleigh, for β = 2, it becomes Nakagami-m and for m = 1, it

becomes the Weibull. Moreover, as b→ 0 and m→ ∞, (1.19) approaches the well-known

lognormal PDF. The CDF of (1.19) is given by

Fγ(γ) = 1− 1

Γ(m)
Γ

[
m,

(
γ

τγ

)β/2]
, γ ≥ 0. (1.20)

The MGF of γ is given by [18, eq. (3)]

Mγ(s) =
β

2Γ(m)

1

(sτγ)mβ/2
λmβ/2

√
κ/λ(√

2π
)κ+λ−2

Gκ,λ
λ,κ

[
λλ/κκ

(sτγ)κβ/2

∣∣∣∣∣∆(1,1−mβ/2)

∆(κ,0)

]
(1.21)

while the moments are

µγ(n) = (τγ)n
Γ (m+ 2n/β)

Γ(m)
. (1.22)

1.3.1.5 η − µ

The η−µ distribution is a general fading distribution that can be used to better represent

the small scale variation of the fading signal in non-line-of-sight condition. The envelope

R of the η − µ fading model can be written in terms of the in-phase and quadrature

components of each one of the n clusters of the fading signal as

R2 =
n∑
i=1

(
X2
i + Y 2

i

)
(1.23)

where Xi and Yi are mutually independent Gaussian precesses with zero-mean, E(Xi) =

E(Yi) = 0, with E (·) denoting expectation, and non-identical variances so that E(X2
i ) =

σ2
X and E(Y 2

i ) = σ2
Y . The envelope PDF is given by [19]

fR(x) =
4
√
πµµ+1/2hµ

Γ(µ)Hµ−1/2x̂

(x
x̂

)2µ
exp

[
−2µh

(x
x̂

)2]
Iµ−1/2

[
2µH

(x
x̂

)2]
(1.24)
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1.3. Stochastic Modeling of Flat-Fading Channels

where x̂ =
√
Ω =

√
E(R2), η = σ2

X/σ
2
Y (0 ≤ η ≤ 1) and

h =
2 + η−1 + η

4

H =
η−1 − η

4
.

(1.25)

In (1.24), Iν(·) is the modified Bessel Function of the first kind and arbitrary order ν [4,

eq. (8.406/1)] and µ > 0 is the real extension of n/2 so that

µ =
E2(R2)

V (R2)
× 1 + η2

(1 + η)2
∴ µ =

Ω2

E(R2)− Ω2
× 1 + η2

(1 + η)2
(1.26)

with V (·) denoting variance. The PDF of the SNR γ of the η − µ distribution is

fγ(γ) =
2
√
πµµ+1/2hµγµ−1/2

Γ(µ)Hµ−1/2γµ+1/2
exp

(
−2µh

γ

γ

)
Iµ−1/2

(
2µH

γ

γ

)
(1.27)

while the CDF can be obtained as

Fγ(γ, y) =
23/2−µ

√
π(1− γ2)µ

Γ(µ)γµ−1/2

∫ ∞

y

exp(−t2)t2µIµ−1/2(t
2γ)dt. (1.28)

Furthermore the MGF of η − µ fading channel is obtained as

Mγ(s) =
2
√
pi

Γ(µ)hµ

∞∑
n=0

2−2n−2µ

n!Γ(n+ µ+ 1/2)

(
H

h

)2n

. (1.29)

1.3.2 Large Scale Fading Stochastic Modeling

Communication system performance will depend only on shadowing if the radio receiver

is able to average out the fast multipath fading or if an efficient ”micro” diversity system

is used to eliminate the effects of multipath. Empirical measurements reveal a general

consensus that shadowing can be modeled by a log-normal distribution for various outdoor

and indoor environments [10].
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1.3. Stochastic Modeling of Flat-Fading Channels

1.3.2.1 Lognormal

The PDF of the log-normal distribution is given by

fγ(γ) =
ξ√
2πσγ

exp

[
−(10 log γ − µ)2

2σ2

]
, γ ≥ 0 (1.30)

where ξ = 10/ ln 10 and µ, σ are the mean and the standard deviation, in dB, of 10 log γ,

respectively. The MGF of γ is

Mγ(s) ≃
1√
π

Np∑
n=1

Hxn exp
(
10(

√
2σxn+µ)/10s

)
(1.31)

where xn and Hxn are the zeros and weight factors of the Npth order Hermite polynomial,

respectively [20, pp. (924)]. Finally, the moments of γ of the lognormal distribution are

µγ(n) = exp

[
n

ξ
µ+

1

2

(
n

ξ

)2

σ2

]
. (1.32)

1.3.3 Composite multipath/shadowing fading environments

Composite multipath/shadowing fading environments are frequently encountered in wire-

less communication systems. The generalized-K distribution fading model characterizes

the combined effect of fast and slow fading on the received signal by using two shaping

parameters m and k, where m is the Nakagami parameter for the short-term fading and

k is the parameter of the Gamma distribution for the received average power due to

shadowing. Assuming that the fading environment is such that the signal envelope X in

a receive antenna is a generalized-K distributed random variable, its pdf is given by [21]

fX(x) =
4m(k+m)/2

Γ(m)Γ(k)Ω(k+m)/2
xk+m−1Kk−m

(
2
(m
Ω

)1/2
x

)
, x ≥ 0 (1.33)

where k andm are the distribution’s shaping parameters, Ω = E[X2]/k is the mean power

with E [·] denoting expectation, Γ [·] is the Gamma function, and Kk−m [·] is the (k−m)th

order modified Bessel function of the second kind [4]. The instantaneous received SNR

per bit of a single branch is γ = X2Eb/N0, where Eb is the average bit energy and N0
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1.3. Stochastic Modeling of Flat-Fading Channels

is the single-sided power spectral density of the additive white Gaussian noise (AWGN).

The corresponding average received SNR per bit is given as γ̄ = kΩ · Eb/N0. The pdf of

γ can be obtained from (1.33) by an appropriate change of variables, as [21]

fγ(γ) =
2Ξ

k+m
2

Γ(m)Γ(k)
γ

k+m
2

−1Kk−m

(
2
√
Ξγ
)
, γ ≥ 0 (1.34)

with Ξ = (km) /γ̄. Using [22, eq. (03.04.21.0007.01)], the cdf of γ, defined as Fγ(γ)
∆
=∫ γ

0
fγ(γ)dγ, is given by [23]

Fγ(γ) =
Γ(k−m)

Γ(k)Γ(1+m)
(Ξγ)m1F2 (m; 1− k +m, 1 +m; Ξγ)

+ Γ(m−k)
Γ(m)Γ(1+k)

(Ξγ)k1F2 (k; 1 + k −m, 1 + k; Ξγ) , γ ≥ 0
(1.35)

where pFq (·) is the generalized hypergeometric function [4, eq. (9.14.1)] and p, q are

integers. The formula in (1.35) can be evaluated for arbitrary values of k andm, provided

that (k − m) is not an integer. The MGF of γ is defined as Mγ(s) =
∫∞
0
e−sγfγ(γ)dγ.

Substituting fγ(γ) given by (1.34) in this expression and expressing Kv(·) in terms of

Meijer’s G-function using [22, eq. (03.04.26.0009.01)], we obtain

Mγ(s) =
Ξ

k+m
2

Γ(m)Γ(k)

∞∫
0

e−sγγ
k+m

2
−1G

2,0

0,2

(
Ξγ

∣∣∣∣k −m

2
,−k −m

2

)
dγ (1.36)

Using [4, eq. (7.813.1)], the integral in (1.36) can be solved in terms of the G-function.

Moreover, using the functional relations [4, eq. (9.31.5)] and [4, eq. (9.31.2)], the final

result is given in closed form as

Mγ(s) =
1

Γ(m)Γ(k)
G

1,2

2,1

 s

Ξ

∣∣∣∣∣∣∣
1− k, 1−m

0

 (1.37)

Note that using [22, eq. (07.34.03.0391.01)] and [22, eq. (07.34.03.0392.01)] for the

G-function the result in (1.37) can also be written in terms of the confluent hypergeo-

metric function 1F1(a; b; z) and the Tricomi confluent hypergeometric function U(a, b, z),

respectively.
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Chapter 2

Introduction to Relay Systems

T
here is growing interest in the use of relay-assisted transmission schemes to provide

system performance improvement in terms of system reliability and cooperative di-

versity. Cooperative diversity can combat channel impairments due to fading in wireless

communication systems. The cooperative diversity through multihop relaying technology

has emerged as an effective tool to enhance the spectral efficiency and extend the coverage

of cellular and ad hoc wireless networks [24], [25]. In particular, multihop relaying can

enable the source and destination nodes to communicate through a set of cooperating

relay nodes in which the transmitted signals propagate through cascaded relay nodes,

with the aim of extending coverage and improving the performance of the network. For

example, idle mobile stations between the source and destination may be employed as

relay nodes to provide extra diversity links [26].

The signal received at the relay is usually processed before it is forwarded to the des-

tination and there are several signal relaying protocols [27]. In the most commonly used

signal processing technique at the relay, the information from the previous node is simply

amplified and forwarded to the next node; this is known as amplify-and-forward (AF)

relaying. AF relaying protocol is very simple to implement as the relaying node essen-

tially acts as an analog repeater. However, in large networks with many geographically

distributed nodes, AF relaying may be difficult to scale due to the strict synchronization

requirement. Alternatively, the receiving node may first decode the information in the

17



2.1. Dual-hop AF relaying system

received signal and then re-encode it before forwarding it to the next node; this relay-

ing format is referred to as decode-and-forward (DF) relaying. DF relaying provides the

possibility to vary the communication rate and prevents error propagation, but leads

to higher decoder complexity. Other relay processing techniques have also been stud-

ied in the literature. For example, the decode-amplify-and-forward (DAF) in which the

relay performs soft decoding and forwards the reliability information at the output of

the decoder instead of that extracted directly from the raw channel, to the destination.

The DAF protocol combines the merit of both AF and DF [28]. Also, the estimate-

and-forward relay (EF) transmits a hyperbolic tangent function of the received signal

to the destination [27]; the piecewise-and-forward (PF) provides a fine segment approxi-

mation of the EF protocol [29], while in several other protocols the relays provide more

complicated functions of the received signals to the destination [30].

The performances of multihop AF and DF relaying systems in a thermal noise-limited

environment have been studied extensively [31, 32, 33]. In these systems, it is well known

that the choice of the relay gain that maximizes the end-to-end signal-to-noise ratio

(SNR) is to invert the combined instantaneous received power (i.e., sum of desired signal

and noise power) at each relay node.

2.1 Dual-hop AF relaying system

We consider a wireless communication system in which a source sends a message xs(t) to

a destination via a non-regenerative relay. The signal received at the relay is given by

yR(t) =
√
Psα1xs(t) + n1(t) (2.1)

where Ps is the transmit power, α1 is the instantaneous fading amplitude of the channel

between the source and the relay, and n1(t) is the additive white Gaussian noise (AWGN)

with average power σ2
1 at the input of the relay. An amplify-and-forward (AF) relay

multiplies the signal yR(t) by a gain G and then re-transmits it to the destination, where
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2.1. Dual-hop AF relaying system

the received signal is given by

yD(t) = α2GyR(t) + n2(t) = α2G
{√

Psα1xs(t) + n1(t)
}
+ n2(t). (2.2)

B

A C
a1 a2

Figure 2.1: Example of Dual-hop relay system

In (2.2), α2 denotes the fading envelope on the link between the relay and the

destination, andσ2
2 is the noise power at the destination node. In general, the choice of

the node gain, G, determines the end-to-end SNR.

The resulting SNR at the destination node may be expressed as

γeq =
Psα

2
1α

2
2G

2

α2
2σ

2
1G

2 + σ2
2

=
Psα

2
1α

2
2

α2
2σ

2
1 +

σ2
2

G2

=

Psα2
1

σ2
1

α2
2

σ2
2

α2
2

σ2
2
+ 1

G2σ2
1

(2.3)

1. The best choice of the relay gain that maximizes the end-to-end SINR requires

the knowledge of the channel state information (CSI), which includes the signal

fading level as well as the noise power on the source-relay link. In such CSI-

based relays, the amplification gain at the relay is chosen to invert the fading state

of the preceding link. Following the two-parameter model proposed in [27], the

corresponding relay gain is chosen as

G2 =
PR

PSα2
1 + σ2

1

, (2.4)

where PR is the relay output power.
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2.1. Dual-hop AF relaying system

Substituting (2.4) in (2.3), the end-to-end SNR becomes

γeq =

Psα2
1

σ2
1

α2
2

σ2
2

α2
2

σ2
2
+

PSα
2
1+σ

2
1

PRσ
2
1

=

Psα2
1

σ2
1

PRα
2
2

σ2
2

PRα
2
2

σ2
2

+
PSα

2
1+σ

2
1

σ2
1

=

Psα2
1

σ2
1

PRα
2
2

σ2
2

PRα
2
2

σ2
2

+
PSα

2
1

σ2
1

+ 1
=

γ1γ2
γ2 + γ1 + 1

(2.5)

where γ1 = Psα
2
1/σ

2
1 is the instantaneous SNR on the source-relay link, γ2 =

PRα
2
2/σ

2
2 is the instantaneous SNR on the relay-destination link.

2. A possible option for the gain, is the channel inversion [31]:

G2 =
PR
Psa21

(2.6)

The equivalent end-to-end SNR for such a case:

γeq =
γ1γ2
γ1 + γ2

(2.7)

where γi =
a2i
N0
, i = 1, 2 is the instantaneous SNR of the i-th link.

3. There is another category of relays, called Fixed Gain Relays, in which the value

of Gain is fixed. Relays belong in this category, due to the fixed gain they do not

require complex circuits, and they are efficient enough. Also, for lower values of

SNR Fixed Gain Relays perform better than CSI Relays. Fixed Gain Relays are

separated into two sub-categories: ”Blind” and ”Semi-Blind” Relays.

2.1.1 Blind Relays

C =
PR
G2σ2

1

(2.8)

The end-to-end SNR at the destination is then given by

γeq =

Psα2
1

σ2
1

α2
2

σ2
2

α2
2

σ2
2
+ 1

G2σ2
1

=

Psα2
1

σ2
1

α2
2

σ2
2

α2
2

σ2
2
+

Cσ2
1

PRσ
2
1

=

Psα2
1

σ2
1

PRα
2
2

σ2
2

PRα
2
2

σ2
2

+ C
=

γ1γ2
γ2 + C

(2.9)
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2.2. Multi-hop AF relaying system

2.1.2 Semi-Blind Relays

The Gain is chosen as:

G2 = E

[
PR

Psa21 + σ2
1

]
=

PR
PsE [a21] + σ2

1

(2.10)

The end-to-end SNR at the destination is then given by

γeq =

Psα2
1

σ2
1

α2
2

σ2
2

α2
2

σ2
2
+ 1

G2σ2
1

=
γ1γ2

γ2 + γ̄1 + 1
(2.11)

Fig. 2.2 shows the different categories of relay systems.

Relays

Semi-BlindBlind

Fixed GainCSI

Regenerative RelaysNon-Regenerative 
Relays

Figure 2.2: Relay Categories

2.2 Multi-hop AF relaying system

In Fig. 2.3, the signal power and the noise power components at the destination hop D

are given by

S =
(
α2
1α

2
2...α

2
M

) (
G2

1G
2
2...G

2
M−1

)
(2.12)
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2.2. Multi-hop AF relaying system

N = N0,1

(
G2

1G
2
2...G

2
M−1

) (
α2
2α

2
3...α

2
M

)
+N0,2

(
G2

2G
2
3...G

2
M−1

) (
α2
3α

2
4...α

2
M

)
+N0,3

(
G2

3G
2
4...G

2
M−1

) (
α2
4α

2
5...α

2
M

)
+ ...+N0,M (2.13)

Consequently, the end-to-end SNR is given by

S R1 RN = DR2 ...

α1
2 α2

2 αΝ
2

σ1
2 σ2

2 σΝ
2

Figure 2.3: Multi-hop relay system with the presence of interference and noise

γeq =

∏M
n=1 α

2
n

∏M−1
n=1 G2

n∑M
n=1N0,n

∏M
s=n+1 α

2
s

∏M−1
s=n G2

s

(2.14)

Next divide both nominator and denominator in (2.14) by
∏M

n=1N0,n

∏M−1
n=1 G2

n. The

nominator is then given by

Nominator =
∏M

n=1

α2
n

N0,n

(2.15)

The denominator is given by

Denominator =
∑M

n=1

∏M
s=n+1

α2
s

N0,s∏n−1
s=1 G

2
s

∏n−1
s=1 N0,s

(2.16)

If we select as the AF gain at the jth relay to be

G2
j =

1

α2
j +N0,j

(2.17)

Substituting (2.17) in (2.16), we have

Denominator =
∑M

n=1

∏M

s=n+1

α2
s

N0,s

∏n−1

s=1

(
α2
s

N0,s

+ 1

)
(2.18)

Dividing (2.15) by (2.18), the equivalent end-to-end SNR is given by

γeq =

∏M
n=1

α2
n

N0,n∑M
n=1

∏M
s=n+1

α2
s

N0,s

∏n−1
s=1

(
α2
s

N0,s
+ 1
) =

[
M∑
n=1

1

γn

n−1∏
s=1

(
1 +

1

γs

)]−1

(2.19)
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where now

γj =
α2
j

N0,j

(2.20)

2.3 Multi-hop DF relay system

Since in DF relying systems, the end-to-end performance is usually dominated by that

of the weakest link, it follows that the end-to-end SNR for DF is given by [32], [34]

γeq ≤ γDF = min(γ1, ..., γN) (2.21)

It is well known that, in this case, the cdf of γDF is given by

FγDF
(γ) = Pr [min (γ1, ..., γN) < γ] = 1− Pr [γ1 > γ, ..., γN > γ] =

= 1−
N∏
n=1

(1− Fγn (γ)) (2.22)

The end-to-end SINR for DF relaying given in (2.21) is known to be an upper bound

for the end-to-end SINR of AF relaying. Therefore, it is frequently being used in the

performance analysis of AF relaying systems to yield lower bound performance bounds

of AF transmission schemes. The performances of AF and DF relaying systems converge

for high values of the end-to-end SNR.
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Chapter 3

On the Error Rate Analysis of

Dual-Hop Amplify-and-Forward

Relaying in Generalized-K Fading

Channels

I
n this chapter, we present novel and easy-to-evaluate expressions for the error rate

performance of cooperative dual-hop relaying with maximal ratio combining operat-

ing over independent generalized-K fading channels. It is hard to obtain a closed-form

expression for the moment generating function (MGF) of the end-to-end signal-to-noise

ratio (SNR) at the destination, even for the case of a single dual-hop relay link. There-

fore, we employ two different upper bound approximations for the output SNR, of which

one is based on the minimum SNR of the two hops for each dual-hop relay link and the

other is based on the geometric mean of the SNRs of the two hops. Lower bounds for the

symbol and bit error rates for a variety of digital modulations can then be evaluated using

the MGF based approach. The final expressions are useful in the performance evaluation

of amplify-and-forward relaying in a generalized composite radio environment.

3.1 Introduction

Cooperative diversity with relays has been shown to provide high data rate coverage and

mitigate channel impairments in next generation wireless systems. Amplify-and-forward
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3.1. Introduction

relay techniques have attracted a lot of attention recently as they provide a simple way to

implement collaborative/cooperative wireless communication systems. For dual-hop non-

regenerative systems, the end-to-end signal-to-noise ratio (SNR) at the receiving node

depends on the amplification gain employed at the relays. For relays with channel side

information (CSI) of the first link, the end-to-end SNR of a single dual-hop relay link has

been obtained in [31]. For this relay transmission scenario, analytical performance results

have been obtained by approximating the end-to-end SNR by the harmonic mean of the

SNRs of the two hops [35], their geometric mean [36], and the minimum SNR of the two

hops [37], [38]. Among the proposed approximations for the end-to-end SNR of dual-hop

transmission, the harmonic mean and the minimum SNR bounds have been shown to

result in tight performance bounds [35], [37], whereas the geometric mean bound has

been shown to give accurate results for low and medium values of the SNR per hop [36],

[37]. Using one of the above proposed upper bounds for the total SNR, the performance

of dual-hop relaying has been studied in terms of outage probability and average bit error

rate (BER) for various symmetrical fading conditions, such as Rayleigh [31], Nakagami-m

[35], [37], Weibull [38], and generalized Gamma [39] fading, as well as for asymmetrical

links [40], although most analyzes have been restricted to single dual-hop relay links.

The generalized-K fading model [21] has also attracted considerable attention as one

of the most general wireless fading models that can characterize the combined effects of

fast and slow fading on the received signal. This fading model corresponds to a Nakagami-

Gamma composite distribution and is controlled by two shaping parameters m and k,

where m is the Nakagami parameter for the short-term fading and k is the parameter of

the gamma distribution for the received average power due to shadowing [21]. Note that

the K distribution [41] is derived as a special case of the generalized-K distribution by

letting m = 1 (i.e., Rayleigh short-term fading). A number of results on the performance

analysis of communication links in this fading model can be found in the literature [42],

[43].

Recently, analytical expressions for the error rate performance of dual-hop relaying
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3.2. Statistics of the Generalized-K Distribution

over generalized-K fading channels were given in terms of convergent infinite series in

[44], using the minimum SNR upper bound for the end-to-end SNR and averaging the

conditional BER over the derived probability density function (pdf) of the total SNR.

However, these expressions are restricted to a single dual-hop relay system and result in

some truncation error depending on the number of terms employed. Furthermore, the

expressions in [44] cannot be evaluated for integer values of the shaping parameter k. In

this chapter, using both the minimum SNR and the geometric mean upper bounds for

the end-to-end SNR of a single relay link and employing the moment generating func-

tion (MGF) based approach, we present novel expressions for the error rate performance

of multiple dual-hop relaying with MRC operating over independent generalized-K fad-

ing channels with integer values of fading parameter m and arbitrary values of fading

parameter k. Note that using the geometric mean approximation of the total SNR, in-

dependent non-identical fading in the two hops of each relay, i.e., source-to-relay and

relay-to-destination, can be considered, whereas the minimum SNR performance bound

is restricted to independent and identically distributed (i.i.d.) fading channels.

The rest of the chapter is organized as follows. In Section II we present the statistics

of the generalized-K distribution, i.e., the pdf, cumulative density function (cdf), and

MGF of the instantaneous received SNR of a single direct link. In Section III, using

the MGF based approach, we derive the average symbol error rate (SER) of multiple

dual-hop relay links with MRC at the receiver side. Numerical and simulation results are

given in Section IV, while concluding remarks are given in Section V.

3.2 Statistics of the Generalized-K Distribution

We assume that the fading environment is such that the signal envelope X in a receive

antenna is a generalized-K distributed random variable with pdf given by [21]

fX(x) =
4m(k+m)/2

Γ(m)Γ(k)Ω(k+m)/2
xk+m−1Kk−m

(
2
(m
Ω

)1/2
x

)
, x ≥ 0 (3.1)
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3.3. End-to-End Error Rate Analysis

where k and m are the distribution’s shaping parameters, Ω = E [X2] /k is the mean

power with E [·] denoting expectation, Γ(·) is the Gamma function, and Kk−m(·) is the

(k −m)th order modified Bessel function of the second kind [4].

The instantaneous received SNR per symbol of a single receive branch is γ = X2Es/N0,

where Es is the average symbol energy and N0 is the single-sided power spectral density

of the additive white Gaussian noise (AWGN). The corresponding average received SNR

per symbol is given as γ = kΩEs/N0. The PDF of γ is given by

fγ(γ) =
2Ξ

k+m
2

Γ(m)Γ(k)
γ

k+m
2

−1Kk−m

(
2
√

Ξγ
)
, γ ≥ 0 (3.2)

with Ξ = (km)/γ. The CDF of γ, defined as Fγ(γ) =
∫ γ
0
fγ(x)dx, has been obtained in

[45] for integer values of m and arbitrary values of k, as

Fγ(γ) = 1− 2 (Ξγ)
k
2

Γ(k)

m−1∑
q=0

1

q!
(Ξγ)

q
2 Kk−q

(
2
√
Ξγ
)
, (3.3)

Moreover the MGF of γ defined as Mγ(−s) =
∫∞
0
e−sγfγ(γ)dγ, is given by [45]

Mγ(−s) =
1

Γ(m)Γ(k)
G1,2

2,1

[ s
Ξ

∣∣∣ 1−k,1−m
0

]
(3.4)

where G [·] is the Meijer’s G-function [4, eq. (9.301)].

3.3 End-to-End Error Rate Analysis

We consider a dual-hop relay system with N relays as well as a direct link between the

source and the destination, as shown in Fig. 3.1. The output SNR, assuming MRC at

the destination receiving end, can be written as

γout = γ0 +
N∑
ℓ=1

γend(ℓ), (3.5)

where γ0 is the SNR of the direct link and γend(ℓ) is the end-to-end SNR of the l-th

relay. For amplify-and-forward relays with CSI at the relays, γend(ℓ) is known to be

given by the harmonic mean of the three positive random variables (γℓ1, γℓ2, γℓ1γℓ2), i.e.,
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γend(ℓ) =
γℓ1γℓ2

γℓ1+γℓ2+1
[31]. Assuming independent fading in all relay links, the MGF of the

output SNR is then given by

Mγout(−s) = Mγ0(−s)
N∏
ℓ=1

Mγend(ℓ)(−s) (3.6)

For the generalized-K fading environment, Mγ0(−s) is given by (3.4). In order to obtain

mathematically tractable results for the MGF of γend(ℓ), the end-to-end SNR for the relay

channel has been approximated by different upper bounds [35],[36], [37]. In this chapter,

for the generalized-K fading environment, we consider the approximations of minimum

SNR [37] and geometric mean [36].

It follows that the average SER and BER performances for a variety of digital modu-

lations can be evaluated using the MGF based approach. For example, the average SER

for M -ary phase-shift keying (M -PSK) is given by

Pe,MPSK =
1

π

(M−1)π/M∫
0

Mγout

(
− gM
sin2θ

)
dθ, (3.7)

where gM = sin2(π/M), whereas forM -ary quadrature amplitude modulation (M -QAM)

the average SER is given by

Pe,MQAM =
4q

π

π/2∫
0

Mγout

(
− gQ
sin2θ

)
dθ − 4q2

π

π/4∫
0

Mγout

(
− gQ
sin2θ

)
dθ, (3.8)

where q = 1− 1/
√
M and gQ = 3/(2(M − 1)).

3.3.1 Performance using the minimum SNR approximation

The end-to-end SNR of a dual-hop relay system with multiple relays and a direct link

between the source and the destination can be approximated by its upper bound γa as

follows [37]

γout ≤ γa = γ0 +
N∑
ℓ=1

γmin(ℓ), (3.9)
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Figure 3.1: Cooperative dual-hop relay transmission scheme with MRC at the destination.

where γmin(ℓ) = min (γℓ1, γℓ2), ℓ = 1, ..., N . The pdf of γmin(ℓ) is given by [4]

fγmin(ℓ)(γ) = fγℓ1(γ) + fγℓ2(γ)− [fγℓ1(γ)Fγℓ2(γ) + Fγℓ1(γ)fγℓ2(γ)] (3.10)

Using (3.10), the MGF of γmin(ℓ) is given by

Mγmin(ℓ)(−s) =
∞∫
0

e−sγmin(ℓ)fγmin(ℓ)(γ)dγ

= Mγℓ1(−s) +Mγℓ2(−s)− [Mγℓ12(−s)+Mγℓ21(−s)]
(3.11)

where

Mγℓij(−s) =
∞∫
0

e−sγfγℓi(γ)Fγℓj(γ)dγ (3.12)

for i, j ∈ {1, 2}. In order to derive closed form analytical results, we consider i.i.d. fading

for the source-to-relay and relay-to-destination links. Using (3.3) in (3.12) we obtain

Mγℓij(−s) = Mγℓi(−s)− I(−s) (3.13)
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where

I(−s) = 4Ξ
2k+m

2

Γ(m)Γ2(k)

m−1∑
r=0

1

r!
(Ξ)

r
2

∞∫
0

e−sγγk+
m+r

2
−1Kk−m

(
2
√
Ξγ
)
Kk−r

(
2
√
Ξγ
)
dγ

(3.14)

Note that in (3.14) we dropped the subscripts on k, m, and Ξ, for simplicity. By ex-

pressing the product of two Bessel K-functions in terms of the Meijer G-function using

[22, eq. 03.04.26.0016.01] and evaluating the resulting integral using [4, eq. (7.813.1)],

followed by the functional relationships [4, eq. (9.31.5)] and [4, eq. (9.31.2)], the final

result is given by

I(−s) =
√
π

22k+m−1Γ(m)Γ2(k)
·

·
m−1∑
r=0

1
2rr!

G1,4
4,3

 s
4Ξ

∣∣∣∣∣∣∣
1− 2k, 1− k − r, 1− k −m, 1−m− r

0, 1− k − m+r
2
, − k − m+r−1

2


(3.15)

Therefore, assuming i.i.d. fading in the two hops of the l-th relay link, for ℓ = 1, ..., N ,

the MGF of γmin(ℓ) in (3.11) becomes Mγmin(ℓ)(−s) = 2I(−s), i.e.,

Mγmin(ℓ)(−s) =
√
π

22kℓ+mℓ−2Γ(mℓ)Γ2(kℓ)
·

·
mℓ−1∑
r=0

1
2rr!

G1,4
4,3

 s
4Ξℓ

∣∣∣∣∣∣∣
1− 2kℓ, 1− kℓ − r, 1− kℓ −mℓ, 1−mℓ − r

0, 1− kℓ − mℓ+r
2
, − kℓ − mℓ+r−1

2

 .

(3.16)

Finally, the MGF of the MRC output SNR is approximated by

Mγα(−s) = Mγ0(−s)
N∏
ℓ=1

Mγmin(ℓ)(−s) (3.17)

3.3.2 Performance Using The Geometric Mean Approximation

It is well known that the end-to-end SNR of the l-th relay link can be expressed in terms of

the harmonic mean of the three positive random variables (γℓ1, γℓ2, γℓ1γℓ2). Following [36],

the end-to-end SNR can be upper bounded using the geometric mean of (γℓ1, γℓ2, γℓ1γℓ2),
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as

γout ≤ γb = γ0 +
1

3

N∑
ℓ=1

(γℓ1γℓ2)
2/3 (3.18)

By letting γℓ =
1
3
(γℓ1γℓ2)

2/3, the MGF of γℓ is given by

Mγℓ(−s) =
∞∫
0

∞∫
0

e−(s/3)(γ1γ2)
2/3

fγℓ1(γ1)fγℓ2(γ2)dγ1dγ2 (3.19)

By replacing (3.2) in (3.19) we obtain (note that in the derivations, for simplicity, we

drop the subscript l on the fading parameters)

Mγℓ(−s) =
4Ξ

k1+m1
2

1 Ξ
k2+m2

2
2

Γ(m1)Γ(m2)Γ(k1)Γ(k2)
·

·
∞∫
0

∞∫
0

e−(s/3)γ
2/3
1 γ

2/3
2 γ

k1+m1
2

−1

1 γ
k2+m2

2
−1

2 Kk1−m1

(
2
√
Ξ1γ1

)
Kk2−m2

(
2
√
Ξ2γ2

)
dγ1dγ2

(3.20)

Following a similar procedure to the one in [36], the inner integral is given by

I1(−s) =
∞∫
0

e−(s/3)γ
2/3
1 γ

2/3
2 γ

k1+m1
2

−1

1 Kk1−m1

(
2
√
Ξ1γ1

)
dγ1 (3.21)

By substituting Kv (2
√
x) = 1

2
G2,0

0,2

x
∣∣∣∣∣∣∣
−
v
2
,−v

2

 and e−x = G1,0
0,1

x
∣∣∣∣∣∣∣
−

0

 in (3.21) and

using [22, eq. (07.34.21.0013.01)], we obtain the closed-form result

I1(−s) =
√
3 2k1+m1

24π2 Ξ
k1+m1

2
1

G3,4
4,3

24s3γ2
2

36Ξ2
1

∣∣∣∣∣∣∣
∆(2, k1) ,∆(2,m1)

0, 1
3
, 2
3

 (3.22)
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where ∆ (·, ·) is defined as ∆ (p, µ) =
{

1−µ
p
, ..., p−µ

p

}
, with p being positive integer and µ

positive real. Using (3.22), the outer integral in (3.20) becomes

I2(−s) =
√
3 2k1+m1

24π2 Ξ
k1+m1

2
1

·

·
∞∫
0

G3,4
4,3

24s3γ22

36Ξ2
1

∣∣∣∣∣∣∣
∆(2, k1) ,∆(2,m1)

0, 1
3
, 2
3

 γ
k2+m2

2
−1

2 Kk2−m2

(
2
√
Ξ2γ2

)
dγ2

(3.23)

Again, expressing the Bessel K-function in terms of the G-function and using [22, eq.

(07.34.21.0013.01)], followed by some straightforward manipulations, we obtain

I2(−s) =
√
3 2k1+m1+k2+m2

27π3 Ξ
k1+m1

2
1 Ξ

k2+m2
2

2

G3,8
8,3

 28s3

36Ξ2
1Ξ

2
2

∣∣∣∣∣∣∣
∆(2, k1) ,∆(2,m1) ,∆(2, k2) ,∆(2,m2)

0, 1
3
, 2
3


(3.24)

Using the above result for I2 (−s), the MGF of γℓ is given by

Mγℓ(−s) =
√
3 2kℓ1+mℓ1+kℓ2+mℓ2

25π3 Γ(mℓ1)Γ(mℓ2)Γ(kℓ1)Γ(kℓ2)
·

·G3,8
8,3

 28s3

36Ξ2
ℓ1Ξ

2
ℓ2

∣∣∣∣∣∣∣
∆(2, kℓ1) ,∆(2,mℓ1) ,∆(2, kℓ2) ,∆(2,mℓ2)

0, 1
3
, 2
3

 .

(3.25)

Finally, owing to the independency of γℓ , ℓ = 1, ..., N , the MGF of the MRC output

SNR is approximated by the product of the MGFs, as

Mγb(−s) = Mγ0(−s)
N∏
ℓ=1

Mγℓ(−s) (3.26)

3.4 Numerical Results

In this section we present some numerical and simulation results on the error rate per-

formance of the cooperative dual-hop relay transmission scheme with MRC operating

over independent generalized-K fading channels. This fading model corresponds to a

Nakagami-Gamma composite distribution and is controlled by two shaping parameters
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Figure 3.2: Average SER for 4-PSK vs average SNR per hop for N = 1 and N = 2
dual-hop links with MRC assuming m0 = 1, k0 = 0.5 for the direct link, m1 = 1, k1 = 1.5
for the first relay link, and m2 = 2, k2 = 3 for the second relay link.

m and k, where the parameter m ≥ 1/2 inversely reflects the multipath fading severity

and the positive parameter k inversely reflects the shadowing severity [21]. For demon-

stration purposes, we assume different fading conditions for each relay link, i.e., m0 = 1,

k0 = 0.5 for the direct link, m1 = 1, k1 = 1.5 for the first relay link, and m2 = 2, k2 = 3

for the second relay link. Using the MGF based approach for performance evaluation over

fading channels and the two approximations for the end-to-end SNR of a single dual-hop

relay link, Fig. 3.2 and 3.3 plot, respectively, the average SER for 4-PSK and 16-QAM

versus the average SNR per hop of a single relay system (i.e., N = 1) and a multiple

relay system with N = 2. Moreover, we plot the exact numerical results from simulation

using the end-to-end SNR given by (3.5) for the MRC receiver.

A number of observations on the accuracy of each analytical lower bound of the error
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performance can be drawn from these graphs. We observe that for values of the average

SNR per hop less than 10dB the geometric mean performance bound gives numerical

results that are a little closer to the exact simulation results than the minimum SNR

bound. However for SNRs per hop equal to or greater than 10dB, the minimum SNR

approximation is more accurate than the geometric mean and its accuracy improves as

the average SNR per hop increases. Furthermore, the minimum SNR performance bound

is shown to be tight for both values of N , although it loses some of its tightness for N = 2

compared to N = 1. However, for both values of N , increased values of the average SNR

per hop result in the minimum SNR bound to converge to the exact values, whereas the

geometric mean bound loses its tightness. Finally, the graphs show the effects of diversity

order N and fading parameters k and m on the average SER, i.e. the worst performance

is obtained for single dual-hop relay and fading conditions with high amount of fading

due to shadowing (e.g., k = 1.5) and multipath (e.g., m = 1), whereas the SER improves

as N increases and fading conditions become less severe (e.g., k = 3 and m = 2 for the

second relay channel).

3.5 Conclusion

In this chapter, we provided closed-form expressions for the MGF of the minimum SNR

and geometric mean upper bounds for the end-to-end SNR of a single dual-hop relay

system operating over a generalized-K fading environment. Then, for independently

faded relay links and MRC diversity receiver, the average SER and BER can be easily

evaluated for various modulation schemes using the MGF based approach. Simulation

results of the exact SER were used to verify the analytical results and evaluate the

tightness of the two lower performance bounds.

Department of Digital Systems 34



3.5. Conclusion

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Average SNR per hop (dB)

A
ve

ra
ge

 S
E

R

 

 

exact (simulation)
minimum SNR bound
geometric mean bound

N = 2

N = 1

Figure 3.3: Average SER for 16-QAM vs average SNR per hop for N = 1 and N = 2
dual-hop links with MRC assuming m0 = 1, k0 = 0.5 for the direct link, m1 = 1, k1 = 1.5
for the first relay link, and m2 = 2, k2 = 3 for the second relay link.
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Chapter 4

Performance Analysis of Dual-Hop

Relay Systems with Single Relay

Selection in Composite Fading

Channels

I
n this chapter, we present novel and easy-to-evaluate expressions for the perfor-

mance of dual-hop relaying with best relay selection operating over generalized-K fad-

ing channels. Since it is hard to find a closed-form expression for the probability density

function (PDF) of the exact end-to-end signal-to-noise ratio (SNR) at the destination

node even for the single dual-hop system with amplify-and-forward (AF) relaying, we

use a tight upper bound value instead. Using the approximate value for the end-to-end

SNR, closed-form expressions for the statistics of the SNR, the average bit and symbol

error probabilities, and the ergodic capacity for the single dual-hop AF relay system, are

derived. Moreover, assuming independent nonidentical fading conditions across multiple

dual-hop relay links, we derive lower performance bounds for the single relay selection

scheme with AF relaying. The final expressions are useful in the performance evaluation

of AF opportunistic relaying in a generalized composite radio environment. Simulation

results are also given to verify the analytical results.
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4.1. Introduction

4.1 Introduction

It is well known that the cooperative diversity realized through relays can provide an

increase in link quality and reliability, high data rate coverage, and mitigate channel

impairments in next generation wireless systems. An overview of cooperative diversity

protocols is presented in [27]. In general, there are two types of processing that can be

performed at the relays. In a decode-and-forward (DF) scheme, the relay station decodes

the received signal, re-encodes and then retransmits the restored signal to the destination.

On the other hand, amplify-and-forward (AF) relays simply amplify and forward the

signal to the destination and have attracted a lot of attention recently as they provide

a simple way to implement collaborative/cooperative wireless communication systems.

Furthermore, Bletsas et. al. proposed in [46] a cooperative diversity protocol named

opportunistic relaying technique, which selects (using a selection policy) the “best” relay

among multiple available relays. It was then shown that the best-relay selection reduces

the amount of required resources while improving the performance.

For dual-hop AF relay systems, the end-to-end SNR at the receiving end depends on

the amplification gain employed at the relays. For relays with channel state information

(CSI) of the first link, the end-to-end SNR has been obtained in [31]. For this relay

transmission scheme, analytical performance results have been obtained by approximating

the end-to-end SNR by the harmonic mean of the SNRs of the two hops [35], their

geometric mean [36], and the minimum SNR of the two hops [37], [39]. In particular,

using the minimum SNR approximation for the end-to-end SNR, the performance of

dual-hop relaying has been studied in terms of outage probability and average bit error

rate (BER) in various fading conditions, such as Rayleigh [31], Nakagami-m [37], Weibull

[47] and generalized Gamma [39] fading channels.

The minimum SNR of the two hops has also been used as a selection policy as well

as a bound in the performance evaluation of the best relay selection scheme based on

AF [46], [48], [49] and DF [50], [51] relaying protocols. For example, in [49], the authors

presented an asymptotic analysis (at high SNR values) of the average symbol error rate
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(SER) of an AF best relay selection scheme, and compared it with the regular cooperative

systems. Furthermore, in [50], the authors derived closed-form expressions for the outage

probability and the average BER of opportunistic relaying with DF relays. However, in

the existing literature, almost all performance results of this transmission scheme have

been restricted to the case of Rayleigh fading channel.

Recently, the generalized-K fading model [21] has attracted considerable attention

as one of the most general wireless fading models that can characterize the combined

effects of small and large-scale fading on the received signal. This model corresponds to

a Nakagami-Gamma composite distribution and is controlled by two shaping parameters

m and k, where m is the Nakagami parameter for the small-scale fading and k is the

parameter of the Gamma distribution for the received average power due to shadowing

[21]. Note that the K distribution [41] is derived as a special case of the generalized-K

distribution by letting m = 1 (i.e., Rayleigh multipath fading). The performance analysis

of single link communication systems in this fading model was given in [42], whereas for

relay systems, results that have recently appeared in the literature, are restricted to the

performance of dual-hop single relay systems with CSI-assisted [44] and fixed gain [52]

transmission schemes. However, the analytical expressions in [44] are too complicated to

be used in the performance analysis of the best relay selection scheme.

In this chapter, we focus on AF dual-hop cooperative diversity networks to study

their end-to-end performance over independent nonidentical generalized-K fading chan-

nels when the best relay selection scheme is employed. The main contribution of this

paper includes the derivation of novel closed-form expressions for the PDF, CDF, and

moment generating function (MGF) of a tight upper bound on the total SNR at the des-

tination of the single dual-hop relayed signal. Then, using the derived CDF expression,

we present performance metrics such as the outage probability and the average BER for

the multiple dual-hop relay system with best relay selection operating in a generalized-K

fading model with integer values for fading parameter m and arbitrary values for fading

parameter k.
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The rest of the chapter is organized as follows. In Section 2 we present the channel

model statistics. In Section 3, we derive the statistics of an upper bound approximation to

the end-to-end SNR of a single dual-hop AF relay system and closed-form expressions for

various performance metrics. Then, in Section 4, for the case of independent nonidentical

fading across multiple relay links, we derive analytical lower performance bounds for dual-

hop relay systems with single relay selection. Numerical and simulation results are given

in Section 5, followed by concluding remarks in Section 6.

4.2 The Generalized-K Fading Model

In many fading environments, the received signal envelope can usually be characterized

by the Nakagami-m distribution. In a shadowed environment, the average power of the

received signal is also random. In this work, we assume that the fading environment

is such that the signal envelope X in a receive antenna is a generalized-K distributed

random variable with pdf given by [21]

fX(x) =
4 (m/Ω)

k+m
2

Γ(m)Γ(k)
xk+m−1Kk−m

(
2
(m
Ω

)1/2
x

)
, x ≥ 0 (4.1)

where k and m are the distribution’s shaping parameters, Ω = E [X2] /k is the mean

power with E [·] denoting expectation, Γ(·) is the Gamma function, and Kk−m(·) is the

(k − m)th order modified Bessel function of the second kind [4]. The generalized-K

fading model can describe different fading conditions by the appropriate choice of fading

parametersm and k. Low values ofm and k can be used to describe fading conditions with

severe multipath fading and shadowing, respectively, whereas fading conditions improve

as the values of the fading parameters increase.

The instantaneous received SNR per symbol of a single receive branch is γ = X2Es/N0,

where Es is the average symbol energy and N0 is the single-sided power spectral density

of the additive white Gaussian noise (AWGN). The corresponding average received SNR
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per symbol is given as γ = kΩEs/N0. The PDF of γ is given by

fγ(γ) =
2Ξ

k+m
2

Γ(m)Γ(k)
γ

k+m
2

−1Kk−m

(
2
√

Ξγ
)
, γ ≥ 0 (4.2)

with Ξ = (km)/γ. The CDF of γ is defined as Fγ(γ) =
∫ γ
0
fγ(x)dx. For integer values of

m and arbitrary values of k, the CDF of γ is given by [45]

Fγ(γ) = 1− 2 (Ξγ)
k
2

Γ(k)

m−1∑
q=0

1

q!
(Ξγ)

q
2 Kk−q

(
2
√
Ξγ
)
, (4.3)

which agrees with [41] for the special case of K-fading (i.e., m = 1). Moreover the MGF

of γ defined as Mγ(−s) =
∫∞
0
e−sγfγ(γ)dγ, is given by [45]

Mγ(−s) =
1

Γ(m)Γ(k)
G1,2

2,1

[ s
Ξ

∣∣∣ 1−k,1−m
0

]
(4.4)

where Gm,n
p,q

(
x| αp

bq

)
is the Meijer”s G-function [4, chap. 9.3].

4.3 Performance Analysis of Single Dual-Hop Relay

System

In this section we study the performance of a single dual-hop AF relay system operating

in the generalized-K fading channel. Assuming CSI-based amplification gain at the ℓ-th

relay (see Fig. 4.1), the exact end-to-end SNR of the ℓ-th dual-hop link is given by [31],

[35]

γend (ℓ) =
γℓ1γℓ2

γℓ1 + γℓ2 + 1
. (4.5)

In the literature, this relay transmission scheme is usually considered as a benchmark

for cooperative performance. Since it is hard to find a closed-form expression for the

PDF of the exact end-to-end SNR of the relayed signal at the destination node, we use

an approximate value instead, given by the upper bound [37]

γend(ℓ) ≤ γmin(ℓ) (4.6)
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Figure 4.1: Dual-hop relay transmission scheme with best relay selection.

where γmin(ℓ) = min(γℓ1 , γℓ2). This approximation is also adopted in many recent papers

(e.g., [37], [47]) and it is shown to be accurate enough, especially at medium and high

SNR values as will be discussed in Section 5.

4.3.1 Statistics of the end-to-end SNR

Using the bound in (4.6), a closed-form expression for the PDF of the total SNR at the

destination can be derived. The PDF of γmin(ℓ) is given by

fγmin(ℓ)(γ) = fγℓ1 (γ) + fγℓ2 (γ)−
[
fγℓ1 (γ)Fγℓ2 (γ) + Fγℓ1 (γ)fγℓ2 (γ)

]
(4.7)

where fγℓi (γ) and Fγℓi (γ), i = 1, 2, are, respectively, the PDF and the CDF of the

generalized-K distributed SNR of the i-th link of the ℓ-th relay.

For the case of symmetrical links, i.e., independent identically distributed (i.i.d.)

fading and equal average SNRs for the user-to-relay and relay-to-destination links, drop-

ping subscripts 1 and 2 in (4.7), and substituting (4.2) and (4.3) in (4.7), the PDF of
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γmin(ℓ), ℓ = 1, . . . , N is given by

fγmin(ℓ)(γ) = 2
4 (Ξℓγ)

kℓ+
mℓ
2 γ−1

Γ(mℓ)Γ2(kℓ)

mℓ−1∑
q=0

(Ξℓγ)
q
2

q!
Kkℓ−mℓ

(
2
√
Ξℓγ
)
Kkℓ−q

(
2
√
Ξℓγ
)
. (4.8)

Using [22, eq. (03.04.26.0016.01)], i.e.,

Kµ

(√
z
)
Kv

(√
z
)
=

√
π

2
G4,0

2,4

[
z
∣∣∣ 0, 1

2

µ+v
2
,µ−v

2
, v−µ

2
,−µ+v

2

]
(4.9)

and the functional identity [4, eq. (9.31.5)], the PDF of γmin(ℓ), ℓ = 1, . . . , N , can also

be written in terms of the G-function as

fγmin(ℓ)(γ) =
42−kℓ−

mℓ
2
√
πΞℓ

Γ(mℓ)Γ2(kℓ)

mℓ−1∑
q=0

4−
q
2

q!
G4,0

2,4

[
4Ξℓγ

∣∣ a1,a2

b1,b2,b3,b4

]
(4.10)

where a1 = kℓ+(mℓ + q) /2−1, a2 = kℓ+(mℓ + q − 1) /2, b1 = 2kℓ−1, b2 = kℓ+q−1, b3 =

kℓ +mℓ − 1, b4 = mℓ + q − 1. The CDF of γmin(ℓ), ℓ = 1, . . . , N , is then given by

Fγmin(ℓ)(γ) =

∫ γ

0

fγmin(ℓ)(x)dx. (4.11)

Substituting (4.10) in (4.11) and using [22, eq. (07.34.21.0003.01)]

∫ γ

0

xα−1Gm,n
p,q

[
ωx
∣∣(ap)
(bq)

]
dx = γαG m,n+1

p+1,q+1

[
ωγ
∣∣1−α,a1,...,an,an+1,...,ap

b1,...,bm,bm+1,...,bq ,−α

]
(4.12)

the final expression for the CDF of γmin(ℓ), ℓ = 1, . . . , N , is given also in terms of the

G-function as

Fγmin(ℓ)(γ) =
41−kℓ+

mℓ
2
√
π

Γ(mℓ)Γ2(kℓ)

mℓ−1∑
q=0

4−
q
2

q!
G4,1

3,5

[
4Ξℓγ

∣∣∣ 1,a1+1,a2+1

b1+1,b2+1,b3+1,b4+1,0

]
. (4.13)

Moreover, using the PDF in (4.10), the MGF of the end-to-end SNR bound,Mγmin(ℓ)(s),

can be expressed as

Mγmin(ℓ)(s) =

∫ ∞

0

exp (−sγ) fγmin(ℓ) (γ) dγ. (4.14)
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By substituting (4.8) into (4.14) and using [22, eq. (07.34.21.0088.01)], we can obtain

Mγmin(ℓ)(γ) =
41−kℓ+

mℓ
2
√
π

Γ(mℓ)Γ2(kℓ)

mℓ−1∑
q=0

4−
q
2

q!
G4,1

3,4

[
4Ξℓ
s

∣∣∣ 1,a1+1,a2+1

b1+1,b2+1,b3+1,b4+1

]
. (4.15)

To the best of our knowledge, closed-form expressions (4.10), (4.13), and (4.15) are

novel. Note that the Meijer G-function is available in most of the well-known mathemat-

ical software packages such as Maple and Mathematica.

4.3.2 Amount of Fading

With the equivalent PDF as shown in (4.10), the n-th moment of γmin(ℓ), ℓ = 1, . . . , N ,

can be evaluated by the formula

µγmin(ℓ)(n) =

∫ ∞

0

γnfγmin(ℓ)(γ)dγ. (4.16)

Substituting (4.10) in (4.16) and using [4, eq.(7.811.4)] the moments of γmin(ℓ), ℓ =

1, . . . , N can be obtained in closed form as

µγmin(ℓ)(n) =
41−kℓ−

mℓ
2

−n√π Ξ−n
ℓ

Γ(mℓ)Γ2(kℓ)

mℓ−1∑
q=0

4−
q
2

q!

4∏
j=1

Γ [bj + n+ 1]

2∏
j=1

Γ [aj + n+ 1]

. (4.17)

The amount of fading (AoF) used to measure the severity of fading can then be computed

by the formula [53]

AoFℓ =
µγmin(ℓ)(2)

µ2
γmin(ℓ)

(1)
− 1. (4.18)

4.3.3 Outage Probability

The outage probability, defined as the probability that the received total SNR falls below

a threshold, γth, can be obtained directly as Pout = Fγ(γth).
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4.3.4 Average BER

The average BER is obtained by integrating the conditional bit error probability Pb(e|γ)

over the PDF of the upper bound of the end-to-end SNR, fγmin(ℓ)(γ). Following the

approach used in [54], the average error probability can be written in terms of the CDF

Fγmin(ℓ)(γ), i.e.,

Pb(e) = −
∫ ∞

0

dPb(e|γ)
dγ

Fγmin(ℓ)(γ)dγ. (4.19)

Next, we present tight lower bounds of the average BER of the CSI-assisted AF dual-

hop single relay system in generalized-K fading channels for various modulation schemes

according to their conditional BER forms.

1. Pb (e|γ) = Γ(β,αγ)
2Γ(β)

: where parameters α and β depend on the type of modula-

tion/detection scheme and take the values (α=1, β=1/2) for coherent binary phase

shift keying (BPSK), (α=1/2, β=1/2) for coherent binary frequency shift keying

(BFSK), (α=1, β=1) for differentially coherent BPSK, and (α=1/2, β=1) for non-

coherent BFSK, while Γ (α, x) =
∫∞
x
tα−1 e−tdt is the complementary incomplete

Gamma function [4, eq.(8.350.2)]. It then follows that the average BER for binary

modulation schemes operating over a fading channel can be written in terms of the

CDF of the received SNR, as

Pb(e) =
αβ

2Γ (β)

∫ ∞

0

γβ−1e−αγFγmin(ℓ)(γ)dγ. (4.20)

Substituting (4.13) in (4.20) and using [4, eq. (7.813.1)] the average BER for binary

modulations is derived in closed form as

Pb(e) =
41−kℓ+

mℓ
2
√
π

2Γ (β) Γ(mℓ)Γ2(kℓ)

mℓ−1∑
q=0

4−
q
2

q!
G4,2

4,5

[
4Ξℓ
α

∣∣∣ 1−β,a1+1,a2+1

b1+1,b2+1,b3+1,b4+1,0

]
. (4.21)

2. Pb(e|γ) = Q
(√

gγb
)
:The BER of M -ary phase shift keying (M -PSK) and M -ary

quadrature amplitude modulation (M -QAM) signal constellations over an AWGN

channel can be expressed as a linear summation of the Gaussian Q(·) function,
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defined as Q(x) = 1√
2π

∫∞
x

exp (−t2/2) dt. Therefore, in order to evaluate the per-

formance of M -ary modulation schemes over a fading channel we need to evaluate

integrals of the form Pb(e, g) =
∫∞
0
Q
(√

gγb
)
fγ (γb) dγb, where γb is the instan-

taneous received SNR per bit and g depends on the modulation type [53]. For

instance, using the unified approximation [55], the average BER for M -PSK con-

stellations with Gray coding operating over a fading channel is given by

Pb,MPSK(e) ∼=
2

max (log2M, 2)

max(M/4,1)∑
i=1

Pb (e, gi,MPSK) (4.22)

where gi,MPSK = 2 (log2M) sin2 ((2i− 1)π/M). The corresponding average BER of

M -QAM constellations with Gray coding, is

Pb,MQAM(e) ∼=
4

log2M

(
1− 1√

M

)√
M/2∑
i=1

Pb (e, gi,MQAM) (4.23)

where gi,MQAM = 3 (2i− 1)2 (log2M) / (M − 1). Using the result in [49], the in-

tegral P (e, g) can be expressed in terms of the CDF of the received SNR at the

destination, as

P (e, g) =
1√
2π

∫ ∞

0

e−t
2/2Fγmin(ℓ)

(
t2/g

)
dt. (4.24)

For the generalized-K fading channel, inserting (4.13) in (4.24), making the change of

variables y = t2 and using again [4, eq. (7.813.1)], P (e, g) can be obtained in closed form

as

P (e, g) =
41−kℓ+

mℓ
2

2Γ(mℓ)Γ2(kℓ)

mℓ−1∑
q=0

4−
q
2

q!
G4,2

4,5

[
8Ξℓ
g

∣∣∣ 1/2,a1+1,a2+1

b1+1,b2+1,b3+1,b4+1,0

]
. (4.25)

Then, the average BER of M -PSK and M -QAM can be easily evaluated numerically

using widely available mathematical software programs by combining the closed-form

result in (4.25) with (4.22) and (4.23), respectively.
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4.3.5 Average SER

For non-coherent demodulation schemes with conditional SER given by Pe,non(γ) =

C exp(−Dγ), where C and D are constants depending on the modulation scheme, the

average SER can be given directly by the MGF of γmin as P̄e,non = CMγmin(ℓ)(D). Fur-

thermore, using the MGF-based approach, the average SER for several M -ary signaling

schemes can be evaluated as [56]

P̄s =
K∑
k=1

∫ Θk

0

αk(θ)Mγmin(ℓ)

(
ϕk

sin2θ

)
dθ (4.26)

where parameters K, Θk, αk and ϕk can be found in [56, Table I].

4.3.6 Ergodic Capacity

The ergodic capacity of the ℓ-th dual-hop system with CSI-assisted AF relay is given by

[57]

Cγmin(ℓ) =
Bw

2

∫ ∞

0

log2(1 + γ)fγmin(ℓ)(γ)dγ (4.27)

where Bw (in Hz) is the transmitted bandwidth. Expressing ln (1 + γ) = G1,2
2,2

γ
∣∣∣∣∣∣∣
1, 1

1, 0


(i.e., [22, eq. (07.34.03.0456.01)]) and substituting (4.10) in (4.27) the ergodic capacity

of γmin(ℓ), ℓ = 1, . . . , N normalized to the transmitted bandwidth can be obtained in a

closed form using [22, eq. (07.34.21.0011.01)] as

Cγmin(ℓ)

Bw

=
41−kℓ+

mℓ
2
√
π

2ln(2)Γ(mℓ)Γ2(kℓ)

mℓ−1∑
q=0

4−
q
2

q!
G6,1

4,6

[
4Ξℓ
s

∣∣∣ 0,1,a1+1,a2+1

b1+1,b2+1,b3+1,b4+1,0,0

]
. (4.28)

4.4 Extension to the best relay selection scheme

We now consider a cooperative diversity system where a source node communicates with

a destination node through N relays, as depicted in Fig. 4.1. Assume that the CSI-

assisted opportunistic AF relaying protocol is employed. Following the work in [46], in the

opportunistic relaying mechanisms, one best relay among the multiple relays is selected
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during a predetermined transmission period and only that chosen relay forwards packets

to the destination while the other relays are kept idle. Therefore, the best relay is selected

as the relay node that can achieve the highest SNR at the destination node. Considering

N available relays, the relay selection algorithm selects the best relay (denoted relay c)

such that

c = arg max
ℓ∈{1,2,...,N}

γmin(ℓ). (4.29)

Using the minimum SNR approximation, the total instantaneous SNR of the N relay

system with single relay selection, will be given by

γc = max {γmin(1), . . . , γmin(N)} . (4.30)

Assuming independent but not necessarily identical fading for the N relay links, the CDF

of the highest end-to-end SNR of the scheduled relay, γc, is then given by [53]

Fγc(γ) =
N∏
ℓ=1

Fγmin(ℓ)(γ). (4.31)

Therefore, using the CDF based approach and the previously obtained analytical

result for Fγmin(ℓ)(γ) in (4.13) for the dual-hop relay system, useful performance metrics

for the best relay selection scheme can be easily evaluated. The outage probability can

be obtained directly as Pout = Fγc(γth). Moreover, using the methodology described

in Section 3.4, the average BER for binary and multilevel modulation schemes can be

obtained by replacing Fγmin(ℓ)(·) with Fγc(·) in (4.20) and (4.24), respectively.

4.5 Numerical Results

In this section we present some numerical and simulation results for the performance of

dual-hop relay transmission scheme with best relay selection, in the absence of a direct

link, operating over generalized-K fading channels. The generalized-K fading model can

describe different fading conditions by the appropriate choice of fading parameters m and

k. For demonstration purposes, we assumeN parallel dual-hop relay links with i.i.d fading
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Figure 4.2: Outage Probability vs SNR per hop for best relay selection scheme with
N = 1, 2, 3 and (mi = 1, ki = 1.5), i = 1, 2, 3.

conditions given by {mi = 1, ki = 1.5}Ni=1, i.e., Rayleigh fading with medium amount of

shadowing. Fig. 4.2 plots the outage probability versus the average SNR per hop for

threshold γth = 3 dB and N = 1, 2, 3. The figure depicts the diversity gain achieved by

the best relay selection scheme as N increases. Furthermore, for CSI-assisted AF relays,

it compares the exact performance (using simulation) to the bound given by (4.13). We

observe that the performance bound of the minimum SNR approximation loses some of

its tightness to the exact performance as N increases but it always converges to the exact

values at high values of SNR per hop.

For the same fading conditions across the multiple dual-hop relay links, Figs. 4.3 and

4.4 plot, respectively, the average BER for BPSK and 16-QAM versus the average SNR

per hop for N = 1, 2, 3. Note that for N = 1 (i.e., single relay system) the average BER
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Figure 4.3: Average BER of BPSK vs SNR per hop for best relay selection scheme with
N = 1, 2, 3 and (mi = 1, ki = 1.5), i = 1, 2, 3.

for BPSK was computed using (4.21) whereas for 16-QAM it was evaluated after inserting

(4.25) in (4.23). Both figures show the performance improvement attained by the best

relay selection scheme. Moreover, we observe that the BER performance evaluated by

the derived analytical expressions based on the SNR bound loses its tightness at low and

medium SNR values with the increase of N , but it converges to the exact performance

as the average SNR increases.

Finally, in Figs. 4.5 and 4.6 we plot, respectively, the average BER of BPSK and

16-QAM vs the average SNR per hop for best relay selection with N = 3 in various

shadowing conditions that include identical and non-identical fading across the parallel

dual-hop relay links. In order to show the impact of fading parameter k on the average

BER performance, we consider a multipath environment withm = 2 and three shadowing
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Figure 4.4: Average BER of 16-QAM vs SNR per hop for best relay selection scheme
with N = 1, 2, 3 and (mi = 1, ki = 1.5), i = 1, 2, 3.

conditions as follows. We select {ki = 0.5}Ni=1 to model heavy shadowing, {ki = 2.5}Ni=1 for

medium amount of shadowing, whereas we assume k1 = 0.5, k2 = 1, and k3 = 1.5 for non-

identical shadowing conditions. The two graphs depict the effect of fading parameter k on

the average BER for both modulation schemes and the accuracy of the analytical results

based on the end-to-end SNR bound for the best relay selection scheme. By comparing

the tightness of curves (a) and (c) to the corresponding exact performance, we observe

that for a fixed value of N the accuracy of the minimum SNR approximation depends on

the fading severity of the dual hop links, i.e., the less amount of shadowing exists across

the relay links the loser the performance bound becomes at the low and medium SNR

values. However the performance bound converges to the exact performance in the high

SNR regime.
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Figure 4.5: Average BER of BPSK vs SNR per hop for best relay selection scheme with
N = 3 and various fading conditions.

4.6 Conclusions

In this chapter, we used a tight upper bound on the end-to-end SNR of a single dual-hop

AF relay system to derive novel closed-form expressions for its SNR statistics, outage

probability, bit error probability, and ergodic capacity. Then, using the CDF based

approach, we studied the performance of the best-relay selection scheme for cooperative

diversity networks operating over independent but not necessarily identical generalized-K

fading channels. Computer simulation results verified the accuracy and the correctness

of the derived expressions.
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Figure 4.6: Average BER of 16-QAM vs SNR per hop for best relay selection scheme
with N = 3 and various fading conditions.

Department of Digital Systems 52



Chapter 5

Performance of Multihop Relaying

Systems over Composite Fading

Channels

I
n this chapter we evaluate performance measures of multihop relaying systems op-

erating in a composite fading environment modeled by the generalized-K distribution.

By approximating the end-to-end signal-to-noise ratio (SNR) of the multihop relay system

by the minimum SNR of all the links, we provide easy to compute analytical expressions

for the outage probability and the average bit and symbol error rates for a variety of

digital modulation schemes. The derived expressions are validated by computer sim-

ulation and provide tight lower bounds to the exact performance of multihop relaying

transmissions in a generalized fading environment.

5.1 Introduction

Multihop relay systems can extend the coverage and enhance the throughput of wireless

communication systems by enabling a source node to communicate with the destination

node through intermediate relay stations. It is well known that the cooperative diver-

sity realized through multihop relays can provide an improvement in link quality and

reliability, high data rate coverage, and mitigate channel impairments in next generation

wireless systems [24], [27]. For non-regenerative relay systems with amplify-and-forward

53



5.1. Introduction

transmission scheme, the end-to-end signal-to-noise ratio (SNR) at the receiving end de-

pends on the amplification gain employed at the relays. In particular, for dual-hop relay

systems with relays that use channel state information (CSI) of the first link, the end-

to-end SNR has been obtained in [31]. For this relay transmission scenario, analytical

performance results have been obtained by approximating the end-to-end SNR by the

harmonic mean of the SNRs of the two hops [35], their geometric mean [36], and the

minimum SNR of the two hops [37], [39].

Among the proposed approximations for the end-to-end SNR of dual-hop relaying

system, the minimum SNR has been shown to provide a tight upper bound for amplify-

and-forward relays with CSI-based and fixed gain policies as well as for decode-and-

forward relay systems. Using the minimum SNR upper bound to the end-to-end SNR,

the performance of dual-hop relaying has been studied in terms of outage probability

and average bit error rate (BER) for various symmetrical links with Nakagami-m [37],

Weibull [47], and generalized Gamma [39], [58] fading, as well as for asymmetrical links

with Rayleigh-Rician fading [23].

The performance of multihop relay systems in generalized fading models has only

recently been investigated in the literature. In [59], the end-to-end SNR of the multihop

system with CSI-based relays was obtained and the exact average symbol error rate (SER)

was derived for the generalized Gamma fading channel using the moment generating

function (MGF) based approach. In [47], the minimum SNR approximation to the end-to-

end SNR was employed to derive tight lower bounds of various performance measures for

a multihop system operating over Weibull fading channel. Moreover, lower bounds for the

performance of multihop systems with fixed gain relays over non-identical Nakagami-m

and Rician fading channels were obtained in [60] using the geometric mean approximation

for the end-to-end SNR.

Recently, the generalized-K fading model [45] has attracted considerable attention as

one of the most general wireless fading models that can characterize the combined effects

of fast and slow fading on the received signal. This model corresponds to a Nakagami-
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Gamma composite distribution and is controlled by two shaping parameters m and k,

where m is the Nakagami parameter for the short-term fading and k is the parameter

of the gamma distribution for the received average power due to shadowing [21]. Note

that the K distribution [41] is derived as a special case of the generalized-K distribution

by letting m=1 (i.e., Rayleigh short-term fading). The performance analysis of single

link digital communication systems in this fading channel was given in [42], whereas for

relay systems, results that have recently appeared in the literature are restricted to the

performance of dual-hop systems with CSI-based [44], [61] and fixed gain [52] transmission

schemes.

In this chapter, we consider multihop relay systems operating in generalized-K fading

channels with integer values for fading parameter m and arbitrary values for fading

parameter k. Using the minimum SNR approximation for the output SNR of the multihop

relaying system, we derive analytical expressions for the lower bounds of performance

metrics such as the outage probability and the average BER and SER of various digital

modulations. The rest of the chapter is organized as follows. In Section II we derive

a closed-form expression for the cumulative density function (cdf) of the SNR for a

single link operating in a generalized-K fading channel. In Section III, we use this

result to derive the cdf of the weakest SNR among multiple hops. Section IV presents

the performance analysis of the multihop relay system in terms of outage probability and

average BER and SER for various modulation schemes. Numerical and simulation results

are given in Section V, followed by concluding remarks in Section VI.

5.2 Statistics of Generalized-K Distribution

Wireless communication channels result in random fluctuations of the received signal.

In many fading environments, the received signal envelope can usually be characterized

by the Nakagami-m distribution. In a shadowed environment, the average power of the

received signal is also random. A composite fading model which leads to a closed-form

compound distribution assumes that the short-term fading component of the received
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signal envelope follows the Nakagami-m distribution while the long-term fading compo-

nent (shadowing) has a gamma distribution. The result is the generalized-K composite

fading model [21]. In this work, we assume that the fading environment is such that the

signal envelope X in a receive antenna is a generalized-K distributed random variable

with probability density function (pdf) given by [42]

fX(x) =
4m(k+m)/2

Γ(m)Γ(k)Ω(k+m)/2
xk+m−1

×Kk−m

(
2
(m
Ω

)1/2
x

)
, x ≥ 0

(5.1)

where k andm are the distribution’s shaping parameters, Ω = E[X2]/k is the mean power

with E[·] denoting expectation, Γ(·) is the Gamma function, and Kν(·) is the νth order

modified Bessel function of the second kind. The instantaneous received SNR per symbol

for a single receiver is γ = X2Es/N0, where Es is the transmitted symbol energy and N0

is the single-sided power spectral density of the additive white Gaussian noise (AWGN).

The corresponding average received SNR per symbol is given as γ̄ = kΩEs/N0. The pdf

of γ is given by

fγ(γ) =
2Ξ

k+m
2

Γ(m)Γ(k)
γ

k+m
2

−1Kk−m

(
2
√
Ξγ
)
, γ ≥ 0 (5.2)

with Ξ = (km) /γ̄. The cdf of γ is defined as Fγ(γ)
∆
=
∫ γ
0
fγ(x)dx. Expressing Kν(·) as

[4, eq. (3.471.9)], the cdf of γ can be written as

Fγ(γ) =
2Ξ

k+m
2

Γ(m)Γ(k)

∫ γ

0

x
k+m

2
−11

2

(
Ξ

x

) k−m
2

×
∫ ∞

0

yk−m−1e−
x
y
−Ξydy dx.

(5.3)

By changing the order of integration and using [4, eq. (3.381.1)] to solve the inner

integral, we obtain

Fγ(γ) =
Ξk

Γ(m)Γ(k)

∞∫
0

yk−1e−Ξyγ

(
m,

γ

y

)
dy (5.4)
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where γ(·, ·) denotes the lower incomplete gamma function [4]. Expressing the incomplete

gamma function with positive integers n, as [4, eq. (8.352.6)]

γ (n, z) = Γ(n)

[
1− e−z

n−1∑
q=0

zq

q!

]
(5.5)

and using [4, eq. (3.351.3)] and [4, eq. (3.471.9)] for the integral in (5.4), the cdf of γ

for integer values of fading parameter m and arbitrary values of fading parameter k, is

obtained as

Fγ(γ) = 1− I(γ;m, k,Ξ), γ> 0 (5.6)

where function I(·) is defined as

I(x;m, k,Ξ)
∆
=

2 (Ξx)
k
2

Γ(k)

m−1∑
q=0

1

q!
(Ξx)

q
2Kk−q

(
2
√
Ξx
)
. (5.7)

Therefore the outage probability for a single link, defined as the probability that the

received SNR drops below a specified SNR threshold γth, can be obtained directly as

Pout = Fγ(γth). It is observed from (5.6) that this closed-form expression contains only

standard mathematical functions and can therefore be easily and efficiently evaluated

numerically with software packages such as Matlab and Mathematica.

5.3 Multihop Relaying System

We consider the multihop relaying system depicted in Fig. 5.1, where the communication

between the source and the destination is achieved with the help of non-regenerative

relays. Each link is characterized by its fading severity and its average SNR, i.e.,

(mℓ, kℓ, γ̄ℓ), ℓ = 1, ..., N. The links between the source and the destination are assumed

to undergo independent fading but can be asymmetric and/or unbalanced, i.e., the N

hops may experience different per-hop fading severities and/or average SNRs. This is a

realistic assumption in most relay applications, since the relays can be located in differ-

ent fading environments. Assuming CSI-based amplification gain at each relay, the exact
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RN-1R2
2

N1

R1

Destination

...

Source

Figure 5.1: Multihop relay system.

end-to-end SNR is given by [31]

γend =
1∏N

ℓ=1

(
1 + 1

γℓ

)
− 1

. (5.8)

In the literature, this relay transmission scheme is usually considered as a benchmark

for cooperative performance. However, the expression for the end-to-end SNR in (5.8)

does not lead to tractable analytical performance results. Therefore, the exact end-to-end

SNR is usually approximated by the upper bound given by the minimum SNR of all the

links [38], i.e.,

γend ≤ γmin = min {γ1, ..., γN} . (5.9)

The cdf of the upper bound to the exact SNR for the multihop relay system, depicted in

Fig. 5.1, will then be given by

Fγmin
(γ) = 1−

N∏
ℓ=1

(1− Fγℓ(γ))

= 1−
N∏
ℓ=1

I (γ;mℓ, kℓ,Ξℓ).

(5.10)

Department of Digital Systems 58



5.3. Multihop Relaying System

This closed-form expression can be easily and accurately evaluated numerically since it

involves only finite summations of powers and Bessel functions.

5.3.1 Outage Probability

Assuming independent but not necessarily identical fading and arbitrary average received

SNRs for the N hops, the outage probability, i.e., the probability that the received end-

to-end SNR falls below a predetermined SNR threshold γth, can be obtained directly as

Pout = Fγmin
(γth).

5.3.2 Average Bit Error Rate

The average BER is obtained by integrating the conditional BER Pb (e| γ) over the pdf

of the upper bound to the end-to-end SNR, fγmin
(γ). Following the approach used in [54],

the average error probability can be written in terms of the cdf Fγmin
(γ), i.e.,

Pb(e) = −
∫ ∞

0

dPb (e| γ)
dγ

Fγmin
(γ) dγ. (5.11)

Next, we will present the average BER for various modulation schemes of a multihop

system in generalized-K fading channels according to their conditional BER forms.

(i) Pb (e| γ) = Γ(β,αγ)
2Γ(β)

. For binary phase shift keying (BPSK) and binary frequency shift

keying (BFSK), coherent (i.e., CPSK/CFSK) and differentially coherent/noncoherent

(i.e., DPSK/NFSK) detection schemes, the conditional BER in AWGN can be writ-

ten in a compact form as [62]

Pb (e| γ) =
Γ (β, αγ)

2Γ (β)
(5.12)

α =

 1, BPSK

1/2,BFSK
β =

 1, DPSK/NFSK

1/2,CPSK/CFSK
and Γ (p, x) =

∫∞
x
tp−1e−tdt is the

complementary incomplete gamma function [4]. From (5.11), it follows that the

average BER for binary modulation schemes operating over a fading channel can
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be written in terms of the cdf of the SNR, as

Pb(e) =
αβ

2Γ (β)

∫ ∞

0

γβ−1e−αγFγ (γ) dγ. (5.13)

Substituting the cdf of the upper bound approximation to the received SNR, Fγmin
(γ),

in (5.13), and using [4, eq. (3.351.3)] for the first term, the average BER of binary

modulations can be approximated as

Pb(e) ∼=
1

2
− αβ

2Γ (β)

∫ ∞

0

γβ−1e−αγ

×
N∏
ℓ=1

I (γ;mℓ, kℓ,Ξℓ) dγ.

(5.14)

The final integral can be easily and efficiently evaluated numerically using mathe-

matical software programs such as Matlab and Mathematica.

(ii) Pb (e| γ) = Q
(√

gγ
)
. For M -ary phase shift keying (M -PSK) and M -ary quadra-

ture amplitude modulation (M -QAM) signal constellations the conditional BER

in an AWGN channel can be expressed as a linear summation of the Gaussian

Q-function, defined as Q(x) = 1√
2π

∫∞
x

exp(−t2/2) dt. Therefore, in order to evalu-

ate the performance of M -ary modulation schemes over a fading channel we need

to evaluate integrals of the form Pb(e; g) =
∫∞
0
Q
(√

gγ
)
fγb(γ) dγ where γb is the

instantaneous received SNR per bit and g depends on the modulation type [53].

For instance, using the unified approximation in [55], the average BER for M -PSK

constellations with Gray coding operating over a fading channel can be expressed

as

Pb,MPSK (e) ∼=
2

max (log2M, 2)

×
max(M/4, 1)∑

i=1

Pb(e; gi,MPSK)

(5.15)

with gi,MPSK = 2 (log2M) sin2 ((2i− 1)π/M).
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The corresponding average BER for rectangular M -QAM constellations with Gray

coding, is

Pb,MQAM (e) ∼=
4

log2M

(
1− 1√

M

)

×

√
M/2∑
i=1

Pb(e; gi,MQAM)

(5.16)

with gi,MQAM = 3(2i− 1)2 (log2M) / (M − 1). Furthermore, using the result in [54,

eq. (34)], the integral Pb(e; g) can be expressed in terms of the cdf of the upper

bound γmin, as

Pb(e; g) =
1

2

√
g

2π

∫ ∞

0

e−gγ/2
√
γ
Fγmin

(γ) dγ. (5.17)

For the generalized-K fading channel, the BER performance of multihop relay net-

works can be obtained by inserting (5.10) in (5.17) to obtain

Pb(e; g) =
1

2
− 1

2

√
g

2π

∫ ∞

0

e−gγ/2
√
γ

×
N∏
ℓ=1

I (γ;mℓ, kℓ,Ξℓ) dγ.

(5.18)

Then, by substituting this result in (5.15) and (5.16), the average BER of M -PSK

and M -QAM, respectively, can be evaluated numerically using standard mathe-

matical software programs.

5.3.3 Average Symbol Error Rate

For many digital modulation schemes, the conditional SER in AWGN is given by [54]

Ps(e; a, b, c|γ) = aQ
(√

bγ
)
− cQ2

(√
bγ
)
. (5.19)

The expression of (5.19) provides either the exact or the high SNR approximation of

Department of Digital Systems 61



5.4. Numerical Results

the exact SER depending on the modulation format considered. The parameters (a, b, c)

can be found in the literature for many digital modulations used in wireless systems. For

example, (a, b, c)=(1, 2, 0) for coherent BPSK, (a, b, c)=(1, 1, 0) for coherent BFSK,

(a, b, c)=(2, 2sin2(π/M), 0) for M -PSK with M > 4, (a, b, c)=(2, 1, 1) for QPSK, (a,

b, c)=(2, 2, 2) for DPSK, and (a, b, c)=(4(
√
M − 1)/

√
M , 3/(M − 1), 4(

√
M − 1)2/M)

for rectangular M -QAM [54], [53]. Based on the cdf based approach, the average SER

for the multihop relay system operating in a fading channel can be expressed as [54, eq.

(40)]

Ps(e; a, b, c) =√
b

2π

∫ ∞

0

e−bγ/2
√
γ

(a
2
− cQ

(√
bγ
))

Fγmin
(γ) dγ

(5.20)

where Fγmin
(γ) is the cdf of the upper bound to the output SNR per symbol. Substituting

(5.10) in (5.20), the final result is given by

Ps(e; a, b, c) =
a

2
− c

4
−
√

b

2π∫ ∞

0

e−bγ/2
√
γ

(a
2
− cQ

(√
bγ
)) N∏

ℓ=1

I (γ;mℓ, kℓ,Ξℓ) dγ.

(5.21)

The expression given in (5.21) can be easily computed numerically using common math-

ematical software programs. The average SER for a variety of modulation schemes can

then be evaluated for the multihop relay system operating in a generalized-K fading

channel.

5.4 Numerical Results

In this section we present some numerical and simulation results for the performance

of the multihop relay transmission scheme operating over a generalized-K fading chan-

nel. The generalized-K fading model can describe different fading conditions by the

appropriate choice of fading parameters m and k. Low values of m and k can be used
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Figure 5.2: Outage probability vs average SNR of the first hop for γth = 3 dB with
N=2,3,4 balanced hops with different fading conditions.

to describe fading conditions with severe multipath fading and shadowing, respectively,

whereas fading conditions improve as the values of the fading parameters increase. For

demonstration purposes, we consider non-identical fading conditions per hop with equal

and unequal average SNRs, i.e., balanced and unbalanced links, respectively. We select

the fading parameters (m, k) per hop as (m1 = 1, k1 = 1), (m2 = 2, k2 = 3), (m3 = 1,

k3 = 1.5), and (m4 = 3, k4 = 0.5), whereas for the unbalanced case we also select the

average SNRs per hop as γ̄1 = γ̄2/2 = 2γ̄3 = 2γ̄4. Simulation results of the lower bounds
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are found to exactly overlap with the analytical results and therefore they are not shown

in the plots.

Using the minimum SNR approximation, Fig. 5.2 plots the outage probability versus

the average SNR of the first hop for γth = 3 dB and N = 2, 3 and 4. The tightness of the

analytical curves is depicted by comparison with the corresponding exact performance

curves obtained by simulation. It is evident that the analytical lower bound is tight

particularly at medium and high values of the average SNR per hop and its tightness

decreases moderately with the increase of the number of hops N . However, it always

converges to the exact values at high per-hop average SNRs.

For the same fading conditions, Fig. 5.3 and 5.4 plot the average BER of BPSK and 16-

QAM versus the average SNR per bit of the first hop for balanced and unbalanced hops,

respectively. Simulation results of the exact BER are also shown in order to demonstrate

the tightness of the analytical bound. We observe that for both cases considered, the

difference between the analytical bound and the exact performance is larger at the low

per-hop average SNR region than at medium and high average SNRs and increases slightly

as N increases. Furthermore, we observe that the average BER deteriorates with the

increase of the number of hops N , as expected [47]. Finally, Fig. 5.5 and 5.6 plot,

respectively, the average SER of QPSK and 16-QAM versus the average SNR of the first

hop for both balanced and unbalanced cases. The tightness of the analytical expressions

that use the minimum SNR upper bound to the corresponding exact performance is

observed, with the approximated SER to converge to the exact values for high values of

the average SNR per hop.

5.5 Conclusion

In this paper, we derived a closed-form expression for the cdf of the minimum SNR upper

bound to the end-to-end SNR of a multihop relay system operating in a generalized-K

fading environment. Using this result, the average BER and SER was then evaluated for a

variety of digital modulation schemes using the cdf based approach. The results obtained
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Figure 5.3: Average BER vs average SNR per bit of the first hop for BPSK and 16-QAM
with N=2,3,4 balanced hops with different fading conditions.

using the derived analytical expressions offer tight lower bounds to the corresponding

exact results obtained by simulation.
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Figure 5.4: Average BER vs average SNR per bit of the first hop for BPSK and 16-QAM
with N=2,3,4 unbalanced hops with different fading conditions.
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Figure 5.5: Average SER vs average SNR of first hop for QPSK with N=2,3,4 in different
fading conditions.
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Figure 5.6: Average SER vs average SNR of first hop for 16-QAM with N=2,3,4 in
different fading conditions.

Department of Digital Systems 68



Chapter 6

On the Performance of Multihop

Relay Systems in Nakagami Fading

Channel

W
e derive closed-form lower bounds on the performance of multihop communication

systems with non-regenerative relays operating in a Nakagami-m fading channel.

The relay gains are assumed to be chosen to maximize the end-to-end signal-to-noise

ratio (SNR), which is bounded by the geometric mean of the positive random variables.

Closed-form expressions are then derived for the statistics of the geometric mean of the

optimum end-to-end SNR. These, in turn, are used to derive tight bounds for the outage

as well as average error performances of the system. An upper bound is also derived for

the mean ergodic capacity of the end-to-end SNR.

6.1 Introduction

Multihop relaying in which the transmitted signal propagates through cascaded nodes,

with each node amplifying and forwarding information from only the previous node to

the next, has been shown to improve the performance and extend the coverage of many

communication systems [24, 25]. The performances of such systems have been studied

for a variety of fading environments, including the Rayleigh, Nakagami and Rice fading

channels, among others [35, 36, 63]. For non-regenerative relay systems with an amplify-
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and-forward transmission scheme in a fading environment, the end-to-end SNR at the

receiving end depends on the amplification gain employed at the relays. In particular,

it is known that the choice of the relay gain that maximizes the end-to-end SNR is to

invert the combined instantaneous received power (i.e., sum of desired signal and noise

powers) at the node [35]. However, the performances of multihop systems that use this

optimum choice of the relay gains and operate in a cascaded channel environment are

difficult to analyze. Consequently, exact performance results available in the literature

are limited to only two-hop systems [35], [64]. For multihop relay systems, in order to

obtain analytically tractable results, the analysis usually focuses on approximations or

limiting cases. For example, when the channel gains are chosen to ignore the presence of

noise, the relay gains simply invert the instantaneous signal power in the previous hop

regardless of the noise of that hop [32], [33]. Also, in a noise-limited system, the effect

of the instantaneous signal power at the relays is ignored and the relay gains are blindly

chosen to be inversely proportional to the noise power at the previous relay [63], [33].

To the best of our knowledge, apart for the two-hop case, the performance of multihop

relay system that considers the effects of both the useful instantaneous signal and noise

powers on the relay gain selection is not available in the literature. The main aim of this

chapter is to close this gap.

In this chapter, we consider a multihop relay system in which each relay gain is chosen

to maximize the end-to-end SNR and operates in a Nakagami-m fading channel. We use

the fact that the harmonic mean of positive variables is upper bounded by their geometric

mean to express bounds for the end-to-end SNR.

6.2 End-To-End SNR

We consider the multihop relay system in which the communication between the source

and the destination is achieved with the help of a series of non-regenerative relays. The

links between the source and the destination are assumed to undergo independent but not

necessarily identical Nakagami-m fading. In a multihop communications with N -hops, it
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can be shown that the end-to-end SNR at the destination is given by [35],

γend =

∏N
i=1 α

2
i g

2
i−1∑N

i=1N0i

(∏N
j=i+1 α

2
jg

2
j−1

) (6.1)

where αi denotes the fading envelope of the i-th channel, i = 1, . . . , N , gi is the gain at

the i-th node (with g0 = 1) and N0i is the one-sided power spectral density of the noise.

In general, the choice of the node gain gi, for i = 1, . . . , N , determines the end-to-end

SNR.

In CSI-based relays, the amplification gains at each relay are chosen, with the knowl-

edge of the channel state information, to invert the fading state of the preceding link. It

limits the instantaneous output power of the relay when the channel gain in the preceding

hop is low. The corresponding relay gain is chosen as

g2i =
1

α2
i +N0i

. (6.2)

Substituting (6.2) in (6.1), the exact end-to-end SNR is given by [35, eq. (16)]

γend =

[
N∑
n=1

1

γn

n−1∏
i=1

(
1 +

1

γi

)]−1

(6.3)

where γi = E (α2
i ) /N0i is the SNR on the i-th link. By expanding the terms in (6.3), we

have

γend =

[
N∑
n=1

(γ1 + 1) (γ2 + 1) · · · (γn−1 + 1)

γ1γ2 · · · γn

]−1

. (6.4)

A careful examination of (6.4) shows that there are
(
2N − 1

)
terms in the summation.

Therefore, the end-to-end SNR may be recognized as the harmonic mean [35], [63],

γend =
1

M

(
1

M

M∑
n=1

1

xn

)−1

(6.5)

of terms xn, each of which is the product of the combinations of γ1, γ2, . . . , γn, where

M = 2N − 1. It is well known that for the sequence x1, x2, . . . , xM , the harmonic mean
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is upper bounded by the geometric mean as [63](
1

M

M∑
i=1

1

xi

)−1

≤

(
M∏
i=1

xi

)1/M

. (6.6)

It follows from (6.6) that the end-to-end SNR is upper-bounded by

γend ≤ γα =
1

(2N − 1)

(
N∏
i=1

γi

)2N−1/(2N−1)

, (6.7)

where we have taken the geometric mean of all
(
2N − 1

)
terms in the summation in which

each γi (i = 1, 2, . . . , N) appears exactly 2N−1 times. The upper bound for the end-to-end

SNR in (6.7) has not been considered in the literature, except from the special case when

N = 2, which is treated in [36].

6.3 Performance in Nakagami Fading Channel

6.3.1 PDF of End-to-End SNR Bound

The pdf of the SNR on the i-th hop in a multi-hop link operating in a Nakagami-m fading

environment is given by

fγi(γ)
(mi/γi)

mi

Γ(mi)
γmi−1 exp

(
−mi

γ

γi

)
(6.8)

where mi ≥ 1/2 is a parameter that describe the fading severity of the i-th hop. It can be

shown that the pdf of the rational product of powers, Y =
∏N

i=1 γ
ℓi/n
i , may be expressed

in terms of the Meijer G-function as [33, eq. (4)]

fY (y) =
n

y

∏N
i=1 ℓ

mi−1/2
i(√

2π
)r−N∏N

i=1 Γ (mi)

×Gr,0
0,r

[
yn

N∏
i=1

(
mi

γiℓi

)ℓi ∣∣∣ −
ϕ1,ϕ2,...,ϕN

] (6.9)

Department of Digital Systems 72



6.3. Performance in Nakagami Fading Channel

where ϕi = ∆(ℓi,mi) and r =
∑N

i=1, with ℓ1, . . . , ℓN being positive integers. The corre-

sponding cdf is given by [33, eq. (6)]

FY (y) =

∏N
i=1 ℓ

mi−1/2
i(√

2π
)r−N∏N

i=1 Γ (mi)

×G r,1
1,r+1

[
yn

N∏
i=1

(
mi

γiℓi

)ℓi ∣∣∣ 1

ϕ1,ϕ2,...,ϕN ,0

]
.

(6.10)

Consequently, using a simple transformation of random variables, the pdf of γα is obtained

by substituting ℓi = L = 2N−1 and n =M in (6.9) to give

fγα(γ) =MPγ−1GR,0
0,R

[
RγM

∣∣∣ −
β1,β2,...,βN

]
(6.11)

where, R = N2N−1,M = 2N−1, mT =
∑N

i=1mi, βi = ∆(L,mi), P = LmT−N/2

(
√
2π)

R−N ∏N
i=1 Γ(mi)

and R = MM

LR

∏N
i=1 (mi/γi)

L. In Fig. 6.1, several curves of the PDF of γα are depicted as

a function of γ, assuming identical fading conditions and N = 2, 3.

6.3.2 Outage Probability

The outage probability, defined as the probability that the received end-to-end SNR falls

below a threshold, γth, can be obtained directly as Pout(γth) = Fγend(γth). Based on the

bound γα for the end-to-end SNR, the outage probability is obtained from (6.10) as

Fγα (γth) = FY (Mγth) = PG R,1
1,R+1

[
RγMth

∣∣∣ 1

β1,β2,...,βN ,0

]
. (6.12)

6.3.3 Moments of End-to-End SNR Bound

The v-th moment of the end-to-end SNR bound is given by E (γvα) =
∞∫
0

γvfγα(γ)dγ.

Replacing the pdf of γα given by (6.11), making the change of variables y = γM and

using [22, eq. (07.34.21.0009.01)] we obtain

E (γvα) = P

∫ ∞

0

yv/M−1GR,0
0,R

[
Ry
∣∣∣ −
β1,β2,...,βN

]
dy

= P
N∏
i=1

L∏
h=1

Γ

(
mi + h− 1

L
+

v

M

)
R−v/M.

(6.13)
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Figure 6.1: The PDF of γα for identical fading conditions and N = 2, 3.

6.3.4 Average Symbol Error Probability

The average symbol error probability (ASEP) for a variety of digital modulation schemes

is given by

P s(M) =
1

π

∫ θB

θA

Mγα

( gM

sin2 θ

)
dθ (6.14)
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where the moment generating function of γα is obtained using [33, eq. (3)], as

Mγα(t) =

√
MP(√

2π
)M−1

GM,R
R,M

[(
−t
M

)M N∏
i=1

(
mi

Lγi

)−L ∣∣∣∆(L,1−m1),...,∆(L,1−mN )

∆(M,0)

] (6.15)

Using (6.15), the result in (6.14) can be evaluated numerically. Furthermore, for non-

coherent demodulation schemes with conditional SER expressed as Pe,non(γ) = C exp (−Dγ),

where C and D are constants depending on the modulation scheme, the average SER

can be given directly by the MGF of γα, as P e,non = CMγα(D).

6.3.5 Average Bit Error Probability

The conditional bit error probability (BEP) of many coherent modulation schemes in

AWGN can be written as a linear combination of terms Pe(γ) = Aerfc
(√

Bγ
)
, where

erfc(·) is the complementary error function and A,B are constants that depend on the

specific modulation [53]. It then follows that for the multihop relay system the av-

erage BER can be given as a linear combination of terms P e =
∫∞
0
Pe(γ)fγα(γ)dγ,

where fγα(γ) is the pdf of end-to-end SNR bound γα. Using the relation, erfc
(√

Bγ
)
=

(
√
π)

−1
G2,0

1,2

[
Bγ
∣∣∣ 1

1,1/2

]
, we have

P e = A
P

2
√
π

∫ ∞

0

γ−1G2,0
1,2

[
Bγ
∣∣∣ 1

1,1/2

]
×GR,0

0,R

[
RγM

∣∣∣ −
β1,β2,...,βN

]
dγ.

(6.16)

which can be obtained in closed form, as

P e =
AP

2
√
π
(√

2π
)M−1

×G R,2M
2M,R+M

[
R

(
M

B

)M ∣∣∣ ∆(M,1),∆(M,1/2)

β1,β2,...,βN ,∆(M,0)

]
.

(6.17)

Department of Digital Systems 75



6.4. Numerical Results

6.3.6 Ergodic Capacity

The ergodic capacity may be bounded as

EAF =

∫ ∞

0

log2 (1+ γ) fγα(γ)dγ (6.18)

Substituting the following [4]

ln(1 + γ) = G1,2
2,2

[
γ
∣∣∣1,1
1,0

]
(6.19)

and (6.11) in (6.18), with the help of [22, eq. (07.34.21.0013.01)], we obtain

EAF = P

∫ ∞

0

γ−1G1,2
2,2

[
γ
∣∣∣1,1
1,0

]
GR,0

0,R

[
RγM

∣∣∣ −
β1,β2,...,βN

]
dγ

=
P

(2π)M−1 ln(2)
G R+2M,M

2M,R+2M

[
R
∣∣∣ ∆(M,0),∆(M,1)

β1,β2,...,βN ,∆(M,0),∆(M,0)

]
.

(6.20)

6.4 Numerical Results

In this section we present some numerical evaluated results for the multihop relay trans-

mission scheme with non-regenerative relays operating over Nakagami-m fading channels.

These results include lower bounds for the outage probability (Pout) and the average bit

error probability (ABEP).

In Fig. 6.2, using (6.12), the Pout is plotted as a function of the average input SNR

γ, assuming identical fading parameters m = mi and N = 3. It is depicted that Pout

improves by increasing γ and/or increasing m. In Fig. 6.3, using (6.15) the average

BEP of binary differential phase shift keying (BDPSK) is plotted as a function of the γ.

Furthermore, it is assumed N = 2, 3 and several, identical values for mi. It is depicted

that the average BEP decreases with N increasing and/or mi also increasing.
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Figure 6.2: Outage Probability versus the average input SNR for several values of m and
N=3.
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Figure 6.3: Average BER for BDPSK vs γ for N = 2, 3 and several values of mi.

6.5 Conclusions

In this section, we provided a closed-form expression for the upper bound of the end-to-

end SNR of a multi-hop relay system operating over a Nakagami-m fading environment.

The effect of both the desired signal as well as the relay noise powers are considered in

setting the relay gains with the aim to maximize the end-to-end SNR. The results using

the analytical expressions offer a tight bound to the corresponding exact results obtained

by simulation.
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Chapter 7

Exact Outage Probability of

Dual-Hop Relay Systems in a

Rayleigh Fading Channel with

Multiple Interferers

I
n this chapter, we study the effect of co-channel interference on the outage probability

of dual-hop wireless communication systems with amplify-and-forward (AF) relays

operating in a Rayleigh fading channel. A four-parameter model for the dual-hop AF

relay system is introduced, in which two of the parameters specify the type of gain

adopted at the relay node while the other two parameters account for the presence of

channel noise and co-channel interference at the destination node. We then derive the

exact outage probability in terms of the well-known incomplete Weber integral, which

can be easily and accurately evaluated numerically. The analytical results are validated

by computer simulation.

7.1 Introduction

The cooperative diversity realized through relaying can provide increased link quality

and reliability, and mitigate channel impairments in next generation wireless systems [24],

[25]. In an amplify-and-forward (AF) relay system, the signal received at the relay node is

simply amplified and forwarded to the destination node. Until recently, the performance
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study of a dual-hop relaying system has been limited to systems that are noise-limited and

relied on the end-to-end signal-to-noise ratio (SNR), which depends on the choice of the

amplification gain adopted at the relay node. The optimal choice of the relay gain that

maximizes the end-to-end SNR inverts a linear combination of the instantaneous channel

gain and noise power at that relay node; this is categorized as the optimum channel-state

information (CSI) assisted relay scheme [26], [65]. Other categories of AF relays include

the channel assisted (or suboptimum CSI assisted) relays which ignore the presence of

channel noise in the relay gain [65], [31] and the fixed gain relays (which include blind and

semi-blind relays) [66], [63]. In [65], a two-parameter model is proposed that encompasses

all the categories of AF arrays in noise-limited systems by an appropriate choice of two

parameters.

However, since many practical wireless systems suffer from both interference and

noise, attention has also turned recently to the analysis of dual-hop relay transmission in

the presence of channel noise as well as multiple co-channel interferers; in many practical

cases, the latter being more detrimental to system performance than thermal noise [67,

68, 69]. For example, in [67], dual-hop relaying is used to improve the throughput of an

interference-limited time-division multiple-access (TDMA) scheme in which many relays

share a single time-slot. In [68], asymptotic performance analysis of a CSI assisted

dual-hop relay system is carried out to show that the presence of interference limits the

system diversity gain. In [69], the outage probability of a fixed gain AF relay operating

in a Rayleigh fading channel with interference-limited destination node (effect of noise

ignored) was considered. Moreover, the authors in [70] derived the outage probability

as well as the average bit error rate (BER) for a two-hop CSI assisted AF relay system

operating in a Rayleigh fading channel with co-channel interference at the relay node only.

Again, the effect of noise was ignored in their analysis. Ikki and Aissa [71] considered the

presence of interference and noise at both the relay and destination nodes in deriving the

outage probability and BER in a Rayleigh fading channel. However, for mathematical

tractability, the end-to-end SNR was upper-bounded by selecting the weaker of the two
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links between the source and the destination. Chen et al. [72] also considered the presence

of noise and interference at both the relay and destination nodes but for the scenario in

which the desired signal is assumed to have Rician fading due to the presence of line-

of-sight propagation and the interfering signals from neighboring cells are assumed to

experience Rayleigh fading. However, an exact performance analysis was not treated and

only a bound on the outage probability was presented.

In this chapter, we consider a dual-hop relaying scheme in which the destination suffers

from the presence of interference and noise and derive the exact outage probability. This

work extends the analysis of [69] to include the effect of channel noise at the destination.

In addition, we also extend the two-parameter model in [65] to include two additional

parameters that account for the presence of interference and noise at the destination node.

The exact expression for the outage probability is presented in terms of the incomplete

Weber integral, which can be easily evaluated by several computer programs such as

Matlab, Mathematica, or Maple. The analytical results are then validated by Monte

Carlo simulation.

7.2 System Model

We consider a wireless communication system in which a source sends a message xs(t) to

a destination via a non-regenerative relay. The signal received at the relay is given by

yR(t) =
√
Psα1xs(t) + n1(t) (7.1)

where Ps is the transmit power, α1 is the instantaneous fading amplitude of the channel

between the source and the relay, and n1(t) is the additive white Gaussian noise (AWGN)

with average power σ2
1 at the input of the relay. An AF relay multiplies the signal yR(t)

by a gain G, and then re-transmits it to the destination, where the received signal is
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given by

yD(t) = α2GyR(t) +
M∑
i=1

√
Piβixi(t) + n2(t)

= α2G
{√

Psα1xs(t) + n1(t)
}

+
M∑
i=1

√
Piβixi(t) + n2(t). (7.2)

In (7.2), α2 denotes the fading envelope on the link between the relay and the destination,

M is the number of interfering signals present at the destination, each with power Pi and

fading amplitude βi(i = 1, 2, ...,M), and σ2
2 is the noise power at the destination node. In

general, the choice of the node gain, G, determines the end-to-end signal-to-interference-

plus-noise ratio (SINR). The best choice of the relay gain that maximizes the end-to-end

SINR requires the knowledge of the CSI, which includes the signal fading level as well

as the noise power on the source-relay link. In such CSI-based relays, the amplification

gain at the relay is chosen to invert the fading state of the preceding link. Following the

two-parameter model proposed in [65], the corresponding relay gain is chosen as

G2 =
PR

aPSα2
1 + bσ2

1

, (7.3)

where PR is the output power of the relay and the parameters a ∈ {0, 1} and b ∈ {0, 1}

are chosen in a similar manner as in [65], to encompass the different categories of relays

that have been studied for the noise-limited environment. The resulting SINR at the

destination node may be expressed as

γeq =
Psα

2
1α

2
2G

2

α2
2σ

2
1G

2 + c
M∑
i=1

Piβ2
i + dσ2

2

(7.4)

where the additional parameters c ∈ {0, 1} and d ∈ {0, 1} are introduced to account for

the presence of co-channel interference and channel noise at the destination, respectively.
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Substituting (7.3) in (7.4), the end-to-end SINR becomes

γeq =
γ1γ2

γ2 + (aγ1 + b)(cZ + d)
(7.5)

where γ1 = Psα
2
1/σ

2
1 is the instantaneous SNR on the source-relay link, γ2 = PRα

2
2/σ

2
2 is

the instantaneous SNR on the relay-destination link, and Z =
M∑
i=1

ζi, is the total interfer-

ence at the destination, with ζi = Pi
β2
i

σ2
2
being the instantaneous interference-to-noise ratio

(INR) of the i-th destination interferer. We consider a Rayleigh fading environment, i.e.,

the probability density function (pdf) of γi, i = 1, 2 and ζi, i = 1, 2, ...,M, is given by

fγi(γ) =
1

λi
e−γ/λiu(γ) (7.6)

fζi(ζ) =
1

µi
e−ζ/µiu(ζ) (7.7)

respectively, with λi = E(γi), i = 1, 2, and µi = E(ζi), i = 1, 2, ...,M, where E(·) de-

notes expectation. Note that as stated earlier in (7.3)-(7.5), the parameters a, b, c, d are

appropriately chosen constants, introduced so that the result in (7.5) can conveniently

generalize the special cases already reported in the literature.

Some of these special cases of (7.5) are considered next.

(i) In a noise-limited environment where there is no interfering signal (c = 0, d = 1),

(7.5) reduces to [65, eq. (1)]. Similar to [65], standard configurations, namely, CSI

optimum gain, CSI sub-optimum gain, and fixed gain relay configurations are represented,

respectively, with (a, b) ∈ {(1, 1), (1, 0), (0, C)}, where C is a constant [65]-[63].

(ii) In an interference-limited environment with co-channel interference dominating

the destination node and fixed gain relay (c = 1, a = d = 0), the effect of noise may be

ignored. The resulting end-to-end signal-to-interference ratio (SIR) is given by

γeq =
γ1γ2

γ2 + bZ
, (7.8)

with b being a constant. Note that this case is treated in [69] where the parameter b is

chosen as b = 1+ PsE(α1)/σ
2
1. In the following section, we derive the outage probability
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for the generalized end-to-end SINR given in (7.5).

7.3 Outage Probability

In a wireless communication system with co-channel interference and thermal noise, the

outage probability is the probability that the instantaneous SINR exceeds a preset thresh-

old γth, and is given by

Pout = Pr (γeq ≤ γth)

= Pr

(
γ2 ≤

γth(aγ1 + b)(cZ + d)

(γ1 − γth)

)
(7.9)

Conditioning on the random variables γ1 and Z, the outage probability becomes

Pout = EZ

 γth∫
0

Pr

(
γ2 >

γth(aγ1 + b)(cZ + d)

(γ1 − γth)

)
fγ1(γ1)dγ1

+

∞∫
γth

Fγ2

(
γth(aγ1 + b)(cZ + d)

(γ1 − γth)

)
fγ1(γ1)dγ1

 (7.10)

where Fγ2(·) is the cumulative density function (cdf) of the random variable γ2 and the

expectation EZ(·) is taken over the random variable Z. Using the fact that the cdf of γ2

is Fγ2 (γ) = 1− e−γ/λ2 , the integral in (7.10) becomes

I =

γth∫
0

fγ1(γ1)dγ1+

∞∫
γth

fγ1(γ1)dγ1

−
∞∫

γth

exp

(
−γth(aγ1 + b)(cZ + d)

(γ1 − γth)λ2

)
exp

(
−γ1
λ1

)
dγ1

= 1−

·
∞∫

γth

exp

(
−γth(aγ1 + b)(cZ + d)

(γ1 − γth)λ2

)
exp

(
−γ1
λ1

)
dγ1. (7.11)
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Upon making the change of variable x = γ1 − γth in (7.11) and simplifying, we have

I = 1− exp

(
−γth
λ1

− γth(cz + d)a

λ2

)
·

∞∫
0

exp

(
− x

λ1
− γth(cz + d)(aγth + b)

λ2x

)
dx. (7.12)

The integral in (7.12) may be evaluated via [4, eq. (3.471.9)]; upon substituting (7.12)

back in (7.10), the outage probability becomes

Pout = EZ
[
1− 2 exp

(
−γth
λ1

− γth(cZ + d)a

λ2

)
·
√
φ(Z)K1

(
2
√
φ(Z)

)]
(7.13)

where φ(Z) = γth(cZ+d)(aγth+b)
λ1λ2

andK1(·) is the modified Bessel function of the second kind

and first order [20]. Note that in the case of a noise-limited system (no interference), we

have (c = 0, d = 1) and (7.13) becomes

Pout = 1− 2 exp
(
−γth

(
λ−1
1 + aλ−1

2

))
·

√
γth (aγth + b)

λ1λ2
K1

2

√
γth (aγth + b)

λ1λ2

 (7.14)

as expected [73, eq. (14)]. In the remainder of this section, we focus our attention on the

presence of interference at the destination node (i.e., c ̸= 0 ).

7.3.1 Distinct interferers

In the presence of M independent interferers with distinct average INRs, i.e., µ1 ̸= µ2 ̸=

... ̸= µM , the pdf of Z =
∑M

i=1 ζi is given by

fZ(z) =
M∑
i=1

πi
µi

exp

(
− z

µi

)
(7.15)

where πi =
M∏

k=1,k ̸=i

µi
µi−µk

. Taking the expectation in (7.13) over the pdf in (7.15), the

outage probability in the presence of distinct power interferers at the destination may be
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written as

Pout = 1− 2exp

(
−γth
λ1

− adγth
λ2

)√γth (aγth + b)

λ1λ2


·
M∑
i=1

πi
µi

∞∫
0

(cz + d)1/2e−z(µ
−1
i +γthacλ

−1
2 ) ·K1

(
2
√
φ(z)

)
dz. (7.16)

Making the change of variables t = 2
√

γth(cz+d)(aγth+b)
λ1λ2

, the integral in (7.16) becomes

I =
2

A3c
exp

(
d

c

(
µ−1
i + γthacλ

−1
2

)) ∞∫
A

t2e−Bit
2

K1 (t) dt (7.17)

where A = 2
√

γth(aγth+b)d
λ1λ2

, Bi =
λ1λ2(µ−1

i +acγthλ
−1
2 )

4γth(aγth+b)c
, and c ̸= 0. Finally, simplifying (7.17)

and substituting in (7.16), the outage probability may be expressed as

Pout = 1− 1

2c

(
λ1λ2

γth(aγth + b)

)
·
M∑
i=1

πi
µi

exp

(
d

cµi
− γth
λ1

)
·
[

1

8B2
i

Ψ

(
2; 2;

1

4Bi

)
−Ke22,1

(Bi, A)

]
(7.18)

where Ψ (u; v;x) = 1
Γ(u)

∞∫
0

e−xttu−1(1 + t)v−u−1dt is the confluent hypergeometric function

of the second kind [20] and

Ke2u,v
(p, x) =

x∫
0

tue−pt
2

Kv(t)dt (7.19)

is the incomplete Weber integral, which has applications in several engineering fields

[74, 75, 76]. Note that in the special case of interference-limited destination (no noise)

and a fixed gain policy adopted at the relay (i.e., c = 1, a = d = 0 ), (7.18) reduces to [69,

eq. (11)], as expected. Note that there are several numerical integration techniques that

can be used to evaluate the incomplete Weber integral given in (7.19). For the special

case of interest, i.e., when u > 0 and v = 1 , it can be shown that Ke2u,1
(p, x) may be
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written as

Ke2u,1
(p, x) =

x

u

u
∞∫
0

e−τ 1F1

(
u

2
; 1 +

u

2
;−x2

(
p+

1

4τ

))
dτ

∼=
x

u

u
N∑
i=1

wi1F1

(
u

2
; 1 +

u

2
;−x2

(
p+

1

4yi

))
, (7.20)

where 1F1 (·) is the confluent hypergeometric function [4]; weights wi and roots yi are

given in [20, eq. (25.4.45)] for different values of N . The result in (7.20) provides a very

efficient technique for the numerical evaluation of the incomplete Weber integral and it is

used to compute the numerical results in this chapter. The numerical integration based

on (7.20) was done for N = 8 and a perfect match between the numerical integration

and the exact results was observed. In fact, very close approximations were observed for

values of N as low as N = 2. The proof of (7.20) is as follows: making the substitution

substituting s = t/x in (7.19) and using [4, eq. (8.432.6)], we have

Ke2u,v
(p, x) =

xu+v+1

2v+1

·
1∫

0

su+ve−p(xs)
2

∫ ∞

0

z−v−1e−z−
(xs)2

4z dz ds. (7.21)

Interchanging the order of integration in (7.21) and introducing ω = s2 , we have

Ke2u,v
(p, x) =

xu+v+1

2v+2

∫ ∞

0

e−zz−v−1

·
1∫

0

ω(u+v−1)/2e−ωx
2(p+ z

4)dωdz

=
xu+v+1

2v+2

L

z−v−1

1∫
0

ω(u+v−1)/2e−ωx
2(p+ 1

4z )dω; s = 1

 (7.22)
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where L [f (z) ; s] is the Laplace transform of f (z) [4, eq. (17.11)]. Using the identity of

the Laplace transform in [4, eq. (17.12.2)], we have

Ke2u,v
(p, x) =

xu+v+1

2v+2sL
∫ τ

0

z−v−1

1∫
0

ω(u+v−1)/2e−ωx
2(p+ 1

4z )dω dz; s


s=1

=
xu+v+1

2v+2sL
∫ 1

0

ω(u+v−1)/2e−ωx
2p

τ∫
0

z−v−1e−
ωx2

4z dz dω; s


s=1

(7.23)

When u > 0 and v = 1, (7.23) becomes [4, eq. (3.371.3)]

Ke2u,v
(p, x) =

xu

2{
sL

[∫ 1

0

ω
u
2
−1 exp

(
−ωx2

(
p+

1

4τ

))
dω

]}
s=1

(7.24)

Finally, the integral in (7.24) may be evaluated via [20, eq. (13.2.1)] to yield the result

in (7.20).

7.3.2 Identical interferers

When the M interferers at the destination are independent and identically distributed,

i.e., µ1 = µ2 = ... = µM = µ , the pdf of Z =
∑M

i=1 ζi is given by

fZ(z) =
zM−1

µM(M − 1)!
exp

(
− z

µ

)
(7.25)

Taking the expectation in (7.13) over the pdf in (7.25), we obtain the outage probability

in the presence of identical interferers at the destination node as

Pout = 1−
4 exp

(
−γthλ−1

1 − adγthλ
−1
2

)
AµM(M − 1)!

∞∫
0

zM−1(cz + d)1/2e−z(µ
−1+γthacλ

−1
2 )K1

(
2
√
φ(z)

)
dz (7.26)

Department of Digital Systems 88



7.4. Numerical Results

Upon making a change of variable as before, performing the resulting binomial expansion,

and simplifying the integral
∞∫
A

t2(k+1)e−Bt
2
K1 (t) dt , (7.26) may be simplified as

Pout = 1−
exp

(
−γthλ−1

1 + d/(cµ)
)

2(cµ)M(M − 1)!

(
λ1λ2

γth(aγth + b)

)
M−1∑
k=0

 M − 1

k

(−d)M−k−1

(
λ1λ2

4γth(aγth + b)c

)k

·
[
k!(k + 1)!

8Bk+2
Ψ

(
k + 2; 2;

1

4B

)
−Ke2

2(k+1),1
(B,A)

]
(7.27)

where B =
λ1λ2(µ−1+acγthλ

−1
2 )

4γth(aγth+b)c
. Note that when c = 1 and a = d = 0, i.e., fixed gain relays

in an interference-limited system, (7.27) agrees with [69, eq. (11)].

7.4 Numerical Results

In this section we present some numerical results to illustrate the analytical expressions

of the outage probability derived in this chapter. Fig. 7.1 shows the outage probability

with γth = 3dB of a dual-hop AF relay system with CSI optimum gain in the presence of

multiple interferers with distinct aver-age INRs at the destination node. For illustration

purposes we assume equal transmit powers at the source and relay nodes and average

INRs of the interfering signals for M=1,...,5 given by µ = 3.1 dB, {µ}Mi=1 = [3.1, 3.5]

dB, {µ}Mi=1 = [3.1, 3.5, 4] dB, {µ}Mi=1 = [3.1, 3.5, 4, 4.5] dB, {µ}Mi=1 = [3.1, 3.5, 4, 4.5,

5] dB, respectively. We observe that as the number of interfering signals increases the

outage probability increases, with the most dramatic performance deterioration occurring

with the introduction of the first interferer. Moreover, perfect agreement between the

analytical expression in (7.18) and simulation results is observed.

Fig. 7.2 compares the outage probability of dual-hop relay systems with CSI-assisted

relays (optimum and suboptimum gains) and fixed-gain relays with the parameters a = 0,

b = λ1/(exp (1/λ1) E (1/λ1)) [66], where E1(·) is the error integral [4]) when there is no

interferer (M = 0) and when there are five equal-power interferers (M = 5) with average
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Figure 7.1: Outage probability for a dual-hop relay system with optimum CSI gain in
the presence of distinct-power interferers.

INR {µ}Mi=1 = 5 dB. We also assume that the average SNRs on the source-relay and relay-

destination links are equal, whereas the threshold is set at γth = 0 and 5 dB. The results

show that for medium to large average SNR per link, the systems with CSI optimum

and suboptimum gains outperform those with fixed gain. However, the fixed-gain relays

slightly outperform systems with variable-gain relays at low average SNRs. This is due

to the fact that the variable gain relay has a gain floor when λ1 = E(γ1) is very small

[66].
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Figure 7.2: Outage probability for different categories of dual-hop AF relay systems with
M = 0 (no interferer) and M = 5 equal-power interferers.

7.5 Conclusion

In this chapter, we derived the exact outage probability for a dual-hop AF relay system

operating over a Rayleigh fading channel in the presence of co-channel interference at

the destination. Specifically, we derived an exact expression for the outage probability

in terms of the incomplete Weber integral, which can be easily and accurately evaluated.

The derived results are sufficiently general to include several special cases already treated

in the literature. The analytical results were validated by computer simulation.
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