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I[TEPIAHYH

To 1tehevtaio ypovikd JSICTNUO VIAPYEL UEYAAO EVOLOQEPOV Yoo TN YPNOM
avapetadotav (relays) yw tn petddoon onudtov pe okomd v Peitioon g
EMIOOONG TOV GLOTNUATOV OGVPUOTOV ETKOVOVIOV Kol TNV €MTEVEN  SLPOPIKNG
Myng néow ocvvepyaciog (cooperative diversity), 1 omoio pmopel vor KOTOTOAEUNGEL
npoPAnuata 6mwe ot SoAElYES 6TO. ACVPUATO CLGTHUATO ETKOW®VIOV. Etiong, n
TEYVOLOYiO TV TOAAUTA®VY avopetadot®v (multi-hop relaying) €yel amodeyybel wc
£VOL OMOTEAEGLOTIKO EPYOAELD YO TNV AENON TNG PAGUATIKNG 0mOd00NG OAAG Kot TG
EMEKTOONG TNG KAALYNG o Kuyelmtd kot ad hoc acvpuarta diktva. Ewdikdtepa, to
multi-hop relaying £yet ™ dvvatdOTNTA VO EMTPEYEL GTOV TOUTO KOL GTO OEKTN VO
EMKOWMVIGOLV HEGO Ao o Gelpd cuvepyalouevov KOUP®V avapetdooons, Le
OTOYO TNV EMEKTACT] TNG PASIOKAAVYNG Kot TN Pertioon g mid0oNS TOL SIKTVLOV.
[Ma mapdderypo, ot adpaveic otabpol peta&d g TNYNS Kol TOV TPOOPIGUOD UITOPOVV
va xpnoonombodv mg KOUPOL OVOUETAOOCNG YO TNV TOPOYN EMTAEOV GLUVOECUW®V

070 O1KTLO Y10 TNV dNUIOVPYIK EVOAAAKTIKMOV LOVOTATIOV POO10-IETASOOTG.

2y mopovoa SOOKTOPIKN SaTpiPn],  OMOSEIKVOOVIE OVOALTIKEG EKPPACEIS Yo
Jlpopa KPPl €MIO00NG - TOV. CUGTNUATOV TOAAATADV  OVOUETOOOTOV GE
nmepairovia dtadoons mov yapoakmpilovrol and ocbvleto povréla dtdAeyns. Xto
Kepdiaio 1 kavovue pio, EMOKOTNOT TOV HOVIEAWV SIOAEWYNG UIKPNG Kol UEYAANG
KMUOKOG Yoo TO OCVUPUOTO KOVOAL Ze ouTh TN OlTpiPn XPNOUOTOOVUE TN
levikevpévn-K  kotovour yioo va HOVTEAOTOGOVHE TN OBAEWYN OTO KOVAAL
EMKOIVOVING, O10TL 1] GUYKEKPIUEVN KOTOVOUT GLVOLALEL TV emidpaon UIKPNG Kot
peyaAng xAipokag otdAelyng oto onua ANyms. Xto Kepddowo 2 divovue pia
EMOKONNON TOV. KUPLOTEPWOV CLGTNUATOV AVOUETAOOTAOV TOL £XOVV Tpotabel Yo To
acVpUATO. GUOTANATO e PACT TNV €VIoYLON TOL YPNCUYOTOLEITAL Kol TOV TPOTO
OLUVOEGUOAOYIOG OAAG KOl EMAOYNG TOV OovapeTadot®v. 210 Keediawo 3,
OTTOOEIKVOOVE VEEC KOl EVKOAN VLTOAOYIGUES MOOMUOTIKEG EKQPACELS YO TNV
mOavOTNTO CEAALOTOG GE GLUGTIHLATO OV VTOGTNPILOVV TOALUTAOVS OVOUETASOTES
o€ MOPAAANAN cuvdesporoyia kot amgvbeiag dwadpoun pe maximal ratio combining
oto déktr. Enedn eivan apketd dOokoro va Bpedel pia Ekppaor KAEIGTNG LOPPNS YLo
™ moment generating function (MGF) tov ovvolko® (end-to-end) onmporo-

BopvPikod Adyov (ZOA) otov TEMKO TPOOPIGHO, YPCLOTOIOVUE VO OOUPOPETIKEG

il



TPOGEYYIGES YL TO GV® @PAYLO TOV GLUVOAIKOU ZOA, €K TV OMOI®V 1 TPAOTN
vAomoteitar pe Baon to eldyroto LOA v 0Vo (gVEemV Yo KAOE avapeTaddTn Kot M
devtepn Paociletor oto yeopetpwd péco 6po tov XOA TV dvo (evtemv. X
OULVEYELD OTOOEIKVOOLLE TO AVTIGTOLYO KOTATEPO OPLaL Yl THV TOAVOTNTO GOAALATOG
ovpPorov kot bit Yo S1dpopeg YNELOKES SAUOPPAOGELS Ypnooroldvtag v MGF
nmpocEyyon. Ot TeMKEG EKPPACELS ival YPNOULES Yo TV AEIOAOYNON) TOV EMOOGEDV
™G TEYVIKNG  ovoueTddoong evioyvon-kat-tpodbnon (EIl) oe  éva ovvbeto

neptPaAlov d1ddoonc.

Y10 Kepdiaio 4, mopovcidlovpe véeg pobnuotikég oxéoelg yio v agloAdynon g
eMIOOONG €VOG OKTVOL pE avapetddoon 000 (eblemv kal €TAOYN TOV KAADTEPOL
avapeTadotn o€ meplBdAiov pe aveEdptnta Kovailo oteAenyms. Agdopévou 0Tt givat
dvokolo va Ppebel pio KAEIGTNG HOPPNG EKPPOGT YLl TN GLUVAPTNOT TLKVOTNTOG
mBavoétTog Yoo T0 cuvolkd ZOA otov KOUPo TPOOPIGHOD OaKOUN Kol Yol TNV
nepintowon evog EIT avapetaddtn, ypnoyomoovpe €vo dveo O6plo yiu 10 XOA.
XPNOWOTOIMVTOS TNV TPOCEYYIOTIKY] OGYE0N Y TO SLVOMKO XOA, Pplokovue
EKQPACELG Y10l TN OTOTIOTIKN TOV ZOA, y1a T péon mhovotnto c@AANaTog cLUPOAOV
Kot bit, KaODC Kot Yo TV €PYOOIKN YOPNTIKOTNTO €vOG cvotiuatog pe éva EIT
avapetodotn oe kavil pe Fevikeopévn-K owdleym. Xt cvvéyela, yioo aveEdptnteg
OAAG  pn-tavtdonueg cuvOnKeg o1dAeyng, Ppickovpe TV emidoon Yo £vo GUOTNUA
pe ToALOTAOVG aVOUETAOOTEG 0VO (eVEEMV OV ¥PNOLUOTOLEL EMAOYT TOL KOADTEPOL
avapetaddtn. Ov telkég exppdoelg elvar ypnowweg ywoo v a&loddoynon tov
emddoemv Tov EIL cuomudtov pe emAoyn avapetaddtn oe éva ovvieto mepipdAiov
owadoonc. Emiong, olvovpe amotedéopoata Monte Carlo mpocopoimong ywo v

EMOANOELON TOV OVAAVTIKAOV OTOTEAECUATOV.

Y10 Kepdhono 5, amodeikvoovpe vEeg UOOMUOTIKEC OYECES UETP®V EMOOONE Yo
CLOTNOTE. TOAATADV avopeTodoT®V (multi-hop relays) mov Aettovpyovv oe éva
ouvBeto mepPdAlov dSaielyemv, to omoio povtelomoteitar pe ™ [evikevpévn-K
KaTovour. XpNoUYOTODVING TNV TPOCEYYIoT] TOV GLUVOAIKOU LOA Y100 TO GVGTNUA
TOAMATADV OVOUETAOOTMVY TO 0010 diveTon amd 10 EAAYIoTO ZOA dAwV TV (eviewV,
napéxetal vag DKOAOG TPOTOG VITOAOYIGHOD Yol TNV THAVOTNTO O10KOTNG KOl TG
péong mbavoétrag oeOANOTOC oLpPOiov kot bit Yo dldpopes  WYNOuoKES
dwpopemoels. Ta amoteAéopato amd ToV VTOAOYICUO TOV OVOAVTIK®OV EKQPACEDV
Yo TOL KAT® Oplo €MO00NC GuykpivovTol HE eKEIVO TNG TPOGOUOIMONE TS aKPPNS

v



EMIOOONG TV CLGTNUATOV TOAAATADV AVAUETOOOTAOV, OO OTOL QaiveTol 1 akpifela

™G TPOGEYYIoNG.

Y10 Kepdrawo 6, amodeikvoovpe KOTOTEPA OPlol KAEIGTNG HOPPNG Yo TNV EMO00N
TOV GUGTHHOTO TOAAATADV OVOUETAOOTOV ToL Asttovpyobv oe €va. Nakagami-m
KavaAl Swdeiyewv. To ocvvodikd XOA otov mpoopiopd mpooeyyiletor omd To
YEOUETPIKO HECO Opo OAwV Tov (ebiewv. Me avti v mpocéyyion, Ppiockovpe
OO UOTIKES EKPPACELS KAEIGTNG HOPPNG YO TIG OTOTICTIKES TOL GUVOAIKOD XOA.
AvTéc, pe TN ogpd TOLG, YPNOLUOTOOVVTAL Yol VO VTOAOYIGOVHE TNV TOAVOTNTA
dtaKomng, T péon mbavotnta ceAANATOG CUUPOAOD KOl £Vel OVMOTEPO OPLO Yo TN

HEGT] EPYOOTKN YMPNTIKATNTO TOV GLUGTHUATOS TOAAATADY OVOUETAOOTMV.

Téhog, oto Kepdrawo 7 eEetdlovpe v emidpaomn OHOOIOLAIKNG TapeUPoAng otnv
mhavotTo droakomng evog acvpuotov cvotnpotog pe éva EIT avoapetaddtn o€
nmepifairov pe Rayleigh owdAdewym. Xpnoyomolovpe éva HOVIEAO HE TEGOEPLS
TOPAUETPOVS, GTO OTTO10 dVO TAPAUETPOL TPOGIOPILOVV TOV TOTO TNG EVIGYLONG GTOV
avopeTaddT Kot ot GAheg dvo v Vmapén Bopvfov kKot TapepPordv ©TO OEKTN
poopiopov. o To TOPOUETPOTOMNUEVO OTO LOVTEAO OTOOEIKVOOVUE LOOMNUOTIKEG
EKQPAcES NG TOAVATNTOG OKOTHG CLVAPTHOEL TOL OAOKANpdpatog Weber, to

omoio umopet va vTohoyiotel apOUNTIKA €0KOAM Kol e axpifeta.



Abstract

There is growing interest in the use of relay-assisted transmission schemes to provide sys-
tem performance improvement in terms of system reliability and cooperative diversity.
Cooperative diversity can combat channel impairments due to fading in wireless commu-
nication systems. The cooperative diversity through multihop relaying technology has
emerged as an effective tool to enhance the spectral efficiency and extend the coverage
of cellular and ad hoc wireless networks. In particular, multihop relaying can enable
source and destination nodes to communicate through a set of cooperating relay nodes
in which the transmitted signals propagate through cascaded relay nodes, with the aim
of extending coverage and improving the performance of the network. In addition, idle
mobile stations between the source and destination may be employed as relay nodes to
provide extra diversity links.

In this dissertation, we investigate the performances of multihop relaying systems in
composite fading environments. A review of small and large-scale fading for the wireless
channel is given in Chapter 1, where the statistical characterization of various channel
models is presented. In this work, we consider the generalized-K fading channel, which is
a composite fading model that considers the effects of both small- and large-scale fading
on the received signal. Then, in Chapter 2 we review various relay systems that have
been proposed for wireless communications according to the relay gain employed and
the selection of the relays utilized. In Chapter 3, we present novel and easy-to-evaluate
expressions for the error rate performance of cooperative dual-hop relaying with maximal
ratio combining operating over independent generalized-K fading channels. As it is hard
to obtain a closed-form expression for the moment generating function (MGF) of the
end-to-end signal-to-noise ratio (SNR) at the destination, even for the case of a single
dual-hop relay link, we employ two different upper bound approximations for the output
SNR, of which one is based on the minimum SNR of the two hops for each dual-hop
relay link and the other is based on the geometric mean of the SNRs of the two hops.

Lower bounds for the symbol and bit error rates for a variety of digital modulations can
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then be evaluated using the MGF based approach. The final expressions are useful in the
performance evaluation of amplify-and-forward (AF) relaying in a generalized composite

radio environment.

In Chapter 4, we present novel and easy-to-evaluate expressions for the performance of
dual-hop relaying with best relay selection operating over generalized- K fading channels.
Since it is hard to find a closed-form expression for the probability density function (PDF)
of the exact SNR at the destination node even for the single dual-hop system with amplify-
and-forward relaying, we use a tight upper bound value instead. Using the approximate
value for the end-to-end SNR, closed-form expressions for the statistics of the SNR, the
average bit and symbol error probabilities, and the ergodic capacity for the single dual-
hop AF relay system, are derived. Moreover, assuming independent nonidentical fading
conditions across multiple dual-hop relay links, we derive lower performance bounds for
the single relay selection scheme with AF relaying. The final expressions are useful in
the performance evaluation of AF opportunistic relaying in a generalized composite radio

environment. Simulation results are also given to verify the analytical results.

In Chapter 5, we evaluate performance measures of multihop relaying systems oper-
ating in a composite fading environment modeled by the generalized-K distribution. By
approximating the end-to-end signal-to-noise ratio of the multihop relay system by the
minimum SNR of all the links, we provide easy to compute analytical expressions for
the outage probability.and the average bit and symbol error rates for a variety of digital
modulation schemes. The derived expressions are validated by computer simulation and
provide tight lower bounds to the exact performance of multihop relaying transmissions

in a generalized fading environment.

In Chapter 6 we derive closed-form lower bounds on the performance of multihop
communication systems with non-regenerative relays operating in a Nakagami-m fading
channel. The relay gains are assumed to be chosen to maximize the end-to-end SNR,
which is bounded by the geometric mean of the positive random variables. Closed-form

expressions are then derived for the statistics of the geometric mean of the optimum
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end-to-end SNR. These, in turn, are used to derive tight bounds for the outage as well as
average error performances of the system. An upper bound is also derived for the mean
ergodic capacity of the end-to-end SNR.

Finally, in Chapter 7 we study the effect of co-channel interference on the outage
probability of dual-hop wireless communication systems with amplify-and-forward relay-
ing operating in a Rayleigh fading channel. A four-parameter model for the dual-hop
AF relay system is introduced, in which two of the parameters specify the type of gain
adopted at the relay node while the other two parameters account for the presence of
channel noise and co-channel interference at the destination node. We then derive the
exact outage probability in terms of the well-known incomplete Weber integral, which

can be easily and accurately evaluated numerically.
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Chapter 1

Fading Channels Characterization
and Stochastic Modeling

HE WIRELESS radio channel is consider to be a very important part of the high-speed
T communication systems. However, Radiowave propagation through wireless channels
is a complicated phenomenon characterized by various effects, including multipath fading,
shadowing, and path loss. Path loss is caused by dissipation of the power radiated by
the transmitter as well as effects of the propagation channel. Path loss models generally
assume that path loss is the same at a given transmit-receive distance. Shadowing is
caused by obstacles between the transmitter and receiver that attenuate signal power
through absorption, reflection, scattering, and diffraction. When the attenuation is very
strong, the signal is blocked. Variation due to path loss occurs over very large distances
(100-1000 meters), whereas variation due to shadowing occurs over distances proportional
to the length of the obstructing object (10-100 meters in outdoor environments and less
in indoor environments). Variation due to multipath occurs over very short distances,
on the order of the signal wavelength, so these variations are sometimes refered to as
small-scale propagation effects. In Fig. 1.1, the ratio of the received-to-transmit power in
dB versus log-distance for the combined effects of path loss, shadowing, and multipath
is depicted.

The primary purpose of this chapter is to briefly review the principal characteristics

and models for multipath fading and/or shadowing channels. A precise mathematical



1.1. Large Scale Fading-Shadowing

Path loss
— — — Shadowing and Path Loss
== - Multipath, Shadowing and Path Loss

Received-to-Transmit Power Ratio (dB)

log (d)

Figure 1.1: Path loss, shadowing and multipath fading versus log-distance

description of these phenomena is either unknown or too complex for tractable communi-
cation systems analyses. However, considerable efforts have been devoted to the statistical
modeling and characterization of these different effects. The result is a range of relatively
simple and accurate statistical models for fading channels that depend on the particu-
lar propagation environment and the underlying communication scenario. The primary
purpose of this chapter is to briefly review the principal characteristics and models for

fading channels and provide their statistical metrics.

1.1 Large Scale Fading-Shadowing

A signal transmitted through a wireless channel will typically experience random vari-
ation due to blockage from objects in the signal path, giving rise to random variations
of the received power at a given distance. Such variations are also caused by changes in
reflecting surfaces and scattering objects. Thus, a model for the random attenuation due

to these effects is also needed. Since the location, size, and dielectric properties of the
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1.2. Small Scale Fading-Multipath

blocking objects as well as the changes in reflecting surfaces and scattering objects that
cause the random attenuation are generally unknown, statistical models must be used
to characterize this attenuation. The most common model for this additional attenua-
tion is log-normal shadowing. This model has been confirmed empirically to accurately
model the variation in received power in both outdoor and indoor radio propagation

environments (see e.g. [1], [2].)

In the log-normal shadowing model the ratio of transmit-to-receive power ¢ = P,/ P,

is assumed random with a log-normal distribution given by

= ——exp |— , >0 (1.1)
v 27T0-1/’dB¢ 20_3&13

where £ = 10/1n 10, gy, is the mean of ¢qp =101logy, ¢ in dB and oy, is the standard
deviation of ¥4g, also in dB. The mean can be based on an analytical model or empirical
measurements. For empirical measurements jiy,, equals the empirical path loss, since
average attenuation from shadowing is already incorporated into the measurements. For
analytical models, p,,, must incorporate both the path loss (e.g. from free-space or a
ray tracing model) as well as average attenuation from blockage. Note that if the v is
log-normal, then the received power and receiver signal-to-noise ratio (SNR) will also
be log-normal since these are just constant multiples of . For received SNR the mean
and standard deviation of this log-normal random variable are also in dB. In Fig. 1.2 the
small-scale fading and the slower large-scale variations for an indoor radio communication
system are illustrated. It is noted in this figure that the signal fades rapidly as the receiver

moves, but the signal fades more slowly with distance.

1.2 Small Scale Fading-Multipath

Small scale fading or multipath fading is used to describe the rapid fluctuation of the
amplitude of a radio signal over a short period of time or travel distance, so that larger-

scale path loss effects may be ignored. Fading is caused by interference between two or
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1.2. Small Scale Fading-Multipath

Received Power

T-R Separation

Figure 1.2: Small-scale and large-scale fading

more versions of the transmitted signal which arrive at the receiver at slightly different
times. These waves, called multipath waves, combine at the receiver antenna to give
a resultant signal which can vary widely in amplitude and phase, depending on the
distribution of the intensity and relative propagation time of the waves and the bandwidth
of the transmitted signal. Multipath in the radio channel creates small-scale fading effects.

The three most important effects are:
e Rapid changes in signal strength over a small travel distance or time interval.

e Random frequency modulation due to varying Doppler shifts on different multipath

signals.
e Time dispersion (echoes) caused by multipath propagation delays.

In built-up urban areas, fading occurs because the height of the mobile antennas are
well below the height of surrounding structures, so there is no single line-of-sight (LoS)
path to the base statio. Even when a LoS exists, multipath still occurs due to reflections
from the ground and surrounding structures. The incoming radio waves arrive from dif-

ferent directions with different propagation delays. The signal received by the mobile at

Department of Digital Systems 4



1.2. Small Scale Fading-Multipath

any point in space may consist of a large number of plane waves having randomly dis-
tributed amplitudes, phases and angles of arrival. These multipath components combine
vectorially at the receiver antenna, and can cause the signal received by the mobile to
distort or fade. Even when a mobile receiver is stationary, the received signal may fade
due to movement of surrounding objects in the radio channel.

If objects in the radio channel are static and motion is consider to be only due to that
of the mobile, then fading is purely a spatial phenomenon. The spatial variations of the
resulting signal are seen as temporal variations by the receiver as it moves through the
multipath field. Due to the constructive and destructive effects of multipath waves
summing at various points in space, a receiver moving at high speed can pass through
several fades in a small period of time. In a more serious case a receiver may stop at a
particular location at which the received signal is in a deep fade. Maintaining good com-
munications can then become very difficult, although passing vehicles or people walking
in the vicinity of the mobile can often disturb the field pattern, thereby diminishing the
likelihood of the received signal remaining in a deep null for a long period of time. Due
to the relative motion between the mobile and the base station, each multipath wave
experiences an apparent shift in frequency. The shift in received signal frequency due to
motion is called Doppler shift, and is directly proportional to the velocity and direction
of motion of the mobile with respect to the direction of arrival of the received multipath
wave. In Fig. 1.3, the rapid variations of the small scale fading power are plotted as a

function of the distance.

1.2.1 Factors Influencing Small-Scale Fading

Many physical factors in the radio propagation channel influence small-scale fading.

These include the following:

e Multipath Propagation: The presence of reflecting objects and scatterers in
the channel creates a constantly changing environment that dissipates the signal

energy in amplitude, phase and time. These effects result in multiple versions of
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Small Scale Fading Power (dB)

| 1 |

Distance (few meters)

Figure 1.3: Power (in dB) of small-scale fading

the transmitted signal that arrive at the receiving antenna, displaced with respect
to one another in time and spatial orientation. The random phase and amplitudes
of the different multipath components cause fluctuations in signal strength thereby

inducing small-scale fading, signal distortion or both.

e Speed of the mobile: The relative motion between the base station and the mo-
bile results in random frequency modulation due to different Doppler shifts on each
of the multipath components. Doppler shift will be positive or negative depending

on whether the mobile receiver is moving toward or away from the base station.

e Speed of surrounding objects: If objects in the radio channel are in motion, they
induce a time varying Doppler shift on multipath components. If the surrounding
objects move at a greater rate than the mobile, then this effect dominates the small-
scale fading.Otherwise motion of surrounding objects may be ignored and only the

speed of the mobile need to be considered.

e The transmission bandwidth of the signal: If the transmitted radio signal

bandwidth is greater than the "bandwidth” of the multipath channel, the received

Department of Digital Systems 6



1.2. Small Scale Fading-Multipath

signal will be distorted, but the received signal strength will not fade much over
a local area, i.e., the small-scale fading will not be significant.If the transmitted
signal has a narrow bandwidth as compared to the channel, the amplitude of the
signal will change rapidly, but the signal will not be distorted. Thus the statistics
of small-scale signal strength and the likelihood of signal smearing appearing over
small-scale distances are very much related to the specific amplitudes and delays of

the multipath channel, as well as the bandwidth of the transmitted signal.

1.2.2 Envelope and Phase Fluctuations

When a received signal experiences fading during transmission, both its envelope and
phase fluctuate over time. For coherent modulations, the fading effects on the phase
can severely degrade performance unless measures are taken to compensate for them at
the receiver. Most often, analyses of systems employing such modulations assume that
the phase effects due to fading are perfectly corrected at the receiver resulting in what
is referred to as ”ideal” coherent demodulation. For noncoherent modulations, phase
information is not needed at the receiver and therefore the phase variation due to fading
does not affect the performance. Hence, performance analyses for both ideal coherent
and noncoherent modulations over fading channels requires knowledge of only the fading

envelope statistics and will be the case most often considered in this text.

1.2.3 Slow and Fast Fading

The distinction between slow and fast fading is important for the mathematical mod-
eling of fading channels and for the performance evaluation of communication systems
operating over these channels. This notion is related to the coherence time T, of the
channel, which measures the period of time over which the fading process is correlated
(or equivalently, the period of time after which the correlation function of two samples of
the channel response taken at the same frequency but different time instants drops below

a certain predetermined threshold). The coherence time is also related to the channel
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Doppler spread fy by T. ~ 1/ f;. The fading is said to be slow if the symbol time duration
T, is smaller than the channel”s coherence time T.; otherwise it is considered to be fast.
In slow fading a particular fade level will affect many successive symbols, which leads to
burst errors, whereas in fast fading the fading decorrelates from symbol to symbol. In
this latter case and when the communication receiver decisions are based on an observa-
tion of the received signal over two or more symbol times (such as differentially coherent
or coded communications), it becomes necessary to consider the variation of the fading

channel from one symbol interval to the next.

1.2.4 Frequency-Flat and Frequency-Selective Fading

Frequency selectivity is also an important characteristic of fading channels. If all the
spectral components of the transmitted signal are affected in a similar manner, the fading
is said to be frequency-nonselective or equivalently frequency-flat. This is the case for
narrowband systems, in which the transmitted signal bandwidth is much smaller than
the channel”s coherence bandwidth f.. This bandwidth measures the frequency range
over which the fading process is correlated and is defined as the frequency bandwidth
over which the correlation function of two samples of the channel response taken at
the same time but different frequencies falls below a suitable value. In addition the
coherence bandwidth is related to the maximum delay spread Tax by fe >~ 1/Tmax. On
the other hand, if the spectral components of the transmitted signal are affected by
different amplitude gains and phase shifts, the fading is said to be frequency selective.
This applies to wideband systems in which the transmitted bandwidth is bigger than the

channel”s eoherence bandwidth.

1.3  Stochastic Modeling of Flat-Fading Channels

When fading affects narrowband systems, the received carrier amplitude is modulated
by the fading amplitude X, where X is a RV with mean-square value Q = £ < X? >

and probability density function (PDF) fx(z), which is dependent on the nature of the
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radio propagation environment. After passing through the fading channel, the signal is
perturbed at the receiver by additive white Gaussian noise (AWGN), which is typically
assumed to be statistically independent of the fading amplitude X, and which is charac-
terized by a one-sided power spectral density Ny Watts/Hertz. Equivalently, the received
instantaneous signal power is modulated by X?2. Thus, we define the instantaneous SNR
per symbol by v = X?F, /Ny and the average SNR per symbol by 7 = QF, /Ny, where

E, is the energy per symbol.

1.3.1 Small Scale Fading Stochastic Modeling

Multipath fading is due to the constructive and destructive combination of randomly
delayed, reflected, scattered, and diffracted signal components. This type of fading is
relatively fast and is therefore responsible for the short-term signal variations. Depending
on the nature of the radio propagation environment, there are different models describing

the statistical behavior of the multipath fading envelope.

1.3.1.1 Rayleigh

The Rayleigh distribution is frequently used to model multipath fading with no direct

LOS path. In this case, the channel fading amplitude X is distributed according to

fal@) = %meXp (—%) : x>0 (1.2)

where () is distribution scaling parameter. The instantaneous SNR per symbol of the

channel v is distributed according to

() = %exp (—%) : 7>0 (1.3)

with cumulative distribution function (CDF) given by

Fy(v) =1—exp (—%) : 7> 0. (1.4)
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The moments generating function (MGF) for this fading model is given by!

M) = 1= (15)

while the moments are given by

o, (n) = T(L 4+ n)7" (1.6)

where I'(+) is Gamma function [4, eq. (8.310.1)]. The Rayleigh fading model therefore
has an AF equal to 1, and typically agrees very well with experimental data for mobile
systems where no LOS path exists between the transmitter and receiver antennas [3]. It
also applies to the propagation of reflected and refracted paths through the troposphere

[5] and ionosphere [6], and to ship-to-ship [7] radio links.

1.3.1.2 Nakagami-m

The Nakagami-m PDF is in essence a central chi-square distribution given by [8, eq. (11)]

m,.2m—1 2
fr(z) = %exp (—%) , x>0 (1.7)

where m is the Nakagami-m fading shaping parameter, 0.5 < m < oo [8]. The PDF of v
can be obtained as

B mm,ym—l m’y
o=t sew (<), 4z (1)

with the corresponding CDF given by

' (m, mv/7)

B (1.9)

]:"/(7):1_

where I'(+, ) is the upper incomplete Gamma function [4, eq. (8.350/2)]. The MGF is
given by

M, (s) = (1 + ﬁ) B (1.10)

m

A

Tt is noted that the definition of all the MGF expressions presented in this theses is M, (s) =
E <eXp(_S’7)>7 [37 €q. (562)]
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and the moments are equal to

L(m+mn)_,
['(m)mn

() = (1.11)

Nakagami-m distribution includes as special cases the Gaussian distribution for m = 0.5
and Rayleigh for m = 1. As a limiting case, for m — oo, Nakagami-m converge to AWGN
channel. Finally, the Nakagami-m distribution often gives the best fit to landemobile and
indooremobile [9] multipath propagation, as well as scintillating ionospheric radio links

[10].

1.3.1.3 Weibull

The Weibull distribution [11] is yet another mathematical description of a probability
model for characterizing amplitude fading in a multipath environment, particularly that
associated with mobile radio systems operating in the 800/900 MHz frequency range
[12, 13]. The PDF of the Weibull distribution is given by

(o g))m] 230 (L12)

where (3 is a parameter that is chosen to yield a best fit to measurement results and as

2Pt exp

falz) =8 {w} 5/2

such affords the shape flexibility of the Nakagami distributions. Furthermore, for f = 2
(1.12) becomes equal to the Rayleigh PDF. The PDF of v is given by

- (%F (1+%)>6/2] ,7>0 (1.13)

F (1) =1 — exp [— (%F (1 + 3))ﬁ/2] L v>0. (1.14)
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1.3. Stochastic Modeling of Flat-Fading Channels

The MGF is given by [14]

(s = [FA+2/B)]7 BN BN on | (TL+2/B)\ N | aga-sp)
o= [P e ()
(1.15)

where G[-] is the Meijer-G fuction [4, eq.(9.301)] and A(z,y) is given by A(z,y) =
y/x,(y+1)/z,..., (y+2x—1)/x. Furthermore, in (1.15) k, \ are positive integers properly
chosen in order to satisfy

(1.16)

v |

K
More specifically, depending upon the specific value of 3, a set of minimum values of k
and A can be properly chosen (e.g., for § = 3.5, we have to choose k = 2 and A = 7).

Finally the moments of « following Weibull distribution are given by
(n) = {er (1 4 2—”) (1.17)
T P29 5) |

1.3.1.4 Generalized-Gamma

The generalized-Gamma distribution (G¢), is a very general distribution for modeling
small scale fading, which included all the preceding fading channel models. This distri-
bution was introduced by Stacy, back in 1962, as a generalization of the (two-parameter)
Gamma distribution [15]. Interestingly enough, despite its ability to characterize so many
different fading channel models, only very recently it has been applied in the context of
wireless communications [16, 17]. The PDF of the random variable (RV) R following the

['¢ distribution is given by

_ ﬁmmxmﬁ—l

fr(z) = WGXP (—gfcﬁ) , 220 (1.18)

while the corresponding expression for the PDF of the SNR is given by

B B,}/mﬂ/Q—l [ B/2
FO) = 3 (ﬁ)mwexp[ (7) ],720 (1.19)
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where 7 = I'(m)/I'(m + 2/8). Setting different values to m and (3, (1.19) simplifies to
several important distributions for fading channel modeling. More specifically, for g = 2
and m = 1, it becomes Rayleigh, for § = 2, it becomes Nakagami-m and for m = 1, it

becomes the Weibull. Moreover, as b — 0 and m — oo, (1.19) approaches the well-known

lognormal PDF. The CDF of (1.19) is given by

1 (2
Fi(y)=1- F(m)r [m, <T7> ] , v >0. (1.20)

The MGF of ~ is given by [18, eq. (3)]

M. (s) I6 1 )‘mﬁm‘/ﬁ/)‘gw\ MVER | A(1L1-mB/2) Lo
"= 21 (m) (g77)™P/2 KHA—2 T Ak =\rB/2 A(k,0) (1.21)
(s77) (v2r) (s77)
while the moments are
o L(m+2n/p
11y (n) = (77) L{m ¥2n/6) () /B) (1.22)

1.3.1.5 n—p

The n— pu distribution is a general fading distribution that can be used to better represent
the small scale variation of the fading signal in non-line-of-sight condition. The envelope
R of the n — p fading model can be written in terms of the in-phase and quadrature
components of each one of the n clusters of the fading signal as

n

R =Y (X7 +Y?) (1.23)
i=1
where X; and Y; are mutually independent Gaussian precesses with zero-mean, E(X;) =
E(Y;) = 0, with E () denoting expectation, and non-identical variances so that E(X?) =
0% and E(Y?) = 0%. The envelope PDF is given by [19]
4/t RI N 20 T\ 2 z\2
ful) = Fo g () o |=2h (3) | e 200 (3) (124)
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where # = VQ = \/E(R?), n = 0% /03(0 <7 < 1) and

2407t +

4 (1.25)
g="1—1

h

In (1.24), I,(-) is the modified Bessel Function of the first kind and arbitrary order v [4,

eq. (8.406/1)] and p > 0 is the real extension of n/2 so that

_ E2<R2) 1_|_n2 ‘ QZ 1+772

PEVER) g T ER) -2 1)

(1.26)

with V() denoting variance. The PDF of the SNR ~ of the 5 — u distribution is

2/mp 2t o g
() = D) /e P —2uh§ L1 QMH% (1.27)

while the CDF can be obtained as

28271 /(1 — 92 )"
L (po)yr—1/2

Fy(r,y) = / exp(—t*)t*# 1,1 jo(t?y)dt. (1.28)
Yy

Furthermore the MGF of n — u fading channel is obtained as

2/~ 922 H\™"
Mols) = INOOLE ;} n!l(n 4 p+1/2) (ﬁ) ' (1.29)

1.3.2 Large Scale Fading Stochastic Modeling

Communication system performance will depend only on shadowing if the radio receiver
is able to average out the fast multipath fading or if an efficient "micro” diversity system
is used to eliminate the effects of multipath. Empirical measurements reveal a general
consensus that shadowing can be modeled by a log-normal distribution for various outdoor

and indoor environments [10].
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1.3.2.1 Lognormal

The PDF of the log-normal distribution is given by

) 3 exp [_ (10log~y — )

- = o ] , v>0 (1.30)

where £ = 10/1In 10 and p, o are the mean and the standard deviation, in dB, of 10log~,
respectively. The MGF of ~ is

Np

1
Mls) = —= N H,, exp (10@””“)/ 105) (1.31)
n=1

where z,, and H,,, are the zeros and weight factors of the N,th order Hermite polynomial,

respectively [20, pp. (924)]. Finally, the moments of 7 of the lognormal distribution are

gﬂ+% (g)gazl . (1.32)

1.3.3 Composite multipath /shadowing fading environments

f1o(n) = exp

Composite multipath /shadowing fading environments are frequently encountered in wire-
less communication systems. The generalized- K distribution fading model characterizes
the combined effect of fast and slow fading on the received signal by using two shaping
parameters m and k; where m is the Nakagami parameter for the short-term fading and
k is the parameter of the Gamma distribution for the received average power due to
shadowing. Assuming that the fading environment is such that the signal envelope X in

a receive antenna is a generalized- K distributed random variable, its pdf is given by [21]

A (k+m)/2 b1 m 1/2
— m— — > .
x@) = srraemn® | K (2<Q) x) » 220 (1.33)

where k& and m are the distribution’s shaping parameters, Q = E[X?|/k is the mean power
with E [-] denoting expectation, I'[-] is the Gamma function, and Ky_,, [-] is the (k—m)th
order modified Bessel function of the second kind [4]. The instantaneous received SNR

per bit of a single branch is v = X?FE, /Ny, where Ej is the average bit energy and N
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is the single-sided power spectral density of the additive white Gaussian noise (AWGN).
The corresponding average received SNR per bit is given as ¥ = kQ) - E,/Ny. The pdf of

7 can be obtained from (1.33) by an appropriate change of variables, as [21]

QEHTW k+m _ —
O e R (2vZ), 720 (134)

with E = (km) /7. Using [22, eq. (03.04.21.0007.01)], the cdf of 7, defined as F.(v) 2

Jo 5 (y)dr, is given by [23]

F\(v) = ot BN Fs (mi 1= k 4 m, 1 +m;Ey) (1.35)

+ (@) By (ki 1+ k—mil + 1 Ey), v >0

where ,F, (-) is the generalized hypergeometric function [4, eq. (9.14.1)] and p, ¢ are
integers. The formula in (1.35) can be evaluated for-arbitrary values of k£ and m, provided
that (k —m) is not an integer. The MGF of 7 is defined as M, (s) = [ e 7 f,(7)dr.
Substituting f,(vy) given by (1.34) in: this expression and expressing K, (-) in terms of

Meijer’s G-function using [22, eq. (03.04.26.0009.01)], we obtain

k

—_—
—

+m R
= 2 k+m 2.0
M(s) = ——— e 160 (=
() F(m)l“(k)/e v 0,2( i
0

Using [4, eq. (7.813.1)], the integral in (1.36) can be solved in terms of the G-function.

2 2

k—m k-
mo m)d’y (1.36)

Moreover, using the funetional relations [4, eq. (9.31.5)] and [4, eq. (9.31.2)], the final

result is given in closed form as

u B 1 G1,2 s|1=k1-m 137
8) = Tt o | E 0 (1.37)

Note that using [22, eq. (07.34.03.0391.01)] and [22, eq. (07.34.03.0392.01)] for the
G-function the result in (1.37) can also be written in terms of the confluent hypergeo-
metric function 1 Fi(a; b; z) and the Tricomi confluent hypergeometric function Ul(a, b, z),

respectively.
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Chapter 2

Introduction to Relay Systems

HERE IS growing interest in the use of relay-assisted transmission schemes to provide
T system performance improvement in terms of system reliability and cooperative di-
versity. Cooperative diversity can combat channel impairments due to fading in wireless
communication systems. The cooperative diversity through multihop relaying technology
has emerged as an effective tool to enhance the spectral efficiency and extend the coverage
of cellular and ad hoc wireless networks [24], [25]. In particular, multihop relaying can
enable the source and destination nodes to communicate through a set of cooperating
relay nodes in which the transmitted signals propagate through cascaded relay nodes,
with the aim of extending coverage and improving the performance of the network. For
example, idle mobile stations between the source and destination may be employed as

relay nodes to provide extra diversity links [26].

The signal received at the relay is usually processed before it is forwarded to the des-
tination and there are several signal relaying protocols [27]. In the most commonly used
signal processing technique at the relay, the information from the previous node is simply
amplified and forwarded to the next node; this is known as amplify-and-forward (AF)
relaying. AF relaying protocol is very simple to implement as the relaying node essen-
tially acts as an analog repeater. However, in large networks with many geographically
distributed nodes, AF relaying may be difficult to scale due to the strict synchronization

requirement. Alternatively, the receiving node may first decode the information in the

17



2.1. Dual-hop AF relaying system

received signal and then re-encode it before forwarding it to the next node; this relay-
ing format is referred to as decode-and-forward (DF) relaying. DF relaying provides the
possibility to vary the communication rate and prevents error propagation, but leads
to higher decoder complexity. Other relay processing techniques have also been stud-
ied in the literature. For example, the decode-amplify-and-forward (DAF) in which the
relay performs soft decoding and forwards the reliability information at the output of
the decoder instead of that extracted directly from the raw channel, to the destination.
The DAF protocol combines the merit of both AF and DF [28]. Also, the estimate-
and-forward relay (EF) transmits a hyperbolic tangent function of the received signal
to the destination [27]; the piecewise-and-forward (PF) provides a fine segment approxi-
mation of the EF protocol [29], while in several other protocols the relays provide more

complicated functions of the received signals to the destination [30].

The performances of multihop AF and DF relaying systems in a thermal noise-limited
environment have been studied extensively [31, 32, 33]. In these systems, it is well known
that the choice of the relay gain that maximizes the end-to-end signal-to-noise ratio
(SNR) is to invert the combined instantaneous received power (i.e., sum of desired signal

and noise power) at each relay node.

2.1 Dual-hop AF relaying system

We consider a.wireless communication system in which a source sends a message z4(t) to

a destination via a non-regenerative relay. The signal received at the relay is given by

yr(t) = \/Pyayzy(t) 4+ ni(t) (2.1)

where P; is the transmit power, «; is the instantaneous fading amplitude of the channel
between the source and the relay, and n,(t) is the additive white Gaussian noise (AWGN)
with average power o7 at the input of the relay. An amplify-and-forward (AF) relay

multiplies the signal yg(t) by a gain G and then re-transmits it to the destination, where
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2.1. Dual-hop AF relaying system

the received signal is given by

yp(t) = sGyr(t) + na(t) = asG {\/Fsoqxs(t) + nl(t)} + (). (2.2)

a1l a2

Figure 2.1: Example of Dual-hop relay system

In (2.2), a3 denotes the fading envelope on the link between the relay and the
destination, andeo? is the noise power at, the destination node. In general, the choice of

the node gain, G, determines the end-to-end SNR.

The resulting SNR at the destination node may be expressed as

292 2 9 Pioj a3
" e P.ajasG B P,ajas o7 o2 (2.3)
g = "5 9 2 = 3 T 2 .
as0:G? + o 2,24 %3 % 1
201 2 301+ & o2 + @2

1. The best choice of the relay gain that maximizes the end-to-end SINR requires
the knowledge of the channel state information (CSI), which includes the signal
fading level as well as the noise power on the source-relay link. In such CSI-
based relays, the amplification gain at the relay is chosen to invert the fading state
of the preceding link. Following the two-parameter model proposed in [27], the
corresponding relay gain is chosen as

2 Pr

= ——— 2.4
PSCM%—FO'%’ ( )

where Py is the relay output power.
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Substituting (2.4) in (2.3), the end-to-end SNR becomes

Psoc% a_% Psa% PRa% Psa% PRag
Voo = 0% O’% . a% O’% . Uf a% . Y172 (2 5)
€ T 42 Psa?+02 ~ Pra2 Psa?402 ~ Pra2 Psa? - '
=2 ST RS S| T07 RO% SOy 5+ v + 1
cr% + PRO'% cr% + Uf a% + cr% + 1 g v
where 7, = P,a?/0? is the instantaneous SNR on the source-relay link, v, =

Pras /o3 is the instantaneous SNR on the relay-destination link.

2. A possible option for the gain, is the channel inversion {31]:

Pr

G? = 2.6
Psa% ( )

The equivalent end-to-end SNR for such a case:
Yeq = Y72 (2.7)

_’Yl—i"Yz

where vi = ;—%, 1 = 1,2 is the instantaneous SNR of the ¢-th link.

3. There is another category of relays, called Fixed Gain Relays, in which the value
of Gain is fixed. Relays belong in this category, due to the fixed gain they do not
require complex circuits, and they are efficient enough. Also, for lower values of
SNR Fixed Gain Relays perform better than CSI Relays. Fixed Gain Relays are

separated into two sub-categories: ”Blind” and ”Semi-Blind” Relays.

2.1.1 Blind Relays

Pr
C=—— 2.8
G202 (2.8)

The end-to-end SNR at the destination is then given by

Psa% a% Psaf oz% Psaf PRag
S it N i BN . S 15 29)
eq — 2 - 2 2 2 - .
@ 4 1 24_0‘71 PRO‘2_|_C Yo+ C
o3 G?0? o3 Pro? o3
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2.1.2 Semi-Blind Relays

The Gain is chosen as:

Pr Pgr
GQ = F = 2.10
] mEA 210
The end-to-end SNR at the destination is then given by
Psaf a%
o7 o3 Y172
Veq = - (2.11)

1 oy et

2
%+
o3 G20?

Fig. 2.2 shows the different categories of relay systems.

Relays

/\

Non-Regenerative

Regenerative Relays

Relays
CSslI Fixed Gain
Blind Semi-Blind

Figure 2.2: Relay Categories

2.2 Multi-hop AF relaying system

In Fig. 2.3, the signal power and the noise power components at the destination hop D

are given by

S = (Gos..ay) (G1G5...G_y) (2.12)

Department of Digital Systems 21



2.2. Multi-hop AF relaying system

N = N1 (G3G5...G3 ) (a3a3...0%,) + Noo (G202 Gil) (agai a3y)

—|—N073 (GgGiG?\/[—l) (CYZCY% &%4) + ...+ NO,M (213)

Consequently, the end-to-end SNR is given by

Figure 2.3: Multi-hop relay system with the presence of interference and noise

[Tty on 115 G
Sty Noa [T 00 2 T1E, G2

Next divide both nominator and denominator in (2.14) by H NOnHM "G2. The

(2.14)

Yeq =

nominator is then given by

2

M
Nominator = H ) ]\C;” (2.15)
n= 0,n
The denominator is given by
M a?
LV ) (S
Denominator = Z — 2+1n]\101’5 (2.16)
n=t Hs:l Gs Hs:l N075
If we select as the AF gain at the j¥ relay to be
1
G=—5—— 2.17
J 06]2- + No,j ( )

Substituting (2.17) in (2.16), we have

M M 042 n—1 aQ
D nator = 5 1 2.18
enominator Zn:1 Hsan N H (No : + ) (2.18)

Dividing (2.15) by (2.18), the equivalent end-to-end SNR is given by

2
Hflj\? M onol 1
e 3k (TR
Zn IHS n+1 NOsH <W:+1> n= 1’7” s=1 Vs

-1

(2.19)
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where now

%

I 2.20
’YJ NO,j ( )

2.3 Multi-hop DF relay system

Since in DF relying systems, the end-to-end performance is usually dominated by that

of the weakest link, it follows that the end-to-end SNR for DF is given by [32], [34]

Yeq < Ypr = min(yy, ..., Yn) (2.21)

It is well known that, in this case, the cdf of vppr is given by

FWDF (’Y) =Pr [mln (717 "'7’7]\7) < 'Y] =1-Pr [’71 >IN > 7] =
N

—1-J[- £ () (222

n=1
The end-to-end SINR for DF relaying given in (2.21) is known to be an upper bound
for the end-to-end SINR of AF relaying. Therefore, it is frequently being used in the
performance analysis of AF relaying systems to yield lower bound performance bounds

of AF transmission schemes. The performances of AF and DF relaying systems converge

for high values of the end-to-end SNR.
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Chapter 3

On the Error Rate Analysis of
Dual-Hop Amplify-and-Forward
Relaying in Generalized-K Fading

Channels

N THIS CHAPTER, we present novel and easy-to-evaluate expressions for the error rate
I performance of cooperative dual-hop relaying with maximal ratio combining operat-
ing over independent generalized- K fading channels. It is hard to obtain a closed-form
expression for the moment generating function (MGF) of the end-to-end signal-to-noise
ratio (SNR) at the destination, even for the case of a single dual-hop relay link. There-
fore, we employ two different upper bound approximations for the output SNR, of which
one is based on the minimum SNR of the two hops for each dual-hop relay link and the
other is based on the geometric mean of the SNRs of the two hops. Lower bounds for the
symbol and bit-error rates for a variety of digital modulations can then be evaluated using
the MGF based approach. The final expressions are useful in the performance evaluation

of amplify-and-forward relaying in a generalized composite radio environment.

3.1 Introduction

Cooperative diversity with relays has been shown to provide high data rate coverage and

mitigate channel impairments in next generation wireless systems. Amplify-and-forward
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3.1. Introduction

relay techniques have attracted a lot of attention recently as they provide a simple way to
implement collaborative/cooperative wireless communication systems. For dual-hop non-
regenerative systems, the end-to-end signal-to-noise ratio (SNR) at the receiving node
depends on the amplification gain employed at the relays. For relays with channel side
information (CSI) of the first link, the end-to-end SNR of a single dual-hop relay link has
been obtained in [31]. For this relay transmission scenario, analytical performance results
have been obtained by approximating the end-to-end SNR by the harmonic mean of the
SNRs of the two hops [35], their geometric mean [36], and the minimum SNR of the two
hops [37], [38]. Among the proposed approximations for the end-to-end SNR of dual-hop
transmission, the harmonic mean and the minimum SNR bounds have been shown to
result in tight performance bounds [35], [37], whereas the geometric mean bound has
been shown to give accurate results for low and medium values of the SNR, per hop [36],
[37]. Using one of the above proposed upper bounds for the total SNR, the performance
of dual-hop relaying has been studied in terms of outage probability and average bit error
rate (BER) for various symmetrical fading conditions, such as Rayleigh [31], Nakagami-m
[35], [37], Weibull [38], and generalized Gamma [39] fading, as well as for asymmetrical

links [40], although most analyzes have been restricted to single dual-hop relay links.

The generalized-K fading model [21] has also attracted considerable attention as one
of the most general wireless fading models that can characterize the combined effects of
fast and slow fading on the received signal. This fading model corresponds to a Nakagami-
Gamma composite distribution and is controlled by two shaping parameters m and k,
where m is the Nakagami parameter for the short-term fading and k is the parameter of
the gamma distribution for the received average power due to shadowing [21]. Note that
the K distribution [41] is derived as a special case of the generalized-K distribution by
letting m = 1 (i.e., Rayleigh short-term fading). A number of results on the performance
analysis of communication links in this fading model can be found in the literature [42],

[43].
Recently, analytical expressions for the error rate performance of dual-hop relaying
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over generalized-K fading channels were given in terms of convergent infinite series in
[44], using the minimum SNR upper bound for the end-to-end SNR and averaging the
conditional BER over the derived probability density function (pdf) of the total SNR.
However, these expressions are restricted to a single dual-hop relay system and result in
some truncation error depending on the number of terms employed. Furthermore, the
expressions in [44] cannot be evaluated for integer values of the shaping parameter k. In
this chapter, using both the minimum SNR and the geometric mean upper bounds for
the end-to-end SNR of a single relay link and employing the moment generating func-
tion (MGF) based approach, we present novel expressions for the error rate performance
of multiple dual-hop relaying with MRC operating over independent generalized-K fad-
ing channels with integer values of fading parameter m and arbitrary values of fading
parameter k. Note that using the geometric mean approximation of the total SNR, in-
dependent non-identical fading in the two hops of each relay, i.e., source-to-relay and
relay-to-destination, can be considered, whereas the minimum SNR performance bound

is restricted to independent and identically distributed (i.i.d.) fading channels.

The rest of the chapter is organized as follows. In Section II we present the statistics
of the generalized-K distribution, i.e., the pdf, cumulative density function (cdf), and
MGF of the instantaneous received SNR of a single direct link. In Section III, using
the MGF based approach, we derive the average symbol error rate (SER) of multiple
dual-hop relay links with MRC at the receiver side. Numerical and simulation results are

given in Section IV, while concluding remarks are given in Section V.

3.2  Statistics of the Generalized- K Distribution

We assume that the fading environment is such that the signal envelope X in a receive

antenna is a generalized-K distributed random variable with pdf given by [21]

Am(k+m)/2 P mA 1/2
— m— = > )
fx(@) T(m)D(k)QU+m /2" K—m (2<Q> 95) : >0 (3.1)
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3.3. End-to-End Error Rate Analysis

where k and m are the distribution’s shaping parameters, @ = E[X?] /k is the mean
power with E [] denoting expectation, I'(+) is the Gamma function, and Kj_,,(-) is the
(k — m)th order modified Bessel function of the second kind [4].

The instantaneous received SNR per symbol of a single receive branch is v = X2E, /Ny,
where F is the average symbol energy and Ny is the single-sided power spectral density
of the additive white Gaussian noise (AWGN). The corresponding average received SNR
per symbol is given as 7 = kQFE,/Ny. The PDF of ~ is given by

— k+m
2: 2 k+m

) = s mmmmy 2 Kkem (2\/5_7) ;7 2>0 (3.2)

with 2 = (km)/5. The CDF of v, defined as F,(vy) = [,/.f,(z)dz, has been obtained in

[45] for integer values of m and arbitrary values of k; as

SIS
3
—

2(Zv)
I'(k)

EN? Ky (2vE7). (33)

1

I
o

q

Moreover the MGF of v defined as M,(—s) = [~ e~ f,(v)dy, is given by [45]

1
My(—s) # posermGit | 2

l—k,l—m]
0

(3.4)

where G [-] is the Meijer’s' G-function [4, eq. (9.301)].

3.3 End-to-End Error Rate Analysis

We consider a dual-hop relay system with N relays as well as a direct link between the
source and the destination, as shown in Fig. 3.1. The output SNR, assuming MRC at

the destination receiving end, can be written as
N

Yout = Yo + Zernd(g)y (35)
=1

where 7y is the SNR of the direct link and 7enq(¢) is the end-to-end SNR of the [-th

relay. For amplify-and-forward relays with CSI at the relays, 7Jenqa(¢) is known to be

given by the harmonic mean of the three positive random variables (Y1, Ve, Ye17Ye2), 1.6,
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Yend (£) = 12 [31]. Assuming independent fading in all relay links, the MGF of the

output SNR is then given by

N
Mo (=) =) [ I Miuato (3.6)

=1
For the generalized-K fading environment, M, (—s) is given by (3.4). In order to obtain
mathematically tractable results for the MGF of yenq(€), the end-to-end SNR for the relay
channel has been approximated by different upper bounds [35),[36], [37]. In this chapter,
for the generalized-K fading environment, we consider the approximations of minimum

SNR [37] and geometric mean [36].

It follows that the average SER and BER performances for a variety of digital modu-
lations can be evaluated using the MGF based approach. For example, the average SER
for M-ary phase-shift keying (M-PSK) is given by

(M=1)m/M

1 Im
Pe,MPSK — T / M'Yout <_sin29) de? (37)
0

where gy, = sin?(m/M), whereas for M-ary quadrature amplitude modulation (M-QAM)
the average SER is given by
/2 7r/4

4
P€7MQAM 4 ?q / M'Yout ( d9 - T /M’Yout - > 97 (3'8)
0

Sm29

Sln

where ¢ = 1 — 1/v/M and gg = 3/(2(M — 1)).

3.3.1 Performance using the minimum SNR approximation

The end-to-end SNR of a dual-hop relay system with multiple relays and a direct link
between the source and the destination can be approximated by its upper bound =, as

follows [37]
N

Yout S Ya = 70 + Z 71nin(€)7 (39)
/=1
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Relay 1 \
Y 'ruz\
' -

Source iy Destination

Tr T

Figure 3.1: Cooperative dual-hop relay transmission scheme with MRC at the destination.

where Ymin(¢) = min (Ye1, ve2), 6=1,...; N. The pdf of y,in(¢) is given by [4]
Frain@ (V) = s () F fre2 (V) = [ (N F () + Fry () fra (7)] (3.10)
Using (3.10), the MGF of yin(¢) is given by

M'len(e)(_s) = f eis’ymin(e)f’Ymin(g) (r}/)dfy
0

(3.11)
= M’Yﬂ(_‘g) + M’Ym(_‘g) - [Mvuz(_s)"i_M’)’zm(_S)]
where -
My (=5) = [ (B () (312)

fori,j € {1,2}. In order to derive closed form analytical results, we consider i.i.d. fading

for the source-to-relay and relay-to-destination links. Using (3.3) in (3.12) we obtain

My (=8) = My (=8) = I(=3) (3.13)
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I( )_ 4,_2k+m 1 1 : %
5= F(m)F2( 7“' (=)

r=

0\8
)
5’
??‘
+
3
i
5
3
N
DO
@
Z
ﬁ
N
[\
3

(3.14)
Note that in (3.14) we dropped the subscripts on k, m, and Z, for simplicity. By ex-
pressing the product of two Bessel K-functions in terms of the Meijer G-function using
[22, eq. 03.04.26.0016.01] and evaluating the resulting integral using [4, eq. (7.813.1)],
followed by the functional relationships [4, eq. (9.31.5)] and [4, eq. (9.31.2)], the final

result is given by

[(—8) = 22k+m_1p7(rm)pz(k)'

(3.15)
mz—1 G14 S 1=2k1-k—r, 1—k-—m, 1-m—r
= 1= 0, 1—k—mir _f_ mtr=l

2.0 2

Therefore, assuming i.i.d. fading in the two hops of the [-th relay link, for £ = 1,..., N,
the MGF of yin(£) in (3.11) becomes M., . ) (—s) = 2I(—s), i.e.,

_ VT
M’Ymin(f)(_s) 2R 2 Mm% (ky)

(3.16)
'miflyrlcTY14 E 1—2]{53,1—]@—7”, l—kig—mg, 1—m4—7“
r=0 g 07 1— k’g . mg2+r, . ké o mg-;r—l
Finally, the MGF of the MRC output SNR is approximated by
N
MVQ(_S) = M'YO(_S) HM'Ymin(K)(_S) (317)
=1

3.3.2  Performance Using The Geometric Mean Approximation

It is well known that the end-to-end SNR of the [-th relay link can be expressed in terms of
the harmonic mean of the three positive random variables (7,1, Ve2, Ye17Ve2). Following [36],

the end-to-end SNR can be upper bounded using the geometric mean of (Y1, Vo2, Ye1ve2),
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as

N
1 2/3
S H=0+= Y 3.18
Yout < Vo %Jrge:1 (Yerve2) (3.18)

By letting v, = %(741752)2/3, the MGF of ~, is given by

—(s 172)%/®
B //6 ) f'Yél(’Yl)f’Ym(PVQ)dfyldfy? (3'19)
0 0

By replacing (3.2) in (3.19) we obtain (note that in the derivations, for simplicity, we
drop the subscript [ on the fading parameters)

’C1+m1 k2+m2

4= =
M’Yz(_s) = (m11)F(m2)F2(k1) T(k2)

(3.20)
TT (san2iagg/s oo fagme —_— —
ffe e M Yo Kkl*ml (2 :'171) Kk2*m2 (2 :272) d71d72
00
Following a similar procedure to the one in [36], the inner integral is given by
s 2/3 2/3 kitmy 4 —
[1(—8) / ~(/3m Y1 2 Kquml (2 :1’}/1> d")/l (321)
0
By substituting K, (21/z) = %ngg z| and e”* = G(l):(l) | | (3.21) and
b 0
using [22, eq. (07.34.21.0013.01)], we obtain the closed-form result
/3 2kitm 2453752 | A(2,k1), A(2,m)
I(—5) = —=Gis 36:722 (3.22)
NUr2E, 2 =1 0, % %
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where A (+,-) is defined as A (p, u) = {17“ . ]‘%}, with p being positive integer and g

p Y

positive real. Using (3.22), the outer integral in (3.20) becomes

I(—s) = _v32kitm

4 Q—kl-;ml
2¢me 2y
(3.23)

S A(? k)l) A<2 ml) kotmo

4¢3.,2 9 ) ) 1 =

) f Gié 2365’%2 L 9 Yo : Kkz—mz (2\/ ‘:‘272> d’}/Z
0 0.2 2
») 353

Again, expressing the Bessel K-function in terms of the G-function and using [22, eq.

(07.34.21.0013.01)], followed by some straightforward manipulations, we obtain

\/§2k1+m1+k2+m2 3,8 2833 A(Qakl) 7A(27m1> 7A(27k2) 7A(27m2)

I(—s) = : S6—2—2
2( ) 2771-3 Eflgml E;:Z-gmg 8,3 36:%:% 07 %’ %
(3.24)
Using the above result for I5 (—s), the MGF of ~, is given by
_ /3 2ke1tmer kg tmeo
MW(_S) BT (men)T(mgz)C(ken )T (k)
(3.25)
3,8 2843 A (27 kfl) ) A (27 mfl) ’ A (27 kﬁ?) ) A (27 m@)
Css | w2y

12
03,3
Finally, owing to the independency of v, , £ = 1,..., N, the MGF of the MRC output

SNR is approximated by the product of the MGFs, as

Moy (=) = Moy (=s) [[ My (=9) (3.26)

3.4 Numerical Results

In this section we present some numerical and simulation results on the error rate per-
formance of the cooperative dual-hop relay transmission scheme with MRC operating
over independent generalized-K fading channels. This fading model corresponds to a

Nakagami-Gamma composite distribution and is controlled by two shaping parameters
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exact (simulation)
— © — minimum SNR bound
— % — geometric mean bound |
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Figure 3.2: Average SER for 4-PSK vs average SNR per hop for N = 1 and N = 2
dual-hop links with MRC assuming mg = 1, kg = 0.5 for the direct link, m; =1, k; = 1.5
for the first relay link, and mgy = 2, ks = 3 for the second relay link.

m and k, where the parameter m > 1/2 inversely reflects the multipath fading severity
and the positive parameter k inversely reflects the shadowing severity [21]. For demon-
stration purposes, we assume different fading conditions for each relay link, i.e., mg =1,
ko = 0.5 for the direct link, m; = 1, k; = 1.5 for the first relay link, and mqs = 2, ko = 3
for the second relay link. Using the MGF based approach for performance evaluation over
fading channels and the two approximations for the end-to-end SNR of a single dual-hop
relay link, Fig. 3.2 and 3.3 plot, respectively, the average SER for 4-PSK and 16-QAM
versus the average SNR per hop of a single relay system (i.e., N = 1) and a multiple
relay system with N = 2. Moreover, we plot the exact numerical results from simulation

using the end-to-end SNR given by (3.5) for the MRC receiver.

A number of observations on the accuracy of each analytical lower bound of the error
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performance can be drawn from these graphs. We observe that for values of the average
SNR per hop less than 10dB the geometric mean performance bound gives numerical
results that are a little closer to the exact simulation results than the minimum SNR
bound. However for SNRs per hop equal to or greater than 10dB, the minimum SNR
approximation is more accurate than the geometric mean and its accuracy improves as
the average SNR per hop increases. Furthermore, the minimum SNR performance bound
is shown to be tight for both values of N, although it loses some of its tightness for N = 2
compared to N = 1. However, for both values of N, increased values of the average SNR
per hop result in the minimum SNR bound to converge to the exact values, whereas the
geometric mean bound loses its tightness. Finally, the graphs show the effects of diversity
order N and fading parameters k£ and m on the average SER, i.e. the worst performance
is obtained for single dual-hop relay and fading conditions with high amount of fading
due to shadowing (e.g., & = 1.5) and multipath (e.g., m = 1), whereas the SER improves
as N increases and fading conditions become less severe (e.g., k = 3 and m = 2 for the

second relay channel).

3.5 Conclusion

In this chapter, we provided closed-form expressions for the MGF of the minimum SNR
and geometric mean upper bounds for the end-to-end SNR of a single dual-hop relay
system operating over a generalized-K fading environment. Then, for independently
faded relay links and MRC diversity receiver, the average SER and BER can be easily
evaluated for various modulation schemes using the MGF based approach. Simulation
results of the exact SER were used to verify the analytical results and evaluate the

tightness of the two lower performance bounds.
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Figure 3.3: Awverage SER for 16-QAM vs average SNR per hop for N = 1 and N = 2
dual-hop links with MRC assuming mg = 1, ko = 0.5 for the direct link, m; =1, k; = 1.5
for the first relay link, and my = 2, ko = 3 for the second relay link.
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Chapter 4

Performance Analysis of Dual-Hop
Relay Systems with Single Relay
Selection in Composite Fading

Channels

N THIS CHAPTER, we present novel and easy-to-evaluate expressions for the perfor-
I mance of dual-hop relaying with best relay selection operating over generalized-K fad-
ing channels. Since it is hard to find a closed-form expression for the probability density
function (PDF) of the exact end-to-end signal-to-noise ratio (SNR) at the destination
node even for the single dual-hop system with amplify-and-forward (AF) relaying, we
use a tight upper bound value instead. Using the approximate value for the end-to-end
SNR, closed-form expressions for the statistics of the SNR, the average bit and symbol
error probabilities, and the ergodic capacity for the single dual-hop AF relay system, are
derived. Moreover, assuming independent nonidentical fading conditions across multiple
dual-hop relay links, we derive lower performance bounds for the single relay selection
scheme with AF relaying. The final expressions are useful in the performance evaluation
of AF opportunistic relaying in a generalized composite radio environment. Simulation

results are also given to verify the analytical results.
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4.1 Introduction

It is well known that the cooperative diversity realized through relays can provide an
increase in link quality and reliability, high data rate coverage, and mitigate channel
impairments in next generation wireless systems. An overview of cooperative diversity
protocols is presented in [27]. In general, there are two types of processing that can be
performed at the relays. In a decode-and-forward (DF') scheme; the relay station decodes
the received signal, re-encodes and then retransmits the restored signal to the destination.
On the other hand, amplify-and-forward (AF) relays simply amplify and forward the
signal to the destination and have attracted a lot of attention recently as they provide
a simple way to implement collaborative/cooperative wireless communication systems.
Furthermore, Bletsas et. al. proposed in [46] a cooperative diversity protocol named
opportunistic relaying technique, which seleets (using a selection policy) the “best” relay
among multiple available relays. It was.then shown that the best-relay selection reduces
the amount of required resources while improving the performance.

For dual-hop AF relay systems, the end-to-end SNR at the receiving end depends on
the amplification gain employed at the relays. For relays with channel state information
(CSI) of the first link, the end-to-end SNR has been obtained in [31]. For this relay
transmission scheme, analytical performance results have been obtained by approximating
the end-to-end SNR by the harmonic mean of the SNRs of the two hops [35], their
geometric mean [36], and the minimum SNR of the two hops [37], [39]. In particular,
using the minimum SNR approximation for the end-to-end SNR, the performance of
dual-hop relaying has been studied in terms of outage probability and average bit error
rate (BER) in various fading conditions, such as Rayleigh [31], Nakagami-m [37], Weibull
[47]‘and generalized Gamma [39] fading channels.

The minimum SNR of the two hops has also been used as a selection policy as well
as a bound in the performance evaluation of the best relay selection scheme based on
AF [46], [48], [49] and DF [50], [51] relaying protocols. For example, in [49], the authors

presented an asymptotic analysis (at high SNR values) of the average symbol error rate
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(SER) of an AF best relay selection scheme, and compared it with the regular cooperative
systems. Furthermore, in [50], the authors derived closed-form expressions for the outage
probability and the average BER of opportunistic relaying with DF relays. However, in
the existing literature, almost all performance results of this transmission scheme have

been restricted to the case of Rayleigh fading channel.

Recently, the generalized-K fading model [21] has attracted considerable attention
as one of the most general wireless fading models that can characterize the combined
effects of small and large-scale fading on the received signal. This model corresponds to
a Nakagami-Gamma composite distribution and is controlled by two shaping parameters
m and k, where m is the Nakagami parameter for the small-scale fading and k is the
parameter of the Gamma distribution for the received average power due to shadowing
[21]. Note that the K distribution [41] is derived as a special case of the generalized-K
distribution by letting m = 1 (i.e., Rayleigh multipath fading). The performance analysis
of single link communication systems in this fading model was given in [42], whereas for
relay systems, results that have recently appeared in the literature, are restricted to the
performance of dual-hop single relay systems with CSl-assisted [44] and fixed gain [52]
transmission schemes. However, the analytical expressions in [44] are too complicated to

be used in the performance analysis of the best relay selection scheme.

In this chapter, we focus on AF dual-hop cooperative diversity networks to study
their end-to-end performance over independent nonidentical generalized-K fading chan-
nels when the best relay selection scheme is employed. The main contribution of this
paper includes the derivation of novel closed-form expressions for the PDF, CDF, and
moment generating function (MGF) of a tight upper bound on the total SNR at the des-
tination of the single dual-hop relayed signal. Then, using the derived CDF expression,
we present performance metrics such as the outage probability and the average BER for
the multiple dual-hop relay system with best relay selection operating in a generalized- K
fading model with integer values for fading parameter m and arbitrary values for fading

parameter k.
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The rest of the chapter is organized as follows. In Section 2 we present the channel
model statistics. In Section 3, we derive the statistics of an upper bound approximation to
the end-to-end SNR of a single dual-hop AF relay system and closed-form expressions for
various performance metrics. Then, in Section 4, for the case of independent nonidentical
fading across multiple relay links, we derive analytical lower performance bounds for dual-
hop relay systems with single relay selection. Numerical and simulation results are given

in Section 5, followed by concluding remarks in Section 6.

4.2 The Generalized-K Fading Model

In many fading environments, the received signal envelope can usually be characterized
by the Nakagami-m distribution. In a shadowed environment, the average power of the
received signal is also random. In this work, we assume that the fading environment
is such that the signal envelope X in a receive antenna is a generalized-K distributed
random variable with pdf given by [21]

x Ki—m <2<Q> x),x_() (4.1)

_ 4mQ)

where k and m are the distribution’s shaping parameters, Q = E[X?] /k is the mean
power with E [] denoting expectation, I'(+) is the Gamma function, and Kj_,,(-) is the
(k — m)th order modified Bessel function of the second kind [4]. The generalized-K
fading model can describe different fading conditions by the appropriate choice of fading
parameters m and k. Low values of m and k can be used to describe fading conditions with
severe multipath fading and shadowing, respectively, whereas fading conditions improve

as the values of the fading parameters increase.

The instantaneous received SNR per symbol of a single receive branch is v = X?E, /Ny,
where F is the average symbol energy and Ny is the single-sided power spectral density

of the additive white Gaussian noise (AWGN). The corresponding average received SNR
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per symbol is given as 7 = kQE;/Ny. The PDF of ~ is given by

k+m

fv(n) = %’yk;mlf{k—m (2\/5_7) ;v >0 (4.2)

with Z = (km) /5. The CDF of ~ is defined as F,(v) = [, f,(x)dz. For integer values of

m and arbitrary values of k, the CDF of v is given by [45]

—_

N1k
3

(@0 iy (24/3) (43)

1
q

Q
i
o

which agrees with [41] for the special case of K-fading (i.e., m = 1). Moreover the MGF
of v defined as M, (—s) = [~ e™*7 f,(7)d, is given by [45]

1—k,1—m]

where G5y (] %7) is the Meijer’s G-function [4, chap. 9.3].

4.3 Performance Analysis of Single Dual-Hop Relay
System

In this section we study the performance of a single dual-hop AF relay system operating
in the generalized- K fading channel. Assuming CSI-based amplification gain at the ¢-th
relay (see Fig. 4.1), the exact end-to-end SNR of the ¢-th dual-hop link is given by [31],
[35]

Yend (f) o Ve Veo

= 1" 4.5
Ve, + Ve +1 ( )

In the literature, this relay transmission scheme is usually considered as a benchmark
for cooperative performance. Since it is hard to find a closed-form expression for the
PDF of the exact end-to-end SNR of the relayed signal at the destination node, we use

an approximate value instead, given by the upper bound [37]

Yend(£) < Ymin(£) (4.6)
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Realay 1

Best
Relay
=election

Source Destination

Felay N

Figure 4.1: Dual-hop relay transmission scheme with best relay selection.

where Ypin (¢) = min(7y,,ve,). This approximation is also adopted in many recent papers
(e.g., [37], [47]) and it is shown to be accurate enough, especially at medium and high

SNR values as will be discussed in Section 5.

4.3.1 Statistics of the end-to-end SNR

Using the bound in (4.6), a closed-form expression for the PDF of the total SNR at the

destination can be derived. The PDF of ., (€) is given by

Fraist0 () = Fr, ) + Fary (1) = | Fog () oy (1) + Boyy (1), ()] (4.7)

where f,, (%) and E, (7), i = 1,2, are, respectively, the PDF and the CDF of the
generalized- K distributed SNR of the i-th link of the /-th relay.

For the case of symmetrical links, i.e., independent identically distributed (i.i.d.)
fading and equal average SNRs for the user-to-relay and relay-to-destination links, drop-

ping subscripts 1 and 2 in (4.7), and substituting (4.2) and (4.3) in (4.7), the PDF of
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4.3. Performance Analysis of Single Dual-Hop Relay System
., N is given by

me me—1
4EN"TT S G

Ki-me (2VE7) Kiq (20E)
F(mz)l—q(ke) por q' ke—my ke—q f,y
Using [22, eq. (03.04.26.0016.01)], i.e.,

(4.8)

2

K, (V) K (V) = STt

1
1}2—/,1. _p.-‘—'u:| (49)
2 2 0 2 2

and the functional identity [4, eq. (9.31.5)], the PDF of ~pin(£), ¢

=1,...,N, can also
be written in terms of the G-function as

g2ke=5 frm, T

i3
()12 (ke)

a1,a2
Gt I he (4.10)
q=0

where a1 = ko+(my+q) /2—1,a3 = ko+(mg+q—=1) /2,by = 2k;—1,by = ky+q—1,b3
ke+my—1,by

me+q — 1. The CDF of ypin (), ¢ =1

, N, is then given by

’anm é) / f’YHlln (Z

(4.11)
Substituting (4.10) in (4.11) and using [22, eq. (07.34.21.0003.01)]
vy a1 mmn (ap) o mynt1 l—a,a1,..., An,yAnt1yey ap
i Gy [wx‘(bq)} dr = "G [wﬂ ..... b bt ’_a] (4.12)
the final expression for the CDF of v (¢), 0 = 1,
G-function as

, IV, is given also in terms of the

g1- o+ 3L 5 \/—mg 1 -2
F’me(e)(/y)

mgF2k;gZ [ f

1 a1+1 az+1
q=0

b1+1,ba+1,b3+1,b4+1,0| °

(4.13)

Moreover, using the PDF in (4.10), the MGF of the end-to-end SNR bound, M., () (s)
can be expressed as

M'Vmin (E) (S) =

| e (=50 Foio ) (414
0
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By substituting (4.8) into (4.14) and using [22, eq. (07.34.21.0088.01)], we can obtain

41 ket 50 el 4Z
- ‘/_ { ‘ (4.15)

l,a1+1,a2+1
bi+1,ba+1,b3+1,bg+1|

To the best of our knowledge, closed-form expressions (4.10), (4.13), and (4.15) are
novel. Note that the Meijer G-function is available in most of the well-known mathemat-

ical software packages such as Maple and Mathematica.

4.3.2 Amount of Fading

With the equivalent PDF as shown in (4.10), the n-th moment of vy, (¢),¢ =1,..., N,

can be evaluated by the formula

Poyin(0) (1) = / Y Frmin (o) (V). (4.16)
0

Substituting (4.10) in (4.16) and using [4, eq.(7.811.4)] the moments of yuin(¢),¢ =

1,..., N can be obtained in closed form as

4
I'[b, 1
41 k[-——nﬁ’* —n Me— 14—%j1;[1 []+n+ ]

/’L'Ymin(z)( ) F(mz)rz(kﬁ)

—5 (4.17)
=0 7 [ Iaj +n+1]

j=1
The amount of fading (AoF') used to measure the severity of fading can then be computed

by the formula [53]

e
AoF, — Mgmm@)( )
p2 )

Ymin (€)

~ 1. (4.18)

4.3.3 Outage Probability

The outage probability, defined as the probability that the received total SNR falls below

a threshold, v, can be obtained directly as Py = F,(V4n)-
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4.3.4 Average BER

The average BER is obtained by integrating the conditional bit error probability P,(e|v)
over the PDF of the upper bound of the end-to-end SNR, f, . () (7). Following the
approach used in [54], the average error probability can be written interms of the CDF
F, o), ie.,

dPy(e
A =— [ D o0y (419)
0

Next, we present tight lower bounds of the average BER of the CSl-assisted AF dual-
hop single relay system in generalized- K fading channels for various modulation schemes

according to their conditional BER forms.

1. B(ely) = Fég(%?) where parameters o and g depend on the type of modula-
tion/detection scheme and take the values (a=1, f=1/2) for coherent binary phase
shift keying (BPSK), (a=1/2, §=1/2) for coherent binary frequency shift keying
(BFSK), (a=1, p=1) for differentially coherent BPSK, and (a=1/2, f=1) for non-
coherent BFSK, while T' (o, z) = f;o to~! e~tdt is the complementary incomplete
Gamma function [4, eq.(8.350.2)]. It then follows that the average BER for binary
modulation schemes operating over a fading channel can be written in terms of the
CDF of the received SNR; as

aﬁ

| e R et (4:20)
0

Substituting (4.13) in (4.20) and using [4, eq. (7.813.1)] the average BER for binary

modulations is derived in closed form as

1-B,a1+1,a2+1

B, (e .
b( ) b1+1,b2+1,b3+1,b4+1,0

Al-ket 5 (e 4=
P VT 3 204»2{ ‘ (4.21)

T A BT (k) = g e

(67

2. Pyely) = Q (,/g’yb):The BER of M-ary phase shift keying (M-PSK) and M-ary
quadrature amplitude modulation (M-QAM) signal constellations over an AWGN

channel can be expressed as a linear summation of the Gaussian Q(-) function,
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defined as Q(z) = \/Lz? [% exp (—t?/2) dt. Therefore, in order to evaluate the per-
formance of M-ary modulation schemes over a fading channel we need to evaluate
integrals of the form Py(e,q) = [°Q (v/97) fy (%) dyb, where v, is the instan-
taneous received SNR per bit and g depends on the modulation type [53]. For
instance, using the unified approximation [55], the average BER for M-PSK con-
stellations with Gray coding operating over a fading channel is given by

max(M/4,1)

> Pyesgimpsk) (4.22)

=1

2
max (log, M, 2)

Il

Py vpsk (€)

where g; vpsk = 2 (logy M) sin® ((2i — 1) 7/M). The corresponding average BER of

M-QAM constellations with Gray coding, is

A 1 VM /2
P, e) = 1-— Py (e, g; (4.23)
b MQam (€) log, M ( \/M) ; b (€5 9iMQAM)

where g moam = 3(2i —1)® (logy M) /(M — 1). Using the result in [49], the in-
tegral P(e,g) can be expressed in terms of the CDF of the received SNR at the

destination, as

Plég) == [P (Pg) (420

For the generalized-K fading channel, inserting (4.13) in (4.24), making the change of
variables y =#*and using again [4, eq. (7.813.1)], P(e, g) can be obtained in closed form

as

_ me my—1
41 ket = 472 8._g

M T7(he) 2 o 1%

1/2,a1+1,a2+1

Ple = .
( ,g) b1+1,ba+1,b3+1,b4+1,0

(4.25)

Then, the average BER of M-PSK and M-QAM can be easily evaluated numerically
using widely available mathematical software programs by combining the closed-form

result in (4.25) with (4.22) and (4.23), respectively.
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4.3.5 Average SER

For non-coherent demodulation schemes with conditional SER given by P, ,.n(y) =

Cexp(—D~), where C' and D are constants depending on the modulation scheme, the

average SER can be given directly by the MGF of vyin as Pe pon = C'M.

Ymin

(Z)(D)- Fur-
thermore, using the MGF-based approach, the average SER for several M-ary signaling

schemes can be evaluated as [56]

p = XK: Y O\ g (4.26)
s — 0 k Ymin (£) Sin20 ’
k=1

where parameters K, Oy, o and ¢, can be found in [56, Table IJ.

4.3.6 Ergodic Capacity

The ergodic capacity of the ¢-th dual-hop system with CSl-assisted AF relay is given by
[57]
B, %
C’Ymin(e) = 7 log2(1 + f}/) f’Ymin(e) (f}/>df}/ (427)
0

1, 1
where B,, (in Hz) is the transmitted bandwidth. Expressing In (1 4 v) = G;% 0

1, 0
(i.e., [22, eq. (07.34.03.0456.01)]) and substituting (4.10) in (4.27) the ergodic capacity

of Ymin(£),¢ = 1,..., N normalized to the transmitted bandwidth can be obtained in a
closed form using.[22, eq. (07.34.21.0011.01)] as

0,1,a14+1,a2+1
b1+1,b24+1,b3+1,b4+1,0,0|

Lk e me—1 g —_
Crin(@ AT LT ZZ - -G [428 (4.28)

By 2In(2)I' (m,)I'2(k,) = ¢ | s

4.4 Extension to the best relay selection scheme

We now consider a cooperative diversity system where a source node communicates with
a destination node through N relays, as depicted in Fig. 4.1. Assume that the CSI-
assisted opportunistic AF relaying protocol is employed. Following the work in [46], in the

opportunistic relaying mechanisms, one best relay among the multiple relays is selected
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during a predetermined transmission period and only that chosen relay forwards packets
to the destination while the other relays are kept idle. Therefore, the best relay is selected
as the relay node that can achieve the highest SNR at the destination node. Considering
N available relays, the relay selection algorithm selects the best relay (denoted relay c)
such that

= n(0). 4.2
¢ = arg Ee{%ﬁﬁv}’mm(f) (4.29)

Using the minimum SNR approximation, the total instantaneous SNR of the N relay

system with single relay selection, will be given by

Ye = max {Ymin(1), -+, Ymin(N)} . (4.30)

Assuming independent but not necessarily identical fading for the N relay links, the CDF

of the highest end-to-end SNR of the scheduled relay, ~,, is then given by [53]

E.N= 1] Funio - (4.31)

=1
Therefore, using the CDF based approach and the previously obtained analytical
result for F, () in (4.13) for the dual-hop relay system, useful performance metrics
for the best relay selection scheme can be easily evaluated. The outage probability can
be obtained directly as P, = F, (vn). Moreover, using the methodology described
in Section 3.4, the average BER for binary and multilevel modulation schemes can be

obtained by replacing F, . () (-) with F), () in (4.20) and (4.24), respectively.

4.5 Numerical Results

In this section we present some numerical and simulation results for the performance of
dual-hop relay transmission scheme with best relay selection, in the absence of a direct
link, operating over generalized-K fading channels. The generalized-K fading model can
describe different fading conditions by the appropriate choice of fading parameters m and

k. For demonstration purposes, we assume NN parallel dual-hop relay links with i.i.d fading
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Figure 4.2: Outage Probability. vs SNR per hop for best relay selection scheme with
N=1,2,3and (m; =1,k; =1.5),i=1,2,3.
conditions given by {m; =1, k; = 1.5}1.]\;1, i.e., Rayleigh fading with medium amount of
shadowing. Fig. 4.2 plots the outage probability versus the average SNR per hop for
threshold vy, = 3 dB and N = 1,2,3. The figure depicts the diversity gain achieved by
the best relay selection scheme as N increases. Furthermore, for CSl-assisted AF relays,
it compares the exact performance (using simulation) to the bound given by (4.13). We
observe that the performance bound of the minimum SNR approximation loses some of
its tightness to the exact performance as N increases but it always converges to the exact
values at high values of SNR per hop.

For the same fading conditions across the multiple dual-hop relay links, Figs. 4.3 and
4.4 plot, respectively, the average BER for BPSK and 16-QAM versus the average SNR

per hop for N = 1,2,3. Note that for N =1 (i.e., single relay system) the average BER
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Figure 4.3: Average BER of BPSK vs SNR per hop for best relay selection scheme with
N=1,2,3and (m; =1,k; =1.5),i=1,2,3.

for BPSK was computed using (4.21) whereas for 16-QAM it was evaluated after inserting
(4.25) in (4.23). Both figures show the performance improvement attained by the best
relay selection scheme.. Moreover, we observe that the BER performance evaluated by
the derived analytical expressions based on the SNR bound loses its tightness at low and
medium SNR values with the increase of NV, but it converges to the exact performance
as the average SNR increases.

Finally, in Figs. 4.5 and 4.6 we plot, respectively, the average BER of BPSK and
16-QAM vs the average SNR per hop for best relay selection with N = 3 in various
shadowing conditions that include identical and non-identical fading across the parallel
dual-hop relay links. In order to show the impact of fading parameter k£ on the average

BER performance, we consider a multipath environment with m = 2 and three shadowing
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Figure 4.4: Average BER of 16-QAM vs SNR per hop for best relay selection scheme
with N =1,2,3 and (m; = 1,k; = 1.5), i = 1,2, 3.

conditions as follows. We select {k; = 0.5}, to model heavy shadowing, {k; = 2.5} , for
medium amount of shadowing, whereas we assume k; = 0.5, ks = 1, and k3 = 1.5 for non-
identical shadowing conditions. The two graphs depict the effect of fading parameter k on
the average BER for both modulation schemes and the accuracy of the analytical results
based on the end-to-end SNR bound for the best relay selection scheme. By comparing
the tightness of curves (a) and (c) to the corresponding exact performance, we observe
that for a fixed value of NV the accuracy of the minimum SNR approximation depends on
the fading severity of the dual hop links, i.e., the less amount of shadowing exists across
the relay links the loser the performance bound becomes at the low and medium SNR
values. However the performance bound converges to the exact performance in the high

SNR regime.
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Figure 4.5: Average BER of BPSK vs SNR per hop for best relay selection scheme with
N = 3 and various fading conditions.

4.6 Conclusions

In this chapter, weased a tight upper bound on the end-to-end SNR of a single dual-hop
AF relay system to derive novel closed-form expressions for its SNR statistics, outage
probability, bit error probability, and ergodic capacity. Then, using the CDF based
approach; we studied the performance of the best-relay selection scheme for cooperative
diversity networks operating over independent but not necessarily identical generalized- K
fading channels. Computer simulation results verified the accuracy and the correctness

of the derived expressions.
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Figure 4.6: -Average BER of 16-QAM vs SNR per hop for best relay selection scheme
with N = 3 and various fading conditions.
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Chapter 5

Performance of Multihop Relaying
Systems over Composite Fading

Channels

N THIS CHAPTER we evaluate performance measures of multihop relaying systems op-
I erating in a composite fading environment modeled by the generalized- K distribution.
By approximating the end-to-end signal-to-noise ratio (SNR) of the multihop relay system
by the minimum SNR of all the links, we provide easy to compute analytical expressions
for the outage probability and the average bit and symbol error rates for a variety of
digital modulation schemes. The derived expressions are validated by computer sim-
ulation and provide tight lower bounds to the exact performance of multihop relaying

transmissions in a generalized fading environment.

5.1 Introduction

Multihop relay systems can extend the coverage and enhance the throughput of wireless
communication systems by enabling a source node to communicate with the destination
node through intermediate relay stations. It is well known that the cooperative diver-
sity realized through multihop relays can provide an improvement in link quality and
reliability, high data rate coverage, and mitigate channel impairments in next generation

wireless systems [24], [27]. For non-regenerative relay systems with amplify-and-forward
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transmission scheme, the end-to-end signal-to-noise ratio (SNR) at the receiving end de-
pends on the amplification gain employed at the relays. In particular, for dual-hop relay
systems with relays that use channel state information (CSI) of the first link, the end-
to-end SNR has been obtained in [31]. For this relay transmission scenario, analytical
performance results have been obtained by approximating the end-to-end SNR by the
harmonic mean of the SNRs of the two hops [35], their geometric mean [36], and the
minimum SNR of the two hops [37], [39].

Among the proposed approximations for the end-to-end SNR of dual-hop relaying
system, the minimum SNR has been shown to provide a tight upper bound for amplify-
and-forward relays with CSl-based and fixed gain policies as well as for decode-and-
forward relay systems. Using the minimum SNR upper bound to the end-to-end SNR,
the performance of dual-hop relaying has been studied in terms of outage probability
and average bit error rate (BER) for various symmetrical links with Nakagami-m [37],
Weibull [47], and generalized Gamma [39], [58] fading, as well as for asymmetrical links
with Rayleigh-Rician fading [23].

The performance of multihop relay systems in generalized fading models has only
recently been investigated in the literature. In [59], the end-to-end SNR of the multihop
system with CSI-based relays was obtained and the exact average symbol error rate (SER)
was derived for the generalized Gamma fading channel using the moment generating
function (MGF) based approach. In [47], the minimum SNR approximation to the end-to-
end SNR was employed to derive tight lower bounds of various performance measures for
a multihop system operating over Weibull fading channel. Moreover, lower bounds for the
performance of multihop systems with fixed gain relays over non-identical Nakagami-m
and Rician fading channels were obtained in [60] using the geometric mean approximation

for the end-to-end SNR.

Recently, the generalized- K fading model [45] has attracted considerable attention as
one of the most general wireless fading models that can characterize the combined effects

of fast and slow fading on the received signal. This model corresponds to a Nakagami-
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Gamma composite distribution and is controlled by two shaping parameters m and k,
where m is the Nakagami parameter for the short-term fading and k is the parameter
of the gamma distribution for the received average power due to shadowing [21]. Note
that the K distribution [41] is derived as a special case of the generalized-K distribution
by letting m=1 (i.e., Rayleigh short-term fading). The performance analysis of single
link digital communication systems in this fading channel was given in [42], whereas for
relay systems, results that have recently appeared in the literature are restricted to the
performance of dual-hop systems with CSI-based [44], [61] and fixed gain [52] transmission
schemes.

In this chapter, we consider multihop relay systems operating in generalized-K fading
channels with integer values for fading parameter m and arbitrary values for fading
parameter k. Using the minimum SNR approximation for the output SNR of the multihop
relaying system, we derive analytical expressions for the lower bounds of performance
metrics such as the outage probability and the average BER and SER of various digital
modulations. The rest of the chapter is organized as follows. In Section II we derive
a closed-form expression for the cumulative density function (cdf) of the SNR for a
single link operating in a generalized-K fading channel. In Section III, we use this
result to derive the cdf of the weakest SNR among multiple hops. Section IV presents
the performance analysis of the multihop relay system in terms of outage probability and
average BER and SER for various modulation schemes. Numerical and simulation results

are given in Section V; followed by concluding remarks in Section VI.

5.2 Statistics of Generalized-/K Distribution

Wireless communication channels result in random fluctuations of the received signal.
In many fading environments, the received signal envelope can usually be characterized
by the Nakagami-m distribution. In a shadowed environment, the average power of the
received signal is also random. A composite fading model which leads to a closed-form

compound distribution assumes that the short-term fading component of the received
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signal envelope follows the Nakagami-m distribution while the long-term fading compo-
nent (shadowing) has a gamma distribution. The result is the generalized-K composite
fading model [21]. In this work, we assume that the fading environment is such that the
signal envelope X in a receive antenna is a generalized-K distributed random variable
with probability density function (pdf) given by [42]

4m(k+m)/2
Ix(@) = Fo o arm e

m 1/2
— >
XKy_m (2<Q> x), x>0

where k and m are the distribution’s shaping parameters; ) = E[X?]/k is the mean power

k+m—1

(5.1)

with E[-] denoting expectation, I'(+) is the Gamma function, and K, (-) is the vth order
modified Bessel function of the second kind. The instantaneous received SNR per symbol
for a single receiver is v = X?FE,/ Ny, where Ej is the transmitted symbol energy and N
is the single-sided power spectral density of the additive white Gaussian noise (AWGN).
The corresponding average received SNR, per symbol is given as 4 = kQ E/Ny. The pdf

of v is given by

—ktm
= ktm 4 —
==z ‘K n(2VZy), 7>0 5.2
£0) = fmarie e (2VE), 0 (5.2)
with = = (km) /4. The cdf of v is defined as F,( fo fy(z)dzx. Expressing K,(-) as

[4, eq. (3.471.9)], the cdfof v can be written as

k—m

k+m
2="z2 T okm 1 /(= 2
RISy (S
x/ Y le Ty Ty d.
0

By changing the order of integration and using [4, eq. (3.381.1)] to solve the inner

integral, we obtain

Fyy) = :) 7 e (g)dy (5.4
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where (-, -) denotes the lower incomplete gamma function [4]. Expressing the incomplete
gamma function with positive integers n, as [4, eq. (8.352.6)]
n—1

v (n,z) =T(n) [1 —e” Z z_] (5.5)

!
P

and using [4, eq. (3.351.3)] and [4, eq. (3.471.9)] for the integral in (5.4), the cdf of v
for integer values of fading parameter m and arbitrary values of fading parameter k, is

obtained as

E(y)=1=1(y;m,kZ), >0 (5.6)

where function I(-) is defined as

I(x;m, k=)

Yenik, (2@) . (5.7)

q

Therefore the outage probability for a single link, defined as the probability that the
received SNR drops below a specified SNR threshold ~,, can be obtained directly as
Pyt = F,(vin). It is observed from (5.6) that this closed-form expression contains only
standard mathematical functions and can therefore be easily and efficiently evaluated

numerically with software packages such as Matlab and Mathematica.

5.3 Multihop Relaying System

We consider the multihop relaying system depicted in Fig. 5.1, where the communication
between the source and the destination is achieved with the help of non-regenerative
relays.  Each link is characterized by its fading severity and its average SNR, i.e.,
(meyke, V), £ = 1,..., N. The links between the source and the destination are assumed
to undergo independent fading but can be asymmetric and/or unbalanced, i.e., the N
hops may experience different per-hop fading severities and/or average SNRs. This is a
realistic assumption in most relay applications, since the relays can be located in differ-

ent fading environments. Assuming CSI-based amplification gain at each relay, the exact
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Source Destination

Figure 5.1: Multihop relay system.

end-to-end SNR is given by [31]

1
N .

Vend = (5.8)

In the literature, this relay transmission scheme is usually considered as a benchmark
for cooperative performance. However, the expression for the end-to-end SNR in (5.8)
does not lead to tractable analytical performance results. Therefore, the exact end-to-end
SNR is usually approximated by the upper bound given by the minimum SNR of all the
links [38], i.e.,

Yend < “Ymin = min {717 ceny fVN} . (59)

The edf of the upper bound to the exact SNR for the multihop relay system, depicted in

Fig. 5.1, will then be given by

=1 (5.10)
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This closed-form expression can be easily and accurately evaluated numerically since it

involves only finite summations of powers and Bessel functions.

5.3.1 Outage Probability

Assuming independent but not necessarily identical fading and arbitrary average received
SNRs for the N hops, the outage probability, i.e., the probability that the received end-

to-end SNR falls below a predetermined SNR threshold 7, can be obtained directly as

Pout = F’Ymin (/yth>'

5.3.2 Average Bit Error Rate

The average BER is obtained by integrating the conditional BER P, (¢e|v) over the pdf
of the upper bound to the end-to-end SNR, f. . (7). Following the approach used in [54],
the average error probability can be written in terms of the cdf F,_, (v), i.e.,

Pye) = — /000 dP, (GM)F

. d. A1
d,y Ymin (V) Y (5 )

Next, we will present the average BER for various modulation schemes of a multihop

system in generalized- K fading ehannels according to their conditional BER forms.

(i) Py(ely) = Fz(lé—(‘;;) For binary phase shift keying (BPSK) and binary frequency shift
keying (BFSK), coherent (i.e., CPSK/CFSK) and differentially coherent /noncoherent
(i.e., DPSK/NFSK) detection schemes, the conditional BER in AWGN can be writ-

ten in a compact form as [62]

I'(B,ay)

Py (e]7) = = G (5.12)
1, BPSK 1, DPSK/NFSK N
a = B = and ' (p,x) = [~ tP"'e7"dt is the
1/2, BFSK 1/2, CPSK /CFSK

complementary incomplete gamma function [4]. From (5.11), it follows that the

average BER for binary modulation schemes operating over a fading channel can
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be written in terms of the cdf of the SNR, as

aﬁ

P = 55

| emE e (5.13)
0

Substituting the cdf of the upper bound approximation to the received SNR, F.__ (7),

min

in (5.13), and using [4, eq. (3.351.3)] for the first term, the average BER of binary

modulations can be approximated as

N (5.14)

X H I (y; my, ke, Ze)dry.
=1

The final integral can be easily and efficiently evaluated numerically using mathe-

matical software programs such as Matlab and Mathematica.

(i) P, (e|v) = Q (/7). For M-ary phase shift keying (M-PSK) and M-ary quadra-
ture amplitude modulation (M-QAM) signal constellations the conditional BER
in an AWGN channel can be expressed as a linear summation of the Gaussian
Q-function, defined as Q(r) = \/%7 f;o exp(—t?/2) dt. Therefore, in order to evalu-
ate the performance of M-ary modulation schemes over a fading channel we need
to evaluate integrals of the form Py(e;9) = [;° Q (1/97) f+,(7) dy where 7 is the
instantaneous received SNR per bit and g depends on the modulation type [53].
For instance, using the unified approximation in [55], the average BER for M-PSK
constellations with Gray coding operating over a fading channel can be expressed

as

2
max (log, M, 2)
max(M/4, 1) (515>
X Z Py(e; gi,MPSK>

i=1

~

P b,MPSK (6)

with g; mpsk = 2 (logy M) sin? ((2i — 1) 7/M).
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The corresponding average BER for rectangular M-QAM constellations with Gray

coding, is

4 1
P >~ (11— —
e (€)= 40 ( m)
Vi (5.16)

X Z Py(e; givqam)

i=1

with g; moam = 3(2i — 1)* (log, M) / (M — 1). Furthermore, using the result in [54,
eq. (34)], the integral Py(e;g) can be expressed in terms of the cdf of the upper

bound Yin, as

1 [g 00 o=9g7/2
Pb(e;g):§ o | WFMH (7) dry. (5.17)

For the generalized-K fading channel, the BER performance of multihop relay net-

works can be obtained by inserting (5.10) in (5.17) to obtain

1 1 [g [®e9/?
Pylerg) = = — =,/ =—
N

< [T 1 (v ke, ) dry.

(=1

(5.18)

Then, by substituting this result in (5.15) and (5.16), the average BER of M-PSK
and M-QAM, respectively, can be evaluated numerically using standard mathe-
matical software programs.

5.3.3 . Average Symbol Error Rate

For many digital modulation schemes, the conditional SER in AWGN is given by [54]

Pi(e;a,b,cly) =a@Q (ﬁ) —c@? (ﬁ) : (5.19)

The expression of (5.19) provides either the exact or the high SNR approximation of
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the exact SER depending on the modulation format considered. The parameters (a, b, ¢)
can be found in the literature for many digital modulations used in wireless systems. For
example, (a, b, ¢)=(1, 2, 0) for coherent BPSK, (a, b, ¢)=(1, 1, 0) for coherent BFSK,
(a, b, ¢)=(2, 2sin®*(7/M), 0) for M-PSK with M > 4, (a, b, ¢)=(2, 1, 1) for QPSK, (a,
b, ¢)=(2, 2, 2) for DPSK, and (a, b, ¢)=(4(v'M — 1)/v/M, 3/(M — 1), (VM — 1)2/M)
for rectangular M-QAM [54], [53]. Based on the cdf based approach, the average SER

for the multihop relay system operating in a fading channel can be expressed as [54, eq.

(40)]

Py(e;a,b,c)

\r / el — (5 <@(v?)) Fu ()1

where F,_ . (7) is the cdf of the upper bound to the output SNR per symbol. Substituting

(5.20)

(5.10) in (5.20), the final result is given by

a. ¢ b
Ps(eaaubvc>:§_1_ % (521)
006—b7/2 a N .
a_ b I (v: g, ke, ) doy.
. Nai (2 cQ <\/_7>>£[1 (s Mg, kg, Zg) dry

The expression given in (5.21) can be easily computed numerically using common math-
ematical software programs. The average SER for a variety of modulation schemes can
then be evaluated for the multihop relay system operating in a generalized-K fading

channel.

5.4 - Numerical Results

In this section we present some numerical and simulation results for the performance
of the multihop relay transmission scheme operating over a generalized-K fading chan-
nel. The generalized-K fading model can describe different fading conditions by the

appropriate choice of fading parameters m and k. Low values of m and k can be used
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Outage Probability

—— Analytical bound
« Simulation (exact)

10-3 L 1 L 1 ) 1 L 1 L 1 L 1 L 1 L
0 5 10 15 20 25 30 35 40

Average SNR of first hop (dB)

Figure 5.2: Outage probability vs average SNR of the first hop for v, = 3 dB with
N=2,3,4 balanced hops with different fading conditions.

to describe fading conditions with severe multipath fading and shadowing, respectively,
whereas fading conditions improve as the values of the fading parameters increase. For
demonstration purposes, we consider non-identical fading conditions per hop with equal
and unequal average SNRs, i.e., balanced and unbalanced links, respectively. We select
the fading parameters (m, k) per hop as (m; = 1, k; = 1), (me = 2, ks = 3), (m3 = 1,
ks = 1.5), and (my = 3, ky = 0.5), whereas for the unbalanced case we also select the

average SNRs per hop as 73 = 7,/2 = 273 = 27,. Simulation results of the lower bounds
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are found to exactly overlap with the analytical results and therefore they are not shown
in the plots.

Using the minimum SNR approximation, Fig. 5.2 plots the outage probability versus
the average SNR of the first hop for 1, = 3 dB and N = 2, 3 and 4. The tightness of the
analytical curves is depicted by comparison with the corresponding exact performance
curves obtained by simulation. It is evident that the analytical lower bound is tight
particularly at medium and high values of the average SNR per hop and its tightness
decreases moderately with the increase of the number of hops N. However, it always
converges to the exact values at high per-hop average SNRs.

For the same fading conditions, Fig. 5.3 and 5.4 plot the average BER of BPSK and 16-
QAM versus the average SNR per bit of the first hop for balanced and unbalanced hops,
respectively. Simulation results of the exact BER are also shown in order to demonstrate
the tightness of the analytical bound. We observe that for both cases considered, the
difference between the analytical bound and the exact performance is larger at the low
per-hop average SNR region than at medium and high average SNRs and increases slightly
as N increases. Furthermore, we observe that the average BER deteriorates with the
increase of the number of hops N, as expected [47].  Finally, Fig. 5.5 and 5.6 plot,
respectively, the average SER of QPSK and 16-QAM versus the average SNR of the first
hop for both balanced and unbalanced cases. The tightness of the analytical expressions
that use the minimum SNR upper bound to the corresponding exact performance is
observed, with the approximated SER to converge to the exact values for high values of

the average SNR per hop.

5.5 Conclusion

In this paper, we derived a closed-form expression for the cdf of the minimum SNR upper
bound to the end-to-end SNR of a multihop relay system operating in a generalized-K
fading environment. Using this result, the average BER and SER was then evaluated for a

variety of digital modulation schemes using the cdf based approach. The results obtained
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Average BER

—— BPSK
———————— 16 - QAM
«  Simulation

10-4 L 1 L 1 ) 1 L 1 L 1 L 1 L 1 L
0 5 10 15 20 25 30 35 40

Average SNR of first hop (dB)

Figure 5.3: Average BER vs average SNR per bit of the first hop for BPSK and 16-QAM
with N=2,3,4 balanced hops with different fading conditions.

using the derived analytical expressions offer tight lower bounds to the corresponding

exact results obtained by simulation.
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Figure 5.4: Average BER vs average SNR per bit of the first hop for BPSK and 16-QAM
with N=2,3,4 unbalanced hops with different fading conditions.
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Average SER
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Figure 5.5: Average SER vs average SNR of first hop for QPSK with N=2,3,4 in different
fading conditions.
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Figure 5.6: Average SER vs average SNR of first hop for 16-QAM with N=2,3.4 in

different fading conditions.
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Chapter 6

On the Performance of Multihop
Relay Systems in Nakagami Fading
Channel

E DERIVE closed-form lower bounds on the performance of multihop communication
W systems with non-regenerative relays operating in a Nakagami-m fading channel.
The relay gains are assumed to be chosen to maximize the end-to-end signal-to-noise
ratio (SNR), which is bounded by the geometric mean of the positive random variables.
Closed-form expressions are then derived for the statistics of the geometric mean of the
optimum end-to-end SNR. These, in turn, are used to derive tight bounds for the outage
as well as average error performances of the system. An upper bound is also derived for

the mean ergodic capacity of the end-to-end SNR.

6.1 Introduction

Multihop relaying in which the transmitted signal propagates through cascaded nodes,
with each node amplifying and forwarding information from only the previous node to
the next, has been shown to improve the performance and extend the coverage of many
communication systems [24, 25]. The performances of such systems have been studied
for a variety of fading environments, including the Rayleigh, Nakagami and Rice fading

channels, among others [35, 36, 63]. For non-regenerative relay systems with an amplify-
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and-forward transmission scheme in a fading environment, the end-to-end SNR at the
receiving end depends on the amplification gain employed at the relays. In particular,
it is known that the choice of the relay gain that maximizes the end-to-end SNR is to
invert the combined instantaneous received power (i.e., sum of desired signal and noise
powers) at the node [35]. However, the performances of multihop systems that use this
optimum choice of the relay gains and operate in a cascaded channel environment are
difficult to analyze. Consequently, exact performance results available in the literature
are limited to only two-hop systems [35], [64]. For multihop relay systems, in order to
obtain analytically tractable results, the analysis usually focuses on approximations or
limiting cases. For example, when the channel gains are chosen to ignore the presence of
noise, the relay gains simply invert the instantaneous signal power in the previous hop
regardless of the noise of that hop [32], [33]. Alse, in a noise-limited system, the effect
of the instantaneous signal power at the relays is ignored and the relay gains are blindly
chosen to be inversely proportional to the noise power at the previous relay [63], [33].
To the best of our knowledge, apart for the two-hop case, the performance of multihop
relay system that considers the effects of both the useful instantaneous signal and noise
powers on the relay gain selection is not available in the literature. The main aim of this
chapter is to close this gap.

In this chapter, we consider a multihop relay system in which each relay gain is chosen
to maximize the end-to-end SNR and operates in a Nakagami-m fading channel. We use
the fact that the harmonic mean of positive variables is upper bounded by their geometric

mean to express bounds for the end-to-end SNR.

6.2 End-To-End SNR

We consider the multihop relay system in which the communication between the source
and the destination is achieved with the help of a series of non-regenerative relays. The
links between the source and the destination are assumed to undergo independent but not

necessarily identical Nakagami-m fading. In a multihop communications with N-hops, it
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can be shown that the end-to-end SNR at the destination is given by [35],

N 2.2
Hi:1 ;g1

~ ~ - (6.1)
> i1 No, <Hj:i+1 ajgj—l)

Yend =

where «a; denotes the fading envelope of the i-th channel, i = 1,... N, g; is the gain at
the i-th node (with go = 1) and Ny, is the one-sided power spectral-density of the noise.
In general, the choice of the node gain g;, for i = 1,..., N, determines the end-to-end

SNR.

In CSl-based relays, the amplification gains at each relay are chosen, with the knowl-
edge of the channel state information, to invert the fading state of the preceding link. It
limits the instantaneous output power of the relay when the channel gain in the preceding

hop is low. The corresponding relay gain is chosen as

1

2

e ) 6.2
gl Of,LZ +N01 ( )

Substituting (6.2) in (6.1), the exact end-to-end SNR is given by [35, eq. (16)]
N 1 n—1 1 -
Yend = [Z —1I (1 + —) (6.3)

n=1 In i=1 Vi

where v; = E (a?) /Ny, is the SNR on the i-th link. By expanding the terms in (6.3), we

have )

frond = [Z m+D e+l (a1 +1) (6.4)

Y1V2 " In

n=1

A careful examination of (6.4) shows that there are (2" — 1) terms in the summation.

Therefore, the end-to-end SNR may be recognized as the harmonic mean [35], [63],

AT AR
ond = — | — — 6.5
=37 (322 63)
of terms z,, each of which is the product of the combinations of ~i,7s,...,7v,, where

M = 2% — 1. Tt is well known that for the sequence z1, s, ..., xas, the harmonic mean
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is upper bounded by the geometric mean as [63]
LM -1 v 1/M
— — < i . 6.6
(rx2) = (1) o

It follows from (6.6) that the end-to-end SNR is upper-bounded by

) N 2N=1/(2N -1)
en < a = Tan a4y B R 6.7
Tend < %o = ) (1}7) (6.7)

where we have taken the geometric mean of all (2N — 1) terms in the summation in which
eachy; (i = 1,2,..., N) appears exactly 2~! times. The upper bound for the end-to-end
SNR in (6.7) has not been considered in the literature, except from the special case when

N = 2, which is treated in [36].

6.3 Performance in Nakagami Fading Channel

6.3.1 PDF of End-to-End SNR Bound

The pdf of the SNR on the ¢-th ' hop in a multi-hop link operating in a Nakagami-m fading
environment is given by

Fr (7)%7’”“1 exp (—m_l) (6.8)

where m; > 1/2.is a parameter that describe the fading severity of the i-th hop. It can be

shown that the pdf of the rational product of powers, ¥ = Hf\il vf i/ " may be expressed

in terms of the Meijer G-function as [33, eq. (4)]

n HA; &mrlﬂ
fY( ) - - TZ_N N
’ y (\/%) Hi:l I (m;)

N o\
X GS’,?« [ynH (_ g)

i1 \7i
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where ¢; = A (¢;,m;) and r = Zf\il, with /1, ..., ¢y being positive integers. The corre-

sponding cdf is given by [33, eq. (6)]

B (\/ﬁ) 1}}?1 r (mi?
1)

i=1 ¢

(6.10)

Consequently, using a simple transformation of random variables, the pdf of 7, is obtained

by substituting ¢; = L =281 and n = M in (6.9) to give

fru(7) = MPy G R M

N ] (6.11)

B1,82,--,8N

where, R=N2V"1 M =2V~ 1. my =S my, B; =A(L,m;), P = Lmr /2
7= 2 (L, m) (vam)" TN, D)

and R = 1\111_11;4 %11 (m;/7;)". In Fig. 6.1, several curves of the PDF of 7, are depicted as

a function of 7, assuming identical fading conditions and N = 2, 3.

6.3.2 Outage Probability

The outage probability, defined as the probability that the received end-to-end SNR falls

below a threshold, 4, can be obtained directly as Pou (1) = F,..,(1n). Based on the

Yend

bound 7, for the end-to-end SNR, the outage probability is obtained from (6.10) as

() = Fy (M) = PGy L, [ R

! ] , (6.12)

B1,82,--,6n,0
6.3.3 Moments of End-to-End SNR Bound

The v-th-moment of the end-to-end SNR bound is given by FE (72) f Y frya (Y
Replacing the pdf of v, given by (6.11), making the change of variables y = v and
using [22, eq. (07.34.21.0009.01)] we obtain

B1,82,..., /BN:| dy

N L
:PHHF(m‘+h %) R-—V/M

i=1 h=1

E(y,) =P / y /MG [Ry
0]

(6.13)
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Figure 6.1: The PDF of ~, for identical fading conditions and N = 2, 3.

6.3.4 Average Symbol Error Probability

The average symbol error probability (ASEP) for a variety of digital modulation schemes

is given by
P(M)—_l/esl\/[ (g )dQ (6.14)
? T 04 e si|129 )
74
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where the moment generating function of v, is obtained using [33, eq. (3)], as

(6.15)
GM,R

M N —L
—_t H m; ’A(L,lfmﬂ ..... A(L,1-mp)
() P

Using (6.15), the result in (6.14) can be evaluated numerically. Furthermore, for non-
coherent demodulation schemes with conditional SER expressed as P. ,on(7) = C exp (—D7),
where C' and D are constants depending on the modulation scheme, the average SER

can be given directly by the MGF of 7,, as Peon = CM,, (D).

6.3.5 Average Bit Error Probability

The conditional bit error probability (BEP) of many coherent modulation schemes in
AWGN can be written as a linear combination of terms P,.(y) = Aerfc (v/B7), where
erfc(+) is the complementary error function and A, B are constants that depend on the
specific modulation [53]. Tt then follows that for the multihop relay system the av-
erage BER can be given as a linear combination of terms P, fo V) fra (Y)Y,

where f, (v) is the pdf of end-to-end SNR bound +,. Using the relation, erfc (\/ Bv) =

(V)™ 1G [By‘llﬂ} we have

— P o0 1
Po=A— [ 77'G38 B, )
R0 M -
% GO’R [Rfy B1,825-+5 BN:| dy.
which can be obtained in closed form, as
— AP
" Cova (van)
(6.17)

R,2M
X G 2M, R+ M

2(5)
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6.3.6 Ergodic Capacity

The ergodic capacity may be bounded as

Ear — / logy (1 + ) £, (7)dv (6.18)
0

Substituting the following [4]

11
In(1+7v) = Gy3 [7’1’0} (6.19)

and (6.11) in (6.18), with the help of [22, eq. (07.34.21.0013.01)], we obtain

Ear = P/ 7'Gy3 [’Y
0

_ LG R+2M,M [
(2m) M tm(2) MM

1,1
Lo] G {R

B1,625-+5 5N} d”)/
A(M,0),A(M,1) }
81,82, BN, A(M,0),A(M,0)]

(6.20)

6.4 Numerical Results

In this section we present some numerical evaluated results for the multihop relay trans-
mission scheme with non-regenerative relays operating over Nakagami-m fading channels.

These results include lower bounds for the outage probability (F,,;) and the average bit

error probability (ABEP).

In Fig. 6.2, using (6.12), the P, is plotted as a function of the average input SNR
7, assuming identical fading parameters m = m; and N = 3. It is depicted that P,
improves by increasing 7 and/or increasing m. In Fig. 6.3, using (6.15) the average
BEP of binary differential phase shift keying (BDPSK) is plotted as a function of the 7.
Furthermore, it is assumed N = 2,3 and several, identical values for m;. It is depicted

that the average BEP decreases with NV increasing and/or m; also increasing.
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Figure 6.2: Outage Probability versus the average input SNR for several values of m and

N=3.
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Figure 6.3: Average BER for BDPSK vs 7 for N = 2,3 and several values of m;.

6.5 Conclusions

In this section, we provided a closed-form expression for the upper bound of the end-to-

end SNR of a multi-hop relay system operating over a Nakagami-m fading environment.

The effect of both the desired signal as well as the relay noise powers are considered in

setting the relay gains with the aim to maximize the end-to-end SNR. The results using

the analytical expressions offer a tight bound to the corresponding exact results obtained

by simulation.
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Chapter 7

Exact Outage Probability of
Dual-Hop Relay Systems in a
Rayleigh Fading Channel with
Multiple Interferers

N this chapter, we study the effect of co-channel interference on the outage probability
I of dual-hop wireless communication systems with amplify-and-forward (AF) relays
operating in a Rayleigh fading channel. A four-parameter model for the dual-hop AF
relay system is introduced, in which two of the parameters specify the type of gain
adopted at the relay node while the other two parameters account for the presence of
channel noise and co-channel interference at the destination node. We then derive the
exact outage probability in terms of the well-known incomplete Weber integral, which
can be easily and accurately evaluated numerically. The analytical results are validated

by computer simulation.

7.1 Introduction

The cooperative diversity realized through relaying can provide increased link quality
and reliability, and mitigate channel impairments in next generation wireless systems [24],
[25]. In an amplify-and-forward (AF) relay system, the signal received at the relay node is

simply amplified and forwarded to the destination node. Until recently, the performance
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study of a dual-hop relaying system has been limited to systems that are noise-limited and
relied on the end-to-end signal-to-noise ratio (SNR), which depends on the choice of the
amplification gain adopted at the relay node. The optimal choice of the relay gain that
maximizes the end-to-end SNR inverts a linear combination of the instantaneous channel
gain and noise power at that relay node; this is categorized as the optimum channel-state
information (CSI) assisted relay scheme [26], [65]. Other categories of AF relays include
the channel assisted (or suboptimum CSI assisted) relays which ignore the presence of
channel noise in the relay gain [65], [31] and the fixed gain relays (which include blind and
semi-blind relays) [66], [63]. In [65], a two-parameter model is proposed that encompasses
all the categories of AF arrays in noise-limited systems by an appropriate choice of two

parameters.

However, since many practical wireless systems suffer from both interference and
noise, attention has also turned recently to the analysis of dual-hop relay transmission in
the presence of channel noise as well as multiple co-channel interferers; in many practical
cases, the latter being more detrimental to system performance than thermal noise [67,
68, 69]. For example, in [67], dual-hop relaying is used to improve the throughput of an
interference-limited time-division.multiple-access (TDMA) scheme in which many relays
share a single time-slot. In [68], asymptotic performance analysis of a CSI assisted
dual-hop relay system is carried out to show that the presence of interference limits the
system diversity gain. In [69], the outage probability of a fixed gain AF relay operating
in a Rayleigh fading channel with interference-limited destination node (effect of noise
ignored) was considered. Moreover, the authors in [70] derived the outage probability
as well as the average bit error rate (BER) for a two-hop CSI assisted AF relay system
operating in a Rayleigh fading channel with co-channel interference at the relay node only.
Again, the effect of noise was ignored in their analysis. Ikki and Aissa [71] considered the
presence of interference and noise at both the relay and destination nodes in deriving the
outage probability and BER in a Rayleigh fading channel. However, for mathematical

tractability, the end-to-end SNR was upper-bounded by selecting the weaker of the two
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links between the source and the destination. Chen et al. [72] also considered the presence
of noise and interference at both the relay and destination nodes but for the scenario in
which the desired signal is assumed to have Rician fading due to the presence of line-
of-sight propagation and the interfering signals from neighboring cells are assumed to
experience Rayleigh fading. However, an exact performance analysis was not treated and

only a bound on the outage probability was presented.

In this chapter, we consider a dual-hop relaying scheme in which the destination suffers
from the presence of interference and noise and derive the exact outage probability. This
work extends the analysis of [69] to include the effect of channel noise at the destination.
In addition, we also extend the two-parameter model in[65] to include two additional
parameters that account for the presence of interference and noise at the destination node.
The exact expression for the outage probability is presented in terms of the incomplete
Weber integral, which can be easily evaluated by several computer programs such as
Matlab, Mathematica, or Maple. The analytical results are then validated by Monte

Carlo simulation.

7.2 System Model

We consider a.wireless communication system in which a source sends a message z4(t) to

a destination via a non-regenerative relay. The signal received at the relay is given by

yr(t) = \/Pyayzy(t) 4+ ni(t) (7.1)

where P; is the transmit power, «; is the instantaneous fading amplitude of the channel
between the source and the relay, and n,(t) is the additive white Gaussian noise (AWGN)
with average power o7 at the input of the relay. An AF relay multiplies the signal yp(t)

by a gain GG, and then re-transmits it to the destination, where the received signal is
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given by

yp(t) = asGyg(t) + Z V' PBiwi(t) + na(t
—QZG{\/_alzvs + n ( )}
- Z VP Bii(t) + noft (7.2)

In (7.2), as denotes the fading envelope on the link between the relay and the destination,
M is the number of interfering signals present at the destination, each with power P; and
fading amplitude S;(i = 1,2, ..., M), and o3 is the noise power at the destination node. In
general, the choice of the node gain, G, determines the end-to-end signal-to-interference-
plus-noise ratio (SINR). The best choice of the relay gain that maximizes the end-to-end
SINR requires the knowledge of the CSI, which includes the signal fading level as well
as the noise power on the source-relay link. In such CSI-based relays, the amplification
gain at the relay is chosen to invert the fading state of the preceding link. Following the
two-parameter model proposed in [65}, the corresponding relay gain is chosen as

Pr

G=———,
aPsa? + bo?

(7.3)

where Pg is the output power of the relay and the parameters a € {0,1} and b € {0,1}
are chosen in a similar manner as in [65], to encompass the different categories of relays
that have been studied for the noise-limited environment. The resulting SINR at the

destination node may be expressed as

P.a2alG?
Veq = 1 (7.4)
ada?G? + ¢ Z P,B? + do3

where the additional parameters ¢ € {0,1} and d € {0,1} are introduced to account for

the presence of co-channel interference and channel noise at the destination, respectively.
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Substituting (7.3) in (7.4), the end-to-end SINR becomes

_ Y172
Y2 + (av1 +b)(cZ + d)

Veq (7.5)

where v; = P;a3/o? is the instantaneous SNR on the source-relay link, v = Pra3 /o3 is

the instantaneous SNR on the relay-destination link, and Z = % (i, is the total interfer-
i=1

ence at the destination, with (; = Rf—; being the instantaneous interference-to-noise ratio

(INR) of the i-th destination interferer. We consider a Rayleigh fading environment, i.e.,

the probability density function (pdf) of +;, ¢ = 1,2 and.¢;; ¢ = 1,2, ..., M, is given by

Fu3) = 3 Pulh) (7.6
ol0) = e k() (7.7

respectively, with \; = E(v;),7 = 1,2, and p; = E(), ¢ = 1,2,..., M, where E(-) de-
notes expectation. Note that as stated earlier in (7.3)-(7.5), the parameters a, b, ¢, d are
appropriately chosen constants, introduced so that the result in (7.5) can conveniently

generalize the special cases already reported in the literature.
Some of these special cases of (7.5) are considered next.

(i) In a noise-limited environment where there is no interfering signal (¢ =0,d = 1),
(7.5) reduces to [65,7eq. ~(1)]. Similar to [65], standard configurations, namely, CSI
optimum gain, CSI sub-optimum gain, and fixed gain relay configurations are represented,

respectively, with (a, b) € {(1,1), (1,0), (0,C)}, where C' is a constant [65]-[63].

(ii) In an interference-limited environment with co-channel interference dominating
the destination node and fixed gain relay (¢ = 1,a = d = 0), the effect of noise may be
ignored. The resulting end-to-end signal-to-interference ratio (SIR) is given by

_ Y172
Teq Yo + b7z’

(7.8)

with b being a constant. Note that this case is treated in [69] where the parameter b is

chosen as b = 1+ P,E(a;)/o?. In the following section, we derive the outage probability
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for the generalized end-to-end SINR given in (7.5).

7.3 Owutage Probability

In a wireless communication system with co-channel interference and thermal noise, the
outage probability is the probability that the instantaneous SINR exceeds a preset thresh-

old v, and is given by

Pout =Pr (’YE(] S ’Yth)

_ Py Yen(ayr +0)(cZ + d)
-F (72 = (71— in) ) (79)

Conditioning on the random variables v, and Z, the outage probability becomes

Yth

P = Ez / Pr (72 @ +b)(eZ +d)

(’Yl - ’Yth)

) S (n)dm

I ymlan +b)(cZ + d)
+/F72 < (71 _ 'Yth) ) f% (VI)d% (7'1())

Vin
where F,(-) is the cumulative density function (cdf) of the random variable v, and the
expectation Ez(+) is taken over the random variable Z. Using the fact that the cdf of 75
is F., (v) = 1 —e "2 the integral in (7.10) becomes

Tth

1= / frmdnt [ £ (n)dn

0 VYth

_/exp <_%h(a% +0)(cZ + d)) exp (_ﬂ) i
(71 — V) A2 A1
Yth
— 1 —

T Yen(ayr +0)(cZ + d)) < 'yl)
- | exp | — exp | —— ) dv;. 7.11
/ P ( (71— wn) A2 P A o ( )
Yth
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Upon making the change of variable x = ~; — v, in (7.11) and simplifying, we have

L Y yw(cz + d)a
I =1—exp ( SRR >
r . ymlez+d)(ayn +b)
/exp ( N Yo dx. (7.12)
0

The integral in (7.12) may be evaluated via [4, eq. (3.471.9)]; upon substituting (7.12)

back in (7.10), the outage probability becomes

Py =Bz {1 — 2exp (—K—tf - @) DK (V@) (1)

where p(Z) = %h(CZJ;‘f)A(;%”b) and K (+) is the modified Bessel function of the second kind
and first order [20]. Note that in the case of a noise-limited system (no interference), we

have (¢ =0,d = 1) and (7.13) becomes

Yen (ayen +0) i |2 Yen (ayen + )
S AT T g _th \% 1th T 7)

14
Ao Ao (7.14)

P,.:=1-—2exp (—%h ()\1_1 + a/\gl)) :

as expected [73, eq. (14)]. In the remainder of this section, we focus our attention on the

presence of interference at the destination node (i.e., ¢ # 0 ).

7.3.1 Distinct interferers

In the presence of M independent interferers with distinct average INRs, i.e., 1 # s #
... # uar., the pdf of Z ="M ¢ is given by

M
i 2
fz(2) = —exp (——) 7.15)
) ; Hi i (
M
where m; = J[ - . Taking the expectation in (7.13) over the pdf in (7.15), the
k=1k#i

outage probability in the presence of distinct power interferers at the destination may be
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written as

Yen  ady, Yen (ayen + )
Ao

M &)
Z%/ CZ+d 1/2 —z(,uz Fyenachy K, (2\/_> (716)
0

Making the change of variables ¢ = 2\/ M the integral in (7.16) becomes

o0

2 d, _ _ B
I= 5. &P ( (177" + Yenach; 1)) /tze B K (1) dt (7.17)
A

C

A2 (u{l—l—acvth)\;l)

+b)d
where A — 2, /1@ tbd —po
)’ 4yen (aryep+b)e

A1z

, and ¢ # 0. Finally, simplifying (7.17)

and substituting in (7.16), the outage probability may be expressed as

Py=1— i (&)
2¢ \ ven(ayn +.0)

foreed) mms]

where W (u;v;x) = ﬁ [e==t"=1(1 + )" 'dt is the confluent hypergeometric function
0
of the second kind [20] and

x

Ke ,(p,x) = / the P K, (1)dt (7.19)
0

is the incomplete Weber integral, which has applications in several engineering fields
[74, 75, 76]. Note that in the special case of interference-limited destination (no noise)
and a fixed gain policy adopted at the relay (i.e.,c=1,a =d =0, (7.18) reduces to [69,
eq. (11)], as expected. Note that there are several numerical integration techniques that
can be used to evaluate the incomplete Weber integral given in (7.19). For the special

case of interest, i.e., when v > 0 and v = 1 | it can be shown that K. 1(p, x) may be
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written as

Tu r U U 1
Kei,1<p, T) = 0 /€T1F1 (57 1+ 5 —a? (ZH‘ E)) dr
0

N
u U U 1

E aF [ =1+ = —2? — ), 7.20
i:lwl 1<2 +2 ’ (p+4yi>> ( )

where | F} (+) is the confluent hypergeometric function [4]; weights w; and roots y; are

I

SRS

given in [20, eq. (25.4.45)] for different values of N. The result in (7.20) provides a very
efficient technique for the numerical evaluation of the incomplete Weber integral and it is
used to compute the numerical results in this chapter. The numerical integration based
on (7.20) was done for N = 8 and a perfect matech between the numerical integration
and the exact results was observed. In fact, very close approximations were observed for
values of N as low as N = 2. The proof of (7.20) is as follows: making the substitution

substituting s = t/x in (7.19) and using [4, eq. (8.432.6)], we have

ZL’U+U+1
Kei,v (p7 1:) = 2'U+l
1
o0 s 2
‘/s“”ep(m)z/ v lem g ds. (7.21)
J 0
Interchanging the order of integration in (7.21) and introducing w = s? , we have
xu—i—v-&—l = -z ,—v—1
Kez ((p,v) = Qut2 /0 €z
1
/ W=D 2g = (p43) gy .
0
xu—i—v—s—l
- Qu+2
1
L z_”_l/w(“+”_1)/26_“$2(p+412)dw;s =1 (7.22)

0
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where L [f (z);s] is the Laplace transform of f (2) [4, eq. (17.11)]. Using the identity of

the Laplace transform in [4, eq. (17.12.2)], we have

xu—i—v—s—l
Ke  (p,x) = ootz
1

s / Z—v—l /w(u+v—1)/26—wm2(p+412)dw dZ, s
0

0 s=1
xu+v+1
- Qu+2
! 2 r wa?
sL /w(“”_l)me_wmp/z_”_le_zlzdzdw;s (7.23)
0

s=1

When u > 0 and v = 1, (7.23) becomes [4, eq. (3.371.3)]

U
Ke%’v (pa .T) = ?

@)l

Finally, the integral in (7.24) may be evaluated via [20, eq. (13.2.1)] to yield the result
n (7.20).

7.3.2 Identical interferers

When the M interferers at the destination are independent and identically distributed,

le, g = po = .o=pp =, the pdf of 7 =5 ij\il (; is given by
LM-1 5
_ ) _Z 7.25
)= o () 72

Taking the expectation in (7.13) over the pdf in (7.25), we obtain the outage probability

in the presence of identical interferers at the destination node as

4 exp (—’ythAfl — ad%hkgl)
ApM(M —1)!

M ez 4 d)'? e~ (n Fnaers) g, <2\/<p(z)> dz (7.26)

Pout =1 —

0\8
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Upon making a change of variable as before, performing the resulting binomial expansion,

and simplifying the integral [ ¢>*+De=B® K, (t)dt , (7.26) may be simplified as
A

_,exp (= AT+ d/(cp)) A1 A2
Fow =1 2ep)™ (M —1)! (%h(a%h + b))

Mi n (—d)M"‘“‘l( e )k
= \ k 4yin(@yen +0)c

k\(k+1)! 1
. [qu (k +2:2; E) ~Ka, (B, A)] (7.27)

Ao (™ HacynA; ")
4y (ayen+b)c

where B = . Note that when ¢ = 1 and @ =d = 0, i.e., fixed gain relays

in an interference-limited system, (7.27) agrees with [69, eq. (11)].

7.4 Numerical Results

In this section we present some numerical results to illustrate the analytical expressions
of the outage probability derived in this chapter. Fig. 7.1 shows the outage probability
with 7, = 3dB of a dual-hop AF relay system with CSI optimum gain in the presence of
multiple interferers with distinct aver-age INRs at the destination node. For illustration
purposes we assume equal transmit powers at the source and relay nodes and average
INRs of the interfering signals for M=1,...,5 given by u = 3.1 dB, {u}iﬂil = [3.1, 3.5]
dB, {u}, = [3.1, 3.5,4] dB, {u}, = [3.1, 3.5, 4, 4.5 dB, {u}", = [3.1, 3.5, 4, 4.5,
5] dB, respectively. We observe that as the number of interfering signals increases the
outage probability increases, with the most dramatic performance deterioration occurring
with the introduction of the first interferer. Moreover, perfect agreement between the

analytical expression in (7.18) and simulation results is observed.

Fig. 7.2 compares the outage probability of dual-hop relay systems with CSl-assisted
relays (optimum and suboptimum gains) and fixed-gain relays with the parameters a = 0,
b= \/(exp(1/A)E(1/A1)) [66], where E;(-) is the error integral [4]) when there is no

interferer (M = 0) and when there are five equal-power interferers (M = 5) with average
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Figure 7.1: Outage probability for a dual-hop relay system with optimum CSI gain in
the presence of distinct-power interferers.

INR {N}i]\i1 =5 dB. We also assume that the average SNRs on the source-relay and relay-
destination links are equal, whereas the threshold is set at v, = 0 and 5 dB. The results
show that for medium to large average SNR per link, the systems with CSI optimum
and suboptimum gains outperform those with fixed gain. However, the fixed-gain relays
slightly outperform systems with variable-gain relays at low average SNRs. This is due
to the fact that the variable gain relay has a gain floor when \; = E(;) is very small

[66).
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Figure 7.2: Outage probability for different categories of dual-hop AF relay systems with
M =0 (no interferer) and M =25 equal-power interferers.

7.5 Conclusion

In this chapter, we derived the exact outage probability for a dual-hop AF relay system

operating over a Rayleigh fading channel in the presence of co-channel interference at

the destination. Specifically, we derived an exact expression for the outage probability

in terms of the incomplete Weber integral, which can be easily and accurately evaluated.

The derived results are sufficiently general to include several special cases already treated

in the literature. The analytical results were validated by computer simulation.
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