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ABSTRACT 

The scope of this thesis is to examine the different bargaining models that can be 

used in the continuously-growing sector of e-marketplaces. Based on Faratin 

scoring functions which used in multi-agents systems, the Rubinstein bargaining 

model example of multiple games, which adding the discount factor in the bargain 

process, and the axiomatic approach of Nash, we create a two dimensional function 

that can be incorporate in e-marketplaces and support the counterparts of the 

bargain to decide the better solution for both sides and reach to an agreement as 

soon as possible. Afterwards by changing the parts of the function we export some 

useful results about the strategy that each player should follow to obtain the most 

of the bargain. 
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1. Introduction 

 

An E-marketplace is an internet place owned by a company or consortium which allows other 

companies or individuals to acquire new suppliers or buyers for their products as well as advance 

trading networks which perform negotiating, settlement and delivery easier and more efficient. 

A site is called as an e-marketplace when it is delivered to many buyers and sellers by providing 

commerce related functionalities like auctioning (forward or reverse), catalogues, ordering, 

wanted advertisement, trading exchange functionality and capabilities like RFQ (Request For 

Quotation), RFI (Request For Invitation) or RFP (Request For Proposal). 

These 3 functionalities refer to options that the buyer has in order to start the bargain with the 

seller. More specific a RFP (Request for Proposal) is a document that an organization posts to 

bring out bids from potential vendors for a product or service. An RFP is part of an 

organization's procurement process, which begins with an assessment of needs and ends with 

delivery and/or support of the finished product or service.  

Other than RFP we have the RFQ that stands for Request for Quotation. An organization issues a 

RFQ when it is merely checking into the possibility of acquiring a product or service. A response 

to an RFQ by a prospective contractor is not considered an offer, and consequently, cannot be 

accepted by the organization to form a binding contract.  

Finally RFI is Request for Information. It is a kind of request made typically during the project 

planning phase where a buyer cannot clearly identify product requirements, specifications, and 

purchase options. RFIs clearly indicate that award of a contract will not automatically follow. 
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1.1 Examples of E-marketplaces 

 

E-marketplaces are everywhere around in our life and grow with rapid speed especially the latest 

years. Some of the most important and well-known E-marketplaces 

are EBay, NASDAQ, Covisint. 

To start with E-Bay, the world largest in online auction and shopping site in which people and 

businesses buy and sell a broad variety of goods and services worldwide. Founded in 1995, eBay 

is one of the notable success stories of the dot-com bubble; it is now a multi-billion dollar 

business with operations localized in over thirty countries. Bidding on eBay's auction-style 

listings is called proxy bidding and is essentially equivalent to a Vickrey auction, with the 

following exceptions. 

 The winning bidder pays the second-highest bid plus one bid increment amount (that is, 

some small predefined amount relative to the bid size), instead of simply the second-highest 

bid. However, since the bid increment amounts are relatively insignificant compared to the 

bid size, they are not considered from a strategic standpoint.  

 The highest bidder's bid is sealed, as in a Vickrey auction, but the current winning bid 

(second highest plus one increment) is displayed throughout the auction to allow price 

discovery. 

Following EBay in the list of the largest online sites NASDAQ is the second-largest stock 

exchange by market capitalization in the world, after the New York Stock Exchange . When the 

NASDAQ stock exchange began trading on February 8, 1971, it was the world's first electronic 

stock market. NASDAQ quotes are available at three levels: 

 Level 1 shows the highest bid and lowest offer—the inside quote. 

 Level 2 shows all public quotes of market makers together with information of market 

dealers wishing to sell or buy stock and recently executed orders.  

 Level 3 is used by the market makers and allows them to enter their quotes and execute 

orders. 

http://en.wikipedia.org/wiki/EBay
http://en.wikipedia.org/wiki/NASDAQ
http://en.wikipedia.org/wiki/Covisint
http://en.wikipedia.org/wiki/Online_auction_business_model
http://en.wikipedia.org/wiki/Dot-com_bubble
http://en.wikipedia.org/wiki/Proxy_bid
http://en.wikipedia.org/wiki/Vickrey_auction
http://en.wikipedia.org/wiki/Price_discovery
http://en.wikipedia.org/wiki/Price_discovery
http://en.wikipedia.org/wiki/Market_capitalization
http://en.wikipedia.org/wiki/New_York_Stock_Exchange
http://en.wikipedia.org/wiki/Stock_exchange
http://en.wikipedia.org/wiki/Market_maker
http://en.wikipedia.org/wiki/Market_maker
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Last in our list of well-known sites is the Covisint, an American information technology 

company that was established in 2000 by a consortium of organizations(General Motors, Ford, 

and DaimlerChrysler)  In February, 2004, Compuware Corporation acquired Covisint. Initially 

focused in the automotive industry, Covisint has expanded into the healthcare, oil and gas, and 

other industries. 

 In 2010 Covisint acquired DocSite, an award-winning clinical decision support and quality 

performance management Company based in Raleigh, N.C. 

The ExchangeLink Platform offers industry specific services including: identity management, 

collaborative portals and data exchange, as well as third-party application marketplace. 

Since becoming part of Compuware, Covisint continues to provide and expand EDI, portals, and 

identity management services to the automotive community, including significant ongoing 

business with the original stakeholders. The company has also moved beyond its automotive 

roots and into additional verticals such as health care, government, and financial services. 

 

1.2 E-marketplaces categorization 

 

E-Marketplaces can be distilled into six primary flavors of online marketplaces, serving both the 

B2B and B2C markets [Kaplan and Sawhney 2000; Bakos1991] : 

 

Online Buying Services 

These facilities offer support for the duration of the awareness and request generation phases of 

the selling process. In detail, they offer price and product transparency (e.g., through shopping 

agents and comparison websites), buyer and seller discovery (e.g., shopping agents, price 

aggregators and industry catalogs), and quality recommendation and selection aides (e.g., market 

analyst and evaluation websites). 

Online buying services are directed primarily to B2C markets, as well as small business/SOHO 

markets. 

http://en.wikipedia.org/wiki/General_Motors
http://en.wikipedia.org/wiki/Ford
http://en.wikipedia.org/wiki/DaimlerChrysler
http://www.networkworld.com/news/2004/0205covisint.html
http://www.globenewswire.com/newsroom/news.html?d=201899/%20DocSite%20acquisition
http://en.wikipedia.org/wiki/Health_care
http://en.wikipedia.org/wiki/Government
http://en.wikipedia.org/wiki/Financial_services
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The specific services that make up online buying services will be absorbed into more mature 

exchanges and net markets over time.Main examples for this category 

are mySimon, CarPrices.com, and CNET. 

 

Auctions 

Auctions are online markets that search for demand and match buyers and sellers for a wide 

range of B2B and B2C products. They service a variability of market-making tools (e.g., reverse, 

Dutch, English, and sealed-bid auctions) to meet particular commercial aims such as demand 

collection and price maximization. 

Auctions serve B2C, C2C, and B2B markets, as well as retail, repair and operations (MRO) 

purchases, spot acquisitions of supplies and raw materials, and previously owned capital 

equipment. In the B2B space, auctions are generally targeted to small business/SOHO customers 

that absence both buying power and erudite buying operations.In this category we have some 

famous examples include Amazon.com (auction) and Mercata (demand aggregator). 

 

Vertical Exchanges 

Vertical exchanges are reliable mediators that enable B2B e-commerce with vertical market and 

product-specific know-how. They propose real-time pricing and complete product info. In time, 

they are to suggest a range of value-added services across an array of vertical markets  

 .Examples of vertical exchanges   include PaperExchange.com and FreeMarkets. 

 

Functional Exchanges 

Functional exchanges are trustworthy intermediaries that facilitate mostly B2B e-commerce 

involving process, functional, or channel-specific expertise. These exchanges market an array of 

primary services or solutions that automate or support specific business functions or processes 

Functional exchanges offer real-time pricing, complete product information, and value-added 

services. Examples here include trade hub and Celarix.com. 

 

Industry-Sponsored Exchanges 

Mainly in B2B commerce, these exchanges have equity participation or sponsorship from chief 

industry buyers and technology partners as well. They act as intermediaries to facilitate B2B e-

commerce in industries with high concentrations of buying power. Industry-sponsored exchanges 

offer the same variety of services as other exchanges, as well as real-time pricing, complete 

product information, and value-added services and information. Over time, these exchanges will 

accommodate more highly engineered products and direct materials.In this category we 

find  COVISINT and Global net. 

http://www.mysimon.com/
http://www.carprices.com/
http://www.cnet.com/
http://www.amazon.com/
http://www.mercata.com/
http://www.paperexchange.com/
http://www.freemarkets.com/
http://www.tradehub.net/
http://www.celarix.com/
http://www.covisint.com/


8 
 

 

Net Markets 

The main online marketplaces will be Net markets. These markets are classy networks and 

mixtures of online marketplaces that will arise over the next three years. Net markets will 

develop from the quilting of functional and vertical exchange capabilities and expertise, and the 

gathering of value-added services across the supply chain (e.g., logistics, inventory, demand 

forecasting). This style of market will distribute more value-added services and will need high 

levels of buyer collaboration to conduct complex transactions. Because Net markets will demand 

the integration of many industry supply chains and the coordination of multiple large and small 

markets, they will not mature for quite a few years. 

In the short term, each of these online marketplaces generates value by enabling the sharing of 

data about products and pricing, matching many buyers and sellers and improving the ease and 

speed of transactions. Longer term, value will arise from greater levels of purchase-process 

integration and through the delivery of value-added information and services. 

 

 1.3 SMEs follow 

 

Some researchers are demonstrating that big constructors have adopted B2B e-commerce leaving 

their suppliers, mostly Small and Medium Enterprises (SMEs), in the manufacturing sector, with 

little choice but to follow. A recent survey of the Aberdeen Group (2006) appraised the 

following benefits for companies that adopt B2B strategies: 

 

 Reduction of their requisition-to-order cycles by 75%; 

 Reduction of their requisition-to-order costs by 48%; 

 Reduction of their maverick spends by36%. 

 

The following table reports the trend of the e-procurement applications upon 2001 and 2006 

(Table 1). 
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It is, therefore, very important for SMEs’ managers to understand the impact of these activities 

on their organizations’ performance and competitiveness. The literature one-commerce (Favier 

etal.,2000) reveals a number of associated benefits. First of all the SMEs can access international 

markets at minimal cost: it can represent one crucial competitive advantage for SMEs. Second, it 

can be obtained at a reduction in transaction costs, especially fore-procurement and economies of 

scale such as consolidation of sales or group buying. Taking a broader perspective, it can be 

summarized that e-commerce generates positive impacts on operations management and 

improves efficiency and effectiveness.  

Third, in a manufacturing context, e-commerce creates potential opportunities such as faster 

product design, speedier ordering of parts and components, reduced lead times and lower 

inventory costs.  

Moreover, according to Barrat and Rosdahl (2002) it is fundamental to reduce waste and 

inefficiency in highly fragmented industries, by increasing visibility and a neutral knowledge 

base for both buyers and sellers. Buyers or sellers usually do not establish such marketplaces, 

which are frequently set up by an independent company such as an ICT provider or a bank. This 

is because the external ‘‘third part’’ aims to put together isolated group of buyers and sellers in 

order to inaugurate a sort of ‘‘procurement virtual district’’. The seller benefits normally come 

from getting access to more buyers growing its market, while the buyer benefits come from the 

possibility to get lower procurement costs, wider choice of products and better quality.  

Bargain is one of the main and most important components of e-marketplaces and this paper will 

try to mirror and describe the bargaining models in e-marketplaces and the negotiations between 

the counterparts. 
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2. Literature review  

2.1 Negotiations and preferences 

 

To create an integrative solution in a bargaining problem, negotiators need to have information 

about each other’s preferences. 

Negotiations are an important way of solving conflicts in many fields. In contrast to other 

approaches of conflict resolution, negotiations provide the opportunity to reach a win–win, or 

integrative solution, which improves the position of both sides beyond the status quo (Sebenius, 

1992).  

According to the widely used Dual Concern model of negotiations (Blake and Mouton, 1964; 

Pruitt, 1983; Thomas, 1992; Carnevale and Pruitt, 1992), negotiators need to have both a high 

concern for their own outcomes in the negotiations as well as for their opponent’s outcomes to 

reach a win–win situation. Consequently, the success of negotiations be determined by the ability 

of negotiators to develop an understanding of the goals and preferences of their opponents 

(Keeney and Raiffa, 1991; Sebenius, 1992; Kersten, 2001). 

The significance of knowing preferences of other negotiators can best be illustrated by the well-

known ‘‘Orange” example (Kersten, 2001): two chefs negotiate how to share the last orange that 

is left in the kitchen, and lastly they split the fruit in half. One chef then proceeds to put the peel 

of his half into a cake and throws away the inner portion, while the other squeezes his half, uses 

the juice for a sauce and throws away the covering. Knowing the preferences of each other 

would have led to a superior division.  

Awareness about the opponent’s preferences is therefore an important element in negotiations. 

Its impact on the accomplishment of negotiations has been studied in the literature since the early 

1990s. Thompson and Hastie (1990) studied the different types of decision errors negotiators 

might make about the preferences of their adversaries, and the learning processes that take place 

during negotiations to reduce these faults.  
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They identified two types of errors: the ‘‘Fixed Sum Error” and the ‘‘Incompatibility Error”. In 

the fixed sum error, negotiators incorrectly view the negotiation as a zero-sum game. This 

incorrect assumption is caused by the failure to recognize differences in the importance of issues 

to the parties, which would make it conceivable to perform connections advantageous for both 

sides. In the incompatibility error, the parties believe to have opposite preferences about an issue, 

while in fact their preferences are identical, and there is no conflict at all the empirical research 

of Thompson and Hastie (1990) led to several important results. Many negotiators indeed start 

negotiations under the fixed sum error, but it could also be shown that during negotiations, 

learning takes places and the extent of this error are reduced over time.  

Furthermore, several later studies (Thompson, 1991; Thompson and DeHarpport, 1994; 

Arunachalam and Dilla, 1995; Mumpower et al., 2004) showed that in negotiations where the 

parties learn more about each other’s preferences, the joint outcome at the end of the negotiation 

is higher.  

All these studies used very similar approaches to measure awareness about the competitor’s 

preferences. Preferences were prescribed to experimental subjects in the form of a multi-attribute 

payoff table, which enclosed partial values for all potential outcomes in each issue being 

negotiated. After finishing point of the negotiation experiment, a blank table was given to 

negotiators and they were requested to complete with the values they believed were enclosed in 

their opponent’s table. The variance between this table and the real table given to the opponent 

was used as an indicator of the negotiators’ considerate of their opponents’ preferences.  

Later studies prolonged the work of Thompson and Hastie (1990) mainly to analyze different 

aspects which influence the amount of learning taking place during negotiations. 

 

 

 For example, Thompson (1991) studied whether it makes a variance if preference info is directly 

made accessible to negotiators by a third party, or if negotiators appeal their opponents about 

their preferences. Thompson and DeHarpport (1994) studied how negotiators change their 
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learning behavior about preferences when they receive different types of feedback from earlier 

negotiations.  

In a similar study, Nadler et al. (2003) compared four training methods for negotiators. One of 

the outcome measures they used to evaluate the training methods was a ‘‘trade-off score” 

indicating how well negotiators understood differences in each other’s preferences and exploited 

them to achieve a win–win situation. 

 In an altered, but connected line of research, Arunachalam and Dilla (1995) found that 

negotiators learn less about their opponent’s preferences when they use a computer-based 

negotiation support system, than when they negotiate face-to-face. The technique used in these 

studies to measure awareness about preferences was put into question by Mumpower et al. 

(2004), who distinguished between the ‘‘Payoff schedule estimation method” used in the earlier 

studies, and another method called ‘‘Holistic estimation method”. In the second technique, 

subjects are straight asked to guess the holistic evaluations of alternatives for their rivals, rather 

than the different components of their opponents’ value functions.  

Both approaches rely on information about the opponent’s true value function, which is used as a 

benchmark for the model which a negotiator forms about his or her opponent’s preferences. This 

requirement can easily be fulfilled in experiments in which preferences are given to subjects in 

the form of a known payoff table. But this is not the condition which negotiators face in real life. 

Furthermore, the extent to which subjects actually follow such prearranged partialities in their 

negotiation behavior cannot be strong-minded; this might affect empirical results acquired with 

this method.  

From experimental research in decision investigation (Shoemaker and Waid, 1982), it is well 

known that different approaches to provoke a multi-attribute value function can lead to different 

results. Guessing the preferences of revelry is even tougher than describing one’s personal 

preferences and the direct requirement of preference information used in these experiments is 

less reliable than other, more elaborate techniques which use redundant information. It is 

therefore very likely that this method presents a considerable measurement error, and that the use 

of different methods to specify the presumed payoff table of the opponent could clue to other 

results.  
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Our main ally in negotiation analysis is game theory.  

Game theοry is a subdivision of mathematics that is concerned with the actions of Individuals 

who are conscious that their actions affect each other’’. As such, game theory deals with 

collaborating optimization problems. While many economists in the past have worked on what 

can be described as game-theoretical replicas, John von Neumann and Oskar Morgenstern are 

formally credited as the ancestors of modern game theory. Their book Theory of Games and 

Economic Behavior (von Neumann and Morgenstern 1944) recaps the rudimentary ideas existing 

at that time.  

Game Theory has since enjoyed an detonation of expansions, including the idea of equilibrium 

(Nash 1950), games with deficient information (Kuhn 1953), cooperative games (Aumann 1959; 

Shubik 1962) and auctions (Vickrey 1961), to name just few of them. 

The models of game theory are highly abstract depictions of classes of real-life situations. Their 

abstractness permits them to be used to study a wide range of phenomena. For example, the 

theory of Nash equilibrium has been used to study oligopolistic and political competition. The 

theory of mixed strategy equilibrium has been used to explain the distributions of tongue length 

in bees. The theory of repeated games has been used to illuminate social phenomena like threats 

and promises. The theory of the core reveals a sense in which the outcome of trading under a 

price system is stable in an economy that contains many agents. The boundary between pure and 

applied game theory is vague; some developments in the pure theory were motivated by issues 

that arose in applications. Citing Shubik (2002), ‘‘In the 50s game theory was looked upon as a 

curiosum not to be taken seriously by any behavioral scientist. By the late 1980s, game theory in 

the new industrial organization has taken over: game theory has proved its success in many 

disciplines.’’  

Game theory is separated into two subdivisions, called the non-cooperative and cooperative 

subdivision. The two subdivisions of Game theory differ in how they formalize interdependence 

among the players.  
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In the non-cooperative theory, a game is a detailed model of all the movements available to the 

players. In the opposite, the cooperative theory abstracts away from this level of detail, and 

describes only the outcomes that result when the players come together in different 

combinations. Though standard, the terms no cooperative and cooperative game theory is 

perhaps unfortunate. They might suggest that there is no place for cooperation in the former and 

no place for conflict, competition etc. in the latter. In fact, neither is the case.  

One parts of the no cooperative theory (the theory of repeated games) exams the possibility of 

cooperation in ongoing relationships. And the cooperative theory embodies not just cooperation 

among players, but also rivalry in a mainly strong, unconstrained form.  

The non-cooperative theory might be better called procedural game theory and the cooperative 

theory combinatorial game theory. This would specify the real distinction between the two 

subdivisions of the subject, namely that the first specifies various movements that are accessible 

to the players while the second describes the results that result when the players come together in 

different combinations 

  

A game is a description of strategic interaction that includes the constraints on the actions that 

the players can take and the players’ interests, but does not specify the actions that the players do 

take. 

A solution is a systematic description of the outcomes that may emerge in a family of games. 

Game theory suggests reasonable solutions for classes of games and observes their properties. To 

break the ground for next section on non-cooperative games, basic Game theory notation will be 

introduced:  

The reader can refer to Friedman (1986) and Fudenberg and Tirole (1991) if a more deep 

knowledge is required. 

 A game in the normal form consists of:  

Players (indexed by i . 1; 2; . . .; n) 

a set of strategies (denoted by xi; i . 1; 2; . . .; n) available to each player and  
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payoffs (pi.x1; x2; . . .; xn.; i . 1; 2; . . .; n) received by each player.  

Each strategy is defined on a set Xi, xi  Xi; so we call the Cartesian product X1 x X2 x . . . x 

Xn the strategy space (typically the strategy space is Rn) 

Each player may have a one-dimensional strategy or a multi-dimensional strategy. Though, in 

simultaneous-move games each player’s set of feasible strategies are autonomous from the 

strategies chosen by the other players, i.e., the strategy choice of one player does not limit the 

feasible strategies of another player.  

A player’s strategy can be thought of as the complete instruction for which actions have to be 

taken in a game. For example, a player can give his or her strategy to a person who has 

absolutely no knowledge of the player’s payoff or preferences and that person should be able to 

use the directions delimited in the strategy to select the movements the player desires.  

Because each player’s strategy is a complete guide to the actions that are to be taken, in the 

normal form the players choose their strategies simultaneously. Actions, which are adopted after 

strategies, are thus chosen and those actions correspond to the given strategies. 

 

 The normal form can also be described as a static game, in contrast to the extensive form which 

is a dynamic game. If the strategy has no randomly determined choices, it is called a pure 

strategy; otherwise it is called a mixed strategy. There are situations in economics and marketing 

in which mixed strategies have been applied: e.g., search models (Varian 1980) and promotion 

models (Lal 1990). In a non-cooperative game the players are unable to make binding 

commitments regarding which strategy they will choose before they actually choose their 

strategies. In cooperative game players are able to make these binding commitments. Hence, in a 

cooperative game, players can make side-payments and form coalitions. After the clarification of 

what in Game theory is considered to be the rationality, the overview reported here starts with 

non-cooperative static games.  

The models studied assume that each decision-maker is rational in the sense that he is aware of 

his alternatives, forms expectations about any unknowns, has clear preferences and chooses his 
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action deliberately after some process of optimization. In the absence of uncertainty the 

following elements constitute a model of rational choice:  

• A set A of actions from which the decision-maker makes a choice;  

• A set C of possible consequences of these actions;  

• A consequence function that associates a consequence with each action;  

• A preference relation on the set C.  

Generally the decision-maker’s partialities are specified by giving a utility function, which 

defines a preference relation. An assumption upon which the usefulness of this model of 

decision-making depends is that the individual uses the same preference relation when choosing 

from different set B. It could also be that individuals have to make decisions under conditions of 

uncertainty. 

 

The players may be  

• Uncertain about the objective parameters of the environment;  

• Imperfectly informed about events that happens in the game;  

• Uncertain about actions of the other players that are not deterministic;  

• Uncertain about the reasoning of the other players.  

To model decision-making under uncertainty, almost all game theory uses the theories of von 

Neumann and Morgenstern, that is, if the consequence function is stochastic and known to the 

decision maker then the decision-maker is assumed to behave as if he maximizes the expected 

value of a function that attaches a number to each consequence. If the stochastic connection 

between actions and consequences is not given, the decision-maker is assumed to behave as if he 

has in mind a (subjective) probability distribution that determines the consequence of any action.  

In real-life context there is an asymmetry between individuals in their abilities. For example, 

some players may have a clearer perception of a situation or have a greater ability to analyze it. 
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These differences, which are so critical in life, are missing from game theory in its current form. 

To illustrate the consequences of this fact, the game of chess could be a valid example. In an 

actual play of chess the players may differ in their knowledge of the legal moves and in their 

analytical abilities. In contrast, when chess is modeled using current game theory it is assumed 

that the players’ knowledge of the rules of the game is perfect and their ability to analyze it is 

ideal. It has been demonstrated that chess is a trivial game for rational players: an algorithm 

exists that can be used to solve the game. This algorithm defines a pair of strategies, one for each 

player that leads to an equilibrium outcome with the property that a player who follows his 

strategy can be sure that the outcome will be at least as good as the equilibrium outcome no 

matter what strategy the other player uses. The existence of such strategies suggests that chess is 

uninteresting because it has only one possible outcome. Nevertheless, chess remains a very 

popular and interesting game. Its equilibrium outcome is yet to be calculated; currently it is 

impossible to do so using the algorithm. 

 Modeling asymmetries in abilities and in perceptions of a situation by different players is a 

fascinating challenge for future research, which models of bounded rationality have begun to 

tackle.  

 

In non-cooperative stationary games the players choose strategies at the same time and are 

afterward committed to their chosen tactics. The solution concept for these games was formally 

introduced by John Nash (1950) although some instances of using similar concepts date back to a 

couple of centuries. The concept is best described through best response functions. 
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2.2 Nash axiomatic approach 

 

Nash axiomatic approach is one of the well-known in game theory. Consider a group of two or 

more agents facing with a set of feasible outcomes, any one of which will be the result if it is 

accepted by unanimous agreement of all participants. In the event that no unanimous agreement 

is reached, a given disagreement outcome is the result. If the feasible outcomes are such that 

each participant can do better than the disagreement outcome, then there is an incentive to reach 

an agreement; however, so long as at least two of the participants differ over which outcome is 

most preferable, there is a need for bargaining and negotiation over which outcome should be 

agreed upon. Note that since unanimity is required, each participant has the ability to veto any 

outcome different from the disagreement outcome. To model this atomic negotiation process, we 

use the cooperative bargaining process initiated by Nash (1951). It is pertinent to mention that 

experimental bargaining theory indicates stronger empirical evidence of this bargaining theory 

than any others. Nash engaged in an axiomatic derivation of the bargaining solution. 

 The solution refers to the resulting payoff allocation that each of the participants unanimously 

agrees upon. The axiomatic approach requires that the resulting solution should possess a list of 

properties. The axioms do not reflect the rationale of the agents or the process in which an 

agreement is reached but only attempts to put restrictions on the resulting solution. Further, the 

axioms do not influence the properties of the feasible set.  

 

Before listing the axioms, we will now describe the construction of the feasible set of outcomes. 

Formally, Nash defined a two-person bargaining problem (which can be extended easily to more 

than two players) as consisting of a pair (F, d) where F is a closed convex subset of R
2
, and d 

=(d1, d2) is a vector in R
2
. F is convex, closed, non-empty and bounded. Here, F, the feasible set, 

represents the set of all feasible utility allocations and d represents the disagreement payoff 

allocation or the disagreement point. The disagreement point may capture the utility of the 

opportunity profit. Nash watched for a bargaining solution, i.e., an outcome in the feasible set 

that satisfied a set of axioms.  
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The axioms ensure that the solution is: 

 symmetric (same players have same utility distributions) 

 feasible (the sum of the distributions does not exceed the total pie) 

 Pareto optimal (it is impossible for both players to improve their utilities over the 

bargaining solutions), 

 Preserved under linear transformations and be independent of ‘‘irrelevant’’ alternatives.  

The notable result due to Nash is that there is a bargaining solution that satisfies the above 

axioms and it is unique.  

Theorem 4 (Nash 1951) There is a unique solution that satisfies all the ‘‘axioms’’. This solution, 

for every two-person bargaining game (F, d) is obtained by solving:  

Arg x= (x1, x2) F, x ≥ d max (x1 - d1) (x2 - d2). 

 

The axiomatic approach, though simple, can be used as a building block for much more complex 

bargaining problems. Even though the axiomatic approach is prescriptive, descriptive non-

cooperative models of negotiation such as the Nash demand game (Roth 1995) and the 

alternating offer game (Rubinstein 1982), reach similar conclusions as Nash bargaining. This 

somehow justifies the Nash bargaining approach to model negotiations. In our discussion, we 

have only provided a description of the bargaining problem and its solution between two players. 

However, this result can easily be generalized to any number of players simultaneously 

negotiating for allocations in a feasible set. 
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2.3 Rubinstein model 

 

The Nash demand game demonstrates that a sensible bargaining protocol might have much 

equilibrium. A remarkable paper by Rubinstein (1982), however, showed that there was a fairly 

reasonable dynamic specification of bargaining that yielded a unique sub game perfect 

equilibrium. It is this model of sequential bargaining that we now consider. 

 

Imagine two players, one and two, who takes turns making offers about how to divide a pie of 

size one. Time runs from t = 0, 1, 2, ....n 

 At time 0, player one can propose a split (x0, 1 − x0) (with x0 ∈ [0, 1]), which player 2 can 

accept or reject. If player 2 accepts, the game ends and the pie is consumed. 

If player two rejects, the game continues to time t = 1, when she gets to propose a split (y1, 1 − 

y1). Once player two makes a proposal, player one can accept or reject, and so on at infinitum 

We assume that both players want a larger slice, and also that they both dislike delay. Thus, if 

agreement to split the pie (x, 1−x) is reached            at time t, the payoff for player one is δ1x and 

the payoff for player two          is δ2 (1 − x), for some δ1, δ2 ∈ (0, 1). 

To get a flavor for this sort of sequential-offer bargaining, consider a variant where there is some 

finite number of offers N that can be made.  

 To solve for the subgame perfect equilibrium, we can use backward induction, starting from the 

final offer. 

For concreteness, assume N = 2. At date 1, player two will be able to make a final take-it-or-

leave-it offer. Given that the game is about to end, player one will accept any split, so player two 

can offer y = 0.  
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What does this imply for date zero? Player two anticipates that if she rejects player one’s offer, 

she can get the whole pie in the next period, for a total payoff of δ2. 

 Thus, to get her offer accepted, player one must offer player two at least δ2. It follows that 

player one will offer a split (1−δ2, δ2), and player two will accept. 

In the N = 2offer sequential bargaining game, the unique SPE involves an immediate (1 − δ2, δ2) 

split. 

 

It is fairly easy to see how a general N-offer bargaining game can be solved by backward 

induction to yield a unique SPE. But the infinite-horizon version is not so obvious.  

Suppose player one makes an offer at a given date t. Player two’s decision about whether to 

accept will depend on her belief about what he will get if he rejects. This in turn depends on what 

sort of offer player one will accept in the next period, and so on. Nevertheless, we will show: 

In other way there is a unique sub game perfect equilibrium in the sequential bargaining game 

described as follows.  

Whenever player one proposes, she suggests a split (x, 1 − x) with 

 x = (1 − δ2) / (1 − δ1δ2). 

Player two accepts any division giving her at least 1 − x.  

Whenever player two proposes, he suggests a split (y, 1 − y) with              

   y = δ1 (1 − δ2) / (1 − δ1δ2). Player one accepts any division giving her at least y. Thus, 

bargaining ends immediately with a split (x, 1 − x). 

Proof: We first show that the proposed equilibrium is actually an SPE. 

By a classic dynamic programming argument, it suffices to check that no player can make a 

profitable deviation from her equilibrium strategy in one single period. (This is known as the 

one-step deviation principle) 
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Consider a period when player one offers. Player one has no profitable deviation. She cannot 

make an acceptable offer that will get her more than x. And if makes an offer that will be 

rejected, he will get y = δ1x the next period, or δ1
2
x in present terms, which is worse than x. 

Player two also has no profitable deviation. If she accepts, she gets 1 − x. If she rejects, she will 

get 1 − y the next period, or in present terms δ2 (1 − x) = δ2(1 − δ1x). 

It is easy to check that 1 − x = δ2 − δ1δ2x. 

 

 

 A similar argument applies to periods when player two offers. 

We now show that the equilibrium is unique. To do this, let v1, v2 denote  the lowest and highest 

payoffs that player one could conceivably get in any subgame perfect equilibrium starting at a 

date where he gets to make an offer. 

To begin, consider a date where player two makes an offer. Player one will certainly accept any 

offer greater than δ1v1 and reject any offer less than δ1v2. Thus, starting from a period in which 

she offers, player two can secure at least 1 − δ1v1 by proposing a split (δ1v1, 1 − δ1v1).  

On the other hand, she can secure at most 1 − δ1v2. 

Now, consider a period when player one makes an offer. To get player two to accept, he must 

offer her at least δ2 (1 − δ1v1) to get agreement. 

Thus: 

v1 ≤ 1 − δ2 (1 − δ1v1)  

At the same time, player two will certainly accept if offered more than 

δ2(1 − δ1v1). Thus: 

v1 ≥ 1 − δ2 (1 − δ1v1) 

It follows that: 
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v1 ≥ (1 − δ2) / (1 − δ1δ2) ≥ v2 

 

Since v1 ≥ v2 by definition, we know that in any subgame perfect equilibrium, player one 

receives v1 = (1− δ2) / (1 − δ1δ2).  

Making the same argument for player two completes the proof. 

 

A few comments on the Rubinstein model of bargaining. 

1. It helps to be patient. Note that player one’s payoff, (1 − δ2) / (1 − δ1δ2), is increasing in δ1 and 

decreasing in δ2. The reason is that if you are more patient, you can afford to wait until you have 

the bargaining power (i.e. get to make the offer).  

2. The first player to make an offer has an advantage. With identical discount factors δ , the 

model predicts a split . 

1/(1+δ) , δ/(1+δ) 

which is better for player one. However, as δ → 1, this first mover advantage goes away. The 

limiting split is (1/2, 1/2).  

3. There is no delay. Player two accepts player one’s first offer.  

4. The details of the model depend a lot on there being no immediate counter-offers. With 

immediate counter-offers, it turns out that there is much equilibrium.  
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2.4 Roth behavioral analysis 

 

Roth (1979) and (1995) has tried to examine the behavioral implication and empirical testability 

of the game theoretic models of bargaining that follow in the tradition begun by Nash. He 

present a new game theoretic model based on the assumptions that more closely correspond to 

the conditions under these many of the experiments have been conducted.   

An experiment manipulate the proper kind of info supported the theory that Nash’s bargaining 

model has prognostic value in situations that follow its assumptions about information, but the 

results also propose that only a relatively narrow range of situations may fit in completely to 

these norms. 

 

Further that Roth said that no one can look at experimental data without observing that 

experience matters.  

 Specifically  for the first few times a game is played, observed behaviors are expected to change 

as players obtain experience, in a way that suggests that learning is important- -learning both for 

the structure of the game being played, but also about the behavior of others players that take 

part into the model.  

So it is normal to consider how well we can explain observed behavior in terms of adaptation.  

And, while adaptive behavior may theoretically be quite multifaceted, it is useful to check how 

much of what we perceive can be described with very simple models of adaptation. 

Roth in his paper of 1995 considers the behavior observed in experiments with three different 

games of 2 stages each, a public goods provision game, a market game, and an "ultimatum" 

game, which all will be defined below.  
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The three games have in common not only a 2-stage, alternating move structure, but also that the 

perfect equilibriums prediction for each game is that all or sometimes almost all of the gains will 

be seized by one player.  

Though, the observed behavior for the three games is altered. For the public goods and the 

market games, under a variety of conditions involving different subject pools and different 

information about payoffs, behavior is observed to converge quickly to the perfect equilibrium 

prediction. 

But as we see in the ultimatum game, behaviors are observed to be far from the perfect 

equilibrium prediction even after the players have gained a reasonable amount of experience. 

Furthermore, the behavior observed in the ultimatum game is different in different subject pools, 

and seems to become more different as players gain experience. 

 

 

We consider adaptive models from a family of dynamics models, in which each player increase 

the probability of playing pure strategies that have met with success in former periods.  

These simple dynamics do an amazingly job of replicating the major features of the experimental 

data. Each dynamic we consider from the family meets quickly to the perfect equilibrium of the 

public goods and market games, from a wide range of initial conditions. However these same 

dynamics do not converge quickly, if at all, to the perfect equilibrium of the ultimatum game, 

and their behavior in the ultimatum game is sensitive to the initial conditions. 

One lesson we will seek to magnet, therefore, concerns variances among the games, taken by the 

fact that the same dynamic models make different forecasts for different games. Both the 

experimental and computational results we report support the perception that we can assume to 

find classes of games in which certain kinds of equilibrium are rapidly observed, and others in 

which they are not.  And some games are relatively unresponsive to original conditions, while in 

other games original conditions are important. 

A second lesson concerns which aspects of dynamic models offer testable predictions.  
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Although almost all of the academic literature on adaptive dynamics has focused on the very 

long term, via theorems about convergence as time goes to infinity, we will claim that 

intermediate term results may be even more important. 

 

To make this argument, we will consider specific dynamic models with fairly different long term 

properties models whose asymptotic forecasts approach perfect equilibrium, imperfect 

equilibrium, and no equilibrium  and observe that these models however make similar 

intermediate term predictions for the above games.  

We will argue that, because it would be difficult to differentiate among these different dynamics 

on the data, and because dynamic models are more likely to be informative when the learning 

curve is steep than when it is flat, there is a strong reason to pay attention to their intermediate 

term forecasts. (Even though we will not try to exactly define what constitutes the “intermediate 

" term, our active definition will be to take the intermediate term forecasts of a model to be those 

it makes as the learning curve begins to be very flat.) 

To use an analogy, even if we believe that time and the tide eventually turn all coastlines into 

sandy beaches, knowing the difference between granite and sandstone is a great help in 

understanding why, in the intermediate term, some coastlines have rocky cliffs. 
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2.5 Roth 3 simplified models 

 

Roth study based on 3 simplified models as described above and help us understanding deeper 

the learning process that Roth describe in his experiments. 

The Ultimatum game in which players 1 and 2 have nine pure strategies. Player 1 chooses a 

demand d~, which is an integer between 1 and 9, and is the amount player 1 demands for 

himself. Player 2 chooses a maximal acceptable demand m2, which is also an integer between 1 

and 9. 

The Best shot game in which Player I chooses one of three possible contributions q = 0, 2 or 4. 

Player 2 chooses one of 27 response rules where the first number in each response rule is the 

amount q2 that player 2 will provide in response to a contribution of q = 0, the second a response 

to q = 2 and the third a response to q = 4. 

And last the Market game in which each buyer n chooses one of 11 prices from the set {.25, 1, 

2, 3, 4, 5, 6, 7, 8, 9, 9.75}. If the price Pn chosen by buyer n is strictly higher than the price 

chosen by any other buyer, then buyer n earns 10 - p and all the other buyers earn 0. 

 If the maximum price p, is chosen by k buyers, then each one of them earns (I0 - p,)/k, while all 

the other buyers earn 0. 

 

 

The conclusion of Roth (1995) paper is easily to summarize and provide us the big picture of his 

experiments on behavioral approach. 

Individualistically of the experimental data, the simulation results starting from random primary 

tendencies reveal a structural difference between the ultimatum game and the other games. And 

in contrast with the experimental data, the intermediate term forecasts of both the limit model 

and the local experimentation models track the major experimental observations well. 
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 In spite of the changed long term behavior of these dynamic models, their intermediate term 

predictions agree with the experimental data in that: 

1. In the Market and Best shot games, both forecasted and observed behavior rapidly approach 

perfect equilibrium, but in the ultimatum game neither forecasted nor observed behavior 

approaches perfect equilibrium. 

2. Both forecasted and observed behavior approach perfect equilibrium play more fast in the best 

shot game with full information (in which the experimental subjects knew one other's payoffs) 

rather than in the best shot game with limited information (in which the experimental subjects 

knew only their own payoffs). 

3. Both predicted and observed behavior in the ultimatum games but which not observed in the 

market or best shot games are different in the different countries sampled, and the forecasted 

intermediate term differences track the observed differences (within the restrictions of the 

simplified games). 

These results point to that even very simple adaptive models may be relatively useful both for 

distinguishing which games are likely to be sensitive to original conditions and for predicting 

how original conditions matter in time. 

 

And while it looks clear that much of the growth to be made in understanding learning in games 

will come on the border of economics and psychology, the fact that there are some games which 

exhibit both forecasted and observed behavior that seems not to be sensitive either to original 

conditions or subject pools suggests that there is also substantial growth to be made by 

understanding which classes of games fall into which category.  

There appear to be sessions of games for which it will turn out that the observed learning 

behavior is mainly a property of the games, rather than of the exact learning processes used by 

the players. (This is the traditional economists' viewpoint, but similar views have inaugurated to 

arise among cognitive psychologists. i.e somebody can check Anderson (1990), who argues that 

in many cases the best available predictions about mental processes come from an understanding 

of the structure of the environment.) Anderson in his important 1990 study examines the 
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phenomena of cognition from an adaptive perspective. Rather than adhering to the typical 

practice in cognitive psychology of trying to predict behavior from a model of cognitive 

mechanisms, he develops a number of models that successfully predict behavior from the 

structure of the environment to which cognition is adapted. The methodology -- called rational 

analysis -- involves specifying the information-processing goals of the system, the structure of 

the environment, and the computational constraints on the system, allowing predictions about 

behavior to be made by determining what behavior would be optimal under these assumptions 

Back to Roth and recall that the adaptive models studied here do not model in any way what 

players know about the game, or believe about the future behavior of other players.  

 

That such simple dynamic models, when initiated with first period observed behavior, however 

do a decent job of forecasting how observed behavior will evolve, recommends that a significant 

part of how players knowledge and principles influence the game may have been reflected as of 

the first round data.  

For instance, the data from the two information conditions of the best shot game suggest that 

players' behavior in that game approaches perfect equilibrium quicker when they know other’s 

payoffs.  

But the simulation results recommend that the consequence of this knowledge may be mainly to 

adjust the first period behavior, and that the ways in which players adapt in following periods to 

their experience may be similar in both information conditions.  

 

The similar can be believed about the between the countries differences in the ultimatum game 

data. It could be that these different results from different perceptions held by players in different 

countries. 

That the same dynamic model can track the between-country differences when initiated from the 

first round data lends support to the former hypothesis. 
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Of course the comments of the earlier paragraph are still somewhat hypothetical, based as they 

are on a relatively small data set arising from only three kinds of games. 

Initial indications are that the correspondence between predicted and observed behavior may 

survive the transition to larger data sets and different kinds of games.  

To speculate a little on theoretical matters, there are motives to think that these outcomes will 

also be robust to the choice of dynamics, so that very different dynamic models might produce 

similar results. The families of models we have well thought-out are determined in the early 

rounds by the payoff differences among strategies, based on the early propensities to play each 

strategy. 

 In example, the goal that behavior in the ultimatum game remains detached from the perfect 

equilibrium is that the propensity to make very high demands falls more quickly than the 

propensity to accept very high demands rises. This is because the difference between accepting 

and rejecting a very high demand is small and thus has only modest impact on the propensities of 

players 2, while the difference for players 1 between having a very high demand rejected, and 

earning zero, or having a moderately high demand accepted, and consequently earning more than 

half the pie, is much larger, and more quickly increases the propensity to make only moderately 

high demands.  

 

Once player 1 rarely makes very high demands, there is even less pressure on players 2 to learn 

not to discard them, and so on. 

A associated conclusion about ultimatum games is reached by Gale et al. (1995), using a model 

of evolutionary dynamics. 

Note also that there are good motives to consider that the actual learning rules (or even the 

strategies) used by the subjects in the experiments diverge in important ways from our simple 

models, supports the assumed robustness of the results.  

That the simple simulated learning rules may be very altered from those used by the 

experimental subjects, but both sets of rules produce similar intermediate term effects, suggests 
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that very different learning rules will quickly approach perfect equilibrium in the best shot and 

market games, but not in the ultimatum game. 

Procedurally, an important difference between Roth paper and most of the academic literature on 

game dynamics is his concern with intermediate term results.  

Even though we have not tried to define the intermediate term any more precisely than to say 

that it starts when the learning curve flattens out, this has not demonstrated to be a difficulty in 

looking at the replicated behavior we report, precisely because the learning curves soon become 

very flat. 

For the dynamics reflected here, the intermediate term starts in the tens of iterations, and, at least 

in the ultimatum game, does not give way to the sometimes very different long term forecasts for 

thousands or even hundreds of thousands.  

 

 

Of course these figures will be different for altered dynamics. To the extent that intermediate 

term behavior of dynamic models is crucial, it may be valuable for theorists to pay more 

attention to the entire vector field generated by a dynamic, and not just to its limit points and 

basins of attraction. 

Above all in repeated games, the set of strategies offered to the players may be enormous. The 

traditional position of game theory has been to regard all potential strategies as available, but as 

long as players may not be hyper rational in other respects, their capacity to consider a huge 

number of strategies may also be inadequate. (One attempt to deal with this has been to 

symbolize the strategies available to a player in a repeated game as those which can be applied 

by limited state automata of restricted size.  

An example of this approach can be found in Tsetlin, 1973. Before his untimely death in 1966, 

he developed interesting models of learning in repeated games, with players modeled as 

automata.) . 
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As Tsetlin explain in his study a learning automation is an adaptive decision-making unit situated 

in a random environment that learns the optimal action through repeated interactions with its 

environment. 

 The actions are chosen according to a specific probability distribution which is updated based on 

the environment response the automation obtains by performing a particular action. 

With respect to the field of reinforcement learning, learning automata are characterized as policy 

iterators. In contrast to other reinforcement learners, policy iterators directly manipulate the 

policy. 

Study in psychology has often identified specific strategies which may occur with high original 

inclinations. In example, in continual experiments with T mazes, rats have an initial inclination 

to follow an alternation strategy (i.e., not to select the same leg of the maze twice in sequence); 

see, e.g., Dember and Fowler (1958).  

Dember and Fowler (1958) research concerned with spontaneous alternation behavior in rats is 

examined and related to learning theory. It is concluded that alternation behavior can no longer 

be adequately interpreted in terms of concept of reactive inhibition. The view of stimulus 

satiation as an explanation of alternation behavior has received general support from the research 

literature, but some data seem to require a more general theoretical explanation and include in 

the research some motivational concepts such as curiosity are suggested.  

We anticipate that the precision of forecasts of models like those considered from Roth may be 

improved by assessing the repeated game strategies the subjects employ. 

For our present purposes, the very slow convergence of the models without forgetting only 

serves to emphasize the difference between the ultimatum game and the other two games (in 

which all three models nevertheless converge quickly). 

For more extended study of games with very slow convergence properties it will likely be 

desirable to consider faster converging dynamics, e.g., by having a positive forgetting parameter, 

or some other way of keeping the strengths of the inclinations from increasing without limit. 
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 This has the consequence of giving more importance to recent events, instead of weighting all 

payoffs in the same way whenever they happen, as in our models without forgetting. (The flat 

learning curves come about because after a while there are so many more past events than recent 

ones.) 

In general, new tools may be required, since for stochastic learning rules understanding the 

intermediate term means examining the transient phase of a stochastic process. 

2.6 Experimental results of Roth Games 
 

To bring together the conclusions of Roth about games and about models, recall once again that 

the three games considered here have similar equilibriums: 

In the ultimatum and market games all prices can be supported by some Nash equilibrium, but 

only extreme results, in which all the wealth accumulates to one side, can be supported by a 

perfect equilibrium. 

Similarly, the perfect equilibrium of the best shot game yields extreme payoff differences. 

The experimental results of Roth et al. (1991) and Prasnikar and Roth (1992) show that this 

similarity of equilibrium does not produce similarity of behavior:  

Only in two of the games did detected behavior approach the perfect equilibrium. To the extent 

that equilibrium is reached, if at all, through a dynamic modification process that begins out of 

equilibrium, the opportunity of different behavior seems normal, since games with similar 

equilibriums may be quite unrelated of equilibrium.  

Roth in his 1995 paper further shows that the path of the dynamic process may also be 

inadequate to foresee behavior if its velocity is not also taken into account. 
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This is clearest in our model with experimentation and forgetting, whose predictions approach 

perfect equilibrium eventually (e.g., by t = 1,000,000) for all three games, but whose rates of 

change become very low much earlier (e.g. by t = 100). It is the real (t = 10) or intermediate term 

(e.g. t = 100) predictions which correspond to the observed behavior, both when these 

predictions are close to the perfect equilibrium and when they are not (and both in the models 

whose intermediate term predictions are close to their long term predictions and those in which 

they are not). 

That being the case, the reasons for our concern with real time and intermediate term predictions 

(in contrast to asymptotic predictions) for both field and experimental data are worth restating. 

First, we believe that much of the economic phenomena we observe in the world is intermediate 

term in nature. Although we have concentrated here on demonstrating this for a body of 

experimental data, it is not only in experiments that long term behavior may be difficult to 

observe. 

For example, none of the annual labor markets and matching processes whose historical 

evolution is studied in Roth (1984, 1990, 1991), Mongell and Roth (1991), and Roth and Xing 

(1994) have gone for more than fifty years--i.e. 50 iterations, without a change of environment 

substantial enough to mean that the same game was no longer being played.  

After such a change the behavior of participants typically goes through a period of readjustments 

as they adapt both to the new environment and to the new strategies of other agents. 

Second, even when we identify economic phenomena with sufficient longevity and stationary so 

that it is reasonable to believe they are yielding long term behavior, there is reason to be cautious 

about the long term behavior of any models we create. 

 

 

 This is because every model includes some elements of the situation being modeled while 

ignoring others. And when the learning curve becomes flat, there is room for unmodeled factors 
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to become important--factors that may be present at every stage of the learning process, but are 

unimportant when the learning curve is steep. 

To extend the geological analogy used before, erosion is not the only force that acts on 

coastlines. If we can expect volcanic eruptions every millenium or two, then, if erosion is slow, 

this will change our predictions about whether all coastlines will be sandy beaches. 

And there are also gentle but steady forces such as sedimentation, that work in the opposite 

direction from erosion, so that when erosion is fast we may be able to neglect them, but when it 

is slow, they may cause coastlines to rise rather than fall. 

So the reasons for devoting more attention to intermediate term results are not only that we live 

and die in the intermediate term and that changes in the environment (including the players) 

make data for the very long term hard to gather, but also that we have less reason to be confident 

in a particular model of learning when the learning curve is fiat than when it is steep. 

Our results here suggest, however, that such models may have considerable predictive power 

when the learning curve is steep. 

In conclusion, Roth 1995 and 1974 papers report an exercise in "low" (rationality) game theory.  

Low game theory differs from traditional, "high" game theory in how the players are modeled:  

Where high game theory models the players as hyper-rational, we have modeled them as simple 

adaptive learners. 

 

 

What low game theory has in common with high game theory, which distinguishes both 

approaches from nongame-theoretic models, is the central place given to modeling the strategic 

environment, i.e., to the game itself. But here too, there is room to consider the cognitive 

capacities of the players, since the full strategy sets in a repeated or multi-period game quickly 

become large.  
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Although the players in the experiments discussed here were engaged in multi-period games, we 

have modeled their strategies by (discretized subsets of) their stage game strategies. 

This has proved to be sufficient, perhaps because they are not engaged in repeated games (i.e., 

against the same opponent). However, it is likely that future research in low game theory will 

have to, at least sometimes, pay close attention to what subsets of very large strategy sets are 

accessible to and employed by the players. 

Of course we have chosen one of very many possible ways to model less-than-complete 

rationality, and the question of what are the best ways will be empirical. (The equilibrium 

refinement literature shows that there are also multitudes of ways to model hyper-rationality.) 

Most of the theoretical research on adaptive models has focused on finding conditions under 

which the adaptive models converge to equilibrium as time goes to infinity. (Thus high game 

theory can sometimes arise from low game theory.)  

In contrast, we have argued that, when the object is to develop low game theory in directions 

useful for empirical economics, infinite time horizons deserve to be treated with the same 

skepticism as other idealizations.  

Nevertheless, we have seen (in the best shot and market games) that for some games the 

intermediate term predictions of low game theory correspond with those of high game theory. 

 

 We conjecture that, when they coincide, the common forecasts of both kinds of game theory will 

quite generally demonstrate to be robustly evocative of observed behavior, as they were here. For 

other games, like the ultimatum game, the predictions of low and high game theory diverge. We 

have shown that even in such cases, the forecasts of low game theory may be of independent 

interest, because they are descriptive of observed behavior. 
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3. B2B Bargaining model in E-marketplaces 

 

3.1 The bilateral negotiation model of Faratin 

 

Faratin in his 1998 paper provide a model that describes the bargaining model in B2B 

environment. It proved to be a very useful tool in our analysis since the scoring function that he 

use is essential in an automated system where the best solution for counterpart must calculated 

by a server negotiation agent. 

Let i  (i  ∈ {a, b}) symbolize  the negotiating agents  and j  (j  ∈  {1 . . . . .   n}) the topics under 

negotiation. The set of topics in actual world negotiations is always limited. Let xj ∈ [min~, 

max,.] stand for a value for topic j acceptable by agent  i. Here we limit ourselves to considering 

topics for which negotiation quantities to defining a value between an agent's distinct delimited 

ranges. Each agent has a scoring function Vj  : [minj, maxj] ~  [0,  1] that provides the score agent  

i  assigns  to  a  value of issue  j  in the range  of its  acceptable  prices.  For convenience, scores 

are kept in the intermission [0,  1].  

The next component of the model is the absolute importance that an agent assigns to each issue 

under negotiation, wji is the importance of issue, j for agent i. We accept that the weights of both 

agents are normalized, i.e. ∑       wji = 1 for all i in {a, b}. With these elements in place, it 

is now likely to describe an agent's scoring function for a agreement that is, for a value x =  (Xl . 

. . . .   Xn) in the multi-dimensional space defined by the subjects  value ranges:  

  ( )  ∑   
   

 (  )

     

 

 

If both negotiators use such a preservative scoring function, Raiffa(1982) indicated that it is 

likely to compute the optimal  value of x  as an element  on the efficient border of negotiation. 



38 
 

For example, the set of negotiation issues for a server agent a may contain of {price, volume} -  

the price required to provide the service and the number of service instances attainable by a. 

 In addition to this, let a  have the next registration values 

 

         
          

                         
           

          

 

Also shoulder that a understandings the price as more significant than the volume by assigning a 

higher weight to it, where        
         

  = [0,8, 0,2].  

To finish, let the value of an offer x, for a topic j,   
 (xj), be displayed as a linear function:  

 

      
 (      )  

               
 

        
          

  

 

       
 (       )  

                 
 

         
           

  

 

Now think through two contracts, [12, 6] and [15, 2], offered by a client b to the server a.  Given 

the above parameters for a,  the value for the first offered price by b  is  (12 – 10 / 20 - 10)  =  

0.2,  while the value for the first requested volume is  (1  -  (6 -  1/6  -  1)  =  0. The total  value 

for the  offered contract is the sum of the weighted  values for each individual issue (namely, 0.8  

*  0.2 +  0.2  *  0  =  0.16). By the same cognitive, the value of the next contract from b, on the 

other hand, is 0.55.  Since rational action is to maximize its utility, a therefore selects the second 

contract offered by b and discards the first.  
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3.2 Service-oriented negotiation requirements  

 

The above bilateral negotiation model may be valid for some service-oriented settings but it has 

several assumptions. 

Needs:  

(i)  Privacy of information.  To discover the optimal value, the scoring functions have to be 

unveiled.  This is, in general, unfitting for competitive negotiation.  

(ii)  Privacy of models. Both negotiators have to use the same scoring model. Although, the 

models used to evaluate offers and produce counter offers are one of the things that negotiators 

try to hide from the other side.  

(iii)  Value restrictions.  There are pre-defined value areas for debate (they are necessary to 

define the bounds of the scoring function).  Nevertheless, it is difficult to find these mutual areas 

and in many cases negotiation actually includes determining whether such areas even be present.  

(iv) Time restrictions.  There is no notion of timing issues in the negotiation. Although, time is a 

major restriction on agents' behavior. This is mostly true on the customer side; agents frequently 

have strict deadlines by when the negotiation must be finished. For example, a video link has to 

be provided at 06:00 because at that time a conference should begin; negotiation about set up 

cannot last after that time.  

(v)  Resource restrictions.  There is no notion of resource issues in the negotiation. Although, the 

amount of a particular resource  has  a solid  and  direct impact  on  the  behavior of agents,  and,  

furthermore, the  correct appreciation of the remaining resources is an vital characteristic of a 

good negotiators.  
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Resources from the customer's point of view relay straight to the number of servers engaged in 

the ongoing negotiation; similarly from the server's point of view. Consequently, the quantity of 

resource has a related effect on the agents' behavior as time.  

Even just taking the first thought alone, it is clear that optimum results cannot be found in our 

fields: it is not likely to enhance an unidentified function. Hence, we shall suggest a model for 

separate agent negotiation that pursues to find deals suitable to its associates but which, 

nevertheless, maximizes the agent's own scoring function.  

 

3.3 Service-oriented negotiation model  

 

In service-oriented negotiations, agents can accept two possible roles that are, theoretically, in 

conflict. From now we shall differentiate (for our convenience) two subsets of agents. 

Agents = Clients U Servers. We use letters to characterize agents; c, c1, c2, stands for clients, s, 

s1, s2 . . . .   for servers and a, a1, b, d, e , for non-specific agents.  

Generally, clients and servers have opposing comforts, e.g.  a client needs a low price for a 

service, while the potential servers try to achieve the highest price. High quality is preferred by 

clients, but not by servers, and so on.  

As a result, in the space of negotiation values, negotiators represent opposing forces in each one 

of the dimensions.  

In consequence, the scoring functions verify that given a client c and a server s negotiating 

values for issue j, then if  

Xj,  Vj  ∈ [minj, maxj ] and xj > yj  then   
 (  )    

 (  )    However, in a minor amount of cases 

the clients and service providers may have a joint interest for a negotiation issue. 

In example, Raiffa in 1982 describe a case in which the Police Officers Union and the City Hall 

realize, in the course of their negotiations, that they both want the police commissioner fired. 

Having recognized this mutual interest, they quickly agree that this course of action should be 
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selected.  Thus,  in  general,  where  there  is  a  mutual interest,  the  variable will  be assigned 

one of its extreme values. Hence these variables can be removed from the negotiation set.  

For example, the act of firing the police commissioner can be removed from the set of issues 

under negotiation and assigned the extreme value "done".  

Once  the  agents  have  determined  the  set  of variables  over which  they  will  negotiate,  the  

negotiation  process between  two  agents  (a,  b  ∈  Agents)  consists  of an  different  sequence 

of offers  and  counter offers of values  for these  variables.  This  lasts  up to  an  offer or  

counter offer is  accepted  by the  other side  or one  of the partners ends the negotiation (e.g. 

because the time limit is reached without an agreement being in position).Negotiation can be 

started  by clients  or servers.  

We symbolize by      
  the vector of values suggested by agent a to agent b at time t, and by 

     
      the value for issue j suggested from a to b at time t.  

The variety of values acceptable to agent a for issue j will be symbolized as the intermission 

[    
      

 ,].  For convenience, we accept a common global time (for example the calendar 

time) represented by a linearly ordered set of times, namely Time, and a consistent 

communication medium introducing no postponements in note transmission (so we can accept 

that transmission and response times are indistinguishable).  The joint time hypothesis  is  not too  

solid  for our  application  fields,  because in time  granularity  and  offer and  counter  offers 

occurrences  are not high. 

Negotiation thread   among  agents  a,  b  ∈  Agents,  at time  tn  ∈   Time,  noted      
 ,  is  any 

limited sequence  of length n  of the form (     
       

       
  , with t1 , t2…..   tn) where : 

(i)  ti+1  >  ti,  the sequence is ordered over period,  

 (ii)  For each topic  

j,       
      ∈  [    

      
  ]     

      ∈  [    
      

  ]      with  i =  1,3,5,  ...,  and optionally  

the latest component of the sequence is one of the elements  {accept, reject}.   
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We say a negotiation thread is on the go if last (    
      ∈  {accept, reject}, where last is a 

function returning the last component in a sequence.  

For straightforwardness reasons, we assume that t1 agrees to the opening time value, that is t1 = 

0. In other words, there is a local time for each negotiation thread, which starts with the 

statement of the first offer. When agent a receives an offer from agent b at time t,      
  , it has to 

rate the offer using its scoring function. If the value of        
  is greater than the value' of the 

counter offer agent a is ready to send at the time t’ when the evaluation is performed, that is     
   

with t’ > t then agent a accepts. Else, the counter offer is acquiesced.  Stating this idea in a 

mathematic way:  

Assume an agent a and its related scoring function V
a
 , a’s   explanation   at time     

  sent at 

time  t  <  t', is defined as  

 

I
a(       

 )  {

                      
                

                (    
 )      

  

    
                                     

 

 

where     
  is the agreement that agent a would offer to b at the time of the interpretation,  and 

    
  is a constant that represents  the time by which a  must have finalized the negotiation. 

The outcome of I
a
 (t',     

 )  is used to prolong the current negotiation thread between the agents. 

This interpretation formulation also permits us to model the point that a contract improper today 

can be accepted tomorrow simply by the point that time has passed.  

In order to prepare a counter offer,     
  , agent a  uses a set of strategies that produce new values 

for each of the variables in the negotiation set. Based on the needs of our business process 

applications, we established the below families of strategies:  

 (i)  Time dependent.  If an agent has a time boundary by which an agreement must be in 

position, these strategies model the fact that the agent is possible to accept more quickly as the 



43 
 

time limit approaches. The form of the curve of concession, a purpose reliant on time, is what 

distinguishes strategies in this set.  

(ii)  Resource dependent.  These strategies model the pressure in reaching an agreement that the 

limited resources - e.g. left over bandwidth to be assigned, money, or any other -  and the 

situation -  e.g. amount of clients, amount of servers or financial parameters -  execute upon the 

agent's behavior. The functions in this set are similar to the  time dependent  functions  except 

that  the  arena  of the  function  is  the  amount  of resources available instead of the left over 

time.  

(iii)  Behavior reliant on or Imitative. In situations in which the agent is not under an excessive 

deal of pressure to reach an agreement, it may choice to use imitative strategies to defend itself 

from being demoralized by other agents. In this situation, the counter offer hinge on the behavior 

of the negotiation rival. The strategies in this family fluctuate in which feature of their 

opponent's behavior they duplicate, and to what degree the opponent's behavior is imitative.  

 

3.4 Scoring function in infinite bargain model 

 

Faratin scoring functions model as introduced above has not any time restriction or discount 

factor in its calculation even if it is more than important in real life situations. 

Hence, we can use Faratin scoring functions combined with Rubinstein discount factor we 

mention above in order to describe better a scenario of a technology company and how can a 

buyer create an automatic system that will decide the exact price that he should pay according to 

the technology level that he search for. 

In this scenario the set of negotiation issues for a server agent a may consist of {price, volume, 

technology level}. 

Because the volume is on mutual interest we will remove it from negotiation set and we will 

have price and technology level to negotiate. 
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The price that a reasonable buyer will ask would be as low as possible when the technology level 

would be as high as possible. On the other hand the seller would ask for higher price and lower 

technology level (since this mean lower cost for him). 

 

In addition to this, let have the following a reservation values 

 

         
          

               [             
               

 ]          

 

Also assume the price as more important than the technology by assigning a higher weight to 

price, where        
             

  = [0,6 , 0,4].  

Furthermore, let the value of an offer x, be modeled as a linear function:  

 

      
     

(      )    
               

     

        
     

         
      

 

           
     

(           )  
                         

     

             
     

              
      

 

The above functions refer to the buyer profit for the bargain and since the seller profit is opposite 

(both price and technology have adverse interests as described above) we can assume that seller 

functions would be: 
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Following the above the buyer total scoring function will be: 

 

    
     

               
     

                          
     

 

And seller: 

    
               (        

     
)               (             

     
) 

 

 

The price will give the above function is [0,1] since each of the part can take price between [0,1] 

Further that based on Rubinstein discounting factor model we can suppose that both time and 

technology have a discount factor when δ=0,8. 

Price discount factor refers to the value of money that decline through time when the technology 

discount factor refers to the aging of technology since new technology always invented making 

the old one losing its original value. 

 

So on time t=2 the scoring function of buyer will be: 

 

    
     

   (             
     

                          
     

) 
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Without time limitation the solution of the above bargain can occur in time t=1 provides the best 

solution for buyer and seller following the Rubinstein 1982 paper. 

The first who propose have the advantage since the split will be : 

(
 

   
)  (

 

   
)  

So by assuming that both have the same (but opposite) scoring function we can understand that 

the player 1(i.e. the buyer) will have to propose a combination to the seller (choosing between 

price and level of technology) that will provide him a split of(
 

   
) : 

(
 

   
)            (        

     
)               (             

     
)=     

       

The buyer for him will have the following split 

  

(
 

   
)      

     
               

     
                          

     
 

3.5 The solution of the Bargain 

 

The below example will help us understand exactly how smoothly we can combine a scoring 

function with 2 variables with having a discount factor for both variables and this can give us a 

solid solution according to our needs. 

In our example we will use the above numerical data for a buyer that wants to buy a mobile 

phone on an e-marketplace and we will have the range for both variables. 

                                [                           ]          

 

Further that we have suppose the following weights                     = [0,6 - 0,4] and the 

discount factor δ = 0,8 that is the same for both buyer and seller. 

So using Rubinstein model the buyer knows that his function will be 
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(
 

   
)      

     
               

     
                          

     
 
                            
⇒                         

0,55 =          
     

                  
     

 (1) 

 

On top of that we will suppose that the buyer’s need in technology is of level 10(max) 

So using the buyer function for technology we have: 

           
     

(           )  
                         

     

             
     

              
       

 

           
     

(           )  
    

    
    ( ) 

So from (1) , (2) we have 

0,55 =          
     

        ⇒       
     

      

So using the buyer function for price we have : 

      
     

(      )    
               

     

        
     

         
     ⇒ 

             

The conclusion of this calculation is that in an e-marketplace where we can negotiate price and 

technology if we have the above data we can propose from the t=1 the best solution. In our 

example the buyer who knows his need (technology level = 10) he knows that he should pay 17,5 

in order to acquire the mobile phone and he knows that this is the best solution for both sides. 

Generalizing the above case we can easily have the whole table and the buyer can easily choose 

according to his needs as provided in table 2. 
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Table 2 – Price according to level of technology 

 

3.6 Changing Weights 

 

Going one step forward it is interest to observe the changes in prices when the weights change 

(table 3). 

Table 3 – Price according to level of technology using different weights 

 

Level of Technology Price

1 10,74                       

2 11,48                       

3 12,22                       

4 12,96                       

5 13,70                       

6 14,44                       

7 15,19                       

8 15,93                       

9 16,67                       

10 17,41                       

Wp = 0,6 / Wt = 0,4

δ
 : 

0
,8

 f
o

r 
b

o
th

 s
id

es

Level of Technology Price Price2 Price3 Price4

1 10,74                       12,06                       10,00                       14,44                       

2 11,48                       12,54                       10,00                       14,44                       

3 12,22                       13,02                       11,11                       14,44                       

4 12,96                       13,49                       12,22                       14,44                       

5 13,70                       13,97                       13,33                       14,44                       

6 14,44                       14,44                       14,44                       14,44                       

7 15,19                       14,92                       15,56                       14,44                       

8 15,93                       15,40                       16,67                       14,44                       

9 16,67                       15,87                       17,78                       14,44                       

10 17,41                       16,35                       18,89                       14,44                       

Wp = 0,6 / Wt = 0,4 Wp = 0,7 / Wt = 0,3 Wp = 0,5 / Wt = 0,5 Wp = 1 / Wt = 0

δ
 : 

0
,8

 f
o

r 
b

o
th

 s
id

es
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Few comments that we can export from the above diagram is: 

 

 As far as the Wprice increase the range of the price decrease. This has to do with the 

price sensitivity that increases together with the Wp. 

 In the extreme case when the Wp = 1(and Wt = 0) there is an ultimate solution for the 

bargain and this is at price : 14,44 same for all level of technologies 

 The solution at Wp = 1 is not at the middle of the range that somebody will easily 

suppose but lower at price 14,44 something that approve that the first who make the 

offer(in our case the buyer) has the advantage in such type of bargains. 

 10,00
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 16,00

 17,00

 18,00
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3.7 Changing discount factor 

 

We have seen above the results of changing the weights and in this section we will examine the 

results of changing the discount factor (δ). 

Discount factor mirror the patience of buyers and sellers. For example a buyer that needs the 

product soon and has little patience he will have a lower δ than the seller who has not need to sell 

the product and he can afford to stock it. 

In this case with different δ the solution provided by the below split, as proved above from 

Rubinstein model: 

    

      
 , 

       

      
 

 

So for the buyer who make the first offer in the electronic system the split will be 
    

       
 

And the Scoring function that he will have: 

 

(
    

       
)      

     
               

     
                          

     
 

 

So using the previous example and supposing that the seller is more patient, the δ1 (of the buyer) 

will be lower than the δ2 (of the seller), in our case we will have 

δ1 = 0,75 

δ2 = 0,85 
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(
    

       
)      

     
             

     
                          

     
  

                                               
⇒                                    

0,41 =          
     

                  
     

 (1) 

By using the same numbers as the above example and given the case that buyer ask for level 10 

of technology we will have the below solution. 

 

           
     

(           )  
                         

     

             
     

              
       

 

           
     

(           )  
    

    
    ( ) 

 

So from (1), (2) we have 

0,41 =          
     

        ⇒       
     

      

 

So using the buyer function for price we have : 

      
     

(      )    
               

     

        
     

         
     ⇒ 
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Now we can again generalize the data and we can create the below table (table 4) for all options. 

Table 4 – Generalize the example 

  

Level of 
Technology Price 

δ
 : 

0
,7

5
 f

o
r 

b
u

ye
r 

 0
,8

5
 f

o
r 

se
lle

r 

1 
                         
13,10    

2 
                         
13,84    

3 
                         
14,58    

4 
                         
15,33    

5 
                         
16,07    

6 
                         
16,81    

7 
                         
17,55    

8 
                         
18,29    

9 
                         
19,03    

10 
                         
19,77    

Wp = 0,6 / Wt = 0,4 

 

 

The table above includes all the possible choices the buyer has in this case and we can export 

interesting results by comparing the above table with the previous one where both buyer and 

seller had the same patience (δ).In order to compare better the results we present them side by 

side in table 5 below 
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Table 5 – Difference results with different strategies for the players 
  

Level of 
Technology Price(heterogeneity δ) Price(homogeneity δ) Dif 

δ
 : 

0
,7

5
 f

o
r 

b
u

ye
r 

 0
,8

5
 f

o
r 

se
lle

r 1                          13,10                             10,74    -      2,36    

2                          13,84                             11,48    -      2,36    

3                          14,58                             12,22    -      2,36    

4                          15,33                             12,96    -      2,36    

5                          16,07                             13,70    -      2,36    

6                          16,81                             14,44    -      2,36    

7                          17,55                             15,19    -      2,36    

8                          18,29                             15,93    -      2,36    

9                          19,03                             16,67    -      2,36    

10                          19,77                             17,41    -      2,36    

Wp = 0,6 / Wt = 0,4 

 

As we can easily understand the buyer payoff has been reduced since he pays more for the same 

level of technology and this happen due to his low patient for the deal which is mirrored in the 

lower δ.The results of this low patience is to pay more 2,26 whatever the choice of the 

technology would be. 

 

 

 -

 5,00

 10,00

 15,00

 20,00

 25,00

1 2 3 4 5 6 7 8 9 10

Price for each level of technology 

Price(different δ) 

Price(δ the same) 

2,36 
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4. Conclusion 

 

E-marketplaces rapid growth in recent years has led to more and more needs for elevated 

bargaining models. These models should be able to be part of an automatic system which will be 

the server agent that will help counterparts to reach an agreement .Due to the fact that the time is 

valuable also one of the main responsibility of the agent should be to lead the negotiation to an 

agreement as soon as possible. 

In order to have a model in an automatic system we need a function that will provide the solution 

by scoring the offers and the counter offers. 

Faratin provides a model that based on a server and two buyers who make offers for a product, 

by setting the price and the volume (of the product) the buyer are intend to buy. The servers 

calculate the profit through a scoring function and based on the importance of the two parameters 

decide the best solution. 

Even if Faratin model works smoothly in this case it has some serious gaps since it refers to time 

t=1 and it is not contain a discount factor in order to test the model in infinite time and in order to 

be more realistic in his results. We have tried to overcome this by combine the idea of scoring 

function with the Rubinstein multiple games model. 

By testing this in a high technology company (in our example a mobile manufacturer) the results 

were really interesting since we create a function that can calculate the best solution in infinite 

time for both players. The buyer in our case has to choose the desirable level of technology and 

through the scoring function he can estimate the price that required in order to obtain the cell 

phone. 

After having combine the scoring function with a discount factor and having test the results with 

success the next step was to change parts of the functions in order to exam the reaction of the 

model and to export some useful results over the strategies that the players should follow. 
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Thus, by changing the weights between the importance of the price and the technology level we 

noticed that as far as the importance of the price increase, the price range decrease. This was 

something that we are waiting for, since the price sensitivity led the counterparts focus on price 

and so the price range are collected more to middle-average prices. 

Further that we observed that if only price was important the first who made the offer he will 

have the advantage and he will obtain the most from the bargain. More specific in our example 

when buyer made the first offer he achieved a price lower than the average price something that 

consist to the fact that he made the first move and so he take the advantage from that. 

Finally it is interesting to spot the different results by testing the patience of buyers and sellers. 

So having an impatient buyer (lower discount factor) and a patient seller (higher discount factor) 

the results was the seller to obtain higher split from the bargain comparing to the case that both 

shares the same discount factor, so once again being patient helps. 
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