

Πανεπιστήµιο Πειραιώς – Τµήµα Πληροφορικής
Πρόγραµµα Μεταπτυχιακών Σπουδών

«Προηγµένα Συστήµατα Πληροφορικής»

Μεταπτυχιακή ∆ιατριβή

Master Thesis

Τίτλος ∆ιατριβής

Title of Thesis

Μια Android εφαρµογή για το «Ερώτηµα Σχεδιασµού

Ταξιδιού».

An android application for the “Trip Planning Query”.

Ονοµατεπώνυµο Φοιτητή/
Full name of student

Κων/νος Καββαλάκης

(Konstantinos Kavvalakis)

Πατρώνυµο/ Father’s name Στέφανος

Αριθµός Μητρώου ΜΠΣΠ/10017

Επιβλέπων/Supervisor Νικόλαος Πελέκης

(Nikolaos Pelekis),Λέκτορας

Ηµεροµηνία Παράδοσης Οκτώβριος 2013

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 2

Τριµελής Εξεταστική Επιτροπή

(υπογραφή)

(υπογραφή) (υπογραφή)

Νικόλαος Πελέκης
Λέκτορας

Ιωάννης Θεοδωρίδης
Καθηγητής

Ιωάννης Σίσκος
Καθηγητής

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 3

ABSTRACT

The objective of the current master thesis is the implementation of an efficient android
application that utilizes the Iterative Doubling algorithm. It runs in a mobile device with
known computational processing limitations. Finally as the user of the application
imposes, the optimal path should start from a specified source, pass through several
points of interest (POIs) and reach specified destination. These problems are generally
known as “Trip Planning Queries” (TPQ).

Trip Planning Queries (TPQ) belong to NP-hard problems. In general there are
many proposed algorithms which result in an approximate or inefficient in terms of
complexity solution. The previously mentioned drawbacks prevent the use of those
algorithms in many implementations. However the solution presented in this thesis
reduces complexity by imposing the order of visiting locations. The algorithm which is
used manages to find a route of minimum length by visiting points from each category
sequentially before it steps to the next category. This type of queries are named
“Sequenced Route Queries” (SRQ) and their implementation could be feasible even in
a mobile device as it is proposed and utilized by an android application in the current
thesis.

The algorithm used is the Iterative Doubling, an alternative to the EDJ(Enhanced
Dijkstra - section 2.3.3) layered approach. The current approach helps to avoid
exploring facilities that are far away from the starting point. The algorithm manages to
reduce the computational cost of exploring every possible facility and therefore it
performs better in case that we have to process local data. Realistic sequenced route
queries mainly refer to such local geographical data.

The application manages to exclude such distant facilities by setting an initial
threshold that defines a range in kilometers. Also the user has as an option to choose
between some initial ranges, depending on the minimum trip distance that he is willing
to cover. With this threshold nodes of POIs without range does not take part during
Dijkstra computations and so this fastens the running time. If the initial range although
could not resume to an optimal path then the threshold is doubled and the algorithm is
executed again.

The data for the needs of the application were collected from OpenStreetMaps
project [13] and mainly concern mainly Attica. They represent several geographical
points and each of them belongs to a respective category of interest such as hotels,
restaurants etc. The basic data element keeps information about its geographic
coordinates, the label that identifies the facility and its category. They are initially
formed as xml separated files (per category) and they are utilized as node objects.
Another advantage of the implemented algorithm is that it does not require the explicit
construction of the graph that is built during each Dijkstra’s computation. The final
outcome is a route with the minimum distance that passes through a point from each
category.

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 4

ΠΕΡΙΛΗΨΗ

Ο σκοπός της παρούσας µεταπτυχιακής διατριβής είναι η υλοποίηση µιας android
εφαρµογής που θα ενσωµατώνει τον αλγόριθµο «Επαναληπτικού ∆ιπλασιασµού»,
κατάλληλο όπως προτείνεται να τρέχει αποδοτικά σε µια κινητή συσκευή µε
δεδοµένους επεξεργαστικούς περιορισµούς. Η εφαρµογή που υλοποιήθηκε υπολογίζει
την βέλτιστη διαδροµή, η οποία όπως απαιτεί ο χρήστης πρέπει να ξεκινάει από ένα
σηµείο αρχής, να περνάει ακολουθιακά από διαφορετικά σηµεία ενδιαφέροντος και
καταλήγει σε έναν επιθυµητό προορισµό. Αυτή η κατηγορία προβληµάτων είναι γνωστή
σαν Trip Planning Queries (TPQ).

Τα ερωτήµατα που αφορούν το σχεδιασµό διαδροµών(TPQ) είναι µη
ντετερµινιστικά πολυωνυµικού χρόνου προβλήµατα(NP problems).Γενικά πολλοί
προτεινόµενοι αλγόριθµοι παρουσιάζουν λύσεις είτε προσεγγιστικές είτε µεγάλης
πολυπλοκότητας µε αποτέλεσµα να µην είναι χρηστικοί στην υλοποίηση. Παρόλα αυτά
η παρούσα εφαρµογή χαλαρώνει την πολυπλοκότητα του προβλήµατος, καθορίζοντας
την σειρά προσπέλασης των σηµείων ενώ ψάχνει να βρει την διαδροµή µε το ελάχιστο
µήκος µε το να επισκέπτεται ακολουθιακά τα σηµεία από την µια κατηγορία στην
επόµενη. Αυτά του τύπου τα ερωτήµατα ονοµάζονται «ερωτήµατα διαδοχικής
διαδροµής» (SRQ) και η απάντηση τους θα µπορούσε να είναι εφικτή και σε κινητές
συσκευές όπως προτείνετε και υλοποιείται από την παρούσα εργασία.

Ο αλγόριθµος «Επαναληπτικού ∆ιπλασιασµού» (Iterative Doubling) είναι µια
παραλλαγή του EDJ (Enhanced Dijkstra- ενότητα 2.2.3), και βασίζεται στο να
αποφεύγει να εξερευνάει αποµακρυσµένα σηµεία. Με τον τρόπο αυτό µειώνει τον
επεξεργαστικό όγκο και αποδίδει καλύτερα για τοπικά δεδοµένα που αποτελούν και τις
πιο συνηθισµένες περιπτώσεις σε τέτοιου είδους προβλήµατα. Στην πράξη τέτοια
προβλήµατα εύρεσης βέλτιστης διαδροµής µε ενδιάµεσους προορισµούς συνήθως
συναντώνται σε τοπική ακτίνα.

Τα δεδοµένα αυτά συλλέχτηκαν από το OpenStreetMaps [13] και αφορούν το
λεκανοπέδιο Αττικής. Αναπαριστούν γεωγραφικά δεδοµένα που ανήκουν σε
συγκεκριµένες κατηγορίες ενδιαφέροντος. Αυτή η κατηγοριοποίηση µπορεί να
θεωρηθεί σαν ένα σύνολο τέτοιων σηµείων µε παρόµοια χαρακτηριστικά όπως
τράπεζες, εστιατόρια κτλ. Η βασική µονάδα δεδοµένου κρατάει την πληροφορία των
συντεταγµένων κάθε σηµείου, τον τίτλο της εγκατάστασης και την κατηγορία που
ανήκει. Η εφαρµογή φιλοξενεί αυτά τα δεδοµένα σε στατικά µε τη µορφή xml αρχείων.
Ανάλογα µε τις επιλογές του χρήστη τα κατάλληλα αρχεία διατρέχονται ώστε να
δοµήσουν δυναµικά τον ζητούµενο γράφο . ∆εν είναι απαραίτητα η άµεση δηµιουργία
του.Tέλος η εφαρµογή καταφέρνει και αναπτύσσει την βέλτιστη διαδροµή που περνάει
από ένα τουλάχιστον σηµείο ανά κατηγορία ενδιαφέροντος.

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 5

CONTENTS

ABSTRACT ... 3

ΠΕΡΙΛΗΨΗ .. 4

1. Introduction .. 7

2. Literature Review .. 10

2 .1. TPQ Fast Approximation Algorithms 10

2.1.1 Problem Formulation ... 10

2.1.2 Fast approximation algorithms ... 10

2.1.3 Applications in Road Networks. ... 12

2.2.The Optimal Sequenced Route Query 15

2.2.1 Introduction – Motivation ... 15

2.2.2 Problem definition .. 16

2.2.3 The Dijkstra based solution .. 16

2.2.4 OSR Solution in metric spaces .. 17

2.3. Speeding up SR Queries ... 21

2.3.1 Introduction ... 21

2.3.2 Summing up of the previous related work. 21

2.3.3 Iterative Doubling ... 23

2.3.4 CH enhanced Iterative Layer Search 23

2.4 Conclusion .. 25

3. Implementation of TPQ in Android .. 26

3.1 UML Class Diagram ... 26

3.2 Basic Project Modules .. 28

3.2.1 MainActivity ... 28

3.2.2 TraceRouteActivity ... 28

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 6

3.3 Essential modules ... 31

3.4 Assets and permissions ... 33

4. Evaluation .. 35

4.1 Case Study .. 35

4.2 Algorithm steps.. 39

4.3 Experimental results ... 41

5.Conclusion and future work .. 42

6. REFERENCES .. 43

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 7

1. Introduction

Efficient TPQ evaluation could become an important new feature of advanced
navigation systems and can prove useful for other geographic applications as has been
advocated in previous work [12]. For instance, state of the art mapping services like
MapQuest, Google Maps, Google Directions service and Microsoft Streets & Trips,
currently support queries that specify a starting point and only one destination, or a
number of user specified destinations. The functionality and usefulness of such
systems can be greatly improved by supporting more advanced query types, like
TPQ.[1]

TPQ can be considered as a generalization of the Traveling Salesman problem
(TSP) which is NP-hard. The reduction of TSP to TPQ is straightforward. By assuming
that every point belongs to its own distinct category, any instance of TSP can be
reduced to an instance of TPQ. From the current spatial database queries, TPQ is
mostly related to the time or the distance which is parameterized in the continuous
Nearest Neighbors (NN) queries. In those we assume that the query point is moving
with a constant velocity and the goal is to incrementally report the nearest neighbors
over time as the query moves from an initial to a final location. However, none of the
methods developed to answer the above queries can be used to find a “good” solution
for TPQ.[1]

Usually, TPQ problems are not being efficiently handled from embedded navigation
applications in mobile devices, due to their NP-hard algorithmic complexity. This kind of
devices, have limited computational resources and capabilities, so most of the time
mobile applications provide an already computed result of such Travel Planning
Queries. Moreover, we can further reduce the above TPQ problem to SRQ problem by
assuming that while traveling the order of the visited categories is predefined. As it is
proved, finally leveraging such queries with proper algorithms and a proper mobile
database (in this case SQLite) we can develop embedded SRQ algorithms in mobile
devices that can run efficiently. Such an algorithm is proposed in [3] and has been
implemented by the current application that the Thesis introduces.

The goal is of the thesis application is to plan an optimal route from a source to a
destination point by visiting facilities of a perspective type on the way (SRQ case). The
speed up technique that is implemented is Iterative Doubling. This approach does not
assume the explicit construction of a graph and reduces radically the Dikjstra
computations to compute the weights of inner-layers edges. The application modifies
the EDJ layer approach that requires as many computations as the cardinality of the
available points of interest (POIs). The following chapter explain in details the above
algorithms along with some others.

To clearly determine the problem that the application solves, we have to start
describing the data sets that were used for the experimental results and the
preprocessing stage before algorithm starts. The data were collected from the
OpenStreetMap project in xml file format. They are labeled and hold their geographic
coordinates (latitude, longitude). The application serialize these files to construct lists of
POI objects that then holds in main memory for quick access. These POI objects finally
are transformed to node objects during the graph construction.

The preprocess stage is triggered by the user who inputs a starting point S and a
destination point E. Then chooses from a set of categories R with prefixed order, (R ≤

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 8

C). The application after the algorithm execution returns the optimal route that starts at
E, passes through at least one point from each category in R and ends at E. As an
example of a use case, consider that somebody plans to travel from Marousi to
Elefsina and wants to stop at a Hotel, and a Restaurant (two fixed order middle
destinations). The implemented application with a database that stores the distance
matrix of the above objects computes efficiently a feasible route that minimizes the
total traveling distance (or time) (fig.1, fig.2).

Although the static data are always available the application needs to have
internet access when a user gives for the first time a source and a destination point in
order to call Google GeoCoding service and initialize these two nodes. Also the
application calls Google Distance Matrix to store distances between nodes of the
graph. The graph is not explicitly built and this is on more advantage of the
implemented algorithm, because the application does not calculate all the inner layer
distances. When the graph is constructed the final step is to call the Google Direction
Api to map the optimal route. The response of the above Google services is generally a
JSON string that is parsed and serialized to JSON objects.

The application uses some techniques and conventions to make the
recommended solution feasible. Such a convention is the locality of the data sets that
best fit to thesis problem. Nevertheless the data form OpenStreetMaps are not so
enriched for Attica although they were chosen without compromising the guaranteed
optimality of the experimental results. Also an embedded SQLite database was used to
cache the already requested distances for future access. This makes the application to
be extended dynamically and continuously every time is used.

The following chapter presents a summary of the studied papers on the TPQ and
other SRQ relative problems along with some proposed algorithms and their limitations
and complexity issues. Results are depending on the number of Poi categories and
categories’ cardinality. This literature review would help to understand the notion of
queries in Geographic Information Systems (GIS). The chapter 3 presents a UML class
diagram with the basic modules that take part in the application along with a summary
of the programming techniques that were used. Chapter 4 is a case study of the
developed application and finally in chapter 5 are noted the conclusions of the master
thesis work.

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 9

Fig.1: user inputs and POI sets Fig.2: the computed optimal route

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 10

2. Literature Review

This chapter tries to recursively describe the problem, starting with an introduction of
the general TPQ problem and some approximate solutions and ending up with the
proposed OSR solution on mobile devices. The first section based on paper [1]
proposes a novel type of query in spatial databases and studies methods for answering
this query efficiently. Approximation algorithms that achieve various approximation
ratios are presented, based on two important parameters: The total number of
categories m and the maximum category cardinality ρ. The second section based on
paper [2] presents a similar problem introducing the Optimal Sequenced Route Query
and also provides two different solution aspects. Finally the last section based on
paper[3] quotes two speed up solutions over the OSR query. The mobile application
was developed to efficiently evaluate the Iterative Doubling solution that delegates the
OSR and is described in details in section 2.3.3.

2 .1. TPQ Fast Approximation Algorithms

This section introduces four algorithms for answering TPQ queries, with various
approximation ratios in terms of m and ρ. It gives two practical, easy to implement
solutions better suited for external memory datasets, and two more theoretical in nature
algorithms that give tighter answers, better suited for main memory evaluation. These
algorithms are tested above for a practical scenario that considers an application in
road network.

This subsection defines formally the generated TPQ problem and introduces the
basic notation that will be used in the rest of the section.[1]

2.1.1 Problem Formulation

The solutions for the TPQ problem are considered on metric graphs. Given a
connected graph G(V,E) with n vertices V={v1,|,vn} and s edges E ={e1,|,en}, we
denote the cost of traversing a path v1,|,vn with c(v1,|,vn)≥0. The metric graph in this
case, satisfies the triangle inequality condition and there are not cyclic references
between its nodes. Given a set of m categories C={C1,|,Cm} (where m ≤ n) and a
mapping function π : vi → Cj that maps each vertex vi ∈	V to a category �� ∈ �, the TPQ

problem can been defined as follows: Given a set R C (R ={ R1, R2, | ,Rk}), a starting
vertex S and an ending vertex E, identify the vertex traversal T = {S, �t1, | , �tk, E} (also
called a trip) from S to E that visits at least one vertex from each category in R (i.e.
⋃ ���	
 	� =

�

��) and has the minimum possible cost c(T) (i.e., for any other feasible

trip T¨ satisfying the condition above, c(T) ≤ c(T¨)).

The total number of vertices is denoted by n, the total number of categories by m,
and the maximum cardinality of any category by ρ. For ease of exposition, it will be
assumed that R = C thus k = m . Generalizations for R	⊂ � are straightforward (as will
be discussed shortly).

2.1.2 Fast approximation algorithms

The section examines several approximation algorithms for answering the trip planning
query in main memory. For each solution are provided the approximation ratios in
terms of m and ρ. These solutions and the approximation boundaries denote the
complexity of the TPQ problem although the studied paper suggests the fast main

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 11

memory space for its results. They follow two greedy algorithms with tight
approximation ratios with respect to m.

2.1.2.1 Approximation in Terms of m

Nearest Neighbor Algorithm: The most intuitive algorithm for solving TPQ is to
form a trip by iteratively visiting the nearest neighbor of the last vertex added to the trip
from all vertices in the categories that have not been visited yet, starting from S.[1]

Algorithm 1 ANN (GC,R,S,E)

1.v = S, {1, … , m}, Ta = {S}

2.for k =1 to m do

3. v = the nearest NN(v, Ri) for all i ∈ I

4. Ta ← {v}

5. Ι ← Ι – {i}

6.end for

7.Ta ← {E}

Table 1: nearest neighbor algorithm

For simplicity, consider that a given complete graph GC, contains one edge per
vertex pair representing the cost of the shortest path in the original graph G.

Minimum Distance Algorithm: This section introduces a novel greedy algorithm,
called AMD, that achieves a much better approximation bound, in comparison with the
previous algorithm.

Algorithm 2 AMD (GC,R,S,E)

1.U =

2.for k =1 to m do

3. U ← π(v) = Ri : c(S,v) + c(v,E) is minimized

4.v = S, Ta ← {S}

5. while U ≠ do

6. v = ΝΝ(v,U)

7. Ta ← {v}

8. Remove v from U

9. end while

10. Ta ← {E}

Table 2: minimum distance algorithm

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 12

The above NN algorithm gives a 2m+1 – 1 approximation (with respect to the
optimal solution) and the MD give an m+1 or m approximate solution. Both solutions
have a tight approximation boundary that do not give the guaranteed optimal solution
we are looking for.

2.1.2.2 Approximation in Terms of ρ

This section introduces an Integer Linear Programming approach for the TPQ problem
which achieves a linear approximation bound ρ (the maximum category cardinality).
We can consider an alternative formulation of the TPQ problem with the constraint that
S=E and denote this problem as a Loop Trip Planning Query(LTPQ) problem.

Let A = (aji) be the m x (n+1) incidence matrix of G, where rows correspond to the
m categories, and columns represent the n+1 vertices (including v0 = S = E). A’s
elements are arranged such that aji = 1 if π(vi) = Rj , aji = 0 otherwise. Clearly, ρ= maxj

∑ ��

 . Each category contains at most ρ distinct vertices. Let indicator variable y(v) = 1.
If vertex v is in a given trip and 0 otherwise. Similarly, let x(e) = 1 if the edge e is in a
given trip and 0 otherwise For any S ⊂ V, let δ(S) be the edges contained in the cut (S,
V \ S).[1]

In order to get a feasible solution for LPLTPQ, we apply the randomized rounding
scheme. Randomized Rounding: For solutions obtained by LPLTPQ., set y(v) = 1_ if y(vi)

≥	
�

�
 If the trip visits vertices from the same category more than once, randomly select

one to keep in the trip and set y(vj) = 0 for the rest. [1]

The Thesis approach needs an optimal route guarantee and also it does not care
about the maximum category cardinality rather than the locality of the requested data
set.

2.1.2.3 Approximation in Terms of m and ρ

The Generalized Minimum Spanning Tree (GMST) problem, is closely related to the
TPQ problem. Also the TSP problem is closely related to the Minimum Spanning Tree
(MST) problem, where a 2-approximation algorithm can be obtained for TSP based on
MST. In similar fashion, it is expected that one can obtain an approximate algorithm for
TPQ problem, based on an approximation algorithm for GMST problem. [1,16,20]

Unlike the MST problem which is in P, GMST problem is in NP. Suppose we are
given an approximation algorithm for GMST problem, denoted AGMST . The paper
constructs an approximation algorithm for TPQ problem as shown in Algorithm 3.[1]

Algorithm 3 APPROXIMATION ALGORITHM FOR TPQ BASED ON GMST

1.Compute a β-approximation �����
���� for G rooted at S using AGMST

2.Let LT be the list of vertices visited in a pre-order tree walk of �����
����

3.Move E to the end of LT

4.Return ��
�� as the ordered list of vertices in LT

Table 3: approximation algorithm for TPQ based on GMST

2.1.3 Applications in Road Networks.

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 13

An interesting application of TPQs is on road network databases. Given a graph N
representing a road network and a separate set P representing points of interest (gas

Fig. 3. A simple road network

stations, hotels, restaurants, etc.) located at fixed coordinates on the edges of the
graph, we would like to develop appropriate index structures in order to answer
efficiently trip planning queries for visiting points of interest in P using the underlying
network N. Figure 3 shows an example road network, along with various points of
interest belonging to four different categories.[1]

The road network presentation uses techniques from [4, 5, 6]. In summary, the
adjacency list of N and set P are stored as two separate flat files indexed by B+-trees.
For that purpose, the location of any point p	∈ ! is represented as an offset from the
road network node with the smallest identifier that is incident on the edge containing p.
For example, point p4 is 1.1 units away from node n3.

Implementation of ANN Nearest neighbor queries on road networks have been
studied in [6], where a simple extension of the well known Dijkstra algorithm [7] for the
single-source shortest-path problem on weighted graphs is utilized to locate the
nearest point of interest to a given query point. As with the R-tree case,
straightforwardly, the algorithm of [6] can be utilized to incrementally locate the nearest
neighbor of the last stop added to the trip, that belongs to a category that has not been
visited yet. The algorithm starts from point S and when at least one stop from each
category has been added to the trip, the shortest path from the last discovered stop to
E is computed. In practice this demands the explicit construction of a layered graph
and finally it is prohibitive in terms of running time and space consumption. The thesis
application modifies the above approach according to the Iterative Doubling such that
no explicit construction of the layered graph is needed.

Implementation of AMD. The algorithm locates a point of interest p: ��"� ∈ 	

(given Ri) such that the distance c(S, p, E).is minimized. The search begins from S and
incrementally expands all possible paths from S to E through all points p. Whenever
such a path is computed and all other partial trips have cost smaller than the tentative
best cost, the search stops. The key idea of the algorithm is to separate partial trips
into two categories: one that contains only paths that have not discovered a point of
interest yet, and one that contains paths that have. Paths in the first category compete
to find the shortest possible route from S to any p Paths in the second category
compete to find the shortest path from their respective p to E. The overall best path is
the one that minimizes the sum of both costs.[1]

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 14

Algorithm 4 ALGORITHM MD Query FOR ROAD NETWORKS

Require: Graph N, Points of interest P, Points S,E, Category Ri

1:For each ni N: ni.cp = ni.#$% = ∞

2: PriorityQueue PQ = {S}, B = ∞, TΒ =

3: while PQ not empty do

4: T= PQ.top

5: if T.c ≥ B then return TB

6: for each node n adjacent to T.last do

7: T’ = T

8: if T’ does not contain a p then

9: if ∃" ∶ " ∈ (, ��"� = 	

 on edge (T’.last, n) then

10: T’.c +=c(T’.last,p)

11: T’ ← p , PQ ← T’

12: else

13: T’.c += c(T’.last,n), T’ ← n

14: if ni.#$% T’.c then

15: ni.#$% = T’c, PQ ← T¨

16: else

17: if edge (T’, n) contains E then

18: T’.c += c(T’.last, E), T’ ← E

19: Update B and TB accordingly

20: else

21: T’.c += c(T’.last, n), T’ ← n

22: if n.cp > T’.c then

23: n.cp = T’c, PQ ← T¨

24: endif

25: endfor

26: endwhile

 Table 4:algorithm MD query for road networks

The algorithm proceeds greedily by expanding at every step the route with the
smallest current cost. Furthermore, in order to be able to prune trips that are not

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 15

promising the algorithm maintains two partial best costs per node n ∈ *. Cost n.cp
(ni.#$%) represents the partial cost of the best trip that passes through this node and
that has (has not) discovered an interesting point yet. After all points(one from each
category Ri ∈
) have been discovered by iteratively calling this algorithm, an
approximate trip for TPQ can be produced. It is also possible to design an incremental
algorithm that discovers all points from categories in R concurrently.[1]

The developed Thesis application takes advantage of the already constructed
Google graphs and the location of POIs along with their distances, and finds the
shortest path with the minimum cost without the need to maintain the intermediate non-
important point/nodes of the underline network. These intermediate points-conjunctions
are a black box to the thesis algorithm, reducing this way the computational cost and
the DB access. So the above algorithm does not consist a feasible solution on a mobile
device.

2.2.The Optimal Sequenced Route Query

An unexplored form of NN queries named optimal sequenced route (OSR) query
primarily in metric spaces such as road networks are my thesis main concern. The
OSR strives to find a route of minimum length starting from a given source location and
passing through a number of typed locations in a particular order imposed by the user.
The PNE algorithm that is proposed in this study, progressively issues NN queries on
different point types to construct the optimal route for the OSR query. The proposed
algorithm is quite close to the one that finally was implemented in the android
application that thesis presents.

2.2.1 Introduction – Motivation

Suppose we are planning a Saturday trip around the town as follows: first we intend to
visit a shopping center in the afternoon to check the season’s new arrivals, then we
plan to dine in an restaurant in early evening, and finally, we would like to watch a
specific movie at late night. Naturally, we intend to drive the minimum overall distance
to these destinations. That is, we need to find the locations of the shopping center gi,
the restaurant lj, and the theater pk that shows our movie, where traveling between
these locations in the given order would result in the shortest travel distance (or time).
Note that in this example, a time constraint enforces the order in which these
destinations should be visited; we usually do not have dinner in the afternoon, or go for
shopping at late night.

This type of queries where the order of points to be visited is given and fixed, are
known as the optimal sequenced route queries or OSR for short. Figure 4, shows that
the OSR query cannot be optimally answered by simply performing a series of
independent nearest neighbor searches from different locations. The figure 4 shows a
network of equally sized connected square cells, three different types of point sets
shown by white, black and gray circles representing shopping centers, restaurants, and
theaters, respectively, and a starting point s (shown by △).

A greedy approach to solve OSR is to first locate the closest shopping center to p,
g2, then find the closest restaurant to g2, l2, and finally find the closest theater to l2,
p2.Assuming the length of each edge of a cell is 1 unit, the total length of the route
found by this greedy approach, (s, g2, l2, p2), shown by dotted lines in the figure, is 15
units. However, the route (s, g1, l1, p1) (shown with solid lines in the figure) with the
length of 12 units is the optimum answer to our query. Note that g1 is not the closest

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 16

shopping center to p and l1 is actually the farthest restaurant to g1. Hence, the
optimum route for an OSR query can be significantly different from the one found by
the greedy approach.[2]

Fig. 4. A network with tree different types of point sets

2.2.2 Problem definition

The terms and notations that appears throughout this section, formally define the OSR
query, and discuss the unique properties of OSR that are utilized in the suggested
solutions. In [1] one can find a table that summarizes the set of notations.

Let U1,U2, . . . ,Un be n sets, each containing points in a d-dimensional space Rd,
and D(・, ・) be a distance metric defined in Rd where D(・, ・) obeys the triangular
inequality. To illustrate, in the example of Fig. 2, U1, U2, and U3 are the sets of black,
white, and gray points, representing restaurants, shopping centers and theaters,
respectively.[2]

Assume that we are given a sequence M = (M1,M2, . . . , Mm). For a given starting
point p in Rd and the sequence M, the OSR query, Q(p, M), is defined as finding a
sequenced route R = (P1, . . . ,Pm) that follows M where the value of the following
function L is minimum over all the sequenced routes that follow M:

 L(p, R) = D(p,P1) + L(R)

Note that L(p, R) is in fact the length of route Rp =p ⊕R. Q(p, M) = (P1,P2,. . .
,Pm) denotes the optimal SR, the answer to the OSR query Q. Without loss of
generality, this optimal route is unique for given p and M.1 For example in the above
figure 2 we can consider (U1,U2,U3) = (black, white, gray), M = (2, 1, 3), and D is the
Manhattan distance, the answer to the OSR query is Q(p, M) = (g1, l1, p1). A candidate
SR is used to refer to all sequenced routes that follow sequence M. [2]

2.2.3 The Dijkstra based solution

This section studies a different naive approach which slightly improves the brute-force
approach. We are given an OSR query with a starting point p, a sequence M, and point
sets {UM1 , . . . ,UMm }. We construct a weighted directed graph G where the set V

=	∪.−1
1 UMi∪{p} are the vertices of G and its edges are generated as follows. The

vertex corresponding to p is connected to all the vertices in point set
UM1.Subsequently, each vertex corresponding to a point x in UMi is connected to all

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 17

the vertices corresponding to the points in UMi+1 ,where 1 ≤ i < m − 1. Figure 5
illustrates an example of such graph. As shown in the figure 5, the graph G is a k-
bipartite graph where k = m+1. The weight assigned to each edge of G is the distance
between the two points corresponding to its two end-vertices.

This graph is showing in fact all possible candidate sequenced routes (candidate
SRs) for the given M and the set of UMi ’s. To be precise, it shows all the routes Rp = p
⊕ R where R is a candidate SR. By definition, the optimal route for the given OSR
query is the candidate SR, R, for which Rp has the minimum length. Considering graph
G, we notice that the OSR problem can be simply considered as finding the shortest
paths (i.e., with minimum weight) from p to each of the vertices that correspond to the
points in UMm (i.e., the last level of points in Fig. 5), and then returning the path with
the shortest length as the optimal route. This can be achieved by performing the
Dijkstra’s algorithm on graph G.[2]

Fig. 5. Weighted directed graph G for sequence M

There are two drawbacks with this solution. First, the graph G has |E|=|UM1|+
∑2$�
�� |UMi|×|UMi+1| directed edges which is a large number considering the usually
large cardinality of the sets Ui. For instance, for a real world dataset with 40,000 points
and |M| = 3, a graph G has 124 million edges. The time complexity of the Dijkstra’s
classic algorithm to find the shortest path between two nodes in graph G is O(|E| log
|V|). Hence, the complexity of this naive algorithm is O(|UMm||E| log |V|). Second, this
huge graph must be built and kept in main memory. Although there exist versions of
the Dijkstra’s algorithm that are adjusted to use external memory [8], but they result in
so much of overhead which makes them hard to employ for OSR queries. This renders
the classic Dijkstra’s algorithm to answer OSR queries in real-time impractical. In order
to improve the performance of this naïve Dijkstra-based solution, we can issue a range
query around the starting point p and only select the points that are closer to p than
L(p, Rg(p,M))[2]. This is because the length of any route R which includes a point
outside this range is greater than that of the greedy route Rg(p, M). Therefore, we build
the graph G using only the points within the range instead of all the points. This is the
enhanced version of the Dijkstra’s algorithm (EDJ).

2.2.4 OSR Solution in metric spaces

Proposed solutions for OSR queries such as EDJ or LORD, although they are efficient
in vector spaces, are impractical or inefficient for a sequence M in a metric space (road
networks). Even though both EDJ and LORD can be applied to both vector and metric
spaces, their extensive usage of the D(・, ・) function renders them inefficient for
metric spaces where the distance metric is usually a computationally complex function.

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 18

When applied on road networks, both EDJ and LORD require significant number of
distance computations, each of them corresponds to finding a shortest path in the road
network. This makes EDJ and LORD infeasible for road networks. Likewise, R-LORD
can only be applied to vector spaces since it is based on utilizing R-tree index
structure.[2]

In my android application the road network (or general spatial networks) as also
happens here are modeled as weighted graphs where the intersections are
represented by nodes of the graph and roads are represented by the edges connecting
the nodes. The weights can be the distances of the nodes or they can be the time it
takes to travel between the nodes (representing shortest times). The distance between
any two points on the nodes or edges of the graph is the length of the shortest path
connecting them via the graph edges.

Although the triangle inequality is the only requirement of the model as proposed
to the current algorithm, there is the assumption that the graph model of the road
network is undirected so the distance function is symmetric.

PNE Algorithm

Function NN(point p, dataset Ui)

returns the closest point to p in Ui

Function NextNN(point p, point n, dataset Ui)

returns q ≠ n, the next closest point to p in Ui. s.t.

D(q,p) ≥ D(n,p);

Algorithm PNE(point p, sequence M)

01. MinHeap H = {};

02. q = NN(p, UM1);

03.add ((q)),D(p,q)) to H;

04.do {

05. remove route PSR from H; //shortest route

06. k = |PSR|;

07. if(k = m) then

08. return PSR;

09. else

10. Pk+1 = NN(Pk+1, UMk+1);

11. PSR΄ = (P1,|,Pk, Pk+1);

12. add (PSR΄, L(p, PSR΄)) to H;

13. if(k > 1) then

14. Pk΄ = NextNN(Pk-1, Pk, UMk);

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 19

15. PSR΄ = (P1,|,Pk-1,Pk);

16. else

17. Pk΄=NextNN(p, P1, UM1);

18. PSR΄=(Pk΄);

19. add(PSR΄,L(p, PSR΄)) to H;

20.} while |PSR| < m;

Table. 5: Pseudo-code of the PNE algorithm for a metric space

Progressive neighbor exploration (PNE), for OSR queries in metric spaces for
arbitrary values of M, uses efficient fast nearest neighbor algorithms such as INE [10]
or VN3 [9] utilized for road network databases to replace the extensive use of distance
computation operations in LORD. It utilizes the progressiveness of these algorithms to
efficiently build candidate sequenced routes and refine them. Similar to EDJ (and
LORD), PNE addresses OSR in both vector and metric spaces. However, it is suitable
for the spaces where the computation of the distance metric is very expensive. Notice
that PNE uses the same road network model specified by its underlying nearest
neighbor algorithm.[2]

Table 5 shows the pseudo-code of the PNE algorithm. The idea behind PNE is to
incrementally create the set of candidate routes for Q(p,M) in the same sequence as M,
i.e., from p toward UMm. This is achieved through an iterative process in which we
start by examining the nearest neighbor to p in UM1 , generating partial SR from p to
this neighbor, and storing the candidate route in a heap based on its length. At each
subsequent iteration of PNE, a partial SR (e.g., PSR = (P1 ,P2 , . . . ,P|PSR|)) from top
of the heap is fetched and examined as follows[2]:

1. If |PSR| = m, meaning that the number of nodes in the partial SR is equal
to the number of items in M and hence PSR is a candidate SR that follows
M, the PSR is selected as the optimal route for Q(p, M) since it also has
the shortest length.

2. If |PSR| < m:

(a) First the last point in PSR, P|PSR|, (which belongs to UM|PSR|) is
extracted and its next nearest neighbor in UM|PSR|+1 , P|PSR|+1 , is
found. This will guarantee that (a) the sequence of the points in
PSR always follows sequence specified in M, and (b) the points
that are closer to P|PSR| and hence may potentially generate
smaller routes are examined first. The fetched PSR is then
updated to include P|PSR|+1 and is put back in to the heap.

(b) We then find the next nearest neighbor in UM|PSR| to P|PSR|−1 , P’
|PSR| , generate a new partial SR, PSR’ = (P1 ,P2 ,|,P|PSR|−1
,P’ |PSR|), and place the new route in to the heap. This is
because once the point P|PSR| , which we can assume is the k-th
nearest point in UM|PSR| to P|PSR|−1 , is chosen in step (a) above,
the (k + 1)-st nearest point in UM|PSR| to P|PSR|−1 (e.g., P’ |PSR|) is
the only next point that may generate a shorter route and
hence, must be examined. If |PSR| = 1, we find the next nearest
point in UM1 to p.

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 20

Recall that the OSR query was to drive toward a shopping center, a restaurant,
and then a theater (i.e., M = (2, 1, 3) and |M| = m = 3). Table 6 depicts the values
stored in the heap in each step of the algorithm. In step 1, the first nearest si to p, s2, is
found and the first partial SR along with its distance, (s2 : 2), is generated and placed
in to the heap. In step 2, first (s2 : 2) is fetched from the heap. Since for this route
|PSR| < 3, the above steps 2(a) and 2(b) are performed. More specifically, first the next
nearest ri to s2, r2, is found; the partial SR is updated by adding r2 to it; and is placed
back into the heap. Second, the next nearest si to p, s1, is found and is placed in to the
heap. Similarly, this process is repeated until the route on top of the heap follows the
sequence M(i.e., (s1, r1, t1) in step 13). Note that we only keep one candidate SR(i.e.,
route with m points) in the heap. That is, if during step 2(a) a route with m points is
generated, it is only added to the heap if there is no other candidate SR with a shorter
length in the heap. Moreover, after a candidate SR is added to the heap, any other SR
with longer length will be discarded. For example, in step 6, adding the route (s2, r3, t3)
with the length of 14 to the heap will result in discarding the route (s2, r2, t2) with the
length of 15 from the heap (crossed out in the figure). However, by keeping k routes in
the heap and continuing the algorithm until k routes are fetched from the heap, we can
easily address a variation of OSR where k routes with the minimum total distances are
requested.[2]

 The only requirement for PNE is a nearest neighbor approach that can
progressively generate the neighbors (i.e., a distance browsing algorithm [11]). Hence,
by employing an approach similar to INE [10] or our VN3 [9], which are explicitly
designed for metric spaces, PNE can address OSR queries in metric spaces. In theory,
PNE can work for vector spaces in a similar way; however, it is inefficient for these
spaces where distance computation is not expensive. The reason is that PNE explores
the candidate routes from the starting point which may result in an exhaustive search.
Instead, R-LORD optimizes this search by building the routes in the reverse sequence
utilizing the R-tree index structure.[2]

Step Heap contents (partial candidate route R : L(p,R))

1. (s2 : 2)

2. (s1 : 3), (s2, r2 : 4)

3. (s2, r2 : 4), (s3 : 4), (s1, r2 : 6)

4. (s3 : 4), (s2, r3 : 5), (s1, r2 : 6), (s2, r2, t2 : 15)

5. (s2, r3 : 5), (s4 : 5), (s1, r2 : 6), (s3, r2 : 6) (s2, r2, t2 : 15)

6. (s4 : 5), (s1, r2 : 6), (s3, r2 : 6), (s2, r1 : 12) (s2, r3, t3 : 14), (s2, r2, t2 : 15)

7. (s1, r2 : 6), (s3, r2 : 6), (s4, r3 : 11), (s2, r1 : 12) (s2, r3, t3 : 14)

8. (s3, r2 : 6), (s1, r3 : 9), (s4, r3 : 11), (s2, r1 : 12) (s2, r3, t3 : 14), (s1, r2, t2 : 17)

9. (s1, r3 : 9), (s3, r3 : 9), (s4, r3 : 11), (s2, r1 : 12) (s2, r3, t3 : 14),(s3,r2,t2:17)

10. (s3, r3 : 9), (s1, r1 : 10), (s4, r3 : 11), (s2, r1 : 12) (s2, r3, t3 : 14), (s1, r3, t3 : 18)

11. (s1, r1 : 10), (s4, r3 : 11), (s2, r1 : 12), (s3, r1 : 12) (s2, r3, t3 : 14), (s3, r3, t3 : 18)

12. (s4, r3 : 11), (s2, r1 : 12), (s3, r1 : 12), (s1, r1, t1 : 12) (s2, r3, t3 : 14)

13. (s2, r1 : 12), (s3, r1 : 12), (s1, r1, t1 : 12) (s4, r3, t3 : 20)

Table 6. PNE for the example of Table 5

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 21

2.3. Speeding up SR Queries

The proposed solution of this study is based on the combination of a distance sensitive
doubling technique and contraction hierarchies and is in orders of magnitudes faster
than either a naive approach of previous results and produces the answers in an
instant for realistic queries without compromising guaranteed optimality. This type of
route query becomes feasible even on mobile devices .[3]

This last proposed algorithms and precisely the “Iterative Doubling” was chosen
for the purpose of the academic Thesis in order to implement an android application
that computes the optimal route from a source to a destination, through a set of Pois
that belong to separate sequenced categories.

2.3.1 Introduction

Given a graph G(V,E) with edge costs w ⊂ 	ℝ and a collection C = {C1,C2, . . . ,Ck} of
facilities with Ci belongs to V . For example, G could be the road network of Athens, w
the travel times on the road segments, C1 the locations of all gas stations in the
network, C2 the locations of all ATMs, etc.

A query is specified by a source s and a target t as well as a sequence of facility
classes (p1, p2, . . . , pl). We are interested in finding the shortest path from s to t in G
visiting a facility in Cp1 followed by a facility in Cp2 . . ., followed by a facility in Cp3. This
type of query is referred to as already mentioned in the previous chapters sequenced
route query . Answering such a query allows us to find for example the fastest route
home from work visiting an ATM, a gas station and a post-office. The order in which the
facilities have to be visited is fixed. Dropping the restriction on the order essentially
turns this problem (for non constant l) into the NP-hard travelling salesperson problem
(TSP). On the other hand, in most practical scenarios, l is rather small, and as our
query procedure for fixed order turns out to be very efficient, a brute force exploration
of all possible orders is actually possible.[3]

This study proposes two speed-up techniques for answering sequenced route
queries. The first is based on a general preprocessing technique for ordinary shortest
path queries called contraction hierarchy [12] which can be extended to deal with
sequenced route queries. The second technique that the implemented android
application adapts, makes use of the fact that likely most sequenced route queries are
more of a local kind (doing things on the way back home from work rather than on a
cross-country trip), and results in a certain distance sensitivity. The algorithms – in
contrast to [11] always compute the optimum solution and do so faster by orders of
magnitudes being able to deal with network sizes that could not be processed before.
This paper claims the fast query times for sequenced route queries also give answers
to queries without fixed order as long as the number of facilities to be visited remains
moderate (as seems to be the case in many real-world scenarios).[3]

2.3.2 Summing up of the previous related work.

Sequenced route queries have appeared in several contexts in this essay. In section
2.2.3, the authors consider sequenced route queries in Euclidean space and describe
an approach called the EDJ algorithm which creates for a sequenced route query (s, t,
p1, . . . , pl) a directed, acyclic layered graph consisting of l+2 layers 0, 1, . . . , l+1.
Layer 0 and l+1 consist only of the source and the target respectively. The nodes of
layer i correspond to all facilities of type pi. Between layers i and i+1, we have a

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 22

complete bipartite graph, where the (directed) edge from node v(i) in layer i to node
w(i+1) in layer 1 has cost of and corresponds to the shortest path from v to w in G (in
[3] this is simply the Euclidean distance). In Figure 6 we see such a layered graph for a
query (s, t, p1, p2, p3) (the nodes in layer 1 could correspond to locations of ATMs,
layer 2 nodes to gas stations, and layer 3 nodes to grocery stores). Once this layered
graph has been constructed, running Dijkstra from s or even simpler, relaxing the
edges from top to bottom yields the desired optimal route. In practice however, the
construction of such a layered graph is prohibitive, both in terms of running time as well
as of space consumption. Remember that we are dealing with thousands of facilities in
one single class. So in [2] the authors propose a new algorithm – LORD – which
avoids the explicit construction of the complete layered graph by an adaptive threshold
technique.

LORD is refined to R-LORD using a range query data structure for nearest
neighbor queries to more efficiently prune the search space. The case where the
underlying space is not the Euclidean space but a road network is discussed in section
2.2.4 but no experimental results are reported in the paper – probably because
computing the (now shortest path) distances between nodes of consecutive layers is
very costly, even though the pruning by (R-)LORD reduces the number of such costly
computations.[3]

Fig. 6. EDJ layer approach: The enhanced Dijkstra based approach builds an explicit layered graph to cover all inter

layer distances. Each edge (Cli ,Cki+1) represents the shortest path from Cli to Cki+1 in the underlying road network
and is weighted with d(Cli ,Cki+1). A single Dijkstra computation from s recovers the optimal s − t route.

These following sections introduce two main tools for speeding-up sequenced
route queries. While both techniques can be employed independently, the combination
of both yields the best speed-up compared to the naive EDJ approach. The first speed-
up technique – iterative doubling – works well, if the actual result path is relatively short
– probably the most frequent type of query result in practice –, avoiding the exploration
of facilities that are far away from source and target. [3]

 The second technique – contraction hierarchies (CH) – has been developed in
the context of fast point-to-point shortest path queries [12]. The proposed algorithm in
section 2.3.4, extends CH in a natural way to speed-up the computation of inter-layer
distances. This technique applies equally well for local and non-local queries. Both
speed-up techniques do not compromise optimality of the result.

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 23

2.3.3 Iterative Doubling

The algorithm modifies the EDJ algorithm as follows:

• Run Dijkstra from s to compute distances d0 to all nodes C1

• Run a single Dijkstra starting at all nodes in C1 where each node v ⊂ C1 has
initial distance value d0(v) until all nodes in C2 are settled. This computes
shortest path distances d1 from s via at least one node in C1.

• Run a single Dijkstra starting at all nodes in C2 where each node v ⊂ C2 has
initial distance value d1(v) until all nodes in C3 are settled. This computes
shortest path distances d2 from s via at least one node in C1 and one node in C2

 |

• Run a single Dijkstra starting at all nodes in CL where each node v ⊂ CL has
initial distance value dL-1(v) until the target is settled. This actually computes the
shortest path from via at least one node in C1, at least one node in C2, . . . , at
least one node in CL to t.

Clearly, the running time of this approach is essentially that of performing L
Dijkstra runs on the graph—which is already a considerable improvement to EDJ which
essentially required ∑ |Ci|	 many Dijkstra computations to compute the weights of all
inter-layer edges.[3]

Although there is still an obvious source of inefficiency here. Realistic sequenced
route queries are expected to be mostly local (typical commuter distances are 40km to
60km at most which translates to 60 to 90 minutes). It seems very inefficient to explore
facilities that are hundreds of kilometers (and hours of driving) away.

If we assume now that we know the length (duration) of the optimal path from s to t
visiting facilities in the given order; let that length be D. We could stop each (!) Dijkstra
computation above once we reach distance D and still guarantee that we find the
optimal path since no subpath of the optimal path can have length more than D. Note
that in case the optimal path is rather short – let’s say it takes 70 to 100 minutes – this
will drastically reduce the search space of every single Dijkstra. Unfortunately we do
not know the optimal route’s exact length D a priori, this is where the iterative doubling
part comes into play. We start with some estimation/lower bound D΄ for D which can be
pretty small (let’s say 10 minutes). We use the above sequence of computations except
for one important difference: we abort each Dijkstra run once we have settled all nodes
at distance at most D΄.[3]

Two things can happen: a) the computation does not reach t – so our estimation D΄,
was too small, we double D΄ and repeat. b) the computation does reach t – so we have
a valid path from s to visiting facilities on the way in the right order on a path of
distance D΄΄. It is not hard to see that this solution is optimal.

2.3.4 CH enhanced Iterative Layer Search

Contraction hierarchies ([12]) are a preprocessing scheme that allow for the faster
answering of shortest path queries in road networks. The key component of the
preprocessing phase is the iterative removal/contraction of nodes in order of increasing
’importance’ (nodes at dead-ends or degree-two nodes are removed first, important
junctions are contracted last) while preserving the shortest path distances between the
remaining nodes. This is achieved by adding a so called shortcut (u,w) between any
pair of neighbor nodes u,w of v, if the shortest path from u to w is uvw. The shortcut is

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 24

created with cost equal to the sum of the costs of edges (u, v) and (v,w). Having
removed all nodes but one, all constructed shortcuts are added to the original graph
and the nodes are labeled 1 . . . n according to the contraction order. The modified
graph has the interesting property that for any pair s, t of nodes, there exists a
representation of the shortest path from s to t which can be divided into two parts, one
part starting at s and only following edges to nodes with larger label followed by a part
which only follows edges to nodes with smaller label. This special property of the
augmented graph (original edges plus shortcuts) is then exploited in the query phase
by a bidirectional Dijkstra starting at source and target simultaneously.[3] This leads to
query times for s-t queries which are about 1000 times faster than ordinary Dijkstra due
to the drastically reduced search space, see [12].

 To extend this idea to our problem of speeding-up inter-layer Dijkstra

computations we have to go a bit more into detail. An edge e = (a, b) E is called an
upward edge iff a < b, that is, the node ID or label (after adding shortcuts and

elabelling) of a is smaller than that of b. A path p = (e1, e2, . . . , ek) with ei E is called

upward path iff all ei p are upward edges. We define downward edge and downward
path accordingly. Using these definitions we define 7΄�,9΄ to be the union of all upward
paths starting in v and 7΄	,9΄ to be the union of all downward paths ending in v. So the
crucial property of a shortest s − t path in a CH-enhanced graph is that it has the form

(s, . . . , u, . . . , t) where (s, . . . , u) 7΄: and (u, . . . , t)T 7΄	΄.[3]

An edge e = (a, b) ⊂ E is called an upward edge iff a < b, that is, the node ID or
label (after adding shortcuts and elabelling) of a is smaller than that of b. A path p = (e1,
e2, . . . , ek) with ei ⊂ E is called upward path iff all ei ⊂ p are upward edges. Also define
downward edge and downward path accordingly. Using these definitions we define
7΄�,9΄ to be the union of all upward paths starting in v and 7΄	,9΄ to be the union of all
downward paths ending in v. So the crucial property of a shortest s − t path in a CH-
enhanced graph is that it has the form (s, . . . , u, . . . , t) where (s, . . . , u) ⊂ 7΄: and (u,
. . . , t)T ⊂ 7΄	΄.

 CH also answers a simple s − t shortest path query by performing two interleaved
Dijkstra computations, one starting in s, the other starting in t. The former one only
considers edges in 7΄: , the latter only edges in 7΄	΄.When both Dijkstra computations
settle a node v ⊂(7΄: ⊂	7΄) d(s, v) + d(v, t) is an upper bound for d(s, t) and the
shortest path is realized by min (7΄: ⊂	7΄) (d(s, v) + d(v, t)). This method can be
extended to one to many shortest path computations where the task is to find all
shortest paths from a node s ⊂ V to a set of nodes T ⊂ V. The conceptually easiest
method is to mark all edges in the downward graph for each t ⊂ T and use and Dijkstra
computation from s which considers all edges in (7΄: and all marked edges.[3]

The same methodology can be even further extended by the following
preprocessing step. For each facility/POI class we construct the downward graph for
this facility class by taking the union of the downward graphs of all nodes in that facility
class. These downward graphs can be represented by a one bit marker for each edge
and facility/POI class indicating whether the edge belongs to the respective downward
graph. Then, during query processing, the ordinary inter-layer Dijkstra is replaced by a
Dijkstra operating on the union of the upward graphs of the settled nodes of the current
facility class and the downward graph for the next facility class. This speed-up
technique does rely on locality of the queries but exhibits a considerable speed-up in all
cases.[3]

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 25

2.4 Conclusion

During this literature review I have considered the problem of answering sequenced
route queries and developed an efficient algorithm programmatically that could take
advantage of the Iterative Doubling technique that according to the paper [3] allows
the exact and fast computation of realistic queries involving common tasks/points of
interest in a local area range. The focus in this literature review has been the case
where the order in which the points of interests are to be visited is fixed. The very fast
query times for fixed order queries allows for a straightforward treatment of unordered
or only partially ordered queries by simply enumerating all possible orderings. Another
interesting topic for future research is the transition from fixed edge costs to
parameterized ones. This extension seems natural under the assumption that the
”cost“ of an edge could be the required travel time or the battery consumption
necessary to cross this road segment.

 The proposed solution based on the distance sensitive doubling technique is in
orders of magnitudes faster than either a naive approach or previous PNE algorithm
and the mobile application would try to produce the answers in an instant for realistic
queries without compromising guaranteed optimality developing and solve efficiently
the OSR problem. We could expect that fast query times, for such a route query would
become feasible on the mobile devices.

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 26

3. Implementation of TPQ in Android

The basic concern of the thesis project is the development of an Android application
that is able to solve the SQR problem “Getting things done in the way home” by
implementing Iterative Doubling (section 2.3.3) algorithm using Java (for android)
technology and an embedded (sqlite) database. In order for a user that wants to test
the application and view the results a friendly User Interface (UI) implemented as part
of the MainActivity (thread). Another activity that the main activity triggers to execute
the algorithm is the TraceRouteActivity. Both basic threads and some basic assets and
techniques have been described in details in the following sections.

3.1 UML Class Diagram

Figure 7 shows the class diagram of the android java application that I developed for
my master Thesis. In software engineering, a class diagram in the Unified Modeling
Language (UML) is a type of static structure diagram that describes the structure of a
system by showing the system's classes, their attributes, operations (or methods), and
the relationships among objects. The goal is to show only those attributes and
operations that are useful for the particular diagram.

As it is obvious in the UML Diagram (fig. 7) the basic java class where the
algorithm is running and all the calculations are taking place is the TraceRouteActivity.
More precisely this activity class is responsible to display the GoogleMap (mMap) and
to design the computed optimal route. It associates all the modules that are essential
for the computations. In few words it is the basic Controller of the application. An
AsyncTask class that is executed in a parallel tread is triggered by TraceRouteActivity
in order to load the data and compute the optimal route.

Static data that concern the POIs are kept in xml format files in the Asset directory
of the mobile device. As soon as the user sets up the application and triggers the
Activity the data are serialized to aggregate as (uml in figure 7) three maximum PoiSet
class objects, one for each of the three Categories of Interest by instantiating the xml
elements to Poi Class objects in main memory for quick access. The association
relationship in the UML diagram between Poi and Node Object denotes that I construct
a node for each Poi inside the distance range and then added to the BipGraph as it is
shown by the aggregation relationship.

Other essential module classes are those classes that extend the XMLParser
class (figure 7). DMParser provides the driving distance between two nodes if it is not
already saved in DB. The Connection Object is the DAO object that represents a
connection and it is handle by the DatabaseHandler Object that is responsible for the
CRUD operations in DB.

Finally the RouteTask class returns with the Waypoints Object that optimize the
route and then constructs the request to the Google Directions Api for the routing
information in JSON format. The GoogleParser serialize this information to instantiate
the Google map and display the route. Further information about UML class diagram
and the objects that represents refer to [14].

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 27

Fig.7: Uml class diagram

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 28

3.2 Basic Project Modules

3.2.1 MainActivity

MainActivity is the entry part of the developed Android application and consists of a
Linear Layout with two EditText elements where the user inputs the start and end
points of the route, a button and three check boxes where the user decides about the
Categories of Pois that he wants to pass through while travelling. Finally when the
button is clicked, the other Activity TraceRouteActivity is triggered. MainActivity’s
mainly purpose is to collect and provide the following information to the basic controller
module (RouteTask) that processes the algorithm and displays the result:

• MainActivity.SOURCE (the texted source point)

• MainActivity.DESTINATION (the texteddestination point)

• MainActivity.BANKS (Boolean isChecked BANKS Poi Category)

• MainActivity.RESTAURANTS (Boolean isChecked Poi Category)

• MainActivity.HOTELS (Boolean isChecked Poi Category)

The content layout of MainActivity is shown in the below screenshot (figure
8).Screenshot in figure 9 shows the layout of TraceRouteActivity.

3.2.2 TraceRouteActivity

TraceRouteActivity’s contents Layout is the Google map (fig. 8) where the optimal
route is depicted after the successful finish of the algorithm. This Activity imports the
main modules/classes that are very structural to the application and then calls the
RouteTask<AsyncTask> that is an Asynchronous Threat to execute the algorithm
without interrupting the main UI thread that displays the map.

TraceRouteActivity holds the most important static variables-objects such as the
GoogleMap fragment object, the setConnections function (see uml in figure 7) that is
the basic module that takes part during Dijkstra computations where we decide to set
the weights of nodes, and finally provides the addPolyline and setUpMap modules
in the onPostExecute method of the AsyncTask to draw the optimal route with the
intermediate POIs on the map.

Once the these global scope variables are set then the activity calls a new thread
that runs asynchronously in parallel, the RouteTask that utilize the “Iterative Doubling”
algorithm in order to compute the optimal Path. The actions that manipulate the data
and result the POIs that optimize our route, are taking part in the
doInBackground(String|) process as it is shown in the uml interaction diagram below
(fig. 10).

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 29

Fig.8:initial entry screen Fig.9: Loading|

The steps before the algorithm, that are part of the preprocessing are the following:

• Call the The Google Geocoding API [15] to get the geographic
coordinates of the source and destination points. They are necessary to
the next request to the distance matrix api.

• Read and load to the main memory the xml files that include the
points of interest of each category according to the user choice

• Initialize the DatabaseHandler object so we can have access to the
DB.

• Initialize the graph with the source and destination

After the above steps the application sets all the relative nodes and their connections
calling the setConnections method that computes the distances between nodes, saves
and constructs the Distance Matrix Table in the DB if it is not already made and
computes the Dijkstra’s shortest path as the algorithm implies. The key feature here is

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 30

that the activity holds a static variable called estimated_distance with initial value
10000m (10km) that is the initial threshold that the algorithm uses to exclude nodes
from Graph that are far away. The user can also choose to initialize himself the
estimated_distance from the settings of the application. If this threshold fails then it is
doubled until the graph has been build and the optimal route has been found.

The SQLite Database is not preinstalled. There is a preprocessing stage where
the distances of the edges of the graph are cached while calling the Google Distance
Matrix Api [16] that returns the driving distance (or time) between the sequenced
candidate optimal point couples. But for the academic purpose and to be closely to the
experimental results of chosen algorithm, we assume that the DB has already been
built and the required distances are cached. This is essential because of the Google
Api limitations in usage by the academic purpose of the application. If a user has
already ran a route, then one could easily fasten the time to retrieve the route by
choosing the “Use cache” options from the application “Settings” menu.

The DB schema that caches the distances of an already visited node for quick
access in the next use, consists from only one simple table that has four columns. A
primary key, the node (a string label) from where a “directed” edge starts, the node (a
string label) where ends and the driving distance between them. The “directed” term it
has not a literal meaning, but is used to determine the traversal order of nodes during
Dijkstra’s calculations. A combinatorial index between these two nodes has been
created.

SQLite is an Open Source database. SQLite supports standard relational
database features like SQL syntax, transactions and prepared statements. The
database requires limited memory at runtime (approx. 250 KB) which makes it a good
candidate from being embedded into application runtime. It supports the data
types TEXT (similar to String in Java), INTEGER (similar to long in Java) and
REAL (similar to double in Java). All other types must be converted into one of these
fields before getting saved in the database.

SQLite is embedded into every Android device. Using an SQLite database in
Android does not require a setup procedure or administration of the database. You only
have to define the SQL statements for creating and updating the database. Afterwards
the database is automatically managed for you by the Android platform.

After the optimal route has been computed the Pois from each Category of interest
among with the source and destination points are used as parameters to the final
Google Directions Api request. We parse the response and finally in the
onPostExecute method the optimal route is drawn in the map (see chapter 4).

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 31

Fig.10: asynk task uml interaction diagram

3.3 Essential modules

The class in Fig. 11 is the model of the layered graph that covers all inner layer
distances as it was firstly imposed by the EDJ layer approach. The android application
permits maximum tree categories of Pois with particular order imposed by the type of
locations. The graph is constructed dynamically and the POIs that are located over the
search range of the application algorithm are excluded from the graph.

The Node Class is essential to implement the Dijkstra’s algorithm as it models the
basic node element and provides proper Setters and Getters methods. Node objects
update their weights during the algorithm when a new minimum distance from the
source node is validated. They also keep a reference to the node that precedes with
the minimum distance. The Object’s equal function is overwritten to cover the
comparison needs between nodes. The Bipartite Graph Class as it is already shown in
the UML is an aggregation of Node class instances.

The POI objects and their geographic coordinates along with other relative
metadata are initially stored in xml files each one represents a Poi Category. In order to
utilize proper object in main memory and access all these information I took advantage
of the Simple library. Simple is a high performance XML serialization and configuration

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 32

framework for Java. Its goal is to provide an XML framework that enables rapid
development of XML configuration and communication systems. This framework aids
the development of XML systems with minimal effort and reduced errors. It offers full
object serialization and deserialization, maintaining each reference encountered. In
essence it is similar to C# XML serialization for the Java platform, but offers additional
features for interception and manipulation. [16]

The Iterative Doubling algorithmic calculations are implemented during the
doInBackground process (figure 10) and finally result to the construction of a Bipartite
Graph with all the nodes marked as visited according to the Dijkstra run. The optimal
path is taken backward starting from the end node and exploring the previous nodes
within the shortest path. A pseudo code of the specific process is shown in table 6.

Pseudo Code of ‘Iterative Doubling’ implementation

Function setConnection(node one, node two, threshold){

 If one.weight +getDistance(one,two) > threshold

 If two.weight > one.weight +getDistance(one,two)

 two.updateWeight();

 two.setPrevious(one);

 one.addEdge(two);

 return true

 Else return false;

 }

 Bipartite graph;

 graph.add(source);

 Repeat

 Foreach (Node node of first_layer)

 If setConnection(source, node)

 graph.add(node);

 Foreach (Node node of other_layers)

 If setConnection(upperlayer_node, node)

 graph.add(node);

 Foreach(Node node of last_layer)

 If setConnection(node, destination)

 graph.add(destination);

 If graph.getDestination == NULL

 threshold = thresholdx2;

 Until (graph.getDestination !== NULL)

 Return the nodes of optimal route in reverse order starting from Destination
node;

 Table 11. Pseudo code of implemented algorithm

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 33

Poi Class and PoiSet Class are properly annotated to show the power of the
Simple library. The application uses the following annotations: @Root, @Attribute and
@ElementList making the XML serialization quite easy process. Each annotation
contains a name attribute, which can be given a string providing the name of the XML
attribute or element. This ensures that should the object have unusable field or method
names they can be overridden, also if your code is obfuscated explicit naming is the
only reliable way to serialize and deserialize objects consistently. @ElementList
annotation supports common relationships. This allows an annotated schema class to
be used as an entry to a Java collection object that in my case I use an ArrayList that
holds the Poi Object of each PoiSet instance.

The GoogleParser, GeoCodeParser and DMParer classes are responsible to
consume JSON strings and to generate the corresponding JSONObjects that are the
inputs of the main modules that are already have been mentioned.

3.4 Assets and permissions

The POIs are initially kept in xml format files in the application asset directory. They are
serialize to PoiSet objects in order to keep all the information we need to generate the
nodes, the graph and the connections/edges between nodes. Due to these purpose the
thesis application keeps tree XML file one for each Poi Category (bank.xml,
restaurant.xml, hotels.xml) in the Assets directory. Figure 11 shows a small sample of
that data that where extracted from OpenStreepMaps.org[13].

<?xml version="1.0" encoding="UTF-8"?>

<gpx version="1.0" creator="GPSBabel http://www.gpsbabel.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.topografix.com/GPX/1/0"

xsi:schemaLocation="http://www.topografix.com/GPX/1/0

http://www.topografix.com/GPX/1/0/gpx.xsd">

<time>2011-12-15T14:01:39Z</time>

<bounds minlat="36.686540500" minlon="23.037696400"

maxlat="38.350403700" maxlon="24.054799200"/>

<wpt lat="37.994816500" lon="23.341969300">

 <name>Bank:Marfin Egnatia Bank</name>

 <cmt>Bank:Marfin Egnatia Bank</cmt>

 <desc>Bank:Marfin Egnatia Bank</desc>

</wpt>

<wpt lat="37.994665000" lon="23.342719300">

 <name>Bank:Alpha Bank</name>

 <cmt>Bank:Alpha Bank</cmt>

 <desc>Bank:Alpha Bank</desc>

</wpt>

<wpt lat="37.995012100" lon="23.343975800">

 <name>Bank:Εθνική Τράπεζα</name>

 <cmt>Bank:Εθνική Τράπεζα</cmt>

 <desc>Bank:Εθνική Τράπεζα</desc>

</wpt>

<wpt lat="37.996053300" lon="23.344140000">

 <name>Bank:Αγροτική Τράπεζα</name>

 <cmt>Bank:Αγροτική Τράπεζα</cmt>

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 34

 <desc>Bank:Αγροτική Τράπεζα</desc>

</wpt>

…

</gpx>

 Fig.11: Banks.xml

With all these features that have been mentioned till now and the essence of the
previous functional modules it becomes obvious that some extra permissions for
accsess external resources such as Google services, and SQLite database tables are
essential from the thesis application. The application in order to use the Google Maps
has already been registered as in Google APIs Console in debug mode as it is
imposed by [18]. Android permissions for Internet Access and Read and Write in
external storage also required.

In figure 1 we can see the initial application screen (main layout) where the user
has typed the source and destination address. Soon after the user clicks over the
“Trace” button the application loads the data and runs the algorithm. At this time the
AsyncTask (RouteTask) loads an indicator for the user to understand that there is a
running process while he waits for the result (figure 2). Figure 12 shows the optimal
route with markers that represent the source the destination and the Pois from where
the route passes through. Finally figure 21.shows a proper exception message in case
something bad happens while we make request to any of the several Google APIs and
a “query limitation” or “internet failure” happens.

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 35

4. Evaluation

This chapter would try to prove the concurrency and correctness of the algorithm. The
main purpose of the application is to answer efficiently the SRQ, adapting the “Iterative
Doubling” among other algorithms as a suitable algorithm that can run to a mobile
application in a feasible way. In addition, I would try to prove the guaranteed optimality,
giving the steps of the algorithm in a graphical way utilizing a small set of Pois for the
proof of content.

4.1 Case Study

This section describes briefly the main steps of the application by studying a case
where the user wants to drive from Marousi to Koukaki and on his way he wants to
cover the minimum distance by his car and during his way to stop by a bank, to take
money from an ATM machine, to book a room in a hotel, soon afterwards to have a
lunch in a restaurant and finally to be in his time in a professional appointment in
Koukaki. (figure 12)The goal here is to drive the minimum distance (or spent the less
time) in order to reach his appointment. For a foreigner the application suggests a POI
that has never been discovered and moreover minimizes this effort.

If the user has cover this route once, he can visit the setting menu by clicking the
menu button of his mobile device and then choosing the cache option. Then assuming
that has already tried once this route choices option “Use cache” (figure 12). This
means that the embedded db does not check if the pair of nodes with their distances
are available and fetches immediately its distance. In case a use choose “Do not use
cache“, the DB checks once for the pair existence that means an extra query for each
edge of the road graph and if the search is successful fetches the result, otherwise
request form the Google Distance Matrix Api the POI’s distance for caching.

Another available setting is one to choose the range of the distance that
approximates the length of the optimal route (see figure 15). This can perform better if
the source and destination are quite far away because by default the initial range
before the doubling where the algorithm searches the optimal route is 10km.

 In figure 16 is the “Loading|” screen that indicates that a process is taking place
and the user should be patient (although is quite fast process). As soon the
calculations end up the user can see the optimal route along with the POIs of the
chosen Categories where it passes through. Tapping a marker shows the facility label
for the user convenience. If something fails during the loading process the use is
informed by a proper error message (figure 19). These messages concern mainly the
Google services and are thrown when a user loses internet connection if not cache
option is checked or if a Google request’s over query limit is reached.

In figure 18 all POIs are marked with a respective marker icon. These are the data
instantiations as nodes over the Google map. Their initial form is shown in figure 11.

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 36

Fig.12: Setting menu(button) Fig.13: cache settings

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 37

Fig.14:initial entry screen Fig.15: The POIs on Map along with the route

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 38

Fig.16: Loading| Fig.17: Optimal Route

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 39

Fig.18: POIs marked over map Fig.19: Custom Exception

4.2 Algorithm steps

In order to have a better inspection of the application algorithm while it is running, a
proper reduction the POIs’ cardinality (p) was made, while the starting address was set
to “Marousi” and the ending address to “Koukaki”. The POI Categories are Hotels and
Restaurants and are the following:

1)Set of HOTELS 2) Set of RESTAURANTS

a)Hotel Pantheon (node 4.0) a)Cafe:Starbacks (node 5.0)

b)Hotel Nafsika (node 4.1) b)Restaurant:Goodys (node 5.1)

c)Hotel Aquamarina(node 4.2) c)Σαλτο Μορταλε (node 5.2)

d)Hotel Medousa (node 4.3)

The distances between nodes and the steps of the algorithm (each time it doubles the
initial estimated distance) are shown in color below in the graphic representation (figure

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 40

20). Finally at the third step (green) terminates with optimal path:
source,node4.1,node5.2,end.

Fig.20: Algorithm execution in steps (final step reaches the end node and terminates)

The algorithm starts with initial threshold (range) 10km. We can distinguish the
algorithmic steps as follows:

a) In the three first Dijkstra computations the red nodes are marked as red. The
end node finally is out of range and the threshold is doubled.

start

node 4.0 node 4.1 node 4.2 node 4.3

node 5.0 node 5.2

end

node 5.1

10.5km 4.3km

28km 28km

32km

37km

16km

3,6km

 9km

30km 36km

2km

32km

28km
33km

25km 28km 5km

36km

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 41

b) The algorithm starts again with new threshold of 20km. After the three
Dijkstra computations the blue nodes are visited marked along with the red
from the previous step.

c) As soon as we reached the marked as visited the end node we have a
shortest path from start to end that is given in reverse order starting from the
destination to its previous node 5.2 and so on.

4.3 Experimental results

Experiments were performed on the road network of Attica,

with 306 POIs from OpenStreetMap[13] in respect with the three Categories
(Banks,Hotels and Restaurants) that were used. An augmented graph with 540000
edges on a single core Motorola defy with android 2.2.2 version. As performance
metrics I use the process time as well as the total nodes in the constructed Graph
(which is equivalent to the number of settled nodes during Dijkstra’s computations) the
total nodes and the number of edges settled during each iteration as a more robust and
platform independent indicator (table 12).

path time (sec) settled nodes total nodes settled edges distance

covered
(meters)

marousi-koukaki 65 180 306 (3C) 6876 15031

marousi-koukaki 22 67 112 (2C) 2299 14673

marousi-elefsina 25 90 130 (2C) 2264 32632

marousi-elefsina 80 245 306 (3C) 7823 31879

 Table 12. Experimental results

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 42

5.Conclusion and future work

With this work I tried to consider the problem of answering sequenced route queries
and developed an efficient android application that utilizes a speed-up technique to
allow the computation in few seconds for realistic sequenced route queries involving
common points of interest. The focus of this work has been the case where the order in
which the points of interests are to be visited is fixed. This speed-up technique
“Iterative Doubling” works well, if the actual result path is relatively short and works well
for local data[3]. As we can see from table 12 when we decide to travel for a long
distance and while we grow up the involving points of Interest the queries are getting
slow.

The restrictive factor that slows down the algorithm is the explicit calculation of
large number of inner edges although many of them are pruned by our estimation
bound. The second speed-up technique the extended CH can be applied as a future
work with the condition that should be running in two parallel threads in a more
advanced mobile device with a dual core.

 The future of the android application is a very straight forward. Further new
features can be added such as the choice of the travel mean (i.e. by feet, cycling) or
more POI categories with no prefixed order rather than the user could chose the order
himself. Also some assistive tables could be developed in the external memory so they
can cache the already optimal route by assuming that the POI sets are mainly static. If
we would decide to update these xml format data we can easily do this by appending
the new nodes at the end of the respective category. I hope and I wish through this
work to help any student who is interested in leveraging the power of android
programming and Google services to manage spatial data and answering similar
queries with the power of a smart mobile device (with sensors, gps and a variety of
capabilities) .

Master Thesis Konstantinos Kavvalakis

 An Android Application for TPQ 43

6. REFERENCES

1. Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua
Teng On Trip Planning Queries in Spatial Databases.

2. Mehdi Sharifzadeh, Mohammad Kolahdouzan, Cyrus Shahabi, The optimal
sequenced route query, The VLDB Journal (2008)

3. Jochen Eisner, Stefan Funke, Sequenced Route Queries: Getting Things Done
on the Way Back Home,

4. S. Shekhar and D.-R. Liu. Ccam: A connectivity-clustered access method for
networks and network computations. TKDE, 9(1):102–119, 1997

5. M. L. Yiu and N. Mamoulis. Clustering objects on a spatial network. In SIGMOD,
pages 443–454, 2004.

6. D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial
network databases. In VLDB, pages 802–813, 2003.

7. T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. The
MITPress, 1997.

8. Hutchinson, D., Maheshwari, A., Zeh, N.: An external memory data structure for
shortest path queries. Discret. Appl. Math. 126(1), 55–82 (2003).
http://www.dx.doi.org/10.1016/S0166-218X(02)00217-2

9. Kolahdouzan, M.R., Shahabi, C.: Voronoi-based K nearest neighbor search for
spatial network databases. In: Nascimento,M.A., Özsu, M.T., Kossmann, D., Miller,
R.J., Blakeley, J.A., Schiefer, K.B. (eds.) Proceedings of the 30th International
Conference on Very Large Data Bases: VLDB’04, pp. 840–851 (2004)

10. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial
network databases. In: Freytag, J.C., Lockemann, P.C., Abiteboul, S., Carey, M.J.,
Selinger, P.G., Heuer, A. (eds.) Proceedings of the 29th International Conference on
Very Large Data Bases: VLDB’03, pp. 802–813 (2003).

11. H. Chen, W.-S. Ku, M.-T. Sun, and R. Zimmermann. The partial sequenced
route query with traveling rules in road networks. GeoInformatica, 15(3):541–569,
2011.

12. R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies:
Faster and simpler hierarchical routing in road networks. In WEA, pages 319–333,
2008.

13.http://downloads.cloudmade.com/europe/southern_europe/greece/attiki#downloa
ds_breadcrumbs

14. http://en.wikipedia.org/wiki/Class_diagram

15. https://developers.google.com/maps/documentation/geocoding/

16. https://developers.google.com/maps/documentation/distancematrix/

17. http://simple.sourceforge.net/

18.https://developers.google.com/maps/documentation/android/start#creating_an_a
pi_project

19. http://www.sqlite.org/docs.html

