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ABSTRACT 

The objective of the current master thesis is the implementation of an efficient android 
application that utilizes the Iterative Doubling algorithm. It runs in a mobile device with 
known computational processing limitations. Finally as the user of the application 
imposes, the optimal path should start from a specified source, pass through several 
points of interest (POIs) and reach specified destination. These problems are generally 
known as “Trip Planning Queries” (TPQ). 

Trip Planning Queries (TPQ) belong to NP-hard problems. In general there are 
many proposed algorithms which result in an approximate or inefficient in terms of 
complexity solution. The previously mentioned drawbacks prevent the use of those 
algorithms in many implementations. However the solution presented in this thesis 
reduces complexity by imposing the order of visiting locations. The algorithm which is 
used manages to find a route of minimum length by visiting points from each category 
sequentially before it steps to the next category. This type of queries are named 
“Sequenced Route Queries” (SRQ) and their implementation could be feasible even in 
a mobile device as it is proposed and utilized by an android application in the current 
thesis. 

The algorithm used is the Iterative Doubling, an alternative to the EDJ(Enhanced 
Dijkstra - section 2.3.3) layered approach. The current approach helps to avoid 
exploring facilities that are far away from the starting point. The algorithm manages to 
reduce the computational cost of exploring every possible facility and therefore it 
performs better in case that we have to process local data. Realistic sequenced route 
queries mainly refer to such local geographical data. 

The application manages to exclude such distant facilities by setting an initial 
threshold that defines a range in kilometers. Also the user has as an option to choose 
between some initial  ranges, depending on the minimum trip distance that he is willing 
to cover. With this threshold nodes of POIs without range does not take part during 
Dijkstra computations and so this fastens the running time. If the initial range although 
could not resume to an optimal path then the threshold is doubled and the algorithm is 
executed again.      

The data for the needs of the application were collected from OpenStreetMaps 
project [13] and mainly concern mainly Attica. They represent several geographical 
points and each of them belongs to a respective category of interest such as hotels, 
restaurants etc. The basic data element keeps information about its geographic 
coordinates, the label that identifies the facility and its category. They are initially 
formed as xml separated files (per category) and they are utilized as node objects. 
Another advantage of the implemented algorithm is that it does not require the explicit 
construction of the graph that is built during each Dijkstra’s computation. The final 
outcome is a route with the minimum distance that passes through a point from each 
category. 
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ΠΕΡΙΛΗΨΗ 

 

Ο σκοπός της παρούσας µεταπτυχιακής διατριβής είναι η υλοποίηση µιας android 
εφαρµογής που θα ενσωµατώνει τον αλγόριθµο  «Επαναληπτικού ∆ιπλασιασµού», 
κατάλληλο όπως προτείνεται να τρέχει αποδοτικά σε µια κινητή συσκευή µε 
δεδοµένους επεξεργαστικούς περιορισµούς. Η εφαρµογή που υλοποιήθηκε υπολογίζει 
την βέλτιστη διαδροµή, η οποία όπως απαιτεί ο χρήστης πρέπει να  ξεκινάει από ένα 
σηµείο αρχής, να περνάει ακολουθιακά από διαφορετικά σηµεία ενδιαφέροντος και 
καταλήγει σε έναν επιθυµητό προορισµό. Αυτή η κατηγορία προβληµάτων είναι γνωστή 
σαν Trip Planning Queries (TPQ). 

Τα ερωτήµατα που αφορούν το σχεδιασµό διαδροµών(TPQ) είναι µη 
ντετερµινιστικά πολυωνυµικού χρόνου προβλήµατα(NP problems).Γενικά πολλοί 
προτεινόµενοι αλγόριθµοι παρουσιάζουν λύσεις είτε προσεγγιστικές είτε µεγάλης 
πολυπλοκότητας µε αποτέλεσµα να µην είναι χρηστικοί στην υλοποίηση. Παρόλα αυτά 
η παρούσα εφαρµογή χαλαρώνει την πολυπλοκότητα του προβλήµατος, καθορίζοντας 
την σειρά προσπέλασης των σηµείων ενώ ψάχνει να βρει την διαδροµή µε το ελάχιστο 
µήκος µε το να επισκέπτεται ακολουθιακά τα σηµεία από την µια κατηγορία στην 
επόµενη. Αυτά του τύπου τα ερωτήµατα ονοµάζονται «ερωτήµατα διαδοχικής 
διαδροµής» (SRQ) και η απάντηση τους θα µπορούσε να είναι εφικτή και σε κινητές 
συσκευές όπως προτείνετε και υλοποιείται από την παρούσα εργασία. 

Ο αλγόριθµος  «Επαναληπτικού ∆ιπλασιασµού» (Iterative Doubling) είναι µια 
παραλλαγή του EDJ (Enhanced Dijkstra- ενότητα 2.2.3), και βασίζεται στο να 
αποφεύγει να εξερευνάει αποµακρυσµένα σηµεία. Με τον τρόπο αυτό µειώνει τον 
επεξεργαστικό όγκο και αποδίδει καλύτερα για τοπικά δεδοµένα που αποτελούν και τις 
πιο συνηθισµένες περιπτώσεις σε τέτοιου είδους προβλήµατα. Στην πράξη τέτοια 
προβλήµατα εύρεσης βέλτιστης διαδροµής µε ενδιάµεσους προορισµούς συνήθως 
συναντώνται σε τοπική ακτίνα. 

Τα δεδοµένα αυτά συλλέχτηκαν από το OpenStreetMaps [13] και αφορούν το 
λεκανοπέδιο Αττικής. Αναπαριστούν γεωγραφικά δεδοµένα που ανήκουν σε 
συγκεκριµένες κατηγορίες ενδιαφέροντος. Αυτή η κατηγοριοποίηση µπορεί να 
θεωρηθεί σαν ένα σύνολο τέτοιων σηµείων µε παρόµοια χαρακτηριστικά όπως 
τράπεζες, εστιατόρια κτλ. Η βασική µονάδα δεδοµένου κρατάει την πληροφορία των 
συντεταγµένων κάθε σηµείου, τον τίτλο της εγκατάστασης και την κατηγορία που 
ανήκει. Η εφαρµογή φιλοξενεί αυτά τα δεδοµένα σε στατικά µε τη µορφή xml αρχείων. 
Ανάλογα µε τις επιλογές του χρήστη τα κατάλληλα αρχεία διατρέχονται ώστε να 
δοµήσουν δυναµικά τον ζητούµενο γράφο . ∆εν είναι απαραίτητα η άµεση δηµιουργία 
του.Tέλος η εφαρµογή καταφέρνει και αναπτύσσει την βέλτιστη διαδροµή που περνάει 
από ένα τουλάχιστον σηµείο ανά κατηγορία ενδιαφέροντος.     
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1. Introduction 

Efficient TPQ evaluation could become an important new feature of advanced 
navigation systems and can prove useful for other geographic applications as has been 
advocated in previous work [12]. For instance, state of the art mapping services like 
MapQuest, Google Maps, Google Directions service and Microsoft Streets & Trips, 
currently support queries that specify a starting point and only one destination, or a 
number of user specified destinations. The functionality and usefulness of such 
systems can be greatly improved by supporting more advanced query types, like 
TPQ.[1] 

TPQ can be considered as a generalization of the Traveling Salesman problem 
(TSP) which is NP-hard. The reduction of TSP to TPQ is straightforward. By assuming 
that every point belongs to its own distinct category, any instance of TSP can be 
reduced to an instance of TPQ. From the current spatial database queries, TPQ is 
mostly related to the time or the distance which is parameterized in the continuous 
Nearest Neighbors (NN) queries. In those we assume that the query point is moving 
with a constant velocity and the goal is to incrementally report the nearest neighbors 
over time as the query moves from an initial to a final location. However, none of the 
methods developed to answer the above queries can be used to find a “good” solution 
for TPQ.[1] 

Usually, TPQ problems are not being efficiently handled from embedded navigation 
applications in mobile devices, due to their NP-hard algorithmic complexity. This kind of 
devices, have limited computational resources and capabilities, so most of the time 
mobile applications provide an already computed result of such Travel Planning 
Queries. Moreover, we can further reduce the above TPQ problem to SRQ problem by 
assuming that while traveling the order of the visited categories is predefined. As it is 
proved, finally leveraging such queries with proper algorithms and a proper mobile 
database (in this case SQLite) we can develop embedded SRQ algorithms in mobile 
devices that can run efficiently. Such an algorithm is proposed in [3] and has been 
implemented by the current application that the Thesis introduces. 

The goal is of the thesis application is to plan an optimal route from a source to a 
destination point by visiting  facilities of a perspective type on the way (SRQ case). The 
speed up technique that is implemented is Iterative Doubling. This approach does not 
assume the explicit construction of a graph and reduces radically the Dikjstra 
computations to compute the weights of inner-layers edges. The application modifies 
the EDJ layer approach that requires as many computations as the cardinality of the 
available points of interest (POIs). The following chapter explain in details the above 
algorithms along with some others.   

To clearly determine the problem that the application solves, we have to start 
describing the data sets that were used for the experimental results and the 
preprocessing stage before algorithm starts. The data were collected from the 
OpenStreetMap project in xml file format. They are labeled and hold their geographic 
coordinates (latitude, longitude). The application serialize these files to construct lists of 
POI objects that then holds in main memory for quick access. These POI objects finally 
are transformed to node objects during the graph construction. 

The preprocess stage is triggered by the user who inputs a starting point S and a 
destination point E. Then chooses from a set of categories R with prefixed order, (R ≤ 
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C). The application after the algorithm execution returns the optimal route that starts at 
E, passes through at least one point from each category in R and ends at E. As an 
example of a use case, consider that somebody plans to travel from Marousi to 
Elefsina and wants to stop at a Hotel, and a Restaurant (two fixed order middle 
destinations). The implemented application with a database that stores the distance 
matrix of  the above objects computes efficiently a feasible route that minimizes the 
total traveling distance (or time) (fig.1, fig.2). 

Although the static data are always available the application needs to have 
internet access when a user gives for the first time a source and a destination point in 
order to call  Google GeoCoding service and initialize these two nodes. Also the 
application calls Google Distance Matrix to store distances between nodes of the 
graph. The graph is not explicitly built and this is on more advantage of the 
implemented algorithm, because the application does not calculate all the inner layer 
distances. When the graph is constructed the final step is to call the Google Direction 
Api to map the optimal route. The response of the above Google services is generally a 
JSON string that is parsed and serialized to JSON objects.   

The application uses some techniques and conventions to make the 
recommended solution feasible. Such a convention is the locality of the data sets that 
best fit to thesis problem. Nevertheless the data form OpenStreetMaps are not so 
enriched for Attica  although they were chosen without compromising the guaranteed 
optimality of the experimental results. Also an embedded SQLite database was used to 
cache the already requested distances for future access. This makes the application to 
be extended dynamically and continuously every time is used.    

The following chapter presents a summary of the studied papers on the TPQ and 
other SRQ relative problems along with some proposed algorithms and their limitations 
and complexity issues. Results are depending on the number of Poi categories and 
categories’ cardinality. This literature review would help to understand the notion of 
queries in Geographic Information Systems (GIS). The chapter 3 presents a UML class 
diagram with the basic modules that take part in the application along with a summary 
of the programming techniques that were used. Chapter 4 is a case study of the 
developed application and finally in chapter 5 are noted the conclusions of the master 
thesis work. 
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Fig.1: user inputs and POI sets        Fig.2: the computed optimal route 
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2. Literature Review  

This chapter tries to recursively describe the problem, starting with an introduction of 
the general TPQ problem and some approximate solutions and ending up with the 
proposed OSR solution on mobile devices. The first section based on paper [1] 
proposes a novel type of query in spatial databases and studies methods for answering 
this query efficiently. Approximation algorithms that achieve various approximation 
ratios are presented, based on two important parameters: The total number of 
categories m and the maximum category cardinality ρ. The second section based on 
paper [2] presents a similar problem introducing the Optimal Sequenced Route Query 
and also provides two different solution aspects. Finally the last section based on 
paper[3] quotes two speed up solutions over the OSR query. The mobile application 
was developed to efficiently evaluate the Iterative Doubling solution that delegates the 
OSR and is described in details in section 2.3.3. 

 

2 .1. TPQ Fast Approximation Algorithms 

This section introduces four algorithms for answering TPQ queries, with various 
approximation ratios in terms of m and ρ. It gives two practical, easy to implement 
solutions better suited for external memory datasets, and two more theoretical in nature 
algorithms that give tighter answers, better suited for main memory evaluation. These 
algorithms are tested above for a practical scenario that considers an application in 
road network. 

This subsection defines formally the generated TPQ problem and introduces the 
basic notation that will be used in the rest of the section.[1] 

2.1.1 Problem Formulation 

The solutions for the TPQ problem are considered on metric graphs. Given a 
connected graph G(V,E) with n vertices V={v1,|,vn} and s edges E ={e1,|,en}, we 
denote the cost of traversing a path v1,|,vn with c(v1,|,vn)≥0. The metric graph in this 
case, satisfies the triangle inequality condition and there are not cyclic references 
between its nodes. Given a set of m categories C={C1,|,Cm} (where m ≤ n ) and a 
mapping function π : vi → Cj that maps each vertex vi ∈	V to a category �� ∈ �, the TPQ 

problem can been defined as follows: Given a set R  C ( R ={ R1, R2, | ,Rk}), a starting 
vertex S and an ending  vertex E, identify the vertex traversal T = {S, �t1, | , �tk, E} (also 
called a trip ) from S to E that visits at least one vertex from each category in R (i.e. 
⋃ ���	
 	� = 

�

��  ) and has the minimum possible cost c(T) (i.e., for any other feasible 

trip T¨ satisfying the condition above, c(T) ≤ c( T¨)). 

The total number of vertices is denoted by n, the total number of categories by m, 
and the maximum cardinality of any category by ρ. For ease of exposition, it will be 
assumed that R = C  thus k = m . Generalizations for R	⊂ � are straightforward (as will 
be discussed shortly). 

2.1.2 Fast approximation algorithms  

The section examines several approximation algorithms for answering the trip planning 
query in main memory. For each solution are provided the approximation ratios in 
terms of m and ρ. These solutions and the approximation boundaries denote the 
complexity of the TPQ problem although the studied paper suggests the fast main 
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memory space for its results. They follow two greedy algorithms with tight 
approximation ratios with respect to m. 

2.1.2.1 Approximation in Terms of m 

 

Nearest Neighbor Algorithm: The most intuitive algorithm for solving TPQ is to 
form a trip by iteratively visiting the nearest neighbor of the last vertex added to the trip 
from all vertices in the categories that have not been visited yet, starting from S.[1] 

 

Algorithm 1 ANN (GC,R,S,E) 

1.v = S, {1, … , m}, Ta = {S} 

2.for k =1 to m do 

3. v = the nearest NN(v, Ri) for all i ∈ I 

4. Ta ← {v} 

5. Ι  ← Ι – {i} 

6.end for 

7.Ta  ← {E} 

Table 1: nearest neighbor algorithm 

 

For simplicity, consider that a given complete graph GC, contains one edge per 
vertex pair representing the cost of the shortest path in the original graph G. 

Minimum Distance Algorithm: This section introduces a novel greedy algorithm, 
called AMD, that achieves a much better approximation bound, in comparison with the 
previous algorithm. 

 

Algorithm 2 AMD (GC,R,S,E) 

1.U =  

2.for k =1 to m do 

3.    U ← π(v) = Ri  : c(S,v) + c(v,E) is minimized 

4.v = S, Ta  ← {S} 

5. while U ≠  do 

6.  v = ΝΝ(v,U) 

7. Ta  ← {v} 

8. Remove v from U 

9. end while 

10. Ta  ← {E} 

Table 2: minimum distance algorithm 
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The above NN algorithm gives a 2m+1 – 1 approximation (with respect to the 
optimal solution) and the MD give an m+1 or m approximate solution. Both solutions  
have a tight approximation boundary that do not give the guaranteed optimal solution 
we are looking for.   

 

2.1.2.2  Approximation in Terms of ρ 

This section introduces an Integer Linear Programming approach for the TPQ problem 
which achieves a linear approximation bound ρ (the maximum category cardinality). 
We can consider an alternative formulation of the TPQ problem with the constraint that 
S=E and denote this problem as a Loop Trip Planning Query(LTPQ) problem. 

Let A = (aji) be the m x (n+1) incidence matrix of G, where rows correspond to the 
m categories, and columns represent the n+1 vertices (including v0  = S = E). A’s 
elements are arranged such that aji = 1 if π(vi) = Rj , aji = 0 otherwise. Clearly, ρ= maxj 

∑ ��

 . Each category contains at most ρ distinct vertices. Let indicator variable y(v) = 1. 
If vertex v is in a given trip and 0 otherwise. Similarly, let x(e) = 1 if the edge e is in a 
given trip and 0 otherwise For any S ⊂ V, let δ(S) be the edges contained in the cut (S, 
V \ S).[1] 

In order to get a feasible solution for LPLTPQ, we apply the randomized rounding 
scheme. Randomized Rounding: For solutions obtained by LPLTPQ., set y(v) = 1_ if y(vi) 

≥	
�

�
 If the trip visits vertices from the same category more than once, randomly select 

one to keep in the trip and set y(vj) = 0 for the rest. [1] 

The Thesis approach needs an optimal route guarantee and also it does not care 
about the maximum category cardinality rather than the locality of the requested data 
set. 

 

2.1.2.3 Approximation in Terms of m and ρ 

The Generalized Minimum Spanning Tree (GMST) problem, is closely related to the 
TPQ problem. Also the TSP problem is closely related to the Minimum Spanning Tree 
(MST) problem, where a 2-approximation algorithm can be obtained for TSP based on 
MST. In similar fashion, it is expected that one can obtain an approximate algorithm for 
TPQ problem, based on an approximation algorithm for GMST problem. [1,16,20] 

Unlike the MST problem which is in P, GMST problem is in NP. Suppose we are 
given an approximation algorithm for GMST problem, denoted AGMST . The paper 
constructs an approximation algorithm for TPQ problem as shown in Algorithm 3.[1] 

 

Algorithm 3 APPROXIMATION ALGORITHM FOR TPQ BASED ON GMST 

1.Compute a β-approximation �����
���� for G rooted at S using AGMST 

2.Let LT be the list of vertices visited in a pre-order tree              walk of �����
����

 

3.Move E to the end of LT 

4.Return ��
�� as the ordered list of vertices in LT 

Table 3: approximation algorithm for TPQ based on GMST 

2.1.3 Applications in Road Networks. 
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An interesting application of TPQs is on road network databases. Given a graph N 
representing a road network and a separate set P representing points of interest (gas 

 

Fig. 3. A simple road network 

 

stations, hotels, restaurants, etc.) located at fixed coordinates on the edges of the 
graph, we would like to develop appropriate index structures in order to answer 
efficiently trip planning queries for visiting points of interest in P using the underlying 
network N. Figure 3 shows an example road network, along with various points of 
interest belonging to four different categories.[1] 

The road network presentation uses techniques from [4, 5, 6]. In summary, the 
adjacency list of N and set P are stored as two separate flat files indexed by B+-trees. 
For that purpose, the location of any point p	∈ ! is represented as an offset from the 
road network node with the smallest identifier that is incident on the edge containing p. 
For example, point p4 is 1.1 units away from node n3. 

Implementation of ANN Nearest neighbor queries on road networks have been 
studied in [6], where a simple extension of the well known Dijkstra algorithm [7] for the 
single-source shortest-path problem on weighted graphs is utilized to locate the 
nearest point of interest to a given query point. As with the R-tree case, 
straightforwardly, the algorithm of [6] can be utilized to incrementally locate the nearest 
neighbor of the last stop added to the trip, that belongs to a category that has not been 
visited yet. The algorithm starts from point S and when at least one stop from each 
category has been added to the trip, the shortest path from the last discovered stop to 
E is computed. In practice this demands the explicit construction of a layered graph 
and finally it is prohibitive in terms of running time and space consumption. The thesis 
application modifies the above approach according to the Iterative Doubling such that 
no explicit construction of the layered graph is needed.     

Implementation of AMD. The algorithm locates a point of interest p: ��"� ∈ 	

  
(given Ri) such that the distance c(S, p, E).is minimized. The search begins from S and 
incrementally expands all possible paths from S to E through all points p. Whenever 
such a path is computed and all other partial trips have cost smaller than the tentative 
best cost, the search stops. The key idea of the algorithm is to separate partial trips 
into two categories: one that contains only paths that have not discovered a point of 
interest yet, and one that contains paths that have. Paths in the first category compete 
to find the shortest possible route from S to any p Paths in the second category 
compete to find the shortest path from their respective p  to E. The overall best path is 
the one that minimizes the sum of both costs.[1] 
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Algorithm 4 ALGORITHM  MD Query FOR ROAD NETWORKS 

Require: Graph N, Points of interest P, Points S,E, Category Ri 

1:For each ni  N: ni.cp = ni.#$% = ∞ 

2: PriorityQueue PQ = {S}, B = ∞, TΒ =  

3: while PQ not empty do 

4:     T= PQ.top 

5:     if T.c ≥ B then return TB 

6:     for each node n adjacent to T.last do 

7:         T’ = T 

8:         if T’ does not contain a p then 

9:           if ∃" ∶ " ∈ (, ��"� = 	

 on edge (T’.last, n) then  

10:            T’.c +=c(T’.last,p) 

11:            T’ ← p , PQ ← T’ 

12:         else 

13:           T’.c += c(T’.last,n), T’ ← n 

14:           if ni.#$%  T’.c then 

15:               ni.#$% = T’c, PQ ← T¨ 

16:       else 

17:           if edge (T’, n) contains E then 

18:                  T’.c += c(T’.last, E), T’ ← E 

19:                  Update B and TB  accordingly 

20:           else 

21:                  T’.c += c(T’.last, n), T’ ← n 

22:           if n.cp  > T’.c then 

23:                  n.cp   = T’c, PQ ← T¨ 

24:      endif 

25:   endfor 

26: endwhile 

 Table 4:algorithm MD query for road networks 

 

The algorithm proceeds greedily by expanding at every step the route with the 
smallest current cost. Furthermore, in order to be able to prune trips that are not 
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promising  the algorithm maintains two partial best costs per node n ∈ *. Cost n.cp  
(ni.#$%)  represents the partial cost of the best trip that passes through this node and 
that has (has not) discovered an interesting point yet. After all points(one from each 
category Ri ∈ 
) have been discovered by iteratively calling this algorithm, an 
approximate trip for TPQ can be produced. It is also possible to design an incremental 
algorithm that discovers all points from categories in R concurrently.[1] 

The developed Thesis application takes advantage of the already constructed 
Google graphs and the location of POIs along with their distances, and finds the 
shortest path with the minimum cost without the need to maintain the intermediate non-
important point/nodes of the underline network. These intermediate points-conjunctions 
are a black box to the thesis algorithm, reducing this way the computational cost and 
the DB access. So the above algorithm does not consist a feasible solution on a mobile 
device. 

  

2.2.The Optimal Sequenced Route Query 

An unexplored form of NN queries named optimal sequenced route (OSR) query 
primarily in metric spaces such as road networks are my thesis main concern. The 
OSR strives to find a route of minimum length starting from a given source location and 
passing through a number of typed locations in a particular order imposed by the user. 
The PNE algorithm that is proposed in this study, progressively issues NN queries on 
different point types to construct the optimal route for the OSR query. The proposed 
algorithm is quite close to the one that finally was implemented in the android 
application that thesis presents. 

2.2.1 Introduction – Motivation  

Suppose we are planning a Saturday trip around the town as follows: first we intend to 
visit a shopping center in the afternoon to check the season’s new arrivals, then we 
plan to dine in an restaurant in early evening, and finally, we would like to watch a 
specific movie at late night. Naturally, we intend to drive the minimum overall distance 
to these destinations. That is, we need to find the locations of the shopping center gi, 
the restaurant lj, and the theater pk that shows our movie, where traveling between 
these locations in the given order would result in the shortest travel distance (or time). 
Note that in this example, a time constraint enforces the order in which these 
destinations should be visited; we usually do not have dinner in the afternoon, or go for 
shopping at late night. 

This type of queries where the order of points to be visited is given and fixed, are 
known as the optimal sequenced route queries or OSR for short. Figure 4, shows that 
the OSR query cannot be optimally answered by simply performing a series of 
independent nearest neighbor searches from different locations. The figure 4 shows a 
network of equally sized connected square cells, three different types of point sets 
shown by white, black and gray circles representing shopping centers, restaurants, and 
theaters, respectively, and a starting point s (shown by △). 

A greedy approach to solve OSR is to first locate the closest shopping center to p, 
g2, then find the closest restaurant to g2, l2, and finally find the closest theater to l2, 
p2.Assuming the length of each edge of a cell is 1 unit, the total length of the route 
found by this greedy approach, (s, g2, l2, p2), shown by dotted lines in the figure, is 15 
units. However, the route (s, g1, l1, p1) (shown with solid lines in the figure) with the 
length of 12 units is the optimum answer to our query. Note that g1 is not the closest 
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shopping center to p and l1 is actually the farthest restaurant to g1. Hence, the 
optimum route for an OSR query can be significantly different from the one found by 
the greedy approach.[2] 

 
Fig. 4. A network with tree different types of point sets 

2.2.2 Problem definition 

The terms and notations that appears throughout this section, formally define the OSR 
query, and discuss the unique properties of OSR that are utilized in the suggested 
solutions. In [1] one can find a table that summarizes the set of notations. 

Let U1,U2, . . . ,Un be n sets, each containing points in a d-dimensional space Rd, 
and D(・, ・) be a distance metric defined in Rd where D(・, ・) obeys the triangular 
inequality. To illustrate, in the example of Fig. 2, U1, U2, and U3 are the sets of black, 
white, and gray points, representing restaurants, shopping centers and theaters, 
respectively.[2] 

Assume that we are given a sequence M = (M1,M2, . . . , Mm). For a given starting 
point p in Rd and the sequence M, the OSR query, Q(p, M), is defined as finding a 
sequenced route R = (P1, . . . ,Pm) that follows M where the value of the following 
function L is minimum over all the sequenced routes that follow M: 

   L(p, R) = D(p,P1) + L(R) 

Note that L(p, R) is in fact the length of route Rp =p ⊕R. Q(p, M) = (P1,P2,. . . 
,Pm)  denotes the optimal SR, the answer to the OSR query Q. Without loss of 
generality, this optimal route is unique for given p and M.1 For example in the above 
figure 2 we can consider (U1,U2,U3) = (black, white, gray), M = (2, 1, 3), and D is the 
Manhattan distance, the answer to the OSR query is Q(p, M) = (g1, l1, p1). A candidate 
SR is used to refer to all sequenced routes that follow sequence M. [2]  

2.2.3 The Dijkstra based solution 

This section studies a different naive approach which slightly improves the brute-force 
approach. We are given an OSR query with a starting point p, a sequence M, and point 
sets {UM1 , . . . ,UMm }. We construct a weighted directed graph G where the set V 

=	∪.−1
1  UMi∪{p} are the vertices of G and its edges are generated as follows. The 

vertex corresponding to p is connected to all the vertices in point set 
UM1.Subsequently, each vertex corresponding to a point x in UMi is connected to all 
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the vertices corresponding to the points in UMi+1 ,where 1 ≤ i < m − 1. Figure 5 
illustrates an example of such graph. As shown in the figure 5, the graph G is a k-
bipartite graph where k = m+1. The weight assigned to each edge of G is the distance 
between the two points corresponding to its two end-vertices. 

This graph is showing in fact all possible candidate sequenced routes (candidate 
SRs) for the given M and the set of UMi ’s. To be precise, it shows all the routes Rp = p 
⊕ R where R is a candidate SR. By definition, the optimal route for the given OSR 
query is the candidate SR, R, for which Rp has the minimum length. Considering graph 
G, we notice that the OSR problem can be simply considered as finding the shortest 
paths (i.e., with minimum weight) from p to each of the vertices that correspond to the 
points in UMm (i.e., the last level of points in Fig. 5), and then returning the path with 
the shortest length as the optimal route. This can be achieved by performing the 
Dijkstra’s algorithm on graph G.[2] 

 

 

Fig. 5. Weighted directed graph G for sequence M 

There are two drawbacks with this solution. First, the graph G has |E|=|UM1|+ 
∑2$�
�� |UMi|×|UMi+1| directed edges which is a large number considering the usually 
large cardinality of the sets Ui. For instance, for a real world dataset with 40,000 points 
and |M| = 3, a graph G has 124 million edges. The time complexity of the Dijkstra’s 
classic algorithm to find the shortest path between two nodes in graph G is O(|E| log 
|V|). Hence, the complexity of this naive algorithm is O(|UMm||E| log |V|). Second, this 
huge graph must be built and kept in main memory. Although there exist versions of 
the Dijkstra’s algorithm that are adjusted to use external memory [8], but they result in 
so much of overhead which makes them hard to employ for OSR queries. This renders 
the classic Dijkstra’s algorithm to answer OSR queries in real-time impractical. In order 
to improve the performance of this naïve Dijkstra-based solution, we can issue a range 
query around the starting point p and only select the points that are closer to p than 
L(p, Rg(p,M))[2]. This is because the length of any route R which includes a point 
outside this range is greater than that of the greedy route Rg(p, M). Therefore, we build 
the graph G using only the points within the range instead of all the points. This is the 
enhanced version of the Dijkstra’s algorithm (EDJ). 

2.2.4 OSR Solution in metric spaces 

Proposed solutions for OSR queries such as EDJ or LORD, although they are efficient 
in vector spaces, are impractical or inefficient for a sequence M in a metric space (road 
networks). Even though both EDJ and LORD can be applied to both vector and metric 
spaces, their extensive usage of the D(・, ・) function renders them inefficient for 
metric spaces where the distance metric is usually a computationally complex function. 
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When applied on road networks, both EDJ and LORD require significant number of 
distance computations, each of them corresponds to finding a shortest path in the road 
network. This makes EDJ and LORD infeasible for road networks. Likewise, R-LORD 
can only be applied to vector spaces since it is based on utilizing R-tree index 
structure.[2] 

In my android application the road network (or general spatial networks) as also 
happens here are modeled as weighted graphs where the intersections are 
represented by nodes of the graph and roads are represented by the edges connecting 
the nodes. The weights can be the distances of the nodes or they can be the time it 
takes to travel between the nodes (representing shortest times). The distance between 
any two points on the nodes or edges of the graph is the length of the shortest path 
connecting them via the graph edges. 

Although the triangle inequality is the only requirement of the model as proposed  
to the current algorithm, there is the assumption that the graph model of the road 
network is undirected so the distance function is symmetric.  

 

PNE Algorithm  

Function NN(point p, dataset Ui) 

returns the closest point to p in Ui 

 

Function NextNN(point p, point n, dataset Ui) 

returns q ≠ n, the next closest point to p in Ui. s.t. 

D(q,p) ≥ D(n,p); 

 

Algorithm PNE(point p, sequence M) 

01. MinHeap H = {}; 

02. q = NN(p, UM1); 

03.add ((q)),D(p,q)) to H; 

04.do { 

05. remove route PSR from H; //shortest route 

06. k = |PSR|; 

07. if(k = m) then 

08.  return PSR; 

09. else 

10. Pk+1 = NN(Pk+1, UMk+1); 

11. PSR΄ = (P1,|,Pk, Pk+1); 

12. add (PSR΄, L(p, PSR΄)) to H; 

13. if(k > 1) then 

14.  Pk΄ = NextNN(Pk-1, Pk, UMk); 
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15.  PSR΄ = (P1,|,Pk-1,Pk); 

16. else 

17.  Pk΄=NextNN(p, P1, UM1); 

18.  PSR΄=(Pk΄); 

19. add(PSR΄,L(p, PSR΄)) to H; 

20.} while |PSR| < m; 

Table. 5: Pseudo-code of the PNE algorithm for a metric space 

Progressive neighbor exploration (PNE), for OSR queries in metric spaces for 
arbitrary values of M, uses efficient fast nearest neighbor algorithms such as INE [10] 
or VN3 [9] utilized for road network databases to replace the extensive use of distance 
computation operations in LORD. It utilizes the progressiveness of these algorithms to 
efficiently build candidate sequenced routes and refine them. Similar to EDJ (and 
LORD), PNE addresses OSR in both vector and metric spaces. However, it is suitable 
for the spaces where the computation of the distance metric is very expensive. Notice 
that PNE uses the same road network model specified by its underlying nearest 
neighbor algorithm.[2]  

Table 5 shows the pseudo-code of the PNE algorithm. The idea behind PNE is to 
incrementally create the set of candidate routes for Q(p,M) in the same sequence as M, 
i.e., from p toward UMm. This is achieved through an iterative process in which we 
start by examining the nearest neighbor to p in UM1 , generating partial SR from p to 
this neighbor, and storing the candidate route in a heap based on its length. At each 
subsequent iteration of PNE, a partial SR (e.g., PSR = (P1 ,P2 , . . . ,P|PSR| )) from top 
of the heap is fetched and examined as follows[2]: 

1. If |PSR| = m, meaning that the number of nodes in the partial SR is equal 
to the number of items in M and hence PSR is a candidate SR that follows 
M, the PSR is selected as the optimal route for Q(p, M) since it also has 
the shortest length. 

2. If |PSR| < m:  

(a) First the last point in PSR, P|PSR|, (which belongs to UM|PSR| ) is 
extracted and its next nearest neighbor in UM|PSR|+1 , P|PSR|+1 , is 
found. This will guarantee that (a) the sequence of the points in 
PSR always follows sequence specified in M, and (b) the points 
that are closer to P|PSR| and hence may potentially generate 
smaller routes are examined first. The fetched PSR is then 
updated to include P|PSR|+1 and is put back in to the heap.  

(b) We then find the next nearest neighbor in UM|PSR| to P|PSR|−1 , P’ 
|PSR| , generate a new partial SR, PSR’  = (P1 ,P2 ,|,P|PSR|−1 
,P’ |PSR| ), and place the new route in to the heap. This is 
because once the point P|PSR| , which we can assume is the k-th 
nearest point in UM|PSR| to P|PSR|−1 , is chosen in step (a) above, 
the (k + 1)-st nearest point in UM|PSR| to P|PSR|−1 (e.g., P’ |PSR| ) is 
the only next point that may generate a shorter route and 
hence, must be examined. If |PSR| = 1, we find the next nearest 
point in UM1 to p. 
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Recall that the OSR query was to drive toward a shopping center, a restaurant, 
and then a theater (i.e., M = (2, 1, 3) and |M| = m = 3). Table 6 depicts the values 
stored in the heap in each step of the algorithm. In step 1, the first nearest si to p, s2, is 
found and the first partial SR along with its distance, (s2 : 2), is generated and placed 
in to the heap. In step 2, first (s2 : 2) is fetched from the heap. Since for this route 
|PSR| < 3, the above steps 2(a) and 2(b) are performed. More specifically, first the next 
nearest ri to s2, r2, is found; the partial SR is updated by adding r2 to it; and is placed 
back into the heap. Second, the next nearest si to p, s1, is found and is placed in to the 
heap. Similarly, this process is repeated until the route on top of the heap follows the 
sequence M(i.e., (s1, r1, t1) in step 13). Note that we only keep one candidate SR(i.e., 
route with m points) in the heap. That is, if during step 2(a) a route with m points is 
generated, it is only added to the heap if there is no other candidate SR with a shorter 
length in the heap. Moreover, after a candidate SR is added to the heap, any other SR 
with longer length will be discarded. For example, in step 6, adding the route (s2, r3, t3) 
with the length of 14 to the heap will result in discarding the route (s2, r2, t2) with the 
length of 15 from the heap (crossed out in the figure). However, by keeping k routes in 
the heap and continuing the algorithm until k routes are fetched from the heap, we can 
easily address a variation of OSR where k routes with the minimum total distances are 
requested.[2] 

    The only requirement for PNE is a nearest neighbor approach that can 
progressively generate the neighbors (i.e., a distance browsing algorithm [11]). Hence, 
by employing an approach similar to INE [10] or our VN3 [9], which are explicitly 
designed for metric spaces, PNE can address OSR queries in metric spaces. In theory, 
PNE can work for vector spaces in a similar way; however, it is inefficient for these 
spaces where distance computation is not expensive. The reason is that PNE explores 
the candidate routes from the starting point which may result in an exhaustive search. 
Instead, R-LORD optimizes this search by building the routes in the reverse sequence 
utilizing the R-tree index structure.[2] 

 
Step      Heap contents (partial candidate route R : L(p,R) ) 

1.           (s2 : 2) 

2.           (s1 : 3), (s2, r2 : 4) 

3.           (s2, r2 : 4), (s3 : 4), (s1, r2 : 6) 

4.           (s3 : 4), (s2, r3 : 5), (s1, r2 : 6), (s2, r2, t2 : 15) 

5.           (s2, r3 : 5), (s4 : 5), (s1, r2 : 6), (s3, r2 : 6) (s2, r2, t2 : 15) 

6.           (s4 : 5), (s1, r2 : 6), (s3, r2 : 6), (s2, r1 : 12) (s2, r3, t3 : 14), (s2, r2, t2 : 15) 

7.           (s1, r2 : 6), (s3, r2 : 6), (s4, r3 : 11), (s2, r1 : 12) (s2, r3, t3 : 14) 

8.           (s3, r2 : 6), (s1, r3 : 9), (s4, r3 : 11), (s2, r1 : 12) (s2, r3, t3 : 14), (s1, r2, t2 : 17) 

9.           (s1, r3 : 9), (s3, r3 : 9), (s4, r3 : 11), (s2, r1 : 12) (s2, r3, t3 : 14),(s3,r2,t2:17)    

10.         (s3, r3 : 9), (s1, r1 : 10), (s4, r3 : 11), (s2, r1 : 12) (s2, r3, t3 : 14), (s1, r3, t3 : 18) 

11.         (s1, r1 : 10), (s4, r3 : 11), (s2, r1 : 12), (s3, r1 : 12) (s2, r3, t3 : 14), (s3, r3, t3 : 18) 

12.         (s4, r3 : 11), (s2, r1 : 12), (s3, r1 : 12), (s1, r1, t1 : 12) (s2, r3, t3 : 14) 

13.          (s2, r1 : 12), (s3, r1 : 12), (s1, r1, t1 : 12) (s4, r3, t3 : 20) 

 

Table 6. PNE for the example of Table 5   
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2.3. Speeding up SR Queries 

The proposed solution of this study is based on the combination of a distance sensitive 
doubling technique and contraction hierarchies and is in orders of magnitudes faster 
than either a naive approach of previous results and produces the answers in an 
instant for realistic queries without compromising guaranteed optimality. This type of 
route query becomes feasible even on mobile devices .[3]  

This last proposed algorithms and precisely the “Iterative Doubling” was chosen 
for the  purpose of the academic Thesis in order to implement an android application 
that computes the optimal route from a source to a destination, through a set of Pois 
that belong to separate sequenced categories.   

2.3.1 Introduction 

Given a graph G(V,E) with edge costs w ⊂ 	ℝ and a collection C = {C1,C2, . . . ,Ck} of 
facilities with Ci belongs to V . For example, G could be the road network of Athens, w 
the travel times on the road segments, C1 the locations of all gas stations in the 
network, C2 the locations of all ATMs, etc.  

A query is specified by a source s and a target t as well as a sequence of facility 
classes (p1, p2, . . . , pl). We are interested in finding the shortest path from s to t in G 
visiting a facility in Cp1 followed by a facility in Cp2 . . ., followed by a facility in Cp3. This 
type of query is referred to as already mentioned in the previous chapters sequenced 
route query . Answering such a query allows us to find for example the fastest route 
home from work visiting an ATM, a gas station and a post-office. The order in which the 
facilities have to be visited is fixed. Dropping the restriction on the order essentially 
turns this problem (for non constant l) into the NP-hard travelling salesperson problem 
(TSP). On the other hand, in most practical scenarios, l is rather small, and as our 
query procedure for fixed order turns out to be very efficient, a brute force exploration 
of all possible orders is actually possible.[3] 

This study proposes two speed-up techniques for answering sequenced route 
queries. The first is based on a general preprocessing technique for ordinary shortest 
path queries called contraction hierarchy [12] which can be extended to deal with 
sequenced route queries. The second technique that the implemented android 
application adapts, makes use of the fact that likely most sequenced route queries are 
more of a local kind (doing things on the way back home from work rather than on a 
cross-country trip), and results in a certain distance sensitivity. The algorithms – in 
contrast to [11] always compute the optimum solution and do so faster by orders of 
magnitudes being able to deal with network sizes that could not be processed before. 
This paper claims the fast query times for sequenced route queries also give answers 
to queries without fixed order as long as the number of facilities to be visited remains 
moderate (as seems to be the case in many real-world scenarios).[3] 

 

2.3.2 Summing up of the previous related work.  

 

Sequenced route queries have appeared in several contexts in this essay. In section 
2.2.3, the authors consider sequenced route queries in Euclidean space and describe 
an approach called the EDJ algorithm which creates for a sequenced route query (s, t, 
p1, . . . , pl) a directed, acyclic layered graph consisting of l+2 layers 0, 1, . . . , l+1. 
Layer 0 and l+1 consist only of the source and the target respectively. The nodes of 
layer i correspond to all facilities of type pi. Between layers i and i+1, we have a 
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complete bipartite graph, where the (directed) edge from node v(i) in layer i to node 
w(i+1) in layer 1 has cost of and corresponds to the shortest path from v to w in G (in 
[3] this is simply the Euclidean distance). In Figure 6 we see such a layered graph for a 
query (s, t, p1, p2, p3) (the nodes in layer 1 could correspond to locations of ATMs, 
layer 2 nodes to gas stations, and layer 3 nodes to grocery stores). Once this layered 
graph has been constructed, running Dijkstra from s or even simpler, relaxing the 
edges from top to bottom yields the desired optimal route. In practice however, the 
construction of such a layered graph is prohibitive, both in terms of running time as well 
as of space consumption. Remember that we are dealing with thousands of facilities in 
one single class. So in [2]  the authors propose a new algorithm – LORD – which 
avoids the explicit construction of the complete layered graph by an adaptive threshold 
technique. 

LORD is refined to R-LORD using a range query data structure for nearest 
neighbor queries to more efficiently prune the search space. The case where the 
underlying space is not the Euclidean space but a road network is discussed in section 
2.2.4 but no experimental results are reported in the paper – probably because 
computing the (now shortest path) distances between nodes of consecutive layers is 
very costly, even though the pruning by (R-)LORD reduces the number of such costly 
computations.[3] 

 

 
Fig. 6. EDJ layer approach: The enhanced Dijkstra based approach builds an explicit layered graph to cover all inter 

layer distances. Each edge (Cli ,Cki+1) represents the shortest path from Cli to Cki+1 in the underlying road network 
and is weighted with d(Cli ,Cki+1). A single Dijkstra computation from s recovers the optimal s − t route. 

These following sections introduce  two main tools for speeding-up sequenced 
route queries. While both techniques can be employed independently, the combination 
of both yields the best speed-up compared to the naive EDJ approach. The first speed-
up technique – iterative doubling – works well, if the actual result path is relatively short 
– probably the most frequent type of query result in practice –, avoiding the exploration 
of facilities that are far away from source and target. [3] 

    The second technique – contraction hierarchies (CH) – has been developed in 
the context of fast point-to-point shortest path queries [12]. The proposed algorithm in 
section 2.3.4, extends CH in a natural way to speed-up the computation of inter-layer 
distances. This technique applies equally well for local and non-local queries. Both 
speed-up techniques do not compromise optimality of the result. 
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2.3.3 Iterative Doubling 

The algorithm modifies the EDJ algorithm as follows: 

• Run Dijkstra from s to compute distances d0 to all nodes C1 

• Run a single Dijkstra starting at all nodes in C1 where each node v ⊂ C1 has 
initial distance value d0(v) until all nodes in C2 are settled. This computes 
shortest path distances d1 from s via at least one node in C1. 

• Run a single Dijkstra starting at all nodes in C2 where each node v ⊂ C2 has 
initial distance value d1(v) until all nodes in C3 are settled. This computes 
shortest path distances d2 from s via at least one node in C1 and one node in C2 

        | 

• Run a single Dijkstra starting at all nodes in CL where each node v ⊂ CL has 
initial distance value dL-1(v) until the target is settled. This actually computes the 
shortest path from via at least one node in C1, at least one node in C2, . . . , at 
least one node in CL to t. 

 

Clearly, the running time of this approach is essentially that of performing L 
Dijkstra runs on the graph—which is already a considerable improvement to EDJ which 
essentially required ∑ |Ci|	 many Dijkstra computations to compute the weights of all 
inter-layer edges.[3] 

Although there is still an obvious source of inefficiency here. Realistic sequenced 
route queries are expected to be mostly local (typical commuter distances are 40km to 
60km at most which translates to 60 to 90 minutes). It seems very inefficient to explore 
facilities that are hundreds of kilometers (and hours of driving) away. 

If we assume now that we know the length (duration) of the optimal path from s to t 
visiting facilities in the given order; let that length be D. We could stop each (!) Dijkstra 
computation above once we reach distance D and still guarantee that we find the 
optimal path since no subpath of the optimal path can have length more than D. Note 
that in case the optimal path is rather short – let’s say it takes 70 to 100 minutes – this 
will drastically reduce the search space of every single Dijkstra. Unfortunately we do 
not know the optimal route’s exact length D a priori, this is where the iterative doubling 
part comes into play. We start with some estimation/lower bound D΄ for D which can be 
pretty small (let’s say 10 minutes). We use the above sequence of computations except 
for one important difference: we abort each Dijkstra run once we have settled all nodes 
at distance at most D΄.[3] 

Two things can happen: a) the computation does not reach t – so our estimation D΄, 
was too small, we double D΄ and repeat. b) the computation does reach t – so we have 
a valid path from s to visiting facilities on the way in the right order on a path of 
distance D΄΄. It is not hard to see that this solution is optimal. 

2.3.4 CH enhanced Iterative Layer Search 

Contraction hierarchies ([12]) are a preprocessing scheme that allow for the faster 
answering of shortest path queries in road networks. The key component of the 
preprocessing phase is the iterative removal/contraction of nodes in order of increasing 
’importance’ (nodes at dead-ends or degree-two nodes are removed first, important 
junctions are contracted last) while preserving the shortest path distances between the 
remaining nodes. This is achieved by adding a so called shortcut (u,w) between any 
pair of neighbor nodes u,w of v, if the shortest path from u to w is uvw. The shortcut is 
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created with cost equal to the sum of the costs of edges (u, v) and (v,w). Having 
removed all nodes but one, all constructed shortcuts are added to the original graph 
and the nodes are labeled 1 . . . n according to the contraction order. The modified 
graph has the interesting property that for any pair s, t of nodes, there exists a 
representation of the shortest path from s to t which can be divided into two parts, one 
part starting at s and only following edges to nodes with larger label followed by a part 
which only follows edges to nodes with smaller label. This special property of the 
augmented graph (original edges plus shortcuts) is then exploited in the query phase 
by a bidirectional Dijkstra starting at source and target simultaneously.[3]  This leads to 
query times for s-t queries which are about 1000 times faster than ordinary Dijkstra due 
to the drastically reduced search space, see [12]. 

 To extend this idea to our problem of speeding-up inter-layer Dijkstra 

computations we have to go a bit more into detail. An edge e = (a, b)  E is called an 
upward edge iff a < b, that is, the node ID or label (after adding shortcuts and 

elabelling) of a is smaller than that of b. A path p = (e1, e2, . . . , ek) with ei  E is called 

upward path iff all ei  p are upward edges. We define downward edge and downward 
path accordingly. Using these definitions we define 7΄�,9΄ to be the union of all upward 
paths starting in v and 7΄	,9΄ to be the union of all downward paths ending in v. So the 
crucial property of a shortest s − t path in a CH-enhanced graph is that it has the form 

(s, . . . , u, . . . , t) where (s, . . . , u)  7΄: and (u, . . . , t)T  7΄	΄.[3] 

An edge e = (a, b) ⊂ E is called an upward edge iff a < b, that is, the node ID or 
label (after adding shortcuts and elabelling) of a is smaller than that of b. A path p = (e1, 
e2, . . . , ek) with ei ⊂ E is called upward path iff all ei ⊂ p are upward edges. Also define 
downward edge and downward path accordingly. Using these definitions we define 
7΄�,9΄ to be the union of all upward paths starting in v and 7΄	,9΄ to be the union of all 
downward paths ending in v. So the crucial property of a shortest s − t path in a CH-
enhanced graph is that it has the form (s, . . . , u, . . . , t) where (s, . . . , u) ⊂ 7΄: and (u, 
. . . , t)T ⊂ 7΄	΄. 

  CH also answers a simple s − t shortest path query by performing two interleaved 
Dijkstra computations, one starting in s, the other starting in t. The former one only 
considers edges in 7΄: , the latter only edges in 7΄	΄.When both Dijkstra computations 
settle a node v ⊂(7΄: ⊂	7΄	) d(s, v) + d(v, t) is an upper bound for d(s, t) and the 
shortest path is realized by min (7΄:  ⊂	7΄	 )  (d(s, v) + d(v, t)). This method can be 
extended to one to many shortest path computations where the task is to find all 
shortest paths from a node s ⊂ V to a set of nodes T ⊂ V. The conceptually easiest 
method is to mark all edges in the downward graph for each t ⊂ T and use and Dijkstra 
computation from s which considers all edges in (7΄: and all marked edges.[3] 

The same methodology can be even further extended by the following 
preprocessing step. For each facility/POI class we construct the downward graph for 
this facility class by taking the union of the downward graphs of all nodes in that facility 
class. These downward graphs can be represented by a one bit marker for each edge 
and facility/POI class indicating whether the edge belongs to the respective downward 
graph. Then, during query processing, the ordinary inter-layer Dijkstra is replaced by a 
Dijkstra operating on the union of the upward graphs of the settled nodes of the current 
facility class and the downward graph for the next facility class. This speed-up 
technique does rely on locality of the queries but exhibits a considerable speed-up in all 
cases.[3] 
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2.4 Conclusion 

During this literature review I have considered the problem of answering sequenced 
route queries and developed an efficient algorithm programmatically that could take 
advantage of the Iterative Doubling technique that according to the paper [3]  allows 
the exact and fast computation of realistic queries involving common tasks/points of 
interest in a local area range. The focus in this literature review has been the case 
where the order in which the points of interests are to be visited is fixed. The very fast 
query times for fixed order queries allows for a straightforward treatment of unordered 
or only partially ordered queries by simply enumerating all possible orderings. Another 
interesting topic for future research is the transition from fixed edge costs to 
parameterized ones. This extension seems natural under the assumption that the 
”cost“ of an edge could be the required travel time or the battery consumption 
necessary to cross this road segment.  

     The proposed solution based on the distance sensitive doubling technique is in 
orders of magnitudes faster than either a naive approach or previous PNE algorithm 
and the mobile application would try to produce the answers in an instant for realistic 
queries without compromising guaranteed optimality developing and solve efficiently 
the OSR problem. We could expect that fast query times, for such a route query would 
become feasible on the mobile devices. 
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3. Implementation of TPQ in Android 

The basic concern of the thesis project is the development of an Android application 
that is able to solve the SQR problem “Getting things done in the way home” by 
implementing Iterative Doubling (section 2.3.3) algorithm using Java (for android) 
technology  and an embedded (sqlite) database. In order for a user  that wants to test 
the application and view the results  a friendly User Interface (UI)  implemented  as part 
of the  MainActivity (thread). Another  activity that  the main activity  triggers  to execute 
the algorithm is the TraceRouteActivity. Both basic threads and some basic assets and 
techniques have been described in details in the following sections.    

3.1 UML Class Diagram 

Figure 7 shows the class diagram of the android java application that I developed for 
my master Thesis. In software engineering, a class diagram in the Unified Modeling 
Language (UML) is a type of static structure diagram that describes the structure of a 
system by showing the system's classes, their attributes, operations (or methods), and 
the relationships among objects. The goal is to show only those attributes and 
operations that are useful for the particular diagram.  

As  it is obvious in the UML Diagram (fig. 7) the basic java class where the 
algorithm is running and all the calculations are taking place is the TraceRouteActivity. 
More precisely this activity class is responsible to display the GoogleMap (mMap) and 
to design the computed optimal route. It associates all the modules that are essential 
for the computations. In few words it is the basic Controller of the application. An 
AsyncTask class that is executed in a parallel tread is triggered by TraceRouteActivity 
in order to load the data and compute the optimal route. 

Static data that concern the POIs are kept in xml format files in the Asset directory 
of the mobile device. As soon as the user sets up the application and triggers the 
Activity the data are serialized to aggregate as (uml in figure 7) three maximum PoiSet 
class objects, one for each of the three Categories of Interest by instantiating the xml 
elements to Poi Class objects in main memory for quick access. The association 
relationship in the UML diagram between Poi and Node Object denotes that I construct 
a node for each Poi inside the distance range and then added to the BipGraph as it is 
shown by the aggregation relationship.  

Other essential module classes are those classes that extend the XMLParser 
class (figure 7). DMParser provides the driving distance between two nodes if it is not 
already saved in DB. The Connection Object is the DAO object that represents a 
connection and it is handle by the DatabaseHandler Object that is responsible for the 
CRUD operations in DB. 

Finally the RouteTask class returns with the Waypoints Object that optimize the 
route and then constructs the request to the Google Directions Api for the routing 
information in JSON format. The GoogleParser serialize this information to instantiate 
the Google map and display the route. Further information about UML class diagram 
and the objects that represents refer to [14]. 
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Fig.7: Uml class diagram 
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3.2 Basic Project Modules  

3.2.1 MainActivity 

MainActivity is the entry part of the developed Android application and consists of a 
Linear Layout with two EditText elements where the user inputs the start and end 
points of the route, a button and three check boxes where the user decides about the 
Categories of Pois that he wants to pass through while travelling. Finally when the 
button is clicked, the other Activity TraceRouteActivity is triggered. MainActivity’s 
mainly purpose is to collect and provide the following information to the basic controller 
module (RouteTask) that processes the algorithm and displays the result: 

• MainActivity.SOURCE  (the texted source point) 

• MainActivity.DESTINATION (the texteddestination point)  

• MainActivity.BANKS (Boolean isChecked BANKS Poi Category) 

• MainActivity.RESTAURANTS (Boolean isChecked Poi Category ) 

• MainActivity.HOTELS (Boolean isChecked Poi Category) 

The content layout of MainActivity is shown in the below screenshot (figure 
8).Screenshot in figure 9 shows the layout of TraceRouteActivity.  

3.2.2 TraceRouteActivity 

TraceRouteActivity’s contents Layout is the Google map (fig. 8) where the optimal 
route is depicted after the successful finish of the algorithm. This Activity imports the 
main modules/classes  that are very structural to the application and then calls the 
RouteTask<AsyncTask> that is an Asynchronous Threat to execute the algorithm 
without interrupting the main UI thread that displays the map. 

TraceRouteActivity holds the most important static variables-objects such as the 
GoogleMap fragment object, the setConnections function (see uml in figure 7) that is 
the basic module that takes part during Dijkstra computations where we decide to set 
the weights of nodes, and finally provides the         addPolyline and setUpMap modules 
in the onPostExecute method of the AsyncTask  to draw the optimal route with the 
intermediate POIs on the map.  

Once the these global scope variables are set then the activity calls a new thread 
that runs asynchronously in parallel, the RouteTask that utilize the “Iterative Doubling” 
algorithm in order to compute the optimal Path. The actions that manipulate the data 
and result the POIs that optimize our route, are taking part in the 
doInBackground(String|) process as it is shown in the uml interaction diagram below 
(fig. 10). 

 

 



Master Thesis                                                  Konstantinos Kavvalakis  

   An Android Application for TPQ                                                       29 

 

 

Fig.8:initial entry screen               Fig.9: Loading| 

 

 

The steps before the algorithm, that are part of the preprocessing are the following: 

•  Call the The Google Geocoding API [15] to get the geographic 
coordinates of the source and destination points. They are necessary to 
the next request to the distance matrix api.  

•  Read and load to the main memory the xml files that include the 
points of interest of each category according to the user choice 

•  Initialize the DatabaseHandler object so we can have access to the 
DB. 

•  Initialize the graph with the source and destination  

 

After the above steps the application sets all the relative nodes and their connections 
calling the setConnections method that computes the distances between nodes, saves 
and constructs the Distance Matrix Table in the DB if it is not already made and 
computes the Dijkstra’s shortest path as the algorithm implies. The key feature here is 
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that the activity holds a static variable called estimated_distance with initial value 
10000m (10km) that is the initial threshold that the algorithm uses to exclude nodes 
from Graph that are far away. The user can also choose to initialize himself the 
estimated_distance from the settings of the application. If this threshold fails then it is 
doubled until the graph has been build and the optimal route has been found. 

The SQLite Database is not preinstalled. There is a preprocessing stage where 
the distances of the edges of the graph are cached while calling the Google Distance 
Matrix Api [16] that returns the driving distance (or time) between the sequenced 
candidate optimal point couples. But for the academic purpose and to be closely to the 
experimental results of chosen algorithm, we assume that the DB has already been 
built and the required distances are cached. This is essential because of the Google 
Api limitations in usage by the academic purpose of the application. If a user has 
already ran a route, then one could easily fasten the time to retrieve the route by 
choosing the “Use cache” options from the application “Settings” menu. 

The DB schema that caches the distances of an already visited node for quick 
access in the next use, consists from only one simple table that has four columns. A 
primary key, the node (a string label) from where a “directed” edge starts, the node (a 
string label) where ends and the driving distance between them. The “directed” term it 
has not a literal  meaning, but is used to determine the traversal order of nodes during 
Dijkstra’s calculations. A combinatorial index between these two nodes has been 
created.        

SQLite is an Open Source database. SQLite supports standard relational 
database features like SQL syntax, transactions and prepared statements. The 
database requires limited memory at runtime (approx. 250 KB) which makes it a good 
candidate from being embedded into application runtime. It supports the data 
types TEXT (similar to String in Java), INTEGER (similar to long in Java) and 
REAL (similar to double in Java). All other types must be converted into one of these 
fields before getting saved in the database. 

SQLite is embedded into every Android device. Using an SQLite database in 
Android does not require a setup procedure or administration of the database. You only 
have to define the SQL statements for creating and updating the database. Afterwards 
the database is automatically managed for you by the Android platform. 

After the optimal route has been computed the Pois from each Category of interest 
among with the source and destination points are used as parameters to the final 
Google Directions Api request. We parse the response and finally in the 
onPostExecute method the optimal route is drawn in the map (see chapter 4). 
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Fig.10: asynk task uml interaction diagram 

 

3.3 Essential modules 

The class in Fig. 11 is the model of the layered graph that covers all inner layer 
distances as it was firstly imposed by the EDJ layer approach. The android application 
permits maximum tree categories of Pois with particular order imposed by the type of 
locations. The graph is constructed dynamically and the POIs that are located over the 
search range of the application algorithm are excluded from the graph. 

The Node Class is essential to implement the Dijkstra’s algorithm as it models the 
basic node element and provides proper Setters and Getters methods. Node objects 
update their weights during the algorithm when a new minimum distance from the 
source node is validated. They also keep a reference to the node that precedes with 
the minimum distance. The Object’s equal function is overwritten to cover the 
comparison needs between nodes. The Bipartite Graph Class as it is already shown in 
the UML is an aggregation of Node class instances. 

The POI objects and their geographic coordinates along with other relative 
metadata are initially stored in xml files each one represents a Poi Category. In order to 
utilize proper object in main memory and access all these information I took advantage 
of the Simple library. Simple is a high performance XML serialization and configuration 
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framework for Java. Its goal is to provide an XML framework that enables rapid 
development of XML configuration and communication systems. This framework aids 
the development of XML systems with minimal effort and reduced errors. It offers full 
object serialization and deserialization, maintaining each reference encountered. In 
essence it is similar to C# XML serialization for the Java platform, but offers additional 
features for interception and manipulation. [16] 

The Iterative Doubling algorithmic calculations are implemented during the 
doInBackground process (figure 10) and finally result to the construction of a Bipartite 
Graph with all the nodes marked as visited according to the Dijkstra run. The optimal 
path is taken backward starting from the end node and exploring the previous nodes 
within the shortest path. A pseudo code of the specific process is shown in table 6. 

Pseudo Code of ‘Iterative Doubling’ implementation  

Function setConnection(node one, node two, threshold){ 

     If one.weight +getDistance(one,two) > threshold  

         If two.weight > one.weight +getDistance(one,two) 

               two.updateWeight(); 

               two.setPrevious(one); 

         one.addEdge(two); 

         return true 

     Else return false;   

 } 

 Bipartite graph; 

 graph.add(source); 

 Repeat 

   Foreach (Node node of first_layer) 

        If setConnection(source, node) 

             graph.add(node); 

   Foreach (Node node of other_layers) 

        If setConnection(upperlayer_node, node) 

             graph.add(node); 

   Foreach(Node node of last_layer) 

        If setConnection(node, destination) 

             graph.add(destination); 

   If graph.getDestination == NULL 

      threshold = thresholdx2; 

   Until (graph.getDestination !== NULL)  

   Return the nodes of optimal route in reverse order starting        from Destination 
node; 

   Table 11. Pseudo code of implemented algorithm 
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Poi Class and PoiSet Class are properly annotated to show the power of the 
Simple library. The application uses the following annotations: @Root, @Attribute and 
@ElementList making the XML serialization quite easy process. Each annotation 
contains a name attribute, which can be given a string providing the name of the XML 
attribute or element. This ensures that should the object have unusable field or method 
names they can be overridden, also if your code is obfuscated explicit naming is the 
only reliable way to serialize and deserialize objects consistently. @ElementList  
annotation supports common relationships. This allows an annotated schema class to 
be used as an entry to a Java collection object that in my case I use an ArrayList that 
holds the Poi Object of each PoiSet instance. 

The GoogleParser, GeoCodeParser and DMParer classes are responsible to 
consume JSON strings and to generate the corresponding JSONObjects that are the 
inputs of the main modules that are already have been mentioned. 

3.4 Assets and permissions 

The POIs are initially kept in xml format files in the application asset directory. They are 
serialize to PoiSet objects in order to keep all the information we need to generate the 
nodes, the graph and the connections/edges between nodes. Due to these purpose the 
thesis application keeps tree XML file one for each Poi Category (bank.xml, 
restaurant.xml, hotels.xml) in the Assets directory. Figure 11 shows a small sample of 
that data that where extracted from OpenStreepMaps.org[13]. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<gpx version="1.0" creator="GPSBabel http://www.gpsbabel.org" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns="http://www.topografix.com/GPX/1/0" 

xsi:schemaLocation="http://www.topografix.com/GPX/1/0 

http://www.topografix.com/GPX/1/0/gpx.xsd"> 

<time>2011-12-15T14:01:39Z</time> 

<bounds minlat="36.686540500" minlon="23.037696400" 

maxlat="38.350403700" maxlon="24.054799200"/> 

<wpt lat="37.994816500" lon="23.341969300"> 

  <name>Bank:Marfin Egnatia Bank</name> 

  <cmt>Bank:Marfin Egnatia Bank</cmt> 

  <desc>Bank:Marfin Egnatia Bank</desc> 

</wpt> 

<wpt lat="37.994665000" lon="23.342719300"> 

  <name>Bank:Alpha Bank</name> 

  <cmt>Bank:Alpha Bank</cmt> 

  <desc>Bank:Alpha Bank</desc> 

</wpt> 

<wpt lat="37.995012100" lon="23.343975800"> 

  <name>Bank:Εθνική Τράπεζα</name> 

  <cmt>Bank:Εθνική Τράπεζα</cmt> 

  <desc>Bank:Εθνική Τράπεζα</desc> 

</wpt> 

<wpt lat="37.996053300" lon="23.344140000"> 

  <name>Bank:Αγροτική Τράπεζα</name> 

  <cmt>Bank:Αγροτική Τράπεζα</cmt> 
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  <desc>Bank:Αγροτική Τράπεζα</desc> 

</wpt> 

… 

</gpx> 

 Fig.11: Banks.xml  

With all these features that have been mentioned till now and the essence of the 
previous functional modules it becomes obvious that some extra permissions for 
accsess external resources such as Google  services, and SQLite database tables are 
essential from the thesis application. The application in order to use the Google Maps 
has already been registered as in Google APIs Console in debug mode as it is 
imposed by [18]. Android permissions for Internet Access and Read and Write in 
external storage also required. 

In figure 1 we can see the initial application screen (main layout) where the user 
has typed the source and destination address. Soon after the user clicks over the 
“Trace” button the application loads the data and runs the algorithm. At this time the 
AsyncTask (RouteTask) loads an indicator for the user to understand that there is a 
running process while he waits for the result (figure 2). Figure 12 shows the optimal 
route with markers that represent the source the destination and the Pois from where 
the route passes through. Finally figure 21.shows a proper exception message in case 
something bad happens while we make request  to any of the several Google APIs and 
a “query limitation” or “internet failure” happens. 
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4. Evaluation 

This chapter would try to prove the concurrency and correctness of the algorithm. The 
main purpose of the application is to answer efficiently the SRQ, adapting the “Iterative 
Doubling” among other algorithms as a suitable algorithm that can run to a mobile 
application in a feasible way. In addition, I would try to prove the guaranteed optimality, 
giving the steps of the algorithm in a graphical way utilizing a small set of Pois for the 
proof of content. 

4.1 Case Study  

This section describes briefly the main steps of the application by studying a case 
where the user wants to drive from Marousi to Koukaki and on his way he wants to 
cover the minimum distance by his car and during his way to stop by a bank, to take 
money from an ATM machine, to book a room in a hotel, soon afterwards to have a 
lunch in a restaurant and finally to be in his time in a professional appointment in 
Koukaki. (figure 12)The goal here is to drive the minimum distance (or spent the less 
time) in order to reach his appointment. For a foreigner the application suggests a POI 
that has never been discovered and moreover minimizes this effort. 

If the user has cover this route once, he can visit the setting menu by clicking the 
menu button of his mobile device and then choosing the cache option. Then assuming 
that has already tried once this route choices option “Use cache” (figure 12). This 
means that the embedded db does not check if the pair of nodes with their distances 
are available and fetches immediately its distance. In case a use choose “Do not use 
cache“, the DB checks once for the pair existence that means an extra query for each 
edge of the road graph and if the search is successful fetches the result, otherwise 
request form the Google Distance Matrix Api the POI’s distance for caching. 

Another available setting is one to choose the range of the distance that 
approximates the length of the optimal route (see figure 15). This can perform better if 
the source and destination are quite far away because by default the initial range 
before the doubling where the algorithm searches the optimal route is 10km. 

  In figure 16 is the “Loading|” screen that indicates that a process is taking place 
and the user should be patient (although is quite fast process). As soon the 
calculations end up the user can see the optimal route along with the POIs of the 
chosen Categories where it passes through. Tapping a marker shows the facility label 
for the user convenience. If something fails during the loading process the use is 
informed by a proper error message (figure 19). These messages concern mainly the 
Google services and are thrown when a user loses internet connection if not cache 
option is checked or if a Google request’s over query limit is reached. 

In figure 18 all POIs are marked with a respective marker icon. These are the data 
instantiations as nodes over the Google map. Their initial form is shown in figure 11.  
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Fig.12: Setting menu(button)          Fig.13: cache settings 
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Fig.14:initial entry screen            Fig.15: The POIs on Map along        with the route  
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Fig.16: Loading|                      Fig.17: Optimal Route 
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Fig.18: POIs marked over map      Fig.19: Custom Exception 

4.2 Algorithm steps  

In order to have a better inspection of the application algorithm while it is running, a 
proper reduction the POIs’ cardinality (p) was made, while the starting address was set 
to “Marousi” and the  ending address to “Koukaki”. The POI Categories are Hotels and 
Restaurants  and are the following: 

1)Set of HOTELS      2) Set of RESTAURANTS  

a)Hotel Pantheon (node 4.0)      a)Cafe:Starbacks (node 5.0) 

b)Hotel Nafsika (node 4.1)         b)Restaurant:Goodys (node 5.1)     

c)Hotel Aquamarina(node 4.2)     c)Σαλτο Μορταλε (node 5.2) 

d)Hotel Medousa (node 4.3) 

The distances between nodes and the steps of the algorithm (each time it doubles the 
initial estimated distance) are shown in color below in the graphic representation (figure 
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20). Finally at the third step (green) terminates with optimal path: 
source,node4.1,node5.2,end. 

 
Fig.20: Algorithm execution in steps (final step reaches the end node and terminates) 

The algorithm starts with initial threshold (range) 10km. We can distinguish the 
algorithmic steps as follows: 

a) In the three first Dijkstra computations the red nodes are marked as red. The 
end node finally is out of range and the threshold is doubled.  

start 
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b) The algorithm starts again with new threshold of 20km. After the three 
Dijkstra computations the blue nodes are visited marked along with the red 
from the previous step. 

c) As soon as we reached the marked as visited the end node we have a 
shortest path from start to end that is given in reverse order starting from the 
destination to its previous node 5.2 and so on. 

4.3 Experimental results 

Experiments were performed on the road network of Attica, 

with 306 POIs from OpenStreetMap[13] in respect with the three Categories 
(Banks,Hotels and Restaurants) that were used. An augmented graph with 540000 
edges on a single core Motorola defy with android 2.2.2 version. As performance 
metrics I use the process time as well as the total nodes in the constructed Graph 
(which is equivalent to the number of settled nodes during Dijkstra’s computations) the 
total nodes and the number of edges settled during each iteration as a more robust and 
platform independent indicator (table 12). 

 
path time (sec) settled nodes total nodes settled edges distance 

covered 
(meters) 

marousi-koukaki 65 180 306 (3C) 6876 15031 

marousi-koukaki 22 67 112 (2C) 2299 14673 

marousi-elefsina 25 90 130 (2C) 2264 32632 

marousi-elefsina 80 245 306 (3C) 7823 31879 

 Table 12. Experimental results 
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5.Conclusion and future work 

With this work I tried to consider the problem of answering sequenced route queries 
and developed an efficient android application that utilizes a speed-up technique to 
allow the computation in few seconds for realistic sequenced route queries involving 
common points of interest. The focus of this work has been the case where the order in 
which the points of interests are to be visited is fixed. This speed-up technique 
“Iterative Doubling” works well, if the actual result path is relatively short and works well 
for local data[3]. As we can see from table 12 when we decide to travel for a long 
distance and while we grow up the involving points of Interest the queries are getting 
slow. 

The restrictive factor that slows down the algorithm is the explicit calculation of 
large number of  inner edges although many of them are pruned by our estimation 
bound. The second speed-up technique the extended CH can be applied as a future 
work with the condition that should be running in two parallel threads in a more 
advanced mobile device with a dual core. 

 The future of the android application is a very straight forward. Further new 
features can be added such as the choice of the travel mean (i.e. by feet, cycling ) or 
more POI categories with no prefixed order rather than the user could chose the order 
himself. Also some assistive tables could be developed in the external memory so they 
can cache the already optimal route by assuming that the POI sets are mainly static. If 
we would decide to update these xml format data we can easily do this by appending 
the new nodes at the end of the respective category. I hope and I wish through this 
work to help any student who is interested in leveraging the power of android 
programming and Google services to manage spatial data and answering similar 
queries with the power of a smart mobile device (with sensors, gps and a variety of 
capabilities) .        
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