

University of Piraeus – Department of Informatics
Master of Science

“Advanced Systems”

Master Thesis

 Title Optimization of ReRAM write latency and comparison

with SRAM technology

Full Name Eirini-Panagiota Douka

Father’s Name Efstratios

Identification Number MPSP 10052

Supervisor Mihalis Psarakis, Assistant Professor

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

31 October 2013

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

Three-Member Committee

Mihalis Psarakis
Assistant Professor

Dimitris Apostolou
Assistant Professor

Panayiotis Kotzanikolaou

Lecturer

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

Contents
1. Introduction ... 8

2. Analysis of SRAM and ReRAM modeling .. 3

2.1 SRAM ... 3

2.2 ReRAM .. 6

2.2.1 Generally ... 7

2.2.2 ReRAM cell characteristics and system

requirements: .. 7

3. PROCESSOR ARCHITECTURE .. 9

3.1 ADRES... 9

3.1.1 Generally ... 9

3.1.2 ADRES Architecture .. 9

3.2 DRESC COMPILER .. 11

3.3 BoADRES ... 11

4. RERAM Implementation For Data Memory Replacement . 115

4.1 Experimental Setup... 12

4.2 Simulation Results... 22

4.3 Energy Modeling and Results... 28

4.3 Discussion .. 29

5. Conclusions and Future Work .. 30

References... 32

Figures
Figure 1 SRAM cell .. 4
Figure 2 .. 4

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

Figure 3 4T SRAM cell ... 5
Figure 4 6T SRAM cell ... 5
Figure 5 TFT SRAM cell... 6
Figure 6 Basic ReRAM cell .. 8
Figure 7 Decimation in Time .. 12
Figure 8 Decimation in Frequency ... 13
Figure 9 .. 15

Source Code
Source Code 1 SRAM entry process .. 14
Source Code 2 SRAM_banked module definition... 14
Source Code 3 Instances of SRAM_banked module.. 15
Source Code 4 SRAM_banked process for bank selection.. 17
Source Code 5 p_sel_delayed process .. 18
Source Code 6 ReRAM writing process ... 19
Source Code 7 ReRAM reading process.. 19
Source Code 8 ReRAM stall ... 20
Source Code 9 .. 20
Source Code 10 .. 21
Source Code 11 .. 22

Screenshots
Screenshot 1 SRAM... 23
Screenshot 2 SRAM Banked ... 23
Screenshot 3 ReRAM .. 24
Screenshot 4 ReRAM Banked (version 1) ... 24
Screenshot 5 ReRAM Banked (version 2) ... 25
Screenshot 6 SRAM... 25
Screenshot 7 SRAM Banked ... 26
Screenshot 8 ReRAM .. 26
Screenshot 9 ReRAM Banked (version 1) ... 27
Screenshot 10 ReRAM Banked (version 2) ... 27

Tables
Tabel 1 Energy Numbers for SRAM and ReRAM... 28
Tabel 2 Computational Energy.. 28
Tabel 3 2-Stages FFT ... 29
Tabel 4 Full-Stages FFT ... 29

Charts
Chart 1.. 31
Chart 2.. 31

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

Abbreviations

ADRES Architecture for Dynamically Reconfigurable Embedded Systems
ASIC Application-Specific Integrated Circuit
ASIP Application Specific Instruction Set Processor
CGA Coarse-Grain-Array
CGRA Coarse-Grained Reconfigurable Architecture
CMOS Complementary Metal-Oxide Semiconductor
DFT Discrete Fourier Transform
DRAM Dynamic Random-Access Memory
DSP Digital Signal Processors
FFT Fast Fourier Transformation
FPGA Field-Programmable Gate Array
FU Functional Units
NMOS Negative Metal Oxide Semiconductor
NVM Non-Volatile Memory
RAM Random-Access Memory
ReRAM Resistive Random-Access Memory
RF Register Files
SoC System-on-Chip
SRAM Static Random-Access Memory
VCC Voltage
VLIW Very Long Instruction Word

ACKNOWLEDGMENTS

This thesis represents work completed over a two year period. I am thankful for all the support
and efforts from professors, staff members, fellow graduate students, and industrial partners.

First of all, I would like to express my sincere appreciation and thankfulness to my
professor Mr. Mihalis Psarakis for his support to this great step I wanted to do abroad. Moreover
I would like to thank him for his help and guidance wherever this was needed.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

This work has been conducted under a project with the Wireless Communication Group at
IMEC Research Center. Sincere appreciation goes to my promoter on this project, Dr.Francky
Catthoor for his trust on my knowledge and abilities. Also I would like to thank my supervisor
Matthias Hartmann, for his patience to show to me and teach me all the needed, for being able
to succeed on this project.

I would like to thank current fellow students at the Master Advanced Systems and also
some past fellow students at my Bachelor Informatics at the University of Piraeus, for their
actual and very important support and help through all of these years.

Finally, I would like to thank my family, especially my parents and sister, and also my
friends for their never ending support and encouragement. This work would never have been
accomplished without their true guidance, patience, and love.

Abstract – Recently many different kinds of non-volatile memories have been
proposed in order to replace the already existed SRAM-based memories. Despite the
multiple advantages of those memories like low energy consumption, improvement of
the area needed, nevertheless there also some drawbacks like longer write latencies and
lower endurance. In this Master Thesis, different methods of architectural design of
memory for embedded systems are proposed. The performance of two different kinds of
memory, the already widely known SRAM and the emerging ReRAM is evaluated. We
created two different implementations for each one of them, as data memory of an FFT
application of an ASIP (Application Specific Instruction Processor). The first one is the
simple implementation of each one of them and the second is the sub-banked scheme.
Also architectural solutions are proposed in order to conceal in the most effective way,
the long write latencies of ReRAM and the affection that they have in the performance of
the whole system.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

Περίληψη – Πρόσφατα πολλά διαφορετικά είδη µη-πτητικών µνηµών έχουν προταθεί
µε σκοπό να ατνικαταστήσουν τις υπάρχουσες SRAM-based µνήµες. Παρόλα τα
πολλαπλά πλεονεκτήµατα αυτών των µνηµών, όπως η χαµηλή κατανάλωση ενέργειας, η
µείωση της απαιτούµενου χώρου, ωστόσο υπάρχουν και µειονεκτήµατα όσον αφορά
στους µεγάλους χρόνους εγγραφής όπως και στη χαµηλή αντοχή. Σ΄αυτή τη
∆ιπλωµατική Εργασία, προτείνονται διαφορετικές µέθοδοι σχεδιασµού της µνήµης ενός
ενσωµατωµένου συστήµατος. Η απόδοση δύο διαφορετικών ειδών µνήµης, της ήδη
ευρέως γνωστής SRAM και της αναδυόµενης ReRAM εξετάζονται. ∆ηµιουργήθηκαν δύο
διαφορετικές υλοποιήσεις για κάθε µία από αυτές, ως µνήµη δεδοµένων µιας FFT
εφαρµογής ενός ASIP (Application Specific Instruction Processor). Η πρώτη αφορά στην
απλή υλοποίηση κάθε µνήµης και η δεύτερη είναι η sub-banked υλοποίηση της. Επίσης
προτείνονται αρχιτεκτονικές λύσεις, µε σκοπό να απαλειφθούν όσο το δυνατόν και µε τον
πιο αποτελεσµατικό τρόπο, οι µεγάλοι χρόνοι εγγραφής της ReRAM και η επίπτωση τους
στην συνολική απόδοση του συστήµατος.

1. Introduction
Memory is any physical device capable of storing information temporarily or permanently. For
example, Random Access Memory (RAM), is a type of volatile memory that stores information
on an integrated circuit, and is used by the operating system, software, hardware, or the user.
Memory can be either volatile or non-volatile memory.

Embedded non-volatile memories (NVM) are generally integrated on a chip, to store
programs and data for embedded applications. The term non-volatile is referred to the fact that
the content of these kinds of memory is not needed to be periodically refreshed. In this type of
memory all read-only memories such as programmable read-only memory (PROM), erasable
programmable read-only memory (EPROM), electrically erasable programmable read-only
memory (EEPROM) and flash memory are included. It also includes random access memory
(RAM) which is powered with a battery. The NVMs require high-voltage devices, and cannot
achieve high speed operations due to long write latencies. The high-performance embedded
applications require fast-access embedded NVMS.

SRAM-based memories are characterized from lower write latencies when compared to
emerging NVMs technologies such as Phase-change (PCRAM), MRAM (Magnetoresistive
RAM), STT-MRAM (Spin Transfer Torque MRAM), CBRAM (Conductive Bridging RAM),
FeRAM (Ferroelectric RAM) and the most recent RERAM (Resistive RAM), as well as, lower
power consumption and higher endurance.

 Despite all the previous advantages they suffer from some drawbacks too, such as
leakage power in the memory cells, which is a growing concern in advanced CMOS nodes. Also
they are susceptible to read/write failure with Dynamic Voltage Scaling (DVS) schemes or a low
supply voltage. Moreover SRAM-based memories show a large scaling between different
technology nodes, as well as, low area density. As an outcome of the rising number of problems
that arise from the traditional SRAM-based memories, significant effort and resources have

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

2

been spent on the research and development of these emerging memories technologies that
were referred above.

In Imec significant effort on research of STT-MRAM and ReRAM has been spent until now.
Especially ReRAM, which is the main type that is examined within this Master Thesis, utilizes
materials that change their resistance in response to the applied voltage. This in turn facilitates
its data retention capability which is considered to be one of their key advantages. In addition,
they also have the ability to read/ write data at high speeds by utilizing limited voltage. These
features have largely motivated the industry participants to further study the technology and
develop products for the mass market.

This Master Thesis focused only on ReRAM, which gives some really promising results and
shows some significant advantages when compared to SRAM based memories, Hence it is
attempted, some ways to be found for eliminating the long write latencies of the ReRAM and
thus eliminating the energy that is consumed.

This Thesis focuses on the reorganization of the structure of the memory, so as a way to be
found for eliminating the stalls arose from the addressing in memory. For example the pure
version of ReRAM, follows the memory access pattern. Thus a big number of stalls is caused.
The reorganization of the memory structure eliminates this number of stalls by separating the
memory in two different banks, which can handle in a more efficient way the memory
addressing. Thus the stalls caused by writing in the memory are less.
 So 5 different architectural solutions were created in order to compare the performance
gain, due to replacement of the SRAM memory with ReRAM memory. The two solutions are the
simple SRAM implementation and the sub-banked scheme of it. The third is the Drop-in
replacement of the SRAM module with ReRAM module and the 2 different implementations of
the ReRAM sub-banked schemes. The first one of the latter does not follow the memory access
pattern whereas the second take the memory access pattern into consideration. For each one
of them simulations were run on an ASIP environment and the number of cycles were counted.
Briefly it was observed that the last implementation (ReRAM sub-banked scheme) which follows
the memory access pattern reduces significantly the total number of cycles and gives some
promising results that the advantages of the ReRAM can be exploited in an effective way.

Structure of the Thesis

Now a general plan and organization of the Thesis is given. In the “Analysis of SRAM and
ReRAM modeling” section, there is the definition of what is SRAM and ReRAM and the
comparison of them. The second one is an emerging technology that is not widely known so an
explanation of how it works actually, starting from the structure of the cell and continuing with
the system requirements for embedding ReRAM memories, is quoted.

Afterwards the “Processor Architecture Part” regards to some general description for
the processor which was used for our experiments and is called ADRES. Then the definition of
every individual part of it follows.

The next Chapter “ReRAM implementation for Data Memory Replacement” is the main
part of the Thesis. Initially the experiment is set up. Also the particular application and the ASIP
used for our results is described. Afterwards a brief description of the different implementations
that are designed as well as the comparison of them is referred. In “Further Analysis” some
parts of the source code are quoted, so as to be easier for the reader to see the differences in
the implementations of the modules in every different design. This part is followed by the
“Simulation Results” part. There, there are some screenshots with the results of the simulation
of every different implementation of the memory. Using these results and taking some indicative

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

3

energy numbers for the computational energy the total energy consumption and the energy
leakage in every case is counted. Then the “Discussion” follows, where all the results are
analyzed.

Finally in the last part there is the “Conclusions and Future Work” where all the results
are summarized and some proposals about this topic are given.

Language used for describing the different types of memories

The language that would be more helpful for implementing our memories is SystemC as it the
most suitable language for the architecture of complex systems that are a hybrid between
hardware and software. SystemC is an ANSI standard C++ class library for system and
hardware design.

SystemC is a set of C++ classes and macros which provide an event-driven simulation
interface in C++. These facilities enable a designer to simulate concurrent processes, each
described using plain C++ syntax. SystemC processes can communicate in a simulated real-
time environment, using signals of all the datatypes offered by C++, some additional ones
offered by the SystemC library, as well as user defined. In certain respects, it also deliberately
mimics the hardware description languages VHDL and Verilog, but is more aptly described as
a system-level modeling language.

SystemC is applied to system-level modeling, architectural exploration, performance
modeling, software development, functional verification, and high-level synthesis. SystemC is
often associated with electronic system-level (ESL) design, and with transaction-level
modeling (TLM).

SystemC language has also some strong features that set it as the most possible
candidate for our application like the user definition of modules, ports, exports, processes,
interfaces, events, data types etc.
The language used for the bullding of the firmware which is described below is C++.

2. Analysis of SRAM and ReRAM modeling

10 2.1 SRAM

2.2 General Description

Static random-access memory (SRAM) is a type of semiconductor memory that uses
bistable latching circuitry to store each bit. The term static differentiates it from dynamic RAM
(DRAM) which must be periodically refreshed. SRAM exhibits but it is still volatile in the
conventional sense that data is eventually lost when the memory is not powered.

SRAM is a random access memory which can store the data as long as power is on. The
SRAM cell consists of a bi-stable flip-flop connected to the internal circuitry by two access
transistors. When the cell is not addressed, the two access transistors are closed and the data
is kept to a stable state, latched within the flip-flop.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

4

Figure 1 SRAM cell

The flip-flop needs the power supply to keep the information. The data in an SRAM cell

is volatile (i.e., the data is lost when the power is removed). However, the data does not “leak
away” like in a DRAM, so the SRAM does not require a refresh cycle. Below the read and the
write operations are presented:

Figure 2

To select a cell, the two access transistors must be “on” so the elementary cell (the flip-
flop) can be connected to the internal SRAM circuitry. These two access transistors of a cell are
connected to the word line (also called row or X address). The selected row will be set at VCC.
The two flip-flop sides are thus connected to a pair of lines, B and B. The bit lines are also
called columns or Y addresses.

During a read operation these two bit lines are connected to the sense amplifier that
recognizes if a logic data “1” or “0” is stored in the selected elementary cell. This sense amplifier
then transfers the logic state to the output buffer which is connected to the output pad. There
are as many sense amplifiers as there are output pads.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

5

During a write operation, data comes from the input pad. It then moves to the write
circuitry. Since the write circuitry drivers are stronger than the cell flip-flop transistors, the data
will be forced onto the cell.

When the read/write operation is completed, the word line (row) is set to 0V, the cell (flip-
flop) either keeps its original data for a read cycle or stores the new data which was loaded
during the write cycle [1], [4], [5].

2.2 Types of SRAM

Different types of SRAM cells are based on the type of load used in the elementary inverter
of the flip-flop cell. There are currently three types of SRAM memory cells:
• The 4T cell (four NMOS transistors plus two poly load resistors)
This is the most common cell. It consists of four transistors, to reduce the required cell area.
The challenge for the 4T transistors is to make the resistor high enough, in order the current
needed to be eliminated, but it must be up to one level, otherwise the good functionality is not
guaranteed.

Figure 3 4T SRAM cell

• The 6T cell (six transistors—four NMOS transistors plus two PMOS transistors)
Generally 6T SRAM cell is used in many of commercial chips due to low leakage current and
short operation latency which is typically < 1 ns

Figure 4 6T SRAM cell

n-channel MOSFET (NMOS) transistor is used as an access transistor due to higher
mobility and lower on resistance. Memory cells that use less than six MOS transistors are

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

6

available as well. As the cost of processing a silicon wafer is partially fixed, using scaled cells
and thus packing more bits on one wafer will end up with reduction of the cost per bit of
memory. But due to aggressive CMOS scaling there are potentially several issues which can
limit the progress of scaling.

One of the key factors which limit the SRAM scaling is less noise margin of 6T SRAM bit-
cells in sub-threshold voltage. In many memory designs, to have less dynamic power
consumption, lower supply voltage has been used. Also for static leakage reduction, source-
body biasing has been utilized. The analysis shows that in these conditions the noise margin of
the SRAM cell is reduced as well. Hence, the range of applicability of scaling is limited by the
noise margin requirements for a safe read and write operations.

• The TFT cell (four NMOS transistors plus two loads called TFTs) view of six MOS SRAM cell
shown in Figure. Each bit is stored on four transistors and two supplemental access transistors
are used to control the access to a memory cell during read and write operations. Due to its low
fabrication cost and unique feature of flexible substrate, various emerging devices use it. But
most TFT transistors used today are weak enough devices that although reduce the current
needed do not improve the cell stability.

Figure 5 TFT SRAM cell

11 SRAM Timing Diagram

Synchronous or Asynchronous — SRAMs come in a variety of architectures and speeds, and in
synchronous and asynchronous designs. Asynchronous SRAMs respond to changes at the
device's address pins by generating a clock signal that is used to time the SRAM’s internal
circuitry during a read or write operation. Although commonly used, this type of design runs into
limitations at the high end of the performance range. For this reason, the fastest SRAMs are
generally synchronous. Synchronous SRAMs use one or more external clocks to time the
SRAM's operations. Because of the improved timing control possible with this method, access
times and cycle times can be reduced to match the clock cycles of the fastest PC and RISC
processors on the market today

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

7

12 2.2 ReRAM

13 2.2.1 General Description

Resistive random-access memory (ReRAM/RERAM) is a new non-volatile memory type that
changes its resistance based on the applied voltage. Although ReRAM was initially designed to
be a low energy Flash alternative, ReRAM can also mimic Dynamic RAM (DRAM) or a hard
drive. Some reports claim that,[7], [10] ReRAM could in fact be used as a universal storage
conduit (by using different materials with different characteristics tuned for the particular
applications).

The ReRAM memory technology itself can potentially be used in two different contexts,

based on the intended applications: Embedded and Standalone. Stand-alone memories are

essentially supporting the main memory and the higher cache layers in general purpose

computing platforms. They are optimized for yield and manufactured in high volume so the area

concern is typically the most sensitive cost dimension. As a result, the design costs are spread

across large unit volumes. Several recent ReRAM activities have been proposed to address this

general-purpose market. However, stand-alone memories don't often come in the exact

configuration required and moreover, their access times and energy per read/written word is far

from minimal.

In contrast, embedded memories are integrated on-chip and they realize the lowest cache
or scratchpad memory layers. They are tightly connected with the foreground memory (e.g.
register files) that provides the data access for the logic core to accomplish the intended
functions from the program being executed. High-performance embedded memory is a key
component in modern system-on-chip (SoC) design, because of its high-speed and wide bus-
width capability, which eliminates inter-chip communication and which allows high access
bandwidth for peak workloads in the algorithm execution. As systems become implemented on
a single chip, embedded memory has become the choice of many designers developing for
such SoCs because it can enable additional capability in the end product due to its higher
speed or lower power at the same cost or less than stand-alone memory.

2.2.2 ReRAM cell characteristics and system requirements:

The basic idea is that a dielectric, which is normally insulating, can be made to conduct through
a filament or conduction path formed after application of a sufficiently high voltage. The
conduction path formation can arise from different mechanisms, including defects, metal
migration, etc. Once the filament is formed, it may be reset (broken, resulting in high resistance)
or set (re-formed, resulting in lower resistance) by an appropriately applied voltage. Recent data
suggest that the paths are best described as lineups of oxygen vacancies.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

8

Figure 6 Basic ReRAM cell

A memory cell can be deduced from the basic memory cell in three different ways. In the
simplest approach, the pure memory element can be used as a basic memory cell, resulting in a
configuration where parallel bitlines are crossed by perpendicular wordlines with the switching
material placed between wordline and bitline at every cross-point. This configuration is called a
cross-point cell. Since this architecture will lead to a large "sneak" parasitic current flowing
through non selected memory cells via neighboring cells, the cross-point array has a very slow
read access. A selection element can be added to improve the situation, but this selection
element consumes extra voltage and power. A series connection of a diode in every cross-point
allows to reverse bias, zero bias, or at least partial bias non selected cells, leading to negligible
sneak currents. This can be arranged in a similar compact manner as the basic cross-point cell.
Finally a transistor device (ideally a MOS Transistor) can be added which makes the selection
of a cell very easy and therefore gives the best random access time, but comes at the price of
increased area consumption.

For random access type memories, transistor type architecture is preferred while the cross-
point architecture and the diode architecture open the path toward stacking memory layers on
top of each other and therefore are ideally suited for mass storage devices. The switching
mechanism itself can be classified in different dimensions. First there are effects where the
polarity between switching from the low to the high resistance level (reset operation) is reversed
compared to the switching between the high and the low resistance level (set operation). These
effects are called bipolar switching effects. On the contrary, there are also unipolar switching
effects where both set and reset operations require the same polarity, but different voltage
magnitude.

Another way to distinguish switching effects is based on the localization of the low resistive
path. Many resistive switching effects show a filamentary behavior, where only one or a few
very narrow low resistive paths exist in the low resistive state. In contrast, also homogenous
switching of the whole area can be observed. Both effects can occur either throughout the entire
distance between the electrodes or happen only in proximity to one of the electrodes.
Filamentary and homogenous switching effects can be distinguished by measuring the area
dependence of the low resistance state.

A set of typical system-level requirements for the ReRAM when used in an embedded

wireless or multimedia application, include the following:

• Read access speeds below 1 ns, write access speeds can tolerate a larger

latency but not more than 2 cycles in L1 and 8 cycles in L2 normally.

• Energy per read/write access should be reduced as much as possible because

of the portable context, preferably in the same range as the foreground memory access

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

9

so around 100fJ/read word (writing happens less frequently so it can be more

expensive).

• Area should remain low but due to the limited sizes (16-128Kb for L1 and

128Kb-8Mb for L2) the cell area can be a bit relaxed compared to standalone contexts.

• Endurance should be high: preferably up to 10
13

 for read access, but retention

in the L1-L2 layers can be relaxed to a few days or even few hours. The limited amount

of data that has to be stored longer can easily be backed up in an off-chip NVM with

long retention. In order to meet these requirements we will have to heavily tune the

ReRAM cell and periphery circuits, because standalone configurations do not even

come close to the combination of these critical requirements.

3. PROCESSOR ARCHITECTURE

14 3.1 ADRES
15 3.1.1 Generally

Nowadays due to the increase of wireless systems, Digital Signal Processors (DSPs) and ASIC
do not meet with the requirements of high-performance devices. DSP-based solutions cannot
provide high speed and enough efficiency, whereas ASIC’s design requires high engineering
cost and slow time-to-market due to the specific application that has to be designed.

Coarse-Grained Reconfigurable Architecture (CGRA) is a good proposal as a solution,
since it can offer higher performance, less power requirements and reduced chip area in typical
communication applications. This is feasible due to coarse-grained operations. CGRAs include
an array of basic functional units, which can execute either word level or sub-word level
operations instead of bit-level operations found in common FPGAs .

ADRES in cooperation with DRESC combines a VLIW processor (Very Long Instruction
Word) processor and a CGRA. DRESC handles the switching between these two different
execution modes so the programming of the processor has been significantly simplified. Due to
this combination ADRES can offer both instruction level and loop level parallelism.

16 3.1.2 ADRES Architecture

ADRES (Architecture for Dynamically Reconfigurable Embedded Systems) [3] is a processor
architecture designed for wireless and multimedia processing in single and multiprocessor
systems. These processors are suitable for future mobile terminals like software-defined radios.
They combine power efficiency, great performance and flexibility.

Moreover ADRES is a prototype defined by an Extensible Mark-up Language (XML)-based
architecture, language that allows the building of the processor with a scalable number of
Functional Units (FUs), Register Files (RFs) and wires. The applications for an ADRES can be
exclusively programmed in high-level language (C) and are compiled with the DRESC compiler.

In the higher level, it combines a VLIW processor and a CGRA (Coarse Grained
Reconfigurable Array) in the same structure. In general the loops are mapped to the
Reconfigurable Array, whereas the rest code is mapped to the VLIW processor. The exchange
of data between the VLIW processor and the Reconfigurable Array is resolved through the
common Register Files and the common accesses in memory.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

10

The execution of CGRA is controlled by the control unit CGA, whereas the VLIW processor
has a certain way of pipeline with 3 stages (fetching, decode and execution) which are
controlled by the instruction memory. The configuration memory is loaded through the interface,
after the system reset.

Basic blocks in the ADRES architecture are explained below:
• Functional Units

The core element in the ADRES architecture is a functional unit. The instruction set that
is already defined for the FUs by the compiler, can be extended by instructions which user
can define. Each FU can be specified according to its functionality like memory load and
store
unit, logic unit, arithmetic unit

• Register Files
Register Files are used to store intermediate data. In ADRES architecture there are

two types:
� Predicate register files (1-bit to store the predicate signal)
� Data register files (same bit width as FUs)

When there is loop level parallelism, corruption of data can happen due to overlapped

execution of different iterations of the loop body. Therefore the life-time of the same variable
may overlap over different iterations. In order to accommodate this situation, each of the
simultaneously live instances needs different register. Furthermore, the name of the used
register has to be defined clearly, either in hardware or in software.

ADRES uses two kinds of register naming; rotating register file (RRF) and modulo
variable expansion (MVE). In the first kind which is hardware-based renaming method, the
physical address is calculated by combining the virtual address with the iteration number.
The MVE which is software-based technique unrolls the loop body and renames the register
access to insure that there is no name confliction. Since this solution expands significantly
the loop, which means more reconfigurable contexts ADRES architecture adopts mostly the
RRF solution.
• Routing Networks

The routing Network consists of a data network and a predicate network. The first one
routes the normal data among FUs and RFs, whereas the predicate network directs 1-bit
predicate signals. These two networks do not have necessarily the same topology and
cannot overlap due to different data widths.

Since ADRES architecture is designed to be compiler-friendly and software-like, it is
expected the clock speed to be already determined and the compiler does not need to do
timing analysis as it happens with FPGA. This is the reason why there are some constraints
on how the routing networks are constructed. As far as ADRES is concerned, most of the
routing is done by direct point-to-point interconnections, consisting of wires and
multiplexors. Therefore, the timing can be statically analyzed at design time. When the
compiler maps different kernels, the mapping will not change the timing behavior for a given
ADRES fabric. If long interconnections are needed, a register can be introduced in the data
network to limit the delay of the critical path. FUs can be viewed as part of the routing
network.

• Memories
ADRES architecture consists of a global memory which is connected to VLIW unit. Some

configuration memories are also used, so as to support intermediate operations on the CGRA
mode. These configuration memories are used to feed source ports of CGRA FUs. These
memories will be analyzed further in BoADRES section.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

11

3.2 DRESC COMPILER

A design starts from a C-language description of the application. The profiling/partitioning step
identifies the candidate loops for mapping on the CGA based on the execution time and
possible speed-up. The source-level transformation step tries to rewrite the kernel so as to
make it able for pipeline and with aim to maximize the performance. In the next step IMPACT is
used. IMPACT is a VLIW compiler framework, to parse the C code and do analysis and
optimization. IMPACT also has an intermediate representation, called Lcode, which is used as
the input for the scheduling. As far as architecture is concerned the target architecture is
described in an XML-based language. The parser and abstraction steps transform the
architecture to an internal graph representation. Taking this representation as an input, a novel
modulo scheduling is applied to achieve parallelism for kernels, whereas ILP scheduling
techniques are applied to discover the available moderate parallelism for the non-kernel code.
The communication between these two parts is automatically identified and handled by some
tools. Finally, the tools generate scheduled code for both the reconfigurable array and the
VLIW. The outcome is simulated by a co-simulator.

17 3.3 BoADRES
BoADRES is a scalable baseband processor template for Gbps radios. It is a new generation
power-efficient, high performance and flexible processor architecture, designed to achieve the
data processing challenges for future mobile terminals. It is a dual-core implementation that
adds thread-level parallelism to data-level parallelism. BoADRES can be implemented in 40-nm
and can run at 700 MHz clock frequency.

It correlates a very-long instruction word (VLIW) processor with a coarse-grain-array (CGA)
accelerator through a shared central register file. Number and type of memories in the
processor listed as below:

• 2 scalar, 1 global scalar memories
• 4 vector (scratch pad) memories
• 2 levels of configuration memory

4. RERAM Implementation for Data Memory Replacement

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

12

18 4.1 Experimental Setup
In order to evaluate the performance of the two different types of memories presented above,
we created 5 different architectural solutions of the FFT processor. The ASIP used for the
validation is optimized to execute radix 8 FFT stages and supports several types of FFT’s
ranging from a 64 point FFT to a 4K point FFT.

The used FFT is a 2K point FFT of 11 stages. The stages are named from 0 to 10. They
are combined by 2, except from the last stage that is single. We executed two different
simulations for every architectural design. One with only the first two stages of the FFT and one
with full stages.

We focused on checking the cycles that kernel runs in order to evaluate and compare the
performance of every architectural design that was created. Moreover we created in every
design counters for the read and write accesses. In this way we can also provide some energy
numbers.

4.1.1 Brief Description of the FFT Algorithm

There are many different FFT algorithms involving a wide range of mathematics, from
simple complex-number arithmetic to group theory and number theory. The DFT is obtained by
decomposing a sequence of values into components of different frequencies. This operation is
useful in many but computing it directly from the definition is often too slow to be practical. An
FFT is a way to compute the same result more quickly: computing the DFT of N points in the
naive way, using the definition, takes O(N

2
) arithmetical operations, while a FFT can compute

the same DFT in only O(N log N) operations. The difference in speed can be enormous,
especially for long data sets where N may be in the thousands or millions. In practice, the
computation time can be reduced by several orders of magnitude in such cases, and the
improvement is roughly proportional to N / log(N). This huge improvement made the calculation
of the DFT practical; FFTs are of great importance to a wide variety of applications, from digital
signal processing and solving partial differential equations to algorithms for quick multiplication
of large integers.

“Decimation-in-time” [5] and “Decimation-in-frequency” [5] fast Fourier transforms (FFTs)
are the simplest FFT algorithms. Like all FFTs, they gain their speed by reusing the results of
smaller, intermediate computations to compute multiple DFT frequency

Figure 7 Decimation in Time

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

13

Figure 8 Decimation in Frequency

4.1.2 Description of the Architectural Designs

As referred above, 5 different architectural designs were created for our experiments. The first
architectural design “SRAM”, which is the reference architecture, is the design with no
additional logic; since SRAM modules can be accessed within one cycle for both read and write
operations. The second one “Drop-In” replaces all the data memories with ReRAM modules
with additional logic. A stall mechanism is used since ReRAM modules can be accessed within
one clock cycle for the write, whereas more cycles are needed for the read operation. The rest
three designs are sub-banking schemes. The third design is the “sub-banked scheme of
SRAM” design. The rest two are the “sub-banked schemes of ReRAM designs”. Two
different ways of choosing in which bank every read or write operation goes were designed. In
the first case the last bit of the address is used to choose the bank. In this way all the odd
addresses are mapped to bank0 and all the even to bank1. In the other case the 6

th
 bit is

checked, in order to pick up in which of the two banks the operation is applied.

Further Analysis:

SRAM Design: This is the reference design as mentioned above. Here there is a simple process
called p_entry(), which handles both the read and the write operations

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

14

Source Code 1 SRAM entry process

SRAM_banked Design: For the design of the SRAM_banked scheme we used as template
the SRAM design. We created a new module called SRAM_banked which has identical ports
with the SRAM module.

Source Code 2 SRAM_banked module definition

Two instances of the SRAM module, the bank0 and bank1 instance were created too, as
well as some internal signals for every bank. These signals were mapped to the already existing
ports of SRAM.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

15

Source Code 3 Instances of SRAM_banked module

The figure that follows visualizes the above instantiations. In this figure the ports and the

connections between the original memory and the sub-banked scheme are represented. For
selecting between the signals of the banks some muxes2x1 are used. Different colors have
been used to make it easier to distinguish every signal that is connected to the original port of
the memory. Clock and reset ports of the bank modules, are directly connected to the port of the
SRAM module respectively.

Figure 9

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

16

For the SRAM_banked module a new process called p_sel() was created. In this process
the selection between the two banks is being held. The selection is based on the last bit of the
address so all the even addresses go to the bank0 and all the uneven to the bank1. Depending
on which bank is selected, the relative signals take the values of the ports and the signals of the
other bank are reset. The addresses of every bank are shorter for one bit, as the original
address is shifted to the right by 1. Moreover there is another signal created which is called
sel_delayed. Since signal assignments do not have an immediate effect on the signal, but
happen only after a default time, which is called delta delay, there is a need to create a kind of
buffer which will keep the previous value of the data_out, when a write operation occurs. If the
sel_delayed signal has the value 0 then the first bank is selected for writing, otherwise the
bank1 is selected.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

17

Source Code 4 SRAM_banked process for bank selection

In order to give value to the sel_delayed signal we created another process called

p_sel_delayed(). It works in the same way as it happens with the selection of the banks. So if
the address is even, the signal is assigned with the value 0, otherwise with the value 1.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

18

Source Code 5 p_sel_delayed process

ReRAM Design: In this design two different processes for the write and read operations are
created called p_write() and p_read() respectively. Moreover a stall mechanism is created in
order to handle the long write latency of the ReRAM. For this reason there is another process
called p_stall(), which will be presented below. For the p_write() process some additional
signals are created. The signal write_status represents the status in which the write operation is
at a certain moment, whereas write_addr_buffer and write_data_buffer, operate as buffers for
the address and the data_in respectively. Write_status signal, is given initially the value 9 which
means that a new write operation occurs. As the write operation evolves, it is subtracted by 1 in
every cycle. When the write_status is 1 and the wr_en is high, then the write operation is
completed, so the data from the write_data_buffer signal are written in the memory.
 So three different status of the memory occur. 1) Writing in the memory 2) Memory Idle
because a new write instruction has occurred 3) Memory Idle due to proceeding of a read
operation. As we can see in the following source code part the write_status signal defines in
which of the three is the memory status. If write_status > 0 but not 1 the write_status is
subtracted by 1 to achieve the delay of 10 cycles.

Normally a delay of 10 cycles is caused by this way of handling the write operations per
every operation. In the two different sub-banked schemes we will try to handle in the most
effective way the delay of two sequential writings, by dividing the memory in two parts having
two different stall signals that do not affect one the other. In this way we can achieve to reduce
the delay cycles from 20 to 11 for two sequential write operations.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

19

Source Code 6 ReRAM writing process

As for the p_read() process is needed just to examine if the rd_en is high and the stall

signal is low. Then the read operation can occur.

Source Code 7 ReRAM reading process

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

20

As far as the p_stall process is concerned, the write_status signal is examined. If it is positive it
means that a write operation is still in progress so the stall signal goes high. Otherwise the stall
signal becomes zero.

Source Code 8 ReRAM stall

ReRAM_banked-version1: Similarly with the SRAM_banked version, the ReRAM

module was used as template and two instances of this module, the bank0 and bank1, were
created. The selection pattern in this version is similar to this one of the SRAM_banked version.
There is a difference in the p_stall process in which, the two stall signals of the banks are
examined in order some value to be given at the stall signal. If either bank0_stall or bank1_stall
is 1 then the stall signal becomes 1, otherwise it takes the value 0.

Source Code 9

ReRAM_banked-version2: This design is very similar with the previous one at many points.
The only thing that changes is the way of the selection between the two banks. As it is referred
above, in the first version the access pattern is not taken into consideration, so we use the last
bit to select the bank. In this version the access pattern plays an essential role. Since the
addresses are of 64 bit, we examine the 6

th
 bit for the bank selection, since this is the bit that

changes from iteration to iteration. The new address of every bank consists of the original
address, without the 6

th
 bit that is excluded.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

21

Source Code 10

Finally similarly the p_sel_delayed() process have change to follow the way pattern of selection.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

22

Source Code 11

19 4.2 Simulation Results
Below the screenshots of every simulation are quoted. The screenshots of the two stages FFT
arose after we changed the firmware in order only the first two stages of the FFT to be
executed.

Except from the main part of simulation where the read and write operation happen there
are also the initialization of memory and at the end the dumping of memory. For our results we
will take into consideration only the cycles for the kernel, ignoring the number of the whole
cycles that test took. Moreover some debugging statements where created so as to watch the
read and write signals in our simulation as well as the stall signal for the ReRAM
implementation. These are not obvious in the screenshots that follow as they do not give any
useful results for our research and they were used only for debugging.

Two Stages FFT

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

23

Screenshot 1 SRAM

Simulation of the reference design SRAM for the two stages of FFT algorithm without

additional logic.

Screenshot 2 SRAM Banked

Simulation of the banked scheme of the reference SRAM design without additional logic too.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

24

Screenshot 3 ReRAM

Simulation of the ReRAM implementation for the two stages FFT. In this implementation a stall
mechanism was created, so as to handle the big latency caused in write operations (10 cycles).

Screenshot 4 ReRAM Banked (version 1)

Simulation of the banked scheme of the previous ReRAM design.. For the selection of banks
the last bit of address is used.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

25

Screenshot 5 ReRAM Banked (version 2)

One other banked scheme of the ReRAM implementation. For selecting each bank we use the
6

th
 bit of the address.

Full Stages FFT

Screenshot 6 SRAM

Simulation of the reference design SRAM for the full stages of FFT algorithm without additional
logic.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

26

Screenshot 7 SRAM Banked

Simulation of the banked scheme of the reference SRAM design without additional logic too.

Screenshot 8 ReRAM

Simulation of the ReRAM implementation for the two stages FFT. In this implementation a stall
mechanism was created, so as to handle the big latency caused in write operations (10 cycles).

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

27

Screenshot 9 ReRAM Banked (version 1)

Simulation of the banked scheme of the previous ReRAM design. For the selection of banks the
last bit of address is used.

Screenshot 10 ReRAM Banked (version 2)

One other banked scheme of the ReRAM implementation. For selecting each bank we use the
6

th
 bit of the address.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

28

20

21

22 4.3 Energy Modeling and Results
In the first two tables that follow we have concluded all the necessary numbers for the energy
model that we want to examine. These numbers have been extracted from a previous Master
Thesis and were used in order to give an estimation of the energy consumption in every case
[8]. In the first table the energy numbers for every read and write access, for both SRAM and
ReRAM model are quoted. Moreover the energy leakage per cycle is given.

 SRAM ReRAM

read energy per

access

0,86 0,66

write energy per

access

1,13 2,60

energy leakage per

cycle

1,73 0,35

Tabel 1 Energy Numbers for SRAM and ReRAM

In the second table there are the numbers of the computational energy that is

consumed for the specific application of the 11-stages FFT algorithm. This is the dynamic
energy that is consumed and it changes every time that the application changes. Using this
number, we counted the computational energy consumed for the 2-stages FFT, with the rule of
three.

 Processor

dynamic 15.594,06

static per cycle 1,00
Tabel 2 Computational Energy

In the rest two tables we have concluded the results of all the simulations that we ran for

every different implementation. We have included both the 2-stages and the full-stages
implementation. In the first column there are the “Cycles in Kernel”. In the second and the third
column we counted the “Write and Read Accesses” for every case. These numbers are used to
count the results of the fourth and fifth column according to the energy numbers that we have
received for the two different kinds of memory and are quoted above.

For computing the 5
th
 column of these two tables we used the energy leakage number for

every one of the two different models. We used the numeral Energy Leakage = energy
leakage per cycle * Cycles in Kernel for every different implementation. The 4

th
 column is the

total energy that is consumed for the specific application. For the Full-stages FFT the
computational energy is 15.594,06 whereas for the 2-stages FFT is 2.835,28. The numeral for
computing this total energy that is consumed is Energy = Computational Energy + (Read

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

29

Accesses * read energy per access) + (Write Accesses * write energy per access) +
Leakage energy.

Cycles in

Kernel

Write

Accesses

Read

Accesses
Energy

Energy

Leakage

SRAM 593 256 329 4.433,39 1.025,89

SRAM_banked 593 256 329 4.433,39 1.025,89

ReRAM 2.891 256 329 4.729,87 1.011,85

ReRAM_banked (version

1)
2.960 256 329 4.754,02 1.036,00

ReRAM_banked (version

2)
1.711 256 329 4.316,87 598,85

Tabel 3 2-Stages FFT

Cycles

in

Kernel

Write

Accesses

Read

Accesses
Energy

Energy

Leakage

SRAM 4.721 1.536 1.755 27.006,37 8.167,33

SRAM_banked 4.721 1.536 1.755 27.006,37 8.167,33

ReRAM 18.152 1.536 1.755 27.099,16 6.353,20

ReRAM_banked (version

1)
18.671 1.536 1.755 27.280,76 6.534,85

ReRAM_banked (version

2)
13.645 1.536 1.755 25.521,71 4.775,75

Tabel 4 Full-Stages FFT

23 4.3 Discussion
In this section we will analyze and explain the effects caused by the different implementations
and organization of the memory, as they are presented in the previous table.

SRAM and SRAM_banked versions:
The number of cycles that kernel runs for the cases of SRAM and SRAM_banked is the same.
That can be explained by the fact that no additional logic was used for the implementation of the
SRAM module. Hence, it makes no difference that the addresses go to two different banks. By
this it is clear, that since the SRAM consumes only 1 cycle per writing (as it happens with the
reading too), we cannot improve the total cycles running by changing the memory. For having
some improvement we should change the firmware. Something like that is not examines within
this Master Thesis.

ReRAM-“Drop-In” version

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

30

In the “Drop-In” replacement, we can notice that the number of cycles is quite bigger than
this one of the SRAM case. This is of course caused by the ReRAM write latency in the actual
memory. For handling this latency, we used some additional logic in the implementation of the
ReRAM module. We created a stall mechanism so as to handle the 10 cycles’ delay that is
added because of the long write latency of ReRAM.

ReRAM_banked versions

In the first version of ReRAM sub-banked scheme, the sub-banks do not take into account
the address access pattern. So the last bit is used to choose in which bank every operation
(read or write) is applied. As we can notice from the log files, the addresses are written
continuously in the same bank. This causes a stall of 20 cycles for two sequential writes.
Therefore there is no difference in the number of cycles, so it doesn’t offer any optimizing in the
performance.

In the second version of ReRAM sub-banked scheme, the sub-banks take into account the
address access pattern. The offset of sequential writes is 64, hence the 6

th
 bit is used for the

bank selection. The outcome of the applied technique is two sequential writes to go to two
different banks, one in bank0 and one in bank1. This causes a stall of 11 cycles, instead of 20,
since every bank has its own stall mechanism. In this way the optimizing in the number of cycles
is quite significant (approximately 25% for the full stages version and 50% for the 2-stages
version).

As far as the energy models are concerned we wanted to examine the differences between
the SRAM and ReRAM model. As it is obvious from the Energy Numbers for SRAM and
ReRAM table, the read energy that is consumed per cycle for the ReRAM model is less than the
SRAM one, but the write energy is significantly more. That is the big problem of the ReRAM
model. For this reason the total energy that is consumed for the simple ReRAM or the
ReRAM_banked version1 model is bigger than these of the SRAM or SRAM_banked model.
But when it comes to the ReRAM_banked version2 model the total energy number seems to
give an improved outcome which is more obvious in the full stages FFT where the Cycles in
Kernel and consequently the read and write accesses grow in number. This happens mainly
due to the reduced number of Cycles that Kernel runs.

Below we quote some charts that illustrate the results referred above:

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

31

Chart 1

Chart 2

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

32

5. Conclusions and Future Work

As a conclusion, it is noticed that an emerging NVM ReRAM, offers some significant
advantages in the energy as shown above. Especially a banked version, which takes into
consideration the memory access pattern, gives some promising results. Aim of this Master
Thesis was to examine the effect of different implementations of the data memory in an ASIP.

Therefore it has to be underlined, that the banked solution does not hide the extra cycles
that the long write latency of ReRAM causes yet, in a very effective way. Hence, the overhead is
still large enough, to create a large total energy gain, even though the energy cost (both
dynamic and leakage) is better for the reads in the ReRAM implementation.

For the reasons mentioned above, some other architectural options of the ReRAM is being
examined in Imec now. For example, architectures based on “line buffers” or “Very Wide
Register” interfaces. These architectural solutions aim at reducing the energy cost that is
caused because of the long write latency of the ReRAM and hence to reduce the total energy
cost of the whole application running on an ASIP.

References
[1] Arash Azizi Mazreah, Mohammad T. Manzuri Shalmani, Hamid Barati, and Ali Barati; “A

Novel Four-Transistor SRAM Cell with Low Dynamic Power Consumption”; 2008; World

Academy of Science, Engineering and Technology

[2] Bingfeng Mei, S erge Vemalde, Diederik Verkes, Hugo De Man, Rudy Lauwereins;
“DRESC: A Retargetable Compiler for Coarse-Grained Reconfigurable Architectures”;
Department of Electrical Engineering, Kdtholic Universiteit Leuven, Belgium, Department of
Electrical Engineering, Vrije Universiteit Brussel, Belgium; 2002; IEEE

[3] B. Mei, M. Berekovi, J-Y. Mignolet; ADRES & DRESC: Architecture and Compiler for
Coarse-Grain Reconfigurable Processors; Chapter 6; 2007; Springer

[4] Chen-Wei Lin, Chih-Hsiang Ho, Chao Lu, Mango C.-T. Chao, and Kaushik Roy; “A
Process/Device/Circuit/System Compatible Simulation Framework for Poly-Si TFT Based SRAM
Design”; Department of Electronics Engineering, National Chiao Tung University, Taiwan,
30010

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

33

[5] Craig Lage, James D. Hayden, Chitra Subramanian; “Advanced SRAM

Technology - The Race Between 4T and 6T Cells”; Advanced Products Research and

Development Laboratory Motorola Inc., 3501 Ed Bluestein Blvd., Austin, Tx. 78721

[6] Describing Synthesizable RTL in SystemC; Version 1.0; May 2001; Synopsys, Inc.

Understanding Static RAM Operation; Applications Note; IBM

[7] Hiroyuki Akinaga, Hisashi Shima; “Resistive Random Access Memory (ReRAM) Based on
Metal Oxides”; 12 December 2010; Proceedings of the IEEE

[8] Manu Perumkunnil Komalan, Francky Catthoor; “ReRAM circuit Exploration and
Optimization”; IMEC Reports

[9] Linh Hong; “Applications Emerging to Employ Embedded Non--‐Volatile Memory”; May

2011

[10] Matthias Hartmann; “Low Energy Memristor-based (ReRAM) Data Memory Architecture in
ASIP Design”; Proposed on Date 2012 Conference

[11] Nikos Andrikos, Luciano Lavagno; “Optimal and Heuristic Scheduling Algorithms for

Asynchronous High-Level Synthesis”; Department of Electronic Engineering, Politecnico di
Torino, Italy; 2011; IEEE

[12] SRAM Technology; Integrated Circuit Engineering Corporation

Stefan Cosemans, Wim Dehaene, Francky Catthoor; “A Low Power Embedded SRAM for
Wireless Applications”; 2006; ESAT-MICAS, K.U. Leuven Kasteelpark Arenberg 10, B-3001
Leuven, Belgium; IEEE

[13] SystemC Tutorial; Version 2.0 User’s Guide; 1996-2002

[14] Target Compiler Technologies NV; “Checkers Simulator Manual”; Confidential,
Technologielaan 11-0002 B-3001, Leuven, Belgium

[15] T. Widhe, J. Melander, L. Wanhammar; “Design of Efficient Radix-8 Butterfly PEs for
VLSI”; Department of Electrical Engineering, Linköping University, Linköping, Sweden

[16] Weidong Li, Lars Wanhammar; “Efficient Radix-4 and Radix-8 Butterfly Elements”;
Electronics Systems, Department of Electrical Engineering, Linköping University, SE-581 83
Linköping, Sweden

Web References

[17] Nonvolatile Memory; http://searchstorage.techtarget.com/definition/nonvolatile-

memory

[18] Reconfigurable Array Processor Satisfies Multi-Core Platforms;

http://chipdesignmag.com/display.php?articleId=950&issueId=19

[19] Fast Fourier Transform (FFT); http://www.relisoft.com/Science/Physics/fft.html

[20] IEEE Standard for Standard SystemC Language Reference Manual; IEEE Standards

Association; http://standards.ieee.org/findstds/standard/1666-2011.html

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis

34

[21] Decimation-in-time (DIT) Radix-2 FFT; http://cnx.org/content/m12016/latest/

