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Abstract – Recently many different kinds of non-volatile memories have been 
proposed in order to replace the already existed SRAM-based memories. Despite the 
multiple advantages of those memories like low energy consumption, improvement of 
the area needed, nevertheless there also some drawbacks like longer write latencies and 
lower endurance. In this Master Thesis, different methods of architectural design of 
memory for embedded systems are proposed. The performance of two different kinds of 
memory, the already widely known SRAM and the emerging ReRAM is evaluated. We 
created two different implementations for each one of them, as data memory of an FFT 
application of an ASIP (Application Specific Instruction Processor). The first one is the 
simple implementation of each one of them and the second is the sub-banked scheme. 
Also architectural solutions are proposed in order to conceal in the most effective way, 
the long write latencies of ReRAM and the affection that they have in the performance of 
the whole system.  
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Περίληψη – Πρόσφατα πολλά διαφορετικά είδη µη-πτητικών µνηµών έχουν προταθεί 
µε σκοπό να ατνικαταστήσουν τις υπάρχουσες SRAM-based µνήµες. Παρόλα τα 
πολλαπλά πλεονεκτήµατα αυτών των µνηµών, όπως η χαµηλή κατανάλωση ενέργειας, η 
µείωση της απαιτούµενου χώρου, ωστόσο υπάρχουν και µειονεκτήµατα όσον αφορά 
στους µεγάλους χρόνους εγγραφής όπως και στη χαµηλή αντοχή. Σ΄αυτή τη 
∆ιπλωµατική Εργασία, προτείνονται διαφορετικές µέθοδοι σχεδιασµού της µνήµης ενός 
ενσωµατωµένου συστήµατος. Η απόδοση δύο διαφορετικών ειδών µνήµης, της ήδη 
ευρέως γνωστής SRAM και της αναδυόµενης ReRAM εξετάζονται. ∆ηµιουργήθηκαν δύο 
διαφορετικές υλοποιήσεις για κάθε µία από αυτές, ως µνήµη δεδοµένων µιας FFT 
εφαρµογής ενός ASIP (Application Specific Instruction Processor). Η πρώτη αφορά στην 
απλή υλοποίηση κάθε µνήµης και η δεύτερη είναι η sub-banked υλοποίηση της. Επίσης 
προτείνονται αρχιτεκτονικές λύσεις, µε σκοπό να απαλειφθούν όσο το δυνατόν και µε τον 
πιο αποτελεσµατικό τρόπο, οι µεγάλοι χρόνοι εγγραφής της ReRAM και η επίπτωση τους 
στην συνολική απόδοση του συστήµατος.      

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 
Memory is any physical device capable of storing information temporarily or permanently. For 
example, Random Access Memory (RAM), is a type of volatile memory that stores information 
on an integrated circuit, and is used by the operating system, software, hardware, or the user. 
Memory can be either volatile or non-volatile memory.  

Embedded non-volatile memories (NVM) are generally integrated on a chip, to store 
programs and data for embedded applications. The term non-volatile is referred to the fact that 
the content of these kinds of memory is not needed to be periodically refreshed. In this type of 
memory all read-only memories such as programmable read-only memory (PROM), erasable 
programmable read-only memory (EPROM), electrically erasable programmable read-only 
memory (EEPROM) and flash memory are included. It also includes random access memory 
(RAM) which is powered with a battery.  The NVMs require high-voltage devices, and cannot 
achieve high speed operations due to long write latencies. The high-performance embedded 
applications require fast-access embedded NVMS.  

SRAM-based memories are characterized from lower write latencies when compared to 
emerging NVMs technologies such as Phase-change (PCRAM), MRAM (Magnetoresistive 
RAM), STT-MRAM (Spin Transfer Torque MRAM), CBRAM (Conductive Bridging RAM), 
FeRAM (Ferroelectric RAM) and the most recent RERAM (Resistive RAM), as well as, lower 
power consumption and higher endurance.  

 Despite all the previous advantages they suffer from some drawbacks too, such as 
leakage power in the memory cells, which is a growing concern in advanced CMOS nodes. Also 
they are susceptible to read/write failure with Dynamic Voltage Scaling (DVS) schemes or a low 
supply voltage. Moreover SRAM-based memories show a large scaling between different 
technology nodes, as well as, low area density. As an outcome of the rising number of problems 
that arise from the traditional SRAM-based memories, significant effort and resources have 
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been spent on the research and development of these emerging memories technologies that 
were referred above. 

In Imec significant effort on research of STT-MRAM and ReRAM has been spent until now. 
Especially ReRAM, which is the main type that is examined within this Master Thesis, utilizes 
materials that change their resistance in response to the applied voltage. This in turn facilitates 
its data retention capability which is considered to be one of their key advantages. In addition, 
they also have the ability to read/ write data at high speeds by utilizing limited voltage. These 
features have largely motivated the industry participants to further study the technology and 
develop products for the mass market.  

This Master Thesis focused only on ReRAM, which gives some really promising results and 
shows some significant advantages when compared to SRAM based memories, Hence it is 
attempted, some ways to be found for eliminating the long write latencies of the ReRAM and 
thus eliminating the energy that is consumed.  

This Thesis focuses on the reorganization of the structure of the memory, so as a way to be 
found for eliminating the stalls arose from the addressing in memory. For example the pure 
version of ReRAM, follows the memory access pattern. Thus a big number of stalls is caused. 
The reorganization of the memory structure eliminates this number of stalls by separating the 
memory in two different banks, which can handle in a more efficient way the memory 
addressing. Thus the stalls caused by writing in the memory are less.  
 So 5 different architectural solutions were created in order to compare the performance 
gain, due to replacement of the SRAM memory with ReRAM memory. The two solutions are the 
simple SRAM implementation and the sub-banked scheme of it. The third is the Drop-in 
replacement of the SRAM module with ReRAM module and the 2 different implementations of 
the ReRAM sub-banked schemes. The first one of the latter does not follow the memory access 
pattern whereas the second take the memory access pattern into consideration.  For each one 
of them simulations were run on an ASIP environment and the number of cycles were counted.  
Briefly it was observed that the last implementation (ReRAM sub-banked scheme) which follows 
the memory access pattern reduces significantly the total number of cycles and gives some 
promising results that the advantages of the ReRAM can be exploited in an effective way.  

 

 

Structure of the Thesis 

Now a general plan and organization of the Thesis is given. In the “Analysis of SRAM and 
ReRAM modeling” section, there is the definition of what is SRAM and ReRAM and the 
comparison of them. The second one is an emerging technology that is not widely known so an 
explanation of how it works actually, starting from the structure of the cell and continuing with 
the system requirements for embedding ReRAM memories, is quoted.  

Afterwards the “Processor Architecture Part” regards to some general description for 
the processor which was used for our experiments and is called ADRES. Then the definition of 
every individual part of it follows. 

The next Chapter “ReRAM implementation for Data Memory Replacement” is the main 
part of the Thesis. Initially the experiment is set up. Also the particular application and the ASIP 
used for our results is described. Afterwards a brief description of the different implementations 
that are designed as well as the comparison of them is referred. In “Further Analysis” some 
parts of the source code are quoted, so as to be easier for the reader to see the differences in 
the implementations of the modules in every different design. This part is followed by the 
“Simulation Results” part. There, there are some screenshots with the results of the simulation 
of every different implementation of the memory. Using these results and taking some indicative 
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energy numbers for the computational energy the total energy consumption and the energy 
leakage in every case is counted. Then the “Discussion” follows, where all the results are 
analyzed. 

Finally in the last part there is the “Conclusions and Future Work” where all the results 
are summarized and some proposals about this topic are given.   
 
 

Language used for describing the different types of memories 

The language that would be more helpful for implementing our memories is SystemC as it the 
most suitable language for the architecture of complex systems that are a hybrid between 
hardware and software. SystemC is an ANSI standard C++ class library for system and 
hardware design. 

SystemC is a set of C++ classes and macros which provide an event-driven simulation 
interface in C++. These facilities enable a designer to simulate concurrent processes, each 
described using plain C++ syntax. SystemC processes can communicate in a simulated real-
time environment, using signals of all the datatypes offered by C++, some additional ones 
offered by the SystemC library, as well as user defined. In certain respects, it also deliberately 
mimics the hardware description languages VHDL and Verilog, but is more aptly described as 
a system-level modeling language. 

SystemC is applied to system-level modeling, architectural exploration, performance 
modeling, software development, functional verification, and high-level synthesis. SystemC is 
often associated with electronic system-level (ESL) design, and with transaction-level 
modeling (TLM). 

SystemC language has also some strong features that set it as the most possible 
candidate for our application like the user definition of modules, ports, exports, processes, 
interfaces, events, data types etc.  
The language used for the bullding of the firmware which is described below is C++.  
 
 

2. Analysis of SRAM and ReRAM modeling 

10 2.1 SRAM 

2.2 General Description 

Static random-access memory (SRAM) is a type of semiconductor memory that uses 
bistable latching circuitry to store each bit. The term static differentiates it from dynamic RAM 
(DRAM) which must be periodically refreshed. SRAM exhibits but it is still volatile in the 
conventional sense that data is eventually lost when the memory is not powered. 

SRAM is a random access memory which can store the data as long as power is on. The 
SRAM cell consists of a bi-stable flip-flop connected to the internal circuitry by two access 
transistors.  When the cell is not addressed, the two access transistors are closed and the data 
is kept to a stable state, latched within the flip-flop. 
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Figure 1 SRAM cell 

 
The flip-flop needs the power supply to keep the information. The data in an SRAM cell 

is volatile (i.e., the data is lost when the power is removed). However, the data does not “leak 
away” like in a DRAM, so the SRAM does not require a refresh cycle. Below the read and the 
write operations are presented:  

 
Figure 2 

To select a cell, the two access transistors must be “on” so the elementary cell (the flip-
flop) can be connected to the internal SRAM circuitry. These two access transistors of a cell are 
connected to the word line (also called row or X address). The selected row will be set at VCC. 
The two flip-flop sides are thus connected to a pair of lines, B and B. The bit lines are also 
called columns or Y addresses. 

During a read operation these two bit lines are connected to the sense amplifier that 
recognizes if a logic data “1” or “0” is stored in the selected elementary cell. This sense amplifier 
then transfers the logic state to the output buffer which is connected to the output pad. There 
are as many sense amplifiers as there are output pads. 
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During a write operation, data comes from the input pad. It then moves to the write 
circuitry. Since the write circuitry drivers are stronger than the cell flip-flop transistors, the data 
will be forced onto the cell. 

When the read/write operation is completed, the word line (row) is set to 0V, the cell (flip-
flop) either keeps its original data for a read cycle or stores the new data which was loaded 
during the write cycle [1], [4], [5]. 
 
 
 

2.2 Types of SRAM 

Different types of SRAM cells are based on the type of load used in the elementary inverter 
of the flip-flop cell. There are currently three types of SRAM memory cells: 
• The 4T cell (four NMOS transistors plus two poly load resistors) 
This is the most common cell. It consists of four transistors, to reduce the required cell area. 
The challenge for the 4T transistors is to make the resistor high enough, in order the current 
needed to be eliminated, but it must be up to one level, otherwise the good functionality is not 
guaranteed.  

 
Figure 3 4T SRAM cell 

 

• The 6T cell (six transistors—four NMOS transistors plus two PMOS transistors) 
Generally 6T SRAM cell is used in many of commercial chips due to low leakage current and 
short operation latency which is typically < 1 ns 

 
Figure 4 6T SRAM cell 

n-channel MOSFET (NMOS) transistor is used as an access transistor due to higher 
mobility and lower on resistance. Memory cells that use less than six MOS transistors are 
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available as well. As the cost of processing a silicon wafer is partially fixed, using scaled cells 
and thus packing more bits on one wafer will end up with reduction of the cost per bit of 
memory. But due to aggressive CMOS scaling there are potentially several issues which can 
limit the progress of scaling. 

One of the key factors which limit the SRAM scaling is less noise margin of 6T SRAM bit-
cells in sub-threshold voltage. In many memory designs, to have less dynamic power 
consumption, lower supply voltage has been used. Also for static leakage reduction, source-
body biasing has been utilized. The analysis shows that in these conditions the noise margin of 
the SRAM cell is reduced as well. Hence, the range of applicability of scaling is limited by the 
noise margin requirements for a safe read and write operations. 
 
• The TFT cell (four NMOS transistors plus two loads called TFTs) view of six MOS SRAM cell 
shown in Figure. Each bit is stored on four transistors and two supplemental access transistors 
are used to control the access to a memory cell during read and write operations. Due to its low 
fabrication cost and unique feature of flexible substrate, various emerging devices use it. But 
most TFT transistors used today are weak enough devices that although reduce the current 
needed do not improve the cell stability.  

 
Figure 5 TFT SRAM cell 

 

11 SRAM Timing Diagram 

Synchronous or Asynchronous — SRAMs come in a variety of architectures and speeds, and in 
synchronous and asynchronous designs. Asynchronous SRAMs respond to changes at the 
device's address pins by generating a clock signal that is used to time the SRAM’s internal 
circuitry during a read or write operation. Although commonly used, this type of design runs into 
limitations at the high end of the performance range. For this reason, the fastest SRAMs are 
generally synchronous. Synchronous SRAMs use one or more external clocks to time the 
SRAM's operations. Because of the improved timing control possible with this method, access 
times and cycle times can be reduced to match the clock cycles of the fastest PC and RISC 
processors on the market today 
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12 2.2 ReRAM 

13 2.2.1 General Description 

Resistive random-access memory (ReRAM/RERAM) is a new non-volatile memory type that 
changes its resistance based on the applied voltage. Although ReRAM was initially designed to 
be a low energy Flash alternative, ReRAM can also mimic Dynamic RAM (DRAM) or a hard 
drive. Some reports claim that,[7], [10] ReRAM could in fact be used as a universal storage 
conduit (by using different materials with different characteristics tuned for the particular 
applications). 

The ReRAM memory technology itself can potentially be used in two different contexts, 

based on the intended applications: Embedded and Standalone. Stand-alone memories are 

essentially supporting the main memory and the higher cache layers in general purpose 

computing platforms. They are optimized for yield and manufactured in high volume so the area 

concern is typically the most sensitive cost dimension. As a result, the design costs are spread 

across large unit volumes. Several recent ReRAM activities have been proposed to address this 

general-purpose market. However, stand-alone memories don't often come in the exact 

configuration required and moreover, their access times and energy per read/written word is far 

from minimal.  

In contrast, embedded memories are integrated on-chip and they realize the lowest cache 
or scratchpad memory layers. They are tightly connected with the foreground memory (e.g. 
register files) that provides the data access for the logic core to accomplish the intended 
functions from the program being executed.  High-performance embedded memory is a key 
component in modern system-on-chip (SoC) design, because of its high-speed and wide bus-
width capability, which eliminates inter-chip communication and which allows high access 
bandwidth for peak workloads in the algorithm execution. As systems become implemented on 
a single chip, embedded memory has become the choice of many designers developing for 
such SoCs because it can enable additional capability in the end product due to its higher 
speed or lower power at the same cost or less than stand-alone memory.  

 

 

2.2.2 ReRAM cell characteristics and system requirements: 

The basic idea is that a dielectric, which is normally insulating, can be made to conduct through 
a filament or conduction path formed after application of a sufficiently high voltage. The 
conduction path formation can arise from different mechanisms, including defects, metal 
migration, etc. Once the filament is formed, it may be reset (broken, resulting in high resistance) 
or set (re-formed, resulting in lower resistance) by an appropriately applied voltage. Recent data 
suggest that the paths are best described as lineups of oxygen vacancies. 
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Figure 6 Basic ReRAM cell 

 

A memory cell can be deduced from the basic memory cell in three different ways. In the 
simplest approach, the pure memory element can be used as a basic memory cell, resulting in a 
configuration where parallel bitlines are crossed by perpendicular wordlines with the switching 
material placed between wordline and bitline at every cross-point. This configuration is called a 
cross-point cell. Since this architecture will lead to a large "sneak" parasitic current flowing 
through non selected memory cells via neighboring cells, the cross-point array has a very slow 
read access. A selection element can be added to improve the situation, but this selection 
element consumes extra voltage and power. A series connection of a diode in every cross-point 
allows to reverse bias, zero bias, or at least partial bias non selected cells, leading to negligible 
sneak currents. This can be arranged in a similar compact manner as the basic cross-point cell. 
Finally a transistor device (ideally a MOS Transistor) can be added which makes the selection 
of a cell very easy and therefore gives the best random access time, but comes at the price of 
increased area consumption. 

For random access type memories, transistor type architecture is preferred while the cross-
point architecture and the diode architecture open the path toward stacking memory layers on 
top of each other and therefore are ideally suited for mass storage devices. The switching 
mechanism itself can be classified in different dimensions. First there are effects where the 
polarity between switching from the low to the high resistance level (reset operation) is reversed 
compared to the switching between the high and the low resistance level (set operation). These 
effects are called bipolar switching effects. On the contrary, there are also unipolar switching 
effects where both set and reset operations require the same polarity, but different voltage 
magnitude. 

Another way to distinguish switching effects is based on the localization of the low resistive 
path. Many resistive switching effects show a filamentary behavior, where only one or a few 
very narrow low resistive paths exist in the low resistive state. In contrast, also homogenous 
switching of the whole area can be observed. Both effects can occur either throughout the entire 
distance between the electrodes or happen only in proximity to one of the electrodes. 
Filamentary and homogenous switching effects can be distinguished by measuring the area 
dependence of the low resistance state. 

A set of typical system-level requirements for the ReRAM when used in an embedded 

wireless or multimedia application, include the following: 

• Read access speeds below 1 ns, write access speeds can tolerate a larger 

latency but not more than 2 cycles in L1 and 8 cycles in L2 normally.  

• Energy per read/write access should be reduced as much as possible because 

of the portable context, preferably in the same range as the foreground memory access 
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so around 100fJ/read word (writing happens less frequently so it can be more 

expensive).  

• Area should remain low but due to the limited sizes (16-128Kb for L1 and 

128Kb-8Mb for L2) the cell area can be a bit relaxed compared to standalone contexts.  

• Endurance should be high: preferably up to 10
13

 for read access, but retention 

in the L1-L2 layers can be relaxed to a few days or even few hours. The limited amount 

of data that has to be stored longer can easily be backed up in an off-chip NVM with 

long retention. In order to meet these requirements we will have to heavily tune the 

ReRAM cell and periphery circuits, because standalone configurations do not even 

come close to the combination of these critical requirements.  

 

3. PROCESSOR ARCHITECTURE 

14 3.1 ADRES 
15 3.1.1 Generally 

Nowadays due to the increase of wireless systems, Digital Signal Processors (DSPs) and ASIC 
do not meet with the requirements of high-performance devices. DSP-based solutions cannot 
provide high speed and enough efficiency, whereas ASIC’s design requires high engineering 
cost and slow time-to-market due to the specific application that has to be designed.  

Coarse-Grained Reconfigurable Architecture (CGRA) is a good proposal as a solution, 
since it can offer higher performance, less power requirements and reduced chip area in typical 
communication applications. This is feasible due to coarse-grained operations. CGRAs include 
an array of basic functional units, which can execute either word level or sub-word level 
operations instead of bit-level operations found in common FPGAs .  

ADRES in cooperation with DRESC combines a VLIW processor (Very Long Instruction 
Word) processor and a CGRA. DRESC handles the switching between these two different 
execution modes so the programming of the processor has been significantly simplified. Due to 
this combination ADRES can offer both instruction level and loop level parallelism.  

 

16 3.1.2 ADRES Architecture 

ADRES (Architecture for Dynamically Reconfigurable Embedded Systems) [3] is a processor 
architecture designed for wireless and multimedia processing in single and multiprocessor 
systems. These processors are suitable for future mobile terminals like software-defined radios. 
They combine power efficiency, great performance and flexibility.  

Moreover ADRES is a prototype defined by an Extensible Mark-up Language (XML)-based 
architecture, language that allows the building of the processor with a scalable number of 
Functional Units (FUs), Register Files (RFs) and wires. The applications for an ADRES can be 
exclusively programmed in high-level language (C) and are compiled with the DRESC compiler. 

In the higher level, it combines a VLIW processor and a CGRA (Coarse Grained 
Reconfigurable Array) in the same structure. In general the loops are mapped to the 
Reconfigurable Array, whereas the rest code is mapped to the VLIW processor. The exchange 
of data between the VLIW processor and the Reconfigurable Array is resolved through the 
common Register Files and the common accesses in memory. 
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The execution of CGRA is controlled by the control unit CGA, whereas the VLIW processor 
has a certain way of pipeline with 3 stages (fetching, decode and execution) which are 
controlled by the instruction memory. The configuration memory is loaded through the interface, 
after the system reset.   

Basic blocks in the ADRES architecture are explained below: 
• Functional Units 

The core element in the ADRES architecture is a functional unit. The instruction set that 
is already defined for the FUs by the compiler, can be extended by instructions which user 
can define. Each FU can be specified according to its functionality like memory load and 
store 
unit, logic unit, arithmetic unit 

• Register Files  
Register Files are used to store intermediate data. In ADRES architecture there are 

two types: 
� Predicate register files (1-bit to store the predicate signal) 
� Data register files (same bit width as FUs) 

 
When there is loop level parallelism, corruption of data can happen due to overlapped 

execution of different iterations of the loop body. Therefore the life-time of the same variable 
may overlap over different iterations. In order to accommodate this situation, each of the 
simultaneously live instances needs different register. Furthermore, the name of the used 
register has to be defined clearly, either in hardware or in software.  

ADRES uses two kinds of register naming; rotating register file (RRF) and modulo 
variable expansion (MVE). In the first kind which is hardware-based renaming method, the 
physical address is calculated by combining the virtual address with the iteration number. 
The MVE which is software-based technique unrolls the loop body and renames the register 
access to insure that there is no name confliction. Since this solution expands significantly 
the loop, which means more reconfigurable contexts ADRES architecture adopts mostly the 
RRF solution.  
• Routing Networks 

The routing Network consists of a data network and a predicate network. The first one 
routes the normal data among FUs and RFs, whereas the predicate network directs 1-bit 
predicate signals. These two networks do not have necessarily the same topology and 
cannot overlap due to different data widths. 

Since ADRES architecture is designed to be compiler-friendly and software-like, it is 
expected the clock speed to be already determined and the compiler does not need to do 
timing analysis as it happens with FPGA. This is the reason why there are some constraints 
on how the routing networks are constructed. As far as ADRES is concerned, most of the 
routing is done by direct point-to-point interconnections, consisting of wires and 
multiplexors. Therefore, the timing can be statically analyzed at design time. When the 
compiler maps different kernels, the mapping will not change the timing behavior for a given 
ADRES fabric. If long interconnections are needed, a register can be introduced in the data 
network to limit the delay of the critical path. FUs can be viewed as part of the routing 
network. 

• Memories 
ADRES architecture consists of a global memory which is connected to VLIW unit. Some 

configuration memories are also used, so as to support intermediate operations on the CGRA 
mode. These configuration memories are used to feed source ports of CGRA FUs. These 
memories will be analyzed further in BoADRES section. 
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3.2 DRESC COMPILER 

A design starts from a C-language description of the application. The profiling/partitioning step 
identifies the candidate loops for mapping on the CGA based on the execution time and 
possible speed-up. The source-level transformation step tries to rewrite the kernel so as to 
make it able for pipeline and with aim to maximize the performance. In the next step IMPACT is 
used. IMPACT is a VLIW compiler framework, to parse the C code and do analysis and 
optimization. IMPACT also has an intermediate representation, called Lcode, which is used as 
the input for the scheduling. As far as architecture is concerned the target architecture is 
described in an XML-based language. The parser and abstraction steps transform the 
architecture to an internal graph representation. Taking this representation as an input, a novel 
modulo scheduling is applied to achieve parallelism for kernels, whereas ILP scheduling 
techniques are applied to discover the available moderate parallelism for the non-kernel code. 
The communication between these two parts is automatically identified and handled by some 
tools. Finally, the tools generate scheduled code for both the reconfigurable array and the 
VLIW. The outcome is simulated by a co-simulator.  

17 3.3 BoADRES 
BoADRES is a scalable baseband processor template for Gbps radios. It is a new generation 
power-efficient, high performance and flexible processor architecture, designed to achieve the 
data processing challenges for future mobile terminals. It is a dual-core implementation that 
adds thread-level parallelism to data-level parallelism. BoADRES can be implemented in 40-nm 
and can run at 700 MHz clock frequency. 

It correlates a very-long instruction word (VLIW) processor with a coarse-grain-array (CGA) 
accelerator through a shared central register file. Number and type of memories in the 
processor listed as below: 

• 2 scalar, 1 global scalar memories 
• 4 vector (scratch pad) memories 
• 2 levels of configuration memory    
 

 

 

 

 

 

 

 

 

 

 

4. RERAM Implementation for Data Memory Replacement 
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18 4.1 Experimental Setup 
In order to evaluate the performance of the two different types of memories presented above, 
we created 5 different architectural solutions of the FFT processor. The ASIP used for the 
validation is optimized to execute radix 8 FFT stages and supports several types of FFT’s 
ranging from a 64 point FFT to a 4K point FFT. 

The used FFT is a 2K point FFT of 11 stages. The stages are named from 0 to 10. They 
are combined by 2, except from the last stage that is single. We executed two different 
simulations for every architectural design. One with only the first two stages of the FFT and one 
with full stages. 

We focused on checking the cycles that kernel runs in order to evaluate and compare the 
performance of every architectural design that was created. Moreover we created in every 
design counters for the read and write accesses. In this way we can also provide some energy 
numbers.   

4.1.1 Brief Description of the FFT Algorithm 

There are many different FFT algorithms involving a wide range of mathematics, from 
simple complex-number arithmetic to group theory and number theory. The DFT is obtained by 
decomposing a sequence of values into components of different frequencies. This operation is 
useful in many but computing it directly from the definition is often too slow to be practical. An 
FFT is a way to compute the same result more quickly: computing the DFT of N points in the 
naive way, using the definition, takes O(N

2
) arithmetical operations, while a FFT can compute 

the same DFT in only O(N log N) operations. The difference in speed can be enormous, 
especially for long data sets where N may be in the thousands or millions. In practice, the 
computation time can be reduced by several orders of magnitude in such cases, and the 
improvement is roughly proportional to N / log(N). This huge improvement made the calculation 
of the DFT practical; FFTs are of great importance to a wide variety of applications, from digital 
signal processing and solving partial differential equations to algorithms for quick multiplication 
of large integers. 

“Decimation-in-time” [5] and “Decimation-in-frequency” [5] fast Fourier transforms (FFTs) 
are the simplest FFT algorithms. Like all FFTs, they gain their speed by reusing the results of 
smaller, intermediate computations to compute multiple DFT frequency  

 
Figure 7 Decimation in Time 
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Figure 8 Decimation in Frequency 

 

4.1.2 Description of the Architectural Designs  

As referred above, 5 different architectural designs were created for our experiments. The first 
architectural design “SRAM”, which is the reference architecture, is the design with no 
additional logic; since SRAM modules can be accessed within one cycle for both read and write 
operations. The second one “Drop-In” replaces all the data memories with ReRAM modules 
with additional logic. A stall mechanism is used since ReRAM modules can be accessed within 
one clock cycle for the write, whereas more cycles are needed for the read operation. The rest 
three designs are sub-banking schemes. The third design is the “sub-banked scheme of 
SRAM” design. The rest two are the “sub-banked schemes of ReRAM designs”. Two 
different ways of choosing in which bank every read or write operation goes were designed. In 
the first case the last bit of the address is used to choose the bank. In this way all the odd 
addresses are mapped to bank0 and all the even to bank1. In the other case the 6

th
 bit is 

checked, in order to pick up in which of the two banks the operation is applied.  

 

Further Analysis: 

SRAM Design: This is the reference design as mentioned above. Here there is a simple process 
called p_entry(), which handles both the read and the write operations 
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Source Code  1 SRAM entry process 

 
SRAM_banked Design: For the design of the SRAM_banked scheme we used as template 
the SRAM design. We created a new module called SRAM_banked which has identical ports 
with the SRAM module. 
  

 
Source Code  2 SRAM_banked module definition 

Two instances of the SRAM module, the bank0 and bank1 instance were created too, as 
well as some internal signals for every bank. These signals were mapped to the already existing 
ports of SRAM.   



ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

Master Thesis  

15 

 

 
Source Code  3 Instances of SRAM_banked module 

 
The figure that follows visualizes the above instantiations. In this figure the ports and the 

connections between the original memory and the sub-banked scheme are represented.  For 
selecting between the signals of the banks some muxes2x1 are used.  Different colors have 
been used to make it easier to distinguish every signal that is connected to the original port of 
the memory. Clock and reset ports of the bank modules, are directly connected to the port of the 
SRAM module respectively.  

 

 
Figure 9 
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For the SRAM_banked module a new process called p_sel() was created. In this process 
the selection between the two banks is being held. The selection is based on the last bit of the 
address so all the even addresses go to the bank0 and all the uneven to the bank1. Depending 
on which bank is selected, the relative signals take the values of the ports and the signals of the 
other bank are reset. The addresses of every bank are shorter for one bit, as the original 
address is shifted to the right by 1. Moreover there is another signal created which is called 
sel_delayed. Since signal assignments  do not have an immediate effect on the signal, but 
happen only after a default time, which is called delta delay, there is a need to create a kind of 
buffer which will keep the previous value of the data_out, when a write operation occurs. If the 
sel_delayed signal has the value 0 then the first bank is selected for writing, otherwise the 
bank1 is selected.  
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Source Code  4 SRAM_banked process for bank selection 

 
 
In order to give value to the sel_delayed signal we created another process called 

p_sel_delayed(). It works in the same way as it happens with the selection of the banks. So if 
the address is even, the signal is assigned with the value 0, otherwise with the value 1.  
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Source Code  5 p_sel_delayed process 

 
ReRAM Design: In this design two different processes for the write and read operations are 
created called p_write() and p_read() respectively. Moreover a stall mechanism is created in 
order to handle the long write latency of the ReRAM. For this reason there is another process 
called p_stall(), which will be presented below. For the p_write() process some additional 
signals are created. The signal write_status represents the status in which the write operation is 
at a certain moment, whereas write_addr_buffer and write_data_buffer, operate as buffers for 
the address and the data_in respectively. Write_status signal, is given initially the value 9 which 
means that a new write operation occurs. As the write operation evolves, it is subtracted by 1 in 
every cycle. When the write_status is 1 and the wr_en is high, then the write operation is 
completed, so the data from the write_data_buffer signal are written in the memory.  
 So three different status of the memory occur. 1) Writing in the memory 2) Memory Idle 
because a new write instruction has occurred 3) Memory Idle due to proceeding of a read 
operation. As we can see in the following source code part the write_status signal defines in 
which of the three is the memory status. If write_status > 0  but not 1 the write_status is 
subtracted by 1 to achieve the delay of 10 cycles.  

Normally a delay of 10 cycles is caused by this way of handling the write operations per 
every operation. In the two different sub-banked schemes we will try to handle in the most 
effective way the delay of two sequential writings, by dividing the memory in two parts having 
two different stall signals that do not affect one the other. In this way we can achieve to reduce 
the delay cycles from 20 to 11 for two sequential write operations.  
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Source Code  6 ReRAM writing process 

 
As for the p_read() process is needed just to examine if the rd_en is high and the stall 

signal is low. Then the read operation can occur.  

 
Source Code  7 ReRAM reading process 
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As far as the p_stall process is concerned, the write_status signal is examined. If it is positive it 
means that a write operation is still in progress so the stall signal goes high. Otherwise the stall 
signal becomes zero.  

 
Source Code  8 ReRAM stall 

 
ReRAM_banked-version1: Similarly with the SRAM_banked version, the ReRAM 

module was used as template and two instances of this module, the bank0 and bank1, were 
created. The selection pattern in this version is similar to this one of the SRAM_banked version. 
There is a difference in the p_stall process in which, the two stall signals of the banks are 
examined in order some value to be given at the stall signal. If either bank0_stall or bank1_stall 
is 1 then the stall signal becomes 1, otherwise it takes the value 0.  

 
Source Code  9 

 
ReRAM_banked-version2: This design is very similar with the previous one at many points. 
The only thing that changes is the way of the selection between the two banks. As it is referred 
above, in the first version the access pattern is not taken into consideration, so we use the last 
bit to select the bank. In this version the access pattern plays an essential role. Since the 
addresses are of 64 bit, we examine the 6

th
 bit for the bank selection, since this is the bit that 

changes from iteration to iteration. The new address of every bank consists of the original 
address, without the 6

th
 bit that is excluded.  
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Source Code  10 

   
 
Finally similarly the p_sel_delayed() process have change to follow the way pattern of selection. 
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Source Code  11 

 

 

19 4.2 Simulation Results 
Below the screenshots of every simulation are quoted. The screenshots of the two stages FFT 
arose after we changed the firmware in order only the first two stages of the FFT to be 
executed.   

Except from the main part of simulation where the read and write operation happen there 
are also the initialization of memory and at the end the dumping of memory.  For our results we 
will take into consideration only the cycles for the kernel, ignoring the number of the whole 
cycles that test took. Moreover some debugging statements where created so as to watch the 
read and write signals in our simulation as well as the stall signal for the ReRAM 
implementation. These are not obvious in the screenshots that follow as they do not give any 
useful results for our research and they were used only for debugging. 

 

 

 

 

 

 

Two Stages FFT 
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Screenshot 1 SRAM 

Simulation of the reference design SRAM for the two stages of FFT algorithm without 

additional logic.  

 
Screenshot 2 SRAM Banked 

Simulation of the banked scheme of the reference SRAM design without additional logic too.  
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Screenshot 3 ReRAM 

Simulation of the ReRAM implementation for the two stages FFT. In this implementation a stall 
mechanism was created, so as to handle the big latency caused in write operations (10 cycles).  

 
Screenshot 4 ReRAM Banked (version 1) 

Simulation of the banked scheme of the previous ReRAM design.. For the selection of banks 
the last bit of address is used.  
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Screenshot 5 ReRAM Banked (version 2) 

One other banked scheme of the ReRAM implementation. For selecting each bank we use the 
6

th
 bit of the address.  

 

Full Stages FFT 

 
Screenshot 6 SRAM 

Simulation of the reference design SRAM for the full stages of FFT algorithm without additional 
logic.  
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Screenshot 7 SRAM Banked 

Simulation of the banked scheme of the reference SRAM design without additional logic too.  

 
Screenshot 8 ReRAM 

Simulation of the ReRAM implementation for the two stages FFT. In this implementation a stall 
mechanism was created, so as to handle the big latency caused in write operations (10 cycles). 
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Screenshot 9 ReRAM Banked (version 1) 

Simulation of the banked scheme of the previous ReRAM design. For the selection of banks the 
last bit of address is used.  

 
Screenshot 10 ReRAM Banked (version 2) 

One other banked scheme of the ReRAM implementation. For selecting each bank we use the 
6

th
 bit of the address.  
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20  

21  

22 4.3 Energy Modeling and Results 
In the first two tables that follow we have concluded all the necessary numbers for the energy 
model that we want to examine. These numbers have been extracted from a previous Master 
Thesis and were used in order to give an estimation of the energy consumption in every case 
[8]. In the first table the energy numbers for every read and write access, for both SRAM and 
ReRAM model are quoted. Moreover the energy leakage per cycle is given.  

 

 SRAM ReRAM 

read energy per 

access 

0,86 0,66 

write energy per 

access 

1,13 2,60 

energy leakage per 

cycle 

1,73 0,35 

Tabel  1 Energy Numbers for SRAM and ReRAM 

 
In the second table there are the numbers of the computational energy that is 

consumed for the specific application of the 11-stages FFT algorithm. This is the dynamic 
energy that is consumed and it changes every time that the application changes. Using this 
number, we counted the computational energy consumed for the 2-stages FFT, with the rule of 
three.   

 
 Processor 

dynamic 15.594,06 

static per cycle 1,00 
Tabel  2 Computational Energy 

 
In the rest two tables we have concluded the results of all the simulations that we ran for 

every different implementation. We have included both the 2-stages and the full-stages 
implementation. In the first column there are the “Cycles in Kernel”. In the second and the third 
column we counted the “Write and Read Accesses” for every case. These numbers are used to 
count the results of the fourth and fifth column according to the energy numbers that we have 
received for the two different kinds of memory and are quoted above. 

For computing the 5
th
 column of these two tables we used the energy leakage number for 

every one of the two different models. We used the numeral Energy Leakage = energy 
leakage per cycle * Cycles in Kernel for every different implementation.  The 4

th
 column is the 

total energy that is consumed for the specific application. For the Full-stages FFT the 
computational energy is 15.594,06 whereas for the 2-stages FFT is 2.835,28. The numeral for 
computing this total energy that is consumed is Energy = Computational Energy + (Read 
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Accesses * read energy per access) + (Write Accesses * write energy per access) + 
Leakage energy.  

 

 
Cycles in 

Kernel 

Write 

Accesses 

Read 

Accesses 
Energy 

Energy 

Leakage 

SRAM 593 256 329 4.433,39 1.025,89 

SRAM_banked 593 256 329 4.433,39 1.025,89 

ReRAM 2.891 256 329 4.729,87 1.011,85 

ReRAM_banked (version 

1) 
2.960 256 329 4.754,02 1.036,00 

ReRAM_banked (version 

2) 
1.711 256 329 4.316,87 598,85 

Tabel  3 2-Stages FFT 

 

 
Cycles 

in 

Kernel 

Write 

Accesses 

Read 

Accesses 
Energy 

Energy 

Leakage 

SRAM   4.721 1.536 1.755 27.006,37 8.167,33 

SRAM_banked   4.721 1.536 1.755 27.006,37 8.167,33 

ReRAM 18.152 1.536 1.755 27.099,16 6.353,20 

ReRAM_banked (version 

1) 
18.671 1.536 1.755 27.280,76 6.534,85 

ReRAM_banked (version 

2) 
13.645 1.536 1.755 25.521,71 4.775,75 

Tabel  4 Full-Stages FFT 

 

 

23 4.3 Discussion 
In this section we will analyze and explain the effects caused by the different implementations 
and organization of the memory, as they are presented in the previous table.   
 
SRAM and SRAM_banked versions:  
The number of cycles that kernel runs for the cases of SRAM and SRAM_banked is the same. 
That can be explained by the fact that no additional logic was used for the implementation of the 
SRAM module. Hence, it makes no difference that the addresses go to two different banks. By 
this it is clear, that since the SRAM consumes only 1 cycle per writing (as it happens with the 
reading too), we cannot improve the total cycles running by changing the memory.  For having 
some improvement we should change the firmware. Something like that is not examines within 
this Master Thesis.  
 
ReRAM-“Drop-In” version 
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In the “Drop-In” replacement, we can notice that the number of cycles is quite bigger than 
this one of the SRAM case. This is of course caused by the ReRAM write latency in the actual 
memory. For handling this latency, we used some additional logic in the implementation of the 
ReRAM module. We created a stall mechanism so as to handle the 10 cycles’ delay that is 
added because of the long write latency of ReRAM. 
 
ReRAM_banked versions 

In the first version of ReRAM sub-banked scheme, the sub-banks do not take into account 
the address access pattern. So the last bit is used to choose in which bank every operation 
(read or write) is applied. As we can notice from the log files, the addresses are written 
continuously in the same bank. This causes a stall of 20 cycles for two sequential writes. 
Therefore there is no difference in the number of cycles, so it doesn’t offer any optimizing in the 
performance. 

In the second version of ReRAM sub-banked scheme, the sub-banks take into account the 
address access pattern. The offset of sequential writes is 64, hence the 6

th
 bit is used for the 

bank selection. The outcome of the applied technique is two sequential writes to go to two 
different banks, one in bank0 and one in bank1. This causes a stall of 11 cycles, instead of 20, 
since every bank has its own stall mechanism. In this way the optimizing in the number of cycles 
is quite significant (approximately 25% for the full stages version and 50% for the 2-stages 
version).   

As far as the energy models are concerned we wanted to examine the differences between 
the SRAM and ReRAM model. As it is obvious from the Energy Numbers for SRAM and 
ReRAM table, the read energy that is consumed per cycle for the ReRAM model is less than the 
SRAM one, but the write energy is significantly more. That is the big problem of the ReRAM 
model. For this reason the total energy that is consumed for the simple ReRAM or the 
ReRAM_banked version1 model is bigger than these of the SRAM or SRAM_banked model. 
But when it comes to the ReRAM_banked version2 model the total energy number seems to 
give an improved outcome which is more obvious in the full stages FFT where the Cycles in 
Kernel and consequently the read and write accesses grow in number. This happens mainly 
due to the reduced number of Cycles that Kernel runs.  
 
 
Below we quote some charts that illustrate the results referred above:  
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Chart 1 

 

 
Chart 2 
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5. Conclusions and Future Work 

As a conclusion, it is noticed that an emerging NVM ReRAM, offers some significant 
advantages in the energy as shown above. Especially a banked version, which takes into 
consideration the memory access pattern, gives some promising results. Aim of this Master 
Thesis was to examine the effect of different implementations of the data memory in an ASIP.  

Therefore it has to be underlined, that the banked solution does not hide the extra cycles 
that the long write latency of ReRAM causes yet, in a very effective way. Hence, the overhead is 
still large enough, to create a large total energy gain, even though the energy cost (both 
dynamic and leakage) is better for the reads in the ReRAM implementation.  

For the reasons mentioned above, some other architectural options of the ReRAM is being 
examined in Imec now. For example, architectures based on “line buffers” or “Very Wide 
Register” interfaces. These architectural solutions aim at reducing the energy cost that is 
caused because of the long write latency of the ReRAM and hence to reduce the total energy 
cost of the whole application running on an ASIP.   
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