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Section 1 
 
 

Introduction and Research Questions 
 

This dissertation examines the properties and the valuation framework of a 
specialized financial product, volatility futures. Volatility futures belong to the 
category of volatility derivatives – a new class1 of derivative instruments whose 
underlying asset is volatility, specifically an implied volatility index. These products 
emerged to satisfy the need for instruments and ways to manage volatility risk, the 
exposure to changes in volatility of an asset. Volatility risk is an important risk behind 
many investors’ positions and it is assumed to have played a major role in several 
financial debacles (eg. Barings, LTCM) 
 
 We are interested in examining the pricing performance of volatility futures 
under the model of Grűnbichler-Longstaff2. The model’s accuracy will be assessed 
further within a value at risk study. These tests will regard the volatility futures 
contracts of the Chicago Board of Options Exchange which are written on the VIX 
Implied Volatility Index. Our aim is twofold: testing the model by examining how 
well it fits market prices and asserting whether a value at risk methodology is 
effective under the model and the respective process for volatility. 
 

To examine the pricing performance we will implement a technique that is 
approved by econometric theory and is also common in applied research, calibration. 
This procedure involves fitting the model to a specific sample of market data in order 
to get estimated values of the model’s unknown parameters and examining the pricing 
performance of the model in another sample where the deviation between derived 
model and real prices is calculated (out of sample performance). As for the value at 
risk study is concerned, we will assume a position in the VIX Index and in a volatility 
future contract and we will derive daily value at risk figures using a Monte Carlo 
Simulation approach. Then we will implement a back testing procedure in order to 
verify the validity of the value at risk model.  

 
In order to have a measure of comparison, the same study will be conducted 

also within the context of another pricing model – a benchmark model. This model’s 
assumptions are simpler compared to the one of Grűnbichler-Longstaff’s and the 
pricing formula resembles the one of standard (equity) futures. The results of the two 
models will be compared with the aim to investigate which volatility process is 
supported the most by the data. The answer to this question is important not only in 
the context of volatility derivatives but also for the broad area of volatility modeling. 
 
 
 
                                                 
1 Various types of volatility derivatives have been introduced in some markets after 1997 
2 Grunbichler-Longstaff (1996), “Valuing Futures and Options on Volatility”, Journal of 
Banking and Finance 20 
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 To the best of our knowledge the empirical performance of volatility futures 
has not been studied thoroughly yet. A main reason for this is probably the fact that 
volatility futures appeared in the American market last year while their trading 
behavior in other markets was not good. Hence we are confident that this study will 
contribute significantly in the relative literature and will be of interest to practitioners 
as well. 
 
 The dissertation is organized as follows. In the next section we refer to certain 
important issues like volatility risk, stochastic volatility, implied volatility indices and 
volatility derivatives. In section 3 we describe the valuation framework of volatility 
futures, the two pricing models and the related processes of stochastic volatility and in 
section 4 we refer to value at risk. In sections 5 through 7 we present the data and 
methodology we will follow in order to examine the pricing performance and to 
conduct the value at risk study. The conclusions drawn are presented in the last 
section. 
 
 In this point I would like to thank my supervisor, Dr. George Skiadopoulos, 
whose ideas and guidance were crucial to the implementation of this dissertation. 
Many thanks go also to the other members of my committee, Professor A. 
Antzoulatos and Assistant Professor A. Benos whose teaching was inspiring. I am 
finally grateful to the Faculty of the Department of Banking and Financial 
Management for the fruitful cooperation we had during my under – and postgraduate 
studies in the University of Piraeus. 
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Section 2 
 
 

Background 
 
 

A. Volatility risk 
 
 Volatility risk is one of the main sources of risk an investor faces3 and the 
more difficult to deal with. Volatility risk has played a major role in several financial 
disasters in the past 15 years. Long Term Capital Management is one such example as 
one of the hedge fund’s trading strategies was to sell volatility on the S&P 500 index 
and other European indexes by selling options on the index. Their exposure was that 
volatility, as reflected in options premiums, could increase and they did not hedge that 
exposure. Another pronounce example is the volatility trading done my Nick Leeson 
in 1994 in the Japanese market. Leeson made big bets on the future direction of the 
Nikkei 225 using futures and options and his exposure to volatility was the main 
reason for the demise of Barings Bank. 
 
 In the traditional security analysis framework volatility is measured by the 
standard deviation of an asset or portfolio returns. This is a measure of dispersion, like 
the variance and it is used along with the mean to classify various alternative 
investment positions according to their risk-return profile or to identify the efficient 
frontier in mean variance portfolio theory. In derivatives and especially in Black-
Scholes (BS) framework, volatility of a financial asset is defined as the standard 
deviation per unit of time of the continuously compounded returns and is an 
important, but also non observable, input to the BS formula. A sensitivity factor that 
captures the volatility risk exposure of a portfolio containing asset and/or derivatives 
on the asset is vega (or sigma, one of the so called Greeks). Vega is the rate of change 
in the price of the portfolio with volatility, as expressed by the partial derivative of the 
portfolio price with respect to volatility. The analogy to price risk is delta and a 
position with zero delta and vega is assumed to be delta-vega hedged. 
 
 Standard derivative products have the primary use of hedging price risk but 
they have also been used in various ways to hedge volatility risk. This approach is 
inefficient since it insures both types of risk and is also more expensive than a direct 
bet on volatility. The desired instrument should be a hedge against volatility risk only 
and should have cost less than the other alternatives. Some of the proposed 
instruments and strategies are an option on a straddle4 (Brenner, Ou and Zhang 
[2002]) and a delta hedged position so that the hedging error is connected to volatility 
risk only (see Carr and Madan [1998] for an examination of trading volatility 

                                                 
3 Price or directional risk is the other source and regards the investor’s exposure to changes in 
the asset price 
4 A straddle is long position in a call and a put option written on the same underlying asset 
and with the same strike price. 
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strategies). Volatility derivatives are the alternative candidate for hedging volatility 
risk and one of these products is being examined in our study 
 
 
 
B. Stochastic volatility 
 
 The empirical finding that volatility of financial asset returns tends to change 
stochastically5over time is closely related to the issue of volatility risk and has also 
implications for option pricing and risk management. There is evidence of this 
stochastic nature both in realized volatility and in volatility inferred from option 
prices (implied volatility).6
 
 Regarding realized volatility the main findings are mean reversion and the so 
called clustering and leverage effects.  
 

Mean reversion is a term for the finding (Scott[1987], French [1987], Merville 
and Pieptea [1989], Stein [1989], Harvey and Whaley [1992]) that volatility oscillates 
around a constant value and tends to revert to a long run mean.  

 
The clustering effect is attributed to Mandelbrot (1963) who reported that 

periods of high (low) volatility tend to be followed by periods of high (low) volatility, 
without one however being able to predict the next change. In the econometrics 
literature this effect is closely related to autocorrelation and mainly heteroskedasticity 
of residuals as it was modeled by Engle(1982) and Bollerslev (1986). Their (G)ARCH 
model intended to capture the dynamics of the conditional variance of a regression’s 
residuals but it appeared to be an important estimator of historical volatility and a 
good forecaster of realized volatility in financial time series as well (see e.g. 
Figlewski [1987]).  

 
The leverage effect is about the negative relationship between changes in the 

price and changes in volatility of an asset. This relationship was first noted by Black 
(1976) and termed leverage effect by Christie (1982) who attributed the relationship 
to the fact that a drop in stock prices reflects a drop in the market value of equity so 
that an increase in the market value of debt or leverage is required to keep the whole 
market value of a firm stable. An increase in leverage is in turn an increase in a firm’s 
risk as this is measured by volatility7. 
 
 As for implied volatility, the findings that tend to reject the hypothesis of the 
BS model that volatility is constant through option’s life are the implied volatility 
smiles and the term structure of implied volatilities. 
  
                                                 
5 A deterministic function of volatility is considered in the implied volatility function or 
implied binomial tree approach of Derman and Kani (1994) and Rubinstein (1994). See 
Dumas, Fleming and Whaley (1998) for an empirical examination. 
6 For a survey see Psychoyios, Skiadopoulos and Alexakis (2003). 
7 Figlewski and Wang (2000) state that this effect is really a “down market effect” as they 
observe that this effect is much weaker or nonexistent when positive stock returns reduce 
leverage and that there is no apparent effect on volatility when a  firms leverage changes by a 
change in its outstanding debt or shares. 
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Implied volatility is the volatility inferred by the market price of an option and 

is calculated by inverting the option pricing formula given the market price. Empirical 
evidence shows that implied volatility is a function of both the strike price and the 
maturity of the option. The dependence of implied volatility on the strike price is 
found to exhibit a U-shaped pattern (‘smile’) mainly in foreign currency options and a 
downward slopping curve (‘skew’ or ‘smirk’) in equity index and futures options. 
Some reasons for these patterns are the stochastic nature of underlying asset’s 
volatility, the presence of jumps in the underlying asset returns, the leverage effect 
and the high demand for out of the money put options after the 1987 crash in the U.S. 
stock market8. 
 
 In addition to the smile, on any given date and for any given strike price the 
implied volatility varies across different expiries, forming so a term structure of 
implied volatilities in analogy to the term structure of interest rates. The term structure 
of implied volatilities can be either upward or downward sloping, mainly depending 
on the size of short term volatilities. The combination of implied volatility smile and 
the implied volatility term structure is the implied volatility surface and the above 
evidence suggests that it is not flat as the BS assumptions suggest. For the issue of 
implied volatility patterns see Rubinstein (1985), Stein (1989), Taylor and Xu (1994), 
Tompkins (1998), Skiadopoulos et al.(1999), Derman and Kamal (1997). 
 
 An important implication of stochastic volatility evidence is that the BS option 
pricing model is misspecified and also that the BS Greeks may be no longer valid9. 
Various stochastic volatility models have emerged (Hull and White [1987], Johnson 
and Shanno [1987], Wiggins [1987], Stein and Stein [19991], Heston [1993]). The 
main differences between the models are the process assumed to capture the volatility 
dynamics, the treatment of the issue of the market price of volatility risk and the 
constraint or not on the correlation between underlying asset returns and volatility.  

 
Characteristic are the models of Hull-White and Heston. The valuation 

framework is similar (the usual Geometric Brownian Motion assumption about the 
asset dynamics and a mean reverting diffusion process for the asset’s variance). Hull 
and White assume that volatility has zero systematic or market risk, while Heston 
accounts for a risk premium proportional to the level of current volatility. Hull and 
White derive closed form solution for standard European options only when the 
volatility is uncorrelated with the returns and in the case of correlation they value 
options numerically; Heston imposes no constraint on the correlation between returns 
and volatility and derives a closed form solution as well as formulae for the sensitivity 
factors. The two models results are partially consistent with the implied volatility 
patterns we have referred to. 

 
An extension to stochastic volatility models is the incorporation of jumps in 

the underlying asset’s returns or even in volatility (see eg. Bates [1996a], Bakshi-
Chao-Chen [1997], Duffie-Pan-Singleton [2000]). 

                                                 
8 Rubinstein terms the latter phenomenon “crashophobia” as the demand for put options was 
significant even in periods of bullish markets. 
9 Derman (1999) provides an approximation for the Greeks formulae.  
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C. Ιmplied Volatility Indices 
 
 An implied volatility index is an index that contains the implied volatility 
inferred from options on a stock index. For example VIX of the Chicago Board of 
Options Exchange (CBOE) is such an index computed from implied volatilities of 
S&P 500 index options.10

 
 Implied volatility indices have appeared since 1993 with VIX being the first11. 
In 1994 the German Futures and Options Exchange launched an implied volatility 
index (VDAX), based on DAX index options and in 1997 the French Exchange 
Market created two indices (VX1 and VX6) that reflect implied volatility of the CAC-
40 index options. In 2000 CBOE introduced the Nasdaq Volatility Index (VXN) and 
recently the Greek implied volatility index was constructed. Regarding the literature 
about the construction and properties of implied volatility indices see Whaley (1993, 
2000), Fleming et al.(1995), Moraux et al.(1999), Wagner and Szimayer (2000, 2004), 
Skiadopoulos (2004). 
 
 A volatility index serves two primary purposes. First it is an “investor’s fear 
gauge”12 as it provides an up-to-minute indicator of the market consensus estimate of 
expected future stock market volatility – a measure of stock market risk. The 
descriptor “fear” arises from the fact that investors are averse to risk and such fears 
are reflected to stock prices. So if expected stock market volatility increases, investors 
demand higher rates of return on stocks and stock prices fall. This is an alternative 
explanation of the negative relationship between returns and volatility. Second, it 
provides a benchmark upon volatility derivatives can be written. 
 
 The volatility index can also be used for Value-at-Risk purposes (Giot 
[2002b]), to conduct trading strategies in the stock markets using the so called 
Bollinger bounds and to forecast the future market volatility. The informational 
content of implied volatility has been found to dominate that of historical information 
(see Day and Lewis[1992], Canina and Figlewski [1993], Fleming et al[1995], 
Guo[1996]). Also one can examine the relationship between various implied volatility 
indices in order to test whether there are implied volatility spillovers among stock 
markets (eg. Skiadopoulos [2004], Wagner and Szimayer [2004]). 
 
  
 
 
 
 
 
                                                 
10 To be more specific, an implied volatility index reflects usually a synthetical at the money 
option’s implied volatility with short term maturity (eg. VIX has a maturity of 30 calendar 
days and VDAX of 45 calendar days). 
11 CBOE changed the construction methodology in 2002 and the initially constructed index is 
now named VXO. 
12 This term is attributed primarily to Whaley (2000). 
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D. Volatility Derivatives 
 
 The need for creating specialized financial instruments with main purpose to 
hedge volatility risk emerged mainly after the 1987 crash and led to the creation of 
volatility derivatives, starting from volatility options. 
 
 Brenner and Galai (1989, 1993) first suggested options written on a volatility 
index. Various papers regarding the valuation of volatility options followed, like 
Whaley (1993), Grűnbichler-Longstaff (1996), Detemple-Osakwe (1999), Heston-
Nandi (2000). In 2004 the CBOE introduced volatility options with underlying asset 
the VIX implied volatility index. The payoff of a volatility option is the difference 
between the value of (implied) volatility on the expiry (European style) or on any 
given day (American style) and the strike price which is measured in volatility units. 
 
 Volatility futures were the first volatility derivative product that was 
introduced in an organized market. The OMCX, which is the London based subsidiary 
of the Swedish Exchange OM, launched volatility futures at the beginning of 1997. in 
the same year the German Exchange introduced the “VOLAX FUTURE” based on 
VDAX, but the trading of this contract ceased in 1998. On March 26 2004 the trading 
in futures on the CBOE volatility index began on the CBOE Futures Exchange (CFE) 
and this particular product is the focus of our study. Grűnbichler-Longstaff (1996) 
have created a model to value volatility futures and Locarek-Junge and Roth (1998) 
have examined the hedging performance of the Volax future. The trading of volatility 
futures is similar to that of standard futures with the underlying being a volatility 
rather than an equity index. 
 
 There are also volatility or variance swaps as products of over-the-counter 
markets, mainly in U.S.A. The valuation of these products has been studied among 
others by Heston and Nandi (2000), Javakeri, Wilmott and Haug (2002), Howison 
Rafailidis and Rasmussen (2002). A volatility swap contract pays the buyer the 
difference between the realized volatility and the fixed swap rate determined at the 
outset of the contract. 
 

Data show that the market for volatility derivatives has not flourished yet. 
Whaley (1998) considers clientele effects (the possibility that investors will have 
greater interest in buying than selling, living thus market makers with big short 
positions) in combination with jump risk and a hesitation from behalf of institutional 
investors and market makers as possible explanations. 
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Section 3 

 
 

Model description 
 
 

1. Grűnbichler and Longstaff (1996) 
 

 Grűnbichler and Longstaff (G-L) derive closed form valuation expressions for 
a variety of volatility derivatives (volatility futures, volatility options and options on 
volatility futures) and their model can be extended to other types of volatility apart 
from stock index volatility like currency or interest rate volatility. 
 
 

A. The valuation framework 
 

They assume that volatility follows a Mean Reverting Square Root Process 
(MRSRP): 

 
                                         tttt dZVdtkVadV σ+−= )(                                  (3.1) 
                                                                                                                             
under the objective probability measure P 
 
where a,k and σ are constants and Zt is a standard Wiener or Brownian Motion 

process. (3.1) is a stochastic differential equation where the first component is the 
drift term and th second the diffusion term. V can be either the instantaneous volatility 
or the volatility implied from option pricing. 

 
This framework is similar to that used by previous papers regarding the 

pricing of options in stochastic volatility regimes, like Hull and White [1987], 
Johnson and Shanno [1987], Wiggins [1987], Stein and Stein [19991], Heston [1993]. 
This process has also been used to capture the dynamics of the short term interest rate 
(see Cox et al[1985b]). 

 
The specification of the stochastic volatility dynamics is also consistent with 

many of the observed properties of stock volatility, especially mean reversion and 
clustering we referred to in section 2. Regarding the drift parameters, k is the rate or 

speed of mean reversion of volatility to a long run mean which is ≅
k
a VL. If Vt is 

larger than VL at any time then (VL-Vt) is negative so that in the next instant Vt is likely 
to fall. The opposite is expected to happen if Vt is smaller than VL. Thus volatility 
fluctuates around the level VL. The greater value k has the faster Vt tends to VL and on 
the other hand a small value of k indicates autocorrelation and volatility clustering 
(volatility is persistent). σ is the diffusion coefficient and expresses the volatility of 
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volatility. σ could take any value but the term tV  ensures that volatility will not take 
any negative value. 

 
The probability density function of V is non-central chi-square (2cV2χ t, 

2q+2, 2u) with 2q+2 degrees of freedom and a parameter of non-centrality 2u (see 
Feller [1951], Cox, Ingersoll and Ross [1985b]). We have also (see Skiadopoulos et 
al. [2003] for a more detailed analysis) that as t approaches infinity, volatility and its 
expected value converges to the long run mean while the variance of volatility 

converges to a constant positive number. 2σ
 
The authors assume also that security markets are perfect, frictionless and 

available for continuous trading and that the risk less interest rate r is constant. In this 
framework, which is typical for contingent claims valuation, they consider the 
valuation at time zero of a contingent claim with a payoff B(VT) at time T depending 
only on VT. The current value of this claim, A(V,T), satisfies the fundamental 
valuation equation: 

 

                                        TVVV ArAAbaVA =−−+ )(
2

2σ                                   (3.2)                              

      subject to boundary condition A(VT,0) = B(VT). 
 

(3.2) resembles the Black-Scholes-Merton partial differential equation 
where V is the underlying asset. 

 
If D(T) denotes the current price of a T-maturity risk less unit discount bond, 

then the solution to (3.2) can be expressed as 
 

                                        A(V,T) = D(T)*EQ[B(VT)]                                        (3.3) 
                                                                                                                  

where Q is the risk neutral probability measure. 
 

Deriving a closed form solution via (3.2) is the partial differential equation 
(p.d.e.) approach  and via (3.3) is the equivalent martingale measure (e.m.m.) 
approach13. The two approaches are equivalent. 

 
                                                 
13  p.d.e. approach involves constructing a self financing portfolio which replicates the 
contigent claim or a hedged portofolio consisting of the claim and the underlying asset. 
Assuming that each component of this portfolio follow a certain processes leads among with 
other assumptions to a P.D.E. similar to (2).  
e.m.m. approach is based on the fundamental theorem of arbitrage pricing that the lack of 
arbitrage opportunities is synonymous to the existence of a probability measure under which 
all assets discounted prices are martingales. Martingales are random variables whose future 
variations are completely unpredictable given the current information set – the conditional 
expected value of a martingale is its current value. The concept of martingality is related to 
that of a “fair” game or market. Thus one can derive expressions like (3) where the expected 
payoff at maturity is being discounted in the risk less rate as the Martingale Representation 
Theorem implies. Pricing is made in the risk neutral measure which is equivalent to the 
objective measure by Girsanov’s theorem. (see eg. Neftci[2000] for an introduction to the 
mathematics that underlie derivatives theory) 
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Under Q the process for V is now: 

 
                                            Q

tttt dZVdtbVadV σ+−= )(                               (3.4)         
where b = k+ζ, ζ                                 ],0[ +∞∈
 
 

ζ is a constant parameter and appears in the market price of volatility risk 
λ(S,V,t). Since volatility is not the price of a traded asset it can not  be replicated by a 
self financing portfolio and thus the market price of volatility risk has to be 
determined. The authors adopt Heston’s (1993) assumption that the volatility risk 
premium is proportional to the current level of volatility so that λ(S,V,t)=ζ*Vt. 

 
 This logic is attributed to Breeden’s (1979) equilibrium consumption-based 

model where the risk premium of volatility is  
 

                                              λ(S,V,t) = γcov(
C
dCdV , )                                      (3.5)                              

 
where C(t) is the consumption rate and γ is the relative risk aversion of the 
representative investor. If consumption growth has a constant correlation with the spot 
asset return, the risk premium can be represented as proportional to V. 

 
The same spirit lies in the general equilibrium model of Cox, Ingersoll and 

Ross (1985a,b) where stochastic consumption follows a MRSRP, like the one in G-
L’s model for stochastic volatility and has constant correlation with the spot asset 
return. 

 
 
 
 

B. The volatility futures model 
 

Let Ft(V,T-t) denote the price at time t of a future contract on Vt with maturity 
T-t. From equations (3.2) and (3.3) we have that 

 
 
                 Ft(V,T-t) = (a/b)[1-exp(-b(T-t))] + exp(-b(T-t))Vt                  (3.6)                     

 
 
(3.6) is also the expected value of the analytic solution of (3.4): 

( ) s

t

st dWVbsbtbtVbt
b
aV ∫ −−+−+−−=

0
0 )exp()exp()exp()exp(1 σ          (3.7) 

 
So that 
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( )( ) ( )btVbt
b
aV

dWVbsbtbtVbt
b
aV

t

s

t

st

−+−−=Ε

⇔−Ε−+−+−−=Ε ∫

expexp1)(

))exp(()exp()exp()exp(1)(

0

0
0 σ

 

Since the integral in (1,7) is a stochastic (Ito) integral and a martingale so its 
expected value conditioned at time 0 is zero. 

 
In this model volatility futures prices are exponentially weighted averages of 

the current value of volatility and the long run mean of the risk adjusted process (4). 
As we approach expiration, the futures price converges to the current value of V, 
while as time to maturity converges to infinity the futures price convert to the long 

run mean 
b
a . 

 
 
 

C. Properties of volatility futures prices 
 

Volatility futures prices have some interesting properties which differ from 
those implied by the cost-of-carry model of standard futures. 

 
For example, as volatility converges to zero the volatility futures prices does 

not converge to zero also, like a standard futures price does when the underlying asset 
is minimized. This is related to the mean reversion of the volatility process and thus 
volatility futures prices are bounded above zero. 

 
The basis for volatility futures is given by  

                                    Ft – Vt = (
b
a -Vt)[1-exp(-b(T-t))]                             (3.8)                               

As T-t converges to zero the basis converges to zero and as T-t converges to 
infinity it converges to the first term, the difference between the current value of 
volatility and its long run mean. This means that the volatility futures basis can be 
either positive or negative. 

 
Last but not least, the hedging effectiveness of volatility futures is a function 

of their maturity as the partial derivative of F(V,T-t) with respect to V (the delta) is 
 

                                      
V
TVF

∂
−∂ ),( τ = exp(-b(T-t)).                                   (3.9)                               

 
By this and by the fact that when maturity converges to infinity futures prices 

converge to the long run mean and are unaffected by the current value of volatility, 
one can conclude that longer-term contracts may not be effective instruments for  
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hedging volatility risk. Thanks to mean reversion property any change in the current 
value of volatility is expected to be partially reversed prior to the expiration of the 
contract. 
 

 
 

 
2. Benchmark Model 

 
 
Whaley14 (1993)  uses the Black’s (1976) futures model to price volatility 

options written on an implied volatility index. He considers volatility futures options 
with a zero cost of carry. Hence, he assumes implicitly that the volatility index is a 
traded asset that follows a Geometric Brownian Motion Process. 

 
 

A. The valuation framework 
 

 
The volatility process is a GBMP: 
 
                                               tttt dWVdtVdV σµ +=                                  (3.10)                               

             under the objective probability measure P 
 
 µ and σ in (3.10) are constants and Wt is a standard Brownian Motion. Μ is the 
drift parameter and is defined as the expected return on the volatility index per unit of 
time, while σ is the diffusion parameter and denotes the volatility of the volatility 
index per unit of time. Both the drift and the diffusion coefficients are proportional to 
the current level of volatility. Hence, if volatility is currently high it is likely to remain 
high in the next instant (dt later). Similarly, the closer Vt gets to zero, the smaller the 
increments dVt. Finaly, volatility under GBMP grows exponentially as a function of 
time, so that if it starts from a positive number it can never go negative. 
 
 Apart from the latter which is a desired property of volatility since in theory is 
a positive measure, the adoption of this process as the dynamics of instantaneous or 
implied volatility is a rather simplified assumption as other properties of GBMP 
show. Volatility is unbounded for large values of µ while for small values of the drift 
parameter it converges to zero. Both these properties are unrealistic for volatility 
modeling purposes since they contradict the empirical evidence, such as the mean 
reversion of volatility. Due to this, volatility should be bounded and it should revert to 
its long run mean. 
 
 

Equation (3.10) implies that volatility is log normally distributed: 
 
 
 

                                                 
14  Whaley R. (1993) “Derivatives on Market Volatility: Hedging Tools Long Overdue.” 
Journal of Derivatives 1, pp. 71-84. 
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while log returns of volatility follow a normal distribution15: 
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 Under the typical Black-Scholes-Merton (BSM) (1973) framework which 
assumes perfect, frictionless, arbitrage free and continuous trading markets, the 
current value at time zero f(V,T) of a contingent claim with a payoff  X(VT) at time T 
depending only on VT, satisfies the following partial differential equation: 
 

                                         rffVrVff VVVt =++ 2
2

2
σ                                 (3.13)                               

                            subject to the boundary condition f(VT,0) = X(VT) 
 
 The solution of (3.13) subject to the respective condition at expiration is the 
value of the volatility derivative , e.g. volatility call or volatility future. Also the value 
of a derivative written on Vt can be expressed as the discounted value of the expected 
payoff at maturity: 
 
                                         f(V,T) = D(T)*EQ[X(VT)]                                   (3.14)                              
 
where D(T) is the current price of a T-maturity risk less unit discount bond and Q is 
the risk neutral probability measure. 
 
 In the framework of risk neutral valuation the process for volatility is now: 
 
                                                                                (3.15)                               Q

tttt dWVdtbVdV σ+=
 
where b is the drift parameter under the risk neutral measure and incorporates the 
volatility risk premium. Note that as before in the MRSRP of the GL model, only the 
drift coefficient is altered by the change of probability measure; the diffusion 
coefficient remains the same. This is a basic principle in changing measures and is 
implied by the Girsanov’s theorem which also states that P and Q are equivalent 
probability measures. 
 
 

                                                 
15 The Normal and the Log Normal distributions are related through the following lemma 

from statistics: If Z~N(µ, σ2) then Y = exp(Z) ~ lnN(m,z2), where )
2

exp(
2σµ +=m and 

( )( )[ ]12exp
222 −+= σσµ ez . Here Z = lnVt and Y = exp(lnVt) = Vt. 
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B. The volatility futures model 

 
Let Ft(V,T-t) denote the price at time t of a future contract on V with maturity 

T-t. from equations (3.12) and (3.13) we have that: 
 
                                      Ft(V,T) = Vexp(b(T-t))                                       (3.16) 
                                              
 

 (3.16) is also the expected value of the analytic solution of (3.15): 
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since ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− tWt 2

exp
2σσ  is a martingale, as the solution of a drift less stochastic 

differential equation ( ttt dWVdV σ= , with V0=1), and its expected value conditioned 
at time 0 is one.16

 
 (3.16) resembles the pricing formula for standard futures: 
 
                                         ( )( )[ ]tTqrSF tt −−= exp                                    (3.18)                               
 
where r is the risk free rate – the drift parameter under the risk neutral measure – and 
q is zero when S denotes an equity, the dividend yield when S denotes a stock index 
and the foreign risk free rate when S denotes a foreign currency. 
 
 Thus, under the benchmark model volatility future prices are exponentially 
weighted averages of the current value of volatility, as in standard future prices. As 
we approach expiration, the volatility futures price converges to the current value of 

                                                 
16 The mathematical formulation of the martingale property is E[Xt/Fs] = Xs with s<t, where Xt 
is a stochastic process with time index t=0,1,…,T and Ft is a σ-algebra denoting the filtration 
of information. In the example above we are exploiting the property that E[Xt] = E[Xt/F0] = 
X0 since conditioning at time 0 includes the minimum information and is equivalent to not 
conditioning at all. 
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volatility, while as the time to maturity converges to infinity, the future price concerts 
also to infinity. 
 
 
 
 
 

C. Properties of volatility futures prices 
 

The properties of volatility futures prices are similar to the properties of 
standard futures prices. 

 
As volatility converges to zero, the volatility futures price also converges to 

zero, in addition to what happens under the GL model. 
 
The basis for volatility futures is given by  
 
                                      Ft – Vt  = Vt[exp(b(T-t)-1]                                   (3.19)                               
 
As T-t converges to zero the basis converges to zero and as T-t converges to 

infinity it converges to infinity as well. prior to expiration the volatility futures basis 
can be either positive or negative. 

 
The delta of the volatility futures is exp(b(T-t)) and has positive relationship 

with the time to maturity. Hence, unlike volatility futures under the GL model, these 
instruments are effective tools for long term hedging, as the standard futures are. 
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Section 4 
 
 

Value at Risk 
 

A. Introduction
 

 Value at Risk (VaR) is an attempt to provide a single number summarizing the 
total risk in a portfolio of financial assets for senior management. It has become 
widely used by corporate treasurers and fund managers as well as by financial 
institutions. VaR is thus a measure for market risk – the risk related to the uncertainty 
of a financial institution’s earnings on a portfolio caused by changes in market 
conditions such as the price of an asset, interest rates, market volatility and liquidity. 
Market risk arises whenever a financial institution actively trade assets, liabilities and 
derivatives rather than holding them for longer term investment, funding or hedging 
purposes. Nevertheless, with the increasing securitization of bank loans more and 
more assets have become liquid and tradable (eg. mortgage-backed securities) so that 
VaR regards investment portfolio as well (for instance the concept of credit value at 
risk). 
 
 Apart from management information, setting limits, resource allocation and 
other reasons that have to do with a firm’s strategy, crucial for the evolution of value 
at risk was the inclusion of market risk in the determinedness of a financial 
institution’s required level of capital. The Bank of International Settlements capital 
adequacy regulation, starting in 1988 with the first Basle Accord, requires a financial 
institution to hold capitals as a proportion (ratio) of the market value of its assets 
adjusted to the level of total risk the institution faces. This risk-based capital ratio 
initially took account only credit risk but a revision of the accord in 1998 incorporated 
market risk as well. In 2001 the New Basle Capital Accord (or Basle II) included 
operational risk and also allowed banks to use internal models in order to measure 
their various risks. The Internal Models Approach lead to the development of various 
models, mainly VaR and its three approaches: the RiskMetrics Approach, the 
Historical or Back Simulation Approach and the Monte Carlo Simulation Approach. 
 
 

B. Definition of VaR 
 

 VaR is defined as the largest loss that a portfolio is likely to bear if it is left 
unmanaged during a fixed holding period. In other words VaR asks the simple 
question “How bad can things get?”. The answer it gives is that “We are X% certain 
that we will not lose more than V amount in a T horizon.”. 
 
 More specific, if we define α as the significance level of VaR – the associated 
probability which corresponds to the frequency with which a given level of loss is 
expected to occur and T as the portfolio holding period, then the α% T-period VaR is 
the number V such that the probability of losing V or more over T equals α%: 
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 Prob(∆ΤΠT <= - V) = α   Prob(∆ΤΠT<= - VaRα,Τ) = α                           (4.1) 
or equivalently  
 
            Prob(∆ΤΠΤ > - VaR) = 1-α  = X                                                                   (4.2) 
 
where ∆ΤΠΤ  = Πt+T – Πt is the change in the portfolio’s value (Profit/Loss – P/L) 
  
 
 

Therefore VaR is the lower α-quantile of the projected distribution of P/L over 
the target horizon. 
 

 
C. Methods of Calculation of VaR 

 
 There are three major approaches that have been followed: 
 

 The RiskMetrics or the Variance – Covariance Approach 
 Historical or Back Simulation Approach 
 Monte Carlo Simulation Approach 

 
These methods differ mainly in the distributional assumptions for the returns 

of the risk factors – the factors that drive the changes in a portfolio’s value. Typical 
risk factors are stock indices, interest and exchange rates. The variance – covariance 
and the Monte Carlo approaches require specific distributional assumptions. The first 
is a parametric method which requires a distribution for the factor returns and the 
second is a semi parametric method, requiring a data generating process for each of 
the risk factors. On the other hand, the historical simulation approach requires no 
distributional assumption, rather it projects the historical or empirical distribution of 
the risk factors returns to the future period over which the VaR measure is calculated. 

 
1) Variance – Covariance Methods 

 
J.P. Morgan first developed RiskMetrics in 1994. the publications 

“Introduction to RiskMetrics” (1994) and “RiskMetrics Technical Document” (1996) 
summarize the bank’s approach in risk management and essentially in calculating 
value at risk. The RiskMetrics method, also known as the variance – covariance 
method, is divided into two analytical approaches to the measurement of VaR: the 
simple or delta – normal VaR for linear instruments and the delta – gamma VaR for 
non linear instruments. The terms “linear” and “non linear” describe the relationship 
between a position’s underlying returns and the position’s relative change in value. 

 
In the delta – normal VaR approach the assumption being made is that returns 

on securities follow a multivariate normal distribution17 and that the relative change in 
a portfolio’s value is a linear function of the underlying return. Such a portfolio could 
be the one that that is a set of stocks, currencies or commodities.  
                                                 
17 VaR models assuming other distributions more realistic in comparison to the empirical 
distribution of asset prices, such as the Student’s – t distribution, have also been developed 
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Assuming that the portfolio’s P/L is normally distributed : 

 
 
∆ΤΠ Τ ~ N(µt, στ2) and that Prob(∆ΤΠ Τ <= - VaRα,Τ) = α   

 
then the standard normal transformation yields that  
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which gives us the formula for VaR:  
 
 

VaRα,Τ = Ζασt – µt              (4.3) 
 

 
  
Zα is the ath percentile of the standard normal density (e.g. for α = 1% Ζα = 2,33 and 
for α = 5% Ζα = 1,65), µt and σt are the mean or the expected value and the standard 
deviation of the portfolio P/L respectively: 
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 where i=1,2, …,N is the number of assets in the portfolio, wi is the amount invested 
on each asset, Ri is the return of each asset and ρij is the correlation coefficient 
between the returns of assets i and j. 
 
 Usually µt is assumed to be zero, especially for 1 day VaR as it is empirically 
documented that the daily expected return on financial assets is very small, especially 
in comparison to the standard deviation. 
 
 Both µt, σt should correspond to the T – period of VaR, so either they are 
calculated directly from a sample with T frequency or more often the daily mean and 
standard deviation are calculated. In the latter case the 1 day VaR is derived and in 
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order to have the T – period Var (where T is in days) the square root of time rule is 
applied:18

 
 

1,, αα VaRTTVaR =  
 
 Τhe 1 day Var (Varα,1) is also called DEAR (Daily Earnings At Risk). 
 
 
 The delta – normal approach is inappropriate when the relationship between 
an instrument and its underlying price/rate is non linear. Linear payoffs are 
characterized by a constant slope, delta – the first derivative of the instrument with  
respect to the underlying risk factor. Their convexity as measured by the gamma 
factor – the second derivative with respect to the risk factor – is zero. On the other 
hand, non linear payoffs have a non zero gamma, thus convexity should be considered 
as a second order effect.19 Types of instruments with non linear payoffs are a bond 
and an option. In the first the relationship between a change in the bond’s value and a 
change in the interest rate – the bond’s risk factor – is convex, while in the second the 
relationship between the option’s premium and the underlying asset is also convex. 
 

In such a case a delta – gamma approach should be used. This improves on the 
delta – normal method by using a second order Taylor series expansion so as to 
capture the non linearity as it is expressed primary through the gamma factor. In order 
to conduct the method a pricing model for each of the portfolio’s instruments is 
required, upon which the Taylor series expansion is applied. 
 
  
 The RiskMetrics approach is quick and relative simple, especially in the linear 
case, to compute. On the other hand, its assumption that the portfolio P&L 
distribution is normal at any point in time does not always hold. Also very crucial is 
the accurate estimation of the portfolio’s variance – covariance matrix.  
 
 
 
 

2) Historical Simulation 
 
 

Historical simulation is one popular way of estimating VaR. It involves using 
past data in a very direct way as a guide to what might happen in the future - historical 
data are used to build an empirical density for the portfolio P&L.  

 
The essential idea is to take the current market portfolio of assets and revalue 

them on the basis of the actual prices (returns) that existed on those assets yesterday, 
the day before that and so on. Frequently financial institutions calculate the market or 

                                                 
18 This rule is based on the assumption that returns are i.i.d. (independent and identically 
distributed) which in practice may not hold. 
19 Apart from delta and gamma there may be other sensitivity factors, especially in options 
where we have vega and theta as well. 
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value risk of their current portfolios on the basis of prices that existed on each of the 
last 500 days. Then they calculate the 1 or the 5 percent worst case, that is the 
portfolio value that has the 5th or the 25th lowest value out of 500. In other words in  
only 1 or 5 percent of the time would the value of the portfolio fall below this number 
based on recent historic experience of equity, interest and exchange rate changes. 

 
The procedure can be summarized in the following basic steps: 
 

1. Identify the basic market factors and obtain a pricing formula that 
relates the factors to the price of the portfolio. 

2. Obtain historical values of the market factors over the last N periods. 
The frequency of the sample should correspond to the T period of 
VaR.  

3. Subject the current portfolio to the changes in the market factors 
experienced on each one of the N periods and we calculate the P&L 
per period. 

4. The empirical T period P&L density is obtained by building a 
histogram of ∆ΤΠΤ  = Πt+T – Πt. 

5. The historical VaRα,Τ is the lower αth percentile of this distribution 
 
 

Usually a daily frequency is used to collect a sample of N days back and in 
order to calculate VaR on each of the T days ahead, the N day sample is rolled over 
forward as we repeat the procedure on every day.   

 
In comparison to the variance – covariance method, this method’s obvious 

benefit is that we do not have to calculate standard deviations and correlations, or to 
assume normal distributions for asset returns. A second advantage is that since we 
obtain the entire empirical P&L density we are able to derive the worst case scenario 
number and not only the α% value which the previous method provides. 

 
The main disadvantage of the historical simulation is the implicit assumption 

that the pattern that prevailed in the past will also prevail in the future as well. This 
assumption is highly questionable, especially if the VaR forecast regards a large T 
period. Also, the result of the procedure is sensitive to the historic (N) period chosen. 
If the N number is small from a statistical view then there will be a very wide 
confidence band (or standard error) around the estimated VaR. A very large historic 
period may however not be appropriate as well since the far away past observations 
may have little relevance to the current market conditions.  

 
This trade off provides the risk manager with a difficult modeling problem. 

One approach could be to weight past observations unequally, so that more recent 
observations have higher weights. Another approach is the Monte Carlo simulation 
which generates additional observations that are consistent with recent historic 
experience. 
 
 
 
 
 

 20



 
 

 
3) Monte Carlo Simulation 

 
Like historical simulation, Monte Carlo simulation is a numerical method 

which is used to produce different scenarios for the financial asset price on a target 
day. This time the scenarios are generated in a random fashion rather than from 
historical data.  

 
More specific, a process in a form of a stochastic differential equation is 

assumed to be the data generating process of an asset’s price and a distribution 
underlies the stochastic component or the diffusion factor of the process. The process 
is discretized and random numbers are drawn from the corresponding distribution. For 
each number a price for the asset is generated through the discretized process or more 
accurately through the analytic solution of the process. Usually the diffusion factor is 
a Brownian Motion and the underlying distribution is the standard normal. The 
following example is typical: 

 
 

• Assume a Geometric Brownian Motion for the price S of an asset: 
    
                                        vSdWSdtdS += µ  
 
where µ is the drift or the expected return and v the annualized diffusion or 
standard deviation of the asset’s returns, while dt is a very small time 
increment and dW is a standard Brownian Motion. 
 
• Discretize the process  

 
                                                  tvStSSSS tttttt ∆+∆=−=∆ ∆+ εµ  
 

where St is the value of the asset at time t, 
n

tTt −
=∆  is the time interval                  

in an annual basis and ε~Ν(0,1) is the random number. 
 
• Get a random number and update the asset price at each time step 

using the random increments. 
 
• It is more accurate to simulate the path via the solution of the process: 
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 When more than one process has to be simulated simultaneously, for instance 
one process for each asset in a portfolio, the correlation between the various asset 
prices must be taken into account. Usually, this is achieved using the Cholesky 
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decomposition – a method that builds a multivariate set of random variables from 
simple blocks consisting of i.i.d. variables.20

 
 There are some important issues in Monte Carlo simulation. The first is that 
accuracy requires a large number of scenarios but requires as well more 
computationally efficiency. This trade off is resolved by the so called variance 
reduction methods – procedures that can lead to important savings in computation 
time while preserving accuracy. Such procedures are the Antithetic Variable, the 
Control Variate, the Importance and the Stratified Sampling. The first two procedures 
are commonly used in applications of MC simulation in valuing derivatives. 
 
 Another important issue is the fact that sometimes the generated random 
numbers may repeat themselves after a finite number of samples, or may exhibit serial 
autocorrelation. Thus, the choice of the random number generator is crucial and an 
alternative that has become popular is the use of a deterministic scheme as researchers 
have realized that the sequence of points does not have to be chosen randomly. This 
method is known as Quasi Monte Carlo simulation and some deterministic schemes 
are the low discrepancy frequencies, the Halton sequences and the Sobol numbers. A 
drawback of this method is the fact that accuracy cannot be assessed easily since the 
draws are not independent. 
 
 
 As for the Monte Carlo simulation’s application in VaR, the idea is similar to 
the one of historical simulation where the empirical distribution is replaced by the 
simulated distribution – the distribution of simulated asset prices, thus simulated 
portfolio’s P&L. The  basic steps are the following: 
 

1. Assume a stochastic process for the evolution of each of the portfolio’s 
assets or the risk factors of the assets over time. In the latter case a 
pricing formula that relates the risk factors to the assets is needed. 

2. Apply Cholesky decomposition and perform many simulation runs 
(usually at least 10000) 

3. For each simulation run result calculate the new portfolio value and 
build the simulated P&L distribution – the histogram of ∆ΤΠΤ  = Πt+T – 
Πt, where Πt+T is the simulated value and Πt the realized value used as 
a starting point to generate Πt+T. 

4. The MC VaRα,T is the lower αth percentile of the simulated 
distribution. 

 
 

The main advantages of this approach in calculating value at risk is that it can 
accommodate various type of processes relative to the empirical features of each risk 

                                                 
20 There are also the eigenvalue decomposition and the singular value decomposition. In 
comparison to the Cholesky decomposition the other methods are computationally more 
intensive but they can be applied in cases where the Cholesky decomposition can not be 
applied. Such a case is that when R, the matrix which is decomposed into its Cholesky factors, 
is positive semi-definite rather positive definite as the Cholesky decomposition requires. 
 

 22



factor and that it can capture the presence of non normality.21 Its disadvantages are the 
requirement for an accurate estimation of the variance – covariance matrix, as in the 
RiskMetrics approach, and the fact that is computationally expensive, especially when 
the portfolio under consideration consists of many assets.  
 

Also, the issue of model error arises, as the assumed process should be the one 
that is the closest to the true data generating process of each risk factor and an 
appropriate estimation technique should be applied to estimate the parameters of the 
process. Model error is also present in the variance – covariance method, specifically 
in the delta – gamma approach when a pricing model is assumed to connect the asset 
under consideration and the underlying risk factor and the expansion is applied upon 
this model.  

 
 
The following table summarizes the pros and cons of each of the three 

approaches in calculating VaR: 
 
Method Advantages Disadvantages 
   
Variance - Covariance -it is quick and simple to 

compute 
-it assumes that the 
portfolio P&L distribution 
is normal at any point in 
time  

  -it requires accurate 
estimation of the portfolio 
variance-covariance matrix

   
Historical Simulation -it does not require 

specific assumption about 
the analytic form of the 
portfolio P&L distribution 

-it assumes implicitly that 
the pattern that prevail in 
the past will continue in 
the future as well 

 -it provides the entire 
empirical P&L density and 
not only the a percentile 

-it is sensitive to the 
historic period chosen 

   
Monte Carlo Simulation -it can accommodate 

various type of processes 
-it requires estimation of 
the variance-covariance 
matrix 

 -it can capture the 
presence of non normality 

-the issue of model error 
regarding the specification 
of the process and the 
estimation of its 
parameters appears 

 -it can provide multiple 
scenarios for the risk 
factors in comparison to 
historical simulation 

-it is computationally 
intensive 

                                                 
21 The MC VaR coincides with the variance – covariance VaR in the case that normality is 
assumed, that is when a Geometric Brownian Motion is adopted for the process of each asset. 
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D. Back testing of VaR 
 

Since there is a divergence in the VaR methodologies and their application 
across banks and firms, it is useful to test the performance of VaR models. Moreover 
this is required by regulators for financial institutions, specifically by the Basel 
Capital Accord. Such testing is often referred to as ‘back testing’. Back testing 
involves testing how well the VaR estimates would have performed in the past as the 
procedure requires comparison between the realized losses and the VaR estimates 
over a specific (past) sample.22

 
Many banks that use VaR models routinely perform simple comparisons of 

daily profits and losses with model – generated risk measures to gauge the accuracy of 
their risk measurement systems. However, the development of more sophisticated 
back testing techniques is just in the beginning and there are considerable differences 
in type of tests performed. Before presenting the test themselves we note that there are 
a number of difficulties, with the general approach to back testing which uses realized 
profit and loss results. The most fundamental of these arises from the fact that such 
back testing attempts to compare static portfolio risk with a more dynamic revenue 
flow. In practice bank’s portfolios are rarely static. Hence a back test should be based 
on a comparison of VaR figure against the hypothetical changes in portfolio value that 
would occur if end-of-day positions were to remain unchanged. Further difficulties in 
conducting back tests arise because the realized profit and loss figures produced by 
banks typically include fee income and other income not attributable to position 
taking. The objective of back testing is however to compare measured position risk 
taking with pure position taking revenue. 

 
 
There are several back testing procedures some of which account for 

unconditional and others account for conditional coverage. The purpose of the back 
testing measures is twofold. First, to test whether the average number of VaR 
violations or exceptions (an exception occurs if the predicted VaR is not able to cover 
realized loss on the given time position) according to a sample period is statistically 
equal to the expected one. Second, given the fact that an adequate model must wide 
the VaR forecasts during volatile periods and narrow them otherwise, it is necessary 
to examine if the violations are also randomly distributed. 

 
 
 
The most popular back testing procedures are the following: 
 
 

                                                 
22 Apart from back testing there is also stress testing which involves estimating how the 
portfolio would have performed under some of the most extreme market moves seen in the 
last 10 to 20 years. It can be considered as a way of taking into account extreme events that 
do occur from time to time but are virtually impossible according to the probability 
distributions assumed for market variables. Thus stress testing ‘goes beyond VaR’ as does not 
stop at the (1-α)% confidence level as standard VaR does. 
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1. The Regulatory Back test. 
 
Since 1996 the Basle Committee on Banking Supervision allows banks and 

other financial institutions to develop their own risk models in order to evaluate their 
portfolios risks. This is the Internal Model Approach (IMA) and the most important 
risk measure is Value at Risk. The Basel Committee’s quantitative standards include a 
horizon of 10 trading days, a 99% confidence interval (α=1%) and an observation 
period based on at least a year of historical data and updated at least once a quarter. 
The capital requirement each bank must meet, as far as market risk is concerned, is: 

 

Market Risk Charge on day t = t
i

tt SRCVaRVaRk +⎟
⎠

⎞
⎜
⎝
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1
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where VaRt-1 is the daily VaR in a 99% confidence level, k is a multiplicatice risk 
factor subject to an absolute floor of 3 and SRCt is a plus factor – a penalty that should 
be added to k if the back testing results of the model are poor. 
 
 The multiplication factor is determined by the number of times an exception 
occurred. The minimum floor of 3 is in place to compensate for a number of errors 
that arise in model implementation, such as simplifying assumptions, analytical 
approximations, small sample biases and numerical errors. The increase in the 
multiplication factor is then designed to scale up the confidence level implied by the 
observed number of exceptions to the 99% confidence level desired by regulators and 
it is classified into three zones: the green, the yellow and the red zone. The green zone 
corresponds to back testing results that do not suggest a problem with the quality or 
accuracy of a bank’s model. The yellow zone encompasses results that do raise 
questions in this regard, but where such conclusion is not definitive. The red zone 
indicates a back testing result that almost certainly indicates a problem with a bank’s 
risk model. 
 
 The three zones have been delineated and their boundaries chosen in order to 
balance two types of statistical error: (1) the possibility that an accurate risk model 
would be classified as inaccurate on the basis of its back testing result and (2) the 
possibility that an inaccurate model would not be classified that way based on its back 
testing result. Table1 in Appendix II presents the zones and the respective value of the 
multiplication factor. 
 
 This approach, known also as the Basle Traffic Light Approach, although 
simple to implement, has a major drawback. Since the sample size of daily 
observations is finite, it is quite probable that the actual number of exceptions may 
differ from the percentage implied by the model’s confidence level even in cases 
where the model is in fact accurate. Moreover this test neither considers the measure 
of the exception nor its position in time. 
 
 Therefore, the accuracy of the model should be examined by various 
additional tests which should compensate for the drawbacks of the Basle Approach. 
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2. Kupiec’s (1995) tests 
 
 
Kupiec23 presents a more sophisticated approach to the analysis of exceptions 

based on the observation that a comparison between daily profit or loss outcomes and 
the corresponding VaR measure gives rise to a binomial experiment. If it can be 
assumed that a bank’s daily VaR estimates are independent, the binomial outcomes of 
the experiment, that is exception (failure) or not exception (success), represent a 
sequence of independent Bernoulli trials each with a probability of failure equal to 1 
minus the model’s specified level of confidence. Hence, testing the accuracy of the 
model is equivalent to a test of the null hypothesis that the probability of failure on 
each trial equals the model’s specified probability and the appropriate test statistic is a 
likelihood ratio statistic. 

 
He uses two tests to examine the null hypothesis, which corresponds to an 

acceptance of the model, the time between failures test and the proportion of failures 
test. 

 
 
2.a. Kupiec’s Time until First Failure – TUFF Test 
 
This test is based on the number of trading days between failures and is 

applied each time a failure is observed. This test is most useful in case when a risk 
manager is monitoring the performance of a VaR model on a daily basis and is 
focusing on the new information provided by the model. On the other hand it is less 
well suited to analysis of long runs of ex post data on model performance. 

 
Let v be the observed time (in days) between failures 
      p be the true (empirical) probability covered by the VaR model  
      p* be the (nominal) probability specified by the VaR model: 100-                 
confidence interval% = α 
     be the maximum likelihood estimator of p, given by 1/v p~

 
The likelihood ratio (LR) test which is the most powerful for testing the null 

hypothesis H0 : p = p* vs. H1: p ≠ p*, is the following: 
 

                        ( )
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This statistic is distributed as a chi square distribution with 1 degree of 
freedom and should its value in a specific back test be larger than the corresponding 
critical value from a chi square table, the model is rejected by the test. 

      
 

                                                 
23 Kupiec P. (1995) “Techniques for verifying the accuracy of risk measurement models” 
Journal of Derivatives3, pp. 73-84,  
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2.b. Kupiec’s Proportion of Failures – POF Test 
 
The second test is based on the proportion of failures observed over the entire 

sample period of the back test performed. The associated likelihood ratio statistic is: 
 

                   ( )
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xnx

POF pp
ppLR  under H0                (4.6)                            

where n denotes the total number of outcomes in the sample period, x denotes a 
Bernoulli random variable representing the total number of observed failures and is 
its maximum likelihood estimator given by x/n. 

p~

 
 The LRPOF is also distributed chi square with 1 degree of freedom and should 
its value in a specific back test be larger than the corresponding critical value from a 
chi square table, the model is rejected by the test. 
 
  
 The problem with Kupiec’s tests is that they are by themselves not powerful 
enough to correctly predict errors in the VaR model. The power of the test is very 
poor, especially for high confidence levels and for small or medium back testing 
samples, so that the test cannot indicate an inadequate model even if the difference 
between the observed and the expected failure is significant. In order for the test to 
have significant power a substantial sample size is required, like 10 years of daily 
observations. 
 
 One improvement on Kupiec’s tests is the suggestion of a mixed Kupiec test 
by Marcus Haas (2001): 
 
                             LRmix = LRind + LRPOF ~ χ2(n+1) under H0                      (4.7)                              
 
where LRind is a statistic for a variation of Kupiec’s TUFF test and  LRPOF the statistic 
of the standard Kupiec POF test. 
 
 
 
 

3.  Crnkovic and Drachman (1996) test 
 

Contrary to other methods the Crnkovic-Drachman24 (CD) or Kuiper test not 
only evaluates the exceptions but looks at the entire VaR model instead. Their test 
uses Kuiper’s goodness-of-fit statistic to measure the distance between the entire 
probability distribution forecast of the portfolio’s P&L and the actual P&L 
distribution. Empirical percentiles are calculated for every portfolio movement: 

 
                                                    pi = F(xi)                                                   (4.8)                              
 

                                                 
24 Crnkovitc C. and J. Drachman (1996) “Quality Control”, Risk Septenber, pp. 138-143 
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where F represents the modeling distribution. If the model is well calibrated we can 
expect every percentile value in [0,1] with the same probability. Thus if one looks at a 
series of values of pi he should not be able to tell them apart from a series of 
realizations of uniformly distributed random variables. Thus the testing hypothesis is 
formulated as  
 
                                                   pi ~ U(0,1) i.id.                                            (4.9)                              

 
 The smaller the value of Kuiper Statistic, the more accurate the probability 
distribution forecast is. Crnkovic and Drachman suggest a Q-test for the distributional 
assumptions (this test compares the maximum distances to the uniform distribution 
with a benchmark) and a BDS-test for independence. 
 
 
 The CD test is more flexible than the other test mentioned, however it also has 
some very strong requirements, such as knowledge of the distribution function 
underlying the model at any given point in time. Also sample sizes of at least 1000 
observations should be used to enhance the test’s power. 
 

 
 
E. Criticism of VaR 

 
VaR may has become the “standard benchmark” for measuring financial risk 

and is the official risk measure adopted by regulators, but is not a panacea for risk 
management and has received criticism from time to time. 

 
One aspect is that an attempt to summarize the risk of a portfolio, ore more 

generally a distribution, in a single number is both strength and a weakness. This 
simplicity has been the key to the popularity of VaR, particularly as a mean of 
providing summary information to a bank’s senior management. The difficulty with 
this though is that such a highly aggregate figure may mask imbalances in risk 
exposure across markets or individual traders, thus VaR should be considered along 
with other risk measures, traditional or not, like the variance, the semi variance (or 
downside risk which lie in the same spirit with VaR), the tracking error (the standard 
deviation of excess portfolio returns compared to those of a benchmark) and others. 

 
Another important drawback of VaR is that it does not fully state “how bad 

can things get” as its estimated value is based upon a confidence level. Beyond that 
level the potential loss could be much greater than the VaR estimate. The only thing 
for sure, assuming the VaR model is accurate, is the probability of exceeding the VaR 
figure. In reply to this, Artzner et al.25 (1999) have introduced a new risk measure 
called conditional value at risk (or expected shortfall). Conditional VaR (CVaR) is the 
expected loss given that the loss has exceeded the VaR threshold: 

 
                                              
 

                                                 
25  Artzner P., F. Delbaen, J. Eber and Heath D. (1999), “Coherent Measures of Risk”, 
Mathematical Finance 3, pp. 203-228 
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                                            CVaR = E[X/X>VaR]                                      (4.10)                               

 
where X is a loss in absolute units 
 
 thus                                           CVaR  VaR. ≥
 
 Artzner et al.(1999) in their criticism of risk measures stated certain properties 
that a risk measure should satisfy and defined such a measure as a “coherent” risk 
measure. These properties are: 
 

1. Monotonicity of risk. If losses in portfolio X are larger than those in 
portfolio Y then the risk in portfolio X is higher than the risk in 
portfolio Y: ρ(Χ) ≥ρ(Υ), where ρ is the risk measure. 

2. Homogeneity of risk. If we multiply the size of the portfolio then the 
magnitude of risk is multiplied as well: ρ(cΧ) = c ρ(Χ) for c>0. 

3. Translation invariance of risk. Adding cash to a portfolio decreases its 
risk by the same amount: ρ(Χ+nr) = ρ(Χ)-n, where n is the cash 
amount invested in the risk free rate r. 

4. Subadditivity of risk. The risk of the sum of two subportfolios is 
smaller or equal than the sum of their individual risks:  

                ρ(Χ+Y)  ρ(Χ)+ ρ(Υ). ≤
 
 
 According to the authors, VaR does not necessarily satisfy the last property as 
the VaR of a portfolio with two instruments may be greater than the sum of individual 
VaRs of these instruments. Therefore, managing risk by VaR may fail to stimulate 
diversification, probably the most important property of a portfolio. On the other 
hand, the CVaR measure is a coherent risk measure. 
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Section 5 
 
 

Data Specifications 
 
 

The main data we will need are those of volatility futures prices and the prices 
of VIX, which is the underlying index of the contracts. Both series are recovered from 
the Chicago Board of Options Exchange Database. A description of the specifications 
for these series follows. 
 
 
 A. VIX Implied Volatility Index 
 
 In 1993 the Chicago Board of Options Exchange introduced the CBOE 
Volatility Index VIX, an index which tracks the implied volatility from options on 
S&P 100 (OEX) and it became the benchmark for stock market volatility. In the ten 
years following the launch of VIX, theorists and practitioners have changed the way 
they think about volatility. On 22 September 2003 CBOE updated the construction 
methodology of VIX in order to ensure that it remains the premier benchmark of U.S. 
stock market volatility. The changes reflect the latest advances in financial theory and 
what has become standard industry practice. As far as the old methodology index is 
concerned, CBOE continues the calculation and dissemination of the original VIX, 
but under a new ticker symbol – “VXO”. 
 
 The fundamental features of VIX remain the same. VIX continues to provide a 
minute-by-minute snapshot of expected stock market volatility over the next 30 
calendar days. This volatility is still calculated in real time from stock index option 
prices and is continuously disseminated throughout each trading day. 
 
 The two important changes in the new methodology are the following: 
 

 The most significant change is a new method of calculation. The new VIX 
estimates expected volatility from the price in stock index options in a wide 
range of strike prices, not just at-the-money strikes as in the original VIX. 
Thus it is more robust because it pools the information from option prices over 
the whole volatility skew, not just from at-the-money options.Also, the new 
VIX is not calculated from the Black Scholes option pricing model; the 
calculation is independent of any model. The new VIX uses a newly 
developed formula to derive expected volatility by averaging the weighted 
prices of out-of-the money puts and calls. 

 
 

 The second noteworthy change in that the new VIX calculation will use 
options on the S&P 500 (SPX) index rather than the S&P 100. while the two 
indices are well correlated, the S&P 500 is the primary U.S. stock market 
benchmark as well as the reference point for the performance of many stock 
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funds, with over $800 billion in indexed assets. In addition, the S&P 500 
underlies the most active stock index derivatives and also volatility derivatives 
like volatility and variance swaps. 

 
Details about the calculation of VIX are included in Appendix I. 

 
 
 
 
B. Volatility index Futures 
 
 On March 26, 2004 the CBOE Futures Exchange (CFE) introduced a futures 
contract on the VIX volatility index.26  
 
The contract’s specifications are the following: 
 

 Trading hours: 8:30 a.m. to 3:15 p.m CST (Chicago time) 
 Description-underlying value: VIX Futures track the level of an “Increased-

Value Index” (VBI) which is 10 times the value of VIX.  
 Contract size: $100 times the Increased Value VIX (VBI) For example, if 

VIX is 17.5-indicating an implied volatility of 17.5% - the VBI will be 175 
and the contract size will be $17,500 

 Minimum tick size: 10 cents. Therefore, minimum value change will be in 
$10 intervals 

 Contract months: Initially, May, June, August and November. Thereafter, 
two-near term and two additional months on the February quarterly cycle 
(February, May, August and November) 

 Last trading date: The Tuesday prior to the third Friday of the expiring 
month 

 Final settlement date: The Wednesday prior to the third Friday of the 
expiring month 

 Final settlement price: Cash settled. The final settlement price for VIX 
futures is 10 times a Special Opening Quotation (SOQ) of VIX calculated 
from the SPX options used to calculate the index on the settlement date (the 
“Constituent Options”). If there is no opening price for a Constituent Option 
the average of that option’s bid and ask price as determined at the opening of 
trading is used instead. 

 Margin Requirements: The minimum speculative margin requirements for 
VIX futures are: Initial-$3750 and Maintenance-$3000. 

 Position limits: 5000 contracts 
 
 
 
 
 
 

                                                 
26 CFE has launched also another specialized product – the S&P 500 3-Month Variance 
Futures which are futures contracts based on the realized variance of the S&P 500 over a 
three month period. 
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The following table presents the volatility futures contracts that are traded in 
CBOE: 
 
 
 
Table 5.1: Chicago Board of Options Exchange Volatility Futures Contracts 

Contract 
Starting 
Date Maturity Duration # Trading Days 

        
May 2004 26/3/2004 19/5/2004 aprx. 2 M 38 
June 2004 26/3/2004 16/6/2004 aprx. 3 M 56 
July 2004 21/5/2004 14/7/2004 aprx. 2 M 36 
August 2004 26/3/2004 18/8/2004 aprx. 5 M 100 
September 2004 19/7/2004 15/9/2004 aprx. 2 M 42 
Oktober 2004 20/8/2004 13/10/2004 aprx. 2 M 38 
November 2004 26/3/2004 17/11/2004 aprx. 8 M 163 
January 2005 21/10/2004 19/1/2005 aprx. 3 M 61 
February 2005 18/6/2004 16/2/2005 aprx. 8 M 168 
March 2005 24/1/2005 16/3/2005 aprx. 2 M 37 
May 2005 20/9/2004 18/5/2005 aprx. 8 M 167 
June 2005 21/3/2005 17/6/2005 aprx. 3 M 63 
August 2005 19/11/2004 17/8/2005 aprx. 9 M 187 
November 2005 22/2/2005 17/11/2005 aprx. 9 M 188 
February 2006 23/5/2005 18/2/2006 aprx. 9 M 188 
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Section 6 
 
 

Examining the Pricing Performance 
 
 

A. Methodology
 

In this part we intend to test the two valuation models of volatility futures as 
far as their pricing performance is concerned. To achieve this goal we will first 
estimate the unknown parameters of each model. Given the output of the estimation 
procedure, we will derive theoretical/model values of volatility futures and we will 
compute the deviation of these values from those observed in the market (market 
prices) so that we have a consensus of the pricing bias of each model. 

 
 

Our estimation method will be calibration. Calibration is a procedure for 
estimating or inferring a model’s parameters by fitting the model to market prices. 
The most usual “goodness-of-fit” measure is the following: 

 

                                                                                               (6.1)                              (
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where Mi is the market price and Fi is the theoretical price given by the model 
for the ith element of the market data series – the calibration instruments. 

 
From a first view, this procedure resembles the classical least squares 

estimation procedure, as it involves the minimization of the sum of squared error 
between market and model prices27. In our case it would be a non-linear least squares 
regression. 

 
To implement this technique we create four series of daily volatility futures 

market settlement prices, one with contracts having the shortest maturity per trading 
day, the other with the second shortest maturity and so on. We create the series this 
way because these contracts are generally short term and we are not able to construct 
a series of a single contract with an adequate number of observations28. So these 
contemporaneous series represent hypothetical contracts while in fact contain prices 
of consecutive contracts rolled over. We also reject the prices of the last 5 trading 
days prior to expiration and prices of trading days with volume less than 5 contracts. 

 
 

 
27 Calibration is in fact estimation. (see eg. E.Balistreri-R.Hillberry [2004] “Estibration: An 
illustration of structural estimation as calibration”) 
28 We cannot increase the sample by using panel data, a common procedure in testing options 
models where also cross-sectional data are available since on each day various option prices 
exist for different strike prices. 
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The other set of data series is the VIX values and the calculated VBI values 

for the same time interval with the volatility futures price series. VBI is ten times the 
value of VIX and is the underlying asset of volatility futures according to the 
contracts specifications. Hence this series should correspond to the V variable in the 
model. Finally, T-t in the model is the annualized time to maturity for each contract in 
trading days (assuming there are 252 trading days per year). 

 
 

The procedure includes calibrating each model using the shortest maturity 
series and examining the pricing bias in the other three maturity series. The pricing 
bias is the difference between the market and model price. Specifically, we compute 
the Average Absolute Percentage Pricing Bias (AAPPB) per maturity series and per 
pricing model: 

 

                                                   ∑
=
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ii
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MF

N 1

1                                         (6.2)                               

 
where Fi and Mi are the model and market price respectively 
 
We obtained data from 26 March 2004 to 17 June 2005. The four maturity 

series are presented in the following table: 
 
 
 

Table 6.1: Volatility Futures Series 

Series 
Starting 
Date 

Ending 
Date Duration # Observations 

         
Shortest maturity 26/3/2004 17/6/2005 aprx. 14 M 308 
Second shortest 
maturity 26/3/2004 17/6/2005 aprx. 14 M 306 
Third shortest 
maturity 26/3/2004 17/6/2005 aprx. 14 M 288 
Fourth shortest 
maturity 26/3/2004 9/6/2005 aprx. 9 M 180 

 
 
. 
Descriptive statistics for the VBI and the four volatility futures maturity series 

are provided in table 6.2. As we can observe, all series exhibit non-normality, positive 
skewness (except the fourth shortest maturity series) and are platykurtic. Figures 6.1 
and 6.2 contain a diagram of the VBI Index and the four maturity series we have 
created respectively. 
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Table 6.2: Summary statistics of the VBI Index and the four series of Volatility 
Futures 
 
 

VBI shortest 
maturity 
series 

second 
shortest 
maturity 
series. 

third 
shortest 
maturity 
series 

fourth 
shortest 
maturity 
series 

Mean 144,41 154,73 165,941 174,3 182,58 
Median 142,80 151,55 160,35 168,35 178,52 
Maximum 199,6 203,20 210,50 217,3 219,5 
Minimum 111 114,8 122 131,6 106 
Std. Deviation 18,99 21,33 23,29 23,90 24,02 
Skewness 0.484 0,351 0,283 0,228 -0,006 
Kyrtosis 2,818 2,23 1,913 1,742 2,019 
Jarque-Berra 
(p-value) 

12,43 
(0,002) 

13,85 
(0,001) 

19,15 
(0,000) 

21,49 
(0,000) 

7,323 
(0,004) 

Observations 308 308 306 288 180 
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Figure 6.1 : Evolution of VBI Implied Volatility Index 
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Figure 6.2 : Evolution of the four Volatility Futures series 

 
 
 We can observe that the four series of volatility futures are almost perfectly 
correlated as they move very closely and they also verify the positive relationship 
with the volatility index, their underlying asset. 
 
 
 
B. Results 
 

In this section we present the empirical results of the procedure which we 
followed in order to examine the pricing performance of the two volatility futures 
models. 
 

In both of the models the econometric procedure which was followed to 
estimate the unknown parameters is non linear regression. A model is nonlinear in 
parameters if the model’s partial derivatives of 1st order with respect to parameters are 
themselves functions of the parameters. Nonlinear least squares minimize the sum-of-
squared residuals with respect the choice of parameters, as in the linear regression. 
The difference is that in the related first order conditions of this minimization problem 
instead of the regressors their partial derivatives of 1st order with respect to 
parameters take place.  
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Also in the non linear model there is in general no explicit for the non linear 

least squares estimator as in the linear model and thus an iterative method must be 
applied. Usually basic optimization methods like the Gauss-Newton and the Newton-
Raphson are adequate to solve the minimization problem. Otherwise special 
procedures may be applied, like the Quadratic Hill Climbing or the BHHH algorithm. 
In general, the usual procedures regarding estimation and hypothesis testing that stand 
in the linear case are valid also in the non linear case as the work mainly from T. 
Amemiya has shown. 

 
The calibration procedure results for each model are: 
 
 

1. Grűnbichler-Longstaff model 
 
The first attempt to estimate the parameters with non-linear ordinary least 

squares (NL-OLS) gave unsatisfactory results. The parameters values were bizarre 
and non statistically significant, while there was strong evidence for autocorrelation 
both form the Durbin-Watson statistic and the correlogramm which displays the 
autocorrelation function. The correlogramm of squared residuals and the ARCH 
Lagrange Multiplier (LM) test showed no evidence for heteroskedasticity. Correcting 
autocorrelation with the Newey-West did not work. This problem is also reported in 
various papers with similar estimation procedure in testing option pricing models 
(Bates [1996a], Nandi [1998], Guo [1998]) and it is mainly attributed to serial 
correlation of residuals. Autocorrelation can arise from misspecification of the model, 
such as the omission of a relevant state variable.  

.  
Bates (1996a) estimates the parameters using non-linear generalized least 

squares methodology modeled on Engle and Mustafa (1992), while Nandi (1998) uses 
a two stage procedure in a framework of non-linear seemingly unrelated regressions 
and assuming a AR(1) process for the autocorrelation of residuals. Guo (1998) also 
adopts a two step iteration procedure. 
 
 
 We overcame the problem using non-linear generalized least squares (NL-
GLS). This is a usual procedure for handling autocorrelation or/and heteroskedasticity 
in a regression’s residuals – a problem called non–spherical disturbances and consists 
of a non identifiable residual variance – covariance matrix which makes the ordinary 
least squares estimator (OLS) inefficient. The procedure includes transforming the 
model so that the OLS estimator can be used for inference and hypothesis testing, 
while the variance – covariance matrix is being restricted to few unknown parameters 
which can be easily estimated. The latter is known as feasible generalized least 
squares (FGLS) and is a parametric correction of the non – spherical disturbances 
problem.29

 
  

                                                 
29 A non parametric correction is the one that uses the White or the Newey-West estimator in 
order to identify the residual variance – covariance matrix, which we already have tried. 
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In our case autocorrelation is parameterized assuming that the residuals follow 
a first order autoregressive model - AR(1)30 so that the estimation framework is as 
follows: 
 

                                   ( )[ ] ( ) ttttt VbTbT
b
aF ε+−+−−= expexp1                              (6.3) 

                                                          
 
                                                          ttt v+= −1ρεε                                                 (6.4)                              
 
                                                      ( ) ( )ρεε Ω=Ω=′ttE                                            (6.5)                              
 

The first equation is our basic regression and provides the OLS estimators 
and the residuals 

∧∧

ba,  

tε  which are the inputs to the second equation, the AR(1) scheme 

for the residuals. The latter provides the estimator  so that Ω, the residual variance – 

covariance matrix, becomes identifiable and the estimated values  are updated. 
This is an iterative procedure and is continued until convergence is achieved. 

∧

ρ
∧∧

ba,

 
 The FGLS in this framework is known as the Prais-Winsten or the Cochrane-
Orcutt estimator and was first introduced in linear models. 
 
 

We came up with the following results: 
 
 

Table 6.3: Calibration results in GL model 
Parameters Estimated values t - stastistic 

∧

∧

∧

= LV
b

a  
165,93 79,393 

(***) 

∧

b  10,2 12,207 
(***) 

∧

ρ  
0,956 63,134 

(***) 
R-squared 0,9703  
Akaike info criterion 5,4436  
Durbin-Watson statistic 2,17  

                    *** indicates statistical significance at 5% level 
 
 
 
 

                                                 
30 Higher order models were rejected. 
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 From the table we observe that the long run mean of the VBI series is ∧

∧

b

a = 

165,93 which implies that the corresponding value for VIX is 16,59 (indicating an 
implied volatility long run mean of 16,59% from the options on S&P500). Also the 
speed or rate of mean reversion of this series to its long run mean is (under the risk 

neutral measure) = 10,2 indicating a half-life of 0,82 calendar month.
∧

b 31 In an other 
interpretation of the rate of mean reversion, VIX returns to its long run mean over the 

course of 1/ = 0,098 years or 1,18 months. This value provides evidence for a fast 
mean reversion and a high volatility of implied volatility and is consistent with the 
findings of Taylor and Xu (1994) and Guo (1996). 

∧

b

 
 
 
 

2. Benchmark model 
 
In the estimation results from non-linear ordinary least squares (NL-OLS) 

there was evidence for non-spherical disturbances. The Durbin-Watson statistic and 
the correlogram of residuals showed significant evidence of autocorrelation in 
residuals, while the correlogram of squared residuals and the ARCH LM rejected the 
null hypothesis that residuals are homoskedastic. Thus a non-linear generalized least 
squares (NL-GLS) methodology was again employed.  

 
Specifically, an autoregressive model was assumed to capture the dynamics of 

autocorrelation and a GARCH model was assumed in order to model the 
heteroskedasticity in the OLS residuals. Data supported an AR(2) model and a 
GARCH(1,1) model respectively. 

 
Thus, the estimation framework is the following: 
 
 
 
                                         ( ) tttt VbTF ε+= exp                                            (6.6)                               
 
                                      tttt v++= −− 2211 ερερε                                          (6.7) 

                                                                
                                                                              (6.8)                              2

11
2

110
2

−− ++= ttt σβεαασ
 
 

 The first equation is our basic regression, the second is the AR(2) model of the 
residuals and the last equation is the GARCH (1,1) model where σt

2 is the conditional 
variance of the residuals εt, α0, α1, β1  0 and α≥ 1 + β1 < 1. OLS residuals are 

                                                 
31 The half-life is a concept from physics and is calculated as 12*ln(2)/  in months (see Guo 
[1996]) 
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computed from equation (5.4) and are further modelled through equations (5.5) and 
(5.6) so that the problem of non – spherical disturbances may be overcome and the 

estimated value  become trustworthy.  
∧

b
 
 The estimation procedure came up with the following results: 
 
 
 

Table 6.3: Calibration results in Benchmark model 
Parameters Estimated values t - stastistic 

∧

b  0,699 16,709 
(***) 

1ρ̂  0,695 8,831 
(***) 

2ρ̂  0,182 2,34 
(***) 

0α̂  6,183 3,01 
(***) 

1α̂  0,241 4,142 
(***) 

1β̂  0,549 5,90 
(***) 

R-squared 0,934  
Akaike info criterion 6,12  
Durbin-Watson statistic 1,98  
*** indicates statistical significance at 5% level 
 
 
 Thus, the estimated parameter of b is 0,699. This is the value of the volatility 
drift parameter under the risk neutral objective measure. The values of the other 
estimated parameters are normal and the ones of the GARCH process satisfy the 
stability property of the model as 1α̂  +  = 0,79 < 1. 1β̂

 
 

3. Pricing performance of the two models 
 

 
 Given the estimation output in each model we computed model prices of 
volatility futures regarding the other three maturity series and we calculated each 
model’s pricing bias. The following table and figure summarize the pricing 
performance of the two models: 
 
 

Table 6.4 Average Absolute Percentage  Pricing Bias (AAPPB) 
Maturity Series Grűnbichler-Longstaff 

model 
Benchmark model 

Second shortest 10,16% 6,69% 
Third shortest 11,04% 10,94% 
Fourth shortest 11,90% 20,33% 
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Figure 6.3 Pricing biases of the two models 
 

 
We observe that the pricing bias is significant in both models and in all 

maturity series. The pattern for the Grűnbichler-Longstaff model is more balanced as 
the average absolute percentage pricing bias is around 11%. On the other hand, the 
respective figure for the Benchmark model exhibits an upward trend as it grows from 
6,69% in the second shortest maturity series to 20,33% in the fourth shortest series. 
Comparing the results between the two models yields a mixed picture. The 
Grűnbichler-Longstaff model performs worse than the Benchmark model in the 
second shortest maturity series but has substantially smaller pricing bias in the fourth 
series. In the third maturity series the figure is roughly the same for the two models, 
with the Benchmark model performing slightly better (by 1%). 

 
Thus, contrary to the belief that a more sophisticated assumption about the 

evolution of the underlying asset yields a more accurate pricing formula, the results of 
our study support the opinion “simpler is better”. Although Geometric Brownian 
Motion is considered as a relative simplified assumption for the dynamics of volatility 
because it does not account for volatility clustering and mean reversion like the Mean 
Reverting Square Root Process does, the Benchmark model is apparent to price 
volatility futures better, at least in the first two maturity series.. 

 
In the standard derivatives literature, mainly options literature, an analogous 

empirical result is documented by Bakshi, Cao and Chen (1997) and Dumas, Fleming 
and Whaley (1998). The former authors in a comparison of various schemes from 
three perspectives (misspecification, pricing and hedging error) find that models that 
incorporate stochastic interest rates and jumps in the underlying asset’s returns do not 
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significantly improve the performance of the Black-Scholes model and a stochastic 
volatility model like Hull & White’s (1987) or Heston’s (1993) respectively. Dumas, 
Fleming and Whaley examine the predictive and hedging performance of the 
deterministic volatility function option valuation model of Derman-Kani (1994), 
Dupire(1994) and Rubinstein (1994). They document that the latter is not better than 
an ad hoc procedure that merely smoothes Black-Scholes implied volatilities across 
prices and time to expiration. 

 
On the other hand, Daouk and Guo (2003) in a Monte Carlo study of 

Grűnbichler-Longstaff model regarding volatility options find a negative pricing 
bias32  while an alternative valuation model stemming from a more sophisticated 
process for volatility fits the data better. They state that the MRSRP fails to account 
for volatility asymmetry and for regime switching shifts – other properties of 
volatility that are also empirically documented. Hence, they support that research 
should turn to a more realistic, though more complicated, assumption about the data 
generating process of the underlying asset. Which direction is right is yet to be 
determined by additional tests that would possibly account for other volatility models 
as well. 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
32 Using the metric of Daouk & Guo, which accounts for the sign of the pricing bias, we also 
document a negative average pricing bias in the GL model: -1,03%, -3,61% and -7,51% for 
the three series respectively. 
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Section 7 
 
 

Value at Risk Study 
 
 

A. Methodology
 

In this part of our work we intend to test the two valuation models of volatility 
futures and the related volatility processes within a value at risk study. More specific 
we are interested in the back testing results of a VaR model regarding a position in 
VIX Index and in a volatility futures contract, in order to see under which model the 
VaR measure is more effective as a risk management tool as well as a measure 
accepted by regulators. The approach we will follow in order to calculate the VaR 
figures is Monte Carlo Simulation and as far as the back testing is concerned we will 
implement the Basle Traffic Light Approach and the Kupiec Proportion of Failures 
test. 

 
We will simulate daily prices for the VIX implied volatility index for the 

period of 29 March 2004 to 17 June 2005 and calculate first the daily VaR of the 
index. Then with these prices as inputs and given the estimates of the formula’s 
unknown parameters from the calibration procedure we will compute (simulated) 
volatility future prices so as to estimate the VaR of this position. The number of 
simulations per day will be 10000 and for each day the simulated profit and loss 
distribution of both positions will be derived and the 1 day VaR will be calculated for 
a 99% and a 95% confidence level. The study will regard the first three maturity 
series of volatility futures we created to examine the pricing performance (the fourth 
maturity series will not be considered because it does not contain adequate 
observations for back testing procedure). We will conduct the value at risk study 
separate for each series and for both pricing models, the Grűnbichler-Longstaff (GL) 
and the Benchmark model. We choose the same sample period and the same data in 
both the examination of the pricing performance and the value at risk study so that a 
direct comparison may be made between the pattern of pricing bias and the one of 
VaR figure per series. 

 
In order to simulate prices for VIX we will use the respective volatility 

process for each model: the Mean Reverting Square Root Process (MRSRP) for the 
GL model and the Geometric Brownian Motion Process (GBMP) for the Benchmark 
model. Both processes are under the objective probability measure: 

 
                                    ( ) tttt dWVdtVkdV σµ +−=                                   (7.1)                               

 
                                               ttt dWvVdV =                                                  (7.2)                              
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(7.2) is a drift less GBMP as in the typical value at risk framework the drift 

parameter – the expected rate of return is assumed to be zero, at least for daily VaR. 
 
 
This part of the procedure requires as a first step the estimation of the 

parameters in each process; k, µ and σ in the MRSRP and v in the GBMP. 
 

Regarding the first process (4.13) the estimation procedure we will follow to 
get values for the speed of mean reversion k, the long run mean µ and the volatility σ 
of the VIX index, is the Parametric Method of Moments. We prefer to follow a 
parametric estimation method since it is the most efficient as it exploits fully the 
information that data provide. For this reason parametric methods are more 
demanding as well as they require that the density function of the probability model 
that generates the data is known. The valuation framework we have meets this 
requirement; under MRSRP the marginal and conditional density of volatility is the 
gamma and the non central chi square respectively. 

 
Ideally, a maximum likelihood method would be applied in the conditional 

density as it is in theory the most efficient estimation method. Unfortunately the 
complexity of the conditional density formula did not allow us to conduct this 
method. Thus we will apply the parametric method of moments in the marginal 
density which is the asymptotical limit of the conditional one. Therefore, any 
estimation strategy or specification test that exploits the conditional density naturally 
nests the ones that rely on the marginal density. The difficulty in applying the 
maximum likelihood method in the non central chi square distribution is documented 
from statistics (see e.g. Johnson & Kotz [1970] and F.Lopez-Blazaar [2000]) and 
from the interest rate literature regarding empirical tests of the Cox, Ingersoll and 
Ross model of the short rate as a very small part of the related literature chooses 
maximum likelihood as the estimation method. 

 
The Parametric Method of Moments (PMM) was developed in 1895 by K. 

Pearson in the context of descriptive statistics. The original method was proposed as 
both a specification and an estimation method but was later adapted as just an 
estimation method in modern statistical inference. The idea behind the method is, 
given a probability model and the respective density function, to match the population 
or theoretical moments, which are a function of the unknown parameters, with the 
corresponding sample moments and solve the resulting system of equations for the 
unknown parameters. 
 

PMM should not be confused neither with the moment matching principle, 
where distribution moments are matched with sample moments and no system is 
solved for unknown parameters, nor with the Generalized Method of Moments 
(GMM). The latter lies in the same spirit but it exploits no distributional assumption 
and is thus categorized as a semi parametric method – a less efficient method in 
compared to PMM. 
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In our case the unknown parameters k, 
k
a

=µ  and σ appear in the formulae of 

the mean, the variance and the first order serial correlation of the marginal Gamma 
function: 
 

                                                 [ ]
k
aVE t =                                                       (7.3)                              

                                              [ ] 2

2

2k
aVVar t
σ

=                                                  (7.4)                              

  
                                            )exp()1( tk∆−=ρ                                               (7.5)                              

where ∆t = 1/252 since the sample of VIX is obtained with a daily frequency 
 
By obtaining estimates of these three moments from the sample period from 1 

January 2003 to 25 March 2004 we will solve the system of equations (7.3) to (7.5) 
for a, k and σ. 

 
 
The next step is to simulate 10000 VIX values per day. This can be done via 

the discretized MRSRP:  
 
                             ( ) tVtVkVV ttttt ∆+∆−+=∆+ εσµ                              (7.6)                              

 
or via the discretized analytic solution of the process: 
 
                        ( ) tVeeVeV t

tktk
t

tk
tt ∆++−= ∆−∆−∆−

∆+ εσµ 21                      (7.7)                              
 
where ε~N(0,1) is the random number generator. 
 
 
  
 Regarding the Geometric Brownian Motion Process the only parameter to be 
estimated is v, the volatility of VIX per unit of time: 
  
                                                 252σ=v                                                    (7.8)                               
where σ is the standard deviation of the daily log returns of VIX. 
 
 
 
 A historical moving average of 100 and 300 days will be used to estimate the 
variance σ2. We believe this size is adequate for a one day forecasting horizon neither 
it goes too back in the past and includes observations whose size is far different from 
the current period.33 The Moving Average (MA) estimator is: 
                                                 
33 An improvement over the moving average estimator is the Exponentially Weighted Moving 
Average (EWMA) model where the weights given in each observation are not equal as in the 
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where m = 100 and 300 in our case and ⎟⎟
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u  is the log return of VIX. 

Thus, σ in (7.8) will be the square root of (7.9) on each day. 
 
 
 Given the estimate of v we will simulate 10000 VIX values per day via the 
discretized analytic solution of the process: 
 

                                  ⎥
⎦

⎤
⎢
⎣

⎡
∆+∆−=∆+ tvtvVV ttt ε

2
exp

2

                               (7.10)                               

 
where ε~N(0,1) is the random number generator. 
 
 In both (7.7) and (7.10) ∆t is chosen to be 0,00004 so that each day is 

partitioned in 100 steps. More specific 
n

tTt −
=∆  and in our case T-t is one day, thus 

1/252 = 0,004 on an annual basis and n =100. The final (100th) step is considered to 
represent the group of 10000 simulated values per day. 
 

The simulation procedure will be conducted for each day in the period 29 
March 2004 to 17 June 2005 which corresponds to a sample of 307 days (at least for 
VIX and the shortest maturity series of volatility futures). After the VaR figure is 
obtained we will compare the realized one day losses with this figure and count the 
number of exceptions in order to implement the back testing. 
 
 
 
B. Results 
 
 The results34 of the back testing procedure are summarized in the following 
table: 
 

                                                                                                                                            
moving average rather they decrease exponentially as we move back through time. Also an 
alternative estimator would be the GARCH(p,q) estimator, in which the EWMA estimator 
nests as a special case. 
34 The VaR figures are in volatility units. That does not affect the validity of the results as we 
are interested in the comparison (and not in the absolute figure) between the real loss and the 
VaR estimate which gives the same result (exception or not) in a given day regardless if both 
these two numbers are in volatility units or dollars. Thus our study holds for any nominal 
amount behind the position. 
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Table 7.1: Back testing results for the Monte Carlo VaR model of VIX and of 
volatility futures maturity series 

VIX Ιndex MRSRP GBMP - MA 100 GBMP - MA 300 
99% VaR       
No. of exceptions (%) 3 (0,98%) 3 (0,98%) 4 (1,30%) 
        
Kupiec POF test 0,0016 0,0016 0,2598 
95% VaR       
No. of exceptions (%) 8 (2,61%) 10 (3,26%) 9 (2,93%) 
        
Kupiec POF test 4,4569* 2,2269 3,2272 

Shortest series 
Grűnbichler -
Longstaff Model 

Benchmark Model - 
MA 100 

Benchmark Model - 
MA 300 

99% VaR       
No. of exceptions (%) 65 (21,17%) 5 (1,63%) 4 (1,30%) 
        
Kupiec POF test 286,56817* 1,0299 0,2598 
95% VaR       
No. of exceptions (%) 79 (25,73%) 21 (6,84%) 16 (5,21%) 
        
Kupiec POF test 146,5852* 1,9733 0,0286 
Second shortest 
series 

Grűnbichler -
Longstaff Model 

Benchmark Model - 
MA 100 

Benchmark Model - 
MA 300 

99% VaR       
No. of exceptions (%) 78 (25,74%) 14 (4,62%) 15 (4,95%) 
        
Kupiec POF test 377,2988* 21,3200* 24,5287* 
95% VaR       
No. of exceptions (%) 81 (26,73%) 22 (7,26%) 24 (7,92%) 
        
Kupiec POF test 156,2502* 2,8782 4,6574* 

Third shortest series 
Grűnbichler -
Longstaff Model 

Benchmark Model - 
MA 100 

Benchmark Model - 
MA 300 

99% VaR       
No. of exceptions (%) 70 (25,55%) 51 (18,61%) 59 (21,53%) 
        
Kupiec POF test 337,4124* 210,8604* 262,2612* 
95% VaR       
No. of exceptions (%) 70 (26,73%) 64 (23,36%) 71 (25,91%) 
        
Kupiec POF test 128,9182* 107,1249* 132,6870* 
     

The critical value for Kupiec test is 3,841 indicating a 95% confidence level. (*) 
denotes a rejection of the VaR model. The back testing sample is consisted of 307 
observations in the VIX and in the shortest maturity series model and of 303 and 274 
observations in the other two series respectively. 
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Regarding the VaR model of a position in VIX Index both processes assumed 
for volatility yield good back test’s results, with the exception of the 95% VaR under 
the MRSRP  which was rejected by Kupiec test. In the 99% case the number of 
exceptions are almost the same among the two processes: 3 in the MC VaR under 
MRSRP, 3 in the MC VaR under GBMP with MA 100 and 4 with MA 300. 
According to the Basle Traffic Light Approach they all fall in the green BIS zone and 
are all accepted by the Kupiec test. The same picture is in the 95% case where the 
number of exceptions corresponds to an empirical size of  2,61%, 3,26% and 2,93% 
respectively versus the nominal size of 5%. Hence, both processes for the evolution of 
VIX perform similarly in the value at risk study, with the Geometric Brownian 
Motion Process exhibiting slightly more exceptions. 

 
In the case of a position in volatility futures the Mc VaR of the Grűnbichler-

Longstaff model is rejected in all maturity series and in both levels of confidence. In 
all circumstances the number of exceptions was big enough to correspond about to 
25% of the back testing sample – a number indicating that the multiplicative factor 
increases to 4 (red zone) and also a penalty would be added by the supervisor. When 
using the Benchmark model to calculate the VaR estimate of volatility futures the 
results are mixed. In the shortest maturity series the VaR model is accepted by both 
criteria. In the second shortest series the back test results are worse, mainly for the 
99% case where the number of exceptions is almost tripled. Kupiec POF test rejects 
all models apart from the 95% MA 100 model. In the third series the results are bad in 
all cases and resemble those of the Grűnbichler-Longstaff model’s. 

 
Thus, we observe that the pattern of the back testing performance of both 

models is analogous to that of the pricing performance. In both studies the 
performance of the Grűnbichler-Longstaff model is relative stable across maturities 
while the Benchmarks model’s performance deteriorates as the time to maturity 
increases and we move from the first to the last maturity series. 

 
The main reason for the surprisingly high number of exceptions and the 

resulting failure of VaR models is the presence of positive VaR figures among the 
sample – that is, the model projected a profit rather than a loss as it should. This is 
attributed to the bias of each model’s pricing formula which within a series is both 
positive and negative.35 More specific, in the sub period where the pricing bias was 
big and positive (negative) the simulated P&L distribution was positively (negatively) 
skewed and the corresponding VaR estimate was positive (negative). Hence, the 
pricing bias of each model affects greatly the performance of the respective VaR 
model. 
 

We conclude that as in the pricing performance examination the results are 
again mixed. Both valuation models and their respective volatility processes perform 
good regarding a position in VIX , but perform poorly in the case of a position in a 
volatility futures contract. The back testing indicates that the Monte Carlo VaR would 
be misleading a risk manager in the daily management of a bank’s position in these 

                                                 
35 That is way we chose the absolute average percentage pricing bias as a metric in the 
examination of the pricing performance; so as to avoid the canceling out among observations. 
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instruments; moreover the bank would be penalized by regulators as it would be 
obliged to tie excessive capital. Only the use of the Benchmark model to calculate 
volatility futures which are close to expiration would yield satisfactory results, 
especially when using a moving average of 300 days to calculate volatility of the 
underlying index. 

 
The following figures show the calculated 99% and 95% VaR and the realized 

profits and losses over the back testing sample for all positions: 
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99% VaR of volatility futures shortest series
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95% VaR of volatility futures shortest series
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99% VaR of volatility futures second shortest series
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95% VaR of volatility futures second shortest series
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99% VaR of volatility futures third shortest series
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95% VaR of volatility futures third shortest series
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Section 8 
 
 

Conclusions 
 

 We have examined empirically two valuation models of futures on volatility – 
an implied volatility index – and their respective processes of volatility. The first 
model is the Grűnbichler-Longstaff Model which assumes a Mean Reverting Square 
Root Process (MRSRP) for volatility and the second is a Benchmark Model which 
makes a more simplified assumption and under which volatility follows a Geometric 
Brownian Motion Process (GBMP). The examination included the assessment of their 
pricing performance and the verification of the accuracy of a value at risk measure 
regarding a position in both the underlying index and the volatility derivative. 
 
 The first procedure’s goal was to document which model exhibits the better 
data fit and so to verify which is the less misspecified. We calibrated each model in a 
specific sample (the shortest maturity series of vol. futures contracts) and calculated 
the average pricing bias in another sample (longer maturity series). The value at risk 
study was conducted via Monte Carlo Simulation. We simulated the VIX index 
according to the assumed process and derived 99% and 95% VaR estimates of a 
position in the index itself and a position in a volatility future contract, one for each 
maturity series. A back testing procedure consisting of the regulatory and the Kupiec 
proportion of failures test was employed in order to examine under which volatility 
futures model and under which volatility process the value at risk methodology is 
more effective. 
 
 The results of the two testing procedures are mixed and depend mainly on the 
respective sample, that is, the maturity series of the volatility futures contracts. In the 
shortest and second shortest maturity series the Benchmark model exhibits a better 
data fit and is also the only model that passes the back testing criteria, mainly in the 
first series. The Grűnbichler-Longstaff model has a lower pricing bias in the fourth 
shortest maturity series and its pricing performance is more stable throughout the 
sample but in the value at risk study fails to passes the back tests in all series. Also, 
the performance of the models had a common pattern among the two examinations-
the calibration procedure and the VaR methodology. Finally, the VaR model of a 
position in the VIX index is accurate whatever the process for volatility is assumed. 
 
 The documentation that the Benchmark model seems to have an overall better 
performance is important since it is an example in favour of the opinion that a more 
complex model with sophisticated assumptions is not necessary the one that it is most 
supported by the data. As far as the pricing behaviour is concerned, a simpler 
valuation framework yields better results also in the studies of Bakshi, Cao and Chen 
(1997) and Dumas, Fleming and Whaley (1998) which regard standard options. 
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In order to reach to solid conclusions and determine the direction of future 
research about volatility derivatives and stochastic volatility modeling, a number of 
additional tests and methodologies should be conducted. The value at risk 
methodology should be supplemented and compared to the results of a historical 
simulation or the variance-covariance approach. The latter can be implemented with 
various volatility estimators. Also, apart from the pricing performance the 
effectiveness of volatility futures as hedging instruments regarding volatility risk 
should be investigated. 
  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 54



 
 

References 
 

Andersen T. and Lund J., 1997. “Estimating Continuous Time Stochastic Volatility 
Models of the Short Term Interest Rate.” Journal of Econometrics 77, pp. 343-377. 
 
Angelidis T. and Benos A. 2004. “Value at Risk for Greek Stocks” 
 
Artzner P., F. Delbaen, J-M. Eber and Heath D. 1999. “Coherent Measures of 
Risk.” Mathematical Finance 9, pp. 203-228 
 
Basle Committee on Banking Supervision (i) 1996a. “Amendment to the Capital                             
Accord to Incorporate Market Risks” 
                                                                          (ii) 1996b. “Supervisory Framework for 
the use of Backtesting in Conjunction with the Internal Models Approach to Market 
Risk Capital Requirements.” 
 
Bakshi G., Cao C. and Chen Z. 1997. “Empirical Performance of Alternative Option 
Pricing Models.” Journal of Finance 52, pp. 2003-2049. 
 
Bates D. (i) 1996a. “Jumps and Stochastic Volatility: Exchange rate processes 
implicit in Deutschemark Options.” The Review of Financial Studies 9, pp. 69-108. 
 
                 (ii) 1996b. “Testing Option Pricing Models”, G.S. Maddala and C.R. Rao 
Handbook of Statistics vol 15: Statistical Methods in Finance, pp. 567-611. 
 
Black F. and Scholes M. 1973. “The Pricing of Options and Corporate Liabilities.” 
Journal of Political Economy 81, pp. 637-654. 
 
Boyle P. and Emanuel D. 1980. “Discretely Adjusted Option Hedges.” Journal of 
Financial Economics 8, pp. 259-282. 
 
Brandimarte P. 2002. “Numerical Methods in Finance. A MATLAB Based 
Introduction.” John Wiley & Sons 
 
Breeden D. 1979. “An Intertemporal Asset Pricing Model with Stochastic 
Consumption and Investment Opportunities.” Journal of Financial Economics 7, pp. 
265-296. 
 
Brenner M. and Galai D. (i) 1989. “New Financial Instruments for Hedging 
Changes in Volatility.” Financial Analysts Journal July-August, pp. 61-65. 
 
                                                  (ii) 1993. “Hedging Volatility in Foreign Currencies.” 
Journal of Derivatives 1, pp. 53-59. 
 
Brenner M., Ou E. and Zhang J. 2001. “Hedging Volatility Risk.” Working Paper, 
New York University, Stern School of Business. 
 
 

 55



 
 
Campel J., Lo A. and MacKinlay A. 1997. “The Econometrics of Financial 
Markets.” Princeton University Press, Princeton New Jersey. 
 
Canina L. and Figlewski S. 1993. “The Informational Content of Implied 
Volatiltiy.” The Review of Financial Studies 6, pp. 659-682. 
 
Carr P. and Madan D. 1998. “Towards a Theory of Volatility Trading.” in Jarrow R. 
(Ed.) Volatility. Risk Books, pp. 417-427. 
 
Carr P. and Lee R. 2003. “Robust Replication of Volatility Derivatives.”  
 
Cassidy C. and Gizycki M. 1997. “Measuring Traded Market Risk: Value at risk and 
Backtesting Techniques.”, Reserve Bank of Australia Working Paper 
 
Chan K., Karolyi A., Longstaff L. and Sanders. A. 1992. “An Empirical 
Comparison of Alternative Models of The Short Term Interest Rate.” Journal of 
Finance 47, pp. 1209-1227. 
 
Chernov M. and Ghysels E. 1999. “Estimation of Stochastic Volatility Models for 
the Purpose of Option Pricing.” Proceedings of the Sixth International Conference on 
Computational Finance, Leonard N. Stern School of Business. 
 
Christie A. 1982. “The Stochastic Behaviour of Common Stock Variances: Value, 
Leverage and Interest Rate Effects.” Journal of Financial Economics 10, pp. 407-432. 
 
Cox J., Ingersoll J. and Ross S. (i) 1985a. “An Intertemporal General Equilibrium 
Model of Asset Prices” Econometrica 53, pp. 363-384. 
 
                                                         (ii) 1985b. “A Theory of Term Structure of 
Interest Rates.” Econometrica 53, pp. 385-407. 
 
Daouk H. and J-Q Guo 2003. “Switching Asymmetric GARCH and Options on a 
Volatility Index.”, The Journal of Futures Markets 
 
Derman E. 1999. “Regimes of Volatility.” RISK April 1999, pp. 55-59. 
 
Detemple J. and Osakwe C. 2000. “The Valuation of Volatility Options.” European 
Finance Review 4, pp. 21-50. 
 
Dumas B., Fleming J. and Whaley R. 1998. “Implied Volatility Functions: 
Empirical Tests.” Journal of Finance 53, pp. 2059-2106. 
 
Figlewski S. (i) 1989. “Option Arbitrage in Imperfect Markets.” Journal of Finance 
44, pp. 1289-1311. 
 
                      (ii) 1997. “Forecasting Volatility.” Financial Markets, Institutions and 
Instruments 6, pp. 1-88. 
 

 56



 
 
Figlewski S. and Wang X. 2000. “Is the Leverage Effect a Leverage Effect?” 
Working Paper, New York University, Stern School of Business. 
 
Fink J. 2005. “Estimation of a Stochastic Volatility Model Using Pricing and 
Hedging Information. Working Paper James Madison University - College of 
Business. 
 
Fleming J. Ostidiek B. and Whaley R. 1995. “Predicting Stock Market Volatility: A 
New Measure.” Journal of Futures Markets 15, pp. 265-302. 
 
Galai D. 1983. “The Components of the Return from Hedging Options Against 
Stocks.” Journal of Business 56, pp. 45-54. 
 
Gallant A.R. and Tauchen G. 1996. “Which Moments to Match?” Econometric 
Theory 12, pp. 657-681. 
 
Gallant  A.R., Hsu C.T. and Tauchen G. 1999. “Using Daily Range Data to 
Callibrate Volatility Diffusions and Contract the Forward Integrated Variance.” The 
Review of Economics and Statistics 4, pp. 617-631. 
 
Garcia. R., Ghysels E. and Renault E. 2003. “The Econometrics of Option Prices.” 
Working Papers CIRANO. 
 
Greene W.H. 2003. “Econometric Analysis”. 4th edition, Prentice Hall International 
 
Grunbichler A. and Longstaff F. 1996. “Valuing Futures and Options on 
Volatility.” Journal of Banking and Finance 54, pp. 1465-1499. 
 
Guo D. 1998. “The Risk Premium of Volatility Implicit in Currency Options.” 
Journal of Business and Economics Statistics 16, pp. 498-507. 
 
Haas M. 2001 “New Methods in Backtesting” Financial  Engineering Research 
Center ,Bonn 
 
Heston S. 1993. “A Closed-Form Solution for Options with Stochastic Volatility with 
Applications to Bond and Currency Options.” The Review of Financial Studies 6, pp. 
327-343. 
 
Heston S. and Nandi S. 2000. “Derivatives on Volatility: Some simple solutions 
based on observables.” Working Paper 2000-20, Federal Reserve Bank of Atlanta. 
 
Hull J.C. 2003. “Options, Futures and Other Derivatives.” 5th edition, Prentice Hall 
International. 
 
Hull J.C. and White A. 1987. “The Pricing of Options on Assets with Stochastic 
Volatility.” Journal of Finance 42, pp. 281-300. 
 
 

 57



 
 
James J. and Webber N. 2000. “Interest Rate Modelling: Financial Engineering.” 
John Wiley and Sons. 
 
Jiang G. and Oomen R. 2001. “Hedging Derivatives Risks: A Simulation Study.” 
Working Paper, University of Warwick. 
 
Johnson H. and Shanno D. 1987. “Option Pricing When the Variance is Changing.” 
Journal of Financial and Quantitative Analysis 22, pp. 143-151. 
 
Johnson N.L. and S. Kotz 1970. “Continuous Univariate Distributions”, vol.2, John 
Wiley. 
 
Kupiec. P  1995. “Techniques for verifying the accuracy of risk measurement 
models”, Journal of Derivatives 3, pp. 73-84 
 
Lambadiaris G, L. Papadopoulou, G. Skiadopoulos and Zoulis Y. 2003. “VAR: 
History or Simulation?” Risk 16, pp. 122-127 
 
Locarek-Junge and Roth. 1998. “Hedging Vega Risk with the VOLAX Futures: 
Some First Results.” 
 
Lopez-Blazquez F. 2000. “Unbiased Estimation in the Non-central Chi-Square 
Distribution”, Journal of Multivariate Analysis 75, pp. 1-12 
 
Nandi S. 1998. “How important is the correlation between returns and volatility in a 
stochastic volatility model? Evidence from pricing and hedging in the S&P 500 index 
options market.” Journal of Banking and Finance 22, pp. 589-610. 
 
Neftci S. 2000. “An Introduction to the Mathematics of Financial Derivatives.” 2nd 
edition, Academic Press.  
 
Psychoyios D., Skiadopoulos G. and Alexakis P. 2003. “A Review of Stochastic 
Volatility Processes: Properties and Implications.” Journal of Risk Finance 4, pp. 43-
60. 
 
Psychoyios D. and Skiadopoulos G. 2004. “Volatility Options: Hedging 
Effectiveness, Pricing and Model Error.” Working Paper. 
 
RiskMetrics 1996. “Technical Document” 
 
Skiadopoulos G. 2004. “The Greek Implied Volatility Index: Construction and 
Properties.” Applied Financial Economics forthcoming. 
 
Skintzi V., G. Skiadopoulos and Refenes A-P. 2003. “The Effect of Mis-Estimating 
Correlation on Value at Risk” 
 
Spanos A. 1999. “Probability Theory and Statistical Inference: Econometric 
Modeling with Observational Data.”, Cambridge University Press 

 58



 
Stein E. and Stein J. 1991. “Stock Price Distributions with Stochastic Volatility: An 
Analytic Approach.” The Review of Financial Studies 4, pp. 727-752. 
 
Wagner N. and Szimayer A. 2000. “Implied Stock Market Volatility measured by 
VIX and VDAX. Working Paper 
 
Whaley R. (i) 1993. “Derivatives on Market Volatility: Hedging Tools Long 
Overdue.” Journal of Derivatives 1, pp. 71-84. 
                       
                      (ii) 1998. “Commentary on “Hedging Vega Risk with the VOLAX 
Futures: Some First Results.”. 11th Annual CBT European Futures Research 
Symposium Proceedings, Marsheille, France, September. 
 
                      (iii) 2000. “The Investor Fear Gauge.” Journal of Portfolio 
Management. 26, pp. 12-17. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 59



 
 
 
                       
 
 
 
 
 

 
 

 

 60



 
 

Appendix I 
 
 

VIX Calculation 
 

 
The generalized formula of VIX is VIX = σ x 100  
 

 where σ is the weighted implied volatility as a result of interpolation between 
the implied volatilities of a series from options. For every option, σ is the square root 
of 
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T is time to expiration in minutes 
 
F is forward index level derived from index option prices 
 

iK  is strike price for the ith out-of-the money option; a call if Ki>F and a put if         
Ki<F  

 
∆Ki is the interval between strike prices – half the distance between the strike on 

either side of Ki :    ∆Ki = 
2

11 −+ − ii KK
 

 
K0 is the first strike price below the forward index level F 
 
R is the risk-free interest rate to expiration 
 
Q(Ki) is midpoint of the bid-ask spread for each option with strike Ki
 
 
 The options used are put and call options in the two nearest-term expiration 
months in order to bracket a 30-day calendar period. However, with 8 days left to 
expiration, the new VIX “rolls” to the second and third contract months in order to 
minimize pricing anomalies that might occur close to expiration. 
 
 
 
 The time of the VIX calculation is assumed to be 8:30 a.m. (Chicago time). 
The new VIX calculation measures the time to expiration T in minutes rather than 
days in order to replicate the precision that is commonly used by professional option 
and volatility traders. The time to expiration is given by the following expression: 



 
              
 
 

T = {MCurrent day + MSettlement day + MOther days}/Minutes in a year 
 
where MCurrent day    is the number of minutes remaining until midnight of the current 

day 
            MSettlement day is the number of minutes from midnight until 8:30 a.m. on SPX  

settlement day 
            MOther days    is the total number of minutes in the days between current day and 

settlement day 
 
 
The basic steps in the calculation of (1) are the following: 
 
 
Step 1. Select the options to be used in the formula. For each contract month: 
 

• Determine the forward index level F, based on at-the-money option prices. 
The at-the-money strike is the strike price at which the difference between the 
call and put prices is smallest. The formula used to calculate the forward index 
level is F = Strike price + eRT x (Call price – Put price). 

• Determine K0, the strike price immediately bellow the forward index level F. 
• Sort all of the options in ascending order by strike price. Select call options 

that have strike prices greater than K0 and a non-zero bid price. After 
encountering two consecutive calls with a bid price of zero, do not select any 
other calls. Next, select put options that have strike prices less than K0 and a 
non-zero bid price. After encountering two consecutive puts with a bid price 
of zero, do not select any other puts. Select both the put and a call with strike 
price K0. Then average the quoted bid-ask prices for each option. 
Notice that two options are selected at K0, while a single option is used for 
every other strike price. This is done to center the strip of options around K0. 
in order to avoid double counting the put and call prices are averaged tom 
arrive at a single value. 
 
 

Step 2. Calculate implied volatility for both near term and next term options by 
applying the formula (1). 

 The new VIX is an amalgam of the information reflected in prices of all of the 
options used. The contribution of a single option to the new VIX value is 
proportional to the price of that option and inversely proportional to the 
option’s strike price. 

 
 
Step 3. Interpolate between the σ2

ιs to arrive at a single value with a constant maturity 
of 30 days to expiration. Then take the square root of that value and multiply 
by 100 to get VIX. If σ2

1 and σ2
2 are the values for the near term and next term 

options respectively, then the interpolation formula is 
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where NT1 = number of minutes to expiration of the near term options 
           NT2 = number of minutes to expiration of the next term options 
           N30 = number of minutes in 30 days (30 x 1440 = 43200) 
           N365 = number of minutes in a 365-day year (365 x 1440 = 525600) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Appendix II 
 
 

The Basle Traffic Light Approach 
 
 

Table1: The Basle Penalty Zones: 99% VaR over a year (250 observations) 
Zone Number of Exceptions k 
Green 0 to 4 3 
Yellow 5 3,4 

 6 3,5 
 7 3,65 
 8 3,75 
 9 3,85 

Red 10 4 
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