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1. Introduction 
 

Nowadays, the world’s major central banks have been largely successful at 
bringing inflation under control. Although it is premature to suggest that inflation is no 
longer an issue of great concern, it is quite conceivable that the next battles facing central 
bankers will lie on a different front. One development that has already concentrated the 
minds of policymakers is an apparent increase in financial instability, of which one 
important dimension is increased volatility of asset prices. With large movements in asset 
prices, in the US and Japan apparently coinciding with large swings in growth rates, 
many commentators have recently called for monetary policy makers to respond to asset 
price volatility. Moreover, the recent financial crises and associated output declines 
experienced by a number of emerging market economies have raised anew the issue of 
the links between financial and real variables, notably between stock market performance 
and economic activity.  Furthermore, increasing capitalization in developed economies 
has attracted the attention of policymakers and economists with respect to the effects of 
unanticipated changes in stock returns on growth.  

Hence, the main purpose of this paper is to investigate the relationship between 
asset price volatility and output growth volatility. We are interested in establishing a 
statistically significant relationship between asset returns volatility, especially stock 
returns, and the volatility of the economic activity in both developed and emerging 
economies. The examination of the conditional variance dynamics between stock markets 
and real economic activity and in particular the volatility transmission mechanism from 
stock markets to output growth is our ultimate goal. To this direction, two different 
causality-in-variance tests are used. First, we carry out a methodology widely used in the 
literature for detecting volatility spillovers that utilizes multivariate GARCH 
parameterizations. Then, the method developed by Cheung and Ng (1996) is utilized. We 
re-examine the causality in variance by this test, which provides insight into the dynamics 
of stock prices and can be used to construct better econometric models.  

  

 

2. Bibliography  
 
2.1) Asset prices and output growth 

Firstly, we shed light to the relationship between asset prices and output growth, 
without taking volatilities in mind. As Paulo Mauro proved in his paper in 2002, the 
correlation between output growth and lagged stock returns is significant in emerging 
market economies as well as in advanced economies. Therefore, asset prices seem to 
contain valuable information to forecast output. The strength of the correlation is 
significantly related to a number of stock market characteristics, such as a high market 
capitalization to GDP ratio and, less robustly, English legal origin and the number of 
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listed domestic companies and initial public offerings. Supportive to Mauro’s results is 
the paper by Peter Christoffersen and Torsten Slok. They argued that it is a well-known 
phenomenon that asset prices in developed economies contain information about future 
developments in the real economy. This is also the case in transition economies. It has 
been shown in their paper that lagged values of asset prices contain significant signals of 
changes in real economic activity, in particular industrial production.  

 

2.2) Volatility definition and regularities 
 

Uncertainty and risk are crucial issues in economic theory and finance. The 
measure of an asset's risk is its volatility, which is defined as the conditional variance of 
its return. Empirical studies as early as in Mandelbrot (1963) have demonstrated that the 
variance of stock returns is time varying and persistent. However, until two decades ago 
econometric models focused mainly on the modeling of the conditional first moments. 
The increasing importance of risk management and the need for accurate volatility 
forecasts led to the development of models for the time-varying second-order moments of 
financial time series in recent years. 

Dimitrios Psychoyios, George Skiadopoulos, and Panayotis Alexakis carried out a 
review on the bibliography about stochastic volatility processes, their properties and 
implications in 2003. In that paper, they presented the main empirical properties of 
volatility. First, they mentioned that the probability that extreme events will occur is 
greater than the corresponding probability calculated under the normal distribution (fat 
tails). In addition to that, volatility oscillates around a constant value (Mean reverse in 
volatility) and there is a negative relationship between volatility and price changes 
(leverage effect). The clustering effect, dividend effect, overnight and weekend effect are 
some other empirical regularities of volatility. Moreover, there is a relationship between 
volatility and the information arrival or trading volume. Due to the globalization of equity 
markets news affecting equity prices in one market may also change the fundamentals in 
distant markets (volatility “spillovers”).   

There exist several methods for volatility modeling, most of which aim at 
capturing the above-mentioned characteristics. The key distinguishing features are the 
functional form for the conditional moments (mean and variance) and the variables of the 
information set (ℑt-h), along with any additional distributional assumptions. The models 
included in this class are the discrete time models, most important of which are the 
ARCH (AutoRegressive Conditional Heteroscedasticity) models, the GARCH 
(Generalized ARCH) models and the stochastic volatility models. The main continuous 
time models are the   continuous sample path diffusions and the jump diffusions & levy 
driven processes.  

  Financial market volatility is central to the theory and practice of asset pricing, 
asset allocation and risk management. Although most textbook models assume volatilities 
and correlations to be constant, it is widely recognized among both finance academics 
and practitioners that they vary importantly over time. The volatility of asset prices tends 
to change stochastically over time. This has important implications for option pricing and 
risk management.  
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One distinctive features of the stochastic process of stock returns that are often 
mentioned in the literature is time-varying volatility. It suggests that the unconditional 
distribution of an asset price exhibits “fat tails and high peak”, though the price is 
conditionally normal. The most well known models that characterize this feature are the 
Autoregressive Conditional Heteroscedasticity (ARCH) model by Engle and the more 
generalized version of it by Bollerslev.   

The ARCH family is a sophisticated group of time series models. The ARCH (q) 
model relates time t volatility to q past squared returns, with no predetermined 
relationships between any of the q dependencies. GARCH models have been very 
popular and effective for modeling the volatility dynamics in many asset markets. In 
GARCH (p, q) additional dependencies are permitted on p lags of past estimated 
volatility.  

The general structure of an ARCH model is the following: 
Let rt be the log return of an asset at time index t and let us consider the 

conditional mean and conditional variance of rt given the information set ℑt-1 : 
µt = E( rt | ℑt-1 )  and σt

2 = Var (rt | ℑt-1) = E [(rt - µt)2 |ℑt-1 ] 
 
Assuming that rt follows a time series model such as stationary ARMA (p, q) we get the 
model:   

 rt = µt + εt ,    µt = φ0 + ∑
=

p

i 1
i-ti rφ  - ∑

=

q

i 1
i-tiεθ , where rt, p, q are non-negative integers.  

Therefore, σt
2 = Var (rt | ℑt-1) = Var (εt | ℑt-1). The manner in which σt

2 evolves over time 
distinguishes one volatility model from another.  

ARCH supposes that the conditional variance, σt
2, is a linear function of past 

squared values of the process εt, the mean-corrected asset return.  

εt = σt ηt,    σt
2 = α0 + α1 εt-1

2+ … + αq εt-q
2   = α0 + ∑

=

q

1i

2
i-tiεα  = α0 + α(L) εt

2  

with  α0>0 and αi≥ 0 for i>0 
Where {ηt} is a sequence of IID random variables with mean zero and variance one. 
Under the ARCH model, large past shocks tend to be followed by other large shocks, 
allowing for the modeling of the so called "volatility clustering" in returns. 

Bollerslev (1986) proposed an extension of this type of models, known as 
Generalized ARCH models. Using the same notation as before, a GARCH (p, q) is: 

εt = σt ηt,    σt
2 = α0 + ∑

=

q

1i

2
i-tiεα  +   ∑

=

p

1j

2
j-tjσβ  = α0 + α(L) εt

2 + β(L) σt
2 

 

with  α0>0, αi ≥ 0, βj≥ 0 and ∑
=

+
q)max(p,

1i
ii )β(α <1. 

 

2.3) Asset price volatility 
Financial market volatility is an important input for investment, option pricing 

and financial market regulation. Forecasting financial market volatility is an important 
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activity that has occupied the attention of academics and practitioners over the last 
decades since it does influence policy makers’ behavior and it is the key concern in 
financial risk management. Rosa Rodriguez, Fernando Restoy and J Ignacio Pena proved 
in 1998 that asset prices are probably too volatile to be explained by its economic 
fundamentals through the standard present value relationships. It has been documented 
that the variability of price movements is too large to be justified in terms of simple 
statistical representations of the efficient market hypothesis, given the relatively low 
variability of output. Many scientific papers try to explain the sources of financial 
volatility. Warren Bailey in his paper in 1998 studied the impact of money supply 
releases on volatility by documenting the relationship between announced money 
surprises and implied standard deviations of stock, treasury bonds, gold and foreign 
currency prices and has confirmed that monetary policy and money supply releases affect 
the volatility of asset prices and, ultimately, the volatility of the entire economy.  

Moreover, openness to international capital flows and the international integration 
of financial markets have been blamed for the excess volatility of financial assets. Helmut 
Wagner and Wolfram Berger in 2004 claimed that openness to international capital flows 
and the international integration of financial markets do not only have their benefits but 
also seem to make countries susceptible to rapid capital flow reversals. This may permit 
financial and ‘balance of payments’ crises to develop and impair real economic activity 
by requiring large output adjustments. Consequently, the increased volatility of 
international capital flows leads to a higher volatility of asset prices. Furthermore, Lucy 
F. Ackert, Bryan K. Church and Ann B Gillette in their paper published in 2001 proved 
that price volatility and profits dispersion are significantly higher and allocation 
efficiencies significantly lower when highly uncertain information is released, as 
compared to markets with more reliable information or even those in which information 
is withheld.  
 

2.4) Output growth volatility and the Central’s Bank behavior 

 
As far as output growth volatility and economic activity is concerned, many 

academics have investigated in its potential sources and established statistically 
significant relationships. Olivier Blanchard and John Simon argued in their paper in 2001 
that the decrease in volatility of US output can be traced to a number of proximate 
causes, from a decrease in the volatility of government spending early on (monetary and 
fiscal policy), to a decrease in consumption and investment volatility throughout the 
period (financial markets), to a change in the sign of the correlation between inventory 
investment and sales (logistics) in the last decade. Furthermore, they proved that there is 
a strong relationship between both output volatility and the level of inflation, and 
between output volatility and inflation volatility. Lower output volatility suggests lower 
risk, and thus changes in risk premiums, in precautionary saving, and so on. Interestingly, 
however, the decrease in output volatility has not been reflected in a parallel decrease in 
asset price volatility. This is not necessarily a puzzle. If we think of the better use of 
monetary policy as one of the factors behind the decrease in output volatility, stronger 
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stabilization efforts may require sharper movements in interest rates, and thus potentially 
stronger movements in asset prices.  

An interesting approach was initiated in Christis Hassapis and Sarantis Kalyvitis’ 
paper, which was published in Journal of Policy Modeling in 2001. They proved that in 
developed economies, output does not react significantly to unanticipated shocks in the 
domestic stock market. Domestic stock market fluctuations do not appear to have been a 
prominent source of output volatility. A notable exception is US, where these fluctuations 
appear to systematically account for a fraction of excess output volatility. Output 
volatility in major industrialized economies appears to be exposed to financial 
developments abroad. Empirical results in their paper from two-country VAR and a 
global (G-7) VAR suggest that part of excess variability in output growth can be 
attributed to disturbances in foreign (US) real returns.  

It has been shown that there is a negative correlation between the mean and the 
variance of output growth irrespective of the source of fluctuations. The model by Keith 
Blackburn and Alessandra Pelloni predicts a negative correlation between short- run 
(cyclical) volatility and long-run (secular) growth. In addition to these results, Garey 
Ramey and Valery Ramey have examined thoroughly the relationship between volatility 
and output growth and showed using a panel of 92 countries as well as a subset of OECD 
countries, that countries with higher volatility have lower mean output growth even after 
controlling for other country specific growth correlates. There is evidence in their 
research that countries with higher year-to-year volatility in growth rates tend to have 
systematically lower growth rates.  

Given the role that asset prices play on the transmission mechanism, central banks 
have been often tempted to use them as targets of monetary policy. Fluctuations of the 
stock market, which are influenced by monetary policy, have important impacts on the 
aggregate economy through effects on investment, firm balance-sheet effects, household 
wealth effects and household liquidity effects. Volatile monetary growth generates 
volatile interest rates, which raise the riskness of bond holdings. This, in turn, raises the 
demand for money and the level of interest rates, which impedes corporate investment 
and lowers the level of real economic activity. There is strong evidence in the literature of 
significant linkage from either monetary or interest rate volatility to the level of real 
economic performance. Higher money growth volatility is transmitted directly to higher 
real output volatility and is associated with lower financial asset price and inflation 
volatility.  

We conclude this brief review of the literature related to asset price and output 
growth volatility by raising the question of the Central Bank’s appropriate response. 
While financial volatility in part reflects the nature of asset prices, driven primarily by 
revisions in expectations of future returns, large movements raise questions about the 
appropriate response of monetary policy. Frank Smets in 1997 claimed that the basic 
principle is simple: the central bank’s response to unexplained changes in asset prices 
should depend on how these changes affect the inflation outlook, which in turn depends 
on two factors: the role of asset price in the transmission mechanism and the typical 
information content of innovations in asset prices. Finally, we should mention the paper 
“Monetary Policy and Asset Price Volatility” written by Ben Bernanke and Mark Gertler 
and published by Economic Review in 1999. They argued that fluctuations in asset prices 
should be a concern to policymakers if two conditions are met. The first is that ‘non-



The relationship between volatility of asset prices and volatility of output growth 

 8

fundamental’ factors sometimes underlie asset market volatility.(poor regulatory practice 
and imperfect rationality on the part of investors ‘market psychology’ ) .The second is 
that changes in asset prices unrelated to fundamental factors have potentially significant 
impacts on the rest of the economy.(Via the effect on household wealth, ‘balance-sheet 
channel-financial accelerator’). If these two conditions are satisfied, then asset price 
volatility becomes, to some degree, an independent source of economic instability, of 
which policymakers should take account. 
 

2.5) Asset price volatility, output growth volatility and volatility 
spillovers 
 

 Volatility is often related to the rate of information f1ow (e.g., Ross, 
1989). If information comes in clusters, asset returns or prices may exhibit volatility even 
if the market perfectly and instantaneously adjusts to the news. Therefore, study on 
volatility spillover can help understand how information is transmitted across assets and 
markets. Alternatively, the existence of volatility spillover may be consistent with the 
market dynamics which exhibits volatility persistence due to private information or 
heterogeneous beliefs (e.g., Admati and P1eiderer, 1988; Kyle, 1985; Shalen, 1993). 
Here, whether volatilities are correlated across markets is important in examining the 
speed of market adjustment to new information. It is also hypothesized that the changes 
in market volatility are related to the volatilities of macroeconomic variables. In present 
value models such as those of Shiller (1981a, b), for example, changes in the volatility of 
either future cash 1ows or discount rates cause changes in the volatility of stock returns. 
Such a macroeconomic hypothesis can be checked by testing volatility spillover. 

Hu John Wei-Shan, Mei-Yuan Chen b, Robert C.W. Fok, Bwo-Nung Huang in 
their paper published in 1997 (“Causality in volatility and volatility spillover effects 
between US, Japan and four equity markets in the South China Growth Triangular”, 
Journal of International Financial Markets Institutions and Money 7) examined the 
spillover effects of volatility among two developed markets US and Japan and four 
emerging markets in the South China Growth Triangular using Chueng and Ng’s 
causality-in-variance test. They arrived at the conclusion that Japanese stock market 
affects the US stock market and there is a feedback relationship between the Hong Kong 
and US stock market. Moreover, markets of the SCGT are contemporaneously correlated 
with the return volatility of the US market and econometric models constructed according 
to the results of causality-in variance tests have greater explanatory power than the 
conventional GARCH(1,l) model. Finally, they proved that using the return volatility of 
foreign exchange as a proxy for informational arrival can explain excess kurtosis of a 
stock return series, especially for the less open emerging market and that geographic 
proximity and economic ties do not necessarily lead to a strong relationship in volatility 
across markets. 

Dušan Isakov and Christophe Pérignon in their paper “On the dynamic 
interdependence of international stock markets: A Swiss perspective” in April 2000 
studied the links existing between the Swiss stock market and the five largest stock 
markets in the world (USA, Japan, United Kingdom, Germany and France) in terms of 
return and volatility. Firstly, they found that conditional heteroskedasticity was present in 
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every market and that conditional volatility responded asymmetrically to past shocks. By 
implementing a bivariate GARCH (1, 1) they proved that that the US market had the 
strongest influence on the Swiss market in terms of returns and volatility. Links with 
other markets in terms of returns were relatively weak. The German and British markets 
strongly influenced the volatility of the Swiss market. On the other hand, they found that 
the Swiss market had a statistically significant but economically weak influence on the 
foreign markets. 

Another interesting study of volatility spillovers was carried out by Guglielmo 
Maria Caporale and Nicola Spagnolo. In their paper, published in June 2002, they 
investigated the real effects of financial crisis in 1997 in East Asian countries on the 
casual relationship between stock prices and output growth volatility. They used a 
bivariate GARCH (1, 1) model and tests for causality in variance were carried out for 
each model allowing for causality in one way direction at a time. They found positive and 
statistically significant volatility spillovers running from the stock markets to output 
growth in all six countries under examination. The East Asian crisis appears to have led 
to a sharp increase in the magnitude of the spillovers. They implemented their model in 
six countries Malaysia, Philippines, Thailand, Canada, U.S. and U.K. The result of a 
financial crisis is that the real economy becomes even more responsive to financial 
market turbulence, implying that under such circumstances policymakers should be even 
more concerned with the linkage between asset prices and output growth volatility.  
 
 

2.6) Tests for Volatility Spillovers- Causality in Variance 
 

Recently there has been increasing interest in the causation in conditional 
variance across various financial asset price movements. The study of causality in 
variance is of interest to both academics and practitioners because of its economic and 
statistical significance.  

Changes in variance are said to reflect the arrival of information and the extent to 
which the market evaluates and assimilates new information. Ross in his paper published 
in 1989 proves that in a no-arbitrage economy the variance of price changes is directly 
related to the rate of information flow to the market. Engel, Ito and Lin in 1990 attributed 
movements in variance to the time required by the market participants in processing new 
information or in policy coordination. Thus, the relationship between information flow 
and volatility gives an interesting perspective to interpret the causation in variance 
between a pair of economic time series.  

A methodology widely used in the literature for detecting volatility spillovers 
utilizes multivariate GARCH parameterizations. Theodossiou and Lee (1993), using a 
multivariate GARCH-M model, found that the US market was the major “exporter” of 
volatility.  

The multivariate GARCH model is used as the unrestricted model. Then, we set 
some restrictions in the unrestricted models testing the hypothesis of no causality in 
variance. For the hypothesis testing, we use the Likelihood Ratio: 
 
LR= -2 (lrestricted – lunrestricted)   ~ X (number of restrictions) 
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In 1996, Yin-Wong Cheung and Lillian K. Ng developed in their paper a new test 

for causality in variance. This test for causality-in-variance is an extension of Wiener-
Granger causality in mean, based on the cross-correlation function (CCF). It is a two-
stage procedure. The first stage involves the estimation of univariate time series models 
that allow for time variation in both conditional mean and conditional variance. In the 
second stage, the resulting series of squared residuals standardized by conditional 
variances are constructed. The cross-correlation function of these squared-standardized 
residuals is then used to test the null hypothesis of no causality in variance. This test is 
robust to distributional assumptions. This test will be implemented in this study as well 
and therefore we present the procedure followed by the writers in details.   

They set off by considering two stationary and ergodic time series, Xt and Yt. Let 
It, Jt be two information sets defined by It = {Xt-j, j ≥  0} and Jt= {Xt-j, Yt-j, j ≥  0}.Yt is 
said to cause Xt+1 in variance if: 
E {(Xt+1 – µx, t+1)2| It} ≠  E {(Xt+1 – µx, t+1)2| Jt} 
Where µx, t+1 is the mean of Xt+1 conditioned on It. Feedback in variance occurs if X 
causes Y and Y causes X. There is instantaneous causality in variance if:  
E {(Xt+1 – µx, t+1)2| Jt} ≠  E {(Xt+1 – µx, t+1)2| Jt + Yt+1} 
In order to make the general causality concept applicable in practice they launched 
additional structure. They defined Xt and Yt as: 
Xt = µx,t + tx,h εt 

Yt = µy,t + ty,h ζt 
Where {εt} and {ζt} are two independent white noise processes with zero mean and unit 
variance. Their conditional means and variances are given by 

µz,t = ∑
∞

=1i

 φz,i (θz,µ) Ζt-i 

hz,t = φz,0 + ∑
∞

=1i
iz,φ  {(Ζt-i - µz,t-i)2 – φz,0} 

where θz,w is a pz,w x 1 parameter vector; W=µ,h; φz,i (θz,µ) and φz,i (θz,h) are uniquely 
defined functions of θz,µ ; and Z= X, Y. 
Then, they defined Ut and Vt as the squares of the standardized innovations: 
Ut = ((Xt - µx,t)2 / hx,t) = εt

2 
Vt = ((Yt - µy,t)2 / hy,t) = ζt

2  
And the sample cross-correlation at lag k as  
ruv (k) = cuv (k) (cuu (0) cvv (0))-1/2, 
Where cuv (k) is the kth lag sample cross covariance given by 
cuv (k)= T-1 ∑(Ut - U ) ( Vt-k - V ), k=0, ± 1, ± 2, … 
and cuu (0) and cvv (0) are the sample variances of U and V respectively.  
They argued that since {Ut} and {Vt} are independent, the existence of their second 
moments implies 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

)(k' r T

(k)r T

uv

uv  →  AN ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
10
01

,
0
0

, k≠ k’. 
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As in the test for causality in mean, this expression suggests that the CCF of 
squared standardized residuals can be used to detect causal relations and identify patterns 
of causation in the second moment. The utility of the CCF has certain advantages over 
some possible alternative tests for causality in variance. For instance, compared with a 
multivariate method, the CCF approach does not involve simultaneous modeling of both 
intra- and inter-series dynamics, and hence it is relatively easy to implement. Further, the 
proposed test has a well-defined asymptotic distribution and is asymptotically robust to 
distributional assumptions. However, it is not designed to detect causation patterns that 
yield zero cross-correlations. 
 Since both Ut and Vt are unobservable, their estimators were used to test the 
hypothesis of no causality in variance. The sample correlation coefficient r) uv (k) 
computed from the consistent estimates of the conditional means and variances of Xt and 
Yt in place of ruv (k). The property of r) uv (k) is given by: 
 (Theorem) T ( r) uv(k1), …, r) uv(km) ) converge to N(0, Im) as T →  ∞ , where k1, …,km 
are m different integers, if: 

(i) both E(εt
8) and E(ζt

8) exist, and 
(ii) for all θ in an open convex neighborhood N(θ0) of θ0 and for all T,  T ∂2cAB 

(k)/ ∂θi ∂θj exists and is bounded in probability for θi, θj ∈  θ and for Α, Β = U, 
V. 

Given the asymptotic behavior of r) uv(k), a normal test statistic or a chi-square test 
statistic can be constructed to test the null hypothesis of noncausality. To test for a causal 
relationship at a specified lag k, we can compare T r) uv (k) with the standard normal 
distribution. Alternatively, a chi-square test statistic defined by: 

S = T∑
=

k

ji
uvr 2)(i
)

, 

which has a chi-square distribution with (k-j+1) degrees of freedom, can be used to test 
the hypothesis of no causality from lag j to lag k. The choice of j and k depends on the 
specification of alternative hypotheses. When there is no a priori information on the 
direction of causality, we may set –j=k=m. The parameter m should be large enough to 
include the largest nonzero lag that may appear in the causation pattern. When a uni-
directional causality pattern, say, Yt does not cause Xt, is considered, we set j=1 and k=m. 

An interesting remark is that causality in the mean of Xt and Yt can be tested as 
well by examining r) εζ(k), the univariate standardized residual CCF, and using the test 
statistic that also converges to the standardized normal distribution.  

While implementing the above-mentioned method, one should have in mind that 
the existence of serial correlation in εt and ζt or in Ut and Vt can affect the size of the 
proposed tests for causality in mean and variance. Therefore, the model specified in the 
first stage should “accurately” account for the serial autocorrelation in the data. In 
addition to that, the existence of causality in mean violates the independence assumption 
and hence may affect the CCF test. This, however, depends on the model specification. 

Cheng and Ng apply the CCF test to a) daily index returns on Japan Nikkei 225 
Index and US S&P index and b) 15-min returns on the S&P500 index futures and the 
corresponding returns on the underlying index. They find that the US stock index causes 
the Japanese stock index in variance, while a feedback appears in the variance of the 15-
min stock index and futures returns. 
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Yongmiao Hong in his paper “A test for volatility spillover with application to 
exchange rates” published in October 2000 proposed a class of asymptotic N (0, 1) tests 
for volatility spillover between two time series that exhibit conditional heteroskedasticity 
and may have infinite unconditional variances. The tests were based on a weighted sum 
of squared sample cross-correlations between two squared standardized residuals. We 
allow to use all the sample cross-correlations, and introduce a 1exible weighting scheme 
for the sample cross-correlation at each lag. He tested Granger-causalities between two 
weekly nominal U.S. dollar exchange rates Deutschemark and Japanese yen. It was found 
that for causality in mean, there existed only simultaneous interaction between the two 
exchange rates. For causality in variance, there also existed strong simultaneous 
interaction between them. Moreover, a change in past Deutschemark volatility Granger-
caused a change in current Japanese yen volatility, but a change in past Japanese yen 
volatility did not Granger-cause a change in current Deutschemark volatility. 
 
 
 

3. The Data       
 

We are interested in establishing a relationship between asset price volatility and 
output growth volatility for two groups of economies. The first group consists of six 
developed economies U.S., U.K., Canada, France, Germany and Japan, whereas three 
developing countries, Greece, Spain and Portugal, comprise our second group of interest. 
Output growth is measured in industrial production terms and asset prices in stock market 
returns. We define stock returns and industrial production growth rate as the logarithmic 
differences of stock indices and industrial production, respectively. The data comes in 
monthly terms from DATASTREAM and covers a time range of 15 years (January 1990-
December 2004).   

For U.S.A. we used the Industrial Production Index Total Industry (excluding 
Construction) from January 1990 till November 2004 in monthly terms. As far as asset 
prices, Standards & Poors 500 Composite Price Index for the same period was used. 

U.K. Industrial Production Total Industry (excluding Construction) Index was the 
index chosen for U.K.’s Industrial production and FTSE 100 Price Index was the one for 
asset prices. The data came in monthly terms as well from January 1990 till December 
2004. 

For Canada, France and Germany Industrial Production SADJ index measured the 
output growth and the changes in the DS ENG. General Price Index of each country 
represented the Stock Returns. Data came also in monthly terms from January 1990 till 
December 2004. 

As far as Japan is concerned, the Industrial Production Total Industry (excluding 
Construction) Index composed our input data for Industrial Production and NIKKEI 225 
Stock Average Price Index for asset prices. The period covered was from January 1990 
until October 2004. 

For Spain, we used the Industrial Production Total Industry (excluding 
Construction) Index from January 1990 till December 2004 and the IBEX 35 Price Index 
for the same period in monthly terms as well.  
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Industrial Production excluding Construction was the index used for Greece‘s 
Industrial Production. The stock price index was the Athens’s SE General Price Index. 
The data for both indexes came in monthly terms and covered a 15 years period ( January 
1990- December 2004) . 

Finally, for Portugal, we used the Industrial Production Industry (excluding 
Construction) Index and the PSI General Price Index for Industrial Production and asset 
prices respectively. The period was from January 1990 until December 2004. 

Due to the fact that GARCH modeling assumes a return series, we need to convert 
the prices to returns. Stock returns are defined as percentage logarithmic differences of 
closing prices between two consecutive months, i.e. 

Stock Returns = ln (
1−t

t
P

P    )     (continuously compounded stock returns)  

Industrial Production Growth as percentage logarithmic differences of the index 
price between two consecutive months, i.e.  

Industrial Production Growth = ln ( 
1−t

t
IP

IP )     (continuously compounded 

Industrial Production Growth) 

.  

 

4. The Theory 
 

The reason we decided to investigate the relationship between output growth 
volatility and asset price volatility is that a great deal of bibliography examines the 
causality patterns between asset prices and output growth. But only a few researches 
about the causality in variance have been carried out. So, we are interested in establishing 
a statistically significant relationship between the volatilities of these two macroeconomic 
factors.  

Many theories have been put forward on the link between stock returns and output 
growth. The first one, called the ‘‘passive informant’’ hypothesis, states that the only 
mechanism underlying the correlation between stock returns and output growth is the 
following. Under the assumptions that stock prices reflect the present discounted value of 
all future dividends and that dividend growth is related to GDP growth, a correlation 
between this year’s stock returns and next year’s economic growth arises naturally: if 
next year’s economic growth is buoyant, news revealed this year will typically be 
positive, resulting in large stock price increases this year. All theories reviewed below 
accept that the above mechanism plays a role, but leave room for additional mechanisms.  

Under the ‘‘accurate active informant’’ hypothesis, stock price changes provide 
managers with information about the market’s expectations of future economic 
developments. Managers base their investment decisions upon that information, thereby 
justifying the market’s expectations. In this case, stock price changes turn out to be 
perfectly correlated with fundamentals.  

The third theory, the ‘‘faulty active informant’’ hypothesis, suggests that 
managers’ decisions about investment are influenced by stock price movements, but 
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managers cannot distinguish between movements reflecting fundamentals and those 
reflecting market ‘‘sentiment’’. Stock market movements that are not motivated by 
fundamentals can therefore mislead managers into overinvesting or underinvesting 
compared with what later turns out to be warranted by fundamentals. 

The ‘‘financing’’ hypothesis, based upon Tobin’s q theory (a formalization of 
Keynes’ reasoning in the quote reported above), argues that when stock prices are high 
compared to the replacement cost of capital, entrepreneurs will be more likely to expand 
their activities by investing in new physical capital (possibly financed by issuing new 
shares of their company) rather than by purchasing existing firms on the stock market. 

 Moreover, the ‘‘stock market pressure on managers’’ hypothesis suggests that 
stock price changes can affect investment even if they neither convey information nor 
change financing costs. If investors hold negative views on a firm’s prospects and drive 
down its stock price, managers may have to cut their investment projects to protect 
themselves from the possibility of being fired or taken over.  

Fluctuations of the stock market, which are influenced by monetary policy, have 
important impacts on the aggregate economy. Transmission mechanisms involving the 
stock market are of three types:  
1) Stock market effects on investment (Tobin’s q model) 
2) Firm balance-sheet effects,  
3) Household wealth effects: expansionary monetary policy which raises stock prices 
raises the value of household wealth, thereby increasing the lifetime resources of 
consumers, which causes consumption to rise.  

An interesting question is whether fluctuations in asset prices should be of 
concern to policymakers? In the economist’s usual benchmark case, a world of efficient 
capital markets and without regulatory distortions, movements in asset prices simply 
reflect changes in underlying economic fundamentals. Under these circumstances, central 
bankers would have no reason to concern themselves with asset price volatility per se. 
Asset prices would be of interest only to the extent that they provide useful information 
about the state of the economy. Matters change, however if two conditions are met. The 
first is that “non-fundamental” factors sometime underlie asset market volatility. The 
second is that changes in asset prices unrelated to fundamental factors have potentially 
significant impacts on the rest of the economy. If these two conditions are satisfied, then 
asset price volatility becomes to some degree an independent source of economic 
instability, of which policy-makers should take account. 
 
 

5. The 1st approach 
 
5.1 Time series models for modelling financial volatility 
 

A more sophisticated group of time series models is the ARCH family. The 
ARCH (q) model relates time t volatility to q past squared returns, with no predetermined 
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relationships between any of the q dependencies. In GARCH (p, q), additional 
dependencies are permitted on p lags of past estimated volatility. In general, empirical 
findings suggest that GARCH is a more parsimonious model than ARCH. Modeling 
volatility in logarithmic form resulting in the EGARCH model. In the EGARCH case, 
there is no need to impose estimation constraint in order to avoid negative variance 
because it is the logarithm of σt

2 t that is formulated. With appropriate conditioning of the 
parameter, this specification captures the stylized fact that negative shocks lead to higher 
volatility in the subsequent period than that triggered by a positive shock. Other models 
that allow for nonsymmetrical dependencies are the GJR model (Glosten, Jagannathan 
and Runkle (1993)), QGARCH (Quadratic GARCH) and various non-linear GARCH, 
such as logistic smooth transition GARCH and exponential smooth transition GARCH, 
reviewed in Franses and van Dijk (2000). Both ARCH and GARCH models have also 
been implemented with a Hamilton (1989) type regime switching framework, where 
volatility persistence can take different values depending on whether it is in high or low 
volatility regimes. The most generalized form of regime switching model is the RS-
GARCH (1, 1) model used in Gray (1996) and Klaassen (1998). The ARCH version of 
the regime switching model is very similar to the Threshold Autoregressive (TAR) model 
in Cao and Tsay (1992) except that TAR has independent noise processes in each 
volatility state and that the volatility and the return specifications are not estimated 
jointly. Finally, there is the Stochastic Volatility (SV) model, which involves a noise 
process in the variance equation that is independent from that in the return equation. The 
additional noise process in the variance equation makes the model a lot more flexible, 
but, as a result, the SV model has no closed form, making direct maximum likelihood 
estimation infeasible. Thus far, methods used to estimate the SV model are 
computationally more difficult to implement and, in some cases, the theoretical properties 
of the estimations are still unknown. For this reason, the SV model is not as popular as 
the ARCH model. One way to avoid this estimation problem is to abandon the structure 
of the mean and express the volatility simply as a function of its past values. This is 
known as the Simple Regression (SR) method. The SR method is principally 
autoregressive. If past volatility errors are included, one gets the ARMA model for 
volatility. Other nonparametric methods have been suggested. But in a forecasting 
exercise by Pagan and Schwert (1990), it was found that the nonparametric methods 
perform poorly.  
 

5.2 Multivariate GARCH models 
 

We may use a multivariate GARCH model in case we have a vector of asset 
returns whose conditional covariance matrix evolves over time. Suppose we have N 
assets with return innovations ηi.t-1, i=1,2…,N. We form a vector with these innovations,  
ηt+1= [ηi,t+1 … η N,t+1] ‘ and define σii,t = Var (ηi,t+1) and σij,t

 = Cov (ηi,t+1, ηj,t+1); Hence Σ = 
[σij,t] is the conditional covariance matrix of all the returns. 
 We may now put all the no redundant elements of Σt (on and below the diagonal) 
into a vector. The operator which performs is known as the vech operator: vech (Σt) with 
N(N+1)/2 elements. 
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Bollerslev et al (1988) in his VECH MODEL forms the covariance matrix as a set 
of univariate GARCH models. Each element of Σt follows a univariate GARCH model 
driven by the corresponding element of the cross-product matrix ηt ηt’.  

 
VECH (Σt) = C + A VECH (ηt, ηt-1’) + B VECH (Σt-1), ηt | Ψt-1 ~ N (0, Ht), 

 
where C is an (N(N+1)/2) vector containing the intercepts in the conditional variance and 
covariance equations, A and B are N(N+1)/2 * N(N+1)/2 matrices containing the 
parameters on the lagged disturbance squares or cross-products and on the lagged 
variances or covariances respectively. The implied conditional covariance matrix is 
always positive definite if the matrices of the parameters C, A and B are all positive 
definite. The model has three parameters for each element of Σt thus 3Ν(Ν+1)/2 in all. 
The weakness of the proposed model is its failure in capturing co-persistence in variance 
and asymmetries. 

Another widely used multivariate GARCH model is the BEKK model proposed 
by Engle and Kroner(1995). That model guarantees the positive definiteness of Σt by 
working with quadratic forms rather than the individual elements of Σt. 

Σt = C’C + B’ Σt-1 B + A’ ηt ηt’ A 
where C is a lower triangular matrix with N(N+1)/2 parameters, B and A are square 
matrices with N2 each, for a total parameter count (5N2+N)/2. Weak restrictions on A and 
B guarantee that Σt is always positive definite. 

Bollerslev (1990) has proposed a Constant Correlation model in which each asset 
return variance follows a univariate GARCH (1, 1) model and the covariance between 
any two assets is given by a constant-correlation coefficient multiplying the conditional 
standard deviation of returns: 
                 σii,t = ωii + βii σii,t-1 + αii ηit

2 
      σij,t = ρij tjj,tii, σ σ  
N(N+5)/2 parameters 
It gives a positive definite covariance matrix provided that the correlations  ρij make up a 
well-defined correlation matrix and the parameters ωii, βii and αii are positive. 

A special case of the BEKK model is the single-factor GARCH (1, 1) model of 
Engle et al(1990). In this model we define N-vectors λ and w α and scalars α and β and 
then have: 

Σt = C’C + λλ’ [β ω’ Σt-1 w + α (w’ ηt)2] 
It is convenient to set iw=1, i is vector of ones. The vector w can be thought of as a vector 
of portfolio weights. We define: ηpt = w’ ηt and σij,t = ωij + λi λj σpp,t and  
  σpp,t = ωpp + β σpp,t-1 + α ηpt

2 
The covariance of two asset returns moves through time only with the variance of 

the portfolio return which follows a univariate GARCH (1, 1) model. The single-factor 
GARCH (1, 1) model is a special case of the BEKK where matrices A and Β have rank 
one: A= α ω λ’  and Β= β ω λ’. It has (N2 +5N +2)/2 parameters. The model can be 
extended forward to allow for multiple factors or a higher-order GARCH structure. 

Finally, the orthogonal GARCH model is a generalization of the factor GARCH 
model introduced by Engle et al(1990) to a multi-factor model with orthogonal factors. 
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It allows k*k GARCH covariance matrices to be generated from just m univariate 
GARCH models. Normally, m, the number of principal components, will be much less 
than k, the number of variables in the system. This is so that extraneous “noise” is 
excluded from the data and the volatilities and correlations produced become more stable. 
In the orthogonal GARCH model the m*m diagonal matrix of variances of the principal 
components is a time-varying matrix denoted by Dt, and the time-varying covariance 
matrix Vt of the original system is approximated by 

Vt = A Dt A’ 
 where A is the k*m matrix of rescaled facto weights. This model is called orthogonal 
GARCH when the diagonal matrix Dt of variances of principal components is estimated 
using a GARCH model. This representation will give positive semi-definite matrix at 
every point in time, even when the number m of principal components is much less than 
the number k of variables of the system. Of course, the principal components are only 
unconditionally uncorrelated, but the assumption of zero conditional correlations has to 
be made, otherwise it misses the whole point of the model, which is to generate large 
GARCH covariance matrices from GARCH volatilities alone. The degree of accuracy 
that is lost by making this assumption is investigated by a thorough calibration of the 
model, comparing the variances and covariances produced with those from other models 
such as EWMA or, for small systems, with full multivariate GARCH.   
 

5.3 The BEKK (1, 1) Model  
 

In the first approach, we use a bivariate GARCH (1, 1) model to capture the joint 
processes that govern stock returns on one side and output growth on the other side. ρt  
represents output growth and rt stands for stock returns. The mean equation process is a 
VAR (p) model: 
 

(i) Xt =A + B1 Xt-1+ …+ Bp Xt-p+ Ut           where  
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A is a constant vector (2*1) which is defined by two constants a1 and a2 and B is 
the matrix of coefficients b11, b12, b21, b22. Xt-p is a vector of explanatory variables that 
include p lagged values of Xt. Equation (i) for VAR (1) can be written as two different 
equations: 
(1) ρt= a1+ b11ρt-1+b12 rt-1 + u1t 

(2) rt = a2 + b21ρt-1 +b22rt-1 + u2t 

 

We assume that both stock returns and output growth follow a t-distribution and 
Ut is a vector of white noise residuals. The lag length of VAR mean equation model 
depends on specific criteria which are implemented in each country and varies from 
country to country.  Two of them are Akaike (AIC) and Bayesian (BIC) information 
criteria. We can use them to compare alternative models. Since information criteria 
penalize models with additional parameters, the AIC and BIC model order selection 
criteria are based on parsimony. 

 The corresponding conditional variance covariance matrix of the residual vector 
Ut is Ht and is defined by the following equation (Variance Equation):  
 

(ii) Ht = Co’ Co + G1’Ht-1G1 + A1’Ut-1Ut-1’A1   where 
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 Ht is the conditional variance-covariance matrix of Ut. h11t stands for the 
conditional variance of the output growth ρt and h22t for the conditional variance of stock 
price returns. We model the dynamic process of Ht as a linear function of its own past 
values Ht-1 and past values of squared residuals (u1, t-1

2, u2, t-1 
2) in both cases allowing for 

own-market and cross-market influences in the conditional variance.  
C0 is restricted to be upper triangular (c21=0) and G1, A1 are two unrestricted 

matrices. Equation (ii) can be analyzed in the following equations: 
  

(3) h11t = c11
2+c21

2+g11
2 h11t-1+g11g21h21t-1+g21g11h12t-1+g21

2h22t-1+a11
2

 u1t-1
2 +                               

                a11a21u2t-1u1t-1+a21a11e1t-1e2t-1+a21
2

  e2t-1
2            

(4) h21t =c12c11+ c22c21+g11g12h11t-1+g11g22h21t-1+g21g12h12t-1+g21g22h22t-1+ a11a12u1t-1
2+  

               a11a22 u2t-1u1t-1 +  a21a12u1t-1u2t-1+a21a22u2t-1
2  

(5) h12t =c11c12+ c21c22+g12g11h11t-1+g12g21h21t-1+g22g11h12t-1+g22g21h22t-1+ a12a11u1t-1
2+  

               a12a21 u2t-1u1t-1 +  a22a11u1t-1u2t-1+a22a21u2t-1
2  
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(6) h22t = c12
2+c22

2+g12
2 h11t-1+g12g22h21t-1+g22g12h12t-1+g22

2h22t-1+a12
2

 u1t-1
2 +                               

          a12a22u2t-1u1t-1+a22a12u1t-1u2t-1+a22
2

  u2t-1
2         

 

5.4 Hypothesis Testing 

 
The purpose of the paper is to investigate the relationship between volatilities in 

output growth and asset prices. Therefore, we perform three causality in variance tests on 
our data. Firstly, the maximum likelihood estimation method is used to estimate the 
parameters of the GARCH unrestricted model. Consequently we need assumptions about 
the distribution of the asset returns and the output growth. We assume they both follow t-
student processes. For the hypothesis testing, we use the Likelihood Ratio: 
 

LR= -2 (lrestricted – lunrestricted)   ~ X (number of restrictions) 

We perform three types of causality-in-variance tests. First, we test the hypothesis 
that there is causality from stock returns volatility to output growth volatility. The null 
hypothesis for that test is that the matrix G1 is upper triangular (g21=0) and A1 is also 
upper triangular (a21=0). Rejecting the null hypothesis means that the volatility of stock 
price returns Granger causes the volatility of output growth. In other words, the volatility 
of stock returns can be blamed for a part of output growth volatility.  

Then, we test the hypothesis that output growth volatility affects the volatility of 
asset returns. In this case the null hypothesis is that A1 and G1 are both lower triangular 
(a12=0 and g12=0). If we reject this hypothesis, we arrive at the conclusion that there is 
causality from output growth volatility to stock returns volatility. Hence, a part of stock 
returns volatility could be attributed to output growth volatility. 

 Finally, we check if there is causality in variance in both directions. The null 
hypothesis is that all the parameters are simultaneously zero (a21 = g21 = a12 = g12 =0), or 
A1 and G1 are both diagonal. Rejecting the null hypothesis means that there is causality 
in variance in both ways. Stock returns volatility Granger causes industrial production 
volatility and vice versa. In chapter 7, we implement the process described above in each 
country separately.  

 

6. The 2nd approach 
 

6.1 The procedure 
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In the second part of the paper, we will examine the spillover effects of volatility 
among stock returns and output growth in six countries using Chueng and Ng’s causality-
in-variance test. (More details about the test can be reach in section 2.6) 

Prior to the implementation of causality-in-variance test, we need to determine an 
appropriate model to describe return series. Most of the time series returns exhibit excess 
kurtosis. It is well known that a data series that is leptokurtic in nature can be specified by 
the ARCH (Engle, 1982) or the GARCH (Bollerslev, 1986). For each time series, we 
estimate three models based on the nature of autocorrelation. The model with the largest 
value of the Loglikelihood Function is selected to calculate standardized innovations.  

Causality-in-variance between two data series can be evaluated by the following 
test statistic. 

tk = T
^

γ uv (k)  is to test the causal relationship at a specific lag k comparing with the 
standard normal distribution. 
 
 

6.2 Remarks on the causality-in-variance test 

 
The causality-in-variance test demands the estimation of a model whose 

conditional mean, µit, and conditional variance, hit, are specified as ARMA (r, m) and 
GARCH (p, q) models, respectively for each of the two time series under investigation. 
In the case that causality in mean is present, the conditional mean should be modified 
accordingly to account for this additional dynamics. If not, the causality-in-variance tests 
are likely to suffer from size distortions. 

Theologos Pantelidis and Nikitas Pittis proved in their paper (2004) “Testing for 
Granger causality in variance in the presence of causality in mean” that the tests for 
causality in variance suffer from severe size distortions when strong causality-in-mean 
effects are left unaccounted for. By means of Monte Carlo simulations they showed that 
the model used to filter out the conditional mean effects must account for possible 
causality in mean between the series. Otherwise, the causality-in-variance test statistics 
suffer from severe size distortions, especially when the neglected causality-in-mean 
effects are strong.  
 Hong (2001) put forward another interesting remark concerning Chueng and Ng’s 
causality-in-variance test. He claimed that the S-test may not be fully efficient since it 
assigns equal weighting to each of the M sample cross-correlations. Instead, he proposed 
a weighting scheme, k (.), that gives a larger weight to a lower lag order j. 

Having those remarks in mind, we proceed to the implementation of the test in the 
nine countries of interest.  
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7. Country Analysis 

A) U.S.A. 
 
It is necessary to start the analysis by presenting some interesting preliminary 

descriptive statistics for both Industrial Production Growth and Stock Returns.  
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Jarque-Bera is a test statistic for testing whether the series is normally distributed. 
The test statistic measures the difference of the skewness and kurtosis of the series with 
those from the normal distribution. Under the null hypothesis of a normal distribution, the 
Jarque-Bera statistic is distributed as Chi-Square with 2 degrees of freedom. The reported 
Probability is the probability that a Jarque-Bera statistic exceeds (in absolute value) the 
observed value under the null hypothesis-a small probability value leads to the rejection 
of the null hypothesis of a normal distribution. In USA we should reject the Normality 
Hypothesis for Industrial Production Returns, but not for Stock Returns. 
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Skewness is a measure of asymmetry of the distribution of the series around its 
mean. The skewness of a symmetric distribution, such as the normal distribution, is zero. 
Positive skewness means that the distribution has a long right tail and negative skewness 
implies that the distribution has a long left tail. For both series the skewness coefficient is 
negative. The kurtosis coefficients are all larger than 3 indicating that the tails of the 
distribution are all fatter than those of the normal distribution. 

When estimating the parameters of a composite conditional mean/variance model, 
we may occasionally encounter convergence problems. For example, the estimation may 
appear to stall, showing little or no progress. It may terminate prematurely prior to 
convergence. Or, it may converge to an unexpected, suboptimal solution. In order to 
avoid many of these difficulties we may perform a prefit analysis. We can plot the return 
series and examine the Autocorrelation Function or perform some preliminary tests, 
including Engle’s ARCH test and the Q-test. The goal is to avoid convergence problems 
by selecting the simplest model that adequately describes your data.  

The autocorrelation function used by MATLAB 6.5p computes and plots the 
sample Autocorrelation Function of a univariate, stochastic time series with confidence 
bounds. In the diagrams below there are the plots for Industrial Production Growth and 
Stock Returns of U.S.A.. The blue line represents the bounds, which are computed with 
approximate 95% confidence level. 
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It is obvious that Stock returns series exhibit little autocorrelation, while Industrial 

Production Growth suffers from autocorrelation up to the 10th lag. Although the 
Autocorrelation function (ACF) of the observed returns exhibits little correlation, the 
ACF of the squared returns may still indicate significant correlation and persistence in the 
second-order moments. So it is appropriate to check for autocorrelation by plotting the 
ACF of the squared returns. As we can see in the diagrams below, both squared returns 
exhibit autocorrelation 
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We can now quantify the preceding qualitative checks for correlation using 
formal hypothesis tests, such as the Engle's ARCH test. ARCHTEST Hypothesis tests for 
the presence of ARCH/GARCH effects. The null hypothesis is that a time series of 
sample residuals is i.i.d. Gaussian disturbances (i.e. no ARCH effects exist). Given 
sample residuals obtained from a curve fit (e.g. a regression model), the presence of Mth 
order ARCH effects is tested by regressing the squared residuals on a constant and M 
lags, The asymptotic test statistic, T*R^2, where T is the number of squared residuals 
included in the regression and R^2 is the sample multiple correlation coefficient, is 
asymptotically Chi-Square distributed with M degrees of freedom under the null 
hypothesis, When testing for ARCH effects, a GARCH(P,Q) process is locally equivalent 
to an ARCH(P+Q) process. Now, we impose two lags, indicating the lags of the squared     
sample residuals included in the ARCH test statistic and 5% significance level for each 
time series. The results indicate persistent of ARCH effect in both series.  
 

 INDUSTRIAL 
PRODUCTION GROWTH STOCK RETURNS 

pValue 0 0,0023 
t-Statistic 88,2096 12,1227 

Critical Value 5,9915 5,9915 
 
*H = 0 indicate acceptance of the null hypothesis that no ARCH effects exist  
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1st Approach 
Mean Equation (VAR (10)) 
 

In order to choose the appropriate VAR model for our data we had to estimate 
many VAR models with various lags. We had to implement various lag length criteria 
such as Final Prediction Error (FPE), Akaike information criterion, Schwarz information 
criterion and Hannan-Quinn information criterion.   

Furthermore, we performed in each model the residual LM autocorrelation test 
and we selected the model that had removed the autocorrelation from the residuals. This 
test is an alternative to the Q-statistics for testing serial correlation. The test belongs to 
the class of asymptotic (large sample) tests known as Lagrange multiplier (LM) tests. 
Unlike the Durbin-Watson statistic for AR(1) errors, the LM test may be used to test for 
higher order ARMA errors and is applicable whether or not there are lagged dependent 
variables. The null hypothesis of the LM test is that there is no serial correlation up to lag 
order, where is a pre-specified integer. The local alternative is ARMA() errors, where the 
number of lag terms   = max().The serial correlation LM test is available for residuals 
from either least squares or two-stage least squares estimation. The original regression 
may include AR and MA terms, in which case the test regression will be modified to take 
account of the ARMA terms. If the test indicates serial correlation in the residuals, LS 
standard errors are invalid and should not be used for inference. 

In our case a VAR (10) model was selected as the one for the mean equation with 
the following parameters estimates: 
 

Xt =A + b1 Xt-1 +b2 X t-2   …+b10 Xt-10 + Ut           where  
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⎥
⎥
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⎦

⎤

⎢
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⎢

⎣

⎡

(0.08301)     
0,0143-     
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1,1536     
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1,4819       

       b2 =
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b5 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣
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(0.00284)    
0,0018      

(0.22660)    
1,7181      

         b6 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
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(0.22839)     
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⎢
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0,0012       
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⎥
⎥
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⎢
⎢
⎢
⎢

⎣

⎡

(0.08433)      
0,0869       

(4.32235)    
1,3566-    

(0.00278)    
0,0004      

(0.14231)     
0,5105      

         b10 = 

⎥
⎥
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⎦

⎤

⎢
⎢
⎢
⎢

⎣
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(0.08321)     
0,0489       

(2.28993)    
0,3236-     

(0.00274)      
0,0019       

(0.07539)   
0,2768-    

 

 
**standard errors in ( ) 
 
 

 
 
The autocorrelation LM Test for the residuals of the VAR (10) is presented in the 

table above. We accept the null hypothesis of no autocorrelation in the first 12 lags: 
 

Lags LM-Statistic P-Value 
1  6,924142  0,1400 
2  5,817972  0,2132 
3  7,612491  0,1068 
4  11,87737  0,0183 
5  7,070343  0,1322 
6  1,477447  0,8306 
7  4,303489  0,3665 
8  1,868395  0,7599 
9  1,637853  0,8020 
10  1,309843  0,8597 
11  3,908815  0,4185 
12  2,676241  0,6134 

 

* H0: No serial correlation at lag order h 
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Causality-in-Mean Test 
 

In this part of the country analysis we perform a causality-in-mean test to check 
whether industrial production growth and stock returns are related. We use the Pairwise 
Granger Causality Tests provided by EViews. We carry out pairwise Granger causality 
tests and test whether an endogenous variable can be treated as exogenous. For each 
equation in the VAR, the output displays (Wald) statistics for the joint significance of 
each of the other lagged endogenous variables in that equation. The results are presented 
in the table above: 

 
 

Dependent Variable: Industrial Production Growth 
 Chi-Square PValue 

Stock Returns 24,10719 0,0073 
 

Dependent Variable: Stock Returns 
 Chi-Square PValue 

Industrial Production Growth 8,004 0,6284 
 
 
 
So, there is causality in mean from stock returns to industrial production growth 

but, there is no causality in the opposite direction. In other words, Stock Returns Granger 
causes Industrial Production Growth.  

 
 

 

 

 

Variance Equation (BEKK 1, 1) 
 
 

We estimated a bivariate GARCH (1, 1) model with maximum likelihood and we 
assumed that output growth and stock returns follow a t-student distribution. The 
parameters estimates of the unrestricted model are presented in the table below: 
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Parameters 
(std.errors) Unrestricted GARCH(1,1) 

c11 -0,0004 
(0) 

c12 -0,0006  
(0) 

c21 0 
c22 0,0070 

(0) 
GARCH 
g11 

0,1082 
 (0)  

g12 3,0331 
 (0,0001) 

g21 0,0020 
(0) 

g22 0,3899 
(0) 

ARCH 
a11 

0,7582 
(0) 

a12 -0,7453 
(0,0002) 

a21 0,0040 
(0) 

a22 0,8943 
(0) 

   

We performed three different LRatio Tests to check the causality in variance from 
output growth volatility to asset price volatility and vice versa. The results can be 
summarized in the table: 

 

 Unrestric
ted 

Restricted1 
(a21=g21=0) 

Restricted2 
(a12=g12=0) 

Restricted3 
(a12=g12=a21=g21=0) 

Loglikelihood 1215,9 1198,4 1214,9 1195,7 

pValue  0 0,3625 0 

LRatio  35,0816 2,0295 40,5344 

Critical Value  5,9915 5,9915 9,4877 
 
*H = 0 indicate acceptance of the restricted model (no causality in variance) under the 
null hypothesis; H = 1 indicate rejection of the restricted (causality-in-variance). The 
significance level of the hypothesis test is 5%.  
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In the first row, we present the value of the Loglikelihood Function for each 
model. As we expected, the unrestricted model has the greatest LLF value.   

The restricted 1 model tests whether there is causality from stock returns volatility 
to output growth volatility. The LRatio test suggests that we should reject the null 
hypothesis that the restricted is better than the unrestricted. So there is causality in 
variance from stock returns volatility to output growth volatility.  

The 2nd restricted model checks the causality from industrial production to stock 
returns volatility. According to the LRatio, we accept the null hypothesis that the 
restricted is preferable to the unrestricted and that there is no statistically significant 
causality from industrial production volatility to asset price volatility.  

Finally, the restricted 3 model investigates the causality in both directions. The 
null hypothesis should be rejected, so the unrestricted model is better than the restricted.  

We should now proceed to the post-estimation analysis, to check whether the 
unrestricted model selected for our data was sufficient. We used the Ljung-Box lack-of-
fit hypothesis test. This model is based on the Q-Statistic: 
                                                                                                                                                
                                             

 
Q = N*(N+2)* 

 
where N = sample size, L = number of autocorrelation lags included in the statistic, and 

r
2
k  is the squared sample autocorrelation at lag k. Under the null hypothesis that the 

model fit is adequate, the test statistic is asymptotically Chi-Square distributed. We 
performed this test on the residuals of the unrestricted GARCH (1, 1) model. The lags 
used in the Q-Statistic are twenty and the significance level 5% and the results are 
presented below: 
 

 Standardized Residuals1 Standardized Residuals2 
pValue 0,8896 0,7644 

Q-Statistic 12,7081 15,2081 
Critical Value 31,4104 31,4104 
 

*H0: the null hypothesis that the model fit is adequate (no serial correlation).  

 
2nd Approach 
 

 
Firstly, we estimate univariate models for each series trying to take into account 

the various features of the data documented in the previous section. We model the mean 
equation as an autoregressive moving average process ARMA (p, q). The conditional 
variance equation is then modeled as a classical GARCH model. The error term εt is 

∑
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supposed to be conditionally normally distributed with mean 0 and conditional variance 

σ
2
t .  

We selected the lag structure of the models’ equations according to the results of 
the equation estimates in EViews. For Industrial Production Growth the autoregressive 
coefficients were statistically significant up to eight lags. (The null hypothesis for the first 
eight lags coefficients being zero should be rejected). In the variance equation the ARCH 
(1) and GARCH (1) coefficients were also statistically significant. So, an Autoregressive 
Moving Average with eight lags model is selected for the mean equation of Industrial 
Production Growth and a univariate GARCH (1, 1) for the variance equation.  

We also estimated the Loglikelihood Function (LLF) of four different models. 
The results are presented in the table below. The ARMA (8, 8), GARCH (1, 1) has the 
greatest LLF value. 

 

LLF GARCH(1,1) ARMA(1, 1) 
GARCH(1,1)

ARMA(8,1) 
GARCH(1,1) 

ARMA (8,8) 
GARCH(1,1)

Industrial 
Production 

Growth 
799,5658 910,8923 916,6971 935,9357 

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  

 
The Stock Returns series exhibits no autocorrelation, since the autoregressive 

coefficient of the first lag was not significant (the null hypothesis that the coefficient was 
zero should be accepted). So, the best model for the Stock Returns series is a GARCH (1, 
1) model.  

We estimated the Loglikelihood Function (LLF) of three different models. The 
results are presented in the table below. The GARCH (1, 1) has the greatest LLF value. 

 

LLF AR (1) 
GARCH(0,1)

ARMA(1,1) 
GARCH(0,1)

ARMA (0, 0) 
GARCH(1,1) 

Stock 
Returns 325,3864 325,4322 334,8276  

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  

 
After choosing the univariate model, the Ljung-Box Q-statistic lack-of-fit 

hypothesis test for model misspecification is used. The innovations of the GARCH 
models are tested, in order to check whether the model fit is adequate. The lags used in 
the Q-Statistic are twenty and the significance level 5%. The null hypothesis should be 
accepted in both cases.  
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 Industrial Production Growth Stock Returns 
P-Value 0,0918 0,5434 

Q-statistic 28,8010 18,6696 
Critical Value 31,4104 31,4104 

 

*H0: the null hypothesis that the model fit is adequate (no serial correlation).  

 
 

We plot now the Sample Cross Correlation Function of the standardized residuals 
of the series to check for causality in mean, and the squared standardized residuals to test 
for causality in variance. The blue line represents the confidence interval of 95 %: 
 

 
The diagram exhibits causality in mean in the (-1) lag which means that 

StockReturnst-1 Granger causes IndustrialProductiont.   
We proceed with the hypothesis testing using the t-statistics: 

t = T  
^
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Where k is the number of periods the stock returns lag the industrial production and T the 
sample size (number of observations). 

We apply this test on the standardized residuals. The table contains the t-
statistic for each lag. 
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Lags t-statistic for st. residuals 
-12 -0,6396 
-11 0,3332 
-10 1,3374 
-9 0,959 
-8 0,8045 
-7 -0,8731 
-6 0,0619 
-5 0,3609 
-4 -0,5004 
-3 1,6386 
-2 1,4074 
-1 3,1133* 
0 0,7106 
1 0,6951 
2 0,2329 
3 -0,7504 
4 0,7432 
5 0,6121 
6 1,7216 
7 -0,2766 
8 0,0097 
9 1,5982 
10 0,9191 
11 -0,0525 
12 -0,4895 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 5% 
level 
 

The hypothesis testing suggests that there is statistically significant causality in 
mean in (-1) lag. In other words, StockReturnst-1 Granger causes IndustrialProductiont. 

In the case that causality in mean is present, the conditional mean should be 
modified accordingly to account for this additional dynamics. If not, the causality-in-
variance tests are likely to suffer from size distortions. Theologos Pantelidis and Nikitas 
Pittis proved in their paper (2004) “Testing for Granger causality in variance in the 
presence of causality in mean” that the tests for causality in variance suffer from severe 
size distortions when strong causality-in-mean effects are left unaccounted for. By means 
of Monte Carlo simulations they showed that the model used to filter out the conditional 
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mean effects must account for possible causality in mean between the series. Otherwise, 
the causality-in-variance test statistics suffer from severe size distortions, especially when 
the neglected causality-in-mean effects are strong.  

Therefore, we add a time series regression vector of explanatory variable, a 
regression component, in the mean equation of Industrial Production Growth. The 
regression component is a lagged transform (by one lag) of the time series Stock Returns. 
We plot again the Sample Cross Correlation Function of the standardized residuals of the 
series and of the squared standardized residuals.  
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As we can assume from the diagrams, the causality in mean has been successfully 
removed. There is volatility spillover from Stock Returns to Industrial Production 
Growth. The causality in variance from Stock Returns to Industrial Production Growth is 
statistically significant in the 8th lag, or the volatility of StockReturnst-8 Granger causes 
the volatility of IndustrialProductionGrowtht.  

We proceed with the hypothesis testing on the standardized residuals and on the 
squared standardized residuals. The table contains the t-statistic for each lag.  
 
  

Lags t-statistic for st. residuals t-statistic for squared st. residuals
-12 -0,9846 1,0432 
-11 -0,7254 -0,2879 
-10 0,5453 -0,4447 
-9 0,649 0,1423 
-8 0,8284 2,7681*  
-7 -1,2179 -0,1038 
-6 0,1505 1,9436 
-5 -0,3767 1,8755 
-4 -0,6294 -1,621 
-3 0,0544 0,6919 
-2 0,3527 -1,3337 
-1 1,1467 -0,3818 
0 1,3684 -0,88 
1 0,7103 -0,4209 
2 0,0928 1,9495 
3 -0,3421 -0,3317 
4 0,5847 0,5727 
5 0,6823 0,1769 
6 1,2156 -1,588 
7 -0,5464 -1,5426 
8 0,3656 -0,7672 
9 1,7274 1,0741 
10 0,9491 0,6894 
11 -0,3288 1,7221 
12 0,005 -0,5709 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                    ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 
5% level 
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    The Hypothesis Testing suggests that we should reject the null hypothesis of no 
causality in lag (-8) for the squared standardized residuals. Consequently, there is no 
causality in mean but there is statistically significant causality in variance from Stock 
Returns to Industrial Production Growth. The volatility of StockReturnst-8 Granger causes 
the volatility of IndustrialProductionGrowtht.  
 

B) U.K. 
 

In the beginning of our country analysis we shall present some preliminary 
statistics about our time series, industrial production growth and stock returns. 
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Series: Industrial Production Growth
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Mean       0.000431
Median   0.000429
Maximum  0.006613
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Std. Dev.   0.002348
Skewness  -0.008857
Kurtosis   2.996413

Jarque-Bera  0.002436
Probability  0.998783
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Series: StockReturns
Sample 1990:02 2004:12
Observations 179

Mean       0.003744
Median   0.008034
Maximum  0.118466
Minimum -0.147165
Std. Dev.   0.043817
Skewness  -0.380096
Kurtosis   3.753189

Jarque-Bera  8.541166
Probability  0.013974

 
For stock returns series we should reject the hypothesis that it follows a 

Normal Distribution, according to the Jarque-Bera Test. Moreover, the skewness 
coefficient of the series is negative, indicating that the distribution has a long left tail. The 
kurtosis is greater than three (leptokurtic distribution).    

Industrial Production Growth is normally distributed. The skewness and 
kurtosis coefficients approximate those of a normal distribution. Moreover, the Jarque-
Bera test suggests that we should accept the normality assumption. 

We shall now proceed to the autocorrelation tests. We check for 
autocorrelation in the Industrial Production Growth and Stock Returns as well as in the 
squared returns of Industrial Production and Stock Prices. The blue line represents the 
bounds, which are computed with approximate 95% confidence level. 
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The Stock Returns time series and the squared Stock Returns do not exhibit 
autocorrelation in any lag, in contrast to Industrial Production that suffers from 
autocorrelation in both raw series and squared series. We can perform Engle's ARCH test 
to check whether there are ARCH/GARCH effects on our series. The table below 
contains the results of this test. There is ARCH effect in Industrial Production Growth, 
while we can accept the null hypothesis of no ARCH/GARCH effect in Stock Returns. 
We impose one lag of squared sample residuals included in the ARCH test statistic and 
5% significance level for each time series.  

 

 INDUSTRIAL PRODUCTION GROWTH STOCK RETURNS 
pValue 0 0,2135 

t-Statistic 113,9646 1,5477 
Critical Value 3,8415 3,8415 

 

*H = 0 indicate acceptance of the null hypothesis that no ARCH effects exist  
 

 1st Approach 
Mean Equation (VAR (6)) 
 

The Final Prediction Error (FPE), the Akaike information criterion, the Schwarz 
information criterion, the Hannan-Quinn information criterion and the residual LM 
autocorrelation test were used to help us choose the appropriate lag for our Vector 
Autoregressive model. Most of the criteria used, suggested that a VAR with five lags was 
appropriate for modeling the two time series. But, the VAR (5) model could not succeed 
in removing all the serial correlation from the residuals. So, we came down to a VAR (6) 
model that managed to remove all the serial correlation from our residuals. After 
implementing the serial LM autocorrelation test on the residuals of the VAR (6) we 
decided that it is the model that fits best to our data. The parameters estimates of the 
mean equation of the model are presented below (standard errors in “( )”): 
 

Xt =A + b1 Xt-1 +b2 X t-2 +…. +b6 Xt-6 + Ut           where 
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   A = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

(0.00351) 
0.004260 
0,00005) (

0,00003 
   ,                      b1 =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07945)    
0,0032-    

(5.07101)   
1,5134    

(0.00124)   
0,0019    

(0.07907)     
1,8507      

,            

          

 b2 =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07817)    
0,0253-     

(10.2555) 
2,8818   

(0.00122)  
0,0005    

(0.15991)   
1,9081-   

    , b3 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07740)    
0,0617-    

(12.6005)   
5,9730-   

(0.00121)   
0,0003    

(0.19647)  
1,7160    

          

 

b4 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07736)    
0,0466-    

(12.5304)    
9,1160     

(0.00121)    
0,0009      

(0.19538)   
1,2008-    

     , b5 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07732)     
0,0213      

(9.96244)    
8,1489-    

(0.00121)    
0,0001-    

(0.15534)   
0,5596     

         

      

b6 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07725)     
0,0414       

(4.83890)     
1,2067       

(0.00120)     
0,0010       

(0.07545)    
0,1040-    

 

According to the autocorrelation LM test, we can accept the null hypothesis of no 
autocorrelation in the residuals of our model (VAR (6)) up to 12 lags. The results are 
presented in the table below: 

 
Lags LM-Statistic P-Value 

1  6,701094  0,1526 
2  8,730487  0,0682 
3  8,214268  0,0840 
4  6,400303  0,1712 
5  1,325525  0,8570 
6  1,345965  0,8535 
7  10,70446  0,0301 
8  4,972191  0,2902 
9  2,168903  0,7047 
10  2,779962  0,5953 
11  4,613299  0,3293 
12  3,055724  0,5485 

 
* H0: No serial correlation at lag order h 
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Causality-in-Mean Test 
 
Before proceeding to the causality in variance test, we investigate the relationship 

between Industrial Production Growth and Stock Returns. We try to find out the causality 
in mean patterns. We perform the pairwise Granger causality tests provided by EViews 
and we summarize the results in the tables below: 
 
Dependent Variable: Industrial Production Growth 

 Chi-Square PValue 
Stock Returns 3,582303 0,7330 

 
  

Dependent Variable: Stock Returns 
 Chi-Square PValue 

Industrial Production Growth 3,731010 0,7130 
 

In both cases, the null hypothesis that the variables are insignificant should be 
accepted. Hence, there is no causality in mean between Industrial Production Growth and 
Stock Returns in U.K. for this period. 
 

Variance Equation (BEKK 1, 1) 
 

A bivariate GARCH (1, 1) model has been estimated with maximum likelihood. 
The assumptions about output growth and stock returns are that they both follow a          
t-student distribution. The parameters estimates of the unrestricted model are presented in 
the table below: (standard errors in “( )”) 
 

Parameters Unrestricted GARCH(1,1) 
c11 

-0,0001 
(0) 

c12 
0  

(0) 
c21 0 

c22 
0,0003 

(0) 

GARCH 
g11 

0,0897 
(0,0065) 

g12 -27,8410 
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 (47,4109) 

g21 
0,0004 

(0) 

g22 
0,0742 

(0,0103) 
ARCH 
a11 

-0,9846 
(0,0011) 

a12 
-1,6624 
(2,2906) 

a21 
-0,0005 

(0) 

a22 
-0,8961 
(0,0018) 

 

We checked for causality-in-variance from stock returns volatility to output 
growth volatility and vice versa. We checked also whether there is causality in both ways. 
The LRatio test was used for this purpose. We estimated three different restricted models.  
Each of the first two models checked for one way causality and the third one for causality 
in both ways. We also estimated the value of the Loglikelihood Function for each model. 
The significance level is 5% and the results are presented in the table below: 
 

 Unrestri
cted 

Restricted1
(a21=g21=0) 

Restricted2 
(a12=g12=0) 

Restricted3 
(a12=g12=a21=g21=0) 

Loglikelihood 1336,8 1318,1 517,4650 534,1954 
pValue  0 0 0 
LRatio  37,4095 1638,7 1605,2 

Critical Value  5,9915 5,9915 9,4877 
 

*H = 0 indicate acceptance of the restricted model (no causality in variance) under the 
null hypothesis; H = 1 indicate rejection of the restricted (causality-in-variance). The 
significance level of the hypothesis test is 5%.  
 
 

In the first row, we present the value of the Loglikelihood Function for each 
model. As we expected, the unrestricted model has the greatest LLF value.   

It is obvious that we should reject the null hypothesis in all cases, since p-Values 
are zero. The unrestricted model is better than all the three restricted models according to 
the LRatio tests. So, we arrive at the conclusion that there is statistically significant 
relationship between output stock volatility and stock returns volatility and vice versa.   

Finally, we should proceed to the Ljung-Box lack-of-fit hypothesis test for model 
misspecification. We will test the residuals of our GARCH model. The lags used in the 
Q-Statistic are twenty and the significance level 5%. The null hypothesis is that the 
model fit is adequate. The table below contains the results: 
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 Standardized Residuals1 Standardized Residuals2 
pValue 0,6646 0,6151 

Q-Statistic 16,8203 17,5796 
Critical Value 31,4104 31,4104 

 

*H0: the null hypothesis that the model fit is adequate (no serial correlation). 

 
 
2nd Approach 
 

In this approach, we need to model the two time series separately. Two univariate 
models have to be estimated. The mean equation of each model is an Autoregressive 
Moving Average model and the variance equation a Generalized ARCH model. The lag 
structure of the models is selected according to the significance of each parameter. The 
estimation of the parameters is being performed by EViews, along with the determination 
of the statistical significance of each one.  

The Industrial Production Growth series exhibits autocorrelation up to the fifth 
lag. Therefore, an ARMA (5, 5) process is selected. The parameters ARCH (1) and 
GARCH (1) are also statistically significant and therefore the variance equation was a 
simple GARCH (1, 1) model.  

We also estimated the Loglikelihood Function (LLF) of four different models. 
The results are presented in the table below. The ARMA (5, 5), GARCH (1, 1) has the 
greatest LLF value. 

 

LLF GARCH(1,1) ARMA(1, 1) 
GARCH(1,1)

AR(8) 
GARCH(1,1) 

ARMA (5,5) 
GARCH(1,1)

Industrial 
Production 

Growth 
882,2620 1028 1052,8 1057,3 

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  

 
The Stock Returns series does not suffer from any autocorrelation. So there was 

not any autoregressive or moving average term in the mean equation. But, there was 
autocorrelation in the second moment in the first lag. Therefore, the variance equation 
was a GARCH (1, 1) process. 

Then, we estimated the Loglikelihood Function (LLF) of three different models. 
The results are presented in the table below. The GARCH (1, 1) has the greatest LLF 
value. 

 
 



The relationship between volatility of asset prices and volatility of output growth 

 45

 

LLF ARMA(0,0) 
GARCH(1,1)

ARMA(0, 0) 
GARCH(0,0)

ARMA(0,0) 
GARCH(0,1) 

Stock 
Returns 311,7690 306,3739 308,9143 

 
 *LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  

 
The Ljung-Box Q-statistic lack-of-fit hypothesis test for model misspecification is 

used to test each univariate model fit. The innovations of the models are tested, in order 
to check whether the model fit is adequate. The lags used in the Q-Statistic are twenty 
and the significance level 5%. The null hypothesis should be accepted in both cases.  

 
 Industrial Production Growth Stock Returns 

P-Value 0,9820 0,8456 
Q-statistic 9,0728 13,6955 

Critical Value 31,4104 31,4104 
 

*H0: the null hypothesis that the model fit is adequate (no serial correlation).  

In this approach, the causality in mean is examined in two ways. Firstly, we plot 
the Sample Cross Correlation Function of the standardized residuals of the series. The 
null hypothesis is that the two residuals are uncorrelated (no causality in mean).The blue 
line represents the confidence interval of 95 %: 
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The diagram suggests that we should accept the null hypothesis in every lag. The 
following t-statistic is used to test the hypothesis of no causality in mean: 

 t = T  
^

uvr (k)  →  AN ⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
0
0 , ⎟⎟

⎠

⎞
⎥
⎦

⎤
⎢
⎣

⎡
10
01  

Where k is the number of periods the stock returns lag the industrial production and T the 
sample size (number of observations). 

We apply this test on the standardized residuals. The table contains the t-
statistic for each lag. 
 

Lags t-statistic for st. residuals 
-12 -0,9783 
-11 0,7772 
-10 0,5105 
-9 0,3718 
-8 -0,5974 
-7 0,0529 
-6 0,5233 
-5 0,0379 
-4 -0,0916 
-3 0,3942 
-2 0,641 
-1 1,6777 
0 0,3906 
1 1,6168 
2 0,463 
3 0,8123 
4 0,6376 
5 1,0083 
6 -0,9932 
7 -0,8574 
8 -1,3402 
9 0,0874 
10 1,2867 
11 0,1872 
12 0,2197 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 5% 
level 
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The null hypothesis is being accepted in every lag. There is no statistically 
significant causality in mean.  

The causality in variance is tested by plotting the Sample Cross Correlation 
Function of the squared standardized residuals. The blue line represents the confidence 
interval of  95 %: 

 
The causality in variance is present according to the diagram in the first, 

second and third lag. The hypothesis testing according to the t-statistic used before will 
be implemented. The table contains the t-statistic for each lag of the squared standardized 
residuals: 

 
Lags t-statistic for squared st. residuals
-12 -0,55 
-11 -0,1975 
-10 -0,9738 
-9 1,7194*** 
-8 0,5581 
-7 -0,2093 
-6 -0,3767 
-5 -0,1103 
-4 -0,596 
-3 -1,3043 
-2 -1,2135 
-1 -1,122 
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0 1,8186 
1 2,8513*  
2 2,6999*  
3 2,4109** 
4 -1,465 
5 0,6511 
6 -0,2186 
7 -0,1426 
8 0,0884 
9 1,9026 
10 0,2243 
11 0,615 
12 0,0083 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                    ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 
5% level ‘***’ indicates significance at the 10% 

 
There is volatility spillover from Industrial Production Growth to Stock Returns 

and vice versa. The volatility of IndustrialProductiont-1, IndustrialProductiont-2 and 
IndustrialProductiont-3 Granger causes the volatility of StockReturnst. In other words, the 
volatility of Stock Returns today has been influenced by the volatility of the Industrial 
Production Growth of the three previous months. But, there is also causality in volatility 
on the opposite direction. StockReturnst-9 volatility Granger causes 
IndustrialProductionGrowtht volatility. 

C) Japan 
 
In this section, we will try to analyze the economic data regarding industrial 

production growth and stock returns of the last fifteen year for Japan. At the beginning, it 
is essential to present some preliminary, yet important for understanding the financial 
situation of the country, statistical information. The statistical analysis of the two times 
series for the past fifteen years could be summarized in the following diagrams and 
tables:  
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Probability  0.085602
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Series: StockReturns
Sample 1990:02 2004:10
Observations 177

Mean      -0.007146
Median  -0.009831
Maximum  0.183513
Minimum -0.228789
Std. Dev.   0.067880
Skewness  -0.127299
Kurtosis   3.397806

Jarque-Bera  1.645134
Probability  0.439302

 
 
 

The statistical tables show that both series have asymmetric distributions as the 
skewness coefficient is different from zero. Mostly, they have more weight in the left part 
of the distribution, as the skewness coefficients are negative. The kurtosis coefficient for 
stock returns series is larger than 3 indicating that the tails of the distribution is fatter than 
those of the normal distribution. These two parameters are combined to test if the 
distribution is normal in the BERA-JARQUE (1980) test. The test indicates that the 
normality assumption can not be rejected for any of the time series. 
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It is proper to check if there is statistically significant autocorrelation in the stock 
returns and industrial production series, as well as in the squared returns. The diagrams 
present the autocorrelation of the series in each lag. The blue line represents the bounds, 
which are computed with approximate 95% confidence level. 
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The Industrial Production Growth series suffers from autocorrelation in many lags 

while the squared returns series only in the first three lags. As far as the Stock Returns is 
concerned, only the squared returns exhibit autocorrelation in the first lag. We will try to 
quantify the autocorrelation by performing the Engle’s ARCH test. We impose one lag, 
indicating the lags of the squared sample residuals included in the ARCH test statistic and 
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5% significance level for each time series. The results indicate persistent of ARCH effect 
in both series. The null hypothesis of no ARCH effect should be rejected for both time 
series. The table contains the results of the test: 

  

 INDUSTRIAL PRODUCTION 
GROWTH STOCK RETURNS 

pValue 0 0,00019713 
t-Statistic 101,2731 13,8583 

Critical Value 3,8415 3,8415 
 

*H = 0 indicate acceptance of the null hypothesis that no ARCH effects exist  
 

Mean Equation (VAR (6)) 

 
The appropriate mean equation should be a model that could remove all the serial 

autocorrelation from the residuals. According to four criteria we have implemented in 
various models (Final Prediction Error (FPE), the Akaike information criterion, the 
Schwarz information criterion, and the Hannan-Quinn information criterion) and the 
residuals autocorrelation LM test a Vector Autoregressive model with 9 lags was the 
appropriate model. The parameters estimates are presented now (standard errors in “( )”): 

 
Xt =A + b1 Xt-1 +b2 X t-2+…b9 X t-9 + Ut           where 
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       A =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

(0.00496) 
0.006048-
(0.00014) 
0,000018 

 ,                   b1 =   

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07603)  
0,0976- 

(2,93203) 
4,7098 

(0,00212)  
0,0036   

(0,08159)  
1,92     

 

 
 

b2 =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07374)  
0,0896-  

(6.24543) 
8,1286-  

(0.00205) 
0,0001-  

(0.17380)  
2,2623-  

 ,        b3 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07400)  
0,0187   

(8.53757)  
17,5653    

(0.00206)  
0,0021   

(0.23758)  
2,4733   
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  b4 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07405)  
0,0346-  

(9.91877)  
25,282- 

(0.00206)  
0,0008   

(0.27602) 
2,4090- 

      b5 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07354)  
0,0051- 

(10.3115)  
24,6939   

(0.00205)  
0,0004   

(0.28695)  
2,2621    

 

 
 

 b6 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07353)   
0,1673-   

(10.0106)  
20,1079- 

(0.00205)   
0,0001-    

(0.27857)  
1,8559- 

         b7= 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07164)   
0,0381-   

(8.68569)   
18,6492    

(0.00199)   
0,0002     

(0.24171)  
1,1737    

 

 

b8 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07058)   
0,0331-   

(6.41435)    
13,5360-   

(0.00196)   
0,0007     

(0.17850)  
0,5033-  

      b9 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07001)   
0,0195-   

(3.01697)   
3,6468    

(0.00195)   
0,0002-   

(0.08396)  
0,0472   

        

 
The autocorrelation LM test is now applied on the residuals of the VAR (9) 

model. The null hypothesis of no autocorrelation up to twelve lags is supported 
sufficiently and therefore is accepted. So the VAR (9) model is adequate for our data 
input. The table below contains the results: 

 

Lags LM-Statistic P-Value 
1  7,161002  0,1276 
2  1,945619  0,7458 
3  1,737387  0,7839 
4  2,926252  0,5702 
5  5,072457  0,2799 
6  11,97032  0,0176 
7  9,120800  0,0581 
8  3,139550  0,5347 
9  1,862193  0,7611 
10  1,555087  0,8168 
11  5,586140  0,2323 
12  4,250731  0,3731 

 

* H0: No serial correlation at lag order h 
 

Causality-in-Mean Test 
The causality in mean test will clarify the relationship between the Industrial 

Production Growth and Stock Returns in Japan. The pairwise Granger causality test 
provided by EViews is performed. The results are summarized in the tables: 
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Dependent Variable: Industrial Production Growth 
 Chi-Square PValue 

Stock Returns 3,063536 0,6917 
 

Dependent Variable: Stock Returns 
 Chi-Square PValue 

Industrial Production Growth 9,155117 0,1030 
 

There is no causality in mean. Industrial Production Growth does not Granger 
causes Stock Returns and vice versa. 

 
 
Variance Equation (BEKK 1, 1) 
 

The appropriate model for the variance equation was a B.E.K.K. (1, 1) model. We 
estimated the parameters of this model assuming that both time series follow a normal 
distribution according to the results of the BERA-JARQUE (1980) test. The parameters 
estimates and standard errors (in “( )”) are presented in the table above: 
 

 
Parameters Unrestricted GARCH(1,1) 

c11 
0,0011 

(0) 

c12 
-0,0294 

(0) 
c21 0 

c22 
-0,0008 
(0,0001) 

GARCH 
g11 

-0,0964 
(0,0061) 

g12 
9,2051 

(33,3377) 

g21 
-0,0091 
(0,0001) 

g22 
-0,2671 
(0,0079) 

ARCH 
a11 

0,5156 
(0,0156) 

a12 1,0256 
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(8,8846) 

a21 
0,0109 

(0) 

a22 
0,7773 

(0,0067) 
 

Three L-Ratio tests are used to check whether there is causality-in-variance from 
industrial production growth to stock returns volatility and vice versa. The first one tests 
the causality from stock returns volatility to output growth volatility, the second one from 
output growth to stock returns and the last one the causality in both directions at the same 
time. The results could be summarized in the table below: 
 

 Unrest
ricted 

Restricted1 
(a21=g21=0) 

Restricted2 
(a12=g12=0) 

Restricted3 
(a12=g12=a21=g21=0)

Loglikelihood 1088,7 734,0769 971,0255 691,8064 
pValue  0 0,0065 0 
LRatio  709,2777 1083,7 793,8187 

Critical Value  5,9915 5,9915 9,4877 
 

*H = 0 indicate acceptance of the restricted model (no causality in variance) under the 
null hypothesis; H = 1 indicate rejection of the restricted (causality-in-variance). The 
significance level of the hypothesis test is 5%.  
 

The first line contains the value of the Loglikelihood Function for each model we 
have estimated. 

In all cases, the null hypothesis that the restricted model fits our data better than 
the unrestricted should be rejected. Thus, we arrive at the conclusion that there is strong 
evidence in our data of causality in variance in both directions. In other words, there is 
statistically significant relationship in Japan the last fifteen years between asset price 
volatility and output growth volatility.   

At the end of this section, it is necessary to perform an after estimation analysis in 
order to check the validity of our results. The Ljung-Box lack-of-fit hypothesis test for 
model misspecification will be used. The GARCH residuals have been tested and the 
results are presented in the table. The lags used in the Q-Statistic are twenty and the 
significance level 5%. 
 

 Standardized Residuals1 Standardized Residuals2 
pValue 0,7308 0,8589 

Q-Statistic 15,7693 13,4147 
Critical Value 31,4104 31,4104 

*H0: the null hypothesis that the model fit is adequate (no serial correlation). 
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The results confirm that the model we selected for our time series was the 
appropriate one, since the null hypothesis that the model fit is adequate should be 
accepted in both series. 
 
2nd Approach 
 

 
The second approach we use to clarify the volatility spillovers between Stock 

Returns and Industrial Production Growth is based on the methodology proposed by 
Cheung and Ng in 1996. According to this, we have to estimate two univariate models for 
each time series. The models should be well specified and fit adequately our data. For the 
mean equation, an ARMA (R, M) process is usually used and for the variance equation a 
simple GARCH (p, q).  

Industrial Production Growth series exhibits autocorrelation up to the eighth lag. 
Hence, we preferred an autoregressive model with eight lags for the mean equation. The 
ARCH/GARCH effect of the series was present in the first lag, so the variance equation 
was a GARCH (1, 1) model.  

We also estimated the Loglikelihood Function (LLF) of four different models. 
The results are presented in the table below. The ARMA (8, 8), GARCH (1, 1) has the 
greatest LLF value. 

 

LLF AR(1) 
GARCH(1,1)

ARMA(1, 1) 
GARCH(1,1)

AR(8) 
GARCH(1,1) 

ARMA (8,8) 
GARCH(1,1)

Industrial 
Production 

Growth 
205,9284 245,2523 287,8358 400,8427 

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  

 
The second time series, Stock Returns, has autocorrelation only in the second 

moments. So, we estimated a simple GARCH (1, 1) model to account for the 
autocorrelation of the series.  

We also estimated the Loglikelihood Function (LLF) of three different models. 
The results are presented in the table below. The GARCH (1, 1) has the greatest LLF 
value. 

 

LLF ARMA(0,0) 
GARCH(1,1)

ARMA(0, 0) 
GARCH(0,0)

ARMA(0,0) 
GARCH(0,1) 

Stock 
Returns 228,2939 225,4820 228,1831 

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  
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Then, the innovations of the two models were tested to check whether the model 
fits were adequate. The test that we used was the Ljung-Box Q-statistic lack-of-fit 
hypothesis test for model misspecification. The lags used in the Q-Statistic were twenty 
and the significance level 5%. The null hypothesis should be accepted in both cases.  

 
 Industrial Production Growth Stock Returns 

P-Value 0,9633 0,9438 
Q-statistic 10,1100 11,0922 

Critical Value 31,4104 31,4104 
 
*H0: the null hypothesis that the model fit is adequate (no serial correlation).  

We shall now plot the Sample Cross Correlation Function of the standardized 
residuals of the series to examine the causality in mean patterns. The null hypothesis is 
that the two residuals are uncorrelated (no causality in mean).The blue line represents the 
confidence interval of 95 %: 
 

 
 

The null hypothesis of no autocorrelation (no causality) should be accepted in 
every lag. We may claim that IndustrialProductionGrowth does not Granger causes 
StockReturns and vice versa. The t-statistic for the hypothesis testing is: 

t = T  
^
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Where k is the number of periods the stock returns lag the industrial production and T the 
sample size (number of observations). 
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We apply this test on the standardized residuals. The table contains the t-
statistic for each lag. 

 
Lags t-statistic for st. residuals 
-12 0,1806 
-11 0,2079 
-10 0,9502 
-9 0,8089 
-8 -0,3326 
-7 0,6063 
-6 0,7837 
-5 1,3272 
-4 1,6561 
-3 0,8907 
-2 0,6984 
-1 0,4214 
0 0,9868 
1 0,1674 
2 0,4471 
3 0,466 
4 -1,1029 
5 1,0119 
6 -0,7277 
7 -0,0108 
8 -0,5448 
9 -0,772 
10 0,1734 
11 -0,9356 
12 0,0171 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                ‘*’ indicates significance at the 5% level, ‘**’ indicates significance at the 1% 
level 

 
The null hypothesis should be accepted in every lag. There is no statistically 

significant causality in mean.  
The causality in variance is tested by plotting the Sample Cross Correlation 

Function of the squared standardized residuals. The blue line represents the confidence 
interval of  95 %: 
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The null hypothesis of no causality in variance should be rejected in lag 
(+7). The hypothesis testing according to the t-statistic used before is performed on the 
squared standardized residuals. The table contains the t-statistic for each lag of the 
squared standardized residuals: 

 
Lags t-statistic for squared st. residuals 
-12 -0,4185 
-11 0,8798 
-10 0,5438 
-9 1,4861 
-8 -0,4716 
-7 -1,1072 
-6 -1,3238 
-5 -1,2741 
-4 1,6522*** 
-3 -0,1821 
-2 -0,9258 
-1 -0,2892 
0 -1,0685 
1 0,2694 
2 -1,8713 
3 0,2815 
4 -0,1318 
5 -1,5999 
6 -0,1382 
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7 -2,1665** 
8 1,636 
9 -0,9939 
10 -1,4269 
11 0,6041 
12 -0,8192 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                    ‘*’ indicates significance at the 1 % level, ‘**’ indicates significance at the 
5% level ‘***’ indicates significance at the 10% level 

 
   So, there is volatility spillover between Industrial Production Growth and Stock 

Returns in both directions. The volatility of IndustrialProductionGrowtht-7 Granger 
causes StockReturnst. The volatility of Stock returns today is being influenced by the 
volatility of Industrial Production Growth seven months ago. Moreover, the volatility of 
StockReturnst-4 Granger causes the volatility of IndustrialProductionGrowtht. 
 
 

 D) Canada 
 

The causality in variance between Stock Returns and Industrial Production 
Growth in Canadian economy is under investigation in this section. Therefore, it is useful 
to present some preliminary and descriptive statistics about the two time series in interest. 
The period spans from January 1990 till December 2004.  
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Series: Stock Returns
Sample 1990:02 2004:12
Observations 179

Mean       0.002704
Median   0.015891
Maximum  0.277402
Minimum -0.505094
Std. Dev.   0.106752
Skewness  -1.466459
Kurtosis   7.266196

Jarque-Bera  199.9016
Probability  0.000000

 
 
The distribution of Industrial Production Growth has similar features with the 

Normal Distribution. The skewness and kurtosis coefficients are close to zero and three 
respectively. Moreover, the Jarque-Bera test suggests that we should accept the null 
hypothesis that the time series is normally distributed.  

On the other hand, stock returns series exhibits different features. The distribution 
is skewed to the left (negative skewness coefficient) and has fat tails (leptokurtic). The 
normality assumption should be rejected according to the Jarque-Bera test. 

The autocorrelation of the series is examined by plotting the Sample 
Autocorrelation Function. The possibility of autocorrelation in the second moments is 
tested by the diagrams of the Sample Autocorrelation functions of the squared returns. 
(The blue line represents significance level of 5%) 
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The time series of Industrial Production Growth exhibits little autocorrelation in 
the third and sixth lag, but the squared series has no autocorrelation in any lag. On the 
other hand, Stock Returns suffers from autocorrelation in the first lag. The squared Stock 
returns exhibits also statistically significant autocorrelation in the first two lags.   

The ARCH LM-test will help us figure out whether the two series exhibit ARCH 
effect, or serial autocorrelation. The null hypothesis of no ARCH effect should be 
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accepted for Industrial Production Growth and rejected for Stock Returns. We imposed 
one lag, indicating the lags of the squared sample residuals included in the ARCH test 
statistic and 5% significance level for each time series.  

 

 INDUSTRIAL 
PRODUCTION GROWTH STOCK RETURNS 

pValue 0,5448 0,0025 
t-Statistic 0,3668 9,1047 

Critical Value 3,8415 3,8415 
 
*H = 0 indicate acceptance of the null hypothesis that no ARCH effects exist  

 
 

1st Approach 
Mean Equation (VAR (3)) 

 
 

The mean equation for our model is a Vector Autoregressive process. We chose 
the number of lags according to various criteria, namely the Final Prediction Error (FPE), 
Akaike information criterion, Schwarz information criterion and Hannan-Quinn 
information criterion. Moreover, we checked whether the model selected was capable of 
removing all the serial correlation from the residuals. We decided that a VAR (3) model 
was appropriate for our data. The parameters estimates are: (standard errors in ( )): 

 
Xt =A + b1 Xt-1 +b2 X t-2 +b3 Xt-3 + Ut           where 
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The autocorrelation LM-test suggests that the VAR (3) residuals exhibit no 
autocorrelation for the first twelve lags. The LM-statistics and the corresponding PValues 
are presented in the table below: 

 
Lags LM-Statistic P-Value 

1  0,422254  0,9806 
2  0,451708  0,9780 
3  3,918614  0,4171 
4  0,560459  0,9674 
5  2,164619  0,7055 
6  8,980518  0,0616 
7  7,591766  0,1077 
8  2,370500  0,6680 
9  2,750917  0,6003 
10  1,454214  0,8347 
11  4,441664  0,3495 
12  4,213091  0,3779 

 
* H0: No serial correlation at lag order h 

 
Causality-in-Mean Test 

 
It is essential to investigate the relationship between Industrial Production Growth 

and Stock Returns before examining the volatility spillovers between these two series. 
Therefore, we perform the Pairwise Granger Causality test provided by EViews.  

 
Dependent Variable: Industrial Production Growth 

 Chi-Square PValue 
Stock Returns 4,350595 0,2260 

 
Dependent Variable: Stock Returns 

 Chi-Square PValue 
Industrial Production Growth 0,777756 0,8548 

 
In both cases, the null hypothesis that the independent variable is statistically 

insignificant (zero) should be accepted. So, we arrive at the conclusion that there is no 
causality in mean in any direction.  

 
Variance Equation (BEKK 1, 1) 

 
The B.E.K.K. (1, 1) model is the variance equation. The parameters of the model 

are estimated with maximum likelihood estimation method. The parameters estimations 
are: 
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Parameters 
(std.errors) Unrestricted GARCH(1,1)

c11 0,0003 
(0) 

c12  0,0023 
(0) 

c21 0 
c22  0,0193 

(0 ) 
GARCH 
g11 

 0,0641 
(0,0070 ) 

g12  2,6319 
 (0,9078) 

g21  0,0051 
(0) 

g22 0,2318 
(0,0050) 

ARCH 
a11 

 0,9358 
(0,0005) 

a12  -2,2635 
(0,0754) 

a21  0,0113 
(0) 

a22 0,9112 
(0,0014) 

 
 
Before proceeding to the LRatio tests, it is necessary to perform the Ljung-Box 

lack-of-fit hypothesis test for model misspecification to check whether the unrestricted 
bivariate GARCH (1, 1) model is sufficient for our data. The lags used in the Q-Statistic 
are twenty and the significance level 5%.The residuals of the GARCH model have been 
tested and the results are in the table below: 

 
 Standardized Residuals1 Standardized Residuals2 

pValue 0,4391 0,2478 
Q-Statistic 20,3033 20,4876 

Critical Value 31,4104 31,4104 
*H0: the null hypothesis that the model fit is adequate (no serial correlation). 

 
Three different LRatio test will help us figure out whether there is any causality in 

variance and the direction of the volatility spillovers.  
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 Unrestri
cted 

Restricted1
(a21=g21=0) 

Restricted2 
(a12=g12=0) 

Restricted3 
(a12=g12=a21=g21=0)

Loglikelihood 763,0454 726,6618  583,3023 639,2621 
pValue  0 0  0 
LRatio  72,7672 359,4861 247,5655 

Critical Value  5,9915 5,9915 9,4877 
 
*H = 0 indicate acceptance of the restricted model (no causality in variance) under the 
null hypothesis; H = 1 indicate rejection of the restricted (causality-in-variance). The 
significance level of the hypothesis test is 5%.  

 
The first line of the table contains the value of the Loglikelihood Function for 

each model estimated. The unrestricted model has the greatest value of all. 
In all cases, the unrestricted model seems to outperform the restricted ones. The 

LRatio test suggests that we should reject the restricted models. In other words, there is 
statistically significant causality in variance in both directions. The Industrial Production 
Growth volatility Granger causes the volatility of Stock Returns and vice versa.  

 
2nd Approach 

 
In the second part, we employ the causality in variance test proposed by Cheung 

and Ng in 1996. Firstly, we need to model our time series in a way that all the serial 
correlation of the residuals can be removed. The mean equation will be an ARMA(R, M) 
model and the variance equation a GARCH (p, q) model. 

     The significance of each parameter will determine the lag structure of each 
model. For Industrial Production Growth all the autoregressive parameters are 
insignificant. So we use for the variance equation the simple GARCH (1, 1) model and 
for the mean the raw series.  

We also estimated the Loglikelihood Function (LLF) of three different models. 
The results are presented in the table below. The GARCH (1, 1) has the greatest LLF 
value.  

 

LLF ARMA(0,0) 
GARCH(0,0)

AR(0,0) 
GARCH(0,1)

ARMA (0,0) 
GARCH(1,1) 

Industrial 
Production 

Growth 
595,4487 596,2236 596,2236 

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  

 
Stock Returns series exhibits autocorrelation in the first lag. Hence, the mean 

equation is an ARMA (1, 1). The ARCH (1), GARCH (1), GARCH (2) and GARCH (3) 
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parameters are all statistically significant. Therefore, the variance equation is a GARCH 
(3, 1).  

We also estimated the Loglikelihood Function (LLF) of three different models. 
The results are presented in the table below. The ARMA (1, 1), GARCH (3, 1) has the 
greatest LLF value.  

 
 

LLF AR (1) 
GARCH(1,1)

AR (1) 
GARCH(3,1)

ARMA (1,1) 
GARCH(2,1) 

ARMA (1,1) 
GARCH(3,1)

Stock 
Returns 159,4349 159,5077 159,5653 159,6378 

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  
 
 

The Ljung-Box Q-statistic lack-of-fit hypothesis test will be implemented on the 
residuals of the series. This test is for model misspecification and the null hypothesis is 
that the model fit is adequate. The null hypothesis should be accepted for both series. The 
table summarizes the results of the test. The lags used in the Q-Statistic are twenty and 
the significance level 5% 

 
 Industrial Production Growth Stock Returns 

P-Value 0,0908 0,3321 
Q-statistic 4,7973 2,2045 

Critical Value 5,9915 5,9915 
 

 *H0: the null hypothesis that the model fit is adequate (no serial correlation).  

The Sample Cross Correlation Function diagram of the standardized residuals of 
the two time series indicates the causality in mean patters. The blue line on the diagram 
represents the confidence interval of 95 %: 
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According to the diagram, the null hypothesis of no correlation between the 
standardized residuals of the two series should be accepted in all lags. There is no 
causality in mean between Industrial Production Growth and Stock Returns in Canada. 

The implementation of the following t-statistic confirms the above result.  
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where k is the number of periods the stock returns lag the industrial production and T the 
sample size (number of observations). We apply this test on the standardized residuals. 
The table contains the t-statistic for each lag. 

 
Lags t-statistic for st. residuals 
-12 1,1563 
-11 -1,3984 
-10 -0,3065 
-9 0,1893 
-8 0,9467 
-7 0,4448 
-6 0,2208 
-5 -0,4777 
-4 0,402 
-3 0,0492 
-2 1,8902 
-1 0,1796 
0 1,309 
1 0,0187 
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2 0,1905 
3 1,0707 
4 -0,0925 
5 1,3794 
6 -0,1701 
7 -0,5418 
8 0,7996 
9 0,9158 
10 -0,0923 
11 -0,8423 
12 1,0933 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 5% 
level 
 

The null hypothesis of no causality in mean should be accepted in all lags. 
The plot of the Sample Cross Correlation Function of the squared standardized 

residuals of the two series is the causality in variance test. The blue line on the diagram 
represents the confidence interval of 95 %: 

 

 
  The null hypothesis of no causality should be rejected in two lags (-9, +2). There 

is causality in variance in both directions. StockReturnst-9 volatility Granger causes the 
volatility of IndustrialProductionGrowtht and IndustrialProductionGrowtht-2 volatility 
Granger causes the volatility of StockReturnst.  

-15 -10 -5 0 5 10 15
-0.2

-0.1

0 

0.1

0.2

0.3

0.4

0.5

Lag

Sample Cross Correlation Function of Squared Standardized 
Residuals 



The relationship between volatility of asset prices and volatility of output growth 

 73

We will now proceed to the hypothesis testing using the previous t-statistic on the 
squared standardized residuals. The results are summarized on the table: 

 
Lags t-statistic for squared st. residuals

-12 0,0328 
-11 1,4195 
-10 1,385 
-9 2,197** 
-8 -0,8343 
-7 0,1972 
-6 1,6427 
-5 -0,2308 
-4 1,7186 
-3 0,7008 
-2 -0,097 
-1 -0,9663 
0 -0,5427 
1 -0,4425 
2 5,5453* 
3 -0,9934 
4 0,5981 
5 0,7213 
6 0,0151 
7 -0,8363 
8 -0,122 
9 1,0361 
10 0,7984 
11 -1,1068 
12 1,6932 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                    ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 
5% level 

 
The volatility spillovers in Canada are present in both directions. StockReturnst-9 

volatility Granger causes the volatility of IndustrialProductionGrowtht and 
IndustrialProductionGrowtht-2 volatility Granger causes the volatility of StockReturnst.  
 
 

E) Germany 
 

Firstly, it is useful to examine some preliminary statistics regarding the time 
series of Industrial Production Growth and Stock Returns in the last fifteen years. We 
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present the diagrams of the evolution of the series during this period and two tables with 
the basic descriptive statistics.  
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The Industrial Production Growth series exhibits strong evidence that 
follows a Normal distribution. The skewness and kurtosis coefficients are close to zero 
and three respectively. Moreover, according to the Jarque-Bera test we should accept the 
null hypothesis of Normality.  

On the other hand, Stock Returns has a negative skewness coefficient which 
means that the distribution of the series is skewed to the left. Kurtosis is greater than 
three indicating leptokurtosis. Finally, the Normality assumption should be rejected as the 
Jarque-Bera test suggests.  
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We should now plot the Sample Autocorrelation Function of the two series 
and the squared returns as well in order to check for autocorrelation in the series and in 
the second moments.   
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Industrial Production Growth series exhibits autocorrelation in the first lag of the 
raw series, while no autocorrelation is observed on the squared returns series in any lag. 
We may also assume from the diagram that Stock Returns and the squared returns do not 
suffer from autocorrelation in any lag. 
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The next test will help us examine whether there is an ARCH/GARCH effect on 
the series. The null hypothesis is that a time series is i.i.d. GAUSSIAN disturbances, 
hence no ARCH effect exists. We impose one lag, indicating the lags of the squared     
sample residuals included in the ARCH test statistic and 5% significance level for each 
time series.  

 

 INDUSTRIAL 
PRODUCTION GROWTH STOCK RETURNS 

pValue 0,2518 0,0293 
t-Statistic 1,3133 4,7484 

Critical Value 3,8415 3,8415 
 

*H = 0 indicate acceptance of the null hypothesis that no ARCH effects exist  
 
1st Approach 
Mean Equation (VAR (2)) 
 

We have to select a model for the mean equation. The model that fits best our data 
is a Vector Autoregressive model with two lags (VAR (2)). The model was selected 
according to various lag length criteria such as Final Prediction Error (FPE), Akaike 
information criterion, Schwarz information criterion and Hannan-Quinn information 
criterion.  Moreover, the model succeeded in removing all the serial correlation from the 
residuals. The parameters estimates are: (the standard deviation in( ) )  
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We perform the LM test for the residuals provided by EViews. The null 
hypothesis of no autocorrelation should be accepted for the first 12 lags. The results are 
presented in the table: 
 

Lags LM-Statistic P-Value 
1  3,636327  0,4575 
2  3,486423  0,4799 
3  3,489348  0,4795 
4  1,135973  0,8885 
5  5,748551  0,2187 
6  5,841419  0,2113 
7  12,81137  0,0122 
8  1,350177  0,8528 
9  0,126694  0,9981 
10  3,538371  0,4721 
11  3,755569  0,4401 
12  2,924568  0,5705 

 
* H0: No serial correlation at lag order h 
 
Causality-in-Mean Test 
 

We will now proceed to a test for causality in mean. We are interested in 
investigating the relationship between Industrial Production Growth and Stock Returns. 
The Pairwise Granger causality test provided by EViews will help us through.  
 
Dependent Variable: Industrial Production Growth 

 Chi-Square PValue 
Stock Returns 2,842111 0,2415 

 
Dependent Variable: Stock Returns 

 Chi-Square PValue 
Industrial Production Growth 8,492230 0,0143 

 
 

We arrive at the conclusion that there is statistically significant causality from 
Industrial Production Growth to Stock Returns. Industrial Production Granger causes 
Stock Returns.  

 
Variance Equation (BEKK 1, 1) 

 
The variance equation is a B.E.K.K. (1, 1) model. Using the maximum likelihood 

estimation method, we estimated its parameters. The table contains the results: 
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Parameters 
(std.errors) Unrestricted GARCH(1,1)

c11 0,0094 
(0) 

c12 0,0034 
(0) 

c21 0 
c22 0,0135 

(0,0001) 
GARCH 
g11 

-0,4962 
(0,0307) 

g12 0,3939 
 (0,1895) 

g21 0,0310 
(0,0010) 

g22 0,3688 
(0,0104) 

ARCH 
a11 

0,1474 
(0,0913) 

a12 -0,4938 
(1,6914) 

a21 -0,0415 
(0,0027) 

a22 0,8764 
(0,0112) 

 
In order to check for causality in variance, we used the LRatio test. We estimated 

three different Restricted Models and performed LRatio tests. We compared each 
Restricted Model with the unrestricted one. The results can be summarized in the table:  

 
 

 Unrestric
ted 

Restricted1 
(a21=g21=0) 

Restricted2 
(a12=g12=0) 

Restricted3 
(a12=g12=a21=g21=0) 

Loglikelihood 1215,9 1198,4 1214,9 1195,7 
pValue  0,0085 0,0447 0,0014 
LRatio  9,5321 6,2139 17,6447 

Critical Value  5,9915 5,9915 9,4877 
 

*H = 0 indicate acceptance of the restricted model (no causality in variance) under the 
null hypothesis; H = 1 indicate rejection of the restricted (causality-in-variance). The 
significance level of the hypothesis test is 5%.  

 
In the first row, we present the value of the Loglikelihood Function for each 

model. As we expected, the unrestricted model has the greatest LLF value.  
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The null hypothesis that the restricted model is better than the unrestricted should 
be rejected for the first and the third case. The restrictions in the first and third restricted 
models should not have been imposed. Hence, there is statistically significant causality 
from Stock Returns volatility to Industrial Production Growth volatility. On the other 
hand, the pValue of the null hypothesis of acceptance the Restricted2 is close to 5%      
(4, 47%). Therefore, we may accept that the Restricted 2 model is marginally better than 
the Unrestricted, or there is no volatility spillover from Industrial Production Growth to 
Stock Returns.     

The post estimation analysis with the use of Ljung-Box lack-of-fit hypothesis test 
on the residuals of the unrestricted GARCH model confirms that the model we selected 
was appropriate. The lags used in the Q-Statistic were twenty and the significance level 
5%. The null hypothesis should be accepted.  

 
 Standardized Residuals1 Standardized Residuals2 

pValue 0,4206 0,6122 
Q-Statistic 20,6063 17,6234 

Critical Value 31,4104 31,4104 
 

*H0: the null hypothesis that the model fit is adequate (no serial correlation).  

 
2nd Approach 

 
We will now investigate the relationship between the volatility of Industrial 

Production Growth and Stock Returns with the method proposed by Chueng and Ng’s. At 
first, we have to select two univariate models for the two time series separately. The 
equation for the mean will be an ARMA(R, M) process and for the variance a GARCH 
(p, q). The lag structure of each model will depend on the special features of each time 
series.  

The mean equation for Industrial Production Growth is an ARMA (1, 1) and the 
variance equation a GARCH (1, 1). We estimated the Loglikelihood Function (LLF) of 
four different models. The results are presented in the table below. The ARMA (1, 1), 
GARCH (1, 1) has the greatest LLF value. 

 

LLF ARMA(0,0) 
GARCH(1,1)

AR(1) 
GARCH(0,1)

AR (1) 
GARCH(1,1) 

ARMA (1, 1)
GARCH(1,1)

Industrial 
Production 

Growth 
530,6624 539,3985 539,3985 539,9441 

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  

 
Stock Returns do not exhibit any autocorrelation in the raw series, so the model 

for Stock Returns is a simple GARCH (1, 1). We estimated the Loglikelihood Function 
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(LLF) of three different models. The results are presented in the table below. The 
GARCH (1, 1) has the greatest LLF value. 

 

LLF AR(0) 
GARCH(0,1)

ARMA(0,0) 
GARCH(0,2)

ARMA(0,0) 
GARCH(1,1) 

Stock 
Returns 264,4063 268,5985 268,9800 

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  

 
The innovations of the GARCH models are tested with the Ljung-Box Q-statistic 

lack-of-fit hypothesis test for model misspecification. The lags used in the Q-Statistic 
were twenty and the significance level 5%. The null hypothesis that the univariate model 
we chose fit adequate should be accepted in both cases. 

 
 Industrial Production Growth Stock Returns 

P-Value 0,3326 0,7748 
Q-statistic 22,1463 15,0286 

Critical Value 31,4104 31,4104 
 

*H0: the null hypothesis that the model fit is adequate (no serial correlation).  

 
We will now plot the Sample Cross Correlation Function of Standardized 

Residuals to check for causality in mean. The blue line represents the confidence interval 
of 95 %: 
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From the diagram, we may conclude that there is causality in mean in both 
directions. StockReturnst-7 Granger causes IndustrialProductionGrowtht and 
IndustrialProductionGrowtht-7 Granger causes StockReturnst.  

We proceed with the hypothesis testing using the t-statistics: 

t = T  
^

uvr (k)  →  AN ⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
0
0 , ⎟⎟

⎠

⎞
⎥
⎦

⎤
⎢
⎣

⎡
10
01  

Where k is the number of periods the stock returns lag the industrial production and T the 
sample size (number of observations). 

 
This t-statistic is being applied on the standardized residuals and the results are 

presented on the following table: 
 

Lags t-statistic for st. residuals 
-12 1,2884 
-11 1,4086 
-10 1,0771 
-9 0,7203 
-8 0,6153 
-7 2,1707** 
-6 2,0118** 
-5 2,0027** 
-4 0,1169 
-3 1,0904 
-2 1,4224 
-1 0,7788 
0 -0,4879 
1 1,4093 
2 -1,5179 
3 1,5093 
4 -0,2994 
5 0,3319 
6 -0,1204 
7 -2,1267** 
8 -0,4993 
9 -0,449 
10 -1,1648 
11 -0,7949 
12 0,6713 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 5% 
level 
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As we can see, there is causality in mean in lags (-5), (-6), (-7) and (+7). Stock 
Returnst-5, Stock Returnst-6 and Stock Returnst-7 Granger cause Industrial Production 
Growtht and simultaneously Industrial Production Growtht-7 Granger causes Stock 
Returnst.  

In the case that causality in mean is present, the conditional mean should be 
modified accordingly to account for this additional dynamics. If not, the causality-in-
variance tests are likely to suffer from size distortions. Theologos Pantelidis and Nikitas 
Pittis proved in their paper (2004) “Testing for Granger causality in variance in the 
presence of causality in mean” that the tests for causality in variance suffer from severe 
size distortions when strong causality-in-mean effects are left unaccounted for. By means 
of Monte Carlo simulations they showed that the model used to filter out the conditional 
mean effects must account for possible causality in mean between the series. Otherwise, 
the causality-in-variance test statistics suffer from severe size distortions, especially when 
the neglected causality-in-mean effects are strong.  

Therefore, we add a time series regression matrix of explanatory variables, a 
regression component, in the mean equation of Industrial Production Growth. The 
regression component is a lagged transform by 5, 6 and 7 lags of the time series Stock 
Returns (StockReturnst-5, StockReturnst-6, and StockReturnst-7). Then, we follow the same 
procedure for the Stock Returns time series. The exogenous variable added in the mean 
equation of Stock Returns is Industrial Production Growth lagged by 7 lags 
(IndustrialProductionGrowtht-7). We plot again the Sample Cross Correlation Function of 
the standardized residuals of the series and of the squared standardized residuals.  
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 The diagrams reveal that there is no more causality in mean, but there 
is statistically significant causality in variance in lags (-4). StockReturnst-8 volatility 
Granger causes IndustrialProductionGrowtht volatility.  

We proceed to the hypothesis testing for standardized residuals and squared 
standardized residuals. The t-statistics for each lag are:  
  

Lags t-statistic for st. residuals t-statistic for squared st. residuals
-12 1,4885 1,7409 
-11 1,7247 -0,4158 
-10 0,7001 -0,5243 
-9 0,4433 -0,2164 
-8 -0,0492 -0,9094 
-7 0,2803 -0,9846 
-6 0,3714 -1,5266 
-5 1,7474 0,444 
-4 -0,2416 3,311* 
-3 1,2084 1,291 
-2 1,4702 -0,5975 
-1 0,7387 -1,2132 
0 -0,2661 1,2816 
1 1,7358 -0,688 
2 -1,6148 0,4461 
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3 1,4215 0,0863 
4 -0,4307 -0,5539 
5 0,1448 -0,3121 
6 -0,2382 -0,265 
7 -0,3611 -1,394 
8 -0,8549 -1,9764** 
9 -0,2102 -0,3507 
10 -1,1716 0,2601 
11 -0,6768 -0,1979 
12 0,6714 -0,152 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                    ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 
5% level 
 
 
 

The t-statistics suggest that there is no causality in mean but we should 
reject the null hypothesis for no causality in variance in two lags (-4, +8).  So, we may 
assume that there is causality in variance in both ways. StockReturnst-4 volatility Granger 
causes IndustrialProductionGrowtht volatility and simultaneously 
IndustrialProductionGrowtht-8 volatility Granger causes StockReturnst volatility. 
 

 

F) France  
 

We start the analysis of the country with some descriptive statistics and diagrams 
representing the evolution of the time series under investigation the last fifteen years.  
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The skewness coefficients are negative for both series indicating that the 
distribution of the series is skewed to the left. The kurtosis coefficients are greater than 
three (fat tails). The Jarque-Bera test suggests that we should reject the Normality 
assumption for both series.   

We shall now plot the sample autocorrelation function diagrams for both the 
returns of the series and the squared returns. The Autocorrelation Function (ACF) of the 
squared returns may still indicate significant correlation and persistence in the second-
order moments. We may check this by plotting the ACF of the squared returns. 
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We may assume that Industrial Production Growth series exhibits autocorrelation 
in the first lag while the Stock Returns show no autocorrelation. In the squared returns, 
there in no statistically significant autocorrelation in the first lags for both series.  

We will now proceed to the ARCH test. The null hypothesis of this test is that no 
ARCH effect exists.  Now, we impose one lag, indicating the lags of the squared     
sample residuals included in the ARCH test statistic and 5% significance level for each 
time series.   
 

 INDUSTRIAL 
PRODUCTION GROWTH STOCK RETURNS 

pValue 0,9075 0,9253 
t-Statistic 0,0135 0,0088 

Critical Value 3,8415 3,8415 
 

*H = 0 indicate acceptance of the null hypothesis that no ARCH effects exist  
 
So, that test suggests that no ARCH effect exists in any of our time series. 
 
 

1st Approach 
Mean Equation (VAR (1)) 
 

The mean equation selected for our data is a VAR (1) model. The criteria used to 
reach this decision are mentioned in the previous sections.  

 
Xt =A + b1 Xt-1 + Ut           where 
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The autocorrelation LM Test for the residuals of the VAR (1) is presented in the 

table below. We accept in all lags the null hypothesis of no autocorrelation in the first 12 
lags: 
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Lags LM-Statistic P-Value 

1 2,399661 0,6627 
2  3,518035  0,4751 
3  2,499201  0,6448 
4  1,628195  0,8037 
5  3,670410  0,4524 
6  0,519238  0,9716 
7  0,936086  0,9193 
8  2,276613  0,6850 
9  5,660718  0,2260 
10  6,582225  0,1597 
11  5,250085  0,2626 
12  5,297919  0,2581 

 
* H0: No serial correlation at lag order h 

 
Causality-in-Mean Test 

Before studying the volatility spillovers, it is necessary to investigate the 
relationship between asset prices and Industrial Production Growth. We use the Pairwise 
Granger Causality Tests provided by EViews to check whether there is statistically 
significant causality in mean. We carry out pairwise Granger causality tests and test 
whether an endogenous variable can be treated as exogenous. For each equation in the 
VAR, the output displays (Wald) statistics for the joint significance of each of the other 
lagged endogenous variables in that equation. The results are presented in the tables 
below: 

 
Dependent Variable: Industrial Production Growth 

 Chi-Square PValue 
Stock Returns 0,423702 0,5151 

 
Dependent Variable: Stock Returns 

 Chi-Square PValue 
Industrial Production Growth 0,812120 0,3675 

 
In both cases, the null hypothesis that the independent variable is statistically 

insignificant (zero) should be accepted. So, there is no causality in mean in any direction. 
In other words, Stock Returns does not Granger causes Industrial Production Growth and 
vice versa.   
 

Variance Equation (BEKK 1, 1) 
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We estimated a bivariate GARCH (1, 1) model with maximum likelihood and we 
assumed that output growth and stock returns follow a t-student distribution. The 
parameters estimates of the unrestricted model are presented in the table below: 

 
Parameters 
(std.errors) Unrestricted GARCH(1,1) 

c11 0,0107 
(0) 

c12  0,0014 
(0) 

c21 0 
c22  0,0897 

(0,003) 
GARCH 
g11 

 0,3714 
(0,0165) 

g12  0,5502 
 (0,0675) 

g21  -0,0124 
(0,0007) 

g22  -0,4217 
(0,1226) 

ARCH 
a11 

 0,1597 
(0,0223) 

a12  0,4542 
(0,3533) 

a21  -0,0197 
(0,0036) 

a22  0,1576 
(0,3092) 

 
We will now perform the LRatio Tests to check the causality in variance from 

output growth volatility to asset price volatility and vice versa. The results can be 
summarized in the table: 

 

 Unrestric
ted 

Restricted1 
(a21=g21=0) 

Restricted2 
(a12=g12=0) 

Restricted3 
(a12=g12=a21=g21=0) 

Loglikelihood 761,5210 761,3519 760,9798 760,8630 
pValue  0,8444 0,5814 0,5179 
LRatio  35,0816 2,0295 40,5344 

Critical Value  5,9915 5,9915 9,4877 
 
*H = 0 indicate acceptance of the restricted model (no causality in variance) under the 
null hypothesis; H = 1 indicate rejection of the restricted (causality-in-variance). The 
significance level of the hypothesis test is 5%.  
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In the first row, we present the value of the Loglikelihood Function for each 
model. As we expected, the unrestricted model has the greatest LLF value.   

The restricted 1 model tests whether there is causality from stock returns volatility 
to output growth volatility. The 2nd restricted model checks the causality from industrial 
production to stock returns volatility. The restricted 3 model investigates the causality in 
both directions. The null hypothesis should be accepted in all cases according to the 
LRatio test. Hence, there is no causality in variance at all, since the unrestricted model 
outperforms the three restricted models.  

The post-estimation analysis reveals that the unrestricted model we chose fit 
adequate our data. The Ljung-Box lack-of-fit hypothesis test is implemented on the 
residuals of the unrestricted GARCH model. This model is based on the Q-Statistic. The 
lags used in the Q-Statistic were twenty and the significance level 5%. The results are 
presented in the table: 

 
 Standardized Residuals1 Standardized Residuals2 

pValue 0,2902 0,0894 
Q-Statistic 22,9719 28,9174 

Critical Value 31,4104 31,4104 
 

*H0: the null hypothesis that the model fit is adequate (no serial correlation).  

 
2nd Approach 

 
 
In the second method, we need to model each time series separately. So we 

construct two univariate models trying to take into account the various features of the 
data documented in the previous section. We model the mean equation as an 
autoregressive moving average process ARMA (p, q). The conditional variance equation 
is then modeled as a classical GARCH model. The error term εt is supposed to be 

conditionally normally distributed with mean 0 and conditional variance σ
2
t .  

The selection of the lag structure of each equation is made by the econometric 
package EViews. We estimate the parameters and calculate their significance. And we 
reject the insignificant parameters. For the Industrial Production Growth series the 
autoregressive first lag parameter is significant. Therefore, the mean equation is an 
ARMA (1, 1). The ARCH (1), GARCH (1) and GARCH (2) parameters are also 
statistically significant. Hence, the variance equation is a GARCH (2, 1) model.  

We also estimated the Loglikelihood Function (LLF) of three different models. 
The results are presented in the table below. The ARMA (1, 1), GARCH (2, 1) has the 
greatest LLF value. 
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LLF ARMA(0,0) 
GARCH(1,1)

AR (1) 
GARCH(2,1)

ARMA (1, 1) 
GARCH(2,1) 

Industrial 
Production 

Growth 
505,4311 509,3706 509,6706 

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  

 
The Stock Returns series exhibit no autocorrelation. The autoregressive 

coefficient of the first lag is not significant (the null hypothesis that the coefficient was 
zero should be accepted). The ARCH (1), GARCH (1) and GARCH (2) parameters are 
significant. Consequently, the variance equation of Stock Returns should be a GARCH 
(2, 1) model. 

We also estimated the Loglikelihood Function (LLF) of three different models. 
The results are presented in the table below. The GARCH (2, 1) has the greatest LLF 
value. 

LLF AR(1) 
GARCH(0,1)

ARMA(0,0) 
GARCH(0,1)

ARMA(0,0) 
GARCH(2,1) 

Stock 
Returns 179,5827 178,4713 181,4720 

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  

 
 
After choosing the univariate models, the Ljung-Box Q-statistic lack-of-fit 

hypothesis test for model misspecification is used. The innovations of the GARCH 
models are tested, in order to check whether the model fit is adequate. The null 
hypothesis should be accepted in both cases.  

 
 Industrial Production Growth Stock Returns 

P-Value 0,3629 0,1161 
Q-statistic 21,5951 27,7241 

Critical Value 31,4104 31,4104 
 

*H0: the null hypothesis that the model fit is adequate (no serial correlation).  

 
The causality in mean should be now tested. Therefore, we plot the Sample Cross 

Correlation Function of the standardized residuals of the series. The blue line represents 
the confidence interval of 95 %: 
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 We may assume that no correlation exists between the standardized 
residuals and no causality in mean is present. The hypothesis testing using the following 
t-statistic confirms the above conclusion.  

 t = T  
^

uvr (k)  →  AN ⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
0
0 , ⎟⎟

⎠

⎞
⎥
⎦

⎤
⎢
⎣

⎡
10
01  

where k is the number of periods the stock returns lag the industrial production and T the 
sample size (number of observations). We apply this test on the standardized residuals. 
The table contains the t-statistic for each lag. 
 

Lags t-statistic for st. residuals 
-12 -1,6504 
-11 -0,2336 
-10 0,383 
-9 0,8025 
-8 0,9426 
-7 0,0025 
-6 -0,0951 
-5 -0,0385 
-4 0,8529 
-3 0,5385 
-2 1,7439 
-1 0,718 
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0 1,9597 
1 -0,8128 
2 0,3421 
3 -0,3997 
4 -0,1495 
5 -1,2275 
6 0,1081 
7 0,0368 
8 -0,1996 
9 0,2503 
10 1,0817 
11 0,2955 
12 -0,4951 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 5% 
level 

We proceed to the causality in variance test by plotting the Sample 
Cross Correlation function of the squared standardized residuals. 
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     The diagram shows that there is no causality in variance in any lag. We proceed to 
the hypothesis testing using the same t-statistic as before. The null hypothesis of no 
causality should be accepted in every lag. The table contains the t-statistics for every lag: 
 

Lags t-statistic for squared st. residuals
-12 1,5299 
-11 -0,0202 
-10 -0,3599 
-9 -0,0689 
-8 -0,5811 
-7 -0,5586 
-6 -0,2337 
-5 0,5198 
-4 -0,5774 
-3 -0,548 
-2 -0,4063 
-1 -0,391 
0 -0,2311 
1 -0,4963 
2 -0,421 
3 -0,3197 
4 -0,3371 
5 -0,37 
6 -0,495 
7 -0,3344 
8 -0,2293 
9 1,9523 
10 -0,4821 
11 -0,2086 
12 -0,405 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                    ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 
5% level 
 

    G) Spain 
  

In the first part of the analysis, we present some preliminary statistical data about 
the Spanish Industrial Production Growth and the Spanish Stock Returns. The diagrams 
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plot the evolution of the two series during the past fifteen year and the tables contains 
some descriptive statistics for both time series: 
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Series: StockReturns
Sample 1990:02 2004:12
Observations 179

Mean       0.005995
Median   0.008938
Maximum  0.234171
Minimum -0.233960
Std. Dev.   0.067067
Skewness  -0.341549
Kurtosis   3.950608

Jarque-Bera  10.22000
Probability  0.006036

 
 
In November 1992 there was a huge crash in Spanish Industrial Production, 

resulting in a 6% monthly reduction. That was the minimum of the time series of 
industrial production growth. Some important characteristics of the time series are that 
both of them exhibit excess kurtosis and have negative skewness coefficients. So their 
distributions are skewed to the left and leptokurtic (fat tails). The normality assumption 
should be rejected for both of them according to the Jarque-Bera test.   

As far as autocorrelation is concerned, the diagrams below depict the 
autocorrelation in every lag for the return series and the squared returns as well. It is 
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important to check the autocorrelation in the squared returns because sometimes even if 
the Autocorrelation Function of the observed returns exhibits little correlation, the 
autocorrelation function of the squared returns may still indicate significant correlation 
and persistence in the second-order moments. The blue line represents the bounds, which 
are computed with approximate 95% confidence level. 
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The autocorrelation is statistically significant for both Industrial Production 
Growth and squared returns. The Industrial Production Growth series exhibits 
autocorrelation till the 7th lag and the squared returns series in the first lag. The stock 
returns series has no autocorrelation but the squared returns series suffers from 
autocorrelation till the 2nd lag.  

In addition to the diagrams, we perform the Engle’s ARCH test to check whether 
there is any ARCH/GARCH effect on our time series. The null hypothesis that a time 
series of sample residuals is i.i.d. Gaussian disturbances (i.e., no ARCH effects exist) can 
be accepted for the Industrial Production Growth but should be rejected for the Stock 
Returns. We have imposed one lag, indicating the lags of the squared sample residuals 
included in the ARCH test statistic and 5% significance level for each time series. The 
table contains the details for the test: 
 

 Industrial Production 
Growth Stock Returns 

pValue 0,9214 0,000134 
t-Statistic 0,0097 14,6387 

Critical Value 3,8415 3,8415 
 
*H = 0 indicate acceptance of the null hypothesis that no ARCH effects exist  
 
 
 
1st Approach 
Mean Equation (VAR (3)) 

 
At this point we should choose the appropriate mean equation. The model that 

outperforms in all criteria and tests is the Vector Autoregressive model with three lags 
(VAR (3)). It manages to remove the autocorrelation from the residuals. The parameters 
estimates of the model are (standard errors in “( )”): 

 

Xt =A + b1 Xt-1 +b2 X t-2 +b3 Xt-3+ Ut           where 
 

     Xt = ⎥
⎦

⎤
⎢
⎣

⎡
t

t

r
ρ

,         Xt-1 = ⎥
⎦

⎤
⎢
⎣

⎡
−

−

1

1

t

t

r
ρ

,         Ut = ⎥
⎦

⎤
⎢
⎣

⎡
t

t

u
u

2

1
  

 

     A =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

(0.00532) 
0.007228 
(0.00043) 
0.000427 

 ,                 b1 =   

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07593)   
0,0433    

(0.92565)  
0,3331-  

(0.00617)   
0,0166    

(0.07519)    
0,1582      
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b2 =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07729)   
0,0624-   

(0.91701) 
0,6476   

(0.00628)  
0,0086    

(0.07449)  
0,1752   

,                 b3 = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07741)   
0,0512    

(0.90786)  
0,3757-   

(0.00629)  
0,0110    

(0.07375)  
0,1703   

 

  
After having estimated the VAR (3) model we perform the autocorrelation LM 

test on the residuals. The autocorrelation has been removed up to the 10th lag. 
 

Lags LM-Statistic P-Value 
1  8.071794  0.0890 
2  4.832431  0.3049 
3  6.409572  0.1706 
4  3.970393  0.4100 
5  1.962505  0.7427 
6  0.907225  0.9235 
7  2.351051  0.6715 
8  0.340981  0.9870 
9  1.770188  0.7779 
10  4.277953  0.3697 

 
* H0: No serial correlation at lag order h 
 

Causality-in-Mean Test 
The relationship between Industrial Production Growth and Stock Returns is 

being investigated in this part of the country analysis. We try to check whether there is 
causality in mean in any direction. The results are presented in the following two tables: 
 

Dependent Variable: Industrial Production Growth 
 Chi-Square PValue 

Stock Returns 12,15085 0,0069 
 

Dependent Variable: Stock Returns 
 Chi-Square PValue 

Industrial Production Growth 0,658137 0,8830 
 

There is statistically significant causality from Stock Returns to Industrial 
Production Growth. In other words, Stock Returns Granger causes Industrial Production 
Growth. 
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Variance Equation (BEKK 1, 1) 
 

According to the descriptive statistics of the two time series, we should reject the 
Normality Assumption for both of them (the Jarque-Bera test reject the normality for 
both series). But we can assume they follow a t-student distribution. So in this context we 
estimated the parameters of the BEKK (1, 1) model using the maximum likelihood 
estimation method. The parameters estimates are: (the standard errors in “( )”)  
 
 

Parameters Unrestricted GARCH(1,1) 

c11 
0,0000 

(0) 

c12 
0,0009 

(0) 

c21 0 

c22 
0,0262 

(0,0004) 
GARCH 
g11 

1,0250 
(0,0261) 

g12 
2,2592 

(3,5917) 

g21 
-0,0188 

(0) 

g22 
-0,2278 
(0,0348) 

ARCH 
a11 

0,2958 
(0,0567) 

a12 
2,9018 

(6,0200) 

a21 
0,0032 

(0,0001) 

a22 
-0,9107 
(0,0201) 

 
 
After estimating the parameters of the model, we will set some restrictions to test 

the causality in variance. Three different restricted models will be estimated and 
compared with the unrestricted model using the LRatio test. The results are presented in 
the following table:  
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 Unrest
ricted 

Restricted1 
(a21=g21=0) 

Restricted2 
(a12=g12=0) 

Restricted3 
(a12=g12=a21=g21=0)

Loglikelihood 1074,4 1047,6 1073,2 1047,3 
pValue  0 0,2937 0 
LRatio  53,4761 2,4504 54,2324 

Critical Value  5,9915 5,9915 9,4877 
 

*H = 0 indicate acceptance of the restricted model (no causality in variance) under the 
null hypothesis; H = 1 indicate rejection of the restricted (causality-in-variance). The 
significance level of the hypothesis test is 5%.  
 

The first line of the table contains the value of the Loglikelihood Function for 
each model estimated. The unrestricted model has the greatest value of all. 

According to the LRatio test, the unrestricted model outperforms the Restricted1 
model and the Restricted3 model. In other words, the hypothesis that there is causality in 
variance from stock returns to output growth should be accepted. On the other hand, the 
null hypothesis of acceptance the Restricted2 model should be also accepted. So there is 
no causality from output growth volatility to stock returns volatility. To sum up, Spain’s 
stock returns volatility Granger causes output growth volatility but there is no statistically 
significant causality from output growth to stock returns volatility. 

At the end of this section, we perform the Ljung-Box lack-of-fit hypothesis test 
for model misspecification to check whether the unrestricted bivariate GARCH (1, 1) 
model is sufficient for our data. The lags used in the Q-Statistic were twenty and the 
significance level 5%. The residuals of the GARCH model have been tested and the 
results are in the table below: 

 
 

 Standardized Residuals1 Standardized Residuals2 
pValue 0,9396 0,0428 

Q-Statistic 11,2445 32,0490 
Critical Value 31,4104 31,4104 

 

*H0: the null hypothesis that the model fit is adequate (no serial correlation). 

 
 
2nd Approach 
 

At first, we should model the time series of Industrial Production Growth and 
Stock Returns. Two univariate models should be constructed according to the special 
features of the two series. The mean equation will be an autoregressive moving average 
process ARMA (R, M), whereas the conditional variance equation as a classical GARCH 
(p, q) model. 
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The mean equation for the Industrial Production Growth is an AR (3) model, 
while the variance equation an ARCH (1).  

We estimated the Loglikelihood Function (LLF) of four different models. The 
results are presented in the table below. The AR (3), GARCH (0, 1) has the greatest LLF 
value. 

 

LLF ARMA(0,0) 
GARCH(1,1)

AR(0,0) 
GARCH(0,1)

AR (3) 
GARCH(1,1) 

AR (3) 
GARCH(0,1)

Industrial 
Production 

Growth 
706,7654 661,7190 806,6669 806,6672 

  
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  

 
There is no statistically significant autocorrelation in the Stock Returns series 

neither in the squared returns in any lag. So the innovations of the model should be the 
series itself. The significance of each parameter is calculated by EViews, along with the 
estimation of the parameters.   

The Ljung-Box Q-statistic lack-of-fit hypothesis test for model misspecification is 
performed on the innovations of the two models in order to check whether the model fit is 
adequate. The null hypothesis should be accepted in Stock Returns and rejected for 
Industrial Production. 

 
 Industrial Production Growth Stock Returns 

P-Value 0   0,8745 
Q-statistic 83,21 13,0670 

Critical Value 31,4104 31,4104 
 

*H0: the null hypothesis that the model fit is adequate (no serial correlation).  

  
 
We will now plot the Sample Cross Correlation Function of standardized 

residuals in order to check for causality in mean. The blue line represents the confidence 
interval of 95 %: 
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The null hypothesis of no causality in mean should be accepted for every lag, 

according to the diagram. The hypothesis testing using the following t-statistic is then 
performed.  

 t = T  
^

uvr (k)  →  AN ⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
0
0 , ⎟⎟

⎠

⎞
⎥
⎦

⎤
⎢
⎣

⎡
10
01  

where k is the number of periods the stock returns lag the industrial production and T the 
sample size (number of observations).  

We apply this test on the standardized residuals. The table contains the t-statistics 
for each lag. 

Lags t-statistic for st. residuals 
-12 -0,8942 
-11 -0,1688 
-10 -1,413 
-9       -1,835*** 
-8 -1,6879*** 
-7 -0,6524 
-6 -0,7679 
-5 -1,3193 
-4 0,6233 
-3 0,0609 
-2 -0,4275 
-1 1,0512 
0 -1,1562 
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1 -1,5414 
2 -0,3726 
3 -1,119 
4 -0,2087 
5 -0,0932 
6 -0,187 
7 -0,3634 
8 -0,4177 
9 0,3117 
10 -0,1014 
11 0,2425 
12 -0,9593 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                    ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 
5% level ‘***’ indicates significance at the 10% level 

 
The null hypothesis should be rejected in lags (-9,-8). There is causality in mean 

from Stock Returns to Industrial Production Growth. The StockReturnst-9 and 
StockReturnst-8 Granger causes IndustrialProductionGrowtht 

The diagram of the Sample Cross Correlation Function of the squared 
standardized residuals documents the causality in variance patterns. The blue line 
represents the confidence interval of 95 %: 
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We perform the hypothesis testing using the same t-statistic but on the squared 
standardized residuals of the two time series. The table contains the t-statistics for each 
lag. 
 

Lags t-statistic for squared st. residuals 
-12 -0,2887 
-11 -1,0569 
-10 0,0328 
-9 0,5914 
-8 0,5468 
-7 -0,8335 
-6 -0,3897 
-5 0,5284 
-4 -1,6901*** 
-3 -1,4573 
-2 -0,7742 
-1 -1,6873*** 
0 0,9632 
1 1,3375 
2 0,0695 
3 1,0189 
4 0,4366 
5 -0,0473 
6 0,1462 
7 0,5279 
8 0,0663 
9 0,8258 
10 1,184 
11 -0,487 
12 1,2436 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                    ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 
5% level, ‘***’ indicates significance at the 10% level 
 

The hypothesis testing reveals causality in variance from Stock Returns to 
Industrial Production Growth. The null hypothesis of no causality should be rejected with 
10% significance level in lag (-1) and lag (-4). The volatility of StockReturnst-1 and 
StockReturnst-4 Granger causes the volatility of IndustrialProductionGrowtht. The 
volatility of today’s IndustrialProductionGrowth is influenced by the volatility of 
StockReturns one and four months ago.  
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H) Greece 
 

We will continue the country analysis with Greece. The data comes in monthly 
terms from January 1990 till December 2004. Some preliminary statistics for the time 
series and the diagrams of the evolution of the series in the last fifteen years are presented 
in the tables below:  
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Series: StockReturns
Sample 1990:02 2004:12
Observations 179

Mean       0.009802
Median  -0.000882
Maximum  0.417280
Minimum -0.287353
Std. Dev.   0.101205
Skewness   0.869896
Kurtosis   5.633266

Jarque-Bera  74.29224
Probability  0.000000

 
Industrial Production Growth and Stock Returns exhibit excess kurtosis (fat tails) 

and positive skewness coefficient (i.e., skewed to the right). The Jarque-Bera test 
suggests for both time series the rejection of the hypothesis that they follow a Normal 
Distribution.   

The autocorrelation of the two series is examined with two ways. At the 
beginning, we plot the autocorrelation diagrams for the series and the squared series. 
MERTON (1980) argues that one of the simplest ways to approximate the instantaneous 
volatility is to take the squared or absolute value of returns. This is one of the reasons 
why we also study the correlations of squared returns in order to detect if there is some 
non-linear (more precisely quadratic) dependence in returns and more specifically to 
check if there are some patterns in conditional volatility. The blue line represents the 
bounds, which are computed with approximate 95% confidence level. 
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The results show that there is strong linear dependence in the first lag for 
Industrial Production Growth. In the squared returns the autocorrelation exceeds the 
bounds for the first lag as well. As far as the Stock Returns series is concerned, there is 
statistically significant autocorrelation in both returns and squared returns series in 
various lags.  

We implement the ARCH test in order to check for the presence of 
ARCH/GARCH effects on the two series. We impose one lag, indicating the lags of the 
squared sample residuals included in the ARCH test statistic and 5% significance level 
for each time series. The results indicate persistent of ARCH effect in Industrial 
Production Growth series only. 

 

 INDUSTRIAL PRODUCTION GROWTH STOCK RETURNS 
pValue 0 0,3874 

t-Statistic 38,0064 0,7472 
Critical Value 3,8415 3,8415 
 
*H = 0 indicate acceptance of the null hypothesis that no ARCH effects  
 

1st Approach 
Mean Equation (VAR (5)) 
 
 

The model which we chose for the mean equation is the Vector Autoregressive 
with five lags. The main criterion was its ability to remove all the serial correlation from 
the residuals. We also used the Final Prediction Error (FPE), Akaike information 
criterion, Schwarz information criterion and Hannan-Quinn information criterion. The 
parameters estimates are (the standard errors in “( )”): 
 

Xt =A + b1 Xt-1 +b2 X t-2+…b5 X t-5 + Ut           where 
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   A =
⎥
⎥
⎥

⎦

⎤

⎢
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⎣

⎡

(0.00706) 
0.002792 
(0.00191) 
0.002194 

                                   b1 =   

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

(0.07400) 
0.080279 

(0.28494) 
0.691599 

(0.02006) 
0.020724-

(0.07723) 
0.584883-
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b2 =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢

⎣

⎡
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(0.07127) 
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(0.28376) 
1.082122 

(0.01932) 
0.042453 

(0.07691) 
0.033483 

                              

 
 

The autocorrelation LM test for the residuals of the VAR (5) confirms 
the autocorrelation has been removed from the residuals. The null hypothesis of no serial 
correlation should be accepted up to the second lag. The table contains the results:  
 

Lags LM-Statistic PValue 
1 5,031317 0,2841 
2 3,513194 0,4759 

 

* H0: No serial correlation at lag order h 
 

Causality-in-Mean Test 

 
Before the causality in variance test, we will perform a test for causality in mean. 

The pairwise Granger causality test is used. The results of the test are: 
 

Dependent Variable: Industrial Production Growth 
 Chi-Square PValue 

Stock Returns 12,16801 0,0326 
 
 

Dependent Variable: Stock Returns 
 Chi-Square PValue 

Industrial Production Growth 19,62380 0,0015 
 
In both cases the null hypothesis that the independent variable is statistically 

insignificant should be rejected. Thus, there is causality in mean in both directions. 
Industrial Production Growth Granger causes Stock Returns and vice versa. 
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Variance Equation (BEKK 1, 1) 
 
The variance equation selected for our data is a B.E.K.K. (1, 1) model, 

with t-student errors, since the Normality assumption should be rejected for both time 
series. Using the maximum likelihood estimation method, we estimated the parameters of 
the unrestricted B.E.K.K. model: (standard errors in “( )”): 

 

Parameters 
(std. errors) Unrestricted GARCH(1,1) 

c11 
0,0000 
(0,000) 

c12 
0,0003 
(0,000) 

c21 0 

c22 
0,0737 

(0,0013) 

GARCH 
g11 

0,2298 
(0,0706) 

g12 
-0,4523 
(1,0524) 

g21 
-0,0936 
(0,0012) 

g22 
-0,2021 
(0,0545) 

ARCH 
a11 

0,7817 
(0,0381) 

a12 
-1,0770 
(3,70220 

a21 
0,1026 

(0,0050) 

a22 
0,4269 

(0,3117) 
 
 
 
We will now estimate three restricted models, by setting some 

restrictions on the unrestricted models. The Restricted1 model will help us clear out the 
causality from Stock Returns volatility to Output Growth volatility. The Restricted2 
model tests the causality from the opposite direction and the third the simultaneous 
causality in both directions. We will compare each restricted model with the unrestricted 
one. The choice will be made according to the LRatio test. We now present the results of 
the test:   
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 Unrestr
icted 

Restricted1
(a21=g21=0) 

Restricted2 
(a12=g12=0) 

Restricted3 
(a12=g12=a21=g21=0) 

Loglikelihood 607,6657 304,8142 591,9625 312,3833 
pValue  0 0  0 
LRatio  605,7029 31,4063 590,5648 

Critical Value  5,9915 5,9915 9,4877 
 

*H = 0 indicate acceptance of the restricted model (no causality in variance) under the 
null hypothesis; H = 1 indicate rejection of the restricted (causality-in-variance). The 
significance level of the hypothesis test is 5%.  

 

At first, we evaluated the Loglikelihood Function for each model. The 
unrestricted model had the greatest value.  

The LRatio tests indicate rejection of the null hypothesis (i.e. of the 
restricted model) for all cases. The unrestricted model outperforms all the restricted ones. 
So there is statistically significant causality in both directions. In other words, the 
volatility of the Greek output growth Granger causes the Greek stock returns volatility 
and vice versa.    

At the end of the section, post estimation analysis has been conducted, 
with the use of the Ljung-Box test. This is a lack-of-fit hypothesis test for model 
misspecification. The lags used in the Q-Statistic were twenty and the significance level 
5%. We checked the GARCH residuals to test the null hypothesis that the model fit is 
adequate. The null hypothesis should be accepted in both cases. 

 

 Standardized Residuals1 Standardized Residuals2 
pValue 0,4006 0,2084 

Q-Statistic 20,9413 24,8198 
Critical Value 31,4104 31,4104 

 

*H0: the null hypothesis that the model fit is adequate (no serial correlation). 

 

2nd Approach 
 

The causality in variance between Industrial Production Growth and Stock 
Returns will be investigated in this part of the country analysis according to the 
methodology proposed by Chueng and Ng in 1996. The two time series have to be 
modeled in two separate univariate models. We choose for the mean equation an 
autoregressive moving average process and for the variance equation a generalized 
ARCH process. The two models should be well specified. The lag structure of each 
model depends on the special features of the time series.  
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For the Greek Industrial Production Growth series, an autoregressive moving 
average process with four lags was selected to account for the serial correlation that the 
series exhibits up to the fourth lag. For the variance equation, we chose a GARCH (3, 1). 
The GARCH parameters were statistically significant up to the third lag, while only the 
first ARCH parameter was different from zero (statistically significant).  

We also estimated the Loglikelihood Function (LLF) of four different models. 
The results are presented in the table below. The ARMA (4, 4), GARCH (3, 1) has the 
greatest LLF value. 

 

LLF ARMA(0,0) 
GARCH(3,1)

ARMA(4,4) 
GARCH(0,1)

AR (4) 
GARCH(3,1) 

ARMA(4,4) 
GARCH(3,1)

Industrial 
Production 

Growth 
414,2916 440,7472 427,6997 441,4201 

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  

 
The Stock Returns series was modeled as an ARMA (1, 1) process with variance 

equation a simple GARCH (1, 1).   
We estimated the Loglikelihood Function (LLF) of four different models. The 

results are presented in the table below. The ARMA (1, 1), GARCH (1, 1) has the 
greatest LLF value. 

 

LLF AR(1) 
GARCH(1,1)

AR (2) 
GARCH(1,1)

ARMA(1,1) 
GARCH(0,1) 

ARMA(1,1) 
GARCH(1,1)

Stock 
Returns 171,0358 170,9743 162,7072 171,2085 

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  

 
The Ljung-Box Q-statistic lack-of-fit hypothesis test for model misspecification is 

performed on the residuals of each univariate model. The lags used in the Q-Statistic 
were twenty and the significance level 5%. The null hypothesis that the model is well 
specified should be accepted in both cases.  

 
 Industrial Production Growth Stock Returns 

P-Value 0,1267 0,5703 
Q-statistic 27,3111 28,2605 

Critical Value 31,4104 31,4104 
 

*H0: the null hypothesis that the model fit is adequate (no serial correlation).  
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The causality in mean is tested using the Sample Cross Correlation Function of 

standardized residuals of the two time series. The diagram of the function is presented 
above. The blue line represents the confidence interval of 95 %: 

 

 
 
 

According to the diagram, there is no causality in mean between the two time 
series. The null hypothesis of no autocorrelation should be accepted for every lag. The t-
statistics is: 

t = T  
^

uvr (k)  →  AN ⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
0
0 , ⎟⎟

⎠

⎞
⎥
⎦

⎤
⎢
⎣

⎡
10
01  

Where k is the number of periods the stock returns lag the industrial production and T the 
sample size (number of observations). 

We apply this test on the standardized residuals. The table contains the t-
statistics for each lag. The null hypothesis is that there is no causality, the standardized 
residuals are uncorrelated. 

 
Lags t-statistic for st. residuals 
-12 0,2583 
-11 0,0589 
-10 1,2999 
-9 0,9146 
-8 0,1614 
-7 1,832*** 

-15 -10 -5 0 5 10 15 -0.2

-0.15

-0.1

-0.05

0 

0.05

0.1

0.15

Lag

Sample Cross Correlation Function of Standardized Residuals 
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-6 -0,0142 
-5 0,7928 
-4 -0,3425 
-3 -0,1025 
-2 0,0845 
-1 -1,763*** 
0 0,4593 
1 1,1418 
2 -0,3333 
3 0,4108 
4 0,7368 
5 0,8906 
6 -1,5467 
7 0,0324 
8 -0,3133 
9 0,1271 
10 0,3373 
11 0,2318 
12 -1,7125*** 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 5% 
level, ‘***’indicates significance at the 10% level 

 
 
There is causality in mean in both directions. StockReturnst-1 and 

StockReturnst-7 Granger causes IndustrialProductionGrowtht while 
IndustrialProductionGrowtht-12 Granger causes StockReturnst. 

 The diagram of the Sample Cross Correlation Function of the squared 
standardized residuals examines the causality in variance of the two time series. The blue 
line represents the confidence interval of 95 %: 
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The hypothesis testing is preformed using the t-statistic mentioned before on the 
squared standardized residuals. The table contains the results: 

 
Lags t-statistic for squared st. residuals 
-12 -0,7525 
-11 0,5468 
-10 0,0238 
-9 -0,6445 
-8 -0,5066 
-7 -0,057 
-6 0,9216 
-5 -0,2847 
-4 5,9135* 
-3 0,8062 
-2 2,0034** 
-1 -0,236 
0 -1,4485 
1 2,113** 
2 0,4754 
3 -0,3875 
4 -0,8816 
5 -0,681 

-15 -10 -5 0 5 10 15
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Lag

Sample Cross Correlation Function of Squared St. Residuals 
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6 2,1701** 
7 0,2882 
8 -0,0424 
9 -0,469 
10 -0,0636 
11 -0,2586 
12 -0,7746 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                    ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 
5% level 
 

The null hypothesis of no causality- the squared standardized residuals of the two 
series are uncorrelated- should be rejected in 4 lags (-4, -2, +1, +6). There are volatility 
spillovers between Industrial Production Growth and Stock returns, since there is 
statistically significant causality in variance in both directions. The volatility of 
StockReturnst-2 and StockReturnst-4 Granger causes the volatility of 
IndustrialProductionGrowtht. On the other hand, IndustrialProductionGrowtht-1 and 
IndustrialProductionGrowtht-6 volatility Granger causes the volatility of StockReturnst.  
To put it another way, the volatility of Stock Returns today is influenced by the volatility 
of Industrial production Growth one and six months ago, while the volatility of Industrial 
Production Growth today is influence by the Stock Returns volatility two and four 
months ago.   

 

I) Portugal 
 

The last country of our analysis is Portugal. At first, we analyze the time series of 
interest and plot the returns of the series for the fifteen years period. The descriptive 
statistics and the diagrams are presented below:  
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Series: StockReturns
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Observations 179

Mean       0.004648
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Skewness   0.135328
Kurtosis   6.684693

Jarque-Bera  101.8079
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Both series exhibit excess kurtosis, since the kurtosis coefficient is greater than 

three (Fat tails). The skewness coefficient for Industrial Production Growth is negative; 
hence the distribution is skewed to the left, but close to zero. The Jarque-Bera test 
suggests that we should accept the Normality assumption for Industrial Production 
Growth. On the other hand, Stock returns distribution is skewed to the right and 
according to the Jarque-Bera test the normality hypothesis should be rejected.  

The following diagrams depict the Autocorrelation Functions for the two time 
series and the squared series as well. The blue line represents the bounds, which are 
computed with approximate 95% confidence level. 
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The autocorrelation function for Industrial production growth and 

squared series exceeds the bounds on the first lag. In other words, the autocorrelation of 
the two series is statistically significant up to the first lag. The stock returns exhibits no 
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autocorrelation; on the contrary the squared stock returns exhibits autocorrelation in the 
first lag.   

The ARCH/GARCH test is used to test the hypothesis that the time 
series have no ARCH effect (homoskedasticity at the corresponding Lag). We impose 
one lag, indicating the lags of the squared sample residuals included in the ARCH test 
statistic and 5% significance level for each time series. The results indicate persistent of 
ARCH effect in both series. The results of the test are shown in the table below: 

 
 

 INDUSTRIAL PRODUCTION 
GROWTH STOCK RETURNS 

pValue 0,005 0 
t-Statistic 7,8824 44,6821 

Critical Value 3,8415 3,8415 
 
*H = 0 indicate acceptance of the null hypothesis that no ARCH effects  
 

1st Approach 
Mean Equation (VAR (2)) 

 
The Vector Autoregressive model with two lags was the model selected 

for the mean equation. The autocorrelation LM test, the Final Prediction Error (FPE), the 
Akaike information criterion, Schwarz information criterion and Hannan-Quinn 
information criterion were the tests we used in order to choose the model. The parameters 
estimates and the standard errors in ( ) are: 

 

Xt =A + b1 Xt-1 +b2 X t-2+ Ut           where 
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The autocorrelation LM test on the residuals confirms that the autocorrelation has 
been successfully removed from the residuals up to the 12th lag. The null hypothesis that 
no serial correlation exists should be accepted at all lags. The table presents the results of 
the test: 
 

Lags LM-Statistic P-Value 
1  2,912179  0,5726 
2  2,387478  0,6649 
3  3,602742  0,4624 
4  2,033484  0,7296 
5  4,478129  0,3451 
6  1,718682  0,7873 
7  2,023880  0,7314 
8  4,228247  0,3760 
9  3,520079  0,4748 
10  6,141671  0,1888 
11  0,805396  0,9377 
12  5,114506  0,2757 

 
* H0: No serial correlation at lag order h 
 
Causality-in-Mean Test 

The relationship of Industrial Production Growth and Stock Return is under 
investigation in this part of the country analysis. The pairwise Granger causality test is 
carried out. The results are summarized in the tables below: 
 

Dependent Variable: Industrial Production Growth 
 Chi-Square PValue 

Stock Returns 0,463272 0,7932 
 

Dependent Variable: Stock Returns 
 Chi-Square PValue 

Industrial Production Growth  0,71890 0,6981 
 

There is no statistically significant causality in mean between the two time series.  

Variance Equation (BEKK 1, 1) 
 
The BEKK (1, 1) model is our variance equation and the parameters of the 

model have been estimated with the maximum likelihood estimation method. The 
assumption we made is that the errors follow a t-student distribution.  



The relationship between volatility of asset prices and volatility of output growth 

 130

Parameters Unrestricted GARCH(1,1) 

c11 
0,0048 

(0) 

c12 
0,0086 

(0) 
c21 0 

c22 
0,0156 

(0) 

GARCH 
g11 

-0,2335 
(0,0071) 

g12 
-0,1138 
(0,0229) 

g21 
0,0235 

(0,0022) 

g22 
0,5408 

(0,0247) 
ARCH 
a11 

0,8579 
(0,0022) 

a12 
-0,5255 
(0,0180) 

a21 
0,0084 

(0,0007) 

a22 
0,7759 

(0,0141) 
  

 
We estimated three models, by imposing different restrictions on the 

unrestricted GARCH model. Each model captures different direction of causality in 
variance. The Restricted1 checks the causality from stock returns volatility to the output 
growth volatility, the Restricted2 the causality from output growth to stock returns and 
the Restricted3 the causality in both directions. The LRatio test will be the rule for 
choosing among the restricted and the unrestricted model. The null hypothesis is that the 
restricted model fits our data better than the unrestricted. In other words, the acceptance 
of the null hypothesis indicates that there is no causality in this direction. 

 

 Unrestric
ted 

Restricted1 
(a21=g21=0) 

Restricted2 
(a12=g12=0) 

Restricted3 
(a12=g12=a21=g21=0) 

Loglikelihood 706,3987 704,1667 643,5877 659,9888 
pValue  0,1073 0 0 
LRatio  4,4640 125,6220 92,8198 

Critical Value  5,9915 5,9915 9,4877 
 
*H = 0 indicate acceptance of the restricted model (no causality in variance) under the 
null hypothesis; H = 1 indicate rejection of the restricted (causality-in-variance). The 
significance level of the hypothesis test is 5%.  
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 The first line contains the values of the Loglikelihood Functions for each 
model estimated. The unrestricted model has the greatest value of all.  

The LRatio test suggests that the Restricted1 is better than the unrestricted. 
So, we conclude that there is no causality in variance from stock returns to output growth 
in Portugal. But, the unrestricted model outperforms the other restricted models. The 
LRatio test suggests in both cases the rejection of the restricted model. In other words, 
the causality from output growth volatility to stock returns volatility is statistically 
significant.  

The post estimation analysis covers the last part of this section. The Ljung-
Box lack-of-fit hypothesis test for model misspecification is used to test the GARCH 
residuals. The lags used in the Q-Statistic were twenty and the significance level 5%. The 
null hypothesis that the model fit is adequate (no serial correlation) should be accepted.  

 
 Standardized Residuals1 Standardized Residuals2 

pValue 0,9396 0,0910 
Q-Statistic 11,2445 28,8403 

Critical Value 31,4104 31,4104 
  

*H0: the null hypothesis that the model fit is adequate (no serial correlation). 

 
2nd Approach 
 

At first, we need two univariate models for our time series. We have to select the 
appropriate models to fit our data adequately. The mean equation for each time series will 
be an autoregressive moving average process and the variance equation a generalized 
ARCH process. The special features of the data and the autocorrelation of each time 
series will determine the lag structure of the models. 

For Industrial Production Growth, we chose two autoregressive lags, since the 
first two autoregressive parameters of the ARMA process were statistically significant. 
The ARCH parameters were not significant, thus we did not use a variance equation for 
the residuals.  

We also estimated the Loglikelihood Function (LLF) of four different models. 
The results are presented in the table below. The ARMA (2, 2) model has the greatest 
LLF value. 
 

LLF AR (1) 
GARCH(0,1)

ARMA(1,1) 
GARCH(0,1)

AR (2) 
GARCH(0,0) 

ARMA (2, 2)
GARCH(0,0)

Industrial 
Production 

Growth 
415,5060 424,3884 426,1812 426,9126 

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  
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Stock Returns series exhibits autocorrelation in the first lag and has an ARCH 
effect in the first lag as well. Hence, the mean equation for modeling this time series is an 
ARMA (1, 1) process and the variance equation a GARCH (1, 1) process. 

 We estimated the Loglikelihood Function (LLF) of four different models. The 
results are presented in the table below. The ARMA (1, 1), GARCH (1, 1) model has the 
greatest LLF value. 

 

LLF AR(1) 
GARCH(1,1)

AR (1) 
GARCH(0,1)

ARMA (1,1) 
GARCH(0,1) 

ARMA(1,1) 
GARCH(1,1)

Stock 
Returns 279,5505 277,3135 278,7381 280,3612 

 
*LLF - Optimized log-likelihood objective function value associated with the parameter 
estimates  

 
We shall now test our model structure whether the model fit is adequate. The 

Ljung-Box Q-statistic lack-of-fit hypothesis test will be implemented on the residuals of 
the series. This test is for model misspecification. The lags used in the Q-Statistic were 
twenty and the significance level 5%. The null hypothesis that no serial correlation has 
remained on the residuals should be accepted in both cases. 

 
 Industrial Production Growth Stock Returns 

P-Value 0,9709 0,2498 
Q-statistic 9,8442 23,8322 

Critical Value 31,4104 31,4104 
 

*H0: the null hypothesis that the model fit is adequate (no serial correlation).  

 
The diagram of the Sample Cross Correlation Function of standardized residuals 

of the two time series will help us clarify the causality in mean patterns between 
Industrial Production Growth and Stock Returns. The null hypothesis is that the residuals 
are uncorrelated, or there is no causality in mean. The blue line represents the confidence 
interval of 95 %. The diagram of the Function is presented below: 
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The diagram suggests that we should accept the null hypothesis of no causality in 

mean in every lag. The t-statistic used for the hypothesis testing is defined as: 

t = T  
^

uvr (k)  →  AN ⎜⎜
⎝

⎛
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⎣
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⎡
10
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Where k is the number of periods the stock returns lag the industrial production and T the 
sample size (number of observations). 

 
The t-statistic for the standardized residuals of the two time series for every lag is: 
 

Lags t-statistic for st. residuals 
-12 1,8948 
-11 0,4089 
-10 -0,3141 
-9 1,0656 
-8 1,1736 
-7 0,0728 
-6 0,7034 
-5 0,7527 
-4 -0,1002 
-3 -0,5012 
-2 -0,4445 
-1 0,5152 
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0 0,2516 
1 -0,5597 
2 0,4988 
3 0,0828 
4 -0,4227 
5 -1,3758 
6 -0,8795 
7 0,2397 
8 1,2988 
9 0,8841 
10 -1,8154 
11 -0,2168 
12 -0,3492 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 5% 
level 

 
The null hypothesis should be accepted for every lag. So there is no statistically 

significant causality in mean between Industrial Production Growth and Stock Returns.  
As far as causality in variance is concerned, the diagram of the Sample Cross 

Correlation Function of the squared standardized residuals will be used. The null 
hypothesis is that the squared standardized residuals of the two series are uncorrelated. 
The blue line represents the confidence interval of 95 %: 
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The hypothesis testing uses the t-statistic mentioned before but performed on the 

squared standardized residuals. The table contains the results: 
 

Lags t-statistic for squared st. residuals 
-12 -0,5709 
-11 -1,4462 
-10 -0,7885 
-9 -0,3927 
-8 -0,6057 
-7 -0,4563 
-6 -1,1995 
-5 -0,639 
-4 0,116 
-3 -0,8113 
-2 -0,6389 
-1 0,0515 
0 0,3791 
1 -1,2824 
2 0,5186 
3 -0,9952 
4 -0,9058 
5 -1,424 
6 -0,5307 
7 1,4835 
8 0,8332 
9 -0,796 
10 2,7665* 
11 -0,1282 
12 -0,1281 

 
H0: No causality, the standardized residuals and standardized squared 

residuals of the two time series are uncorrelated. 
                    ‘*’ indicates significance at the 1% level, ‘**’ indicates significance at the 
5% level 
 

The t-statistic suggests that the null hypothesis should be accepted in all but the 
10th lag. In lag (+10) the null hypothesis of no causality in variance should be rejected. 
Hence, there is volatility spillover from Industrial Production Growth to Stock Returns. 
The volatility of IndustrialProductionGrowtht-10 Granger causes the volatility of 
StockReturnst. The volatility of today’s Stock Returns has been influenced by the 
volatility of Industrial Production Growth ten months ago.  
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8. Conclusions 
 
 
 
The existence of causal links between volatility in the financial markets and in the 

real economy is a matter of great interest among policymakers, Central Banks and 
financial managers. At first, it is a necessary condition for asset price targeting to be 
effective as a means to stabilize the economy. Moreover, managers can obtain more 
insights in the management of their current assets and current liabilities from movements 
of these two economic variables.  

In this paper, the short-term dynamic relationships between output growth and 
asset prices have been explored. We were interested in establishing statistically 
significant relationships about these two economic factors and their second moments 
(volatilities). The causality in mean and the causality in variance patterns were 
investigated in a group of nine economies. The economies varied in size, political power 
and economical situation and were located all around the world. We used two different 
approaches to reach our conclusions about volatility spillovers. In the first approach, we a 
estimated a B.E.K.K. (1, 1) model with the two time series. Then, we imposed the 
appropriate restrictions and via LRatio tests we determined the direction of volatility 
spillovers. The second approach was the methodology proposed by Cheung and Ng in 
1996 in their paper ‘A causality in variance test and its application to financial market 
prices. 

In general, Industrial Production Growth and Stock Returns are not closely 
related. Only in four countries out of nine, can man establish a strong relationship 
between them. In U.S.A. and in Spain asset prices Granger causes output growth, while 
in Germany and Greece the causality pattern is in both directions. In the rest countries of 
our sample, there is no statistically significant causality in mean. The table summarizes 
the results of both approaches: 
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1st approach: 
 Causality in mean 

U.K. No 
U.S.A. rt-1 → ρt * 
Japan No 

Spain rt-9 → ρt*** 
rt-8 → ρt*** 

Greece 
rt-1 → ρt*** 
rt-7 → ρt*** 

            ρt-12 → rt*** 
Portugal No 
France No 
Canada No 

Germany 

ρt-7 → rt** 
rt-7 → ρt** 
rt-6 → ρt** 
rt-5 → ρt** 

   
rt stands for Stock Returns 
  ρt stands for Industrial Production Growth 
‘*’ indicates significance level of 1% ‘**’ indicates significance level of 5% ‘***’ 
indicates significance level of 10% 

 
2nd approach: 

 rt → ρt ρt→ rt 
U.K. No No 

U.S.A. Yes  No 
Japan No No 
Spain Yes No 
Greece Yes Yes  

Portugal No No 
France No No 
Canada No No  

Germany No Yes 
 
* rt stands for Stock Returns 
** ρt stands for Industrial Production Growth 
 

The empirical evidence of our study indicates that there exist volatility spillovers 
between output growth and asset prices, indicating that their second moments are related.  
In five countries, the causality in variance is statistically significant in both directions. In 
U.S.A. and Spain there is one way causality, since Stock returns volatility Granger causes 
Industrial Production Growth volatility. In Portugal, the causality in variance is on the 



The relationship between volatility of asset prices and volatility of output growth 

 138

opposite direction, while in France there are no statistically significant volatility 
spillovers. The tables contain the results of the two approaches: 

 
1st approach: 

 Causality in variance 

U.K. 

Vol(ρt-1 ) → Vol(rt)* 
Vol(ρt-2 ) → Vol(rt)* 
Vol(ρt-3 ) → Vol(rt)** 

      Vol(rt-9 ) → Vol(ρt)*** 
U.S.A.      Vol(rt-8 ) → Vol(ρt)* 

Japan     Vol(ρt-7 ) → Vol(rt) ** 
       Vol(rt-4 ) → Vol(ρt)*** 

Spain  Vol(rt-1 ) → Vol(ρt)*** 
 Vol(rt-4 ) → Vol(ρt)*** 

Greece 

Vol(rt-2 ) → Vol(ρt)** 
Vol(rt-4 ) → Vol(ρt)* 

Vol(ρt-1 ) → Vol(rt)** 
Vol(ρt-6 ) → Vol(rt)** 

Portugal Vol(ρt-10 ) → Vol(rt)* 
France No 

Canada Vol(rt-9 ) → Vol(ρt)** 
Vol(ρt-2 ) → Vol(rt)* 

Germany Vol(rt-4 ) → Vol(ρt)* 
Vol(ρt-8 ) → Vol(rt)** 

 
*Vol (rt) stands for Stock Returns Volatility 
**Vol (ρt) stands for Industrial Production Growth Volatility 
‘*’ indicates significance level of 1% ‘**’ indicates significance level of 5% ‘***’ 
indicates significance level of 10% 

 
2nd approach: 

 
 

Restricted 1 
 

Vol(rt)   Vol(ρt) 

Restricted 2 
 

Vol(ρt) Vol(rt) 

Restricted 3 
 

Vol(ρt)  Vol(rt) 
U.K. Yes Yes Yes 

U.S.A. Yes No Yes 
Japan Yes Yes Yes 
Spain Yes No Yes 
Greece Yes Yes Yes 

Portugal No Yes Yes 
France No No No 
Canada Yes Yes Yes 

Germany Yes Yes Yes  
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