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Abstract

Weather Derivatives were first introduced in the USA in 1997 and their
creation was driven by the need of companies whose revenues were related to
weather fluctuations to hedge against the risk of unwanted weather conditions.
Weather Derivatives belong to a different class of derivatives as their underly-
ing asset (weather) is not tradable and this leads to ordinary pricing models
(such as Black and Scholes formula) not being applicable. A lot of paperwork
was directed towards the pricing of these products and the modeling of the
daily average temperature which characterizes the majority of the traded in-
struments. In this thesis we analyze a suggested model which describes the
evolution of temperature which is expressed as a sum of a deterministic and a
stochastic part, and discuss 3 different approaches for pricing weather options
and weather futures: Pricing under an Equivalent Martingale Measure, Arbi-
trage Free Pricing and Actuarial Pricing. Then we present implementations
for each of the models on temperature call options and compare their results;
for the implementation we use Monte Carlo simulations.

Key words: Weather Options, Temperature, Ornstein-Uchlenbeck Process,
Risk Neutral Probability Measure, Arbitrage Free Pricing, Actuarial Pricing,
Monte Carlo Simulations.
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Chapter 1

Introduction to Weather
Derivatives

1.1 About Weather Derivatives

Weather has always been a considerable risk factor for many economic

sectors. According to a recent study published in the Bulletin of the American

Meteorological Society [1] ,the cost of weather risk for the U.S.A. may annually

add up to 485 billion dollars, which represents approximately 3.4% of annual

GDP.

Weather derivatives are financial instruments whose income depends on

the evolution of an underlying meteorological index. Their creation aimed to

protect companies against the risk of weather-related losses. The underlying

variables can be, i.e., temperature, humidity, rain or snowfall (measured in a

specific location), with the most common underlying variable among them to

be temperature. They differ from other derivatives because these underlying

variables have no direct value to price the weather derivative.
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Many kinds of businesses are subject to weather risk, such as energy

producers and consumers, agricultural industry, retail sales, leisure industry,

construction, transportation, etc. Before the advent of weather derivatives,

companies had only insurance contracts as a tool to protect themselves against

unexpected weather conditions. But an insurance contract can provide cov-

erage only against catastrophic damage (floods, hurricanes, etc.) and only if

there is evidence from the company that it has suffered financial losses due to

these disasters. In case of less extreme adverse weather conditions there was

no protection for these companies, and their earnings were left to the mercy

of the weather. Someone could say that weather derivatives are the logical

expansion of insurance contracts of that type. On the other hand, Weather

Derivatives can be used even by investors whose business is not threatened by

weather fluctuations, either for hedging or from speculation, as they help also

to the diversification of their investment portfolio since these contracts are not

correlated with the financial assets.

1.2 Evolution of the Market of Weather Deriva-

tives

The sector that drove primarily the demand for weather derivatives was

the energy sector as energy prices are highly correlated to weather. Energy

traders Aquila, Enron, and Koch Industries executed the first weather deriva-

tive transactions in 1997 [2].
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The market started with a big jump as the winter of 1997-98 was the win-

ter of “El Niño” which was one of the strongest of such events on record. This

phenomenon received huge publicity in the American press and many compa-

nies wanted to hedge their seasonal weather risk due to the risk of significant

earnings decline. Another factor that boosted the demand for weather deriva-

tives was the deregulation of the U.S. energy industry. However, the effects

of unpredictable seasonal weather patterns had previously been absorbed and

managed within a regulated monopoly environment. But with deregulation,

the various participants in the process of producing, marketing, and delivering

energy to U.S. households and businesses were left to confront weather as a

new and significant risk for them.

Thanks to the above factors, the market for weather derivatives expanded

rapidly and contracts started to be traded Over-The-Counter (OTC) as indi-

vidually negotiated contracts. Later, in order to increase the market size and

limit the credit risk which the contracts involved, the Chicago Mercantile Ex-

change (CME) started an electronic market place for weather derivatives in

1999.

In spite of the interest aroused by the weather derivatives, their de-

velopment was not so rapid and significant as it was hoped. Several reasons

can be accounted to this fact. For instance, the departure of the main traders

such as Enron, Aquila and El Paso from the market has lowered the number

of transactions, also participants are limited mainly to energy companies, a

fact that does not promote the liquidity of the market, and additionally the

distrust of investors for the weather products that still deem too risky. But
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the main obstacle to climate market expansion is the difficulty in evaluating

weather derivatives which has as a consequence the high price of the contracts

(the seller tends to fix a high bonus to compensate for the difficult exercise of

evaluation).

Still more trades are executed in CME. According to the Pricewater-

houseCoopers’ National Economic Consulting Group industry survey, pub-

lished on the Weather Risk Management Association’s website (2003-2004),

[3], initially the weather derivatives market developed OTC reaching 2.5 bil-

lion US dollars in 2000-2001 and 4.3 billion in 2001-2002. Thereafter it grew

slowly in 2003-2004 (4.7 billion), but then jumped to 9.7 billion in 2004-2005

and to 45.2 billion in 2005-2006. This sudden increase in trading volumes was

due to CME’s activity, which started trading weather derivatives in 1999 and

by 2005 had gained a leading position.

The weather derivatives market was then severely hit by the 2007 crisis,

when in a single year trade volumes fell to 19.2 billion dollars and continued

dropping. To date, the industry reached 11.8 billion in the last year achieving

an average growth of 20% from 2010 and the OTC market grew by 30%, a fact

that indicates it increased its volume of trade from 1.9 to 2.4 billion dollars;

see also (S. Miller, 2011), [4].

At the current time the country with the biggest volume of trade in

weather derivatives is certainly the U.S.A., although weather derivatives are

now spreading all over the world.
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1.3 The Weather Contracts

Weather derivatives can be usually structured as swaps, futures, forwards

and call/put options based on different underlying weather indices. The most

popular ones are temperature related. The reason for this is the abundance

of historical temperature data and the demand for a weather product coming

from end-users with temperature exposure. The most commonly used weather

indices in the market are the heating and cooling degree-days (see Definition

1.2), rain and snowfall.

1.3.1 Temperature Indices

Subsequently we define temperature, which will be used from now on in

this form.

Definition 1.1 Temperature: Given a specific weather station, let Tjmax and

Tjmin denote the maximal and minimal temperatures (in degrees of Celsius)

measured on day i. We define the temperature for day i as

Tjmax + Tjmin

2
.

As mentioned above, one important underlying variable for weather

derivatives is the degree-day. This quantity is defined below.
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Definition 1.2 Degree-days: Let Ti be the temperature for day i. We de-

fine the heating degree-days 1, HDDi on that day, as the number of degrees

by which the day’s average temperature is below the base temperature (18◦C

or 65◦ Fahrenheit and in some warmer climates 75◦ Fahrenheit) and the cool-

ing degree-days 2, CDDi, as the number of degrees by which the day’s average

temperature is over the base temperature. In particular, we have:

HDDi ≡ max[18− Ti, 0],

CDDi ≡ max[Ti − 18, 0],

respectively.

Most temperature based weather derivatives are based on the accumula-

tion ofHDDs or CDDs during a certain period, usually one calendar month or

a winter/summer period. Typically the HDD season includes winter months

from November to March and the CDD season is from May to September.

April and October are often referred to as the ”shoulder months”. In this

thesis we will only study the degree-days indices, because they are most often

used.

1The name heating degree days originates from the US energy sector. The reason is that
if the temperature is below 18◦ C people tend to use more energy to heat their homes

2The name cooling degree days originates from the US energy sector. The reason is that
if the temperature is above 18◦ C people start turning their air conditioners on, for cooling.
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Definition 1.3 Degree-days Indices: The HDD and CDD indexes are the

number of HDDs and CDDs, respectively, over a period of n days:

IHn =
n∑
i=1

HDDi (1.1)

and

ICn =
n∑
i=1

CDDi. (1.2)

1.3.2 Weather Swaps

Swaps are contracts in which two parties exchange risks during a prede-

termined period of time. In most swaps, payments are made between the two

parties, with one side paying a fixed price, and the other paying a variable

price. Unlike to interest rate swaps, which usually have several swap dates,

in one type of weather swap that is often used, there is only one date when

the cashflows are “swapped”. Furthermore, weather swaps appear as either

forward or future contracts. They are traded without a premium and have

payoff that is linearly depended on some weather index. Prices are quoted in

terms of the strike price and the level of the index. Swaps as forwards (which

are mostly capped3 and so are not strictly linear) are traded in the OTC for

a very wide range of locations and indices. Swaps as futures (with no caps)

are traded in the CME for monthly and seasonal contracts on several locations.

3In order to limit the maximum payout by any of the counterparties, the contracts are
usually “capped”. i.e. only a maximum amount of payout can change hands.
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Example 1.4 A chain of wine bars wants to buy coverage to protect itself

against bad weather, a fact that would reduce its sales. So it goes on a deal

with the following terms: If the temperature falls below 24◦C on Thursdays

or Fridays between June and September, the company will receive a payment.

The payments are fixed at £15.000 per day, up to a maximum limit of £100.000

in total for the whole period.

1.3.3 Weather Options

Weather options are contracts which are exchanged for a premium. Most

OTC weather options for end users with weather risk are structured because

there is no weather swap market in the location of the users. There are two

types of options: calls and puts.

The buyer of a HDD call, for example, pays the seller a premium at

the beginning of the contract. In return, if the number of HDDs (HDD in-

dex) for the contract period is greater than the predetermined strike level the

buyer will receive a payout. The size of the payout is determined by the strike

and the tick size. The tick size is the amount of money that the holder of the

call receives for each degree-day above the strike level for the period. Often

the option has a cap on the maximum payout unlike, for example, traditional

options on stocks.

A generic weather option can be formulated by specifying the follow-

ing parameters: the contract type (call/put), the contract period (i.e. Jan
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2012), the underlying index (HDD/CDD), the location (official weather sta-

tion from which the temperature data are obtained), the strike level, the tick

size and the maximum payout (if there is any).

A call option allows an investor to protect himself against the high index

levels (IHn or ICn ) and a put option allows a company to hedge against the low

index levels. A call option gives to the buyer the following amount (payoff) at

the expiration date T of the contract:

C(T ) = δmax[IHn −K, 0
]
, during the winter period, and

C(T ) = δmax[ICn −K, 0
]
, during the summer period.

A put option provides to the buyer the following amount :

P (T ) = δmax[K − IHn , 0
]
, during the winter period, and

P (T ) = δmax[K − ICn , 0
]
, during the summer period,

where δ is the tick size which represents the value of one degree-day and K is

the strike level.

The form of the payoffs is due to the fact that these contracts give the

right but not the obligation to buy (in the case of the call options) or to sell

(in the case of the put options) the index (IHn or ICn ) at the expiration date of

the contract. This privilege requires the buyer to pay a premium to enter one

of these contracts.
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Example 1.5 A heating oil retailer wants to protect his company against

a loss of a turnover due to an overly warm winter will sell an HDD call op-

tion. When a contract is signed, the retailer receives a premium equal to the

price of the call option. If at the end of the contract period the actual index

IHn is below the strike level the company will receive nothing. Otherwise, he

will have to pay to the buyer the amount of δ(IHn − K). So, if the winter is

particularly warm, the retailer keeps the premium of the call and that is a

supplement from his lowered revenues. If the winter is very cold on the other

hand, he will be able to finance the payout of the option by means of his in-

creased revenues. Therefore, the retailer has reduced his company’s exposure

to weather risk. Alternatively, he could buy an HDD put. So, he would pay

the price in advance, but if the winter turned to be cold enough, this small

loss would have been balanced by his high revenues. If the winter was warm,

then he would receive the payoff of the put.

As we mentioned earlier, usually calls and puts have a cap on the maxi-

mum payoff. This means that weather options are call and put spreads instead

of calls and puts in traditional sense:

c(T ) = min[cap, δmax[0, IHn −K]]

c(T ) = min[cap, δmax[0, K − IHn ]]

Similarly we denote the CDD option spreads. In the following example

we have a CDD put option traded between Air conditioning Ltd which has

the long position and ABC bank the short position on the contract.
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If this CDD put option had a cap, for example $350.000, the payoff at matu-

rity would be:

min[cap, δmax[0, K − CDD]] = min[350, 000, 10, 000(max[0, 550 − 510])] =

min[350, 000, 400, 000] = $350, 000.

So, in this example, the settlement payoff would have been $350,000 instead

of $400.000 if it the put option was uncapped.

For simplicity though, we will not consider the payoff of the spreads, but we

will only focus on the payoff of the calls and puts.
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1.3.4 Weather Futures and Weather Forwards

Companies can also use weather futures for protection, which are traded

on the standardized markets like the Chicago Mercantile Exchange (CME) or

by using weather forwards which are traded OTC (Over-the-Counter). Unlike

futures, forwards are mostly capped.

The CME contracts are monthly and seasonal ones based on HDDs

and CDDs. By writing a weather futures, a company can sell or buy the

index IHn (or ICn ) according to their hedging strategy. I.e. a company which

wants to protect itself against a loss of turnover due to an overly cold win-

ter will buy the index IHn . It predetermines the level K of the index IHn (the

strike level) at which it will buy it at the end of the contract period. On the

contrary to the weather options, the company pays no premium to enter into

the weather futures or the weather forwards but it has the obligation to buy

the index IHn at the predetermined level K at the end of the contract. If the

actual level of the index IHn is above K at maturity, the company will gain the

amount δ(IHn − K) since it will buy the index at the level K < IHn and will

sell it at the level IHn . But it will lose the amount δ|IHn −K| if IHn is below K,

because it has to buy the index IHn at level K and will sell it at level IHn . In

fact, weather futures are cash-settled contracts, which means that there is a

daily marking-to-market based upon the index, with the gain or loss applied

to the customer’s account.
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1.4 Pricing Methods for Weather Derivatives

1.4.1 Inadequacy of Black and Scholes Model

Black and Scholes’s (B-S) model which was developed in 1973, [5], to

price put and call options is still commonly used today. Unfortunately, B-

S model is based on certain assumptions that do not apply realistically to

weather derivatives.

One of the main assumptions behind the B-S model is that the under-

lying of the contract (i.e. HDD or CDD for weather derivatives) follows a

random walk without mean reversion. More appropriately, this model predicts

that the variability of temperature increases with time, so temperature could

wander off to any level whatsoever. Another significant reason why the B-S

model is inappropriate for modeling weather derivatives is that the model is

based on an underlying tradable commodity and weather is a non-tradable

quantity (and it cannot be substituted by a linked exchanged security because

weather index is poorly correlated with prices of other financial assets). The

payoff of a weather option is instead based on a series of weather events, not

on the value of the weather. The model also requires possible setting up of

a conceptual portfolio with a position in both the options and the security

from which the option value is derived. Without the means to trade weather

as a security, one cannot build a riskless portfolio.This means that weather

derivatives’ market is an incomplete market. Therefore, we need to consider

the market price of risk 4 in order to obtain unique prices of such contracts.

4The market price of risk is the difference between the expected rate of return of the
underlying and the riskless interest rate, reported to the quantity of risk measured by the
volatility.
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As we can see weather derivatives are a different kind of derivative than

those analysed by Black and Scholes. This makes weather derivatives’ pricing

a complicated issue and because of the wideness of the weather derivatives’

market, there is a growing scientific interest concerning this subject, and a lot

of paper work has been done in order to find the best model to valuate this

different asset class.

1.4.2 Some Suggested Models

We will mention some of the suggested models for pricing weather deriva-

tives, and analyze in detail three of them in chapter 3. All suggested models

differ more or less on the process used to model the dynamics of temperature

over time, on the assumptions made about the market price of weather risk 5

and on the techniques used on pricing.

As far as modeling the dynamics of temperature is concerned, there are

either in-sample or out-of-sample approaches. The most usual is in-sample

analysis, but there starts to appear some literature on out of sample approaches

too. The in-sample approaches rely on historical data. For example, Davis

(2001), [6], uses the marginal substitution price (”shadow price”) approach

to price the derivatives and by modelling HDD days as GBM concludes to

explicit expressions for derivative prices, while Alaton (2002), [7], uses some

historical data to model temperature as a sum of a mean-reverting seasonal

term (deterministic) and a stochastic term (non - deterministic) and solves

5Weather is a non-tradable asset and its risk cannot be hedged by other tradable assets.

15



the equation using an Ornstein-Uhlenbeck process; we analyze this model on

Chapter 2. The out of sample approaches rely on weather forecasts (see i.e.

Taylor and Buiza (2004). [8] ).

One of the models that is used for pricing weather derivatives and is

relatively simple on implementation is the Actuarial model. It uses historical

data (the so-called Burn Analysis) or Monte Carlo simulation to calculate the

conditional expectation of the future payment of weather derivatives in order

to evaluate them. We will present a brief analysis of this model in Section 3.3.

Another model is the one of Cao and Wei’s (1998, 2004),[9] and [10],

who see the problem of pricing weather derivatives from a consumption based

perspective; that is, they aim to maximize the expectation of intertemporal

utility based on the equilibrium model of Lucas (1978), [11].

In fact there is a wide range of literature concerning the subject of pricing

weather derivatives: Brix, Jewson and Zeihmann (2002),[12], Frittelli (2000),

[13], Heath, Platen and Schweizer (2001), [14] who all attempt pricing based

on no-arbitrage assumptions, which is also analyzed in Section 3.2, and many

more. Indicatively we mention some more authors that deal with the subject

of pricing weather derivatives: Torró (2003), [15], Benth and Saltyte-Benth

(2005), [16] and (2007), [17], Hamisultane (2008)[18], Pirrong and Jermakyan

(2001), [19], and many more.
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Chapter 2

Modeling the Dynamics of
Temperature

As we have already mentioned, temperature derivatives are the most

commonly traded. For this reason temperature modeling draws our attention.

It should be helpful to adopt a model which describes temperature behavior

and thus, many processes have been suggested to model the dynamics of (daily

average) temperature. We have chosen to foster one of the proposed models for

temperature which appears in Alaton’s (2002), [7] paper, as it is a commonly

used model (with or without modifications) for temperature modeling, and

because we believe that it is a fairly comprehensive model for temperature’s

movement. Temperature according to the model is expressed by:

• a sine-function,

• an upward trend which derives from the global warming,

• a mean reversion,

• an autoregressive pattern, and

• a seasonal volatility.
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In what follows we will build up the model of temperature step-by-step by

gradually adding its previously mentioned components and explaining why

each of them should enter the model.

2.1 An Expression of Mean Temperature

Mean temperature should be expressed by a sine – function and an up-

ward trend.

• Why sine-function?

The first thing someone observes in temperature movement is strong seasonal-

ity. Thus, we guess that this seasonal dependence should be modeled with, for

example, some sine-function of the form: sin(ωt+φ), where t denotes the time

measured in days. We let t = 1, 2, . . . denote January 1, January 2 and so on.

Since we know that the period of the oscillations is one year (neglecting leap

years) we have ω = 2π/365. The phase angle φ enters the function because

yearly minimum and maximum mean temperatures are not meant to usually

occur at January 1 and July 1 respectively.

• Why positive trend?

Another component of the mean temperature that should be added to the

model is a positive trend. Observing data someone can point out a positive

trend, which is weak but it does exist. The reason for this slight gradual in-

crease in temperature is the global warming trend all over the world or the
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urban heating effect. The latter can be either stronger if we obtain data from a

highly populated city. To include this weak trend to the model we will assume,

as a first approximation, that the warming trend is linear. This is harmless,

and we do not need to assume it is polynomial, its effect is weak on the overall

dynamics of the mean temperature and only the linear term of this polynomial

will dominate.

Up to here, as far as the deterministic part of our model is concerned,

the mean temperature Tmt at time t will have the following form:

Tmt = A+Bt+ Csin(ωt+ φ),

where the parameters A,B,C, φ have to be chosen so that the curve fits each

of the data sets we choose well.

2.2 The Stochastic Part

Temperature is not deterministic as described previously. We shall add

a stochastic component to have a better description of temperature’s behavior.

Alaton (2002), [7], proposes a stochastic component as he observes in an

8-year (1989-1997) sample of daily average temperature data from Bromma

Airport that the quadratic variation σ2
t ∈ R+ of the temperature varies across

the different months of the year, but remains nearly constant within each
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month. Especially during winter the quadratic variation is much higher than

during the rest of the year. Therefore we assume that σt is a piecewise con-

stant function with a constant value during each month:

σt = σi, i = 1, 2, ..., 12, when 1 corresponds to January, 2 to February, etc.

Thus, the stochastic component of temperature (noise), would be σtWt, t ≥ 0,

where Wt is a standard Brownian motion.

2.3 Mean Reversion

So far, we have suggested a general form for mean temperature and a

noise factor that lets temperature deviate from its mean randomly. But, if

we let this deviation unconstrained for too long, we will get unrealistic results

about the values it can undertake. Therefore, we shall also add a mean revert-

ing component to our model.

So, putting together all the above assumptions, we get a stochastic dif-

ferential equation (SDE) that has the following form:

dTt = α(Tmt − Tt)dt+ σtdWt, (2.1)

where α denotes the speed of mean reversion. The solution is given from a

process that is defined as follows:

Definition 2.2 Ornstein-Uchlenbeck process is a stochastic process that de-

scribes the speed of a massive Brownian particle under the influence of friction.
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The process is stationary, Gaussian, and Markovian, and is the only nontrivial

process that satisfies these three conditions, up to allowing linear transforma-

tions of the space and time variables. The Ornstein – Uchlenbeck process is a

stochastic process that satisfies the following SDE:

dXt = α(µ−Xt)dt+ σdWt, (2.2)

where Wt is a Brownian motion. The constant parameters are:

• α > 0 is the rate of mean reversion,

• µ is the long-term mean of the process,

• σ > 0 is the volatility square-root time of the random fluctuations that

are modelled as Brownian motions.

Remark 2.3 Mean-reverting property: If we ignore the random fluctuations

in the process due to dWt, then we see that Xt has an overall drift 1 towards

a mean value µ. The process Xt reverts to this mean exponentially, at rate

α, with a magnitude in direct proportion to the distance between the current

value of Xt and µ. This can be seen by looking at the solution to the ordinary

differential equation dxt = α(µ− xt)dt, without the dWT term, which is:

xt = µ+ (x0 − µ)e−α(t−t0). (2.5)

1The parameter a is the drift (average change per time unit):

a =
E[x(t + ∆t)− x(t)]

∆t
. (2.3)

.
The parameter b2 is the variance rate (variance of change per time unit):

b2 =
V ar[x(t + ∆t)− x(t)]

∆t
. (2.4)
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For this reason the Ornstein – Uchlenbeck process is also called a mean-

reverting process.

This is not enough though for our model because as Dornier & Queruel

[20] indicate, equation (2.1) does not accomplish mean reversion in the long

run, which means that we should add another term to the drift which has the

following form:

dTmt
dt

= B + ωCcos(ωt+ φ). (2.6)

This term will adjust the drift to revert to the mean in the long run. Let’s

assume the starting point to be Ts and get the following model for temperature:

dTt =

[
dTmt
dt

+ α(Tmt − Tt)
]
dt+ σtdWt, t > s. (2.7)

In order to solve the SDE of (2.7) we recall next Ito’s lemma.

Lemma 2.4 Ito’s Lemma: It is a rule used for the calculation of the dynamics

of a time-dependent function of a stochastic process (such as Geometric Brow-

nian Motion (GBM)) x(t) which has the form: xt = α(xt, t)dt+ b(xt, t)dzt . If

F (x, t) is a twice differentiable function then the dynamics of the stochastic

process F (xt, t) are:

dF (xt, t) =

[
α(xt, t)

∂F

∂x
+
∂F

∂t
+

1

2
b2(xt, t)

∂2F

∂x2

]
dt+

[
(b(xt, t)

∂F

∂x

]
dzt.

We now apply the Ito’s lemma to f(Tt, t) = eαtTt:

∂f

∂T
= eαt,

∂f

∂t
= αTte

αt,
∂2f

∂T 2
= 0
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and we get the dynamics of f(Tt, t) as follows:

df(Tt, t) =

[
eαt

dTmt
dt

+ αeαtTmt

]
dt+ σte

αtdWt. (2.8)

Now, integrating from starting point s to t, we get:

f(Tt, t)− f(Ts, s) =

∫ t

s

eατ
dTmτ
dτ

dτ +

∫ t

s

αeατTmτ dτ +

∫ t

s

στe
ατdWτ

= [eατTmτ ]ts −
∫ t

s

αeατTmτ dτ +

∫ t

s

αeατTmτ dτ +

∫ t

s

στe
ατdWτ

= eαtTmt − eαsTms +

∫ t

s

στe
ατdWτ

or

Tte
αt = eαsTs + eαtTmt − eαsTms +

∫ t

s

στe
ατdWτ

or

Tt = e−α(t−s)Ts + Tmt − e−α(t−s)Tms +

∫ s

t

στe
−α(t−τ)dWτ

So the solution is

Tt = (x− Tms )e−α(t−s) + Tmt +

∫ t

s

e−α(t−τ)στdWτ , (2.9)

where

Tmt = A+Bt+ Csin(ωt+ φ). (2.10)
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Chapter 3

Review of Pricing Methods

Derivatives either traded in organized exchanges or traded in OTC mar-

ket need pricing. For example, when it comes for pricing an option we need to

calculate the premium paid by the purchaser at the time of the arrangement

made with the seller, and when it comes for a future, we need to determine

the strike price. In this chapter we will represent three methods of pricing

weather derivatives.

3.1 Pricing under an Equivalent

Martingale Measure

As mentioned before, the market of weather derivatives is an incomplete

market. Therefore, we cannot come up to a unique price for our derivative

under the risk neutral probability measure and this factor leads us to the con-

clusion that we have to consider the market price of risk λ in order to obtain

unique prices for such contracts. For simplicity we assume that the market

price of risk is constant. We also assume that we are given a risk-free asset

with constant interest rate r and a contract that for each degree of Celsius
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pays one unit of currency (the tick size is 1).

The idea in this model is to eliminate the market price of risk by chang-

ing the probability measure to an equivalent martingale measure 1 Q by using

the Girsanov’s Theorem. Girsanov’s theorem is used when we want we want

to calculate an expectation under an equivalent measure that eliminates the

risk premium. This theorem allows us to change the probability measure by

changing the drift of the process. Thus, the expectation will be much easier

to be calculated. A statement of Girsanov theorem is the following

Theorem 3.1 Girsanov’s theorem:

Let

dXt = b(Xt, t)dt+ v(Xt, t)dWt, (3.1)

where Wt is a Brownian motion.

Then, (3.1) can be written as:

dXt = b(Xt, t)dt+ v(Xt, t)
[
dŴt − α(Xt, t)dt

]
= [b(Xt, t)− α(Xt, t)v(Xt, t)] dt+ v(Xt, t)dŴt, (3.2)

Where

dŴt = α(Xt, t)dt+ dWt (3.3)

is a Brownian motion under the transformed (equivalent) probability measure

dP̂ = MdP , in terms of the assumed martingale

Mt = exp

[
−1

2

∫ t

0

α2(Xu, u)du−
∫ t

0

α(Xu, u)dWu

]
(3.4)

1Equivalent measure Q: two probability measures are said to be equivalent, if they share
the same null sets (P(A)=0 iff Q(A)=0).
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Under this measure, relative asset prices are martingales. Also, we define

M = dP̂
dP

, which is called Radon-Nikodym derivative and it is defined only for

equivalent measures. Thus, Girsanov’s theorem changes the drift by changing

the probability measure. Furthermore it should be stressed that it leaves the

volatility unchanged.

We have modeled the dynamics of temperature in Chapter 2 as given

by (2.7).

We also define:

dŴt = λdt+ dWt, (3.5)

where Ŵt is a Brownian Motion under the transformed probability measure

dQ ≡ dP̂ = MdP in terms of

Mt = exp

[
−1

2
λ2t− λWt

]
(3.6)

which is a martingale. The relationship (3.5) can be re-written as dWt =

dŴt − λdt and substituted in (2.7) gives

dTt =

[
dTmt
dt

+ α(Tmt − Tt)
]
dt+ σt(dŴt − λdt)

=

[
dTmt
dt

+ α(Tmt − Tt)− λσt
]
dt+ σtdŴt, (3.7)
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where now Ŵt is a Q-Weiner process. This was a Girsanov transformation

and as we can observe, we may have changed the drift but the volatility of Tt

has remained unchanged. So from (2.14) we have that

V ar[Tt|Fs] = V ar

[∫ t

s

e−α(t−u)σudWu|Fs
]
du

= E

[(∫ t

s

e−α(t−u)σudWu

)2

|Fs

]

=

∫ t

s

σ2
ue
−2α(t−u)du. (3.8)

It is known that the price of a derivative is expressed as a discounted

expected value under a martingale measure Q. Thus, we will start by comput-

ing the expected value and the variance of Tt under the measure Q. Therefore,

thanks to (2.14) we have:

EP [Tt|Fs] = (Ts − Tms )e−α(t−s) + Tmt . (3.9)

So, from (2.14) and (3.5) we get that

EQ[Tt|Fs] = EP [Tt|Fs]−
∫ t

s

λσue
−α(t−u)du. (3.10)

If we evaluate the integrals in one of the intervals where σ = σi is constant,

we get:

EQ[Tt|Fs] = EP [Tt|Fs]−
[
λσi

e−α(t−u)

α

]t
s

= EP [Tt|Fs]−
λσi
α

[
e−α(t−t) − e−α(t−s)

]
= EP [Tt|Fs]−

λσi
α

[
1− e−α(t−s)

]
(3.11)
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and similarly,

V ar[Tt|Fs] =

[
σ2
i e
−2α(t−u)

2α

]t
s

=
σ2
i

2α

[
1− e−2α(t−s)

]
. (3.12)

Later we will need to compute the covariance between two different days.

For 0 ≤ s ≤ t ≤ u, using the Ito isometry, the covariance function is given

through (2.14) as

Cov[Tt, Tu|Fs] = Cov

[∫ t

s

σie
α(τ−t)dWτ ,

∫ u

s

σie
α(v−u)dWv|Fs

]
= E

[∫ t

s

σie
α(τ−t)dWτ

∫ u

s

σie
α(v−u)dWv|Fs

]
= σ2

i e
−α(t+u)E

[∫ t

s

eατdWτ

∫ u

s

eαvdWv|Fs
]

= σ2
i e
−α(t+u)E

[∫ min(t,u)

s

e2ατdτ |Fs

]

=
σ2
i

2α
e−α(t+u)(e2αmin(t,u) − e2αs)

=
σ2
i

2α
(e−α(u+t−2s) − e−α(u+t))

=
σ2
i

2α
(1− e−2α(t−s))e−α(u−t)

= e−α(u−t)V ar[Tt|Fs], (3.13)

where the last equation comes from (3.12)

Suppose now that t1 and tn denote the first and last day of a month, and

we start the process at some time s from the month before [t1, tn]. To compute

the expected value and variance of Tt for t ∈ [t1, tn] in this case, we split the
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integrals in (3.10) and (3.8) into the two integrals [s, t1] and [t1, t] where σ is

constant in each one of the σi and σj respectively. We then get the expected

value:

EQ[Tt|Fs] = EP [Tt|Fs]−
λ

α
(σi − σj)e−α(t−t1) +

λσi
α
e−α(t−s) − λσj

α
(3.14)

and the variance:

V ar[Tt|Fs] =
1

2α
(σ2

i − σ2
j )e
−2α(t−t1) − σ2

i

2α
e−2α(t−s) +

σ2
j

2α
. (3.15)

Example 3.1 Pricing an HDD Option: A commonly used weather derivative

is an HDD option which, as we have previously mentioned, has heating de-

gree days as an underlying asset. We will now attempt to price an HDD call

option, by using the theory described previously.

We have seen that the payoff of an HDD call option is (we assume that

ticksize = 1 for simplicity):

X = max[IHn −K, 0], (3.16)

where

IHn =
n∑
i=1

max[18− Ti, 0]. (3.17)
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The underlying process here is normally distributed, but the maximum

factor makes our job to find a pricing formula rather complicated. So we will

try to make an approximation.

Under Q and given information at time s, Tt ∼ N(µt, υt) where µt is given

by (3.14) and υt by (3.15). Let’s also assume that the winter in the city from

which we obtain the data is very cold so the probability that max[18−Ti, 0] = 0

should be extremely small on a winter day. Therefore, for such a contract we

may write:

IHn = 18n−
n∑
i=1

Tti . (3.18)

The distribution of this is easier to determine. We know that Tti , i = 1, ..., n are

all samples from an Ornstein-Uhlenbeck process, which is a Gaussian process.

This means that also the vector (Tt1 , Tt2 , ..., Ttn) is Gaussian. Since the sum

in (3.27) is a linear combination of the elements in this vector, IHn is also

Gaussian. With this new structure of IHn it only remains to compute the first

and second moments. We have for t < t1 and (3.18) that

EQ[IHn |Ft] = EQ[18n−
n∑
i=1

Tti|Ft]

= 18n−
n∑
i=1

EQ[Tti|Ft] (3.19)

and

V ar[IHn |Ft] =
n∑
i=1

V ar[Tti|Ft] + 2
∑
i<j

∑
Cov[Tti , Ttj |Ft]. (3.20)
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Now, suppose that we have made the calculation above, and found that

EQ[IHn |Ft] = µn (3.21)

and

V ar[IHn |Ft] = σ2
n, (3.22)

thus IHn is N(µt, σ
2
n)- distributed. Hence, the price at t ≤ t1 of the HDD call

option with payoff given by (3.16) is

c(t) = e−r(tn−t)EQ
[
max[IHn −K, 0]|Ft

]
= e−r(tn−t)

∫ ∞
K

(x−K)fIHn (x)dx (3.23)

= e−r(tn−t)
[
(µn −K)Φ(−αn) +

σn√
2π
e−

α2n
2

]

where αn = (K − µn)/σn and Φ denotes the cumulative distribution function

of the standard normal distribution.

In the same way we can derive a formula for the price of an HDD put

option, whose payoff is given by the expression:

Payoff = max[K − IHn , 0]. (3.24)

The price is

p(t) = e−r(tn−t)EQ
[
max[K − IHn , 0]|Ft

]
= e−r(tn−t)

∫ K

0

(K − x)fIHn (x)dx (3.25)

= e−r(tn−t)
[
(K − µn)(Φ(αn)− Φ(−µn

σn
)) +

σn√
2π

(e−
α2n
2 − e−

1
2
(µn
σn

)2)

]
.
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3.2 Arbitrage-free Pricing Method

We assume that no arbitrage 2 is the reasonable basis to build up a the-

ory that will lead us to a “fair” price for a derivative. This is a customary way

to conclude to a specific price for many derivative products.

I.e., for pricing an option, we determine a compensation (premium) for

the buyer at the time of the arrangement with the seller for the risk he un-

dertakes. On a market without friction and operating continuously 3, the

value of an option giving a payoff at maturity is obtained by the creation of a

self-financing portfolio composed of the quantities of the underlying and of a

riskless asset which will replicate the results of the option at maturity. Con-

cerning that there should be no arbitrage opportunities, the price of the option

at time 0 must be equal to the initial cost of the portfolio since they provide

the same income at maturity.

The price derived from this operation corresponds to the discounted ex-

pectation of the payoff of the option under a risk neutral probability measure

Q which is equivalent to the real probability measure. (Cox, Ross and Rubin-

stein, 1979), [21], introduced the Binomial model which shows that from the

equality between the value of the portfolio and the payment of the option at

maturity and from downgrading in time, the price of the option at time 0 is

determined in a unique way and corresponds to the computation of the ex-

pected payment of the option at maturity, discounted by the risk-free rate and

2Arbitrage is the opportunity for someone to make profit without undertaking any risk.
3We assume that: the market is liquid, there are no transaction costs, investors can

borrow and lend at the same time and at the same risk-free rate, every arbitrage opportunity
is immediately absorbed by market dynamics, there are no constraints on short - selling of
the asset.
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taken under the risk-neutral probabilities of the underlying. The limit of the

formula for the option price of Cox, Ross and Rubinstein (1979), [21], when

the number of periods becomes infinitely large, coincides with the closed form

expression that Black-Scholes (1973) provided for this price in continuous time.

For complex options such as weather options, for which the prices can-

not have explicit representation because their underlying assets (such as the

meteorological index) are not traded on the financial market, no self-financing

portfolio can be considered.

As we mentioned in Section 1.4, Black-Scholes formula cannot be ap-

plied in weather derivatives as it violates a number of its assumptions. Ge-

man (1999), [22], tried to overcome the obstacle of non-tradability of weather

derivatives in order to use the B-S formula. He proposed the substitution of the

meteorological index from a contract on energy by stressing the dependence of

the energy price with the climate, but Brix, Jewson and Ziemann (2002), [12],

demolished this theory by pointing out that the price of gas is more closely

linked to the demand than to the temperature. Instead, they proposed to use

the weather futures contracts, whose prices are, in their view, highly correlated

with the underlying of the weather options which they want to value. With

the development of the weather markets this solution seemed feasible, but yet

these contracts are not liquid enough to create the self-financing portfolio of

perfect replication.

Other strategies though can provide replication of the payoff of the op-

tion. These strategies have to do with the way that we choose a risk neutral
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probability to help us calculate the price. The ideas are discussed below.

• By maximization of the expected utility of the agent:

We may choose the quantities of the securities in the portfolio, so as to maxi-

mize the expected utility of the agent or in order to reduce the variance of the

difference between the value of the portfolio and the result of the option at

the end of the period. Authors such as Frittelli (2000), [13], have shown that

maximizing the expected utility with a utility function of exponential type

gave rise to the calculation of the price of the option. The price is expressed

as being the conditional expectation of the payment of the option, discounted

by the riskless rate and defined under the risk-neutral distribution of the un-

derlying asset called ”minimal entropy martingale measure” 4; this is because

it presents the particularity to minimize the relative entropy or distance of

Kullback-Leibler of a probability with regard to the other one defined a priori.

• By reducing the variance:

Another way to make the replication possible is to reduce the variance, the

conditional expectation of the option price is calculated by using a risk-neutral

distribution of the underlying called ”variance optimal martingale measure”

(Heath, Platen and Schweizer (2001), [14]). It was shown that in an incomplete

4is the risk-neutral probability measure that minimizes the entropy difference between
the objective probability measure and the risk-neutral measure Q. In incomplete markets,
this is one way of choosing a risk-neutral measure (from the infinite number available) so as
to still maintain the no-arbitrage conditions.
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market (when the payoff of the option is not reachable by a self-financing port-

folio), there was a range of arbitrage-free prices for the derivative (Karatzas

and Kou (1996)). On the other hand, the price was unique when the market

was complete because there was only a single measure of risk-neutral probabil-

ity; all the other measures were becoming identical with that stemming from

the strategy of perfect replication.

These two strategies outlined above are perfectly feasible to treat the

problem of liquidity of the weather futures contracts when creating a self-

financing portfolio. The question is to know which one to choose. The prob-

lem though lies not only in this choice to be made, but it also concerns the

difficulty to implement these approaches. To obtain the price of a derivative

from one of these strategies, it is advisable to calculate the expectation of its

terminal payment by means of the risk-neutral distribution corresponding to

the chosen strategy. There are two ways to calculate the expectation under

one of these probability measures: either by extracting a risk-neutral distribu-

tion from the quoted prices or by solving a partial differential equation (PDE)

with a terminal condition whose the conditional expectation of the derivative

price is the unique solution. We describe the two ways in a sequel.

3.2.1 Inference of a Risk Neutral Probability

The prices at time t of a weather call option and a futures contract, both

written on the HDD index with maturity T , are defined by
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C(t, IHt ) = δe−r(T−t)EQ
[
max(IHT −K, 0)|Ft

]
(3.26)

= δe−r(T−t)
∫ ∞
0

max[IHT −K, 0]fQ(IHT )dIHT (3.27)

and

F (t, IHt ) = δEQ[IHT |Ft] = δ

∫ ∞
0

IHT fQ(IHT )dIHT , (3.28)

respectively. Here δ is the tick size, IHT =
∑n

j=1max[18 − Tj, 0] is the HDD

index on n days of the contract period, Tj is the daily average temperature,

r is the risk free rate, K is the strike price, Q is the risk neutral probability

(which is not unique here since the market is incomplete), Ft is the available

information for temperature up to time t, and fQ is the risk neutral (or state

price) density of the IHT index.

As already mentioned, there are several possible risk-neutral distribu-

tions. So to calculate a price we need to choose one of them. We can choose

a distribution from quoted prices from future contracts that are traded on

the CME instead of option prices, as the weather options are traded in the

OTC market. For contracts that are written on the meteorological index there

should not be any problem, as the risk neutral distribution will be the same.

To infer a risk neutral distribution from the quotations, we should try

to find values of the risk neutral density so as to reduce the distances between

the price given in (3.42) and the observed market price. This task requires the

solution of the following optimization problem:

min
fQ

M∑
t=1

(F (t, IHt )− Fmarket
t ),
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where Fmarket
t is the observed price of the weather futures contract at time

t. The objective function though contains a regularization term because the

number of unknown densities is superior to the number of equations to be

solved. The Jackwerth and Rubinstein (1996) optimization program is rec-

ommended here because it does not require a closed-form expression for the

theoretical price of the contracts, since it is very difficult or impossible to re-

duce the price formula of the weather derivatives to an analytical expression;

see also Hamisultane (2006), [23].

3.2.2 Resolution of a Partial Differential Equation

The alternative way to compute the price of a weather derivative through

the arbitrage free approach is by the resolution of a PDE. Pirrong and Jer-

makyan (2001), [19], have suggested the calculation of the arbitrage free prices

of weather options by including the market prices of risk from the quotations

of the weather futures. As we know, in an incomplete market there are as

many market prices of risk as risk neutral distributions, because the market

price of risk depends on the portfolio strategy one adopts to reduce the risk

and simultaneously on the risk neutral distribution associated with the strat-

egy. The market prices of risk λt, which have to be inferred from quotations,

should minimize the following function:

min
λt

(F (t, Tt, I
H
t )− Fmarket

t )2, (3.29)

where F (t, Tt, I
H
t ) is the theoretical price of the weather derivative, and Fmarket

t

the observed price in the market.
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Note 3.2 In fact the objective function of (3.29) requires a regularization

term because there are more unknown market prices of risk than quotations

and thus the minimization problem cannot be solved. This is because prices

are quoted only during working days, where λt must be computed continuously

especially when we use numerical methods to solve the PDE for the theoretical

price that appears later. However the presence of a regularization term should

increase the computation time considerably, so for our convenience we assume

the prices during non-working days remain the same as the last ones quoted.

This way, there is no inequality anymore between the unknown parameters

and the number of equations. The solution is acceptable because the weather

contract prices are not very volatile.

Consider now for example a futures contract based on the HDD index.

The terminal condition of this future contract will be

F (T, TT , I
H
T ) = IHT ,

where T is the time to maturity. We recall from (3.17) that the formula for

the HDD index, which considered in continuous time should be of the form

IHt =

∫ t

0

max(18− Ts, 0)ds

and thus, has the following dynamics

dIHt = max(18− Tt, 0)dt. (3.30)
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Also we recall from (3.7) that the dynamics of temperature considering the

market price of risk (which emerges as temperature is not a tradable asset),

under an equivalent martingale measure Q, are the following:

dTt =

[
dTmt
dt

+ α(Tmt − Tt)− λtσt
]
dt+ σtdW

Q
t . (3.31)

We will now present the multivariate Ito’s process which we will then

apply to the function F (t, Tt, I
H
t ).

Lemma 3.4 Multivariate Ito’s Lemma: The dynamics of a stochastic pro-

cess F (t,Xt, Yt), where F is a twice differentiable function and Xt and Yt

are stochastic processes with dynamics dXt = Atdt + BtdWt and dYt =

Γtdt+ ∆tdWt respectively, are

dF (t,Xt, Yt) = ∂F
∂t
dt+ ∂F

∂X
dXt + ∂F

∂Y
dYt + 1

2
∂2F
∂X2dXtdXt + 1

2
∂2F
∂Y 2dYtdYt + ∂2F

∂X∂Y
dXtdYt;

here, dXtdXt = B2
t dt, dYtdYt = ∆2

tdt and dXtdYt = Bt∆tdt

The theoretical price of the future contract should be equal to the dis-

counted expected value of the terminal condition of the contract calculated

under the equivalent martingale measure Q, given the available information

set Ft; that is

F (t, Tt, I
H
t ) = EQ[IHt |Ft]

39



From the tower property of the conditional expectation one may observe

that EQ[IHt |Ft] is a Q-martingale and so is the left hand side of the last equal-

ity, whose dynamics are computed by the multivariate Ito’s Lemma as

dF (t, Tt, I
H
t ) =

∂F

∂t
dt+

∂F

∂T
dTt +

∂F

∂IH
dIHt +

1

2

∂2F

∂T 2
dTtdTt+

+
1

2

∂2F

∂IH
dIHt dI

H
t +

∂2F

∂T∂IH
dTtdI

H
t , (3.32)

but from (3.30) and (3.31) dIHt dI
H
t = 0, dTtdI

H
t = 0 and dTtdTt = σ2

t dt, so

dF (t, Tt, I
H
t ) =

∂F

∂t
dt+

∂F

∂T
dTt +

∂F

∂IH
dIHt +

1

2

∂2F

∂T 2
σ2
t dt (3.33)

According next to (3.30), (3.31) and (3.33), (3.32) becomes:

dF (t, Tt, I
H
t ) =

∂F

∂t
dt+

∂F

∂T

[[
dTmt
dt

+ α(Tmt − Tt)− λtσt
)
dt+ σtdW

Q
t

]
+

+
∂F

∂IH
max(18− Tt, 0)dt+

1

2

∂2F

∂T 2
σ2
t dt =

(
∂F

∂t
+
∂F

∂T

[
dTmt
dt

+ δ(Tmt − Tt)− λtσt
]

+
∂F

∂IH
max(18− Tt, 0) +

1

2

∂2F

∂T 2
σ2
t

)
dt+σtdW

Q
t

(3.34)
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But, as we mentioned above the process F (t, Tt, I
H
t ) is also a martingale, so, its

drift should be equal to 0. Thus, the PDE for the theoretical price F (t, Tt, I
H
t ),

is the following:

∂F

∂t
+
∂F

∂T

[
dTmt
dt

+ α(Tmt − Tt)− λtσt
]

+
∂F

∂IH
max(18− Tt, 0) +

1

2

∂2F

∂T 2
σ2
t = 0.

This is about a weather future. Respectively for a weather option the PDE

has the form:

∂F

∂t
+
∂F

∂T

[
dTmt
dt

+ α(Tmt − Tt)− λtσt
]

+
∂F

∂IH
max(18−Tt, 0)+

1

2

∂2F

∂T 2
σ2
t = rtF

The implementation of this method will be analyzed in Section 4.5.

3.3 The Actuarial Pricing Method

The actuarial method for pricing weather derivatives is proposed by sev-

eral authors such as Brix, Jewson and Ziemann (2002), [12] , Augros and

Moreno (2002), [24] and Bay et al (2003), [25] . In practice, weather deriva-

tives are usually valued by the actuarial method, because of the simplicity of

its implementation. Also, it can be applied in any type of weather derivative,

regardless of its liquidity, whether it’s feasible to obtain quotations for it or

whether we can substitute it for another relative asset.
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According to the actuarial pricing method, the value of a weather deriva-

tive corresponds to the conditional expectation of its future payment, calcu-

lated under the real probability plus a charge depending on a risk measure

which is usually the volatility. Thus, the actuarial prices of the weather

call/put options and futures on the HDD index at time t are expressed as

follows (Hamisultane, 2008, [18]) :

CActuarial(t, Tt, I
H
t ) = δe−r(T−t)

(
E[max(IHT −K, 0)|Ft] + λσmax(IHT −K,0)

)
,

(3.35)

PActuarial(t, Tt, I
H
t ) = δe−r(T−t)

(
E[max(K − IHT , 0)|Ft] + λσmax(K−IHT ,0)

)
,

(3.36)

FActuarial(t, Tt, I
H
t ) = δ(E[IHT |Ft] + λσIHT ) (3.37)

where δ is the tick size, K is the strike price (for the options), r is the

risk-free rate, Ft denotes the available information about temperature un-

til time t, and time T represents the maturity date of the contracts. Also,

λσmax(IHT −K,0), λσmax(K−IHT ,0) and λσIHT are called safety loading (Hamisultane,

2006, [26] ) and designate the risk premiums, where σmax(IHT −K,0), σmax(K−IHT ,0)

and σIHT denote the volatility of payoffs of the options and futures respectively.
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The actuarial method is based on the law of large numbers. The latter

indicates that as the number of samples increases, we obtain a more and more

reliable estimation of the true expected value of the observed phenomenon.

The expectation under the real probability can be computed in either of the

two following ways:

• by using historical data (Burn Analysis), or

• by using the technique of Monte Carlo simulation.

Burn Analysis: In this approach, we accumulate degree days of a year, and

then we determine the payoff of the derivative for this specific year, and then

we repeat the process for other years. Then, the average of annual payoffs will

represent the expected price of the derivative.

Monte Carlo simulation technique: In this approach instead of histor-

ical prices for temperature, we use a model of daily average temperature to

generate a set of paths and for each of these paths we construct the HDD

index which is used to calculate the payoff. Then, the average of the payoffs

from all the generated paths will represent the expected price of the derivative.

The Growth Optimal Portfolio (GOP)*: Platen and West (2004), [27],

settled the link between the arbitrage free methods and the actuarial method

via the notion of “Growth Optimal Portfolio (GOP)” and in that way justified

the use of the actuarial method on weather derivatives. GOP is a self-financing

portfolio that maximizes the expected logarithmic utility from terminal wealth.

Under certain conditions, this GOP can be considered as a numeraire portfolio
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which converts the variables expressed in units of this numeraire into martin-

gales whatever probability measure is used. Therefore, they write the option

price in units of the GOP at time 0 as follows:

Ĉ(0, t) = E(Ĥt|F0), (3.38)

where Ĥt = Ht

S
(π)
t

is the payoff of the option in units of the GOP and Sπt

represents the GOP at time t. The price of the option not in terms of the

GOP is given by:

C(0, t) = S
(π)
0 Ĉ(0, t) (3.39)

and

C(0, t) = E

(
S
(π)
0

S
(π)
t

Ht|F0

)
. (3.40)

By defining the discrete time Radon-Nikodym derivative as

∂Q

∂P
= Λt =

Ŝ
(0)
t

Ŝ
(0)
0

=
S
(0)
t

S
(π)
t

S
(π)
0

S
(0)
0

, (3.41)

where Ŝ
(0)
t =

S
(0)
t

S
(π)
t

stands for the domestic savings account in units of the GOP,

they demonstrate that this price is formulated as the discounted expectation

of the payoff under the probability Q, i.e.

C(0, t) =
S
(0)
0

S
(0)
t

EQ(Ht|F0). (3.42)

If the payoff of the option is independent of the GOP, they show that it can

be expressed as an actuarial price, i.e.

C(0, t) = S
(π)
0 E

(
1

S
(π)
t

Ht|F0

)
E(Ht|F0) (3.43)
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and

C(0, t) = P (0, t)E(Ht|F0). (3.44)

where P (0, t) = S
(π)
0 E

(
1

S
(π)
t

Ht|F0

)
corresponds to the price of a zero coupon

bond at time 0.

Approximating the GOP by the MCSI World index, they show that the

weather index of Sydney is very uncorrelated with this index and therefore

that the weather derivatives should be priced by the actuarial approach.
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Chapter 4

Computation of the Weather
Derivative Prices

4.1 Simulation of Temperature Trajectories

We recall from chapter 2 the model that gives us the dynamics of tem-

perature

dTt =

[
dTmt
dt

+ α(Tmt − Tt)− λσ
]
dt+ σtdWt,

where Tmt = A+Bt+ Csin(ωt+ φ)

In order to simulate trajectories of this process, we need to discretize this

equation. Discretizing dTt to a time interval δ = Tj − Tj−1, should give us

δT = Tj − Tj−1 = δTm + α(Tmj−1 − Tj−1)δt− λσδt+ σε
√
δt (4.1)

where εN−1j=1 are independent standard normally distributed random variables.

Now assuming that time interval δt corresponds to 1 day, (4.1) can be written

as:

Tj = Tj−1 + δTm + α(Tmj−1 − Tj−1)− λσ + σε
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or

Tj = (1− α)Tj−1 − (1− α)Tmj−1 + Tmj + (ε− λ)σ

or

Tj = (1− α)(Tj−1 − Tmj−1) + Tmj + (ε− λ)σ,

where Tmj−1 = A+B(j−1)+Csin(ω(j−1)+φ) and Tmj = A+Bj+Csin(ωj+φ)

Inserting the following values for the parameters of the equation:

T0 = 0, A = 6, B = 6 · 10−5, C = 10.4, α = 0.23, ω = 2π
365
, φ = −2, σ = 3.4,

and for a time period of 3500 days (nearly 9,5 years), we get the plot in figure 1:

Figure 4.1: Simulation of Temperature Trajectories.

Figure 2 below shows a diagram of real data from Helsinki (Finland) for 3,500

consecutive days as well as the simulation (from 01.01.2003 to 31.07.2012)
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Figure 4.2: Daily mean temperatures during 2003 - 2012 (Helsinki, Finland).

4.2 Computation of the Theoretical Price of

an HDD call (and put) option under an

Equivalent Martingale Measure

Recall from chapter 2 that the payoff of the HDD call option is:

Payoff = max[IH −K, 0] (we use tick size = 1 for simplicity)

where IH =
∑n

i=1max[18− Tt, 0].

As already mentioned in chapter 3, the presence of the maximum func-

tion, does not let us to determine the price of the derivative now at time t=0

(discounted expected payoff under the risk neutral probability) without con-

siderable error.
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So we make the simplifying assumption that temperature will not ex-

ceed 18◦C during the periods that winter contracts (HDD) are written. This

is assumption is reasonable and be used without spoiling the results, as long

as we refer to a contract during very cold months (i.e. December,January).

With the index now being expressed as: IH = 18n −
∑n

i=1 Tt , we compute

the prices of a call (and put) via the following equations:

c(0) = e−rtn((µn −K)Φ(−αn) +
σn√
2π
e

−α2n
2
,

p(0) = e−rtn [(K − µn)

(
Φ(αn)− Φ

(
−µn
σn

))
+

σn√
2π

(
e−

α2n
2 − e−

1
2
(µn
σn

)2
)
,

where αn = K−µn
σn

, µn = EQ[IH ], σ2
n = V ar[IH ] and Φ denotes the cumulative

standard normal distribution.

In Section 4.6 we can see different prices for an HDD call option that this

method gives for different strike prices K, T0 and times to maturity tn.

49



4.3 Computation of the price of an HDD call

(and put) option using Monte Carlo Sim-

ulations

In this section, we will use Monte Carlo simulations to compute the price

of an HDD call(and put) option. We start by simulating a number of tra-

jectories (NRepl) of the temperature (section 4.1) for a given period of time

tn, starting from today’s temperature T0, and then accumulate each of these

trajectories in order to construct the HDD index IHi , i = 1, . . . , NRepl for

each of them respectively. Now we can determine the NRepl payoffs at time

tn:

max[IHi − K, 0] for the HDD call option and max[K − IHi , 0] for the HDD

put option. Then we approximate the expected value (which is under the risk

neutral probability) by the arithmetic average. Note that using this technique

we did not need to make any simplifying assumption about the distribution of

IH as it is was crucial for the theoretical price computation.

In Section 4.6 we can see different prices for an HDD call option that this

method gives for different strike prices K, T0 and times to maturity tn.
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4.4 Computation of the Actuarial Price of an

HDD Call (and put) option by Monte Carlo

Simulations

In this section, we will approximate the expectation of an HHD weather

futures and an HDD weather call option actuarial price via Monte Carlo sim-

ulation. The HDD call and put option prices given by the actuarial approach

(from chapter 3) are:

c(0) = e−rtn
(
EP
[
max[IH −K, 0]

]
+ κσpayoff

)
,

p(0) = e−rtn
(
EP
[
max[K − IH , 0]

]
+ κσpayoff

)
,

σpayoff denotes the volatility of the payoffs and it is calculated as the standard

deviation of the payoffs.

In Section 4.6 we can see different prices for an HDD call option that this

method gives for different strike prices K, T0 and times to maturity tn.
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4.5 Computation of the price of an HDD call

option by resolving a PDE

Recall the PDE for the HDD call option from chapter 3 :

∂F

∂t
+
∂F

∂T

[
dTmt
dt

+ α(Tmt − Tt)− λtσt
]

+
∂F

∂IH
max(18−Tt, 0)+

1

2

∂2F

∂T 2
σ2
t = rF

(4.2)

where Tmt = A+Bt+ Csin(ωt+ φ).

This PDE can be solved by the numerical method of finite differences.

This requires the construction of a uniform grid (of equally spaced points); it

also requires the replacement of the continuous derivatives of the above equa-

tion by a discrete operator (here this operator will be truncated Taylor series).

The operator can be forward, backward or central difference. For example for

the partial derivative with respect to time, we get respectively:

• Forward difference: ∂F
∂t

=
F gi,j+1−F

g
i,j

δt

• Backward difference: ∂F
∂t

=
F gi,j−F

g
i,−1j

δt
,

• Central difference: ∂F
∂T

=
F gi,j+1−F

g
i,j−1

2δT
,

• Second order central difference: ∂2F
∂T 2 =

F gi,j+1−2F
g
i,j+F

g
i,j−1

(δT )2
,
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where i, j, and g, correspond to the temperature variable T , time variable t

and index variable IH respectively.

In this case we will use a grid of M x N x G points, where M ,N and G

correspond to the number of points for the above variables T, t and IH respec-

tively. Also the discretization steps that will be used are: iδT ,for the temper-

ature, jδt for the time and gδI for the index variable, where i = 0, 1, . . . ,M ,

j = 0, 1, . . . , N and g = 0, 1, . . . , G. The operator will be used in such a way

that the terms will be gathered to lead us to a resolution scheme: We can

either use the explicit, implicit or Semi-Implicit (Crank Nicolson) scheme

• The Explicit scheme uses a backward difference for time derivatives and

central difference and second order central difference for space deriva-

tives.

• The Implicit scheme uses a forward difference for time derivatives and

central difference and second order central difference for space deriva-

tives.

• The semi-implicit scheme (Crank-Nicolson method) is a combination of

the implicit scheme at and the explicit scheme at n + 1 (however, the

method itself is not simply the average of those two methods, as the

equation has an implicit dependence on the solution)

For simplicity of the implementation we will use the explicit scheme; however

it has to be used under restrictions for the size of the grid to avoid the oscil-

lations of the solutions. For better results we recommend the implicit scheme
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which is also more effective than the Crank Nicholson’s method (Hamisultane,

2008), [18].

Remark 4.3.1: Due to the fact that the diffusion term ∂2F
∂IH

does not exist

in the PDE, in order to avoid the oscillations of the solutions it is considered

that the index value remains constant between the days of observation ( and

thus, the component ∂F
∂IH

for which there is no corresponding diffusion term

disappears).

So discretizing the equation (4.1) according to the explicit scheme, we

have (where i = 1, . . . ,M for variable T , j = 1, . . . , N for variable t and

g = 1, . . . , G for variable g)

F g
i,j − F

g
i,j−1

δt
+

(
δTmj
δt

+ α(Tmj−1 − iδT )− λσ
)
F g
i+1,j − F

g
i−1,j

2δT
+

+
1

2
σ2
F g
i+1,j − 2F g

i,j + F g
i−1,j

(δT )2
= rF g

i,j

or

F g
i,j−1 = F g

i,j + rF g
i,j − δt

(
δTmj
δt

+ α(Tmj−1 − iδT )− λσ
)
F g
i+1,j

2δT
+

+

(
δTmj
δt

+ α(Tmj−1 − iδT )− λσ
)
δt
F g
i−1,j

2δT
− 1

2
σ2δt

F g
i+1,j

(δT )2
+

+
F g
i,j

(δT )2
σ2δt− 1

2
σ2δt

F g
i−1,j

(δT )2
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or

F g
i,j = rF g

i,j +
1

2
δt

((
δTmj
δt

+ α(Tmj−1 − iδT )− λσ
)

1

2δT
− σ2

(δT )2

)
F g
i−1,j+

+

(
1 +

1

(δT )2
σ2δt+ r

)
F g
i,j−1 +

F g
i,j

(δT )2
σ2δt− 1

2
σ2δt

F g
i−1,j

(δT )2
+

+
δt

2δT

(
δTmj
δt

+ α(Tmj−1 − iδT )− λσ
)
F g
i−1,j

So, the discretized equation has now the form

F g
i,j−1 = αi,jF

g
i−1,j + bi,jF

g
i,j + ci,jF

g
i+1,j (4.3)

where

Λi,j =
δTmj
δt

+ α(Tmj−1 − iδT )− λσ,

αi,j =
1

2
δt

(
− 1

δT
Λi,j +

σ2

(δT )2

)
,

bi,j = 1−
(

σ2

(δT )2
+ r

)
δt

and

ci,j =
1

2
δt

(
Λi,j

δT
+

σ2

(δT )2

)
.

The terminal conditions are of great importance because they are the

starting point in making the grid. So the boundary conditions are:
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F g
i,Nmax[gδIH − K, 0], ∀i and ∀g. At the expiration of the contract, the

cumulative index I, reaches its highest level.

F g
0,j = e−r(T−jδt)(GδIH −K), ∀j and ∀g. When temperature reaches 0◦ C

(or a lowest level), at some time t it is highly possible to have maintained

this low level until time t and keep being this low until maturity time (this

assumption comes from the stationarity property of Ornstein-Uchlenbeck pro-

cess that temperature follows).

F g
M,j = 0 ∀j and ∀g. Similarly, when the temperature reaches a high level,

at time t its highly possible to maintain this high level until maturity, so the

cumulative index will be equal to 0 at maturity.

In the equation (4.3), we have 3 known values F g
i−1,, F g

i,j, F g
i+1,j which

are linked to one unknown value F g
i,j−1. These known values are given by the

terminal conditions at maturity. To solve equation (4.3) we have to go back-

wards in time (from j = N − 1, .., 0).
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4.6 Results

In Table 1 we get 5 prices for 5 different strike prices K respectively of an

HDD call option with T0 = 0◦C, risk free rate r = 5% and time to maturity

tn = 48 days; with parameters for the temperature: T0 = 0, A = 6, B =

6 · 10−5, C = 10.4, α = 0.23, ω = 2π/365, φ = −2, σ = 3.4, λ = 0.08 ex-

cept from the actuarial method in which we use λ = 0 for the temperature and

κpayoff = 0.08. We also use 10000 replications for the Monte Carlo simulations.

Table 1

In Table 2 we get 4 prices for 4 different To respectively of an HDD

call option with strike price 560, risk free rate r = 5% and time to maturity

tn = 48 days; with parameters for the temperature: A = 6, B = 6 ·10−5, C =

10.4, α = 0.23, ω = 2π/365, φ = −2, σ = 3.4, λ = 0.08 except from the ac-

tuarial method in which we use λ = 0 for the temperature and κpayoff = 0.08.

We also use 10000 replications for the Monte Carlo simulations.
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Table 2

In Table 3 we get 4 prices for 4 different times to maturity tn respectively

of an HDD call option with To = 0◦C, strike price 560 and risk free rate r =

5%; with parameters for the temperature: To = 0, A = 6, B = 6 · 10−5, C =

10.4, α = 0.23, ω = 2π/365, φ = −2, σ = 3.4, λ = 0.08 except from the

actuarial method in which we use λ = 0 for the temperature and κpayoff = 0.08.

We also use 10000 replications for the Monte Carlo simulations.

Table 3
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Remark 4.6.1: We observe that all the prices that the different models give

from the simulations are relatively close; that means that the models are con-

sistent with each other. However, the PDE approach shows inconsistency

when as we raise the grid’s density. That is explained by the instability of the

explicit scheme. As it is proposed in section 4.5, someone could implement

the method using the implicit scheme for more accurate results.
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Chapter 5

Conclusion

As soon as weather derivatives appeared as a financial instrument, a

growing literature started towards the determining of a “fair” pricing model

for them. As weather is not a tradable asset, this task becomes very compli-

cated. Through this study, we have understood that in order to use a model

for pricing this derivative it is required to choose a model that describes the

evolution of the underlying meteorological index (here is temperature) as well

as possible. This is the key to pricing weather derivatives. We applied Ala-

ton’s (2002), [7], model for temperature. This model is a relatively simple

model for implementation and we have seen that describes well the movement

of temperature. However this model makes some simplifying assumptions(i.e.

volatility is not actually constant within the days of a month as assumed in the

model); since temperature’s behavior is an even more complicated procedure

to simulate than this model assumes it is, someone should consider some more

complicated models for temperature to get even better results: A suggested

model for temperature is one that uses stochastic volatility (see Benth and

Saltyte-Benth (2005, 2007), [16], [17], and a model that combines in-sample

and out-of-sample analysis to model the daily average temperature (see Taylor
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and Buiza (2004), [8] ).

We analyzed three methods used for pricing weather derivatives: Pricing

under an Equivalent Martingale Measure which we implemented in an HDD

call option by two different ways, Arbitrage free pricing method also imple-

mented in an HDD option using the PDE approach, and Actuarial method

implemented using Monte Carlo simulations. The four different ways of im-

plementation are consistent to each other, as the prices they give are very

close when we insert the same parameters to the different algorithms that cor-

respond to each one of them. Theoretical prices tend to be slightly higher

than those that Monte Carlo simulations and Actuarial Method give. Monte

Carlo simulation method gives slightly lower prices than these of the Arbi-

trage free Method. As far as the PDE approach is concerned, in comparison

with the other methods, it gives close prices for a certain range of sizes of the

grid; when we try to increase the grid’s density, the method crushes because

of the instability of the explicit scheme of finite differences that is used for the

implementation.

As for the parameters we insert to the model of temperature in order

to compute the prices for the HDD call option, we have used estimated prices

from Alaton 2002, [7]). These estimations come from 40 years daily aver-

age temperature in different locations across Sweden. For the parameter that

correspond to the market price of risk (here weather risk), we use the value

λ = 0.08. As we have previously mentioned in the study, this value can be

inferred by quoted prices of corresponding call options in the market by solv-

ing some optimization problem. This is usually not feasible when it comes to

weather options, as they are usually traded in the OTC market.
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Chapter 6

List of algorithms used for the
computation of prices (Matlab)

6.1 List of Algorithms

(1) Monte Carlo simulation of Temperature Path trajectories:
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(2) Theoretical Price of an HDD Call option (and an HDD Put option)

under an Equivalent Martingale Measure.
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(3)Pricing of an HDD Call option (and an HDD Put option)

by Monte-Carlo simulation
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(4) Pricing of an HDD Call option (and an HDD Put option)

by Actuarial Method
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(5) Pricing of an HDD Call option by PDE Approach
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6.2 List of Plots

1. Price of anHDD Call Option vs different Times to Maturity Tn (Theoretical

Price).

2.Price of anHDD Call Option vs different Strike Prices K (Theoretical Price).
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3. Price of an HDD Call Option vs different weather risks λ (Theoretical

Price).

4.Price of an HDD Call Option vs different volatilities σ (Theoretical Price

and MC Simulations).
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