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Amnayopeuetal n aviypadn, amobnkevon kat dtavoun g mapoloag epyooiac, €€
OAOKAPOU 1 TUNUATOG QUTAG, YO EUMOPLKO OKOToO. Emitpémetal n avatunwon,
anoBnkevon Kot SLavoun ylo oKomo Un KePSOOKOTILKO, EKTIOLSEUTIKAG 1 EPEVVNTIKAG
duong, uTtd TNV MPoUT6OeoN va avadépetal n Ny MPoéAeuong Kat va datnpeitat
TO Tapov pAvupa. EpwtAuata mou adopolv Tn Xpnon TtnNg Epyoocioc yla
KEPOOOKOTILKO OKOTIO TIPETEL VA armeuBuvovtal pog Tov cuyypadea. Ot anoelg Kat
TOL CUUTIEPACHLOTO TIOU TIEPLEXOVTOL OE AUTO TO £yypado ekdpdalouv tov cuyypadea
kot &ev TIPETEL VoL EPUNVEUDEL OTL QVTUMTPOOWTEVOUV TIG emionueg O£o0elg TOU
Mavemotnuiov Nepatwe.
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Extended Summary (in Greek)
A. Opwopog IpoPinparog

To 7pocaplooTIKE eKTodELTIKA cvotiuata vreppécomv (Adaptive Educational
Hypermedia Systems) eivol cvetiuata te)voloyiKd vTootploievng ekmaidevong
OV TPOGUPUOLOVY TO TOPEYOUEVO EKTOALOEVTIKO TEPLEYOLEVO OTIS ELOKOTEPEG
EKTTOLOEVTIKEG OVAYKES TOV KAOE eKTadELOUEVOL 1 opddag ekmodevopévayv [1], [2],
[3].

H xevipu Aettovpyikny povado towv cvotnudtov avtdv  sivor to -Movtélo
[Mpocappoctikotntog (Adaptation Model) [4], [5], 6nwg Tapovoidletar oty Ewkova
0.1. To povtého TPOGOUPUOGTIKOTNTOG TUTIKG AmOTEAEITOL OO €va. GHVOLO KOVOVOV
[6], [7], ot0x0¢ TV omoiwv givarl o kaBopiopdc Tov TPOTOV EMAOYNG EKTOLGEVTIKOD
vAo¥ (resource selection) amd pio omoBNKn 1 GLALOYY EKTOUSELTIKOD VAIKOD KoL
70V TPOTOV GHVOEGNG TOL (resource sequencing) Mg eViaio EKTOUSEVTIKO TEPIEYOUEVO,
TPOGOPUOGUEVO OTIS WOWHTEPEG EKMOIOEVTIKES OVAYKES €VOC EKTOOELOUEVOL T

OLLASOG EKTTOOEVOUEVDV.

Emimedo EktéAsong Emimedo Zxsdiaouou
Amobrjkn Ekm. YAikou MovréAo MN'vwarikou lMediou
Mapoxeag Exaideutikod - lepapyeia Madnoiakwy ZTéxwv
Mepiexopévou Ekmraideutiké YAikd
'
.
A A Moviéro M .
ovIeho Tleplypaene Ovrohoyia MNvwoTikwv Evvoiwv
Ekmraideutikou YAikoU
MovréAo lMpooapuoaorikoTnrag
\ \/
Emegepyaotng Kavéveg K.cvovsg Kavéveg
5 < . o | ZovBeong | .
Kavévwv - EmAoyrig > ExTr - EmAoyrig
MpocaopooTIKOTNTAG Ekt. YAikou " Evvoiwv
Mepiexopévou
/ ‘}
MvwoTIKA XapoKTNPIoTIKA Kal
MaBnoiakég MpoTipAoeig
\
AvaAuTrig ANMNAETTISpaoEwY MvwoTiké Emriedo
MovréAo Ekmraideuouévou/wv
L J L J

Ecova 0.1: T'evikeopévy Apyrrexrovikn Ipocopuootinav Exmaidevtikav Zoothudrwy
Yrepuéowv
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Yoppova  pe  m  PPrloypoeio,  kevipiky  vmobeon  katd TO  oYESOUO
TPOCUPUOCTIKOV EKTOOELTIKOV GLUGTNUATOV VIEPUECHOV, KOl EWOIKOTEPO TOV
HOVTELOL TPOCAPUOGTIKOTNTOG QLTMV, Elval 1 VTAPEN IKOVOV EOIKOV EKTOOEVTIKOD
oxedloopov (instructional designers) ot omoiot pumopodv vo opicovy pnNTOE Kol pe
COaPNVEWL TOVG Kovoveg mpooapuootikotntag [8]. Kdatt tétolo opmg sivar apketd
dVoKoAo va cpPEel, apov Ba amattovoe amd £va E101KO EKTOOEVLTIKOD GYEIACHOD OYL
HUOVO TN YVOOT KOTAAANAOL EKTOOEVTIKOD GYESIOGLOV, OAAL KOl TOV AETTOUEPELDV
vAomoinong TV HOVTIEA®V pE Pdaon To omoio TPEMEL VO OPIGTOVV Ol KOVOVEG
npocapuootikoOtag  (Moviého  Exmoidevopévov,  Moviého  Ileprypaong

Exmoidentikod Yauov kot Movtého I'vooticov Tediov) [6].

Emumpdobeta, Poacikd peovékmmuo g ¥pNoNg Kovovmv ylo TNV TEPLYPOPT] TOL
LOVTEAOL TPOCHPULOCTIKOTNTAG €ivol OTL amortel 10 oyedacnd €vog vmepPoikd
peyéAov Kot TOADTAOKOL GUVOAOL KOVOV@V, He OmOTEAECUO Vo eival £EapeTiKA
dVGKOAOG TOGO 0 €K TV TPOTEP®V OPIGUOS TOV, OGO KOl 1) CLVTHPNON/AVAVEMGY| TOV
Katd v dwdpketo g ektéheong (runtime) [9], [10]. H dvokoria kabopiopod tov
OTTOLTOVUEVMV KOVOVOV 0QPEILETOL GTO TPOPAN AT TOV EMPEPEL N TOOVY EMKAALYN

HeTa &l TOV Kavovmv, /Kot 1) AVETAPKELD TOV Kavovov avtodv [11].

[Ipog Tov710, amd ™ oyetikn Biproypagio avayvopiletor wg avowytd Oéua n avarrody
KaTGAANA@V UeOOOWV/TEYVIKOV TOV VO, EXITPETODY TOV ADTOUATO OPIGUO TWV KOVOVDY
rpocopuootikotnrog [12], [13] pe Pdon v mpokTik 7oL oKoAovOsiton oo
JaPOPETIKEG KOvOTNTEG eKTadeLTIKNG mpaktikig (Communities of Educational
Practice) [14].

Emnpocheta, otn PipAioypaeio £xovv mpotabel dapopeg TeEXVIKES OV EMTPEMOVY
ELTE TNV TPOCUPUOGTIKN ETAOYN EKTOUOELTIKOD VAKOV [15], gite TV mpocapprooTikn
obvOeomn ekmardevTikov mepieyopévov [16], [17], xopic woTOG0 va vdpyel Eva eviaio
mwhaioio oaéioAoynons g emiooons twv teyvikwv ovtwv. TIo ocvykekpyéva, g
HETPIKEG AEIOAOYNONG YPNOUOTOIOVVTOL EITE YEVIKEG LETPIKES OO TO TESTO EAYWOYNG
mAnpooopiog (Information Extraction), mov oupwg doev Aaupdvovv v’ Oy Tig
WwotepdtTEG TOL VIO €EETOOT TPOPANUATOG, €iTe UETPIKES MOV &ivar awotnpd

EQAPUOGIUES OTIG TPOTEWVOUEVES TEYVIKEC [18].
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B. Ileprypoon Anotereopatov Epevvag

H Owoaxktopikn ovt OSwrpiny aocyoAeiton pe 0Oépata mov  agopovv  GTnV
TPOCOPUOCTIKY]  ETIAOYY  EKTOIOEVTIKOD  VAIKOD, OTNV  TPOCOPUOTTIKY — oOVOeon
EKTOLOEVTIKOD TEPIEYOUEVOD, KOOMG Kl otV oyediocn evoc mlatgiov alioAdynans e
EMO0TNS UEOOIWV/TEYVIKWOV ODTOUOTOD OPLOUOD KOVOVWY TPOGopuocTikoTyTas. 1110

GUYKEKPULEVAL:
Movtéia Amopacewy Ilpocapuoctikic Eniioyns Exraidocvtikod Yiikov

Boowdc o1010¢ ™¢ gpevvnTikng mpoomdbelog oe owtn TV Katevbuvon nNTav 1
dnpovpyia evog Hoviélov amo@dce®y T0 omoio PILEITOL TOV TPOTO LE TOV 01010 EVOC
E101KOG EKTOLOEVTIKOV GYEOAGHOV EMALYEL TO KATAAANAO EKTAOEVTIKO VAKO Od Lo
amofNKN YNeKoH EKTOSEVTIKOD DAIKOD Y10l £VOV GCUYKEKPILEVO EKTOOEVOUEVO TOV
omoiov T yapaxtpiotikd (User Profile) yvopiler.- H vlomoinon evog tétotov
povtélov avtikabiotd toug kavoveg emhoyns vakoy (Content Selection Rules) mov
EVTAOOOVTOL GTO  HOVTéLO  mpocappootikotras  (Adaptation  Model)  evog
TOPAO0GLOKOD TPOGAPUOGTIKOD GUOTHUATOS NAEKTPOVIKNG nabnong (PAéne Ewova

0.1).

[To ovykekpyéva, oavamTdape €vo HOVIEAO omdPAcNG TO ONMOoi0 EKTIUA TNV
KotoAAnAOTTOL  €vOg  pofnoakod avtikeyévov (learning  object) yw  évav
ekmadeVOUEVO VITOBETOVTOS OTL YVOPILOVUE TO YOUPAKTNPICTIKA TOV EKTALOEVOUEVOU.
To amotéhecpa efval po cuvdptnorn, MOV KOAEITOL GVVAPTHON KOTAAANAOTHTOG
(suitability function), n omoio cvoyetilel ta YOPAKTNPIOTIKA €VOC HOONGLOKOD
avTIKEUEVOL (Ta omoia amotundvovtor 6to Movtého Ileprypagng Exmaidevtucod
YAKOU) HE TO YOPOUKTNPIOTIKE EVOG EKTALOEVOUEVOL (TOL OTTOIOL ATOTVTAOVOVTOL GTO
Movtého Exmoidguopévov) Kot avtioTpOQme, Kol HoG EMTPENEL TNV €DPECT TOL
KATOAANAOTEPOL LAONGIOKOD OVTIKEYEVOL Y10 EVO GLYKEKPIUEVO EKTTOOEVOUEVO OO

£vao GUVOAO LAONOLOUK®OV AVTIKELEVOV.

——
| —
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START

Reference Set Generation
Reference Set Reference Set
of Learning Objects of Learners
(Training & Generalization Set) (Training & Generalization Set)
A A Step1
\i \
Expression of Instructional Designer’s Reference
LO rating on the Reference Set of Learners
Add an Step 2
LO Instance
to the  /
Training Set
Suitability Function Parameters Calculation
Step 3
\
Fail Consistency Check
based on Learner Training Set Add a
Learner
Instance
Pass
\ to the
Extrapolation on the entire set of Training Set
Learner Instances
Y
Consistency Check Fail
based on Learner Generalization Set
Step 4
Pass

END

Ewcova 0.2: diadikaoia onuiovpyiog Zovaptnons Kotallnlotyrog

H mpotewvopevn puébodog dnpovpyiag tg cuvapTnong KOTaAANAOTNTOS amoTeAEiTAL

and 1o, e€Nc Prinarta (6nwg mapoveralovrat otny Ewova 0.2):
- Bruo 1: Aquiovpyio Zovoiwv Avapopas

To mpodto PApa ywo v onuovpyio TS GLVAPTNONG KATOAANAOTNTOGC
nepthopPaver v onpovpyio evHg GLVOLOL AVAPOPAS LLOONGLOKDV OVTIKELEVOV
KOOGS Kol EKTOOEVOUEVOV, HEGH TNG YPNONG TOV OVTICTOW®V HOVTEA®V
neprypaens Tovg. ['a kabe pia mepintwon onpovpyovde 300 GHVOAN OEOOUEVMY,
T0 TPOTO &§ aVT®V KoAgitow odvolo exmaidevons (Training Set) kot Oa
ypnowonomBel yio TOV VTOAOYICUO TOV  TOPAUETPOV TG GLVAPTNONG
KOATOAANAOTNTOGC, €V  TO  Oe0TEPO  KOAOLUEVO G OOVOAO  YeVIKELONS

(Generalisation Set), Oa ypnowwomonbei yoo Tov €leyyo TG YeEVIKELONG TNG
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ouvaptnong katoAinidtnrog. Kdébe pabnoioxd avtikeipevo tov ovvorov

avagopds mpocsdlopiletor and éva povadikd mpoodoptoty g popeng LO; kot

yopoktnpiCetar amd n otoyela gt =(9,%,9,%,...,9,%) TOL Movréhov
[Teprypagng Exmodevtikod YAwkov. Xtov Ilivaxa 0.1, - mopoveidlovtal

avaALTIKA To ototyeia Tov Movtéhov Ileprypagnc Exmaidevtikod Yoo mov

YPNOUOTOUCALE Y10 TIC TPOCOUOIDGELS pac. Ta otoryeio ovTd eivol VITOGVVOAOD

0V O1e0volc mpoTvTOL TTEPLYpaP|G pnabnolokmdv aviikeipwévav IEEE Learning

Objects Metadata (IEEE LOM) [19].

Hivaxag 0.1: Zroryeio Movtélov Heprypapng Exmoidevtinod YiikoD

IEEE LOM IEEE LOM Sl
Category Element P
General Structure Underlying organizational structure of a Learning Object
Aggregation Level The functional granularity of a Learning Object
Interactivity Type Prgdommant mode of learning supported by a Learning
Object
. The degree to which a learner can influence the aspect or
Interactivity Level ; 3 ;
behaviour of a Learning Object.
Semantic Density The degree of conciseness of a Learning Object
Typical Age Range Developmental age of the typical intended user.
- How hard it is to work with or through a Learning Object for
Difficulty o .
. the typical intended target audience.
Educational

Intended End User
Role

Principal user(s) for which a Learning Object was designed,
most dominant first.

Context

The principal environment within which the learning and use
of a LO is intended to take place.

Typical Learning
Time

Typical time.it takes to work with or through a LO for the
typical intended target audience.

Learning Resource
Type

Specific kind of Learning Object. The most dominant kind
shall be first.

Opoimg, KaBe mpoeik ekmodELOUEVOD TOL GLVOAOL avaPopds mpocdlopiletar amd

évo. povadikd mpocdoplot ¢ popeng Lj xar yapaxtnpiletor amd m ortoyeio

u" =(u1L",u2Lj,...,u;") 00 Movtédhov Exknadsvopévov (Learner Model). Ztov

[Tivaxo 0.2, wapovcidlovtar avalvtikd to ototyeic Tov Movtélov Exmaidevopévmv

OV YPNOUYLOTOMGALLE Y10l TIG TPOGOUOIMGELS Hoc. Ta otoryeio avtd eivarl VTOGVVOAO

Tov deBvovg poviélov meprypaeng ekmodevopévov IMS  Learner Information
Package (IMS LIP) [20].

Ta ocvvora dedopévov avaeopds, mapdyoviol Tuyoio, Katd TPOTOo MOCTE VO, £XOVV

kavovikn katavoun (normal distribution) oto gvpog tiudv tov Movtélov Tlepryparg

Exnadevtikod Yoo kot kavoviky Aoyopifukn kotavoun (lognormal distribution)

070 €0PO¢ TILADV ToV Movtédov Exnaidevopévov.

——
<
| —
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Hivaxag 0.2: XZroryeio Movtélov Exmaidsvouévaov

Learner Model IMS LIP Element Explanation
Element
Learning Stvle Accessibility/Preference/typename The type of cognitive preference
9>y Accessibility/Preference/prefcode The coding assigned to the preference
Modality AccessForAll/Context/Content The type of modality preference
Preference
QCL/Level The level/grade of the QCL
Activity/Evaluation/noofattempts The ”“'.“”bef of aKempts-made’an the
evaluation.
Knowledge Level : : .
. . . Information that describes the scoring
Activity/Evaluation/result/interpretscope data
Activity/Evaluation/result/score The scoring data itself.

- Biua 2: Aiafdbuion tov Lovoiov Avagpopas MabOnaioxamv Avtikeyuévav

Mo kaBe mpopil exmoudevopévov tov cuvolov - ekmaidsvong (Training Set),
{ntépe omd TOV €OIKO EKTOIOELTIKOD GYENOOUOD Vo opicel TNV  oelpd
TPOTIUNONG TOV HOONCLOK®OV OVTIKEWEV®OV TOL LTAPYOVV TOGO GTO GUVOAO
ekmadedoe®g 060 kol oto  oVOvolo - yevikevong (Generalisation  Set).
Emmpdcheta, yio kdbe mpoeih eKmaidevopévov Tov GuvOLoL yevikevong, {ntdple
amd TOV €101KO EKTALOEVTIKOD GYESOCUOD VO OPIGEL TNV GEPA TPOTIUNONG TOV

HOONGLOKOV OVTIKEYLEVOV. TOV DITAPYOVY. GTO YEVIKEVOTC.
—  Brua 3:Yroloyiouog Iopouétpwy 2ovaptnons Kataiinlotyrog

Xe avtd 1o Prua opiCovpe éva mpoPAnua Pedtictonoinong to omoio cav otdyo
€XEL TOV LTOAOYIGUO TOV TOPAUETPMOV TNG CLVAPTNGCNG KATUAANAOTNTOG KOTA
TPOTO MOTE VO TPOGEYYILEL TIC EMAOYEG TOV EKTUOEVTIKOV EOIKO EKTAUOEVTIKOV

GYEOOG OV Y10 TOL GOVOAD EKTTOUOEVONG.

ITo ovykekpipéva, yio kGOe Tpoeil exkmardevopevov Lj opiCovpe wg cvvdptnon
pepkng kataAinAidtntog (marginal suitability function) tov ototyeiov gk tov
Movtéhov Ileprypaopns Exmaidevtucod YoV, pia cuvdptnon mov ekepdlet
OG0 oNuUavTiKd fvar To ototyeio gk OTav VToAoyilovpe TNV KATAAANAOTNTA £VOG
poadnotokod  avrikewévov LO; yw 10 ovykekpipuévo ekmodevopevo L. H
cuvaptnon ot exppaleton oo OV TOTO:

L/ LO L; L; - LO, Lj . LO,2 Lo
S ] i — a J + b J i e _C J i i i i i
o (9) =8y, +Dg1 9 ©XP(=C O ), omov Ik gfvon n Ty Tov oToyEion gk

tov Movtéhov [eprypapnc Exmaidevtikod YAIKOU Yo 10 ponotokd ovTikeipevo
LO;. O vmoloyiopudg TV TOPOUETPOV aé'kj eR, bé'k' eR, C;'kj eR, yio 6ia TO

ototyeio gk tov Movtéhov Ileprypagng Exmadevtikod YAuo0, odonyel otov

——

VI

'
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VTOAOYICHO NG GLVAPTNONG  KOTOAANAOTNTOG Y TO  GLYKEKPLUEVO
ekmadevopevo Lj, ovppwva pe tov tomo: S L (g Lo ): 1 Z S ; (9,.2).
nig ™

XPNOWOTOUDVTING TN GEPO TPOTIUNONG TOV HAONCIOKOV OVIIKEWWEVOY.  TOV

ovvorov ekmaidevong (Training Set) yw to ekmodevopevo Lj, opilovpe Tig
S1popég  KATOAANAOTNTOG A" :(AT,A';,...,A:"_l), o6mov ( o opupog TV
LOONCLOKOV OVTIKEWEVOV GTO GUVOAO EKTOIOELONG Kot A'l"' = Stél —St(j)m >0 1

dapopd  mpotiunong petad Vo  ocvveyduevov - (subsequent) pabnclokmv
AVTIKEWEVOV GTN GEPA TPOTIUNONG. LT GLVEXELD, Yo KAOE Olapopd mpotipnong

’ ’ . L; L; L; L; ,
opiCovpe 10 opdipo €, @ote Al =S4 S +€720 ku emivovpe To

q-1

npoPAnua Bertiotonoinong: EAayiotonoinon Z (elLj )? VTH TOVG TEPLOPLGLOVC:
1=1

A >0 av SL%I > SL%M

_ " Lo 0<s0 (gr%) <1, Vg
A =0 av stgstgm} e "

Me v enilvon tov tapoardveo tpofAnuatoc Bedtictomoinong, vroAoyilovpe Tig
TOPOUETPOVG a;kj eR, b;‘k' eR, Cé‘kj eR, v 6ha Ta oTOKElDL Ok TOV MoOVTéLOL

[eprypagng Exmawdevtikov YAwkov. To mpoPfAnua avtd emddetar kdvovtag
YPNON KAUGOIK®OV HEBOO®V UN-YPOLUIKOD TPOYPOUUATIGHOD (éva cuvdvacud

™G pebodov morlhamiactactdv Lagrange kot pebodmv cvluydv katevbovoewv).
—  Brua 4: EAeyyos 2vvéreiag kar I'evikevon

Xe outd TO Pruo EAEYYOVLUE TN CULVEMEW TNG GLVAPTNONG KATUAANAOTNTOG
YPNCLOTOUDVTAG TNV, GEWPE TPOTIUNONG LAONCLUK®Y OVTIKELEVOV TOV GLVOAOL
yevikevong yio KOs mpo@il eKTOdELOUEVOD TOL GLVOLOL eKTOdEVSEWS. Edv Tl
OmOTEAECHATO OV €lvol TKOVOTOMTIKE ETEKTEIVOVIE TO GUVOAO EKTTOLOEVCEMC
Kol emavaioppdvoope T Oladikacic tov Bnuatov 2 ko 3. Xe avrtifetn
TEPIMTOGN,  YPNOLUOTOIOVTOS  YPOUMKY  mwopepPoAny  vmoAoyilovpe  T1g
TOPOUETPOVG TNG CLVAPTNONG KATOAANAOTNTOS Yol OAOVG TOLG GLVOVAGHOVG
TILDOV TOL HOVTEAOVL EKTOLOEVOUEVOD, KOl EAEYYOLUE TNV EMTLYIO ETAOYNS
YPNOOTOIDVTOS TNV GEPA TPOTIUNONG LOONCIUKOV OVTIKEILEVOV TOV GLVOAOV

yevikevong yio KOs TPOoPIA EKTOOEVOUEVOL TOL GUVOAOL YEVIKEVONC.

Vil
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[Mpokeévov va  peAETHOOVUE TNV IKOVOTNTO  TPOGOPUOCTIKNG  EMAOYNG
EKTOOEVTIKOD  DAMKOD  TOV  TPOTEWOUEVOL  UOVTEAOV,  TTPOYUOTOTOUONKOV
TPOGOUOIDGES  EMAOYNG omd  &éva  GOVOAO  TPOGOUOI®OUEVOV — LoONCloKOV

OVTIKEILEVOV.

Mo ovykekpyéva, TPOGOUOWDGAUE 15  JPOPETIKEG TEPUMITAOCELS - EMAOYDV
TPOTIUNGONG HOONCIOK®OV OVTIKEWEVOV OO OVTIGTOLOVS  E01KOVS EKTOOEVTIKOV
OYEOOUOV, DEPOVTOC ®C HOVIEAO TPOTIUNONG OVTIGTOLXES GUVOAPTNOELS TNG
Biprobnkng CUTE (Constrained and Unconstrained Testing Environment,
http://hsl.rl.ac.uk/cuter-www/index.html). Me Bdon ovtd to poviéda mwpotiunong
katackevacopue 100 drapopetikés oelpég mpotiunong ( Kabe pio ek TV omoiwv
avTIOTOLYElL 08 Vol SLPOPETIKO TTPOPIA ekmandevopévmy), amotehovpeves and 500
pobnoaxd avikeipeva, v K40 TPOGOUOIOUEVO EWOIKO EKTOOEVTIKOD GYESLOGLOV.
Tig mpdTeg 50 TIC YPNCUOTOMGALLE Y10 TNV EKTOLOEVCT) TOV TPOTEVOLEVOL HLOVTEAOL,

eve T1g vtoAoweg S0 Yo Tov EAeyyo TG YEVIKELONG.

Aggregation Level 1 Aggregation Level 2
100.0 100.0
98.0 { [}
96.0 - |9
94.0 [
920 1 [
90.0  [o
88.0 1 [N
86.0 - [
84.0 1 [N
82.0

98.0 r-

96.0 -
940 r-
920 -

% Success
% Success

90.0 -
88.0 I
86.0

D Training Set 100.0 | 100.0 | 96.7 | 95.4 | 92.1 | 90.6 O Training Set 100.0 | 100.0 | 98.3 | 97.1 | 95.6 | 93.4
B Generalization Set| 100.0 | 99.2 | 953 | 93.1 | 90.6 | 88.4 B Generalization Set | 100.0 | 100.0 | 96.5 | 94.8 | 92.3 | 90.8

n n

Eixova 0.3: Eviesikurd, [epopatixa Aroteléouora Hpooapuootixng Emidoyns Exmaidevtikod
Yiixod

Ymv Ewova 0.3, mapovctdloviol €VOEIKTIKA TEPOUATIKE OmOoTEAEGUOTO OO TIC
TPOCOUOIDGELG 0vTéG. [Tio cuykekpyéva Tapovotdletol | Tocoatiaio emitvyio opONg
EMAOYNG HOONCLOK®OV OVTIKEWEVOVY o€ oxéon e to {ntovuevo aplBud pobnolokmv
avtikelévov  (N). KabBoécov m  molvmhokotnto ovvleong (granularity) evoc
poOnclokol OVIIKEWWEVOL emnpedlel TV KOVOTNTO EMAOYNG €VOC EKTOLOEVTIKOV
EOIKO  EKTOOEVLTIKOV oyedloopol, to. amoteAéopata dtvovior yio 600 Paoikés
KaTNyopieg HOONCOK®OV OVTIKEWWEVOV O GYEON WHE TO €mimedo cuvafpolong Tovg
(aggregation level). Zopugpwvo pe 10 d1EBvéc mpdTLIIO TEPLYPOPNG HOONCLOKOV
avtikelwévov |EEE  Learning Objects Metadata (IEEE LOM), 710 eminedo

Vil
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ouvabpoiong evog panotlokol avtikeévon ekepdalet v moAvmhokdtnTo chHvOeong
avTov Kot maipvel Tig TIHég “1” dtav 1o padnolakd avtikeitevo amoteleiton amd o

UOVO Yynelokn Ty Kot “2” 0tov TpoKEIToL Yoo GOVOETEG GLALOYEC YNPLOKOV TNYOV.

Agdopévov OtL Yo €va pHOVO TPOQIA  EKTAIOEVOUEVOL, Ol SLOPOPETIKOL TOTOL
LOONGLOKOV AVTIKEWUEV®V, TOL TPOKVTTOVY OO TOV GLVOVAGHO TOV SVVATMOV TILOV
TV ototyeimv tov Movtéhov Ileprypoeng Exmaidevtikod Yoo (ITivaxag 0.1),
vroAoyifovion whvew amd 900.000, eivor oxeddv un peaMotikiy n vobeon OTL Evag
EOIKOG  EKTOOEVTIKOD  OYESOICUOV  €lval  1kavOg Vo Opicel G€  €va  TLTIKO
TPOCUPUOCTIKO EKTOOEVLTIKO GUGTNIA VIEPUEGHOV TO TANDOG TOV KOVOVOV EKEIVOV

OV VO, KAADTTTOVV OAEG TIC TEPUTTAGELC.

Ta mepdpoata mov dienydnoav, £d€1&av OTL N ¥PNON TOL TPOTEWOUEVOD LOVIEAOL
odmnyel o axpiPeic amopdoelg emhoyng Exmtadevtikod YAkov, e mocootd emtruyiog
nave oand 80%, Otav Cnteltor amd  TOV €WOKO EKTOOEVLTIKOD GYESOGHOD O
kaBopiopdg g oepdg mpotipunong 10 pabnclakdv avikelpévov yuo 50 dopopeTiKeég
TEPIMTMOGEL,  TPOPIA  ekToUdELOUEVAYV,  ONAadT 0  Kobopiopudc 500  cuvolkd
GUVOVOGH®MV, KOl GCLVETDG TOPOVCIALEL TAEOVEKTNUOTA GE OYEoN HE TNV

TOPAOOGLOKT] TPOGEYYIOT THG PNONS KAVOV®V.

To amotedéopata avtg TG épevvag €xovv. dNUootevtel oto O1EBVEC TEPLOdKo
“Journal of Interactive Learning Research” og €101k6 100G pe 0éua “Computational
Intelligence in Web-Based Education” [P6] kot éxovv mapovoiaotei oe 2 diebvn
ovvédpia (3rd International Conference on Adaptive Hypermedia and Adaptive Web-
based Systems [P11] xaw IASTED Conference on Web Based Education WBE 2004
[P13]) kor oe 1 eBvikd ovvédpo (4th Hellenic Conference with International
Participation on ICT in Education [P14]).

Y OLVEXELD - TNG  EPELVNTIKNG TPOoTADEWG Yoo TNV avamtuln  HovTEA®V
TPOGOPUOCTIKNG EMAOYNG EKTOOEVTIKOD VAKOV, KOl TPOKEYUEVOL VO LEUWGOVUE T1G
OTOUTNOELS TOV TPOTEWVOUEVOL HOVTEAOVL EMAOYNG O€ oyéon He TN {nrovpevn
TANPoQopia. omd £va €101KO EKTOOELTIKOV GYedOGHOD, HEAETHONKE 1 KOVOTNTO

duvapKnG eEEMENG TOL TPOTEWVOUEVOD LOVTEAOD ATTOPACEMV.

[Ipog 7tOVTO, emexTEIVOUE TO TPOTEWOUEVO HOVIEAO OTOPACEW®V  EMIAOYNG
EKTOUOEVTIKOD VAIKOD (DOTE Vo KGvel yprion tov poviédov extipnong Cognitive Trait

Model (CTM) tov yvootik®v yopoktnplotikdv (cognitive characteristics) evog
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ekmoudevopevon. To poviélo avtod, mov éxetl mpotabei amd tovg Kinshuk ko Lin [21],
pe Baon maAadtePEG AMOPAGELS EMAOYMV EKTOLOEVTIKOD VAIKOV, £XEL TN SLVOATOTNTO
eKTiUNoNG 1OV YVvOoTik®V yapoktnplotikov Working Memory  Capacity Kot
Inductive Reasoning Skill kot ¢ amotéheoua TPOTEIVEL GUYKEKPIUEVES TIUES Y10l TOL
otoyeia InteractivityType, InteractivityLevel, SemanticDensity kot Difficulty tov
Movtéhov Tleprypagprig Exmoadevutikod YAIKOD, TOL TPog EMAOYT - EKTOULOEVTIKOD
vAkov. H ypron tov CTM e&iye cav 610)0 apevOg ToV TEPLOPIGUO TOV OL0GTACEDV
oV TPOPANUATOG PeATIoTOTOINGNC TOV OpILOVUE KOl APETEPOV THY AVATPOPOOOTNON
TOV HOVTEAOL OMOPAGE®MV EMIAOYNG EKTOLOEVTIKOV  VAIKODV,  MOTE EEMKTIKA VL

Beltudver v emttvyio TAOYTG.

[Tpokelpévou va, LEAETHGOLE TNV IKOVOTNTO SVVOIKNG EEEMENG TOV TPOTEWVOUEVOL
LOVTEAOL AOPACE®V UE BACT TNV EKTIUNGCT TOV YVOOTIKOV YOPOKTNPIOTIKOV £VOG
EKTOLOEVOLUEVOD, TTPALYLOTOTOWONKAV TPOGOUOIDGELS EMAOYTG and Eva EVPY GUVOAO
TPOGOUOIOUEVOY  podnolokav  aviikelpwevoyv. [T - ovykekpuéva, pe Paocn to
TPOCOUOIWUEVE,  HOVTEAQ TPOTIUNONG  EWIKMV - EKTOIOELTIKOD  GYESOGHOD, TOV
XPNOLOTOWCANE YO TO TPONYOOUEVA  TEWPAMaTd pag, katookevdoape 20
SPOPETIKEG OEPEG TTpOoTiUNONG, omoteAovpeves amd 50 pabnolokd aviikeipeva, yo
K60e TPOCOUOI®UEVO  €10IKO  EKTOOEVTIKOD  oyedacpov. Tig mpoteg 10 11
YPNOLOTOUWCOLE VIO TNV EKTOIOEVOTN KOl YEVIKELGN TOV TPOTEWVOUEVOL HOVTEAOD,
eved T1g vmorowteg 10 yio ) pétpnon g Suvapkng e£EMENG TOV TPOTEVOUEVOL

HOVTELOV OTOPAGEWDV.

Ymv Ewoéva 0.4, mapovctdloviol €VOEIKTIKE TEPAUATIKO OTOTEAECUOTO OO TIG
TPOGOUOIDOGELS avTéS. TTo cuykekpyéva mapovotdletal N Tocootiaia emttvyio opOng
emoyng (selection success) pobnoak®v aviikelwévmy 6e oyéon pe to {NTovUEVO
aplOpd pobNoKOY ovTIKEEVOY (N) Kol TG OVATPOPOSOTHGEIS TOL HOVIEAOL

ATOPACEWMV EMAOYNG EKTALOEVTIKOD VAIKOV 0td To povtéAo extiunong CTM.

Ta mepdpata wov dieénydnoav, £dei&av oti (o) 1 PO TOL TPOTEVOUEVOL LOVTELOL
odnyel og axpiPeic amoEAacels eMAOYNG EKTALOEVTIKOD VAKOD, LE TOGOGTO EMTUYIOG
ndveo ond 70%, 1600 Yoo oyeTkd piKpOd oaplBpd (nroduevev  pabdnolokov
avtikelévov (N=20), 6co kot Yo oxetikd peydio apBud (n=50), 6tav {nteiton amod
TOV €0IKO EKTOLOELTIKOD OYEOOUOD O KoBoplopog tng oelpdg mpotipunong S50
LoONGLOKOV aVTIKEWEVAOV Yo 10 S10pOopETIKES TEPIMTAOGELS TPOPIA EKTOUOEVOUEVDV,

(B) To mpotewvdpevo povtédo €xel T duvatdTNTA SVVOIKTG EEEMENG OTAV GLVOLOGTEL

——
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pne 1o povtédo extipnong CTM, pe amotélecpo ol amo@AcElS eMAOYNS Vo givot

axpiéotepeg 660 avatpopodoteital and to CTM.

Ta amoteAéopato g €pevvag aVTNG, €YOLV OMUOGLELTEL 0TO OeBVEC TEPLOdIKO

“Innovations in Education and Teaching International” [P3].

E&éhén Moocoostod Emrvyiog Emioyig Exmadevtikod YAukov

100

% // /./

85 / -/

80 / e
-

— A

©
o

/ —— n=50

75

70

%Emrvyio Emoyig

65

60
1 2 3 4 5

Avotpo@odotnon Movtéhov Aropdocmv Emioyic Exa. Y kot

Ewcova 0.4: Evdeixura leipouarine Aroteléouoro Avvopurng EEEliEne Tlpocopuootikng
Emidoyng Exraidevtixod Yiikoo

Ilpocapuoctiky Xvvleon Exraidcvtikod Iepigyouévoo

Baowdg 010)0g TG €pELVNTIKNG TPooTdbslog oe autny TV kotevbuven NTav M
dnpovpyia evOg LOVTEAOL ATOPACEMY Y10l TY) TPOGOUPLOGTIKY CVUVOEST EKTALOEVTIKOD
TEPLEYOUEVOL Y®PIg TNV amaitnon g xpnong kavovov. [To ocvykexpéva, M
EPELVNTIKT TPOOTAOEIL EMKEVIPOONKE GTNV EMEKTACT] TOV HOVTEAOL OTOPAGEDV
EMAOYNG EKTOOEVTIKOV VAIKOV, OOTE e Pdorn TNV TANPoeopio TOv TEPLEYETOL GTO
Movtého Teprypagrc YAucov (Resource Description Model), oto Movtého
Exnaudevopévov (Learner Model) kat oto Movtého Ileprypoaeng tov I'vootiko
[Tediov  (Domain  Model) &vdc mPocapUOCTIKOD  EKTOIOEVTIKOD  GLOTHUATOG
vreppécmv (PAEne Eucova 0.1), va Aappdvovior ano@dcels cOvOEog EKTUdEVTIKOD
TEPLEYOUEVOL. VPPV [e T debvn PiAoypapia, To Tapad0GLOKE TPOGAPULOGTIKA
EKTOOEVTIKGL  GLOTNUOTO  LRIEPUEGMV, GLVOETOLV  EKTOOEVTIKO  TEPLEYOUEVO
omploueva og kavoveg ohvleong mov vVAOTOVY o dtadtkaoio dvo Pnudtov [6],

[9]. TIpdta mapdyovv pio aAAniovyio EvvoldV Kotd TPOTO MGTE VO KUADTTETOL O

Xl
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EKTTOLOEVTIKOG GTOYOG TOV EKACTOTE EKTALOEVOUEVOL KOl GTN GLVEYELD EMAEYOLV TO
KOTAAANAO EKTTAOELTIKO LAKO amd o ATobnkn Exmodeutikod YAkov yio kdbe pua

évvola Egymprotd (Ewkova 0.5).

Emiredo
MaBnoiakwy ZToXwWV
) EmAoyn Evvoiwv
lepapyeia oTtnpIféuEVN OTO

Mabnalakwv ZToxuwv TvwoTiké Emimedo
Exmaideuopévou/wv

Emiredo
Evvoiwv

EmAoyn Evvoiwv
oTNPIZOUEVN OTA
MvwoTiké XapakTnpIoTIKE Kal
MaBnoiakég MpoTipnoeig
Ekmraideuopévou/wv

Ovrtoloyia
M'vwoTikwv Evvoilv

Emimredo
YAikoU

MovTého Meplypagri @)
EkmraideuTikoU YAIkoU

Ewcova 0.5: Tevikeouévy Arodixaoio. 2ovOeons Exmoidevtixod lepieyouévon oe
Tpooopuootixa Exmoidevtind, Zootiuaro YTepuéowy

AOY® TtV TpoPANUdTeOV TOL. EMEEPEL 1| TOOVY EMKAALYN UETOED TOV KAVOVOV
TPOGOPUOCTIKOTNTAG, MN/KOL 1 OVETAPKED TOV KAVOVOV OVTOV, EVOEXETOL M
aAAnlovylo exmodevticod VAIKOD (resource sequence) mov mopdyeTon vo unv givon
ocuoveyns. o va Eemepdoovpe to mPOPANUA avTO, €meKTEIVApE TN YEVIKELUEN
dwdwacio ovvleong  EKTAIOELTIKOD  TEPIEYOUEVOD, KOTO TPOTO (MOGTE TPMOTO VO
mapayovtol OAEG ol mBavEG cuVEXEIS aAANAOVYiEG O1OECTHOV EKTOOEVTIKOD VAIKOV
OV KOADTTOVV TOV EKTOOEVLTIKO GTOYO TOV EKACTOTE EKTALOEVOUEVOL, Kol VGTEPA VOl
eMAEYETOL OmO OVTEG M KoTOAANAGTEPN. AvaAvTikKd Ttoo mpotewvoueva Prpota

TPOGOPUOCTIKNG 6VVOEST G EKTOOEVTIKOD TTEPLEYOUEVOL TTapovctdlovtal oty Ewova
0.6.

A&iler va onuelmBel Ott, yio TV €MAOYN TG KATAAANANG 0AANAOLYI0G EKTOOEVLTIKOV
VAMKOV Y10 TOV €KAGTOTE EKTOUOEVOUEVO, YPNCILOTOOVUE TO HOVTEAO EMAOYNG
EKTTOLOEVTIKOD VAIKOD KOl O GLYKEKPIUEVO TN GLVAPTNON KATOAANAOTNTOS 7OV
avoartoape ©oto  TPONYoOUEVO  gpevvnTikKO  otddlo. H  ovvapmmon  avt
ypnoomoteitoar yioo va Pabuovopncer tov kdbe woéuPo g ariiniovyiag. To
amotédeopa TG Odkaciog avtg eivar Pabpovounuévol kKatevBouvopevor ypapot

(directed weighted graphs) mov ekgpdalovv Ola o dSvvATE LOVOTATIO. TOL EKAGTOTE

Xl
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EKTALOEVOUEVOL Yo TNV emitevén evog pabnotakod otoyov. o v emdoynq Tov
KataAANAGTEPOV HOVOTTATION (OAANAOVYIOG EKTALOEVTIKOD VAIKOV) YPNCULOTOIOVUE

aAyopifuovg cuvtopdtepov povomatiov (shortest path algorithms).

Emitredo
MaBnoiokwv ZToXWV

lepapyxeia Mabnoiakwv EmiAoyr) Evvoiwv

5

ZTOXWV oTNPIZGUEVN OTO

M'vwaoTiké Emriedo
Ekmraideuvopévou/wv

Emitredo

Evvoiwv

Ovrohoyia
M'vwaTiKWwv Evvoltwy Brjua 1: Anuioupyia TOaviv
aAAnAouxiwv EkT. YAIkoU

Emitredo
YAikou

BrApa 2: EmAoyr) aAAnAouyiag
EkTT. YAIKOU oTnpiépevn oTta
MvwoTikd XapakTnpIioTIKG Kal
Ma6noiakég MpoTiunoeig
Ekmraidsuopévou/wv

MovTtéAo lMeplypaprg
EkmraideuTikoU YAIkoU

Emitredo
Mpocappoyig aTov
Ekmraideudpevo

e

MpooapuooTIKN
AMnAouxia EkTT. YAIKOU

Eiova 0.6: Ipotsivouevy diodikooio 2ovOsans Exmoidevtinod [epieyouévou

[Ipokeévovr vo  PEAETHCOLUE TNV KOVOTNTO TPOGOPUOCTIKNG  ovvOeong
EKTTOLOEVTIKOD  DAIKOD TOV - POTEWOLEVOL  LOVTEAOV,  TTPUYUOTOTOWONKOV
TPOCOUOIDGELS GUVOESN S Oomd éva €vph CHVOALO TPOCOUOIOUEVODV  HAONCLUKOV
aviikeévov. Tho ovykekpipéva, wg Movtéro Tleprypapng Exmoidevtikov YAiucoo
YPNOOTOWCOLE  DTOGVVOAO TOL OeBvovg mpoTOTOL TEPLYPOPN OO GLOKOV
avuikewévov IEEE Learning Objects Metadata (IEEE LOM), mov mapovoidotnke
otov Ilivaxa 0.1. Qc Movtého Exmoidevopévaov ypnoylomocae Vrochvoro TOL
debvoug poviélov meprypaenc ekmardevouévov IMS Learner Information Package
(IMS LIP) , mov mapovoidotke otov [ivakoa 0.2. T'a tnv dnpovpyia tov Moviélov
I'vootwkov Tlediov  ypnowomomcapne t0 mpotewwouevo Ilpdypappo  Emovdmv
Emotung [IAnpogopikng g ACM (ACM Computing Curricula 2001 for Computer
Science) [22]. ITwo ovykekpéva pe Pdon 10 TPOYPOUUN OTOVOIOV AVTO

onuovpynoape poe Ovroroyia I'vootikodv Evvoldv, amotelodpevn and 950 évvoieg

X1
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(topics) opyavouéveg e 132 gvotnreg (UNits) ko 14 Oepatikég meployés (areas), 6mmg

napovctdletar otov [ivaka 0.3.

Iivoxog 0.3: Oguotikés eproyés Ovioloyios IN'vwotikawv Evvoidv

Area Units Topics

Discrete Structures 6 45
Programming Fundamentals 5 32
Algorithms and Complexity 11 71
Architecture and Organization 9 55
Operating Systems 12 71
Net-Centric Computing 9 79
programming languages 11 75
Human-Computer Interaction 8 47
Graphics and Visual Computing 11 84
Intelligent Systems 10 106
Information Management 14 93
Social and Professional Issues 10 46
Software Engineering 12 85
Computational Science 4 61

TOTAL 132 950

>mv Ewdéva 0.7, mapovoidleton tpunuas tng Ovroloyiog ['vootikdv Evvoumv mov

4 7 r
XPNOLOTOUGAUE GTA TELPAUATO LLOG.

. 1. Consists of

Computer Science 2. Similar to
3. Opposite of
1 1 4. Related with
1 X 1 1 L
nowledge representation Machine learning and Natural language . "
1 1
1 1 1

Concept Relation Classes

3

upervised learning Unsupervised learning
Validation Planning Testing Fundamentals Object-Oriented Testing
2
1 1 3
Self-Organized learning
Back-Propagation Support Vector Machines Reinforcement learning
4

Dynamic Programming

Eixovo 0.7: Tunuonixn Areicovion Ovroloyiag I'vowartikov Evvoiov

EmutAéov, pe Bdon to mpdypappa omovdwv g ACM, kabopicape v Iepapyeio
MoOnocaxkov Z1oxmv mov mapovcstaletatl otnv Ewova 0.8.
o tov vmoloywopd G ovvdpmmong kataAinAdtmrog Kotaokevdcope 10

OLPOPETIKEG GEPEG TPOTIUNONG, omoteAovpeveS amd S0 pabnotokd aviikeipeva, yio

KGOE TPOGOUOIWUEVO  E0IKO  EKTOOEVTIKOV  oyedacpov. Tic mpodteg S5 TIg

XV
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YPNOUYLOTOUCOUE YIOL TNV EKTOUOEVOT TNG GLVAPTNOTNG KATOAANAOTNTOC, EVO TIC
voromeg 5 Yy Tov €heyyo NG yevikevone. o to €leyyo TOL TPOTEWOUEVOL
HOVTELOL GHVOESTG EKTOOEVTIKOD TTEPLEYOUEVOL dnovpyncape £va cbvoro 142.500
TPOGOUOIOUEVOV HOONCIOK®OY OVTIKEIWEVOV, OV ovtioTolel oe 150 pabnolokd
avtikeipeva yuo kéOe pia Evvola tng Ovroroyiog I'vootikdv Evvoldv, kabog kot éva
oVUVoro 20 TPOEIA EKTALOELOUEVOV KATE TPOTO MGTE VO EXOVV KOVOVIKY KOTOVOUN

070 €VPOG TIUOV ToL Movtéhov Exmaidgvopuévmy.

Goals related with Computer
Science

Practical capabilities and skills

Knowledge and Design and
D R D e o
™ Modelng _> _>
. Information
G D e D e
Critical evaluation Human-computer Self management
and testing interaction » 9
Professional
e Methods and tools —> —>
L (Professional responsibility —>
= omm D

Ewcova 0.8: Iepopyeio Mabnoioxwv Ztoywv

Cognitive capabilities and skills Additional transferable skills

Tnv emvuyia opBng obvbeong (learning object sequence generation success) tnv
LETPNCUUE GLYKPIVOVTOG TIG TAPAYOUEVEG OAANAOVYIEG LOONGLOK®V AVTIKEUEVOV Y10
10 tuyoio emdeypéva TPOEIA €KTOOSVOUEVOV Yoo KAOE €MIMEdO €VVOILDV GTNV
Ovtoroyia T'vootikdv Evvoldv, pe tig avapevopeves aAiniovyiec pabnolokov
OVTIKEWEVOV  PAon  TOV  TPOCOUOIOUEVOV — HOVTEA®V  TPOTIUNONG  E0IKAOV
eKTadEVTIKOV oyedtacpov. Xty Ewdva 0.9, mapovcsidloviol EVOSIKTIKA TEPALATIKA
OTOTEAECUATO. OO TS TPOCOpHOIdGEl; avtés. [To ocvykekpyéva mapovoidletar n
mocooTiaie emtuyion opbfg cvvheong (Sequence generation success) poONGLOK®OV
AVTIKEWEVOV G€ oYEon pe 1o {nroduevo aplBud podnolokdv ovtikelnévoy (N), Kadng

Kol pe eninedo evvoldv otnv Ovioroyia ['vootikdv Evvolmv.

Ta mepapatikd amotedécpato deiyvovv OTL 1 (PO TOL TPOTEWVOUEVOL LOVIELOL
odnyel o axpPeic amoedoelg chHvOeoNS EKTOOEVLTIKOD TEPIEXOUEVOD, LE TOGOGTO

emrvyiog move and 70%, tOG0 Yo oyeTkd HKpo apBud (ntovpevev padnolokov
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avTikepévov (N=5), 660 Kat Yo oxeTikd peydio apBud (n=50), otav (nteiton amd
TOV €10IKO EKTOOELTIKOV OYedooD o Kabopiopds g oepdg mpotiunong 10

HaONGLOKOV OVTIKEIEVOVY V1o 50 S10POPETIKEG TEPUTTMOCELS TPOPIA EKTOOEVOUEVOV.

Average Sequence Generation Success per Level of Sequence Root

100

% e L |
90
/A/ maxLOs/Concept Leel

a _/ —e—n=5
o 85
8 / —=—n=10
(E 80 — —a— n=20
> / —e—n=50

75 -—

70

65

Area Units Topic Levels  Topic Levels  Topic Levels

(1-5) (6-10) (11-15)

Concept Level in Domain Ontology

Eikéva. 0.9: Eveixuixd Hepoporind Aroreléapaza Hposapuoctixiic Zovleonc Exroudevtixod
Tepieyouévoo

Ta amotedéopata avtg TG €pevvag, £XouV 1o OMUOGIELTEL 6TO d1EBVEG TEPLOdIKO
“Educational Technology & Society” [P5], oto PifAio “Web-Based Intelligent e-
Learning Systems: Technologies and Applications” [P4] kot éyovv Topovciootei og 3
debvr ovvédpro. (6th IEEE International Conference on Advanced Learning
Technologies [P9], 4th IEEE International Conference on Advanced Learning
Technologies [P10] kot 3rd International Conference on Adaptive Hypermedia and
Adaptive Web-based Systems [P12]). Xto ovvédpio 4th IEEE International
Conference on Advanced Learning Technologies [P10], n epyoocia Tyunbnke pe 1o
Bpapeio Best Paper Award.

2yeoiacn wour Epapuoyn Illaiciov Aé10ioynens

Boowdc o10y0¢ ™¢ epeuvntikng mpoomabelog o€ avtn TV kotevBouvon MrTav o
oYEOCHOG €VOG TAoGiov a&loAdynong g emidoons HeBOS®V/TEYVIKOV QLTOUATOV

OPIGLOV KOVOVMV Tpocapproctikotntag. ITio cuykekpyévar

Q¢ petpkn g emtvyiog opbng emroyng (selection success) mpoteivovpe T yp1on

correct ranked Learning Objects selected j

T ETPIKNG: Selection Success (%) =100 *
s HETPUCNG C6) [ requested Learning Objects
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[Topdro mov M peTpikn ovT eivor OO [LE TNV HETPIKT VTOAOYICHOV TG aKpifetog
(precision) oe ocvotyuoata e&aywyng mAnpogopiag (Information Extraction) ot

Number of Correct Items Selected

opileton amd TN oxéom: Precision = -
Number of retrieved ltems

j, otV mpagn M

TPOTEWVOUEV UETPIKN €lvol KOTOAANAOTEPN Yo TV a&l0AOYNON TPOGOUPUOCTIKNG

EMAOYNG O TPOCUPLOCTIKG EKTOUOEVTIKA GUCTHUOTO VIEPUECWDV.

Boowkdg 010%0¢ TV GUOTNUATOV oVTOV €ivol 1) amoQuyr] G€ OEO0UEVN YPOVIKY|
OTLYWN] TOPOYNG TPOG TOVG EKTOLOEVOUEVOVE UEYAAOV GYKOVL TANPOPOPiaG, apol oe
avtifetn mepintmon Ba evioyvay yvootkd tpofiiuato avti va to Bgpamedovv, Aoy
T0V  TPOPANUATOS THG YVOGLOKNAG vrepedptwong (cognitive overload). Qg
OTOTEAECUO, TO, VTOGVOTHUOTO TPOCOPHUOCTIKNG EMAOYNG  EKTOOEVLTIKOD VALKOD

VAOTOOVV LI TOALTIKT] ETAOYG TEPLOPIGUEVIS TOGOTNTOS EKTOLOEVTIKOD LALKOD.

YVVENMG, 0TV TPAEN 0 apBUdc TV eMAEXDEVTOV HOONGLOKOV OVIIKEILEVOV dEV
Eemepva Tov aplud TV EMBLUNTOV TPOG EMAOYN LOONCLOKOV OVTIKEWEV®V, TOL
onuaivel OTL 1M TPOTEWVOUEVY HETPIKN - €lvol quoTNpOTEPN Omd TNV UETPIKY TNG
axpifelag (precision), eved vroloyilel pe peyaivTepn axpifeia v enidoon eMAOYNG
KOl GTIG TEPMTAOCELS OOV 0 OPOUOS TV EMAEYDEVIOV HLOONGLOKADV AVTIKEWUEVOV
elval pukpotepog amd tov aplpd TV embopuntoOv TPog emAoYn  UaOnNGloKOV

OVTIKEIUEV@V.

Q¢ petpwn g emtuyiog opOng ovvBeong (learning object sequence generation

success) TPOTEIVOLLE ™ xpNon ™mg HETPIKNG:

1 Ncon(:ordant " Ndiscordant . ;
Success (%) =100 * > + =D ,  O0mov  Nconcordant  €lvonr Ol
n(n—

evoppovicpéva  (edyn (concordant  pairs) poOnCclOK®OV  OVIIKEWWEVOV — OTIC
oLyKpwopeveS oAnhovyies, Naiscordant TO. 1N evapuoviopéva Cevyn (discordant pairs)
Kot N o aplBuog TV padnNcloKdV avTIKEEVOVY 6 Ka0e pia amd TG CLYKPIVOUEVES

aAAniovyiec.

H petpucn avtm mpokdmatel pe kKovovikonoinon g petpikng T tov Kendall, oto gvpog
Tiudv [0,100] odtwg dote M TANPNG TAVTION TOV GLYKPIVOUEV®OV OAANAOLYLOV V.
00NYel o€ PEYIOTN EMIOOGT], EVA 1 TANPNG OVGOPHOVID GE UNOEVIKT). XTOYO0G KOTA TNV
EPOPUOYN TNG UETPIKNG OVTNAG €lval M GUYKPIOT TOV TOPAYOUEVOV OAANAOVYIDOV

LOONGCLOKOV OVTIKEWEVOV, LE TPOTVTES AAANAOVYIEG TOV TPOKVTOVV £iTe amd TOV
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angvbeiog KaBopiopd tovg amd Evav 101KO EKTAUOEVTIKOD GYEOIAGLOV, ITE LEG® TNG

TPOCOUOIMGONE TOV LOVTELOL TPOTIUNGNG EVOG E101KOD EKTALOEVTIKOD GYEOLAGLOV.

To mpotewvopevo mAaiclo a&loAdYNoMG, EQUPUOCTNKE TEPOUOTIKA HE GTOYO TNV
aviyvevon TV  PEATIOTOV  TOPAUETPOV  TOV — TPOTEWOUEVOV  HOVIEAWV
TPOCUPUOCTIKNG EMAOYNG EKTOUOEVTIKOD VAIKOV KOl TPOGOPUOCTIKNG  cvvOeEoNC
EKTTOLOEVTIKOD TEPIEXOUEVOD, MOTE APEVOS VO ELNYICTOTOIOVVTOL Ol QMOITHCELS TOV
HOVTEA®V autdv o€ oyéon Me M Cnrovpevn mAnpogopio oamd Evav  €101KO

EKTOLOEVTIKOV GYEOLAGLLOV, KO OPETEPOV VO TAPOLGLALOVY UEYIGTN EMIOOGT).

[Ipog T0VTO0, LTOAOYiGTNKE O AOYOG TNG €MIOOGNG MPOG TNV OmaiTnon TANpoPopiog
amd évov eIKO ekmodevTikoy oyedopoV. H omaitnon  minpoopiag sivot
160dVVaUN e TOV aplOHd TV (NTOVUEVOV GUVIVAGUOV AVTIGTOIYNoNG HadNoLUK®V
avtikeévov (Learning Objects - LOS) pe mpoik ekmardsvopévov (Learner Profiles -
LPs). Zmv Ewdva 0.10, tapovctdlovior EVOEIKTIKA TEPALOTIKG ATOTEAECULATO OO
T1G TPpocopoldoelg avtés. [To cuykekpyéva Tapovstdletal o Adyog TG TOGOGTIN0G
emTuyiog opOng emhoync (selection success) pHaONGLOKOV OVIIKEWWEVOV TPOG TOV
aplOld TOV OTOTOVHEVOV GLUVOVLAGH®V HOONGLOKOV OVIIKEWEVOV HE TPOQIA

ekmadevopévaov (LOS x LPs).

Q¢ 6TOY0G KOTA TNV EKTEAEGT TOV TEPAUATOV TEOMKE 1 KavoToinon TS cuvOnkng:
Selection Success > 70%, kot ovvends oto  ypaenuata s Ewovag 0.10,
TapoLGLALoVIOL HOVO Ol TEPWMMTMGELS OMOV EEMEPVOLV TO TOPUTAVED KOTOPAL
emidoomng. Xta ypapnuata ovtd, yio Kabe pio nepintoon cvvdvacpov (LOs x LPS)
Tapovotdletal o Adyog TG EMIO0CNG TPOS TNV ATOATNON TANPOPOPINg TOGO KOTA TN
edorn  ekmaidevong  (training) - tov  akyopibpov  TPOGAPUOCTIKNG — EMAOYNG

EKTOOEVTIKOD DAIKOV, OGO Kol KAt T pAacn ehéyyov yevikevong (generalisation).

Ta mepapatikd anoteAécpota ociyvouv OTL T0 PEYIGTO AOYO €midoong mpog tnv
amaitnon TANPoPopiug amd Evay E101KO EKTOLOEVTIKOD GYESIOGLOV, TOV TETVYOIVOLLLE
otoav o - aplpdg tov (NTOVUEVOV  GLVOLOCU®MY  OVTIoTOlYNOoNG HadnclaKdV
aviikelévov tvat: (50 Babuovopnuévo pobnotokd ovTiKeiplevo Yo TIG TEPUTTOCELS
10 mpoik exkmodevopévav) 1 (10 Babpovounuéva pabnookd aviikeipevo yo Tic
nepmtcels 50 mpoeil exmardevopévev). Tlapodro mov kot 6TIc dV0 TEPIMTOGELS O
ap1Opog tov nroduevov cuvdvacumv etvar id1og (ko woovton pe 500 suvdvacuovg),

1N XPNOM TOLG TAPOVGLALEL TEAEIMG SLOUPOPETIKA YAPUKTIPIOTIKAL.
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v mpd™ mepintwon eoivetor va £xovpe mOAD KoAd Adyo emidoong mpog TNV
amaitnon mAnpogopiog Katd T @Aacn ekrtaidevong Tov aAyopifHov TPOGUPUOGTIKNG
EMAOYNG EKTOOEVLTIKOD VAIKOD, EVD KOTA TNV (ACT EAEYYOVL YeVIKELGONG 1| ATOOOGN
dev Eemepvd t0 KATOQAL emidoone mov Bécope. O alyoplOUOC TPOGUPUOGTIKNG
EMAOYNG EKTALOEVTIKOD VAIKOV Tapovotdlel o€ avty v mepintmon overfitting ota
dedopéva ekmaidevong tov. Avtifeta, otny devTEPT TTEPIMTOON QAIVETAL VO £XOVLE
TOAD KOAO AOYO €midOONG TPOG TNV AMOITNOY TANPOPOPING KUTA TN QAcT EAEYYXOVL
yevikevong tov aAyopifUov TPOCOPUOCTIKNG EMAOYNG EKTOOEVTIKOD VAIKOV, EVM
Katé TNV @Aacn ekmaidevone n omddoon dev Eemepvl TO KOTOQAL €TIO00NG TOV
Oéoape. Amd to TOpAmAV®, £ivol TPOQOVEG OTL 1 0e0TEPT TEPIMTOON Eivan
KOTOAANAOTEPT YO TNV EPOPLOYH TOL TPOTEWOUEVOL HOVIEAOD TPOGOPUOGTIKNG

EMAOYNG EKTALOEVTIKOD VAIKOV.

H epappoyn Aowmdv tov mpotevopevov mhoisiov aglordynong, Uropel vo 0dnynoet
o€ YPNOO CLUTEPACUATO TOCO OTI UETPNON NG EMIO00NG HEDOI®V/TEXVIKMDV
OLTOUATOL OPIGUOD KOVOVMV TPOGOPUOCTIKOTNTAS, OGO KOl OTNV EVPECT TOV

BEATIOTOV TOPAUETPOV Y10 TNV EPOPLOYN TOVG.

Ta anoteAéopata ovtng TG €pevvag, Exovv NoN onpocievtel 6to Piiio “Intelligent
and Adaptive Learning Systems: Technology Enhanced Support for Learners and
Teachers ” [P2], éxovv. mapovoiaotel oto debvég cuvédpro 9th IEEE International
Conference on Advanced Learning Technologies (ICALT 2009) [P8], evd éyovv
voPAnOei wg kepdAato oto PipAio “Intelligent and Adaptive Educational-Learning
Systems: Achievements and Trends” [P1] kot oto d1e0vég cuvedpio 4th International
Conference on Intelligent Interactive Multimedia Systems and Services (KES-1IMSS
2011) [P7].
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Chapter 1. Introduction

1.1. Motivation and Problem Statement
Adaptive Educational Hypermedia Systems (AEHS) have been proposed as the

underlying facilitator for personalized web-based learning with the general aim of

personalizing learning experiences for a given learner [1], [2], [9], [23], [24].

Adaptive learning objects selection and sequencing is recognized as challenging
research issues in adaptive educational hypermedia systems (AEHS) [25], [26], [27].
In order to adaptively select and sequence learning objects in AEHS, the definition of

adaptation behaviour, referred to as Adaptation Model, is required [28].

In the literature, there exist several approaches aiming to support the design of these
rules by providing either direct guidance to AEHS designers, such as the Authoring
Task Ontology (ATO) [10] and the Adaptive Hypermedia Architecture (AHA) [29],
[30], or semi-automatic mechanisms for making the rule design process less
demanding, such as the Layered AHS Authoring-Model and Operators (LAOS) [31]
and the Adaptive Course Construction Toolkit (ACCT) [32], [33].

However, still the design of adaptive educational hypermedia systems requires
significant effort [9], since dependencies between educational characteristics of
learning resources and learners characteristics are too complex to exhaust all possible
combinations [34]. This complexity introduces several problems on the definition of

the rules required [11], [35], namely:
- Inconsistency, when two or more rules are conflicting.
- Confluence, when two or more rules are equivalent.
- - Insufficiency, when one or more rules required have not been defined.

The problems of inconsistency and insufficiency of the defined rule sets are
responsible for generating conceptual “holes” to the produced learning resource
sequence (learning path). This is due to the fact that, even if appropriate resources
exist in the Media Space, the conflict between two or more rules (inconsistency
problem) or the absence of a required rule (insufficiency problem), prevents the

AEHS to select them and use them in the learning resource sequence. As a result,
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either less appropriate resources are used from the Media Space, or required concepts

are not covered at all by the resulting sequence [11].

As already described, the most commonly used approach for the definition of content
selection and sequencing rules is the direct definition. To support this process, a
number of design tools have been proposed in the literature [36]. These systems
require the Instructional Designer to have good knowledge of the parameters of the
system that can be adapted, as well as the details of the User Model. Typical examples
of these systems are the AHA [30], MOT [37], [38] and the ELM-ART [39].

Although these systems provide graphical environments for the definition of the
content selection and sequencing rules and/or visual representation of the resulting
learning/teaching scenario, still it is difficult for Instructional Designers to overcome
the problems of inconsistency and/or insufficiency of the defined rules [9]. This is due
to the fact that, on one hand, dependencies between educational characteristics of
learning resources and learner cognitive characteristics and preferences are rather
complex [40], [41], and on the other hand, it is difficult for an Instructional Designer
to know the details of each User Model in use and the corresponding meaningful
pedagogical adaptations required [40], since there exist several different models for
each learner cognitive characteristic [42]. For example, only in the case that learning
styles are used as the main adaptation parameter, there exist more than seventy
different models in use [43].

The main drawback of the direct definition of adaptation rules is that there can be
cases during the run-time execution of AEHS where no adaptation decision can be
made due to insufficiency and/or inconsistency of the defined adaptation rule sets. To
this end, in the literature, an alternative approach has been proposed that uses
adaptation patterns [44], [45], [46] (or templates) that have been a priori defined by an
Instructional Designer during the design phase of the AEHS. These patterns contain
both the content selection and the sequencing rules of the Adaptation Model. Typical
examples of these systems are MOT [37], [38] and ACCT [32], [33].

Although this approach provides a solution to the inconsistency problem, it does not
tackle with the problem of insufficiency, since that would require a huge set of

patterns, which is difficult to be a priori defined. The problem of defining adaptation
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rules is a combinatorial problem, which means that in order to design sufficient and
consistent adaptation rule sets, all the combinations of the adaptation decision
variables should be covered. However, these combinations can be millions [41],
leading to huge rule sets that is difficult to author, manage and verify their sufficiency

and/or consistency.

The main hypothesis of this thesis is that it is feasible to construct a semi-automated,
decision-based approach, which generates a continuous decision function that
estimates the desired AEHS response, aiming to overcome the problems of

insufficiency and inconsistency in the AM of an AEHS.

1.2. Contribution to State of the Art
1.2.1. Adaptive Content Selection
The main objective of the research effort in this direction was to create a decision

model that mimics the way an instructional designer selects the suitable teaching
material from a Learning Object Repository, for a specific learner whose
characteristics (User Profile) are known. The implementation of such a model

replaces the content selection rules of the Adaptation Model of typical AEHS.

To achieve this, we proposed a decision model which estimates the suitability of a
learning object for a learner assuming that we know the characteristics of the learner.
The result is a function, called suitability function, which relates the characteristics of
a learning object (which are reflected in the Educational Resource Description Model)
with the characteristics of a learner (which are reflected in the Learner Model) and

vice versa.

The results of this research activity have been published in the following scientific

journals, books and international conferences:

1. P. Karampiperis and D. Sampson, "Adaptive Learning Object Selection in

Intelligent Learning Systems", Journal of Interactive Learning Research,
Special Issue on Computational Intelligence in Web-Based Education (ISSN
1093-023X), vol. 15(4), pp. 389-409, AACE Press, November 2004, [11

Citations].

2. P. Karampiperis and D. Sampson, "Adaptive Hypermedia Authoring: From

Adaptive Navigation to Adaptive Learning Support”, in Proc. of the 3rd
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International Conference on Adaptive Hypermedia and Adaptive Web-based
Systems, vol. 2, pp. 449-454, Eindhoven, Netherlands, TU/e Pub., August

2004, [1 Citation].

3. P. Karampiperis and D. Sampson, "Knowledge Modelling for Adaptive

Content Selection in Educational Hypermedia Systems”, in Proc. of the
IASTED Conference on Web Based Education (WBE 2004), ISBN:
0889864063, pp. 408-413, Innsbruck, Austria, ACTA Press, February 2004, [1

Citation].

4. P. Karampiperis and D. Sampson, "Adaptive Learning Objects Selection in

Intelligent Learning Systems”, in Proc. of the 4th Hellenic Conference with
International Participation on ICT in Education, ISBN: 9608835925, vol. 1,
pp. 719-728, Athens, Greece, New Technologies Pub., September 2004, [1

Citation].

The next step of the research effort was to reduce the requirements of the proposed
model for adaptive content selection in respect to the required design effort, by

studying the dynamic evolution capacity of the model.

To this end, we investigated how the use of predictive models for learner
characteristics could be used to improve the content selection success without
increasing the required design effort. More precisely, we used the Cognitive Trait
Model (CTM) [21], which estimates learner’s cognitive characteristics and proposes

specific values for the elements “of the Educational Resource Description Model.

The use of the CTM was aimed at both reducing the dimensions of the optimisation
problem in hand and at providing feedback to the content selection model in order to
evolutionary improve its effectiveness. The conducted experiments verify this

hypothesis.

The results of this research activity have been published in the following scientific

journal:

5. P. Karampiperis, T. Lin, D. Sampson and Kinshuk, "Adaptive Cognitive-based

Selection of Learning Objects”, International Journal on Innovations in
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Education and Teaching International (ISSN 1470-3300), vol. 43 (2), pp. 121-
135, Taylor & Francis, May 2006, [3 Citations].

1.2.2. Adaptive Content Sequencing
The main objective of the research effort in this direction was the development of a

decision model for adaptive content sequencing, avoiding the use of adaptation rules.
More precisely, we extended the decision model for adaptive content selection, so as
to produce sequencing adaptation decision using information stored in the Educational
Resource Description Model, the Learner Model and the Concept Domain Model.

In the proposed sequencing method, we replace the content selection rules defined in
the Adaptation Model with a decision-making function that estimates the suitability of
a learning resource for a specific learner by relating the educational characteristics of
learning resources defined in the educational resource description model with the
learner’s cognitive characteristics and preferences stored in the Learner Model. This
suitability function is used for weighting each connection of the Learning Paths
Graph, a graph containing all possible learning paths based on the relation between
the Learning Goals Hierarchy, the concepts of the Domain Concept Ontology and the

learning resources contained in the Media Space.

From the weighted graph, we then select the most appropriate learning path for a

specific learner (personalized learning path) by using a shortest path algorithm.

The results of this research activity have been published in the following scientific

journals, books and international conferences:

6. P. Karampiperis and D. Sampson, "Automatic Learning Object Selection and

Sequencing in Web-Based Intelligent Learning Systems", in Zongmin Ma
(Ed.), Web-Based Intelligent e-Learning Systems: Technologies and
Applications (ISBN 1-59140-729-3), Chapter IlI, pp. 56-71, Information
Science Publishing, December 2005, [11 Citations].

7. P. Karampiperis and D. Sampson, "Adaptive Learning Resources Sequencing

in Educational Hypermedia Systems", Educational Technology & Society
Journal (ISSN 1436-4522), vol. 8(4), pp. 128-147, October 2005, [65

Citations].
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8. P. Karampiperis and D. Sampson, "Adaptive Learning Objects Sequencing for

Competence-Based Learning”, in Proc. of the 6th IEEE International
Conference on Advanced Learning Technologies (ICALT 2006), ISBN:
0769526322, pp. 136-138, Kerkrade, The Netherlands, IEEE Computer
Society, July 2006, [7 Citations].

9. P. Karampiperis and D. Sampson, "Adaptive Instructional Planning Using

Ontologies”, in Proc. of the 4th IEEE International Conference on Advanced
Learning Technologies (ICALT 04), ISBN: 0769521819, pp. 126-130,
Joensuu, Finland, (BEST PAPER AWARD), IEEE Computer Society, August
2004, [37 Citations].

10. P. Karampiperis and D. Sampson, "Using Ontologies for Adaptive Navigation
Support in Educational Hypermedia Systems”, in Proc. of the 3rd
International Conference on Adaptive Hypermedia and Adaptive Web-based
Systems in International Workshop on Applications of Semantic Web
technologies for E-Learning (SW-EL 04), vol. 2, pp. 314-323, Eindhoven,
Netherlands, TU/e Pub., August 2004, [2 Citations].

1.2.3. Evaluation Framework for Decision-based Approaches
The main objective of the research effort in this direction was to design a framework

for assessing the performance of decision-based adaptive content selection and
sequencing approaches.

This evaluation framework was applied in the case of our proposed approach for
adaptive content selection and sequencing. The goal the evaluation in our case was
twofold: first, to examine whether the proposed semi-automated decision based
approach is capable of extracting decision models which replicate the Adaptation
Model (AM) of existing AEHS; and second, to verify that our proposed approach is
robust and can be applied in cases where large-scale adaptation rule sets are needed to

describe the desired AEHS response.

The results of this research activity have been published in the following scientific

books and international conferences:

11. D. Sampson and P. Karampiperis, "Decision Models in the Design of

Adaptive Educational Hypermedia Systems”, in Sabine Graf, Fuhua Lin,
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Kinshuk and Rory McGreal (Eds), Intelligent and Adaptive Learning Systems:
Technology Enhanced Support for Learners and Teachers, IGI Global, 2011

12. P. Karampiperis and D. Sampson, "Evaluating the Performance of Adaptive

Learning Objects Selection and Sequencing in Adaptive Educational
Hypermedia Systems", in Proc. of the 9th IEEE International Conference on
Advanced Learning Technologies (ICALT 2009), ISBN: 978-0-7695-3711-5,
pp. 316-318, Riga, Latvia, IEEE Computer Society, July 2009.

Moreover, the results of this research activity have been submitted to the following

scientific books and international conferences.

13. P. Karampiperis and D. Sampson, "Performance Evaluation of Decision-based

Content Selection and Sequencing Approaches in Adaptive Educational
Hypermedia Systems”, in A. P. Ayala (Ed.), Intelligent and Adaptive
Educational-Learning Systems: Achievements and Trends, Springer,

(submitted for publication), January 2011

14. P. Karampiperis and D. Sampson, "Performance Evaluation of Adaptive

Content Selection in AEHS", in Proc. of the 4th International Conference on
Intelligent Interactive Multimedia Systems and Services (KES-IIMSS 2011),
Piraeus, Greece, July 2011, (submitted for publication).

1.3. Thesis Overview
This dissertation consists of seven chapters.

In Chapter 1 we outlined the main research questions and hypotheses.

In Chapter 2, we discuss issues related with the Adaptation Model design in AEHS
focusing on the different approaches used in the literature for the definition of content
selection and sequencing rules. Then, we discuss the different techniques used in
decision-based approaches for adaptive educational hypermedia sequencing. Finally,
we discuss the evaluation approaches used for measuring the performance in the
design of the Adaptation Model of AEHS, focusing on semi-automatic decision-based

approaches.

In Chapter 3, we discuss how the structural components of the generalized AEHS

architecture fit to the architectural approach used in LT conformant learning platforms.

( ]
l 19/168 J




Ph.D. Dissertation P. P. Karampiperis

Then, we review the Learning Technology standards and specifications which can be
used for facilitating the sharing of learner information and educational content in
AEHS.

In Chapter 4, we present our proposed semi-automated decision based approach. The
proposed methodology is based on an intelligent mechanism that attempts to construct
a suitability function that maps learning object characteristics over learner

characteristics and vice versa.

In Chapter 5, we present the evaluation methodology that will be used to verify our
main hypothesis: that it is feasible to construct a semi-automated, decision-based
approach, which generates a continuous decision function that estimates the desired
AEHS response, aiming to overcome the problems of insufficiency and inconsistency
in the AM of an AEHS.

In Chapter 6, we present the executed experiments for verifying our main hypothesis.
These experiments follow the evaluation methodology presented in Chapter 5. The
goal of this evaluation is twofold: first, to examine whether the proposed semi-
automated decision based approach is capable of extracting decision models which
replicate the Adaptation Model (AM) of existing AEHS; and second, to verify that our
proposed approach is robust and can be applied in cases where large-scale adaptation

rule sets are needed to describe the desired AEHS response.

Finally, in Chapter 7 we give a summary of the main results and indicate some

directions for future research.
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Chapter 2. State of The Art-Adaptive Educational Hypermedia

2.1. Introduction
In this chapter, we review the design approaches for the definition of the AM in

AEHS and discuss a set of performance evaluation metrics proposed by the literature

for validating the use of decision-based approaches.

The chapter is structured as follows: First, we discuss issues related with the
Adaptation Model design in AEHS focusing on the different approaches used in the
literature for the definition of content selection and sequencing rules.  Then, we
discuss the different techniques used in decision-based approaches for adaptive
educational hypermedia sequencing. Finally, we discuss the evaluation approaches
used for measuring the performance in the design of the Adaptation Model of AEHS,
focusing on semi-automatic decision-based approaches, and discuss the conclusions

that can be offered.

2.2. Definition of AEHS
Henze and Nejdl [6] provided a logical definition of AEHS introducing a quadruple

(KS, UM, OBS, AM) with the following notation:

- the Knowledge Space (KS), that contains two sub-spaces. The first one, referred to
as, the Media Space contains educational resources and associated descriptive
information (e.g. metadata attributes, usage attributes etc.) and the second, referred
to as, the Domain Model contains graphs that describe the structure of the domain

knowledge in-hand and the associated learning goals.

- the User Model (UM), that describes information and data about an individual
learner, such as knowledge status, learning style preferences, etc. The User Model
contains two distinct sub-models, one for representing the learner’s state of
knowledge, and another one for representing learner’s cognitive characteristics and
learning preferences (such as learning style, working memory capacity etc.). This
distinction is made due to the fact that the first model (Learner Knowledge Space)
can be frequently updated based on the interactions of the learner with the AEHS.
On the other hand, learner’s cognitive characteristics and learning preferences are

more static, having the same property values during a significant time period.
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- the Observations (OBS) which are the result of monitoring learner’s interactions
with the AEHS at runtime. Typical examples of such observations are: whether a
user has visited a resource, the amount of time spent interacting with a given
resource, etc. Observations related with learner’s behavior are used for updating
the User Model.

- the Adaptation Model (AM), that contains the rules for describing the runtime
behaviour of the AEHS. Typically, these rules include Concept Selection Rules
which are used for selecting appropriate concepts from the Domain Model to be
covered, Content Selection Rules which are used for ‘selecting appropriate
resources from the Media Space, as well as, Sequencing Rules which are used for
generating appropriate learning paths (sequences of learning objects) for a given

learner.

2.3. Adaptive Hypermedia Architectures
Several architectural approaches have been proposed by the literature aiming to model

Adaptive Hypermedia. In this section, we review the main approaches proposed and
conclude with a generalized architecture that is used by the current state-of-the-art
AEHS.

2.3.1. Adaptive Hypermedia Application Model (AHAM)
The Adaptive Hypermedia Application Model (AHAM)[48], [49] builds upon the

DEXTER model[50], that is, a common model for hypertext-based systems that was
designed for general purpose adaptive web applications. The AHAM model refines

the DEXTER model so as to be used for educational purposes.

DEXTER separates the components of a hypertext system into three major layers; the
“Within Component Layer” which stores the contents of the domain, the “Storage
Layer” which contains the structure (nodes and links) between objects in the
component layer, and the “Runtime Layer” which presents the hypertext information
to the user. The DEXTER model also includes an “Anchoring Layer” to allow
addressing of individual chunks of data within the component layer, and a
“Presentation Specification Layer” which provides the runtime layer with information

on how to present specific hypertext components.

( ]
l 221168 J



Ph.D. Dissertation P. P. Karampiperis

The AHAM extension to DEXTER allows it to support adaptive hypermedia
applications by separating the storage layer into a Domain Model, a User Model and

an Adaptation Model, as depicted in Figure 2.1.

Run-time Layer

Presentation Specification

Adaptation Model

| Storage
Layer

Domain Model User Model

Anchoring

Within-Component Layer

Figure 2.1: Adaptive Hypermedia Application Model (AHAM)
2.3.1.1. AHAM Hypermedia Structures
AHAM's domain model uses concept components to represent the abstract
representation of an - information item in an adaptive hypermedia domain. The
structure of a concept is broken down into a set of attribute-value pairs, a sequence of

anchors and a presentation specification.

To form a hypermedia space, concepts are arranged in a directed acyclic graph.
Atomic concept components represent a single fragment of information and their
anchors reference the physical information, while composite components use a
“children” attribute to specify a sequence of smaller composite components or atomic

concepts.

As in the Dexter model, the raw data (educational content) is stored in the within-
component layer and all concept anchors reference the data in this layer. Presentation

specifications determine how the particular data is to be displayed/ rendered.
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2.3.1.2. AHAM Metadata
AHAM's metadata, in the form of attribute-value pairs can be associated with both

atomic concepts and higher-level composite components. At the hypermedia structure
level, these storage units provide a means for describing the relationship types
between concepts. AHAM also specifies a user model, overlaid on top of the domain
model, to determine factors and actions that affect the user. The user model is also a
set of attribute-value pairs that can be used to represent user-specific metadata such as

learner cognitive characteristics and preferences.

2.3.1.3. AHAM Adaptation Engine
To combine the hypermedia structure and metadata (or in AHAM terminology, the

domain and user model) AHAM uses an adaptation model which contains a set of

adaptation rules, and an interpreter (or engine) to process these rules.

Adaptation rules, written by a system designer, are stated in the form of event-
condition-action clauses which provide the required mechanism to initialize the user

model, update the user model and generate instances of adapted information.

2.3.2. Fundamental Open Hypermedia Model (FOHM)
Work at the University of Southampton, has concentrated on analyzing the

fundamental components and structures of hypermedia systems. This work was part
of the larger open hypermedia community which have developed formal models for
representing the structure and associations that exist within the underlying
components of hypermedia systems. To this end, a hypermedia model was developed,
namely, the Fundamental Open Hypermedia Model (FOHM) [51].

FOHM was largely based on the prior work of the Open Hypermedia Protocol (OHP)
[52] which was designed to provide a reference model and architecture for Open
Hypermedia systems. OHP placed an emphasis on the different structures belonging
to hypermedia domains and raised the issue of how context might affect such

structures.

FOHM extended these ideas by developing a generalized model to represent the
structure of these domains, and provided the facility to attach context and behavior

information to the original OHP model.
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While FOHM provides a theoretical hypermedia structure model, an engine, Auld
Linky [53], is required to instantiate and process the model. Auld Linky stores a
database of FOHM objects (in XML format) and responds to queries from client

applications.

2.3.2.1. FOHM Hypermedia Structures
The primary structures in FOHM are the data item and the association. Following

earlier hypertext models, data items are attached to associations using a process of

reference, as depicted in Figure 2.2.

Association

| Binding |7 Behavior

Reference

Data Item Context

Figure 2.2: FOHM Object Structure

Data objects are components that encapsulate a piece of information. Associations are
links that relate together data objects and other associations. By combining these
structures together, FOHM can support complex hypermedia spaces. During FOHM's
development, several common arrangements of FOHM objects have been identified.

“Tours” provide a sequential path across a set of objects, “Level's of Detail” are tours
linking together increasingly detailed information and “Concepts” are associations
that relate the same conceptual information using different presentation styles (i.e.

handling different media representation of the same data).

2.3.2.2. FOHM Metadata
To enhance the modeling capacity of FOHM, two additional objects, context and

behavior can be used as metadata/ annotation components. They are implemented
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using attribute-value pairs (in a similar manner to the attribute-value meta-data in
AHAM).

Context objects provide a means of limiting, or scoping, the current “view” of the
FOHM model. With this technique, a context object is attached to a FOHM query and
it acts as a modifier, restricting the set of available FOHM objects that can be

provided to the subset which have valid matching contexts.

In adaptive educational hypermedia, context objects are used to represent restrictions
on user views of a domain, such as for representing the current level of user

understanding in a given subject.

Behavior objects provide an event driven mechanism for specifying a set of actions.
For example, a behavior object can be attached to the 'on traversal' event of an
association (such as a standard hyperlink) to specify the changes to the state of the

system after the user has activated the link.

In adaptive educational hypermedia, behavior objects are used to as a means of

updating user models with new information based on the actions taken by the user.

2.3.2.3. FOHM Adaptation Engine
The engine component of FOHM s realized by Auld Linky. Auld Linky manages a

hypermedia domain model marked up in XML as FOHM objects. When a client sends
a personalization request to Auld Linky (in the form of a FOHM association query),
Auld Linky analyses the domain model to find parts that match the query pattern and
provides a personalized (adapted) view of the FOHM domain.

2.3.3. AEHS Generalized Architecture
The above presentation of AH models shows that although they follow different

modeling approaches, they aim to address the same structural concerns, namely:

— the formulation of hypermedia spaces,
— the use of metadata to provide semantics for these spaces,
— the development of adaptation mechanisms to associate hypermedia structures

with metadata.

However, there are some noticeable differences between these two models. FOHM,

although it is flexible in structuring hypermedia objects, models only the adaptation
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mechanism. Moreover, this adaptation mechanism is directly defined over and
associated with the content objects, which makes its application in adaptive
educational hypermedia difficult. In AEHS, adaptation rules describe the runtime
behaviour of the system representing the underlying pedagogical approach used by
the AEHS. When these adaptation rules are distributed and defined explicitly over

content objects, it is difficult for an Instructional Designer to author the required rule

sets.
f Runtime Layer ) ( Design Layer )
Media Space Domain Model
Educational Content Presenter |« - Learning Goals Hierarchy
Educational Resources
.
A A ]
Educational Resource 1 . .l Domain Concent Ontolo
Description Model P oy
Adaptation Model
\ \ i
) Content ‘ Concept
Adaptation Rule - Selection > Sequencing < Selection
Parser Rules
Rules Rules
1

Learner Cognitive
Characteristics and Preferences

A\

Learner Behavior Tracker Learner Knowledge Space

Learner Model

- -/ - -

Figure 2.3: Generalized Architecture of Adaptive Educational Hypermedia Systems

On the other hand, AHAM cannot handle dynamically generated models or metadata
at run time. AHAM has been designed to operate on predefined data models. This
restriction was imposed to secure full knowledge of the adaptation rules at design
time, and therefore, guarantee that all rules terminate, or at least identify those that do
not. However this, limits the ability of any AHAM-based system to create annotations
on hypermedia objects by users at runtime and then offer personalization services

based on these metadata [54].

Current state-of-the-art adaptive educational hypermedia systems such as AHA [30],
OntoAIMS [55], The Personal Reader [56], WINDS [57], ACCT [32], [33] follow an
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architectural approach that fully implements the core structural elements defined by
Henze and Nejdl [6] in their AEHS definition [58].

This architecture is a variation of the AHAM model and consists of two main layers,
namely, the run-time layer which contains the adaptation engine that performs the
actual adaptation and the design layer, which stores information about the Media
Space, the Domain Model, the User Model and the Adaptation Model. Figure 2.3
presents the generalized architecture of current state-of-the-art AEHS,; illustrating the
main components of this architecture and their interconnections. The dashed lines in

this figure represent a logical connection between the linked models.

2.4. Design process of AEHS
According to the above mentioned generalized architecture the design process of an

AEHS involves four key steps [4]:

- Designing the Domain Model, that is, the process of designing a hierarchy of
learning goals, as well as, a concept hierarchy (Domain Concept Ontology) for
describing the subject domain concepts. Depending on the domain, the application
area, and the choice of the designer, concepts can represent bigger or smaller
pieces of domain knowledge. The use of ontologies can significantly simplify the
task of knowledge structuring by providing a standard-based way for knowledge
representation [59]. Ontologies are specifications of the conceptualization and
corresponding vocabulary used to describe a domain [60]. Ontologies typically
consist of definitions of concepts relevant for the domain, their relations, and
axioms about these concepts and relationships. For each learning goal specified in
the Learning Goals Hierarchy, a set of associated concepts in the Domain Concept
Ontology need to be specified. This information is used by the AEHS to determine
which concepts need to be covered for reaching a specific learning goal.

- Designing the User Model, that is, the process of designing the Learner Knowledge
Space, as well as, designing the model for learner’s cognitive characteristics and
preferences. For the design of the Learner Knowledge Space, there exist two main
approaches, the overlay modeling [61] where the learner’s state of knowledge is

described as a subset of the Domain Concept Ontology and the stereotype
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modeling [62], [63] where learners are classified into stereotypes inheriting the

same characteristics to all members of a certain class.

- Designing the Media Space, that is, the process of designing the educational
resource description model. This model describes the educational characteristics of
the learning resources e.g. the learning resource type, or its difficulty, as well as
structural relationships between learning resources e.g. if a resource requires
another resource. For each learning resource contained in the Media Space a set of
related concepts from the Domain Concept Ontology need to be specified. This
information is used by the AEHS to determine if a specific learning resource

covers a certain concept of the subject domain.

- Designing the Adaptation Model that is the process [64], [65] of defining (a) the
concept selection rules which are used for selecting appropriate concepts from the
Domain Model to be covered, (b) the content selection rules which are used for
selecting appropriate resources from the Media Space, and (c) the sequencing rules
which are used for generating appropriate “learning paths” (that is, sequences of

learning objects) for a given learner.

After designing the AEHS by following the above mentioned steps, the adaptation
engine (Adaptation Rule Parser in Figure 2.3), is responsible for interpreting the
adaptation rules specified in the Adaptation Model in order to generate personalized
learning paths. This process is called in the literature adaptive educational
hypermedia sequencing [66], [67], [68].

Following the previous discussion on the systematic design of AEHS, one could

identify three distinct design roles, namely:

- The Domain Expert, that is, the person who is responsible for defining the structure
of the subject domain (Domain Concept Ontology), the structure of the Learner

Knowledge Space, as well as, the concept selection rules of the Adaptation Model.

- The Instructional Designer, that is, the person who is responsible for defining the
learner cognitive characteristics and preferences of the User Model, the structure of
the educational resource description model, as well as, the adaptation rules of the
Adaptation Model.
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- The Content Expert, that is, the person who develops the learning resources and

structures the Media Space by describing the produced learning resources using the

educational resource description model.

Table 2.1: Role Participation in the design of AEHS models

AEHS Models
Domain Model Learner Model Edlcational Adaptation Model
Resource
Desian Learning | Domain Learner Learner Description |. Concept |- Content Sequencin
Rolgs Goals Concept | Characteristics | Knowledge Model Selection | Selection qRuIes g
Hierarchy | Ontology | & Preferences Space Rules Rules

Domain X X X X

Expert
Instruptlonal X X X X X
Designer

Content

Expert X

In practice, these distinct roles do not operate independently, but, they cooperate for

designing some of the system’s models.

As presented in Table 2.1, the Domain Expert and the Instructional Designer need to
work together for the definition of the Learning Goals Hierarchy, since learning goals
are strongly related to the concept selection rules. Additionally, the Instructional
Designer and the Content Expert need to work together for the definition of the
educational resource description model, since, on one hand, this model is used for
describing each learning resource developed by the Content Expert and, on the other
hand, it is strongly related to the content selection and sequencing rules defined by the

Instructional Designer.

Next section presents the current state-of-the-art tools for designing AEHS that
implement the above mentioned abstract design model, focusing on the methods used
for the definition of the content selection and sequencing rules in the Adaptation
Model.
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2.5. Adaptation Model Design in AEHS

Typically, adaptive educational hypermedia sequencing is based on two main
processes, namely, the concept selection process and the content selection process. In
the concept selection process, a set of learning goals from the Learning Goals
Hierarchy is selected by the learner e.g. the AIMS [10], or in some cases by the
designer of the AEHS e.g. INSPIRE [69]. For each learning goal, related concepts
from the Domain Concept Ontology are selected. In the content selection process,
learning resources for each concept are selected from the Media Space based on the
content selection rules. Typical AEHS examples that utilize this process are the MOT
[37], [38], the ApeLS [70], and the ELM-ART [39].

Figure 2.4 presents the typical abstract layers of adaptive educational hypermedia

sequencing, demonstrating the connection of the above mentioned processes.

Learning
Goals Layer
Learning Goals Concept Selection
Hierarchy based on Learner
Knowledge Space
Conceptual
Layer
. Content Selection
D°"c")’r'1':0‘|3o°”°ep‘ based on Learner
i Characteristics and
Preferences
Content
Layer

Resource )
Description Model

Figure 2.4: Typical Abstraction Layers of Adaptive Educational Hypermedia Sequencing

The most commonly used approach for the definition of content selection and
sequencing rules by the AEHS Designers Team is the direct definition. In this
approach, the content selection and sequencing rules are defined by the Instructional
Designer during the design process and they are based on the elements of the User
Model and the Resource Description Model, which is specified through the

collaboration with the Content Expert.

To support this process, a number of design tools have been proposed in the literature.

These systems require the Instructional Designer to have good knowledge of the
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parameters of the system that can be adapted, as well as the details of the User Model.
Typical examples of these systems are the AHA [30], MOT [37], [38] and the ELM-
ART [39].

Although these systems provide graphical environments for the definition of the
content selection and sequencing rules and/or visual representation of the resulting
learning/teaching scenario, still it is difficult for Instructional Designers to overcome
the problems of inconsistency and/or insufficiency of the defined rules [9]. This is due
to the fact that, on one hand, dependencies between educational characteristics of
learning resources and learner cognitive characteristics and preferences are rather
complex [40], [41], and on the other hand, it is difficult for an Instructional Designer
to know the details of each User Model in use and the corresponding meaningful
pedagogical adaptations required [40], since there exist several different models for
each learner cognitive characteristic. For example, only in the case that learning styles
are used as the main adaptation parameter, there exist more than seventy different

models in use [43].

As already discussed, the main drawback of the direct definition of adaptation rules is
that there can be cases during the run-time execution of AEHS where no adaptation
decision can be made due to insufficiency and/or inconsistency of the defined
adaptation rule sets. To this end, in the literature, another approach has been proposed
that uses adaptation patterns [44], [45], [46] (or templates) that have been a priori
defined by an Instructional Designer during the design phase of the AEHS. These
patterns contain both the content selection and the sequencing rules of the Adaptation
Model. Typical examples of these systems are MOT [37], [38] and ACCT [32], [33].

Although this approach provides a solution to the inconsistency problem, it does not
tackle with the problem of insufficiency, since that would require a huge set of
patterns, which is difficult to be a priori defined. The problem of defining adaptation
rules is a combinatorial problem, which means that in order to design sufficient and
consistent adaptation rule sets, all the combinations of the adaptation decision
variables should be covered. However, these combinations can be millions [41],
leading to huge rule sets that is difficult to author, manage and verify their sufficiency

and/or consistency.
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An alternative approach is the use of semi-automated decision based mechanisms
[13], [17], [41], [47], which generate a continuous decision function that estimates the
desired AEHS response. To achieve this, they use data from the implicit definition of
sample adaptation rules and attempt to fit the response function on these data. This
definition of implicit adaptation rules, is given in the form of model adaptation
decisions, over which the adaptation response function should be fit. This approach
overcomes both the problems of sufficiency and consistency; however it introduces
decision errors that result from the decision function fitting errors during the machine

learning process [41].

Learning )
Goals Layer
Leenmill) CTE Concept Selection
Hierarchy
based on Learner
Knowledge Space
Conceptual
Layer
Domain Concept
Ontology Step1: Learning Paths
Generation
Content
Layer
Resource Step2: Personalized
Description Model Learning Path
Selection
Learner
Adaptation
Layer

Adaptive LO
Sequence

Figure 2.5: Abstraction Layers of Adaptive Educational Hypermedia Sequencing in Decision-
based Approaches

Moreover, these approaches implement a variation of the above mentioned abstraction

layers of adaptive educational hypermedia sequencing.

As already described AEHS that implement the direct rule definition approach use a
two steps sequencing process. They first generate a sequence of concepts that matches
the learning goal in hand, and then select learning recourses for each concept of the

concept sequence. Due to the problems of inconsistency and insufficiency of the
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defined rule sets in the Adaptation Model, conceptual “holes” can be generated in the

produced learning resource sequence.

To overcome this problem, decision-based approaches implement an alternative
sequencing method. In this method, instead of generating the learning path by
populating the concept sequence with available learning resources, first all possible
sequences that match the learning goal in hand are generated and then the desired

personalized learning path from the set of available paths is adaptively selected.
More precisely, the following two steps procedure is used:

- Stepl: Learning Paths Generation. At this step a graph containing all possible
learning paths based on the relation between the Learning Goals Hierarchy, the
concepts of the Domain Concept Ontology and the learning resources contained in
the Media Space, is generated. This graph is constructed as follows:

Stepla: Construction of the Concepts Path Graph. The Concepts Path Graph
(CPF) is a directed graph which represents the structure of the concepts of the
Domain Concept Ontology that matches the learning goal in hand. The concepts
contained in the CPF are selected based on the connection between the Learning
Goals Hierarchy and the Domain Concept Ontology. The structure of the CPF is
directly inherited by the structure of the Domain Concept Ontology. CPF is a
simple directed graph, that is, a directed graph having no multiple nodes. This
means that each concept is contained only once in the CPF. Additionally, CPF is
an acyclic directed graph, that is, a directed graph containing no directed cycles.
This means that in every possible concept sequence represented by the CPF, each

concept has a unique existence.

Steplb: Construction of the Learning Paths Graph. The Learning Paths Graph
(LPG) is a directed graph which represents all possible learning paths (sequence of
learning resources) that matches the learning goal in hand. To construct the LPG,
for each concept of the CPF related learning resources are selected from the Media
Space based on the connection between the Domain Concept Ontology and the
Resource Description Model. Each node in the CPF is then replaced by the related
set of learning resources retrieved from the Media Space. The structure of the
learning resources set is directly inherited by the structure of the Media Space. The
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final graph is the Learning Paths Graph. Assuming that the Media Space does not
contain circular references between learning resources, the LPG is again a simple
acyclic directed graph. Although this assumption does not affect either the design
of an AEHS, nor the sequencing methodology used in decision-based approaches,

it is necessary for avoiding infinite learning paths.

- Step2: Personalized Learning Path Selection. At this step a personalized learning
path is selected from the graph that contains all the available learning paths based
on learner’s attributes in the User Model. As a result, an additional layer (Figure
2.5) in the typical abstraction layers of adaptive educational hypermedia
sequencing is introduced, namely the Learner Adaptation Layer. This additional

layer is used for selecting the personalized learning path.

In decision-based adaptive content sequencing several approaches have been
proposed by the literature. Their main difference is the approach used to select
personalized learning paths in the Learner Adaptation Layer (step 2 of the abstraction
layers of adaptive educational hypermedia sequencing). The most commonly used
learning path selection techniques are the following:

— Utility-based Learning Path Selection. In this technique [17], [41] the Learning
Paths Graph (step 1 of the abstraction layers of adaptive educational hypermedia
sequencing) is weighted [71], [72] using a function which estimates the
suitability/utility of each learning object contained in the graph for the targeted
learner. Then, they apply a path discovery algorithm (typically a shortest path
algorithm) in order to discover the sequence of learning objects contained in the
weighted graph which maximises the overall utility, and thus, best matches the
targeted learner. This technique is often called in the literature preference-based

sequencing based on weighted graphs.

— Similarity-based Learning Path Selection. This technique uses a set of predefined
sequences, typically modelled as a Petri-Net [73], associated with descriptions of
the suitable targeted learner/s for each one of them [74]. The aim of the adaptive
sequencing is to first identify the closest model sequence by measuring the
similarity of the profile of the targeted learner with the learner profiles associated

with each model sequence class, and then select the personalized learning path
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from the Learning Paths Graph which matches the model sequence, using either
fuzzy rules directly defined by the instructional designer [74] or genetic algorithms
[47], [75], [76].

2.5.1. Examples of decision-based AEHS

2.5.1.1. Utility-based Systems

25.1.1.1. PAIGOS

PAIGOS [77], [78], uses the Hierarchical Task Network planning [79] as a means to

generate the available learning paths. In HTN-planning, the goal of the planner is to
achieve a list of tasks, where each task is a symbolic representation of an activity to
be performed. The planner formulates a plan by using methods to decompose the top
tasks into smaller subtasks until primitive tasks are reached that can be carried out

directly using operators.

Dynamic subtask expansion stops courseware generation at a level that specifies what
kind of educational resources should be selected but does not specify which ones. The
specific resources are selected at the time when the learner wants to use them. This
allows generating a complete table of contents of the course while using up-to-date

information for the selection of individual resources.

The selection of educational resources which populate the sequences of learning tasks
is accomplished using a utility-based function which evaluates which learning object
should be used for the targeted learner. However, this utility function is not
dynamically updated, but is pre-authored by the instructional designer.

2.5.1.1.2. Software Organization Platform (SOP)
SOP [16] is an integrated courseware generation and knowledge management

platform, supporting several. KM functionalities such as experience management,

requirements engineering, and project management.

SOP uses a utility-based decision model so as to adapt a learning space (a set of
available learning paths) to individual learners. SOP’s ultimate goal is to address the
problem of closed corpus of AEHS, enabling them to use learning resources from
real-world repositories, rather than resources specially designed to be served via the
AEHS in hand. To this end, adaptation is not coupled to a fixed set of learning

resources, but to types of learning space concepts. The system adapts and personalizes
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the learning space to the targeted learner. SOP’s adaptation mechanism depends on
contextual characteristics (i.e., individual, group), as well as, learner characteristics

such as learning styles.

As in PAIGOS, this utility-based decision model is not dynamically updated, but is

pre-authored by the instructional designer.

2.5.1.2. Similarity-based Systems

2.5.1.2.1. Personalized eLearning System (PeLS)

PeLS [75], implements an adaptive sequencing mechanism which uses genetic
algorithms as the means to select the personalized learning path for the targeted
learner. Genetic algorithms use information from a pre-testing phase and adapt the

resulting sequence.
PeLS uses an agent-based architecture, consisting of:

— the learning interface agent, which provides the interaction interfaces with the
learner,

— the pre-test and post-test process agent, which generates random testing items
related to the learning goal in hand

— the learning path generation agent, which generates a personalized learning using
the data collected from the pre-test phase,

— the adaptive navigation support agent, which executes the generated learning
path,

— and the courseware management agent, which provide authoring facilities for

instructional designers.

2.5.1.2.2. Standardized Course Generation Process (SCGP)
SCGP [74], aims to support the entire lifecycle of automatic courseware generation,

from. content authoring to content delivery. Thus, SCGP consists of a content
authoring  tool (called MEAT), which incorporates the automatic courseware
generation algorithm, and a learning management system (called ANTS), which

delivers the produced courses.

The auto-generated courses are conformant with the Sharable Content Object
Reference Model (SCORM), however SCGP uses a Dynamic Fuzzy Petri Net model

[80] to internally represent the course structure and the available learning paths.
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SCGP uses model sequences, defined as Petri Nets, and using similarity measures
estimates the closest model to the ideal for the targeted learner. Then, from ANT’s
repository of learning objects generates the learning path which matches the selected

model sequence.

Next section presents the evaluation metrics proposed in the literature for evaluating
the performance of decision-based adaptive content selection and sequencing and

discusses them.

2.6. Performance evaluation in decision-based approaches
In this section, we focus on the performance evaluation metrics used in semi-

automated decision-based approaches for adaptive content selection and sequencing.
Performance evaluation in this context means measuring (a) how well a semi-
automated approach fits the decision function to the provided model adaptation
decisions (training data), and (b) how well this decision function responds to decision
cases not known during the training process (generalization capacity). As a result,
model adaptation decisions are divided into two sets: the training dataset, which is
used for evaluating the performance during the training of the semi-automated
approach, and the generalization dataset, which is used for measuring the
generalization capacity of the approach. Performance evaluation is the comparison
result between the expected system output and the estimated AEHS response over the
above mentioned datasets.

2.6.1. Adaptive Content Selection
In adaptive content selection several approaches have been proposed by the literature.

The most commonly used are the following:

— Concept/Keyword-based Selection. In these approaches, searching is performed
based on a set of keywords, typically representing the desired concepts to be
covered from the retrieved learning objects. In AEHS, these keywords are defined
over the Domain Concept Ontology during the concept selection process, as
already discussed. In this case, the ranking of learning objects is performed using a
concept/keyword-based similarity formula [81], [82], which evaluates the
relevance of each learning object, by comparing the desired concepts/keywords

with the classification metadata used for describing the learning object in hand.
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The main assumption of this approach is that the Domain Concept Ontology and
the classification metadata used for the learning objects share the same
concept/keyword terms. However, this is not always true, especially in domains
where there exist a variety of classification models which use different terminology
for describing a concept depending on the context of use, i.e. in the Medical
domain there exist many classification systems such as Medical Subject Headings
(MeSH) [83], the International Classification of Primary Care (ICPC) [84] etc.
targeting different end-users. An alternative approach proposed by Kiu and Lee
[85], uses unsupervised data-mining techniques for estimating the match between
the desired concepts/keywords with the classification metadata used for describing
the learning object in hand. This approach provides better results from the use of
keyword-based similarity formula when different classifications models are used,

but it requires significantly more time for the content selection process [85].

— Preference-based Selection. In these approaches, selection is performed based on
the comparison of the learner profile in -hand with the metadata description of the
learning objects. In this case, the ranking of learning objects is performed using a
preference score [7], [15], [86], which evaluates the utility/suitability of each
learning object for the learner profile in hand.

In both techniques, the concept/keyword-based and the preference-based selection,
general purpose evaluation metrics are used from the field of information extraction
[18]. More specifically, precision and recall measures are applied in order to evaluate
the effectiveness of the learning objects selection technique, in terms of accuracy and
completeness respectively. Precision is the ratio of correct responses to the sum of

correct and incorrect responses, and is defined by the following formula [15], [82]:

. (Number of retrieved relevant LOsj
Precision =

Number of retrieved LOs

Recall is the number of correct system responses divided by the sum of correct,
incorrect and missing system responses, and is defined by the following formula [15],
[82]:

Recall = Number of retrieved relevant LOs
B Number of all relevant LOs
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In order to have a single evaluation metric, F-measure is used, which is a weighted

combination of recall and precision, and is defined by the following formula [82]:

2 = precision * recall
F - measure =

precision + recall
However, we claim that these metrics are not suitable in the case of AEHS. This is due
to the fact that AEHS implement a content selection strategy which limits the number
of retrieved learning objects, aiming to restrict the amount of information provided to
learners at a given time instance, due to the problem of learners’ cognitive overload
[39]. As a result, the precision should be measured not on the entire Media Space, but
only on the desired sub-space which represent a set of the n most preferred learning
objects, where n is the number of the desired learning objects. If not, the resulting
precision would be higher or equal to the real one, since the number of retrieved
learning objects is less or equal to the number of desired learning objects at a given

time instance.

Moreover, since the resulting LO space is restricted, the recall measure should also be
measured over the space of the n most relevant learning objects, and not over the
space of all relevant learning objects. This introduces the need for an alternative
evaluation metric in adaptive content selection. In [86], such an evaluation metric has

been proposed as follows:

Selection Success (%) 100*(correc’[ ranked Learning Objects selected j
0) =

requested Learning Objects

Although this metric seems similar to the precision metric in information retrieval
systems, its difference is critical. It evaluates the precision of selecting learning
objects not on the entire space of the Media Space, but only on the desired sub-space,
and also takes into consideration the ranking of the selection process. This means that
the proposed metric is harder, since it measures the precision over a smaller value

space.

2.6.2. Adaptive Content Sequencing
As already discussed, the most commonly used approaches in decision-based adaptive

content sequencing are Utility-based sequencing and Similarity-based sequencing.

In both techniques, performance evaluation is measured by comparing the generated
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sequences of learning objects with model sequences defined either directly by the
instructional designer, or via the use of simulated instructional designers’ preference

models, for a given learner profile [17], [47], [74].

A typical metric used for this purpose is the Euclidean distance between each pair of
learning objects in the two sequences under comparison [87], [88]. This distance is

called similarity and is defined by the following formula:

2
n LO LO
i=1

where, LOs and LOg are the learning objects under comparison which belong

LOA LOB

Similarity = ||g -0

respectively to the generated sequence and the model one, and n is the number of

independent properties g*°© = (g'°, gL°,...,g°) used in the Educational Resource

Description Model for describing the educational resources of the Media Space (see

also Figure 1).

However, this metric is not always accurate, since the Euclidean distance is calculated
over the space defined by the learning object metadata (Educational Resource

Description Model), and not over the instructional designer’s preference space.

To clarify this, assume for example, that we have two learning object sequences
produced by an AEHS, and that these sequences only differ in one of the learning
objects included in them. In this case, the optimum sequence between these two
would be defined by calculating the similarity of the learning objects which differ in

these sequences, with the corresponding learning object of the model sequence.

Assume again, that the only difference of these learning objects in their corresponding
metadata records is that the first one has difficulty equal to “1” and that the other one
has difficulty equal to “3”, whereas the learning object in the model sequence has
difficulty equal to “2”. In this case, the produced sequences will be equally similar to
the model sequence, since their Euclidean distance from the model sequence is the

same.

However, it is obvious that the first sequence will be easier and that the second one
more difficult than the model one. For an instructional designer this difference may be

critical, depending on the learner’s knowledge level. This means that evaluating the
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sequencing performance only based on the metadata of the Resource Description
Model without taking into consideration the instructional designer’s preferences does

not produce accurate results.

This introduces the need for an alternative evaluation metric in adaptive content
sequencing, which measures the sequencing performance over the instructional
designer’s preference space. To achieve this, an evaluation metric, based on Kendall’s
Tau [89], which measures the match between two learning object sequences has been
proposed [18], [41], as follows:

N - N .
Sequencing Success (%) =100 * [ % + concorda:(tn 1)d|scordant ] ;

where Nconcordant Stands for the concordant pairs of learning objects and Ngiscordant
stands for the discordant pairs when comparing the generated learning objects
sequence with a model one, and n is the number of learning objects in each sequence

under comparison.

This metric is derived from Kendall’s Tau, with scaling in the value space [0, 100], in
such as way that two exactly similar sequences have 100% similarity measure and

two completely disordered sequences have 0% similarity.

The Euclidean distance metric presented above, compares the learning object
metadata of the generated sequences with the metadata of model sequences, whereas,
the proposed metric compares the ordering of the learning objects in the generated
sequences with those in the model sequences. This means that this measure is
evaluated over the instructional designer’s preference space rather than the metadata

of the Resource Description Model.

2.7. Conclusion
Adaptive learning objects selection and sequencing is recognized as challenging

research issues in AEHS. In order to adaptively select and sequence learning objects
in AEHS, the definition of adaptation behaviour, referred to as Adaptation Model, is

required.

Several efforts have been reported in literature aiming to support the Adaptation

Model design by providing AEHS designers with either guidance for the direct
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definition of adaptation rules, or semi-automated mechanisms which generate the AM

via the implicit definition of such rules.

The main drawback of the direct definition of adaptation rules is that there can be
cases during the run-time execution of AEHS where no adaptation decision can be
made. This is due to the fact that, even if appropriate resources exist in the Media
Space, the absence of a required rule (insufficiency problem) or the conflict between
two or more rules (inconsistency problem), prevents the’ AEHS to select and use them
in the generated learning resource sequence. As a result, either less appropriate
resources are used from the Media Space, or required concepts are not covered at all

by the resulting sequence

The goal of the semi-automated, decision-based approaches is to generate a
continuous decision function that estimates the desired AEHS response, aiming to
overcome the above mentioned problem. To achieve this, semi-automated approaches
use data from the implicit definition of sample adaptation rules and attempt to fit the

response function on these data.

In this chapter, we reviewed the design approaches for the definition of the
Adaptation Model in AEHS and discussed a set of performance evaluation metrics for

validating the use of decision-based approaches.
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Chapter 3. Integrating Learning Technologies in AEHS

3.1. Introduction
Currently, there are many educational content repositories which are intended to

collect, share and reuse the dispersed learning resources and present the end-user a
uniform interface to search, access and evaluate the resources, including the
ARIADNE Knowledge Pool System (http://www.ariadne-eu.org/en/system), the
Campus Alberta Repository of Educational Objects (CAREO) (http://www.careo.org),
the U.S.-based Science, Mathematics, Engineering and Technology Education Digital
Library  (http://www.smete.org), the  Educational Network ~  Australia
(http://www.edna.edu.au), the Gateway to Educational Materials (GEM) digital
library (http://www.geminfo.org), the Scottish electronic Staff Development Library
(SeSDL) (www.sesdl.scotcit.ac.uk), the LearnAlberta Portal (www.learnalberta.ca),
the COLIS (www.edna.edu.au/go/browse/0), the Multimedia Educational Resource
for Learning and Online Teaching (MERLOT) (www.merlot.org), the Universal
Brokerage Platform for Learning Resources (www.educanext.org), the World Lecture
Hall (www.utexas.edu/world/lecture/), the Globewide Network Academy
(www.gnacademy.org), the  McGraw-Hill  Learning  Network  (MHLN)
(www.mhin.com) and others. Most of them offer high quality resources in the form of
learning objects [90] that are also metadata tagged [91].

Nevertheless, although the available content repositories offer high quality learning
objects, and moreover, those objects are tagged using a common metadata schema
(that is, the IEEE Learning Objects Metadata standard [19]), still reusing learning
content among different AEHS remains an open issue [92].

Although, a wide variety of AEHS have been proposed in the literature such as AHA
[30], OntoAIMS [55], The Personal Reader [56], WINDS [57], ACCT [32], [33], and
PAIGOS [77], these systems are closed, self-contained systems that cannot be used as
service components (lack of reuse support) [93], [94]. Additionally, due to their close
architecture they face difficulties in supporting the variety of the required
functionalities in a learning process since they cannot use external services (lack of
integration). On the other hand, even if an open and scalable AEH environment has

been implemented, the supported content has been designed to serve and support a
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specific pedagogical approach. As a result they are non-flexible in supporting
different pedagogical approaches and they require extensive redesign effort in order to

be used in different domains.

A possible solution to the above mentioned problem is the adoption of Learning
Technologies (LT). Learning Technology standards and specifications are designed to
facilitate the description, packaging, sequencing and delivery of educational content,

learning activities and learner information [95].

The goal of LT is to facilitate interoperability between applications, providing
uniform ways for representing educational content, learner information, as well as,
uniform communication guidelines that can be used throughout the design,
development, and delivery of learning content. Thus, enable educational content and

learner information to be shared.

In this chapter, we discuss how the structural components of the generalized AEHS
architecture, presented in Chapter 2, fit to the architectural approach used in LT
conformant learning platforms. Then, we review the Learning Technology standards and
specifications which can be used for facilitating the sharing of learner information and

educational content in AEHS, and discuss the conclusions that can be offered.

3.2. Relation between AEHS Architecture and Learning Technologies
As already discussed, LT standards and specifications provide detailed guidelines for

several aspects/ components of a learning system. The underlying driver for the
development of these guidelines is the IEEE Learning Technology Systems
Architecture (LTSA) standard [96].

This standard specifies an architecture for technology-enhanced learning systems that
describes the high-level system design and the components of these systems, using a
five-layer structure. The LTSA Layer 3 specifies the main components and interfaces
in the architecture of learning systems. These components (shown in Figure 3.1) form
a model that describes how the different entities in the learning system interact with

each other.
There are three types of components defined in the LTSA Layer 3, namely:

— Processes (depicted as oval shapes in Figure 3.1) are the boundaries, services,
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inputs, and outputs of the learning system. Processes refer to users’ and system

components that cause changes in the state of the system.

— Stores. Two types of stores (represented as rectangular shapes in Figure 3.1) are
described in the reference model. These relate to repositories of data that can be
accessed by users using search, retrieval, and updating methods. In practice, the

stores correspond to the system’s database structures.

— Flows are described in terms of connectivity and the type of information
exchanged. These are illustrated as arrowed lines between the processes and stores
in Figure 3.1. Essentially, flows depict the interactions that take place between the

various processes and stores of the LTSA system.

Learner Entity

Multimedia Behavior

Learning
Preferences
Learning Content Locator Assessment Performace
Learning ‘ Catalog History/ Learner
Resources Info Objectives Records

Figure 3.1: IEEE LTSA system components

In the LTSA reference architecture educational content is represented as a store called
learning resources and the interaction of a learner with the content is represented as a
flow called multimedia. This flow is a unidirectional flow from the delivery system to
the learner. This means that interactions from the learner to the content are not
supported by the reference architecture. Moreover, a process called coach represents
an abstraction of a human teacher, or the adaptive behavior of a personalized

educational system.
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The interaction between the learner and the adaptive behavior of a personalized
educational system is represented directly as a flow called learning preferences and

indirectly through the process of evaluation and the behavior and assessment flows.

Sharable Content Object Reference Model (SCORM) [97] refines the IEEE LTSA
reference architecture by specifying missing interactions. More precisely, SCORM
provides a reference interaction model between a learner and learning content, and
describes within a common technical framework the creation process of reusable
learning content as "instructional objects”, called sharable content objects (SCOs).
SCORM describes that technical framework by providing a harmonized set of
guidelines, specifications, and standards based on the work of several distinct e-
learning specifications and standardization bodies. SCORM consists of three parts,

namely:

— Content Aggregation Model (CAM). The SCORM CAM describes the content
components used in a learning activity, how to package those components for
exchange from system to system and how to describe those components to enable
search and discovery. The CAM promotes the consistent storage, labeling,
packaging, exchange and discovery of learning content. The SCORM CAM model

contains information on Metadata, Content Structure and Packaging.

— Run-Time Environment (RTE). The purpose of the SCORM RTE is to provide a
means for interoperability between SCOs and LMSs. SCORM provides the means
for learning content to be interoperable across multiple learning systems regardless
of the tools used to create the content. The three components of the SCORM RTE
are Launch, Application Program Interface (API) and Data Model. Launch
includes defining the relationship between learning systems and SCORM content
such that all SCORM-conformant content is dependent upon a SCORM-
conformant learning system to be delivered and displayed to the learner. The
SCORM API provides a set of predefined methods for purposes of communication
between a learning system and the SCOs it launches. The SCORM Run-Time
Environment Data Model provides the data elements that can be used to “get” and

“set” data from and to a learning system.

— Sequencing and Navigation (SN). The SCORM SN covers the essential learning
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system responsibilities for sequencing content objects during run-time and
allowing SCOs to indicate navigation requests. The SCORM SN is based on the
IMS Simple Sequencing (SS) Specification v1.0, which defines a method for
representing the intended behavior of an authored learning activity such that any
conformant learning system will be able to sequence discrete content components
in a consistent way. It defines the required behaviors and functionalities that
SCORM-conformant learning systems must implement to process sequencing
information at runtime. More specifically, it describes the branching and flow of
learning content in terms of an Activity Tree, based on the results of a learner’s
interactions with launched content objects and an authored sequencing strategy.
The SCORM SN describes how learner-initiated and system-initiated navigation
events can be triggered and processed, resulting in the identification of learning

content for delivery.

Table 3.1: Relation between AEHS components and LT conformant architectures

IEEE LTSA SCORM
Lg"gg:gg Objectives
. Hi (Flow)
Domain ierarchy
Model h
Domain Catalog Info
Concept Fl -
Ontology (Flow)
Learner
Characteristics Learner Records -
Learner & Preferences (Store)
Model
KLearlnzr Learner Records
AEHS ng\'\;ge ge (Store) )
Models b
Educational Resource Learning Resources Content Aggregation
Description Model (Store) Model
Concgpt Coach (Process),
Selection | -
Rules Locator (Flow)
Adaptation Content Coach (Process),
Model Selection -
Rules Locator (Flow)
Sequencing Coach (Process), Sequencing and
Rules Locator (Flow) Navigation
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Table 3.1 presents how the structural components of the generalized AEHS
architecture, presented in Chapter 2, fit to the architectural approach used in LT

conformant learning platforms.

From the above table, we can observe that although LTSA defines abstract
representations that depend on the specific application in hand (e.g. the coach
process), it can describe all the structural components of AEHS. This means that, for
every aspect of AEHS relevant LT standards and/or specifications exist, that can serve

as a mean to enable interoperability and reuse between models.

In this thesis, we focus on the LT standards/ specifications for modelling learner
information, as well as, for describing educational content with metadata. Next

sections, review these standards/ specifications.

3.3. LT standards for representing the Learner
3.3.1. Information in Learner Model

In AEHS, a Learner Model should contain information about the learner’s domain
knowledge prior to the use of the educational system, the learner’s progress,
preferences, interests, goals, and any other information related to the learner [61],
[98]. Based on the dependence upon the subject domain, the information held in

Learner Models could be divided into two major groups [1], [99]:

- Domain specific  information: also named as knowledge model (KM), which
represents a reflection of the learner's state and level of knowledge and skills in

term of a particular subject domain.

- Domain independent information: may include learning goals, cognitive aptitudes,
measures for motivation state, preference about the presentation method, factual

and historic data, etc.

Domain Specific Information

The model of domain-specific information (knowledge model) represents a reflection
of the learner's state and level of knowledge and skills in term of a particular subject.
In relation to domain knowledge representation, learner knowledge models can be

classified as follows [61]:
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— Scalar Models. A scalar model is the simplest form of KM, and describes the level
of learner's knowledge on the entire domain by means of a certain integral estimate

such as a number ranging from 1 to 5.

— Overlay Models. If the entire domain model is made up of a set of knowledge
elements or curriculum elements, the overlay model represents the learner
knowledge as a subset of the domain model. A certain measure is assigned to each
curriculum element based on the estimated learner's understanding on that element.
The measure can be a scalar (an integer, or probability measure, or a flag such as

initial, acquisition, assimilation or mastery) or a vector estimate.

— Bug or Error Models. Because overlay models cannot represent the errors that the
learners made, the bug models or error models are developed to define and reflect
the reasons of erroneous learner behaviours. The error models can be divided into
perturbation models and differential models. Perturbation models assume one or
more perturbations (misconceptions) exist for each curriculum element. The
incorrect learner behaviours (errors) may be caused by the application of one of
misconceptions in place of the related correct knowledge element. The learner
knowledge is therefore represented by a union of a subset of the domain model and
another subset of the misconception set with all misconceptions that the learner
may have. Differential models capture misconceptions by only including the
entities representing the differences between the expert knowledge and the
learner's acquired knowledge.

— Genetic Models. Although both overlay models and error models represent the
learners’ knowledge states, they do not reflect the whole structure of domain
knowledge. Genetic models represent the learner knowledge developing process
from simple to complex and from special to general. The genetic model can be
described by a genetic graph, and the nodes and the relationships between the

nodes represent knowledge elements and their interactions.
Domain-specific information that may be stored in a Learner Model includes:

— Learner’s prior knowledge about the domain
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— Records of learning behaviours (number of lectures taken, number of helps asked,
frequency of mistakes made while solving problems, reaction/answering time

while solving problems, etc)
— Records of evaluation /assessment (qualitative and quantitative scores)

Domain Independent Information

A Learner Model also needs to cover a certain amount of domain-independent
information in addition to the learner’s current knowledge level. The domain-
independent information about a learner may include cognitive aptitudes, measures
for motivation state, preference about the presentation method, factual and historic

data, etc.

— Cognitive Aptitudes. [21] and [100] identified a number of specific cognitive
aptitudes in an overlay model besides learner's general attributes: General
knowledge, Inductive reasoning skill, Working memory capacity, Procedural
learning skill, Information processing speed, - Associative learning skKill,
Reflectivity, and Risk-taking. In the overlay model the curriculum elements were
classified as three types: symbolic knowledge, procedural skill, conceptual
knowledge. The mastery of different types of curriculum elements was associated

with one or more types of cognitive aptitudes.

— Motivational States. Motivation State is the force that drives the learner to engage
in learning activities. The learner motivational state can be measured by a number
of long-term and. short-term parameters such as motivation, effort, attention,
interest, distraction, persistence, etc. These parameters are in turn associated with
other factors including knowledge level, readiness, complexity of topic, learning
outcome, etc. [101] proposed a Learner Model that considered both learner
motivation and knowledge states. The learner motivational state was represented in

a Bayesian network.

— Background and Experience. Both background and experience information can be
used as bases for deriving Learner Model parameters. Background information is
about the learner previous experience that may have impact on learner learning

achievement, such as profession, relevant work experience, perspectives etc.
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Experience information is about how familiar the learner is with the learning
environment. The learners who are quite familiar with the subject domain may be
novices in using the educational systems and vice versa. This information is

helpful in selecting appropriate adaptive navigation methods [102], [103].

— Preferences. The learners may have different preferences over a range of aspects of
a learning environment. These preferences could be domain related or domain
independent. Learner preferences are considered different from other information
stored in Learner Models in that they cannot be deduced by the system. The
learners have to inform the system directly or indirectly about those preferences. It
is important for a web-based learning environment to present and organize learning
content in the learner's preferred way. Individual learner preferences can also be
accumulated to form group learner preferences in a group Learner Model. An
important part of learner preferences is the learning style that is correlated with
multiple intelligence: Multiple Intelligence [104] defines eight distinct intelligence
forms stated as follows: Verbal/linguistic intelligence, Logical/mathematical
intelligence,  Visual/spatial = intelligence,  Musical/rhythmic intelligence,
Bodily/kinaesthetic intelligence, Intra-personal intelligence, Interpersonal
intelligence, and Naturalist intelligence. Gardner suggested that everyone
possesses all above intelligence but in varying degrees, consequently a learner can
show low ability in one domain area but high ability in another domain. Whereas, a
Learning Style is defined as the unique collection of individual skills and
preferences that affect how a learner perceives, gathers, and process learning
content. Multiple Intelligence determines multiple learning styles. Just as every
person has unique ways to see, hear or experience the world, every learner has

different preferences for how, when, where and how often to learn knowledge.

= Factual and Historic Data. A Learner Model may also contain a number of factual
and historic data about an individual learner such as name, age, parents, 1D, past
education, interests, etc. These are necessary for initializing an individual Learner
Model.
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3.3.2. IEEE P1484.2 (PAPI Learner)
Public and Private Information (PAPI) for Learners (PAPI Learner) is a standard

effort aimed at providing the syntax and semantics of a Learner Model, including
knowledge, learning styles, skills, abilities, records and personal information, all at
multiple levels of granularity. This standard specifies the syntax and semantics of a
"Learner Model", which characterizes a learner and his/her knowledge/abilities. This
includes elements such as knowledge (from course to fine-grained), skills, abilities,
learning styles, records, and personal information. The specification allows these
elements to be represented in multiple levels of granularity, from a coarse overview,

down to the smallest conceivable sub-element.

The working group for the Learner Model [P1848.2] has the following purposes:

— To enable learners to build lifelong personal Learner Models.

— To enable personalized instruction and effective instruction.

— To provide educational researchers with a standardized source of data.

— To provide a foundation for the development of additional educational standards,
from a learner-centred learning focus.

— To provide architectural guidance to developers of learning environments.

The main architectural feature of the PAPI Learner standard is its logical division. It
separates the security and the administration of several types of learner information

(also called Profile Information):

— Personal information like name, address and social security number. It is not
directly related to the measurement and recording of learner performance and is
primarily concerned with administration. Usually this type of information is private

and secure.

— Relations information, e.g., cohorts, classmates. This concerns the learner's
relationship to other users of learning technology systems, such as teachers,

practitioners, and other learners.

— Security information. This is concerned with the learner's security credentials, such
as passwords, challenges/responses, private and public cryptographic keys, and

biometrics.
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— Preference information: useful and unusable 1/O devices, learning styles and
physical limitations. It describes preferences that may improve human-computer

interactions.

— Performance information, like grades, interim reports, log books. This pertains to
the learner's history, current work or future objectives and is created and used by

learning technology components to supply enhanced learning experiences.

— Portfolio information: accomplishments, works and so on. This information is a
representative collection of a learner's works or references to them that is intended
to illustrate and justify the learner's abilities and attainments.

3.3.3. IMS Learner Information Package (LIP)
Another major standardization effort, the Learner Information Package (LIP), comes

from the IMS, a consortium of institutions including government agencies, software
developers, vendors, and training and education representatives. Version 1.0 of the
IMS Learner Information Package Specification was released to the public in March
2001. The IMS LIP has partly been derived from the IEEE PAPI Learner.

The LIP specification provides a way of packaging learner information for exchange
between disparate systems. It focuses onlearner information, that is, the wide range of
information that can be used by different systems to support the learner's activities.
The semantics of the packages being exchanged may vary depending on the context;
this is determined by the services participating in the exchange. Furthermore, learner
information can be packaged from a variety of environments, not only human

resources, learner information and learning management systems.

An important aspect of the implementation of the XML-based specification to note is
that nearly all LIP elements are optional. Depending on needs, data can be packaged
to match the basic LIP segment structure or to match the structure of information on
either side of the exchange. Either approach is acceptable.

LIP can be used for individual learner information packaging (for example, a learner
submitting his/her resume to an e-learning website) or for organizational exchange
(both intra-organization, like data about employees, or extra-organization, like the

certification of a learner's achievements to a third-party institution).
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The data structures that form the core of the IMS LIP specification are briefly outlined

below:

1. Accessibility — Data regarding the accessibility of learner's information as

defined through:

Language: the definition of a learner’s language proficiencies.
Preference: the definition of a learner’s cognitive, physical and

technological preferences.

2. Activity — The activity the learner is engaging in, comprising:

Learning activity reference: an external reference mechanism to the
learning content.

Definition: the definition of the materials studied.

Product: the materials developed by the learners themselves.
Testimonial: statements attesting to the capabilities of the learner.

Evaluation: the results of the evaluations undertaken.

3. Affiliation — The learner’s professional affiliations and associated roles.

Competency — The competencies of the learner.

Goal — The learner’s goals and sub-goals.

4. Identification — The learner identification data. They comprise:

Formatted Name: the learner’s name, formatted.

Name: the learner’s name.

Address: the learner’s addresses.

Contact info: electronic-based contact information about the learner.
Demographics: demographics information about the learner.

Agent: the representatives permitted to act on behalf of the learner.

5. Interest —Hobbies and recreational interests of the learner.

6. Qcl — A description of the qualifications, certifications and various licenses of

a learner.

7. Relationship — the set of relationships that are to be defined between the

learner and their identification, accessibility, qualifications, competencies,

goals, activities, interests, transcripts, security keys and affiliations.

8. Security key — the security-related information for the given learner.

9. Transcript — the transcripts that summarize the performance of the learner.
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A full, detailed list of all LIP data elements would be of little interest. What is
important is that the standard has been designed to be extensible, in order to

accommodate any possible learner data.

IMS LIP IEEE PAPI
IDENTIFICATION > PERSONAL
AFFILIATION e
> RELATIONS
RELATIONSHIP a1
ACCESSIBILITY > PREFERENCES
COMPETENCY ~
INTEREST T PORTFOLIO
ACTIVITY \
QcL
(Qualifications Certifications Licenses) <\
>> PERFORMANCE
GOAL a1
TRANSCRIPT A/
SECURITY KEY - > SECURITY

Figure 3.2: Relationship between the IMS LIP and the IEEE PAPI models
3.3.4. Relationship of the IEEE LTSC PAPI with the IMS LIP
As mentioned earlier, the IMS LIP work incorporated the IEEE PAPI specification.
Figure 3.2 describes this relationship. An arrow in Figure 3.2 indicates the mapping
between one data structure and another. Hence, data belonging to the IEEE PAPI
personal group can be put in the identification IMS LIP data group when using the
latter specification.

3.4. LT standards for representing Learning Resources
With the approval of the Learning Object Metadata (LOM) specification as a standard

by the IEEE [19], learning object metadata models have achieved a stable common
reference that provides designers and developers with a solid foundation for creating
metadata infrastructures to meet the needs of educators and learners. Given the

necessarily abstract nature of this standard, the task of adapting it to meet the specific
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and concrete needs of these stakeholders, requires interpretation, elaboration,
extension, and in some cases, the specialization of both the syntax and semantics.
Such processes lead to multiple elaborations and/or representations of the same
standard, depending on the application (application profiling). This fact can affect
interoperability between learning object repositories, and reusability of the stored
learning objects. Hence, it identifies the need for learning object metadata (LOM)
management infrastructures and environment that can support the twin goals of

interoperability and reusability with the minimum human interference.

Today, the web community has embraced the collection and use of metadata to
characterize and index educational resources, which lead to semantically more
accurate retrieval of information. In the context of resource discovery, descriptive
metadata is a characterization that aims to represent the intellectual content of the
resource. Although several technologies exist for representing metadata e.g. the
Resource Description Framework (RDF) and the Web Ontology Language (OWL),
the most popular technology is still XML (eXtensible Markup Language) [105].

Learning resource metadata (LRM) are attracting increasing attention in this context,
since they facilitate the description of learning resources, so that they can be easily
retrieved [18]. A number of international efforts have been initiated during the past
few years, aiming to define LRM specifications for the common description of
educational resources. These specifications include fields that are considered
necessary for the description of educational resources — such as the type of the
resource (i.e. whether it is an experiment, simulation, questionnaire, assessment, etc),
the target learner age, difficulty level, estimated learning time, etc — as opposed to
“general purpose” meta-Oata standards (e.g. the Dublin Core), or standards that have
been developed for different fields of knowledge (e.g. geo-spatial meta-data
standards). The most well-known international LRM standardization initiatives are the
IEEE LTSC, IMS, AICC, ARIADNE, and CEN/ ISSS.

With the approval of the Learning Object Metadata (LOM) specification metadata
models have achieved a stability and level of community requisite to their
implementation in the form of application profiles [106] and supporting infrastructure.

However, although a generally accepted standard for describing educational material
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(IEEE Learning Object Metadata) exists, many educational metadata management
systems are using other metadata models or previous versions of the IEEE standard;

or even different translations of the IEEE LOM [107].

In this section we will present the main metadata models still in wide use, as well as,

the most common application profiles used based on these models.

PubliclD Mediator
SID Identifier Beneficiary
SDN Audience Level

Age
Alternative Title Prerequisites

Language Type

Table of Contents Extend
Description
Abstract Format Medium
Platform
Keyword Subject
Duration
Spatial
Coverage
Temporal Grouping
Pedagogy TeachingMethod
Assesment

Created

Authority

Available

Issued Date Criteria

Quality

Modified

PlacedOnline

RecordCreated

Essential

Resources

Role Creator

Relation
Role Publisher

Source
Role Contributor

Standard Correlator

PriceCode Rights

Role Cataloging

Figure 3.3: Generalized view of the structure of the GEM model
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3.4.1. Gateway to Educational Materials (GEM) Model
The Gateway to Educational Materials (GEM) is sponsored by the U.S. Department of

Education. GEM’s objective is to provide educators with quick and easy access to a
number of educational resources found on various federal, state, university, non-
profit, and commercial Internet sites. For this purpose GEM has defined a metadata

model for describing learning resources.

The GEM metadata model is based on the Dublin Core model with the addition of
education-specific elements. Figure 3.3 presents a generalized view of the structure of
the GEM metadata model.

3.4.2. IEEE Learning Object Metadata (LOM) Standard
The IEEE Learning Technology Standards Committee (LTSC) has been providing for

the development and maintenance of the Learning Object Metadata (LOM) standard
since 1997. This process has been and continues to be an international effort with the
active participation on the LOM Working Group by members representing more than
15 countries. This resulted in the first IEEE accredited standard to be completed by
LTSC, the 1484.12.1 LOM data model standard. This is the first of a multi-part
standard for Learning Object Metadata, which LTSC LOM is responsible for
maintaining, developing and evolving. This responsibility is being fulfilled by current
work on bindings of the data model standard and includes developing further versions
of the data model standard. The IEEE LOM standard has been well received

recognized and adopted internationally.
The elements of the IEEE LOM standard are organized in the following categories:

— Category General. This category groups the general information that describes

a learning object as a whole.

—  Category Life Cycle. This category describes the history and current state of a
learning object and those entities that have affected the learning object during

its evolution.

— Category Meta-Metadata. This category describes the metadata record itself

(rather than the learning object that the metadata record describes).
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— Category Technical. This category describes the technical requirements and

characteristics of a learning object.

— Category Educational. This category describes the key educational or

pedagogic characteristics of a learning object.

— Category Rights. This category describes the intellectual property rights and

conditions of use for a learning object.

— Category Relation. This category defines the relationship between a learning

object and other learning objects.

— Category Annotation. This category provides comments on the educational use
of a learning object, and information on when and by whom the comments

were created.

— Category Classification. This category describes where a learning object falls

within a particular classification system.

Figure 3.4 presents a generalized view of the structure of the IEEE LOM standard

metadata model.
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3.4.3. Learning Object Metadata Application Profiles
3.4.3.1. CanCore Application Profile
The CanCore Learning Object Metadata Application Profile (or simply CanCore) is a

profiling initiative established in November 2000 to address asset management and
resource discovery issues common to a number of e-learning projects sponsored by

both federal and provincial governments. These include:

— the BELLE (Broadband-Enabled Lifelong Learning Environment) project, aiming

to develop a prototype educational object repository.

— the POOL (Portal for Online Objects for Learning) project, aiming to develop a
distributed learning content management infrastructure based on a peer-to-peer

architecture.

— The CAREO (Campus Alberta Repository of Educational Objects) project, aiming
to develop a searchable, Web-based collection of multidisciplinary teaching

materials for educators across Alberta.

— The LearnAlberta Portal, aiming to provide modular, reusable learning resources

integrated with provincial k-12 curricula and objectives.

The Canadian Core Metadata Application Profile, in short, is explicitly based on the
elements and the hierarchical structure of the LOM standard, but it aims to reduce the
complexity and ambiguity of this specification. The CanCore application profile
consists of 8 main categories, 15 "placeholder” elements that designate sub-
categories, and 36 "active" elements for which data are actively supplied in the

process of creating a metadata record [108].

3.4.3.2. Celebrate Application Profile
The purpose of the CELEBRATE Metadata Application Profile is to support the

exchange of information between learning object repositories. The metadata described
in this application profile supports a variety of LO uses including management and
discovery, as well as, the description of properties of individual LOs including

educational attributes, digital rights and technical features.

The CELEBRATE Metadata Application Profile defines mandatory, recommended,
and optional elements of the IEE LOM Data Model and extends it by defining new
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elements and new vocabularies. New elements are ‘Learning Principles’ in
‘Educational’ category and ‘CELEBRATE Digital Rights’ in ‘Rights’ category. New
Vocabularies have been defined for ‘Learning Resource Type’, ‘Intended End User
Role’ and ‘Context’ in ‘Educational’ category and some refinements have been made

to ‘Language’ value space and ‘Typical Age Range’ value space.

3.4.3.3. UK LOM Core Application Profile
The UK Learning Object Metadata Core (UK LOM Core) is an application profile of

IEEE LOM, which is optimised for use by educational communities within the UK.
The UK LOM Core consists of two components: a minimum required Core Element
Set, and implementation Guidelines for all LOM elements plus additional Element

Requirements.

The UK LOM Core is designed for use by metadata implementers (i.e. those who are
creating applications for service and data providers that implement the LOM),
application profile authors (i.e. those who are creating application profiles based on
the LOM) and metadata creators (i.e. information professionals, resource authors,
resource users, and others who contribute to a metadata record or instance). It is also
envisaged that this document will be of relevance to those with a strategic interest in

the creation of interoperable metadata (e.g. project managers, librarians, etc.).

The primary objective of the UK LOM Core is to increase the interoperability of
metadata instances and application profiles within the UK educational community by:

- Promoting the appropriate use of LOM syntax and semantics,

- Defining the semantics of LOM data elements and advocating the use of
common - vocabularies, identifying a common core of elements that will
provide an adequate description to facilitate general-purpose use and

interoperability.

3.4.3.4. RDN/LTSN Application Profile
The primary purpose of this application profile to support learning object sharing

between the UK Resource Discovery Network (RDN) and the UK Learning and
Teaching Support Network (LTSN) services using the Open Archives Initiative
Protocol for Metadata Harvesting (OAI-PMH). The RDN/LTSN application profile

facilitates the following learning object discovery services:
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- Advanced Searching via the use of learning object’s title, description,

keywords and author information stored in the metadata

- Filtering based on the publisher, the resource language, and the educational

level.

3.5. Conclusions

Although the available content repositories offer high quality learning objects, still
reusing learning content among different AEHS remains an open issue. Current
AEHS are closed, self-contained systems that cannot be used as service components
(lack of reuse support). Additionally, due to their close architecture they face
difficulties in supporting the variety of the required functionalities in a learning

process since they cannot use external services (lack of integration).

A possible solution to the above mentioned problems is the adoption of Learning
Technologies (LT). Learning Technology standards and specifications are designed to
facilitate the description, packaging, sequencing and delivery of educational content,

learning activities and learner information.

The goal of LT is to facilitate interoperability between applications, providing
uniform ways for representing educational content, learner information, as well as,
uniform communication guidelines that can be used throughout the design,
development, and delivery of learning content. Thus, enable educational content and

learner information to be shared.

In this chapter, we discussed how the structural components of the generalized AEHS
architecture fit to the architectural approach used in LT conformant learning platforms,
and reviewed the Learning Technology standards and specifications which can be
used for facilitating the sharing of learner information and educational content in
AEHS.
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Chapter 4. Proposed Adaptive Selection and Sequencing Method

4.1. Introduction
As already discussed in Chapter 2, in the literature there exist different approaches

aiming to support the Adaptation Model design by providing AEHS designers with
either guidance for the direct definition of adaptation rules, such as ATO [10], MOT
[37], [38] and ACCT [32], [33], or semi-automated mechanisms which generate the
AM via the implicit definition of such rules [16], [41], [74].

The main drawback of the direct definition of adaptation rules is that there can be
cases during the run-time execution of AEHS where no adaptation decision can be
made due to insufficiency and/or inconsistency of the defined adaptation rule sets
[11], [109]. This is due to the fact that, even if appropriate resources exist in the
Media Space, the absence of a required rule (insufficiency problem) or the conflict
between two or more rules (inconsistency problem), prevents the AEHS to select and
use them in the generated learning resource sequence. As a result, either less
appropriate resources are used from the Media Space, or required concepts are not
covered at all by the resulting sequence [11]. To this end, in the literature another
approach has been proposed that uses adaptation patterns [44], [45], [46] (or
templates) that have been-a priori defined by an Instructional Designer during the
design phase of the AEHS. These patterns contain both the content selection and the
sequencing rules of the Adaptation Model. Typical examples of these systems are
MOT [37], [38] and ACCT [32], [33].

Although this approach provides a solution to the inconsistency problem, it does not
tackle with the problem of insufficiency, since that would require a huge set of
patterns, which is difficult to be a priori defined. The problem of defining adaptation
rules is a combinatorial problem, which means that in order to design sufficient and
consistent adaptation rule sets, all the combinations of the adaptation decision
variables should be covered. However, these combinations can be millions [41],
leading to huge rule sets that is difficult to author, manage and verify their sufficiency

and/or consistency.

An alternative approach is the use of semi-automated decision based mechanisms

[13], [17], [41], [47], which generate a continuous decision function that estimates the
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desired AEHS response. To achieve this, they use data from the implicit definition of
sample adaptation rules and attempt to fit the response function on these data. This
definition of implicit adaptation rules, is given in the form of model adaptation
decisions, over which the adaptation response function should be fit. This approach
overcomes both the problems of sufficiency and consistency; however it introduces
decision errors that result from the decision function fitting errors during the machine

learning process [41].

In this chapter, we present our proposed semi-automated decision based approach.
The proposed methodology is based on an intelligent mechanism that attempts to
construct a suitability function that maps learning object characteristics over learner

characteristics and vice versa.

4.2. Adaptive Learning Objects Selection
The proposed methodology does not depend on the metadata characteristics

(attributes) used for learning objects and Learner Modeling, thus can be used for
extraction of even complex pedagogy-related dependences. It is obvious that since
characteristics/requirements like the domain are used for filtering, the dependencies
produced are quite generic, depending only on the educational characteristics of the
content and the cognitive characteristics of the learner. The selection methodology is
generic, independent of the learning object and the learner characteristics used for the

selection.

There exist many criteria affecting the decision of learning objects selection. Those
criteria that lead to a straightforward exclusion of learning objects, such as the
subject, the language and the media type, are used for filtering. The rest set of criteria
such as the educational characteristics of learning objects are used for selection model
extraction, since the dependencies of those criteria can model the pedagogy applied
by the instructional designer, when selecting learning objects. Those criteria, due to
the complexity of interdependencies between them, are the ones that cannot be
directly mapped to rules from the instructional designer. Thus a semi-automated

approach, like the proposed one, is needed.
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In Table 4.1 and Table 4.2, we present examples of learning object and learner
attributes respectively, derived from LT standards/ specifications as discussed in
Chapter 3.

Table 4.1: Examples of Learning Object attributes derived from IEEE LOM standard

Selection )
L IEEE LOM Path Explanation
Criteria
LOM/General/Structure Unglerlylng organizational -structure of ‘a Learning
Object
General The functional granularity (level of tion) of
LOM/General/Aggregation Level € Tunetigha_ granuiagity (level.of-dggregation) of a
Learning Object.
L OM/Educational/Interactivity Type Predo.mmant. mode of . learning supported by a
Learning Object
LOM/Educational/ Interactivity Level The degr_ee to which a_learne( can influence the aspect
or behavior of a Learning Object.
LOM/Educational/Semantic Density Th_e degrge of conciseness of a Learnl_ng Object,
estimated in terms of its size, span or duration.
LOM/Educational/Typical Age Range Age of the typical intended user. This (_alement refers
to developmental age and not chronological age.
. . - How-hard it is to work with or through a Learning
Educational LOM/Educational/Difficulty Object for the typical intended target audience.
LOM/Educational/Intended - End User | Principal user(s) for which a Learning Object was
Role designed, most dominant first.
. The principal environment within which the learning
LOM/Educational {faigext and use of a LO is intended to take place.
LOM/Educational/Typical Learning | Typical time it takes to work with or through a LO for
Time the typical intended target audience.
LOM/Educational/Learning - Resource | Specific kind of Learning Object. The most dominant
Type kind shall be first.

Next, we present the algorithm for creating a suitability function that estimates the
suitability of a learning object for a specific learner. We construct a suitability
function with the assumption that the elements of the Learner Model are directly
defined by the Instructional Designer and remain the same during the whole life cycle
of the AEHS. To this end, before proceeding with the calculation of the suitability
function, we assume that the learners’ cognitive characteristics and preferences stored
in the Learner Model, as well as, the structure of the Educational Resource

Description Model have already been defined by the Instructional Designer.
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Table 4.2: Examples of Learner attributes derived from IMS LIP specification

Sel_ectl_on IMS LIP Path Explanation Usage Condition
Criteria
LIP/Accessibility/Preferenc | The type of cognitive |
e/typename preference
LIP/Accessibility/Preferenc | The coding assigned to the |
- e/prefcode preference
Accessibility

LIP/Accessibility/Eligibility
/typename

The type of eligibility being
defined

LIP/Accessibility/Disability/
typename

The type of disability being
defined

Qualifications
Certifications

LIP/QCL/Level

The level/grade of the QCL

LIP/QCL/Typename,

LIP/QCL/Title and
LIP/QCL/Organization  should
refer to a qualification related

Licenses with - the objectives of the
learning goal
LIP/QCL/date > Threshold
o _ LIP/Activity/Typename,
]Ic_;tlségcttgnty/Evaluatlon/noo The number of attempts | LIP/Activity/status,

p made on the evaluation. LIP/Act!v!ty/unlts _ and
LIP/Activity/Evaluation/Typena
- LIP/Activity/Evaluation/res : ; me shoult_:i refer togqqallflcatlon
Activity Information that describes | related with the objectives of the

ult/interpretscope

LIP/Activity/Evaluation/res
ult/score

the scoring data.

The scoring data itself.

learning goal

LIP/Activity/date > Threshold

LIP/Activity/Evaluation/date >
Threshold

The process of creating the suitability function consists of the following steps, as

shown in Figure 4.1:

Stepl:

Reference Sets Generation

The first step of the suitability calculation process includes the generation of

the reference sets of learning objects and learners that will be used for

calculating the suitability function. More precisely, we generate two sets of

learning objects, namely, the Learning Objects Training Set (LOTS) and the

Learning Objects Generalisation Set (LOGS), as well as, two sets of

learners, namely, the Learners Training Set (LTS) and the Learners
Generalisation Set (LGS). The two training sets (LOTS and LTS) are used

for calculating the suitability function, and the two generalisation sets

(LOGS and LGS) are used for evaluating the consistency of the produced

suitability function.
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START

Reference Set Generation

/\

Reference Set Reference Set
of Learning Objects of Learners
(Training & Generalization Set) (Training & Generalization Set)
A A Step 1
Expression of Instructional Designer’s Reference
LO rating on the Reference Set of Learners
Add an Step 2
LO Instance|
to the
Training Set Y
Suitability Function Parameters Calculation
Step 3
_ Y
Fail Consistency Check
based on Learner Training Set Add a
Learner
*Pass Instance
to the
Training Set

Extrapolation on the entire set of
Learner Instances

v

< Consistency Check Fail

based on Learner Generalization Set

‘ Step 4
Pass

Figure 4.1: Workflow for generating the Suitability Function

Each one of the generated reference learning objects has a unique identifier

of the form LO; and is characterized by a set of n independent properties

9% =(9,°,9,",...,9.°) of the Educational Resource Description Model.

Similarly, each one of the generated reference learners has a unique identifier

of the form L; and is characterized by a set of m independent properties
ut = (ulLj ,uzLj ,...,unLj) of the Learner Model. The reference learning objects

are randomly generated with normal distribution over the value space of each
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Step2:

Step3:

metadata element of the Resource Description Model. Similarly, the
reference learners are randomly generated with normal distribution over the

value space of each learner characteristic of the Learner Model.
Reference LO rating by the Instructional Designer

For each reference learner L; contained in the LTS, we ask the Instructional
Designer to define his/her preference rating of the reference learning objects
contained in LOTS, as well as, to define his/her preference rating of the
reference learning objects contained in LOGS. These preference ratings are
expressed using two preference relations, namely, the strict preference
relation and the indifference relation. A strict preference relation means that
a learning object is preferred from another one and an indifference relation
means that two learning objects are equally preferred. Additionally, for each
reference learner L; contained in the LGS, we ask the Instructional Designer
to define his/her preference rating of the reference learning objects contained
in LOGS.

Suitability Function Parameters Calculation

For a specific learner L; we define as marginal suitability function of the
Resource Description Model property gk a function that indicates how
important is a specific value of the property g« when calculating the
suitability of a learning resource LO; for the learner L. This function has the

following form (Karampiperis and Sampson, 2004):

s, (9:°) =a, +b,’ g;° exp(-c,’ g->%), where g-° is the property value of

learning object LO; in the gk element of the Resource Description Model and
a,’ €R, b’ R, ¢, e Rare parameters that define the form of the marginal
suitability function. The calculation of these parameters for all gx properties

of the Resource Description Model lead to the calculation of the suitability

function for the learner L;.

More precisely, for a specific learner L; we define the suitability function as
the aggregation of the marginal suitability functions for the learner Lj, as

follows:
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st (g Lo, ): %;s; (g9, with the following additional notation:

sngJ' (9,°): Marginal suitability of the gk element of the Resource Description

Model, valued g, for the learning object LO; ,

sh (g Lo ): The global suitability of the learning object LO; for the learner L;.

If SLLé',l is the global suitability of a learning object LO; and stgz is the

global suitability of a learning object LO, for the learner L;, then the

following properties generally hold for the suitability function S:

i, >SSt < (LO)P(LO,)
i, =S8, < (LOI(LO,)

where P is the strict preference relation and I the indifference relation in
Instructional Designer’s preference rating. These properties express that for a
specific learner L;, when a learning object LO; is preferred from another
learning object LO,, then the suitability function for LO; is greater than the
suitability function for LO, and vise versa. Similarly, when two learning
objects LO; and LO, have the same preference rating for a specific learner

Lj, then they also have the same suitability function value.

Using the provided by the Instructional Designer preference rating of the
reference learning objects contained in LOTS, for each reference learner L;

contained - in  the LTS, we define the suitability differences
AT =(A], A7 ..., A7) for the reference learner Lj, where g is the number of
learning objects in the LOTS and AP =S-S5 >0 the suitability
difference between two subsequent learning objects in the rated LOTS. We
then define an error function e for each suitability difference:

A =S5 —Si, +&7 >0. We can then solve for each one of the learner

instances L in the LTS the following constrained optimisation problem:
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Step4:

$ A, >0 if (LO,)P(LO
Minimize Y (e’)° subject to the constraints: ' IT(LO,)P( '+1)}
-1 A, =0 if (LO)I(LO,,,)

and 0<s//(g9,%)<1, Vg,

By using Lagrange Multipliers [110], we can transform the above problem to
an unconstrained optimisation problem, and solve it using typical non linear
optimisation algorithms (e.g. conjugate gradient methods). For details on

such methods the reader may refer to Appendix A.

This optimisation problem leads to the calculation of the values of the
parameters a, b and ¢ for each gi property of the Resource Description Model
over the instances of the LTS, that is, for each separate learner profile
included in the LTS.

Consistency Check and Extrapolation

We then evaluate the consistency of the resulting suitability function, that is,
the evaluation of how well the suitability function works for learning objects
and/or learners that have not been used in the suitability function parameters
calculation (step '3). To this end, we first use the provided by the
Instructional Designer preference rating of the reference learning objects

contained in LOGS, for each reference learner L contained in the LTS.

For a reference learner L;, we estimate using the suitability function
calculated in the previous step (step 3) the Instructional Designer’s
preference rating of each learning object contained in LOGS. We then
compare the provided by the Instructional Designer preference rating with
the estimated one. If the preference rating estimation of a learning object LO;
in LOGS is different than that provided by the Instructional Designer, we add
the learning LO;j in the Learning Object Training Set (LOTS) and recalculate

the suitability function parameters (step 3).

If the estimated and the provided preference ratings are the same, then we
generalize the resulted suitability function from the LTS to all learners, by

calculating the corresponding suitability values for every learner property

uzLj , using the following linear interpolation formula:
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se(0:2) if s (912 )= (0

L; L
u J_u 1
Ll( LOi) Z . Lz( LOi)_ Ll( LOi)] . Lz( LOi) Lz( LOi)
Sgk 9 JFUL2 _UL1 Sgk 9 Sgk 9 , if Sgk 9k >sgk 9

Z Z

5 (0:°)=

where L; and L, are the learners of the LTS closest (measured by Euclidean

L
z

distance) to the learner Lj, u;* and u'* are the values of learner property u,

for learners L, and L, respectively, and s and s are the marginal

suitability functions of the Resource Description Model property gx for
learners L; and L, respectively.

After the extrapolation on the entire set of learner instances, we evaluate
again the consistency of the resulting suitability function, using the provided
by the Instructional Designer preference rating of the reference learning
objects contained in LOGS, for each reference learner L;j contained in the
LGS. For a reference learner L;, we estimate using the suitability function
calculated in the previous step (step 3) the Instructional Designer’s
preference rating of each learning object contained in LOGS. We then
compare the provided by the Instructional Designer preference rating with
the estimated one. If the preference rating estimation for a learner L; in LGS
is different than that provided by the Instructional Designer, we add the
learner L; in the Learners Training Set (LTS) and recalculate the suitability
function parameters (step 3).

4.3. Adaptive Learning Object Sequencing

As already described in Chapter 2, AEHS that implement the direct rule definition
approach use a two steps sequencing process. They first generate a sequence of
concepts that matches the learning goal in hand, and then select learning recourses for
each concept of the concept sequence. Due to the problems of inconsistency and
insufficiency of the defined rule sets in the Adaptation Model, conceptual “holes” can

be generated in the produced learning resource sequence.

To overcome this problem, decision-based approaches implement an alternative
sequencing method. In this method, instead of generating the learning path by

populating the concept sequence with available learning resources, first all possible
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sequences that match the learning goal in hand are generated and then the desired

personalized learning path from the set of available paths is adaptively selected.

In brief, this two steps procedure is the following:

Stepl: Learning Paths Generation.
At this step a graph containing all possible learning paths based on the
relation between the Learning Goals Hierarchy, the concepts of the Domain
Concept Ontology and the learning resources contained in the Media Space,

is generated.

Step2: Personalized Learning Path Selection.
At this step a personalized learning path is selected from the graph that
contains all the available learning paths based on learner’s attributes in the

Learner Model.

In the proposed sequencing method, we replace the content selection rules defined in
the Adaptation Model with a decision-making function that estimates the suitability of
a learning resource for a specific learner by relating the educational characteristics of
learning resources defined in the educational resource description model with the
learner’s cognitive characteristics and preferences stored in the Learner Model. This
suitability function is used for weighting each connection of the Learning Paths
Graph. From the weighted graph, we then select the most appropriate learning path
for a specific learner (personalized learning path) by using a shortest path algorithm.
Next, we present the methodology used for selecting the personalized learning path

for a learner.

In order to be able to select from the Learning Paths Graph (LPG) the learning path
that matches the characteristics and preferences of a specific learner, we need to add
learner-related information to the LPG. This information has the form of weights on
each connection of the LPG and represents the inverse of the suitability of a learning
resource for the specific learner. This means that the higher value a weight in the LPG
has, the less suitable the corresponding learning object in the sequence is for a

specific learner.

For a specific learner Lj we define the weighting function for each directed

connection (edge) of the Learning Paths Graph as W" (gLoi)=1—SL" (gLOi)e[O,l],
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where §" (g Loi) is the global suitability for the learner L; of the targeted learning

object LO;. in the edge.

After weighting the LPG using the weighting function, we need to find the most
appropriate learning path for a learner. Since the weights in the LPG are calculated in
such a way that the lower value they have the more suitable a learning object is, the
calculation of the most appropriate learning path is equivalent to the calculation of the
shortest path in the LPG. By relaxing the edges of the LPG according to a topological
sort of its vertices (nodes of the graph), we can compute the shortest path.

(@

Figure 4.2: The execution of the algorithm for personalized learning path selection from the
LPG. The d values are shown within the vertices, and shaded edges indicate the r values.

The algorithm starts by topologically sorting the LPG to impose a linear ordering on
the vertices. If there is a path from vertex u to vertex v, then u precedes v in the

topological sort (Figure 4.2a).

Let us call V the set of vertices contained in the LPG. For each vertex veV, we

maintain an attribute d[v] called shortest-path estimation, which is an upper bound on
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the weight of a shortest path from source s to v. Additionally, for each vertex veV,
we maintain an attribute w[v] called shortest-path predecessor. We initialize the
shortest-path estimates and predecessors using the following values: n[v]=NIL for all
veV, d[s]=0, and d[v]=w for ve V-{s} (Figure 4.2a). We make just one pass over
the vertices in the topologically sorted order. As we process each vertex, we relax
each edge that leaves the vertex. The process of relaxing an edge (u,v) consists of
testing whether we can improve the shortest path to v found so far by going through u
and, if so, updating d[v] and m[v]. A relaxation step may decrease the value of the

shortest-path estimate d[v] and update v’s predecessor field [v] (Figure 4.2b-g).

The result of this process is the calculation of the shortest path in the LPG that
corresponds to the sequence of learning objects that are most suitable for a specific

learner L.

4.4. Conclusions
In order to adaptively select and sequence learning objects in AEHS the definition of

the Adaptation Model is required. In the literature, there exist different approaches
aiming to support the Adaptation Model design by providing AEHS designers with
either guidance for the direct definition of adaptation rules, or semi-automated

mechanisms which generate the AM via the implicit definition of such rules.

The main drawback of the direct definition of adaptation rules is that there can be
cases during the run-time execution of AEHS where no adaptation decision can be

made due to insufficiency and/or inconsistency of the defined adaptation rule sets.

An alternative approach is the use of semi-automated decision based mechanisms,
which generate a continuous decision function that estimates the desired AEHS
response. To achieve this, they use data from the implicit definition of sample
adaptation rules and attempt to fit the response function on these data. This definition
of implicit adaptation rules, is given in the form of model adaptation decisions, over
which the adaptation response function should be fit. This approach overcomes both
the problems of sufficiency and consistency; however it introduces decision errors
that result from the decision function fitting errors during the machine learning

process.
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In this chapter, we presented our proposed semi-automated decision based approach.
The proposed methodology is based on an intelligent mechanism that attempts to
construct a suitability function that maps learning object characteristics over learner
characteristics and vice versa. We claim that this method requires less effort by the
instructional designer, since instead of defining a huge set of adaptation rules, only
the designer’s selection from a small set of learning objects over a reference set of
learners is needed. The machine learning technique will try then to discover the
dependence between learning object and learner characteristics that produce the same

adaptation decisions as the instructional designer did.
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Chapter 5. Evaluation Methodology

5.1. Introduction
As already discussed, the main drawback of the direct definition of adaptation rules is

that there can be cases during the run-time execution of AEHS where no adaptation
decision can be made due to insufficiency and/or inconsistency of the defined
adaptation rule sets [11], [109].

In chapter 4, we presented our proposed semi-automated decision based approach.
The proposed methodology is based on an intelligent mechanism that uses data from
the implicit definition of sample adaptation rules and attempts to fit the response
function on these data, using a suitability function that maps - learning object

characteristics over learner characteristics and vice versa.

We claim that this method requires less effort by the instructional designer, since
instead of defining a huge set of adaptation rules, only the designer’s selection from a
small set of learning objects over a reference set of learners is needed. The machine
learning technique will try then to discover the dependence between learning object
and learner characteristics that produce the same adaptation decisions as the

instructional designer did.

In this chapter, we present the evaluation methodology that will be used to verify our
main hypothesis: that it is feasible to construct a semi-automated, decision-based
approach, which generates a continuous decision function that estimates the desired
AEHS response, aiming to overcome the above mentioned problems of insufficiency

and inconsistency of the defined adaptation rule sets.

5.2. Evaluation Steps
The goal of this evaluation is twofold: first, to examine whether the proposed semi-

automated decision based approach is capable of extracting decision models which
replicate the Adaptation Model (AM) of existing AEHS; and second, to verify that our
proposed approach is robust and can be applied in cases where large-scale adaptation
rule sets are needed to describe the desired AEHS response.
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To this end, the evaluation will be performed in two phases:

Phase A: Extracting the AM of existing AEHS. In this evaluation phase, the
Adaptation Model (AM) rules of existing AEHS will be used for generating
sample adaptation decisions. These decisions have the form of combinations of
learning objects mapped to learner profiles, and will be used to train the
intelligent mechanism that fits the response function on these data. The goal of
this phase is to examine whether the proposed semi-automated decision based
approach is capable of extracting the decision model of the AEHS in hand. More
specifically, we will try to extract the AM rules for content selection used in the
INSPIRE [69], and the AHA [8], [29], [30], system.
Phase B: Scaling up the experiments. As already discussed in Chapter 2, the
problem of defining adaptation rules is a combinatorial problem, which means
that in order to design sufficient and consistent adaptation rule sets, all the
combinations of the adaptation decision variables should be covered. However,
these combinations can be millions [41], leading to huge rule sets that is difficult
to author, manage and verify their sufficiency and/or consistency. To this end, in
order to keep the adaptation rule set human-maintainable, existing AEHS in the
literature use few adaptation variables, typically 2 to 4 variables for describing
learners’ behaviour and 2 to 3 variables for describing educational content [111].
The goal of this evaluation phase is to verify that our proposed approach is robust
and can be applied in cases where large-scale adaptation rule sets are needed to
describe the desired AEHS response. In order to do this, we will simulate the
existence of an AEHS that uses as many adaptation variables as possible. These
variables (learner profile properties and educational description model properties)
will be selected from the elements of wide-spread Learning Technology
standards, as discussed in Chapter 3. However, special attention was given in
generating learner profiles and educational content metadata records that simulate
real-life conditions. Details on how these datasets were generated are given in
section 5.3.
This evaluation phase can be divided in the following steps:
— Step B.1: Robustness Testing. Before measuring the performance, it is
important to investigate the robustness of our proposed approach. The scope
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of this testing phase is to check (a) that the optimisation problem in hand
converges, and thus, is well-defined, and (b) that it is not dependent from the
optimisation algorithm in use, and thus, the proposed approach is robust.

— Step B.2: Assessment of Performance Evaluation Metrics. An additional step
is required to verify that the performance evaluation metrics presented in
section 2.6 are suitable in the case of our proposed method for estimating the
desired AEHS response (presented in Chapter 4). Our-first goal is to evaluate
these metrics, and then use these metrics in measuring the performance of
our proposed decision-based approach. Our approach for adaptive content
selection and sequencing uses (a) a preference-based learning objects
selection mechanism based on the use of a suitability function, that estimates
the utility of a given learning object for a given learner, and (b) a preference-
based sequencing mechanism which uses the above mentioned suitability
function for weighting the graph which represents all possible learning
object sequences for a targeted learner, so as to discover the optimum
learning path for a given learner.

— Step B.3: Performance Evaluation. The goal of this evaluation step is to
validate the use and measure the performance of our decision-based approach
for adaptive learning objects selection and sequencing in AEHS.
Performance evaluation in this context means measuring (a) how well our
semi-automated approach fits the decision function to the provided model
adaptation decisions (training data), and (b) how well this decision function
responds to decision cases not known during the training process
(generalisation capacity). During this evaluation step, we will also examine
the “influence of the required design effort. In order to investigate the
influence of the explicit combinations required from the instructional
designer (which are directly equivalent to the design effort required) we will
execute additional experiments measuring the selection success gain per
number of requested combinations. This metric provides evidences about the
trade-off that an instructional designer should make between the required
effort and the improvement of the selection success rate. Moreover, during

this evaluation step, we will investigate how the use of predictive models for
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learner characteristics can be used to improve the content selection success
without increasing the required design effort. More precisely, we will make
use of the Cognitive Trait Model (CTM) [21]. This model, estimates
learner’s cognitive characteristics (and more precisely the Working Memory
Capacity and the Inductive Reasoning Skill) and proposes specific values for
the elements “InteractivityType”, “InteractivityLevel”, “SemanticDensity”
and “Difficulty” of the Educational Resource Description Model. Thus, the
use of CTM could reduce the dimensions of the optimisation problem.

5.3. Data Preparation
As described in Chapter 2, the adaptation model design is the process of defining (a)

the concept selection rules which are used for selecting appropriate concepts from the
Domain Model to be covered, (b) the content selection rules which are used for
selecting appropriate resources from the Media Space, and (c) the sequencing rules
which are used for generating appropriate learning paths (sequences of learning
objects) for a given learner, based on learner’s profile stored in the Learner Model.
This means that before executing our experiments for measuring the performance of
adaptive selection and sequencing of learning objects, we need to design (a) the
Media Space, (b) the Learner Model, and (c) the Domain Model.

5.3.1. Designing the Media Space
In the first phase of the evaluation, we will extract the AM of the INSPIRE [69] and

the AHA [8] system. The INSPIRE system uses two variables in the Educational
Resource Description Model, namely, the Performance Level and the Learning
Resource Type. On the other hand, the instructional rules introduced in the AHA
system by Stash [112], [113] uses also two variables in the Educational Resource
Description Model, namely, the Learning Resource Type and the Learning Resource
Modality.

In the second evaluation phase, we simulate the existence of an AEHS where large-
scale adaptation rule sets are needed to describe the desired AEHS response. To do so,
we have used as Educational Resource Description Model a subset of the IEEE
Learning Object Metadata standard elements [19], illustrated in Table 5.1. The
Aggregation Level and the Relation/Kind elements are used for structuring the Media
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Space and the Classification element is used for connecting learning resources with

the concepts of the Domain Concept Ontology.

Table 5.1. Educational Resource Description Model used in Evaluation Phase B

EEE (Lo IEEE LOM Element Explanation
Category
| Structure Underlying organizational structure of a Learning Object
General
Aggregation Level The functional granularity of a L.earning Object
Interactivity Type Predominant mode of learning supported by a L.earning Object
L The degree to which a learner can influence the aspect or behavior

Interactivity Level ; -
of a Learning Object.

Semantic Density The degree of conciseness of a Learning Object

Typical Age Range Developmental age of the typical intended user.

Difficult How hard it is to work with or through a Learning Object for the

y typical intended target audience.
Educational . h - - -

Intended End User Role Prlnc_:lpal u_ser(s) for which a Learning Object was designed, most
dominant first.

Context The principal-environment within which the learning and use of a
LO is intended to take place.

. . - Typical time it takes to work with or through a LO for the typical
Typical Learning Time intended target audience.
. Specific kind-of Learning Object. The most dominant kind shall be
Learning Resource Type first
Relation Kind Nature of the relationship between two Learning Objects

The Aggregation Level was used for classifying the available learning resources in
two classes, namely, the raw media and the structured learning objects (Table 5.2.
Each learning resource was tagged with a unique identifier depending on the
aggregation level class that it belongs. For example, the identifier of learning
resources with aggregation level 1 has the form of AG1:LOi, whereas, the identifier
of learning resources with aggregation level 2 has the form of AG21:LOj, where i and
j are the unique identifiers of the learning resources inside a specific aggregation

class.

Table 5.2: Learning Objects’ Aggregation Level according to IEEE LOM standard

IEEE LOM Element Value Space Description
1 The smallest level of aggregation, e.g.
General/Aggregation Level raw_medla data or frag_m ents.
5 A collection of level 1 learning objects,
e.g. a lesson chapter or a full lesson
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In order to define the structure of learning resources at aggregation level 2 (that is, a
collection of several learning resources at aggregation level 1) we have used the
‘Relation’ Category of the IEEE LOM standard. More specifically, in our simulations
we have used eight types of relationships out the 12 predefined values at the Dublin
Core Element Set [114], namely: “is part of” / “has part”, “references” / “is referenced

by”, “is based on” / ““is basis for”, and “requires” / “is required by”.

A partial view of the Media Space based on the use of the IEEE LOM Aggregation
Level element and the Relation/Kind element is presented in Figure 5.1.

AG21LO1 1. Is part of - Has part

2. References - Is referenced by
3. Is based on - Is basis for

4. Requires - Is required by

AG2:LO2

AG1:LO4

Media Relation Classes

3
AG1:LO5

AG1:LO14

AG2:LO3

AG1:LO6
AG2:LO5

AG1:LO11

4
AG1:LO12 AG1:LO13

st 2 ouran

AG2:LO4

AG1:LO9

AG1:LO10

Narrative
Text

Figure 5.1: Partial View of Media Space Representation

Furthermore, for each learning resource included in the Media Space, a set of related
concepts from the Domain Concept Ontology is specified using the Classification
element of the IEEE LOM standard. This element describes the position of a specific
learning object within a particular classification system and it is typically used in
AEHS to determine if a specific learning resource covers a certain concept of the
subject domain. Typical systems that used this approach are the Personal Reader
[115], and the WINDS [57].
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In the literature, several approaches exist that integrate the IEEE LOM metadata
elements within domain concept ontologies [116], [117], [118],[119], [120]. The use
of the classification element of the IEEE LOM standard, on one hand, models the
connection between concepts of the Domain Concept Ontology and the learning
resources, and on the other hand, enables the separation of the Educational Resource
Description Model from the Domain Concept Ontology. This separation enables the
use of separate metadata records for learning resources, thus, enabling the use of
resources and associated metadata contained in external from the AEHS repositories.

In both evaluation phases, we need to simulate real-life conditions. This means that
the simulated learning object metadata records should have a distribution over their
value spaces similar to the metadata value distribution found in real-life learning

object repositories.

Najjar and Duval [121], presented a statistical analysis of the actual use of IEEE LOM
metadata elements in the ARIADNE learning object repository. The results were
derived from analyzing the empirical data (usage logs) of 3,700 ARIADNE metadata
instances. Table 5.3 shows the percentage of times each ARIADNE data element was

filled in by indexers during the indexing process.

Table 5.3. Usage Percentage of Data Elements in ARIADNE Repository [121]

[0)
EEELOM | prviea | vooouary | 60| amongan

(%) value (M) cases
Aggregation Level 91.9 Lesson 92.7 85.2
Context 53.5 University Degree 69.7 37.2
Interactivity Level 53.2 Medium 67.7 36.1
Semantic Density 52.4 Medium 76.4 40.0
Difficulty Level 52.2 Medium 72.8 38.0
Restrictions 5.2 Contact Author 90 5.2
Source 1.3 - - -
Version Information 7.0 - - -
Description 11.2 - - -
OS Version 0.5 - - -
Installation Remarks 24.3 - - -
Other Constraints 0.15 - - -
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From the data shown in Table 5.3, we notice that only one data element is almost
always used: the Aggregation Level element. Other elements are used in about 50 %
of the descriptions and the rest are rarely used in the indexing process. For the values

of data elements, we can see that indexers often use just one value.

As a result, in order to simulate in our experiments the metadata of a real-world
repository, we will generate metadata records with normal distribution over the
metadata elements value space, simulating that not all' metadata elements and their
corresponding vocabulary terms are used equally. Normal distribution is a continuous
probability distribution that is often used to describe random variables that tend to

cluster around a single mean value.

5.3.2. Designing the Learner Model
In the first phase of the evaluation, we will extract the AM of the INSPIRE [69] and

the AHA [8] system. The INSPIRE system uses two variables in the Learner Model,
namely, the Learner’s Knowledge Level and the Learner’s Learning Style. On the
other hand, the instructional rules introduced in the AHA system by Stash [112],
[113] uses also two variables in the Learner Model, namely, the Learner’s Learning

Style and the Learner’s Modality Preference.

In the second evaluation phase, we simulate the existence of an AEHS where large-
scale adaptation rule sets are needed to describe the desired AEHS response. To do so,
for the design of the Learner Model in our simulations, we have used an overlay
model [61] for representing the Learners Knowledge Space and a stereotype model
[62] for representing learners’ preferences. More precisely, for the learners’
knowledge level we assume the existence of a related certification for each node of
the Learners Knowledge Space, the evaluation score in testing records and the number
of attempts made on the evaluation. For modelling of learners’ preferences we use
learning styles according to Honey and Mumford model [122], as well as modality
preference information consisting of four modality types, namely, the visual modality,
the textual modality, the auditory modality and any combination of the three modality
preferences [123]. Each element of the Learner Model was mapped to the IMS

Learner Information Package specification [20], as shown in Table 5.4.
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In order to simulate in our experiments the profiles of real learners we generated
profile records using truncated standard lognormal distribution with [sigma]=1 and
reduced by factor 1/5. This distribution is often used in the literature for simulating

learner behaviour [124].

Table 5.4. Learner Model used in Evaluation Phase B

Learner Model IMS LIP Element Explanation
Element
] Accessibility/Preference/typename The type of cognitive preference
Learning Style — - F
Accessibility/Preference/prefcode The coding assigned to the preference
Modality Preference AccessForAll/Context/Content The type of modality preference
QCL/Level The level/grade of the QCL

The number of attempts made on the

Activity/Evaluation/noofattempts crelLatieE

Knowledge Level

Activity/Evaluation/result/interpretscope | Information that describes the scoring data

Activity/Evaluation/result/score The scoring data itself.

5.3.3. Designing the Domain Model

In this thesis we focus on content selection and sequencing rules, thus, we assume that
the results of the concept selection process are apriori known. To this end, for the
definition of the subject domain concepts, we chose a well structured curriculum, that
is, the ACM Computing Curricula for Computer Science [22], and we extracted an

ontology consisting of 950 topics organized in 132 units and 4 areas (see Table 5.5).

Table 5.5: Subject Domain Concepts covered in the Ontology

Area Units Topics
Discrete Structures 6 45
Programming Fundamentals 5 32
Algorithms and Complexity 11 71
Architecture and Organization 9 55
Operating Systems 12 71
Net-Centric Computing 9 79
programming languages 11 75
Human-Computer Interaction 8 47
Graphics and Visual Computing 11 84
Intelligent Systems 10 106
Information Management 14 93
Social and Professional Issues 10 46
Software Engineering 12 85
Computational Science 4 61
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The use of ontologies for structuring the Domain Concept Ontology is commonly
used in AEHS, since it provides a standard-based way for knowledge representation
[125], [126], [127]. A partial view of the concept hierarchy in the domain ontology in

use is shown in Figure 5.2.

. 1. Consists of
Computer Science 2. Similar to

3. Opposite of

1 1 4. Related with
Intelligent Systems Software Engineering
1 1 1 1 2
nowledge representation Machine learning and Natural language
neural networks processing Software Design Software Validation
1 1
1 1 1

Concept Relation Classes

Supervised learning 3 unsups learning
Validation Planning Testing Fundamentals Object-Oriented Testing
2

Self-Organized learning

Back-Propagation Support Vector Machines Reinforcement learning
4
Dynamic Programming

Figure 5.2: Partial View of Concept Hierarchy in the Domain Concept Ontology in use

For the description of the relations between the subject domain concepts we used four

classes of concept relationships, as shown in Figure 5.2, namely:

“Consists of”, this class relates a concept with its sub-concepts

— “Similar to”, this class relates two concepts with the same semantic meaning

— “Opposite of”, this class relates a concept with another concept semantically
opposite from the original one

— “Related with”, this class relates concepts that have a relation different from

the above mentioned

Furthermore, for the definition of the Learning Goals Hierarchy in our simulations,
we have used again the ACM Computing Curricula for Computer Science, which
defines for each subject domain concept associated learning objectives [22]. From this
list of learning objectives we have created a Learning Goals Hierarchy which is
presented in Figure 5.3. We then associated each topic of the 950 topics included in

the Domain Concept Ontology in use with at least one node of the generated Learning
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Goals Hierarchy, so as to provide a connection between learning goals and concepts

of the particular Domain Concept Ontology in hand.

Goals related with Computer
Science

Cognitive capabilities and skills Additional transferable skills

e = e G
e e
BT omain e e )
e R ot mrn
—> Risk assessment —>
R ——

Practical capabilities and skills

|

Operation

Figure 5.3: Learning Goals Hierarchy (ACM Computing Curricula for C.S.)

5.3.4. Simulating the AM of an AEHS
The goal of our experiments is to validate the use and measure the performance of our

decision-based approach for adaptive learning objects selection and sequencing in
AEHS. Performance evaluation in this context means measuring (a) how well our
semi-automated approach fits the decision function to the provided model adaptation
decisions (training data), and (b) how well this decision function responds to decision

cases not known during the training process (generalisation capacity).

As a result, we need to produce model adaptation decisions for both learning object
selection and sequencing and compare them with the corresponding response of our
decision-based approach. Some of these model adaptation decisions will be used for

training our method, and some will be used for measuring its’ generalisation capacity.

In the first evaluation phase, the Adaptation Model (AM) rules of an existing AEHS
are used for generating sample adaptation decisions. In the second evaluation phase,
we need to simulate the existence of an AEHS that uses as many adaptation variables
as possible. Since such an AEHS does not exist, we will simulate model adaptation
decisions via the use of simulated instructional designers’ preference models. These

models have been selected in such a way that the preference surface is complex, thus,
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it would be a difficult task for the decision based algorithm to fit the training data.

To achieve this, we use as an instructional designers’ preference model a multi-
variable function, with 18 variables (k). These variables model the eleven (11)
elements of the Educational Resource Description Model in use (that is, the elements
used from the “General” and the “Educational” IEEE LOM categories) and the seven
(7) elements of the Learner Model in use [10]. We assume that the response of this
function expresses the utility of a given learning object for a given learner profile
(preference-based selection problem), and also we use this function for weighting the
graph which represents all possible learning object sequences for a targeted learner

(preference-based sequencing problem).

In our experiments, we simulate the preference models of fifteen (15) instructional

designers, using the functions presented in Appendix B. In Chapter 4, we have defined
the suitability/utility function S" (g Lo ) of a learning object LO; for the learner L; as a

function which varies from 0 to 1. This means that before we can use the functions
presented in Appendix B as instructional designers’ preference models, we need to
scale them in the same value space. The normalisation formula that we use for this
purpose is the following:
2
foo

—, where f

ot is the testing function. This formula, scales f,) € Rtoa
)

F foy) (x)

new function Fy €[01), where F; -5y =0, and f("m P =1.

=t
For evaluating the performance in the problem of adaptive learning objects selection,
we have generated a set of 1.000 learning object metadata records and a set of 100
learner profiles. For evaluating the performance in the problem of adaptive learning
objects sequencing, we have generated a set of 142.500 learning object metadata
records (that is, 150 simulated learning objects for each one of the 950 topics of the

Domain Concept Ontology) and a set of 100 learner profiles.

In each experiment, 50% of the available learning objects metadata records, randomly
selected, were used for algorithmic training and the rest 50% for measuring the
generalisation, that is, the estimation capacity, of the algorithm. Similarly, in each

experiment 50% randomly selected of the available learner profiles were used for
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algorithmic training and the rest 50% for measuring the generalisation of the

algorithm.

5.4. Conclusions
As already discussed, the main drawback of the direct definition of adaptation rules is

that there can be cases during the run-time execution of AEHS where no adaptation
decision can be made due to insufficiency and/or inconsistency of the defined
adaptation rule sets [11], [109].

The goal of the semi-automated approaches is to generate a continuous decision
function that estimates the desired AEHS response, overcoming the above mentioned
problem [86]. To achieve this, they use data from the implicit definition of sample
adaptation rules and attempt to fit the response function on these data. Although such
approaches bare the potential to provide efficient Adaptation Models, they still miss a

commonly accepted framework for evaluating their performance.

In this chapter, we presented an evaluation methodology for performance evaluation
of decision-based semi-automated approaches. The application of this methodology in
the case of our proposed approach is presented in the next Chapter.

( ]
l 93/168 J



Ph.D. Dissertation P. P. Karampiperis

( ]
l 94 /168 J



Ph.D. Dissertation P. P. Karampiperis

Chapter 6. Experiments

6.1. Introduction

In this chapter, we present the executed experiments for verifying our main
hypothesis: that it is feasible to construct a semi-automated, decision-based approach,
which generates a continuous decision function that estimates the desired AEHS
response, aiming to overcome the above mentioned problems of insufficiency and
inconsistency of the defined adaptation rule sets. These experiments follow the

evaluation methodology presented in Chapter 5.

The goal of this evaluation is twofold: first, to examine whether the proposed semi-
automated decision based approach is capable of extracting decision models which
replicate the Adaptation Model (AM) of existing AEHS; and second, to verify that our
proposed approach is robust and can be applied-in cases where large-scale adaptation

rule sets are needed to describe the desired AEHS response.

6.2. Extracting the AM of existing AEHS
6.2.1. The INSPIRE Case Study
Our first experiment was the application of our decision-based approach for extracting

the Adaptation Model (AM) of the INSPIRE system [69]. To this end, we simulated
the AM of INSPIRE and produced sample adaptation rules in the form of
combinations of learning objects mapped to learner profiles, and applied the
methodology presented in Chapter 4, so as to extract the AM. The INSPIRE system
uses two variables from the Learner Model (namely, the Learner’s Knowledge Level
and the Learner’s Learning Style) and two variables from the Educational Resource
Description Model (namely, the Performance Level and the Learning Resource Type),
for performing content adaptation decisions according to Table 6.1.

Figure 6.1, presents the INSPIRE’s AM dependencies of the Learning Style and
Learning Resource Type in the LO utility space, whereas Figure 6.2 presents the same
dependencies of the produced AM when our decision based approach is applied. From
these figures we can observe that the produced adaptation model is a super class of
the INSPIRE’s AM, since it contains more adaptation rules (dependencies between

learning object and learner characteristics). Moreover, we can observe that the
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produced AM has a continuous contour in the Utility Space, which means that this

AM has the ability to always propose learning objects.

Table 6.1: INSPIRE Adaptation Model Rules

Learner Attributes Proposed Learning Objects
Inadequate Performance Level Remember
Mediocre) Performance Level Use
Knowledge Level j
Advanced Performance Level Find
Proficient Performance Level (Not defined)
Activist Learning Resource Type Activity-oriented
) Reflector Learning Resource Type Example-oriented
Learning Style - 3 -
Theorist Learning Resource Type Theory-oriented
Pragmatist Learning Resource Type Exercise-oriented

In [69] the authors recognise as a problem when designing the INSPIRE system, the
required effort for producing learning objects which cover all the combinations
introduced by the INSPIRE Adaptation Model Rules. This is due to the fact that the
INSPIRE adaptation rules does not cover all the combinations of the free variables
value space, e.g. what happens when-a learner has Knowledge Level equal to
“Advanced” and Learning Style equal to “Theorist”, but no Theory-oriented learning
object with Performance Level equal to “Find” exist in the LO repository. In this case,
the INSPIRE system fails to provide a response, whereas by using our proposed
decision based approach, the INSPIRE would respond with a suboptimal solution
which would select the LO with the maximum utility for the given learner from the

available ones.

After the above experiment, the research question was to investigate if the proposed
decision based approach has the capacity of extracting the Adaptation Models of other
existing AEHS. To this end, we examined the case of the AHA system [8], which is

presented in next section.
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6.2.2. The AHA Case Study
The second experiment was the application of our decision-based approach for

extracting the Adaptation Model (AM) of the AHA system [8], [29], [30], and more

precisely the instructional rules introduced by Stash [113].

To this end, we simulated the AM of AHA and produced sample adaptation rules in
the form of combinations of learning objects mapped to learner profiles, and applied
the methodology presented in Chapter 4, so as to extract the AM. The content
selection rules introduced by Stash [113] in the AHA system use two variables from
the Learner Model (namely, the Learner’s Modality Preference and the Learner’s
Learning Style) and two variables from the Educational Resource Description Model
(namely, the Learning Resource Modality and the Learning Resource Type), for

performing content adaptation decisions according to Table 6.2.

Table 6.2: AHA Content Selection Rules

Strategy #1 Verbalizer vs. Imager Style
Learner Attributes Proposed Learning Objects
_ Learning Resource
VERBVsSIM <= 30 Modality Image
Modality Preference i
y 30 < VERBVsIM <70 Learning Rgsource (No preference)
(VERBvVsIM) Modality
70 <= VERBVsIM Learning Resource Text
Modality
Strategy #2 Activist vs. Reflector Style
Learner Attributes Proposed Learning Objects
Preference Order:
1. Activity
Activist Learning Resource Type 2. Example
3. Explanation
. 4. Theory
Learning Style
Preference Order:
1. Example
Reflector Learning Resource Type 2. Explanation
3. Theory
4. Activity

Figure 6.3, presents the dependencies of the Learner’s Modality Preference and

Learning Resource Modality in the LO utility space, in the case of AHA’s “Verbalizer
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vs. Imager Style” strategy, Whereas Figure 6.4 presents the same dependencies of the

produced AM when our decision based approach is applied.

] =
=] =]

o ™ .
[=] [=] [=] [=]

VEREvs M Modzlity Preference
Figure 6.3: AHA Verbalizer vs. Imager Style Content Selection Strategy Utility Space
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Moreover, Figure 6.5, presents the dependencies of the Learner’s Learning Style and
Learning Resource Type in the LO utility space, in the case of AHA’s “Activist vs.
Reflector Style” strategy, Whereas Figure 6.6 presents the same dependencies of the

produced AM when our decision based approach is applied.
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From these figures we can again observe that the produced adaptation models are
super classes of the AHA’s AM, since they contain more adaptation rules

(dependencies between learning object and learner characteristics).

[T ST B R T T o @ = @ w0
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Figure 6.5: AHA Activist vs. Reflector Style Content Selection Strategy Utility Space
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After the above experiment, the research question was to investigate if the proposed
decision based approach has the capacity of learning more complex Adaptation

Models, consisting of many free variables (such as the adaptation variables presented

Theary

Explanation
Learning Resource Type

Example

Activity
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in Table 5.1 and Table 5.4), with complex preference surfaces, thus, it would be a

difficult task for the decision based algorithm to fit the training data.

6.3. Scaling-up the Experiments
6.3.1. Robustness Testing
Before applying the proposed performance evaluation metrics it is important to

investigate the robustness of our proposed approach. The scope of this testing phase is
to check (a) that the optimisation problem in hand converges, and thus, is well-
defined, and (b) that it is not dependent from the optimisation algorithm in use, and

thus, the proposed approach is robust.

To this end, we have used four optimisation algorithms, namely, the Polak-Ribiere
(OP #1) , the Accelerated Steepest Descent (OP #2), the DFP (OP #3) and the BFGS
(OP #4) algorithm (for details see Appendix A), as well as, four neural networks
trained using also the above mentioned optimisation algorithms respectively, for all

the simulated instructional designers’ preference model cases.

Since, the algorithmic training time is critical in- AEHS where the Adaptation Model
is dynamically updated during the execution phase, in the robustness testing we have
also measured the training time of each algorithm/neural network used.

In order to be transparent from the machine used for the execution of the optimisation
problem, the training time for each algorithm/neural network was measured in 107
machine cycles. A machine cycle is the time period, during which, one machine
instruction is fetched from machine’s memory and executed. The training time of an
algorithm measured in machine cycles is always the same, independently from the

machine used to execute the optimisation problem, and is given by the formula:

TrainingTime x (ClockRat%OMHz)

ClocksPerInstruction

The comparison of the training time when different optimisation algorithms are
applied provides evidences about the appropriate algorithm for the optimisation

problem in hand.

Figures 6.7 to 6.18 present analytic experimental results for robustness testing

experiments, when using as instructional designers’ preference model, the model

( ]
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defined using the Rosenbrock, the Rastrigin, the Schwefel and the Griewangk testing

functions (see also Appendix B).

Each figure presents (a) the cost function, which represents the mean %error in the
calculation of the suitability/utility function, per algorithm iteration, (b) the cost
function per machine cycles required, (c) the gradient of the cost function, which is
used as the algorithmic training stop criterion, per algorithm iteration, and (d) the

gradient of the cost function per machine cycles required.

In each case, we used different settings regarding the accuracy of the applied Line
Search algorithm (see also Appendix Section A.2) and the use of Direction Reset (see
also Appendix Section A.3.1.2). From Figures 6.7 to 6.18 we can observe the

following:

— When using Conjugate gradient methods (Polak-Ribiere), the algorithmic
training time — in terms of machine cycles — is lower than with the use of
second order methods (DFP and BFGS) in most cases, whereas the BFGS
algorithm is faster than the DFP.

— The Accelerated Steepest Descent converges similarly to the Polak-Ribiere
algorithm, only when Direction Reset is not used.

— When Direction Reset is used Polak-Ribiere convergences faster, since it
avoids cases where the directions s® are close to orthogonal to the first
derivative g®.

— The use of accurate Line Search (6=0.9) increases the required computational
effort, without improving- the convergence. However, it reduces the overall
algorithmic iterations.

— . In most cases, solving the optimisation problem defined in Section 4.2 using
non-linear solvers requires less machine cycles, than using a Neural Network,

even with the same algorithm for neurons’ weight calculation.

In all cases, the optimisation problem converges independently from the optimisation
algorithm in use. However, the optimal (faster) configuration to be used in the rest
experiments is the use of the Polak-Ribiere algorithm with reset and line accuracy
(6=0.12).
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—OP#1 —OP#2 — OP#3 —OP #4 NN #1 —— NN #2 — NN #3 — NN #4 —OP#1 —OP#2 —OP#3 —OP#4 NN#1 — NN #2 — NN #3 — NN #4

—OP#1 — OP#2 — OP#3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4 | —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN #2 — NN #3 — NN #4 —OP#1 — OP#2 —OP#3 — OP #4 NN#1 —— NN#2 — NN #3 — NN #4

—OP#1l — OP#2 — OP#3 — OP #4 NN#1 — NN# — NN #3 — NN #4 —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

Figure 6.7: Robustness Testing Results using Rosenbrock testing function — Line Search
Accuracy (6=0.1) — (left column without Reset, right column with Reset)
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—OP#1 — OP#2 — OP#3 —OP #4 NN #1 —— NN #2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 —OP#4 NN#1 — NN #2 — NN #3 — NN #4

******

—OP#1 — OP#2 — OP#3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4 | —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN #2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN #2 — NN #3 — NN #4 —OP#1 — OP#2 —OP#3 — OP #4 NN#1 —— NN#2 — NN #3 — NN #4

—OP#1l — OP#2 — OP#3 — OP #4 NN#1 — NN# — NN #3 — NN #4 —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

Figure 6.8: Robustness Testing Results using Rosenbrock testing function — Line Search
Accuracy (6=0.5) — (left column without Reset, right column with Reset)
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—OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN#2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN#2 —NN#3 — NN #4

—OP#1 — OP#2 — OP #3 — OP #4 NN#1 —— NN#2 — NN #3 — NN #4 h, —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN #2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 — OP #4 NN#1 —— NN#2 — NN #3 — NN #4 —OP#1 — OP#2 —OP#3 — OP #4 NN #1 —— NN#2 — NN #3 — NN #4

—OP#1l — OP#2 — OP #3 — OP #4 NN#1 - NN#2 — NN #3 — NN #4 —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

Figure 6.9: Robustness Testing Results using Rosenbrock testing function — Line Search
Accuracy (6=0.9) — (left column without Reset, right column with Reset)
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—OP#1 —OP#2 —OP#3 — OP#4 NN #1 —— NN#2 — NN #3 — NN #4 —OP#1 — OP#2 — OP#3 — OP #4 NN#L —— NN#2 —NN#3 — NN #4

—OP#1 — OP#2 — OP #3 — OP #4 NN#1 —— NN#2 — NN #3 — NN #4 NN#1 — NN#2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 — OP #4 NN#1 —— NN#2 — NN #3 — NN #4 —OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN#2 — NN #3 — NN #4

—OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4 —OP#1l — OP#2 — OP#3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

Figure 6.10: Robustness Testing Results using Rastrigin testing function — Line Search
Accuracy (6=0.1) — (left column without Reset, right column with Reset)
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—OP#1 —OP#2 —OP#3 — OP#4 NN #1 —— NN#2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN#2 — NN #3 — NN #4

—OP#1 — OP#2 — OP #3 — OP #4 NN#1 —— NN#2 — NN #3 — NN #4 —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

i |
\ 11

—OP#1 —OP#2 —OP#3 — OP #4 NN #1 —— NN#2 — NN #3 — NN #4 —OP#1 —OP#2 — OP#3 — OP #4 NN #1 —— NN#2 — NN #3 — NN #4

—OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN #2 — NN #3 — NN #4 —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

Figure 6.11: Robustness Testing Results using Rastrigin testing function — Line Search
Accuracy (6=0.5) — (left column without Reset, right column with Reset)
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—OP#1 —OP#2 —OP#3 — OP#4 NN #1 —— NN#2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN#2 — NN #3 — NN #4

—OP#1 — OP#2 — OP #3 — OP #4 NN#1 —— NN#2 — NN #3 — NN #4 h, —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 — OP #4 NN #1 —— NN#2 — NN #3 — NN #4 —OP#1 —OP#2 —OP#3 — OP #4 NN #1 —— NN #2 — NN #3 — NN #4

—OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN #2 — NN #3 — NN #4 —OP#1l — OP#2 — OP #3 — OP #4 NN#1 - NN#2 — NN #3 — NN #4

Figure 6.12: Robustness Testing Results using Rastrigin testing function — Line Search
Accuracy (6=0.9) — (left column without Reset, right column with Reset)
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—OP#1 —OP#2 — OP#3 —OP #4 NN #1 —— NN #2 — NN #3 — NN #4 —OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN #2 — NN #3 — NN #4

—OP#1 — OP #2 — OP #3 — OP #4 NN#1 — NN #2 — NN #3 — NN #4 | —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

—OP#1 —OP#2 — OP#3 — OP #4 NN #1 —— NN #2 — NN #3 — NN #4 —OP#1 — OP#2 — OP#3 — OP #4 NN #1 —— NN#2 — NN #3 — NN #4

—OP#1 — OP#2 — OP#3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4 —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

Figure 6.13: Robustness Testing Results using Schwefel testing function — Line Search
Accuracy (6=0.1) — (left column without Reset, right column with Reset)
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—OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN#2 — NN #3 — NN #4 —OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN#2 —NN#3 — NN #4

—OP#1 — OP#2 — OP #3 — OP #4 NN#1 —— NN#2 — NN #3 — NN #4 h, —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN #2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 — OP #4 NN #1 —— NN #2 — NN #3 — NN #4 —OP#1 — OP#2 — OP#3 — OP #4 NN #1 —— NN#2 — NN #3 — NN #4

—OP#1l — OP#2 — OP #3 — OP #4 NN#1 - NN#2 — NN #3 — NN #4 —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

Figure 6.14: Robustness Testing Results using Schwefel testing function — Line Search
Accuracy (6=0.5) — (left column without Reset, right column with Reset)
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—OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN#2 — NN #3 — NN #4 —OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN#2 —NN#3 — NN #4

—OP#1 — OP#2 — OP #3 — OP #4 NN#1 —— NN#2 — NN #3 — NN #4 h, —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN #2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 — OP #4 NN #1 —— NN #2 — NN #3 — NN #4 —OP#1 —OP#2 —OP#3 — OP #4 NN#1 —— NN#2 — NN #3 — NN #4

—OP#1l — OP#2 — OP #3 — OP #4 NN#1 - NN#2 — NN #3 — NN #4 —OP#1 — OP#2 — OP #3 — OP #4 NN#1 - NN #2 — NN #3 — NN #4

Figure 6.15: Robustness Testing Results using Schwefel testing function — Line Search
Accuracy (6=0.9) — (left column without Reset, right column with Reset)
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—OP#1 —OP#2 — OP#3 —OP #4 NN #1 —— NN #2 — NN #3 — NN #4

—OP#1 — OP#2 — OP#3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN #2 — NN #3 — NN #4 —OP#1 — OP#2 — OP#3 — OP #4 NN #1 —— NN#2 — NN #3 — NN #4

—OP#1l — OP#2 — OP #3 — OP #4 NN#1 - NN#2 — NN #3 — NN #4 —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

Figure 6.16: Robustness Testing Results using Griewangk testing function — Line Search
Accuracy (6=0.1) — (left column without Reset, right column with Reset)
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—OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN#2 — NN #3 — NN #4 —OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN#2 —NN#3 — NN #4

—OP#1 — OP#2 — OP #3 — OP #4 NN #1 — NN#2 — NN #3 — NN #4 NN#1 — NN#2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 — OP #4 NN #1 —— NN #2 — NN #3 — NN #4 —OP#1 — OP#2 — OP#3 — OP #4 NN #1 —— NN#2 — NN #3 — NN #4

—OP#1l — OP#2 — OP #3 — OP #4 NN#1 - NN#2 — NN #3 — NN #4 —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

Figure 6.17: Robustness Testing Results using Griewangk testing function — Line Search
Accuracy (6=0.5) — (left column without Reset, right column with Reset)
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—OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN#2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 —OP#4 NN #1 —— NN#2 —NN#3 — NN #4

—OP#1 — OP#2 — OP #3 — OP #4 NN #1 — NN#2 — NN #3 — NN #4 —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

—OP#1 —OP#2 —OP#3 — OP #4 NN #1 —— NN #2 — NN #3 — NN #4 —OP#1 — OP#2 — OP#3 — OP #4 NN #1 —— NN#2 — NN #3 — NN #4

—OP#1l — OP#2 — OP #3 — OP #4 NN#1 - NN#2 — NN #3 — NN #4 —OP#1 — OP#2 — OP #3 — OP #4 NN#1 — NN#2 — NN #3 — NN #4

Figure 6.18: Robustness Testing Results using Griewangk testing function — Line Search
Accuracy (6=0.9) — (left column without Reset, right column with Reset)
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6.3.2. Assessment of Performance Evaluation Metrics
In our experiments, we have applied the performance evaluation metrics presented in

section 2.6 in the case of our proposed method for estimating the desired AEHS
response (presented in Chapter 4). Our first goal is to evaluate these metrics, and then
demonstrate the use of these metrics in measuring the performance of our proposed

decision-based approach.

Our semi-automated approach for adaptive content selection and sequencing uses (a)
a preference-based learning objects selection mechanism based on the use of a
suitability function, that estimates the utility of a given learning object for a given
learner, and (b) a preference-based sequencing mechanism which uses the above
mentioned suitability function for weighting the graph which represents all possible
learning object sequences for a targeted learner, so as to discover the optimum

learning path for a given learner.

In order to compare the performance evaluation metrics presented in section 2.6, we
evaluate the performance using randomly generated datasets which serve as model
adaptation decisions and vary in size. The size of these datasets depends on the
number of ranked learning objects for a given number of learner profiles. In real
conditions, these rankings would be requested from an instructional designer. In our
experiments, these rankings are the result of the application of the simulated

instructional designers’ preference models presented in Appendix B.

As already described, the datasets were divided into two subsets: the training dataset,
which was used for algorithmic training and for evaluating the performance during the
training process, and the generalisation dataset, which was used for measuring the
generalisation capacity of the algorithm. Each experiment was executed 100 times

using a randomly selected instructional designers’ preference model.

Figure 6.19 presents average selection performance results during algorithmic
training, when using different simulation parameters regarding the number of learner
profiles and the number of learning object metadata records used. In each experiment,
the selection performance was measured when using different values of the parameter
n (varying from 10 to 500), which expresses the maximum number of requested

learning objects from the Media Space.
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——SS-50L0s —*—PM-50L0s —*—PPM-50L0s —#—§S-20L0s —#— PM-20LOs
~—®PPM-20LOs —#*—SS-10L0s —%—PM-10LOs ~ PPM-10LOs

—4—S8S-50L0s —*—PM-50LOs —4—PPM-50L0s —#—8S-20L0s —#4— PM-20LOs
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Figure 6.19: Adaptive Content Selection Performance Evaluation Metrics — Training Results
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In Figure 6.19 the performance evaluation was measured using the typical Precision
Metric (PM) as presented in section 2.6, the proposed alternative metric for Selection
Success (SS), as well as, by applying the PM metric only on the desired sub-space of
the Media Space (Partial Precision Metric, PPM).

From these results we observe the following:

a) Precision when measured with PM metric is independent from the maximum
number of requested learning objects from the Media Space (selection
space), as well as, from the ranking of the selected learning objects.

b) Precision when measured with PPM metric is independent from the ranking
of the selected learning objects, but depends on the volume of the selection

space.

c) The PPM metric tends to be equal to the PM metric when the selection space

becomes bigger (n increases).

d) Performance evaluation using the PM metric is higher or equal to the
performance when using the PPM metric. Also performance evaluation using
the PM metric is higher or equal to the performance when using the SS

metric.

e) The SS metric tents to be lower as the searching space increases, whereas
PPM metric becomes higher as the searching space increases. This is due to
the fact that, when the searching space increases the probability of
introducing ranking errors also increases. Since the PPM metric is not
dependent by the ranking of the selected learning objects, the PPM metric

behaves differently from the SS metric.

The same observations apply also when measuring the generalisation capacity, as
depicted in Figure 6.20. These observations verify the hypothesis that by definition
the SS metric is harder than the PM or the PPM metric, which means that in the case
of AEHS, where the ranking of the selected learning objects is critical, the SS metric

should be used.
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Figure 6.20: Adaptive Content Selection Performance Evaluation Metrics — Generalisation
Results
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6.3.3. Performance Evaluation
6.3.3.1. Adaptive Learning Object Selection
The goal of this evaluation step is to validate the use and measure the performance of

our decision-based approach for adaptive learning objects selection.. Performance
evaluation in this context means measuring (a) how well our semi-automated
approach fits the decision function to the provided model adaptation decisions
(training data), and (b) how well this decision function responds to decision cases not

known during the training process (generalisation capacity).

We evaluate the performance using randomly generated datasets which serve as
model adaptation decisions and vary in size. The size of these datasets depends on the
number of ranked learning objects for a given number of learner profiles. In real
conditions, these rankings would be requested from an instructional designer. In our
experiments, these rankings are the result of the application of the simulated
instructional designers’ preference models presented in Appendix B. As already
described, the datasets were divided into two subsets: the training dataset, which was
used for algorithmic training and for evaluating the performance during the training
process, and the generalisation dataset, which ‘was used for measuring the
generalisation capacity of the algorithm. Each experiment was executed 100 times

using a randomly selected instructional designers’ preference model.

Figure 6.21 presents average selection performance results, when using constant
Learner Profiles input, whereas, Figure 6.22 presents average selection performance
results, when using constant Learning Objects per Learner Profile in use. In each
experiment, the selection performance was measured when using different values of

the parameter n (varying from 10 to 500).

From these results we observe that the selection success depends on the requested
learning objects from the Media Space (n), as well as the number of the learning
objects and learner instances used for algorithmic training. Additionally, for the same
number of requested objects and the same number of learner profiles used, using more
learning object metadata records produces higher selection success rates.
Accordingly, for the same number of requested objects and the same number of
learning object metadata records used, using more learner profiles produces higher

selection success rates.
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Figure 6.21: Adaptive Selection Success based on LPs input (left column: Training Results,
right column: Generalisation Results)

( )|
l 120/168 J



Ph.D. Dissertation P. P. Karampiperis

—9—50LPs —+—20LPs —#—10LPs ——5LPs —®—50LPs —+—20LPs —#—10LPs —*—5LPs

—®—50LPs —+—20LPs —#—10LPs —*—5LPs —®—50LPs —+—20LPs —#—10LPs —*—5LPs

——50LPs —+—20LPs —#—10LPs ——5LPs —®—50LPs —+—20LPs —#—10LPs ——5LPs

—9—50LPs —+—20LPs —#—10LPs —+—5LPs —®—50LPs —+—20LPs —#—10LPs —*—5LPs

Figure 6.22: Adaptive Selection Success based on LOs input (left column: Training Results,
right column: Generalisation Results)
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More analysis on the results presented in Figures 6.21 and 6.22 shows that, when the
desired number of learning objects (n) is relatively small (less than 20), the selected
learning objects by the decision model are close to those the instructional designer
would select (with success rate over 70%), when using an input set consisting of more
than 500 combinations of learning objects mapped to learner profiles (calculated as

the multiplication of the learning objects with the learner profiles used).

6.3.3.1.1. Investigating the influence of the required design effort
In order to investigate the influence of the explicit combinations required from the

instructional designer (which are directly equivalent to the design effort required) we
have executed additional experiments measuring the selection success gain per
number of requested combinations. This metric provides evidences about the trade-off
that an instructional designer should make between the required effort and the

improvement of the selection success rate.

Figures 6.23 to 6.25 present simulation results of the design trade-off for
combinations of learning object metadata records with learner profiles, with selection
success over a given threshold, for different values of the desired number of learning

objects (n).

From these results we observe that using a configuration of 500 combinations (which
means classifying 50 learning object metadata records over 10 learner profiles or vice
versa) the gain in the selection success rate is higher than using configurations with

more combinations.

The machine learning algorithm uses input knowledge in order to generate a
continuous decision function that estimates the desired AEHS response. This
knowledge comes in the form of combinations of learning objects mapped to learner
profiles. When more input knowledge is provided, the machine learning algorithm fits
better the response function on these data. However, there is a limitation in this
process, that is, if the algorithm is fed with too many input data, then it will over fit

the response function over these data, losing its generalisation capacity.
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Figure 6.23: Adaptive Selection Success Gain per Requested input Combinations —
Threshold=60%
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® Training ™ Generalization

= Training ™ Generalization

® Training ™ Generalization

Figure 6.24: Adaptive Selection Success Gain per Requested input Combinations —
Threshold=70%
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= Training ™ Generalization
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¥ Training ™ Generalization

Figure 6.25: Adaptive Selection Success Gain per Requested input Combinations —
Threshold=80%
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Furthermore, we can observe that using the combination of 10 learning object
metadata records classified over 50 learner profiles leads to higher gain in the
generalisation success rate, whereas, using the opposite combination, that is, 50
learning object metadata records classified over 10 learner profiles, leads to better

results during the algorithmic training.

This is due to the fact that our decision based approach uses an interpolation method
over the learning objects metadata space and an extrapolation mechanism over the
learner profile space. This means that our approach learns from learning object
sequences associated with known learner profiles and generalizes its results to the
unknown learner profiles. Thus, using combinations with more learning objects leads
to higher success rates during the training process, whereas, using combinations with
more learner profiles leads to higher success rates during the generalisation process.

As a result, in order to minimize the required design effort and at the same time to
maximize the selection success rate, the combination of 10 learning object metadata
records classified over 50 learner profiles would be preferred. However, from Figure
6.21 we can observe that using this configuration, the generalisation selection success
varies from 75% (when n=10) to 68% (when n=200).

6.3.3.1.2. Using CTM to reduce the searching space
After the above experiment, the research question was how to refine the decision

model, so as to improve the selection success without increasing the required design
effort. To this end, we extended the decision model to make use of the Cognitive Trait
Model (CTM) [21].

This model, estimates learner’s cognitive characteristics (and more precisely the
Working Memory Capacity and the Inductive Reasoning Skill) and proposes specific
values for the elements “InteractivityType”, “InteractivityLevel”, “SemanticDensity”
and “Difficulty” of the Educational Resource Description Model. Thus, the use of

CTM reduces the dimensions of the optimisation problem.

Table 6.3 and Table 6.4 present the proposed values from the CTM model based on
the estimation of learner’s Working Memory Capacity and Inductive Reasoning

Ability, respectively.
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Table 6.3: CTM proposed values based on Working Memory Capacity

Working Memory Capacity Low High
Interactivity Type Expositive Active
InteractivityLevel Very low, low Very high, high
SemanticDensity Very low, low Very high, high

Difficulty Very easy, easy Very difficult, difficult

Table 6.4: CTM proposed values based on Inductive Reasoning Ability

Inductive Reasoning Ability Low High
Interactivity Type Expositive Active
InteractivityLevel Very low, low Very high, high

SemanticDensity

Difficulty Very easy, easy |.Very difficult, difficult

In our experiments, we used the recommendations of the CTM model as an iterative
input in the process of estimating the suitability/utility of a given learning object for a
given learner profile. More precisely, in each iteration we calculate the parameters of
the utility/suitability estimation function, then we filter the searching space (Media
Space) based on the recommendations of the CTM model and finally, refine/optimise
the parameters of the utility/suitability estimation function using the reduced LO

searching space.

Figures 6.26 and 6.27 present simulation results of the evolution of the generalisation
selection success per iteration of the above mentioned process. From these results, we

observe that each iteration leads to higher selection success.

Moreover, we observe that this increment is not linear and it is not dependent from the
selection success of the previous iteration. This is due to the fact that each iteration
filters the decision space decreasing the free variables of the optimisation problem. As
a result, the problem of generating a continuous decision function that estimates the
desired AEHS response becomes easier. Thus, since no extra input is required from
the instructional designer, the use of CTM improves the performance of the decision
model for adaptive learning objects selection, without affecting the required design
effort.
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Figure 6.26: Selection Success Evolution by the iterative use of CTM (500 LP x LO input
combinations) (left column: Training Results, right column: Generalisation Results)
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Figure 6.27: Selection Success Evolution by the iterative use of CTM (1000 LP x LO input
combinations) (left column: Training Results, right column: Generalisation Results)
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The simulation results demonstrate that when the CTM model is used, an
improvement in the selection performance is achieved. However, this improvement
depends on (a) the structure of the Media Space and (b) the complexity of the learning

objects preference surface of the instructional designer.

6.3.3.2. Adaptive Learning Object Sequencing 7
The adaptive sequencing performance was evaluated by comparing the resulting

learning object sequences with reference sequences for 50 different cases over the
concept hierarchy of the Domain Ontology (10 randomly selected learner instances
per concept level). Evaluation results are presented in Figure 6.28, presenting the
success of our sequencing method for different cases of maximum requested number

of learning objects (n) per concept level.

—®—n=5 —® n=10 W n=20 —4& n=50

Figure 6.28: Performance results of Adaptive Content Sequencing

In Figure 6.28, the different concept levels express the depth in the Domain Ontology
of the root concept in the desired sequence. For example, topic levels (1-5)
correspond to concepts in the Domain Ontology with depth between one and five.
These concepts are included in a Unit (see also Table 5.5 in Section 5.3.3) and they
possibly include topics with depth greater than five, depending on the structure of the
Domain Ontology.
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From these results we observe that the success rate of the resulting learning object
sequences is influenced by the concept levels that the end sequence covers, as well as

the maximum number of requested learning objects from the Media Space (n).

For the same number of maximum requested learning objects from the Media Space
(n), the higher level the sequence root is, the longer would be the resulted sequence

introducing more sequencing mismatches.

These observations introduce two main design principles that should be followed in

order to successfully generate personalized learning paths, namely:

— The Content Expert of an AEHS should design the Media Space by creating
structured learning resources (with Aggregation Level equal to 2) rather than raw
media. This internal structuring, on one hand, enables the AEHS to select less
(but more aggregated) learning resources, and on the other hand, increases the
probability of generating meaningful learning paths since less decisions about the

structuring of the learning resources are taken by the AEHS.

— The end-user of an AEHS should request an adaptive web-based course covering
the minimum needed parts of the Domain Concept Ontology, in order for

avoiding the generation of huge sequences that introduce mismatches.

In order to investigate in- more detail these mismatches, we have evaluated the
selection success on two different sub sets of the Learning Objects Estimation Set.
The first data set contains learning object metadata records with aggregation level 1
(raw media) and the second data set contains learning object metadata records with
aggregation level 2 (structured learning objects), as defined in Table 5.2 (Section

5.3.1). Figure 6.29 presents average simulation results for learning objects selection.

From these results we can once again confirm the observation that using structured
learning objects rather than raw media, increases the probability of generating
flawless learning paths. More analysis on the results, presented in Figure 6.29, shows
that when the desired number of learning objects (n) is relatively small (less or equal
to 10), the efficiency of selection is almost the same for raw media and structured

learning objects. However, when the desired number of learning objects is relatively
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large (more than 10) the success in selecting learning objects is strongly affected by

the aggregation level of the learning objects.

4 100 .s N\
98 S ——
" \ \l\
§ 96 R
2 o M o
s 92
o
g 9% o
D i
0 88
(@)
- 86
S
© 84
82
5 10 20 50 100
—o— Agg. Level 1 99.7 97.2 94.3 91.6 88.7
—#— Agg. Level 2 100.0 98.9 97.4 95.8 94.1
L Maximum Num of requested LOs from the Media Space (n) )

Figure 6.29: Influence of LO Aggregation Level in Adaptive LO Selection

Furthermore, if we consider that for just a single learner profile instance, the total
different possible combinations of learning objects are more than one million [41], it
seems almost unrealistic to assume that an instructional designer can manually define
the full set of selection rules which correspond to the dependencies extracted by the
proposed method and at the same time to avoid the problems of insufficiency, and/or

inconsistency in the produced rule sets.

The simulation -results - demonstrate that the proposed approach is capable of
extracting dependencies between learning object and learner characteristics producing
almost accurate sequences of learning objects (that is, almost similar to the model
ones). It-was exhibited that the granularity of learning object sequences, as well as,
the aggregation level of the learning objects are the main parameters affecting the
sequencing success. A learning path that covers a whole concept area is more likely to
produce mismatches when comparing with a sequence that covers only a specific unit
or even a specific topic, and a sequence that uses raw media is more likely to produce

mismatches when comparing with a sequence that uses structured learning objects.

This is due to the fact that structured learning objects partly contain information about
the underlying pedagogical scenario. When only raw media are used for sequencing,

then the pedagogical scenario is totally implied in the decisions made by the AEHS.
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6.4. Conclusions
In order to define the runtime behaviour of an AEHS, the definition of how learner’s

characteristics influence the selection of concepts to be presented from the domain
model (Concept Selection Rules), as well as the selection of appropriate resources
(Content Selection Rules), is required.

In the literature, there exist several approaches aiming to support the design of the
these rules by providing either direct guidance to AEHS designers, or semi-automatic

mechanisms for making the rule design process less demanding.

However, still the design of adaptive educational hypermedia systems requires
significant effort since dependencies between educational characteristics of learning
resources and learners’ characteristics are too complex to exhaust all possible
combinations. This complexity introduces several problems on the definition of the
rules required. The problems of inconsistency and insufficiency of the defined rule
sets are responsible for generating conceptual “holes” to the produced learning

resource sequence (learning path).

This is due to the fact that, even if appropriate resources exist in the Media Space, the
conflict between two or more rules (inconsistency problem) or the absence of a
required rule (insufficiency problem), prevents the AEHS to select them and use them
in the learning resource sequence. As a result, either less appropriate resources are
used from the Media Space, or required concepts are not covered at all by the

resulting path.

The research question posed in this thesis was whether it is feasible to construct a
semi-automated, decision-based approach, which generates a continuous decision
function that estimates the desired AEHS response, aiming to overcome the above

mentioned problem.

To achieve this, we proposed a semi-automated approach which uses data from the
implicit definition of sample adaptation rules and attempts to fit the response function
on these data. Moreover, in this thesis, we presented a set of performance evaluation
metrics which we claim that they are suitable for validating the use of decision-based
approaches in adaptive learning objects selection and sequencing in AEHS, and we
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assessed their use in the case of our proposed method for estimating the desired

AEHS response.

More precisely, we presented an evaluation metric for measuring the performance of
adaptive content selection, which although seems similar to the precision metric in
information retrieval systems, its difference is critical. It evaluates the precision of
selecting learning objects not on the entire space of the Media Space, but only on the
desired sub-space, and also it takes into consideration the ranking of the selection
process. This means that the proposed metric is harder, since it measures the precision
over a smaller value space. Experimental results, verify the hypothesis that the
presented Selection Success (SS) metric is harder than the typical Precision Metric
(PM) or its’ application only on the desired sub-space of the Media Space (Partial
Precision Metric, PPM). This means that in the case of AEHS, where the ranking of

the selected learning objects is critical, the SS metric should be used.

Additionally, we discussed the limitations of the performance metrics used by the
literature for the problem of adaptive content sequencing, we introduced the need for
an alternative evaluation metric which measures the sequencing performance over the
instructional designer’s preference space, and we presented a performance metric

derived from Kendall’s Tau.

Furthermore, we demonstrated how these metrics could be used in practice for
providing useful feedback for the design of AEHS. More precisely, we used these
metrics for the investigation of the influence of the design effort required, measuring
the selection success gain per number of requested combinations. The use of this
metric provides evidences about the trade-off that an instructional designer should
make between the required effort and the improvement of the selection success rate.

Moreover, we applied this metric for discovering the optimal input data volume for
the machine learning algorithm, so as to avoid the problem of overfitting. Moreover,
we used the performance evaluation metrics in the process of refining the decision
model, so as to improve the selection success without increasing the required design
effort, and we evaluated the application of the Cognitive Trait Model (CTM) in our

decision based approach. Finally, we evaluated the performance of adaptive learning
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object sequencing, focusing on the design principles that should be followed by an

AEHS in order to successfully generate learning objects sequences.

The simulation results demonstrate that the proposed approach is capable of
extracting dependencies between learning object and learner characteristics producing
almost accurate sequences of learning objects (that is, almost similar to the model

ones).

Furthermore, it was exhibited that the granularity of learning object sequences, as well
as, the aggregation level of the learning objects are the main parameters affecting the
sequencing success. A learning path that covers a whole concept area is more likely to
produce mismatches when comparing with a sequence that covers only a specific unit
or even a specific topic, and a sequence that uses raw media is more likely to produce
mismatches when comparing with a sequence that uses structured learning objects.

This is due to the fact that structured learning objects partly contain information about
the underlying pedagogical scenario. When only raw media are used for sequencing,

then the pedagogical scenario is totally implied in the decisions made by the AEHS.
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Chapter 7. Concluding Remarks

7.1. Contribution to the State of the Art
The main contributions of this thesis are the following:

1. Adaptive Content Selection

The main objective of the research effort in this direction was to create a decision
model that mimics the way an instructional designer selects the suitable teaching
material from a Learning Object Repository, for a specific learner whose
characteristics (User Profile) are known. The implementation of such a model

replaces the content selection rules of the Adaptation Model of typical AEHS.

To achieve this, we proposed a decision model which estimates the suitability of
a learning object for a learner assuming that we know the characteristics of the
learner. The result is a function, called suitability function, which relates the
characteristics of a learning object (which are reflected in the Educational
Resource Description Model) with the characteristics of a learner (which are
reflected in the Learner Model) and vice versa.

The conducted experiments have shown that the use of the proposed model leads
to accurate adaptive content selection decisions, with a success rate above 80%
when it is requested from an instructional designer to determine the preference

order of at least 10 learning objects for 50 randomly selected learner profiles.

The next step of the research effort was to reduce the requirements of the
proposed model for adaptive content selection in respect to the required design

effort, by studying the dynamic evolution capacity of the model.

To this end, we investigated how the use of predictive models for learner
characteristics could be used to improve the content selection success without
increasing the required design effort. More precisely, we used the Cognitive Trait
Model (CTM), which estimates learner’s cognitive characteristics and proposes

specific values for the elements “of the Educational Resource Description Model.

The use of the CTM was aimed at both reducing the dimensions of the

optimisation problem in hand and at providing feedback to the content selection

( ]
l 137/168 J



Ph.D. Dissertation P. P. Karampiperis

model in order to evolutionary improve its effectiveness. The conducted

experiments verify this hypothesis.
2. Adaptive Content Sequencing

The main objective of the research effort in this direction was the development of
a decision model for adaptive content sequencing, avoiding the use of adaptation
rules. More precisely, we extended the decision model for adaptive content
selection, so as to produce sequencing adaptation decision using information
stored in the Educational Resource Description Model, the Learner Model and the

Concept Domain Model.

In the proposed sequencing method, we replace the content selection rules
defined in the Adaptation Model with a decision-making function that estimates
the suitability of a learning resource for a specific learner by relating the
educational characteristics of learning resources defined in the educational
resource description model with the learner’s cognitive characteristics and
preferences stored in the Learner Model. This suitability function is used for
weighting each connection of the Learning Paths Graph, a graph containing all
possible learning paths based on the relation between the Learning Goals
Hierarchy, the concepts of the Domain Concept Ontology and the learning

resources contained in the Media Space.

From the weighted graph, we then select the most appropriate learning path for a

specific learner (personalized learning path) by using a shortest path algorithm.

The conducted experiments have shown that the use of the proposed model leads
to accurate adaptive content sequencing decisions, with a success rate above 70%
when it is requested from an instructional designer to determine the preference

order of at least 10 learning objects for 50 randomly selected learner profiles.
3. Evaluation Framework for Decision-based Approaches

The main objective of the research effort in this direction was to design a
framework for assessing the performance of decision-based adaptive content

selection and sequencing approaches.
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This evaluation framework was applied in the case of our proposed approach for
adaptive content selection and sequencing. The goal the evaluation in our case
was twofold: first, to examine whether the proposed semi-automated decision
based approach is capable of extracting decision models which replicate the
Adaptation Model (AM) of existing AEHS; and second, to verify that our
proposed approach is robust and can be applied in cases where large-scale

adaptation rule sets are needed to describe the desired AEHS response.

The conducted experiments have shown that the use of these metrics could be

used in practice for providing useful feedback for the design of AEHS.

7.2. Future Research
Our future research will focus on separating the learning scenario from the adaptation

decision model. By this way, we anticipate, on one hand, to support better the
sequencing of unstructured raw media, and on the other hand, to facilitate the support

of different pedagogical strategies without redesigning the adaptation decision model.

Moreover, our future research will include the study of variations of the presented
performance evaluation metrics, as well as, the investigation of a comparison metric

between rule-based and decision based AEHS.

Finally, our future research will include the investigation of learning object
decomposition from existing courses, allowing reuse of the disaggregated learning
objects in different educational contexts. The intelligent selection of the
disaggregation level and the automatic structuring of the atoms (raw media) inside the
disaggregated components in order to preserve the educational characteristics they
were initially designed for, is a key issue in the research agenda for learning objects
[128].
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Appendix A.  Non linear Optimisation Algorithms
A.l. General Form of an Optimisation Algorithm
Starting from a given point X in the optimisation space, the general form of an

optimisation algorithm is the following:
— Step A: Calculation of a search direction s®.
— Step B: Calculation of the optimum step o
— Step C: Calculation of the new point x*D=x®-+¢®s®)

— Step D: If convergence criteria are met, stop with x*) '~ x”, where x* is the

desired optimum, else repeat from Step A.

The search direction s is calculated using search direction methods, which we will
analyse in Section A.3, whereas the optimum step o™ is calculated using line search

algorithms, presented in next section.

A.2. Line Search Algorithms
Let a function F(x) and a given direction s™, over which we want to minimise the

given function:
Minimise: F(x(") +as(")) ,aeR

For this function, over the line x® + as®, we have:

4 s o =N sii :sTV,thus,ﬂ=sTVF=sTg=gTs,and,
da i=1 da 8Xi i1 GXI da
d’°F d dF

= —=s"V[VFTs)=sT(V’F)s =5s"Gs
A line search algorithm is an iterative procedure that minimises the function F(x) over

the line x* + a*s*. There are two phases to any line search algorithm [110]:

— Bracketing Phase, which searches for a bracket, that is, a feasible region that is

known to contain a minimum. The existence of a minimum can be estimated by

comparing the first derivative S—Fof the function at the points a and b of a
(04
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bracket [a, b]. We have a minimum, when one of the following conditions are

met, as depicted in Figure A.1:
a) (F'(a)<0)and (F'(b)>0)
b) (F'(a)<0)and (F'(b)<0)and (F(a)< F(b))
¢) (F'(a)>0)and (F'(b)>0)and (F(a)> F(b))

Fix)

Fix)

Fix)

PR
x L

*

o b

X

Figure A.1: Conditions for existence of a minimum in a bracket [a, b]

— Sectioning Phase, in which the bracket is sectioned (i.e., divided), thereby
generating a sequence of brackets whose length is progressively reduced. In each
sectioning phase, the new smaller bracket also contains the minimum, which is

verified by the previously mentioned conditions.

The termination of a Line Search algorithm can happen in both of the two phases, as

long as the following stopping criteria have been met:

a) F(a(k))s F(0)+ a™ pF'(0), with p € (O, %}
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b) ‘ F'(a(k) )‘ <o F'(0),witho e (p,1)

A.3. Search Direction Methods
A.3.1. First Order Methods

As first order methods we call the methods which use only the values of the function
F(x) under minimisation, as well as, the values of its first derivative. These methods
are quite efficient, due to the simplicity of their implementation and the small
computational effort which is required in each iteration. This, makes them ideal for
solving optimisation problems with big number of variables.

A.3.1.1. Steepest Descent

From the main equation for the calculation of the each step x**P=x®+¢®s® and the

Taylor series, we have:

.
F&D _ | ~ F® 1 a®g®" g0 -

(x®) 425k

If we consider the values a®,g® ands™ as constants, then, the right part of the

above equation becomes more negative when the angle 6 between the derivative g®
and the direction s is equal to 7. In this case, we have the bigger reduction of the

function F(x). Thus, the direction s®'= — g™ is called the steepest descent direction.

If we use accurate line search, the directions selected in consecutive iterations are

always orthogonal: s“™"s® =0. Figure A.2 presents an example of the execution of
the Steepest Descent Method.

Minimum

Figure A.2: The Steepest Descent Method
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A.3.1.2. Conjugate Gradient Methods

Let a quadratic function F., = px* +gx+r or equivalently F

G

» L ax—pTxc
2

where X is a W-by-1 parameter vector, A is a W-by-W symmetric, positive definite
matrix, b is a W-by-1 vector and c is a scalar. Minimization of the quadratic function
F(x) is achieved by assigning to x the unique value x~ = A 'b. Thus, minimizing F(x)

and solving the linear system of equations Ax™ = b are equivalent problems.

Given the matrix A, we say that a set of nonzero vectors s@, s, ... s"?1 js A-
conjugate (i.e., non interfering with each other in the context of matrix A) if the

following condition is satisfied: s®" As” =0, for all kand jsuchthatk = j. If A is

equal to the identity matrix, conjugacy is equivalent to orthogonality.

An important property of A-conjugate vectors is that they are linearly independent.
For a given set of A-conjugate vectors s© s®,..., s"WD, the corresponding conjugate
direction method for unconstrained minimization of the quadratic function F(X) is
defined by [110], [129], [130]:

x* =y W4 6®Ws0 k=0, 1, ..., W-1 where x? is an arbitrary starting vector, and a® is

a scalar defined by F(x® +a®s%)=min F(x® +a®s®). The procedure of

choosing o so as to minimise the function F(x* +a®s®)is referred to as a line
search (that is, one-dimensional minimisation problem) over the direction s(k). In
particular, for each iteration k, the iterate x**? minimises the function F(x) over a

linear vector space Ay that passes through some arbitrary point X and is spanned by

the A-conjugate vectors s, s®, ..., s®, as shown by: x*? =arg min F (x) where the
XeAy

k .. -
space Ay is defined by: A, = {x(k’ | x® =x©@ 4 Za“)s“)}

j=0
For the conjugate direction method to work, we require the availability of a set of A-
conjugate vectors s©, s®, ..., s In a special form of this method known as the
Conjugate-Gradient Method, the successive direction vectors are generated as A-
conjugate versions of the successive gradient vectors of the quadratic function F(x) as

the method progresses, hence the name of the method. Thus, except for k=0, the set of
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direction vectors {s®} is not specified beforehand, but rather it is determined in a

sequential manner at successive steps of the method.

Define the residual as the steepest descent direction: r® = b-Ax® = — g®. Then to
proceed, we use a liner combination of r® and s, as shown by: s®=r®+pkDsk)

k=1, 2, ..., W-1 where B® is a scaling factor to be determined.

Multiplying this equation by A, taking the inner product of the resulting expression
with s*Y invoking the A-conjugate property of the direction vectors, and then

.
sk-D" pp )

solving the resulting expression for p®, we get: g =—-> "=
ST A (k)

This formula for evaluating p* requires knowledge of matrix A. For computational
reasons, it would be desirable to evaluate p* without explicit knowledge of A. This

evaluation can be achieved by using one of the two formulas [110]:
— Polak-Ribiere Formula, for which p® is defined by:

sk — _g(k) +,B(k_1)3(k_l)

where
ﬂ(o) =0
+: T +:
P (g(k D _g(k)) g o1

K)T o (K
g()g()

—  Fletcher-Reeves Formula, for which p® is defined by:

g(K) — _g(k) +IB(k*l)S(k*l)

where

IB(O) =0

Ig(k) _ g(k+1) g(k+l) 51
g K" g ® T

Reset in Conjugate Gradient Methods

The formula s™ =—g® + g*Ys® D produces descent directions when F(x) is a
quadratic function with positive definite hessian matrix, only if * is positive and the
first derivative g* is non zero. These conditions should be met for both Fletcher-

Reeves and Polak-Ribiere methods.
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However, these directions s® may be close to orthogonal to the first derivative g®,

which results in very small minimisation of the cost function F(x). In this case, we

have g*™® =~ g® and thus:
(k+1) (k+1) (k)

SFR ~ _g + SFR

whereas

skd & gD

In order to avoid this, we can reset every N iterations the direction used in conjugate
gradient methods to the steepest descent direction, where N is the number of variables

of the cost function F(x).

A.3.2. Second Order Methods
A.3.2.1. Newton Method

From the formula of each iterate x**? =x® +a%s® and the Taylor series for the

first derivative of the cost function F(x), we have:

(k+1) _ ~ &) (k) (K)o (k)
g = G a0y G+ A G™'s

If the iterate x**Y is the minimum of the cost function, the first derivative at that point
would be equal to zero, thus: g**» =0=a®s® =-G® " g® . From this equation,

- o -1
we can redefine the formula for each iterate x*™® = x® —G% g®,

This method is called Newton method, and requires the calculation of the inverse
Hessian matrix. This method converges faster than the first order methods examined
in previous section, however, it requires significantly more computational power for
calculating both the Hessian matrix G* and its inverse matrix. Moreover, this method
cannot be used in cases where the Hessian matrix cannot be inversed.

A.3.2.2. Quasi-Newton Methods

The Quasi-Newton methods are gradient methods described by the update equation:
x40 = x4 a®s® \where the direction vector s® is defined in terms of the gradient
vector g® by s® =-5®g®  The matrix S¥ is a positive definite matrix that is
adjusted from one iteration to the next. This is done in order to make the direction

vector s approximate the Newton direction.
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Quasi-Newton methods use second-order (curvature) information about the error
surface without actually requiring knowledge of the Hessian matrix H. They do so by
using two successive iterates x® and x®*V, together with the respective gradient

vectors g% and g®*V. Let g™ =g®? —g® and Ax® =x* =x® We may then

. . . . 0
derive curvature information by using the formula: g ~ [6_ g (k)JAx(”
X

In particular, given W linearly independent increments Ax®, AX©, ..., AxX"W and the

respective gradient increments q©, @, ..., q"'Y, we may approximate the Hessian

matrix H as: H = [q(o),q(l),...,q(W*l’][Ax(o),Ax‘l),...,Aonfl’ ]71
We may also approximate the inverse Hessian matrix as:
H z[Ax“’),Ax‘l),...,Ax‘W‘l)][q‘o),q(l),...,qo'v‘” ]—1

In the most popular class of Quasi-Newton methods, the matrix S®™ is obtained from

its previous value S®, the vectors Ax* and q%, by using the recursion [110], [130]:

T T
Ax® Ax®T g0 g0 g®T g0
gl _ gk 209 gt [q(k)TS(mq(k)][v(k)V(k)T]
q® g q®" 5w

Ax®© §g®

- -— and 0< & <1 vk
AX®TAxE) gl g kg

where v =

The algorithm is initiated with some arbitrary positive definite matrix S©. The
particular form of the Quasi-Newton method is parameterized by how the scalar é(") is
defined :

For £9=0 for all k, we obtain the Davidon-Fletcher-Powell (DFP) algorithm,

which is historically the first Quasi-Newton method.

For £%=1 for all k, we obtain the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm, which is considered to be the best form of Quasi-Newton methods

currently known.
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Appendix B. Multivariable  Functions used as Simulated
Instructional Designers’ Preference Models

In our experiments, we simulate the instructional designers’ preference models, using
the functions presented below. These functions are suggested by the CUTE library
(CUTE -  Constrained and  Unconstrained  Testing - Environment,
http://hsl.rl.ac.uk/cuter-www/index.html), as ideal for testing optimisation problems
with many variables. From this library we have selected those functions that could
model 18 variables. These variables model the eleven (11) elements of the
Educational Resource Description Model in use (that is, the elements used from the
“General” and the “Educational” IEEE LOM categories) and the seven (7) elements

of the Learner Model in use. These functions are the following:

[1] Rosenbrock function

f(x)::]Z:LOO X,.q — X2k (1 x)]

[2] Rastrigin function

f(x)=10-n+znl[xi2 —10-cos(2- 7+ x,)]

i=1
[3] Schwefel function

f(x)= .Z:‘[_ X; -sin(\/W)]

[4] Griewangk function

f(x)=

4ooo % [%j i

[5] Sum of different powers function

f (X) _ Z|Xi|(i+l)
i=1
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[6] Penalty function (n variables, m=n+1)

m

(X) Z

i=1
1

f.(x)=a2(x, —1), 1<i<n

fn+1(x) :(isz]__

where a=10"°

[7] Variably dimensioned function (n variables, m=n+2)

m

(X) z i(x)

f.(xX)= I=1..,n

fn+1 (x) = Z j(Xj -1)

fn+2 (X) = (Zn: j(xj _1)J

[8] Trigonometric function (n variables, m=n)

m

(X) z i(x)

i=1

f.(X)=n —Zcos(xj) +i(l—cos x;) —sin x,

[9] Discrete boundary value function (n variables, m=n)

m

(X) z i(x)

i=1
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h2(x +t. +1)°
fi (X) = 2Xi _Xi—l _Xi+1 + (X| +2 i + )

where h:i, t.=ih, and x,=x,,=0
n+1

[10] Discrete integral equation function (n variables, m=n)

m
_ 2
f(X) - Zl: fi(x)
i=

(l—ti)Zi:tj(xj +t; +1)° +8 Zn:(l—tj)(xj £1741)°

j= j=i+l

f.(X)=x+h
i (%) 5

where h:i, t,=ih, and x,=x,, =0
n+1

[11] Broyden tridiagonal function (n variables, m=n)

m

f(x) = Z fi(zx>

i=1

fi () = 3= 2% )%; =Xy =2x;,, +1
Xo = Xy =0

[12] Broyden banded function (n variables, m=n)

m

f(x) = Z fi(zx)

i=1

fi(X) =X (2+5x%,°) +1- > %, (L+X;)

jed
where J, ={j:j=i, max(Li—m;) < j<min(n,i+m,)}

and m; =5, m, =1

[13] Linear function-full rank (n variables, m>n)

m

_ 2

f(X) - Zl: fi(x)
=
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n

xjj—l, 1<i<n
=1

]

fi (X) =X _E(
m

[14] Linear function-rank 1 (n variables, m=>n)
C 2
f(X) = z fi(x)
i=1
- n -
f.0) =i > jx; |-1
j=1

[15] Chebyquad function (n variables, m>n)

m
_ 2
f(X) - Zl: fi(x)
=

19 h
FO)==D T.0¢)= [T, (x)dx
N 0
where T, is the ith chebyshev polynomial shifted to the interval [0,1]

and hence,

1
j T,(x)dx=0 for i odd
0

for i even

!Ti (x)dx = >
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