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by Dimitra Kyriakopoulou

Techniques for approximating probability distributions like the Edgeworth expansion
have a long history in time series models. The purpose of this thesis is to give a detailed
study of the asymptotic properties of the Moving Average (MA) and the Exponential
GARCH (EGARCH) models. Extending the results in Sargan (1976) [80] and Tanaka
(1984) [87], we derive the asymptotic expansions of the distribution, the bias and the
mean squared error of the MM and QML estimators of the first order autocorrelation
and the MA parameter for the MA(1) model. It turns out that the asymptotic properties
of the estimators depend on whether the mean of the process is known or estimated. A
comparison of the moment expansions, either in terms of bias or MSE, reveals that there
is not uniform superiority of neither of the estimators, when the mean of the process
is estimated. This is also confirmed by simulations. In the zero-mean case, and on
theoretical grounds, the QMLEs are superior to the MM ones in both bias and MSE
terms. The results are important for bias correction and increasing the efficiency of the
estimators. Next, we derive the bias approximations of the ML and QML estimators of
the EGARCH(1,1) parameters and we check our theoretical results through simulations.
With the approximate bias expressions up to O(1/T), we are then able to correct the bias
of all estimators. To this end, a Monte Carlo exercise is conducted and the results are
presented and discussed. We conclude that, for given sets of parameters values, the bias
correction works satisfactory for all parameters. The results for the bias expressions
can be used-to formulate the approximate Edgeworth distribution of the estimators.
Moreover; the asymptotic properties of EGARCH models are still largely unexplored
and are considered difficult tasks (see e.g. Straumann and Mikosch, 2006) [83]. There is
still no complete answer to the following questions: under which conditions do EGARCH
processes have bounded first and second order variance derivatives? And under which
conditions is the expectation of the supremum norm of the second order log-likelihood
derivative finite, in a neighborhood around the true parameter value? These questions
are important because the existence of such moment bounds permits the establishment

of large sample statistical properties, such as the asymptotic normality of the QMLEs.
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Chapter 1

Introduction

1.1 A Very Brief History of the Edgeworth Expansion in

Time Series

Techniques for approximating probability distributions like the Edgeworth expansion
have a long history in econometrics'. Unambiguously, one of the most important papers
in the related literature is the paper by Sargan (1976) [80], which discusses how in
practice we can improve on the asymptotic approximations and proposes the use of
the Edgeworth expansion to approximate the marginal distribution of an econometric
estimator and improve the use of asymptotic limits in significance testing. A wide
variety of econometric estimators can be regarded as functions of the sample data first
and second moments. If these functions are reasonably well behaved, it is possible to
make a Taylor series expansion about the moments and obtain an approximation of the
econometric estimator up to the terms that involve those derivatives from the Taylor
expansion.. The technical issues of the Edgeworth expansion will be discussed briefly
below so that the reader will get familiarized with the notion of the expansion and how

it is derived.

Another very useful paper in the time series context is the paper by Phillips (1977a)

[74], who derives the Edgeworth series expansions of the finite sample distributions of

!The reader is referred to the introduction of the second chapter for a detailed list of the papers
written about the Edgeworth expansion in the context of time series models.
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the least squares estimator and the associated ¢ ratio test statistic in a first order sto-
chastic difference equation, that is an autoregressive process of first order. Turning our
attention to some more complicated cases, the paper by Tanaka (1984) [87] in the mid of
eighties, considers the Edgeworth expansion for the distributions of estimators derived
by the Maximum Likelihood method in the context of Autoregressive Moving Aver-
age (ARMA) models and develops a technique for obtaining the first order Edgeworth
type asymptotic expansion for the joint as well as marginal and conditional distribu-
tions. Quite recently, Kakizawa (1999) [59] derives valid Edgeworth expansions for the
standardized and Studentized versions of some estimators in first order autoregression

without Gaussianity.

To close this less technical section, Edgeworth expansions have been developed for vari-
ous fields: for example, weak dependence (Gotze and Hipp 1983 [45]), Gaussian ARMA
structures (Taniguchi 1987 [89]), generalized autoregressive conditional heteroskedastic-
ity (Linton 1997 [65]), Whittle estimation for long-memory Gaussian time series (Lieber-
man et al (2003) [63] and Andrews and Lieberman 2005 [3]), linear regression processes

with long-memory errors (Aga 2011 [1]).

1.1.1 The Edgeworth Expansion and its related formulae

The Edgeworth expansion has been traditionally confined to the independent and iden-
tically distributed (i.i.d.) situation (e.g.  Bhattacharya and Rao 1976 [17]). The analysis
that follows is based on the analysis of some manuscripts regarding the Edgeworth ex-
pansion, see for example, Barndorff-Nielsen and Cox 1989 [12]). Let an estimator [
and if VT (/0\ — 00) is. asymptotically normally distributed with zero mean and variance
o2, where T is the sample size, then in a great many cases of practical interest the
distribution function of T (5 — 90) may be expanded as a power series in ﬁQ, that
is:

P {\/T (5— 00) i x} = (a:)+ip1 (x) ¢ (CE)—i—lpg (x) @ (SE)—F...—I-L.pj (x) ¢ (x)+...

VT T Ti/?

In probability and statistics applications, the quantity becoming large is usually the sample size or
an amount of information.
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x
where ¢ (z) = \/% exp (—%) is the normal density function and ® (z) = /qb (u) du is
the cumulative normal distribution. The functions p; are polynomials Wiglfocoeﬂicients
depending on cumulants of 0 — 0p. The term of order ﬁ corrects the basic normal
approximation for the main effect of skewness, while the term of order % corrects for
the main effect of kurtosis and the secondary effect of skewness. ‘The expansion only
rarely converges as an infinite series; it is only available as an asymptotic series; or an
asymptotic expansion, meaning that if the series is stopped after a given number of
terms, then the remainder is of smaller order than the last term that has been included,

ie.:

P{ﬁ (5— 90) < SU} =& (x)+ \;Tm () p(z)+ ...+ ﬁpj ()P (z)+o0 <T—j/2> .

The Edgeworth expansion is a true asymptotic expansion of the probability density
function of the statistic of interest, as the error of the approximation, which is defined
as the difference between the approximation and the true distribution, is controlled.
This means that the Edgeworth expansion has the property as an asymptotic expansion
that truncating the series after a finite number of terms provides an approximation to
a given function. This is an advantage of such type of expansions. The Edgeworth
expansion is also considered as an improvement to the central limit theorem and this

will be clarified at a later point in this chapter.

We are not concerned with the convergence of the infinite series as j — oo for fixed T'. We
are interested, for fixed j, in the accuracy of the approximation, which tends to increase
as the sample size increases and the higher order approximations are asymptotically
more accurate than the lower ones. A convergent series is not always useful, because
convergence is a concept relating to the behavior of the terms in the series at the tail
end, as j — oo. That a series converges says nothing about how rapidly the terms will
decrease in magnitude. When the terms are decreasing rapidly, if we sum just the first
few terms and we know that the error incurred is of the order of the next term, we can
get a good estimate of the sum. This is why asymptotic series, even when divergent, are

practically useful.

The higher order approximations can be viewed as corrected normal approximations.

The Edgeworth approximations tend to be most accurate near the mean, rather that at
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the tails of the distribution. This is especially true of the higher order approximations.
The Edgeworth expansion is similar to the Taylor series expansion, except that instead
of expanding the value of a generic function around some particular point, an Edge-
worth expansion involves approximating a sample size dependent distribution function

in powers of %

At this point, it is useful to state below the connection between the cumulants and the

moments. If y; is the i*" raw moment and k; is the i*" cumulant then

ki = 1y
kz = Mo — k%7
ks = g — 3kiko — k3,

ki = pg— 4kiks — 3k3 — 6kok? — ki

It is also interesting to discuss the differences between the Edgeworth expansion and the

normal approximation. For this scope, let the Edgeworth expansion be given by

p1(z) | p2(x) _
Gr(z) =9 (z) + i/T i 2T +O(T 3/2)7

whereas the Normal approximation is
Gr (z) = ®(z) + O (T—1/2) . (1.1)

The first order asymptotic theory is based on the central limit theorem. Both relations
above are right, in the sense that each approximation is correct through its own or-
der. The first order asymptotic theory 1.1 yields an error that converges to zero, but
at a relatively slow rate, since if we multiply that error by v/T, the resulting product
will not generally equal zero. In other words, the product of v/T' and the error has a
stable limiting distribution. The first order asymptotic theory ignores all higher order
terms, whereas using an estimator that accounted for some of these terms in the Edge-
worth expansion would entail greater accuracy. Technically, there is no guarantee that
including these terms increases accuracy in every sample. Correcting for the terms in

ﬁ and 7 actually moves us farther away from the true value of Gr (z). However, for
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large enough 7', this event generally becomes ever less likely and Monte Carlo evidence

generally suggests that higher order corrections do help with small 7.

The polynomials that appear in the formula of the Edgeworth expansion are the so-called

Hermite polynomials, for which we have that

g dr

(=1)" 53¢ (2) = Hy (2) ¢ ()

where

=

X

=

&

T

()
(z) = =,
(z)
()

F

T

and so on. By differentiating we obtain

di; [Hi (z) ¢ (2)] = = Hip1(z) 6 (2)

The first order Edgeworth expansion is given by

G(z) = (2) —¢(x){7§\2/¥)} +0(T7Y).

For a symmetric distribution, the asymmetry term - is zero and the usual central limit
theorem approximation ® (z) is already first order accurate. It is possible to stop with
the first correction term, having an error of order % and this is indeed useful if the main
aspect of nonnormality of concern is skewness. The second order Edgeworth expansion

is given by

x) THy(x 2 x

This expansion shows that the error of the leading term, i.e. the standard normal density,
is O (T_l/ 2) in general, provided that  is different from zero. This fact suggests that

convergence to normality is relatively slow, especially in the tails of the distribution.
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Suppose X ~ G (z) and ¢ x (t) denotes the characteristic function of X, for which

o0

Y (t) = Eexp{itX} = /ede (x).

—00

o0
In a Taylor series expansion, ¢y (£) ~ 14 > oo &a (it)". If / [V x (t)| < oo, then
—0o0

g (z) = G’ (x) exists and
1 :
9@) =5 [ v

The cumulant generating function is then given by

log ¥y (£) & 32 ity
n=1

n
n!
Another useful result is the relation between the Hermite polynomials and the normal

density function, that is:

For any positive integer k,

i i —ite—t2/2 [\ k . (al)kdiki 7 —itx —12/2
277/6 e (et di e 5 agkor | € € dt
dk
k
=(-1) %qﬁ(x)

where e~t*/2 is the characteristic function for a standard normal distribution.

Overall, after deriving the characteristic function of our statistic of interest and taking
the logarithm of this and expanding in a Taylor series, we have an asymptotic expansion
of the cumulant generating function. Applying the inversion theorem and using the re-
lation concerning the Hermite polynomials we obtain a series expansion of the cumulant

generating function.
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1.2 Contents of the Thesis

This thesis makes important contributions to the existing literature of the Edgeworth
expansion in time series models. We extend the results of Sargan (1976) [80] insofar
that we allow more general assumptions on the first and second order cumulants of
some estimators; this is the case of the MA(1) model that is analyzed in Chapter 2,
but also notice that some of these cumulants are not zero in other cases as well (see e.g.
Ogasawara 2006 [72] and Bao 2009 [10]). Despite the seemingly simple case of the MA(1)
process and in view of the great complexity of the computations inits context, even in its
lower order, it seems worthwhile to consider how satisfactory the approximations derived
from the Edgeworth expansion prove to be for the MA(1) model. Sargan’s significant
paper (1976) [80] gives us an insight as to whether the approach may be useful in more
complicated time series models. In fact, the Edgeworth expansion is indeed an important
tool for approximating the distribution of econometric estimators, but in our context the
need to relax the assumptions made by Sargan was vital, in order to also incorporate
the estimators for the MA(1) model. Thus, the extension of Sargan’s results, which
is presented in a different subsection in Chapter 2, is an essential one and constitutes
an important contribution in the related theory. A further extension of Tanaka (1984)
includes O (nil) terms in the Edgeworth expansions of the QMLEs. We also apply
these extensions to derive moment expansions for all estimators. In that way, the MA
model is analyzed in an extent that contributes to the family of the linear time series

models and the asymptotic properties of their estimators.

Another source of motivation was the fact that there is no satisfactory asymptotic theory
for the maximum likelihood parameter estimates in Nelson’s model (1991) [71], the
EGARCH(1,1). The EGARCH model is used extensively in applied financial work due
to the fact that it captures the negative dynamic asymmetries noticed in many financial
series, i.e. the so-called leverage effects. Immediately, there are important questions
which might be raised: What is the approximate distribution and the finite-sample
properties of the parameter estimates in the EGARCH model? This important topic
is discussed in every detail in Chapter 3. We extend the results of Linton (1997) [65]
as we consider a non symmetric model in the family of the GARCH processes and we
present, for the first time, analytic results of the derivatives and their expected values.

One of the main contributions made in this context was the conditions explored for the
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second-order stationarity of these derivatives to hold. Moreover, the important gap in
the related literature that many authors have noticed (see e.g. Straumann and Mikosch
2006 [83]) is the following research question: How does one derive the limiting properties
of the QMLE, for example the asymptotic normality of the estimators in the EGARCH
model? We also contribute in this area by extending the results of Straumann and
Mikosch (2006) [83] in such manner as to study in Chapter 4 the higher order dependence
that exists in the EGARCH(1, 1) process and provide moment inequalities that permit
the establishment of the asymptotic normality of the QMLEs:.

1.3 Structure of the Thesis

In what follows, we provide a short description of the individual chapters of this thesis,

which constitute three independent discussion papers:

Chapter 2. Utilizing an extension of the result in Sargan (1976) [80], we develop the
second order Edgeworth expansions of all estimators of the first order autocorrelation
and the MA parameter for the MA(1) model. Employing these expansions, we derive
second order Nagar type expansions. We compare all estimators in terms of bias and

mean squared error, complemented by a simulation exercise.

Chapter 3. We present analytic derivatives of the log-likelihood function and their ex-
pected values and we investigate under which conditions there is second-order stationary
solution to the log-variance derivatives in the EGARCH(1, 1) model by Nelson (1991)
[71]. We also develop the bias approximations for all estimators and we make a simu-
lation exercise in order to check the adequacy of our theoretical results and be able to
proceed with the bias correction of the estimators. The approximate skewness is also

computed, as well as the Edgeworth-type distributions.

Chapter 4. We provide higher-order moment conditions resulting from the analysis of
the QMLE in the EGARCH(1, 1) model. We proceed with the asymptotic theory and we
also present our main Theorem, i.e. the asymptotic normality of the QMLESs in Nelson’s
model. We mainly obtain tractable sufficient conditions that guarantee the integrability

of the supremum norms of the log-variance derivatives, in a neighborhood around the
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true parameter vector. This work comprises an extension of the work by Straumann

and Mikosch (2006) [83].

Chapter 5. We conclude this thesis and discuss briefly some further research plans.



Chapter 2

Edgeworth and Moment

Approximations: The Case of
MM and QML Estimators for the
MA (1) Models

2.1 Introduction

Techniques for approximating probability distributions like the Edgeworth expansion

! In time series models, starting with Phillips

have a long history in econometrics.
(1977a) [74], there is a fair amount of papers dealing with Edgeworth expansions in
autoregressive or mixed models; see e.g. Tanaka (1983 [86], 1984 [87]) and Kakizawa
(1999) [59]. However, there are relatively few papers concerning the limiting distribution
of estimators of the Moving Average (MA) parameters and their properties. Durbin
(1959) [39] proposes an estimator for the parameter of the MA(1) model that can reach
the asymptotic efficiency of the Maximum Likelihood Estimator (MLE). Tanaka (1984)
[87] develops a technique for the first order Edgeworth expansion of the normal MLEs for

autoregressive moving-average (ARMA) models and presents the first order expansion

"Nagar (1959) [70], Sargan (1974) [79], Phillips (1977b) [75], Sargan and Satchell (1986) [78] and
Ogasawara (2006) [72] to quote only a few papers. Rothenberg (1986) [77] gives a review on the asymp-
totic techniques employed in econometrics. For a book treatment of Edgeworth expansions see e.g. Hall
(1992) [50], Barndorff-Nielsen and Cox (1989) [12], and Taniguchi and Kakizawa (2000) [88].

10
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of the MLE for the MA(1) model having a known or an unknown intercept.? Dropping
normality and developing a Nagar type expansion, Bao and Ullah (2007) [9] present the
second order bias and Mean Square Error (MSE) of the Quasi MLE (QMLE) for the

MA(1) but without mean and they do not develop a valid Edgeworth expansion.

In this paper we develop the second order Edgeworth expansions of two estimators of 6,
the MA parameter, and p, the first order autocorrelation, of the following MA(1) model
with mean, MA(1|u) say,

yt:,u—i_ut_‘_eutfla t=..,-1,0,1,. |9| <1, ut@(O’UZ)’

where 6 is the true parameter value. The asymptotic distribution of the estimators of
0 and p depends on whether the mean is estimated, or it is known and not estimated.
In the latter case, we set u = 0 without loss of generality, and we are using MA(1) to

denote the model.

The first estimator is the popular Quasi Maximum Likelihood Estimator (QMLE). Its
expansion is based on techniques developed in Linnik and Mitrofanova (1965) [64] and
Mitrofanova (1967) [69] (see also Linton 1997 [65] and Corradi and Iglesias 2008 [27])
and applied in Tanaka (1984) [87].> We denote the QMLEs as 6 and Ji, for the MA (1|y)
model, and 0~0 when we consider the MA(1) one. Employing 0 and 0~0 we can evaluate

the QMLEs of p and pg, denoted by p = Hi% and py = %, respectively (for the
0
expansion of p, only, see Ali 1984 [2]).

On the other hand, one could equate the sample 1°¢ order autocorrelation, say p, or

po when there is no mean, with the theoretical one and solve for the unknown

_0
9 1+92 )
parameter. We call these the MM estimators of 6 and 6y, and denote them by 9 and QAO,
respectively (see also Davis and Resnick 1986 [31], p. 556), although strictly speaking
they are z-type estimators. Notice that p is the Indirect estimator of p, when the true
model is an AR(1) and the auxiliary is an MA(1), where the parameter 0 is estimated

by MM, or by ML in the Constraint Indirect estimation setup (see Calzolari, Fiorentini

and Sentana 2004 [22]). On the other hand, 6 is an Indirect estimator of 6 when the

1
2From now on we will refer to the up to n~2 order expansion as first order one and for the up to n~?

order as second order expansion, where n is the sample size.

3For an alternative methodology based on a Whittle type estimator see Taniguchi (1987) [89], Lieber-
man et al (2003) [63], and Andrews and Lieberman (2005) [3]. Aga (2011) [1] extending the results of
Lieberman et al. (2003) [63], provides an Edgeworth expansion for linear regression process with sta-
tionary Gaussian long memory errors.
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true model is an MA(1) and the auxiliary is an AR(1) one (see Gourieroux, Monfort

and Renault 1993 [47]).

Utilizing an extension of the result in Sargan (1976) [80], presented in Section 2, we
develop the second order Edgeworth expansions of p, py, /é, and 0A0 in Section 3, whereas
Section 4 presents the expansions of the QMLEs. Employing these expansions, we derive
second order Nagar type expansions of all estimators. Notice that thisis the first time
that second order Edgeworth and moment expansions of 5, 07), 5, and p appear in the
literature. In section 5, the expansions are employed to compare all estimators in terms
of bias and MSE. These comparisons are complemented by a simulation exercise. Section
6 concludes. All proofs, rather lengthy and tedious, are collected in Appendix A at the

end of the thesis.

2.2 Edgeworth Expansion

Let @ be an estimator of ¢ and

P=vn (=) =f(Ao, A1, Az, ..., Al)

where f is a function of the statistics A;; i = 0,1, ...,1, with the following assumptions:

Assumption 1 All the derivatives of f of order 4 and less are continuous, bounded in a
neighborhood of (0;...,0), such that f’ = % =% 0 for some i =0, 1, ...,1, and that
there are functions A" and h*”" independent of n such that f% = INIA; = ﬁh”,

Ry, 3 ..
andh, f29%.— 87% = %h”k , where all derivatives are evaluated at (0, ...,0).

The Ajs are functions of the data standardized in such a way so that their cumulants

¢; = cum (A;), ¢ij = cum (A;, A;), etc. obey the following assumption:
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Assumption 2

1
¢i = cum(4;)=n"2¢;

cij = cum (4, Aj) =

(
(
cije = cum (A, Aj, Ag) = n_%c;
cijrt = cum (A, Aj, Ag, Aj) =n 1C§;l)cl +o0 ("_1) ’
(

Ciskim = cum (A, Aj, Ay, A, Am) = 0 (n73),

(r)

where c;

(r)

™) and Cijkl BTe independent of n, for r = 1,2, 3.

v G Cig
Assumption 3 (Cramer’s condition) If the characteristic function of A = (Ao, 44, ..., Al)/
is W (2) = [ exp (i2/ A) dF (4), then fj 1 e, [V ()] dz = O (n"F) forall K >0,

O<ax< 5 and some ¢ < 0, and where F' is the distribution function of A.

These are standard assumptions in the relevant literature (see Chambers 1967 [24],
Sargan 1976 [80], and Bhattacharya and Ghosh 1978 [16]). Under these assumptions we

present the following Theorem.

Theorem 2.1. Under Assumptions 1, 2 and 3, the second order Edgeworth expansion

of p is given by

% —I—O(n_l) , (2.1)

B B m . T w0+1/11( )+w2( )
P(g0<m)—(1)< ) d)(w) +¢3(;) +¢4(%) +¢5(%)5

where
Do, = (1) e ¢(2) Wy = (1) 4 1/1
0 \/ﬁ 1 — \/‘
1 ()
Yy = \/‘()"" T/f 7/13251/13
2
1 w? (agl) + 3a§1)) ( ) + 3ag ))
Vs 12n wb Y5 = 72n w6 ’
o +2 (af? + 20} (al” +307) + 0l +12 (o + ay)) + 3 (@)’
g =

w?
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and

(agl) + 3a§1)>

1 1

¢é ) o ( (1) + 2ag1)) — 2 ,
1 (2) + 6@5) ) + w( ) ( (U + 2a(1)) 3w(2) (agl) s 3a§1)>

W = 8o +2a] - 5

0 6w H w? 2 w

2

o w® e 13 [ (a6 +af? + w® 20)) + 20" + (207 + 0f") }
(0 = -, =5

1 202 1 24002 o <a§1)+3a§,’1)>2

wi

(1)

<a§1) + 3ag1)) 1 CL?) 1 6aé ) A w(2)a( ) + w2 )a11

1 2
v = T 6w v = 6w’ 3w(2)( a{)+3a{") ’
W
2
) 1|, (7 +3a)
s = 10 — 3¢y,
3 T2w? wi

where m is any real number, ¢ (.) and ® (.) are the standard normal density and distribu-
tion functions, and the so called Edgeworth coefficients, agi), fori=1,2andj=1,..,12,
w@ | fori=1,2,3, and w are given in the proof of Theorem 1 in Appendiz A.1.

Sargan (1976) [80] assumes that cgl) = 052) . cl(-?) = cl(-j-’) = 0532,1 = 0. In this respect,
Theorem 1 is a necessary generalization needed in the expansions of all estimators con-
sidered in this paper.  Notice that some of these cumulants are not zero in other cases
as well (see e.g. Ogasawara 2006 [72] and Bao 2009 [10]). Next, we have the following

Lemma, which is very useful for the evaluation of the cumulants of p.

Lemma 2.2. Under Assumptions 1, 2 and 3, the second order approximate cumulants

of p are given by

(1) + 2a§1) af) + 2ag21)

% 2/ o

A o o’ +2 () + a0l + 0@ +24)
- o \/ﬁ 2n ’
kf _ (1) + 3aé) . agz) i 6@&2)7

N4 n
(1) + 4a((3 ) + 12 (aé ) + a(1)> % (w(Q))z

n
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Furthermore,
(2‘151) + afﬁ)

E (@) =k + ™

The proof of Lemma 1 is also given in Appendix A.2. We can now proceed in finding

the expansions of the MM estimators of p, u and 6.

2.3 The Expansions of the MM Estimators

The following analysis is based on Kakizawa (1999) [59]. = Given observations y =

(Y05 s yn), the MM estimators of p and u are given by:

n _ 1N & wr\T™m n
5= > i1 (yt nn 21 yt)l(yt—n1 A 22,5:1 yt—l) ot T = 1 Z i
Zt:l (Z/t—l ~n thl yt—l) ni-
Hence
R (1+04)A1+(1+02)A2—(1—0+92)ﬁ(140)2
\/ﬁ(p_p)_ 02 A 1 0 92 A 1 02 A 2 022 2
g1+ )¢ 3+ =20 (1+60%) Ay~ - (1+6%) (A0)" + (1+6°) 70
(2.2)
and
o il =
\/ﬁ(ﬂ 1) (H; Yp—1 — W ) Ap,
where
1452 an Ut—1Ut—2
Ay = —= = Ay Lat=2 W—1%—2
0 = £ (yt 1 /J’)a 1 \/ﬁ )
[(yl o N) (yO - N) - 002] +6 Z?:Q UtUt—2 + UpUp—1 — ULUQ
e 6% (ug—02) =62 (u2_, —0?)+[(yo—p)*— (146%)o?]
A2 = % —0 (1+92) ,
o (o — 1) = (Yn — W] (1 +0) 37 g ur—1 + Oug — Oun—1 + (yo — )]
2(u2—o 2 e )2 2\ 52
Sy (., — o) + S i ) oo (1))
Az =

NG

It is now obvious that v/n (p — p) and \/n (it — w) are functions of Ay, ...As, f (Ag, A1, Az, A3)
say, with f(0,0,0,0) = 0. From Appendix A.3, where the cumulants of the A;/s are
presented, it is easily seen that Assumption 2 is satisfied, and if Ef (uéo) is finite, we can

apply Theorem 1. Notice that most of the second order cumulants of the A;/s include
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terms of O (n™!). Hence, the generalization of Sargan (1976) [80] presented in section

2 is a necessary one. Let us now turn our attention to p.

2.3.1 The Expansion of the MM First Order Autocorrelation

Lemma 2.3. Under the Assumptions that uys are identically and independently distrib-
uted, (u(l)o) < 00, (uo,u%) satisfy the Cramer’s condition and 6 € (—1,1), the second
order asymptotic expansion of P (\/n(p — p) < m) is given by:

=9 (%) -0 () (s s () s (2) (), 9

W

where the polynomial coefficients v;, i = 0,...,5 are as in Theorem 1 and the Edgeworth

coefficients are given in Appendix A.4.

To evaluate the approximate bias, MSE and the cumulants, needed in the sequel, we
employ Lemma 1. Letting x3 and x4 to denote the 3'¢ and 4" order cumulants of ug,

respectively, the cumulants of \/n (p — p) are:

5 1 0% +60+1
Ky = —— (0" +20° — 20° + 20 + 1) % o(n7'),
vn (6% +1)
A 1 W ~ B
kg:w%—ﬁ<g71+§§72)+o(n 1),
where w% = %, i.e. the asymptotic variance,
5 o (—40-621660° 12651667 654646101 1) (9+1)> 5 0(140%)° 5 g2 400 g6 g8
21 = 2 (02+41)° yandgh, =4 (1462)° i (02+1)"
4\3 3 2\3
kﬁ__i0(04+1) 60" + 6%+ 1 +L(1+9 )"+ 6% (1+6%) 2 4 o (nY)
T 2 7 NG k3 +o(n ),
vn (6% +1) Vn (1+6%)

— 1/ ~ . .
B=— (i +&.+&s),

—1+1062 (1466) —300* (1+6'2)+1066° (1+6%) —1296° (1+6*) +2160'0 —2°

where 5271 =6

(92+1)10 9
5 4 0(1—-6%)° (1+62)—106% (1+6%) +465—2(1-62) (1-610)
Eho=120(0"+1) (1=07) (01+4°) ((OZH))Q (1=#)( )ng,
and 523 _ 50*+40°+120%4+401°+5012+015+1 K2.

(071"
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Furthermore, the second order approximate MSE (AMSE) is

2 (02 +6041)

5 1
E[\/ﬁ(ﬁ—p)f:lﬂg—i—g(04+293—292+20+1) T,

(2.4)

It is worth noticing first, that the sign of the asymmetry of the distribution of the errors
(k3) does not affect the AMSE, i.e. positively and negatively skewed error distributions
of the same magnitude have the same effect on the AMSE. Second, the AMSE is a
decreasing function of k4, for any value of # in the admissible region. It seems that
higher probability of extreme values of the errors increases the accuracy of the estimator.
This is not true for the asymmetry parameter 3. For positive (negative) values of 0,
the AMSE of 7 is a decreasing (increasing) function of 3. Further, for § = 0 and under
elliptical error distributions, the presented moments are known in the literature (see e.g.
Kan and Wang 2010 [60]). Let us now proceed to the expansion of the MM 15¢ order

autocorrelation when the mean is 0.

2.3.1.1 The Zero-mean Expansion

In case that p is zero, or known and subtracted from the data, we have that

e Z?:l YtYt—1
0 — ~n 9 -
i thfl
Hence
(140%) A1+ (146%) A

(14.6%)" 2= A5 +20 (14 6%) A1+ (146%)° 0%

Vi~ p) =

where the A;/s are now given by

n
—o Ut—1Ut—2
Al Zt72

\/ﬁ )

1 i (y1y0 — 002) + 60 37 5 urus—2 + Untp—1 — uttg
Ag NG = (un g =0?) +02(ug—0?) + (3~ (1+6%)o?) ’
I (146%)
1 —0? (up_y — 0°) + 6% (ug — 0*) + (5 — (1 +6%) o?)
) _ N 9 2 n—1 0 0
3 \/ﬁ _; (ut_l o ) + (1 + (92)

Notice that A; and As are the same as in the non-zero mean case. However, the

term L [(yo — 1) — (yn — 1)) [(1 + 0) D7 g ug—1 + Oug — Oun—1 + (yo — )] is not included
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FIGURE 2.1: |E [n(p — p)]| (thick line) and |E [n (py — po)]l:

in Ag. Furthermore, \/n (py — p) has the same functional form with respect to A;, A
and As. Consequently, the derivatives are the same, but now all sums determining the

Edgeworth coefficients run from ¢ = 1 up to 3.

Hence, the asymptotic variance of \/n (py — p) is the same as the asymptotic variance of

Vn(p—p), ie. w%a = w% = %ﬁs—t@. Further, all Edgeworth coefficients are the

same as in the non-zero mean case (see Appendix A.4) apart from afll), agl), agl), and

a,gl), which are also presented in Appendix A.4.

We can now evaluate the bias, the MSE and the cumulants of v/n (py — p). The 1°% order

cumulant is

ol | 0+ 1) 2 - 0t+1
e e S T SRR B
vn (62 +1) Vi (62 +1)

Comparing the absolute values of the two approximate biases (see Figure 2.1) it is clear

that for § € (=1, —0.2) the absolute bias of p , multiplied by /n, is less than the one of
Po- The opposite is true for 6 € (—0.2,1).

The AMSE is

E[Vu(gg=p)" = E[VanG-p)

2
+3Z(1+89_792+693+894+695—796+897+98)(0+1)

@+1)°

Obviously, the sign of the difference between the zero and the non-zero mean case AMSEs

depends on the sign of the 8" degree polynomial. As now the limit of the polynomial



Chapter 2. Fdgeworth and Moment Approzimations: MM and QML Estimators for the
MA(1) 19

is —32, for # — —1, and 24, for 8 — 1, it follows that that there are intervals of 6,
within (—1,1), such that the AMSE of p, is lower than the one of p and vice versa,
for any number of observations, n. However, notice that the asymmetry and kurtosis
parameters, k3 and k4, have the same effect on the AMSE, for any values of 8 in the
admissible region. Of course, the two AMSEs are equal to the common asymptotic

variance w%, as n — 00.

Applying again Lemma 1, we get that the second order cumulant of /n (g, — p) is given

by:
1[0 0) (1-6°) + 26%) (6.4 17

(6 +1)°

kR = kD —

+o(n ).

As now the Edgeworth coefficients involved in the evaluation of the 3" and 4" order
cumulants are the same in the non-zero and the zero mean case (see Lemma 1), i.e.
k;’fa = kg and kZE = kf, we can conclude that the non-normality of the estimators of p is
not affected by the estimation or not of the mean p, up to o (n_l). Let us now derive

the expansion of the MM mean estimator, i.

2.3.2 The Expansion of the Mean MM Estimator

As now

V(i —p) = f(Ao) = Ao

applying again Theorem 1, it is easy to find the Edgeworth and the polynomial coeffi-
cients in the Edgeworth expansion (see Appendix A.4).

It is worth noticing that even in the normality case, i.e. k3 = k4 = 0, we have that the

approximate distribution of fi is not normal. Furthermore, from Lemma 1, we have that
E[Vai-m]=0+o(n™),
ie. pisano (n_l) unbiased estimator of . The AMSE is
E[vn(i—- ,u)]Z = (1+6)0 - %902 +o(n ).

This explains the non-normality of the approximation, even if the errors are normally

distributed. Let us now turn our attention to the expansion of the MM estimator of 6.
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2.3.3 The Expansion of the MM MA Coefficient Estimator

For [| < 0.5 the solution for  is:

1—+/1—4p nd 5_9:1—\/1—@2_1—\/1—4&:

/9\ pu—
2 25 2p

f. (2:6)

Hence, given the cumulants of /n (p — p) presented in Section 2.3.1, we can apply The-
orem 1. The Edgeworth coefficients of \/n (5 — 9) are given in - Appendix A.5. Applying

Lemma 1, we can prove the following Proposition:

Proposition 2.4. Under the Assumptions of Lemma 2 we have that the 1°' order cu-

mulant and the MSE of \/n </9\ - 9) are

5 L202+6«93—204+395+206—08—09—1

- . +o(n )
and
B[y (9-0)]" = LTS L L (d ) fourt).
(1-6%) 4
1 — 80 — 360 — 560% — 930* — 1500° + 205 — 19207 + 7476 — 720° + 30196'°
R +1920™ 4 47650'2 + 4180'% 4 54210 + 3520"° + 25390'° + 240'7 4 460"
where§5 = 916919 ~ 933620 _ 910621 — 442072 — 9667 — 141024 — 86%° 4 210 + 16027
+296%8 4+ 662° 4- 393°
) (1-6%)°
and 52 _ _29—1+29—592+593zfﬁ‘l;g;g(sl—fg)ﬁ;eues—299+910 n% - 1+9264i0;2—)926+98

Notice first, that the approximate bias of 9 is not affected by the non-normality of the
errors, and second that the effect of k4 on the AMSE of 0 is the same as the effect on the
AMSE of p, i.e. the AMSE is a decreasing function of k4 for all § € (—1,1). However,
for positive (negative) values of § the AMSE of 6 is an increasing (decreasing) function
of H%. This is _exactly opposite from the effect that /4;% has on the AMSE of p. Let us

now proceed to the expansion of the MM MA coefficient when the mean is 0.

2.3.3.1 The Zero-Mean Expansion

For the zero mean case, all Edgeworth coefficients are the same as in the non-zero mean

3) (1) (1)

one, apart from w®, a;; and a;y, which are given in Appendix A.4. Consequently,

)
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FIGURE 2.2: ‘E [n (@— 9)} ‘ (thick line) and ‘E [n (QAO - 9)} ‘

applying Lemma 1 and keeping terms up to order O (n_l), the approximate bias of

ﬁ(%—&) is

" _ F 2 2 4, 96 _ p8
R SRS el b LN SOV L il @)
vn 1-9 VT (1_92)3

Plotting, again, the absolute values of the two approximate biases (multiplied by /n),

e [ (n (9-0))| an |E (n (6~ )

about 0.3 the approximate bias of § is less than the one of OAO (see Figure 2.2).

, we observe that for values of # higher than

In terms of AMSE we have that, keeping the relevant terms,
" 2 ~ 2 1
E[ﬁ(@o»eﬂ :E[\/ﬁ(efe)} DY
n

80 + 76% + 5603 + 650 + 1500° + 20405 + 19207 + 29768 + 726°
+51019 — 192011 — 481012 — 418613 — 6560'* — 35200 — 19906
—240'7 + 285018 + 216019 + 3276%0 + 2100%" + 132022 + 96623

—0%* + 807 — 2307 — 160*7 — 797 — 66%° — 3
(1-0%)°
ing that, first, the non-normality of the errors affects the AMSE of 6§ and 6 in the same

, indicat-

where \ =

way and second, the asymptotic variance of 0 and HAO is the same. However, the sign of
X depends on the sign of the numerator, a polynomial of 29" degree. As the limit of
this polynomial changes sign as # — +0.6, we can conclude that there are values of 4, in
its admissible interval, such that the AMSE of 0 is less than the one of GAO. Let us now

turn our attention to the expansions of the QML estimators of 6, u and p.



Chapter 2. Fdgeworth and Moment Approzimations: MM and QML Estimators for the
MA(1) 22

2.4 The Expansions of the QML Estimators

In this section we extend the analysis in Tanaka (1984) [87] by dropping normality and
including terms of second order in the approximation of the QMLE of the MA(1|u)

parameters, 6 and pu, say  and 7.t These are the solutions to the following equations:

ot (0) ) 9
t—1
— il = = 2.
5 0=>0_22ut<9 g Tl 1) =0 (2.8)
t=1 0=0
and
ol (1) 1 v O
T 0= = Y et =0,
op 2 ; “Oud
w=p
where .
2 U
nlog(2mo v;
0, p) =— g(2 ) - t2;2 and up =y — p — Oug_q.

In Appendix A.6 we express \/n (5 — 9) and +/n (ji — p) as functions of the first, second
and third order derivatives of ¢ (6, ) standardized appropriately and evaluated at the
true parameter values. We also present their expectations. In Appendix A.7 we evaluate
the needed cumulants of these derivatives, so that Theorem 1 can be applied. Let us

now turn our attention to the expansion of 0.

2.4.1 The Expansion of the QML MA Coefficient Estimator

Lemma 2.5. Under the Assumptions of Lemma 2, the second order Edgeworth expan-
sion of P <\/ﬁ (5 - 0) < m) is given by:
m m m m) 2 my3 m\?°
P(m):q)(*)_ﬁb(*) ¢0+¢1*+¢2(*> +¢3(*) +¢5(*> ,
w w w w w w
where the coefficients v¥;, i =0, ..., 5 are as in Theorem 1 and the Edgeworth coefficients

are given-in Appendiz A.S.

Applying Lemma 1 we get the first four approximate cumulants, up to o(n_l), of
vn (5 — 0) as
20 — 1

v

4For various approximations of the MLE see Davidson (1981) [30].

K =
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~ 1 1 ~
Ky =wi+ —(0+6)(2—0) + —€3,

~ 22
where w? = 1 — 62, and ¢} = 90701 o(1—0) K3 — (1= 607) ka,

0 602—0+1 1+63
5 1 (1-06%)°
kg = %ﬁfig and
K = ~6 (1—6%) (0> +3) + 552’

3 3
7 _g2_9o (1-62 1-62
where §4 = 129?_3+92 ( 1+03) K3 + ( 1+92) it

It is worth noticing that the 3'4 approximate cumulant of 0 is positive even if the errors
ujs are negatively skewed, whereas is symmetrically distributed for symmetric error
distribution. Furthermore, kff is an increasing function of k3. Consequently, for either

platykurtic or leptokurtic error distribution, the distribution of 6 becomes platykurtic.

The second order approximate MSE of d is given by

02— 0—10(1—06%)°

—80 +36% +13+2
> —0+1 1463

/@%—(1—92)54 .

e [va(i-0) -2

(2.9)
Notice that the AMSE is-a decreasing function of k4. This property of 0 is shared with
» and 5, as well (see sections 2.3.1 and 2.3.3). Let us now proceed to the expansion of

the QML MA coefficient when the mean is 0.

2.4.1.1 The Zero-Mean Expansion

Now for the case that u = 0, or known and subtracted from the data, we can repeat the

procedure of section 2.4.1, appropriately modified (see Appendix A.8). Notice that the

derivatives with respect to g1, w11 and g111, and the cumulants of these variables remain

the same. Further, as in the expansion of py, all Edgeworth coefficients are the same as
v @ @) (1)

in the non-zero mean case apart from a; ’, az’, a5 ’, and ay’, which are presented in

Appendix A.8.

In terms of cumulants, from Lemma 1, we have that the first order approximate cumu-

lant, up to o (n_l), of /n (évo - 9) is

Ko = —¢, (2.10)
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which is the same result as in Tanaka (1984) [87], where the 1°* order expansion is
presented, and Bao and Ullah (2007) [9]. Comparing with the non-zero mean case, it is
obvious that estimating the mean increases the absolute approximate bias of the QML
estimator of 6 for § € (—1,0.3), whereas for § € (0.34,1) the approximate bias of 8 is

less than that of éB.
Further, the up to o (nil) 204 order cumulant of \/n (670 — 9) is

i 5 4
K =k — = (1-9),

F=--0-0)
whereas the 3'1 and 4'" order approximate cumulants are the same as the ones of
Vvn (5 — 0). This can be explained by the fact that these approximate cumulants do

not depend on any of the Edgeworth coefficients that change in the zero mean case.

Finally, the second order AMSE of /n (9~0 — 6’) is

~ 2 B, 2 92 — 86
E[\/E(QO—H)] :E[\/ﬁ(e—a)] oo — 8645
n
Comparing the above AMSE ‘with the AMSE of 6 we can conclude that the AMSE of
the estimator of § when we estimate the mean is higher than the one when the mean is

zero and not estimated, for all § € (—1,1). Let us now derive the expansion of the mean

QMLE.

2.4.2 The Expansion of the Mean QML Estimator

To find the expansion of \/n (ji — ) we can apply Theorem 1 with appropriate f?,
hi | Wik for 4,4,k = 1,...4, and the cumulants in Appendix A.7. The Edgeworth and
polynomial coefficients are presented in Appendix A.8. It is worth noticing that the
asymptotic variance of 1 is (1 + 9)2 o2, the same as the one of 7i, and that if the u,/s are
normally distributed then the distribution of /n (i — p) is normal as well, which is not

the case for .

Furthermore, from Lemma 1 we have that

ki=E(Vn(i—p) =0,
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ie. isan o (n‘l) unbiased estimator. Finally

E(Vo(i—w) =0 (1+0)+o(n").

2.4.3 The Expansion of the First Order Autocorrelation QMLE

Let us define the QMLE of p as

S0
146

In Appendix A.9 we present the Edgeworth coefficients of the second order approxi-
mation of the distribution of \/n (p — p). To find the approximate bias and AMSE of

Vn(p—p), up to o (nil), we can apply Lemma 1 and get

5 (1—0) (14+20+36%) (1-6°)

K= — -
Vn (1+62)
and oy
- 9 1= 1/ = ~
E[Vn(p=p)] = El?%szn (E’f+€§)7 (2.11)
= 100462602 —463 =504 — 1465 +-2405+7) (1—62)>
where & = (100+ )’ s 20T ) and

5 _ g 0-02—03+0t—2 (1=62)" 5 (1-62)° ion i
£5, =40 o) 0+92+1)2 (1+02)5/€3 (1+92)4 k4. We next concentrate on the expansion in

the zero-mean case.

2.4.3.1 The Zero-Mean Expansion

For the zero mean case, all Edgeworth coefficients are the same as in the non-zero mean

one, apart from w) agll) and a%) (see Appendix A.9). Consequently, applying Lemma 1

and keeping terms up to order O (n_l), we can find the approximate bias of v/n (py — p)

as N . B )
kYO = KD+ \}ﬁ u (191 9(21); %), (2.12)

It is obvious that the absolute values of the approximate bias of p is less than the one

of p.
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In terms of AMSE we have that, keeping relevant terms,

E[Vn(p-p)° = E[aG-p)

. (140 + 876 — 126 — 700* — 266° + 316° + 14) ~——
n (1+ 92)

This is different from the non-zero mean case. However, notice that the asymmetry and
kurtosis parameters, k3 and k4, have the same effect on the AMSE, for any values of 6
in the admissible region. In fact, the AMSE of p; is always lower than the one of p for
all € (—1,1). Of course, for higher values of n the two AMSEs collapse to the common

asymptotic variance. Let us now proceed with the comparisons between all estimators.

2.5 Comparing the Estimators

To compare all estimators in terms of bias and MSE we run a simulation exercise.
We draw a random sample of n € {50,200} observations from a non-central Student-
t distribution with non-centrality parameter 77 € {—1,1} and v € {11,20} degrees of
freedom. Notice that for these values of 7 and v we have that k3 € {£0.400,+0.17}
and kg € {1.250,0.42}. For each random sample, we generate the MA(1|u) process y;
for 6 € {—0.9,-0.8,...... ,0.9}, = 5.0 and 02 = 1.0. We evaluate p and if the estimate
is in the (—0.5,0.5) interval we estimate all estimators, otherwise we throw away the
sample and draw another one. This will introduce some bias in the estimation of the
biases and the MSEs of the estimators, for which the closer 6 is at the boundary of the
admissible space the fiercer it will be. Furthermore, this will probably affect more the
estimation of bias-and MSE of the MM estimator of 6, as the maximization of the quasi
likelihood is not restricted in any way. For each retained sample we evaluate the MM (p,
5, and 1), the QML (5, p and 1) and the feasibly bias corrected estimators, i.e. when
the estimated value of 8 is employed for bias correction, employing the approximate bias
formulae of previous sections (see Iglesias and Phillips 2008 [56], as well). We set the

number of replications to 20000.

We will present the results for n € {50,200}, n =1 and v € {11, 20}, as the results with

n = —1and v € {11,20} are almost identical to the reported ones.
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FIGURE 2.4: |E [n (p — p)]| (thick line) and |E [n (p — p)]|

2.5.1 Bias of the Estimators

On o (nil) approximations grounds, it is apparent that, when u is estimated, there are

areas of the admissible region of § that the MM estimators of either 6 or p are less

(approximately) biased than the QMLESs (see Figure 2.3 and Figure 2.4). For example,

for,—.3 < 6. < 0, both § and p are less biased than 0 and p, respectively. However, the

opposite is true for 6 > 0.

In terms of the simulation results, the same is more-or-less true for the estimated values

of the biases of § and § (compare the 3'! with the 6'" column of Table 2.1, for non-central

Student-t with » = 20, and the same ones in Table 2.2, for v = 11). However, there

are important differences between the two estimators. Regarding the MM estimator,

the approximate biases are far away from the estimated ones for values of 6 near the
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ends of the admissible parameter region. In fact, for 6 lower than —0.4 (for n = 50) and
—0.5 (for n = 200), the approximate bias continuously underestimates the estimated
one. The opposite is true for 6 higher than 0.5 for both samples. “For § = —0.9 or
# = 0.9, the under and over estimation is massive, respectively.On the other hand,
regarding the QMLE, the estimated bias of 0 is higher from the approximate one for
0 < 0.4, when n = 50, and for # < —0.4, when n = 200. In terms of the bias corrected
estimators, it is apparent that when the approximate biases are close to the estimated
ones, the corrected estimators are, by all terms, unbiased. Furthermore, it seems that
the decrease in the degrees of freedom affects the estimated bias of 6§ more than that of
6. This is an indication that the assumption E (u(l)o) exists is more important for the

MM estimator of # than for the QMLE.

For the estimators of p (see Tables 2.3 and 2.4), the estimated biases of the feasibly
corrected estimators of both estimators p and p are less, in absolute value, from the
equivalent ones of the estimated biases. Furthermore, the estimated biases of the feasibly
corrected p are less, in absolute values, than the ones of the feasibly corrected p when
0 € [-0.3,0.0] for n = 50, and 0 € [—0.4,0.0] for n = 200, which partly confirms Figure
2.4. Tt seems that near the ends of the admissible region of # the approximate bias of p
is more accurate as compared with the one of p, i.e. it is closer to the estimated bias.
Finally, the decrease in the degrees of freedom of the distribution of the errors affects

the bias results, of both estimators, only marginally.

However, for the zero-mean case notice that the QMLEs of either 6 or p are less (ap-
proximately) biased than the MM ones, for all § € (—1,1). To see this, compare (2.7)
with (2.10), and (2.5) with (2.12), respectively.

Hence; in terms of bias and when g is estimated, for negative values of 8, but close to
0, the approximation of § and p work better than those of  and P, whereas for 6 > 0 or

0 close to —1 the QMLESs approximations are better.

2.5.2 MSE of the Estimators

In terms of second order AMSESs, we plot the ones of the two estimators of § in Figure
2.5 and the corresponding ones of the estimators of p in Figure 2.6. Notice that in both

graphs we set n = 20 and in both cases p is estimated. It is apparent that there is not
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FIGURE 2.5: MSE of v/20 (@— 6) (thick) and V20 (5— 9), for k3 = 0.17 and x4 =
0.42.
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FIGURE 2.6: MSE of v/20 (p — p) (thick) and /20 (p — p), for k3 = 0.17 and k4 = 0.42.

uniform superiority of neither the QMLEs nor the MM ones, over the whole range of
the admissible values of #. In fact, it seems that for § € (—0.3,0.3), and for the above

sample size, the MSE of the MM estimators are smaller than the ones of the QMLES.

These findings can be explained by the following facts: i) the asymptotic variance of 5,
AV (5), is less than or equal to AV (@), a well known result, and the same is true for
AV(p) and AV(5). In fact, only for § = 0 AV (’é’) —AV (5) and AV(5) =AV(7), and we
have strict inequality for all other values of 6. ii) For the % terms, which do not include
k3 or k4, and for 6 € (=0.5,0.6) the term of E [\/ﬁ (5— 9)}2 is lower than the one of
E [\/ﬁ <5 — 0)} 2, for any sample size. The same is true for the equivalent terms of the
estimators of p for § € (—0.8,0.5). iii) For § € (—1,0), E [\/ﬁ (5— 9)]2 is a decreas-
ing function of k3, whereas F [\/ﬁ (5 - 9)}2, ElVn(—p)? and E[yn (5 — p)]* are
increasing functions of k3. The opposite is true for § € (0,1). iv) All MSEs are decreas-
ing functions of k4, for § € (—1,1). However, E [\/ﬁ (5— 9)}2 and E[\/n(p — p)]2 are

decreasing at a higher rate.



Chapter 2. Fdgeworth and Moment Approzimations: MM and QML Estimators for the
MA(1) 30

In terms of the simulations, it is immediately obvious that the AMSEs are close to the
estimated ones for the MM estimator of 6 (see Tables 2.5 and 2.6) in the middle range
of values of 6, and are massively higher than the estimated ones at the two ends of the
admissible range. On the other hand, the estimated MSEs of 6 are almost always under-
estimated by the approximate ones over the whole interval of 6. The underestimation
is worse for values of 6 less than —0.6 and higher than 0.6. For n = 50, the estimated
MSE of 8 is less than the one of § for 6 € (—0.1,0.1), partially confirming Figure 2.5.
The estimated MSEs of the bias corrected @ are less than the ones of 6 for all values of
0 apart for # = 0, and this is true for both sample sizes. By decreasing the degrees of
freedom of the error distribution, the estimated MSEs are lower for 9 and higher for 0
(compare the 3" and 6" columns of Table 2.5 with the respective ones of Table 2.6).
This is in agreement with the approximate results for 8 but not for 6. Finally, apart
from the central part of the admissible range of 6, the MSE of the corrected 0 is almost

always less than the one of 0.

The estimated MSEs of p are close to the AMSE ones (closer for n = 200 than for
n = 50) and they are more so for § € (—0.6,0.6) (see Table 2.7 and Table 2.8). The
same is true for the MSEs of p. Comparing the MSEs of p with those of p, for v = 20
and for both sample sizes, it is apparent that the estimated MSEs of p are less than
those of p, for 8 € (—0.1,0.1) partially confirming Figure 2.6. The same is true for the
MSEs of the two estimators, for 11 degrees of freedom. The biased corrected p has, more

or less, a smaller MSE than the corrected p and for both samples.

Hence, to conclude this section, we can say that in terms of MSE and for small sample
size, the QML method is more efficient for the estimation of § and p only for the interval

(—1.0,—0.6) U (0.0,1.0).

2.6 Conclusions

This chapter, by extending the results in Sargan (1976) [80] and Tanaka (1984) [87],
derives the asymptotic expansions of the MM and QML estimators of the 15 order
autocorrelation, the mean parameter and the MA parameter for the MA (1) model. The
necessity of Sargan’s extension rests on the fact that the 1* and 2"d order cumulants

of some estimators include also terms of O (n_%) and O (n_l). First, the second order
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Edgeworth and Nagar-type expansions of the MM estimators are derived in a more
general setup of Sargan (1976) [80] and second, the first order expansions in Tanaka
(1984) [87] are extended to include terms of second order for the QML ones. It is worth
noticing that the second order approximate bias of all estimators is not affected by
the non-normality of the errors. A comparison of the expansions, either in terms of
approximate bias or AMSE, reveals that there is not uniform superiority of neither of
the estimators of 6 and p, something which is also confirmed by the simulation results.
Furthermore, it seems that the approximations work well for the middle rage of the
admissible values of §, whereas when 6 takes values near the two ends; —1 and +1, the
approximation are very poor with the MM approximations: being affected more than
the QMLE ones. Finally, the approximate bias and AMSE of the estimators depend
on whether the mean of the process is known or estimated. In the zero-mean case, and
on approximate grounds, the QMLEs of 6 and p are superior to the MM ones in both

approximate bias and AMSE terms.

The results can be utilized to provide finer approximations of the distributions of the
estimators, as compared to the asymptotically normal ones. In fact, the bias results
were employed to correct the up to O (n_l) bias of the estimators. It turned out that
the feasibly corrected p is, almost always, less biased than p, for the whole interval of 6,
without considerable alteration of its MSE. This indicates that the presented expansion
works well for as small sample size as 50. On the other hand, the approximation of [
works well only for values of 8 close to 0, with even as much as 200 observations. The
presented approximations of 6 and p are somewhere in the middle, i.e. work well for a
large interval of values of .- Furthermore, in the Indirect Inference literature, our results

constitute an application of the general results in Arvanitis and Demos (2009) [6].

The analysis presented here can be extended to any ARMA(p, g|p) model. However,
the algebra involved is becoming extremely tedious even for small values of p and gq.
Furthermore, one could consider the stochastic process y; = p + wy + 05us—s, where
s = 1,2, .... For specific values of s, this class of models could capture seasonal effects,
e.g. for quarterly data s = 4, for monthly data s = 12, etc. (see e.g. Ghysels and
Osborn 2001 [44]). In this case, the cumulants, at least up to 2°¢ order, of the various
statistics employed in sections 3 and 4 will become functions of s, complicating further

the evaluations of the Edgeworth coefficients and the moments of the estimators.
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Another interesting issue could be the expansion of the estimators as the parameter 6
reaches the boundary of the admissible region, i.e. when # — =£1 (in this respect see
Andrews 1999 [5], and Iglesias and Linton 2007 [54]). Furthermore, along the lines of
Durbin (1959) [39] and Gourieroux et al. (1993) [47], the properties of the MM estimators
can be improved by considering the expansions not only of the first order autocorrelation
but higher order ones. Finally, one could, utilizing the presented expansions, consider
adjusted Box-Pierce tests along the lines of Kan and Wang (2010) [60], or develop
asymptotic expansions of the error variance estimators, as well, and consider expansions

of various tests, e.g. Wald etc. We leave these issues for future research.

This chapter is available as a Discussion Paper of Demos and Kyriakopoulou (2008) [34].
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THETA MM ‘ THETA QML
n =50, u, " non — central Student — t with 20 df, and non — centrality = 1
Theta | Approx. Bias Est. Bias Bias Feas. | Approx. Bias Est. Bias Bias Feas.

-0.9 -119.9542 2.6921 69.8340 -0.3960 -0.3219 -0.0355
-0.8 -12.4383 1.8054 157.3671 -0.3677 -0.2655 -0.0002
-0.7 -3.0324 1.0435 188.8647 -0.3394 -0.1749 0.0686
-0.6 -1.0691 0.4293 30.4886 -0.3111 -0.1310 0.0917
-0.5 -0.4825 0.0414 228.7782 -0.2828 -0.1381 0.0646
-04 -0.2715 -0.1237 5.1714 -0.2546 -0.1601 0.0231
-0.3 -0.1884 -0.1315 0.3206 -0.2263 -0.1631 0.0002
-0.2 -0.1553 -0.1129 0.0167 -0:1980 -0.1481 -0.0051
-0.1 -0.1437 -0.0998 0.0070 -0.1697 -0.1260 -0.0035

0 -0.1414 -0.0958 0.0055 -0.1414 -0.1037 -0.0016
0.1 -0.1419 -0.0944 0.0047 -0.1131 -0.0817 -0.0001
0.2 -0.1397 -0.0902 -0.0011 -0.0849 -0.0608 0.0004
0.3 -0.1249 -0.0781 -0.1714 -0.0566 -0.0434 -0.0025
0.4 -0.0737 -0.0995 -1.3525 -0.0283 -0.0454 -0.0245
0.5 0.0818 -0.2445 -53.2987 0.0000 -0.0691 -0.0677
0.6 0.5699 -0.5946 -49.9888 0.0283 -0.0959 -0.1140
0.7 2.3447 -1.1736 -475.2946 0.0566 -0.1032 -0.1411
0.8 11.3308 -1.9416 -99.9750 0.0849 -0.1070 -0.1648
0.9 117.4888 -2.8222 -179.6870 0.1131 -0.1636 -0.2403

n = 200, u, 2 non — central Student — t with 20 df, and non — centrality = 1

-0.9 -59.9771 3.0855 146.5577 -0.1980 -0.0446 0.1538
-0.8 -6.2191 1.8673 312.9910 -0.1838 -0.0733 0.1113
-0.7 -1.5162 0.8553 1457.2564 -0.1697 -0.0694 0.1010
-0.6 -0.5345 0.1583 23.1202 -0.1556 -0.0807 0.0757
-0.5 -0.2412 -0.1320 13.1220 -0.1414 -0.1141 0.0284
-0.4 -0.1357 -0.1449 0.1865 -0.1273 -0.1280 0.0006
-0.3 -0.0942 -0.1009 0.0095 -0.1131 -0.1183 -0.0040
-0.2 -0.0776 -0.0802 0.0017 -0.0990 -0.1041 -0.0041
-0.1 -0.0718 -0.0731 0.0002 -0.0849 -0.0891 -0.0033

0 -0.0707 -0.0716 -0.0005 -0.0707 -0.0735 -0.0020
0.1 -0.0709 -0.0716 -0.0010 -0.0566 -0.0581 -0.0009
0.2 -0.0698 -0.0701 -0.0021 -0.0424 -0.0435 -0.0006
0.3 -0.0624 -0.0611 -0.0083 -0.0283 -0.0300 -0.0015
0.4 -0.0368 -0.0365 -0.0953 -0.0141 -0.0209 -0.0065
0.5 0.0409 -0.0505 -8.2296 0.0000 -0.0315 -0.0312
0.6 0.2849 -0.3287 -61.1723 0.0141 -0.0623 -0.0758
0.7 1.1723 -0.9893 -603.7911 0.0283 -0.0833 -0.1108
0.8 5.6654 -1.9529 -1046.4400 0.0424 -0.0903 -0.1318
0.9 58.7444 -3.1666 -304.7226 0.0566 -0.1710 -0.2259

TABLE 2.1: Biases of the MA Coefficient Estimators under non-central Student-t with
20 degrees of freedom
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THETA MM ‘ THETA QML
n =50, u, " non — central Student — t with 11 df, and non — centrality = 1
Theta | Approx. Bias Est. Bias Bias Feas. | Approx. Bias Est. Bias Bias Feas.

-0.9 -119.9542 2.3323 508.2411 -0.3960 -0.9820 -0.5467
-0.8 -12.4383 1.6906 3440.5556 -0.3677 -0.9269 -0.5221
-0.7 -3.0324 1.11025 194.5709 -0.3394 -0.6700 -0.3038
-0.6 -1.0691 0.61611 87.0193 -0.3111 -0.4516 -0.1224
-0.5 -0.4825 0.2364 915.3231 -0.2828 -0.3228 -0.0270
-04 -0.2715 -0.0088 46.2209 -0.2546 -0.2782 -0.0125
-0.3 -0.1884 -0.1279 2.2324 -0.2263 -0.2601 -0.0234
-0.2 -0.1553 -0.1583 10.1938 -0:1980 -0.2402 -0.0326
-0.1 -0.1437 -0.1565 14.6839 -0.1697 -0.2102 -0.0320

0 -0.1414 -0.1491 -0.0003 -0.1414 -0.1741 -0.0257
0.1 -0.1419 -0.1451 -0.0948 -0.1131 -0.1399 -0.0212
0.2 -0.1397 -0.14757 -1.5566 -0.0849 -0.1129 -0.0235
0.3 -0.1249 -0.1737 -8.4322 -0.0566 -0.1005 -0.0399
0.4 -0.0737 -0.2663 -15.5777 -0.0283 -0.1058 -0.0733
0.5 0.0818 -0.4777 -13.7759 0.0000 -0.1177 -0.1130
0.6 0.5699 -0.8195 -193.7762 0.0283 -0.1170 -0.1406
0.7 2.3447 -1.2831 -94.4679 0.0566 -0.0833 -0.1365
0.8 11.3308 -1.8498 -96.4860 0.0849 -0.0234 -0.1074
0.9 117.4888 -2.4850 -1230.0230 0.1131 0.0168 -0.0970

n = 200, u, % non — central Student — t with 11 df, and non — centrality = 1

-0.9 -59.9771 3.0777 2082.6805 -0.1980 -0.0479 0.1506
-0.8 -6.2191 1.8795 126.6579 -0.1838 -0.0718 0.1128
-0.7 -1.5162 0.8624 67.4715 -0.1697 -0.0666 0.1038
-0.6 -0.5345 0.1755 146.7298 -0.1556 -0.0757 0.0806
-0.5 -0.2412 -0.1280 16.4453 -0.1414 -0.1133 0.0292
-0.4 -0.1357 -0.1445 0.9975 -0.1273 -0.1251 0.0034
-0.3 -0.0942 -0.1004 0.0101 -0.1131 -0.1163 -0.0020
-0.2 -0.0776 -0.0793 0.0027 -0.0990 -0.1022 -0.0022
-0.1 -0.0718 -0.0720 0.0014 -0.0849 -0.0873 -0.0016

0 -0.0707 -0.0702 0.0010 -0.0707 -0.0719 -0.0004
0.1 -0.0709 -0.0700 0.0006 -0.0566 -0.0566 0.0006
0.2 -0.0698 -0.0681 -0.0001 -0.0424 -0.0421 0.0008
0.3 -0.0624 -0.0580 -0.0043 -0.0283 -0.0286 0.0000
0.4 -0.0368 -0.0297 -104.2074 -0.0141 -0.0199 -0.0055
0.5 0.0409 -0.0571 -2.3114 0.0000 -0.0342 -0.0339
0.6 0.2849 -0.3269 -26.6365 0.0141 -0.0653 -0.0788
0.7 1.1723 -0.9924 -43.5185 0.0283 -0.0813 -0.1088
0.8 5.6654 -1.9865 -52.7870 0.0424 -0.0926 -0.1341
0.9 58.7444 -3.1849 -111.6753 0.0566 -0.1725 -0.2274

TABLE 2.2: Biases of the MA Coefficient Estimators under non-central Student-t with
11 degrees of freedom
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RHO MM | RHO QML
n =50, u, " non — central Student — t with 20 df, and non — centrality = 1
Theta | Approx. Bias Est. Bias Bias Feas. | Approx. Bias Est. Bias Bias Feas.

-0.9 0.0699 0.5784 0.5426 -0.0140 0.0290 0.0357
-0.8 0.0672 0.5235 0.4886 -0.0274 0.0135 0.0301
-0.7 0.0617 0.4277 0.3951 -0.0397 0.0103 0.0365
-0.6 0.0522 0.2981 0.2697 -0.0507 0.0111 0.0458
-0.5 0.0373 0.1621 0.1413 -0.0611 -0.0018 0.0406
-04 0.0153 0.0565 0.0486 -0.0725 -0.0282 0.0224
-0.3 -0.0150 0.0017 0.0133 -0.0866 -0.0527 0.0079
-0.2 -0.0534 -0.0328 0.0041 -0.1043 -0.0713 0.0012
-0.1 -0.0972 -0.0628 0.0032 -0.1241 -0.0868 -0.0016

0 -0.1414 -0.0928 0.0026 -0.1414 -0.1001 -0.0041
0.1 -0.1801 -0.1194 0.0021 -0.1504 -0.1075 -0.0059
0.2 -0.2085 -0.1396 0.0017 -0.1468 -0.1068 -0.0072
0.3 -0.2250 -0.1550 -0.0015 -0.1301 -0.0987 -0.0093
04 -0.2309 -0.1890 -0.0300 -0.1041 -0.0939 -0.0206
0.5 -0.2297 -0.2625 -0.1023 -0.0747 -0.0914 -0.0368
0.6 -0.2250 -0.3687 -0.2091 -0.0472 -0.0808 -0.0444
0.7 -0.2197 -0.4822 -0.3233 -0.0253 -0.0595 -0.0387
0.8 -0.2154 -0.5719 -0.4136 -0.0104 -0.0402 -0.0305
0.9 -0.2129 -0.6231 -0.4651 -0.0024 -0.0321 -0.0285

n = 200, u, 2 non — central Student — t with 20 df, and non — centrality = 1

-0.9 0.0350 0.5627 0.5341 -0.0070 0.0119 0.0187
-0.8 0.0336 0.4860 0.4581 -0.0137 0.0068 0.0201
-0.7 0.0308 0.3535 0.3271 -0.0198 0.0078 0.0272
-0.6 0.0261 0.1948 0.1715 -0.0253 0.0041 0.0291
-0.5 0.0187 0.0700 0.0527 -0.0305 -0.0144 0.0158
-0.4 0.0077 0.0131 0.0061 -0.0362 -0.0332 0.0027
-0.3 -0.0075 -0.0079 -0.0001 -0.0433 -0.0439 -0.0009
-0.2 -0.0267 -0.0271 -0.0008 -0.0521 -0.0540 -0.0023
-0.1 -0.0486 -0.0487 -0.0012 -0.0620 -0.0641 -0.0030

0 -0.0707 -0.0705 -0.0016 -0.0707 -0.0723 -0.0031
0.1 -0.0901 -0.0896 -0.0017 -0.0752 -0.0764 -0.0028
0.2 -0.1043 -0.1037 -0.0017 -0.0734 -0.0747 -0.0028
0.3 -0.1125 -0.1122 -0.0017 -0.0650 -0.0673 -0.0032
04 -0.1154 -0.1191 -0.0052 -0.0521 -0.0576 -0.0057
0.5 -0.1148 -0.1537 -0.0399 -0.0373 -0.0537 -0.0158
0.6 -0.1125 -0.2564 -0.1436 -0.0236 -0.0517 -0.0271
0.7 -0.1098 -0.3964 -0.2847 -0.0127 -0.0410 -0.0273
0.8 -0.1077 -0.5122 -0.4012 -0.0052 -0.0260 -0.0200
0.9 -0.1065 -0.5876 -0.4770 -0.0012 -0.0194 -0.0176

TABLE 2:3: Biases of First Order Autocorrelation Estimators under non-central

Student-t with 20 degrees of freedom
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RHO MM | RHO QML
n =50, u, " non — central Student — t with 11 df, and non — centrality = 1
Theta | Approx. Bias Est. Bias Bias Feas. | Approx. Bias Est. Bias Bias Feas.

-0.9 0.0699 0.5935 0.5529 -0.0140 0.0998 0.0956
-0.8 0.0672 0.5553 0.5163 -0.0274 0.0647 0.0743
-0.7 0.0617 0.4851 0.4493 -0.0397 0.0404 0.0670
-0.6 0.0522 0.3848 0.3547 -0.0507 0.0281 0.0705
-0.5 0.0373 0.2634 0.2431 -0.0611 0.0152 0.0716
-04 0.0153 0.1398 0.1353 -0.0725 -0.0164 0.0533
-0.3 -0.0150 0.0353 0.0546 -0.0866 -0.0601 0.0240
-0.2 -0.0534 -0.0390 0.0124 -0.1043 -0.1007 -0.0008
-0.1 -0.0972 -0.0949 -0.0058 -0.1241 -0.1348 -0.0188

0 -0.1414 -0.1396 -0.0114 -0.1414 -0.1585 -0.0292
0.1 -0.1801 -0.1780 -0.0145 -0.1504 -0.1732 -0.0368
0.2 -0.2085 -0.2129 -0.0219 -0.1468 -0.1785 -0.0441
0.3 -0.2250 -0.2539 -0.0447 -0.1301 -0.1777 -0.0547
04 -0.2309 -0.3129 -0.0939 -0.1041 -0.1723 -0.0684
0.5 -0.2297 -0.3959 -0.1727 -0.0747 -0.1580 -0.0775
0.6 -0.2250 -0.4851 -0.2606 -0.0472 -0.1300 -0.0740
0.7 -0.2197 -0.5661 -0.3414 -0.0253 -0.0979 -0.0636
0.8 -0.2154 -0.6258 -0.4011 -0.0104 -0.0750 -0.0565
0.9 -0.2129 -0.6590 -0.4345 -0.0024 -0.0724 -0.0619

n = 200, u, % non — central Student — t with 11 df, and non — centrality = 1

-0.9 0.0350 0.5606 0.5320 -0.0070 0.0117 0.0185
-0.8 0.0336 0.4873 0.4594 -0.0137 0.0067 0.0200
-0.7 0.0308 0.3568 0.3304 -0.0198 0.0082 0.0277
-0.6 0.0261 0.2008 0:1776 -0.0253 0.0058 0.0308
-0.5 0.0187 0.0725 0.0553 -0.0305 -0.0139 0.0164
-0.4 0.0077 0.0144 0.0075 -0.0362 -0.0312 0.0048
-0.3 -0.0075 -0.0066 0.0012 -0.0433 -0.0421 0.0010
-0.2 -0.0267 -0.0256 0.0007 -0.0521 -0.0520 -0.0003
-0.1 -0.0486 -0.0473 0.0003 -0.0620 -0.0623 -0.0011

0 -0.0707 -0.0691 -0.0001 -0.0707 -0.0707 -0.0014
0.1 -0.0901 -0.0883 -0.0004 -0.0752 -0.0751 -0.0016
0.2 -0.1043 -0.1025 -0.0005 -0.0734 -0.0739 -0.0020
0.3 -0.1125 -0.1109 -0.0005 -0.0650 -0.0668 -0.0027
04 -0.1154 -0.1178 -0.0040 -0.0521 -0.0575 -0.0056
0.5 -0.1148 -0.1564 -0.0425 -0.0373 -0.0553 -0.0174
0.6 -0.1125 -0.2564 -0.1437 -0.0236 -0.0531 -0.0285
0.7 -0.1098 -0.3976 -0.2859 -0.0127 -0.0406 -0.0269
0.8 -0.1077 -0.5192 -0.4081 -0.0052 -0.0264 -0.0205
0.9 -0.1065 -0.5911 -0.4804 -0.0012 -0.0196 -0.0179

TABLE 2:4: Biases of First Order Autocorrelation Estimators under non-central

Student-t with 11 degrees of freedom
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Chapter 3

Bias Correction of ML and QML
Estimators in the EGARCH(1,1)
Model

3.1 Introduction

The last years there has been a substantial interest in deriving the asymptotic proper-
ties of econometric estimators in time series models. Although there is an important
and growing literature that deals with the asymptotics of the Generalized Autoregres-
sive Conditional Heteroskedastic (GARCH) models, either in terms of consistency and
asymptotic normality of the estimators or in terms of the finite-sample theory, the as-
ymptotic properties of the estimators in the Exponential GARCH (EGARCH) process
of Nelson (1991) [71] have not been fully explored. Comparing to the GARCH process,
the advantages of the EGARCH model are well-known, with the main one being the fact
that the model captures the negative dynamic asymmetries noticed in many financial

series, i.e. the so-called leverage effects.

The asymptotic aspects of the conditionally heteroskedastic models have been discussed
under many different considerations, in order to analyze the statistical properties of these
estimators. Since the important work of Engle (1982) [40] and that of Bollerslev (1986)
[20], who introduced the Autoregressive Conditional Heteroskedasticity (ARCH) and

Generalized ARCH models, respectively, a huge amount of literature on the asymptotics
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has appeared in short time. Weiss (1986) [90] proved Consistency and Asymptotic
Normality (CAN) of the maximum likelihood estimators in ARCH models, assuming
normal distribution of the errors and imposing a rather restrictive condition that the
data have bounded fourth moments, excluding in that way from the proof many other
interesting conditionally heteroskedastic models. Quite parallel; Lee and Hansen (1994)
[61] and Lumsdaine (1996) [66] relaxed the condition which Weiss imposed and they
looked at the consequences of the possible failure of the normality assumption on the
errors, providing conditions under which CAN exist in the GARCH(1, 1) specification
(for multivariate frameworks see e.g. Jeantheau, 1998 [57]; Comte and Lieberman, 2003

[26)).

The finite sample properties of the QML estimators in the first order GARCH model
are investigated through an asymptotic expansion -of the Edgeworth type, as Linton
(1997) [65] developed® in which he also provided the higher-order bias of the estimators.
Furthermore, Iglesias and Linton (2007) [54] derive the second-order asymptotic theory
of the quasi-maximum likelihood estimator in stationary and nonstationary GARCH
models, when constraints are imposed and they correct the first- and second-order bias
of the estimator. Nowadays, many researchers work on the asymptotic behavior of these

estimators, with unceasing interest.

Until the influential work of Nelson (1991) [71], the conditional heteroskedastic mod-
els that had been developed could not explain the asymmetry effects, indicating that
alternative models might be suitable for financial applications. Turning our attention
to asymmetric GARCH models, and more specifically to the EGARCH model which
has become a popular model in applied financial work, very little is known about its
statistical properties. Although we are endowed with the moment structure investigated
by He, Terasvirta and Malmsten (2002) [52], the limiting properties of the maximum
likelihood estimators in the EGARCH models do not exist in the literature. The interest
in consistency and asymptotic normality results of EGARCH has been growing and the
problem of the theoretical properties not yet been explored await for an answer; see,
for example, Straumann and Mikosch (2006) [83]?. The finite sample properties of the

maximum likelihood and quasi-maximum likelihood estimators of the EGARCH(1,1)

! The validity of the Edgeworth expansions in the GARCH model is established in the paper of Corradi
and Iglesias (2008) [27].

’In a recent paper, Zaffaroni (2009) [91] estimates the EGARCH parameters with Whittle methods
and the asymptotic distribution theory of these estimators is established.
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process using Monte Carlo methods have been examined in the paper of Deb (1996)
[33]%. He used, however, response surface methodology in order to examine the finite
sample bias and other properties in interest, by summarizing the results of a wide array

of experiments.

In this chapter we derive the bias approximations of the Maximum Likelihood (ML)
and Quasi-Maximum Likelihood (QML) Estimators of the EGARCH(1, 1) parameters
and we check our theoretical results through simulations. With the approximate bias
expressions, we are then able to correct the bias of all estimators. To this end, a Monte
Carlo exercise is conducted and the results are presented and discussed. We provide
two types of the bias correction mechanism in-order to decide for the bias reduction
in practice for the popular model of Nelson. It is the first time that analytically the
higher order biases appear in this literature for a nonlinear model like the EGARCH
one and these results can now be used as to be incorporated into the relative analysis
of other similar specifications, see e.g.  Iglesias and Linton (2007) [54]. We conclude
that, for given sets of parameters values, the bias correction works satisfactory for all
the parameters. The results for the approximate bias expressions can be used in order

to formulate the approximate Edgeworth distribution of the estimators.

The organization of this chapter is as follows: Section 3.2 presents the model and estima-
tors. Section 3.3 deals with the main results of our analysis. First, analytic derivatives
and their expected values are presented. Second, conditions for stationarity of the log-
variance derivatives are investigated. In the sequel, the theoretical bias approximations
of the Maximum Likelihood and Quasi Maximum Likelihood Estimators are calculated
and the simulation results for the bias correction of the estimators are presented. Fi-
nally, Section 3.4 concludes. All proofs, rather lengthy, are collected in the Appendix
B. Let us now turn our attention to the definition of the EGARCH(1,1) model and the

estimators.

3.2 The Model and Estimators

Let us consider the following model, where the observed data {yt}thl are generated by

the EGARCH(1, 1) process, see Nelson (1991) [71], in which the conditional variance,

3Perez and Zaffaroni (2008) [73] compare the finite sample properties of the MLE and Whittle esti-
mators, in terms of bias and efficiency, in the EGARCH model and its long-memory version.
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h¢, depends on both the size and the sign of the lagged residuals:

Yt = p+ug, t=1,..T, where (3.1)
Utr = =zt ht, zt ~ itdD (0, 1)
In(h) = a+0z-1+7v9(z-1)+Bln(hi—1), where (3.2)

g(z) = |zl —Elzl.

The process {u;} is a real-valued discrete time stochastic process (the error process)
and h; is a positive with probability one A;_i-measurable function (the conditional
variance), where A; 1 is the sigma-algebra generated by the past values of z;, i.e.
{zt-1, 2t—2, 2t—3,...}. The function g (z;) is a well-defined function of z;. The process
h¢ is not observed and thus is constructed via recursion using the estimating values of
the parameters and a proper initial value for the conditional variance. To allow for
the possibility of nonnormality in the conditional distribution of {y;}, we assume that
the {z} are independently and identically distributed (i.i.d.) with zero mean and unit
variance. We do not impose any symmetric distributional property, however the proofs
automatically become very complicated. The conditional variance is constrained to be
non-negative by the assumption that the logarithm of h; is a function of past z;s. Com-
paring to the relative analysis, Nelson’s paper was the first which models the conditional

variance as a function of variables which are not solely squares of the observations.

Note from (3.2) that In (h¢) constitutes a causal AR(1) process with mean o/ (1 — ) and
error sequence [0z;_1 + v (|zi—1| — E'|z¢—1])]. The unique stationary solution to (3.2),
provided that |8| < 1, is given by its almost sure (a.s.) representation, provided that
v > 101%

[e.9]

n(h) = a(l=B)"+> B (Oz-1-k+79 (z-1-1) =
k=0

In(hy) > (a—~E|z))1-p8)"" as.

The conditional variance responds asymmetrically to rises and falls in stock price, which

is believed to be important for example in modelling the behavior of stock returns. It

4This means that the configurations mimic the stylized fact that a shock always leads to increased
volatility.
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is an important stylized fact for many assets. The coefficients (6 + ) and (6 — ) (if
z; > 0 and z; < 0, respectively) show the asymmetry in response to positive and negative
yt. The parameter 6 is referred to as the leverage parameter, which shows the effect of
the sign of y;. The term ~ [|z;| — F|z|] represents a magnitude effect. Formulae for the
higher order moments of u; are given in Nelson (1991) [71]. The parameter . can be
made a function of time (a;) to accommodate the effect of any non-trading periods of

forecastable effects.

The unconditional mean and variance of y; is:

E (yt) =K,

and

Var (y) = exp <1f5> L1 E [exp [8 (620 +vg (20))]] ,
=0

which, under normality of the errors, becomes the following result:

iR 2 <2
exp (—ﬁ—(QLL) P (B'v*) + exp <B 25 > o (BQS)] ,

where v* =~y + 6, 0 =~ — 0 and ® (k) is the value of the cumulative standard Normal

a—'y% G
JH

=0

Var (y;) = exp

. k 2
evaluated at k, i.e. ® (k)= ["_ \/% exp (—%) dz.
Proof. The proof of the unconditional variance is given in the Appendix B.1. O

To estimate the parameters of the model in (3.1) and (3.2), we employ the quasi-
maximum likelihood estimation. Maximum likelihood is the procedure which is most
often used in estimating the parameters in time series models, but for most applica-
tions it is very difficult to justify the conditional normality assumption. Therefore, the
log-likelihood function may be misspecified. However, we can still obtain estimates by
maximizing a Gaussian quasi-log-likelihood function and under the auxiliary assumption
of an i.i.d. distribution for the standardized innovations z;s. The estimators which are
derived by this maximization problem are the so-called Quasi Maximum Likelihood Es-
timators (QMLEs). The fact that we maximize a quasi-log-likelihood is justified by the
evidence that distributions of asset returns are often thick tailed and as a consequence

the normality assumption is violated.
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An important and really interesting feature of our model is that the assumption of the
block diagonality of the information matrix no longer holds. This is also the case for
the ARCH-M model and the asymmetric model of the Augmented ARCH (see Bera
and Higgins, 1993 [13], p. 349; also Bollerslev, Engle and Nelson, 1994 [19], p. 2981).
This implies that the off-diagonal blocks involving partial derivatives with respect to
both mean and variance parameters are not null matrices, while this is the case in other
GARCH-type models. Below we present analytic proofs-of this argument in the context
of the EGARCH(1, 1) model and these results disaccord with Malmsten (2004) [67], even

if the distribution of the innovations is symmetric, which implies that Fz3 = 0.

In the EGARCH(1, 1) model, there is no explicit expression of the probability density of
the vector (y1,...,yr) since the distribution of (h1,...,hr)" is not known. To overcome
this difficulty, we consider an approximate conditional log-likelihood instead. Some
assumptions are also required for the initial values of the conditional variance hy, which
should be drawn from the stationary distribution, and the squared standardized residuals

22, Assuming that zgp = 0 and In (hg) = , we obtain a good approximation to the

s
1-8
conditional Gaussian log-likelihood, as follows:

T 2
C(p,0,0,8,7]20,ho) = —*ln 2m) _‘Zln he) = Z(thu):
=1
T
gr 1
£ —Eln (2m) —72111 (ht) — 2;2’ (3.3)

Notice that h; and z; are both functions of w and p, where w = (a,@,ﬂ,’y)/, i.e. the
vector of unknown log-variance parameters, so that both are functions of = (w/ , u)/,
which represents the vector of all unknown parameters. The first order conditions are

recursive and consequently do not have explicit solutions.

The likelihood function is derived as though the errors are conditionally normal and is
still maximized at the true parameters. Having specified the log-likelihood function, the

quasi maximum likelihood estimator is then defined as

T
1
o — ~ N0 (0). 4
o7 argglggT; () (3.4)
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The parameter space is of the form
©=Rx0,1) x D,

where

D={(6,7) eR*|§cR,~>0]}.

Let us proceed with the main results of our analysis, beginning with the analytic deriv-

atives of the log-likelihood function and their expected values.

3.3 The Main Results

3.3.1 Analytic derivatives and their expected values

In this section we present analytic derivatives® of the log-likelihood function and their
expected values, which are needed in the sequel to evaluate the asymptotic bias of the
QMLEs and to calculate the cumulants of the Edgeworth distribution. It is of great
importance to mention that there are no such analytic results in the related literature
of the finite sample theory, and it is especially this feature that makes this analysis
to differ from the previous one, that of Linton (1997) [65], who studied the case of
the GARCH(1, 1) model. Let us first proceed with the derivatives of the log-likelihood

function and their analytic representation.

Following henceforth the notation employed in Linton (1997) [65], i.e. hto = 8115(Oht) and

so on, the derivatives of the log-likelihood function with respect to all parameters are:

’Fiorentini, Calzolari and Panattoni (1996) [41] argue that the computation of analytic derivatives of
the log-likelihood is essential, as the computational benefit of their use is really substantial for estimation
purposes.
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First with respect to the mean parameter,

T T
1 2t
Lo = 23 ()b + > L
w 9 12 P /ht

t=1
T T
1 > 1
Lup = 2; (zt - 1) htsp — tzl (ht + 2\/h~ht,u * zt Hh u)

1 & "1
Lypp = 9 Z (Zt2 - 1) Pt + 3 Z Eht;u
=1

=1
T
z
-3 Z 7;; (ht;u,u - h?;u) -

1
9 Z z (3hesjuhtsp,n = h?;u)
t=1 V't t=1
while for 4,5,k € {«, 0,7, 5} the derivatives are
| T
['i = 5 Z (Zt2 - 1) ht;ia
t=1
1 & L
[’ij - 5 Z (zt2 - 1) htéi,j o 5 Zztzhizv
t=1 t=1
1 I
Lijp = 3 > (2 = V) hssin = Zzt Bhuihusin — hiy) -
t=1

L
1 1 z
»Ciu = 5 Z ( ik 1) ht Jiy1 5 Z Zght;iht;u - z_: Tl%ght;i’
1 X
Lipp = 5 Z ( o 1 Pt — 2 Z ht;w - ht;iht;u)
1 L1
) > 2 (hephiig — heihiy, + heiheg) + ; oy i
P
Lijiw= 5 Do (2 1) hug Z ht;m‘ — hs;iht;)
1 I
D) Z t2 (ht;jht;iyu = hijheiheg + hegighe, + ht;iht;j,u) :

t=1

Note that the log-likelihood derivatives are expressions of the log-variance derivatives,
ht.o, where the latter are given in the Appendix B.6. The expected values of the log-

likelihood derivatives are also given in the Appendix B.2.
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The cross-products of the log-likelihood derivatives are:

fori,j € {a,0,7, 3},

1< 1< 1 &
LiLij = 5 > (2 1) b (2 Z (7 = 1) hasij = 5 Z?«‘fh?;i> ,

t=1 t=1 t=1
Lilj, = % ZT: (Zt2 - 1) hai <; ZT: (Zt2 - 1) g — ;ZT: ztzht;jht;u N ZT: iht;l’) )
t=1 t=1 t=1 t=1 \/E
Lilyw = 1ZT: (Zt2 - 1) hai [1 zT: (Zt2 - 1) Pt — ZT: <i e 2iht;u by 1Zt2hf;u>] ’
23 23 Z7 \Py Vi 2
1o 2 - 2t 1o 2 1 272
LuLij = 5 Z (2 = 1) hey + Z T )\ 3 Z fag =) P = 5 Z zihii |
t=1 t=1 V' =1 t=1
T T 1T, (2w Y LT 2p p
L.L;, = (; Z (22 = 1) huy + Z %) 3 e (4= 1) ;],M Z 2 2= 2 Pt 7
t=1 =1 V' = | \/Ti—tht;i

T T [ g~ T (2
1 24 3201 (5 = 1) P
LpLyp = ( E :(Zt2 = 1) huy + E :‘—)
2 SV =S (22 ke + 32202,

The expectations of the cross-products are given in the Appendix B.4.

Let us turn our attention to the conditions for stationarity of the log-variance derivatives.

3.3.2 Conditions for stationarity of the log-variance derivatives

In this section we investigate under which conditions there is a second-order stationary
solution to the log-variance derivatives, needed for the existence and the evaluation of
the log-likelihood derivatives, and hence in order to calculate the bias expressions of the
QMLEs. The existence, stationarity and ergodicity of the second order derivatives of
the conditional variance are necessary if someone studies the validity in a Taylor series

expansion of the first order derivatives of the log-likelihood.

We consider the following example:
1 9 1 1 1 3
hiahtaa = 1 (0zt—1 + v [2t-1]) ht—l;a + 1 (Oze—1 + v [2e-1]) (| B— 592&—1 - 57 |21 ht—l;a
1 1
+ </8 - igzt—l - 5'7 Zt—l‘) ht—l;a,a

1 1 2
+ (ﬁ - 592%—1 - 5’7 Zt—l‘) hi—1;0hi-150,a- (3.5)
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In order to calculate the expected value of the above expression, we first assume that

E (h},),E (h},) and E (hya,a) exist. Next, define:

—

A(zm1) = =0z +v|z-1]) b1,

W

1 1 1
+5 O+ laecal) (8- 3051 - Joleal) B

1 1
+ <B - 592’7&—1 - 5’7 |Zt1) ht—150,0;

and

) 1 1 %
B (z-1) = | B — 59%4 = i R R

Then,

htohtioa = A(zi-1) + B%(z_1) ht-1.0ht_Tiaia =
oo k—1
= A(z-1)+ Z H B? (z-1-4) A (2-1-k) -
k=1i=0
The infinite sum converges almost surely. To see this, let:
n k-1
Sn A=) + Z H B? (zi-1-4) A (21-1-k) -

k=1"i<0

Then we have:

k-1
H B%(z1.3)| E[A(z—1-1)] =
i=0

E (Sn)~=_EAfz=il+D/ F

ol

= E[AGz)] | A{E[B (21-)] }’“] .

M3

k=0

Thus, E (limp, 0 Sn) = E [A (2e-1)] {1 — E [B? (2t-1-)] }71 < 00, providing that E [A (z;-1)] <
0o. In order to ensure the existence of a stationary solution to the (3.5), we should im-

pose the condition that

FE [32 (Zt—l—i)] < 1.

In a similar manner, the rest stationarity conditions of all log-variance derivatives and

products of them follow.
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Proposition 3.1. Given

a) |8y — v E |2l < 1

b) |82+ 102 + 192 — 10BoE |2| + 2y00oE (2 |2])] < 1
01T 2% T 270 — YoPol |2] T 370ob0L (2|2

and

5 B+ 28005 + 38073 — 200 (65 + 373) E (%) — 3B510E |2
+3B00070E (2 |2]) — 370 (43 + 363) E |2

then

the second-order stationarity of all log-variance derivatives follows.

Proof. The proof comes immediately from the results in the Appendices B-3 and B.7. [

Let us now proceed with the bias approximations of the QMLEs.

3.3.3 Bias Approximations

In this section we develop the bias-approximations for the ML and QML estimators in
the EGARCH(1,1)%. One of the main advantages of developing the bias expressions is
to use them as a bias correction mechanism. This is one of the practical applications
of the bias approximations. Moreover, these results help to analyze the consequences of
introducing restrictions in the log-variance parameters. With these expressions, one can
compute the Edgeworth approximate distribution. It is also important to explore the

theoretical properties of the estimators so that the statistical inference is possible.

We use a McCullagh (1986) [68] result for the standardized estimator having a stochastic
expansion, see in p.209, and taking expectations we end up with the asymptotic bias
of the QML estimator. - Our next step is to check our bias approximations through
simulations. Note that McCullagh’s expansion has already been applied in the literature
to retrieve the bias in many nonlinear models, such as Linton (1997) [65]. When dealing
with nonlinear models, it is very common to have the bias expressions in terms of
expectations and. applying these expressions for bias correction. At this point, it is
important to state briefly the main differences between our analysis and that of Linton.
First of all, we generalize the finite-sample analysis of heteroskedastic time series models

considering a non-symmetric distribution of the errors. Furthermore, we show that the

STglesias and Phillips (2002) [55] developed theoretical bias approximations for the MLEs of the
parameters in an ARCH(1) model.
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block-diagonality of the information matrix does not hold in our case, which implies
that there are new terms in the bias expressions of the estimators. This means that we
cannot use the results that appear in the literature from the analysis of the GARCH

model.

Assumption 3.3.1 We assume that the errors have bounded J moments, for some
J > 6, and we denote by k3 and k4 their third and fourth order cumulants, where

the latter is given by:

Under the above assumptions, we are now able to present our Theorem which is useful
for the evaluation of the bias approximations of all estimators and also to construct the

Edgeworth expansions in this setting.

Theorem 3.3.1 Given that z; ~ 1idD (0, 1) and non-symmetric, and for i, 75,k € {u, o, 0,7, 5}
unless the parameter p is used separately to underline the difference, the following

moments of the log-likelihood derivatives converge to finite limits as T — oo:

cij = 1B (Lij) = —37ij,
cije = 7B (Lije) = =5 (Tojje + Tikg + Tjki — Tijh)
cijk = 7B (Lifly) = =% {Tii,j — (k1 +2) (Tije — Tijjk) | »

Cup = 7B (Lop) = — (T +754),

Cipp = %E (Lipp) =70 — % (Tiyun + 2T iy = Tpjin) »
Cupp = %E (L) = _% (37uu,u - Ti) + 37y,
475 — (Ka +2) (Tipp — Tipp)
75+ 2mEh 4 2mg (270, 7R )
Cip,j = pkguly) = — % {— (Ka +2) (Tipj = Tig) + ik + 2“375} )

Cui = 1B (Lypls) = =5 {_ (Fa +2) (T = i) + 755 + 4"5372p} ;

= (ka4 2) (Tiju = Tig) + Tiy + 2755

Ciju = 7B (LijLy) = =1 L :
+2kK3 (ZTM — Tij)
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87 — (K +2) (T — Ty

+ 27' Wt 2K3 (37‘,’}# — TZM)

=

Cpp,pp = %E (Lpply) = — o

T i
where i = £ 30y B (hei), Tig = % Y o1—1 B (heihueg) s Tijk = 5 31— B (hijha)
and Tijk = % 31—y B (hyihuih).

—_ 15T 1 — _ 1T 1
Also, T =7, F (ht>’ and T =7y, 1 F (hthtﬂ)7

while T, ;= TZ ZE [(22 = 1) hephuiheg) , T30 = 230 F (Zs\/%ht;iht;» ,

s<t

=T Zt 1 ( ht lhtw) and 7' % 25:1 E ( 1ht h’t;i,u)-

ﬂ

Proof. Given in the Appendix B.5. O

In order to calculate the bias approximations, we need to find expressions for the ¢/, Cijk
and cj;, ;. Let us first consider the case when the mean parameter is supposed to be equal
to zero and not estimated. With techniques of McCullagh (1986) [68], the standardized
estimators, derived from choosing 6 to solve £; (w, ) = 0, for i € {a,0,~, 3}, have the

following stochastic expansion”:

~ . Il ij ki mn 1
\/T{goi—cpi}%—cJZj—i—ﬁ{cjc ZZy = cickle cjlnzkzm/z}Jrop =) (36
where
Zj = T71/2£j

and

Zji, =T {Ljr — E (L)}

are evaluated at the true parameters and are jointly asymptotically normal. Raising

pairs of indices signifies components from the matrix inversion.

Taking expectations of the right-hand side in (3.6), we get:

1 g
~ —Uic”ckl {Cij + Cjki (k1 +2) /4},

VT

"We make use of the summation convention, that is: ¢/ Z; = E ¢ Zj , in which repeated indices in

E [\/TU' {® (1) - w}]

J
an expression are to be summed over.
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where v is the 4 x 1 parameter vector. If k4 = 0, QML equals ML and then the above
formula equals the one of Cox and Snell (1968) [28], i.e.:

~ 1 g 1
E VTV (@) — ¢} = ﬁvz‘cwckl {Cjk,l + QCjk‘l} :

Let us now consider the other case, when the mean parameter is unknown and estimated.
Hence, if we incorporate the effects of estimating u, the stochastic expansions take the
following form:
R R 1 (2. v
VT (% () — @i} = VT {Z: (1) — pi} = it {9z ~ T F 1 2y 2 2

where now i, j, k,l € {«, 0,7, 3, n}. Taking expectations of the right-hand side, we find

the asymptotic bias of the estimators in this case.

In terms of the mean squared error, from (3.6) we have up to Op (%)
2 b,
B [VTv' (% (1) = ]~ —vie (ka +2) /2, (3.7)

which is the asymptotic variance. If we let the remainder to be of O (T*3/ 2), then the
mean squared error is again evaluated by (3.7), with the difference now that there would
be added terms of O (T _1). Of course, as.I' — oo, the mean squared error approaches
the asymptotic variance. In what follows, we present the simulation results and discuss

the bias correction of all estimators.

3.3.4 Simulations

In this section we make a simulation exercise in order to check the adequacy of our
theoretical results and be able to proceed with the bias correction of the estimators. We
draw a random sample of T' = {750, 1500, 3000, 5000, 10000, 25000, 50000} observations
and 500 observations for initialization, under the assumption of normality. We make
50000 replications for sample sizes up to 10000 and 300000 replications for 25000 and
more observations, in order to decrease the Monte Carlo error. The mean parameter
is supposed to be equal to zero and hence is not estimated, so the parameter vector is
(o, B,7,0)". We check the performance of the bias correction mechanism for different sets

of parameter values and we will present the results for three sets, i.e. (0.1,0.9,0.7,—0.4),
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(—0.1,0.9,0.6,—0.2) and (0.5,0.5,0.8,—0.5). The first two sets include values for the
parameters that are close to what is observed from the financial data. We multiply the
bias by T and not /T, i.e. E(T ($ — ¢)), as in this way we keep a constant term in the
bias expressions that is important to distinguish what happens when we increase the

sample size, as the next terms in the expressions will tend to zero, as T" — oc.

The bias correction mechanism is constructed under the specification of two methods.
The first one, called first-step correction, is the classical one, in which we estimate the
model and we retrieve the estimated parameters. Next, we compute the bias expressions
by using the estimates and we are then able to correct the bias of the estimators with

the corresponding values of the bias, i.e.

1
p =~ zbias(p).

Notice that there is nothing to prevent the case of @ being outside the admissible area
(see also Linton, 1997 [65] as well as Iglesias and Linton, 2007 [54]). In such a case we

throw away the random sample and draw a new one.

The second method that we employ, called full-step correction, is a method proposed by

Arvanitis and Demos (2010) [7], in which we solve an optimization problem of the form
1 2
min {@ — ¢ — —bias ((p)} .
) T

In this respect, this method is a multi-step maximization procedure, using numerical
derivatives. This justifies the name of the first method, which is the first step of the multi-
step optimization problem. In this way, the second method incorporates the constraints
that are imposed on the coefficients and as a consequence the corrected estimate of the
EGARCH parameter cannot lie outside the admissible region, i.e. the corrected beta

will be less than one in absolute value.

Figures 3.1 and 3.2 represent the bias correction performance under the normality as-
sumption. For the first set of parameter values (Figure 3.1) we see that the bias correc-
tion works in all cases and the corrected bias of the MLEs tend to zero, as the sample
size increases. For Figure 3.2, the bias correction represents some intervals in which it

behaves well, especially for small sample sizes. The case of the beta coefficient is the
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most ideal in the sense that the bias of the MLE is stabilized in the constant term of its

expression, as T' increases.

When dropping the normality assumption, we run the simulations under the hypothesis
of mixture of normals for standardized random variables (see Figure 3.3 and Figure 3.4).
In fact, the errors are drawn from a normal distribution with mean 0.01 and variance 9,
with probability 0.1, and with probability 0.9 they are drawn from a normal distribution
with mean —0.001 and variance 0.111. In this way, the theoretical mean and variance
of the distribution are 0 and 1, respectively. Notice that with these hyperparameter
values the theoretical skewness and kurtosis of the random errors are 0.0266 and 24.334

respectively, approximately matching the sample counterparts of most financial data.

Figures 3.3 and 3.4 represent two sets of parameter values, in which we have selected
different values of the beta coefficient, i.e. low (0.5) and high (0.9). Figure 3.1 (under
normality) and Figure 3.4 (under mixture of normals) are constructed under the same
set of parameter values and it is interesting to compare between the two cases. As in
the case of normality, we see that in Figure 3.4 the bias correction of the estimators
works in most cases and the results are satisfactory. In Figure 3.3, the corrected bias
is again under the bias of the MLEs, indicating that the theoretical results correct the

bias, under the assumptions made.
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F1GURE 3.1: First- and full-step bias-correction
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applies to all graphs)
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o8

FI1GURE 3.2: First- and full-step bias-correction
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F1GURE 3.3: First- and full-step bias-correction
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FIGURE 3.4: First- and full-step bias-correction
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3.3.5 Theoretical Skewness and the Edgeworth Expansion

This section provides the theoretical skewness and the Edgeworth expansion of the

estimators. After recentering the standardized estimator, we have:

B;

Pi=VT (3;— ;) = Ai +

)

3

where

— ]
Ai = —C]Zj,

with

c, = Cz‘jckl{ijZl_E(ijZl)}, and

D, = —cijcklcmncjln {ZkZm — E(ZkZm)} /2,

where Z; = T™Y2L; and Zj = T-Y2{ L, — E (L;1)} .

Thus, the skewness is given by

skewness ~ F (A“AZZAZ3) + {E (AilAing‘g) + F (BilAigAi3) + F (A“BZQAZ3)} s

1
VT
and generally we have

1

skewness ~ E (Aj, Aj, Agy) + ﬁ

{E (AilAj2Bk3) +F (BilAjzAks) +F (AilszAks)} >

where
E (Ai1Ai2Ai3) = —WiganceiE (Zjl Zj, Zj3) )
E(AyAiyCiy) = 2R BBEBE (75 75, { Zjsks Ziy — E (Zjaks Z15) ]
1 .. .
E (AilAizDi3) = _iclljl012]2czgjsckglscm?)nscj:’,lsn?,E [Zjlzjz {Zk3Zm3 -E (Zk3Zm3)}] .
Now

1
E (Zjl Zj2Zj3) = ﬁﬂ237j17j2,j3/87
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where
ros = E{(:2-1)"}.

The following moments converge to finite limits as T' — oc:

1

1
7B (LiliLly) = ¢ [kosTijk + (ka4 2) (T35 + 750 + T

Cijk =
J 8

Moreover,
EZj Zjy { Zjsks Zis — E (Zjsks Z15) } = CiatsClaksijo + Cir,jsksC.ja ls

and

E [Zj1Zj2 {Zk3Zm3 -E (Zk3Zm3)}] = Cj1,m3Cla.ks Tt Cjy k3 Cja,ms-

For the Edgeworth expansion, we consider a vector P € R* of standardized estimators
that satisfies a joint Edgeworth Expansion. ‘Suppose that the first three mixed cumulants

of P satisfy

b
cum (Pg) /= —=+o (T*1/2> , where b;: bias
VT
cum (P;,Py) = JT +o0 (T ) , where var;: variance
cum (P;, P, Py) = s\l%i +o0 (T_I/Q) ,  where skw;: skewness.

Then for any Borel set B,

A bz 4 4 skwi _
Pr(PeB)= /B Soa ) 1+ 3t (y)+;;kzlwﬂ“k (y) ¢ dy+o (T71/2),

where H; (y) and H;j; (y) are the multivariate Hermite polynomials of first and third

degree.

3.4 Conclusions

In this chapter we study the asymptotic properties of the MLEs and QMLEs in the
EGARCH(1, 1) model of Nelson (1991) [71]. In the current context, we present analytic
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derivatives both of the log-likelihood and the log-variance functions and also their ex-
pected values. We further develop theoretical bias approximations for the estimators of
the model parameters and we find conditions for the second-order stationarity of the log-
variance derivatives. The theoretical results in this chapter can be used to bias-correct
the QMLESs in practice directly. In small or moderate-sized samples, a bias correction

could be appreciable and it is helpful to have a rough estimate of its size.

One might consider the case of the EGARCH-Mean model and employ the results pre-
sented here. It is well known that this model examines an important issue previously
investigated in the economics and finance literature, namely the relation between the
level of market risk and required return. To account for this relation, one might use the

following model (instead of 3.1):

Yt = A+ uy, (3.8)

where A is the risk premium parameter. The justification for including Ah; is pragmatic:
a number of researchers (for example, French; Schwert and Stambaugh 1987 [43] and
Chou 1987 [25]) have found a statistically significant positive relation between condi-
tional variance and excess returns on stock market indices. This idea might exist as
an individual research project. The theoretical results under this new specification are

available upon request by the author of this thesis.

Another interesting topic would be the investigation of necessary and sufficient condi-

tions for the existence and validity of the Edgeworth approximations in this context®.

This chapter is available as a Discussion Paper of Demos and Kyriakopoulou (2010a)

[35];
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Chapter 4

Asymptotic Normality of the
QML Estimators in the
EGARCH(1,1) Model

4.1 Introduction

Over the last years, a lot of considerable attention has been given to the analysis of
conditional heteroskedasticity and more specifically to the theoretical properties of the
estimators in such models. One of the most popular models in applied financial work is
the Exponential GARCH (EGARCH) model of Nelson (1991) [71], for which the inves-
tigation of the asymptotic properties of the estimators still remains unsolved. To model
the returns of speculative assets, it is particularly important to derive the asymptotic
theory and be able then to make statistical inference. While the asymptotic theory
in the ARCH model of Engle (1982) [40] and the GARCH specification of Bollerslev
(1986) [20] has been studied in the papers of Weiss (1986) [90] and, Lee and Hansen
(1994) [61], Lumsdaine (1996) [66], respectively, in the case of the EGARCH model,
only recently Zaffaroni (2009) [91] established the consistency and asymptotic normality
of the Whittle estimates. The paper by Berkes, Horvath and Kokoszka (2003) [14] is a

generalization of the above papers for the GARCH models, under minimal assumptions.

65
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Recently, Hamadeh and Zakoian (2011) [51] established the asymptotic properties of LS

and QML estimators for a class of nonlinear GARCH processes, under mild conditions’.

The procedure most often used for estimating the conditional heteroskedastic models is
the maximization of a likelihood function. The actual implementation of the maximiza-
tion procedure requires an explicit assumption for the conditional density. The most
commonly employed distribution in the literature is the normal; but the assumption
of conditional normality for the standardized innovations is difficult to be justified in
many empirical applications. For this reason, the method that we employ is the quasi-
maximum likelihood estimation (QMLE), by maximizing a Gaussian quasi-log-likelihood
function under the auxiliary assumption of an éid distribution for the standardized in-

novations.

In this chapter we study the asymptotic properties of the quasi-maximum likelihood
estimators in the EGARCH(1,1) process of Nelson (1991) [71]. The EGARCH(1,1)

model is then defined by the equations
Xt = ZtO't (41)

and

logo? = a+ Blogo? i +g(Zi-1), (4.2)

where o € R and |3] < 1. The real-valued function g (Z;) is given by
9(Ze) =2+ 6[1Z| = E 2], (4.3)

where v;0 € R are the parameters for the asymmetries that the model captures. We

also assume throughout this chapter that
{Z;,—00 < i < oo} are independent, identically distributed random variables, (4.4)

with mean zero and variance unity.

'Their proofs follow the same lines as in Francq and Zakoian (2004) [42].
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Straumann and Mikosch (2006) [83] give an almost sure representation of logo? by

recursive substitution, which is

o0

logo} =a(1—B)"+> B (1Zio1k + 6| Z1-k]) - (4.5)
k=0

The notion of invertibility plays an important role in the investigation of the asymptotic
properties of the estimators in time series models. Invertibility is necessary for the
observed likelihood function to be well-behaved asymptotically without exploding nor
converging toward zero for any admissible parameter value. To this end, we provide
below with the result that was obtained by Straumann and Mikosch (2006) [83], which
gives the sufficient condition for the invertibility of the EGARCH(1, 1) model to hold.
This is summarized in the next lemma, but before we give a useful definition, needed

for this lemma:

Definition 4.1 (Straumann and Mikosch 2006 [83], section 2.5). Let (F,d) be a Polish

space equipped with its Borel o-algebra B (E). A map ¢ : E — E is called Lipschitz if

A(g) = sup <W>

z,yeB,x#y

is finite.

Lemma 4.2 (Straumann and Mikosch 2006 [83], p. 2469). Assume 0 < f < 1 and
~Z + 8|Z| > 0 for all Z € R (that is, the squared volatility should be nondecreasing
on the positive real line and nonincreasing on the negative real line). The condition

E A (¢g)] <0, which implies invertibility, is then given by

B2 exp |27 B (VZiak +01Zi1 k)
kzo <0, (4.6)

X (vZo + | Zo]) — B

FE |logmax

where A (¢g) is the Lipschitz coefficient.
For the proof, see Straumann and Mikosch (2006) [83], p. 2468-2469.

Remark. It seems impossible to have an explicit representation for ¢? in terms of
past observations, as the above condition is difficult in practice to be verified. However,

Straumann and Mikosch (2006) [83] end up with a simpler condition in the case of § = 0,
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which is practically feasible; this means that we can verify that there exist invertible

EGARCH models. The last condition is given by the following summarizing result.

Lemma 4.3 (Straumann and Mikosch 2006 [83], p. 2469). In case of 3 =0, the above

condition (4.6) becomes

o
—log2+ <2> E|Zy| + E [log ((7Zo + 6 | Zo|))] < 0.

Remark. If we assume § < 1, the latter implies the above condition.

The invertibility in the EGARCH model has been an.important matter in other papers,
see e.g. Aue, Berkes and Horvath (2006) [8] in which they define as A (z) = log z and the
invertibility implies that A~! (z) exists, in order to solve for o7. In fact, the EGARCH
process is included in the general framework of the Augmented GARCH model, intro-
duced by Duan (1997) [38], for which its asymptotic and dependence properties have
been studied by Aue, Berkes and Horvath (2006) [8], Hormann (2008) [53] and Berkes,
Hormann and Schauer (2010) [15], to state a few papers.

Straumann and Mikosch (2006) [83] showed that in the case of the EGARCH(1,1) se-
quence, (4.1), (4.2) and (4.3) have a unique stationary solution if and only if

18] <1 and E [log" (o +vZy + 8| Zo|)] < oo, (4.7)

where for instance, logTx = log (max {x,1})?. This result can be summarized in the

following Theorem, which is due to Aue, Berkes and Horvath (2006) [8]:

Theorem 4.4 (Theorems 2.1 and 2.3 of Aue, Berkes and Horvath 2006 [8]). (i) Given
the specification of (4.1)-(4.4) and that

E [log* (a4 vZo + 6 | Zo|)] < o0,

B<1, (4.8)

then the infinite sum in eq. (4.5) is absolutely convergent with probability one.
(i) We assume that (4.1)-(4.4) and (4.7) are satisfied. If (4.8) holds, then (4.5) is the
only stationary solution of (4.1) and (4.2).

?See also Aue, Berkes and Horvath (2006) [8].
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Remark. If 5 > 0 and P{(a+~vZyp+ §|Zp|) > 0} = 1, then § < 1 is necessary and
sufficient for the existence of a stationary solution of the EGARCH equations, see, for

instance, Aue, Berkes and Horvath (2006) [8].

Remark. Aue, Berkes and Horvath (2006) [8] presented the general case of A (o7),
specifying by real-valued functions®, where for example A (z) = log (z) in the case of the

EGARCH process.

Remark. Straumann and Mikosch (2006) [83] obtained a stationary approximation to
the log-variance process and its first and second derivatives, with the stochastic recur-
rence equation (SRE)? approach, in order to apply the Ergodic Theorem for sequences
of continuous-valued random functions in a Banach space.. This is really important if
someone wants to tackle the limit properties of the estimators and this arises from the
fact that the log-variance is generally nonstationary because it just represents an es-
timate. A stationary and ergodic sequence when is available, can be used in order to

apply the Ergodic Theorem, which is one of the main devices in this chapter.

Remark. Another paper that deals with the existence of solutions in the general frame-
work of the GARCH specification, is that of Carrasco and Chen (2002) [23]. In their
paper the mixing properties of the sequences are also derived, which yield the weak
convergence as well as the approximation of partial sums of the squares of the observed
process. But the existing theory on dependence structures assumes restrictive moment
and smoothness conditions. This is the main difference between the paper by Aue et
al. (2006) [8] and that of Carrasco and Shen (2002) [23]. The former shows that these

conditions can be weakened to logarithmic moment conditions.
In fact, (4.2) can be defined as a stochastic recurrence equation of the form treated in

Straumann and Mikosch (2006) [83]7, i.e.

loghit1 = go(Xy,loghy)

= a+ ploghs + (vXi + | X¢|) exp (—2_1 log ht) , (4.9)

3The specification of the volatility is given by equation (1.2) in their paper.

*Sufficient conditions for the existence of a stationary solution of this form can be found in Diaconis
and Freedman (1999) [37].

This appoach is a classical one as it was introduced by Bougerol (1993) [21], in which conditions of
Lyapunov type for the existence of a stationary solution are given.
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where the parametric family {gg|0 € ©} of nonnegative functions on R x [0, 00) fulfills
certain regularity conditions. Here, @ € © C R? is the parameter vector of interest, i.e.

0 = (o, 3,7,6)". The process h; is the process defined by the filtered variance, i.e.

log hy = ag + Y9 Z;_1 + 00 | ZF 1| + Bolog he—1,

where Z} = f—ht» and
t

* Qo
Zy =0 log hg = :
0 ) 0g no 1_50

Thus, the filtered variance approximates o7, which is unobserved. Moreover, the initial

values can be shown to be asymptotically irrelevant (see, for instance, Lumsdaine 1996
[66], Lemma 6, p. 587, as well as Dahl and Iglesias 2008 [29], Lemma 1, and Bardet and
Wintenberger 2009 [11], p. 2731). The reader is referred to Straumann and Mikosch
(2006) [83], Theorem 2.8 in p. 2458 and Theorem 2.10 in p. 2459, which are the key
results due to Bougerol (1993) [21] about stationary solutions of SREs used throughout
this chapter.

In the case of the EGARCH(1,1) model, the classical estimation theory considers an
approximate conditional log-likelihood function. Given some proper initial values, we

obtain a good approximation to the conditional Gaussian log-likelihood, as follows:

n

((a, B,7,8| Z 02):—ﬁln(Qw)—lznjlog(ﬁ)—}ZX—tz (4.10)
y Py Vs 0,90 9 2t:1 t 5 - .

2 o
t=1 1

The first order conditions are recursive and consequently do not have explicit solutions.
The likelihood function is derived as though the errors are conditionally normal and is
still maximized at the true parameters. Having specified the log-likelihood function, the

quasi maximum likelihood estimator is then defined as

n

- 1
0, = N0, 4.11
arggleagn; (0) (4.11)

The parameter space is of the form
©=Rx[0,1) x D,

where D = {(7,6)' € R? | y € R, 6 > |7}
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The EGARCH model has gained a lot of considerable attention through the last decade.
More specifically, Surgailis and Viano (2002) [85] studied the covariance structure and
dependence properties of the EGARCH model and they showed that normalized partial
sums of powers of the observed process tend to fractional Brownian motion. Recently,
Berkes, Hormann and Schauer (2010) [15] consider weakly M-dependent processes and
as an example they study the case of the Augmented GARCH sequences that include
also the EGARCH model. Under some technical conditions stated in Hormann (2008)
[53], one can show that Augmented GARCH sequences are weakly M-dependent in LP-
norm with exponentially fast decaying rate. The following definition is-due to Berkes,

Hormann and Schauer (2010) [15]:

Definition 4.5 (Weakly M-dependent process). Let {Yx, k € Z} be a stochastic process,
let p > 1 and let § (m) — 0. We say that {Yx, k € Z} is weakly M-dependent in LP with
rate ¢ (+) if:

(A) For any k € Z, m € N one can find a random variable Yk(m)

with finite p-th moment
such that

HYk = Yk(m)Hp <6 ().

(B) For any disjoint intervals Iy;...,I, (r € N) of integers and any positive integers
mi,...,m,, the vectors {Yj(ml),j € Il} . {}/j(m"),j € Ir} are independent provided

d (I, I}) > max {mg,my} for 1 <k <[<r.

Remark. In Hormann (2008) [53], an approximation of the original random variables is
deduced by an m-dependent sequence (see Lemma 2 in Hormann 2008 [53], p. 548, for the
Lz—approximation). Truncating an infinite series, the new sequence converges now very
fast and hence considering the finite sums will only cause a small error. Consequently,
their method yields sharp convergence rates to the normal law, using a Berry-Essen
bound. It becomes clear that m-dependence, rather than mixing, is the crucial structural

property required in order to study the asymptotics of augmented GARCH variables.

Notation. In the sequel, we assume that K C R? is a compact set. Then C <K , Rd')
denotes the space of continuous RY —valued functions on K , which is endowed with the

supremum norm, i.e.

lwllx =suplo ()],  weC(KR"),
seK
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where |-| denotes the Euclidean norm of the vector w (s).

In this chapter we aim at establishing the asymptotic normality of the QMLESs in the
EGARCH(1, 1) model. Previous research on this topic includes the paper by Straumann
and Mikosch (2006) [83], in which they prove the strong consistency and asymptotic nor-
mality for some asymmetric models, such as the EGARCH model of Nelson (1991) [71]
and the Asymmetric GARCH (AGARCH) model®. But they don’t prove the asymptotic
normality for the EGARCH(1, 1) model, only for the model of a lower order, i.e. for the
case of # = 0. This is presented as a discussion only in the monograph by Straumann
[84]. Moreover, in a recent paper, Zaffaroni (2009) [91] estimates the EGARCH parame-
ters with Whittle methods and the asymptotic distribution theory of these estimators
is established. Furthermore, Dahl and Iglesias (2008) [29] analyzed the limiting proper-
ties, in terms of consistency and asymptotic normality, of the estimated parameters in an
exponential-type model, which is related but in many aspects different to the traditional
EGARCH model of Nelson. The investigation of the asymptotic properties of Nelson’s

model still remains unsolved.

In this chapter for the first time we provide analytic results for the second-order sta-
tionarity in the EGARCH(1,1) process and we give higher-order moment conditions
resulting from this analysis. These results are competitive with previous research, as we
are now able to establish the asymptotic theory for Nelson’s model. We mainly obtain
tractable sufficient conditions that guarantee the integrability of the supremum norms

of the log-variance derivatives, in a neighborhood around the true parameter vector.

The chapter is organized -as follows. First, we present the first and second order
log-likelihood derivatives and the conditions for the second-order stationarity of the
log-variance derivatives. In section 3, we proceed with the asymptotic theory in the
EGARCH(1,1) process and we present our main Theorem. The main analysis and the
proofs of important lemmas are given in Section 4. Last, we conclude. The proofs of

the Theorem and some auxiliary lemmas appear in the Appendix.

bfor further information on the last model the reader is referred to the monograph by Straumann
(2005) [84].
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4.2 The first and second order log-likelihood derivatives
Employing the method of Straumann and Mikosch (2006) [83], it can be found that the
SRE approach is also useful for the treatment of the first and second derivatives of the

h: sequence.

The first order derivatives of the log-likelihood function.

0

1 K gX?2 Ohi/0p3
1, (0) = Lo (0) == st 1) ;
op™ ¥ 2 9) 2;<ht I
) B L[ X? Ohy /0y
o) B G X2 Ohy /08

and

Evaluated at the true parameter value. Let 0y = (ﬁo — %%Zt—l — %50 |Zt_1\):

1 [ Ohy—1/0
Lot = 53 (22 =1) |1+ 20, |

i — [ Ohi_1/0
Lot (00) = §Z(Zt2—1) lnht—1+93tl/ﬁ|eo]v

I ht—1
1 [ LOhy_1/0
Lo B0), = 532 = 1) [sa + 05220
t=1 - -

ot ' Ohy_1/06
Ly (00) = 3 Z (ZE —1) |g(zt—1) + 9@25{%0} .
=1 L -

The second order derivatives of the log-likelihood function. Fori,j € {«,3,7v,d}:

82 1 & X?
618] =3 Z < 1> hiij — Z ht il
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where the log-variance derivatives are given by

1 Ohy
h - = ——,
t he Oi
1 0k [ 1 Ohy 1 9%y
hijj = (5|5 ) ++ 55
he Oi hy Oj hy 010

4.2.1 Second-order stationarity

The existence, stationarity and ergodicity of the second order derivatives of the condi-
tional variance are necessary so that the Taylor expansion of the first order derivatives
of the log-likelihood is validated. Demos and Kyriakopoulou (2010a) [35] provide higher-
order moment conditions for the second-order stationarity of the log-variance derivatives
and products between them. We summarize these conditions in the following Proposi-
tion, which is due to Demos and Kyriakopoulou (2010a) [35] (see also Chapter 3 of this
thesis):

Proposition 4.6. Given

a) |8y — 300E|Z|| < 1

b) |82+ 193 + 103 — 00BeE | 2] + Lo B (Z|2])] < 1

and

oy | 58+ 28078 + 18005 = 570 (78 +305) E (2°) — 38300F | 2]
+3B41000E(Z | Z)) — 80 (03 + 373) E |2

then

the second-order stationarity. of all log-variance derivatives follows.

The proof is given analytically in the paper by Demos and Kyriakopoulou (2010a) [35].

4.3 Asymptotic Theory in the EGARCH(1,1)

In the related literature the EGARCH process has gained a lot of considerable attention
regarding the asymptotic theory of its estimators. At this point, we recall the substantial
work by Straumann and Mikosch (2006) [83], who proved the strong consistency of the
QMLE in the EGARCH(1, 1) model. The next Theorem has been proved in their paper.

Theorem 4.7 (Straumann and Mikosch 2006 [83], Theorem 5.1, p. 2477 ). Let (X;) be

a stationary EGARCH process with parameters 0o = (aw, By, Yo, 00) such that (g, 6o) #
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(0,0). Suppose the distribution of Zy is not concentrated in two points. Let K be a

compact set with 0y € K and such that
E (log [[Aoll ) <0,
where Ay is given by
Ao = max (8,27 exp (—27'm) (vXo + 0| Xo]) — B)

as supg Ao = A (®g), the Lipschitz coefficient, and m = infgcr o (1 — B)_l .
Then, the QMLE §n 18 strongly consistent, i.e.

~ o a.s.
0, = 0o, 1 — 00.

Remark. With the previous Theorem; we define the set K in such an appropriate way
so as to verify the condition E (log|{|Ao||x) < 0, which is the sufficient condition for
the invertibility of the model to hold. The invertibility assures that the nonstationary
log ht can be approximated by the unique stationary solution of the model, which is also

ergodic.

Remark. Zaffaroni (2009) [91] proved the almost sure consistency of the Whittle esti-

mator in the EGARCH process, see for instance Theorem 1 in his paper, p. 192.

Passing to the asymptotic normality of the estimators, which is the main task in this
chapter, first of all, we recall some important assumptions and results from the paper
by Straumann and Mikosch (2006) [83], from the section of the asymptotic normality of

the Quasi Maximum Likelihood Estimator.

Assumption 4.8 (Straumann and Mikosch 2006 [83]). Let
(N1). The assumptions C1-C4 (see Straumann and Mikosch, 2006 [83], p. 2473) which
imply consistency are satisfied and the true parameter 6y lies in the interior of the com-

pact set K.

(N2). The assumptions D1-D3 of Proposition 6.2 in Straumann and Mikosch (2006)

[83] are met so that h; is twice continuously differentiable on K.
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(N3). The following moment conditions hold:
(i)  EZj < oo,

@) B (flog (ko) (60)]") < o0,
(iii)  E|lp]| , < oo

(1v) E||ig|| < oo

(N4). The components of the vector % (Xo, 0(2)) lo—p, are linearly independent random

variables.

Remark. We also assume that the stationarity and ergodicity of (log k)" and (log hy)”
hold, as it has been proved by Straumann and Mikosch (see Propositions 6.1 and 6.2).

Remark. The condition (N3ii) above is given analytically in Lemma 4.13 in this chap-
ter, in which we obtain analytic results for the existence of the squares of the log-variance

derivatives, under their second-order stationarity.

Remark. Hamadeh and Zakoian (2011) [51] in their paper established the asymptotic
normality of the QMLE for a class of nonlinear GARCH processes. Due to the fact that
they employ the traditional method to prove the asymptotic theory, they bound the
expected norm of the third derivative of the log-likelihood uniformly in a neighborhood
of the parameter space (see, for instance, their proof of Theorem 2.2, point iii, in p.
499). In our paper, we omit that point, as we use the Ergodic Theorem for continuous-
valued random functions. This is really useful as we avoid more technical proofs and we
focus only on the uniform boundedness of the second, not the third, derivative of the

log-likelihood function.

Next, we state our results which are shedding light on the asymptotic normality for the
general EGARCH model of order 1. Our contributions are on the bounds and moment
inequalities that must hold in order to establish our Theorem, which appears below. We
are presenting these technical conditions in the following group of assumptions. Before,

some notation that is used:
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Notation. We define § = max (sup (v +6),sup (6 — 7)) : yz + 6 |z| < d|z|, Vz €R,
as in the monograph by Straumann (2005) [84]. Also, let m = inf {ﬁ}

The following technical conditions are sufficient for the asymptotic normality to hold.

Assumption 4.9. Let the model parameters be such that the following conditions are
satisfied:
Condition A.

o)) s 3 250 -

Condition B.

152 1 N
4 16 exp <a1_l8 —m>E l:deXp <i—?55’20|>:| < 1.

Condition C.

g-13° exp [;’ (ozl i F; —m)] E {]ZO‘?’ exp (gl_lﬁcﬂZo\)] < 1.

Condition A is verified by evaluating the expectation under some further distributional

assumption about {Z;} and next redefining the parameter space in such a way in order
the condition A to be satisfied. Nelson (1991) [71] proposed to use the Generalized Error
Distribution (GED) for the errors normalized to have a mean of zero and a variance of
one, which includes the normal distribution as a special case, some more fat tailed than
the normal (e.g. the double exponential) and some more thin tailed (e.g. the uniform).
Using some relations for the gamma function that appear in Davis (1965) [32] and
employing the formula 3.462 #1 in Gradshteyn and Ryzhik (1980) [48], we have the

next result for & positive:

I'[(2+) /v]
(/o)L (G +1)°

E _ 1/v |: 1/’Ui|j

[1Z]exp (k|Z])] = A2 Z kA2 -
7=0

where I'(+) is the gamma function, \ = [2(_2/“)F (1/v) /T (3/v)] 2 is the dispersion of

the distribution and v is a tail-thickness parameter. When v = 2, Z has a standard

normal distribution, for v < 2, the distribution of Z has thicker tails than the normal
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(i.e. when v = 1, Z has a double exponential distribution) and for v > 2, the distribution
of Z has thinner tails than the normal (i.e. for v = oo, Z is uniformly distributed on

the interval [—31/2, 31/2] ). In our analysis we are interested in k = %ﬁg
For a double exponential distribution of the errors (i.e. for v = 1), the condition A

above is satisfied if

1 - _
m5<2\/§ and 3 € (—00,0.16889) U (0.47369, 50) ,

for the EGARCH coefficient to be 0.9 and the o parameter close to-0.1. Under the

normal distribution (i.e. by letting v = 2), we have

1 _ _
ﬂ‘; <2V2 and b€ (—00,0.21645).
The remaining conditions are verified in a similar way.

Theorem 4.10 (Asymptotic Normality of the QMLEs). Under Assumptions 4.8, 4.9
and those of Lemma 4.13 below so that the first derivative of the likelihood function to

have finite variance, the QMLE@ 18 asymptotically normal as n — oo, t.e.
Vi (8- 60) SN (0,F (80) ' G (00) F (60) ) .
where F' (0p) and G (6p) are defined as

Flho) "= — 27 [((mg ho (00))')" (log ho (90))’] :
G(0) = 47'B(Z)—1) B |((ogho(60)))" (logho (90))']

The QMLE has covariance matriz:

Vo= Fy'GoFy ' =47'E (74 — 1) B [((log ho)' (60))” (1og o) (6)] o

A-TE (g 1) (1 — B2 — LE (43 + 62 + 27000 E (Zo | Z0l)) — 28, (1, 1290, |ZO|)) x
{Uo—Wo} ',

where

UU =F |:(]-710gh07 Z07 |ZODT (1,10g h()?ZOa ’ZO|)i| )

T
Wo = (802 |Zol ;8024 E | Zo| ;30 + 00 (Zo |Zol) 30 (Zo 1 Zol) + 00 ) | (1. 7245, 0, B |Za] ) + By x
(1+160E|2Z0) "
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Proof. See Appendix C.3. O

Remark. Berkes, Horvath and Kokoszka (2003) [14] established consistency and as-
ymptotic normality of the QMLE in the GARCH(p, ¢) process under weak assumptions
on the parameters and the distribution of the underlying noise sequence (Theorems 4.1
and 4.2). Their paper is a generalization of the work by Lee and Hansen (1994) [61] and
Lumsdaine (1996) [66] on the GARCH(1, 1) process.

4.4 The Main Analysis

In this section we provide with all the proofs needed in order to-establish the asymptotic
normality of the QMLEs in the EGARCH(1, 1) model, Theorem "Asymptotic Normal-
ity of the QMLEs". The concept of our proof is based on the method developed by
Straumann and Mikosch (2006) [83].

To establish the asymptotic normality of the QMLES, first we develop a Taylor expansion

of the first derivative of the log-likelihood, say L/, evaluated at the estimator, that is
Ly (8n) = L0 (80) + L7 () (B0~ 60)

where [(,, — 09| <

én —6 . The validity of the Taylor expansion is proved by the strong
consistency of the estimator (see for instance Theorem 5.1 in Straumann and Mikosch
2006 [83]). The next step involves the application of the ergodic theorem for sequences
of random functionsin C (K 3 Rd'>, which allows to establish uniform convergence of the
second derivative of the log-likelihood function. The last step is to apply an appropriate
central limit theorem for a - martingale difference sequence, which in our analysis is the
normalized. first order derivative of the log-likelihood, evaluated at the true parameter

value.

4.4.1 CLT of the First Order Derivative

We first start with the central limit theorem for the score functions. This result follows

from a CLT for finite variance stationary ergodic martingale difference sequences (see
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Billingsley 1999 [18], Theorem 18.3). The following lemmas prove the asymptotic nor-
mal distribution for the standardized first order derivative of the log-likelihood function,
see Proposition 4.4.1. The establishment of the central limit theorem for the first deriv-
ative of the log-likelihood function evaluated at the true parameter value represents a

necessary step to prove the asymptotic normal distribution of the QMLE.

After a brief discussion on the classical methodology available to prove the asymptotic
normality, we pass to the application of the Ergodic Theorem in order to obtain the
uniform Strong Law of Large Numbers. We prove the boundedness of the first and
second order derivative of the log-variance process, which implies that the supremum
norm of the second order derivative of the log-likelihood function is finite. This is the

key to prove the asymptotic normality of the QMLES, see for instance Theorem 4.10.

Lemma 4.11 (Martingale Difference Sequence). Let

a) |8y — 560E|Z|| <1 and

b) E ((Zt2 - 1)2> = (¢ < oo hold and define the sequence I;_1 = {Xy_1, X;_2,...} to be
sub-o-algebras of I. Then

{Lit (0p),I;_1} for i = 1,2, 3,4, are martingale difference sequences.

Proof. For each t, L (6g) is measurable Iy, and I;_1 C I. It is also quite trivial to see
that Pr (E (L (60)| ft—1) = 0) = 1. To complete the proof of the Lemma it is sufficient
to verify that E (|Li (0p)]) < oo, for ¢ = 1,2,3,4 (we make use of the Cauchy-Schwarz
Inequality, that is £ |XY] < VEX?EY? and end up with condition b). O

Lemma 4.12 (Bounded Moments). Let 5 = (89 — 370Zi—1 — 560 |Ze-1]).

Define the processes:

Ohi—1/0a
ult(ég) = 1+9821/|607
t—1
Ohi_1/0
ug (6p) = 1Hht1+9821/ﬁ|90,
t—1
Ohi_1/0
u3t(90) = Zt1+‘9(>§21/7|907
t—1
Ohy—1/06

ug (Bo) = g(Z—1) +6; hot 6o -

Given
a) |By — 300E|Z]|| < 1
b) |85 + 573 + 306 — 00BoE | Z] + 300v0E (Z|Z))] < 1
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and

) B0+ 38078 + 38005 — 570 (76 +355) E (2%) — 38560E | Z]
+%ﬁ07050E (Z1Z2]) - 550 (5% + 37(2)) E ‘Z|3

then

E (Juit (00)P) < M;p < o0, forp=1,2,3 and i = 1,2,3, 4.

Proof. Assume that E |Z| is bounded. Higher order moments exist to the extent that

the higher order moments of Z; and |Z;| exist. O

Lemma 4.13 (Square Integrability of the First Order Derivatives). Let
a) |83 + 178 + 105 — 0080 E | Z| + 50070E (Z|Z])] <1 and
b) B (22 ~1)*) = ¢ < o0 hold. Then

L 5as ¢
ﬁﬁft 3 wa as n — 00
where i = 1,2, 3, 4.
Proof. Let
Ohy/0i
= ht
ht ties
2.8 e 2 ,
i—Mi,Q—EOht;i’)ie ) 26{0057775}'
0

Let also 05" = 3 + §78 + 105 — 0080 |Z] + 38070 E (Z |Z]) -

Hence:
1+2(By— 300E|Z|) E (hisa) |0
2 e 2 i 0 2 3 0
W, = E(!ht;a| ) "o =07 ,
E (In? (hy)) lo,
2 g ()| = +2(By — 3008 Z|) E (In.(he) husp) |,
WO (’ t;8 )00_ 1_08* 5
1
ws = E (’htw|2) 60 = 1_798*,
1—-E?|Z
@i = B(lhl’)|, = 1_9£*’

Remark. The conditions from Lemma 4.13 are equivalent with the need of condition

(N3ii) in Straumann (2005) [84], p. 116.
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Proposition 1 (Central Limit Theorem for the Score Functions) Let the assump-

tions of the prev1ous lemmas hold and let the scores be as defined in L;; (00) form.

Having hm ZE (L2 (60) I{|Lit (60)] > 6y/n}) =0 and sup L ZE (L2 (60)) <

t=1 n>1
007
1

NG

for n — oo and © = 1,2, 3,4, where w is defined as in Lemma 4.13.

Ca o) v (0.52)

Proof. By Lemma 4.11, L; (0g), for all 4, is a martingale difference sequence. Further-
more, the results in Lemma 4.13 and the relations specified in the Proposition (the
Lindeberg condition and the uniformity over n of the variance boundedness) correspond
to the conditions of the proof of the CLT for the scores. Therefore; the result of Propo-

sition 1 follows immediately. O

4.4.2 Uniform SLLN of the Second Order Derivative

In this section we provide with the lemmas that are required in order to establish the

uniform convergence of the second order derivative of the log-likelihood.

Proposition 2 (Moments Convergence of the Second Order Derivatives) Let
a)|By (Bo — 300E1Z|)| <1 and
b) |85 + 278 + 305 — 00B0E |Z] + 30070E (Z|Z])| < 1 hold. Then

(2) L (=&l (6) lo=so) 2 33> 0

(0) & (=221 (6) lo=0y) 2 §3 > 0

(©)- & (=21 (0) lo=0, ) > 33 > 0

(d) (=250 (6) Jo=0,) 2 33 > 0

(&) & (=amatn O los, ) © 12

(®) L (=555 (0) lo=ao ) > 15

(8) 2 (= %5l (0) lo=, ) 2> S1s

(8) & (~ a5 n (0) o= ) &> 323

@ 2 (=525t (0) lo=so) »> 31

(5) £ (=%t 0) lo=0y) & Smas, a5 n— oo,

Proof. By applying the ergodic theorem and the results on the existence of moments in

Lemma 4.12, then the proof of Proposition 2 follows. O
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Definition 1 Denote 0y = (g, B9, 7o, 00) . Define the lower and upper values for each

parameter in 0y as

ar, < o < ay; B, < Bo < By,

YL < Y < 0L <do <0y
and the neighborhood N (6y) around 0y as

ap < ap < ay, B < Bo<Bu,7L <% <V
N(GO): )

and 61, < 0g < Oy

for which we have that N (0p) C K.

There are papers in the related literature of an alternative methodology’, which has been
the traditional one over the past decades. The reader is referred to the papers by Lee and
Hansen (1994) [61] and Lumsdaine (1996) [66] for the QMLE in the GARCH(1,1) process.
Using that method, they prove that the second-order derivative of the log-likelihood has
a unique limit function and they also prove that this convergence is uniform as the
second derivative is stochastically equicontinuous which comes from the boundedness of
the third derivatives. When deriving consistency and asymptotic normality, the clas-
sical sufficient condition regarding bounds of the third derivatives of the log-likelihood

function is that
3

7ad

These authors apply the SLLN for stationary and ergodic sequences (see the pointwise

E - sup < 0.

§€N(90)

ergodic theorem, Theorem 3.5.7, in Stout 1974 [82]) and examine the above condition
which- implies that the second derivative satisfies the Lipschitz condition of Andrews
(1992) [4] and hence establish uniform convergence. Jensen and Rahbek (2004a) [58]
noted in p. 645 that the above condition has been reproduced in other papers (see, for
instance, Lumsdaine 1996 [66]) with a misleading way, such that the proofs in those
papers might not be complete. The last holds with an exception of the paper by Berkes,
Horvath and Kokoszka (2003) [14].

"This method utilizes the classic Cramer type conditions, that is central limit theorem for the score,
convergence of the Hessian and uniformly bounded third-order derivatives; see e.g. Lehmann (1999) [62].
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In order to establish the almost sure equicontinuity of the second derivatives of the
log-likelihood, Lumsdaine (1996) [66], Lee and Hansen (1994) [61] and Berkes, Horvdth
and Kokoszka (2003) [14] stochastically bound the third derivatives. Such computations
however can be avoided when the Ergodic Theorem for random elements with values in

a separable Banach space is applied.

Straumann and Mikosch (2006) [83] suggest a simpler method that is based on the
ergodic theorem for C (K, Rd/> —valued sequences of random variables and requires
that the stationary sequence is ergodic and has a bounded expected norm®. This result
is summarized in the following Theorem and we refer to Ranga Rao (1962) [76] for its

proof.

Theorem 4.14 (Theorem 2.7 of Straumann and Mikosch 2006 [83]). Let (v:) be a
stationary ergodic sequence of random elements with values in C(K, ]Rd'). Then the

uniform SLLN is implied by E ||vo|| x < o0.

To what follows, we denote by ||A]| the Frobenius norm of a matrix A = (a;;) € R4,

defined by
1/2

d
Al ={ > ai

Bg=1
The following inequality, which is valid for the Frobenius norm, is useful in our analysis.

If x,y € C (K , Rd), then the Frobenius norm of the matrix xy” is bounded by

lxy (| o < Nl N1yl -

In the sequel, we first prove the existence of the expected sup-norm of the first order
derivative of the log-variance function, see Lemma.4.18 For this scope, we provide with
useful lemmas in which we consider the higher order dependence in the EGARCH process
in such a way so as to find accurate moment estimates and verify the moment conditions

needed in the proof of our main Theorem 4.10.

Notation. As already stated, 6 = max (sup (y +6),sup (6 — 7)) : vz + §|z| < & |x],

Vz € R and m = inf {ﬁ} .Let also ¢ be a constant that is equal to %2flgexp (—2*1m)

(otherwise, it will be defined properly).

8For further analysis, see the paper by Ranga Rao (1962).
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Lemma 4.15. If E [(|Zo| 0¢)] < o0 and 2715 exp (2*1 [(% — m)]) (E | Zo| exp (%ﬁg\ZoD) =

-B)
q* < 1, then
o0 k—1
ZE g1 H 1+ c\Xt_i|]] < 00
k=1 i=1
Proof. See Appendix C.1. d

Remark. The previous result uses the important Lemmas C.1 and C.2 from the Ap-

pendix.

Lemma 4.16. If E |Zg exp [% ng < oo and
2715 exp (2*1 [( & )D (E]Z0|exp <%ﬁ5|20\)> gl 1 then

ij

k=1

k-1
<5k_1 H [L+c \th|]> |Xt—k|]
i=1

is finite.
Proof. See Appendix C.1. O

Remark. The previous result makes use of the following dependence property:
D Xl 1 Xkl = (1 Xoa| + 1 X2l + o+ [ Xy—pp1]) [ Ko

is bounded from the higher dependence, which is between | X; 11| and |X;_x|. Hence:

£ 1
S Xl Xkl < (k= 1) [ Xy pega| [ Xkl

=1

Lemma 4.17. If the conditions of Lemma 4.15 are satisfied and moreover
E|Zyexp (36| Zol)| < o0,
B exp (ﬁa) E <|Z0| exp (%ﬁﬂZﬂ)) =q¢" <1,
exp (ﬁa) E (’exp {3012} ZO|) =q¢ <1land E ‘exp{% (ﬁ + 1) 5|Zg|} Zg‘ <
w?
then

o0

> E

k=1

k—1
<B’“‘1 e c|Xt,-u> [log he—|

=1
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Proof. See Appendix C.1. O

Remark. The following result is important in order to prove the previous lemma:

o0
ZE
k=1

k—1 )
(ﬁk_l ]+ c|Xt_i]) |log ht_k|] <> E

i=1 k=1

k—1
(ﬁk‘l [T+ |Xt_i|]> llog ht|] :
=1

by backward substitution of log h;.

Remark. The Lemmas C.4, C.5, C.6, C.7 and C.8 from the Appendix are useful to

prove the previous lemma.

Lemma 4.18 (Boundedness of the expected value of the sup-norm of the first order
derivative). Suppose the conditions imposed in Straumann (2005) [84], section 5.7.2.9 If
the conditions imposed to the previous Lemmas 4.15, 4.16 and 4.17 hold,

then E H(log ht)/HK < 00, where K is a compact set of the parameter space.
Proof. Differentiation with respect to @ of both sides of

log ht11 = a4+ Blog hy + (v Xy + 9 | X¢|) exp (—2_1 log ht) ,

leads to
(IOg ht+1), = At (log ht)/ + Bt, (412)
where
dlog hiiq X, -1
A 2 S = 9 X X —271
t D18 B (v X+ 01 X¢]) exp ( og hy),
log h
By = Log_et—ﬂ = (1, log hy, Xt exp (—2_1 log ht) , | Xi| exp (—2_1 log ht)) :

The eq. (4.12) is linear and due to this fact, its unique stationary ergodic solution has

the representation

0o k—1
(log ht), = Z ( At—i) Bt—k a.s.
1

k=1 \1i=

9These conditions refer to the proof of a contractive SRE needed for the application of the Theorem
2.6.4., in Straumann (2005) [84].
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Noticing that || Bl < ¢1 (1 + | X¢| + |log he|) for some constant ¢; > 0 and applying the

triangle inequality to the latter representation, we get
0 k—1
[(log he)'[| ¢ < 1 Z <H HAt—i”K> (1 + [ Xe—k| + [log hy—gl) -
k=1 \i=1

We also have that

4d < g+ 2Bl ew (-2 'm) m =it {

< B [1 + lz*lngtleXp (—21m)] ;

B

and hence, that

k—1 k—1 1
T4l < 8%V ] [1 + 2215 e (—2—1m>] .
=1

i=1
Using the above inequalities, we obtain

E||(loghy)'|| < 1 E

B k—1
Z (5%—1) H [T C|Xti|]> (14 | X¢—g| + |log ht—k|)] )

k=1 =1

where

= ;2_1(56Xp (—2_1m) .

We need to bound the next three elements, i.e. find the appropriate conditions in order
(o)

these terms to be finite and then apply the Minkowski inequality to the infinite sum Z,

k=1
that is:
k=1
E ﬂ(k‘_l)H[l—i—dXt_iH],
L i=1
[ o0 k-1
B Z( (k=1) H 1—|—c\Xt_i|]> ]th]] and
Lk=1 =1
[ oo k—1
E Z( DI +elxe Z|]> |loght_k|].
k=1 =1

We then make use of Lemmas 4.15, 4.16 and 4.17 for each of the above terms and this

completes the proof. O
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Next, we proceed with the finiteness of the sup-norm of the second order derivative of
the log-variance function. To do so, we first calculate the following bounds that are

useful for the remaining analysis. Recall that

0o 7j—1
|togn) | <er |3 (ﬁ” [T+ |Xt_iu> (1+ [ Xe—j| + log )
j=1 i=1

Hence,

00 k—1 2
0o (k-1 = L+c| Xy Zs 1| oy
B Z(H ||A“-||) |zt_k|at_kH(loght_k)'!\] Lot ;(ﬁ I el ”) lon |

k=1 \i=1
X (I + | X—g| + [log hi—x|)
(4.13)

by backward substitution of (log ht),. Moreover, we have that

n

IN

E

o |

i <k1:[1 IIAtiII> | Be—k|

k=1 \i=1

oo k—1
S T Al (1 41X + log htk|)n]
e i1
oo k=1

> [T 14"

k=11i=1

IN

ClE

IN

crl [27 + 227 (| X" + [log he—i,|T)]

making use of the following inequality:

(z+y)" <27 (2" +y").
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Hence
2 © - 2
|togny|" < [ (H A 1|) 1Bel
k=1 \i=1

[co k—1

< a Z [ (1+|th’+|10ghtkl)2]
Lk=1i1=1
[ oo k-1

< o | D TT HAil| [4+4 16 (1Xerf? +llog byl |
Lk=1 i=1
[ oo k—1

< ¢ ZH il 1+ 4 (1 X0l + flog o) |
lk=1 i=1

oo k—1 00 k—1
where ST 14il? = 3 @8V ]] (1+c|X,H|2>
k=1 i=1 k=1 i=1
1 =
and ¢ = —=0 exp(—m) (see Lemma C.9).
(28)°
Thus

(o)

k—1
- . (H ||Ati||3) | Zs k| ot
H | Ae=ill | 1Z1—k| o4 || (108 Py—ic) H <ab | 5\

X [1 +4 (]Xt,kIQ + |log ht,k\zﬂ
(4.14)

2|51

k=1

We provide below with useful lemmas that are important to prove the second main

result, Lemma 4.23. Let the following:
Lemma 4.19. If E (| Zg|expd|Zp|) < oo and
15 exp( ‘ﬁ—m)E{ZOexp< 5|Z0|)} =q% < 1, then

[e'9) k—1 2
Y E <5k_1H[1+cXt_i|]> \Zs k| o | < o0
k=1

i=1
Proof. See Appendix C.2. O

Lemma 4.20. If E (Zg exp3|Zo\) < 00 and ¢* < 1 (see Lemma 4.19), then

00 k—1 2
Y E (,Bkl [T+ !Xt—iH) 1 Zt—k| otk [ Xi—k]
k=1 i=1

is finite.

Proof. See Appendix C.2. O
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Lemma 4.21. If the conditions of Lemma 4.19 are satisfied and moreover

E [|Zo|exp (36| Z0])] < o0, E [Z3 exp (8] Zo])] < o0

exp <( lﬁ)a) E[Zexp (6]Z0])] = ¢ <1, E [\Z0|exp [(ﬁ %) B |Z0|H < 00 and
exp (Lﬁ ) Z0 exp 5]Z0|)} =q¢f <1,

then

k—1 2
E <5k_1 H [1+c Xt—i“) | Zt—k| o—k [log he—j| | < o0

Proof. See Appendix C.2. O

Lemma 4.22. Let E (|Zo|expd|Zo|) < oo
1 exp |3 (arts —m) | B 120 exp (31258 1200) | = @ < 1, B |12 exp (331 01) | <

oo (see Appendixz A2 for all conditions),

then -
Z (H | A~ zH) | Ze—i| ov—k ||(log he—)'|| ]
k=
is finite.
Proof. See Appendix C.2. O

Lemma 4.23 (Boundedness of the expected value of the sup-norm of the second order
derivative). Suppose all the conditions of the previous Lemmas 4.19, 4.20, 4.21 and
4.22 hold. Moreover; if the conditions imposed to Lemmas 4.15, 4.16 and 4.17 are also
satisﬁed

|| o <50
Proof. Differentiation of (4.12) with respect to € yields

" /
(lOg ht+1) = ( log ht + Bt)

AT A, N ,
= S (loghy) + 5t (uoght)) (1og )
+At (loght) +W+ 8

= At (IOg ht)u + Ct,

(1 ghe)
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where

_ aA? ! 0A; NT ' 0By 8B;-F ’
Cr = Z(logh) + 5t ((loghy)) (loghy) + St + 5 (log )

= (0, 2, —X; exp (—2_1 log ht) , — | X¢| exp (—2_1 log ht))T (log ht)/

! T 7
+471 (vX¢ + 0| X¢|) exp (—2_1 log ht) ((log ht) ) (log ht)

[0 1 00|
0 log Ry 0 0
_|_
0 Xiexp (—2_1loght) 0 0
| 0 | Xifexp (—27'loghs) 0.0 |
We can write
C; = —exp (—2*1 log ht) (O, ~2/exp (—2*1 log ht) , X, \Xt\)T (log ht)/

ANT
47 (7Xy + 6| Xy|) exp (=2 log hy) ((1og hio1) ) (log he_1)’

0 1 0
0 log hy 0
0 Xiexp (—2*1 log ht) 0
| 0 | Xi|exp (=27 'logh:) O

o O O

Starting point for establishing E H(log ht)”H ;¢ < 00 is the almost sure representation

00 k—1
(loghs)” = Z ( At—i) Ci—k-
1

k=1 \i=

By means of the inequality nyTH < ||lz|| lly|| and the Frobenius norm, i.e. ||A| =

g 1/2
Z afj , we -have that
ig=1
2
ICHl < erlea+2]Xy]) |(loghe)'| + c3 | Xe| |(log he)'|” + e (1 4 | X¢| + [log he])
* * 2
< ] + e | Xy U(log ht)/‘ + ‘(Ioght)" ] + 3 (14 | X¢| + |log hye)

where the constants ¢y, ...c3, c], ... define generic positive constants that take many dif-

ferent values.
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Hence

Josn” <i(HuAt u) i+ 3 Xial [|[Qoghe—s)'| + | log heor ]

k=1 +e3 (L4 [ Xk + [log hy—gl)

We need to bound the next three elements, i.e. find the appropriate conditions in order
o0

these terms to be finite and then apply the Minkowski inequality to the infinite sum Z,

k=1
that is(;o . 1
G FE Z (H | A zH)] < dFE Z (ﬂk_l H 1 +c]Xt_iH>]: as in the proof in the
first okrdér derivative, i.e. Lemma 164:&5, .
[ oo k—1
GE Y (H |At_i|]> | X k] [H(loght_k)’H + Haoght_k)/”ﬂ
k=1 \i=1
o0 k—1
=k Z (H ’At—iH> | Zt—k| otk [H(log htfk)/” . H(log ht~k),||2}] ; where we have,
k=1 \i=1

for instance, two components:

00 k—1
1) E|D (H ||AH-||> | Zy—| 04—, || (log ht_k)’H] (see Lemmas 4.19, 4.20 and 4.21)
k=1 \i=1
L Z (H | A¢— z||> | Zy—k] 011 || (log he—)'|| ] (see Lemma 4.22) and
:1
00 -1
csE Z H | A z”) (14 | Xi—] + |log htk|)] : as in the proof in the first order deriv-
k=1 \i=1

ative, i.e. Lemmas 4:15, 4.16 and 4.17.
This concludes the proof of the Lemma. O
The last step.in our analysis is the following Lemma which provides moment estimates

that are necessary in order to prove the asymptotic normality of the estimators, i.e.

Theorem 4.10.

Lemma 4.24. Under the conditions of Lemma 4.23, we have that

1 1
E HXEE [(log ht)'}T [(log hy)'] H <oo and E Htht (log hy)"|| < oo. (4.15)
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Proof. The second order derivative of the log-likelihood is given by:

0° Xt " 1 Xt2 nT /
W@le @) = <ht - > (log hy)” — 2y [(log hy)']" (log hy)" =
_ 1 AXt2 " 1 " 1 XtQ nT P

S 1XP |- (L) (Lom) 4 (L 22, | _1 (1L on) (Lo (110 1x21 (1o
£ hooi ) \ 705 n) o5 | T2 \mai ) \Rioy )T an: Gio; t 7 \ 7 i

where
1 Ohy 1 Ohy 1 0hy 1 8%hy
1 r_ =Y 1 "= [ £ A% T aas
(log hy) o (log ht) (ht Y (ht a]) hy 0i0j

Hence, applying the triangle inequality to eq. (4.16) and next the Holder inequality

implies:

g <% (/|5

Thus, to prove Ef HX2 L (log ht)"H < oo it suffices to show that HXE,%H < 0o and then

) ltogh)”] + || 22

| [og o)) [tog ko)) )

use the Cauchy-Schwarz inequality to obtain the desired result. This is also the case for

E || X2 [00gho)]) " [(log ho)']|| if and only if £2{|[(1og ho)']" [(log ho)']

We have that

where h%nf = exp (%), o = min of the space of @ and 8 = max of the space of f3.

Hence
1

hin

This completes the proof. O

4.5 Conclusions

This paper studies the asymptotic properties of the quasi-maximum likelihood estima-
tors in the EGARCH(1,1) process. For the first time we give higher-order moment
conditions and we obtain tractable sufficient conditions that guarantee the integrability
of the supremum norms of the log-variance derivatives. Under the Generalized Error
Distribution assumption for the errors, the conditions presented in this chapter are ver-

ified. Our proofs are based on the application of the Ergodic Theorem for continuous
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valued sequences of random functions and our results comprise an extension of the work

by Straumann and Mikosch (2006) [83].

The next step in our analysis is to formulate also the necessary conditions needed for
the asymptotic normality of the QMLE to hold, which might be weaker. We leave this

issue for future research.

This chapter is available as a Discussion Paper of Demos and Kyriakopoulou (2010b)
[36].
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Chapter 5

Conclusions

This thesis has studied the asymptotic expansions of the econometric estimators in two
time series models, the Moving Average (MA) and the Exponential GARCH (EGARCH)
models. To this end, it has addressed primarily two research questions. First, it has
analyzed the finite sample properties of the MM and QML estimators in the MA(1)
model, as well as the QMLEs in the EGARCH(1, 1) process and derived the approximate
distribution of Edgeworth type. Second, it has examined the conditions under which

the QMLEs in the EGARCH(1, 1) are asymptotically normal.

Regarding the first research question, an extension of Sargan’s (1976) [80] results was
necessary so that the second order Edgeworth and Nagar-type expansions of the MM
estimators were derived. Moreover, the first order expansions in Tanaka (1984) [87]
were extended to include terms of second order for the QMLEs. A comparison of the
expansions, either in terms of approximate bias or MSE, reveals that there is not uni-
form superiority of neither of the estimators of the MA parameter and the first or-
der autocorrelation. Next; to the best of our knowledge, analytic derivatives both of
the log-likelihood and the log-variance functions and also their expected values in the
EGARCH(1,1) model are presented for the first time. By developing the theoretical
bias approximations of all estimators, we were then able to bias correct the QMLEs in
practice, under the specification of two methods and compare the simulation results be-
tween them. For given sets of parameters values, the bias correction works satisfactory

for all parameters.

95
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With respect to the second research question, sufficient conditions for the existence of
moments of the log-variance derivatives, evaluated in the true parameter value and also
the integrability of their supremum norms in a neighborhood around the true parameter
vector, in the EGARCH(1, 1) model, were investigated for the first time. In particu-
lar, we extended the work by Straumann and Mikosch (2006) [83] in order to study
the case when the EGARCH coefficient is not zero. The application of the Ergodic
Theorem for continuous valued sequences of random elements was an important tool in
order to establish the asymptotic normality of the QMLESs, avoiding more complicated

calculations.

Future research should investigate the necessary and sufficient conditions for the exis-
tence and validity of the formal Edgeworth expansions that were presented in Chapter 3.
This idea might be interesting to be also applied to the case of the EGARCH-M model,
that was also briefly discussed at the end of Chapter 3.- The EGARCH model has an
substantial impact on finance and such results would be highly appreciated by financial
practitioners, due to the fact that they would approximate the distributions of certain

assets, for example options, and therefore derive higher order independent moments.



Appendix A

Appendix for "Edgeworth and
Moment Approximations: The
Case of MM and QML Estimators
for the MA (1) Models"

A.1 Proof of Theorem 1

As the validity of Theorem 1 is dealt in Sargan (1976) [80] or Bhattacharya and Ghosh
(1978) [16], we proceed with the coefficient derivation. Let us denote by cfz (s) the

characteristic function of . The Taylor series expansion of P is:

l l l
" \ 1 iy 1 . 3
PN A = D fTAA;+ G > FEAA AL+ 0, (07
=0 i,j=0 i,5,k=0
s ) 5,0 62 .. 83
where f' = 87{24 f = WafAj’ and fk = WM’ all evaluated at 0.

Adapting the summation convention, i.e. fYA;A; = Zi =0 fY9A;A;j, the characteristic

function of  is:

exp (isfiA;) exp (£ fi9A;A; _
cfcp(s)/! P ) dF (A) +o(n7h),

exXp (%fZJAZAJAk)

97
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where A = (Ao, ..., Al)/.

Now
1S 52

ii ii 2 o
Qﬁh]AiAj_%(h]AiAj) +0p(TL 1),

exp (lzsfiinAj) — 1+
and

exp (?fijkAiAjAk> =1+ %hijkAiAjAk Fop.(n7h)

Expanding exp (%fiinAj) and exp (%sfijkAiAjAk) around (0, ..., 0)/ the characteristic

function of p becomes:

1S 2

cfe(s) = / [exp (wflAl) (1 + s W9 A A+ —h9F A A Ay ~ é% (hiinAj)2>} dF (A)+o (n_l) )

2y/n 6n
where h/ = \/nf¥ and hik = nfisk,

Setting s (fl, ey fl)/ = z and noticing that

acgii(z) - / idiexp (i2/ A) A (4),
828%25) =" / AiAjexp (i2/ A) dF (4),
g;%ﬁ = —/iAiAjAk exp (z’z/A) dF (4) and

we get

. 9 5
- (8) = _ 15 450%cfa(z) s e 0%cfalz)
f (4) cfal?) 2\/'71h 02,07 Gnh 02020z,

i Jid pylem d*cfal(z)

&n 02;02j021,02m

(app-1)
+o0 (n_l) .
By definition, the characteristic function of A is:

, i 1 .
cfa(z)=exp|icz — S Ci#i%) ~ écijkzizjzk + o CidkmZiZj 2k Zm +o0 (n )
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and expanding exp (ic;2;), exp (—écijkzizjzk), exp (icijkmzﬂjzkzm) up to o (n‘l) we

get

. 1+iciz; — % (cizi)Q + Ticijkmzizjzkzm
ofa(z) = exp <_2Cijzizj> —&cijhzizize + g (cigrzizize) (€izi) D (A7)

— & (cijezizion)’

Employing the above formula we can find the, up to 4 order, derivatives of the char-

acteristic function. Substituting into (app-1) and setting for z; = sf* we get:

2
cfz(s) = exp <—2Cijflf]>
1— i o+ Spcihmf I PRF™ — 55 (e 19 £4)

s2

e I (ef) = 5 (cif?)” +isc; f?

g3

_isppq
Qh $3

X —ﬁicp (ciqfi) — ﬁz’cpq (c,fz) — ﬁz‘cq (cpjfj)

5 (cxif?) (enif7) (eqi F7) (cpi )

—%hpqh” _%csjfj [cqr (cpjfj) + Cpr (qufj) + Cpg (Cijj)]

1
+5 (cgreps + Cpregs + CpgCrs)

with a remainder of o (nil).

However as ¢jj = ngl-) o nfl/%g) + nflcg’) +o0 (nil) there are terms of O (n*1/2) and

@) (n_l), in the exponential. Consequently, we have that

o (caif?) (o) + 555 (cai?) (comn? £¥) = Jreng

N2
32 iy 826(1)]”]” 320(2.) foJ 820(3.) fzf] 54 (61(32) fzf]>
exp ciiftfl ) =exp | ——5—— | |1-— - +
2 2/n 2n 8n

+37 (ewf?) Cond ) = 575 (car ) (ens ) (o %)
i o) o (oS 1) + o (eard) (eni ) (i)

— 507 (=2 (crs 1) (caif?) (G f?) + 5 [ear (paf?) + cor (casf7) + o (s f7)])

_% [CTS (qufj) (ijfj) + Cgs (erfj) (ijfj) + Cps (erfj) (qufj)]

+o(n71)
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and it follows that, with the same order of remainder,

2
cfe(s) = exp <82w2>

e )+ is (2) w?@ _ 2,0 ﬁhpq,y(l)

L+ 550 Q\F g pq
_ o (C(n%g) + ) )

s2 rs 1 (L 1
— S hPah ( ()Cés)‘i’ gn) () () ())

i3 (1) 43 (2) . &3 2) (1 53 1)_(2
—(wa()—ﬁa()— mh”qvé JNORS hpqvm (D 2 ppan D)
_@w(Z) ¢! )+ s-a (1) + hpq (1 5(1) + 12n ( ) g ) 4 %hpqr (1) (1),.)/1()1)

an
2
% +§% (w(2))2 _ 75276” (agl)) _ mag )hpq,.y((]l),y}(}) . g%hpqhm,y( )'Y( )7(1)7(1)

—I-%w@)agl) + %w(z) hpqvél)vgl)

V‘(91) (c((]}ﬂ)%(jl) (}) (1), ) ))

+ Cpg Vr
(1),,(1) 1), 0, 1), (1), (1)

+C7(~?’Yq Yp A Cqs Yr Yp ' A Cps Vr Vg
+&aVal) - 5 (aﬁ)) + 220y + £af) —ifw@afY

s2. (1) (1) (1), (1) (1)

5% 1pq
—5n04 G +2nh‘ Yq Vp a1q

_s? hpq (1),7( )+ hpths

where

W = cﬁ})fifj» (2)_0 b w(3):cl(§-’)fifj

o) = ik o P ka’f’f’“ ay) = el £ 1R
BY = D AW =B B =Dk 4D =B,
R S L P )

2
As now hpq,y( ) () hpqw(l) (2) hpths (1) ( ) — hPIRTS e (1 )C(s), hPARTS (1) (1) — (hpchz)) ’

hpths,yg)cl()}l),ys_l) — RPApTS gs),}/(g) (1 _ <hrsc(1)> <hpq (1)71()1)>’ RPaRTS (1)61(17) (1) _

2
ity Do) = s a0 D  praprs DD, praprsg a0 Dol = (hrayD{0)”

it follows that
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1 2 2)
1+ <2faz(1 = 2naz(1 )+ \}agl) + 1a§1)) &

1 ()+2n (1)+ﬁw(2)+ (3)+4a§1)
1 1 1
+81n(()) +n§2)+2n< ) QL()G11

2 6v/n 2fa3 nd
cfz (s) = exp —%wQ 1 1) @ 1
(-5+%) L sal) + 2na§0> + a{Val ) + 6naé L iaé )
2 Them( ).
FLaWall 4 L (@) 4 Laal)y 1o
+is® (ﬁw@)ag) + 1‘ (Q)agl))
1 1 1)\2
—s8 <7%n (ag )) + 12”@5 )ag )y sin (aé )> )
where
aél) _ ”Y;(ol)hpq’Yél)’ a:(f) _ ’Y,(Jl)hpq”ygg)a aél) st hpqpy(l)7 a(l) 4 hpq”’yél)’yg,l) (1 ),

agl) - ppar. (1)7(1) aél) = hPaps (D (D (1) ( ) ppaprs () (1)

Pq ’ S WA ’.Yq Y qr PS’

n  _ B]E’l)hpq%(ll)j and a&Q) — pBdp () (1)

Inverting the characteristic function of @ term by term, we deduce the corresponding
asymptotic expansion of the density, say g(z) = 5= fj';o exp (—isz) cfy (s) ds, and the

probability function G(m) = Pr[y/n(p — ¢) < m] as n — co. To do so, we use the next

relations:
1 & .
(DOEN= o / (it)re— et gy =
s — o0
1 o .
Ho(2)8(2) = / (it)e /2t gy
Tr — o0
where

1 2 1 [ _ 2
ra —24/2 _ —itz ,—t%/2
o(z) me 5 /_OO e e dt

denotes the standard normal density function, and H,(z) are the Hermite polynomials,

for which we have:
Ho(z) = 1, Hi(z) =2 Hy(z)=2"—1, H3(z)=2"—=32  (app-2)

Hy(z) = 2*—622+3, Hs(z)=2"—-1023+152 etc.

Now the probability function G(m) is given as G(m) = Pr[y/n (¢ — ¢) <m] = ["_g(z)dz.

Employing again the connection between the derivatives of the standard normal and the
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Hermite polynomials we get:
m 1 1 2 m
G(m) = @ (2) = (Lmal’ + Lol + Lal) + o)) 2o (2)

gl 4 ka4 W Lu® g N

B (WY, 1,1 (WY, ( ) (1) = (D) 6 ()

gV L@ g 1Ny 160

6y/n"1 6n 1(1) 24/n"3 o LTI3H2 (%) é (%)
—|—4L (2)a4 —+ 5 w(2)a11
1 1 1) (1 1 1

_ 24na§)+ 2na§0)+ 12na4(1)a§ )+Laé)+ aé)—i— 4na’é)a"(1) crHs () o (

4L (w<2))2 IO CO PR CORINS N COPNC)) L3y
8n 6n 1 11 2n 3 11

~ (de®af? + ﬁw%(”) i (2)6(2)

2
(e (o) o 5 (o)) 2ot (2) 0 (2) o 71) . ona employ-

ing equation (app-2) we finally get the Edgeworth approximation of the distribution

€[3

)

function of \/n (p — ¢), written compactly, as:

G = (3) -0 (3) [ (5) e (5) + s () + 0 (5) 0 (2) ]

where
o = ﬁwél) + %1%2)’ Py \}1/151) b %wgz)7 e fw(l) . %1/19)7

1 1
o - 1 { 3o #2a0) = o160+ S0PV +30al) | g @ (ol +305”)
T 6w

w? 2 w? )

3 [ (a8 +af? +w® + 20() + 20" + (20) + 0f") ]

1) _ »®

¢1 - 3)?7 ¢1 24w2 1) (1)
gy p(ded”)”
w
GRS ' |
_3T
Dz,
e B 10( . i ) —3€], and

agl) +2 (ail) +2a§11)) (agl) +3a§1) ) +4agl) +12 ( () +a(1)> +3(w(2) )

w2

g:

In Sargan (1976) [80] we have that w(® = w®) = 'yg]) =0, a52) =0fori=1,2,3,4 and
1 _ (2 _ (@)

ay; = aj; = ajy = 0. Under these assumptions our coefficients become identical to the

ones in Sargan (1977) [81] (the corrected version of the 1976 paper [80]).
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A.2 Proof of Lemma 1

To easy the notation, let w = 7. Then we would like to find dél), dgl), dél), and d[()Q),
d?), de), and d§2) such that

(9 + o0+ D)
+ ( 62) + w?)w + 11)(2)102 + Y3 w3 Fapwt ¢5w5) y?

= @ fwt () + dPw+ w2y + (@ + it 0 + dP ) g 40 (0

® (w) — ¢ (w)

where y = ﬁ Employing a Taylor series expansion of the right-hand side around y = 0

and equating terms of the same order of y we get:

1 2
a) = v, ) = v, dV =, dP = 42 (uf)
i) =~ df = +w0 Wy,
d:(‘sZ) = _¢3+ <w1 ) ‘f‘l/}o 7

and

(D L) ?
Yy =dy’dy’,  and ¢5—2<d2 )
which are always true.

As ® [w + (dgl) +dYwy wzdg”) ++ (dﬁf) + dPw + w2dS? + dgz)wi”) %] +o(nY)
one can find a standard normal variate, say 2, such that z = w+ (d(()l) + d(ll)w + w2dgl)> ﬁ—i—

(@ + dPw + w2l + dPw?) L o (n7h).

Let w = a +bz+cz? + ez’ +0 (n_l) where the coefficients a, b, ¢, and e are to be
determined. - Then substituting out z, by employing the above formula, letting a =

al® + ﬁa(l) + %a@) and the same for b, ¢, and e, and equating coefficients we get a, b,

(),

¢, and e as functions of the d;

a® =0, o= —dél), a® = dél)dgl) - dé2)

2
p(0) — 1, () — —dgl), b2 — ngl)d(()l) + (dgl)) . dg2)’

=0, M=—d =34 - qP
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Hence

w=—Zd’ + 1 (dfa? - d) + (1 - Ld
1 1) 4(1 2 1 2 ", ;

+ (—ﬁdé ) + % <3d§ )dg ) _ dg ))) 224—% <2 (dg A dg )> 23+0 (n 1) or in terms of

the s

_ Lo
wo = %7% <¢ @Z) ‘HZ’o) (A1)
(oot (o ) 5 ()
+(ﬂy9 (3w +wf? w@%ﬂ)f
(2 (o) o = 5 () =) 2 4o (07

(k)

Hence, employing the connection between the 1/)§-i)8 and the Edgeworth coefficients, a; ",

setting w = © we get the results of Lemma 1:
The first cumulant of w is

" 11 B
P =FEw)= (511)4-2@511))4-%%{()+2a§1)]+0(n 1).

1
fw
Squaring w in (A.1) and taking the expectation we get

1 w@1, 1 2
2\ _ (1) (1) 3 (1) O (1) (1) -1
E(w)_1+2\/ﬁzw2+n4w2 [4(@5 +ay —i—w()—|—2a12)+2a <2a11+a4 )]—l—o(n )

and

w1 1

B2 ¥ %2—2 - [agl) +2 (aél) +al +w® 4 2a§12)>} +o(nl).
Finally,
(1) 1)

o1 (aesa) @), . (@)

W= m ot (@7 460 ) o (n)
and

2
ki = %0‘114 [ M +4aé ) + 12 ( () + a%)) + % (w(2)> ] +o (n—l) '
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A.3 Cumulants needed for p

Ap, Ay, Ay, and A3z can be expressed as

Ly Z?:z Ut—1Ut—2
Ay = 1 Buru—y + 0%ugu—1 +9 Y oo Ul —2 + UpUEn—1 — 992(“31—102)?216:L::)1+92(u2_102)
\/’ﬁ +% [(UO + HU—l) — Up — HUn—l] [(1 + 0) Z?:l Ut—1 = eun_l + 0'11,_1]
>y (uf g —o?) + _92(“311_”2)7219J:tg;t)—1+92(u21—02)

It is obvious that
E(A)) =E (A1) =E(A3)=0, E(42)=o0 (n—l) :

and consequently
co=c1=c3=0, and czzo(n_l).
Hence

=P =0 fori=0123

In terms of second moments, notice that

E (A(Q)) = % (n (1+0)? 02 +20%5% — 20 (1+0) 02> =(14+60)20% - %902,
4
B (4}). = o4
2 2 4, 1 6° 4 (p4 ~1
E (A5} =. 0% +E 2(02+12/<a4+0 (0*+1)| +o(n"),
2 2 16 1
Wi N E(e%2;3g4 _ V(5324—204
Now
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3
where kg = @ and

E (AlAz) = o0 (nil) , FE (AlAg) =0,

193 (1_92) 4 -1

E (A2A3) = EWU K4 + 0 (TL ) L
Hence

2 1 .16
Coo = (1‘*'9)2‘72—59027 co1 =0, 002=E9392+1m303+0(n*1),

1,60+1 _ & _
co3 = (1—1—9)/@303—5992_1_153034-0(71 1), 611:(74—%, 012:0+0(n 1), 013:0,
_ 2.4 l 0° 4 4 -1 _193(1_92) 4 -1

co2 = 0% —I—n 2(92+1)2/€4+(9 +1) o +0(n ), 623,—717(1+92)2 O‘/€4+O(TL )»
cs3 = ot (k +2)—21L04/€ +0(n_1)
33 - 4 n(1+92)2 4 o

For the cubes,

1 F, 1 B
E (A:{)) = %06/‘63 +0 (n 1) e ) (A%) L %9306,%% +0 (n 1) .
E (A§A1) = % (1+0)2c*+0(n7')y, E(A34;) = \/lﬁz (1+6)*00* +0(n7}),
1 -
E(A34) =2-00° + 0 (n7)).
B(4t4s) = 2220V (1) +o (n7Y).
B (A143) =o(n7"),
E (A3A3) = \3502021/ (ud) +o(n7t),
FE (A1A2A3) =0 (nil) .
Finally,
E(4)) = = (146 0% +o(nY).

n
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Now, as F(A;) =0 for all js, we have, up to o (n_l),

Cooo = \/15( + 9) o3 K3, Cool = T (1+ 9) , Co02 = \}52 (1+ 9)2 004, 111 = \/1%0653,
112 = 29\/(:;, c113 = 2\;; (k4 +2), c122 =c123 =0, coz2 = 0\?}6 K3, Co23 = 2\;06 (ka +2).
With some tedious algebra, for the fourth order cumulants, first notice that

B (AY) = 305+ o® (ki + 22»@4 +12) ropnly
EX i, utut,2]4 =3n20% +n [/@4 + 12k40% + 120 ] + O (1) and
E Yo ugue—o] [Gulu_l + 0%ugu_1 + UpUp_1 — 0702(%‘ )422161:?273 R 2)} ’
Further E Y}, Ut’LLt_Q]S [Hulu_l + Quguy F Upup_1 = 9_92( n-19 )—221?;; 1+0( ]

O(1),and F {% [0, wptis o] [ug + Ou_1 =t = Oty ] [(1 + 6) S0 wsq — Oup_1 + ue_ 1]
O(1).

—62 (u%71—02)+26u0u,1+02 (u31—02> :| 2 i

Now E [} 5 utut,2]2 [9u1u1 + 0% ugu_q Funtp_i— 0 (1)

94U4V(6(2))+49208 e 404
() (+7)

:(92+94+1)n08+n922 o+ 0(1).
Also B[S0y s o] {2 [(uo + 0u_1) — tp — Oun 1] [(1+6) S g1 — up 1 + Ou_y]}> =
0(1).

Hence

202 +20* + 1

0*k2 + 120*
. M)

E (A3) =30%° + %08 +66% (360° + 6 + 1)

Now to find E (A?Ag) notice that E (>}, ut_lut_2)3 Sr o upup_o = 6no?E? (u%) +
O (1):and E (3 s Up—1up—2)> Untn_1 = 0.

02( s _1—0 )+92(u 1 02)
(1+6%)

Furthermore, E (31", us_1u;—2)° [ =0 (1) and

E(3 L, ut_lut_g) = [ Ougy,—1 + 0%u? 1+ Oupun_1 + 02,2 u2 1] =0 (1).
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Finally, %E (O ut_lut_g)B [[uo +ue—1 — up — Oup—_1] > ;—q ur—1] = O (1). Hence

E (A?Ag) = %6908,%% +o (n_l) .

To find E (AlA%), first notice that £ ) 5 u1u—2[0> ) , utut_2]3 = Drand

n n 2,2 n—1 n oy
Dot Wt—1Ut—2 [Zt:Q Uiz + 2 4y Ul Zj:t—l—l UJ“J—2]

E 20,2 2 2(,2 2 —r 1) .
—0 = +26 ~1+6 <=
Ouiu_1 + 0%ugu_1 + Uptin_1 — 0 e T (1r;213 S )}
—t
Also B Db Ut—1Ut—2 [Z?:2 upui_g + 2310 ugtiy—o Z?:t-&-l uj“jf2} —0(1)
[ [(wo +Ou—1) — g — O] [(1+0) X7 gy = O 1 + Bu_1]]
=0 Ut—1Ut—2 ) 4o UtUt—2
>t P "
E 2 fi, 2 2 2(.2 2 2 =0(1
—02(u2_,—02)+20uou_1+62(u2 , — 5
|:HU1U_1 + 92u0u_1 + Uptp—1 — 0 (u” - ) (1+u;2u) 1 (u = ):|
Z?zg Ut—1UL—2 Z?:Q UtUt -2
"2 (O M e O 2(.2 2
E [HU1U_1 + Pugu_1 + uptp_1 — 0 O (uhia0 )Jr(ZlT;;)_ﬁG (G )} = 0O(1). Hence

% [(wo + Ou_1) — up — Oup—1] [(1 +6) Z?:l g1 — Oup—1 + Ou_1]
E(A143) =o(n7").
In the same way we find E (D>, , ut_lut_g)Q CHIr utut_2)2 = n260%68 + 4nb%ctky +
2n0%02E? (e3) + 10n6%0® + O (1) and

136% + 240* + 2105 + 6% + 1
(0 + 1)

(46% + 360" + 2) 6°

+20%K3 + 2
’ (6> +1)°

E (A%A%) — 9208—1—%08 Ka|~+o (n_l) .

Finally,

B(48) =30+0)" o+ (140 B () ~3(1+0) o' +12(1+ 070" —12(1+0)° ") 4o (n”).

Consequently, and due to zero mean we get

1+ 6)* ot o8 o8
Co000 = (71)/{4, C1111 = Z (/@21 + 12K4 + 18) , C929922 = ? (94/@21 + 1204/{4 + 1894)
660

(4021‘4,4 + 292/13 + 1292) s C1112 = H%, C1222 = 0

C1122 =

3|9
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with an error of order o (n‘l).

A.4 Expansion of p

As the validity of the approximation is established in Kakizawa (1999) [59], let us con-
centrate on deriving the Edgeworth coefficients. As /n (p — p) = f (Ao, A1, A3, A3) by

(2.2), the first derivatives evaluated at O are

0 _ 1 _ (1+94) 2 £ 1 B,
f _Oa f - (1+02)20_2a f - (1+02)O'2, f —0

The non-zero second order derivatives, evaluated at 0, are

fOO _ i_2(1_9+92) f11:_~1_49 (1+94)
Vi (146%)%62 V(14 62) 0t
2= b 20 13, (1""94) 03 _ L 1
Vi (1+6%)% 04 Vi (146%)% 64 Vi (1+46%) ot
whereas b = \/nf¥, e.g. h% = %, it —49(18;_26)43)4 etc.
Finally, the non-zero third order derivatives, evaluated at 0, are
FooL l2 (260 = 26° +26° + 6% + 1) F002 1 2 F008 _ 32 1-0+ 92)
n (6% +1)° o ’ n(1+46%)° 0t no (146270t
Jait - 324 0 1+ ‘94) R 1 86? R - 180 1+ 04) ’
no(1+6%)" 66 n(1+6)° o6 n(1+62)° o6
123 1 4 133 1(1+ 94) 233 _ 1 2
f L, 47*72" = T P = e
n(1+9)06 n(1+9)06 n(1+0)a
whereas hii*F = nfik e.g ROl = 2(29_2(222:213?54“) etc.
Now from Theorem 1 (Appendix A.1) we have
2
> _ o _(1+67) pov_ (1567 L ) L
T ((1 e B T Y (R P A (RO P

0% + 40* + 6% + 0% +1
(1+06%)°
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Notice that w? is the asymptotic variance of VT (p — p) under the assumption of nor-

mality of the errors.

Further
w® = o) (£1)° + 201112 + 3 (£2)" = 0
and
WO = (£ 26 £ 1A ) (1)
20% (6* + 1 0°
(1+67) (6° +.1)
Next
1) W1, (1) (2 _ g 1=0 W o (1+6Y)
v = ¢y  f ey fO=0, =0°————0oK3, Y] =0
0 01 02 7o (1+92)2 3 1 (1+92)2
@) o (1+0Y) oy 0% (2) 0° . o
= —0 I E— ’y = 3 == 27:’4 + 9 +1 P
71 (1+02)2 2 (1+92) )2 (‘92+1)2 4 ( ) ( +92)
03 (1 — 62
7:(’)1) - 0, 7:(’)2): (1(+92)3)02/<;4.
Also 2 N , 3
660 (1+6 1+6 03 (140
o ST, | (HRESHEUH) 5 o
(14 6°) (14 6%)
) 550" + 460 4 1268 + 460 + 50'2 1 616 4+ 1 (6% + 460% + 65 + 65 + 1)
(45} = KRy 3 +12K/4 8
(0> +1) (0*+1)
4 2
+120 (6 + 6° + 26" + 2) (0;1)7;%
(0°+1)
. 18492+1304+1696+2898+16010+13012+4014+916+1
(0% +1)° ’
02 +40* +0°+0%+1) (0 +1)0
SO it el et § G L P
(0 +1)
2
aff):—2(29—292+203+04+1)70+9 R

6> +1)°"
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50+ 962 + 665 + 90 + 565+ 30513 0(1+0%°
aél) = —4(-0+6%+1) Al —z _z 0 —4 ( 2)5#;:2))
(6°+1) (1+6%)
(1464 +6%(1+6%)°
—4 4 R4,
(1+46°)
aéz) = 0,
as
4 4
W _ 2 pieay OFD o oy LT e g (146
700 \/ﬁ( + + ) (02+1)20 ) Y11 \/ﬁ(1+92)0 K3 (60) (1+92) + y
4 4 2
- 2L6047(1 +0) L = L2V o gy (B €2 "
712 n (1+02)2» 713 NG ( 0) (1+92)2a 723 Jn ( 0) (1+92),
v = 0, for p,g=0,1,2,3.
Next , )
04 +1
al) = 2467 (62 + 46* + 6% + 6% + 1) O +1) )10,
(0 +1)
O 240 + 2362 + 662 4 296* + 1460° + 666% + 1407 + 2908 + 66° + 2300 + 49'* + 3012 4 3
7 >+ 1)°
0% +46" + 6%+ 6° + 1
+2 I K4,
(0*+1)
2 4 6 8 10 12
aél) _d 2(92+4e4+96+98+1) 116° + 96% + 300° + 96 145110 +6°4+1
(6% +1)
(0% +46* + 05+ 0% + 1)
2 ] R4,
(0F+A)
£ 8, 5602 +30° + 80* + 460° + 1665 + 467 + 80% 4 30° + 5010 + 91 + 912 11
: (6> +1)°

(1464 + 6% (1+06%)°
(1+0%)° '

+2K4



Appendix A. Appendix for "Edgeworth and Moment Approximations: MM and
QMLEs for the MA(1)" 112

Further,
(1+ 94 (1+ 6
Bgl) = 2 3 +4 2 )3 002a
(1+6°) 1+9)

1 94
Bgl) = 2 ( + 00? + %9302/@3,
(1+ 02) (1+6%)

(14692 +62 (14 06%)°

6(1) - 1% 52
’ (1+62)" 02 (<o)
and
(1) L (07 40" +0°+ 6% + 1)°
alo = — 2 K4
(6> +1)°
4
1
—20 (0% + 0° + 80" + 30° + 20° + 307 + 80° + 07 + 0'0 + 20'2 + 2) C:}QJF)E;K2
+1
4707+ 110" + 206° + 246° 4 2007 + 1102 + 70 + 0" + 1
(621
Finally,

1 1
a§1) i a§1) - a§2) &

For the zero-mean case, all Edgeworth coefficients are the same as in the non-zero

mean one, apart from afll), agl), a(71), and aél), which now stand as:

R NN LR | 16%(1— 6
(0*+1)° n (6°+1) no(1+6%)
W (= 04) (0462 +1)  0(1+0Y , (140940 (1402’
ag ' =—8 D -4 25/<53—4 o K4,
(ho-02) (146°) (146°)
am__9W+9w+2w@+%8+%w+ﬂ”+1 0% +40* +0° + 0° + 1
7

=4 +2
(0> +1)° @+t

and

O 792 +90* +2260° + 96° + 7610 + 012 + 1 N (1+6%
’ (0> +1)° (1+06?)
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To find the expansion of \/n (i — ) we can apply Theorem 1 with

f(Ag) =4y, fO=1 and fO=f0%=p"=p"0=0y.

Hence the non-zero Edgeworth coefficients are:

w? = (1+9)202, w® = 2002,

o) = (140703 and af’ = (1+0)" o'y

Consequently, the polynomials in the expansion are:

K3 1 )
= —— =—|-24 -3 )
1/}0 6\/’[;7 ¢1 24n, (1 +0)2 K4+ K3l
1 1 1
thy = 76\/5/%’ thg = _472n [1053 g 3/‘64] sy =05 5= 47271”%-

A.5 Expansion of [

For [p| < 0.5 the solution for @ is given in equation (2.6). Hence

o M) 11-Vi—a? (146

flp) =0, R Wiy v (w ) >0,

Pf(p) (=402 =1+6p% 20 (3-6%) (1+6°)°
N T -6

Pf(p) _ o1 =4p%) (1=20) —4p* (1-6p°) — (1 - 4p?)3 S A
ap’ (1 4p2)? (1-62)°

It follows that for § = \/n (5 - 9) we have

w5 0 L 0? N 03 " _
= ];%p)\/ﬁ(p—p)JrZ\l/ﬁ afﬁgp) [\/ﬁ(p—/})erain a;gp) [V (=) +o(n ),

where the cumulants of \/n (p — p), k?, kg, kg and k‘f, are presented in section 2.3.1.

Rl — 29(3—92)(1:92)3’ Rl
(1-6%)

P _ (0-+62+1)(20-202+2034+0"+1) (1) _ 2440165195 +1 0(3) _

1 - (92_"_1)3 9 11 — (1+92)4 5 11 =

Hence Theorem 1 can be applied with f! = (

604 1160%2—50*+6%+1

()

, and ¢
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2(—40-0%+603—1205+607—05—40°+0'0+1) (0+1)>  40(146%)° 5 g2 494 g6 0511 Q

- (02+1)° o (14e?)” B (@41)t T
\/ﬁk‘g, cgll)u = nkrg, and c§2) = cg) = C§21)1 =0.
. 92+494+96+98+1’ W@ g
(1-6%’
LB 2 (—46 — 0% +60° — 120° + 607 — 0% ~ 46° +- 0'° + 1) (6 + 1)?
(104
46 (1 +6%)° PR e RS
B - 4,
(1+62) (1-6?)° " (1=92)2
3 3
oD — 6o (0% + 1) 6" +6°+1 (14 6%).6° (0% 2 a® —,
(6% +1) (1-62)° (1-62)°

412902 — 1060'* 4 3006 — 100'8 + 62°
(LD 3 )
—0 —20% — 0% 4+ 100* + 26° — 46 + 267
( +106% — 69 — 200 — 911 1 29'2 4 2 )
(6% +1) (1-06%)"
504 +40° 4 126 + 400 + 5012 + 016 11
j (1—6%)" e

( 1 — 1062 + 300 = 1066° + 12968 — 216610 )

aél) = —6

—120 (6* + 1) K3

. 0° + 46" +6° +6° + 1 ) _
1 i 2 ’ 1

(1+6%)° (1067
(0 +46* + 65+ 65 +1)°

) a = Oa
(146%) (1-062)° s

o) = 260 (3-6?)

0> +46° +60°+ 2 +1 (9
(1+6) (1-62)°

al) =20 (3 - 6%)
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4 8 1 4\3 3 (1 2\3
S 6p (gt 1) 60 +59 +1 (1406 +40 (146%) &
(0 + 1) (1—6%) (L+6%)" (1—6%)
4 8 4\3 3 2\3
66" +6°+1 20 (3-6%) (L. 0% 071 6%)

al) = —1262(6* +1) (367

(6% +1)% (1 - 6?) (1+62) (1 — 6%)*

(1162 — 50* + 65 + 1) (6% + 40* + 65 + 65 + 1)°
(1+6%)° (1-62)°

aél) = 66"

)

agl) _ 66’41192 —50% + 6% +1 (6> + 460% + 05 + 0% + 1)2

)

6% + 40" + 654 6% + 1)°
(1467 (1-6?)°

I

o= 1)) (1) = 207 3 )7

)

ol = (n11)? (cﬁll))Q _ 407 (3 62) (6% +46* + 65 + 6° + 1)°
(e g2 (1+6%)°

60" + 6% 4 1 (1+6%° +6°(14+6%)° ,
2 3 22+ 2\ 2 2\ 2 K3,
(67 +1)"(1 - 6%) (1+6%)" (1—6%)
60% + 0% +16% +40* +6° + 6% + 1

Y = 60 (0" +1)

(1) 2 (p4 2
a = 1207 (0" +1)(3—0
10 ( )( ) (1_92)6 (1+92)2
3 3
+20 (3 07) (1+6?) Q400 +EU+0) P +at 0400 +1
(1-06%)° (1+62)? ’
a(l)_7(9+92+1)(29—292+293+94+1) g
1 = (1_94) ) 11 =

and

20 (3 — 6%) 0% + 46* + 0° + 6% -1

(1) 2 2 3 4
aiy = —(0+0°+1)(20—20°+20°+6%+1
12 ( )( ) (1_02)4 (1+92)2

For the zero mean case, all Edgeworth coefficients which are different from the coeffi-

cients given above are:

2(1—92)4_4 OL+0M" L, P40 0510541

= @+1)° () (1-60) (16

R4,

2

R3,
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4
n _ 0" +1 p
a;;y = (02 + 1) (1 _ 02), an
o) = —40%(3-0?) 0' +1 62 +40" +0°+ 0% +1

A.6 Expansion of QMLEs

Consider the first order conditions in equation (2.8). Now let g = (gl,gg)/ =
~ - / ~ = o=/
= <\/ﬁ (9 - 0) s/n (i — u)) The Taylor expansion of \} Bg((p ) where Q= (01, 92> =

~ _\/
<0, ﬁ) around the true value ¢ = (61, 92)/ = (0, ,u)/ can be written as:

2

2
1o wie 1 AN
— M. J? ; M. J?
0= Jnae, - < ”Jr\/ﬁ>9"+2\/ﬁkzizl< ﬂ’f*f)”
E M;i1160,0:65, + O, (Tf%) ;
lkz 1

9; (@,0) + Oy (n™

3

P R

- - ¢(p) by by 40 1 ()
where j = 1,2, A;; = E (80 20, ) K=k (ae 90.90, , Mgy = - F 5000:00,90; )
1 [o% 1 93¢ L.
Wij = 5 (agjgg,)i _nAij)a W= (W&c _nKjik), for ¢,5,k = 1,2 and all
derivatives are evaluated at the true values.

Let us define a vector A containing the non-zero elements of ﬁ%, wij, qijk, for

i,7,k = 1,2. ‘As however was = qi22 = ¢222 = 0 (see below) we define A as A =
/ . -
(A1, Az, A3, Ay As, Ag) = (\}38921 \}3%62 w117w12,Q111,(J112> . Solving for 0;, and

j =1,2, as continuously differentiable functions of A, gives:

- 80 L 9%, ( 3
% (AhE — = azl 0A aAbA b + a%: 9A 8AbaA DA,0 Ay A, adede + O (” ’
6
I a ab = abe -3
= ;fA +2fa;h AAb+6 a%:lhj AaAbAc—l—Op(n 2>,
where [ = 62%{?), h?b = g Aa a( A) and h?bc = n% (employing the notation of

Theorem 1).

Now the derivatives can be found by solving the following system of equations, for

J,k=1,2and a,b,c=1,...,6:
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O_Z kfk agja)’

9%9,(0,0) 9g,(0,0) 2
O_Zk 1(\le 1 Jklfl dzjde )fk +Zk 1 dzjdgk fk ﬁZk:lekhaba and

2
83g; (0,0) 9%9;(0,0) . ¢p
hbc Z 079;Y%Y) Z *7_ G,
Z Z jiknFy fE + Z LU DY yw L 96,04 aekf i

k=1 p,l=1 p=1

2 2

1 8g;(0,0) 4p | b 1 - ep 1 0%g;(0,0) b

+Z EZ JklhaCJrZaepa]ekaA fe fk+z EZMJ"?P-’% + 75 ahcon, | %
p=l

k=1 =1

6 fJ(OO be 6 fj 00 a,c abc 1 -
+\f Z S hbe + f Z TR h Z ikh$’¢. Notice that the first two equa

tlonb are as in Tanaka (1984) [87]. Hovvever the third is completely new (Tanaka 1984

[87] is developing a 1% order expansion).

Hence, first consider j = 1 and observe that 89811(40 NS 1, and agl(o 9 =0 fora= 2,...,6.

It follows that
fl=1-0% and fl=f=fl=f=f=0

For j = 2, observe that 892(0 9 =1, and 892(0 I, %A(ZO) = 0 and it follows that

F=0’(1+07, fi=f=f=F=f=0

Applying the same logic and by the notation of Theorem 1 we find that the non-zero

second derivatives for j = 1 are:
Wit = =660 (1—62), h = (1-62),
W2 =207 (1+0) (1 —6%), and h¥* = o (1 +60)* (1 - 6?).
Finally we have
WY = (12 +726%) (1-6%), hi'® = —180 (1 - 6*)*, mi = (1-6%)°,

h?? =20 (1-70) (1+0) (1 —6%), hi** =20% (230 —50%) (1 +6) (1 —6%),
W% =02 (146)2 (1-06%)7, AP =2(1-6%)°, Bi¥ =202 (1+ ) (1-6%)°,

W = o2 (146)2 (1-6%)%, W3 =202 (146) (1 -6%)°,
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and
hi'? = —2(1-0%)(710—-1)(0+1)o% h3*=2(50-2)(0-1)(0+1)°7,

e = 21402 (1-62)%, P =22(1-62)(146), eP=0c2(1+0)7(1-6%)7,

e = 120 (1-0%) (1+0)?, e =60 (1-6>)(1+0)° " =254 (1+6)*(1-6?),

whereas all the other derivatives are 0.

A.7 Cumulants needed for 6

The derivatives of £ (0, u) w.r.t. 0 are:

or " 8ut TR 92y oug\ 2
96 QZt *_‘ﬂz(“taeﬁ(ae
t=1
o°u

836 1 " (9’&75 6ut 2t

a® _(ﬂtz< 693+3<86>892>’

o4 P2ug > Ouy By
o0t a2z< 4+3(89 > 90 a7 )

Noting now that

Ouy Oug_1 ZOO i
% — —Ut—1 — 0 80 = . —hR (—9) 'U/tflfl',
i=0
0%uy Qui—1 ,0%uq - i Oup 1 k -
— = =2 —0 = = 2 E (—0) < > = g i+1) ’U,t_g_i
2 2 3
o0 00 o0 0 “—0
83ut 82Ut71 83Ut,1 > ’L —l— Z + 2 i
S e Bt = . = —6 E (—9) Ut—3—i,
84ut (93’11,15_1 64ut_1 > :
S T, -0 =..= Z i+1)(i+2) G+ 3)(—0) ur_a_s
4 3 4 ’
o0 a0 00 s

it follows that

ouy B ouy 2_ o? O%uy 2_ 9 1+ 62
(&) -0 2(5) v () e

O%uy Ouy B 202 L i+l o 20
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and
PPy Ouy 2 (i 1)(i+2 ; e
v < 003 09) = 0P <Z . -4 (=0) “t3i> (kz_()(‘e)kut—?,—k)]

_ 60%E (i (i + 1)2(z' +2) (gg)iu%_S_i> _ (16?2;22)3'

Hence the expectations of the derivatives evaluated at the true ¢ = (6, ,u)/ are:

ol(p)\ 22l () 1 - Ouy 2__ n
E<89> =0 E( 00> ) ﬁ_lE 90 ;TG

3¢ (o) 3 — Oug\ 0%uy né
E - _°N"E -
(5) - =22 (%) %)~
0% () 1 < uy\ > Ouy Oy 1+ 362
E = —— 3E | — 4F | ——= =—-12n——
( 967 ) 022 (602> N (ae ae3> NTESE
and it follows that
1 (8%(0 1 1 (0% 0
My = E< (2)>= g L E( (;0)>_ WL
n 6 1-49 90 (1-6%)
1 (o4 1+ 367
My = E< (f>> =12 e
n 00 (1-6?)

Now, let us calculate the derivatives of £ (6, ) with respect to the parameter p:

(% 1 < 8’U,t 626 1 - <8Ut> - 8 ut
N (R ke
o g ou’ . Op 0% o
836 3 L 8 8 Ut - 83Ut
DN i D
o 3 (0 ut) Ouy Py 9t ut
At 02; QZaMau ta
where

8ut 8ut_1 > i 1

hid. U _ _ -

o 0 o ;( 0) 5o and

82ut o 83ut . 84’U,t —0

o2 oud  out
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Hence their expectations at the true 6 are:

()0 () i #(5) (%)

It follows that

M22_E<a2£( )>:_( 1 - MmFiE(w(s@)):Q M2222:%E<a4e(¢)

063

Furthermore, the cross derivatives are

825 8ut 8ut " 82Ut
000 (Z B 00 Z_; tou06) e
0ut . 1 Gut A 1 026 _ _
E(@L) R E(m) AN E(awe) — A=l
as
%y _ _Oupa 932%—1 N i (—0)' Qugri 1
oudl o oudl ‘o o (14 6)
<82ut>2 A
opds) — (1+0)F
83ut _ 62%571 - 8311,,5,1 e 1
oudo> 200 0% T (1+0)>
83ut o, _82ut,1 iy 983’&1‘/71 —0— 98311,,5,1 - _—o.
0002 o 00042 0002

We have also

93¢ 82ut But aut O%uy By
2 i = Z R
00 8,u oudl ou?00
where % =0 82ut = 1
op? Topdl  (1+460)*

So, its expected value is

sl 2n 1, ( &) 2
E Mg = —F =
<8,u280> (1+6)P°0 and 22Ty <801802802> (1+0)° 02’

as we have

0“u Ouy Oup O%uy 1
E = El| — — .
<3u2 ae) 0 and <8u fwe) 1507
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Next
83€ 8 Ut aut aut 02ut 83ut
ouoe> o2 Z < dpudb 06 8# d6* M 8,u(902)

3¢ 1 23 ()
E<(9,u892> = 0 and Mo = E<—801801892> 0.

Hence,
il 1 (PL) 1o (0%(0) 2
Mo =F (8,&89) = M2 = EE <8928,LL) =0, Mz = HE < 808,&2 > B (1 + 9)3 o2

Moreover, we calculate the next derivatives

o 1 z’”: <3 Pup Ous o Py Py Oug Py Huy )
opoe® o2 = \"0uae® 90 ' "0pol 08> " Op 96° ' oude®
o 1 Z”: Pu ou, | PuyPuy |, (P Ow P Oy
o206 o2 = \"0u200 06 o 6 dp00 O oo ou2o6?
ot 1 z": Puy duy 0%y Py JOuy Py Ty
O30 o? =\ OpP 90 " " Op? 9pd. " " op 0200 T 0pPa0

and their expected values

4 4
E(ﬁi) 0 D _ g1

Opds® ouoe® (1 +6)*
4 4
E( 6262) = —6#4 as 82ut2 =0 and
o200 (1+0) o200

846 84Ut
E —_— = =
<au3ae> 0 as 5500

Hence,
L 0 o 1
Mg = *E( 3(@)> =0, M= E( 2(¢)> =
n o\ 80°0u 90-0p? (1+0)
L (9% (p)
==, AE =
Mgz n ( D003 ) 0

For the cumulants of v;s , the A;s in terms of Theorem 1, notice that in the max-
imization of the likelihood we have that for any admissible § and p we have that
ur = Yy — p — Buy—1, with vy drawn from the stationary distribution. Hence we

have that the derivatives of the wu/s with respect to the parameters 6 and u are:

)
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Qu = g — 0% = = — YT (—0) w1y, for t > 1 and 28 = 0. L4 =
%t g = 932 (4 1) (<) wpay, for ¢ > 2 and L = Pu — g
P — gl g — Gy =3 (R (_g)iy, 5 for ¢ > 3 and 2 =
& 52 duy Dug— t—1 ‘ 1-(-0)" 52 fok o
T = T =0 G — 1 g% T (—0) = 5, Sy = P = B o,
and Lu — _HEEDEONOTI N1 9Py H(t=1)(=0)" P4 2(4 1) (=0) T (t1) (t42) (=0)" -
1o (146)?2 T Oude? (1+6)3 ’
and 8%5”2 =0.

Hence, adapting the notation of Theorem 1, and as all first order cumulants of the A;s

are 0, we have that.cgl) = 62(2) =0 for ¢ = 1,..,6. The second order cumulants are:

2
1 11 <& > o I Ous
Cg1) = cum(vl,vl):ﬁﬁZE uj (Z “agp_1- 7,> —QAAZE ut—t Jaej
t=1 i=0 j=t+1
_ 1
1—6?
0 _ L1 (ocony _
c1s = cum (v1,v2) = nE (808,u =0
0l 0% (o
cglg) = cum (v1,v3) = E<80 89(2)>_
i 8ut 0 Ut 1 1 " But " 8Ut 2
E AN —_— =
SR 3 E)
n=1n—t
1 0 1 0 1
— 920 , g2(k—1) —2+O<02”)
e e 2 e e O

oL 9%( (i) 1 1 or
654):cum(vl,v4) E<89 898u>_n(1+0)2E<69>:0
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0 1. (0LL()
‘5 = nE (80 903
11 L Oup = BPuy 1 1 L Oy Oug 07 uy
=~ (Z“f Z tae3> U4E<Z 72 00 392>
t=1 t=1

602 1 ]. E ( 8Ut 8ut+k 82ut+k>

(1 - 92)3 ’ not t=1 Ut% k=1 06 o6?

692 n—1n—t n—1n—
- - - 02 k 1 6
o e s VP A 35
1862 1 1 1 ey | 1 1 6% — 9"
= : 3 3+ 12— 2 2 18— 2
(1-6%)"  (1-6%) ™ (1 - 0741 — (8=3) n1-g?)° 1-0
0% +1 62 1
= 6(?;)3 + % (3 —267) ) +0 (n02n>
as
n—t—1 g 2(n—t) p2  p2(n—t) n—1 2 2 Mm—2
7;(02)1: (7’L t 139 +0 9 o Zt92(n_t): 9712_ 9 2+ 0 212
i=0 1-0 [tzg4) riw L= 1-0* (1-(072))
o o_ L WW(@) 115, 0uy ( P 0wy O P P )
e = F <ae 0o ) ot ;“t 90 ; 2on00 00 T op 902 T "M 900
n—1 n—t n—1 n—t
1/ st Oup o gy, 11 1 Ougp ~— O%uypp
— g ¢ F W M) SN — = N "By =0
(1+6)2not & (“t 06 = 06 > notl+ ; (“t 00 —  06”
Now
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m _ 11 ~, du g Puy [ du 2
Cog = na4E (;ut a1 ; <ut 507 + 50
o 11 1 n 282ut 1 1 1 aut
1B () 5§~ gy _ 11 E (UO) Zl 1—02<“—t>
=1 k=1 not(1+0) & 1-6°
L B (uw) 11 E(ud) {4
T A0+ 0 (-6 ot 22+0<*02)
(1+6)(1-16°) n

n n
(1) _ aut aU/t 8ut a Ut
& (ZW (z WA

: (=1 k=1 00 1+ 6)° 02
n—1.n—t
2

= +li - +O(—9">
(140 not(1+6) n

W _ L1 (R~ dux~ [ Pu, (Ou Py
= et <Zutauz( I T
t=1

n—1n—t 3 - -
b o) Oupr, O%upyr\ 1 1E (ud) _
., — 3 E(ut 90 892 ——61+0n 0_4 E E (k‘—l)

t=bk=1 Pt
T, 1 lE (ug) 1”*1 . (n ot 1) 02(n—t) 92 . 92(n—t)
= 1+6n ot 91‘:1 1 — 62 (1_92)2
E(u} 3 B (4
=" 0 i (Zo) 46 6°+0 31 (ZO) + 0™
(1+0)(1-06%" © 1+0)(1-6?)°n o
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(1) _ " 8ut 8 Ut 0ut 0ut 0 Ut 83ut
6 = (Z ;( 9106 90+ ap 06® o002
n—1n—t n—1n-—t
1 1 8ut+k> 1 0wy i
gy S B (v T B
To 1+0 t=1 k=1 =3 iy R 90
1 1
n—1n—t n—1n—t
L, 11
n02 3;14;1 (1+9 tlkl 0% (1+0)*

1 1 20 -1 1
= 624+2(§+0<9”-1).
(1407 no?(1+0) n

2 2 n 9 2 2
o _ 1 90 () B 1 s D, 0“u Oug B n
C33 = nE< 962 n 28 Py nU4E ; Ut 902 + (1 B 02)2
1
n

T—-1T-t n—1n—t 2
11 82Ut 0 Utk Ut +k
+2-— ( Uy Uy ——— |+ 2! 4E Zut 7
no t=1 k=1 90 90 na t=1 k=1
n—1n—t 2 b} n— ln t 2
11 ouy 0" Uk 11 ouy OUgy g
2-—F — 2-—F
' not <t=1 k=1 ( 80) X 00 > ! not (t 1 k=1 ( ) <
_ n
(1-6%)°
6? 1 4 0+60%+1 1 1 1—-60%2+06*
= 27 +33+ ghia = — (=0 +0°+1) u +4_ o 1 +2“4
(1-6?) (1-67) n (1-67) nl—0" (1-6?)
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Finally,
(1) 11 " Quy Ou & 0%u 2
I Y R R ‘
Ca4 ol <t:1 oy 06 +;“tauae>
n 2
111 ou, 1 Bty
S u )y 5 1 1
na—4 (1+9)2 (tZI 69) (1_1_0)3”0-4 (Z Zut>
n 2
111
il B[S
et ()

1 1 2 20 — 1 1
= 4— 4= 4O ="
1+6) 7 no(1-6)0+1) <n )

Hence, the needed cumulants, and employing the notation of Theorem 1, are:

(1) 1 (1) (1) (1) (1) 4 (1) 36% +1
ci{ = , Clog =Cil =¢Cig =0, c;5 =4 ;. Cig =6 ,
11 1_ 62 12 14 16 13 (1 N 92)2 15 (1 _ 02)3

m _ 1 1 o _ LB () a2 1
Co = 3 3y Cog = 4 o G4 = 2 30
0% (1+0) ot (1+0)(1—6%)’ o (1+0)

D) 6 0 E(w) oy_g1 1 @_,70°+3 L1

= - 5 =95 5 = R4,
25 (1 + 0) (1 _ 92)2 0.4 26 0.2 (1 + 9)4 33 (1 _ 02)3 ( 62)2
1 1 1
Cyy = 4(1 +9)47

X 3 3 0 3 0?
oY = i) o = dighm ooy =Bty = 2 (1- 92)37 Ay =6 (3 -26%) (1- 92)47
(3) ) @_ 1 1 (3) AR A )
€23 Mt a2 Cu T 3 1“2 T 2 4
(1+9) (1—06?) 0% (1+0) 1+0)(1-06%)" ©
1 (201 0+06"+1 1 10400
= ’2(—527 iy = —4(=0+06%+1) - +4 4 s
a2 (1 + 6) (1-6%) v a-0)
@, ge -1 |
44 02 (1—6)(0+1)°

From the cg-’)s we need only cﬁ), mainly due to fact that fZ = f} = fi = f2 = fS =0.

3) 02
Hence c( = — .
» “11 (1_92)2

Out of all 3" order cumulants, we only need c111, ¢113, €122 and cia94.
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Vi (1-67)° (1-62)°
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1 202 B(wd) 1 1 B(w) 1 4 92— g2(n—1)2
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140> 1 160> 1 _ 4 e 6* 4 L1
B e R G R O (R (D R O
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In the same logic we get
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(1)

Hence, the needed 37¢ order cumulants, employing the notation of Theorem 1, are:cyy; =

_ (1) _ 196%+8 16 2 2 1 _ 2 1
6(1 02)2 1+937 C113 = (1 92)3+1+93 102 1:6°) 13 (10 )2"147 Ci99 = o2 (116’
M _ a4 1 (2) 2 _ 2 _

€124 = 752 (15g)% and cjy3 = ¢iyp = ¢ipy = O.and

Ef,l—() for the relevant values of 4,7 and k.

From all the 4" order cumulants we only need ¢i111 = F ((v1)4> -3 (011)2 with ¢17 =

7, and ¢ = E ((U2>4) — 3 (c22)*, with cp2 = 0%(14%)2

E2(u 2 E(uj
Now E ((Ul)4> = nig 0(80> T %(1+92)9(1792)2 ‘(740) 2 3(1*192)2 - %(1*192)2

1 1 E(uf) o E(ud)\ 1
+65 <—(1_92)2+ ot 1.g2 _21+93 s T—2

e (1 B(u) 62 2 1 1_ 62
o <194 - O ey ) “gr o (UO)( 51 92+31+"3) w0 gy

—48%(1_9%)3 - 48%# +0 (16 + 0 (n72).

Hence employing the notation of Theorem 1

M 5 1 1 ~ 0 ,( 2 0 767 +3
G = 12 (1—92 1+6° (1-62)"

n 4 n—1
11 1 11 1 11 1
FE 4 _ . ——75 S — N O7< 7775 T—1t
(v2) o8 n2 ( 146 : ut) o8 n (1+ 0)4 (uo) + 604 n? (1+ 0)4 ( )

t= t=1
11 1 E( 4) 1 1 1 13 1 1
= —_—— U, — —_— B ———
oBRA )t S n(1+0)* " “ot(1+0)
and
C(l) 1 71 K
2222 — 4(1+9)4 4-

A.8 Expansion of [

For the validity of the expansion we have that under the assumptions of Lemma 2,

A= (Al,A2,A3,A4,A5,A6)/ is a martingale satisfying all the assumptions of Gotze
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and Hipp (1983 [45], 1994 [46]) and Hall and Horowitz (1996) [49] (see also Corradi and
Iglesias 2008 [27]).

Now applying the results of Theorem 1 (see Appendix A.1) we get: w? = (1 — 92),

K2 _p2)\3
W® = 2 o) = o (1- %) 4 BUEY 0 _ (g gy,

1+6° 4 1462
129(;22)4/@3 (2 - 1+93> +6 (762 +3) (1—6%), oS =20 (1-62), ol =2(20— 1),
~p2\3
AP IRE A a C  Nry
ag’ =6(1—-0%), a;’ =4(=20+6°+6) +2(1—0) ks, ag =2(1—-06%)(0°+3)+
(1-6%)" ka4, ag,1> — 4(=2046%+4) +2(1— 0% ks, alf) = =(1=6%) (76> +8) —
2 s G 2w (1= )%, and o =) = = f? = ) = oY = alf -

0.
Now from Lemma 1 we get that

5 20-1 v’ 1 15
K = NG +o(nt), k:g:w2+ﬁ(9+6)(2—0)+%§g+0(n_1),

2. 0(1—6
where w? =1 — 02, and {2 = 222 z& (1+93) /1% — (1 — 02) K4.

Also

02—0-10(1-6%)° ,

—89+392+13+202_9+1 o k3 — (1—62) Ky,

A _ 92\ (p2 l'é -1
27 Tk 1=6(1=0) (0" +3)+_Li+o(n),

3 3
] 9—02_2(1-6° 1-6?
where &5 = 120179+02 ( Heg) ﬁ;g - (HQQ) /4;421.

To find the expansion of \/n (ft — ) we can apply Theorem 1 with
=407, fl=f=fl=p=r=0

M2 =20%(1+0)(1-6%), h'=02(1+0)*(1-67%).



Appendix A. Appendix for "Edgeworth and Moment Approximations: MM and
QMLEs for the MA(1)" 132

and all other h¥ss = 0 for i,j = 1, ...,6, and the non-zero h"7*/s given by

2 = —2(1-6%)(T0-1)(0+1)0% Rr'™M=2(50-2)(0—1)(0+1)°c>
WIS = s2(140)2(1-62)°, K% =202 (1-062)°(1+0),
plde 2 (1+ 9)2 (1 . 92)2’ h222 _ 19,4 ( . 92) (1 +9)2’

h#2h = 60t (1-0%) (1+0)> r* =20 (1+6)" (1 -62).

(see Appendix A.6) Employing the cumulants from Appendix A.7, the non-zero Edge-

worth coefficients are:
w? = 0% (1+0)?, agl) =F (u}) (1+ 0)3, aél) = ot (1 +0)* Ky,

and it follows that

1 1

Yy = —ﬁ/ﬁ% Py = (5"03 3ka)y |y = mﬂ&
1 1

'1/13 = 72 (10:‘@3 3:‘4/4) ¥ ¢4 = 0, ¢5 = ﬁﬁ%

For p© = 0, we play the above procedure with the difference that now the vector A
is A = (Al,AQ,Ag)/ = (gl,wn,qnl)/. The coefficients which are different from the

—p2)?
above ones are: afll) =20, aél) = —2(0*+8) + 2= 312239(11&3) K3 — 4 (1—6%) Ky,

af? =2(6% +9) +2 (1 —0%) g, and af) =12 +2 (1 - 6%) .

Hence

] 1 3
k?ozﬁeﬁ—o(n 1),

02—0—16(1—06%)°

8+ 2
?—0+1 1+6°

E[\/ﬁ(%—e)}2:1—02+—

mg—(l—HQ)m; ,

k(’o_w+ ~(8-0%) + §2+0( 1,

where w? and 53 given above. Finally, kgo = kzg and k:ZO = k:g as neither of these
cumulants are functions of the Edgeworth coefficients which are different in the non-

(n 1 1) (1)

zero mean case, i.e. ay ', a5, ay ' and ag
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A.9 Expansion of p

With the definition of p let us call m (5) = 1f52 — p, where p is the true value of the

parameter. Then we have that

V- =20 (5 0+ PO [ (- o) et 2O [ (5 0)]

2V g 6n 50
2
with a o(n_l) error. Consequently, we can apply Theorem 1 with f! = ((11+:2))2,
1 _ _o0(3-0%) 1 _ o (1-6%)" a6 AR M _ 5 _p2 3 _
h* = 2(1+02)3, h = —6 (1+92)4 , and gf ==20 F17 ciypo="Ir— 0, 7 =
1-6 3 1 2 1-6
0+ 62( )+§27 c111 (1+93) ’4%7 051)11 . 6( 92) (‘92 +3)+129(i ZJF(Jg ( 1+63) “§+
2
%Hi, and all other cumulants being zero. Hence applying the formulae of Ap-
—2)?
pendix A.1 we get that the non-zero Edgeworth coefficients are: w? = (1-0 )4, w® =
(1+62)
029 10(1-6%)" 5 2 (1- 92) o) (1=0*° 5 (1) _
|:(9+6)(2—9)+202_0+1 116° Iis—(l—e)li ( ) _Wﬁ3’ ay " =
2\ (92 p-02_p (16%)° 5 = (1= 92) (1-0%)" _ 0036 (1-6*)"
(6 (1-6%) (6°+3) + 1260155 S mi + " (1162)* ay) = _QW’

W) _ _g%0=0) (1 gy g0 _ _p00-2) (1—02)4 2 L0 _ _(1=0?)" a0 (1-6°)°

ay " = (1+02)3 as 1463 (1+92)5 k3, Qg = — (1+92)4 (1+92)6)

o _ (1-62)—40? (1-02)° 02(3-6%)* (1-62)" oy () 02(3-0°)° _2\2
a7~ = 6 (1+92)4 (1+92)2’ a X (1+92)6 (1+92)4 (1 0 )’ a9 = = 4 (1+92)6 (1 0 ) ’
1 0(3-62) (1-62 1 1-62 1 0(3—6 1-62)?
ago) = -2 <1+03 ) El+92;9’{’§7 a’gl) = (29 oy 1) ((1+02))27 a’nd a’g2) -2 (§+9 )) (29 - 1) E1+92§2 .

Hence By Lemma 1

5 (1=6)(1+20+306%) (1-6%
vn (1+62)%

(1—06%)° 1 (340 + 23960% — 46° — 2456" — 380° + 696° + 25) (1 — 6°)°

5 2 e L
Elyrn(p=pl- = ) + 0 1)y
019 (1—92)3(2—9+02+93—94)H2_ (1_92)34 |

+
1+ @ -0+1)° °  (1+62)°

SHE

For the zero-mean case, notice that the Edgeworth coefficients that are different from

: C . 2 oe2—0-10(1-0%)" o 2 (1-)°
the ones given above are: w(®) = (8 — 0"+ 2o i N (1—67) Ky ()"
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(1) _ (1= (1) _ o 0°(3-0°) (1-0°)°
ajy = 9(1+92)2, and a5y = () (1) It follows that
/{5:_19(1_92)2
Vi (14 6%)°
and
2 4 6 (1-62)
, (1-02)° 1 2 (320° — 290 +66° + 1) -~
E[\/ﬁ(ﬁo—l))] = —Sat= 2)3 2. p3 4(+) 2\3
(1+92)4 nl _ga—p (1-6)" (2—6+6+6°—6 )’{2_ (1-62) .
(1+62)7(P—a+1)2 . 3 (146%)"

A.10 Useful Formulae for QMLE
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= 4p% 5t
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Appendix B

Appendix for "Bias Correction of
ML and QML Estimators in the
EGARCH(1,1) Model"

B.1 Proof of the unconditional variance

We write the variance equation as follows:

In (ht) =a* + 925i2t—1—i + ’YZﬁi (J2t—1—i| — E|zt—1-4]) ,

=0 =0

where a* = 1%5. Taking the expectation of the exponential of In (ht) we have:

Eexp(lnh;) =exp(a*) E exp [Z?io (Gﬁizt,l,i +96(|zt-1-5] — E |zt,1,i|))] =

= exp(a’) EHGXP 108" 21— + 78" (|21-1-il — Ezi-1-4])] =
i=0

= exp (a*) H Eexp [08'z-1-; + 78" (|zi—1-4| — B |z-1-4])]
i=0

Now,

[T Eexp [08°2-1-i + 48" (|2t-1-i] — E|21-1-4])] =
=0
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o0
= HGXP (—=vE |2t-1-i| B') Eexp [0 21— + ¥B" |z1—1-4]] =
=0

= exp <—%) H Eexp [08"z-1-i + 78" |2t-1-il]
i=0
K1 = 03"

-
ko =B )

Eexp [G,Biz + 78 2| = Eexp[r1z + k2 |2z|]] = \/—1—? 22 exp (kiz + ko |2 — 32%) dz =

]
= \/%7 fgoo exp <—% (—2 (k1 — K2) 2+ 22 + (k1 — /432)2>> dz
d

+ [ exp (-% (—2 (k1 + k) 2 + 22 £ (k1 + m)“")) o

= exp (<3 (<200 = k2 2 4 22 & (11 — k)?) ) dz
+L foexp (—% (—2(n1+ng)z+z2i(m ) ) dz =
= exp (La520) L [0 exp (—4 (2 = (m —m))?) da

@ (= (= ) + exp (L2520) (1 @ (= (1 + 12)) =

)
)
) o ST e (- ) durbexp () A [T exp () du =
)
)

2
O (— (k1 — K2)) + exp (E—lgﬁi) D (k1 + ko) =

LG58 (8 (v = 0)) + exp (LG 0 (8 (7 +9))
— oxp () (=) + exp (T)  (4).

where I' = '6%(7;0)2, L= 62i(72_0)2, A=p(y+0)and B=F"(y—0), and ®(-) is the

cumulative distribution function of the standard normal distribution.

Therefore,

Eexp(qlnhy) = exp(

ayEz)ﬁ( eXP(M)‘I’(ﬁi(’Y*Q)) )

F=8 )\ e (ZG75) 8 (5 (v +0))

= exp(0) [ (exp (8) @ (=) +exp (1) @ (4))
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a—yE|z| ]

where U = T~

B.2 Expected values of the log-likelihood derivatives

The expected values of all first order derivatives are equal to zero.

Second order derivatives:

For i,j € {a,0,v, 8},

T
E(Ly) = —§E(ht;iht;g‘)7
T
E(['uj) = —EE(ht;uht;j)a
1 g
E(L,) = -TE (m) S (hR

Third order derivatives:

For i € {a,0,7,8},
T
FE (['uz) = —EE (3ht;iht;i7i - h?,z) ’

for i € {Q,H,W,B},j € {OZ?H”V’BHU}a

Gl
E (Lij) = —§E (hejheii — Biiheg + 2heihe )

fOI' Za] € {a,@,"}/,ﬁ},k € {04,0,"}/,6,[,6},

T
E (L) = —§E (htyjhesi g + hekhei g + heibeg e — Regheibe, )

for 1 € {a,e,%ﬁ},j € {/’L}7

T 1
E(Lyj) = -5 F (ht;z‘ht;j,j + 2hg;jhe5 — hay (ht;j)2> +TE (hth“) ,

for j € {n},

T 1
E(Ljj5) = =5 B (Shujheg; — hiy) + TE <3hthm> :
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In this Appendix we make a list of the results that are needed for the bias approximations.

Please note that the last Appendix should be studied first in order to be familiarized

with the symbols used.

First, provided that |ﬁ2 + 502 + 372 —YBE |z| + 30vE (2 |z|)‘ < 1, the expected values

of all second order derivatives are:

1.

10.

11.

12.

13.

14.

15.

14+2(8-37E2|) Bia

Second, the expected values of the third order derivatives are:

—_T
E(Lac) = =3 1—(B2+ 10>+ 172 —1BE|z[+307E(2|2]))
_ 1 En(h—1))+(B-37Ez I)LEa+(ﬂ 37E|2|)E.s
- B(Lap) = —3 10 (B2+10°+ 112 —vBE|z|+10vE(212)))
1 =3B (1-E22))| B
E(Lay) = 2 1-(B2+102+ 372 —BE|z|+ 370E(2|2]))
—1[6+vE(2I2))| Ba
L 2 2
E(Lao) = =3 1-(82+76%+ 372 —1BE2|+310E(2(2]))
—(0+vEDNE( L) +(B=21~E|2|)E.u+[0(B—vE|z|)+vBEIE_1 E.q
(L) = 1200 (ﬁ)Q(fi’ B Bt DBl 8BB4
2 1—(B2+202+ 12 —yBE|2|+ 140E(2]2)))
T E(In?(hs—1))+2(B—=372t-1]) LE;g
- B(Lop) = 3 (7 Lo+ B Blals 0B GID)
B (ﬁ ) _ T (B*%’YEM)LEW'%[GE(Z|Z|)+’Y(1*E2|Z‘)]E;B
By T T (P4 165+ 1 APl 390E(12))
1 1
_ 1 _—30#VEGI2)Es+(8—3El2] ) LEy
- BL60) = = 2 {1+ 1rr BB+ FOEGT)
o _B)— _1 .
E(La) =T (eﬂEI)LE_%iEe(ZEle\IB) ﬁvEI]E_l%E;ﬁJr(ﬁ 37Blzl) LB,
1—(82+ 162+ 172 —1BE|2[+370E(2|2]))
T 1-E%7|
E(Lrnf 53 1—(B%+10%+372—YBE|z|+316E(z|2]))
T B(z|2])
B (Lon) = =2 (@ 1075 o 10BGID)
B ):_I*’YEIg(z)E(\/lE> ;[eEi |z\>jv(1 B|2|)] By~ (08— E|z))+7BEDE_y By
iy 2 1-(B2+202+ 192 —BE|2[+ 110 E(2|2]))
L R 1
E(Lop) =% 1= (B3+ 162+ 192 —BE|z|+ 110 E(z]]) )
e g 3 OHBGIED) B(hin) A BIRAB( i ) HOGBIz -5)-BvENE_y By
o) =S 1-(B3+16%+ 142 —1BE|2|+ 310E(2|2]) )
2 1
Bt —TE (L) I @ +72+2~y0E‘I)E(m> —2(«9(6—7E|z\)+76E1)E7%E‘W,
Hp s hi 2 1—(62+%024-i72—76E|z\+%70E(z\z|))
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1. E(Laaa) = —5E (3 (htahtiaa) — hig)

2. E(Laap) = —5E (htghtaa — Biohis + 2hiahia,p)

3. E(Laay) = _%E (htwht;wa - h?;ahtw + th;aht;aﬁ)

4. E(Lano) = =L E (hyohtsan — hiohuo + 2hiahian)

5. E(Luaa) = —5E (htsa,ahi + 2 (htahipa) — hEohi)

6. E(Lsa) = — 5B (huahips + 2hushisga — hsah?s)

7. E(Lapy) = _%E (hthisay + hiyhia,s + hahigy — hephiahiy)

8. E(Lapo) = —5E (highuao + hisalipo + hiohia,s — hualishe)

9. E(Lypa) = _%E (htsahtsgu + hgabau + heghepa — htahu;phe;)
10. E (Euﬁa) = _%E (ht;aht;ﬁ,u + heg ol + heghipa = ht;aht;ﬁht;u)
11. E(Layy) = =2 E (htahir gy + 2heyhtiay — hiahis)
12. E(Lanp) = —%E (htohtiaqy + hiyhtae + hiahiy,o — htahiyhio)
13. B (['aw) = *%E (ht;aht;%u o ht;aht;vht;u & ht;%aht;u + ht;’vht;a,u)
14. B (Lagn) = ~ 5B (hisahung + 2hiohisan — hisahZy)
15. E(Lagu) = =5 E(htahig = hisabeohey + hio.ohiy + heohto)
16. B (Loyn) = — 5B (hahtyip + 2htyubisan — hia (hip)”) + TE (L hia )
17. B (Lagp) = = ZE (3hughus.s — Bh3s)
18. E(Lgpy) = =5 B (2hushins + hinhuiss — Bghey )
19. B (Laso) = =SB (2huphu s + hughusss — hE shio)
20, B (Lgg) = =5 (2B (hushupp) + B (usgphe) = B (h she) )
21. E(Lpyy) = _gE (ht;ﬁht;%v + 2hiyhepy — ht;ﬁhg;’y)
22. E(Lpyo) = _%E (htsohtpy + hiyhipo + haghiy,o — hughiy hio)
23. E (E/J’w) = _%E (ht;ﬁht;%u = heghiyhtyy + iy ghiy + ht;vht;ﬁ,u)

24. B (Lgpy) = —5E (ht;,é’ht;9,9 + 2hiehis0 — ht;ﬁh?ﬁ)
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25. E(Lgop) = — L E (higheou — he.gheohey + hio ghiy + heohes)

26. B (L, ) =~ 5B (hushton + 2gubigs — his (hip)?) + TE (S hss)
27. E(Lyyy) = _%E (3 (Mt htsy ) = (h?;’y))

28. E(Lyy0) = =5 E (hyohtyyy + 2kt i 9 — B huso)

29. E(Lyyu) = —5E (2huy sy — hE by + hagy yhusy)

30. B (Lan) = — 5B (hishios + 2huphusyo — hiyh)

1. E(Lygy) = =5 E (hiyyhisp u — Py hesohiy + Pisg o hisy + rsohie )

32. E(Lyup) = _%E (htwht;mu + 2hghtiy e — htwhiu) +TE (h%ht;7>

33. E (Lop,) = —LE (2ht;9ht;9,# — B2 ghuy + ht;g’ght;u>

34. B (Lop) = ~5E (huohiyug + 2husuhuo o — hioh3,) + TE (hep)

35. E (L) = —5E (Bhehigey — h,) + TE (3h%ht;#) .

B.3 Expected values of the log-variance derivatives

In the current Appendix, we present some of the results for the expected values of the
log-variance derivatives and more specifically those that are needed for the evaluation of
some of the expected values of the third order log-likelihood derivatives of the previous

Appendix, that is:

Assuming first |8% + $0% + 1492 — yBE |z| + 190E (z|2])| < 1 and
B3+ %ﬁQQ — %QSEZ?’ . %7 (EQE |z| — BOE (2 ]z]) + i@zE |z|3) + %72 (ﬂ — %HEZS) — %73E |z|3 <

1, we have:

1VERIE 2+ (5BVE|2|— 372~ 50— 10vE(2|2))) B .3 +(6~37E|2]) Bia o

L B (htahiaa) = 1= (87107 227 —BEI= 1+ 370B(:1:)

1+3(B—%7E|z|)E;a+3(62+%02—&-%72—'yBE|z\+%76‘E(z\z|))E(;Q)2
17[ﬁ3+25027%93Ez37%7(52E\z|f,BGE(z\z|)+%92E|z\3)+%'yQ(57%9Ez3)7é73E|z\3]

2. B (hd,) =

VB2 LE 2 +(82+ 3602+ 37°—BE|2|+3790E(2|2)) ) E(, )2 5+(8—37E|2] ) LE:a o

3. B (hyphyaa) = 1=(B%+30%+ 372 —BE |2+ 5710E(2]2]))

Ea+(B-37El2l)E(, 2+ 17VE|2| Biasa+ (5 BYE|2l = §7° — §0° — 107E(22]) ) E(, 2,5+ (B~ 57E2] ) Eia
1—(B2+ 10>+ 172 —1BE|z[+370E(2|2)))

4. K (ht;aht;a,ﬁ) =
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HOE(:|2)+y(1=Bl2)) B, o2 — 0B (212D +1 (1= Bl2])] Ba,a+ (3 BYBl2l— 292 = 10— 20y E(212)) B 2.,
1—(B2+ 10>+ 172 —1BE|z[+370E(2|2]))

5. F (ht;”/ht;a,a) =

1 0HVEGIDIE 2 = 50V E (12D Bia 0 + (5872l — 577 = §6° = 20VE(2l2))) E( )2,
1—(82+ 26%+ 172 —7BE|2|+ 310E(22]))

7. E (h2ohtg) = —[0+7E(2|2)) Esat(319E|2° ~08+1 (0> +4°) E2* ~ By E(2l2))) B )2 +2(8°+ 36°+ 19 ~1BE| 2|+ 310 E (2121) ) Esase
: talto 1-[6%+260%~10°E23 37 (B2 El2| —BOE (2l2))+ S 02 E|2F7) + 372 (F~ S0E%3 ) — L3 B[]

8. E (ht;aht;aﬂ) =

ivE‘z|E;m0+(3_%7E|z\)E;a’e-y-%[0+yE(z\z|)]E(;Q)2+(iﬁ’YE|Z|—%72—%QQ_iQVE(z‘zD)E(;a)%’
1-(82+ 10>+ 172 —BE|z[+370E(2|2]))

%’YE‘Z|E(;B)2+2E;B+(5*%’YE|Z‘)E;B,B+2(5*%7E|z|)E;a;5+(i57‘zf~1 7%727%sziQ'yE(z\zD)E;a(;B)z
1-(82+ 10>+ 172 —1BElz|+310E(2|2]))

9. E(hyahupp) =

LE;a'i‘(/B_%'YE|Z|)E;0¢;,8+%’YE|Z‘LE;O¢;B+(%5'Y‘Z’5—1 |_%72_é92_%9’yE(Z‘z|))E;a(;5)2+(’8_%’YEIZ‘)LE;Q’6
1-(8°+40°+472—7BElz|+310E(=l2)))

10. FE (ht;ﬁht;a,ﬁ) =

— 1 BJo|LE, 0+ 39 E || LB+ (8~ $7F12]) LB 0 — L (BE|2| - 10B(G12) = $7) Bia B+ & (8vEl2| - 142 10°—0~ B (22|
1-(8%+ 167 +57v2—VBElz|+ 370 E(2|2]) )

11 E (ht;ﬁht;a,’y) ==

DB\ LE a0+ (8= 57E2]) LE;a 0+ 3 (049 E(2]2) Biaia+ § (B1El2l — 377~ 30> —10E(2]2))) Biaspio
1—(B%+362+ 142 —BE|2[+1+0E(2|2]))

12. E (htghtap) =

1VE 12| E5,0+(8—37E|2|) Eip 0+ (B=37EI2]) Biasot § 0+ E(212)) Biop+ 5 (BYE 2| — 572 = §0° —10E(212]) ) Eiasp:0
1=(B2+36°+ 37> ~¥BEl2l+370E(2|z)))

13. B (ht;ahtgﬁ,e) =

L0+ E(2120)) Byass — 3 0+ E(212)) Bia 5+ (B=21B12)) Eraso+ (L BYElzl— 162 — 142~ 190B(22))) Eraspio

14. E (hyphya,p) = 1 (B2 10° + 142 BE[2|+ L10E(z]]))

i’YE\Z|E(;“/)2+(5*%’YE|ZDE;7,W*(5E|Z *%’Y*%BE('ZM))E&XWJF%(B’YEM*%72*%02779E(Z|Z‘))E;a(w)2
1-(B2+ 102 +372—1BElz|+ 310E(2]2)))

15. F (ht;aht;'y,'y) =

—1(BE|2|-10B(212])~ 17) Baso+ 2 OHVEG121) Biasy + 1 (BYE 2| = 192 = 16 —10E(212])) By

16. E (hyahiqy,0) = 1—(F7+ 107+ 172 —BE|z[+ 110B([2)))

TVEI2IE g2 +(8= 37B12)) Bio, ot 3 (0+7E12D) Braso+ 5 (BYEI21— 377 = 56° —10B(2121) ) B, )2
1= (824 1%+ 172 —1BE[:I+ 110 (2I2]))

17. E (ht;aht;eﬂ) =

18. E (hiphea,0) = —5 Bt 1 (0+VE(z|2) Eiaio =5 (47 E(2]20) Eia 0+ (07 E(2l2]) Biaso+1 (BBl = 577 — 36 —10E(|2)) ) E,, )2
. 000, 1-(B2+162+ 12— BE[2[+310E(2|2]))

TVEIALE 52+ 2LE 5 +(B—57E|2| ) LE;s 5+2(B—3VE2]) B( )2+ 7 (BYEI2|— 37— 302 —10B(2]20)) B )5
1= (574 107+ 12 BBl 3705 (212))

19. E (ht;ﬁht;/jﬁ) =

3 1 2 2,192, 1.2 1
g (h? ) L i +3(,8—57E|z|)L E;/3+3(B +50°+17 —’YﬁE‘Z|+§’Y<9E(Z‘Z|))LE(;5)2

20. =
[P 3= 105~ 3 (P Bl BOEGI) - 1P BT+ 372 (3— 105:%) ~ 13 BlaT |

1(0+E=I2D)E 52— 3 (0+7E(2|2])) By p+ 1 (BYE2| — 372 = 56> —10E(2(21)) B gy2,9+2(B— 37Elz| ) Ejs0
1—(B%+5602+ 172 —BE|2|+1v0E(z2|2]))

21 E (ht;ght;/g,g) =

1VEIZILE g2 +(8—37E|2|) LEg 045 (0+7E(2|2])) Eipio+ 1 (BYE|2| =372 = 56> —10E(2l2]) ) E 5,912
1—(B2+ 10>+ 172 —1BE|z[+370E(2|2]))

22. FE (ht;ﬁht;gﬁ) =

(El=l?~3B]=|+2B%|2|)+3[(§6°+ 1) (Bl=I*~ E|z) —7B(1—F2|2]) ~BOB(=|2])+ $10( B2~ E|z| E(=|2)) | B, »
1-[83+586°— 103 B23—§~(B7 B|z|-BOE(z|2)+ 1 0° B|2I*) + §72 (8- 5 0E2% ) — 13 B2

23. E(h},) =

1O+VE(2|2)E 2 =5 (0+7E(2|2))) Eiy 4+ 5 (BYE|2| = 572 =562 —0E(2|2)) ) B2,

24. E (hyphtiyy) = 1—(82+ 102+ 172 —1BE|2[+370E(2|2)))
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LO+VE(2|2)E,, 2 +3 (BYE|2|- 372102 —0E(2|2)) ) E,_ 2.
4 Gv) 4 2 2 (:7)2:6
25 E (htf‘/ht,’}’; ) 17(52+%02+i72775E|Z|+%’YGE(ZLZD)
2. E (h2 h ) . Ez372E|z|E(z|Z\)+[ (% E|z]?-8 ) i(92+72)EZ37,8'YE(Z‘Z|)]E(;7)2
. tiy t;0) — 1_[63+%662_é93EZ3_%'Y(/32 | I ,BOE( ‘ |)+%92E‘Z|3)+%72(B_%QEZB)—%’Y:;E‘ZP]

27. E (hiyhigg) =

28. E (husghty g) =

29. B (hiph2y) =

|

ior

%’YQ—%02—’)/9E(Z|Z

))E;'y(;0)2

—3 (BE|z|=30E(z|2))—37) E 52+

(1247 (1-E2|2|)| B gy2 — 3 [0E(2|2]) +7 (1-E2|2])] Eso 0+ (B El=| -
1-

(107172 vﬂE\ZIJrﬂ@E(Z'Z'))

1(BYEl2| =372 =562 —0E(2[2)))E, .4y

(3 100+ 1

E|z \3 Elz|+[(50%+31

—VBEz|+35 79E( | D)

72)(E|21>~El2|)—yB(1-E?|2|) -BOE( |ZD+2W(EZS*EIZ\E(ZIZI))]E(;Q)z

[53+ 1802 193EZ3 37(62

E|z|—BOE(z|2))+ 202 E|z[* )+ 342 (8= 30E23 ) — 113 E| 2]

The whole results are available on demand from the corresponding author.

B.4 Expected values of cross products of the log-likelihood

derivatives

In this Appendix, we present the expected values of cross-products of the log-likelihood

derivatives. To conserve space, we present -only some indicative. That is,

1. 2E(LoLoa) = —14

2. 2E (LoaLlay) =

3. %E (Lalyp) = =

4. 3E (LiLaa) = =7

5. #E (LyLay) =

Z tZE [(Z? 3 1) hs;aht;aht;a] - (/‘34 + 2) Zle E (ht;aht;a,a - h?;a)
L s<
1 23:<;E [(ZE o 1) hsmht;aht;u] — (ka4 +2) Zthl E (ht;aht;oz,u - ht;uht?;a)
4 T 1 2
_ 203 0 E (A,
1 ZS<tZE [(zf Fr: 1) hs%ah?;u] B (’44 + 2) Zthl E (ht;aht;mu - ht;aht?;u)
. T 1
i +4k3 Y B (ﬁht;aht;u) |
p Z ZE [(252 - 1) hs;uh%;a] - (54 + 2) Zthl E (ht;uht;a,a - ht;,uh%;a) ]
25528 (20 keh2a) + 2063 S B (Fhf — ohiaa)
ZS<tZE [(22 = 1) heuhtiahey] — (154 +2) ZtT:1 E (heuhtag — hiahi,,)
_i —1—225:<;E (Zs \/—ht ol H) + 2k3 Zt 1 (\/%ht;aht;,u - J%ht;a’“>
| HEL P (fho) _
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Z<tZE [(ZE - 1) hs;uh%;u] — (k4 +2) ZtT:1 2 (ht;uht;u,u - h?;u)

FE(Lulus) = =5 | 420 0F (20t ) + 203 S0 B (b, — Shi)

s<t
+8), E (h%ht;u)

At this point, we should note that these results differ from those in the paper of Linton
(1997), due to the fact that we assume non-symmetric distribution of the errors and also
none of these expressions are zero, since the block-diagonality of the information matrix

in our case that we study the EGARCH(1, 1) model does not hold.

Analytic proof of the first result is given as follows:

T T
1 1 1
LoLoo = 9 Z; (th - 1) hi;a <2 Z; (Zt2 - 1) ht;a,0 — ) Z;th (ht;a)2>
t= t= t=
1 T T 1 T T
= EZ(Zt _1) htaZ(Zt _1) ht;a’a_iz(zt —1) htazzgh%a
t=1 t=1 t=1 t=1
1 T 1 T T
= Z Z (Zt — 1) ht,aht,a,oz + Z Z (Zt 'y, 1) ht,a Z (Zg = ].) hs,oz,a
t=1 t=1 s=t+1
1 T t—1
+3 2 (5 =) hea D (22 = 1) hissaga
t=1 s=1
1 T 1 T T 1 T t—1
-1 Z (zt2 — 1) th?;a " Z (2152 = 1) hit;a Z thg;a 1 Z (Zt2 — 1) Do Z §h§a
t=1 t=1 s=t+1 t=1 s=1
Hence
T 2
E (ﬁaﬁaa) = (Fd%ﬂ [E (ht;aht;a,a) = hta EZZ Z - 1 hs;aa
s<t
where

ht;a = 1+(5 i lezt o l’)’ |Zt—1’) ht—l;a and h?;a =1+2 (B - %92’15_1 - %7 ’Zt—1|) ht—l;a+

(5_%0%—1 27’% 1‘) 2 1a*

Let

hisiso = 14 (8 — 302401 — 57 |204%-1]) hegr—1;0 and h?+k o =142 (8 — 202161 — 37 [24h-1]) Pesi—t30+

2
(5 — %ethr]gfl - %’Y ‘Zt+k71’) h’%—l—k—l;a'

Hence,

L [(Zt2 - 1) ht+k ol a} =
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= B[ ( 1) [ +2 (8 = 302401 = 37 |20en1]) husnvaha + (8 = 302001 = 37 12ak1) B2y ahisa] | =
= 2(8—37E|2l) E (22 — 1) hesi—viahua+ (8% + § (02 +77) — BYE |2l + 307 E (2 2)] E (27 — 1) b} 1.0 htse
k=1 B[ 1) Byyahsa] = B[ (2~ 1) [hoa +2 (8~ 302 — 3y ]aal) 3 + (8 — 302~ by ]2])’ hiaﬂ =

= 2B [(23 1) (8- 302 — 37 12)] BRZo + B [ (22 = 1) (8~ 302 — 3v124))*] BA,.

Hence,

1 1 k—2
B~ 1) Biatia] "2 = (8- 57E141) (0852 4+ (B - BRI} (8= 5081)  Bnd,

1 1
+ [/32 + 1 (02 + 72) — BvE |z + 597E (z |z|)} FE (2152 — 1) h%+k_1;aht;a-

Set: A= —(8—37E|z|) [HEZ?’ +7 <E 1z - E \z|)] Eh}, and C = >+ 1 (6> ++2) —
By |2] + 107E (2 2]
2 2 k>1 1 k—2 9 9
We have that: B (% — 1) h2,  ,hia| "2 A (8= 3B 12l) T HCE (22 1) By ohia
By repeating substitution, [(zf -1) htJrk w Pt a} Ry {(ﬁ - %yE |z|)k72 +C (8- %’VE |z\)k73 + ...+ CF2
+CFE (2 — 1) hiy oo

This formula can be written as:

OF=1_(B=1vBl2)" 7
C—(B=37El)

B[z = 1) B pahia] 2 A + O 1R (22 — 1) B2y ol

Consequently,

b2t Ch A (8= LB =)
E{( _1) ht+kaht;a} ;! C—(B—EWEM)
Ok [zE [(22 =1) (B= 102~ 1v|])] ER2, + E [(zg —1) (B 104 — 1y |Zt\)2] Ehga],
where

2B [(: — 1) (8- 302 = 3y 1al)] ER3o + B (23 = 1) (8- 302 — 3y |=))"| B =

_ (9Ez3 + (E <|Z|3) ey |Z‘)> Eh?;a+|: i (92 —1—72) (Ez4 _ 1) _ BQEZS

, Eh}
+87 (B2l = BI2P) + 367 (E (% |2]) - B (2 2]))

t;a

Hence we have F Zt 9 Z (

T—t YE|z
= tlelA Eﬁ%EI

gk ) Z?h%;ah&a =F Z?:ill g;f (th - 1) ht+k olttia =
) ok

+C" A
)

(0> +9?) (B4 —1) — BOEZ®

where &= = (082 1+ (E () = 1)) Bhat | (Blel - BI2f*) + 307 (B (1)) - Bz J2D) ] i
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T t—1 A T-1 T—t —
Hence, B3y 3, (25 — 1) 2 hihsa = <C—(5—$7E|Z|) + A) =1 gt CF7

A T—1 Tt 1 k-1
T 0= (- 1yE)) &t=1 k=1 (/B — 3k |Z|) =

: _ A T A 15
...(keeping only terms of order T')= (C(B§7E|z) + A) =0~ Co (= 1) (=B

provided that |C| < 1 and |8 — $vE |z|| < 1. Hence

T IR Ty S S NPV GO S ']
=2 s—1 ’ C—(B-LivE]z)1-C ~1=C C-(B-3vEz|)1- (B
A A
=1 on ) +0.(1
-0 0-@B-heR) Ti-etoW

where A = — (8 = 39 |2]) [0B2 + 4 (B |2’ — Bl2|) | Eh3, and © = 8244 (62 +17)
BYE |2 + L09E (z]2]), A = — <0Ez3 +y (E (\z\3> —E |z|>> ERZ,

1 (0 ++%) (Ez* - 1) — BOEZ®

h3
+87 (E |2l = BI2*) + 307 (B (2 |2]) - B (= 12D))

+

B.5 Proof of the Main Theorem

The proof comes immediately from the results of Appendiz B.2 and Appendiz B.4.

B.6 The log-variance derivatives

In this Appendix we present the expressions of the log-variance derivatives, in a form

useful to explore their properties.

1 1
hio =14+ B— 2021 — =7 |2-1] | he—1;0
2 2
1 1 1 1
R0 = <4¢92t1 o rh |Zt1|> hf_ha + <5 - 592&71 — 37 |Zt1|> hi—1;0,a
1 1 1 1
hto g = hi—1;0 + 19%—1 +17 |ze—1| ) hi—1;0he—1,8+ | B — 59%—1 — 37 |zt—1] ) ht—1;0.8

1 1 1 1 1
ht;a,w = _5 ’zt—1’ ht—l;a+(402t—1 + Z’Y ‘Zt—1|) ht—l;aht—1;7+ (6 - 502’,5_1 - 57 |zt—1’> ht—l;a,'y
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1 1 1 1 1
ht;a,@ = _2zt1ht1;a+<4ezt1 + Z’Y |Zt1|> htfl;aht—1;6+ <ﬁ - 5021‘,71 - 5'7 |Zt1|> ht—l;a,@

1 1
htap = 3 (0 + [ (z—1>0) — I (2—1<0)]) hi—1,a + 1 (Oze—1 + v |2e—1]) he—1;0he—1;

1
Vhi-1

1 1
+ <ﬁ - 5921571 357 ‘Zt1|> hi—ts0p

1 1
hig =1In (hi—1) + <5 - 59%4 - 57 |Zt1\> hi—1.5

1 1 1 1
hip, = <492t1 +17 |Zt1|> hi_15 + 2he-15 + <5 — g =5 |Zt1|> b1,

1

hipy = hi-1y— 2

1 1 1
|21 ht—l;B‘i‘Z (0zt—1 4+ v |zt-1]) ht—1,8Pt—1:4+ <5 - 5931:—1 - 5’7 |Zt—1) hi—1.8,

1 1 1 1
hi,g0 = htfl;e_izt—lht—l;,B‘FZ (0zt—1 + v |2t-1]) he—1;8hi—1.0+ <ﬂ - 50%—1 — 357 \Zt—1|> hi—1.5,0

1 1
htgp = hi—iu+ 9 O+~ (2t-120) =1 (2t—1<0)]) hi—1,5 + 1 (02t—1 + v |2t-1]) hi—1,8ht—15

tails

1 1
+ </3 - iezt—l - 57 ‘Zt—1|> ht—136,4

1 1
htw =4 (Zt—l) aly </3 — 592’1:—1 > 5’)’ |Zt—1’) ht—l;q/

1 1 1
htpyy = = lzt-1] o1y 4 7 (021 +7]26-1) hi 1y + <5 = 502157 !Zt—l\) b1y

1 1 1 1 1
htw,@ = _§ |Zt71| ht—l;ﬂ_'iztflhtfl;'y‘}'z (eztfl + v |Zt71|) htfl;'yht—l;e_‘_ (ﬁ - 59%71 - 5’7 |Zt1|> ht—l;v,@

1 1 1
Pty = = (z-130) — I (z-1<0)] ——=—=+ 5 (0 + 7 [ (2t-120) — I (2t-1<0)]) ——=—=h1-1,y
htfl 2 htfl

1 1 1 1
) |2ze—1[Remg, + A (Ozi—1 + v |2e-1]) hi—1yhe—1; + <5 - 59215—1 — 37 |Zt—1|> ht—1,y,u

1 1
hig = ze-1 + <5 — 592}—1 —37 |Zt—1> hi—16
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1 1 1
hip0 = —zi—1hi—1.0 + 1 (Oz¢—1 + v |ze-1]) hf_l;e + (5 - 592&71 — 37 |Zt1\> hi—1.0,0

1 1 1
O+ (2t-120) — I (2t-1<0)]) ——=——=h4=1,0 — 52t-1ht—1,4
2 hi—1 2

h L +
-0 = ——
Hom Vhi-1

1 1 1
+7 (0zi—1 + v |2e-1]) he—1,0he—1; + <5 - 59%71 —i \Zt~1|) hi—1:0.

1 1 1
bty = — (0 + v [ (2-1>0) — I (2t-1<0)]) T s <5 =392-1 =57 IZt—ﬂ) ht—1;
1 1 ,
Pt = O+ (2-1>0) = I (21 <0)]) Tzht—l;u + 7 Oz + v lz-1]) Ay,

1 1
+ <B - 5921}71 - 57 |Zt1|> htfl;,u,,u,
B.7 Expected values of the first & second order log-variance

derivatives

We assume |8 — 37E|z|| < 1.

First order derivatives:

s 1
L. E(hta) =15y 150D

2. E(hp) = (1—B+%SIZ1)(1—5)
3. E(hy) =0
4. FE (ht;e) =)
GEi%
5. B (hy) = T 1-(B-14El2])

Second order derivatives:

1
$VEI21E 02

1. E(htaa) = (- LEl))



Appendix B. Appendiz for "Bias Correction of ML and QML Estimators in the

EGARCH(1,1)" 154
b Bl =
4 E(hya0) = %
5. E (hta) = 5(0+vE11)ji(_ﬁ%_i:;i|w)ElzlE;w
R
7. B (i) = AR
8. E(his0) = %
9. E(hip,) = E;M+§(9+71EI()BEff];:)iwzw;w
10. B (hyyys) = 1YE|2| B2

1—-(B—1vE|z|)
11 E (ht;"/,e) — 0

*EIE_%+%(9+’YEI)E_%E;v*%E|Z|E;M+%’7E‘Z|E;7m
1=(6-31Blzl)

12, E (i) =

1

*'YElZ'E :9)2
13. E ) — 4P E°

3 (ht,e,e) l—(ﬁ—%'yE\zD
_Eg%—k%(@-&-nyI)Ei%E;9+i'yE\z|E;9m

14. E (hyo,u) = 1—(B—=37E|2])

(9+7E1)E,%E;u+ivE|ZIE
1-(8—19Elz])

)2

15 E (hthu“ﬂ/-’“) —

B.8 Symbols

The next symbols are used in the paper and more specifically in the expressions of the

expected values of all the derivatives.

E(In® () =L* E(ln(h))®=L3 etc.

E(hig) = Eg E(hga) = Ba  E(hp)’ = By
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E (11’1 (ht) ht;u) = LEW E (11’1 (ht) ht;a) = LE;O[ E (ht;ﬂ In (ht)) = LE?B etc

E (ht;,é’ (In (ht))2) = L’Bg B (In(h)hip) = LE ()2

E(exp(klnhy) heg) = EyEp E(exp(klnhg)hyo) = ExE.q
E(exp (kInhy) hyyy) = EpEy  ete

E (exp (k1n hy) hiu) = EE.p» E (exp (rkIn hy) hfm) = EE,p3  etc
2
E (ht?ﬁ (esu) ) = E g2
E(hi1pht-11) = Epu E(highta) = Epga E(hyghty) = Ep, etc.
E (exp [k In (hy)] hyghey) = EkE.g, etc

E (higp) = Epy - E(Puyp) = By ete.

E (ht;uht;mu) . E;u;mu
E(In (k) hugp) = LEgg
E (exp (k1nhe) hiyp) = EcEyp
E (ht;ﬁht;ﬁﬂ) = E;ﬂ;ﬂﬁ

E (exp (kInhg) In (hy) hyyy) = ExLE,,

E (ht;ﬁht;uyu) = E;B;#,u E (ht;uht;#ﬂ) = E;u;u,ﬁ

E(exp(klnhy) hepp) = ExFE,p



Appendix C

Appendix for "Asymptotic
Normality of the QMLESs in the
EGARCH(1,1) Model"

C.1 Proofs of the Main Lemmas 4.15, 4.16 and 4.17

Recall that ¢ = 12 1§ exp ( 2_1m), where
6 = max (sup (v + d) ,sup (6 = 7)) :yx+ 6 |x| <6 |z|, Vx € Rand m = 1nf{—5}

k—1

Proof of Lemma 4.15. Taking the first and the last term of the product H 14 c|Xi—il],
i=1

see Lemma C.2 in p. 176, we have first:

n—1
B [BEeN |Xti|] = (k—1)27108" 2 exp (—27'm) E [(| Z0| 50)]-
i=1
Hence, 3°3%, (k — 1) 2715852 exp (—27'm) E [(|Zo| 09)] is bounded if and only if:

E(|Zo|o0)] < o0:

Second we have (see Lemma C.1 in p. 176):

E ﬂk 1ok~ 1H]Xt Z\] = 2-(=15* Y e (—2-1 (k — 1)) exp <ﬁa (k—2—5;€’;‘1)> X
=1

_pgk—1
Fexp (%1 15_5 loga?ﬁkH) X
—2
E|Z- k+1|exp(% i (vzt_k+1+5|zt_k+1|)) X .. X E|Zia|exp (5 (VZi-2 + 6| Zi-2)))

156
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< 9—(k—1)5(k=1) exp (—Z*Im (k — 1)) exp ( I (k 2 — ﬁiékﬁ_l)) X

FEexp (% 171—6 10g0t—k+1> X
y) X oo X E|Zi_o]exp (58| Zi_al)

_gh—2—=
( B|Ziilexp (3155

< 2*(k71)5(k* ) p( 9— 1m (k _ 1)) exp ( = 6) (k 9 _ ﬁfk@_l)) .

1—gh! 2
( FEexp <§ 13 logat_k+1> X )}
k—2

(E|ZO|GXP (%ﬁﬁlZol))

X

X

12

- -1
(E | Zo| exp (%#/85 \ZO|)> Eexp (%ﬁlogo%),
where 2716 exp (2 1

/Bk 1 k- 1]ﬁ|Xt Z|] i
o (27 ) (P12 o (325714)) B (3 o) S =

—p =
= %_q exp (—2—1(1:%5)2) <E | Zo| exp (%ﬁBSIZd))_l FE exp (%ﬁlog a%). ]

Hence: Y 72 F

Proof of Lemma 4.16. Again, applying Lemma C.2 in p. 176 we have first:

r k—1 7 k-1
E |81 X il 1 Xk | = 272087 2 exp (—2—1m)E(Z|Xt_ir|thr>.

i=1 i=1
Examlmng the higher dependence which is E (| X;—g+1] | Xi—k|), we have that:

E|g*! Z!Xt il | Xeogl| < (B =1)27158" 2 exp (=27'm) E (| X4—1] | Xi—2])

< (k: — 1) 15,6”“ 2exp (— 2*1m) E|Zo| Eexp (3a) Eexp [ (B +1)loga?_,] x

X E | Zy_g exp [5(VZi-2+ 6| Z¢_2|)]|

< (k—1)2718" 2 exp (—27'm) E | Zo| Eexp (3a) Eexp [1 (8 + 1)log 03] x E | Zg exp [36 | Zo]] |.
Hence, Y 72 (k —1)27158" 2 exp (—27'm) E |Zo| Eexp () Eexp [ (8 + 1) log 03] x
E|Zyexp[36|Zo]|

is bounded if and only if: E |Zgexp [30|Zo|]| < oc.

Through the analytic way, we have:

k—1 k—1
E |81 Xl [ Xk | = 271087 2 exp (—2—1m)E(Z|XH||Xt_k|>

i=1 i=1



Appendix C. Appendiz for "Asymptotic Normality of the QMLEs in the
EGARCH(1,1)" 158

, k—1—14
<27158" 2exp (—27'm ZE!Z0|eXP<5 B Z) H E |exp (384177 (7Z0+5Z0))|) x

7j=1
xE [|Zoexp (38517 720+5\Zoy W E| exp( (5’“ "+1)loga?)]
< 27 15pk2 exp( E|Z0|exp <%o¢ B)gl -8~ 1)> X

k=1 [k—1—i
XZ H Elexp (385179 (vZo + 6| Z0o))) |
; et

=1
xE [| Zg exp (%Bk_l_i (vZo + 61Zol))|] E [exp (3 (/Bk_i + 1) logod)]
< 27158 2 exp (—2’1m) E|Zp| exp <%ﬁ (k —1- ’311'3;>> X

E [|Zoexp (2 (vZo + 61 Z0))) || E [exp (2 (B+1)logod)] x Z (E |exp (30 | Zol) Dkil*i
B

= 27158 2 exp (72_1m) E|Zy|exp (li

<E [exp ( 8+ 1) log )] x S ert il

<2715  exp (~27'm) E 20| [ﬁexp(zl_ﬁ)r‘lexp<_% 205 ) E (| Zoexp (33101)]] x
B fexp (} (9+ 1) log )] x S G20

1—(E|exp(38]20l)[).
Hence, ZE
k=0

k—1
[k Z | Xe—i] | X k@ will be finite if and only if:
i=1

k—2
E[|Zyexp (36 |20|)|] < ocoand Eexp (36 |Zo|) < 1, in order thez (E |exp (%S\Zom)k_l
=0

ol

|
as k — oo to converge, as 1) E [|Zo exp (%5]“7171' (vZo+ 0 \ZOD) H <F HZO exp (% (vZo+ 0 \ZOD) H

=1

and

ZE exp % Bk_i—i-l) logag)] < E[exp (% (B—i—l)loga%)].

Second we have

E | gr1ch=t H [ X Z|] )S(k_l) exp (—2_1m(kz — 1)) exp (2(1£5)a (k; -1- Bff;)) X
L =1

X

(EZt k €EXP <

5
< 9—(k—1)g5(k=1) ( [(

><(E|Zo\exp(%#3 )) Eexp( 1Blogag =

e (o (1

><Eexp(21 Bloga
where 271§ exp (2 ! [((ﬁiﬁ) —m)]) <E|Zo\exp (%#B \Z0|)> =q¢* <L
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Hence: Y 2 E [Bk_lckl ﬁ ]Xt_i\] = exp (2*1 [— (ﬁg)Q]) Eexp (%ﬁ log a%) S ¢ =

= ﬁ exp (2_1 [ (10‘6) DzElexp (ELB log 0'(2)). O

Proof of Lemma 4.17. We can write

o0 k-1
(Bk—l H [1+¢c |Xt—i|]> llog htk\] o

k=1 =1
=E Z <5k 1H [1+ ] X A]) ( (- QIm)ZﬁnﬂXt—n—l\)} =
k=1 n=0
k
2| E Z(ﬁk1H[1+c|Xt ; )]
k =1
k
+oexp (—27'm ZZ(&’“ B (| Xt 1>H[1+C|XH|1>].
k=1n=0 i=1

For the first term above, see Lemma 4.15 and its conditions.

Again, by using Lemma C.2 in p. 176, we can replace the product in the second term
by considering only the first and the last term from its expansion, that is:

i (ﬁk‘lﬁ” (1 Xe—ne)) (cki |X“|>>] _

00 k—1
Zﬂ” (| Xt—n=1]) (Z \Xt_i|>] (see Lemma C.4 in p. 177)=

n=0

B[S0 B Xea il + S50 S 67 (14 8) X1l [ X1

k—1
S 6 (Xl (Z |Xu|>]
=1

n=k—1
k=1 . .
6 Lo+ EY S S B (1+ BY) [ Xam1—] | X1l

k—1
S 6 (X (Z|Xm|>]

n=k—1
250+ e S B (14 B [ X [ X1yl

k—1
Z B (IXi—n-1]) (Z \Xt_i|)] ’
=1

n=k—1

S exp (—2_1m) E

= 2716 exp (~m) B*2E

= 2715" exp (—m) B2

< 2716% exp (—m) 852

+E

<2718 exp (~m) B 2E

where 1) (see Lemma C.5 in p. 178) Z Zk 21 gi (148" 1 X1 | Xi1—jmil =
= 55 (1 4+ B) X [Xeol 1555 (14 8%) [ Xema | [ Xemaloet (L4 B572) [ Xt || XKoo
and we have that:

BB SR SIS B (L 8 e Xy 972 6 2) 5257 (148) BIXGal 1Ko
< B2 (p—2) L ,8 *(1+ B) E|Zo| Eexp (3a) Eexp (5 (B+ 1)logad) E |exp (50 | Zo|) Zo| ,
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00 k—1
and 2) (see Lemma C.6 in p. 179) Z B" (| Xt—n—1]) (Z ’Xt—i‘> =
n=k—1 i=1
= B Xkl (1K1l + [ Xe—al + oo+ [ X1 )8 [ Koot | (X1 |+ [ X o] + o+ [Xempa )+

B X ol (IX 1| + [ Xea| + oo+ [Xe—pa]) +

Hence,
oo

[e’e) k—1
2 B (IXnal) (Z\Xt_A)] = B2 (k—1) Y BB XXl
— :

n=k—1 n=k—1
< B2 (k—1) ﬁkﬁlE|Zo\Eexp (5a) Eexp (5 (B+ 1)logod) E |exp (56 |Zo|) Zo| -

Hence,

S exp (—2_1m) E

fj(ﬁk 6" (| Xen1l) (cDXt |>>

n=0

Eqizog+E > ST BT (L B K1 | X1

<2715 exp (—m) B+ 2 S
exp (~m) 4B | 528 (Xl (Z\Xt—m
n=k—1 i=1
god+ (k= 2) 525 (14 B) B| Zo| Eexp (3a) x

Eexp (5(8+1)logod) E |exp (36 |Zo]) Zo|
+(k—1) E|ZO|Eexp( o) Eexp (5 (B+1)logo? ;) x
E|exp (3 (vZi-1 + 6| Zi-1])) Zi—1]|
Etizog+ (k=2) t15 (1 + B) E|Zo| E exp (30) X
Fexp (3 (ﬁ+1)logJO)E|dexp( 51Z|)|
+(k—1) B0 E | Z| Eexp (3a) Eexp (4 (8 +1)logo3) x
E | Zoexp (33| Z0))]
[ Bl 02+ E|Z| Eexp (3a) Eexp (3 (8 + 1) logo3) E |exp (531 Zol) Zo|
x ((—2) 25 1+ 8) + (k= 1) =5 )

And Z () is bounded if and only if E'|Zgexp (36]Zol)| < oo.

< 2716 exp (~m) 2

< 2716” exp (~m) B2

In the sequel, we have that:

nf% (ﬁk‘lﬁ” (1 X¢-n-1]) (c’“‘l kHj \Xt_i|>>] _
Zﬂ” X (HyX\)] .

dexp (—2_1m) E

:2*(k*1)5kexp —2- mk

k—1 oo k—1
— 27 (--15" oxp (—2 k) (E S B Xl (H |th'|> +E Y B (IXi-nl) (H |X“-|>]
i=1 n=k—-1 i=1

We need the following:

1) (see Lemma C.7 in p. 179) E

k-1
Zf;g B X1l (H |Xti|>] =

=1
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= E[(IXe1] + B Xe—al + .. + B2 | Xemppal) x (IXe—1| [ Xi—a| [ Xi—s| - | X ppa])]
< A8 Bleov (| X | | Xemol | Xems| oo [ Ximiral [ Xaegl),  G=1,..k—1

Y

where

cov (| X—1] [ Xe—of [Xi—3| .. [Xi—ps1], [ Xe—j]) < exp

k—2
2(11—5>°‘ RWNGE ”><

N
exp{%<%ﬂ+ )S[ZO|}Z2
(

1 0
{1 =gt
><Eexp{2 %4—1) logag}.

exp

xFE

Hence,

k-1
Z B ‘Xt —j— 1| <H|Xt z|)]

< SIR 8 e [grtma [k —1— 872 = B || [B (Jexp {39 1201} Zo])] 7

< E exp{% (ﬁ + 1)3\201}23 Eexp{l (1*5'};1 +1) 1ogag}

<SR B exp [ty (= 3)] exp [= ke [ﬁk 24 B2 — 2] [E (|exp {33101} 2o])]
¥ E exp{% (ﬁ+1)5|zo|}zg Eexp{f (1 L. +1) 1ogao}

<2 exp [~ gtgye [ 4 81525 — 2| [exp (e E (exp 351200} Z0)]

< E exp{% (ﬁﬂ)é\zoy}zg Eexp{% (1 g +1) 1ogag}

which is bounded if and only if:

exp (3rr70) B (lexp (331201} Zo]) < 1 and E |exp {3 (25 +1) 5120l } 23| < o,

(o) k—
and 2) (see Lemma C.8 in p. 183) Z B (| Xt—n-1]) <H |Xti|> =
n=k—1 =1
= B M X k] (1 X et [ X [Xe=s] oo [ Xem ot )87 | Ximima | (1 X1 | Xi—2| | X o] oo | Xepga )+

B X, g ol (I Xt X al | X -] - [ Xe—paa]) +

Hence

B| S (Xl (kHl|Xt r)]

n=k—1 =1
_ k—1
< (,Bexp (ﬁa)ﬁﬂzdexp (%ﬁcﬂz(ﬂ ) ﬁexp( 2- 1( O‘g) )Eexp (%ﬁloga%),
Zy ]>—q<1 Hence:

where [ exp (2(1 5 a) E|Zy|exp (%ﬁg\
1

2 B Z B (| Xe-n-1l) (H | Xt
n=k—1 =1
= e (27 2 ) Eexp (3125 losB) S0, ¢ =

- %—qﬁ exp (-2*1 ((12‘%)2)) Eexp <%ﬁ log ag). O
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C.2 Proofs of the Main Lemmas 4.19, 4.20, 4.21 and 4.22

The constant ¢ now takes the following form:

c= — 5 exp(-m),

(28)°

in the proof of the Lemmas 4.19, 4.20 and 4.21. For a new definition of ¢, that is used

in the proof of Lemma /.22, see at that point below.

k—1
Proof of Lemma 4.19. H (14 ¢|X,_;])? is expanded as follows:
i=1
k—1
[Ta+el XD =142 1 Xl + D 1XilP+ o+ 2D T 1X?
i=1

If we take the first and the last term of the product, which are squared, we have first:

n—1
<Z Xt—i|2> |Ztk|fftk] .
i=1

Examining the higher dependence, which is E [(|Xt_k+1|2> | Zs k| O’t_k}, we have that:

E

n—1
(ﬂwf%z \Xt_iF) 24 ] = 105 oxp (-m) B

=1

\Xi1? | Zi—2| 02 = Zf_lla?_lat,QZt,Q‘

1
= Z{-jexp (@) exp Kﬁ + 2> log 0?—2] [|Zi—2| exp (YZi—2 + 0| Zs—2])] -

Hence,

n—1
(ﬂz(k_l)cz |Xti|2> | Zt k] Ut—k]

i=1
<(k=1) %ﬁ2(k—2)32 exp (—m) Eexp () E exp [(B + %) log 0(2)] x E [|Z0] exp (3|ZO\)] .

E

Hence,

32, (k— 1) 1820205 exp (—m) Eexp (o) Eexp [(8+ 1) log 03] xE [| Zo| exp (5| Zo|)]
is bounded if and only if:

E [|Zo|exp (8] Zo)] < oc.

Second, we have

k-1
(52(’“_1)61“_1 11 !Xt—z‘\2> | Zi—k| Utk] -
i1
k-1
(H |Xt—i\2) | Z1—1] Ut—’f] '

=1

E

<2(k—1
= 4k1—16 ( )exp (—m(k—1))E
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We need the following (see Lemma C.10 in p. 186):

k-1
(H \Xt—i|2> | Zs k| otk
=1

=exp(a)exp[(8+ 1) a]exp [(ﬂ2 +B8+1)a] x ... xexp [(5’“72 + .o + o] x
X Eexp (1712 + 6 |Zi-a])) Z2oFexp (B +1) (17 s + 6| Zu_al)) 2y X -

xEexp (8573 + ...+ 1) (YZi—ki1 + 0| Zip11l)) 2711 %
XE Jexp (8572 + ... +1) (YZi—k + 81 Zi-4])) Zo-k|x Eexp (872 + ..+ 1+ §) logo? )
Hence,
k—1
(ﬂQ(k—l)ck—l H !Xt—z‘\2> \Zys] O'tk] = L5 2(k— )exp (—m(k—1)) x
i=1

confonts (11 5] o 2500 )

xE :|Zo|exp(1_£ﬁ_ ) )} Eexp (( 22+ %>loga%>

< 4= en (Com (k= 1)) exp {aﬁ_ P~ 1)} 7 [Zo . <LBS‘Z0’>YH )

< [Z3exp (1253120) | exp (gl ) %

xE _!Zo\exp (Lﬂg )]Eexp((ﬁ_F

< [%5 exp (—m) exp (O‘ﬁ) 2 [Zg o (ﬁaZO’)”k_l %

xE | Z% exp (L* 5

xE |Z0|exp(
p

H
-

> E [(52k Dep 1H | X ) |Zt—k| otk

k

xE [|Zg|exp( 5]Zg|>]Eexp((ﬁ+%> loggg)zqk—l =
k

Ty =i
= L E | ZZexp (11591201

Proof of Lemma 4.20. Again, by using the first and the last term of the product, given

|

Examining the higher dependence, which is E [(|Xt k1l ) hl k}, we have that:

in the proof of Lemma 4.19, we have:

n—1
<ﬁ2(k_1)cz ‘Xt—i|2> XtQ_k] _ 152 (k— 2)5 exp

=1

2 2 _ 2 2 2 2
XiaXile = Zi 10410192 9

= Zt2—1 exp (a) exp [(ﬁ + 1) log 0372] exp (YZi—2 + 6 |Z1—2|) Z
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Hence,

n—1
(ﬂQ(k_l)C > \Xt—i|2> | Zi—k| Utk] =

i=1
<(k—-1)5 152(k=2) 5 exp (—m) exp (o) Eexp [(8 + 1)log 03] E [Z3 exp (8] Zo])] -

Hence,

Sopeq (k—1) 452 (k=252 exp (—m) exp (o) Eexp [(8+ 1) log 03] E [Z§ exp (6|Zo|)] is bounded

if and only if E [Z§ exp (6 |Zo])] < o0
k—1
(T x|
i=1

_ 2 2 2 2 2\ _
= (Zt 10't 12— 2Ut 2Z 30't 3 Z k10— k121 fkatfk) =(see

Second we have,

E || g2k—1 k- 1H | X )thk] 4k115 2(k— 1)exp(—m(k:»1))E
We_ nieci the followmg
E (H\Xt il >Xt2k
Lemma C.1 in p. 176)

k—1
:Eexp((1 B ( — ﬁ))erXp( logo’t k)erXp( -8 (7Zt_k—|—5|Zt_k|))Z
X Eexp(YZi—o+ 8| Z1_2|) Z2 5.

Hence,

k-1
g =2(k=1
(,82(’“ kb1 | | | X;_4)? Xf;k] = Zkljfs : )eXP(_m(k_ 1)) x

x B exp (ﬁa (k—l—%))erxp(l B logo?_ k)erxp<1 g ('th,k—l—é\Zt,k\))Z
X... X Eexp (vZi—2 + 8 |Zi-2]) Z,

Dt P (1 2)) ¢ e ()

4
(

< 4~ (k—1)52(k=1) exp <((1f‘ﬁ) - m) (k= 1)) exp <— (122)2) x Eexp (ﬁ log a%)
(

< [4—132 exp ((laﬂ) = m) EZ32 exp (ﬁaZo\)ril exp (7W> Eexp <1 5 log 0’0)

(1-8) 1-8
Hence:
k-1
ik B (52(k_1)0k_1 11 |X”|2> X7 ] = exp ( 5 gf) Eexp (ﬁ log Uo) Yrdt =
. 1l __ap - 1 2
—l—_qexp< W)Eexp<1_ﬁlogao). ]
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_ 2
Proof of Lemma 4.21. We can write E (6’“1 H [1+c¢ ]Xt_,-\]> | Zi—| 04—k log hy—i| | =
i=1

k—1 2 )
_E <ﬁk_lH[1+CXti|]> Ze il o1 (m1+exp(—2—lm)2m|xtn1|> =
=1 n=0
k—1 2
= 12| (ﬁk—l 1o +c|XH-1) Zitlors
i=1

00 k—1 2
+oexp (—27'm) E Z B" (| Xt—n-1l) <5k_1 H [1+.c \Xt—iH) | Zt—kl otk |-

For the first term, see Lemma 4.19 and its conditions.

Again, we can replace the product in the second term by considering only the first and

the last term from its expansion, that is:

00 k—1
Sexp (—27'm) E | ) (ﬁ” (1 Xt—n-1) <ﬁ2<k—l>cz |X“|2>> | Zi—i] at_k] =
n=0 i=1
:2*233exp( % )ﬂQ k=2 p Z (ﬁ” i (Z\Xt il )) ]Ztk|atk] (see Lemma
n=0

C.11 in p. 186)

3eXp (%a) Eexp ((%,B + %) loga%d) X
<2- 257 exp (—3 )52(k ¥ (W= 1) E [|z0| exp (%g|zo\)]
(o) Eexp ((ﬁ +1)log 03_2) E [Zg exp (5 |ZO|)]

ot 1=
Hence, Y 72, (+) is bounded if and only 1f

E[|Zy|exp (36| Z0])] < 00 and E [ZZ exp (6 |Zo|)] < oo

In the sequel, we have that:
o0

> (ﬁ“qxt_n_l\) (5“ D ek 1H\Xt i )) Zeil o1

n=0

= 22605 oxp (=i (k- 271)) E i (5"(|Xt—n 1) (H | Xl )) \Ztk\fftk] =
- 0k—2 k—1
(ﬁ"(|th1|) (H | Xe—i )) | Xt

1=1

( (1 X1—n]) (H X )) X

k—2 k—1
1) (see Lemma C.12 in p. 187) FE (ﬁ] (|1 Xi—j-1]) (H |th-|2)) | Xkl
i=1

Jj=0

§exp (—2_1m) E

3
Il
o

— 9=2=05" Loxp (—m (k — 271)) E
+

L n

Al

We need the following;:

>
|
o

<) cov (!Xt71|2 Xl [ Xisl? oo [ X1 [ [ Xl |thj|) , j=1.,k-1,

.
Il
=)
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where

cov (1X0-1 | X |Xi-al” o [ Ko in | Xo okl 1 X051

IN

E|Z|® x

X ex ) o % (1 ; 6’671)

< [ (|exp {3120} 23])]"

k-1
|Zo|exp<< 1 ﬁﬁ )5\Z0’>

k
erxp{ [11__% + % (B — 1)] logaf_k}

xFE

Z<ﬁ (1Xe—j1) (H Xl ))m_u

<Y HEB|Zal exp [rhga [0 =8 + k- 1= B | [B(23 (exp (812011)]]

< ‘ BIE ]Z0|Sexp {(123 ok — 2)] exp [(liﬁ)a [% (1 — ﬁk_l) + (liﬂ)a — ﬁl_lﬁ_kﬁ_lﬂ X

x E 25 (exp {01 20| })]]"
X FE [|ZD|eXp (( 1[1’“5—1 o %) S|ZO|>} Eexp{[ll—j; n % (8- 1)] IOgU%_k}
k—2
<Y #EB|Zf e [ go 3 (1= 87 + o - 852 x
j=0

< [exp ((ga) £ [22 (exp (312011)])]
xE []ZO\ exp ((1{73 + %) SIZO\)] Eexp { [% +1(8- 1)} logag} :
where it is bounded if and only if:

exp (ﬁa) E[Z%exp (01Zo])] =¢° <1 and E [|Zg| exp ((Lﬁ + %) 3]Z0|>] < 00.

00 k—1
E| ) (ﬁ” | X¢—pn—1]) (H |XH\2)) |Xt_k|] —
n=k—1 i=1
> (" (1XnaD) (1Kea? X o [ X i) ) \thr]

n=k—1

k—1
< [i_ﬁ exp (ﬁa (k—l)) exp (—Lﬁa (Bl % )) erxp( logo?_ k)
x [Eexp (YZi—2 + 6 |Z1—a|) Z}- 2] N

< qk__ﬁl exp (—ﬁa (51 %k)> x F exp ( log 00>

And 2) (see Lemma C.13 in p. 190)

Il
=
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_ k—1
X [exp (ﬁa) Eexp ((5 \Z0|) Zg] ,
which is bounded if and only if exp (ﬁa) E[Z%exp (01Zo])] = ¢ < 1. O

The constant ¢ now takes the following form:

c=c"= L 5ex ( 3m>
@8 “T\20)

that is used in the following proof of Lemma 4.22:

Proof of Lemma 4.22. Recall the eq. (4.14). We have to calculate the bounds of:

B 3
E (513—1 H [1+c Xti”) |Zs—k| ot—1 | , for which we have:
=1

1) E

n—1
—1) _2)%3
(53(k Ve Z|Xti|3> |Zt—k|0t—k] e %ﬁg(k D5 eXP % <Z|Xt il > |Zt—k|0t—k]-
i=1

Examining the higher dependence, which is E [<|Xt,k+1]3> | Zs— k| Jt,k} , we have that:

(1X1P) 1Zislors = |ZiaPlofr0r-2Zims]

3 3 1
= ‘Zt—1|3 exp <§O() exp |:<2,6 + 2> IOg 0'32:| [|Zt—2‘ €exp (’)/Zt_g + 0 |Zt_2|)] .

Hence,

n—1
(ﬁiﬂ(k—l)c* Z |Xt—i’3> ’Zt—k| Ut—k]

i=1
<(k-1) %/83(19_2)33 exp (—3m) E | Zo|® exp (3a) Eexp [(38+ 1) log o] X E [|Zo| exp (0] Zo])] -

Hence,
Sy (k= 1) §8% 25 exp (=3m) B Zof exp (30) Eexp [(38 + 3) log o8] xE [| Zo] exp (3] Zo])]
is bounded if and only if: E [|Zo|exp (0]Zo])] < oo

k-1
<Bg(k_1)c*(k_1) H |Xti’3> | Z—k| Ut—k] =
a k—1
<H !Xt_i\3> | Zi—i] Utk] :
i=1
k-1
(H ’Xt—i|3> |Zt—k| Ot—k

=1
3 3
= E (2} 10} 17} 50} 32} 307 5. 20 10} | 2kl o) =

:Eexp(ia)Eexp[§(B+1)a]Eexp[§(52+/3+1) ]>< XEexp[ (ﬁk 2, +1) ]
x B exp (% (’th_g—I—(HZt_g])) 72 yEexp (% (B+1) (vZi—3+ 6| Zs— 3])) 2 ax .

(2) E

=3(k—1)

— i 3
- 8k—15

exp (—Qm (k —

We need the following: F
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xEexp (3 (B" 2+ .. 4+ 1) (VZi—kt1 + 0| Zimis1)) Z2_piq X
X E |exp (3 (5]“72 ot 1) (VZk + 6| Zii])) Zi-| X Eexp ((3 (51672 1) + ) logai ).

Hence,

k—1
(/83(k—1)c*(k1) H ’Xt—i‘g) ‘thk‘ Utk] < 8k1_1*3(k71) exp (_%m (k) o 1)) %

i=1
- k=2 S gk—1—

X exp [%aﬁ (k: —1- %)} E {exp ( |) } E [|Zo|exp (%1 ﬂ_ﬁ 5|Zg|)]
x Eex 314" + 1) log o

P{l2715 2 ) 1080)

<3(k—1 = -1
< 8,}_15 ( )exp (—%m(k — 1)) exp {%aﬁ (k — 1)] E [eXp (%ﬁé ]Zg\) Zg}

- _ -1

X E |exp <%ﬁ5 ]Z0|> Z(ﬂ exp (—%a(lijF) X
x E || Zo| exp (gﬁmzoyﬂ Eexp ((%ﬁ +1

X FE || Zo| exp (§ﬁ3|Z0]) Eexp((%ﬁ—i— )logag>
p 2

2 )
where 16 e [% aﬁ — )] E [Zo exp (%ﬁﬂzoo} <1
Hence:
k—1
ZE [(B?)(k 1) *(k—1) H |Xt—i’3> }thkr’at~ ] st
=1
= koo (127 ) 4] o ()
xE [|ZO| exp (%ﬁﬂ&)])} Eexp ((%ﬁ + 3 ) log o
Next

k—1 3 E—1 3

(ﬁ"“‘l 11 [1+c1XH|]> 1 Z ) k1 XK (ﬁk—l 11 [1+c|Xm) Xl
i=1

for which we have:

n—1
(BS(k—l)C*Z|Xti|3> thk] _ 163% 2)53 exp ( (Z|Xt il ) \Xt_k|3].
s

Examining the higher dependence, which is E [(|Xt,k+1] ) | Xkl }, we have that:

(1) E

‘Xt—1|3 ‘Xt—2|3 = |25’710?710?72Z?fz|
3 3 3
- |Z1t_1|3 exp <2a> exp [2 (B+1)log 032] [}Zt32| exp <2 (YZi—a+ 6 \Zt_2|)>] )

Hence,

n—1
<ﬁ3(k_1)c* Z |Xt—i|3> ’Xt—k‘?)]
=

<(k—-1) %53(]“ 2 5 exp (—3m) exp (3a) Eexp [ (B8+ 1)logod] E HZS! exp (2 (6120]))] -
Hence, > 52, () is bounded if and only if: E [|Z3]exp (2 (6]Z0]))] < oc.
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2) E

—3(k—1)
= 8k1,1 ) exp

(—5m (k —

k—1
<63(k_1)c*(k1) H |Xt—i’3> X?_k] _

i=1

k-1
<H |th'|3) |Xt—l~c|3]-
i1

We need the following;:

E

i=1

(h \Xt_ir"’) rmr?’]

= FEexp @( lﬂ)a(kz—l B= %)) X Fexp (g _% loga?ﬁk> 5
< (|78 4 exp (35255 (12 + 8120k |
XE [|Z} 5| exp (3 (vZi—2+6|Z1-2]))] -

Hence,

where 8_133 ex

1
< [8*133 exp (% <(1aﬁ) —-m
dl

Hence:

(/33(k 1) (k- I)H’Xt il ) | X il?

— &k
=1
k k
(k: —-1- 61__% )) x Eexp <% 11__% log a?fk) X
1 P

k—

S (V2 + 617 4])

k—1
S E [(ﬁ?’(k_l)c*(k‘l) H ]Xt_i\?’) | Xk ] T €XP ( g(ﬁéﬁ) E exp @ﬁ loga(2)> :
i=1

Last:

k<1 3
E {(ﬁﬂfl H [14c ‘th'H) |Zs k| ot [log htk2] =

3 (1) +2[s2
=FE <5k1 H [1+ C|Xt—i|]> | Zt—k| 01—k oo PO

=

+2

Fon-s |

we have:

[e o]

D

n=0

(~27'm) E

kg|Xt—1—k| exp (—2_1

+ 5 8% | X1 exp (—m)

k=0

k—1 3
(IBk—l H [1 +c ’Xt_7,|]> ’thk| Utk]
=1

00 k—1 3
> (5'“ | Xt —n1] <ﬂk1 I +C!Xt—z'\]> ) ZtkUtk]

n=0 i=1

k—1 3
(6211 (|thn71|2) (Bkl H [1 +c |th|]> ) |Zt—k| th] , for which
=1

m)
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k-1 3
2
(1) (ﬁ) E (Bkl H 1+ ¢ |Xt_2-|}> | Z k| otk] : see the conditions at the begin-

ning of the proof.

o) k—1
(22) 2|12 | Sexp (~27m) B |37 8" (1Xpn-1) (53(k_1)C*Z|Xti|3)) |Zt_k|at_k] =

i—1

[ oo k—1
:i‘ )5 exp (—2m) B** 2 E Z( " (1 X—n-1l) <Z|Xt—il3>> |Zt—k|0't—k] =
Ln=0 i=1
- k-2 k=1
(5” | Xt—n-1]) (Z\Xt 2’3>> | Xkl
[0} <4 — n= 1=
:i -3 o eXP(—Qm)Bg(k 2)E 0(33 k 1 =
+ > ( (| Xrzn1l) (Z|Xt_,-|3>>rxt_k\
L n=k—1 =1
T k=2
n 3 3 3
. > (B (Xt (1Kol + X+ X)) X
= |1%5|0 exp(-2m) BB | g
+ 30 (B (X ) (12Xt + 1 Xaol o X)) X
L n=k—1
r k-2
» k=1 B | Xpmpra| [ Xe—paa | [ Xl
< 1] 25[5" exp (—2m) B2 e
RSN Zﬁn | Xtk |thk+1|3 | Xtk
L —0
4 - k= 1
< 4 |125|7" exp (~2m) B4 2 (k — 1) [lf (rXt 1 Xieal) + 55 B (1% [ Xeaf) |
3 exp (2a) E exp ((25 + %) log at272) X
- E [|Zo| exp (20 | Z
< 1o |5 exp (—2m) 6D k- 1) |, [|Zo] exp (20| Zo])] |
+%E\Zo|3exp (%a) Eexp ((%[5’—1— 1)logo? ,) x
E [Z exp (30 |Z0])] ]

where E [|Zg| exp (26 |Zo|)] < oo and E [Z2 exp (36 |Zo])] < o0.

00 k—1
Z (5" (| Xt—n—11) <53(k1)0*(k1) H !Xt—i\?’)) | Z1—k| Utk] =
i=1

n=0

k-1
%5‘24_3k53k_2 exp (=m (1 - %k‘))E " ([ Xt—n-11) (H |th'|3)) |Zt—k|0’t—k] =
Ln= 0

B (5" (1 Xeonl) (Hm i ))rxt_k\
(e ()|

B (X l) (1Ko P 1Kol o [ Xe i) ) X0

(2b) 2| -2
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k—2

k > (" (Xe-nal) (1K1 P1Xe o o X)) X
< iz ot o e (m (- g |

+B5 Z B X1 P 1 Xemal” oo | Xopin P | X il

n=0
k cov (1 X1 1 Xe-ol® | Xesl | X0 ki P 1 Xl X )
<3k—2
< |125] 245" exp (~m (1 - §)) bl
>~ —B e 2 k-1
+E B [T X | Xl
=1,

k—1

where E H | X | Xi—k)? = exp (%ﬁa (k —1- %%k)) X B exp ((% = 1) log o} k)

1=

XEGXP(SI_ (YZi—k + 0 | Z— k|)) i xEexp (% B_ (Y2t 2ky1 +6|Zs— k+1’)> b1 X
X
XEGXP( (VZt 3+0|Zi— 3|)> i3 X Eexp (% (’VZt72+5|Zt*2|)) Zy

We have also that:

cov (1Xp-1 1 1Xiol® [ Xesl® | Xupeun 21 X0l XKoo
cov (IXea* XKool | Xemal® o | X1 Xl s 1 Xy
<oxp [rga [2(1- 87 + § (b-2- 3555 |
< [B (120 exp (331200))] " B [1zolexp (31525 + 1) 310])]
xBexp (355 + 38— 1)logo?., |,

as Xt 1 Xiaf® o [ X ki P | Xl =

= Z} jexp{2a}exp{(3 +28) a}exp{(2(1+5) +2ﬁ2) al x .
xexp{(3 (1+8+...+8 %) +2852) a} x

X exp 2 (YZi—2 + 0| Zi-a|)] Z} o exp [(3 +28) (VZr-3 + 6| Zs-3])] Z} 5 x .
xexp [(§ (L4 B4+ )4 28°7%) (VZimhr + 8| Zemp)] 22 yp1 %
x lexp [(3 (14 B+ ..o B3 +28"72) (vZi_i, + 8| Zi—k])] Zui| %
xexp [(3+3(B+...4 8" %) +28" 1) logo?_,], hence:

j=1,..,k—1

).
) S B (74) x

E Xz "X ol o [ X P | Xo—k] < E(Z8) x

1 2(1-p"1)
15" +3(k 2 — gt 2)

3 B k—2
X [E|ZO|3exp<<+2ﬁ>5|Zg|>] X
_ k-1 B
| Zo| exp ((2 1 ﬂﬂ ;ﬁk_Q) 5|Zo|)

31— 6"
(21% ﬁ“—l)logm

X exp

xFE

x FE exp
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Second | Xy 1P| Xs ot [ Xt | X k| =

— |ZiaPexp {3adexp { (26 +2) alexp { (3 + 28 + 26%) a} x ...

xexp{(3 (14+8+..+ 81 +28 3+ 35" 2)a} x

X exp (YZi—a + 6 |Z1—a|) Z{ s exp [(38+2) (vZi—3 + 6| Zi—s|)] ZP 5 % ...

xexp [(3 (L4 B+ ...+ 8°) + 28"+ 387%) (Zi—kr1 + 81 Zuia|)] 21 X
x Jexp [(3 (L4 B+ + 85 + 268572 + 38572) (vZo + 61 Zi—k])] Zui] x
xexp[(3+3(B+...+853) +28" 2+ 38" 1) logo? ;] , hence:

B X P | X2t o | X P [ Xook] < E(Z3) %

1 9 (1 _ /6]6—2)

X exp e - s
(1-B)- | +2 (k—?—ﬁk L )
3 B k—2

X [E|Z0|3exp ((25+2> 5|ZU|>] X

31— 1 )<
| Zo exp <<21_ﬁﬁ + §5k 3) d ]ZO‘)

31-8% 1
(2 13 + iﬂk 2 1) logo?
And, last ‘Xt—ﬂg ’Xt—2’3 ’X1t—?)|3 |Xt4k+1|4 | Xk =
= |Z_1| exp {2a}exp{3(B+1)a}exp{3 (52 +B8+1)a} x ..
xexp{(3 (B* 2+ B2 +.. 4+ B8)+2) o}
x |exp {3 (VZyma + 8| Z1—2])} Z2 5| lexp {3 (B+ 1) (vZi—s + 6| Ze—s|) } Z2_5] x ...
xexp {3 (B2 + 8 4 + 1) (02t k1 + 612w} 2 s
3
2

3

2
x |exp [(3 (B 2+ B + ...+ 8) +2) (VZu—k + 8| Zi—i))] Zoi| %
xexp { (3 (B +B" 2+ . +B%) +28+ 3)logo? .}, hence:

xE X

xEexp

B\ X1 PIX =2l [ X |* [ Xomk] < E(Z3) x

1 3 1— gkt

3_ k—2
X [E|ZO|3exp{25]Z0|}] X

_ pk-1 B
e (31525 45 ) 1)

31-8F 1
(2 1_% +2,3—1> loga?k].

X exp

xFE X

x E exp
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5 [e's) k—1
(3a) 6" exp (—m) E Z (52" (|Xt—n—1|2> (53(k_1)0* Z ’Xt—z‘\g)) | Zs | Utk] =
n=0 i=1

[ oo

k-1
= %35 exp (—jm) £ E Z (52n (|thn—1|2) <Z|th|3>> |Zt—k|0t—k] =
Ln=0
k—1
(52" (\Xt n—1] ) <Z|Xt il )) | Xek]

E
lO

M

:15 eXp( )63162 n=OOO Ziil -
+ Z <B2n ‘Xt n— 1‘2 <Z ’Xt z‘ )) |Xt k’
L n=k—1 i=¥
B k—2

(8% (1Xe-n-12) (X1 Pt X + o+ X)) 1 X

=30 exp (=3m) FEIE |
+ > (8 (IXep P (1K + 1Kol + o+ X ) ) 1X0 sl
L n=k—
r '
(k= 1)> B X k11X pra P | X
< Fexp (-fm) -0 =
+(k—1) 55" Z B2 | Xk | X ey | | X
L n=0
[k—2 00
< 18 exp (=3m) B4 (k- 1) |37 BB (XeiP | Xial) + 8571 Y 87 E (1% \Xt_ﬂ?’)]
S 6981 2o exp (o) Besp (36 + ) ogoh)
n=0
< %55@( ( ) 63—2) (1 — 1) . E [|Zo| exp (56 | Zo])] ,
T Z B E |Z0| exp (504) Eexp ((% (8 + 1)) log 03_2) X
i E [Zg exp (%S|Zo|)] |
where E [|Zo| exp (50| Zo|)] < o0 and E [Z§ exp (36 |Z0])] <
0 k-1
(3b) 8” exp (~m) E ¥ <52n (\Xt—n—l\Q) (53(k_1)0*(k_1) 11 |Xt—i|3>> | Zt—k| Ut—k] =
n=0 =1
(k—1)53k—1 I 3 = 2n 2 - 3
=8 U5 exp (m (5= 38)) B[S0 ( 82 (1Xe-na?) { TT 1%l | ) 120kl o0 | =
S i
(ﬁ% (1X-n1P) (H |XH-|3)) X
=8 05" e (m(3 - 3K) B "D ko1 -
+ > (ﬁ% (’Xt—n—1’2) (H !Xt—i|3>> | Xtk
I i1
T k-2
> (87 (1Xe=na ) (1Kl [Xeal® oo [ X)) X
=865 e (m (5 - 30) B | "
> (8 (1% ) (1K X o1 X ) ) 1
L n=k—1
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S (8% (1Xi-n-a?) (1P 1Xeol o X)) X

<805 exp (m (3 — 3k)) B | =0

o0
FBELS” B X P Xl [ X [ Xel?
n=0

cov (1Xp1 1 1Xp2l 1Xpsl o | X P 1Xo ] 1 X0 ?)
00 k
+/Bk_1EZ 5271 H ‘Xt—i|3
n=0 =1

k
where B[ 1X-if* = exp (§rk50 (k-1 - 55 ) ) xexp (§ 3 log ot )

<50 oxp an (4 - £0)

=1
< exp (35525 (vZok +6121-4l)) 23 |exp (35555~ (Vs + 81Z-ka])) 2y |
Lo X
)GXP( ('VZt 3+6|Z;- 3|)> ‘X ‘GXP (%(’YZt 2 +3|Z;- 2|)) t— 2‘

We have also that:

cov (|Xt71!4\Xt72|3!th3|3--~|Xt—k+1|3|Xt—k|,|thj|> < E(Z) %

1 3(1-p81)
(L=8)"| 43 (k —2- gt

1 /

X exp

X [E‘Zg‘exp 5|Z0|H X

k-1 '

| Zo| exp (( B )5\200
_ pk |

(2 11 _ﬁﬁ + 06— 1) logo?

O]

xFE

x E exp

C.3 Proof of the Main Theorem 4.10

Proof of the Main Theorem. The relations E H(log ho)'H < 00 (see Lemma 4.18),
E||(log ho)"|| < oo (see Lemma 4.23) and eq. (4.15) show that
E|lly|| < oo, E|llg]] < co and E |(log ho)’ (00)‘2 < 0o (see also the conditions in Lemma

4.13).
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For the asymptotic covariance matrix Vo, we have first the SRE for (logh;)’ evaluated
at the true parameter value:
loght) (B6) = 29 (Xo,log02 %9 (X, log o2 log ho)" (8
(logh1)' (00) = %( 0,log o) |0:00+$( 0,108 73) lo=6, (10g 7o) (Bo)
1
= (L,logho, Zo, | Zo|) + By — 3 (Y0Zo + 80 | Zo}) (log ha)’ (o) -

Taking the expectation on both sides, gives:

Qo

1 -1
E\|Z 1+ =00E|Z .
’1—5070’ \0|>+50]X<+20 ’0|>

E [(tog o)’ (60)] = | (1

Likewise, squaring the first equation of (logh;)’ (6g) and taking expectations on both

sides yields the value of F [((log ho) (90))T (log hg)’ (90)}, that is:

E [(L log ho, Zo, | Zo|)" (1, log ho, Zo, \Zof)] B34+ LE (vyZo + 60| Z0|)* E [(log ko)’ (90)}2

+2B0E (1,1og ho, Zo, | Zo|)—E [((L log ho, Zo, | Zo|) (voZo + do |Z0|))T] E [(logho)' (80)] =

=B [(17 log ho, Zo, | Zo|)" (1,10g ho, Zo, |Zo|)] +A34+1E (43 + 03 + 27000 F (Zo | Zol)) E [(log ho)' (80)]”
+28, (1, 1257.,0, B | Z0

— (5012060125 B Zo] 7o + 50 (2o |Zol) 30 (Zo |Zol) + 60 [(L. 12,0, 2120l ) + By
(1+ 100 |Zo|) "

Hence, the covariance matrix is equal to

Vo=4"'E(Z5-1)E {((10g ho)' (90))T (log ho)’ (90)] T

— 4B (Z8 1) (1 — B3 = 1E (43 + 62+ 27000 E (Zo | Z0l)) — 28, (1, 280, E |ZO|)> x
{Uo—Wo} ',

where Ug = E | (1,log ho, Zo, | Zol)" (1, log ho, Zo, | Zo])] .

T
Wo = (80E |Z0] ;00725 B Zol 70 + 00 (Zo1Zol) s 0B (Zo |Z0]) + 60) | (1, 12,0, E|Zol ) + o x
(1+%(50E‘Zo|)‘1. ]

C.4 Dependence Results and Useful Expressions for the
Analysis of the First Order Derivative

The following lemmas are useful for the first order derivative of the log-variance function.

They comprise from tractable expressions for products of the observed sequence, and
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also from dependence results that are used for the proof of the main Theorem. To begin

with, let the following:

k
Lemma C.1. Find a tractable expression ofH | X¢—i| and evaluate its expectation.

=1

k
Proof. H | Xi—i| = | 2110112201221 304321 40 —4.. Ly 0| =

B |Zt_1ﬁzxp (3logoi 1) Zi—zexp (3logof_y) Zi—zexp (3logai_s) ..Zi—kexp (zlogof ;)| =
gy | P G latvZia 56120+ Blogal ) Ziaexp (jlogai o) |

Zi—sexp (3logof_s) .. Zi—exp (3logaf ;)
| P (30) exp (3 (vZi-2 + 81 Ze2])) Zr-s exp (3 (8 + V]og ot ,) | _
Zy-zexp (3log o} _s) .2k exp (3log oy y)

=exp (3a)exp (3 (B+1)a)exp (3 (B(B+1)+1)a)..exp (3 (,Bk_2 + ..+ 1)a)x

X exp (% (Bkil + ...+ 1) log af_k) X

X |Zi—exp (3 (B2 + oo + 1) (VZi—i + 8| Zii])) XX | Zeo| exp (3 (Zi—2 + 0| Zi—2])) =
= exp <ﬁa (k —-1- 1_16_123_1)> X exp (%}f_ﬁ; logaf_k> X

% |Zoklexp (3525~ (V2 +012i4)) X\ Zi-paalexp (31525~ (12 ki1 + 612kl ) x
o X

X |Zi-s exp (52 (125 + 6 |Zi-3)) ) X |Zi-sl exp (5 (1Zi-2 + 81 Zical))-

Hence,

k
_gk—1 gk
EH|Xt_Z~| = Fexp (Zilv—,ﬁ)a (k:— 1+ P7 16_5 )) x Fexp (%11_% logaf_k) X
i=1

k1
xE [|Zt7k| exp (%% (VZpegp6 ’thkD)} X..XxE [|Zi—2]exp (3 (VZi—2 + 6 | Z—2]))].

O
k-1
Lemma C.2. The expansion of H (14 c|Xi—i]).
i=1
k-1
Proof. The term H (14 ¢|X;—;|) is expanded in the following way:
=1
k—1 : k—1 k—1 k—1
[T +elXi)) = 1+ e> 1 Xl + A1Xea] > 1 Xeil + A Xl D [ Xeil + . +
i—1 i=1 i=2 =3
k-1
A\ Xiopga| Y Xl
i=k—1
k-1 k—1 k-1

+¢ [ Xp1| [ Xi—o| Z | Xy —il+¢ [ X 1| [ X3 Z | Xi—il4 4 | X ] [ X pso] Z | Xt
i=3 i=4 i=k—1
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k-1 k-1 k-1
+6 | Xy [Xeos| D 1 Xemil+ote® | Xya [ Xepral D Xl [ Xepps| [ Ximpga] Y [Xil
i—4 i=n—1 i=k—1
k—1 k—1
et | Xy | [ Xea| [Xims] D [ Xl + ¢4 | Xooa| [ Xeoa| [Ximal D [ Ko + ot
i—1 i=5
k-1 k-1
+e | X1 [ XKool [ Xempal D [ Xemil + ¢ [ Xoma| [Xomal | Xomal Y 1Kol +k
i=h—1 i=5
k—1 k—1
e | Xt [ Xoms] [ Xipral Y 1 Xemil + oo+ [ Xomal [ Xemal [ Xompya| D [ Ximil + .+
i=h—1 i=h—1
k-1 k=1
et | Xy gl [ Xemnasl [ Xomppal D Xl + o+ FU ] 1Xel.
i=kh—1 =1
k-1 k-1

If Z | X¢—| and H | X:—;| are both finite, then all other terms in the expansion converge,
i=1 i=1

as well. This is verified by the fact that the condition for the boundedness of the term

k—1

H | X¢—;| is stronger than the condition needed for the middle terms in the expansion

i=1
to be finite. n

Lemma C.3. Find a tractable expression for the bound of |log hy| and |log hy|?

Proof. We have that

loghy = a+~vZ;1+8|Zi_1|+ Bloghs_y
= a+ (YXi—1 +6|Xi1]) exp (-2 log hi—1) + Blog ht—1

o
(6% —
= =——+ ) (Y X1k + 0| X1k]) exp (27 log hy_1_k)
=

] =8
=
llog he| - < ‘ 5' Zﬁ 0| X1 k\exp( 2_1m),
log he? - < <1fﬁ> (—27'm)

+ 37 857 | X1y exp (—m) .

k=0

Lemma C.4. Find a tractable expression for E

0 k—1
> 8" (1Xe—n1l) (Z \Xtil)] :
i=1

n=0
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Proof. Start with:

00 k—1 k—2 k—1
> B (1 Xin-1l) (Zm i|> => 8" (1Xi-n-1l) (Zm z|>+ > B (1 Xin-1l) (me) =
n=0 =1

i=1 n=0 n=k—1

k—2 k—1 00
= Zﬁn (| Xe—n—1l) (Z\Xt—z'!) + Z B" (| Xt—n-1) (Z !Xt—z'\) :
n=0 i=1 1=1

n=k—1

1 =1

Now

k—2 k—1

> B (1 Xin-1l) (Z\Xt_ﬁ) | X (Z |X¢- A) + B X <Z X z|>
k—1

k-1
+6% [ X3 <Z | X i|> + 8572 X | (Z |Xt~i\> -
= Xt | (] + 10 el + 1 Xasl 4 1Kt
+8 [ Xe—2| (| X1 | + [ Xe—2| + [ Xi—s| + ... + [ Xi—p4a])
8% | Xi—s| (1 Xima| + | Xu—o| + [ Xums| + oo + [ Xp—psa]) +
+B5 2 Xk (X1 + [ Xemol + [ Xema| # oo Xy pia]) =
= SN B X P+ B) [ Koo | | Xema|H (1 + B2) | Xpma | [ Xps et (1 + B572) [ Xy | | Xempa | +
+B (14 B) [ Xea| Xes|+ 8 (1+ B%) | X2l [ Xeal 4+ . + 8 (14 B57%) [Xiof [ X ppa| +
+52 (14 B) | Xi—s| [ Xe—a|+82 (1 + B2) | Xes| | Xy—sl+.. 487 (1 + B57) [ Xos| [ Xepra |+
ot
+8573 (1 + B) | X g [ Xp—ppa| =
= YIS B X + T (U BX e [ Xima il + 500 B (1+ B87) [ Xima| | X2l
‘|’Z' ( + 52) | X3 [ Xzl + oo + B2 (1 + B) | Xe—hpo| | Ximpia] =
=Yg B |Xt 1—i* + Z Sy 7t (L+ B | X1 | Xi—1—j—il -

k—1
Hence E ZB” (XK el (Z ’Xt—i‘>
k—2 " k—1 G 00 k—1
= 8|3 8 (%) <Z |X“~|) S B (X (Z |th'|>] -
n=0 i=1 n=k—1 i=1

—E[z o B X 4 AT ST B (14 ) [ X  Xom1gmil

Z B ([ Xt=n-1]) (Z !Xt—i\>] : O

n=k—1

Lemma C.5. Moment bounds on Zk 27 gi (1+ Bi) | X1 [ Xem1—ji

Proof. Z Zk - ﬁj (1 + 5i) |Xt717j| |Xt717jfi| =

= (14 8) [ Xeal [Xio| + (14 5°) [Xea| [ Xes| + o + (14 857%) [ Xoa| [ Xy iy

+B (1 + B) | Xi—a| | Xe—sl + B (1 + B%) | Xi—al [ Xema| + oo+ B (1+ B57%) [ Xima| [ Xy g1 ]
+62 (14 B) [ Xe—s| [ Xi—a[+8% (14 87) [ Xe—s| | Xi—s[+-- 45 (1 + 8**) | Xos| [ Xipra |+
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ot
+B5 (1 + B) [ Xy—ksl | Ximrr2| 8574 (L4 B2) | Ximprs| [ Xipp1 |+ A8 (1 + B) | Xi—pa| | Xi—rt| -
Hence:

SO B (14 BY) | X1 [ Xim1mjmi] =

= 1287 (14 B) X oo 1 X2+ 13257 (14 82) [ X | [ Xeml b (1 + B2) | Xt | [ X
Examining the higher dependence (that of the most recent past), we have that:

BB Y S jﬁj (14 B 1 Xem1j | X1l < B2 (k- 2) 1525 5 ~(1+8) E| X1 | [ Xl
< B2 (k- 2) 552 (14 B) B | Zo| Eexp (3a) Eexp (3(8+1)logo?,) x
XE [|Zy—2| exp (3 (’th 2+081Zi-2)))]
< 652 (k—2) 527 (1+ B) E | Zo] Eexp (Sa) Eexp (5(8+1)logo3) E [|Zo| exp (45| Z0])]
0

00 k—1
Lemma C.6. Moment bounds of Z B [ X n—1]) (Z |Xt_i|>

n=k—1 2= )

00 k—1
Proof. 3" 5" (1 Ximn-1]) (Z\Xt_ﬂ) -

n—k—1 %,
= (BF | Xpm] + BF | Xpmpoa | BT X a4 ) (1Xma| + [ X—o| + oo+ | Ximppa]) =

= B Xkl (Xl 416 4 DXt DO Xt (] 1Kol o+ 1K)
B X o (1Kot [ Xima] + o | XKoo ]) +

Hence,
o) k-1 0o
E |2 > B"(1Xs-n-al) (Z\Xt—il)] =2 (k1) Y B EIXi| | Xl
n=k—1 il n=k—1
<BFE(k=1) > BUE X || X
n=k—1

> k—1

=352 (k= 1) BIXp || X B8 = B2 (k- 1) B| X |1 X4 5=

n=0
gk

=B ) E | Zo| E exp (5 ) Eexp (% (B+1)logo? 1) E [|Zs—1|exp (% (VZt-1 + 61 Zi-1]))]
=Btk = )%E|ZO‘E9XP(% ) Eexp (3 (8 +1)logag) E [| Zo| exp (5 (vZo + 61 Z0l))]
< 52 (k— 1) B B | Zo| Eexp (3a) Eexp (4 (8+1)logo3) E [| Zo| exp (35| Z0l)] . O

Lemma C.7. Find a tractable expression for Z?;g B Xe—ja| <H |Xti|> and cal-
i=1
culate its moment bounds.
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k—1
Proof. Y528 57X (H Xt_i|) =

i=1

= (| Xe1] + B Xi—2| + oo + B2 Xppa|) x (| Xea| [ Xi—o| | Xi—s| o | Xpmrta])
< YRS Bcov (IXoa | | X [ Xeos| o | Xempra | 1 Xojl),  G=1 k=1,

where

1
Xi—1] | Xe—a| | Xi—3| ... [ Xi_ X < SRR S,
cov (| X1 | Xiof [Xi—s| oo [ Xippa| [ Xij]) < exp IiE)

{ k-3
X [E |Zo| exp {55 |Z()|}:|
s 17 _
X [ZO exp {2 <m + 1> o |ZO|H

x Eexp {2 (% + 1) logaf_kH} )

by taking into account the upper bounds of its term in the covariance between

1-p

k—2
a[k—1—5“2—51_ﬁllx

| X1 [ Xi—2| | X¢—3| ... | X¢t—g+1] and | X¢—;|. The above result comes from the following:
Notice that:

X1 | Ximal [ Xis] o | Xipra| = 22 exp (logo? ) o1-2Z1201-3Z1-3...0t 1 Zp—jt1| =
= 7% | exp (a +yZy—o +0|Z1—9| + Blog 03_2) }exp (% log 03_2) Zt,gat,th,g...Jt_k+1Zt_k+1’ =
= 72 Jexp{a}exp { (% + B) log 0%72} lexp{VvZi—o + 0 |Zi—2|} Z1—o||ot—3Z1—3...04 11 24— k11| =
=7} jexp{atexp{(3+8) (¢ +7Zi_3+ | Zi_3| + Blogo?_3) } lexp {vZ1—2 + 0| Zi—a|} Z1—a| x
lexp (3 log0?_3) Zyi3...00— k41 Z1—k41| =
= 72 exp{a}exp { (% + B) a} exp { (B (% + ﬁ) + %) log 0573} lexp {vZ1—2 + 0| Z1—2|} Z1—2| X
x |lexp { (3+B) (VZi_3+ 0| Zs—3|)} Zi—s| |ot-1Zt—4..0t-k41Z4— 11| =

= 72 ;exp{a} exp{(% + ﬁ) a} exp { (% + %ﬁ + ,6’2) oz}><...><exp {(% + %ﬂ + %/32 + ...+ ﬁk_Q) a} X
X |exp{vZi—2+ 01Zi 2|} Zi ol lexp { (3 + B) (WZi-3+ 6| Z1—3|)} Zi 3| x ...

x fexp{ (5 + 58+ 36% + ... + 8°7°) (VZimpnr + 8| Zi-1]) } Zi—ponr| X

xexp{(3+30+ 36"+ ..+ %) logof 1}
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Hence,
B X1 | Xooal [ Xial oo [Xoopia] < e LAY PR SPY i | I
_ _ _ _ X — — — o _—
t—1 t—2 t—3 t—k+1] > P2(1_5) 1-3
1 /1-58 =2
X | EB|Zt-2]expq T3 + 1) (yZt—2 + 6 |Zs—2|)

X F exp {2 (% £ ﬂk_2> logafﬁkﬂ} )

Second:

| Xeo1| | Xe—ol® | Xes| oo [ Ximtp1| = | Zima| |o4-107 327 5013215001411 Z1— k11| =
= |Zi—1| lexp {5 (@ + 7 Zi—2 + 6 | Zi—a| + Blog o7_5) } exp {log o7 s} Z2 401—374—3...01 41 Z4—ks1| =
= |Zi—1|exp {%a} exp {% (YZi—2+ 6 |Zt_2|)} Pl XD { (%ﬁ + 1) log 0%72} |ot—3Z4—3..0t_ k4124 pr1] =
= |Zialexp {30} exp {3 (vZi2 +0|Zial)} 22 s exp{ (38 + 1) (0 + 7215+ 0] Zi-3] + Blog o} 3) }
xexp{3logo? s} |Zi—5...00 k4121 ps1] =
= |Zi1]exp {%a} eXP{(%ﬁ + 1) a} exp {% (vZ4—2+6 |Zt—2’)} Z? ’eXP {(%5 + 1) (YZi-3+6 |Zt—3|)}
xexp{(B(38+1)+3)logo? s} |0t-aZi—s.:01-j 12— k1| =

=|Ziexp {za}texp {(38+ 1) a}exp{(36° + 8+ 3) a}x..xexp {3872 + B+ 38" + .+ 3
xexp {2 (VZi—2+ 0| Z—3|)} Z2 5 lexp{ (38 +1) (vZi—3 + 6 |Zs—3|)} Zs—3| % ...

x lexp { (3872 + B85+ 385 + . 4+ 1) (VZi—ks1 + 6| Zi—ii1]) } Zimpra ]

X exp{(%ﬁk_2 + B %Bk_4 + ot %) Iogat{kﬂ} .

Hence,

I
2(1-5)

E |Xt_1‘ ‘Xt—2|2 lXt—3’ ‘Xt~k+1‘ < F |Zo‘ exp [ -3

k—2
a [kz—l—,@’k?’—ﬂl_B” x
xE [23—2 exp {; (VZi—2+6 |Zt2)H X

2 k—3
[E | Z:_3| exp {; (11 —65 + 1) (vZi—3+ 6 |Zt3|)}] X

1(1-p""
x E exp {2 (1% +ﬂk3> logaf_kﬂ}.

As well as:

| X1 | [ Xe—a| [ Xims|® oo | Xi—pra| = | Zi1] |ot—101-221-207 372 5..00 41 21— | =

= |Zi—1|exp{3logo? 1} |01-2Zt 20} 37} 5..00 ki1 21— ki1| =
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= |Z;_1| exp {% (a +yZ—o+ 0| Zi—2| + Blog 0372)} exp {% log 0372} }Zt—2U§,3Zt2,3-'-Ut—k+1Zt—k+1| =
= |Zi—1|exp {%a} ‘exp {% (YZi—2+ 6 \Zt_gl)} Zt_g‘ exp {(% B+ 1)) log O’%_z} |J?_3Zt2_3...at,k+1Zt,k+]
= |Z—1|exp {Fa} lexp {5 (VZi—2 + 6| Zi—2|)} Ze—a|exp { (3 (B+ 1)) (@ + yZi1—3 + 6| Z4_3| + Blog o7 _3)

x exp {logo? s} Z} g|ot—4Zt—4...01 11 Zp—pi1| =

= |Zi—1]exp {a}exp {(3 (B + 1)) a} |exp {5 (vZt—2 + 8| Zi—2])} Zi—a| X
xexp {(3(B+1) (vZi-3+6|Zi-3])} Z7 5%
xexp{(B(3(B+1)+1)logo? 3} |0v-aZi—4...0t— i1 Zp—ps1| =

= |Z;_1| exp {%a} exp{(% B+1)a} exp{(%ﬁ2 + %ﬁ + 1) a}x -
xexp { (L3"2 + 1853 4 gF4 4 1V 4 1ol

X exp {% (YZi—a+ 6 ]Zt_g\)} Zi_o }exp{(% (B + 1)) (¥Zi—3+ 9 ]Zt_g\)} Zt273‘ X ...
x lexp {(38°72 + 3851+ B + 1850+ 1) (VZikir + 6 | Zimkr ) } Zi—ir|
xexp {(36°7% + 38 + B 4 388 P 4 5) log oy

Hence,

B 1— k2
E|X_1| | Xo—a| | Xi—3)? oo | Xy—pya] - < E|Zolexp[ k—1-—pF4_p b ” x

1
21— 5" (e
xE [|Zt2| exp {; (VZi—2+ 6 |Zt2|)H X

<8 |28 sexp {5 (3+1) 020+ 012l } | »

a3 k—4
% [E | Zi—a| exp {; (11 _% + 1) (VZt—a+6 |Zt4|)}]

erxp{2< lﬂﬁ +ﬁk_4>logafk+1}.

And, last:

| X a1 Xe—a 1 Xl =) Xy |2 = | Ze1 | |Ut—lat—2Zt—2Ut—SZt—3--'U?_k+12152_k+1‘ =

= |Zi-1]exp{5logai 1} 01221201 32Z4-3..07 11 2] jin| =

= |Zi—1|exp {% (a + 7219+ 0| Zi—2| + Blog 0572)} exp {% log 07?72} }Zt_gat_th_g...a?_kHZf_kH{ =
=|Z1lexp {3a}|exp {3 (VZi—2 + 6| Zi-2|)} Zia|exp { (5 (B+ 1)) logo? o} |or-8Z1—3...07 1 (1 Z2 i
= |Zi—1|exp {Fa} lexp {5 (vZi—2 + 6| Ze—2|)} Zi—z|exp { (5 (B+ 1)) (v + vZ1—3 + 0| Z1_3| + Blog o7_s)

X eXp {% log 0273} Zi-3 |Ut—4Zt_4...af_k+lZf_k+l‘ —
= |Zi—1|exp{3a}texp{(3 (B+1)) a}|exp {3 (vZi—2 4+ 6| Z1—2])} Zi—a| x
xexp { (3 (B+ 1)) (vZi—s + 0| Zi_s])} Zi—3x
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XeXP{( (% 5+1)) %)logat 3}|Ut 424 Ot k:+1Zt k—i—l‘ =

~Zislexp {3y exp {(3 5+ 1)) o} exp { (36° + 35+ §) o x .

xexp{ (382 + 483+ 1pF 1 4 1885 4 1) a} x

X exp{ (YZi—2+ 6| Z1—2|) } Zi_9 }exp{(% 8+ 1)) (YZi—3+ 6 ]Zt_3\)} Zt_g‘ X,
x lexp { (38572 + 3851 + 385 ° + 180+ 1) (VZi—k+1 + 0| Z—ki1])} Zo—ioin]
xexp {(38°7% + 36" 4 580 + §ﬁk‘5--- +1)log o} iy}

Hence,

B\ X1 | Xi—o| | Xe—s| oo | Xy—pra|?

IN

E|Zo|exp [

o I
21=5)"

k
k—1-p8-— 51_552” X

i k-3
X [E|Zt_2\exp{(’th—2+5|Zt—2|)H X

k—2
ZE i exp{2< 1_Bﬂ +1> (VZt—k+1+5|Zt—k+1|)}]

1—‘ﬂk 1 )
x B exp 5 ﬁ +1|logoy jyq -

xE

00 k—1
Lemma C.8. Moment bounds of Z B" (| Xt—n-1]) (H |th-\>
i=1

n=k—1

o0

Proof. Y B™(|Xi-n-1l) <H|Xt 1|> (B [ Xkl + B [ X pmr| + B [ X pma| + ) %
n=k—1

(1 X1 | | X2 | Xy 3] - X pg1]) =

= B Xl (X | X =2 [ X)X g1 )48 [ Xomrm | (1K1 | Xa—a| [ Xems] oo | Xy )+

B X ol ([ Xt | Xea] | Xims o | Xipa]) + -

Hence,
0 k—1 o0 k [e9) k
Z B™(| Xi—n=1l) (H th_z-y>] < > BE[[1Xel =8 BrE]] Xl =
n= 1 i=1 n=k—1 i=1 n=0 i=1
Bk 1
EH\Xt 'k
That i 1s
k—1
Z B" (| Xt—n-1) (H X J) < Bexp (sige (k- 1- 55 ) Bexp (35 loga? )
n=k—1
XE[|Zt—k|eXP (5 B ('VZt k+ 01 Zi—kl) } ><EUZt—2|eXP (%(72t72+5’2t72|))]
k—1 k—1

_gk -
< %exp (ﬁa (k -1- %)) Eexp (%Lﬁlog%) (E|Zolexp (%ﬁé ]Z0|>)
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k—1

qfﬁ exp (ﬁa (k— 1)) exp (—2*1 (ﬁg)?) E exp (%ﬁ log o2 ) x (E |20 exp (%ﬁg

k—1
1 1.1 % 1 _o—1_ap
< (,Bexp (2(1_6)04) E|Zy|exp (21_55|Z0|)) =5 exp (—2 1P

IN

A

C.5 Dependence Results and Useful Expressions for the

Analysis of the Second Order Derivative

We proceed with useful inequalities and moment bounds that are used for the establish-

ment of the second order derivative finiteness.
k

|
Lemma C.9. Find tractable expressions for H |Ai—i|l” and E H(log he) ||, Vp > 1.
i=1

Proof. Recall that

|A¢|| "< B+ 2715 | X¢|exp (—2_1m)

=3 {1 £ 2215 |X,  exp (—Tlm)]

B
Hence,
1 i n
47 <0 1+ 32751 exp (27 m)]
1 _
< 3N |9n n n _o—1
< [ (1 g e (-27mm) )
< (28)"+3"| X" exp (=27 mn)
and
2 b 1 .
N7 < nk A _9—
il:[HAt—zH < (28) H<1+(25)n6 | X;—i|" exp (—2 mn))
Also
[Be]|” < (14| X¢| + [log he|)"
< 271+ (| X¢| + [log hel)"]
< 271427 (| Xe|" + [log he| )]
< 274227 (1Xy|" + [log hy|")
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making use of

We have:

EH(loght)/Hn

Hence:

Josiof]

IN

IA

IN

IN

where ¢ =

IN

IN

c

IN

Cc

[ [e's)
k=1

Lk

k

(25)

8

(x+y)" <27 (2" +y").

gttt
)

k=1 i=1

1B

o0

1B

k—1
(H ||At—i||> | Bl
=1

k—1

=11:=1

8

8

CT Z Qﬁ 2(k—1)

=1

5 exp.(—

HAt—il) | Be—kl|

n

A=l (1 + | Xi—k| + [log hi—g|) ]

n(k—1)
> 20) 11( il

x [27 4 2% (| Xy |" + [log he—k|")]

. ZW(MIN
Lk=1 =1

m)

2

k-1
gl (1 +C\Xt—z'|2>
=1

2
52X, _i2exp (—m>>

S 2_177177))] ‘

cr | )0 T Al (L | Xl + |10ght—k|)2]

(4416 (104 + log ki

[1 + 4 (’thk‘2 + \log ht7k|2>} s
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or (more general):

2

ogn | < [OO (ﬁ \At_ir) 1By

k=1 =1
[ oo k—1
< e |y [T hae-)? (1+|Xt—k|+|10ght—k|)2]
b
< e [ SO TT Aol | [4+16 (1042 + flog he_4f?)]
Lk=1 i=1
[ oo k—1
< o | X Il |1+ 4 (1P + og bl |
oo k—1 [e'9) e k—1
where Y [T 14il? = > (28 V] (1+C\Xt_iy2>
k=1 i=1 k=1 i=1
and ¢ = (2;)25 exp (—m)-.

Lemma C.10. Moment bounds of £

k=1
(H ’Xt—z‘\2> | Z k| Utk]

=%

2 2 2
Proof. E =B (2} 10} 12} 40} 277 507 5.2} k+1‘7t ki1 | Ze—k| o1 k) =

k—1
(H |Xt—z‘|2> | Zi—k| 01—k
= Eexp () Eéxp[<5+ Da]Eexp[(82+B+1)a] x...x Eexp [(8*72+ ...+ 1) a] x
X Eexp (YZi—2 + 0| Zi-2])) Z7 s B exp (8 + 1) (vZi—3 + 8| Zs-3])) Zi_3 x ... x
xEexp (8573 4+ ... +1) (VZi—ty1 + 0| Z—ps1])) Z2 41 %
((B¥ 24 ..o+ 1) (YZik + 8| Zu—i])) Zi—r|xEexp (852 + ...+ 1+ 3) loga? ) .
O

xFE !exp

00 k—1
Lemma C.11. Moment bounds ofz (6" (| Xt—n-1]) (ﬂz(kl)cz ]Xt_i\2>> | Zs— k| 04—k

n=0 i=1

Proof. £

0 k—1
3 (5” (| Xt—n—11) <52(k_1)02 !Xt—i\Q)) | Zt—k| otk
n=0

=1

> (ﬁ" Xinal) (th | )) |zt_k|at_k] _

n=0

= 272" exp (~m) 2D E
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- k=2 k-1
> <5" (IXt—n-1l) (Z ]Xt_ﬁ)) | Xkl

=1

1(6“ [ Xe—n-i]) (Zm 1|))|Xt_k| !

i
o

=3 _
= 2725 exp (—%m) ﬂ2(k JE
+

&%Mg

n
B k

(]

3

el

— 225" exp (—%m) ﬂz(kﬂ)E

(8" (1Xemnmal) (1Xea? + 1Kol + o+ [ X)) 1Xe

K|

+ 30 (B (Xt (1P X P o (X)) X
L n=k—1
B k—2
k—1)) B 1 Xetpgn| [ Xona [ 1 Xl
<9272 exp (—3m) g2 n=0
+(k—1)p5t Z B™ Xk | Xt |” | Xl
n=0

_933 _ [1_pk—1 ol 1
<2778 exp (—3m) 252 (b — 1) BB (1X P Xl ) + E5 B (101 X0 )

3 exp (304) E exp ((%ﬁ + %) loga%,Q) x
E [|Zo| exp (36| Z0])]

+255 exp (@) Eexp (8 + 1) log o7_,) x

E [ZEexp (0]Zo])]

< 2*233 exp (—%m) 52(’“72) (k—1)

k=2 k—1
Lemma C.12. Find a tractable expression forz (ﬁj (| Xe—j—1]) (H Xt_i|2>> | Xt k|

=0 i=1
and calculate its moment bounds.

k—2 k-1
Proof. E (53 (| Xe—j—1]) <H |Xti|2>> | Xtk
50 i=1
k—2
<3 cov (1 a1 Xl o Xt P Xecal [ Xigl) . G = Lok = 1,
=0
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cov (1Xi1P 1Kol 1Xisl | Xe ka P 1Xe il | X)) < B|Ziaf
1 k—1
3 (1=8"1)

X exp

(0%
A=8)"| 4k—1-p=”

1—

% [E (|exp {520/} Z3)]"

x B

k
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’ZO|6XP<< 1 ﬂﬂ )MZO’)

B
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by taking into account the upper bounds of its term in the covariance between
| X 1% [ Xea|? | Xi—3]? ... | Xs—py1]? | Xi—k| and |X;_j|. The above result comes from the

following:
Notice that:
(X1 P [ Xomol? o | X || X | =
= [Z-1|> exp (3logop 1) 0} 92} 507 32} 507 11 28 iy o Zii| =
= Zia’ exp (5 (0 +7Zi—2 + 8| Zi—2| + Blog o7 _y)) exp (log o7 _3) Z} 507 37 5..07 1 Z¢ g1 |00-12
= |Zt_1|3 exp {%a} exp { (1 + %B) log 03_2} X
X exp (3 (YZi—2 + 6| Z-2|)] 27207 327 307 1127 pia otk Zek] =
=|Zi_1]% exp {Zatexp{(1+28) (0 +vZi—3+ 6 |Zi—3| + Blogo? 5)} x
X exp [% (YZi—2+ 6 |Zt_2])] 72 5 exp (log 0%73) X Zt273"'0-?—k;+1Zt2—k+1 lot—kZi—k| =
= |Z_1Pexp {Ba}exp{(1+3B) atexp{(B(1+ 38) +1)logo? s} exp [3 (vZi—2 + 0| Z1—2|)] Z2 5

< exp [(L+38) (vZe-3 + 8| Z-3|)] 27307 42} 407 4 1 23 i1 10t Zei| =

= |Z1t,1|3 exp {%a} exp{(l + %B) a} exp{(l + 5+ 352) a}x...xexp {(1 +B+4 ..+ 83+ %ﬁk_2) a}
x exp [3 (VZy—2+ 6|Z1—o|)] Z2_yexp [(1 + 38) (VZi—3 + 6 | Z1—3])] Z2 5 x ...x
xexp [(1 48+ + B+ 3853) (VZy_py1 + 0| Zmpia])] Z2pp1 ¥

x Jexp [(L4B 4+ 8572 4 3857%) (vZi—s, + 6| Z-k])] Ze—r|exp [(5 + B+ . + 852+ 58" log o}

Hence,

1_ﬁk71-
1-p

1 1 _
E|X 1P Xal? o [ Xk |? [ Xek] < E|Zi—1Pexp [(1 5" [2 (1 - p* 1) +k-1-p

3 B k—2
X [EdeXp{(l—i-Qﬂ)(ﬂZo]}] X
| Zo| exp ((1 1 65 + ;ﬁk2> 0 |ZO‘>

k
X E exp { lll_ﬁﬁ + % (/kal — 1)] logaf_k} .

x B X
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Second:

X1 | Xpmal® oo | Xt [P [ Xk = 22 exp (logo? ) 03 323 407 322 502 (22,1 0w 12y
=72 | exp (a + 7212 + 0| Zi—2| + Plog af_z) exp [% (log 03_2)] Zt3—2J%—BZt2—3'"U?—k+1Zt2—k+1 |t Zy—
=7 yexp{atexp{(B+ 3)logo? o} exp (VZi—2 + 6 | Zs—2|) Z} 507 522 .07 11 ZF jin |0tk Zii| =
= 7Z¢ yexp{a}exp{(B+3) (@ +7Z—3 + 8| Zi—a| + Blogoi_3) } lexp (VZ—2 + 81 Zi-2]) Z}_,] x
X exXp (1035 02—3) ZE—S"'U?fk+1Zt27k+1 otk Zt—k| =

= Zt271 exp {a} exp { (,6’ + %) a} exp { (ﬁ (,6’ + %) + 1) log 0%73} ‘exp [(YZ1—2 + 0| Z1—2])] ZELQ‘ X

xexp [(B+3) (VZi-3 + 81Zi-3|)] 22307427 4007 43127 k110071 k] =

=72 jexp{atexp {(B+3) a}exp {(1+ 38+ 5% a}x..xexp {(1+ B+ ...+ gF 4+ 3553 4 g2 ¢
X |exp (YZi—2 + 8| Zi_a|) Z} 5| exp [(B+ 3) (vZi—3 + 81 Zi—3])] Z2 5 x ...x

xexp [(L+ B+ ..+ "2 + 3854 4+ B"3) (2 kst + 0| Zeisal)] Z2 1 ¥
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xexp [(3+B+...+ B2+ 3652+ g1 logo? ,].

Hence,
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k
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x B X

And, last:
|Xt—1‘2 |Xt—2‘2 ‘Xt—3’2 |Xt—lc+1|3 | Xt—k| = Z3710571037223720t273zt273"'0?—19—&-12153—1:-1-1 lot—kZt—kl

— 72 2 2 2 2 2 3 3 —
= 7Z¢ yexp{logo}_1} 07 5 Z} 507 32} 307 1 2P gy otk Zii| =
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= Zt{l exp (a +yZy—o+ 0| Zi—2| + Blog 0372) exp {log 0%72} Zt2—2‘7?—3Zt2—3~--0?—k+1Z?—k+1 lot—kZi—k| -
= 7% Jexp{atexp{(VZi—2 + §|Zi—2|)} Z2 5 exp {(5 +1)log O'%_Q} 0%_325_3...0?7k+1Z5’7k+1 lot— 1k Zs—k|
=72 jexp{atexp{(VZi—2 + 6| Z1_2|)} Z} 5 exp {(ﬁ +1) (a +vZs—5+ 01Z—3| + [log 03_3)} X

X exp {log 0573} Z? }03742374-"7?—“12?—“1‘ |0tk Zi—k| =

= Z¢ 1exp{atexp{(B+1)a}exp{(vZi—2 + 0| Zi-2|)} Z¢ s exp {((B +1)) (VZi=3 + | Zs-3])} Z} 3%

X exp {(5 (B4+1)+1)log 03_3} |U%—4Zt2—4"'a§—k+1zf—k+1‘ |otpZi=).=

=7} explatexp{((B+1) a}exp{(B>+ B+ 1) a}x..xexp{ (B2 + 853+ ..+ 8+ 3)a} x
< exp {(yZi—2 + 0| Zi2|)} Z2y exp {(B + 1) (vZi—s + 0| Zis])} Z_5 x ..

xexp { (B¥ 2+ BF 4+ 1) (VZikrr + O 2 |)} 22y ¥

x |exp [(B* 72 + ¥ 3 + .+ B+3) (V= + 0| Z—k))] Zi—i| X

X exp{(ﬁk_1 + 852 482+ %B + %) logaf_k} ;

Hence,

1 «
(1-5)
x [EZ exp {3|Z0}]"

i 1— k—1 1\ =
xXFE ||Zo| exp <<1 —Bﬁ + 2) ) ]Z0|>

ok
X E exp { [11 _Bﬁ + % (B — 1)] logaf_k}.
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