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Abstract
Department of Financial Management and Banking

Doctor of Philosophy

by Dimitra Kyriakopoulou

Techniques for approximating probability distributions like the Edgeworth expansion

have a long history in time series models. The purpose of this thesis is to give a detailed

study of the asymptotic properties of the Moving Average (MA) and the Exponential

GARCH (EGARCH) models. Extending the results in Sargan (1976) [80] and Tanaka

(1984) [87], we derive the asymptotic expansions of the distribution, the bias and the

mean squared error of the MM and QML estimators of the �rst order autocorrelation

and the MA parameter for the MA(1) model. It turns out that the asymptotic properties

of the estimators depend on whether the mean of the process is known or estimated. A

comparison of the moment expansions, either in terms of bias or MSE, reveals that there

is not uniform superiority of neither of the estimators, when the mean of the process

is estimated. This is also con�rmed by simulations. In the zero-mean case, and on

theoretical grounds, the QMLEs are superior to the MM ones in both bias and MSE

terms. The results are important for bias correction and increasing the e¢ ciency of the

estimators. Next, we derive the bias approximations of the ML and QML estimators of

the EGARCH(1,1) parameters and we check our theoretical results through simulations.

With the approximate bias expressions up to O(1/T), we are then able to correct the bias

of all estimators. To this end, a Monte Carlo exercise is conducted and the results are

presented and discussed. We conclude that, for given sets of parameters values, the bias

correction works satisfactory for all parameters. The results for the bias expressions

can be used to formulate the approximate Edgeworth distribution of the estimators.

Moreover, the asymptotic properties of EGARCH models are still largely unexplored

and are considered di¢ cult tasks (see e.g. Straumann and Mikosch, 2006) [83]. There is

still no complete answer to the following questions: under which conditions do EGARCH

processes have bounded �rst and second order variance derivatives? And under which

conditions is the expectation of the supremum norm of the second order log-likelihood

derivative �nite, in a neighborhood around the true parameter value? These questions

are important because the existence of such moment bounds permits the establishment

of large sample statistical properties, such as the asymptotic normality of the QMLEs.
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Chapter 1

Introduction

1.1 A Very Brief History of the Edgeworth Expansion in

Time Series

Techniques for approximating probability distributions like the Edgeworth expansion

have a long history in econometrics1. Unambiguously, one of the most important papers

in the related literature is the paper by Sargan (1976) [80], which discusses how in

practice we can improve on the asymptotic approximations and proposes the use of

the Edgeworth expansion to approximate the marginal distribution of an econometric

estimator and improve the use of asymptotic limits in signi�cance testing. A wide

variety of econometric estimators can be regarded as functions of the sample data �rst

and second moments. If these functions are reasonably well behaved, it is possible to

make a Taylor series expansion about the moments and obtain an approximation of the

econometric estimator up to the terms that involve those derivatives from the Taylor

expansion. The technical issues of the Edgeworth expansion will be discussed brie�y

below so that the reader will get familiarized with the notion of the expansion and how

it is derived.

Another very useful paper in the time series context is the paper by Phillips (1977a)

[74], who derives the Edgeworth series expansions of the �nite sample distributions of

1The reader is referred to the introduction of the second chapter for a detailed list of the papers
written about the Edgeworth expansion in the context of time series models.

1



Chapter 1. Introduction 2

the least squares estimator and the associated t ratio test statistic in a �rst order sto-

chastic di¤erence equation, that is an autoregressive process of �rst order. Turning our

attention to some more complicated cases, the paper by Tanaka (1984) [87] in the mid of

eighties, considers the Edgeworth expansion for the distributions of estimators derived

by the Maximum Likelihood method in the context of Autoregressive Moving Aver-

age (ARMA) models and develops a technique for obtaining the �rst order Edgeworth

type asymptotic expansion for the joint as well as marginal and conditional distribu-

tions. Quite recently, Kakizawa (1999) [59] derives valid Edgeworth expansions for the

standardized and Studentized versions of some estimators in �rst order autoregression

without Gaussianity.

To close this less technical section, Edgeworth expansions have been developed for vari-

ous �elds: for example, weak dependence (Gotze and Hipp 1983 [45]), Gaussian ARMA

structures (Taniguchi 1987 [89]), generalized autoregressive conditional heteroskedastic-

ity (Linton 1997 [65]), Whittle estimation for long-memory Gaussian time series (Lieber-

man et al (2003) [63] and Andrews and Lieberman 2005 [3]), linear regression processes

with long-memory errors (Aga 2011 [1]).

1.1.1 The Edgeworth Expansion and its related formulae

The Edgeworth expansion has been traditionally con�ned to the independent and iden-

tically distributed (i.i.d.) situation (e.g. Bhattacharya and Rao 1976 [17]). The analysis

that follows is based on the analysis of some manuscripts regarding the Edgeworth ex-

pansion, see for example, Barndor¤-Nielsen and Cox 1989 [12]). Let an estimator b�
and if

p
T
�b� � �0� is asymptotically normally distributed with zero mean and variance

�2, where T is the sample size, then in a great many cases of practical interest the

distribution function of
p
T
�b� � �0� may be expanded as a power series in 1p

T
2, that

is:

P
np

T
�b� � �0� � x

o
= �(x)+

1p
T
p1 (x)� (x)+

1

T
p2 (x)� (x)+:::+

1

T j=2
pj (x)� (x)+:::

2 In probability and statistics applications, the quantity becoming large is usually the sample size or
an amount of information.
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where � (x) = 1p
2�
exp

�
�x2

2

�
is the normal density function and � (x) =

xZ
�1

� (u) du is

the cumulative normal distribution. The functions pj are polynomials with coe¢ cients

depending on cumulants of b� � �0. The term of order 1p
T
corrects the basic normal

approximation for the main e¤ect of skewness, while the term of order 1
T corrects for

the main e¤ect of kurtosis and the secondary e¤ect of skewness. The expansion only

rarely converges as an in�nite series; it is only available as an asymptotic series, or an

asymptotic expansion, meaning that if the series is stopped after a given number of

terms, then the remainder is of smaller order than the last term that has been included,

i.e.:

P
np

T
�b� � �0� � x

o
= �(x) +

1p
T
p1 (x)� (x) + :::+

1

T j=2
pj (x)� (x) + o

�
T�j=2

�
:

The Edgeworth expansion is a true asymptotic expansion of the probability density

function of the statistic of interest, as the error of the approximation, which is de�ned

as the di¤erence between the approximation and the true distribution, is controlled.

This means that the Edgeworth expansion has the property as an asymptotic expansion

that truncating the series after a �nite number of terms provides an approximation to

a given function. This is an advantage of such type of expansions. The Edgeworth

expansion is also considered as an improvement to the central limit theorem and this

will be clari�ed at a later point in this chapter.

We are not concerned with the convergence of the in�nite series as j !1 for �xed T . We

are interested, for �xed j, in the accuracy of the approximation, which tends to increase

as the sample size increases and the higher order approximations are asymptotically

more accurate than the lower ones. A convergent series is not always useful, because

convergence is a concept relating to the behavior of the terms in the series at the tail

end, as j ! 1. That a series converges says nothing about how rapidly the terms will

decrease in magnitude. When the terms are decreasing rapidly, if we sum just the �rst

few terms and we know that the error incurred is of the order of the next term, we can

get a good estimate of the sum. This is why asymptotic series, even when divergent, are

practically useful.

The higher order approximations can be viewed as corrected normal approximations.

The Edgeworth approximations tend to be most accurate near the mean, rather that at
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the tails of the distribution. This is especially true of the higher order approximations.

The Edgeworth expansion is similar to the Taylor series expansion, except that instead

of expanding the value of a generic function around some particular point, an Edge-

worth expansion involves approximating a sample size dependent distribution function

in powers of 1p
T
.

At this point, it is useful to state below the connection between the cumulants and the

moments. If �i is the i
th raw moment and ki is the ith cumulant then

k1 = �1

k2 = �2 � k21;

k3 = �3 � 3k1k2 � k31;

k4 = �4 � 4k1k3 � 3k22 � 6k2k21 � k41:

It is also interesting to discuss the di¤erences between the Edgeworth expansion and the

normal approximation. For this scope, let the Edgeworth expansion be given by

GT (x) = � (x) +
p1 (x)p
T

+
p2 (x)

T
+O

�
T�3=2

�
;

whereas the Normal approximation is

GT (x) = � (x) +O
�
T�1=2

�
: (1.1)

The �rst order asymptotic theory is based on the central limit theorem. Both relations

above are right, in the sense that each approximation is correct through its own or-

der. The �rst order asymptotic theory 1.1 yields an error that converges to zero, but

at a relatively slow rate, since if we multiply that error by
p
T , the resulting product

will not generally equal zero. In other words, the product of
p
T and the error has a

stable limiting distribution. The �rst order asymptotic theory ignores all higher order

terms, whereas using an estimator that accounted for some of these terms in the Edge-

worth expansion would entail greater accuracy. Technically, there is no guarantee that

including these terms increases accuracy in every sample. Correcting for the terms in

1p
T
and 1

T actually moves us farther away from the true value of GT (x). However, for
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large enough T , this event generally becomes ever less likely and Monte Carlo evidence

generally suggests that higher order corrections do help with small T .

The polynomials that appear in the formula of the Edgeworth expansion are the so-called

Hermite polynomials, for which we have that

(�1)k dk

dxk
� (x) = Hk (x)� (x)

where

H0 (x) = 1;

H1 (x) = x;

H2 (x) = x2 � 1;

H3 (x) = x3 � 3x;

and so on. By di¤erentiating we obtain

d

dx
[Hk (x)� (x)] = �Hk+1 (x)� (x) :

The �rst order Edgeworth expansion is given by

G (x) = � (x)� � (x)
�

H2 (x)

6
p
T

�
+O

�
T�1

�
:

For a symmetric distribution, the asymmetry term 
 is zero and the usual central limit

theorem approximation � (x) is already �rst order accurate. It is possible to stop with

the �rst correction term, having an error of order 1
T and this is indeed useful if the main

aspect of nonnormality of concern is skewness. The second order Edgeworth expansion

is given by

G (x) = � (x)

�
1 +


H3 (x)

6
p
T

+
�H4 (x)

24T
+

2H6 (x)

72T

�
+O

�
T�3=2

�
:

This expansion shows that the error of the leading term, i.e. the standard normal density,

is O
�
T�1=2

�
in general, provided that 
 is di¤erent from zero. This fact suggests that

convergence to normality is relatively slow, especially in the tails of the distribution.
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Suppose X s G (x) and  X (t) denotes the characteristic function of X, for which

 X (t) = E exp fitXg =
1Z

�1

eitxdG (x) :

In a Taylor series expansion,  X (t) s 1 +
P1
n=1

�n
n! (it)

n. If

1Z
�1

j X (t)j < 1; then

g (x) = G0 (x) exists and

g (x) =
1

2�

1Z
�1

e�itx X (t) dt:

The cumulant generating function is then given by

log X (t) s
1X
n=1

kn
n!
(it)n :

Another useful result is the relation between the Hermite polynomials and the normal

density function, that is:

For any positive integer k,

1

2�

1Z
�1

e�itxe�t
2=2 (it)k dt =

(�1)k

2�

dk

dxk
1

2�

1Z
�1

e�itxe�t
2=2dt

= (�1)k dk

dxk
� (x)

= Hk (x)� (x) ;

where e�t
2=2 is the characteristic function for a standard normal distribution.

Overall, after deriving the characteristic function of our statistic of interest and taking

the logarithm of this and expanding in a Taylor series, we have an asymptotic expansion

of the cumulant generating function. Applying the inversion theorem and using the re-

lation concerning the Hermite polynomials we obtain a series expansion of the cumulant

generating function.
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1.2 Contents of the Thesis

This thesis makes important contributions to the existing literature of the Edgeworth

expansion in time series models. We extend the results of Sargan (1976) [80] insofar

that we allow more general assumptions on the �rst and second order cumulants of

some estimators; this is the case of the MA(1) model that is analyzed in Chapter 2,

but also notice that some of these cumulants are not zero in other cases as well (see e.g.

Ogasawara 2006 [72] and Bao 2009 [10]). Despite the seemingly simple case of the MA(1)

process and in view of the great complexity of the computations in its context, even in its

lower order, it seems worthwhile to consider how satisfactory the approximations derived

from the Edgeworth expansion prove to be for the MA(1) model. Sargan�s signi�cant

paper (1976) [80] gives us an insight as to whether the approach may be useful in more

complicated time series models. In fact, the Edgeworth expansion is indeed an important

tool for approximating the distribution of econometric estimators, but in our context the

need to relax the assumptions made by Sargan was vital, in order to also incorporate

the estimators for the MA(1) model. Thus, the extension of Sargan�s results, which

is presented in a di¤erent subsection in Chapter 2, is an essential one and constitutes

an important contribution in the related theory. A further extension of Tanaka (1984)

includes O
�
n�1

�
terms in the Edgeworth expansions of the QMLEs. We also apply

these extensions to derive moment expansions for all estimators. In that way, the MA

model is analyzed in an extent that contributes to the family of the linear time series

models and the asymptotic properties of their estimators.

Another source of motivation was the fact that there is no satisfactory asymptotic theory

for the maximum likelihood parameter estimates in Nelson�s model (1991) [71], the

EGARCH(1; 1). The EGARCH model is used extensively in applied �nancial work due

to the fact that it captures the negative dynamic asymmetries noticed in many �nancial

series, i.e. the so-called leverage e¤ects. Immediately, there are important questions

which might be raised: What is the approximate distribution and the �nite-sample

properties of the parameter estimates in the EGARCH model? This important topic

is discussed in every detail in Chapter 3. We extend the results of Linton (1997) [65]

as we consider a non symmetric model in the family of the GARCH processes and we

present, for the �rst time, analytic results of the derivatives and their expected values.

One of the main contributions made in this context was the conditions explored for the
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second-order stationarity of these derivatives to hold. Moreover, the important gap in

the related literature that many authors have noticed (see e.g. Straumann and Mikosch

2006 [83]) is the following research question: How does one derive the limiting properties

of the QMLE, for example the asymptotic normality of the estimators in the EGARCH

model? We also contribute in this area by extending the results of Straumann and

Mikosch (2006) [83] in such manner as to study in Chapter 4 the higher order dependence

that exists in the EGARCH(1; 1) process and provide moment inequalities that permit

the establishment of the asymptotic normality of the QMLEs.

1.3 Structure of the Thesis

In what follows, we provide a short description of the individual chapters of this thesis,

which constitute three independent discussion papers:

Chapter 2. Utilizing an extension of the result in Sargan (1976) [80], we develop the

second order Edgeworth expansions of all estimators of the �rst order autocorrelation

and the MA parameter for the MA(1) model. Employing these expansions, we derive

second order Nagar type expansions. We compare all estimators in terms of bias and

mean squared error, complemented by a simulation exercise.

Chapter 3. We present analytic derivatives of the log-likelihood function and their ex-

pected values and we investigate under which conditions there is second-order stationary

solution to the log-variance derivatives in the EGARCH(1; 1) model by Nelson (1991)

[71]. We also develop the bias approximations for all estimators and we make a simu-

lation exercise in order to check the adequacy of our theoretical results and be able to

proceed with the bias correction of the estimators. The approximate skewness is also

computed, as well as the Edgeworth-type distributions.

Chapter 4. We provide higher-order moment conditions resulting from the analysis of

the QMLE in the EGARCH(1; 1) model. We proceed with the asymptotic theory and we

also present our main Theorem, i.e. the asymptotic normality of the QMLEs in Nelson�s

model. We mainly obtain tractable su¢ cient conditions that guarantee the integrability

of the supremum norms of the log-variance derivatives, in a neighborhood around the
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true parameter vector. This work comprises an extension of the work by Straumann

and Mikosch (2006) [83].

Chapter 5. We conclude this thesis and discuss brie�y some further research plans.



Chapter 2

Edgeworth and Moment

Approximations: The Case of

MM and QML Estimators for the

MA(1) Models

2.1 Introduction

Techniques for approximating probability distributions like the Edgeworth expansion

have a long history in econometrics.1 In time series models, starting with Phillips

(1977a) [74], there is a fair amount of papers dealing with Edgeworth expansions in

autoregressive or mixed models; see e.g. Tanaka (1983 [86], 1984 [87]) and Kakizawa

(1999) [59]. However, there are relatively few papers concerning the limiting distribution

of estimators of the Moving Average (MA) parameters and their properties. Durbin

(1959) [39] proposes an estimator for the parameter of the MA(1) model that can reach

the asymptotic e¢ ciency of the Maximum Likelihood Estimator (MLE). Tanaka (1984)

[87] develops a technique for the �rst order Edgeworth expansion of the normal MLEs for

autoregressive moving-average (ARMA) models and presents the �rst order expansion

1Nagar (1959) [70], Sargan (1974) [79], Phillips (1977b) [75], Sargan and Satchell (1986) [78] and
Ogasawara (2006) [72] to quote only a few papers. Rothenberg (1986) [77] gives a review on the asymp-
totic techniques employed in econometrics. For a book treatment of Edgeworth expansions see e.g. Hall
(1992) [50], Barndor¤-Nielsen and Cox (1989) [12], and Taniguchi and Kakizawa (2000) [88].

10
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of the MLE for the MA(1) model having a known or an unknown intercept.2 Dropping

normality and developing a Nagar type expansion, Bao and Ullah (2007) [9] present the

second order bias and Mean Square Error (MSE) of the Quasi MLE (QMLE) for the

MA(1) but without mean and they do not develop a valid Edgeworth expansion.

In this paper we develop the second order Edgeworth expansions of two estimators of �,

the MA parameter, and �, the �rst order autocorrelation, of the following MA(1) model

with mean, MA(1j�) say,

yt = �+ ut + �ut�1; t = :::;�1; 0; 1; :::; j�j < 1; ut
iidv (0; �2);

where � is the true parameter value. The asymptotic distribution of the estimators of

� and � depends on whether the mean is estimated, or it is known and not estimated.

In the latter case, we set � = 0 without loss of generality, and we are using MA(1) to

denote the model.

The �rst estimator is the popular Quasi Maximum Likelihood Estimator (QMLE). Its

expansion is based on techniques developed in Linnik and Mitrofanova (1965) [64] and

Mitrofanova (1967) [69] (see also Linton 1997 [65] and Corradi and Iglesias 2008 [27])

and applied in Tanaka (1984) [87].3 We denote the QMLEs as e� and e�, for the MA(1j�)
model, and e�0 when we consider the MA(1) one. Employing e� and e�0 we can evaluate
the QMLEs of � and �0, denoted by e� = e�

1+e�2 and e�0 = e�0
1+ e�02 , respectively (for the

expansion of e�0 only, see Ali 1984 [2]).
On the other hand, one could equate the sample 1st order autocorrelation, say b�, orb�0 when there is no mean, with the theoretical one, �

1+�2
, and solve for the unknown

parameter. We call these the MM estimators of � and �0, and denote them by b� and b�0,
respectively (see also Davis and Resnick 1986 [31], p. 556), although strictly speaking

they are z-type estimators. Notice that e� is the Indirect estimator of �, when the true
model is an AR(1) and the auxiliary is an MA(1), where the parameter � is estimated

by MM, or by ML in the Constraint Indirect estimation setup (see Calzolari, Fiorentini

and Sentana 2004 [22]). On the other hand, b� is an Indirect estimator of � when the
2From now on we will refer to the up to n�

1
2 order expansion as �rst order one and for the up to n�1

order as second order expansion, where n is the sample size.
3For an alternative methodology based on a Whittle type estimator see Taniguchi (1987) [89], Lieber-

man et al (2003) [63], and Andrews and Lieberman (2005) [3]. Aga (2011) [1] extending the results of
Lieberman et al. (2003) [63], provides an Edgeworth expansion for linear regression process with sta-
tionary Gaussian long memory errors.
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true model is an MA(1) and the auxiliary is an AR(1) one (see Gourieroux, Monfort

and Renault 1993 [47]).

Utilizing an extension of the result in Sargan (1976) [80], presented in Section 2, we

develop the second order Edgeworth expansions of b�, b�0, b�, and b�0 in Section 3, whereas
Section 4 presents the expansions of the QMLEs. Employing these expansions, we derive

second order Nagar type expansions of all estimators. Notice that this is the �rst time

that second order Edgeworth and moment expansions of b�, b�0, e�, and e� appear in the
literature. In section 5, the expansions are employed to compare all estimators in terms

of bias and MSE. These comparisons are complemented by a simulation exercise. Section

6 concludes. All proofs, rather lengthy and tedious, are collected in Appendix A at the

end of the thesis.

2.2 Edgeworth Expansion

Let b' be an estimator of ' and
' =

p
n (b'� ') = f (A0; A1; A2; :::; Al)

where f is a function of the statistics Ai, i = 0; 1; :::; l, with the following assumptions:

Assumption 1 All the derivatives of f of order 4 and less are continuous, bounded in a

neighborhood of (0; :::; 0), such that f i = @f
@Ai

6= 0 for some i = 0; 1; :::; l, and that

there are functions hij and hijk independent of n such that f ij = @2f
@Ai@Aj

= 1p
n
hij ,

and f ijk = @3f
@Ai@Aj@Ak

= 1
nh

ijk, where all derivatives are evaluated at (0; :::; 0).

The A0is are functions of the data standardized in such a way so that their cumulants

ci = cum (Ai), cij = cum (Ai; Aj), etc. obey the following assumption:
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Assumption 2

ci = cum (Ai) = n�
1
2 c
(1)
i + n�1c

(2)
i + o

�
n�1

�
;

cij = cum (Ai; Aj) = c
(1)
ij + n

� 1
2 c
(2)
ij + n

�1c
(3)
ij + o

�
n�1

�
;

cijk = cum (Ai; Aj ; Ak) = n�
1
2 c
(1)
ijk + n

�1c
(2)
ijk + o

�
n�1

�
;

cijkl = cum (Ai; Aj ; Ak; Al) = n�1c
(1)
ijkl + o

�
n�1

�
;

cijklm = cum (Ai; Aj ; Ak; Al; Am) = O
�
n�

3
2

�
;

where c(r)i , c
(r)
ij , c

(r)
ijk and c

(r)
ijkl are independent of n, for r = 1; 2; 3.

Assumption 3 (Cramer�s condition) If the characteristic function ofA = (A0; A1; :::; Al)
=

is 	(z) =
R
exp

�
iz=A

�
dF (A), then

R
kzk>Kn� j	(z)j dz = O

�
n"�

3
2

�
for allK > 0,

0 < � < 1
2 and some " < 0, and where F is the distribution function of A.

These are standard assumptions in the relevant literature (see Chambers 1967 [24],

Sargan 1976 [80], and Bhattacharya and Ghosh 1978 [16]). Under these assumptions we

present the following Theorem.

Theorem 2.1. Under Assumptions 1, 2 and 3, the second order Edgeworth expansion

of ' is given by

P (' � m) = �
�m
!

�
� �

�m
!

�24  0 +  1
�
m
!

�
+  2

�
m
!

�2
+ 3

�
m
!

�3
+  4

�
m
!

�4
+  5

�
m
!

�5
35+ o �n�1� ; (2.1)

where

 0 =
1p
n
 
(1)
0 +

1

n
 
(2)
0 ;  1 =

1p
n
 
(1)
1 +

1

n
 
(2)
1 ;

 2 =
1p
n
 
(1)
2 +

1

n
 
(1)
2 ;  3 =

1

n
 
(2)
3

 4 =
1

12n

!(2)
�
a
(1)
1 + 3a

(1)
3

�
!5

;  5 =
1

72n

�
a
(1)
1 + 3a

(1)
3

�2
!6

;

& =
a
(1)
2 + 2

�
a
(1)
4 + 2a

(1)
11

��
a
(1)
1 + 3a

(1)
3

�
+ 4a

(1)
6 + 12

�
a
(1)
8 + a

(1)
10

�
+ 3

�
!(2)

�2
!2
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and

 
(1)
0 =

1

6!

8<:3�a(1)4 + 2a
(1)
11

�
�

�
a
(1)
1 + 3a

(1)
3

�
!2

9=; ;

 
(2)
0 =

1

6!

8<:3 ha(2)4 + 2a
(2)
11

i
�
a
(2)
1 + 6a

(2)
3 + 3

2!
(2)
�
a
(1)
4 + 2a

(1)
11

�
!2

+
3

2

!(2)
�
a
(1)
1 + 3a

(1)
3

�
!4

9=; ;

 
(1)
1 =

!(2)

2!2
;  

(2)
1 =

1

24!2

8>><>>:
3

�
4
�
a
(1)
5 + a

(1)
7 + !(3) + 2a

(1)
12

�
+ 2a

(1)
9 +

�
2a
(1)
11 + a

(1)
4

�2�
�3& + 5

�
a
(1)
1 +3a

(1)
3

�2
!4

9>>=>>; ;

 
(1)
2 =

�
a
(1)
1 + 3a

(1)
3

�
6!3

;  
(2)
2 =

1

6!3

264 a
(2)
1 + 6a

(2)
3 + 3

2!
(2)a

(1)
4 + 3!(2)a

(1)
11

�3
!(2)

�
a
(1)
1 +3a

(1)
3

�
!2

375 ;
 
(2)
3 = � 1

72!2

26410
�
a
(1)
1 + 3a

(1)
3

�2
!4

� 3&

375 ;
where m is any real number, � (:) and � (:) are the standard normal density and distribu-

tion functions, and the so called Edgeworth coe¢ cients, a(i)j , for i = 1; 2 and j = 1; :::; 12,

!(i), for i = 1; 2; 3, and ! are given in the proof of Theorem 1 in Appendix A.1.

Sargan (1976) [80] assumes that c(1)i = c
(2)
i = c

(2)
ij = c

(3)
ij = c

(2)
ijk = 0. In this respect,

Theorem 1 is a necessary generalization needed in the expansions of all estimators con-

sidered in this paper. Notice that some of these cumulants are not zero in other cases

as well (see e.g. Ogasawara 2006 [72] and Bao 2009 [10]). Next, we have the following

Lemma, which is very useful for the evaluation of the cumulants of '.

Lemma 2.2. Under Assumptions 1, 2 and 3, the second order approximate cumulants

of ' are given by

kb'1 =
a
(1)
4 + 2a

(1)
11

2
p
n

+
a
(2)
4 + 2a

(2)
11

2n
;

kb'2 = !2 +
!(2)p
n
+
a
(1)
9 + 2

�
a
(1)
5 + a

(1)
7 + !(3) + 2a

(1)
12

�
2n

;

kb'3 =
a
(1)
1 + 3a

(1)
3p

n
+
a
(2)
1 + 6a

(2)
3

n
;

kb'4 =
a
(1)
2 + 4a

(1)
6 + 12

�
a
(1)
8 + a

(1)
10

�
+ 9

4

�
!(2)

�2
n

:
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Furthermore,

E
�
'2
�
= kb'2 +

�
2a
(1)
11 + a

(1)
4

�2
4n

:

The proof of Lemma 1 is also given in Appendix A.2. We can now proceed in �nding

the expansions of the MM estimators of �; � and �.

2.3 The Expansions of the MM Estimators

The following analysis is based on Kakizawa (1999) [59]. Given observations y =

(y0; :::; yn)
0, the MM estimators of � and � are given by:

b� = Pn
t=1

�
yt � 1

n

Pn
t=1 yt

� �
yt�1 � 1

n

Pn
t=1 yt�1

�Pn
t=1

�
yt�1 � 1

n

Pn
t=1 yt�1

�2 and b� = 1

n

nX
t=1

yt�1:

Hence

p
n (b�� �) = �

1 + �4
�
A1 +

�
1 + �2

�
A2 �

�
1� � + �2

�
1p
n
(A0)

2

1p
n

�
1 + �2

�2
A3 +

1p
n
2�
�
1 + �2

�
A1 � 1

n

�
1 + �2

�
(A0)

2 +
�
1 + �2

�2
�2
;

(2.2)

and
p
n (b�� �) = pn 1

n

nX
t=1

(yt�1 � �)
!
= A0;

where

A0 =
1p
n

nX
t=1

(yt�1 � �) ; A1 =

Pn
t=2 ut�1ut�2p

n
;

A2 =
1p
n

26664
�
(y1 � �) (y0 � �)� ��2

�
+ �

Pn
t=2 utut�2 + unun�1 � u1u0

�� �
2(u20��2)��2(u2n�1��2)+[(y0��)

2�(1+�2)�2]
(1+�2)

+ 1
n [(y0 � �)� (yn � �)] [(1 + �)

Pn
t=2 ut�1 + �u0 � �un�1 + (y0 � �)]

37775 ;

A3 =

Pn
t=2

�
u2t�1 � �2

�
+

�2(u20��2)��2(u2n�1��2)+[(y0��)
2�(1+�2)�2]

(1+�2)p
n

:

It is now obvious that
p
n (b�� �) andpn (b�� �) are functions ofA0; :::A3, f (A0; A1; A2; A3)

say, with f (0; 0; 0; 0) = 0. From Appendix A.3, where the cumulants of the Ai0s are

presented, it is easily seen that Assumption 2 is satis�ed, and if E
�
u100
�
is �nite, we can

apply Theorem 1. Notice that most of the second order cumulants of the Ai0s include
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terms of O
�
n�1

�
. Hence, the generalization of Sargan (1976) [80] presented in section

2 is a necessary one. Let us now turn our attention to b�.
2.3.1 The Expansion of the MM First Order Autocorrelation

Lemma 2.3. Under the Assumptions that u0ts are identically and independently distrib-

uted, E
�
u100
�
< 1,

�
u0; u

2
0

�
satisfy the Cramer�s condition and � 2 (�1; 1), the second

order asymptotic expansion of P (
p
n (b�� �) < m) is given by:

G(m) = �
�m
!

�
� �

�m
!

��
 0 +  1

m

!
+  2

�m
!

�2
+  3

�m
!

�3
+  5

�m
!

�5�
; (2.3)

where the polynomial coe¢ cients  i, i = 0; :::; 5 are as in Theorem 1 and the Edgeworth

coe¢ cients are given in Appendix A.4.

To evaluate the approximate bias, MSE and the cumulants, needed in the sequel, we

employ Lemma 1. Letting �3 and �4 to denote the 3rd and 4th order cumulants of u0,

respectively, the cumulants of
p
n (b�� �) are:

kb�1 = � 1p
n

�
�4 + 2�3 � 2�2 + 2� + 1

� �2 + � + 1�
�2 + 1

�3 + o �n�1� ;
kb�2 = !2b� � 1

n

�
�b�2;1 + �b�2;2

�
+ o

�
n�1

�
;

where !2b� = �2+4�4+�6+�8+1

(1+�2)
4 , i.e. the asymptotic variance,

�b�2;1 = 2(�4���2+6�3�12�5+6�7��8�4�9+�10+1)(�+1)2(�2+1)
6 , and �b�2;2 = 4 �(1+�4)

2

(1+�2)
5 �

2
3+

�2+4�4��6+�8+1
(�2+1)

4 �4,

kb�3 = � 6p
n
�
�
�4 + 1

� 6�4 + �8 + 1�
�2 + 1

�7 +
1p
n

�
1 + �4

�3
+ �3

�
1 + �2

�3�
1 + �2

�6 �23 + o
�
n�1

�
;

kb�4 = 1

n

�
�b�4;1 + �b�4;2 + �b�4;3

�
;

where �b�4;1 = 6�1+10�2(1+�16)�30�4(1+�12)+106�6(1+�8)�129�8(1+�4)+216�10��20(�2+1)
10 ,

�b�4;2 = 12� ��4 + 1� �(1��4)2(1+�2)�10�4(1+�4)+4�6�2(1��2)(1��10)(�2+1)
9 �23,

and �b�4;3 = 5�4+4�6+12�8+4�10+5�12+�16+1

(�2+1)
8 �24.
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Furthermore, the second order approximate MSE (AMSE) is

E
�p
n (b�� �)�2 = kb�2 + 1

n

�
�4 + 2�3 � 2�2 + 2� + 1

�2 ��2 + � + 1�2�
�2 + 1

�6 : (2.4)

It is worth noticing �rst, that the sign of the asymmetry of the distribution of the errors

(�3) does not a¤ect the AMSE, i.e. positively and negatively skewed error distributions

of the same magnitude have the same e¤ect on the AMSE. Second, the AMSE is a

decreasing function of �4, for any value of � in the admissible region. It seems that

higher probability of extreme values of the errors increases the accuracy of the estimator.

This is not true for the asymmetry parameter �3. For positive (negative) values of �,

the AMSE of b� is a decreasing (increasing) function of �23. Further, for � = 0 and under
elliptical error distributions, the presented moments are known in the literature (see e.g.

Kan and Wang 2010 [60]). Let us now proceed to the expansion of the MM 1st order

autocorrelation when the mean is 0.

2.3.1.1 The Zero-mean Expansion

In case that � is zero, or known and subtracted from the data, we have that

b�0 = Pn
t=1 ytyt�1Pn
t=1 y

2
t�1

:

Hence
p
n ( b�0 � �) = �

1 + �4
�
A1 +

�
1 + �2

�
A2�

1 + �2
�2 1p

n
A3 + 2�

�
1 + �2

�
1p
n
A1 +

�
1 + �2

�2
�2
;

where the Ai0s are now given by

A1 =

Pn
t=2 ut�1ut�2p

n
;

A2 =
1p
n

24 �y1y0 � ��2�+ �Pn
t=2 utut�2 + unun�1 � u1u0

����
2(u2n�1��2)+�2(u20��2)+(y20�(1+�2)�2)

(1+�2)

35 ;
A3 =

1p
n

"
nX
t=2

�
u2t�1 � �2

�
+
��2

�
u2n�1 � �2

�
+ �2

�
u20 � �2

�
+
�
y20 �

�
1 + �2

�
�2
��

1 + �2
� #

:

Notice that A1 and A3 are the same as in the non-zero mean case. However, the

term 1
n [(y0 � �)� (yn � �)] [(1 + �)

Pn
t=2 ut�1 + �u0 � �un�1 + (y0 � �)] is not included
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Figure 2.1: jE [n (b�� �)]j (thick line) and jE [n ( b�0 � �0)]j.
in A2. Furthermore,

p
n ( b�0 � �) has the same functional form with respect to A1, A2

and A3. Consequently, the derivatives are the same, but now all sums determining the

Edgeworth coe¢ cients run from i = 1 up to 3.

Hence, the asymptotic variance of
p
n ( b�0 � �) is the same as the asymptotic variance of

p
n (b�� �), i.e. !2c�0 = !2b� = 1+�2+4�4+�6+�8

(1+�2)
4 . Further, all Edgeworth coe¢ cients are the

same as in the non-zero mean case (see Appendix A.4) apart from a
(1)
4 , a

(1)
5 , a

(1)
7 , and

a
(1)
9 , which are also presented in Appendix A.4.

We can now evaluate the bias, the MSE and the cumulants of
p
n ( b�0 � �). The 1st order

cumulant is

k
c�0
1 = kb�1 � 1p

n

�
� � �2 � 1

� (� + 1)2�
�2 + 1

�2 = � 2p
n
�
�4 + 1�
�2 + 1

�3 + o �n�1� : (2.5)

Comparing the absolute values of the two approximate biases (see Figure 2.1) it is clear

that for � 2 (�1;�0:2) the absolute bias of b� , multiplied by pn, is less than the one ofb�0. The opposite is true for � 2 (�0:2; 1).
The AMSE is

E
�p
n ( b�0 � �)�2 = E

�p
n (b�� �)�2

+
1

n

�
1 + 8� � 7�2 + 6�3 + 8�4 + 6�5 � 7�6 + 8�7 + �8

� (� + 1)2�
�2 + 1

�5 :
Obviously, the sign of the di¤erence between the zero and the non-zero mean case AMSEs

depends on the sign of the 8th degree polynomial. As now the limit of the polynomial
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is �32, for � ! �1, and 24, for � ! 1, it follows that that there are intervals of �,

within (�1; 1), such that the AMSE of b�0 is lower than the one of b� and vice versa,
for any number of observations, n. However, notice that the asymmetry and kurtosis

parameters, �3 and �4, have the same e¤ect on the AMSE, for any values of � in the

admissible region. Of course, the two AMSEs are equal to the common asymptotic

variance !2b�, as n!1.

Applying again Lemma 1, we get that the second order cumulant of
p
n ( b�0 � �) is given

by:

k
c�0
2 = kb�2 � 4�n

�
(1� �)

�
1� �5

�
+ 2�3

�
(� + 1)2�

�2 + 1
�5 + o

�
n�1

�
:

As now the Edgeworth coe¢ cients involved in the evaluation of the 3rd and 4th order

cumulants are the same in the non-zero and the zero mean case (see Lemma 1), i.e.

k
c�0
3 = kb�3 and kc�04 = kb�4 , we can conclude that the non-normality of the estimators of � is
not a¤ected by the estimation or not of the mean �, up to o

�
n�1

�
. Let us now derive

the expansion of the MM mean estimator, b�.
2.3.2 The Expansion of the Mean MM Estimator

As now
p
n (b�� �) = f (A0) = A0

applying again Theorem 1, it is easy to �nd the Edgeworth and the polynomial coe¢ -

cients in the Edgeworth expansion (see Appendix A.4).

It is worth noticing that even in the normality case, i.e. �3 = �4 = 0, we have that the

approximate distribution of b� is not normal. Furthermore, from Lemma 1, we have that

E
�p
n (b�� �)� = 0 + o �n�1� ;

i.e. b� is an o �n�1� unbiased estimator of �. The AMSE is
E
�p
n (b�� �)�2 = (1 + �)2 �2 � 2

n
��2 + o

�
n�1

�
:

This explains the non-normality of the approximation, even if the errors are normally

distributed. Let us now turn our attention to the expansion of the MM estimator of �.
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2.3.3 The Expansion of the MM MA Coe¢ cient Estimator

For jb�j < 0:5 the solution for b� is:
b� = 1�

p
1� 4b�2
2b� and b� � � = 1�

p
1� 4b�2
2b� � 1�

p
1� 4�2
2�

= f (b�) : (2.6)

Hence, given the cumulants of
p
n (b�� �) presented in Section 2.3.1, we can apply The-

orem 1. The Edgeworth coe¢ cients of
p
n
�b� � �� are given in Appendix A.5. Applying

Lemma 1, we can prove the following Proposition:

Proposition 2.4. Under the Assumptions of Lemma 2 we have that the 1st order cu-

mulant and the MSE of
p
n
�b� � �� are

k
b�
1 =

1p
n

2�2 + 6�3 � 2�4 + 3�5 + 2�6 � �8 � �9 � 1�
1� �2

�3 + o
�
n�1

�
and

E
hp

n
�b� � ��i2 = 1 + �2 + 4�4 + �6 + �8�

1� �2
�2 +

1

n

�
�
b�
3 + �

b�
4

�
+ o

�
n�1

�
;

where �
b�
3 =

1� 8� � 36�2 � 56�3 � 93�4 � 150�5 + 2�6 � 192�7 + 747�8 � 72�9 + 3019�10

+192�11 + 4765�12 + 418�13 + 5421�14 + 352�15 + 2539�16 + 24�17 + 460�18

�216�19 � 933�20 � 210�21 � 442�22 � 96�23 � 141�24 � 8�25 + 21�26 + 16�27

+29�28 + 6�29 + 3�30

(1��4)
6

,

and �
b�
4 = �2��1+2��5�

2+5�3�6�4+2�5�2�6+�7+�8�2�9+�10

(1��2)
2
(1��)2

�23 � 1+�2+4�4��6+�8

(1��2)
2 �4.

Notice �rst, that the approximate bias of b� is not a¤ected by the non-normality of the
errors, and second that the e¤ect of �4 on the AMSE of b� is the same as the e¤ect on the
AMSE of b�, i.e. the AMSE is a decreasing function of �4 for all � 2 (�1; 1). However,
for positive (negative) values of � the AMSE of b� is an increasing (decreasing) function
of �23. This is exactly opposite from the e¤ect that �23 has on the AMSE of b�. Let us
now proceed to the expansion of the MM MA coe¢ cient when the mean is 0.

2.3.3.1 The Zero-Mean Expansion

For the zero mean case, all Edgeworth coe¢ cients are the same as in the non-zero mean

one, apart from !(3), a(1)11 and a(1)12 , which are given in Appendix A.4. Consequently,
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Figure 2.2:
���E hn�b� � ��i��� (thick line) and ���E hn� b�0 � ��i���

applying Lemma 1 and keeping terms up to order O
�
n�1

�
, the approximate bias of

p
n
� b�0 � �� is

k
b�0
1 = k

b�
1 +

1p
n
(1 + �)

1� � + �2

1� � =
1p
n
�
1 + 5�2 + 2�4 + �6 � �8�

1� �2
�3 : (2.7)

Plotting, again, the absolute values of the two approximate biases (multiplied by
p
n),

i.e.
���E �n�b� � ������ and ���E �n� b�0 � ������, we observe that for values of � higher than

about 0:3 the approximate bias of b� is less than the one of b�0 (see Figure 2.2).
In terms of AMSE we have that, keeping the relevant terms,

E
hp

n
� b�0 � ��i2 = E

hp
n
�b� � ��i2 + 1

n
�

where � =

8� + 7�2 + 56�3 + 65�4 + 150�5 + 204�6 + 192�7 + 297�8 + 72�9

+51�10 � 192�11 � 481�12 � 418�13 � 656�14 � 352�15 � 199�16

�24�17 + 285�18 + 216�19 + 327�20 + 210�21 + 132�22 + 96�23

��24 + 8�25 � 23�26 � 16�27 � 7�28 � 6�29 � 3
(1��4)

6 , indicat-

ing that, �rst, the non-normality of the errors a¤ects the AMSE of b� and b�0 in the same
way and second, the asymptotic variance of b� and b�0 is the same. However, the sign of
� depends on the sign of the numerator, a polynomial of 29th degree. As the limit of

this polynomial changes sign as � ! �0:6, we can conclude that there are values of �, in

its admissible interval, such that the AMSE of b� is less than the one of b�0. Let us now
turn our attention to the expansions of the QML estimators of �, � and �.
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2.4 The Expansions of the QML Estimators

In this section we extend the analysis in Tanaka (1984) [87] by dropping normality and

including terms of second order in the approximation of the QMLE of the MA(1j�)

parameters, � and �, say e� and e�.4 These are the solutions to the following equations:
@`
�e��
@�

= 0) 1

�2

nX
t=1

ut

�
�
@ut�1
@�

+ ut�1

������
�=e� = 0 (2.8)

and

@` (e�)
@�

= 0) 1

�2

nX
t=1

ut
@ut
@�

�����
�=e� = 0;

where

` (�; �) = �n log(2��
2)

2
�

nX
t=1

u2t

2�2
and ut = yt � �� �ut�1:

In Appendix A.6 we express
p
n
�e� � �� and pn (e�� �) as functions of the �rst, second

and third order derivatives of ` (�; �) standardized appropriately and evaluated at the

true parameter values. We also present their expectations. In Appendix A.7 we evaluate

the needed cumulants of these derivatives, so that Theorem 1 can be applied. Let us

now turn our attention to the expansion of e�.
2.4.1 The Expansion of the QML MA Coe¢ cient Estimator

Lemma 2.5. Under the Assumptions of Lemma 2, the second order Edgeworth expan-

sion of P
�p

n
�e� � �� < m

�
is given by:

P (m) = �
�m
!

�
� �

�m
!

��
 0 +  1

m

!
+  2

�m
!

�2
+  3

�m
!

�3
+  5

�m
!

�5�
;

where the coe¢ cients  i, i = 0; :::; 5 are as in Theorem 1 and the Edgeworth coe¢ cients

are given in Appendix A.8.

Applying Lemma 1 we get the �rst four approximate cumulants, up to o
�
n�1

�
, of

p
n
�e� � �� as

k
e�
1 =

2� � 1p
n

;

4For various approximations of the MLE see Davidson (1981) [30].



Chapter 2. Edgeworth and Moment Approximations: MM and QML Estimators for the
MA(1) 23

k
e�
2 = !2e� + 1

n
(� + 6) (2� �) + 1

n
�
e�
2;

where !2e� = 1� �2, and �e�2 = 2 �2���1�2��+1
�(1��2)

2

1+�3
�23 �

�
1� �2

�
�4,

k
e�
3 =

1p
n

�
1� �2

�3
1 + �3

�23 and

k
e�
4 =

1

n
6
�
1� �2

� �
�2 + 3

�
+
1

n
�
e�
4;

where �
e�
4 = 12�

���2�2
1��+�2

(1��2)
3

1+�3
�23 +

(1��2)
3

1+�2
�24.

It is worth noticing that the 3rd approximate cumulant of e� is positive even if the errors
u0ts are negatively skewed, whereas is symmetrically distributed for symmetric error

distribution. Furthermore, ke�4 is an increasing function of �24. Consequently, for either
platykurtic or leptokurtic error distribution, the distribution of e� becomes platykurtic.
The second order approximate MSE of e� is given by
E
hp

n
�e� � ��i2 = !2e�+ 1n

"
�8� + 3�2 + 13 + 2�

2 � � � 1
�2 � � + 1

�
�
1� �2

�2
1 + �3

�23 �
�
1� �2

�
�4

#
:

(2.9)

Notice that the AMSE is a decreasing function of �4. This property of e� is shared withb� and b�, as well (see sections 2.3.1 and 2.3.3). Let us now proceed to the expansion of
the QML MA coe¢ cient when the mean is 0.

2.4.1.1 The Zero-Mean Expansion

Now for the case that � = 0, or known and subtracted from the data, we can repeat the

procedure of section 2.4.1, appropriately modi�ed (see Appendix A.8). Notice that the

derivatives with respect to g1, w11 and q111, and the cumulants of these variables remain

the same. Further, as in the expansion of b�0, all Edgeworth coe¢ cients are the same as
in the non-zero mean case apart from a

(1)
4 , a

(1)
5 , a

(1)
7 , and a

(1)
9 , which are presented in

Appendix A.8.

In terms of cumulants, from Lemma 1, we have that the �rst order approximate cumu-

lant, up to o
�
n�1

�
, of

p
n
� e�0 � �� is

k
e�0
1 =

1p
n
�; (2.10)
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which is the same result as in Tanaka (1984) [87], where the 1st order expansion is

presented, and Bao and Ullah (2007) [9]. Comparing with the non-zero mean case, it is

obvious that estimating the mean increases the absolute approximate bias of the QML

estimator of � for � 2 (�1; 0:3), whereas for � 2 (0:34; 1) the approximate bias of e� is
less than that of e�0.
Further, the up to o

�
n�1

�
2nd order cumulant of

p
n
� e�0 � �� is

k
e�0
2 = k

e�
2 �

4

n
(1� �) ;

whereas the 3rd and 4th order approximate cumulants are the same as the ones of
p
n
�e� � ��. This can be explained by the fact that these approximate cumulants do

not depend on any of the Edgeworth coe¢ cients that change in the zero mean case.

Finally, the second order AMSE of
p
n
� e�0 � �� is

E
hp

n
� e�0 � ��i2 = E

hp
n
�e� � ��i2 � 3�2 � 8� + 5

n
:

Comparing the above AMSE with the AMSE of e� we can conclude that the AMSE of
the estimator of � when we estimate the mean is higher than the one when the mean is

zero and not estimated, for all � 2 (�1; 1). Let us now derive the expansion of the mean

QMLE.

2.4.2 The Expansion of the Mean QML Estimator

To �nd the expansion of
p
n (e�� �) we can apply Theorem 1 with appropriate f i,

hij , hijk, for i; j; k = 1; :::4, and the cumulants in Appendix A.7. The Edgeworth and

polynomial coe¢ cients are presented in Appendix A.8. It is worth noticing that the

asymptotic variance of e� is (1 + �)2 �2, the same as the one of b�, and that if the ut0s are
normally distributed then the distribution of

p
n (e�� �) is normal as well, which is not

the case for b�.
Furthermore, from Lemma 1 we have that

k1 = E
�p
n (e�� �)� = 0;
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i.e. e� is an o �n�1� unbiased estimator. Finally
E
�p
n (e�� �)�2 = �2 (1 + �)2 + o

�
n�1

�
:

2.4.3 The Expansion of the First Order Autocorrelation QMLE

Let us de�ne the QMLE of � as e� = e�
1 + e�2 :

In Appendix A.9 we present the Edgeworth coe¢ cients of the second order approxi-

mation of the distribution of
p
n (e�� �). To �nd the approximate bias and AMSE of

p
n (e�� �), up to o �n�1�, we can apply Lemma 1 and get

ke�1 = �(1� �)
�
1 + 2� + 3�2

�
p
n

�
1� �2

��
1 + �2

�3
and

E
�p
n (e�� �)�2 = �1� �2�3�

1 + �2
�4 + 1

n

�
�e�1 + �e�2

�
; (2.11)

where �e�1 = (10�+62�2�4�3�65�4�14�5+24�6+7)(1��2)
2

(1+�2)
6 and

�e�2 = 4� ���2��3+�4�2
(�+1)(��+�2+1)

2

(1��2)
4

(1+�2)
5�
2
3 �

(1��2)
3

(1+�2)
4�4. We next concentrate on the expansion in

the zero-mean case.

2.4.3.1 The Zero-Mean Expansion

For the zero mean case, all Edgeworth coe¢ cients are the same as in the non-zero mean

one, apart from !(3), a(1)11 and a
(1)
12 (see Appendix A.9). Consequently, applying Lemma 1

and keeping terms up to order O
�
n�1

�
, we can �nd the approximate bias of

p
n ( e�0 � �)

as

k
f�0
1 = ke�1 + 1p

n

(1� �)2 (1 + �)�
1 + �2

�2 : (2.12)

It is obvious that the absolute values of the approximate bias of e�0 is less than the one
of e�.
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In terms of AMSE we have that, keeping relevant terms,

E
�p
n ( e�0 � �)�2 = E

�p
n (e�� �)�2

� 1
n

�
14� + 87�2 � 12�3 � 70�4 � 26�5 + 31�6 + 14

� �1� �2�2�
1 + �2

�6 :
This is di¤erent from the non-zero mean case. However, notice that the asymmetry and

kurtosis parameters, �3 and �4, have the same e¤ect on the AMSE, for any values of �

in the admissible region. In fact, the AMSE of e�0 is always lower than the one of e� for
all � 2 (�1; 1). Of course, for higher values of n the two AMSEs collapse to the common

asymptotic variance. Let us now proceed with the comparisons between all estimators.

2.5 Comparing the Estimators

To compare all estimators in terms of bias and MSE we run a simulation exercise.

We draw a random sample of n 2 f50; 200g observations from a non-central Student-

t distribution with non-centrality parameter � 2 f�1; 1g and � 2 f11; 20g degrees of

freedom. Notice that for these values of � and � we have that �3 2 f�0:400;�0:17g

and �4 2 f1:250; 0:42g. For each random sample, we generate the MA(1j�) process yt
for � 2 f�0:9;�0:8; ::::::; 0:9g, � = 5:0 and �2 = 1:0. We evaluate b� and if the estimate
is in the (�0:5; 0:5) interval we estimate all estimators, otherwise we throw away the

sample and draw another one. This will introduce some bias in the estimation of the

biases and the MSEs of the estimators, for which the closer � is at the boundary of the

admissible space the �ercer it will be. Furthermore, this will probably a¤ect more the

estimation of bias and MSE of the MM estimator of �, as the maximization of the quasi

likelihood is not restricted in any way. For each retained sample we evaluate the MM (b�,b�, and b�), the QML (e�, e� and e�) and the feasibly bias corrected estimators, i.e. when
the estimated value of � is employed for bias correction, employing the approximate bias

formulae of previous sections (see Iglesias and Phillips 2008 [56], as well). We set the

number of replications to 20000.

We will present the results for n 2 f50; 200g, � = 1 and � 2 f11; 20g, as the results with

� = �1 and � 2 f11; 20g are almost identical to the reported ones.
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Figure 2.3:
���E hn�b� � ��i��� (thick line) and ���E hn�e� � ��i���
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Figure 2.4: jE [n (b�� �)]j (thick line) and jE [n (e�� �)]j
2.5.1 Bias of the Estimators

On o
�
n�1

�
approximations grounds, it is apparent that, when � is estimated, there are

areas of the admissible region of � that the MM estimators of either � or � are less

(approximately) biased than the QMLEs (see Figure 2.3 and Figure 2.4). For example,

for �:3 � � � 0, both b� and b� are less biased than e� and e�, respectively. However, the
opposite is true for � � 0.

In terms of the simulation results, the same is more-or-less true for the estimated values

of the biases of b� and e� (compare the 3rd with the 6th column of Table 2.1, for non-central
Student-t with � = 20, and the same ones in Table 2.2, for � = 11). However, there

are important di¤erences between the two estimators. Regarding the MM estimator,

the approximate biases are far away from the estimated ones for values of � near the
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ends of the admissible parameter region. In fact, for � lower than �0:4 (for n = 50) and

�0:5 (for n = 200), the approximate bias continuously underestimates the estimated

one. The opposite is true for � higher than 0:5 for both samples. For � = �0:9 or

� = 0:9, the under and over estimation is massive, respectively. On the other hand,

regarding the QMLE, the estimated bias of e� is higher from the approximate one for

� < 0:4, when n = 50, and for � < �0:4, when n = 200. In terms of the bias corrected

estimators, it is apparent that when the approximate biases are close to the estimated

ones, the corrected estimators are, by all terms, unbiased. Furthermore, it seems that

the decrease in the degrees of freedom a¤ects the estimated bias of b� more than that ofe�. This is an indication that the assumption E �u100 � exists is more important for the
MM estimator of � than for the QMLE.

For the estimators of � (see Tables 2.3 and 2.4), the estimated biases of the feasibly

corrected estimators of both estimators b� and e� are less, in absolute value, from the

equivalent ones of the estimated biases. Furthermore, the estimated biases of the feasibly

corrected b� are less, in absolute values, than the ones of the feasibly corrected e� when
� 2 [�0:3; 0:0] for n = 50, and � 2 [�0:4; 0:0] for n = 200, which partly con�rms Figure

2.4. It seems that near the ends of the admissible region of � the approximate bias of e�
is more accurate as compared with the one of b�, i.e. it is closer to the estimated bias.
Finally, the decrease in the degrees of freedom of the distribution of the errors a¤ects

the bias results, of both estimators, only marginally.

However, for the zero-mean case notice that the QMLEs of either � or � are less (ap-

proximately) biased than the MM ones, for all � 2 (�1; 1). To see this, compare (2:7)

with (2:10), and (2:5) with (2:12), respectively.

Hence, in terms of bias and when � is estimated, for negative values of �, but close to

0, the approximation of b� and b� work better than those of e� and e�, whereas for � > 0 or
� close to �1 the QMLEs approximations are better.

2.5.2 MSE of the Estimators

In terms of second order AMSEs, we plot the ones of the two estimators of � in Figure

2.5 and the corresponding ones of the estimators of � in Figure 2.6. Notice that in both

graphs we set n = 20 and in both cases � is estimated. It is apparent that there is not
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Figure 2.5: MSE of
p
20
�b� � �� (thick) and p20�e� � ��, for �3 = 0:17 and �4 =

0:42.
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Figure 2.6: MSE of
p
20 (b�� �) (thick) and p20 (e�� �), for �3 = 0:17 and �4 = 0:42.

uniform superiority of neither the QMLEs nor the MM ones, over the whole range of

the admissible values of �. In fact, it seems that for � 2 (�0:3; 0:3), and for the above

sample size, the MSE of the MM estimators are smaller than the ones of the QMLEs.

These �ndings can be explained by the following facts: i) the asymptotic variance of e�,
AV
�e��, is less than or equal to AV�b��, a well known result, and the same is true for

AV(e�) and AV(b�). In fact, only for � = 0 AV�e�� =AV�b�� and AV(e�) =AV(b�), and we
have strict inequality for all other values of �. ii) For the 1

n terms, which do not include

�3 or �4, and for � 2 (�0:5; 0:6) the term of E
hp

n
�b� � ��i2 is lower than the one of

E
hp

n
�e� � ��i2, for any sample size. The same is true for the equivalent terms of the

estimators of � for � 2 (�0:8; 0:5). iii) For � 2 (�1; 0), E
hp

n
�b� � ��i2 is a decreas-

ing function of �23, whereas E
hp

n
�e� � ��i2, E [pn (b�� �)]2 and E [pn (e�� �)]2 are

increasing functions of �23. The opposite is true for � 2 (0; 1). iv) All MSEs are decreas-

ing functions of �4, for � 2 (�1; 1). However, E
hp

n
�b� � ��i2 and E [pn (b�� �)]2 are

decreasing at a higher rate.
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In terms of the simulations, it is immediately obvious that the AMSEs are close to the

estimated ones for the MM estimator of � (see Tables 2.5 and 2.6) in the middle range

of values of �, and are massively higher than the estimated ones at the two ends of the

admissible range. On the other hand, the estimated MSEs of e� are almost always under-
estimated by the approximate ones over the whole interval of �. The underestimation

is worse for values of � less than �0:6 and higher than 0:6. For n = 50, the estimated

MSE of b� is less than the one of e� for � 2 (�0:1; 0:1), partially con�rming Figure 2.5.
The estimated MSEs of the bias corrected e� are less than the ones of b� for all values of
� apart for � = 0, and this is true for both sample sizes. By decreasing the degrees of

freedom of the error distribution, the estimated MSEs are lower for b� and higher for e�
(compare the 3rd and 6th columns of Table 2.5 with the respective ones of Table 2.6).

This is in agreement with the approximate results for b� but not for e�. Finally, apart
from the central part of the admissible range of �, the MSE of the corrected e� is almost
always less than the one of b�.
The estimated MSEs of b� are close to the AMSE ones (closer for n = 200 than for

n = 50) and they are more so for � 2 (�0:6; 0:6) (see Table 2.7 and Table 2.8). The

same is true for the MSEs of e�. Comparing the MSEs of b� with those of e�, for � = 20
and for both sample sizes, it is apparent that the estimated MSEs of b� are less than
those of e�, for � 2 (�0:1; 0:1) partially con�rming Figure 2.6. The same is true for the
MSEs of the two estimators, for 11 degrees of freedom. The biased corrected e� has, more
or less, a smaller MSE than the corrected b� and for both samples.
Hence, to conclude this section, we can say that in terms of MSE and for small sample

size, the QML method is more e¢ cient for the estimation of � and � only for the interval

(�1:0;�0:6) [ (0:0; 1:0).

2.6 Conclusions

This chapter, by extending the results in Sargan (1976) [80] and Tanaka (1984) [87],

derives the asymptotic expansions of the MM and QML estimators of the 1st order

autocorrelation, the mean parameter and the MA parameter for the MA(1) model. The

necessity of Sargan�s extension rests on the fact that the 1st and 2nd order cumulants

of some estimators include also terms of O
�
n�

1
2

�
and O

�
n�1

�
. First, the second order
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Edgeworth and Nagar-type expansions of the MM estimators are derived in a more

general setup of Sargan (1976) [80] and second, the �rst order expansions in Tanaka

(1984) [87] are extended to include terms of second order for the QML ones. It is worth

noticing that the second order approximate bias of all estimators is not a¤ected by

the non-normality of the errors. A comparison of the expansions, either in terms of

approximate bias or AMSE, reveals that there is not uniform superiority of neither of

the estimators of � and �, something which is also con�rmed by the simulation results.

Furthermore, it seems that the approximations work well for the middle rage of the

admissible values of �, whereas when � takes values near the two ends, �1 and +1, the

approximation are very poor with the MM approximations being a¤ected more than

the QMLE ones. Finally, the approximate bias and AMSE of the estimators depend

on whether the mean of the process is known or estimated. In the zero-mean case, and

on approximate grounds, the QMLEs of � and � are superior to the MM ones in both

approximate bias and AMSE terms.

The results can be utilized to provide �ner approximations of the distributions of the

estimators, as compared to the asymptotically normal ones. In fact, the bias results

were employed to correct the up to O
�
n�1

�
bias of the estimators. It turned out that

the feasibly corrected e� is, almost always, less biased than b�, for the whole interval of �,
without considerable alteration of its MSE. This indicates that the presented expansion

works well for as small sample size as 50. On the other hand, the approximation of b�
works well only for values of � close to 0, with even as much as 200 observations. The

presented approximations of e� and e� are somewhere in the middle, i.e. work well for a
large interval of values of �. Furthermore, in the Indirect Inference literature, our results

constitute an application of the general results in Arvanitis and Demos (2009) [6].

The analysis presented here can be extended to any ARMA(p; qj�) model. However,

the algebra involved is becoming extremely tedious even for small values of p and q.

Furthermore, one could consider the stochastic process yt = � + ut + �sut�s, where

s = 1; 2; :::. For speci�c values of s, this class of models could capture seasonal e¤ects,

e.g. for quarterly data s = 4, for monthly data s = 12, etc. (see e.g. Ghysels and

Osborn 2001 [44]). In this case, the cumulants, at least up to 2nd order, of the various

statistics employed in sections 3 and 4 will become functions of s, complicating further

the evaluations of the Edgeworth coe¢ cients and the moments of the estimators.
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Another interesting issue could be the expansion of the estimators as the parameter �

reaches the boundary of the admissible region, i.e. when � ! �1 (in this respect see

Andrews 1999 [5], and Iglesias and Linton 2007 [54]). Furthermore, along the lines of

Durbin (1959) [39] and Gourieroux et al. (1993) [47], the properties of the MM estimators

can be improved by considering the expansions not only of the �rst order autocorrelation

but higher order ones. Finally, one could, utilizing the presented expansions, consider

adjusted Box-Pierce tests along the lines of Kan and Wang (2010) [60], or develop

asymptotic expansions of the error variance estimators, as well, and consider expansions

of various tests, e.g. Wald etc. We leave these issues for future research.

This chapter is available as a Discussion Paper of Demos and Kyriakopoulou (2008) [34].
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THETA MM THETA QML

n = 50; ut
iid� non� central Student� t with 20 df; and non� centrality = 1

Theta Approx. Bias Est. Bias Bias Feas. Approx. Bias Est. Bias Bias Feas.
-0.9 -119.9542 2.6921 69.8340 -0.3960 -0.3219 -0.0355
-0.8 -12.4383 1.8054 157.3671 -0.3677 -0.2655 -0.0002
-0.7 -3.0324 1.0435 188.8647 -0.3394 -0.1749 0.0686
-0.6 -1.0691 0.4293 30.4886 -0.3111 -0.1310 0.0917
-0.5 -0.4825 0.0414 228.7782 -0.2828 -0.1381 0.0646
-0.4 -0.2715 -0.1237 5.1714 -0.2546 -0.1601 0.0231
-0.3 -0.1884 -0.1315 0.3206 -0.2263 -0.1631 0.0002
-0.2 -0.1553 -0.1129 0.0167 -0.1980 -0.1481 -0.0051
-0.1 -0.1437 -0.0998 0.0070 -0.1697 -0.1260 -0.0035
0 -0.1414 -0.0958 0.0055 -0.1414 -0.1037 -0.0016
0.1 -0.1419 -0.0944 0.0047 -0.1131 -0.0817 -0.0001
0.2 -0.1397 -0.0902 -0.0011 -0.0849 -0.0608 0.0004
0.3 -0.1249 -0.0781 -0.1714 -0.0566 -0.0434 -0.0025
0.4 -0.0737 -0.0995 -1.3525 -0.0283 -0.0454 -0.0245
0.5 0.0818 -0.2445 -53.2987 0.0000 -0.0691 -0.0677
0.6 0.5699 -0.5946 -49.9888 0.0283 -0.0959 -0.1140
0.7 2.3447 -1.1736 -475.2946 0.0566 -0.1032 -0.1411
0.8 11.3308 -1.9416 -99.9750 0.0849 -0.1070 -0.1648
0.9 117.4888 -2.8222 -179.6870 0.1131 -0.1636 -0.2403

n = 200; ut
iid� non� central Student� t with 20 df; and non� centrality = 1

-0.9 -59.9771 3.0855 146.5577 -0.1980 -0.0446 0.1538
-0.8 -6.2191 1.8673 312.9910 -0.1838 -0.0733 0.1113
-0.7 -1.5162 0.8553 1457.2564 -0.1697 -0.0694 0.1010
-0.6 -0.5345 0.1583 23.1202 -0.1556 -0.0807 0.0757
-0.5 -0.2412 -0.1320 13.1220 -0.1414 -0.1141 0.0284
-0.4 -0.1357 -0.1449 0.1865 -0.1273 -0.1280 0.0006
-0.3 -0.0942 -0.1009 0.0095 -0.1131 -0.1183 -0.0040
-0.2 -0.0776 -0.0802 0.0017 -0.0990 -0.1041 -0.0041
-0.1 -0.0718 -0.0731 0.0002 -0.0849 -0.0891 -0.0033
0 -0.0707 -0.0716 -0.0005 -0.0707 -0.0735 -0.0020
0.1 -0.0709 -0.0716 -0.0010 -0.0566 -0.0581 -0.0009
0.2 -0.0698 -0.0701 -0.0021 -0.0424 -0.0435 -0.0006
0.3 -0.0624 -0.0611 -0.0083 -0.0283 -0.0300 -0.0015
0.4 -0.0368 -0.0365 -0.0953 -0.0141 -0.0209 -0.0065
0.5 0.0409 -0.0505 -8.2296 0.0000 -0.0315 -0.0312
0.6 0.2849 -0.3287 -61.1723 0.0141 -0.0623 -0.0758
0.7 1.1723 -0.9893 -603.7911 0.0283 -0.0833 -0.1108
0.8 5.6654 -1.9529 -1046.4400 0.0424 -0.0903 -0.1318
0.9 58.7444 -3.1666 -304.7226 0.0566 -0.1710 -0.2259

Table 2.1: Biases of the MA Coe¢ cient Estimators under non-central Student-t with
20 degrees of freedom



Chapter 2. Edgeworth and Moment Approximations: MM and QML Estimators for the
MA(1) 34

THETA MM THETA QML

n = 50; ut
iid� non� central Student� t with 11 df; and non� centrality = 1

Theta Approx. Bias Est. Bias Bias Feas. Approx. Bias Est. Bias Bias Feas.
-0.9 -119.9542 2.3323 508.2411 -0.3960 -0.9820 -0.5467
-0.8 -12.4383 1.6906 3440.5556 -0.3677 -0.9269 -0.5221
-0.7 -3.0324 1.11025 194.5709 -0.3394 -0.6700 -0.3038
-0.6 -1.0691 0.61611 87.0193 -0.3111 -0.4516 -0.1224
-0.5 -0.4825 0.2364 915.3231 -0.2828 -0.3228 -0.0270
-0.4 -0.2715 -0.0088 46.2209 -0.2546 -0.2782 -0.0125
-0.3 -0.1884 -0.1279 2.2324 -0.2263 -0.2601 -0.0234
-0.2 -0.1553 -0.1583 10.1938 -0.1980 -0.2402 -0.0326
-0.1 -0.1437 -0.1565 14.6839 -0.1697 -0.2102 -0.0320
0 -0.1414 -0.1491 -0.0003 -0.1414 -0.1741 -0.0257
0.1 -0.1419 -0.1451 -0.0948 -0.1131 -0.1399 -0.0212
0.2 -0.1397 -0.14757 -1.5566 -0.0849 -0.1129 -0.0235
0.3 -0.1249 -0.1737 -8.4322 -0.0566 -0.1005 -0.0399
0.4 -0.0737 -0.2663 -15.5777 -0.0283 -0.1058 -0.0733
0.5 0.0818 -0.4777 -13.7759 0.0000 -0.1177 -0.1130
0.6 0.5699 -0.8195 -193.7762 0.0283 -0.1170 -0.1406
0.7 2.3447 -1.2831 -94.4679 0.0566 -0.0833 -0.1365
0.8 11.3308 -1.8498 -96.4860 0.0849 -0.0234 -0.1074
0.9 117.4888 -2.4850 -1230.0230 0.1131 0.0168 -0.0970

n = 200; ut
iid� non� central Student� t with 11 df; and non� centrality = 1

-0.9 -59.9771 3.0777 2082.6805 -0.1980 -0.0479 0.1506
-0.8 -6.2191 1.8795 126.6579 -0.1838 -0.0718 0.1128
-0.7 -1.5162 0.8624 67.4715 -0.1697 -0.0666 0.1038
-0.6 -0.5345 0.1755 146.7298 -0.1556 -0.0757 0.0806
-0.5 -0.2412 -0.1280 16.4453 -0.1414 -0.1133 0.0292
-0.4 -0.1357 -0.1445 0.9975 -0.1273 -0.1251 0.0034
-0.3 -0.0942 -0.1004 0.0101 -0.1131 -0.1163 -0.0020
-0.2 -0.0776 -0.0793 0.0027 -0.0990 -0.1022 -0.0022
-0.1 -0.0718 -0.0720 0.0014 -0.0849 -0.0873 -0.0016
0 -0.0707 -0.0702 0.0010 -0.0707 -0.0719 -0.0004
0.1 -0.0709 -0.0700 0.0006 -0.0566 -0.0566 0.0006
0.2 -0.0698 -0.0681 -0.0001 -0.0424 -0.0421 0.0008
0.3 -0.0624 -0.0580 -0.0043 -0.0283 -0.0286 0.0000
0.4 -0.0368 -0.0297 -104.2074 -0.0141 -0.0199 -0.0055
0.5 0.0409 -0.0571 -2.3114 0.0000 -0.0342 -0.0339
0.6 0.2849 -0.3269 -26.6365 0.0141 -0.0653 -0.0788
0.7 1.1723 -0.9924 -43.5185 0.0283 -0.0813 -0.1088
0.8 5.6654 -1.9865 -52.7870 0.0424 -0.0926 -0.1341
0.9 58.7444 -3.1849 -111.6753 0.0566 -0.1725 -0.2274

Table 2.2: Biases of the MA Coe¢ cient Estimators under non-central Student-t with
11 degrees of freedom
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RHO MM RHO QML

n = 50; ut
iid� non� central Student� t with 20 df; and non� centrality = 1

Theta Approx. Bias Est. Bias Bias Feas. Approx. Bias Est. Bias Bias Feas.
-0.9 0.0699 0.5784 0.5426 -0.0140 0.0290 0.0357
-0.8 0.0672 0.5235 0.4886 -0.0274 0.0135 0.0301
-0.7 0.0617 0.4277 0.3951 -0.0397 0.0103 0.0365
-0.6 0.0522 0.2981 0.2697 -0.0507 0.0111 0.0458
-0.5 0.0373 0.1621 0.1413 -0.0611 -0.0018 0.0406
-0.4 0.0153 0.0565 0.0486 -0.0725 -0.0282 0.0224
-0.3 -0.0150 0.0017 0.0133 -0.0866 -0.0527 0.0079
-0.2 -0.0534 -0.0328 0.0041 -0.1043 -0.0713 0.0012
-0.1 -0.0972 -0.0628 0.0032 -0.1241 -0.0868 -0.0016
0 -0.1414 -0.0928 0.0026 -0.1414 -0.1001 -0.0041
0.1 -0.1801 -0.1194 0.0021 -0.1504 -0.1075 -0.0059
0.2 -0.2085 -0.1396 0.0017 -0.1468 -0.1068 -0.0072
0.3 -0.2250 -0.1550 -0.0015 -0.1301 -0.0987 -0.0093
0.4 -0.2309 -0.1890 -0.0300 -0.1041 -0.0939 -0.0206
0.5 -0.2297 -0.2625 -0.1023 -0.0747 -0.0914 -0.0368
0.6 -0.2250 -0.3687 -0.2091 -0.0472 -0.0808 -0.0444
0.7 -0.2197 -0.4822 -0.3233 -0.0253 -0.0595 -0.0387
0.8 -0.2154 -0.5719 -0.4136 -0.0104 -0.0402 -0.0305
0.9 -0.2129 -0.6231 -0.4651 -0.0024 -0.0321 -0.0285

n = 200; ut
iid� non� central Student� t with 20 df; and non� centrality = 1

-0.9 0.0350 0.5627 0.5341 -0.0070 0.0119 0.0187
-0.8 0.0336 0.4860 0.4581 -0.0137 0.0068 0.0201
-0.7 0.0308 0.3535 0.3271 -0.0198 0.0078 0.0272
-0.6 0.0261 0.1948 0.1715 -0.0253 0.0041 0.0291
-0.5 0.0187 0.0700 0.0527 -0.0305 -0.0144 0.0158
-0.4 0.0077 0.0131 0.0061 -0.0362 -0.0332 0.0027
-0.3 -0.0075 -0.0079 -0.0001 -0.0433 -0.0439 -0.0009
-0.2 -0.0267 -0.0271 -0.0008 -0.0521 -0.0540 -0.0023
-0.1 -0.0486 -0.0487 -0.0012 -0.0620 -0.0641 -0.0030
0 -0.0707 -0.0705 -0.0016 -0.0707 -0.0723 -0.0031
0.1 -0.0901 -0.0896 -0.0017 -0.0752 -0.0764 -0.0028
0.2 -0.1043 -0.1037 -0.0017 -0.0734 -0.0747 -0.0028
0.3 -0.1125 -0.1122 -0.0017 -0.0650 -0.0673 -0.0032
0.4 -0.1154 -0.1191 -0.0052 -0.0521 -0.0576 -0.0057
0.5 -0.1148 -0.1537 -0.0399 -0.0373 -0.0537 -0.0158
0.6 -0.1125 -0.2564 -0.1436 -0.0236 -0.0517 -0.0271
0.7 -0.1098 -0.3964 -0.2847 -0.0127 -0.0410 -0.0273
0.8 -0.1077 -0.5122 -0.4012 -0.0052 -0.0260 -0.0200
0.9 -0.1065 -0.5876 -0.4770 -0.0012 -0.0194 -0.0176

Table 2.3: Biases of First Order Autocorrelation Estimators under non-central
Student-t with 20 degrees of freedom
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RHO MM RHO QML

n = 50; ut
iid� non� central Student� t with 11 df; and non� centrality = 1

Theta Approx. Bias Est. Bias Bias Feas. Approx. Bias Est. Bias Bias Feas.
-0.9 0.0699 0.5935 0.5529 -0.0140 0.0998 0.0956
-0.8 0.0672 0.5553 0.5163 -0.0274 0.0647 0.0743
-0.7 0.0617 0.4851 0.4493 -0.0397 0.0404 0.0670
-0.6 0.0522 0.3848 0.3547 -0.0507 0.0281 0.0705
-0.5 0.0373 0.2634 0.2431 -0.0611 0.0152 0.0716
-0.4 0.0153 0.1398 0.1353 -0.0725 -0.0164 0.0533
-0.3 -0.0150 0.0353 0.0546 -0.0866 -0.0601 0.0240
-0.2 -0.0534 -0.0390 0.0124 -0.1043 -0.1007 -0.0008
-0.1 -0.0972 -0.0949 -0.0058 -0.1241 -0.1348 -0.0188
0 -0.1414 -0.1396 -0.0114 -0.1414 -0.1585 -0.0292
0.1 -0.1801 -0.1780 -0.0145 -0.1504 -0.1732 -0.0368
0.2 -0.2085 -0.2129 -0.0219 -0.1468 -0.1785 -0.0441
0.3 -0.2250 -0.2539 -0.0447 -0.1301 -0.1777 -0.0547
0.4 -0.2309 -0.3129 -0.0939 -0.1041 -0.1723 -0.0684
0.5 -0.2297 -0.3959 -0.1727 -0.0747 -0.1580 -0.0775
0.6 -0.2250 -0.4851 -0.2606 -0.0472 -0.1300 -0.0740
0.7 -0.2197 -0.5661 -0.3414 -0.0253 -0.0979 -0.0636
0.8 -0.2154 -0.6258 -0.4011 -0.0104 -0.0750 -0.0565
0.9 -0.2129 -0.6590 -0.4345 -0.0024 -0.0724 -0.0619

n = 200; ut
iid� non� central Student� t with 11 df; and non� centrality = 1

-0.9 0.0350 0.5606 0.5320 -0.0070 0.0117 0.0185
-0.8 0.0336 0.4873 0.4594 -0.0137 0.0067 0.0200
-0.7 0.0308 0.3568 0.3304 -0.0198 0.0082 0.0277
-0.6 0.0261 0.2008 0.1776 -0.0253 0.0058 0.0308
-0.5 0.0187 0.0725 0.0553 -0.0305 -0.0139 0.0164
-0.4 0.0077 0.0144 0.0075 -0.0362 -0.0312 0.0048
-0.3 -0.0075 -0.0066 0.0012 -0.0433 -0.0421 0.0010
-0.2 -0.0267 -0.0256 0.0007 -0.0521 -0.0520 -0.0003
-0.1 -0.0486 -0.0473 0.0003 -0.0620 -0.0623 -0.0011
0 -0.0707 -0.0691 -0.0001 -0.0707 -0.0707 -0.0014
0.1 -0.0901 -0.0883 -0.0004 -0.0752 -0.0751 -0.0016
0.2 -0.1043 -0.1025 -0.0005 -0.0734 -0.0739 -0.0020
0.3 -0.1125 -0.1109 -0.0005 -0.0650 -0.0668 -0.0027
0.4 -0.1154 -0.1178 -0.0040 -0.0521 -0.0575 -0.0056
0.5 -0.1148 -0.1564 -0.0425 -0.0373 -0.0553 -0.0174
0.6 -0.1125 -0.2564 -0.1437 -0.0236 -0.0531 -0.0285
0.7 -0.1098 -0.3976 -0.2859 -0.0127 -0.0406 -0.0269
0.8 -0.1077 -0.5192 -0.4081 -0.0052 -0.0264 -0.0205
0.9 -0.1065 -0.5911 -0.4804 -0.0012 -0.0196 -0.0179

Table 2.4: Biases of First Order Autocorrelation Estimators under non-central
Student-t with 11 degrees of freedom
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Chapter 3

Bias Correction of ML and QML

Estimators in the EGARCH(1,1)

Model

3.1 Introduction

The last years there has been a substantial interest in deriving the asymptotic proper-

ties of econometric estimators in time series models. Although there is an important

and growing literature that deals with the asymptotics of the Generalized Autoregres-

sive Conditional Heteroskedastic (GARCH) models, either in terms of consistency and

asymptotic normality of the estimators or in terms of the �nite-sample theory, the as-

ymptotic properties of the estimators in the Exponential GARCH (EGARCH) process

of Nelson (1991) [71] have not been fully explored. Comparing to the GARCH process,

the advantages of the EGARCH model are well-known, with the main one being the fact

that the model captures the negative dynamic asymmetries noticed in many �nancial

series, i.e. the so-called leverage e¤ects.

The asymptotic aspects of the conditionally heteroskedastic models have been discussed

under many di¤erent considerations, in order to analyze the statistical properties of these

estimators. Since the important work of Engle (1982) [40] and that of Bollerslev (1986)

[20], who introduced the Autoregressive Conditional Heteroskedasticity (ARCH) and

Generalized ARCH models, respectively, a huge amount of literature on the asymptotics

41
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has appeared in short time. Weiss (1986) [90] proved Consistency and Asymptotic

Normality (CAN) of the maximum likelihood estimators in ARCH models, assuming

normal distribution of the errors and imposing a rather restrictive condition that the

data have bounded fourth moments, excluding in that way from the proof many other

interesting conditionally heteroskedastic models. Quite parallel, Lee and Hansen (1994)

[61] and Lumsdaine (1996) [66] relaxed the condition which Weiss imposed and they

looked at the consequences of the possible failure of the normality assumption on the

errors, providing conditions under which CAN exist in the GARCH(1; 1) speci�cation

(for multivariate frameworks see e.g. Jeantheau, 1998 [57]; Comte and Lieberman, 2003

[26]).

The �nite sample properties of the QML estimators in the �rst order GARCH model

are investigated through an asymptotic expansion of the Edgeworth type, as Linton

(1997) [65] developed1 in which he also provided the higher-order bias of the estimators.

Furthermore, Iglesias and Linton (2007) [54] derive the second-order asymptotic theory

of the quasi-maximum likelihood estimator in stationary and nonstationary GARCH

models, when constraints are imposed and they correct the �rst- and second-order bias

of the estimator. Nowadays, many researchers work on the asymptotic behavior of these

estimators, with unceasing interest.

Until the in�uential work of Nelson (1991) [71], the conditional heteroskedastic mod-

els that had been developed could not explain the asymmetry e¤ects, indicating that

alternative models might be suitable for �nancial applications. Turning our attention

to asymmetric GARCH models, and more speci�cally to the EGARCH model which

has become a popular model in applied �nancial work, very little is known about its

statistical properties. Although we are endowed with the moment structure investigated

by He, Terasvirta and Malmsten (2002) [52], the limiting properties of the maximum

likelihood estimators in the EGARCH models do not exist in the literature. The interest

in consistency and asymptotic normality results of EGARCH has been growing and the

problem of the theoretical properties not yet been explored await for an answer; see,

for example, Straumann and Mikosch (2006) [83]2. The �nite sample properties of the

maximum likelihood and quasi-maximum likelihood estimators of the EGARCH(1; 1)

1The validity of the Edgeworth expansions in the GARCH model is established in the paper of Corradi
and Iglesias (2008) [27].

2 In a recent paper, Za¤aroni (2009) [91] estimates the EGARCH parameters with Whittle methods
and the asymptotic distribution theory of these estimators is established.
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process using Monte Carlo methods have been examined in the paper of Deb (1996)

[33]3. He used, however, response surface methodology in order to examine the �nite

sample bias and other properties in interest, by summarizing the results of a wide array

of experiments.

In this chapter we derive the bias approximations of the Maximum Likelihood (ML)

and Quasi-Maximum Likelihood (QML) Estimators of the EGARCH(1; 1) parameters

and we check our theoretical results through simulations. With the approximate bias

expressions, we are then able to correct the bias of all estimators. To this end, a Monte

Carlo exercise is conducted and the results are presented and discussed. We provide

two types of the bias correction mechanism in order to decide for the bias reduction

in practice for the popular model of Nelson. It is the �rst time that analytically the

higher order biases appear in this literature for a nonlinear model like the EGARCH

one and these results can now be used as to be incorporated into the relative analysis

of other similar speci�cations, see e.g. Iglesias and Linton (2007) [54]. We conclude

that, for given sets of parameters values, the bias correction works satisfactory for all

the parameters. The results for the approximate bias expressions can be used in order

to formulate the approximate Edgeworth distribution of the estimators.

The organization of this chapter is as follows: Section 3.2 presents the model and estima-

tors. Section 3.3 deals with the main results of our analysis. First, analytic derivatives

and their expected values are presented. Second, conditions for stationarity of the log-

variance derivatives are investigated. In the sequel, the theoretical bias approximations

of the Maximum Likelihood and Quasi Maximum Likelihood Estimators are calculated

and the simulation results for the bias correction of the estimators are presented. Fi-

nally, Section 3.4 concludes. All proofs, rather lengthy, are collected in the Appendix

B. Let us now turn our attention to the de�nition of the EGARCH(1; 1) model and the

estimators.

3.2 The Model and Estimators

Let us consider the following model, where the observed data fytgTt=1 are generated by

the EGARCH(1; 1) process, see Nelson (1991) [71], in which the conditional variance,

3Perez and Za¤aroni (2008) [73] compare the �nite sample properties of the MLE and Whittle esti-
mators, in terms of bias and e¢ ciency, in the EGARCH model and its long-memory version.
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ht, depends on both the size and the sign of the lagged residuals:

yt = �+ ut; t = 1; :::T; where (3.1)

ut = zt
p
ht; zt � iidD (0; 1)

ln (ht) = �+ �zt�1 + 
g (zt�1) + � ln (ht�1) ; where (3.2)

g (zt) = jztj � E jztj :

The process futg is a real-valued discrete time stochastic process (the error process)

and ht is a positive with probability one At�1-measurable function (the conditional

variance), where At�1 is the sigma-algebra generated by the past values of zt, i.e.

fzt�1; zt�2; zt�3; :::g. The function g (zt) is a well-de�ned function of zt. The process

ht is not observed and thus is constructed via recursion using the estimating values of

the parameters and a proper initial value for the conditional variance. To allow for

the possibility of nonnormality in the conditional distribution of fytg, we assume that

the fztg are independently and identically distributed (i.i.d.) with zero mean and unit

variance. We do not impose any symmetric distributional property, however the proofs

automatically become very complicated. The conditional variance is constrained to be

non-negative by the assumption that the logarithm of ht is a function of past z0ts. Com-

paring to the relative analysis, Nelson�s paper was the �rst which models the conditional

variance as a function of variables which are not solely squares of the observations.

Note from (3.2) that ln (ht) constitutes a causal AR(1) process with mean �= (1� �) and

error sequence [�zt�1 + 
 (jzt�1j � E jzt�1j)]. The unique stationary solution to (3.2),

provided that j�j < 1, is given by its almost sure (a.s.) representation, provided that


 � j�j4:

ln (ht) = � (1� �)�1 +
1X
k=0

�k (�zt�1�k + 
g (zt�1�k)))

ln (ht) � (�� 
E jztj) (1� �)�1 a.s.

The conditional variance responds asymmetrically to rises and falls in stock price, which

is believed to be important for example in modelling the behavior of stock returns. It

4This means that the con�gurations mimic the stylized fact that a shock always leads to increased
volatility.
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is an important stylized fact for many assets. The coe¢ cients (� + 
) and (� � 
) (if

zt � 0 and zt < 0, respectively) show the asymmetry in response to positive and negative

yt. The parameter � is referred to as the leverage parameter, which shows the e¤ect of

the sign of yt. The term 
 [jztj � Ejztj] represents a magnitude e¤ect. Formulae for the

higher order moments of ut are given in Nelson (1991) [71]. The parameter � can be

made a function of time (�t) to accommodate the e¤ect of any non-trading periods of

forecastable e¤ects.

The unconditional mean and variance of yt is:

E (yt) = �;

and

V ar (yt) = exp

�
�

1� �

� 1Y
i=0

E
�
exp

�
�i (�z0 + 
g (z0))

��
;

which, under normality of the errors, becomes the following result:

V ar (yt) = exp

0@�� 

q

2
�

1� �

1A 1Y
i=0

"
exp

 
�2i (
�)2

2

!
�
�
�i
�

�
+ exp

�
�2i�2

2

�
�
�
�i�
�#
;

where 
� = 
 + �, � = 
 � � and � (k) is the value of the cumulative standard Normal

evaluated at k, i.e. � (k) =
R k
�1

1p
2�
exp

�
�x2

2

�
dx.

Proof. The proof of the unconditional variance is given in the Appendix B.1.

To estimate the parameters of the model in (3.1) and (3.2), we employ the quasi-

maximum likelihood estimation. Maximum likelihood is the procedure which is most

often used in estimating the parameters in time series models, but for most applica-

tions it is very di¢ cult to justify the conditional normality assumption. Therefore, the

log-likelihood function may be misspeci�ed. However, we can still obtain estimates by

maximizing a Gaussian quasi-log-likelihood function and under the auxiliary assumption

of an i.i.d. distribution for the standardized innovations z0ts. The estimators which are

derived by this maximization problem are the so-called Quasi Maximum Likelihood Es-

timators (QMLEs). The fact that we maximize a quasi-log-likelihood is justi�ed by the

evidence that distributions of asset returns are often thick tailed and as a consequence

the normality assumption is violated.



Chapter 3. Bias Correction of ML and QMLEs in the EGARCH(1,1) 46

An important and really interesting feature of our model is that the assumption of the

block diagonality of the information matrix no longer holds. This is also the case for

the ARCH-M model and the asymmetric model of the Augmented ARCH (see Bera

and Higgins, 1993 [13], p. 349; also Bollerslev, Engle and Nelson, 1994 [19], p. 2981).

This implies that the o¤-diagonal blocks involving partial derivatives with respect to

both mean and variance parameters are not null matrices, while this is the case in other

GARCH-type models. Below we present analytic proofs of this argument in the context

of the EGARCH(1; 1) model and these results disaccord with Malmsten (2004) [67], even

if the distribution of the innovations is symmetric, which implies that Ez3 = 0.

In the EGARCH(1; 1) model, there is no explicit expression of the probability density of

the vector (y1; :::; yT )
0 since the distribution of (h1; :::; hT )

0 is not known. To overcome

this di¢ culty, we consider an approximate conditional log-likelihood instead. Some

assumptions are also required for the initial values of the conditional variance ht, which

should be drawn from the stationary distribution, and the squared standardized residuals

z2t . Assuming that z0 = 0 and ln (h0) = �
1�� , we obtain a good approximation to the

conditional Gaussian log-likelihood, as follows:

` (�; �; �; �; 
j z0; h0) = �T
2
ln (2�)� 1

2

TX
t=1

ln (ht)�
TX
t=1

(yt � �)2

2ht
=

= �T
2
ln (2�)� 1

2

TX
t=1

ln (ht)�
1

2

TX
t=1

z2t : (3.3)

Notice that ht and zt are both functions of ! and �, where ! = (�; �; �; 
)=, i.e. the

vector of unknown log-variance parameters, so that both are functions of '=
�
!=; �

�=
,

which represents the vector of all unknown parameters. The �rst order conditions are

recursive and consequently do not have explicit solutions.

The likelihood function is derived as though the errors are conditionally normal and is

still maximized at the true parameters. Having speci�ed the log-likelihood function, the

quasi maximum likelihood estimator is then de�ned as

c'T = argmax
'2�

1

T

TX
t=1

` (') : (3.4)
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The parameter space is of the form

� = R� [0; 1)�D;

where

D =
�
(�; 
)0 2 R2 j � 2 R; 
 � j�j

	
:

Let us proceed with the main results of our analysis, beginning with the analytic deriv-

atives of the log-likelihood function and their expected values.

3.3 The Main Results

3.3.1 Analytic derivatives and their expected values

In this section we present analytic derivatives5 of the log-likelihood function and their

expected values, which are needed in the sequel to evaluate the asymptotic bias of the

QMLEs and to calculate the cumulants of the Edgeworth distribution. It is of great

importance to mention that there are no such analytic results in the related literature

of the �nite sample theory, and it is especially this feature that makes this analysis

to di¤er from the previous one, that of Linton (1997) [65], who studied the case of

the GARCH(1; 1) model. Let us �rst proceed with the derivatives of the log-likelihood

function and their analytic representation.

Following henceforth the notation employed in Linton (1997) [65], i.e. ht;� =
@ ln(ht)
@� and

so on, the derivatives of the log-likelihood function with respect to all parameters are:

5Fiorentini, Calzolari and Panattoni (1996) [41] argue that the computation of analytic derivatives of
the log-likelihood is essential, as the computational bene�t of their use is really substantial for estimation
purposes.
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First with respect to the mean parameter,

L� =
1

2

TX
t=1

�
z2t � 1

�
ht;� +

TX
t=1

ztp
ht
;

L�� =
1

2

TX
t=1

�
z2t � 1

�
ht;�;� �

TX
t=1

�
1

ht
+ 2

ztp
ht
ht;� +

1

2
z2t h

2
t;�

�
;

L��� =
1

2

TX
t=1

�
z2t � 1

�
ht;�;�;� + 3

TX
t=1

1

ht
ht;�

�3
TX
t=1

ztp
ht

�
ht;�;� � h2t;�

�
� 1
2

TX
t=1

z2t
�
3ht;�ht;�;� � h3t;�

�
while for i; j; k 2 f�; �; 
; �g the derivatives are:

Li =
1

2

TX
t=1

�
z2t � 1

�
ht;i;

Lij =
1

2

TX
t=1

�
z2t � 1

�
ht;i;j �

1

2

TX
t=1

z2t h
2
t;i;

Lijk =
1

2

TX
t=1

�
z2t � 1

�
ht;i;j;k �

1

2

TX
t=1

z2t
�
3ht;iht;j;k � h3t;i

�
:

The cross derivatives are given by the following expressions:

Li� =
1

2

TX
t=1

�
z2t � 1

�
ht;i;� �

1

2

TX
t=1

z2t ht;iht;� �
TX
t=1

ztp
ht
ht;i;

Li�� =
1

2

TX
t=1

�
z2t � 1

�
ht;i;�;� � 2

TX
t=1

ztp
ht
(ht;i;� � ht;iht;�)

�1
2

TX
t=1

z2t
�
2ht;�ht;i;� � ht;ih2t;� + ht;iht;�;�

�
+

TX
t=1

1

ht
ht;i;

Lij� =
1

2

TX
t=1

�
z2t � 1

�
ht;i;j;� �

TX
t=1

ztp
ht
(ht;i;j � ht;iht;j)

�1
2

TX
t=1

z2t (ht;jht;i;� � ht;jht;iht;� + ht;i;jht;� + ht;iht;j;�) :

Note that the log-likelihood derivatives are expressions of the log-variance derivatives,

ht;�, where the latter are given in the Appendix B.6. The expected values of the log-

likelihood derivatives are also given in the Appendix B.2.
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The cross-products of the log-likelihood derivatives are:

for i; j 2 f�; �; 
; �g,

LiLij =
1

2

TX
t=1

�
z2t � 1

�
ht;i

 
1

2

TX
t=1

�
z2t � 1

�
ht;i;j �

1

2

TX
t=1

z2t h
2
t;i

!
;

LiLj� =
1

2

TX
t=1

�
z2t � 1

�
ht;i

 
1

2

TX
t=1

�
z2t � 1

�
ht;j;� �

1

2

TX
t=1

z2t ht;jht;� �
TX
t=1

ztp
ht
ht;i

!
;

LiL�� =
1

2

TX
t=1

�
z2t � 1

�
ht;i

"
1

2

TX
t=1

�
z2t � 1

�
ht;�;� �

TX
t=1

�
1

ht
+ 2

ztp
ht
ht;� +

1

2
z2t h

2
t;�

�#
;

L�Lij =

 
1

2

TX
t=1

�
z2t � 1

�
ht;� +

TX
t=1

ztp
ht

! 
1

2

TX
t=1

�
z2t � 1

�
ht;i;j �

1

2

TX
t=1

z2t h
2
t;i

!
;

L�Lj� =

 
1

2

TX
t=1

�
z2t � 1

�
ht;� +

TX
t=1

ztp
ht

!0@ 1
2

PT
t=1

�
z2t � 1

�
ht;j;� � 1

2

PT
t=1 z

2
t ht;jht;�

�
PT
t=1

ztp
ht
ht;i

1A ;

L�L�� =

 
1

2

TX
t=1

�
z2t � 1

�
ht;� +

TX
t=1

ztp
ht

!24 1
2

PT
t=1

�
z2t � 1

�
ht;�;�

�
PT
t=1

�
1
ht
+ 2 ztp

ht
ht;� +

1
2z
2
t h
2
t;�

�
35 :

The expectations of the cross-products are given in the Appendix B.4.

Let us turn our attention to the conditions for stationarity of the log-variance derivatives.

3.3.2 Conditions for stationarity of the log-variance derivatives

In this section we investigate under which conditions there is a second-order stationary

solution to the log-variance derivatives, needed for the existence and the evaluation of

the log-likelihood derivatives, and hence in order to calculate the bias expressions of the

QMLEs. The existence, stationarity and ergodicity of the second order derivatives of

the conditional variance are necessary if someone studies the validity in a Taylor series

expansion of the �rst order derivatives of the log-likelihood.

We consider the following example:

ht;�ht;�� =
1

4
(�zt�1 + 
 jzt�1j)h2t�1;� +

1

4
(�zt�1 + 
 jzt�1j)

�
� � 1

2
�zt�1 �

1

2

 jzt�1j

�
h3t�1;�

+

�
� � 1

2
�zt�1 �

1

2

 jzt�1j

�
ht�1;�;�

+

�
� � 1

2
�zt�1 �

1

2

 jzt�1j

�2
ht�1;�ht�1;�;�: (3.5)
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In order to calculate the expected value of the above expression, we �rst assume that

E
�
h2t;�

�
; E
�
h3t;�

�
and E (ht;�;�) exist. Next, de�ne:

A (zt�1) =
1

4
(�zt�1 + 
 jzt�1j)h2t�1;�

+
1

4
(�zt�1 + 
 jzt�1j)

�
� � 1

2
�zt�1 �

1

2

 jzt�1j

�
h3t�1;�

+

�
� � 1

2
�zt�1 �

1

2

 jzt�1j

�
ht�1;�;�;

and

B2 (zt�1) =

�
� � 1

2
�zt�1 �

1

2

 jzt�1j

�2
:

Then,

ht;�ht;�� = A (zt�1) +B
2 (zt�1)ht�1;�ht�1;�;� =

= A (zt�1) +
1X
k=1

k�1Y
i=0

B2 (zt�1�i)A (zt�1�k) :

The in�nite sum converges almost surely. To see this, let:

Sn = A (zt�1) +
nX
k=1

k�1Y
i=0

B2 (zt�1�i)A (zt�1�k) :

Then we have:

E (Sn) = E [A (zt�1)] +
nX
k=1

E

"
k�1Y
i=0

B2 (zt�1�i)

#
E [A (zt�1�k)] =

= E [A (zt�1)]

"
nX
k=0

�
E
�
B2 (zt�1�i)

�	k#
:

Thus, E (limn!1 Sn) = E [A (zt�1)]
�
1� E

�
B2 (zt�1�i)

�	�1
<1, providing that E [A (zt�1)] <

1. In order to ensure the existence of a stationary solution to the (3.5), we should im-

pose the condition that

E
�
B2 (zt�1�i)

�
< 1:

In a similar manner, the rest stationarity conditions of all log-variance derivatives and

products of them follow.
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Proposition 3.1. Given

a)
���0 � 1

2
0E jzj
�� < 1

b)
���20 + 1

4�
2
0 +

1
4

2
0 � 
0�0E jzj+ 1

2
0�0E (z jzj)
�� < 1

and

c)

������ �
3
0 +

3
4�0�

2
0 +

3
4�0


2
0 � 1

8�0
�
�20 + 3


2
0

�
E
�
z3
�
� 3

2�
2
0
0E jzj

+3
2�0�0
0E (z jzj)�

1
8
0

�

20 + 3�

2
0

�
E jzj3

������ < 1,
then

the second-order stationarity of all log-variance derivatives follows.

Proof. The proof comes immediately from the results in the Appendices B.3 and B.7.

Let us now proceed with the bias approximations of the QMLEs.

3.3.3 Bias Approximations

In this section we develop the bias approximations for the ML and QML estimators in

the EGARCH(1; 1)6. One of the main advantages of developing the bias expressions is

to use them as a bias correction mechanism. This is one of the practical applications

of the bias approximations. Moreover, these results help to analyze the consequences of

introducing restrictions in the log-variance parameters. With these expressions, one can

compute the Edgeworth approximate distribution. It is also important to explore the

theoretical properties of the estimators so that the statistical inference is possible.

We use a McCullagh (1986) [68] result for the standardized estimator having a stochastic

expansion, see in p.209, and taking expectations we end up with the asymptotic bias

of the QML estimator. Our next step is to check our bias approximations through

simulations. Note that McCullagh�s expansion has already been applied in the literature

to retrieve the bias in many nonlinear models, such as Linton (1997) [65]. When dealing

with nonlinear models, it is very common to have the bias expressions in terms of

expectations and applying these expressions for bias correction. At this point, it is

important to state brie�y the main di¤erences between our analysis and that of Linton.

First of all, we generalize the �nite-sample analysis of heteroskedastic time series models

considering a non-symmetric distribution of the errors. Furthermore, we show that the

6 Iglesias and Phillips (2002) [55] developed theoretical bias approximations for the MLEs of the
parameters in an ARCH(1) model.
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block-diagonality of the information matrix does not hold in our case, which implies

that there are new terms in the bias expressions of the estimators. This means that we

cannot use the results that appear in the literature from the analysis of the GARCH

model.

Assumption 3.3.1 We assume that the errors have bounded J th moments, for some

J > 6, and we denote by �3 and �4 their third and fourth order cumulants, where

the latter is given by:

�4 = E
�
z4 � 3

�
:

Under the above assumptions, we are now able to present our Theorem which is useful

for the evaluation of the bias approximations of all estimators and also to construct the

Edgeworth expansions in this setting.

Theorem 3.3.1 Given that zt � iidD (0; 1) and non-symmetric, and for i; j; k 2 f�; �; �; 
; �g

unless the parameter � is used separately to underline the di¤erence, the following

moments of the log-likelihood derivatives converge to �nite limits as T !1:

cij =
1
TE (Lij) = �

1
2� i;j ;

cijk =
1
TE (Lijk) = �

1
2 (� ij;k + � ik;j + � jk;i � � i;j;k) ;

cij;k =
1
TE (LijLk) = �

1
4

h
� zzk;i;j � (�4 + 2) (� ij;k � � i;j;k)

i
;

c�� =
1
TE (L��) = �

�
� +

��;�
2

�
;

ci�� =
1
TE (Li��) = �i � 1

2 (� i;�� + 2��i;� � ��;i;�) ;

c��� =
1
TE (L���) = �

1
2

�
3���;� � �3�

�
+ 3��;

ci�;� =
1
TE (Li�L�) = �

1
4

8<: 4�i � (�4 + 2) (� i�;� � � i;�;�)

+� zz�;i� + 2�
zh
i;� + 2�3

�
2�hi;� � �hi�

�
9=; ;

ci�;j =
1
TE (Li�Lj) = �

1
4

n
� (�4 + 2) (� i�;j � � i;j;�) + � zz�;i� + 2�3�hij

o
;

c��;i =
1
TE (L��Li) = �

1
4

n
� (�4 + 2) (���;i � � i;�;�) + � zzi;�� + 4�3�hi;�

o
;

cij;� =
1
TE (LijL�) = �

1
4

8<: � (�4 + 2) (� ij;� � � i;j;�) + � zz�;ij + 2� zhi;j
+2�3

�
2�hi;j � �hij

�
9=; ;
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c��;� =
1
TE (L��L�) = �

1
4

8<: 8�� � (�4 + 2) (���;� � ��;�;�)

+� zz�;�� + 2�
zh
�;� + 2�3

�
3�h�;� � �h��

�
9=; ;

where � i = 1
T

PT
t=1E (ht;i) ; � i;j =

1
T

PT
t=1E (ht;iht;j) ; � ij;k =

1
T

PT
t=1E (ht;ijht;k)

and � i;j;k = 1
T

PT
t=1E (ht;iht;jht;k).

Also, � = 1
T

PT
t=1E

�
1
ht

�
, and �i = 1

T

PT
t=1E

�
1
ht
ht;i

�
,

while � zzk;i;j =
1
T

PP
s<t

E
��
z2s � 1

�
hs;kht;iht;j

�
; � zhi;j =

1
T

PP
s<t

E
�
zs

1p
ht
ht;iht;j

�
;

�hi;� =
1
T

PT
t=1E

�
1p
ht
ht;iht;�

�
and �hi� =

1
T

PT
t=1E

�
1p
ht
ht;i;�

�
.

Proof. Given in the Appendix B.5.

In order to calculate the bias approximations, we need to �nd expressions for the cij ; cijk

and cjk;l. Let us �rst consider the case when the mean parameter is supposed to be equal

to zero and not estimated. With techniques of McCullagh (1986) [68], the standardized

estimators, derived from choosing � to solve Li (!; �) = 0, for i 2 f�; �; 
; �g, have the

following stochastic expansion7:

p
T fb'i � 'ig � �cijZj + 1p

T

n
cijcklZjkZl � cijcklcmncj lnZkZm=2

o
+OP

�
1

T

�
; (3.6)

where

Zj = T�1=2Lj

and

Zjk = T�1=2 fLjk � E (Ljk)g

are evaluated at the true parameters and are jointly asymptotically normal. Raising

pairs of indices signi�es components from the matrix inversion.

Taking expectations of the right-hand side in (3.6), we get:

E
hp

T�0 fb' (�)� 'gi � 1p
T
�ic

ijckl fcjk;l + cjkl (�4 + 2) =4g ;

7We make use of the summation convention, that is: cijZj =
X
j

cijZj , in which repeated indices in

an expression are to be summed over.
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where � is the 4 � 1 parameter vector. If �4 = 0, QML equals ML and then the above

formula equals the one of Cox and Snell (1968) [28], i.e.:

E
hp

T�0 fb' (�)� 'gi � 1p
T
�ic

ijckl
�
cjk;l +

1

2
cjkl

�
:

Let us now consider the other case, when the mean parameter is unknown and estimated.

Hence, if we incorporate the e¤ects of estimating �, the stochastic expansions take the

following form:

p
T fb'i (b�)� 'ig � pT fb'i (�)� 'ig � 1p

T

n
cijcklZjkZl � cijcklcmncj lnZkZm=2

o
;

where now i; j; k; l 2 f�; �; 
; �; �g. Taking expectations of the right-hand side, we �nd

the asymptotic bias of the estimators in this case.

In terms of the mean squared error, from (3.6) we have up to OP
�
1
T

�
:

E
hp

T�0 fb' (�)� 'gi2 � ��icij (�4 + 2) =2; (3.7)

which is the asymptotic variance. If we let the remainder to be of O
�
T�3=2

�
, then the

mean squared error is again evaluated by (3.7), with the di¤erence now that there would

be added terms of O
�
T�1

�
. Of course, as T ! 1, the mean squared error approaches

the asymptotic variance. In what follows, we present the simulation results and discuss

the bias correction of all estimators.

3.3.4 Simulations

In this section we make a simulation exercise in order to check the adequacy of our

theoretical results and be able to proceed with the bias correction of the estimators. We

draw a random sample of T = f750; 1500; 3000; 5000; 10000; 25000; 50000g observations

and 500 observations for initialization, under the assumption of normality. We make

50000 replications for sample sizes up to 10000 and 300000 replications for 25000 and

more observations, in order to decrease the Monte Carlo error. The mean parameter

is supposed to be equal to zero and hence is not estimated, so the parameter vector is

(�; �; 
; �)0. We check the performance of the bias correction mechanism for di¤erent sets

of parameter values and we will present the results for three sets, i.e. (0:1; 0:9; 0:7;�0:4),
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(�0:1; 0:9; 0:6;�0:2) and (0:5; 0:5; 0:8;�0:5). The �rst two sets include values for the

parameters that are close to what is observed from the �nancial data. We multiply the

bias by T and not
p
T , i.e. E (T (b'� ')), as in this way we keep a constant term in the

bias expressions that is important to distinguish what happens when we increase the

sample size, as the next terms in the expressions will tend to zero, as T !1.

The bias correction mechanism is constructed under the speci�cation of two methods.

The �rst one, called �rst-step correction, is the classical one, in which we estimate the

model and we retrieve the estimated parameters. Next, we compute the bias expressions

by using the estimates and we are then able to correct the bias of the estimators with

the corresponding values of the bias, i.e.

e' = b'� 1

T
bias (b') .

Notice that there is nothing to prevent the case of e' being outside the admissible area
(see also Linton, 1997 [65] as well as Iglesias and Linton, 2007 [54]). In such a case we

throw away the random sample and draw a new one.

The second method that we employ, called full-step correction, is a method proposed by

Arvanitis and Demos (2010) [7], in which we solve an optimization problem of the form

min
'

�b'� '� 1

T
bias (')

�2
.

In this respect, this method is a multi-step maximization procedure, using numerical

derivatives. This justi�es the name of the �rst method, which is the �rst step of the multi-

step optimization problem. In this way, the second method incorporates the constraints

that are imposed on the coe¢ cients and as a consequence the corrected estimate of the

EGARCH parameter cannot lie outside the admissible region, i.e. the corrected beta

will be less than one in absolute value.

Figures 3.1 and 3.2 represent the bias correction performance under the normality as-

sumption. For the �rst set of parameter values (Figure 3.1) we see that the bias correc-

tion works in all cases and the corrected bias of the MLEs tend to zero, as the sample

size increases. For Figure 3.2, the bias correction represents some intervals in which it

behaves well, especially for small sample sizes. The case of the beta coe¢ cient is the
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most ideal in the sense that the bias of the MLE is stabilized in the constant term of its

expression, as T increases.

When dropping the normality assumption, we run the simulations under the hypothesis

of mixture of normals for standardized random variables (see Figure 3.3 and Figure 3.4).

In fact, the errors are drawn from a normal distribution with mean 0:01 and variance 9,

with probability 0:1, and with probability 0:9 they are drawn from a normal distribution

with mean �0:001 and variance 0:111. In this way, the theoretical mean and variance

of the distribution are 0 and 1, respectively. Notice that with these hyperparameter

values the theoretical skewness and kurtosis of the random errors are 0:0266 and 24:334

respectively, approximately matching the sample counterparts of most �nancial data.

Figures 3.3 and 3.4 represent two sets of parameter values, in which we have selected

di¤erent values of the beta coe¢ cient, i.e. low (0:5) and high (0:9). Figure 3.1 (under

normality) and Figure 3.4 (under mixture of normals) are constructed under the same

set of parameter values and it is interesting to compare between the two cases. As in

the case of normality, we see that in Figure 3.4 the bias correction of the estimators

works in most cases and the results are satisfactory. In Figure 3.3, the corrected bias

is again under the bias of the MLEs, indicating that the theoretical results correct the

bias, under the assumptions made.
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Figure 3.1: First- and full-step bias-correction
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Figure 3.2: First- and full-step bias-correction

Alpha

0

5

10

15

20

25

30

500 10500 20500 30500 40500

mle

mle­cr

mle­fl­cr

Beta

0

1

2

3

4

5

6

7

8

9

10

500 2500 4500 6500 8500

mle

mle­cr

mle­fl­cr

Gamma

0

1

2

3

4

5

6

500 10500 20500 30500 40500

mle

mle­cr

mle­fl­cr

Theta

0

0,5

1

1,5

2

2,5

3

500 10500 20500 30500 40500

mle

mle­cr

mle­fl­cr

Note: �0 = �0:1; �0 = 0:9; 
0 = 0:6; �0 = �0:2; under normality



Chapter 3. Bias Correction of ML and QMLEs in the EGARCH(1,1) 59

Figure 3.3: First- and full-step bias-correction
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Figure 3.4: First- and full-step bias-correction

Alpha

0

5

10

15

20

25

30

35

500 2500 4500 6500 8500 10500

qmle

qmle­cr

qmle­fl­cr

Beta

­5

0

5

10

15

20

25

30

500 10500 20500 30500 40500 50500 60500

qmle

qmle­cr

qmle­fl­cr

Gamma

0
5

10
15
20
25
30
35
40
45

500 2500 4500 6500 8500 10500

qmle

qmle­cr

qmle­fl­cr

Theta

­1
0
1
2
3
4
5
6
7
8

500 10500 20500 30500 40500 50500 60500

qmle

qmle­cr

qmle­fl­cr

Note: �0 = 0:1; �0 = 0:9; 
0 = 0:7; �0 = �0:4; under mixture of normals
with p = 0:1: N(0:01; 9): E

�
z3
�
= 0:0266, E

�
z4
�
= 24:334



Chapter 3. Bias Correction of ML and QMLEs in the EGARCH(1,1) 61

3.3.5 Theoretical Skewness and the Edgeworth Expansion

This section provides the theoretical skewness and the Edgeworth expansion of the

estimators. After recentering the standardized estimator, we have:

Pi =
p
T (b'i � 'i) = Ai +

Bip
T
;

where

Ai = �cijZj ;

Bi = Ci +Di;

with

Ci = cijckl fZjkZl � E (ZjkZl)g ; and

Di = �cijcklcmncj ln fZkZm � E (ZkZm)g =2;

where Zj = T�1=2Lj and Zjk = T�1=2 fLjk � E (Ljk)g :

Thus, the skewness is given by

skewness � E (Ai1Ai2Ai3) +
1p
T
fE (Ai1Ai2Bi3) + E (Bi1Ai2Ai3) + E (Ai1Bi2Ai3)g ;

and generally we have

skewness � E (Ai1Aj2Ak3) +
1p
T
fE (Ai1Aj2Bk3) + E (Bi1Aj2Ak3) + E (Ai1Bj2Ak3)g ;

where

E (Ai1Ai2Ai3) = �ci1j1ci2j2ci3j3E (Zj1Zj2Zj3) ;

E (Ai1Ai2Ci3) = ci1j1ci2j2ci3j3ck3l3E [Zj1Zj2 fZj3k3Zl3 � E (Zj3k3Zl3)g]

E (Ai1Ai2Di3) = �1
2
ci1j1ci2j2ci3j3ck3l3cm3n3cj3l3n3E [Zj1Zj2 fZk3Zm3 � E (Zk3Zm3)g] :

Now

E (Zj1Zj2Zj3) =
1p
T
�23� j1;j2;j3=8;
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where

�23 = E
n�
z2t � 1

�3o
:

The following moments converge to �nite limits as T !1:

ci;j;k =
1

T
E (LiLjLk) =

1

8

�
�23� i;j;k + (�4 + 2)

�
� zzk;i;j + �

zz
i;k;j + �

zz
j;i;k

��
Moreover,

E [Zj1Zj2 fZj3k3Zl3 � E (Zj3k3Zl3)g] = cj1;l3cj3k3;j2 + cj1;j3k3c;j2;l3

and

E [Zj1Zj2 fZk3Zm3 � E (Zk3Zm3)g] = cj1;m3cj2;k3 + cj1;k3cj2;m3 :

For the Edgeworth expansion, we consider a vector P 2 R4 of standardized estimators

that satis�es a joint Edgeworth Expansion. Suppose that the �rst three mixed cumulants

of P satisfy

cum (Pi) =
bip
T
+ o

�
T�1=2

�
; where bi: bias

cum (Pi;Pj) =
varip
T
+ o

�
T�1=2

�
; where vari: variance

cum (Pi;Pj ;Pk) =
skwip
T
+ o

�
T�1=2

�
; where skwi: skewness:

Then for any Borel set B ,

Pr (P 2 B) =
Z
B
�o;
 (y)

8<:1 +
4X
i=1

bip
T
Hi (y) +

4X
i=1

4X
j=1

4X
k=1

skwi

6
p
T
Hijk (y)

9=; dy+o
�
T�1=2

�
;

where Hi (y) and Hijk (y) are the multivariate Hermite polynomials of �rst and third

degree.

3.4 Conclusions

In this chapter we study the asymptotic properties of the MLEs and QMLEs in the

EGARCH(1; 1) model of Nelson (1991) [71]. In the current context, we present analytic
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derivatives both of the log-likelihood and the log-variance functions and also their ex-

pected values. We further develop theoretical bias approximations for the estimators of

the model parameters and we �nd conditions for the second-order stationarity of the log-

variance derivatives. The theoretical results in this chapter can be used to bias-correct

the QMLEs in practice directly. In small or moderate-sized samples, a bias correction

could be appreciable and it is helpful to have a rough estimate of its size.

One might consider the case of the EGARCH-Mean model and employ the results pre-

sented here. It is well known that this model examines an important issue previously

investigated in the economics and �nance literature, namely the relation between the

level of market risk and required return. To account for this relation, one might use the

following model (instead of 3.1):

yt = �ht + ut; (3.8)

where � is the risk premium parameter. The justi�cation for including �ht is pragmatic:

a number of researchers (for example, French, Schwert and Stambaugh 1987 [43] and

Chou 1987 [25]) have found a statistically signi�cant positive relation between condi-

tional variance and excess returns on stock market indices. This idea might exist as

an individual research project. The theoretical results under this new speci�cation are

available upon request by the author of this thesis.

Another interesting topic would be the investigation of necessary and su¢ cient condi-

tions for the existence and validity of the Edgeworth approximations in this context8.

This chapter is available as a Discussion Paper of Demos and Kyriakopoulou (2010a)

[35].
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Chapter 4

Asymptotic Normality of the

QML Estimators in the

EGARCH(1,1) Model

4.1 Introduction

Over the last years, a lot of considerable attention has been given to the analysis of

conditional heteroskedasticity and more speci�cally to the theoretical properties of the

estimators in such models. One of the most popular models in applied �nancial work is

the Exponential GARCH (EGARCH) model of Nelson (1991) [71], for which the inves-

tigation of the asymptotic properties of the estimators still remains unsolved. To model

the returns of speculative assets, it is particularly important to derive the asymptotic

theory and be able then to make statistical inference. While the asymptotic theory

in the ARCH model of Engle (1982) [40] and the GARCH speci�cation of Bollerslev

(1986) [20] has been studied in the papers of Weiss (1986) [90] and, Lee and Hansen

(1994) [61], Lumsdaine (1996) [66], respectively, in the case of the EGARCH model,

only recently Za¤aroni (2009) [91] established the consistency and asymptotic normality

of the Whittle estimates. The paper by Berkes, Horvath and Kokoszka (2003) [14] is a

generalization of the above papers for the GARCH models, under minimal assumptions.

65
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Recently, Hamadeh and Zakoian (2011) [51] established the asymptotic properties of LS

and QML estimators for a class of nonlinear GARCH processes, under mild conditions1.

The procedure most often used for estimating the conditional heteroskedastic models is

the maximization of a likelihood function. The actual implementation of the maximiza-

tion procedure requires an explicit assumption for the conditional density. The most

commonly employed distribution in the literature is the normal, but the assumption

of conditional normality for the standardized innovations is di¢ cult to be justi�ed in

many empirical applications. For this reason, the method that we employ is the quasi-

maximum likelihood estimation (QMLE), by maximizing a Gaussian quasi-log-likelihood

function under the auxiliary assumption of an iid distribution for the standardized in-

novations.

In this chapter we study the asymptotic properties of the quasi-maximum likelihood

estimators in the EGARCH(1; 1) process of Nelson (1991) [71]. The EGARCH(1; 1)

model is then de�ned by the equations

Xt = Zt�t (4.1)

and

log �2t = �+ � log �2t�1 + g (Zt�1) ; (4.2)

where � 2 R and j�j < 1. The real-valued function g (Zt) is given by

g (Zt) = 
Zt + � [jZtj � E jZtj] ; (4.3)

where 
; � 2 R are the parameters for the asymmetries that the model captures. We

also assume throughout this chapter that

fZi;�1 < i <1g are independent, identically distributed random variables, (4.4)

with mean zero and variance unity.

1Their proofs follow the same lines as in Francq and Zakoian (2004) [42].
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Straumann and Mikosch (2006) [83] give an almost sure representation of log �2t by

recursive substitution, which is

log �2t = � (1� �)�1 +
1X
k=0

�k (
Zt�1�k + � jZt�1�kj) : (4.5)

The notion of invertibility plays an important role in the investigation of the asymptotic

properties of the estimators in time series models. Invertibility is necessary for the

observed likelihood function to be well-behaved asymptotically without exploding nor

converging toward zero for any admissible parameter value. To this end, we provide

below with the result that was obtained by Straumann and Mikosch (2006) [83], which

gives the su¢ cient condition for the invertibility of the EGARCH(1; 1) model to hold.

This is summarized in the next lemma, but before we give a useful de�nition, needed

for this lemma:

De�nition 4.1 (Straumann and Mikosch 2006 [83], section 2.5). Let (E; d) be a Polish

space equipped with its Borel �-algebra B (E). A map � : E ! E is called Lipschitz if

� (�) := sup
x;y2E;x6=y

�
d (� (x) ; � (y))

d (x; y)

�

is �nite.

Lemma 4.2 (Straumann and Mikosch 2006 [83], p. 2469). Assume 0 � � < 1 and


Z + � jZj � 0 for all Z 2 R (that is, the squared volatility should be nondecreasing

on the positive real line and nonincreasing on the negative real line). The condition

E [� (�0)] < 0, which implies invertibility, is then given by

E

2664logmax
8>><>>:

�; 2�1 exp

 
2�1

1X
k=0

�k (
Zt�1�k + � jZt�1�kj)
!

� (
Z0 + � jZ0j)� �

9>>=>>;
3775 < 0; (4.6)

where � (�0) is the Lipschitz coe¢ cient.

For the proof, see Straumann and Mikosch (2006) [83], p. 2468-2469.

Remark. It seems impossible to have an explicit representation for �2t in terms of

past observations, as the above condition is di¢ cult in practice to be veri�ed. However,

Straumann and Mikosch (2006) [83] end up with a simpler condition in the case of � = 0,



Chapter 4. Asymptotic Normality of the QMLEs in the EGARCH(1,1) 68

which is practically feasible; this means that we can verify that there exist invertible

EGARCH models. The last condition is given by the following summarizing result.

Lemma 4.3 (Straumann and Mikosch 2006 [83], p. 2469). In case of � = 0, the above

condition (4.6) becomes

� log 2 +
�
�

2

�
E jZ0j+ E [log ((
Z0 + � jZ0j))] < 0:

Remark. If we assume � � 1, the latter implies the above condition.

The invertibility in the EGARCH model has been an important matter in other papers,

see e.g. Aue, Berkes and Horvath (2006) [8] in which they de�ne as � (x) = log x and the

invertibility implies that ��1 (x) exists, in order to solve for �2t . In fact, the EGARCH

process is included in the general framework of the Augmented GARCH model, intro-

duced by Duan (1997) [38], for which its asymptotic and dependence properties have

been studied by Aue, Berkes and Horvath (2006) [8], Hormann (2008) [53] and Berkes,

Hormann and Schauer (2010) [15], to state a few papers.

Straumann and Mikosch (2006) [83] showed that in the case of the EGARCH(1; 1) se-

quence, (4.1), (4.2) and (4.3) have a unique stationary solution if and only if

j�j < 1 and E
�
log+ (�+ 
Z0 + � jZ0j)

�
<1; (4.7)

where for instance, log+x = log (max fx; 1g)2. This result can be summarized in the

following Theorem, which is due to Aue, Berkes and Horvath (2006) [8]:

Theorem 4.4 (Theorems 2.1 and 2.3 of Aue, Berkes and Horvath 2006 [8]). (i) Given

the speci�cation of (4.1)-(4.4) and that

E
�
log+ (�+ 
Z0 + � jZ0j)

�
<1;

if

� < 1; (4.8)

then the in�nite sum in eq. (4.5) is absolutely convergent with probability one.

(ii) We assume that (4.1)-(4.4) and (4.7) are satis�ed. If (4.8) holds, then (4.5) is the

only stationary solution of (4.1) and (4.2).
2See also Aue, Berkes and Horvath (2006) [8].
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Remark. If � > 0 and P f(�+ 
Z0 + � jZ0j) � 0g = 1, then � < 1 is necessary and

su¢ cient for the existence of a stationary solution of the EGARCH equations, see, for

instance, Aue, Berkes and Horvath (2006) [8].

Remark. Aue, Berkes and Horvath (2006) [8] presented the general case of �
�
�2t
�
,

specifying by real-valued functions3, where for example � (x) = log (x) in the case of the

EGARCH process.

Remark. Straumann and Mikosch (2006) [83] obtained a stationary approximation to

the log-variance process and its �rst and second derivatives, with the stochastic recur-

rence equation (SRE)4 approach, in order to apply the Ergodic Theorem for sequences

of continuous-valued random functions in a Banach space. This is really important if

someone wants to tackle the limit properties of the estimators and this arises from the

fact that the log-variance is generally nonstationary because it just represents an es-

timate. A stationary and ergodic sequence when is available, can be used in order to

apply the Ergodic Theorem, which is one of the main devices in this chapter.

Remark. Another paper that deals with the existence of solutions in the general frame-

work of the GARCH speci�cation, is that of Carrasco and Chen (2002) [23]. In their

paper the mixing properties of the sequences are also derived, which yield the weak

convergence as well as the approximation of partial sums of the squares of the observed

process. But the existing theory on dependence structures assumes restrictive moment

and smoothness conditions. This is the main di¤erence between the paper by Aue et

al. (2006) [8] and that of Carrasco and Shen (2002) [23]. The former shows that these

conditions can be weakened to logarithmic moment conditions.

In fact, (4.2) can be de�ned as a stochastic recurrence equation of the form treated in

Straumann and Mikosch (2006) [83]5, i.e.

log ht+1 = g� (Xt; log ht)

= �+ � log ht + (
Xt + � jXtj) exp
�
�2�1 log ht

�
; (4.9)

3The speci�cation of the volatility is given by equation (1.2) in their paper.
4Su¢ cient conditions for the existence of a stationary solution of this form can be found in Diaconis

and Freedman (1999) [37].
5This appoach is a classical one as it was introduced by Bougerol (1993) [21], in which conditions of

Lyapunov type for the existence of a stationary solution are given.
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where the parametric family fg�j� 2 �g of nonnegative functions on R � [0;1) ful�lls

certain regularity conditions. Here, � 2 � � Rd is the parameter vector of interest, i.e.

� = (�; �; 
; �)0. The process ht is the process de�ned by the �ltered variance, i.e.

log ht = �0 + 
0Z
�
t�1 + �0

��Z�t�1��+ �0 log ht�1;
where Z�t =

Xtp
ht
and

Z�0 = 0; log h0 =
�0

1� �0
:

Thus, the �ltered variance approximates �2t , which is unobserved. Moreover, the initial

values can be shown to be asymptotically irrelevant (see, for instance, Lumsdaine 1996

[66], Lemma 6, p. 587, as well as Dahl and Iglesias 2008 [29], Lemma 1, and Bardet and

Wintenberger 2009 [11], p. 2731). The reader is referred to Straumann and Mikosch

(2006) [83], Theorem 2.8 in p. 2458 and Theorem 2.10 in p. 2459, which are the key

results due to Bougerol (1993) [21] about stationary solutions of SREs used throughout

this chapter.

In the case of the EGARCH(1; 1) model, the classical estimation theory considers an

approximate conditional log-likelihood function. Given some proper initial values, we

obtain a good approximation to the conditional Gaussian log-likelihood, as follows:

`
�
�; �; 
; �jZ0; �20

�
= �n

2
ln (2�)� 1

2

nX
t=1

log
�
�2t
�
� 1
2

nX
t=1

X2
t

�2t
: (4.10)

The �rst order conditions are recursive and consequently do not have explicit solutions.

The likelihood function is derived as though the errors are conditionally normal and is

still maximized at the true parameters. Having speci�ed the log-likelihood function, the

quasi maximum likelihood estimator is then de�ned as

c�n = argmax
�2�

1

n

nX
t=1

` (�) : (4.11)

The parameter space is of the form

� = R� [0; 1)�D;

where D =
�
(
; �)0 2 R2 j 
 2 R; � � j
j

	
.
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The EGARCH model has gained a lot of considerable attention through the last decade.

More speci�cally, Surgailis and Viano (2002) [85] studied the covariance structure and

dependence properties of the EGARCH model and they showed that normalized partial

sums of powers of the observed process tend to fractional Brownian motion. Recently,

Berkes, Hormann and Schauer (2010) [15] consider weaklyM-dependent processes and

as an example they study the case of the Augmented GARCH sequences that include

also the EGARCH model. Under some technical conditions stated in Hormann (2008)

[53], one can show that Augmented GARCH sequences are weaklyM-dependent in Lp-

norm with exponentially fast decaying rate. The following de�nition is due to Berkes,

Hormann and Schauer (2010) [15]:

De�nition 4.5 (WeaklyM-dependent process). Let fYk; k 2 Zg be a stochastic process,

let p � 1 and let � (m)! 0. We say that fYk; k 2 Zg is weaklyM-dependent in Lp with

rate � (�) if:

(A) For any k 2 Z, m 2 N one can �nd a random variable Y (m)k with �nite p-th moment

such that 


Yk � Y (m)k





p
� � (m) :

(B) For any disjoint intervals I1; :::; Ir (r 2 N) of integers and any positive integers

m1; :::;mr, the vectors
n
Y
(m1)
j ; j 2 I1

o
; :::;

n
Y
(mr)
j ; j 2 Ir

o
are independent provided

d (Ik; Il) > max fmk;mlg for 1 � k � l � r.

Remark. In Hormann (2008) [53], an approximation of the original random variables is

deduced by anm-dependent sequence (see Lemma 2 in Hormann 2008 [53], p. 548, for the

L2-approximation). Truncating an in�nite series, the new sequence converges now very

fast and hence considering the �nite sums will only cause a small error. Consequently,

their method yields sharp convergence rates to the normal law, using a Berry-Essen

bound. It becomes clear thatm-dependence, rather than mixing, is the crucial structural

property required in order to study the asymptotics of augmented GARCH variables.

Notation. In the sequel, we assume that K � Rd is a compact set. Then C
�
K;Rd0

�
denotes the space of continuous Rd0�valued functions on K, which is endowed with the

supremum norm, i.e.

k!kK = sup
s2K

j! (s)j ; ! 2 C
�
K;Rd

0
�
;
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where j�j denotes the Euclidean norm of the vector ! (s).

In this chapter we aim at establishing the asymptotic normality of the QMLEs in the

EGARCH(1; 1) model. Previous research on this topic includes the paper by Straumann

and Mikosch (2006) [83], in which they prove the strong consistency and asymptotic nor-

mality for some asymmetric models, such as the EGARCH model of Nelson (1991) [71]

and the Asymmetric GARCH (AGARCH) model6. But they don�t prove the asymptotic

normality for the EGARCH(1; 1) model, only for the model of a lower order, i.e. for the

case of � = 0. This is presented as a discussion only in the monograph by Straumann

[84]. Moreover, in a recent paper, Za¤aroni (2009) [91] estimates the EGARCH parame-

ters with Whittle methods and the asymptotic distribution theory of these estimators

is established. Furthermore, Dahl and Iglesias (2008) [29] analyzed the limiting proper-

ties, in terms of consistency and asymptotic normality, of the estimated parameters in an

exponential-type model, which is related but in many aspects di¤erent to the traditional

EGARCH model of Nelson. The investigation of the asymptotic properties of Nelson�s

model still remains unsolved.

In this chapter for the �rst time we provide analytic results for the second-order sta-

tionarity in the EGARCH(1; 1) process and we give higher-order moment conditions

resulting from this analysis. These results are competitive with previous research, as we

are now able to establish the asymptotic theory for Nelson�s model. We mainly obtain

tractable su¢ cient conditions that guarantee the integrability of the supremum norms

of the log-variance derivatives, in a neighborhood around the true parameter vector.

The chapter is organized as follows. First, we present the �rst and second order

log-likelihood derivatives and the conditions for the second-order stationarity of the

log-variance derivatives. In section 3, we proceed with the asymptotic theory in the

EGARCH(1; 1) process and we present our main Theorem. The main analysis and the

proofs of important lemmas are given in Section 4. Last, we conclude. The proofs of

the Theorem and some auxiliary lemmas appear in the Appendix.

6 for further information on the last model the reader is referred to the monograph by Straumann
(2005) [84].
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4.2 The �rst and second order log-likelihood derivatives

Employing the method of Straumann and Mikosch (2006) [83], it can be found that the

SRE approach is also useful for the treatment of the �rst and second derivatives of the

ht sequence.

The �rst order derivatives of the log-likelihood function.

@

@�
ln (�) � L1t (�) =

1

2

nX
t=1

�
X2
t

ht
� 1
�
@ht=@�

ht
;

@

@�
ln (�) � L2t (�) =

1

2

nX
t=1

�
X2
t

ht
� 1
�
@ht=@�

ht
;

@

@

ln (�) � L3t (�) =

1

2

nX
t=1

�
X2
t

ht
� 1
�
@ht=@


ht
;

@

@�
ln (�) � L4t (�) =

1

2

nX
t=1

�
X2
t

ht
� 1
�
@ht=@�

ht
:

and

Evaluated at the true parameter value. Let ��0 =
�
�0 � 1

2
0Zt�1 �
1
2�0 jZt�1j

�
:

L1t (�0) =
1

2

nX
t=1

�
Z2t � 1

� �
1 + ��0

@ht�1=@�

ht�1
j�0
�
;

L2t (�0) =
1

2

nX
t=1

�
Z2t � 1

� �
lnht�1 + �

�
0

@ht�1=@�

ht�1
j�0
�
;

L3t (�0) =
1

2

nX
t=1

�
Z2t � 1

� �
zt�1 + �

�
0

@ht�1=@


ht�1
j�0
�
;

L4t (�0) =
1

2

nX
t=1

�
Z2t � 1

� �
g (zt�1) + �

�
0

@ht�1=@�

ht�1
j�0
�
:

The second order derivatives of the log-likelihood function. For i; j 2 f�; �; 
; �g:

@2

@i@j
lT (�) =

1

2

nX
t=1

�
X2
t

ht
� 1
�
ht;i;j �

1

2

nX
t=1

X2
t

ht
ht;iht;j ;
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where the log-variance derivatives are given by

ht;i =
1

ht

@ht
@i

;

ht;i;j = �
�
1

ht

@ht
@i

��
1

ht

@ht
@j

�
+
1

ht

@2ht
@i@j

:

4.2.1 Second-order stationarity

The existence, stationarity and ergodicity of the second order derivatives of the condi-

tional variance are necessary so that the Taylor expansion of the �rst order derivatives

of the log-likelihood is validated. Demos and Kyriakopoulou (2010a) [35] provide higher-

order moment conditions for the second-order stationarity of the log-variance derivatives

and products between them. We summarize these conditions in the following Proposi-

tion, which is due to Demos and Kyriakopoulou (2010a) [35] (see also Chapter 3 of this

thesis):

Proposition 4.6. Given

a)
���0 � 1

2�0E jZj
�� < 1

b)
���20 + 1

4

2
0 +

1
4�
2
0 � �0�0E jZj+ 1

2�0
0E (Z jZj)
�� < 1

and

c)

������ �
3
0 +

3
4�0


2
0 +

3
4�0�

2
0 � 1

8
0
�

20 + 3�

2
0

�
E
�
Z3
�
� 3

2�
2
0�0E jZj

+3
2�0
0�0E (Z jZj)�

1
8�0
�
�20 + 3


2
0

�
E jZj3

������ < 1,
then

the second-order stationarity of all log-variance derivatives follows.

The proof is given analytically in the paper by Demos and Kyriakopoulou (2010a) [35].

4.3 Asymptotic Theory in the EGARCH(1,1)

In the related literature the EGARCH process has gained a lot of considerable attention

regarding the asymptotic theory of its estimators. At this point, we recall the substantial

work by Straumann and Mikosch (2006) [83], who proved the strong consistency of the

QMLE in the EGARCH(1; 1) model. The next Theorem has been proved in their paper.

Theorem 4.7 (Straumann and Mikosch 2006 [83], Theorem 5.1, p. 2477 ). Let (Xt) be

a stationary EGARCH process with parameters �0 = (�0; �0; 
0; �0)
0 such that (
0; �0) 6=
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(0; 0). Suppose the distribution of Z0 is not concentrated in two points. Let K be a

compact set with �0 2 K and such that

E (log k�0kK) < 0;

where �0 is given by

�0 = max
�
�; 2�1 exp

�
�2�1m

�
(
X0 + � jX0j)� �

�
;

as supK �0 = �(�0), the Lipschitz coe¢ cient, and m = inf�2K � (1� �)�1 :

Then, the QMLE b�n is strongly consistent, i.e.
b�n a:s:! �0; n!1:

Remark. With the previous Theorem, we de�ne the set K in such an appropriate way

so as to verify the condition E (log k�0kK) < 0, which is the su¢ cient condition for

the invertibility of the model to hold. The invertibility assures that the nonstationary

log ht can be approximated by the unique stationary solution of the model, which is also

ergodic.

Remark. Za¤aroni (2009) [91] proved the almost sure consistency of the Whittle esti-

mator in the EGARCH process, see for instance Theorem 1 in his paper, p. 192.

Passing to the asymptotic normality of the estimators, which is the main task in this

chapter, �rst of all, we recall some important assumptions and results from the paper

by Straumann and Mikosch (2006) [83], from the section of the asymptotic normality of

the Quasi Maximum Likelihood Estimator.

Assumption 4.8 (Straumann and Mikosch 2006 [83]). Let

(N1). The assumptions C1-C4 (see Straumann and Mikosch, 2006 [83], p. 2473) which

imply consistency are satis�ed and the true parameter �0 lies in the interior of the com-

pact set K.

(N2). The assumptions D1-D3 of Proposition 6.2 in Straumann and Mikosch (2006)

[83] are met so that ht is twice continuously di¤erentiable on K.
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(N3). The following moment conditions hold:

(i) EZ40 <1;

(ii) E
���log (h0)0 (�0)��2� <1;

(iii) E


l00

K <1;

(iv) E


l000

K <1:

(N4). The components of the vector @g@�
�
X0; �

2
0

�
j�=�0 are linearly independent random

variables.

Remark. We also assume that the stationarity and ergodicity of (log ht)
0 and (log ht)

00

hold, as it has been proved by Straumann and Mikosch (see Propositions 6.1 and 6.2).

Remark. The condition (N3ii) above is given analytically in Lemma 4.13 in this chap-

ter, in which we obtain analytic results for the existence of the squares of the log-variance

derivatives, under their second-order stationarity.

Remark. Hamadeh and Zakoian (2011) [51] in their paper established the asymptotic

normality of the QMLE for a class of nonlinear GARCH processes. Due to the fact that

they employ the traditional method to prove the asymptotic theory, they bound the

expected norm of the third derivative of the log-likelihood uniformly in a neighborhood

of the parameter space (see, for instance, their proof of Theorem 2.2, point iii, in p.

499). In our paper, we omit that point, as we use the Ergodic Theorem for continuous-

valued random functions. This is really useful as we avoid more technical proofs and we

focus only on the uniform boundedness of the second, not the third, derivative of the

log-likelihood function.

Next, we state our results which are shedding light on the asymptotic normality for the

general EGARCH model of order 1. Our contributions are on the bounds and moment

inequalities that must hold in order to establish our Theorem, which appears below. We

are presenting these technical conditions in the following group of assumptions. Before,

some notation that is used:
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Notation. We de�ne � = max (sup (
 + �) ; sup (� � 
)) : 
x + � jxj � � jxj ; 8x 2 R,

as in the monograph by Straumann (2005) [84]. Also, let m = inf
n

�
1��

o
.

The following technical conditions are su¢ cient for the asymptotic normality to hold.

Assumption 4.9. Let the model parameters be such that the following conditions are

satis�ed:

Condition A.

2�1� exp

�
2�1

��
�

(1� �) �m
���

E

�
jZ0j exp

�
1

2

1

1� � � jZ0j
��

< 1:

Condition B.

4�1�
2
exp

�
�

1

1� � �m
�
E

�
Z20 exp

�
1

1� � � jZ0j
��

< 1:

Condition C.

8�1�
3
exp

�
3

2

�
�

1

1� � �m
��

E

�
jZ0j3 exp

�
3

2

1

1� � � jZ0j
��

< 1:

Condition A is veri�ed by evaluating the expectation under some further distributional

assumption about fZtg and next rede�ning the parameter space in such a way in order

the condition A to be satis�ed. Nelson (1991) [71] proposed to use the Generalized Error

Distribution (GED) for the errors normalized to have a mean of zero and a variance of

one, which includes the normal distribution as a special case, some more fat tailed than

the normal (e.g. the double exponential) and some more thin tailed (e.g. the uniform).

Using some relations for the gamma function that appear in Davis (1965) [32] and

employing the formula 3.462 #1 in Gradshteyn and Ryzhik (1980) [48], we have the

next result for k positive:

E [jZj exp (k jZj)] = �21=�
1X
j=0

h
k�21=�

ij � [(2 + j) =�]

� (1=�) � (j + 1)
;

where � (�) is the gamma function, � �
�
2(�2=�)� (1=�) =� (3=�)

�1=2
is the dispersion of

the distribution and � is a tail-thickness parameter. When � = 2, Z has a standard

normal distribution, for � < 2, the distribution of Z has thicker tails than the normal
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(i.e. when � = 1, Z has a double exponential distribution) and for � > 2, the distribution

of Z has thinner tails than the normal (i.e. for � = 1, Z is uniformly distributed on

the interval
�
�31=2; 31=2

�
). In our analysis we are interested in k = 1

2
1
1�� �.

For a double exponential distribution of the errors (i.e. for � = 1), the condition A

above is satis�ed if

1

1� � � < 2
p
2 and � 2 (�1; 0:16889) [ (0:47369;1) ;

for the EGARCH coe¢ cient to be 0:9 and the � parameter close to 0:1. Under the

normal distribution (i.e. by letting � = 2), we have

1

1� � � < 2
p
2 and � 2 (�1; 0:216 45) :

The remaining conditions are veri�ed in a similar way.

Theorem 4.10 (Asymptotic Normality of the QMLEs). Under Assumptions 4.8, 4.9

and those of Lemma 4.13 below so that the �rst derivative of the likelihood function to

have �nite variance, the QMLE b� is asymptotically normal as n!1, i.e.

p
n
�b� � �0� d! N

�
0; F (�0)

�1G (�0)F (�0)
�1
�
;

where F (�0) and G (�0) are de�ned as

F (�0) = �2�1E
h�
(log h0 (�0))

0�T (log h0 (�0))0i ;
G (�0) = 4�1E

�
Z40 � 1

�
E
h�
(log h0 (�0))

0�T (log h0 (�0))0i :
The QMLE has covariance matrix:

V0 = F�10 G0F
�1
0 = 4�1E

�
Z40 � 1

�
E
h�
(log h0)

0 (�0)
�T
(log h0)

0 (�0)
i�1

=

= 4�1E
�
Z40 � 1

� �
1� �20 � 1

4E
�

20 + �

2
0 + 2
0�0E (Z0 jZ0j)

�
� 2�0

�
1; �0
1��0

; 0; E jZ0j
��
�

fU0 �W0g�1 ;

where

U0 = E
h
(1; log h0; Z0; jZ0j)T (1; log h0; Z0; jZ0j)

i
;

W0 =
�
�0E jZ0j ; �0 �0

1��0
E jZ0j ; 
0 + �0E (Z0 jZ0j) ; 
0E (Z0 jZ0j) + �0

�T h�
1; �0
1��0

; 0; E jZ0j
�
+ �0

i
��

1 + 1
2�0E jZ0j

��1
.
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Proof. See Appendix C.3.

Remark. Berkes, Horvath and Kokoszka (2003) [14] established consistency and as-

ymptotic normality of the QMLE in the GARCH(p; q) process under weak assumptions

on the parameters and the distribution of the underlying noise sequence (Theorems 4.1

and 4.2). Their paper is a generalization of the work by Lee and Hansen (1994) [61] and

Lumsdaine (1996) [66] on the GARCH(1; 1) process.

4.4 The Main Analysis

In this section we provide with all the proofs needed in order to establish the asymptotic

normality of the QMLEs in the EGARCH(1; 1) model, Theorem "Asymptotic Normal-

ity of the QMLEs". The concept of our proof is based on the method developed by

Straumann and Mikosch (2006) [83].

To establish the asymptotic normality of the QMLEs, �rst we develop a Taylor expansion

of the �rst derivative of the log-likelihood, say L0n, evaluated at the estimator, that is

L0n
�b�n� = L0n (�0) + L00n (�n)�b�n � �0� ;

where j�n � �0j <
���b�n � �0���. The validity of the Taylor expansion is proved by the strong

consistency of the estimator (see for instance Theorem 5.1 in Straumann and Mikosch

2006 [83]). The next step involves the application of the ergodic theorem for sequences

of random functions in C
�
K;Rd0

�
, which allows to establish uniform convergence of the

second derivative of the log-likelihood function. The last step is to apply an appropriate

central limit theorem for a martingale di¤erence sequence, which in our analysis is the

normalized �rst order derivative of the log-likelihood, evaluated at the true parameter

value.

4.4.1 CLT of the First Order Derivative

We �rst start with the central limit theorem for the score functions. This result follows

from a CLT for �nite variance stationary ergodic martingale di¤erence sequences (see
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Billingsley 1999 [18], Theorem 18.3). The following lemmas prove the asymptotic nor-

mal distribution for the standardized �rst order derivative of the log-likelihood function,

see Proposition 4.4.1. The establishment of the central limit theorem for the �rst deriv-

ative of the log-likelihood function evaluated at the true parameter value represents a

necessary step to prove the asymptotic normal distribution of the QMLE.

After a brief discussion on the classical methodology available to prove the asymptotic

normality, we pass to the application of the Ergodic Theorem in order to obtain the

uniform Strong Law of Large Numbers. We prove the boundedness of the �rst and

second order derivative of the log-variance process, which implies that the supremum

norm of the second order derivative of the log-likelihood function is �nite. This is the

key to prove the asymptotic normality of the QMLEs, see for instance Theorem 4.10.

Lemma 4.11 (Martingale Di¤erence Sequence). Let

a)
���0 � 1

2�0E jZj
�� < 1 and

b) E
��
Z2t � 1

�2�
= � <1 hold and de�ne the sequence It�1 = fXt�1; Xt�2; :::g to be

sub-�-algebras of I. Then

fLit (�0) ; It�1g for i = 1; 2; 3; 4; are martingale di¤erence sequences.

Proof. For each t, Lit (�0) is measurable It, and It�1 � It. It is also quite trivial to see

that Pr (E (Lit (�0)j It�1) = 0) = 1. To complete the proof of the Lemma it is su¢ cient

to verify that E (jLit (�0)j) < 1, for i = 1; 2; 3; 4 (we make use of the Cauchy-Schwarz

Inequality, that is E jXY j �
p
EX2EY 2 and end up with condition b).

Lemma 4.12 (Bounded Moments). Let ��0 =
�
�0 � 1

2
0Zt�1 �
1
2�0 jZt�1j

�
.

De�ne the processes:

u1t (�0) = 1 + ��0
@ht�1=@�

ht�1
j�0 ;

u2t (�0) = lnht�1 + �
�
0

@ht�1=@�

ht�1
j�0 ;

u3t (�0) = Zt�1 + �
�
0

@ht�1=@


ht�1
j�0 ;

u4t (�0) = g (Zt�1) + �
�
0

@ht�1=@�

ht�1
j�0 :

Given

a)
���0 � 1

2�0E jZj
�� < 1

b)
���20 + 1

4

2
0 +

1
4�
2
0 � �0�0E jZj+ 1

2�0
0E (Z jZj)
�� < 1
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and

c)

������ �
3
0 +

3
4�0


2
0 +

3
4�0�

2
0 � 1

8
0
�

20 + 3�

2
0

�
E
�
Z3
�
� 3

2�
2
0�0E jZj

+3
2�0
0�0E (Z jZj)�

1
8�0
�
�20 + 3


2
0

�
E jZj3

������ < 1,
then

E (juit (�0)jp) �Mi;p <1; for p = 1; 2; 3 and i = 1; 2; 3; 4.

Proof. Assume that E jZj is bounded. Higher order moments exist to the extent that

the higher order moments of Zt and jZtj exist.

Lemma 4.13 (Square Integrability of the First Order Derivatives). Let

a)
���20 + 1

4

2
0 +

1
4�
2
0 � �0�0E jZj+ 1

2�0
0E (Z jZj)
�� < 1 and

b) E
��
Z2t � 1

�2�
= � <1 hold. Then

1

n
L2it

a:s:! �

4
$2
i as n!1

where i = 1; 2; 3; 4.

Proof. Let
@ht=@i

ht
� ht;i;

$2
i
4
=Mi;2 = E

�
jht;ij2

����
�0
; i 2 f�; �; 
; �g :

Let also ���0 = �20 +
1
4

2
0 +

1
4�
2
0 � �0�0E jZj+ 1

2�0
0E (Z jZj) :

Hence:

$2
1 = E

�
jht;�j2

����
�0
=
1 + 2

�
�0 � 1

2�0E jZj
�
E (ht;�) j�0

1� ���0
;

$2
2 = E

�
jht;�j2

����
�0
=

E
�
ln2 (ht)

�
j�0

+2
�
�0 � 1

2�0E jZj
�
E (ln (ht)ht;�) j�0

1� ���0
;

$2
3 = E

�
jht;
 j2

����
�0
=

1

1� ���0
;

$2
4 = E

�
jht;�j2

����
�0
=
1� E2 jZj
1� ���0

:

Remark. The conditions from Lemma 4.13 are equivalent with the need of condition

(N3ii) in Straumann (2005) [84], p. 116.
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Proposition 1 (Central Limit Theorem for the Score Functions) Let the assump-

tions of the previous lemmas hold and let the scores be as de�ned in Lit (�0) form.

Having lim
n!1

1
n

nX
t=1

E
�
L2it (�0) I fjLit (�0)j > �

p
ng
�
! 0 and sup

n�1
1
n

nX
t=1

E
�
L2it (�0)

�
<

1,
1p
n
Lit (�0)

d! N

�
0;
�

4
$2
i

�
for n!1 and i = 1; 2; 3; 4, where $2

i is de�ned as in Lemma 4.13.

Proof. By Lemma 4.11, Lit (�0), for all i, is a martingale di¤erence sequence. Further-

more, the results in Lemma 4.13 and the relations speci�ed in the Proposition (the

Lindeberg condition and the uniformity over n of the variance boundedness) correspond

to the conditions of the proof of the CLT for the scores. Therefore, the result of Propo-

sition 1 follows immediately.

4.4.2 Uniform SLLN of the Second Order Derivative

In this section we provide with the lemmas that are required in order to establish the

uniform convergence of the second order derivative of the log-likelihood.

Proposition 2 (Moments Convergence of the Second Order Derivatives) Let

a)
���0 ��0 � 1

2�0E jZj
��� < 1 and

b)
���20 + 1

4

2
0 +

1
4�
2
0 � �0�0E jZj+ 1

2�0
0E (Z jZj)
�� < 1 hold. Then

(a) 1
n

�
� @2

@�2
ln (�) j�=�0

�
p! 1
2$

2
1 > 0

(b) 1
n

�
� @2

@�2
ln (�) j�=�0

�
p! 1
2$

2
2 > 0

(c) 1
n

�
� @2

@
2
ln (�) j�=�0

�
p! 1
2$

2
3 > 0

(d) 1
n

�
� @2

@�2
ln (�) j�=�0

�
p! 1
2$

2
4 > 0

(e) 1
n

�
� @2

@�@� ln (�) j�=�0
�

p! 1
2$12

(f) 1
n

�
� @2

@�@
 ln (�) j�=�0
�

p! 1
2$13

(g) 1
n

�
� @2

@�@� ln (�) j�=�0
�

p! 1
2$14

(h) 1
n

�
� @2

@�@
 ln (�) j�=�0
�

p! 1
2$23

(i) 1
n

�
� @2

@�@� ln (�) j�=�0
�

p! 1
2$24

(j) 1
n

�
� @2

@
@� ln (�) j�=�0
�

p! 1
2$34; as n!1.

Proof. By applying the ergodic theorem and the results on the existence of moments in

Lemma 4.12, then the proof of Proposition 2 follows.
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De�nition 1 Denote �0 = (�0; �0; 
0; �0)
0. De�ne the lower and upper values for each

parameter in �0 as

�L < �0 < �U ; �L < �0 < �U ;


L < 
0 < 
U ; �L < �0 < �U ;

and the neighborhood N (�0) around �0 as

N (�0) =

8<: �L < �0 < �U ; �L < �0 < �U ; 
L < 
0 < 
U ;

and �L < �0 < �U

9=; ;

for which we have that N (�0) � K.

There are papers in the related literature of an alternative methodology7, which has been

the traditional one over the past decades. The reader is referred to the papers by Lee and

Hansen (1994) [61] and Lumsdaine (1996) [66] for the QMLE in the GARCH(1,1) process.

Using that method, they prove that the second order derivative of the log-likelihood has

a unique limit function and they also prove that this convergence is uniform as the

second derivative is stochastically equicontinuous which comes from the boundedness of

the third derivatives. When deriving consistency and asymptotic normality, the clas-

sical su¢ cient condition regarding bounds of the third derivatives of the log-likelihood

function is that

E supe�2N(�0)
���� 1n @3

@�3
l
�e������ <1:

These authors apply the SLLN for stationary and ergodic sequences (see the pointwise

ergodic theorem, Theorem 3.5.7, in Stout 1974 [82]) and examine the above condition

which implies that the second derivative satis�es the Lipschitz condition of Andrews

(1992) [4] and hence establish uniform convergence. Jensen and Rahbek (2004a) [58]

noted in p. 645 that the above condition has been reproduced in other papers (see, for

instance, Lumsdaine 1996 [66]) with a misleading way, such that the proofs in those

papers might not be complete. The last holds with an exception of the paper by Berkes,

Horváth and Kokoszka (2003) [14].

7This method utilizes the classic Cramer type conditions, that is central limit theorem for the score,
convergence of the Hessian and uniformly bounded third-order derivatives; see e.g. Lehmann (1999) [62].
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In order to establish the almost sure equicontinuity of the second derivatives of the

log-likelihood, Lumsdaine (1996) [66], Lee and Hansen (1994) [61] and Berkes, Horváth

and Kokoszka (2003) [14] stochastically bound the third derivatives. Such computations

however can be avoided when the Ergodic Theorem for random elements with values in

a separable Banach space is applied.

Straumann and Mikosch (2006) [83] suggest a simpler method that is based on the

ergodic theorem for C
�
K;Rd0

�
�valued sequences of random variables and requires

that the stationary sequence is ergodic and has a bounded expected norm8. This result

is summarized in the following Theorem and we refer to Ranga Rao (1962) [76] for its

proof.

Theorem 4.14 (Theorem 2.7 of Straumann and Mikosch 2006 [83]). Let (�t) be a

stationary ergodic sequence of random elements with values in C(K;Rd0). Then the

uniform SLLN is implied by E k�0kK <1.

To what follows, we denote by kAk the Frobenius norm of a matrix A = (aij) 2 Rd�d,

de�ned by

kAk =

0@ dX
i;j=1

a2ij

1A1=2 :
The following inequality, which is valid for the Frobenius norm, is useful in our analysis.

If x,y 2 C
�
K;Rd

�
, then the Frobenius norm of the matrix xyT is bounded by



xyT


K
� kxkK kykK :

In the sequel, we �rst prove the existence of the expected sup-norm of the �rst order

derivative of the log-variance function, see Lemma.4.18 For this scope, we provide with

useful lemmas in which we consider the higher order dependence in the EGARCH process

in such a way so as to �nd accurate moment estimates and verify the moment conditions

needed in the proof of our main Theorem 4.10.

Notation. As already stated, � = max (sup (
 + �) ; sup (� � 
)) : 
x+ � jxj � � jxj ;

8x 2 R andm = inf
n

�
1��

o
.Let also c be a constant that is equal to 1

�2
�1� exp

�
�2�1m

�
(otherwise, it will be de�ned properly).

8For further analysis, see the paper by Ranga Rao (1962).
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Lemma 4.15. If E [(jZ0j�0)] <1 and 2�1� exp
�
2�1

h�
�

(1��) �m
�i��

E jZ0j exp
�
1
2

1
1�� � jZ0j

��
=

qa < 1, then
1X
k=1

E

"
�k�1

k�1Y
i=1

[1 + c jXt�ij]
#
<1

Proof. See Appendix C.1.

Remark. The previous result uses the important Lemmas C.1 and C.2 from the Ap-

pendix.

Lemma 4.16. If E
��Z0 exp �12� jZ0j��� <1 and

2�1� exp
�
2�1

h�
�

(1��) �m
�i��

E jZ0j exp
�
1
2

1
1�� � jZ0j

��
= qa < 1, then

1X
k=1

E

" 
�k�1

k�1Y
i=1

[1 + c jXt�ij]
!
jXt�kj

#

is �nite.

Proof. See Appendix C.1.

Remark. The previous result makes use of the following dependence property:

k�1X
i=1

jXt�ij jXt�kj = (jXt�1j+ jXt�2j+ :::+ jXt�k+1j) jXt�kj

is bounded from the higher dependence, which is between jXt�k+1j and jXt�kj. Hence:

k�1X
i=1

jXt�ij jXt�kj � (k � 1) jXt�k+1j jXt�kj :

Lemma 4.17. If the conditions of Lemma 4.15 are satis�ed and moreover

E
��Z0 exp �12� jZ0j��� <1,

� exp
�

1
2(1��)�

�
E
�
jZ0j exp

�
1
2

1
1�� � jZ0j

��
= qb < 1,

exp
�

1
2(1��)�

�
E
���exp�12� jZ0j	Z0��� = qc < 1 and E

���expn12 � 1
1�� + 1

�
� jZ0j

o
Z20

��� <
1;

then
1X
k=1

E

" 
�k�1

k�1Y
i=1

[1 + c jXt�ij]
!
jlog ht�kj

#
<1
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Proof. See Appendix C.1.

Remark. The following result is important in order to prove the previous lemma:

1X
k=1

E

" 
�k�1

k�1Y
i=1

[1 + c jXt�ij]
!
jlog ht�kj

#
�

1X
k=1

E

" 
�k�1

k�1Y
i=1

[1 + c jXt�ij]
!
jlog htj

#
;

by backward substitution of log ht.

Remark. The Lemmas C.4, C.5, C.6, C.7 and C.8 from the Appendix are useful to

prove the previous lemma.

Lemma 4.18 (Boundedness of the expected value of the sup-norm of the �rst order

derivative). Suppose the conditions imposed in Straumann (2005) [84], section 5.7.2.9 If

the conditions imposed to the previous Lemmas 4.15, 4.16 and 4.17 hold,

then E


(log ht)0

K <1, where K is a compact set of the parameter space.

Proof. Di¤erentiation with respect to � of both sides of

log ht+1 = �+ � log ht + (
Xt + � jXtj) exp
�
�2�1 log ht

�
;

leads to

(log ht+1)
0 = At (log ht)

0 +Bt; (4.12)

where

At =
@ log ht+1
@ log ht

= � � 2�1 (
Xt + � jXtj) exp
�
�2�1 log ht

�
;

Bt =
@ log ht+1

@�
=
�
1; log ht; Xt exp

�
�2�1 log ht

�
; jXtj exp

�
�2�1 log ht

��
:

The eq. (4.12) is linear and due to this fact, its unique stationary ergodic solution has

the representation

(log ht)
0 =

1X
k=1

 
k�1Y
i=1

At�i

!
Bt�k a:s:

9These conditions refer to the proof of a contractive SRE needed for the application of the Theorem
2.6.4., in Straumann (2005) [84].
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Noticing that kBtkK � c1 (1 + jXtj+ jlog htj) for some constant c1 > 0 and applying the

triangle inequality to the latter representation, we get



(log ht)0

K � c1

1X
k=1

 
k�1Y
i=1

kAt�ikK

!
(1 + jXt�kj+ jlog ht�kj) :

We also have that

kAtk � � + 2�1� jXtj exp
�
�2�1m

�
; m = inf

�
�

1� �

�
� �

�
1 +

1

�
2�1� jXtj exp

�
�2�1m

��
;

and hence, that

k�1Y
i=1

kAt�ik � �(k�1)
k�1Y
i=1

�
1 +

1

�
2�1� jXt�ij exp

�
�2�1m

��
:

Using the above inequalities, we obtain

E


(log ht)0

 � c1E

" 1X
k=1

 
�(k�1)

k�1Y
i=1

[1 + c jXt�ij]
!
(1 + jXt�kj+ jlog ht�kj)

#
;

where

c =
1

�
2�1� exp

�
�2�1m

�
:

We need to bound the next three elements, i.e. �nd the appropriate conditions in order

these terms to be �nite and then apply the Minkowski inequality to the in�nite sum
1X
k=1

,

that is:

E

"
�(k�1)

k�1Y
i=1

[1 + c jXt�ij]
#
;

E

" 1X
k=1

 
�(k�1)

k�1Y
i=1

[1 + c jXt�ij]
!
jXt�kj

#
and

E

" 1X
k=1

 
�(k�1)

k�1Y
i=1

[1 + c jXt�ij]
!
jlog ht�kj

#
:

We then make use of Lemmas 4.15, 4.16 and 4.17 for each of the above terms and this

completes the proof.
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Next, we proceed with the �niteness of the sup-norm of the second order derivative of

the log-variance function. To do so, we �rst calculate the following bounds that are

useful for the remaining analysis. Recall that




(log ht)0


 � c1

24 1X
j=1

 
�j�1

j�1Y
i=1

[1 + c jXt�ij]
!
(1 + jXt�j j+ jlog ht�j j)

35 :
Hence,

E

" 1X
k=1

 
k�1Y
i=1

kAt�ik
!
jZt�kj�t�k



(log ht�k)0


#
� c1E

2664
1X
k=1

 
�k�1

k�1Y
i=1

[1 + c jXt�ij]
!2
jZt�kj�t�k

� (1 + jXt�kj+ jlog ht�kj)

3775 ;
(4.13)

by backward substitution of (log ht)
0
. Moreover, we have that

E



(log ht)0


� � E

" 1X
k=1

 
k�1Y
i=1

kAt�ik
!
kBt�kk

#�

� c1E

" 1X
k=1

k�1Y
i=1

kAt�ik� (1 + jXt�kj+ jlog ht�kj)�
#

� c1E

" 1X
k=1

k�1Y
i=1

kAt�ik�
# �
2� + 22� (jXt�kj� + jlog ht�kj�)

�
;

making use of the following inequality:

(x+ y)� � 2� (x� + y�) :
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Hence




(log ht)0


2 �
" 1X
k=1

 
k�1Y
i=1

kAt�ik
!
kBt�kk

#2

� c1

" 1X
k=1

k�1Y
i=1

kAt�ik2 (1 + jXt�kj+ jlog ht�kj)2
#

� c1

" 1X
k=1

k�1Y
i=1

kAt�ik2
# h
4 + 16

�
jXt�kj2 + jlog ht�kj2

�i
� c�1

" 1X
k=1

k�1Y
i=1

kAt�ik2
# h
1 + 4

�
jXt�kj2 + jlog ht�kj2

�i
;

where
1X
k=1

k�1Y
i=1

kAt�ik2 =
1X
k=1

(2�)2(k�1)
k�1Y
i=1

�
1 + c jXt�ij2

�
and c =

1

(2�)2
�
2
exp (�m) (see Lemma C.9):

Thus

E

" 1X
k=1

 
k�1Y
i=1

kAt�ik
!
jZt�kj�t�k



(log ht�k)0

2
#
� c�1E

2664
1X
k=1

 
k�1Y
i=1

kAt�ik3
!
jZt�kj�t�k

�
h
1 + 4

�
jXt�kj2 + jlog ht�kj2

�i
3775 :

(4.14)

We provide below with useful lemmas that are important to prove the second main

result, Lemma 4.23. Let the following:

Lemma 4.19. If E
�
jZ0j exp � jZ0j

�
<1 and

1
4�
2
exp

�
� 1
1�� �m

�
E
h
Z20 exp

�
1
1�� � jZ0j

�i
= qd < 1, then

1X
k=1

E

24 �k�1 k�1Y
i=1

[1 + c jXt�ij]
!2
jZt�kj�t�k

35 <1
Proof. See Appendix C.2.

Lemma 4.20. If E
�
Z20 exp � jZ0j

�
<1 and qd < 1 (see Lemma 4.19), then

1X
k=1

E

24 �k�1 k�1Y
i=1

[1 + c jXt�ij]
!2
jZt�kj�t�k jXt�kj

35
is �nite.

Proof. See Appendix C.2.
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Lemma 4.21. If the conditions of Lemma 4.19 are satis�ed and moreover

E
�
jZ0j exp

�
3
2� jZ0j

��
<1, E

�
Z20 exp

�
� jZ0j

��
<1,

exp
�

1
(1��)�

�
E
�
Z20 exp

�
� jZ0j

��
= qe < 1, E

h
jZ0j exp

h�
1
1�� +

1
2

�
� jZ0j

ii
<1 and

exp
�

1
1���

�
E
�
Z20 exp

�
� jZ0j

��
= qf < 1;

then

E

24 �k�1 k�1Y
i=1

[1 + c jXt�ij]
!2
jZt�kj�t�k jlog ht�kj

35 <1.
Proof. See Appendix C.2.

Lemma 4.22. Let E
�
jZ0j exp � jZ0j

�
<1,

1
8�
3
exp

h
3
2

�
� 1
1�� �m

�i
E
h
jZ0j3 exp

�
3
2

1
1�� � jZ0j

�i
= qg < 1, E

h
jZ0j3 exp

�
3
2� jZ0j

�i
<

1 (see Appendix A2 for all conditions),

then

E

" 1X
k=1

 
k�1Y
i=1

kAt�ik
!
jZt�kj�t�k



(log ht�k)0

2
#

is �nite.

Proof. See Appendix C.2.

Lemma 4.23 (Boundedness of the expected value of the sup-norm of the second order

derivative). Suppose all the conditions of the previous Lemmas 4.19, 4.20, 4.21 and

4.22 hold. Moreover, if the conditions imposed to Lemmas 4.15, 4.16 and 4.17 are also

satis�ed,

then E


(log ht)00

K <1.

Proof. Di¤erentiation of (4.12) with respect to � yields

(log ht+1)
00
=

�
At (log ht)

0
+Bt

�0
=

@ATt
@�

(log ht)
0
+
@At
@s

�
(log ht)

0
�T
(log ht)

0

+At (log ht)
00
+
@Bt
@�

+
@BTt
@s

(log ht)
0

= At (log ht)
00
+ Ct;
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where

Ct =
@ATt
@�

(log ht)
0
+
@At
@s

�
(log ht)

0
�T
(log ht)

0
+
@Bt
@�

+
@BTt
@s

(log ht)
0

=
�
0; 2;�Xt exp

�
�2�1 log ht

�
;� jXtj exp

�
�2�1 log ht

��T
(log ht)

0

+4�1 (
Xt + � jXtj) exp
�
�2�1 log ht

� �
(log ht)

0
�T
(log ht)

0

+

26666664
0 1 0 0

0 log ht 0 0

0 Xt exp
�
�2�1 log ht

�
0 0

0 jXtj exp
�
�2�1 log ht

�
0 0

37777775 :

We can write

Ct = � exp
�
�2�1 log ht

� �
0;�2= exp

�
�2�1 log ht

�
; Xt; jXtj

�T
(log ht)

0

+4�1 (
Xt + � jXtj) exp
�
�2�1 log ht

� �
(log ht�1)

0
�T
(log ht�1)

0

+

26666664
0 1 0 0

0 log ht 0 0

0 Xt exp
�
�2�1 log ht

�
0 0

0 jXtj exp
�
�2�1 log ht

�
0 0

37777775 :

Starting point for establishing E


(log ht)00

K <1 is the almost sure representation

(log ht)
00
=

1X
k=1

 
k�1Y
i=1

At�i

!
Ct�k:

By means of the inequality


xyT

 � kxk kyk and the Frobenius norm, i.e. kAk =0@ dX

i;j=1

a2ij

1A1=2, we have that
kCtk � c1 (c2 + 2 jXtj)

��(log ht)0��+ c3 jXtj ��(log ht)0��2 + c3 (1 + jXtj+ jlog htj)
� c�1 + c

�
2 jXtj

h��(log ht)0��+ ��(log ht)0��2i+ c3 (1 + jXtj+ jlog htj) ;
where the constants c1; :::c3; c�1; ::: de�ne generic positive constants that take many dif-

ferent values.
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Hence




(log ht)00


 � 1X
k=1

 
k�1Y
i=1

kAt�ik
!0@ c�1 + c

�
2 jXt�kj

h

(log ht�k)0

+ 

(log ht�k)0

2i
+c3 (1 + jXt�kj+ jlog ht�kj)

1A :

We need to bound the next three elements, i.e. �nd the appropriate conditions in order

these terms to be �nite and then apply the Minkowski inequality to the in�nite sum
1X
k=1

,

that is:

c�1E

" 1X
k=1

 
k�1Y
i=1

kAt�ik
!#

� c�1E

" 1X
k=1

 
�k�1

k�1Y
i=1

[1 + c jXt�ij]
!#
: as in the proof in the

�rst order derivative, i.e. Lemma 4.15,

c�2E

" 1X
k=1

 
k�1Y
i=1

kAt�ik
!
jXt�kj

h

(log ht�k)0

+ 

(log ht�k)0

2i
#

= c�2E

" 1X
k=1

 
k�1Y
i=1

kAt�ik
!
jZt�kj�t�k

h

(log ht�k)0

+ 

(log ht�k)0

2i
#
; where we have,

for instance, two components:

(1) E

" 1X
k=1

 
k�1Y
i=1

kAt�ik
!
jZt�kj�t�k



(log ht�k)0


#
(see Lemmas 4.19, 4.20 and 4.21)

(2) E

" 1X
k=1

 
k�1Y
i=1

kAt�ik
!
jZt�kj�t�k



(log ht�k)0

2
#
(see Lemma 4.22) and

c3E

" 1X
k=1

 
k�1Y
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kAt�ik
!
(1 + jXt�kj+ jlog ht�kj)

#
: as in the proof in the �rst order deriv-

ative, i.e. Lemmas 4.15, 4.16 and 4.17:

This concludes the proof of the Lemma.

The last step in our analysis is the following Lemma which provides moment estimates

that are necessary in order to prove the asymptotic normality of the estimators, i.e.

Theorem 4.10.

Lemma 4.24. Under the conditions of Lemma 4.23, we have that

E





X2
t

1

ht

�
(log ht)

0�T �(log ht)0�



 <1 and E





X2
t

1

ht
(log ht)

00




 <1: (4.15)
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Proof. The second order derivative of the log-likelihood is given by:
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where

(log ht)
0 =

1
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; (log ht)
00 = �

�
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ht
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@i

��
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ht

@ht
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�
+
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ht
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:

Hence, applying the triangle inequality to eq. (4.16) and next the Holder inequality

implies:
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0
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�(log h0)0�T �(log h0)0�


� :
Thus, to prove E




X2
t
1
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(log ht)

00



 <1 it su¢ ces to show that E




X2
t
1
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 <1 and then

use the Cauchy-Schwarz inequality to obtain the desired result. This is also the case for

E



X2

t
1
ht

�
(log h0)

0�T �(log h0)0�


 if and only if E 


�(log h0)0�T �(log h0)0�


 <1.
We have that 



�2tht





 � �2t
hinft

;

where hinft = exp
�

�

1��

�
, � = min of the space of � and � = max of the space of �.

Hence

E





�2tht




 � 1

hinft
E
�
�2t
�
<1:

This completes the proof.

4.5 Conclusions

This paper studies the asymptotic properties of the quasi-maximum likelihood estima-

tors in the EGARCH(1; 1) process. For the �rst time we give higher-order moment

conditions and we obtain tractable su¢ cient conditions that guarantee the integrability

of the supremum norms of the log-variance derivatives. Under the Generalized Error

Distribution assumption for the errors, the conditions presented in this chapter are ver-

i�ed. Our proofs are based on the application of the Ergodic Theorem for continuous
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valued sequences of random functions and our results comprise an extension of the work

by Straumann and Mikosch (2006) [83].

The next step in our analysis is to formulate also the necessary conditions needed for

the asymptotic normality of the QMLE to hold, which might be weaker. We leave this

issue for future research.

This chapter is available as a Discussion Paper of Demos and Kyriakopoulou (2010b)

[36].
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Chapter 5

Conclusions

This thesis has studied the asymptotic expansions of the econometric estimators in two

time series models, the Moving Average (MA) and the Exponential GARCH (EGARCH)

models. To this end, it has addressed primarily two research questions. First, it has

analyzed the �nite sample properties of the MM and QML estimators in the MA(1)

model, as well as the QMLEs in the EGARCH(1; 1) process and derived the approximate

distribution of Edgeworth type. Second, it has examined the conditions under which

the QMLEs in the EGARCH(1; 1) are asymptotically normal.

Regarding the �rst research question, an extension of Sargan�s (1976) [80] results was

necessary so that the second order Edgeworth and Nagar-type expansions of the MM

estimators were derived. Moreover, the �rst order expansions in Tanaka (1984) [87]

were extended to include terms of second order for the QMLEs. A comparison of the

expansions, either in terms of approximate bias or MSE, reveals that there is not uni-

form superiority of neither of the estimators of the MA parameter and the �rst or-

der autocorrelation. Next, to the best of our knowledge, analytic derivatives both of

the log-likelihood and the log-variance functions and also their expected values in the

EGARCH(1; 1) model are presented for the �rst time. By developing the theoretical

bias approximations of all estimators, we were then able to bias correct the QMLEs in

practice, under the speci�cation of two methods and compare the simulation results be-

tween them. For given sets of parameters values, the bias correction works satisfactory

for all parameters.

95
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With respect to the second research question, su¢ cient conditions for the existence of

moments of the log-variance derivatives, evaluated in the true parameter value and also

the integrability of their supremum norms in a neighborhood around the true parameter

vector, in the EGARCH(1; 1) model, were investigated for the �rst time. In particu-

lar, we extended the work by Straumann and Mikosch (2006) [83] in order to study

the case when the EGARCH coe¢ cient is not zero. The application of the Ergodic

Theorem for continuous valued sequences of random elements was an important tool in

order to establish the asymptotic normality of the QMLEs, avoiding more complicated

calculations.

Future research should investigate the necessary and su¢ cient conditions for the exis-

tence and validity of the formal Edgeworth expansions that were presented in Chapter 3.

This idea might be interesting to be also applied to the case of the EGARCH-M model,

that was also brie�y discussed at the end of Chapter 3. The EGARCH model has an

substantial impact on �nance and such results would be highly appreciated by �nancial

practitioners, due to the fact that they would approximate the distributions of certain

assets, for example options, and therefore derive higher order independent moments.



Appendix A

Appendix for "Edgeworth and

Moment Approximations: The

Case of MM and QML Estimators

for the MA(1) Models"

A.1 Proof of Theorem 1

As the validity of Theorem 1 is dealt in Sargan (1976) [80] or Bhattacharya and Ghosh

(1978) [16], we proceed with the coe¢ cient derivation. Let us denote by cf' (s) the

characteristic function of '. The Taylor series expansion of ' is:

' =
lX
i=0

f iAi +
1

2

lX
i;j=0

f ijAiAj +
1

6

lX
i;j;k=0

f ijkAiAjAk + op
�
n�1

�
;

where f i = @f
@Ai
, f ij = @2f

@Ai@Aj
, and f ijk = @3f

@Ai@Aj@Ak
, all evaluated at 0.

Adapting the summation convention, i.e. f ijAiAj =
Pl
i;j=0 f

ijAiAj , the characteristic

function of ' is:

cf'(s) =

Z 24 exp �isf iAi� exp � is2 f ijAiAj�
exp

�
is
6 f

ijAiAjAk
�

35 dF (A) + o �n�1� ;
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where A = (A0; :::; Al)
=.

Now
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�
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2
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�
= 1 +

is

2
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;

and
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�
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6
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�
= 1 +
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6n
hijkAiAjAk + op

�
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�
:

Expanding exp
�
is
2 f

ijAiAj
�
and exp

�
is
6 f

ijkAiAjAk
�
around (0; :::; 0)= the characteristic

function of ' becomes:
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Z �
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;

where hij =
p
nf ij and hijk = nf ijk.

Setting s
�
f1; :::; f l

�=
= z and noticing that

@cfA (z)
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Z
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�
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we get
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By de�nition, the characteristic function of A is:
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and expanding exp (icizi), exp
�
� i
6cijkzizjzk

�
, exp

�
1
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�
up to o
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�
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Employing the above formula we can �nd the, up to 4th order, derivatives of the char-

acteristic function. Substituting into (app-1) and setting for zi = sf i we get:

cf' (s) = exp

�
�s

2

2
cijf

if j
�

�

0BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1� is3

6 cijkf
if jfk + s4

24cijkmf
if jfkfm � s6

72

�
cijkf

if jfk
�2

+ s4

6 cijkf
if jfk

�
cif

i
�
� s2

2

�
cif

i
�2
+ iscjf

j

� is
2 h

pq

0BBBBBB@

s2p
n

�
cqjf

j
� �
cpjf

j
�
+ i

2
s3p
n

�
cqjf

j
� �
cpjkf

jfk
�
� 1p

n
cpq

+ i
2
s3p
n

�
cpjf

j
� �
cqjkf

jfk
�
� i

6
s5p
n

�
cqjf

j
� �
cpjf

j
� �
cijkf

if jfk
�

�i sp
n

�
cpqkf

k
�
+ i

6
s3p
n
cpq
�
cijkf

if jfk
�
+ s3p

n
i
�
cqkf

k
� �
cpjf

j
� �
cif

i
�

� sp
n
icp
�
ciqf

i
�
� sp

n
icpq

�
cif

i
�
� sp

n
icq
�
cpjf

j
�

1CCCCCCA
� s
6h
pqr
�
� s3

n

�
crjf

j
� �
cqjf

j
� �
cpjf

j
�
+ s

n

�
cqr
�
cpjf

j
�
+ cpr

�
cqjf

j
�
+ cpq

�
crjf

j
���

� s2

8 h
pqhrs

0BBBBBB@
s4

n

�
csjf

j
� �
crjf

j
� �
cqjf

j
� �
cpjf

j
�

� s2

n csjf
j
�
cqr
�
cpjf

j
�
+ cpr

�
cqjf

j
�
+ cpq

�
crjf

j
��

� s2

n

�
crs
�
cqjf

j
� �
cpjf

j
�
+ cqs

�
crjf

j
� �
cpjf

j
�
+ cps

�
crjf

j
� �
cqjf

j
��

+ 1
n (cqrcps + cprcqs + cpqcrs)

1CCCCCCA

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA
with a remainder of o

�
n�1

�
.

However as cij = c
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and it follows that, with the same order of remainder,

cf' (s) = exp

�
�s

2

2
!2
�

�

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 + is
2
p
n
a
(1)
4 + is

2na
(2)
4 � s2

2
p
n
!(2) � s2

2n!
(3) � s2

2nh
pq


(1)
pq

� s2

6nh
pqr
�
c
(1)
qr 


(1)
p + c

(1)
pr 


(1)
q + c

(1)
pq 


(1)
r

�
� s2

8nh
pqhrs

�
c
(1)
qr c

(1)
ps + c

(1)
pr c

(1)
qs + c

(1)
pq c

(1)
rs

�
� is3

6
p
n
a
(1)
1 � is3

6n a
(2)
1 � i s3

2
p
n
hpq


(1)
q 


(1)
p � i s32nh

pq

(2)
q 


(1)
p � i s32nh

pq

(1)
q 


(2)
p

� is3

4n!
(2)a

(1)
4 + s4

24na
(1)
2 + s4

2nh
pq


(1)
q �

(1)
p + s4

12na
(1)
4 a

(1)
1 + s4

6nh
pqr


(1)
r 


(1)
q 


(1)
p

+ s4

8n

�
!(2)

�2 � s6

72n

�
a
(1)
1

�2
� s6

12na
(1)
1 hpq


(1)
q 


(1)
p � s6

8nh
pqhrs


(1)
s 


(1)
r 


(1)
q 


(1)
p

+ is5

12n!
(2)a

(1)
1 + is5

4n!
(2)hpq


(1)
q 


(1)
p

� s2

n h
pqc

(1)
p 


(1)
q + s4

8nh
pqhrs

24 

(1)
s

�
c
(1)
qr 


(1)
p + c

(1)
pr 


(1)
q + c

(1)
pq 


(1)
r

�
+c

(1)
rs 


(1)
q 


(1)
p + c

(1)
qs 


(1)
r 


(1)
p + c

(1)
ps 


(1)
r 


(1)
q

35
+ s4

6na
(1)
1 a

(1)
11 � s2

2n

�
a
(1)
11

�2
+ isp

n
a
(1)
11 +

is
n a

(2)
11 � i s

3

2n!
(2)a

(1)
11

� s2

2na
(1)
4 a

(1)
11 +

s4

2nh
pq


(1)
q 


(1)
p a

(1)
11

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
where

!2 = c
(1)
ij f

if j ; !(2) = c
(2)
ij f

if j ; !(3) = c
(3)
ij f

if j ;

a
(1)
1 = c

(1)
ijkf

if jfk; a
(2)
1 = c

(2)
ijkf

if jfk; a
(1)
2 = c

(1)
ijkmf

if jfkfm;

�(1)p = c
(1)
pjkf

jfk; 
(1)p = c
(1)
pj f

j ; 
(1)pq = c
(1)
pqkf

k; 
(2)pq = c
(2)
pqkf

k;

a
(1)
4 = hpqc(1)pq ; a

(2)
4 = hpqc(2)pq ; a

(1)
11 = c

(1)
i f i and a

(2)
11 = c

(2)
i f i:

As now hpq
(2)q 

(1)
p = hpq


(1)
q 


(2)
p , hpqhrsc

(1)
qr c

(1)
ps = hpqhrsc

(1)
pr c

(1)
qs , hpqhrsc

(1)
pq c

(1)
rs =

�
hpqc

(1)
pq

�2
,

hpqhrs

(1)
s c

(1)
pq 


(1)
r = hpqhrsc

(1)
rs 


(1)
q 


(1)
p =

�
hrsc

(1)
rs

��
hpq


(1)
q 


(1)
p

�
, hpqhrs
(1)s c

(1)
qr 


(1)
p =

hpqhrs

(1)
s c

(1)
pr 


(1)
q = hpqhrsc

(1)
qs 


(1)
r 


(1)
p = hpqhrsc

(1)
ps 


(1)
r 


(1)
q , hpqhrs


(1)
s 


(1)
r 


(1)
q 


(1)
p =

�
hpq


(1)
q 


(1)
p

�2
,

it follows that
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Inverting the characteristic function of ' term by term, we deduce the corresponding

asymptotic expansion of the density, say g(x) = 1
2�

R +1
�1 exp (�isx) cf� (s) ds, and the

probability function G(m) = Pr [
p
n (b'� ') � m] as n!1. To do so, we use the next

relations:
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denotes the standard normal density function, and Hn(z) are the Hermite polynomials,

for which we have:

H0(z) = 1; H1(z) = z; H2(z) = z2 � 1; H3(z) = z3 � 3z; (app-2)

H4(z) = z4 � 6z2 + 3; H5(z) = z5 � 10z3 + 15z etc:

Now the probability functionG(m) is given asG(m) = Pr [
p
n (b'� ') � m] =

Rm
�1 g(x)dx.

Employing again the connection between the derivatives of the standard normal and the
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Hermite polynomials we get:
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!
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!
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�
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�
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�
n�1

�
; and employ-

ing equation (app-2) we �nally get the Edgeworth approximation of the distribution

function of
p
n (b'� '), written compactly, as:

G(m) = �
�m
!

�
��
�m
!

��
 0 +  1

�m
!

�
+  2

�m
!

�2
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�m
!

�3
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�m
!

�4
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�m
!

�5�
;

where

 0 =
1p
n
 
(1)
0 + 1

n 
(2)
0 ;  1 =

1p
n
 
(1)
1 + 1

n 
(2)
1 ;  2 =

1p
n
 
(1)
2 + 1

n 
(2)
2 ;

 3 =
1
n 
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1
72n

�
a
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1 +3a

(1)
3
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1
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�
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�

�
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3
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i
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(2)
1 = 1
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�
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.

In Sargan (1976) [80] we have that !(2) = !(3) = 

(2)
pq = 0, a

(2)
i = 0 for i = 1; 2; 3; 4 and

a
(1)
11 = a

(2)
11 = a

(1)
12 = 0. Under these assumptions our coe¢ cients become identical to the

ones in Sargan (1977) [81] (the corrected version of the 1976 paper [80]).
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A.2 Proof of Lemma 1

To easy the notation, let w = m
! . Then we would like to �nd d

(1)
0 , d

(1)
1 , d

(1)
2 , and d

(2)
0 ,

d
(2)
1 , d

(2)
2 , and d

(2)
3 such that

� (w)� � (w)

24 �
 
(1)
0 +  

(1)
1 w +  

(1)
2 w2

�
y

+
�
 
(2)
0 +  

(2)
1 w +  

(2)
2 w2 +  3w

3 +  4w
4 +  5w

5
�
y2

35
= �

h
w +

�
d
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0 + d
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1 w + w2d
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2

�
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�
d
(2)
0 + d

(2)
1 w + w2d

(2)
2 + d

(2)
3 w3

�
y2
i
+ o

�
n�1

�
where y = 1p

n
. Employing a Taylor series expansion of the right-hand side around y = 0

and equating terms of the same order of y we get:

d
(1)
0 = � (1)0 ; d

(2)
0 = � (2)0 ; d

(1)
1 = � (1)1 ; d

(2)
1 = � (2)1 +

1

2

�
 
(1)
0

�2
d
(1)
2 = � (1)2 ; d

(2)
2 = � (2)2 +  

(1)
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(1)
1 ;

d
(2)
3 = � 3 +

1

2

�
 
(1)
1

�2
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(1)
0  

(1)
2 ;

and

 4 = d
(1)
2 d

(1)
1 ; and  5 =

1

2

�
d
(1)
2

�2
which are always true.

As �
h
w +

�
d
(1)
0 + d

(1)
1 w + w2d

(1)
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�
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n
+
�
d
(2)
0 + d

(2)
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2 + d

(2)
3 w3

�
1
n

i
+ o

�
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�
one can �nd a standard normal variate, say z, such that z = w+

�
d
(1)
0 + d

(1)
1 w + w2d

(1)
2

�
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n
+�

d
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0 + d

(2)
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3 w3

�
1
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�
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�
.

Let w = a + bz + cz2 + ez3 + o
�
n�1

�
where the coe¢ cients a, b, c, and e are to be

determined. Then substituting out z, by employing the above formula, letting a =

a(0) + 1p
n
a(1) + 1

na
(2) and the same for b, c, and e, and equating coe¢ cients we get a, b,

c, and e as functions of the d(j)i s:

a(0) = 0; a(1) = �d(1)0 ; a(2) = d
(1)
0 d

(1)
1 � d(2)0

b(0) = 1; b(1) = �d(1)1 ; b(2) = 2d
(1)
2 d

(1)
0 +

�
d
(1)
1

�2
� d(2)1 ;

c(0) = 0; c(1) = �d(1)2 ; c(2) = 3d
(1)
1 d

(1)
2 � d(2)2 ;
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e(0) = 0; e(1) = 0 and e(2) = 2
�
d
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� d3:

Hence
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�
or in terms of

the  (i)j s
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�
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:

Hence, employing the connection between the  (i)j s and the Edgeworth coe¢ cients, a
(k)
l ,

setting w = ' we get the results of Lemma 1:

The �rst cumulant of w is

kw1 = E (w) =
1p
n
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h
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:

Squaring w in (A.1) and taking the expectation we get

E
�
w2
�
= 1+2

1p
n

!(2)

2!2
+
1

n

1

4!2

�
4
�
a
(1)
5 + a

(1)
7 + !(3) + 2a

(1)
12

�
+ 2a

(1)
9 +

�
2a
(1)
11 + a

(1)
4

�2�
+o
�
n�1

�
and

kw2 = 1 +
1p
n

!(2)

!2
+
1

n

1

2!2

h
a
(1)
9 + 2

�
a
(1)
5 + a

(1)
7 + !(3) + 2a

(1)
12

�i
+ o

�
n�1

�
:

Finally,
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A.3 Cumulants needed for b�
A0, A1, A2, and A3 can be expressed as

A0 =
1p
n

nX
t=1

(ut�1 + �ut�2) ; A1 =

Pn
t=2 ut�1ut�2p

n

A2 =
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n
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:

It is obvious that

E (A0) = E (A1) = E (A3) = 0; E (A2) = o
�
n�1

�
;

and consequently

c0 = c1 = c3 = 0; and c2 = o
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�
:

Hence

c
(1)
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(2)
i = 0 for i = 0; 1; 2; 3

In terms of second moments, notice that

E
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E
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E
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where �3 =
E("30)
�3

and
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Finally,
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:
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Now, as E (Aj) = 0 for all js, we have, up to o
�
n�1

�
,

c000 =
1p
n
(1 + �)3 �3�3; c001 =
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With some tedious algebra, for the fourth order cumulants, �rst notice that
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Further E [
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Hence
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Now to �nd E
�
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�
notice that E (
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�
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3 unun�1 = 0.

Furthermore, E (
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Finally, 1nE (
Pn
t=2 ut�1ut�2)

3 [[u0 + u"�1 � un � �un�1]
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, �rst notice that E
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In the same way we �nd E (
Pn
t=2 ut�1ut�2)

2 (�
Pn
t=2 utut�2)

2 = n2�2�8 + 4n�2�4�4 +

2n�2�2E2
�
"30
�
+ 10n�2�8 +O (1) and

E
�
A22A

2
1

�
= �2�8+

1

n
�8

"
13�2 + 24�4 + 21�6 + �8 + 1�

�2 + 1
�2 + 2�2�23 + 2

�
4�2 + 3�4 + 2

�
�2�

�2 + 1
�2 �4

#
+o
�
n�1

�
:

Finally,

E
�
A40
�
= 3 (1 + �)4 �4+

1

n

�
(1 + �)4E

�
"40
�
� 3 (1 + �)4 �4 + 12 (1 + �)2 �4 � 12 (1 + �)3 �4

�
+o
�
n�1

�
:

Consequently, and due to zero mean we get

c0000 =
(1 + �)4 �4

n
�4; c1111 =

�8

n

�
�24 + 12�4 + 18

�
; c2222 =

�8

n

�
�4�24 + 12�

4�4 + 18�
4
�

c1122 =
�8

n

�
4�2�4 + 2�

2�23 + 12�
2
�
; c1112 =

6��8

n
�23; c1222 = 0
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with an error of order o
�
n�1

�
.

A.4 Expansion of b�
As the validity of the approximation is established in Kakizawa (1999) [59], let us con-

centrate on deriving the Edgeworth coe¢ cients. As
p
n (b�� �) = f (A0; A1; A2; A3) by

(2:2), the �rst derivatives evaluated at 0 are

f0 = 0; f1 =

�
1 + �4

��
1 + �2

�2
�2
; f2 =

1�
1 + �2

�
�2
; f3 = 0:

The non-zero second order derivatives, evaluated at 0, are

f00 =
1p
n

�2
�
1� � + �2

��
1 + �2

�2
�2

; f11 = � 1p
n
4�

�
1 + �4

��
1 + �2

�3
�4
;

f12 = � 1p
n

2��
1 + �2

�2
�4
; f13 = � 1p

n

�
1 + �4

��
1 + �2

�2
�4
; f23 = � 1p

n

1�
1 + �2

�
�4
;

whereas hij =
p
nf ij , e.g. h00 =

�2(1��+�2)
(1+�2)

2
�2
, h11 = �4� (1+�4)

(1+�2)
3
�4
etc.

Finally, the non-zero third order derivatives, evaluated at 0, are

f001 =
1

n
2

�
2� � 2�2 + 2�3 + �4 + 1

��
�2 + 1

�3
�4

; f002 =
1

n

2�
1 + �2

�2
�4
; f003 =

1

n
2

�
1� � + �2

��
1 + �2

�2
�4
;

f111 =
1

n
24

�2
�
1 + �4

��
1 + �2

�4
�6
; f112 =

1

n

8�2�
1 + �2

�3
�6
; f113 =

1

n

8�
�
1 + �4

��
1 + �2

�3
�6
;

f123 = 4
1

n

��
1 + �2

�2
�6
; f133 = 2

1

n

�
1 + �4

��
1 + �2

�2
�6
; f233 =

1

n

2�
1 + �2

�
�6
;

whereas hijk = nf ijk, e.g. h001 = 2(
2��2�2+2�3+�4+1)
(�2+1)

3
�4

etc.

Now from Theorem 1 (Appendix A.1) we have

!2 = c
(1)
11

 �
1 + �4

��
1 + �2

�2
�2

!2
+ 2c

(1)
12

�
1 + �4

��
1 + �2

�2
�2

1�
1 + �2

�
�2
+ c

(1)
22

 
1�

1 + �2
�
�2

!2

=
�2 + 4�4 + �6 + �8 + 1�

1 + �2
�4 :
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Notice that !2 is the asymptotic variance of
p
T (b�� �) under the assumption of nor-

mality of the errors.

Further

!(2) = c
(2)
11

�
f1
�2
+ 2c

(2)
12 f

1f2 + c
(2)
22

�
f2
�2
= 0

and

!(3) = c
(3)
11

�
f1
�2
+ 2c

(3)
12 f

1f2 + c
(3)
22

�
f2
�2

=
2�2

�
�4 + 1

��
1 + �2

�4 + 2
�6�

�2 + 1
�4�4:

Next



(1)
0 = c

(1)
01 f

1 + c
(1)
02 f

2 = 0; 

(2)
0 = �3

1� ��
1 + �2

�2��3; 

(1)
1 = �2

�
1 + �4

��
1 + �2

�2 ;


(2)
1 = ��2

�
1 + �4

��
1 + �2

�2 ; 

(1)
2 =

�2�2�
1 + �2

� ; 

(2)
2 =

"
2

�6�
�2 + 1

�2�4 + ��4 + 1�
#

�2�
1 + �2

� ;


(1)
3 = 0; 


(2)
3 =

�3
�
1� �2

��
1 + �2

�3 �2�4:
Also

a
(1)
1 =

6�
�
1 + �4

�2�
1 + �2

�5 +

�
1 + �4

�3
+ �3

�
1 + �2

�3�
1 + �2

�6 �23; a
(2)
1 = 0;

a
(1)
2 = �24

5�4 + 4�6 + 12�8 + 4�10 + 5�12 + �16 + 1�
�2 + 1

�8 + 12�4

�
�2 + 4�4 + �6 + �8 + 1

�2�
�2 + 1

�8
+12�

�
� + �3 + 2�4 + 2

� ��4 + 1�2�
�2 + 1

�7�23
+18

4�2 + 13�4 + 16�6 + 28�8 + 16�10 + 13�12 + 4�14 + �16 + 1�
�2 + 1

�8 ;

a
(1)
3 = �4

�
�2 + 4�4 + �6 + �8 + 1

� �
�4 + 1

�
��

�2 + 1
�7 ; a

(2)
3 = 0;

a
(1)
4 = �2

�
2� � 2�2 + 2�3 + �4 + 1

� � + �2 + 1�
�2 + 1

�3 ; a
(2)
4 = 0;
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a
(1)
5 = �4

�
�� + �2 + 1

� 5� + 9�2 + 6�3 + 9�4 + 5�5 + 3�6 + 3�
�2 + 1

�4 � 4
�
�
1 + �4

�2�
1 + �2

�5 �23
�4
�
1 + �4

�2
+ �2

�
1 + �2

�2�
1 + �2

�4 �4;

a
(2)
5 = 0;

as



(1)
00 =

2p
n

�
�� + �2 + 1

� (� + 1)4�
�2 + 1

�2�2; 

(1)
11 =

1p
n

1�
1 + �2

��4 �23E2 �"30� �1 + �4��
1 + �2

� + 2�! ;


(1)
12 = 2

1p
n
��4

�
1 + �4

��
1 + �2

�2 ; 

(1)
13 =

1p
n
2V
�
"20
� �1 + �4��
1 + �2

�2 ; 

(1)
23 =

2p
n
V
�
"20
� �2�
1 + �2

� ;

(2)pq = 0; for p; q = 0; 1; 2; 3:

Next

a
(1)
6 = 24�2

�
�2 + 4�4 + �6 + �8 + 1

� ��4 + 1�2�
�2 + 1

�10 ;

a
(1)
7 = 2

4� + 23�2 + 6�3 + 29�4 + 14�5 + 66�6 + 14�7 + 29�8 + 6�9 + 23�10 + 4�11 + 3�12 + 3�
�2 + 1

�6
+2

�2 + 4�4 + �6 + �8 + 1�
�2 + 1

�4 �4;

a
(1)
8 = 2

�
�2 + 4�4 + �6 + �8 + 1

� 11�2 + 9�4 + 30�6 + 9�8 + 11�10 + �12 + 1�
�2 + 1

�10
+

�
�2 + 4�4 + �6 + �8 + 1

�2�
�2 + 1

�8 �4;

a
(1)
9 = 8

� + 5�2 + 3�3 + 8�4 + 4�5 + 16�6 + 4�7 + 8�8 + 3�9 + 5�10 + �11 + �12 + 1�
�2 + 1

�6
+2�4

�
1 + �4

�2
+ �2

�
1 + �2

�2�
1 + �2

�4 :
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Further,

�
(1)
1 =

 �
1 + �4

�2�
1 + �2

�4
!
�2�23 + 4

 �
1 + �4

��
1 + �2

�3
!
��2;

�
(1)
2 = 2

 �
1 + �4

�2�
1 + �2

�4
!
��2 +

1�
1 + �2

�2 �3�2�23;
�
(1)
3 =

�
1 + �4

�2
+ �2

�
1 + �2

�2�
1 + �2

�4
�2

V
�
"20
�

and

a
(1)
10 = �2

�
�2 + 4�4 + �6 + �8 + 1

�2�
�2 + 1

�8 �4

�2�
�
�2 + �3 + 8�4 + 3�5 + 2�6 + 3�7 + 8�8 + �9 + �10 + 2�12 + 2

� �4 + 1�
�2 + 1

�9�23
�47�

2 + 11�4 + 29�6 + 24�8 + 29�10 + 11�12 + 7�14 + �16 + 1�
�2 + 1

�8 :

Finally,

a
(1)
11 = a

(2)
11 = a

(1)
12 = 0:

For the zero-mean case, all Edgeworth coe¢ cients are the same as in the non-zero

mean one, apart from a
(1)
4 , a

(1)
5 , a

(1)
7 , and a

(1)
9 , which now stand as:

a
(1)
4 = �4� �4 + 1�

�2 + 1
�3 + 1

n
4�

�4 + 1�
�2 + 1

�3 � 2 1n �3
�
1� �2

��
1 + �2

�3 �4;

a
(1)
5 = �8

�
1� � + �2

� �
� + �2 + 1

��
1 + �2

�2 � 4
�
�
1 + �4

�2�
1 + �2

�5 �23 � 4
�
1 + �4

�2
+ �2

�
1 + �2

�2�
1 + �2

�4 �4;

a
(1)
7 = 4

9�2 + 9�4 + 26�6 + 9�8 + 9�10 + �12 + 1�
�2 + 1

�6 + 2
�2 + 4�4 + �6 + �8 + 1�

�2 + 1
�4 �4

and

a
(1)
9 = 4

7�2 + 9�4 + 22�6 + 9�8 + 7�10 + �12 + 1�
�2 + 1

�6 + 2�4

�
1 + �4

�2
+ �2

�
1 + �2

�2�
1 + �2

�4 :
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To �nd the expansion of
p
n (b�� �) we can apply Theorem 1 with

f (A0) = A0; f0 = 1 and f00 = f000 = h00 = h000 = 0:

Hence the non-zero Edgeworth coe¢ cients are:

!2 = (1 + �)2 �2; !(3) = �2��2;

a
(1)
1 = (1 + �)3 �3�3 and a

(1)
2 = (1 + �)4 �4�4:

Consequently, the polynomials in the expansion are:

 0 = � �3
6
p
n
;  1 =

1

24n

�
�24 �

(1 + �)2
� 3�4 + 5�23

�
;

 2 =
1

6
p
n
�3;  3 = �

1

72n

�
10�23 � 3�4

�
;  4 = 0;  5 =

1

72n
�23:

A.5 Expansion of b�
For jb�j < 0:5 the solution for b� is given in equation (2:6). Hence
f (�) = 0;

@f (�)

@b� =
1

2

1�
p
1� 4�2

�2
p
1� 4�2

=

�
1 + �2

�2�
1� �2

� > 0;

@2f (�)

@b�2 =

q
(1� 4�2)3 � 1 + 6�2

�3
q
(1� 4�2)3

=
2�
�
3� �2

� �
1 + �2

�3�
1� �2

�3 ;

@3f (�)

@b�3 = 3

�
1� 4�2

� �
1� 2�2

�
� 4�2

�
1� 6�2

�
�
�
1� 4�2

� 5
2

(1� 4�2)
5
2

= 6�4
11�2 � 5�4 + �6 + 1�

1� �2
�5 :

It follows that for � =
p
n
�b� � �� we have

� =
@f (�)

@b� p
n (b�� �)+ 1

2
p
n

@2f (�)

@b�2 �p
n (b�� �)�2+ 1

6n

@3f (�)

@b�3 �p
n (b�� �)�3+o �n�1� ;

where the cumulants of
p
n (b�� �), kb�1 , kb�2 , kb�3 and kb�4 , are presented in section 2.3.1.

Hence Theorem 1 can be applied with f1 = (1+�2)
2

(1��2)
, h11 =

2�(3��2)(1+�2)
3

(1��2)
3 , h111 =

6�4 11�
2�5�4+�6+1
(1��2)

5 , and c(1)1 = �(�+�
2+1)(2��2�2+2�3+�4+1)

(�2+1)
3 , c(1)11 =

�2+4�4+�6+�8+1

(1+�2)
4 , c(3)11 =
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�2(�4���2+6�3�12�5+6�7��8�4�9+�10+1)(�+1)2

(�2+1)
6 � 4�(1+�4)

2

(1+�2)
5 �

2
3 � �2+4�4��6+�8+1

(�2+1)
4 �4, c

(1)
111 =

p
nkb�3 , c(1)1111 = nkb�4 , and c(2)1 = c

(2)
2 = c

(2)
111 = 0.

!2 =
�2 + 4�4 + �6 + �8 + 1�

1� �2
�2 ; !(2) = 0;

!(3) = �
2
�
�4� � �2 + 6�3 � 12�5 + 6�7 � �8 � 4�9 + �10 + 1

�
(� + 1)2�

1� �4
�2

�
4�
�
1 + �4

�2�
1 + �2

� �
1� �2

�2�23 � �2 + 4�4 � �6 + �8 + 1�
1� �2

�2 �4;

a
(1)
1 = �6�

�
�4 + 1

� 6�4 + �8 + 1�
�2 + 1

� �
1� �2

�3 +
�
1 + �4

�3
+ �3

�
1 + �2

�3�
1� �2

�3 �23; a
(2)
1 = 0;

a
(1)
2 = �6

0@ 1� 10�2 + 30�4 � 106�6 + 129�8 � 216�10

+129�12 � 106�14 + 30�16 � 10�18 + �20

1A
�
�2 + 1

�2 �
1� �2

�4

�12�
�
�4 + 1

�
0@ �� � 2�2 � �3 + 10�4 + 2�5 � 4�6 + 2�7

+10�8 � �9 � 2�10 � �11 + 2�12 + 2

1A
�
�2 + 1

� �
1� �2

�4 �23

+
5�4 + 4�6 + 12�8 + 4�10 + 5�12 + �16 + 1�

1� �2
�4 �24;



(1)
1 =

�2 + 4�4 + �6 + �8 + 1�
1 + �2

�2 �
1� �2

� ; 

(2)
1 = 0

a
(1)
3 = 2�

�
3� �2

� ��2 + 4�4 + �6 + �8 + 1�2�
1 + �2

� �
1� �2

�5 ; a
(2)
3 = 0;

a
(1)
4 = 2�

�
3� �2

� �2 + 4�4 + �6 + �8 + 1�
1 + �2

� �
1� �2

�3 ; a
(2)
4 = 0;
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(1)
11 = �6�

�
�4 + 1

� 6�4 + �8 + 1�
�2 + 1

�5 �
1� �2

� + �1 + �4�3 + �3 �1 + �2�3�
1 + �2

�4 �
1� �2

� �23;

a
(1)
5 = �12�2

�
�4 + 1

� �
3� �2

� 6�4 + �8 + 1�
�2 + 1

�2 �
1� �2

�4 + 2� �3� �2�
�
1 + �4

�3
+ �3

�
1 + �2

�3�
1 + �2

� �
1� �2

�4 �23;

a
(1)
6 = 6�4

�
11�2 � 5�4 + �6 + 1

� �
�2 + 4�4 + �6 + �8 + 1

�3�
1 + �2

�6 �
1� �2

�8 ;

a
(1)
7 = 6�4

11�2 � 5�4 + �6 + 1�
1� �2

�6
�
�2 + 4�4 + �6 + �8 + 1

�2�
1 + �2

�6 ;

a
(1)
8 =

�
h11
�2
c
(1)
11

�


(1)
1

�2
= 4�2

�
3� �2

�2 ��2 + 4�4 + �6 + �8 + 1�3�
1 + �2

�2 �
1� �2

�8 ;

a
(1)
9 =

�
h11
�2 �

c
(1)
11

�2
=
4�2

�
3� �2

�2�
1� �2

�6
�
�2 + 4�4 + �6 + �8 + 1

�2�
1 + �2

�2 ;

�
(1)
1 = 6�

�
�4 + 1

� 6�4 + �8 + 1�
�2 + 1

�3 �
1� �2

�2 +
�
1 + �4

�3
+ �3

�
1 + �2

�3�
1 + �2

�2 �
1� �2

�2 �23;

a
(1)
10 = �12�2

�
�4 + 1

� �
3� �2

� 6�4 + �8 + 1�
1� �2

�6 �2 + 4�4 + �6 + �8 + 1�
1 + �2

�2
+2�

�
3� �2

� �
1 + �2

� �1 + �4�3 + �3 �1 + �2�3�
1� �2

�6 �2 + 4�4 + �6 + �8 + 1�
1 + �2

�2 �23;

a
(1)
11 = �

�
� + �2 + 1

� �
2� � 2�2 + 2�3 + �4 + 1

��
1� �4

� ; a
(2)
11 = 0

and

a
(1)
12 = �

�
� + �2 + 1

� �
2� � 2�2 + 2�3 + �4 + 1

� 2� �3� �2��
1� �2

�4 �2 + 4�4 + �6 + �8 + 1�
1 + �2

�2 :

For the zero mean case, all Edgeworth coe¢ cients which are di¤erent from the coe¢ -

cients given above are:

!(3) = �2
�
1� �2

�4�
�2 + 1

�2 � 4 �
�
1 + �4

�2�
1 + �2

� �
1� �2

�2�23 � �2 + 4�4 � �6 + �8 + 1�
1� �2

�2 �4;
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a
(1)
11 = �2� �4 + 1�

�2 + 1
� �
1� �2

� ; and

a
(1)
12 = �4�2

�
3� �2

� �4 + 1�
1� �2

�4 �2 + 4�4 + �6 + �8 + 1�
1 + �2

�2 :

A.6 Expansion of QMLEs

Consider the �rst order conditions in equation (2.8). Now let ' =
�
�1; �2

�=
=

=
�p

n
�e� � �� ;pn (e�� �)�=. The Taylor expansion of 1p

n
@`(e')
@' , where e' = �e�1;e�2�= =�e�; e��= around the true value ' = (�1; �2)= = (�; �)= can be written as:

0 =
1p
n

@`

@�j
+

2X
i=1

�
Mji +

wjip
n

�
�i +

1

2
p
n

2X
k;i=1

�
Mjik +

qjikp
n

�
�i�k

+
1

6n

2X
l;k;i=1

Mjikl�l�i�k +Op

�
n�

3
2

�
;

� gj ('; v) +Op

�
n�

3
2

�
; j = 1; 2;

where j = 1; 2, Aij = 1
nE
�
@2`(')
@�j@�i

�
, Kjik =

1
nE
�

@3`(')
@�j@�i@�k

�
, Mjikl =

1
nE
�

@4`(')
@�j@�i@�k@�l

�
,

wij =
1p
n

�
@2`(')
@�j@�i

� nAij
�
, qijk =

1p
n

�
@3`(')

@�j@�i@�k
� nKjik

�
, for i; j; k = 1; 2 and all

derivatives are evaluated at the true values.

Let us de�ne a vector A containing the non-zero elements of 1p
n
@`
@�i
, wij , qijk, for

i; j; k = 1; 2. As however w22 = q122 = q222 = 0 (see below) we de�ne A as A =

(A1; A2; A3; A4; A5; A6)
= =

�
1p
n
@`
@�1

; 1p
n
@`
@�2

; w11; w12; q111; q112

�=
. Solving for �j , and

j = 1; 2, as continuously di¤erentiable functions of A, gives:

�j (A) =

6X
a=1

@�j (0)

@Aa
Aa +

1

2

6X
a;b=1

@2�j (0)

@Aa@Ab
AaAb +

1

6

6X
a;b;c=1

@3�j (0)

@Aa@Ab@Ac
AaAbAc +Op

�
n�

3
2

�

�
6X
a=1

faj Aa +
1

2
p
n

6X
a;b=1

habj AaAb +
1

6n

6X
a;b;c=1

habcj AaAbAc +Op

�
n�

3
2

�
;

where faj =
@�j(0)
@Aa

, habj =
p
n
@2�j(0)
@Aa@Ab

and habcj = n
@3�j(0)

@Aa@Ab@Ac
(employing the notation of

Theorem 1).

Now the derivatives can be found by solving the following system of equations, for

j; k = 1; 2 and a; b; c = 1; :::; 6:
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0 =
2X
k=1

Mjkf
a
k +

@gj(0;0)
@Aa

,

0 =
P2
k=1

�
1p
n

P2
l=1Mjklf

b
l +

@2gj(0;0)

@Ab@�k

�
fak +

P2
k=1

@2gj(0;0)

@Aa@�k
f bk +

1p
n

P2
k=1Mjkh

ab
k , and

0 =
2X
k=1

0@ 1
n

2X
p;l=1

Mjlkpf
l
bf
p
c +

1
n

2X
l=1

Mjklh
bc
l +

2X
l=1

@3gj(0;0)

@Ac@e�l@�k f bl +
2X
p=1

@3gj(0;0)

@e�p@Ab@�k fpc
1A fak

+
2X
k=1

0@ 1
n

2X
l=1

Mjklh
ac
l +

2X
p=1

@3gj(0;0)

@e�p@�k@Aa fpc
1A f bk +

2X
k=1

0@ 1
n

2X
p=1

Mjkpf
p
c +

1p
n

@2gj(0;0)

@Ac@�k

1Ahabk

+ 1p
n

2X
k=1

@2fj(0;0)

@�k@Aa
hbck +

1p
n

2X
k=1

@2fj(0;0)

@Ab@�k
hack +

1
n

2X
k=1

Mjkh
abc
k . Notice that the �rst two equa-

tions are as in Tanaka (1984) [87]. However, the third is completely new (Tanaka 1984

[87] is developing a 1st order expansion).

Hence, �rst consider j = 1 and observe that @g1(0;0)@A1
= 1, and @g1(0;0)

@Aa
= 0 for a = 2; :::; 6.

It follows that

f11 = 1� �2; and f21 = f31 = f41 = f51 = f61 = 0:

For j = 2, observe that @g2(0;0)@A2
= 1, and @g2(0;0)

@A1
= ::: = @g2(0;0)

@A6
= 0 and it follows that

f22 = �2 (1 + �)2 ; f21 = f23 = f24 = f25 = f26 = 0:

Applying the same logic and by the notation of Theorem 1 we �nd that the non-zero

second derivatives for j = 1 are:

h111 = �6�
�
1� �2

�
; h131 =

�
1� �2

�2
;

h221 = 2�2 (1 + �)
�
1� �2

�
; and h241 = �2 (1 + �)2

�
1� �2

�
:

Finally we have

h1111 =
�
�12 + 72�2

� �
1� �2

�
; h1131 = �18�

�
1� �2

�2
; h1151 =

�
1� �2

�3
;

h1221 = 2�2 (1� 7�) (1 + �)
�
1� �2

�
; h1241 = 2�2

�
2� 3� � 5�2

�
(1 + �)

�
1� �2

�
;

h1261 = �2 (1 + �)2
�
1� �2

�2
; h1331 = 2

�
1� �2

�3
; h1441 = 2�2 (1 + �)2

�
1� �2

�2
;

h2341 = �2 (1 + �)2
�
1� �2

�2
; h2231 = 2�2 (1 + �)

�
1� �2

�2
;
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and

h1122 = �2
�
1� �2

�
(7� � 1) (� + 1)�2; h1142 = 2 (5� � 2) (� � 1) (� + 1)3 �2;

e1162 = �2 (1 + �)2
�
1� �2

�2
; e1232 = 2�2

�
1� �2

�2
(1 + �) ; e1342 = �2 (1 + �)2

�
1� �2

�2
;

e2222 = 12�4
�
1� �2

�
(1 + �)2 ; e2242 = 6�4

�
1� �2

�
(1 + �)3 e2442 = 2�4 (1 + �)4

�
1� �2

�
;

whereas all the other derivatives are 0.

A.7 Cumulants needed for e�
The derivatives of ` (�; �) w.r.t. � are:

@`

@�
= � 1

�2

nX
t=1

ut
@ut
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;
@2`

@�2
= � 1

�2
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�
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@�3
= � 1

�2
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�
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�
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�
;

@4`

@�4
= � 1
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t=1
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@�4
+ 3

�
@2ut

@�2

�2
+ 4

@ut
@�

@3ut

@�3

!
:

Noting now that

@ut
@�

= �ut�1 � �
@ut�1
@�

= ::: = �
1X
i=0

(��)i ut�1�i;

@2ut

@�2
= �2@ut�1

@�
� �@

2ut�1

@�2
= ::: = 2
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(��)k
�
�@ut�1�k

@�

�
= 2

1X
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(i+ 1) (��)i ut�2�i;

@3ut

@�3
= �3@

2ut�1

@�2
� �@

3ut�1

@�3
= ::: = �6

1X
i=0

(i+ 1) (i+ 2)

2
(��)i ut�3�i;

@4ut

@�4
= �4@

3ut�1

@�3
� �@

4ut�1

@�4
= ::: = 4

1X
i=0

(i+ 1) (i+ 2) (i+ 3) (��)i ut�4�i;

it follows that

E
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�
= 0; E

�
@ut
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�2
=

�2

1� �2
; E

�
@2ut

@�2

�2
= 4�2

1 + �2�
1� �2
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E
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@2ut

@�2
@ut
@�

�
=

2�2

�
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(i+ 1)
�
�2
�i+1

= �2
2��

1� �2
�2
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and

E

�
@3ut

@�3
@ut
@�

�
= 6�2E

" 1X
i=0

(i+ 1) (i+ 2)

2
(��)i ut�3�i

! 1X
k=0

(��)k ut�3�k

!#

= 6�2E

 1X
i=0

(i+ 1) (i+ 2)

2

�
�2
�i
u2t�3�i

!
=

6�2�2�
1� �2

�3 :

Hence the expectations of the derivatives evaluated at the true ' = (�; �)= are:

E
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@` (')
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�
= 0; E

�
@2l (')

@�2

�
= � 1

�2

nX
t=1

E

�
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;

E

�
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�
= � 3
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E

��
@ut
@�

�
@2ut

@�2

�
= �6 n��

1� �2
�2 ;

E

�
@4` (')

@�4

�
= � 1

�2
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t=1

 
3E

�
@2ut

@�2

�2
+ 4E

�
@ut
@�

@3ut

@�3

�!
= �12n 1 + 3�2�

1� �2
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and it follows that

M11 =
1

n
E

�
@2` (�)

@�2

�
= � 1

1� �2
; M111 =

1

n
E

�
@3` (')

@�3

�
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1� �2
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M1111 =
1

n
E

�
@4` (')

@�4

�
= �12 1 + 3�

2�
1� �2

�3 :
Now, let us calculate the derivatives of ` (�; �) with respect to the parameter �:
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;
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where

@ut
@�

= �1� �@ut�1
@�

= ::: = �
1X
i=0

(��)i = � 1

1 + �
; and

@2ut
@�2

=
@3ut
@�3

=
@4ut
@�4

= 0:
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Hence their expectations at the true � are:

E
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@` (�)
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�
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�
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= � n

(1 + �)2 �2
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�
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�
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It follows that
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n
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�
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n
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�
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Furthermore, the cross derivatives are
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�
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�
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as
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(��)i @ut�1�i
@�

=
1

(1 + �)2
;

�
@2ut
@�@�

�2
=

1

(1 + �)4
;

@3ut

@�@�2
= �2@

2ut�1
@�@�

� �@
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� �@
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We have also
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where
@2ut
@�2

= 0;
@2ut
@�@�

=
1

(1 + �)2
:

So, its expected value is
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;

as we have
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�
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Next
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Hence,
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Moreover, we calculate the next derivatives
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and their expected values
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Hence,
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= 0:

For the cumulants of vis , the Ais in terms of Theorem 1, notice that in the max-

imization of the likelihood we have that for any admissible � and � we have that

ut = yt � � � �ut�1, with u0 drawn from the stationary distribution. Hence we

have that the derivatives of the ut0s with respect to the parameters � and � are:
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Hence, adapting the notation of Theorem 1, and as all �rst order cumulants of the Ais

are 0, we have that.c(1)i = c
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i = 0 for i = 1; ::; 6. The second order cumulants are:
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Out of all 3rd order cumulants, we only need c111; c113; c122 and c124.
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Hence, the needed 3rd order cumulants, employing the notation of Theorem 1, are:c(1)111 =
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Hence employing the notation of Theorem 1
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A.8 Expansion of e�
For the validity of the expansion we have that under the assumptions of Lemma 2,

A = (A1; A2; A3; A4; A5; A6)
= is a martingale satisfying all the assumptions of Götze
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and Hipp (1983 [45], 1994 [46]) and Hall and Horowitz (1996) [49] (see also Corradi and

Iglesias 2008 [27]).

Now applying the results of Theorem 1 (see Appendix A.1) we get: !2 =
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Now from Lemma 1 we get that

k
e�
1 =

2� � 1p
n

+ o
�
n�1

�
; k

e�
2 = !2 +

1

n
(� + 6) (2� �) + 1

n
�
e�
2 + o

�
n�1

�
;

where !2 = 1� �2, and �e�2 = 2 �2���1�2��+1
�(1��2)

2

1+�3
�23 �

�
1� �2

�
�4.

Also

E
hp

n
�e� � ��i2 = �1� �2�+1

n

"
�8� + 3�2 + 13 + 2�

2 � � � 1
�2 � � + 1

�
�
1� �2

�2
1 + �3

�23 �
�
1� �2

�
�4

#
;

k
e�
3 =

1p
n

�
1� �2

�3
1 + �3

�23 + o
�
n�1

�
; k

e�
4 =

1

n
6
�
1� �2

� �
�2 + 3

�
+
1

n
�
e�
4 + o

�
n�1

�
;

where �
e�
4 = 12�

���2�2
1��+�2

(1��2)
3

1+�3
�23 +

(1��2)
3

1+�2
�24.

To �nd the expansion of
p
n (e�� �) we can apply Theorem 1 with

f2 = �2 (1 + �)2 ; f1 = f3 = f4 = f5 = f6 = 0;
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and all other hij 0s = 0 for i; j = 1; :::; 6, and the non-zero hijk0s given by
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(see Appendix A.6) Employing the cumulants from Appendix A.7, the non-zero Edge-

worth coe¢ cients are:
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For � = 0, we play the above procedure with the di¤erence that now the vector A
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A.9 Expansion of e�
With the de�nition of e� let us call m�e�� = e�
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For the zero-mean case, notice that the Edgeworth coe¢ cients that are di¤erent from

the ones given above are: !(3) =
�
8� �2 + 2 �2���1

�2��+1
�(1��2)

2

1+�3
�23 �

�
1� �2

�
�4

�
(1��2)

2

(1+�2)
4 ,



Appendix A. Appendix for "Edgeworth and Moment Approximations: MM and
QMLEs for the MA(1)" 134

a
(1)
11 = �

(1��2)
(1+�2)

2 , and a
(1)
12 = �2

�2(3��2)
(1+�2)

3

(1��2)
2

(1+�2)
2 . It follows that

k
f�0
1 = � 2p

n

�
�
1� �2

�2�
1 + �2

�3 ;
and

E
�p
n ( e�0 � �)�2 = �1� �2�3�

1 + �2
�4+1n

0BB@ 2
�
32�2 � 29�4 + 6�6 + 1

� (1��2)2
(�2+1)

6

�� (1� �) (1��
2)
3
(2��+�2+�3��4)

(1+�2)
5
(�2��+1)

2 �23 �
(1��2)

3

(1+�2)
4�4

1CCA :

A.10 Useful Formulae for QMLE
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Appendix for "Bias Correction of

ML and QML Estimators in the

EGARCH(1,1) Model"

B.1 Proof of the unconditional variance

We write the variance equation as follows:

ln (ht) = �� + �
1X
i=0

�izt�1�i + 

1X
i=0

�i (jzt�1�ij � E jzt�1�ij) ;

where �� = �
1�� . Taking the expectation of the exponential of ln (ht) we have:
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where 	 = ��
Ejzj
1�� .�

B.2 Expected values of the log-likelihood derivatives

The expected values of all �rst order derivatives are equal to zero.

Second order derivatives:
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In this Appendix we make a list of the results that are needed for the bias approximations.

Please note that the last Appendix should be studied �rst in order to be familiarized

with the symbols used.
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Second, the expected values of the third order derivatives are:
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B.3 Expected values of the log-variance derivatives

In the current Appendix, we present some of the results for the expected values of the

log-variance derivatives and more speci�cally those that are needed for the evaluation of
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The whole results are available on demand from the corresponding author.

B.4 Expected values of cross products of the log-likelihood

derivatives

In this Appendix, we present the expected values of cross-products of the log-likelihood

derivatives. To conserve space, we present only some indicative. That is,
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At this point, we should note that these results di¤er from those in the paper of Linton

(1997), due to the fact that we assume non-symmetric distribution of the errors and also

none of these expressions are zero, since the block-diagonality of the information matrix

in our case that we study the EGARCH(1; 1) model does not hold.

Analytic proof of the �rst result is given as follows:
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B.5 Proof of the Main Theorem

The proof comes immediately from the results of Appendix B.2 and Appendix B.4.

B.6 The log-variance derivatives

In this Appendix we present the expressions of the log-variance derivatives, in a form

useful to explore their properties.
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B.7 Expected values of the �rst & second order log-variance

derivatives

We assume
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B.8 Symbols

The next symbols are used in the paper and more speci�cally in the expressions of the

expected values of all the derivatives.

E
�
ln2 (ht)

�
= L2 E (ln (ht))

3 = L3 etc:

E (ht;�) = E;� E (ht;�) = E;� E (ht;�)
2 = E(;�)2 E (ht;�)

3 = E(;�)3 etc:
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C.1 Proofs of the Main Lemmas 4.15, 4.16 and 4.17

Recall that c = 1
�2
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, where
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Proof of Lemma 4.15. Taking the �rst and the last term of the product
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[1 + c jXt�ij],

see Lemma C.2 in p. 176, we have �rst:
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E

"
�k�1ck�1

k�1Y
i=1

jXt�ij
#
= 2�(k�1)�

(k�1)
exp

�
�2�1m (k � 1)

�
exp

�
1

2(1��)�
�
k � 2� ���k�1

1��

��
�

�

240@ E exp
�
1
2
1��k�1
1�� log �2t�k+1

�
�

E jZt�k+1j exp
�
1
2
1��k�2
1�� (
Zt�k+1 + � jZt�k+1j)

�
� :::� E jZt�2j exp

�
1
2 (
Zt�2 + � jZt�2j)

�
1A35

156



Appendix C. Appendix for "Asymptotic Normality of the QMLEs in the
EGARCH(1,1)" 157

� 2�(k�1)�(k�1) exp
�
�2�1m (k � 1)

�
exp

�
1

2(1��)�
�
k � 2� ���k�1

1��

��
�

�

240@ E exp
�
1
2
1��k�1
1�� log �2t�k+1

�
�

E jZt�k+1j exp
�
1
2
1��k�2
1�� � jZt�k+1j

�
� :::� E jZt�2j exp

�
1
2� jZt�2j

�
1A35

� 2�(k�1)�(k�1) exp
�
�2�1m (k � 1)

�
exp

�
1

2(1��)�
�
k � 2� ���k�1

1��

��
�

�

240@ E exp
�
1
2
1��k�1
1�� log �2t�k+1

�
��

E jZ0j exp
�
1
2

1
1�� � jZ0j

��k�2
1A35

� 2�(k�1)�(k�1) exp
�
2�1

h�
�

(1��) �m
�
(k � 1)

i�
exp

�
� 1
2(1��)�

h
1 + ���k�1

1��

i�
�

�
�
E jZ0j exp

�
1
2

1
1�� � jZ0j

��k�1
�
�
E jZ0j exp

�
1
2

1
1�� � jZ0j

���1
E exp

�
1
2

1
1�� log �

2
0

�
=

=
h
2�1� exp

�
2�1

h�
�

(1��) �m
�i��

E jZ0j exp
�
1
2

1
1�� � jZ0j

��ik�1
E exp

�
�2�1 �

(1��)2
�
�

�
�
E jZ0j exp

�
1
2

1
1�� � jZ0j

���1
E exp

�
1
2

1
1�� log �

2
0

�
,

where 2�1� exp
�
2�1

h�
�

(1��) �m
�i��

E jZ0j exp
�
1
2

1
1�� � jZ0j

��
= qa < 1.

Hence:
P1
k=1E

"
�k�1ck�1

k�1Y
i=1

jXt�ij
#
=

= exp
�
�2�1 �

(1��)2
��

E jZ0j exp
�
1
2

1
1�� � jZ0j

���1
E exp

�
1
2

1
1�� log �

2
0

�P1
k=1 q

k�1 =

= 1
1�q exp

�
�2�1 �

(1��)2
��

E jZ0j exp
�
1
2

1
1�� � jZ0j

���1
E exp

�
1
2

1
1�� log �

2
0

�
.

Proof of Lemma 4.16. Again, applying Lemma C.2 in p. 176 we have �rst:
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Again, by using Lemma C.2 in p. 176, we can replace the product in the second term

by considering only the �rst and the last term from its expansion, that is:

� exp
�
�2�1m

�
E

" 1X
n=0

 
�k�1�n (jXt�n�1j)

 
c
k�1X
i=1

jXt�ij
!!#

=

= 2�1�
2
exp (�m)�k�2E

" 1X
n=0

�n (jXt�n�1j)
 
k�1X
i=1

jXt�ij
!#
(see Lemma C.4 in p. 177)=

= 2�1�
2
exp (�m)�k�2

0BB@
E
hPk�2

i=0 �
i jXt�1�ij2 +

Pk�3
j=0

Pk�2�j
i=1 �j

�
1 + �i

�
jXt�1�j j jXt�1�j�ij

i
+E

" 1X
n=k�1

�n (jXt�n�1j)
 
k�1X
i=1

jXt�ij
!# 1CCA

� 2�1�2 exp (�m)�k�2

0BB@
1��k�1
1�� �20 + E

Pk�3
j=0

Pk�2�j
i=1 �j

�
1 + �i

�
jXt�1�j j jXt�1�j�ij

+E

" 1X
n=k�1

�n (jXt�n�1j)
 
k�1X
i=1

jXt�ij
!# 1CCA

� 2�1�2 exp (�m)�k�2E

0BB@
1
1���

2
0 +

Pk�3
j=0

Pk�2�j
i=1 �j

�
1 + �i

�
jXt�1�j j jXt�1�j�ij

+

" 1X
n=k�1

�n (jXt�n�1j)
 
k�1X
i=1

jXt�ij
!# 1CCA ;

where 1) (see Lemma C.5 in p. 178)
Pk�3
j=0

Pk�2�j
i=1 �j

�
1 + �i

�
jXt�1�j j jXt�1�j�ij =

= 1��k�2
1�� (1 + �) jXt�1j jXt�2j+1��k�3

1��
�
1 + �2

�
jXt�1j jXt�3j+:::+

�
1 + �k�2

�
jXt�1j jXt�k+1j,

and we have that:

�k�2E
Pk�3
j=0

Pk�2�j
i=1 �j

�
1 + �i

�
jXt�1�j j jXt�1�j�ij � �k�2 (k � 2) 1��

k�2

1�� (1 + �)E jXt�1j jXt�2j

� �k�2 (k � 2) 1��
k�2

1�� (1 + �)E jZ0jE exp
�
1
2�
�
E exp

�
1
2 (� + 1) log �

2
0

�
E
��exp �12� jZ0j�Z0�� ;



Appendix C. Appendix for "Asymptotic Normality of the QMLEs in the
EGARCH(1,1)" 160
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1
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2
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1
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�
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�
1
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1
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C.2 Proofs of the Main Lemmas 4.19, 4.20, 4.21 and 4.22

The constant c now takes the following form:

c =
1

(2�)2
�
2
exp (�m) ;

in the proof of the Lemmas 4.19, 4.20 and 4.21. For a new de�nition of c, that is used

in the proof of Lemma 4.22, see at that point below.

Proof of Lemma 4.19.
k�1Y
i=1

(1 + c jXt�ij)2 is expanded as follows:

k�1Y
i=1

(1 + c jXt�ij)2 = 1 + 2c
X

jXt�ij+ c2
X

jXt�ij2 + ::::+ c2(k�1)
XY

jXt�ij2 :

If we take the �rst and the last term of the product, which are squared, we have �rst:

E

" 
�2(k�1)c

n�1X
i=1

jXt�ij2
!
jZt�kj�t�k

#
= 1

4�
2(k�2)�

2
exp (�m)E

" 
n�1X
i=1

jXt�ij2
!
jZt�kj�t�k

#
:

Examining the higher dependence, which is E
h�
jXt�k+1j2

�
jZt�kj�t�k

i
, we have that:

jXt�1j2 jZt�2j�t�2 = Z2t�1
���2t�1�t�2Zt�2��

= Z2t�1 exp (�) exp

��
� +

1

2

�
log �2t�2

�
[jZt�2j exp (
Zt�2 + � jZt�2j)] :

Hence,

E

" 
�2(k�1)c

n�1X
i=1

jXt�ij2
!
jZt�kj�t�k

#
� (k � 1) 14�

2(k�2)�
2
exp (�m)E exp (�)E exp

��
� + 1

2

�
log �20

�
� E

�
jZ0j exp

�
� jZ0j

��
:

Hence,P1
k=1 (k � 1) 14�

2(k�2)�
2
exp (�m)E exp (�)E exp

��
� + 1

2

�
log �20

�
�E

�
jZ0j exp

�
� jZ0j

��
is bounded if and only if:

E
�
jZ0j exp

�
� jZ0j

��
<1:

Second, we have

E

" 
�2(k�1)ck�1

k�1Y
i=1

jXt�ij2
!
jZt�kj�t�k

#
=

= 1
4k�1

�
2(k�1)

exp (�m (k � 1))E
" 

k�1Y
i=1

jXt�ij2
!
jZt�kj�t�k

#
:
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We need the following (see Lemma C.10 in p. 186):

E

" 
k�1Y
i=1

jXt�ij2
!
jZt�kj�t�k

#
=

= exp (�) exp [(� + 1)�] exp
��
�2 + � + 1

�
�
�
� :::� exp

��
�k�2 + :::+ 1

�
�
�
�

�E exp ((
Zt�2 + � jZt�2j))Z2t�2E exp ((� + 1) (
Zt�3 + � jZt�3j))Z2t�3 � :::

�E exp
��
�k�3 + :::+ 1

�
(
Zt�k+1 + � jZt�k+1j)

�
Z2t�k+1�

�E
��exp ���k�2 + :::+ 1� (
Zt�k + � jZt�kj)�Zt�k���E exp ���k�2 + :::+ 1 + 1

2

�
log �2t�k

�
:

Hence,

E

" 
�2(k�1)ck�1
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i=1

jXt�ij2
!
jZt�kj�t�k

#
� 1
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�
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h
� 1
1��

�
k � 1� ���k

1��

�i
E
h
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�
1��k�2
1�� � jZ0j

�
Z20

ik�2
�

�E
h
jZ0j exp

�
1��k�1
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�i
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��
1��k�1
1�� + 1

2

�
log �20

�
� 4�(k�1)�2(k�1) exp (�m (k � 1)) exp

h
� 1
1�� (k � 1)

i
E
h
Z20 exp

�
1
1�� � jZ0j

�ik�1
�

�E
h
Z20 exp

�
1
1�� � jZ0j

�i�1
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�
�� �

(1��)2
�
�

�E
h
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�
1
1�� � jZ0j

�i
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��
1
1�� +

1
2

�
log �20

�
�
h
1
4�
2
exp (�m) exp

�
� 1
1��

�
E
h
Z20 exp

�
1
1�� � jZ0j

�iik�1
�

�E
h
Z20 exp

�
1
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�i�1
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�
�� �

(1��)2
�
�

�E
h
jZ0j exp

�
1
1�� � jZ0j

�i
E exp

��
1
1�� +

1
2

�
log �20

�
;

where 1
4�
2
exp

�
� 1
1�� �m

�
E
h
Z20 exp

�
1
1�� � jZ0j

�i
= qd < 1.

Hence,X
k

E

" 
�2(k�1)ck�1

k�1Y
i=1

jXt�ij2
!
jZt�kj�t�k

#
= E

h
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�
1
1�� � jZ0j

�
Z20

i�1
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�
�� �

(1��)2
�
�

�E
h
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�
1
1�� � jZ0j

�i
E exp

��
1
1�� +

1
2

�
log �20

�X
k

qk�1 =

= 1
1=qE

h
Z20 exp

�
1
1�� � jZ0j
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�
�� �

(1��)2
�
E
h
jZ0j exp

�
1
1�� � jZ0j

�i
E exp

��
1
1�� +

1
2

�
log �20

�
:

Proof of Lemma 4.20. Again, by using the �rst and the last term of the product, given

in the proof of Lemma 4.19, we have:

E

" 
�2(k�1)c

n�1X
i=1

jXt�ij2
!
X2
t�k

#
= 1

4�
2(k�2)�

2
exp (�m)E

" 
n�1X
i=1

jXt�ij2
!
X2
t�k

#
:

Examining the higher dependence, which is E
h�
jXt�k+1j2

�
X2
t�k

i
, we have that:

X2
t�1X

2
t�2 = Z2t�1�

2
t�1�

2
t�2Z

2
t�2

= Z2t�1 exp (�) exp
�
(� + 1) log �2t�2

�
exp (
Zt�2 + � jZt�2j)Z2t�2:
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Hence,

E

" 
�2(k�1)c

n�1X
i=1

jXt�ij2
!
jZt�kj�t�k

#
=

� (k � 1) 14�
2(k�2)�

2
exp (�m) exp (�)E exp

�
(� + 1) log �20

�
E
�
Z20 exp

�
� jZ0j

��
:

Hence,P1
k=1 (k � 1) 14�

2(k�2)�
2
exp (�m) exp (�)E exp

�
(� + 1) log �20

�
E
�
Z20 exp

�
� jZ0j

��
is bounded

if and only if E
�
Z20 exp

�
� jZ0j

��
<1:

Second we have,

E

" 
�2(k�1)ck�1

k�1Y
i=1

jXt�ij2
!
X2
t�k

#
= 1

4k�1
�
2(k�1)

exp (�m (k � 1))E
" 

k�1Y
i=1

jXt�ij2
!
X2
t�k

#
.

We need the following:

E

" 
k�1Y
i=1

jXt�ij2
!
X2
t�k

#
= E

�
Z2t�1�

2
t�1Z

2
t�2�

2
t�2Z

2
t�3�

2
t�3:::Z

2
t�k+1�

2
t�k+1Z

2
t�k�

2
t�k
�
=(see

Lemma C.1 in p. 176)

= E exp
�

1
(1��)�

�
k � 1� ���k

1��

��
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�
1��k
1�� log �

2
t�k

�
�E exp

�
1��k�1
1�� (
Zt�k + � jZt�kj)

�
Z2t�k

�:::� E exp (
Zt�2 + � jZt�2j)Z2t�2:

Hence,

E
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�
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�
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�
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� 1
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�
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�

1
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�
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1��
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�
1
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2
0

�
�
�
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�
1
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�
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�
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�
1
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2
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�
�
�
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�
1
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��k�1
�
h
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2
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�
�

(1��) �m
�
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�
1
1�� � jZ0j

�ik�1
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�
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(1��)2
�
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�
1
1�� log �

2
0

�
,

where 4�1�
2
exp

�
�

(1��) �m
�
E
h
Z20 exp

�
1
1�� � jZ0j

�i
= qd < 1.

Hence:P
k E
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�
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2
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Proof of Lemma 4.21. We can write E

24 �k�1 k�1Y
i=1

[1 + c jXt�ij]
!2
jZt�kj�t�k jlog ht�kj

35 =
= E

24 �k�1 k�1Y
i=1

[1 + c jXt�ij]
!2
jZt�kj�t�k

 ��� �
1��

���+ exp ��2�1m� 1X
n=0

�n� jXt�n�1j
!35 =

=
��� �
1��

���E
24 �k�1 k�1Y

i=1

[1 + c jXt�ij]
!2
jZt�kj�t�k

35
+� exp

�
�2�1m

�
E

24 1X
n=0

0@�n (jXt�n�1j) �k�1 k�1Y
i=1

[1 + c jXt�ij]
!21A jZt�kj�t�k

35.
For the �rst term, see Lemma 4.19 and its conditions.

Again, we can replace the product in the second term by considering only the �rst and

the last term from its expansion, that is:

� exp
�
�2�1m

�
E

" 1X
n=0

 
�n (jXt�n�1j)

 
�2(k�1)c

k�1X
i=1

jXt�ij2
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3
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�
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�
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" 1X
n=0

 
�n (jXt�n�1j)
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jXt�ij2
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jZt�kj�t�k

#
(see Lemma

C.11 in p. 186)

� 2�2�3 exp
�
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�
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�
3
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�
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�
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�
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�
E
�
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�
� jZ0j

��
37775.

Hence,
P1
k=1 (�) is bounded if and only if

E
�
jZ0j exp

�
3
2� jZ0j

��
<1 and E

�
Z20 exp

�
� jZ0j
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<1.

In the sequel, we have that:
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We need the following:

1) (see Lemma C.12 in p. 187) E
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�j (jXt�j�1j)

 
k�1Y
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�
; j = 1; :::; k � 1;
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where

cov
�
jXt�1j2 jXt�2j2 jXt�3j2 ::: jXt�k+1j2 jXt�kj ; jXt�j j

�
� E jZ0j3 �
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where it is bounded if and only if:
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�
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�
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And 2) (see Lemma C.13 in p. 190) E

" 1X
n=k�1
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�
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�
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�
E exp
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�
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,

which is bounded if and only if exp
�

1
1���

�
E
�
Z20 exp

�
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��
= qf < 1.

The constant c now takes the following form:

c = c� =
1

(2�)3
�
3
exp

�
�3
2
m

�
;

that is used in the following proof of Lemma 4.22:

Proof of Lemma 4.22. Recall the eq. (4.14). We have to calculate the bounds of:
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C.3 Proof of the Main Theorem 4.10

Proof of the Main Theorem. The relations E


(log h0)0

 <1 (see Lemma 4.18),

E


(log h0)00

 <1 (see Lemma 4.23) and eq. (4.15) show that

E kl00k <1, E kl000k <1 and E
��(log h0)0 (�0)��2 <1 (see also the conditions in Lemma

4.13).
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For the asymptotic covariance matrix V0, we have �rst the SRE for (log ht)
0 evaluated

at the true parameter value:
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X0; log �
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Taking the expectation on both sides, gives:
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:

Likewise, squaring the �rst equation of (log h1)
0 (�0) and taking expectations on both

sides yields the value of E
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i
, that is:
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Hence, the covariance matrix is equal to

V0 = 4
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Z40 � 1

�
E
h�
(log h0)

0 (�0)
�T
(log h0)

0 (�0)
i�1

=

= 4�1E
�
Z40 � 1

� �
1� �20 � 1

4E
�

20 + �

2
0 + 2
0�0E (Z0 jZ0j)

�
� 2�0

�
1; �0
1��0

; 0; E jZ0j
��
�

fU0 �W0g�1 ;
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i
;
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:

C.4 Dependence Results and Useful Expressions for the

Analysis of the First Order Derivative

The following lemmas are useful for the �rst order derivative of the log-variance function.

They comprise from tractable expressions for products of the observed sequence, and
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also from dependence results that are used for the proof of the main Theorem. To begin

with, let the following:

Lemma C.1. Find a tractable expression of
kY
i=1

jXt�ij and evaluate its expectation.

Proof.
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Hence,
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Lemma C.2. The expansion of
k�1Y
i=1

(1 + c jXt�ij) :

Proof. The term
k�1Y
i=1

(1 + c jXt�ij) is expanded in the following way:
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If
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jXt�ij and
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jXt�ij are both �nite, then all other terms in the expansion converge,

as well. This is veri�ed by the fact that the condition for the boundedness of the term
k�1Y
i=1

jXt�ij is stronger than the condition needed for the middle terms in the expansion

to be �nite.

Lemma C.3. Find a tractable expression for the bound of jlog htj and jlog htj2 :
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Proof. Start with:
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C.5 Dependence Results and Useful Expressions for the

Analysis of the Second Order Derivative

We proceed with useful inequalities and moment bounds that are used for the establish-

ment of the second order derivative �niteness.
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making use of
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or (more general):
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by taking into account the upper bounds of its term in the covariance between
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following:
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