
Essays in Financial Econometrics

by Antypas J. Antonios

Department of Banking and Financial Management
University of Piraeus

Piraeus 2010



To my parents Vassiliki and Nakis

2



...Ithaca gave you the marvellous journey.
Without her you wouldn't have set out.

She has nothing left to give you now.
And if you find her poor, Ithaca won't have fooled you.

Wise as you will have become, so full of experience,
you'll have understood by then what these Ithakas mean.

Ithaka, (1911) K. Kavafis

3



Acknowledgements

Writing this thesis has been a long journey and a great many people have contributed
to reaching its final destination. This is the best time and place to take the opportunity
and thank all those people that have been my fellow travelers in this trip in science and
knowledge.

I owe my deepest gratitude to my supervisor, Professor Nikitas Pittis. I had the honor
to work with an advisor who his encouragement, guidance and support were present all
the time. In many cases, he motivated me to explore my own ideas and he has always
been there, patiently, to point out both the success and the failure.

I'd also like to give a heartfelt, special thanks to Professor Nikolaos Kourogenis and
Professor Phoebe Koundouri. Working with them has been thought-provoking and effi-
cient, since our long conversations included many insightful comments and constructive
criticisms.

I am also very grateful to all my Professors at the Department of Banking and Financial
Management who provided motivation, support and knowledge. I must refer separately
to Professor Angelos Antzoulatos, Director of our Ph.D. program, who devoted a lot of his
time to organize and supervise the progress of all Ph.D. students. His effort and insight
will always be an inspiration.

My fellow Ph.D. students E. Alevizopoulou., P. Asimakopoulos., C. Bouras, E. Kon-
stantinidi, D. Kyriakopoulou, C. Daskalaki, T. Syrmos , V. Malafouris, G. Karalas, and
the elders V. Babalos, K. Lambrinoudakis, T. Stamatiou, G. Papanastasopoulos and C.
Tsoumas were valuable `allies' in achieving this difficult task. I owe them my gratitude
and friendship.

I also want to thank Liana Apostolou, Eirini Perantontaki, Thodora Christodoulou
and Eleni Kareli. Their organizational skills minimized the `frictions' and gave me the
opportunity to focus on my research.

My friends have been very supportive through these years and helped me to overcome
many difficulties and keep my effort high. Akis A., Giorgos A., Manos D., Michalis K.,
Michalis P., Nikos K., Stefanos C., I greatly value our friendship and appreciate your
belief in me.

The only way to conclude the acknowledgments is to express my eternal gratitude
and love to my family that stood by me, every step in this journey: my mother Vassiliki,
my brother George, my sister Gianna and Giouli. Without their love, understanding and
support, all this would not have been possible.

4



Contents

1 Introduction 1

2 The AR(1) Model with an AR(1) or MA(1) Coefficient 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The AR(1) model with an AR(1) coefficient. . . . . . . . . . . . . . . . . . 9

2.2.1 Exact Sufficient Conditions for the Stability of the AR(1) /AR(1)

model, with ρ ̸= 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The AR(1) model with a MA(1) coefficient. . . . . . . . . . . . . . . . . . 13

2.3.1 Necessary and Sufficient Conditions for First-Order Stability. . . . 14

2.3.2 Necessary and Sufficient Conditions for Second-Order Stability. . . 16

2.4 Estimation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 The AR(1)-AR(1) Case . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 The AR(1)-MA(1) Case . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Monte Carlo Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Optimal Portfolios under Trending Second

Moments of Asset Returns 54

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Optimal Portfolios of Assets with Trending Volatilities . . . . . . . 57

3.3 The Modified Market Model . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Aggregational Gaussianity and Barely Infinite Variance 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Empirical Motivation: Distributional Characteristics Of Crop Price Changes 68

4.3 Aggregational Gaussianity Under Barely Infinite Variance . . . . . . . . . 70

4.4 Testing for Aggregational Gaussianity Under

IGARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Selectivity, Market Timing and the Morningstar Star-Rating

System 118

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Statistical Properties of the Five Funds-of-Funds Returns . . . . . . . . . . 121

5.3 Risk-Adjusted Returns: The Models . . . . . . . . . . . . . . . . . . . . . 124

5.3.1 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Combining Morningstar Rating System with Asset Allocation Strategies . 133

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



List of Figures

2.1 Regions of second order stability in the (ρ, σv)− plane. . . . . . . . . . . . 19

2.2 Realization of yt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Realization of AR(1)/AR(1) Case (i) T=250 . . . . . . . . . . . . . . . . . 36

2.4 Realization of AR(1)/AR(1) Case (i) T=500 . . . . . . . . . . . . . . . . . 37

2.5 Realization of AR(1)/AR(1) Case (i) T=1000 . . . . . . . . . . . . . . . . 38

2.6 Realization of AR(1)/AR(1) Case (ii) T=250 . . . . . . . . . . . . . . . . 39

2.7 Realization of AR(1)/AR(1) Case (ii) T=500 . . . . . . . . . . . . . . . . 40

2.8 Realization of AR(1)/AR(1) Case (ii) T=1000 . . . . . . . . . . . . . . . . 41

2.9 Realization of AR(1)/AR(1) Case (iii) T=250 . . . . . . . . . . . . . . . . 42

2.10 Realization of AR(1)/AR(1) Case (iii) T=500 . . . . . . . . . . . . . . . . 43

2.11 Realization of AR(1)/AR(1) Case (iii) T=1000 . . . . . . . . . . . . . . . 44

2.12 Realization of AR(1)/MA(1) Case (i) T=250 . . . . . . . . . . . . . . . . . 45

2.13 Realization of AR(1)/MA(1) Case (i) T=500 . . . . . . . . . . . . . . . . . 46

2.14 Realization of AR(1)/MA(1) Case (i) T=1000 . . . . . . . . . . . . . . . . 47

2.15 Realization of AR(1)/MA(1) Case (ii) T=250 . . . . . . . . . . . . . . . . 48

2.16 Realization of AR(1)/MA(1) Case (ii) T=500 . . . . . . . . . . . . . . . . 49

3



2.17 Realization of AR(1)/MA(1) Case (ii) T=1000 . . . . . . . . . . . . . . . . 50

2.18 Realization of AR(1)/MA(1) Case (iii) T=250 . . . . . . . . . . . . . . . . 51

2.19 Realization of AR(1)/MA(1) Case (iii) T=500 . . . . . . . . . . . . . . . . 52

2.20 Realization of AR(1)/MA(1) Case (iii) T=1000 . . . . . . . . . . . . . . . 53

3.1 Rolling Estimation of Residuals Variance from an AR(1) Model. Starting

Period 1990M1-1994M12 (60 Obs). Source: Bloomberg - S&P GS commodity

indices - spot prices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Empirical distributions of crop returns . . . . . . . . . . . . . . . . . . . . 76

4.2 Sample kurtosis of simulated and crop returns. . . . . . . . . . . . . . . . . 77

4.3 Time Plot and Histogram of DAX Index Daily Returns . . . . . . . . . . . 78

4.4 Time Plot and Histogram of DAX Index Weekly Returns . . . . . . . . . . 79

4.5 Time Plot and Histogram of DAX Index Monthly Returns . . . . . . . . . 80

4.6 Time Plot and Histogram of DAX Index Annual Returns . . . . . . . . . . 81

4.7 Time Plot and Histogram of NIKKEI Index Daily Returns . . . . . . . . . 82

4.8 Time Plot and Histogram of NIKKEI Index Weekly Returns . . . . . . . . 83

4.9 Time Plot and Histogram of NIKKEI Index Monthly Returns . . . . . . . 84

4.10 Time Plot and Histogram of NIKKEI Index Annual Returns . . . . . . . . 85

4.11 Time Plot and Histogram of GBP/USD Daily Returns . . . . . . . . . . . 86

4.12 Time Plot and Histogram of GBP/USD Weekly Returns . . . . . . . . . . 87

4.13 Time Plot and Histogram of GBP/USD Monthly Returns . . . . . . . . . 88

4.14 Time Plot and Histogram of GBP/USD Annual Returns . . . . . . . . . . 89

4.15 Time Plot and Histogram of JPY/USD Daily Returns . . . . . . . . . . . 90

4.16 Time Plot and Histogram of JPY/USD Weekly Returns . . . . . . . . . . 91

4.17 Time Plot and Histogram of JPY/USD Monthly Returns . . . . . . . . . . 92

4.18 Time Plot and Histogram of JPY/USD Annual Returns . . . . . . . . . . 93



4.19 Time Plot and Histogram of Simulated GARCH Daily Returns,α = 0.05, β =

0.90, α+ β = 0.95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.20 Time Plot and Histogram of Simulated GARCH Daily Returns, Weekly

Aggregation, α = 0.05, β = 0.90, α+ β = 0.95 . . . . . . . . . . . . . . . . 95

4.21 Time Plot and Histogram of Simulated GARCH Daily Returns, Monthly

Aggregation,α = 0.05, β = 0.90, α+ β = 0.95 . . . . . . . . . . . . . . . . . 96

4.22 Time Plot and Histogram of Simulated GARCH Daily Returns, Annual

Aggregation, α = 0.05, β = 0.90, α+ β = 0.95 . . . . . . . . . . . . . . . . 97

4.23 Time Plot and Histogram of Simulated GARCH Daily Returns,α = 0.05, β =

0.91, α+ β = 0.96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.24 Time Plot and Histogram of Simulated GARCH Daily Returns, Weekly

Aggregation, α = 0.05, β = 0.91, α+ β = 0.96 . . . . . . . . . . . . . . . . 99

4.25 Time Plot and Histogram of Simulated GARCH Daily Returns, Monthly

Aggregation,α = 0.05, β = 0.91, α+ β = 0.96 . . . . . . . . . . . . . . . . . 100

4.26 Time Plot and Histogram of Simulated GARCH Daily Returns, Annual

Aggregation, α = 0.05, β = 0.91, α+ β = 0.96 . . . . . . . . . . . . . . . . 101

4.27 Time Plot and Histogram of Simulated GARCH Daily Returns,α = 0.05, β =

0.92, α+ β = 0.97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.28 Time Plot and Histogram of Simulated GARCH Daily Returns, Weekly

Aggregation, α = 0.05, β = 0.92, α+ β = 0.97 . . . . . . . . . . . . . . . . 103

4.29 Time Plot and Histogram of Simulated GARCH Daily Returns, Monthly

Aggregation,α = 0.05, β = 0.92, α+ β = 0.97 . . . . . . . . . . . . . . . . . 104

4.30 Time Plot and Histogram of Simulated GARCH Daily Returns, Annual

Aggregation, α = 0.05, β = 0.92, α+ β = 0.97 . . . . . . . . . . . . . . . . 105

4.31 Time Plot and Histogram of Simulated GARCH Daily Returns,α = 0.05, β =

0.93, α+ β = 0.98 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.32 Time Plot and Histogram of Simulated GARCH Daily Returns, Weekly

Aggregation, α = 0.05, β = 0.93, α+ β = 0.98 . . . . . . . . . . . . . . . . 107



4.33 Time Plot and Histogram of Simulated GARCH Daily Returns, Monthly

Aggregation,α = 0.05, β = 0.93, α+ β = 0.98 . . . . . . . . . . . . . . . . . 108

4.34 Time Plot and Histogram of Simulated GARCH Daily Returns, Annual

Aggregation, α = 0.05, β = 0.93, α+ β = 0.98 . . . . . . . . . . . . . . . . 109

4.35 Time Plot and Histogram of Simulated GARCH Daily Returns,α = 0.05, β =

0.94, α+ β = 0.99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.36 Time Plot and Histogram of Simulated GARCH Daily Returns, Weekly

Aggregation, α = 0.05, β = 0.94, α+ β = 0.99 . . . . . . . . . . . . . . . . 111

4.37 Time Plot and Histogram of Simulated GARCH Daily Returns, Monthly

Aggregation,α = 0.05, β = 0.94, α+ β = 0.99 . . . . . . . . . . . . . . . . . 112

4.38 Time Plot and Histogram of Simulated GARCH Daily Returns, Annual

Aggregation, α = 0.05, β = 0.94, α+ β = 0.99 . . . . . . . . . . . . . . . . 113

4.39 Time Plot and Histogram of Simulated GARCH Daily Returns,α = 0.05, β =

0.95, α+ β = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.40 Time Plot and Histogram of Simulated GARCH Daily Returns, Weekly

Aggregation, α = 0.05, β = 0.95, α+ β = 1 . . . . . . . . . . . . . . . . . . 115

4.41 Time Plot and Histogram of Simulated GARCH Daily Returns, Monthly

Aggregation,α = 0.05, β = 0.95, α+ β = 1 . . . . . . . . . . . . . . . . . . 116

4.42 Time Plot and Histogram of Simulated GARCH Daily Returns, Annual

Aggregation, α = 0.05, β = 0.95, α+ β = 1 . . . . . . . . . . . . . . . . . . 117

5.1 Momentum, Contrarian & Naive Strategy with no additional information . 135

5.2 Unconditional Momentum Strategy with 5 Funds (Un Mom 5) Vs Condi-

tional Momentum Strategy with 5 Funds (Con Mom 'Star' 5) . . . . . . . 136

5.3 Unconditional Momentum Strategy n = {5, 15, 30} . . . . . . . . . . . . . 145

5.4 Unconditional Contrarian Strategy n = {5, 15, 30} . . . . . . . . . . . . . . 146

5.5 Unconditional Naive Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.6 Morningstar Star Rates Portfolios . . . . . . . . . . . . . . . . . . . . . . . 148



5.7 Momentum & Morningstar Rating - 1 Star Strategy n = {5, 15, 30} . . . . 149

5.8 Contrarian & Morningstar Rating - 1 Star Strategy n = {5, 15, 30} . . . . 150

5.9 Naive & Morningstar Rating - 1 Star Strategy n = {5, 15, 30} . . . . . . . 151

5.10 Momentum & Morningstar Rating - 2 Star Strategy n = {5, 15, 30} . . . . 152

5.11 Contrarian & Morningstar Rating - 2 Star Strategy n = {5, 15, 30} . . . . 153

5.12 Naive & Morningstar Rating - 2 Star Strategy n = {5, 15, 30} . . . . . . . 154

5.13 Momentum & Morningstar Rating - 3 Star Strategy n = {5, 15, 30} . . . . 155

5.14 Contrarian & Morningstar Rating - 3 Star Strategy n = {5, 15, 30} . . . . 156

5.15 Naive & Morningstar Rating - 3 Star Strategy n = {5, 15, 30} . . . . . . . 157

5.16 Momentum & Morningstar Rating - 4 Star Strategy n = {5, 15, 30} . . . . 158

5.17 Contrarian & Morningstar Rating - 4 Star Strategy n = {5, 15, 30} . . . . 159

5.18 Naive & Morningstar Rating - 4 Star Strategy n = {5, 15, 30} . . . . . . . 160

5.19 Momentum & Morningstar Rating - 5 Star Strategy n = {5, 15, 30} . . . . 161

5.20 Contrarian & Morningstar Rating - 5 Star Strategy n = {5, 15, 30} . . . . 162



List of Tables

2.1 Forecasting Performance Evaluation of Studied Models, using Root Mean Square

Error and Mean Absolute Error Measures . . . . . . . . . . . . . . . . . . . . 34

2.2 Percentages of Model's Selection, using AIC . . . . . . . . . . . . . . . . . . . 35

2.3 Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( i) , T=250,

{ρ, ϕ, σ2
v, σ

2
u}=0.4,-0.2,0.07,0.43 . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( i ), T=500,

{ρ, ϕ, σ2
v, σ

2
u}=0.4,-0.2,0.07,0.43 . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( i ), T=1000,

{ρ, ϕ, σ2
v, σ

2
u}=0.4,-0.2,0.07,0.43 . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( ii ), T=250,

{ρ, ϕ, σ2
v, σ

2
u}=0.6,-0.3,0.5,0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( ii ), T=500,

{ϕ, θ, σ2
v, σ

2
u}=0.6,-0.3,0.5,0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( ii ), T=1000,

{ρ, ϕ, σ2
v, σ

2
u}=0.6,-0.3,0.5,0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9 Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( iii ), T=250,

{ρ, ϕ, σ2
v, σ

2
u}=0.6,-0.5,0.07,0.70 . . . . . . . . . . . . . . . . . . . . . . . . 42

8



2.10 Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( iii ), T=500,

{ρ, ϕ, σ2
v, σ

2
u}=0.6,-0.5,0.07,0.70 . . . . . . . . . . . . . . . . . . . . . . . . 43

2.11 Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( iii ), T=1000,

{ρ, ϕ, σ2
v, σ

2
u}=0.6,-0.5,0.07,0.70 . . . . . . . . . . . . . . . . . . . . . . . . 44

2.12 Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( i ), T=250,

{ρ, θ, σ2
v, σ

2
u}=0.4,-0.2,0.07,0.43 . . . . . . . . . . . . . . . . . . . . . . . . 45

2.13 Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( i ), T=500,

{ρ, θ, σ2
v, σ

2
u}=0.4,-0.2,0.07,0.43 . . . . . . . . . . . . . . . . . . . . . . . . 46

2.14 Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( i ), T=1000,

{ρ, θ, σ2
v, σ

2
u}=0.4,-0.2,0.07,0.43 . . . . . . . . . . . . . . . . . . . . . . . . 47

2.15 Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( ii ), T=250,

{ρ, θ, σ2
v, σ

2
u}=0.6,0.3,0.5,0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.16 Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( ii ), T=500,

{ρ, θ, σ2
v, σ

2
u}=0.6,0.3,0.5,0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.17 Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( ii ), T=1000,

{ρ, θ, σ2
v, σ

2
u}=0.6,0.3,0.5,0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.18 Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( iii ), T=250,

{ρ, θ, σ2
v, σ

2
u}=0.6,-0.5,0.07,0.70 . . . . . . . . . . . . . . . . . . . . . . . . 51

2.19 Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( iii ), T=500,

{ρ, θ, σ2
v, σ

2
u}=0.6,-0.5,0.07,0.70 . . . . . . . . . . . . . . . . . . . . . . . . 52

2.20 Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( iii ), T=1000,

{ρ, θ, σ2
v, σ

2
u}=0.6,-0.5,0.07,0.70 . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Descriptive Characteristics of Portfolio Returns . . . . . . . . . . . . . . . 135

5.2 Descriptive Statistics: Portfolio Returns of Unconditional Strategies . . . . 163

5.3 Descriptive Statistics: Portfolio Returns of a Naive Investor Conditional

on the Morningstar Rating System . . . . . . . . . . . . . . . . . . . . . . 163

5.4 Descriptive Statistics: Portfolio Returns of a Contrarian Strategy, Condi-

tional on the Morningstar Rating System . . . . . . . . . . . . . . . . . . . 164



5.5 Descriptive Statistics: Portfolio Returns of a Momentum Strategy, Condi-

tional on the Morningstar Rating System . . . . . . . . . . . . . . . . . . . 164



CHAPTER 1

Introduction

Many econometric models that are commonly used in empirical financial and economic

applications are linear. However, the existing literature provides several indications that

nonlinear models may be more appropriate to describe relationships encountered in real

phenomena. Excess kurtosis, volatility clustering, sensitivity of estimated parameters to

alternative specifications of the estimation period are all points towards the presence of

nonlinearities in financial and economic time series. Therefore, more complex models are

needed in order to overcome the limitations of the linear regression models to deal with

these stylized facts.

This thesis examines some non-standard parametric time series models which aim at

capturing several features of time series of interest, not accounted for by the usual models

of the econometric literature. The first class of models considered here are autoregres-

sive models (AR) whose parameters are autoregressive or moving average (MA) processes

themselves. Already in 1973 Belsley and Kuh (1973) argued: `The rationales for time

varying parameter models are several. For one, the true coefficients themselves can often

be viewed directly as the outcome of a stochastic process... Second, even when the under-
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2 CHAPTER 1. INTRODUCTION

lying parameters are stable, situations arise in which a time-varying coefficient approach

will prove to be effective. Such is the case when there are specification errors, such as

excluded variables or linear approximations of curvelinear forms'.

The models studied here, can be considered as natural alternatives to the standard lin-

ear autoregressive models with constant parameters in cases where the estimated param-

eters of the AR models exhibit persistent time variation. Note that when the persistence

in the variation of the stochastic coefficients is large, the random coefficient autoregres-

sive models that have been analyzed to a sufficient extent in the literature fail to account

for the empirical dynamics. Autoregressive models with AR or MA have already been

examined in the statistical literature but many issues remained unresolved. These issues

include the following: (a) What are the exact necessary and sufficient conditions for these

processes to be second-order stationary? (b) What are the alternative estimation meth-

ods for estimating these models? How do these methods perform in small samples? (c)

How do these models perform in out-of-sample forecasting when compared with other

non-linear time series models? (d) What are the properties of typical realizations from

these models for various values of their parameters? The first two questions are important

for the feasibility of the models under study, in estimating and forecasting the mean and

the volatility of financial series, while the next two issues are related to the efficiency and

suitability of these models. All these issues are analyzed in the first chapter of the present

thesis.

The second class of models analyzed here, aim at describing multivariate processes

which exhibit unconditional heteroskedasticity (as opposed to the standard case of con-

ditional heteroskedasticity modelled by GARCH models). These models are motivated

by the empirical observations that the variance of the returns of certain financial assets

exhibits time trends. As a result, we put forward a model in which the process gener-

ating asset returns exhibits trending second moments. The idea that the unconditional

variance, σ2
it, of the individual stock i is a linear, or more generally, polynomial function,

hi(t), of time is interesting for both theoretical and practical reasons. Knowledge of the

functional form, hi(·), may be very useful in forecasting the future volatility level of stock

i. It will also permit direct comparisons among the rates at which the volatilities of in-
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dividual stocks increase with time. In addition, the assumption σ2
it = hi(t) implies that

asymptotically the unconditional variance becomes infinite. This feature of the suggested

model is affined with the possibility that the variance of stock returns is infinite, noted by

Benoit Mandelbrot (see Mandelbrot 1966). The second chapter of the thesis, analyze the

problem of defining optimal portfolios under the assumption of trending variances and

covariances and show that the optimal weights at each point in time are known functions

of time. It must be noted that the type of non-stationarity characterising these models

is quite different from the usual unit-root type of nonstationarity exhibited by non-stable

autoregressive models. In both cases the variance of the underlying process increases

with time; however in the former case the source of the time heterogeneity is the infinite

degree of persistence whereas in the latter case the non-stationarity may coincide with an

independent process.

The third category of models that this thesis is dealing with, are models which exhibit

conditional heteroskedasticity. Since the seminal papers of Engle (1982) and Bollerslev

(1986), the class of generalized autoregressive heteroskedastic (GARCH) models has been

widely used in modeling the conditional volatility of financial time series. GARCH mod-

els became very famous because they were designed to capture and model the volatility

clustering phenomenon evidenced in time series, improving the accuracy of model's pre-

dictions. Lee and Hansen (1994) noted that GARCH models have become the `workhorse

of the industry'.

We focus specifically in models which exhibit very strong-persistent conditional het-

eroskedasticity which is manifested as a unit root in the conditional variance. These

models are usually referred to as Integrated GARCH (IGARCH) models and describe

an infinite-variance process. Put it different, the unit root in the conditional variance

implies that the unconditional variance is infinite. Although the IGARCH models are

not covariance-stationary, it can be shown that they are strictly stationary and standard

inference procedures remain asymptotically valid. Bollerslev et al. (1992) provide further

investigations on the properties of IGARCH models. These models are analyzed in the

context of an empirical puzzle that has been observed in the financial econometrics liter-

ature. In particular, it has been observed that asset returns observed at high frequencies
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(say daily) exhibit IGARCH effects and fat-tailed distributions. However, as we move to

lower frequencies, the distribution of returns looks more and more like the normal distri-

bution. The puzzle lies in the fact that the observed Aggregational Gaussianity cannot be

established theoretically, since the infinite variance in the original high-frequency series

makes the application of the Central Limit Theorem prohibitive. However, what we show

in this chapter is that, despite their infinite-variance characteristics, the high-frequency

IGARCH processes still belong to the domain of attraction of the Normal law, because

all the moments of order less than two exist. In other words, the high-frequency processes

are barely-infinite variance processes for which a (non-standard) Central Limit Theorem

applies.

Finally, in the fourth chapter we consider nonlinear models to assess the success of a

procedure that evaluates mutual funds, namely that of Morningstar star rating system.

Morningstar evaluates mutual funds by assigning them a number of stars (1 star for

the worst-performing funds, 5 stars for the best performing ones) depending on their

risk-adjusted performance over previous periods. Traditional econometric approaches that

use unconditional expected returns have been shown that they are unable to distinguish

whether assets selection skills and market timing abilities of mutual fund managers are

attributed to common time variations in returns and risk premia.

For this purpose, we analyze multivariate regression models in which the regression

coefficients are not constant, but functions of a set of observable variables. These models

are applied in cases where the systematic risk of a managed portfolio, as measured by

the beta coefficient, changes with time as a result of portfolio re-balancing by the active

manager (see Ferson and Schadt (1996)). Put it differently, the manager, reacting to new

information, as reflected on a set of publicly available financial and economic variables,

changes the composition of his portfolio, thus inducing a change in portfolio's beta. This

in turn implies that when the performance of the manager is assesed in terms of risk-

adjusted returns, the changing nature of the systematic risk together with its dependence

on the set of observable variables should be taken into account. Modeling portfolio beta

time variation efficiently, will result in estimating more reliable the skills of the portfolio

manager. In the case of Morningstar, our findings suggest that the better performance
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of the higher star rated funds reflects superior stock selection rather than market timing

abilities. Overall, the implication for the Morningstar ranking system is that this is most

effective in identifying the worst-performing funds rather than the best-performing ones.



CHAPTER 2

The AR(1) Model with an AR(1) or MA(1) Coefficient

2.1 Introduction

Evidence of coefficient variation in linear regression models has led to increasing interest in

models with stochastic coefficients. If there are no exogenous variables in the set of regres-

sors, these models are usually referred to as `doubly stochastic time series' (see Tjostheim

1986). In particular, the random coefficient autoregressive model of order p (RCAR(p)),

which assumes that the coefficients are serially independent, zero-mean, second-order sta-

tionary random vectors, has received regular attention by both time series analysts and

econometricians, over the last thirty years or so. More specifically, Conlisk (1974, 1976)

and Quinn and Nicholls (1981) have provided necessary and sufficient conditions for the

RCAR(p) process to be stable. (see also Feigin and Tweedie 1985). Robinson (1978),

Nicholls and Quinn (1980, 1981, 1982), Hwang and Basawa (1993,1998), Koul and Schick

(1996) and Schick (1996) have studied the problem of asymptotic inference for these mod-

els. Nicholls and Quinn (1982), Ramanathan and Rajarshi (1994), Lee (1998) and Akharif

and Hallin (2003) have investigated the issue of testing whether the autoregressive coef-

6
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ficients are, indeed, random. Finally, Bera, Higgins and Lee (1992) and Tsay (1987)

have proved that the autoregressive conditional heteroskedastic (ARCH) processes may

be viewed as autoregressive processes with zero-mean random coefficients, thus establish-

ing a link between two areas of the econometrics literature which, until then, were being

studied independently of each other.

The RCAR(p) model can be thought of as an autoregressive model whose coefficients

are randomly perturbed. These `coefficient shocks' are independent over time, or in

other words, they exhibit no memory. This feature of the RCAR(p) model is rather

restrictive, thus limiting the extent to which this model generalizes the corresponding,

constant-coefficient AR(p) model. Concerning forecasting, in particular, the differences

between the forecasts produced by RCAR(p) and AR(p) are likely to be small, at least

asymptotically. More interesting models may arise, quite naturally, by assuming that

the intertemporal variation in the coefficients is not independent. Such models simply

recognize the fact that the effects of random events, which cause the variation in the

coefficients, may last for more than one period. In other words, although the RCAR(p)

models allow for changes in the magnitude of autocorrelation across time, they do not

permit these changes to exhibit any systematic pattern. However, it is quite natural to

assume that the effects of the factors causing these changes are of persistent rather than

purely random character.

The above mentioned considerations suggest that the most natural extensions of the

RCAR(p) model, would be autoregressive models whose coefficients are stochastic pro-

cess, exhibiting some degree of temporal dependence. Tjostheim (1986) and Meyn and

Guo (1993) developed a general formulation for the univariate and multivariate case re-

spectively, in which conditions for stability were obtained, without postulating a gener-

ating process for the stochastic coefficients. More specific assumptions on the stochastic

coefficient process may produce stability conditions which are easier to test. The straight-

forward choices towards this direction would be to consider autoregressive models whose

coefficients are, themselves, autoregressive or moving average processes. Weiss (1985)

studied the simplest of these models, namely the AR(1) model, whose coefficient, say rt,

is the sum of a constant part, ρ, and a stochastic part, ρt, i.e. yt = (ρ+ ρt)yt−1 +ut, with



8 CHAPTER 2. THE AR(1) MODEL WITH AN AR(1) OR MA(1) COEFFICIENT

ut ∼ IID(0, σ2
u) and the time-varying part is assumed to follow an AR(1) process itself,

that is ρt = ϕρt−1 + vt with vt ∼ IID(0, σ2
ν). Tjostheim (1986) studied the case where

the stochastic part follows a MA(1) process, that is ρt = ϕvt−1 + vt with vt ∼ IID(0, σ2
ν).

The question to be answered in both cases, is what conditions quarrantee the asymptotic

second-order stability of the process, {yt} , in the sense that E(yt | y0) and E(ytyt−s | y0),

for fixed s = 0, 1, ... converge to fixed values not depending on the initial value y0. Weiss

derived such a sufficient condition at a rather high price, involving both assumptions and

approximations (see below). Moreover, the constraints on the model parameters that

this sufficient condition implies are not explicit and depend on the sample size. Weiss

also established a necessary condition for second-order stationarity of the AR(1)/AR(1)

process, which is useful in the sense that its violation ensures that the underlying process

is not second-order stable. Tjostheim derived necessary and sufficient conditions for the

underline process yt to be asymptotically second order stationary in the case where vt are

Gaussian, not allowing for deviations from symmetric and mesokurtic random errors.

Grillenzoni (1993) studies the more general case of ARIMA(p, d, q) models with

ARIMA(P,D,Q) coefficients. This study analyzes in depth the identification-estimation

problem of such models and shows that the Kalman filter is formally implementable and

the ML estimates are, in general, consistent and asymptotically normal. This opens up

the way for hypothesis testing on the model parameters, provided that the true values of

these parameters lie in the interior of the parameter space. It also allows for the calcula-

tion of the usual objective model selection criteria. As far as the problem of deriving sharp

sufficient conditions for the stability of these models, Grillenzoni (1993) acknowledges this

to be a very difficult problem. In particular, he remarks that even in the simplest cases

of an AR(1) model with an AR(1) or a MA(1) coefficient, the problem of deriving such

conditions is "challenging".

The present study focuses on these two special cases mentioned above that is AR(1)

/ AR(1) and AR(1) / MA(1) models and explores three issues associated with these

models: First it obtains useful sufficient conditions for second-order stability of the

AR(1)/AR(1) process and necessary and sufficient conditions for the second-order sta-

bility of the AR(1)/MA(1) process. Second, it investigates the problem of model selec-
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tion within a class of models containing apart from AR(1)/AR(1) and AR(1)/MA(1) the

random and constant coefficient models as well. In particular, by means of Monte Carlo

experiments it examines the frequency at which the usual information criteria such as the

Akaike, (AIC), Swzartz (SIC) and the Hannan-Quinn (HQ) ones select the correct model

under a variety of alternative data generation processes and sample sizes. As regards the

third of the aforementioned issues, we provide evidence supporting the view that many

financial time series are best described by either AR(1)/AR(1) or AR(1)/MA(1) models.

This claim is supported by both in-sample criteria as well as by the superior forecasting

performance of these model against that of constant or random coefficient ones.

The outline of this chapter is as follows: Sections II and III derive the sufficient

condition for the stability of the AR(1)/AR(1) and AR(1)/MA(1) models, respectively.

Section IV discusses briefly maximum likelihood (ML) estimation of the model parameters

and presents the simulation results on the finite sample behaviour of these estimators and

the performance of model selection criteria. Section (V) presents the empirical results,

while Section (VI) concludes the chapter.

2.2 The AR(1) model with an AR(1) coefficient.

Let us consider the following process:

yt = (ρ+ ρt)yt−1 + ut , t ≥ 0 , (2.1)

where

ρt = ϕρt−1 + vt (2.2)

and  ut

vt

 ∼ NIID

 0

0

 ,
 σ2

u 0

0 σ2
v


 , (2.3)

with the additional simplifying and rather innocuous assumption that σ2
u = 1. Weiss

(1985) examined the model defined by (2.1)-(2.3) and focused on the quantity W ≡

T 1/2S2(∞)−1/2(XT − R), where Xk = 1
k

k∑
i=1

ρ2
t−i, ρt = (ρ + ρt), S

2(∞) = lim
k→∞

S2(k),
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S2(k) = k · var(Xk), R = E(ρ2
t ), and first proved that S2(∞) <∞. Then, the normality

assumption for vt enabled him to appeal to the Central Limit Theorem (theorem 2.4, in

White and Domowitz 1984) in order to approximate W with a standard normal random

variable. Conditional on this approximation, he adopted a second, rather more restrictive,

approximation: He utilized a result by Granger and Andersen (1978), according to which

the n − th moment, [E(Xn)
n] , is approximately generated by a second-order difference

equation. By doing so, he was then able to produce an approximate sufficient condition

for the stability of yt, namely R + S2(∞) < 1, whose validity, of course, depends on the

accuracy and relevance of the above mentioned consecutive approximations. Moreover,

one should also note that this condition is far from being necessary; in fact it is a rather

strict one, thus excluding many stable cases that might be useful in practice. Weiss also

obtains a useful necessary condition for second-order stability, which takes the form

R = ρ2 +
σ2
ν

1− ϕ2 < 1 (2.4)

Guyton, Zang and Foutz (1986), Pourhamadi (1986) and Grillenzoni (1993) consider

the simpler model in which ρ = 0. This model assumes that the mean of the autoregressive

coefficient process, {ρt} , is equal to zero. Under this restrictive assumption, it was shown

that {yt} is second-order stationary, if {ρt} belongs with probability probability 1 to the

interval (−1,+1) almost everywhere. This means that the realizations of {ρt} are allowed

to lie outside the stationarity region of a constant-coefficient AR(1) model only for finite

periods. To the best of our knoweledge, no sufficient conditions for the stability of {yt} are

available in the literature, for the more general case, ρ ̸= 0, i.e. when the autoregressive

coefficient process contains both a constant and a time-varying element.

To this end, we can write yt as

yt = y0

t∏
i=1

(ρ+ ρi) +
t−1∑
k=1

uk
t∏

i=k+1

(ρ+ ρi) + ut . (2.5)

Then, we observe that strict stationarity of {yt}t≥1 depends on the stationarity of the
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terms
t∏
i=1

(ρ+ ρi) and
t−1∑
k=1

uk
t∏

i=k+1

(ρ+ ρi) ,

which is guaranteed if and {ρt}t≥1 and {ut}t≥1 are stationary and

|ρ+ ρt| < 1 (2.6)

for almost every t (see Stout, 1974, p.184, and Grillenzoni, 1993). The stationarity of

{ρt}t≥1 and {ut}t≥1 is, in turn, guaranteed by (2.3) and the additional condition

|ϕ| < 1 . (2.7)

Moreover, condition (2.6) guarantees the existence of all the moments for {yt}t≥1 since
t∏
i=1

(ρ+ ρi)
p→ 0 as t→∞.

The preceding discussion motivates the derivation of sharp conditions that will guar-

antee the validity of (2.6). These conditions will concern the range of the random variables

vt's.

2.2.1 Exact Sufficient Conditions for the Stability of the AR(1)

/AR(1) model, with ρ ̸= 0.

In this section we obtain two alternative sets of conditions that guarrantee the second-

order stability of {yt} . The first set, C1, assumes that ϕ is positive whereas the second

set, C2, assumes that ϕ is negative. These sets are defined as follows:

Conditions C1: a) 0 ≤ ϕ < 1, b) |ρ| < 1, c) vt ∈ [α, β], and −(1− ϕ)(1 + ρ) < α ≤ 0 ≤

β < (1− ϕ)(1− ρ).

Conditions C2: a) −1 < ϕ ≤ 0, b) |ρ| < 1, c) vt ∈ [α, β], and −(1 + ρ)−ϕ(1− ρ) < α ≤

0 ≤ β < 1− ρ+ ϕ(1 + ρ).

Proposition 1: If conditions C1 hold, then there exists a real number, b : 0 < b < 1,

such that for every t > 1, ρ+ ρt ∈ [−b, b].
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Proof: The proof is obtained by induction. First note that since ρ1 = v1 and v1 ∈ [α, β]

we have

ρ+ ρ1 ∈ [α+ ρ, β + ρ]

From C1(c), there exists ε > 0 such that

α+ ρ > ε− (1− ϕ)(1 + ρ) + ρ = ε− 1− ρ+ ϕ+ ϕρ+ ρ = ϕ(1 + ρ)− 1 + ε > −1 + ε

and

β + ρ < −ε+ (1− ϕ)(1− ρ) + ρ = −ε+ 1− ρ− ϕ+ ϕρ+ ρ = 1− ϕ(1− ρ)− ε < 1− ε .

Thus ρ+ ρ1 ∈ [−1 + ε, 1− ε] . Let ρ+ ρi ∈ [−1 + ε, 1− ε] . Then

ρ+ ρi+1 = ρ+ ϕρi + vi+1

=⇒ ρ+ ρi+1 ∈ [ρ+ ϕ(−1 + ε− ρ), ρ+ ϕ(1− ε− ρ)] + [α, β]

⊆ [ρ+ ϕ(−1 + ε− ρ) + ε− (1− ϕ)(1 + ρ), ρ+ ϕ(1− ε− ρ)+

(1− ϕ)(1− ρ)− ε]

= [−1 + ε+ ϕε, 1− ε− ϕε] ⊆ [−1 + ε, 1− ε] .

Set b = 1− ε and the proof is complete.

For the case ϕ ≤ 0, we have Proposition 2:

Proposition 2: If conditions C2 hold, then there exists 0 < b < 1 such that ρ+ρt ∈ [−b, b].

Proof: The proof is similar to the one of Proposition 1 and, therefore, it is omitted.

Remark 1: Conditions C1 and C2 can be translated to restrictions on the range of

values of the coefficient ρ+ρt. The following two examples demonstrate more clearly this

effect. First consider the case ϕ = 0.6 and ρ = 0.7. Then, in order to satisfy conditions

C1, the values of vt should belong to the interval [−0.68, 0.12]. Suppose that α = −0.66
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and β = 0.1. Then, one can replace these values in the proof of Proposition 1 and show

that ρ + ρt ∈ [−0.95, 0.95] for every t > 1. As another example, suppose that ϕ = −0.2

and ρ = 0.3, which (according to conditions C2) implies that vt must take values in the

interval [−1.16, 0.44]. In this case, it can be shown that ρ + ρt ∈ [−0.93, 0.93] for every

t > 1.

Note that Propositions 1 and 2 do not make any distributional assumptions on vt's

apart from restricting their range. Therefore, the normality assumption in (2.3) can be

dropped without affecting the results.

The arguments presented above may be thought of as a proof of the following theorem:

Theorem 2.2.1 If {yt}t≥1 is generated by (2.1), (2.2) and conditions (2.7), (??) and C1

or C2 hold, then {yt}t≥1 is a strictly stationary process with finite second moments.

2.3 The AR(1) model with a MA(1) coefficient.

In this section, we obtain necessary and sufficient conditions for the asymptotic second

order stability of an AR(1)/MA(1) process:

yt = (ρ+ vt + θvt−1)yt−1 + ut . (2.8)

The case of and AR(1) model with a purely MA(1) coefficient was first analyzed by

Tjostheim (1986). Tjostheim noted that `it seems very hard to obtain general condi-

tions for second order stationarity' for doubly stochastic processes and discussed general

techiniques towards this aim. He focused on the convergence in mean square of the term

n∑
j=0

E(
j−1∏
i=0

(ρ+ θvt−1−i + vt−i)
2) (2.9)

.By assuming normality, he used the characteristic function of {ρ + θvt−1−i + vt−i}i≥0

and derived a coupled system of differential equations for the summand in (2.9). The

sollution of this system provided the necessary and sufficient conditions for the asymptotic

second order stationarity of an AR(1) process with a constant plus a MA(1) autoregressive
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coefficient. We proceed in deriving necessary and sufficient conditions for process (2.8)

without making distributional assumptions.

Assumption 1: The random sequences {ut}t>1 and {vt}t>1 are neither serially nor

contemporaneously correlated, with E[ut] = E[νt] = 0, E[u2
t ] = σ2

u <∞, E[v2
t ] = σ2

v <∞,

E[v3
t ] = µ3 < ∞ and E[v4

t ] = µ4 < ∞, for every t > 1. Moreover, y0 is a constant or a

random variable, with finite first moment, uncorrelated with vt, for t > 0.

We will obtain necessary and sufficient conditions for the stability of process (1).

By applying (4) to (1) we have

yt = (ρ+ vt + θvt−1)yt−1 + ut . (2.10)

Set

rt = ρ+ ρt = ρ+ vt + θvt−1 .

Then

yt = rtyt−1 + ut (2.11)

⇒ yt = y0

t∏
i=1

ri +
t−1∑
i=1

ut−i
t∏

j=t−i+1

rj + ut (2.12)

2.3.1 Necessary and Sufficient Conditions for First-Order Sta-

bility.

From equation (2.11) we have that

E[yt] = E[y0]E

[
t∏
i=1

ri

]
.
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Let us focus on the quantity E
[∏t
i=1 ri

]
:

E

[
t∏
i=1

ri

]
= E

[
rt
t−1∏
i=1

ri

]
= E

[
(ρ+ vt + θvt−1)

t−1∏
i=1

ri

]

= ρE

[
t−1∏
i=1

ri

]
+ θE

[
vt−1(ρ+ vt−1 + θvt−2)

t−2∏
i=1

ri

]

⇒ E

[
t∏
i=1

ri

]
= ρE

[
t−1∏
i=1

ri

]
+ θσ2

vE

[
t−2∏
i=1

ri

]
(2.13)

Equation (7) is a difference equation and its convergence is guaranteed when both of the

roots z1, z2 of the characteristic equation

z2 − ρz − θσ2
v = 0 (2.14)

lie in the interior of the unit circle. This restriction means that

∣∣∣∣∣∣
ρ±

√
ρ2 + 4θσ2

v

2

∣∣∣∣∣∣ < 1 . (2.15)

Therefore, in order for the first moment of {yt}t≥1 to converge, the parameters ρ, σ2
v and

θ must belong to the subset ∆1 of the parametric space:

∆1 =
{
(ρ, θ, σv) : −2 < ρ < 2 and − 1 < θσ2

v < 1− |ρ|
}
. (2.16)

Remark 2: Since equation (7) is a homogeneous difference equation, we conclude that

when (ρ, θ, σv) ∈ ∆1 then E[yt] → 0 as t → ∞, for every y0, defined in Assumption 1.

To show that (ρ, θ, σv) ∈ ∆1 is also necessary for first-order stability, we argue as follows:

Assume that (ρ, θ, σv) ∈ ∂∆1 (i.e. the boundary of ∆1). Then, we can distinguish

the following two cases. The first one is when at least one of the roots z1, z2 is not a

real number. Then, from the theory of difference equations, we have that the sequence

defined by equation (7) does not converge. The second case is when both z1 and z2 are

real numbers. Then, in order to have convergence of E
[∏t
i=1 ri

]
, we should have z1 = 1
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(or z2 = 1) and z2 ∈ (−1, 1] (or z1 ∈ (−1, 1]). In such a case, E[yt] is asymptotically

dependent on the initial value, y0. Therefore, the parametric set ∆1 defines both necessary

and sufficient conditions on the parameters ρ, θ and σv, for the first-order stability of

{yt}t≥1 .

2.3.2 Necessary and Sufficient Conditions for Second-Order Sta-

bility.

Let us now examine the convergence of E[ytyt+s], s ≥ 0.

First note that

yt+s = yt
t+s∏
i=t+1

ri +
s−1∑
i=1

ut+s−i
t+s∏

j=t+s−i+1

rj + ut+s (2.17)

From (11), for s = 1, we have

E[ytyt+1] = E[y2
t rt+1] = ρE[y2

t ] + θE[vty
2
t ] (2.18)

For s ≥ 2, we have

E[ytyt+s] = E[y2
t

t+s∏
i=t+1

ri] = E[y2
t (ρ+ vt+1 + θvt)

t+s∏
i=t+2

ri]

=

E[(ρ+ vt+1)
t+s∏
i=t+2

ri]

E[y2
t ] + θE[

t+s∏
i=t+2

ri]E[vty
2
t ] (2.19)

Moreover

E[y2
t ] = σ2

u + E[(ρ2 + v2
t + θ2v2

t−1 + 2ρθvt−1 + 2ρvt + 2θvtvt−1)y
2
t−1]

= σ2
u + (ρ2 + σ2

v)E[y2
t−1] + θ2E[v2

t−1y
2
t−1] + 2ρθE[vt−1y

2
t−1] (2.20)
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E[vty
2
t ] = E[vt(ρ

2 + v2
t + θ2v2

t−1 + 2ρθvt−1 + 2ρvt + 2θvtvt−1)y
2
t−1]

= (2ρσ2
v + µ3)E[y2

t−1] + 2θσ2
vE[vt−1y

2
t−1] (2.21)

and

E[v2
t y

2
t ] = σ2

vσ
2
u

+E[v2
t (ρ

2 + v2
t + θ2v2

t−1 + 2ρθvt−1 + 2ρvt + 2θvtvt−1)y
2
t−1]

= σ2
vσ

2
u + (σ2

vρ
2 + 2ρµ3 + µ4)E[y2

t−1] + 2θ(ρσ2
v + µ3)E[vt−1y

2
t−1]

+θ2σ2
vE[v2

t−1y
2
t−1] (2.22)

From equations (14), (15) and (16) we have that


E[y2

t ]

E[vty
2
t ]

E[v2
t y

2
t ]

 =


ρ2+σ2

v 2ρθ θ2

2ρσ2
v+µ3 2θσ2

v 0

σ2
vρ

2+2ρµ3+µ4 2θ(ρσ2
v+µ3) θ2σ2

v




E[y2

t−1]

E[vt−1y
2
t−1]

E[v2
t−1y

2
t−1]



+


σ2
u

0

σ2
vσ

2
u

 (2.23)

Set

A =


ρ2 + σ2

v 2ρθ θ2

2ρσ2
v + µ3 2θσ2

v 0

σ2
vρ

2 + 2ρµ3 + µ4 2θ(ρσ2
v + µ3) θ2σ2

v

 , b =


σ2
u

0

σ2
vσ

2
u

 (2.24)

and Yt =


E[y2

t ]

E[vty
2
t ]

E[v2
t y

2
t ]

 .
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Then

Yt = AYt−1 + b = At−1Y1 +

(
t−2∑
i=0

Ai
)
b . (2.25)

Therefore, the necessary and sufficient condition for the convergence of ∑t−2
i=0 A

i and,

consequently of At−1, is that all the eigenvalues (λi, i = 1, 2, 3) of A must lie inside the

unit circle (i.e. ∥λi∥ < 1). Let us define the corresponding parameter set ∆2, as follows:

∆2 = {(ρ, θ, σv, µ3, µ4) such that max{∥λi∥, i = 1, 2, 3} < 1. For (ρ, θ, σv, µ3, µ4) ∈ ∆2,

the matrix I − A is invertible and therefore from (2.25) we have that

Yt = At−1Y1 +
(
I − At−1

)
(I − A)−1b⇒ Yt → (I − A)−1b (2.26)

as t −→∞.

Remark 3: For the special case of a random coefficient (i.e. when θ = 0) the above con-

dition coincides with the necessary and sufficient condition of Nichols and Quinn (1981).

Indeed, since the only non zero eigenvalue of A is equal to ρ2+σ2
v, the retriction ρ2+σ2

v < 1

(along with θ = 0) is equivalent to saying that (ρ, θ, σv) ∈ ∆1. Note that for this partic-

ular case µ3 and µ4 can take any value.

Remark 4: For the general case, θ ̸= 0, note that the limit of the sequence {Yt}t>1 is

independent of y0. Let us define the following subset of the parameter space, ∆3 ⊆ R3

≡ {(ρ, θ, σv) such that (ρ, θ, σv, µ3, µ4) ∈ ∆2 for some µ3 and µ4}. We also observe

that if ∆3 r ∆̄1 ̸= ∅, where ∆̄1 is the closure of ∆1, then for some parameters (ρ, θ, σv)

the second moments would be convergent, whereas the first moment would be explo-

sive. Since such a configuration is impossible, we conclude that ∆3 ⊆ ∆̄1. Therefore,

the sufficient and necessary condition for the stability of the process {yt}t≥1 is that

(ρ, θ, σv, µ3, µ4) ∈ ∆ ≡ {(ρ, θ, σv, µ3, µ4) ∈ ∆2 such that (ρ, θ, σv) ∈ ∆3 r ∂∆1}.

Remark 5: Note that if the vt's are independent and have a symmetric distribution,

then µ3 = 0. For the case of vt ∼ N(0, σ2
v), we have that µ4 = 3σ4

v, thus reducing the

dimension of the parameter space, ∆2, from five to three. For this case, Figure (2.1)

illustrates regions of second order stability in the (ρ, σv)− plane, for some positive and

negative values of θ. It is worth noticing that for negative values of θ, the stability regions

include points that lie outside the unit circle, which is the boundary of the stability region
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Figure 2.1: Regions of second order stability in the (ρ, σv)− plane.

for θ = 0. This in turn implies that the process {yt}t≥1 can be stable even if |ρ| is slightly

greater than unity. For example, for ρ = 1.05, θ = −2 and σv = 0.23 a realization of

{yt}t≥1 is illustrated in Figure (2.2).
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Figure 2.2: Realization of yt

Under the necessary and sufficient stability condition, defined by the parameter space,

∆2, the analytical expressions for the limit of E[ytyt+s], s ≥ 0 are as follows: For s = 0,

we have
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E[y2
t ]→


1

0

0


T

(I − A)−1b as t→∞. (2.27)

For s = 1, we utilize equation (12) to obtain,

E[ytyt+1] =


ρ

θ

0


T

Yt →


ρ

θ

0


T

(I − A)−1b as t→∞. (2.28)

Finally, for s ≥ 2, we utilize equation (13) to obtain,

E[ytyt+s] =


E[(ρ+ vt+1)

∏t+s
i=t+2 ri]

θE[
∏t+s
i=t+2 ri]

0


T

Yt

⇒E[ytyt+s]→


E[(ρ+ v1)

∏s
i=2 ri]

θE[
∏s
i=2 ri]

0


T

(I − A)−1b as t→∞ , (2.29)

since in the expression E[(ρ + vt+1)
∏t+s
i=t+2 ri] only the variance of vt appears, which is

independent of t.

Remark 6: Substituting (2.24) in (2.27), we get the asymptoric constant variance of

yt :

var(yt)→
σ2
u(1− 2σ2

vθ)

G

where
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G = 1− µ4θ
2 − 2(µ3)

2θ3 − 2(σ2
v)

3θ3 − 2µ3ρθ(1 + θ)−

−ρ2(1 + 2σ2
vθ) + (σ2

v)
2θ(2 + θ + θ2)− σ2

v(1 + 2θ + θ2 − 2µ4θ
3).

If we set µ3 = 0 and µ4 = 3σ2
v, which are the corresponding moments of the normal

distribution, then, after some manipulations, we get:

G = (1− ρ2 − σ2
v(1 + θ2)− 2(σ2

vθ)
2)(1− 2σ2

vθ)− 4ρ2σ2
vθ

which is the asymptotic variance derived by Tjostheim.

Remark 7: Note that the limit in (22) depends on the expectation of the product∏s
i=2 ri, which tends to zero as s → ∞, (see the proof for the first order stability condi-

tions). This in turn implies that a stable {yt}t≥1 is also asymptotically non-correlated.

2.4 Estimation Issues

The estimation problems under study may be thought of as special cases of the more

general problem addressed by Grillenzoni (1993). This study shows that the procedure of

maximizing a Gausssian likelihood function which is built on the prediction-error decom-

position realized by the Kalman filter is `formally implementable and statistically efficient

for doubly stochastic models' (Grillenzoni 1993, pp. 238). Furthermore, the paper demon-

strates the derivation of the necessary Kalman filter equations in the case of AR(1)/AR(p)

model. Tjostheim (1986) derived the Kalman filter equation for the AR(1)/MA(1) case

for forecasting purposes but did not discussed the estimation procedure.

As a result, we do not discuss the present estimation problems in detail, but, instead

we briefly explain how the Kalman filter equations and the likelihood function are defined

for the cases of interest. Let us first define ρt|t−1 := E(ρt|Ft−1) and Pt|t−1 := var(ρt|Ft−1),

with Ft−1 being the information set available at time t-1.
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2.4.1 The AR(1)-AR(1) Case

The AR(1)/AR(1) model defined by (2.1)-(2.2) is in state-space form, which allows the

Gaussian log-likelihood function to be computed by the the Kalman filter.

Then, we have:

E(yt|Ft−1) = E(ρyt−1 + ρtyt−1 + ut|Ft−1) = ρyt−1 + ρt|t−1yt−1

var(yt|Ft−1) = var(c+ ρyt−1 + ρtyt−1 + ut|Ft−1) = y2
t−1Pt|t−1 + σ2

u

and

cov(yt, ρt|Ft−1) = cov(c+ ρyt−1 + ρtyt−1 + ut, ρt|Ft−1)

= cov(ρtyt−1, ρt|Ft−1) = yt−1Pt|t−1.

Finally, by assuming joint normality for ρt and yt, conditional on information set Ft−1,

we conclude that:


∣∣∣∣∣∣∣
ρt
yt


∣∣∣∣∣∣∣Ft−1

∼N
 ρt|t−1

c+ ρyt−1+ρt|t−1yt−1

 ,
 Pt|t−1 yt−1Pt|t−1

yt−1Pt|t−1 y2
t−1Pt|t−1+σ

2
u

 (2.30)

Using the properties of the Gaussian joint distribution and (2.30) we obtain that

ρt|Ft ∼ N(ρt|t, Pt|t),where:

ρt|t = E{ρt|Ft) = ρt|t−1 + yt−1Pt|t−1(y
2
t−1Pt|t−1 + σ2

u)
−1(yt − c− ρyt−1 − ρt|t−1yt−1)

and

Pt|t = var(ρt|Ft) = Pt|t−1 − (yt−1Pt|t−1)
2(y2
t−1Pt|t−1 + σ2

u)
−1

Once we have obtained the updating equations for the state variable and its variance,
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we can derive the so-called `prediction equations' which, for the case under study, take

the form:

ρt|t−1 = E(ρt|Ft−1)

= ϕρt−1|t−2 + ϕyt−2Pt−1|t−2(y
2
t−2Pt−1|t−2 + σ2

u)
−1× (2.31)

×(yt−1 − c− ρyt−2 − ρt−1|t−2yt−2) (2.32)

Pt|t−1 = var(ρt|Ft−1)

= ϕ2Pt−1|t−1 + σ2
v = ϕ2Pt−1|t−2− (2.33)

−(ϕyt−2Pt−1|t−2)
2(y2
t−2Pt−1|t−2 + σ2

u)
−1 + σ2

v (2.34)

Under the assumption that the the state process is stationary, the filter may be ini-

tialised to the unconditional mean and variance of the state variable, that is ρ1|0 = E(ρ1) =

0 and P1|0 = var(ρ1) = σ2v
1−ϕ2 . Nicholls and Quinn (1980,1981) discussed the estimation

procedure of autoregressive random coefficient models and proposed an initial calculation

for var(ρ1) (with ϕ = 0) which can be utilized in our case.

Since, yt conditional on Ft−1 is normally distributed, the logarithm of the likelihood

function is expressed as

lnL(θ; yt) = −T
2

ln 2π − 1

2

T∑
t=1

ln
{
y2
t−1Pt|t−1 + σ2

u

}
(2.35)

−1

2

T∑
t=1

(yt − ρyt−1 − yt−1ρt|t−1)
2{

y2
t−1Pt|t−1 + σ2

u

} . (2.36)

Alternatively, we may adopt the so-called `Aitkenn formulation' of the likelihood

function, which is based on the transformation of the original state space model to a single

regression model characterised by conditional heteroskedasticity and serial correlation.

Specifically, we rewrite ?? as follows:
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yt = ρyt−1 + wt , (2.37)

where

wt = ρtyt−1 + ut = yt−1[ϕ
Tρ0 +

T−1∑
i=0

ϕivt−i] + ut. (2.38)

Hence,

E(wt|Ft−1) = E(yt−1[ϕ
Tρ0 +

T−1∑
i=0

ϕivt−i] + ut|Ft−1) = 0 (2.39)

and

var(wt|Ft−1) = y2
t−1[ϕ

2T σ2
v

1− ϕ2 + σ2
v

T−1∑
i=0

ϕ2i] + σ2
v = σ2

vy
2
t−1[

ϕ2T

1− ϕ2 +
T−1∑
i=0

ϕ2i] + σ2
u (2.40)

Combining (2.37), (2.39) and (2.40) we obtain

E(yt|Ft−1) = ρyt−1 (2.41)

and

var(yt|Ft−1) = σ2
vy

2
t−1[

ϕ2T

1− ϕ2 +
T−1∑
i=0

ϕ2i] + σ2
u. (2.42)

Based on (2.41) and (2.42), the logarithm of the likelihood function takes the form:

lnL(θ; yt) = −T
2

ln 2π − 1

2

T∑
t=1

{
lnσ2

vy
2
t−1

[
T−1∑
i=0

ϕ2i +
ϕ2T

1− ϕ2

]
+ σ2

u

}

−1

2

T∑
t=1

(yt − ρyt−1)
2

σ2
vy

2
t−1

[∑T−1
i=0 ϕ

2i + ϕ2T

1−ϕ2
]
+ σ2

u

(2.43)

Remark 2: The maximum likelihood estimator of ρ, coincides with the GLS estimator,
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ρ̂GLS of this parameter, obtained in the context of the AR(1) model (2.37). Specifically,

d lnL
dρ

= −1

2

T∑
t=1

−2(yt − ρyt−1)yt−1

σ2
vy

2
t−1

[∑T−1
i=0 ϕ

2i + ϕ2T

1−ϕ2
]
+ σ2

u

= 0⇒

⇒ ρ̂(σ2
u, ϕ, σ

2
v) =

∑T
t=1

ytyt−1

σ2vy
2
t−1

[∑T−1

i=0
ϕ2i+ ϕ2T

1−ϕ2

]
+σ2u∑T

t=1

y2t−1

σ2vy
2
t−1

[∑T−1

i=0
ϕ2i+ ϕ2T

1−ϕ2

]
+σ2u

= ρ̂GLS

Remark 3: If ϕ = 0, we obtain the log-likelihood function for the random coefficient

model

lnL(θ; yt) = −T
2

ln 2π − 1

2

T∑
t=1

ln
{
σ2
vy

2
t−1 + σ2

u

}
− 1

2

T∑
t=1

(yt − ρyt−1)
2

σ2
vy

2
t−1 + σ2

u

,

and if, in addition, σ2
v = 0, then

lnL(θ; yt) = −T
2

ln 2π − 1

2

T∑
t=1

lnσ2
u −

1

2

T∑
t=1

(yt − ρyt−1)
2

σ2
u

,

which is the log-likelihood function of the constant coefficient AR(1) model. If, however,

σ2
v = 0 and ϕ ̸= 0, then we end up with an AR(1) model whose coefficient varies deter-

ministically. In this case the log-likelihood function does not provide an estimator for ϕ,

since it attains the same maximum for any value |ϕ| < 1. In other words, this particular

parameter configuration causes identification failure for ϕ.

Pagan (1980) shows that the two alternative formulations presented above are equiva-

lent as long as |ϕ| < 1, and the Kalman filter is initialized to E(ρ0) = 0 and var(ρ0) = σ2v
1−ϕ2 .

Moreover, he provides sufficient conditions for the maximum likelihood estimates of the

parameters of general state space models to be consistent and asymptotically normal. In

the case of the AR(1)-AR(1) model, these conditions amount to: (i) model identification

(this exludes the case σ2
v = 0, ϕ ̸= 0), (ii) stationarity of the state process, that is |ϕ| < 1,

(iii) second-order stationarity of {yt} (see Theorem 1) and (iv) the model parameters

taking values inside the permissible parameter space.
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2.4.2 The AR(1)-MA(1) Case

The AR(1)/MA(1) model presented in (2.10) is not in state space form and we need to

rewrite it slightly:

yt = ρyt−1 +
[
yt−1 θyt−1

]  vt

vt−1

+ ut (2.44)

ξt+1 =

vt+1

vt

 = Fξt + ṽt+1 =

0 0

1 0


 vt

vt−1

+

vt+1

0

 (2.45)

with ut ∼ IID(0, σ2
u) and ṽt+1 ∼ IID(

0
0

 , Q =

σ2
v 0

0 0

).

We define first ξ̂t|t−1 = E(ξt|Ft−1) = E(

 vt

vt−1

 |Ft−1) =

 0

v̂t−1|t−1

 and Pt|t−1 =

var(

 vt

vt−1

 |Ft−1). Gaussian maximum likelihood estimation requires the derivation of

the conditional mean and variance of yt:

E(yt|Ft−1) = E(ρyt−1 +
[
yt−1 θyt−1

]  vt

vt−1

+ ut|Ft−1) (2.46)

= ρyt−1 + θyt−1v̂t−1|t−1

var(yt|Ft−1) = var(ρyt−1 +
[
yt−1 θyt−1

]  vt

vt−1

+ ut|Ft−1) = (2.47)

=
[
yt−1 θyt−1

]
Pt|t−1

 yt−1

θyt−1

+ σ2
v.

Calculation of the above moments requires the extrapolation of prediction equations
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v̂t−1|t−1 and Pt|t−1.These equations can be derived, using the Kalman filter techniques as

described in the previous section. Joint normality between ξt and yt takes the following

form:


∣∣∣∣∣∣∣
ξt
yt


∣∣∣∣∣∣∣Ft−1

∼N
 ξ̂t|t−1

E(yt|Ft−1)

 ,


Pt|t−1 Pt|t−1

 yt−1

θyt−1


[
yt−1 θyt−1

]
Pt|t−1 var(yt|Ft−1)

 (2.48)

The above assumption allows us to conclude ξt|Ft ∼ N(ξ̂t|t, Pt|t) where

ξ̂t|t = ξ̂t|t−1 + {Pt|t−1 ×

 yt−1

θyt−1


[yt−1 θyt−1

]
Pt|t−1

 yt−1

θyt−1

+ σ2
u


−1

× (2.49)

×[yt − ρyt−1 −
[
yt−1 θyt−1

]
ξ̂t|t−1]}

and

Pt|t = Pt|t−1 − {Pt|t−1 ×

 yt−1

θyt−1

× (2.50)

×

[yt−1 θyt−1

]
Pt|t−1

 yt−1

θyt−1

+ σ2
u


−1

×
[
yt−1 θyt−1

]
Pt|t−1} =

=

σ2
v 0

0 P
(1,1)
t−1|t−1

− 1

y2
t−1[σ

2
v + θ2P

(1,1)
t−1|t−1] + σ2

u

 (σ2
v)

2yt−1 θσ2
vy

2
t−1P

(1,1)
t−1|t−1

θσ2
vy

2
t−1P

(1,1)
t−1|t−1 θ2y2

t−1[P
(1,1)
t−1|t−1]

2



Then, standard Kalman filter updating equations, allow us to move on, calculating

ξ̂t+1|t and Pt+1|t :
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ξ̂t+1|t =

 0

v̂t|t

 = F ξ̂t|t = (2.51)

=

 0

σ2
vyt−1

yt−ρyt−1−θyt−1v̂t−1|t−1

y2t−1(σ2v+θ
2P

(1,1)

t−1|t−1
)+σ2u


and

Pt+1|t = FPt|tF
′ +Q =

0 0

1 0


P (1,1)
t|t P

(1,2)
t|t

P
(2,1)
t|t P

(2,2)
t|t


0 1

0 0

+

σ2
v 0

0 0

 = (2.52)

=

σ2
v 0

0 P
(1,1)
t|t



where P (i,j)
t|t is the (i,j) element of the mean square error matrix Pt|t, available from result

(2.50).

Since yt is, conditional on Ft−1, normally distributed and the moments in (2.46) and

(2.47) can be reproduced using results (2.49)-(2.52), we can use Rosenberg ( state space

form) representation of the likelihood function of yt to estimate unknown parameters

ρ, θ, σ2
u and σ2

v :

lnL(θ; yt) = −T
2

ln 2π (2.53)

−1

2

T∑
t=1

ln

y2
t−1σ

2
v[1 + θ2(1−

y2
t−2

y2
t−2[σ

2
v + θ2P

(1,1)
t−2|t−2] + σ2

u

+ σ2
u

 (2.54)

−1

2

T∑
t=1

(yt − ρyt−1 − θyt−1v̂t−1|t−1)
2{

y2
t−1σ

2
v[1 + θ2(1− y2t−2

y2t−2[σ2v+θ
2P

(1,1)

t−2|t−2
]+σ2u

+ σ2
u

} . (2.55)
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2.5 Monte Carlo Study

Next, we conduct a Monte Carlo study in order to achieve two tasks: The first is to exam-

ine the finite sample performance of the maximum likelihood estimator together with that

of the related test statistics for various parameter settings of theoretical and empirical

interest. The second task is to investigate the extent to which the AIC, SIC and HQ

information criteria are capable of detecting the correct model from a set of models that

contains apart from AR(1)/AR(1) and AR(1)/MA(1), the AR(1) model with constant

coefficient (AR(1)) and the AR(1) model with random coefficient (RCAR(1)) as well.

The theoretical properties of the above mentioned criteria, for the case of linear models,

have been thoroughly studied in the literature. Shibata (1976) obtains the asymptotic

distribution of the AIC- selected order for the case of an autorgressive model of order p.

Hurvich and Tsai (1989) demonstrate that AIC does not provide a consistent estimate

of p, whereas SIC and HQ do so at the cost of asymptotic efficiency. Beran, Bhanasali

and Ocker (1998) examine the problem of model choice for the class of stationary and

nonstationary, fractional and nonfractional autoregressive process. They show that AIC

is of the same general form as for stationary autoregressive processes but with the frac-

tional order, d, of integration of the underlying process being treated as an additional

parameter. They also show that as in the stationary case, AIC, as opposed to SIC and

HQ, does not provide a consistent estimate of the true order of the model. Inconsistency

of AIC, however, is not always treated as an unpleasant feature of the selection procedure,

especially in cases where the "true" model is not expected to belong to M. According

to Shibata (1983), "Inconsistency does not imply a defect of the selection procedure, but

rather the inevitable concomitant of balancing underfitting and overfitting risks".

Despite the extentive research on AIC, SIC and HQ available for the case of linear

models, the properties of above mentioned criteria in nonlinear models, such the present

AR(1)-AR(1) model, are relatively unknown. Priestley (1981, Ch. 11) has applied AIC

in various nonlinear models, such as bilinear and threshold autoregressive ones, without

providing any justification for its use. Auestad and Tjostheim (1990) have offered a

heuristic argument, accompanied with Monte Carlo simulations, for using information



30 CHAPTER 2. THE AR(1) MODEL WITH AN AR(1) OR MA(1) COEFFICIENT

criteria in the general nonlinear case. These authors have also acknowledged that the

theoretical analysis of the order determination problem for nonlinear time series models

is prohibitively difficult. Consequently, Monte Carlo simulations seem to be the only

feasible method of investigating the problem at hand.

In all the simulations that follow, we assume that ut ∼ IIDN(0, σ2
u), νt ∼ IIDN(0, σ2

ν),

and also that {ut} and {νt} are mutually independent. The number of replications is equal

to 2000 and the sample size, T , is set equal to 250, 500, and 1000. We explored many al-

ternative parameter settings, covering the majority of cases that present either theoretical

or empirical interest. We report the results from the following three representative cases:

(i) (ρ, ψ, σ2
u, σ

2
ν) = (0.4,−0.2, 0.07, 0.43), (ii) (ρ, ψ, σ2

u, σ
2
ν) = (0.6, 0.3, 0.5, 0.1) and (iii)

(ρ, ψ, σ2
u, σ

2
ν) = (0.6,−0.5, 0.07, 0.70) where ψ = {ϕ, θ} depending on the type of model

that we simulated.

The values of the first case are representative of the corresponding ML estimates

obtained for daily interest rate series (see next section). The second case is characterised

by a relatively small state variance. This may cause problems to the ML estimator, since

σ2
ν is close to the frontier of the parameter space. The parameters in the third case produce

a value violates the necessary conditions for stabilitity, both in AR(1)/AR(1) case (R is

equal to 1.293) and in AR(1)/MA(1) case (largest eigenvalue of matrix A is 1.175) The

results for all cases are reported in the Tables presented in the Appendix. The first and

second panels of these tables report the average bias, standard deviation, skewness and

kurtosis coefficients of the ML estimators and the associated t-statistics respectively. In

addition, the 5% empirical sizes of the t-statistics are also presented. Finally the last

panels of the tables report the frequencies at which the information criteria select the

correct model among the AR(1), AR(1)-RC, AR(1)-MA(1) and AR(1)-AR(1) ones.

The ML estimators of all the four parameters for both models of consideration, work

remarkaby well for all the parameter configurations under study, including those which

are near the boundary of the parameter space (Case ii) or those violating the necessary

condition for stability (Case iii). The average biases and standard deviations decrease

as the sample size increases and the biases are sufficiently small even for T = 250. For

example, for T = 500, the standard deviation of ϕ̂ is equal to 0.112, 0.207 and 0.058 for
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Cases (i), (ii) and (iii), respectively. In the case of AR(1)/MA(1) model, θ̂ slightly less

well with standard deviations equal to 0.145, 0.348 and 0.116 for Cases (i) to (iii). When

the sample size increases to T = 1000, the corresponding standard deviations decrease to

0.079, 0.153 and 0.039 for ϕ̂ and to 0.088, 0.306 and 0.072 for θ̂. Moreover, ρ̂, ϕ̂ and θ̂

appear to be normally distributed for the majority of the cases under study. These results

suggest that the ML estimators may perform well even in the absence of stationarity of

{yt}.

Turning to hypothesis testing on the parameters of the AR(1)-AR(1) model, the densi-

ties of the t-ratios of ρ̂ and ϕ̂ estimators under study come reasonably close to the standard

normal density, even for T = 250. This results in fairly accurate statistical inferences, as

suggested by the fact that the empirical sizes of the tests are very close to their nominal

values. It is interesting to note that the good behaviour of the t-tests is observed even for

cases in which the state variance σ2
ν is relatively small (e.g. Case II). However, as the state

variance decreases further, size distortions start to appear, which become stronger as σ2
ν

approaches zero. For example, in the context of Case II and for T = 250, a decrease in the

state variance from σ2
ν = 0.43 to σ2

ν = 0.1, results in a large increase in the empirical size

of the t-test on ϕ, from 5.5% to 19.1%. In the case of AR(1)/MA(1) models, in all cases

the t-ratios of ρ̂ appear to behave as expected and have an empirical distribution close

to the standard Normal even for small samples. However, the t-ratios and the empirical

sizes of θ̂ work well only in the nonstationary yt setting - Case (iii). In the other cases, it

appears that t-ratios need larger samples to approach asymptotic Normality.

The performance of information criteria under study depends heavily on the size of

the estimation sample. The ability of AIC,SIC and HQ criteria to detect the correct

model increases as the we increase the sample size. However, these criteria although

it appears to perform well in detecting AR(1)/AR(1) and AR(1)/MA(1) models even

for small samples, they fail in distinguishing among each other. Monte Carlo results

suggest that AIC exhibits the best performance followed by SIC. On the contrary, the

performance of HQ is rather poor. These results agree with the ones established for linear

cases, according to which when the "dimension" of the true model is large relative to those

of its competitors, the probability of underfitting by means of SIC or HQ is rather high.
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Specifically, for Case (ii) and T = 250, when the true model is AR(1)/AR(1), the percent

selections of the correct model is 31%, 22% and 12% for AIC, SIC and HQ, respectively.

These numbers increases in the case T = 1000 to 50%,43% and 26% respectively and

if include the times that these criteria selects alternatively the AR(1) / MA(1) model,

the cumulative performance of AIC, SIC and HQ in detecting random autoregressive

coefficients that exchibit in general some type of dependence, increases since the percent

selection of these models is 90.5%, 74.5 and 48.5% respectively. When the values of ϕ, θ or

σ2
ν are relatively large (e.g. Case ii), the frequencies at which the true model is detected

approach 100% even for T = 500.

Selecting between the AR(1)/MA(1) and AR(1)-AR(1) models may alternatively be

accomplished by means of the t-test on ϕ and θ. It has already been established that the

rejection frequencies of the true null hypothesis ϕ = 0 are close to their nominal levels

for the majority of cases under examination. When ϕ ̸= 0 the percent selections of the

true AR(1)-AR(1) model are determined by the power properties of the t-test for the

false hypothesis ϕ = 0. These properties, in turn, depend on the true value of ϕ and the

sample size. For example, for (ρ, ϕ, σ2
u, σ

2
ν) = (0.2, 0.2, 1, 0.4), the power of the t-test to

reject the hypothesis ϕ = 0 is 20% and 72% for T = 250 and 1000, respectively.

The remarkable performance of the ML estimates and the information criteria in cases

where the conditions of stability are violated (e.g. Case iii) may seem surprising as first

sight. However, it must be noted that this condition is too restrictive in the case of finite

samples. Specifically, there might be cases in which necessary conditions are violated and

the finite realizations of {yt} closely resemble those of a second-order stationary process.

In order for a finite realization of {yt} to exhibit distinct non-stationary characteristics,

there must be a consecutive number of time periods for which the values of ρ + ρt are

large. On the contrary if large values of ρ + ρt occur only at isolated time periods, far

apart from each other, then the realizations of the non-stationary {yt} are likely to be

similar to those of a stationary process.
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2.6 Empirical Results

This section presents empirical evidence suggesting that the AR(1) / AR(1) and AR(1)

/ MA(1) models describe many financial time series better than either the AR(1) or the

AR(1)-RC models. This evidence is supported by both in-sample criteria and out-of-

sample performance measures.

Specifically, we employ daily data for 9 stock indices, ( namely DOW JONES COMP.

AVG, S&P 100 INDEX, S&P 500 INDEX, NYSE COMPOSITE INDEX, NASDAQ COM-

POSITE INDEX, DAX INDEX, NIKKEI 225, HANG SENG INDEX and ALL ORDI-

NARIES INDX) obtained from Bloomberg Each series satisfy the minimum observation

of at least 2000 observations prior to 01/01/1990 in order to have sufficient long history

to achieve credible back-testing results

The four basic competing models, namely AR(1), AR(1)/RC, AR(1)/MA(1) and

AR(1)/AR(1) but we include in the comparison the performance an AR(1)-GARCH(1,1)

model which is widely used in financial time series. Starting in 01/01/1990 all models.

are estimated for the logarithmic differences of each series Specifically, each model is es-

timated using data up to the period T and one-step-ahead forecasts are generated. Then

T + 1 data are added to the estimation sample, the models are re-estimated and new

one-step-ahead forecasts are generated and compared with realized returns at T +1. This

procedure continues until forecasts for the last period in our sample are produced. At the

end,, the forecasting accuracy of each model is measured by the usual statistics, namely

the mean absolute error (MAE) and the root mean squared error (RMSE). We also cal-

culate the corresponding Akaike information criterion for all models under consideration

and record which model was selected at each step (AR(1)-GARCH(1,1) is not included

in this competition among the other models, because it is not nested with them). The

results, reported in Tables (2.2) and (2.1) may be summarized as follows:

(i) AR(1)-MA(1) is selected as the best model by AIC,,most of the times for all stock

indices under study.The constant AR(1) model is never chosen as the most appropriate

model.

(ii) In terms of the Mean Absolute Error, all models under consideration, perform
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equivalently

(iii) Root Mean Square Error suggest cases where the best forecasting models are the

autoregressive models with random coefficients that exhibits dependence. For example,

the RMSE IS 0.95, 1.09 and 1.00 for AR(1), AR(1)-RC and AR(1)-GARCH models for

SP500 Index, while AR(1)-MA(1) and AR(1)-AR(1) models have RMSE equal to 0.83

and 0.84 respectively.

Table 2.1: Forecasting Performance Evaluation of Studied Models, using Root Mean Square
Error and Mean Absolute Error Measures

Estimated Model
Stock Index AR AR-RC AR-MA AR-AR AR

GARCH
DOW JONES RMSE 1.46 1.44 1.48 1.47 1.45

MAE 0.78 0.77 0.78 0.78 0.78
SP 100 INDEX RMSE 1.12 1.21 0.99 1.00 1.15

MAE 0.74 0.74 0.72 0.72 0.74
SP 500 INDEX RMSE 0.95 1.09 0.83 0.84 1.00

MAE 0.70 0.72 0.68 0.68 0.71
NYSE RMSE 1.65 1.66 1.67 1.66 1.66

MAE 0.84 0.84 0.85 0.85 0.84
NASDAQ RMSE 2.44 2.87 2.29 2.36 2.69

MAE 0.98 1.00 0.97 0.97 1.00
DAX INDEX RMSE 1.26 1.28 1.24 1.24 1.25

MAE 0.84 0.84 0.83 0.83 0.84
NIKKEI 225 RMSE 2.87 2.78 2.78 2.78 2.82

MAE 1.24 1.22 1.22 1.22 1.23
HANG SENG RMSE 2.30 2.34 2.37 2.36 2.33

MAE 1.16 1.15 1.17 1.16 1.15
ALL ORDINARIES RMSE 0.85 0.85 0.86 0.85 0.85

MAE 0.67 0.68 0.67 0.67 0.67

2.7 Conclusions.

In this chapter we investigated the issue of stability of an AR(1) process with a stochastic,

serially correlated coefficient, which was assumed to follow either an AR(1) or a MA(1)

process. In the case of the AR(1) coefficient, it was shown that the problem of deriving

empirically useful, exact sufficient conditions for the stability of the process is prohibitively

difficult. However, we were able to derive the necessary and sufficient conditions for the
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Table 2.2: Percentages of Model's Selection, using AIC
Stock Index AR(1) AR-RC AR-MA AR-AR

DOW JONES COMP 0 1.96 90.20 7.84
SP 100 INDEX 0 5.88 94.12 0.00
SP 500 INDEX 0 1.96 98.04 0.00

NYSE COMPOSITE INDEX 0 1.96 96.08 1.96
NASDAQ COMPOSITE INDEX 0 0.00 88.24 11.76

DAX INDEX 0 3.92 80.39 15.69
NIKKEI 225 0 14.00 72.00 16.00

HANG SENG INDEX 0 0.00 98.00 2.00
ALL ORDINARIES INDX 0 17.65 82.35 0.00

stability of the process for the case of the MA(1) coefficient.

2.8 Appendix
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Table 2.3: Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( i) , T=250,
{ρ, ϕ, σ2

v, σ
2
u}=0.4,-0.2,0.07,0.43

Bias of: ρ ϕ σ2
u σ2

v

Average -0.001 -0.013 0.002 -0.025
St.Dev. 0.071 0.170 0.015 0.116

Skewness -0.256 -0.327 0.454 -0.047
Kurtosis 2.587 4.225 3.027 2.738

t-statistic of: ρ ϕ
Average 0.009 -0.100
St.Dev. 0.988 1.125

Skewness -0.149 -0.963
Kurtosis 2.756 8.584

Empirical Size 4.00% 5.50%

Model Selection AIC SC HQ
AR(1) 0.00% 1.00% 5.00%

AR(1)-RC 48.00% 62.00% 72.00%
AR(1)-MA(1) 31.00% 22.00% 12.50%
AR(1)-AR(1) 21.00% 15.00% 10.50%
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Figure 2.3: Realization of AR(1)/AR(1) Case (i) T=250
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Table 2.4: Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( i ), T=500,
{ρ, ϕ, σ2

v, σ
2
u}=0.4,-0.2,0.07,0.43

Bias of: ρ ϕ σ2
u σ2

v

Average 0.000 -0.010 0.000 -0.015
St.Dev. 0.047 0.112 0.010 0.083

Skewness 0.049 -0.285 0.289 -0.270
Kurtosis 2.941 3.468 3.373 2.938

t-statistic of: ρ ϕ
Average 0.007 -0.090
St.Dev. 0.941 1.004

Skewness 0.079 -0.177
Kurtosis 2.983 3.680

Empirical Size 3.00% 7.00%

Model Selection AIC SC HQ
AR(1) 0.00% 0.00% 0.00%

AR(1)-RC 28.00% 45.00% 67.00%
AR(1)-MA(1) 37.50% 30.50% 19.00%
AR(1)-AR(1) 34.50% 24.50% 14.00%
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Figure 2.4: Realization of AR(1)/AR(1) Case (i) T=500
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Table 2.5: Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( i ), T=1000,
{ρ, ϕ, σ2

v, σ
2
u}=0.4,-0.2,0.07,0.43

Bias of: ρ ϕ σ2
u σ2

v

Average -0.003 0.001 0.001 -0.014
St.Dev. 0.039 0.079 0.007 0.058

Skewness -0.021 0.069 0.233 -0.259
Kurtosis 2.964 3.429 3.345 3.213

t-statistic of: ρ ϕ
Average -0.080 0.011
St.Dev. 1.084 1.034

Skewness 0.037 -0.035
Kurtosis 2.938 3.360

Empirical Size 6.50% 7.50%

Model Selection AIC SC HQ
AR(1) 0.00% 0.00% 0.00%

AR(1)-RC 9.50% 25.50% 51.50%
AR(1)-MA(1) 50.00% 43.00% 26.00%
AR(1)-AR(1) 40.50% 31.50% 22.50%
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1
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Figure 2.5: Realization of AR(1)/AR(1) Case (i) T=1000
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Table 2.6: Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( ii ), T=250,
{ρ, ϕ, σ2

v, σ
2
u}=0.6,-0.3,0.5,0.1

Bias of: ρ ϕ σ2
u σ2

v

Average 0.001 -0.024 0.002 -0.002
St.Dev. 0.063 0.260 0.061 0.050

Skewness 0.004 -0.064 0.281 0.285
Kurtosis 2.772 2.346 2.804 2.645

t-statistic of: ρ ϕ
Average 0.047 0.083
St.Dev. 0.922 0.947

Skewness 0.184 1.134
Kurtosis 2.988 5.639

Empirical Size 7.04% 19.1%

Model Selection AIC SC HQ
AR(1) 33.93% 52.68% 71.88%

AR(1)-RC 36.61% 30.36% 23.21%
AR(1)-MA(1) 14.29% 9.38% 1.34%
AR(1)-AR(1) 15.18% 7.59% 3.57%
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Figure 2.6: Realization of AR(1)/AR(1) Case (ii) T=250
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Table 2.7: Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( ii ), T=500,
{ϕ, θ, σ2

v, σ
2
u}=0.6,-0.3,0.5,0.1

Bias of: ρ ϕ σ2
u σ2

v

Average 0.001 -0.046 -0.001 -0.002
St.Dev. 0.048 0.207 0.042 0.038

Skewness -0.278 -0.047 0.378 0.238
Kurtosis 2.412 2.621 3.370 2.975

t-statistic of: ρ ϕ
Average 0.067 -0.089
St.Dev. 0.995 0.933

Skewness -0.092 0.641
Kurtosis 2.263 4.358

Empirical Size 5.50% 5.50%

Model Selection AIC SC HQ
AR(1) 8.33% 25.00% 42.16%

AR(1)-RC 49.51% 53.92% 50.00%
AR(1)-MA(1) 17.65% 8.82% 3.43%
AR(1)-AR(1) 24.51% 12.25% 4.41%
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Figure 2.7: Realization of AR(1)/AR(1) Case (ii) T=500
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Table 2.8: Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( ii ), T=1000,
{ρ, ϕ, σ2

v, σ
2
u}=0.6,-0.3,0.5,0.1

Bias of: ρ ϕ σ2
u σ2

v

Average 0.002 -0.008 0.004 -0.004
St.Dev. 0.033 0.153 0.029 0.029

Skewness -0.041 -0.247 0.048 0.227
Kurtosis 2.532 2.987 3.712 3.386

t-statistic of: ρ ϕ
Average 0.090 0.039
St.Dev. 0.965 1.006

Skewness 0.064 0.303
Kurtosis 2.553 3.124

Empirical Size 3.50% 7.50%

Model Selection AIC SC HQ
AR(1) 0.00% 4.50% 13.00%

AR(1)-RC 32.50% 51.00% 64.00%
AR(1)-MA(1) 29.00% 19.50% 8.00%
AR(1)-AR(1) 38.50% 25.00% 15.00%
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Figure 2.8: Realization of AR(1)/AR(1) Case (ii) T=1000
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Table 2.9: Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( iii ), T=250,
{ρ, ϕ, σ2

v, σ
2
u}=0.6,-0.5,0.07,0.70

Bias of: ρ ϕ σ2
u σ2

v

Average 0.003 0.005 0.001 -0.015
St.Dev. 0.060 0.078 0.012 0.110

Skewness -0.237 0.343 0.135 -0.040
Kurtosis 2.908 2.923 2.720 2.927

t-statistic of: ρ ϕ
Average 0.066 -0.027
St.Dev. 0.982 0.947

Skewness -0.088 -0.177
Kurtosis 2.875 3.342

Empirical Size 4.50% 5.50%

Model Selection AIC SC HQ
AR(1) 0.00% 0.00% 0.00%

AR(1)-RC 0.00% 0.00% 0.00%
AR(1)-MA(1) 11.00% 11.00% 11.00%
AR(1)-AR(1) 89.00% 89.00% 89.00%

­4

­2

0

2

4

6

8

25 50 75 100 125 150 175 200 225 250

Figure 2.9: Realization of AR(1)/AR(1) Case (iii) T=250
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Table 2.10: Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( iii ), T=500,
{ρ, ϕ, σ2

v, σ
2
u}=0.6,-0.5,0.07,0.70

Bias of: ρ ϕ σ2
u σ2

v

Average -0.003 -0.003 0.000 -0.009
St.Dev. 0.042 0.058 0.008 0.086

Skewness 0.063 0.204 0.528 0.075
Kurtosis 2.620 2.738 3.762 3.025

t-statistic of: ρ ϕ
Average -0.052 -0.137
St.Dev. 1.003 1.027

Skewness 0.108 -0.124
Kurtosis 2.661 2.945

Empirical Size 6.00% 5.50%

Model Selection AIC SC HQ
AR(1) 0.00% 0.00% 0.00%

AR(1)-RC 0.00% 0.00% 0.00%
AR(1)-MA(1) 97.50% 97.50% 97.50%
AR(1)-AR(1) 2.50% 2.50% 2.50%
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Figure 2.10: Realization of AR(1)/AR(1) Case (iii) T=500
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Table 2.11: Monte Carlo Experiment: AR(1) / AR(1) Process - Case ( iii ), T=1000,
{ρ, ϕ, σ2

v, σ
2
u}=0.6,-0.5,0.07,0.70

Bias of: ρ ϕ σ2
u σ2

v

Average -0.004 0.001 0.001 -0.006
St.Dev. 0.032 0.039 0.006 0.055

Skewness 0.028 0.178 0.341 -0.178
Kurtosis 3.077 2.896 3.233 3.557

t-statistic of: ρ ϕ
Average -0.124 -0.035
St.Dev. 1.076 1.000

Skewness 0.122 -0.114
Kurtosis 3.157 3.158

Empirical Size 7.00% 5.00%

Model Selection AIC SC HQ
AR(1) 0.00% 0.00% 0.00%

AR(1)-RC 0.00% 0.00% 0.00%
AR(1)-MA(1) 0.50% 0.50% 0.50%
AR(1)-AR(1) 99.50% 99.50% 99.50%
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Figure 2.11: Realization of AR(1)/AR(1) Case (iii) T=1000
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Table 2.12: Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( i ), T=250,
{ρ, θ, σ2

v, σ
2
u}=0.4,-0.2,0.07,0.43

Bias of: ρ θ σ2
u σ2

v

Average 0.002 -0.035 0.001 -0.019
St.Dev. 0.071 0.209 0.014 0.111

Skewness -0.251 -0.557 0.394 0.144
Kurtosis 2.781 4.619 2.827 2.416

t-statistic of: ρ θ
Average 0.048 0.040
St.Dev. 0.997 0.838

Skewness -0.090 0.588
Kurtosis 3.011 2.812

Empirical Size 5.00% 1.50%

Model Selection AIC SC HQ
AR(1) 0.46% 1.39% 5.56%

AR(1)-RC 47.22% 61.57% 73.61%
AR(1)-MA(1) 37.04% 25.46% 14.81%
AR(1)-AR(1) 15.28% 11.57% 6.02%
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Figure 2.12: Realization of AR(1)/MA(1) Case (i) T=250
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Table 2.13: Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( i ), T=500,
{ρ, θ, σ2

v, σ
2
u}=0.4,-0.2,0.07,0.43

Bias of: ρ θ σ2
u σ2

v

Average 0.001 -0.031 0.000 -0.018
St.Dev. 0.048 0.145 0.010 0.084

Skewness 0.032 -0.936 0.190 -0.379
Kurtosis 2.951 4.487 3.404 3.265

t-statistic of: ρ θ
Average 0.024 -0.028
St.Dev. 0.951 0.882

Skewness 0.044 0.539
Kurtosis 2.980 3.111

Empirical Size 3.50% 2.00%

Model Selection AIC SC HQ
AR(1) 0.00% 0.00% 0.00%

AR(1)-RC 30.20% 48.51% 68.81%
AR(1)-MA(1) 45.05% 37.13% 21.78%
AR(1)-AR(1) 24.75% 14.36% 9.41%
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Figure 2.13: Realization of AR(1)/MA(1) Case (i) T=500
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Table 2.14: Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( i ), T=1000,
{ρ, θ, σ2

v, σ
2
u}=0.4,-0.2,0.07,0.43

Bias of: ρ θ σ2
u σ2

v

Average -0.003 -0.001 0.001 -0.015
St.Dev. 0.039 0.088 0.007 0.061

Skewness -0.012 -0.259 0.250 -0.349
Kurtosis 2.862 4.065 3.342 3.307

t-statistic of: ρ θ
Average -0.065 0.058
St.Dev. 1.095 0.976

Skewness 0.059 0.316
Kurtosis 2.800 3.228

Empirical Size 7.00% 5.00%

Model Selection AIC SC HQ
AR(1) 0.00% 0.00% 0.00%

AR(1)-RC 11.50% 29.00% 54.50%
AR(1)-MA(1) 54.50% 42.50% 28.50%
AR(1)-AR(1) 34.00% 28.50% 17.00%
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Figure 2.14: Realization of AR(1)/MA(1) Case (i) T=1000
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Table 2.15: Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( ii ), T=250,
{ρ, θ, σ2

v, σ
2
u}=0.6,0.3,0.5,0.1

Bias of: ρ θ σ2
u σ2

v

Average 0.000 0.115 0.002 -0.007
St.Dev. 0.063 0.448 0.061 0.051

Skewness 0.050 0.111 0.198 0.663
Kurtosis 2.907 1.641 2.628 3.187

t-statistic of: ρ θ
Average 0.040 -0.263
St.Dev. 0.945 0.502

Skewness 0.255 -0.966
Kurtosis 3.031 3.577

Empirical Size 6.50% 0.00%

Model Selection AIC SC HQ
AR(1) 33.48% 54.35% 74.35%

AR(1)-RC 38.70% 31.74% 22.61%
AR(1)-MA(1) 16.09% 9.13% 0.87%
AR(1)-AR(1) 11.74% 4.78% 2.17%
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Figure 2.15: Realization of AR(1)/MA(1) Case (ii) T=250
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Table 2.16: Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( ii ), T=500,
{ρ, θ, σ2

v, σ
2
u}=0.6,0.3,0.5,0.1

Bias of: ρ θ σ2
u σ2

v

Average 0.004 0.081 0.000 -0.012
St.Dev. 0.046 0.387 0.042 0.039

Skewness -0.048 0.347 0.152 -0.053
Kurtosis 3.043 2.118 3.280 2.276

t-statistic of: ρ θ
Average 0.115 -0.311
St.Dev. 0.982 0.636

Skewness 0.150 -1.000
Kurtosis 2.899 3.569

Empirical Size 5.50% 0.50%

Model Selection AIC SC HQ
AR(1) 13.53% 26.57% 49.76%

AR(1)-RC 52.66% 58.45% 45.41%
AR(1)-MA(1) 20.77% 9.66% 2.90%
AR(1)-AR(1) 13.04% 5.31% 1.93%
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Figure 2.16: Realization of AR(1)/MA(1) Case (ii) T=500
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Table 2.17: Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( ii ), T=1000,
{ρ, θ, σ2

v, σ
2
u}=0.6,0.3,0.5,0.1

Bias of: ρ θ σ2
u σ2

v

Average -0.002 0.076 0.002 -0.010
St.Dev. 0.034 0.306 0.030 0.030

Skewness 0.118 0.592 -0.025 0.003
Kurtosis 2.853 2.857 3.063 2.393

t-statistic of: ρ θ
Average -0.035 -0.213
St.Dev. 1.019 0.753

Skewness 0.247 -1.042
Kurtosis 2.859 3.694

Empirical Size 5.50% 2.50%

Model Selection AIC SC HQ
AR(1) 1.49% 5.47% 16.92%

AR(1)-RC 45.77% 55.72% 66.17%
AR(1)-MA(1) 18.41% 13.93% 4.48%
AR(1)-AR(1) 34.33% 24.88% 12.44%
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Figure 2.17: Realization of AR(1)/MA(1) Case (ii) T=1000
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Table 2.18: Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( iii ), T=250,
{ρ, θ, σ2

v, σ
2
u}=0.6,-0.5,0.07,0.70

Bias of: ρ θ σ2
u σ2

v

Average -0.002 -0.087 0.001 -0.056
St.Dev. 0.060 0.222 0.012 0.155

Skewness -0.156 -0.845 0.016 -0.080
Kurtosis 3.184 2.811 2.866 2.752

t-statistic of: ρ θ
Average 0.022 0.077
St.Dev. 1.122 0.814

Skewness 0.158 0.719
Kurtosis 3.603 3.457

Empirical Size 7.50% 4.50%

Model Selection AIC SC HQ
AR(1) 0.00% 0.00% 0.00%

AR(1)-RC 0.00% 0.00% 2.36%
AR(1)-MA(1) 85.85% 85.85% 83.96%
AR(1)-AR(1) 14.15% 14.15% 13.68%
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Figure 2.18: Realization of AR(1)/MA(1) Case (iii) T=250
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Table 2.19: Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( iii ), T=500,
{ρ, θ, σ2

v, σ
2
u}=0.6,-0.5,0.07,0.70

Bias of: ρ θ σ2
u σ2

v

Average 0.000 -0.032 0.001 -0.025
St.Dev. 0.039 0.116 0.008 0.097

Skewness 0.218 -1.055 0.363 -0.301
Kurtosis 3.083 5.806 3.007 3.480

t-statistic of: ρ θ
Average 0.011 -0.121
St.Dev. 1.026 0.952

Skewness 0.328 0.472
Kurtosis 3.377 3.142

Empirical Size 6.00% 5.00%

Model Selection AIC SC HQ
AR(1) 0.00% 0.00% 0.00%

AR(1)-RC 0.00% 0.00% 0.00%
AR(1)-MA(1) 91.12% 91.12% 91.12%
AR(1)-AR(1) 8.88% 8.88% 8.88%
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Figure 2.19: Realization of AR(1)/MA(1) Case (iii) T=500
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Table 2.20: Monte Carlo Experiment: AR(1) / MA(1) Process - Case ( iii ), T=1000,
{ρ, θ, σ2

v, σ
2
u}=0.6,-0.5,0.07,0.70

Bias of: ρ θ σ2
u σ2

v

Average -0.004 -0.004 0.001 -0.011
St.Dev. 0.029 0.072 0.005 0.062

Skewness -0.044 -0.494 0.288 -0.218
Kurtosis 2.915 4.035 3.454 2.884

t-statistic of: ρ θ
Average -0.114 0.030
St.Dev. 1.031 1.023

Skewness 0.096 0.372
Kurtosis 2.784 3.619

Empirical Size 6.50% 7.00%

Model Selection AIC SC HQ
AR(1) 0.00% 0.00% 0.00%

AR(1)-RC 0.00% 0.00% 0.00%
AR(1)-MA(1) 94.76% 94.76% 94.76%
AR(1)-AR(1) 5.24% 5.24% 5.24%
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Figure 2.20: Realization of AR(1)/MA(1) Case (iii) T=1000



CHAPTER 3

Optimal Portfolios under Trending Second

Moments of Asset Returns

3.1 Introduction

The behavior of volatility of stock returns over time has been extensively investigated

by both the academic and investment communities in the last twenty five years or so.

Currently, there is widespread agreement among researchers that this volatility has not

remained constant over time. Various models for describing the time variation in volatil-

ity have been proposed in the literature, such as the well known GARCH and stochastic

volatility models. These models treat the observed “volatility clustering” as non-linear

dependence arising through the conditional variance of returns. This interpretation per-

mits the underlying stochastic process, {Rt}, generating the returns to be strictly or

even second-order stationary, since a time-varying conditional variance can coexist with

a time-invariant unconditional variance. In other words, the observed time variation in

the volatility of stock returns may be consistent with a stationary {Rt}, which exhibits

second-order temporal dependence.

54
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However, the aforementioned models are not capable of capturing all empirical char-

acteristics the volatility of stock returns. For example, there are quite a few studies pre-

senting evidence of variance breaks in {Rt} (see, for example, Lamoureux and Lastrapes

1990, Stǎricǎ and Granger 2005). In fact, the high degree of persistence observed in the

conditional variance process of stock returns may be the result of shifts in the uncondi-

tional variance of an otherwise locally stationary {Rt}, which (the shifts) have not been

taken into account in the estimation of the conditional variance. The presence of variance

breaks in {Rt} imply that apart from conditional heteroscedasticity (non-linear depen-

dence), the stock returns process is also characterized by unconditional heteroscedasticity

(local time heterogeneity).

Campbell et al. (2001) suggest that the type of non-stationarity displayed by {Rt} is

more “global” than that implied by variance breaks. Specifically, these authors present

evidence showing that the idiosyncratic component of the unconditional variance of the

returns of individual firms exhibits a large positive linear trend over a 35-year period.

The presence of such a trend is likely to dominate the behavior of the total firm volatility,

thus producing a returns process which exhibits global non-stationarity. The latter is

meant to imply that the marginal distributions of {Rt} do not display intervals of time

homogeneity (as in the case of local stationarity implied by variance breaks) but instead

are continuously changing. This change, however, is not patternless but is governed by a

systematic evolution of the variances of the marginal distributions of {Rt}.

In this chapter, we provide evidence showing that variance trends are present in other

returns series, such as crops returns. Motivated by this piece of evidence, we formulate and

solve the portfolio problem faced by an investor when the variances and the covariances

of the returns of the available assets exhibit unbounded unconditional heteroscedasticity.

In particular, we assume that the second moments of the joint distribution of the returns

series are linear, or more generally, polynomial functions of time. Modeling volatility as a

polynomial function of time may be thought of as providing a link between the bounded

and infinite variance cases analyzed in the literature, since it permits the variances to be

finite for any t <∞, tending to infinity (not necessarily monotonically) as t grows larger.
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3.2 Motivation

In this section, we show that the monthly percentage changes, rit, in the price of three

major crops, namely corn, soybeans and wheat, are characterized by trending variances.

Figure 1 reports rolling estimates of the residual variance of an AR(1) model for rit.

Figure 3.1: Rolling Estimation of Residuals Variance from an AR(1) Model. Starting
Period 1990M1-1994M12 (60 Obs). Source: Bloomberg - S&P GS commodity indices - spot
prices.

It can be seen that a clear upward, albeit non-monotonic trend is evident in all the

three series under consideration. Moreover, we estimate the following auxiliary regression:

ε2
it = c+

∑4
j=1 γjε

2
it−j + δi1t+ δi2t

2 + νit
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and test the joint hypothesis of no polynomial trends, i.e. H0 : δi1 = δi2 = 0, i = 1, 2, 3

in the variance of the residuals εit from the AR(1) models. This hypothesis is strongly

rejected for all the three cases under considerations with the p-values being less than 0.001

in all the cases.

3.2.1 Optimal Portfolios of Assets with Trending Volatilities

The next logical question concerns the implications of the trending variance hypothesis for

optimal portfolio construction. In particular, assume that {Rt} denotes a n−dimensional

vector stochastic process of the returns, Rit, i = 1, 2, ..., n of n assets. The standard

Markowitz procedure assumes that {Rt} is an independent and identically distributed

(iid) process with mean vector, µ, and covariance matrix Σ. Based on the iid assumption,

the portfolio w = [w1, w2, . . . , wn]
′ that minimizes the risk for a given level of expected

return is time-invariant. The assumption of trending variances in stock returns violates

the iid assumption, thus requiring a re-formulation of the optimization problem in the

new framework. In the specification that follows, we shall retain the assumption of inde-

pendence of {Rt} for reasons of simplicity. Specifically, we have,

Rt = [R1t, R2t, . . . , Rnt]
′ ,

E [Rt] = µ = [µ1, µ2, . . . , µn]
′ .

and

Rt = µ+ ut,

with ut = [u1t, u2t, . . . , unt]
′ . The stochastic properties of {Rt} are determined by those

of {ut}. In particular, we assume that {ut} is an independent process with E[ut] = 0.

Moreover, we assume that the covariance matrix, Qt, of ut changes with time according

to

Qt = (qij,t)1≤i,j≤n = Ft • Σ , (3.1)

Ft = (fij(t))1≤i,j≤n , Σ = (σij)1≤i,j≤n
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where “•” denotes the element-wise Hadamard product and fij(t), 1 ≤ i, j ≤ n are

functions of time, yet to be specified. This means that

qij,t = fij(t)σij, 1 ≤ i, j ≤ n.

Note that Qt is also the covariance matrix of Rt.

More specifically, we postulate the following model for the time-heterogeneity structure

of ut:
ut = A(t)vt ,

A(t) = diag
{√

f1(t),
√
f2(t), . . . ,

√
fn(t)

}
,

fi(t) = tki + o
(
tki
)
, ki ≥ 0

vt ∼ iid(0,Σ)


(3.2)

The model (3.2) implies that both the variances and the (absolute values of the)

covariances of Rt are, in general, increasing functions of time. As a result, the optimal

portfolio weights will vary over time as well. Specifically, assume that at period T, the

typical investor wishes to determine the portfolio wpT = [w1T , w2T , . . . , wnT ]
′ that, for a

given level of expected returns, minimizes the portfolio risk for period T +1. The solution

of this optimization problem produces the following portfolio (vector of weights):

wpT =

(
Cµp − A

D

)
Q−1
T+1µ+

(
B − Aµp

D

)
Q−1
T+11 , (3.3)

where

A = 1′Q−1
T+1µ ,

B = µ′Q−1
T+1µ ,

C = 1′Q−1
T+11 ,

D = BC − A2 and

1 = [1, 1, . . . , 1]′ ∈ Rn .

For the practical implementation of solution (3.3), we need to obtain consistent estimates
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of µ and QT+1.To this end, note that the standard sample covariance matrix estimator∑T
t=1 ûtû′t diverges to infinity. The first step towards solving the estimation problem at

hand, is to obtain a consistent estimator of ki, i = 1, 2, . . . , n. Such an estimator has been

proposed by Kourogenis and Pittis (2008), namely:

k̂i =
1

ln 2
ln
 ∑T

t=1 û
2
i,t∑[T/2]

t=1 û2
i,t

− 1 , (3.4)

where, for the case under study, ûi,t denotes the OLS residuals of the regression of Ri,t on

a constant. Next, we must obtain a consistent estimator of Σ. Let us denote by ` P→' the

convergence in probability. By utilizing Proposition 1 and Theorem 2 in Kourogenis and

Pittis (2008), we obtain the following result:

Proposition 1: Under the specification (3.2), and if ki − k̂i = op
(

1
lnT

)
, i = 1, 2, . . . , n,

ST •
T∑
t=1

ûtû′t
P→ Σ (3.5)

where

ût = Rt − µ̂ ,

µ̂ =
1

T

T∑
t=1

Rt

and

ST = (sij,T )1≤i,j≤n =

 (k̂i+k̂j)/2+1

T (k̂i+k̂j)/2+1


1≤i,j≤n

.

Proof: Since

qij,t = t(ki+kj)/2σij + o(t(ki+kj)/2) , 1 ≤ i, j ≤ n ,

directly from Proposition 1 and Theorem 2 in Kourogenis and Pittis (2008) we have that

and
1

T (k̂i+k̂j)/2+1

T∑
t=1

ûitûjt
P→ σij

(ki + kj) /2 + 1
, 1 ≤ i, j ≤ n ,

which directly yields (3.5).

Proposition 1 allows us to estimate Σ, which in turn implies that a consistent estimate



60
CHAPTER 3. OPTIMAL PORTFOLIOS UNDER TRENDING SECOND

MOMENTS OF ASSET RETURNS

Q̃t of Qt is feasible, in the sense that Q̃t − Qt P→ 0, provided that the exact form of Ft
were known. However, we assume no a-priori knowledge of the exact functional forms fi,

1 ≤ i ≤ n, except from the fact that the degree ki of the polynomial part, tki , can be

consistently estimated through (3.4). Since fi− tki = o(tki), we are allowed to consider as

an adequate approximation of f(t+ 1) the value of (t+ 1)k̂i . A direct application of this

approximation and Proposition 1 to (3.3) yields a feasible approximation of the optimal

portfolio based on the extrapolated covariance matrix Q̂T+1:

Corollary: The optimal portfolio, wpT , which minimizes the quantity

V ar(r) = w′TQT+1wT (3.6)

subject to

E[r] = w′Tµ = µp. (3.7)

and

1′wT = 1

is approximated by

ŵpT =

Ĉµp − Â
D̂

 Q̂−1
T+1µ̂+

B̂ − Âµp
D̂

 Q̂−1
T+11 ,
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where

Q̂T+1 = (q̂ij,T+1)1≤i,j≤n ,

with q̂ij,T+1 = σ̂ij (T + 1)(k̂i+k̂j)/2

=
(
1 +

1

T

)(k̂i+k̂j)/2
((
k̂i + k̂j

)
/2 + 1

)
T

T∑
t=1

ûitûjt

Â = 1′Q̂−1
T+1µ̂ ,

B̂ = µ′Q̂−1
T+1µ̂ ,

Ĉ = 1′Q̂−1
T+11 ,

D̂ = B̂Ĉ − Â2 and

1 = [1, 1, . . . , 1]′ ∈ Rn .

Remarks:

1) The optimization problem defined above yields the one-period ahead optimal port-

folio for a specific level of expected portfolio returns, thus determining the one-period

ahead efficient frontier. Estimating QT+1 by means of the sample covariance matrix

Q̃T = 1
T

∑T
t=1 ûtû′t produces misleading estimates of the second moments of RT+1, since

it ignores the presence of variance trends. In particular, if k > 0 then Q̃T →∞.

2) The weights will not remain constant (and the optimal frontier too) due to time

heterogeneity. This fact implies the importance of the stepwise recalculation of optimal

weights. Moreover, since in the long run, the lower k(s) will yield significantly lower

variances, an optimal portfolio chosen at time T with very long horizon, will consist only

of the asset(s) that correspond to this lower k(s).

3) If fi(t) = tki+o(1), 1 ≤ i ≤ n, then from Proposition 1 we obtain Q̂T+1−QT+1
P→ 0,

which in turn implies that ŵpT −wpT P→ 0 as T →∞.

4) It is easy to show that for ki < 1, 1 ≤ i ≤ n, we have µ̂ p−→ µ (see also Kourogenis

and Pittis 2008).
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3.3 The Modified Market Model

The Market Model, introduced by Fama (1976), is a model generated by statistical as-

sumptions to relate the return of a security on the market portfolio. Fama, assumed

joined Normality and IID asset returns to derive:

rit = α+ βRmt + uit.

Normality is the crucial assumption in this derivation because it is characterized by the

additivity property (sums of normal random variables are also normal) and the linearity

of the conditional mean. Extensions of this simplified version of Market Model can be

obtained if we relax the initial assumptions. As long as the distributional assumption,

every other distribution that the above two properties are inherent, are valid candidates

for generating a modified Market Model. Stable distributions, e.g., that allow for infinite

variance, would generate a market model with no existing second moments. Heterogeneity

and dependence assumptions will also result in Market Models with different features.

We proceed now to examine what are the implications of the trending second moments

assumption considered in this chapter in the properties of the Market Model.

We assume that we have n securities with the following distribution:



R1t

R2t

..

R3t


∼ N



µ
1

µ
2

..

µn


,


tk1σ2

1 + o
(
tk1
)

t
k1+k2

2 σ12 + o
(
k1+k2

2

)
...

t
k2+k1

2 σ21 + o
(
k2+k1

2

)
tk2σ2

2 + o
(
tk2
)

...

... ... tknσ2
n + o

(
tkn
)



Since the market portfolio is constructed by taking a weighted average of the n securi-

ties, the joint distribution of Rit , i ∈ {1, 2, ...n} and Rmt =
n∑
i=1

wiRit is bivariate Normal,

by a known property of multivarate normality. This allows us to generate the regression

and the skedastic function of Rit conditional on Rmt.



3.3. THE MODIFIED MARKET MODEL 63

E(Rit|Rmt) =

(
µi −

cov(Rit, Rmt)

var(Rit)

)
+
cov(Rit, Rmt)

var(Rit)
Rmt = α+ βRmt

var(Rit|Rmt) = var(Rit,)(1− corr2(Rit,Rmt))

Therefore we can apply a statistical generating mechanism based on these results and

produce a heteroskedastic market model where

Rit = α+ βRmt + eit

var(eit) = var(Rit|Rmt) = var(Rit)(1− corr2(Rit,Rmt)) =

= (tk1σ2
i + o

(
tk1
)
)(1− corr2(Rit,Rmt))

. It is interesting to derive the properties of parameter βit.

βit =
cov(Rit, Rmt)

var(Rmt)
=

cov(Rit,
n∑
i=1

wiRit)

n∑
j=1

n∑
i=1

wjwicov(Rit, Rj)
=

=

n∑
j=1

wjcov(Rit, Rj)

n∑
j=1

n∑
i=1

wjwicov(Rit, Rj)
=

n∑
j=1

wj

(
t
ki+ki

2 + o
(
ki+kj

2

))
σij

n∑
j=1

n∑
i=1

[
wjwi

(
t
ki+kj

2 + o
(
ki+kj

2

))]
σij

. Assume that max1≤j≤n{kj} = k∗ and let A = {1 ≤ s ≤ n|ks = k∗} and A′ = {1 ≤ s ≤

n|ks ≤ k∗}. Then

βit =

(
tk
∗
+ o

(
tk

8
)) [ n∑

j∈A
wjσij +

n∑
j∈A′

wjo(1)σij

]

(tk∗ + o (tk8))

[
n∑
j∈A

n∑
i∈A

wjwiσij +
n∑
j∈A′

n∑
i∈A′

wjwio(1)σij

]
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therefore

β∗it =

n∑
j∈A

wjσij

n∑
j∈A

n∑
i∈A

wjwiσij
→
a
{

0 if j ∈ A′

β∗i if j ∈ A

Remarks:

1) Trending unconditional second moments cause time varyibility for the parameter β.

However, changes of β are not stochastic and follow a certain pattern to reach its limits.

2) In case of a common market shock that will cause similar trends for all securities, we

can assume that set A will contain all n securities in which case β∗it = βi (beta obtained

from standard market models).

3) Stocks that exhibit abnormal increase in idiosyncratic volatility which are included

in the construction of the market return, will cause movement of the level of betas for the

rest of the stocks toward zero. This suggests that in case of increased volatility in some

sectors of the market, we should construct seperate market portfolios to estimate betas

for each group of different level of volatility,

3.4 Conclusions

In this chapter we have solved the portfolio problem for the case in which assets returns are

characterized by unbounded heteroscedasticity. Specifically, it has been assumed that the

second moments of returns evolve in a polynomial-like fashion, thus being asymptotically

unbounded. It is shown that the optimal solution is a function of time depending on the

orders ki, i = 1, 2, ..., n at which the variances and covariances of asset returns grow over

time. A feasible approximation to the optimal solution is obtained, which is based on the

consistent estimator of ki proposed by Kourogenis and Pittis (2008). This approximate

solution is applicable in many cases of empirical interest, including that of farm planning,

in which volatility trends are likely to be present.We also discussed the implications of

trending second moments in the case of the market model were we noted that this kind

of heteroskedasticity might generate time variation in parameter β of the market model.



CHAPTER 4

Aggregational Gaussianity and Barely Infinite Variance

4.1 Introduction

One of the most important questions in the financial literature concerns the distribution

of financial prices. The interest for this question originated in the early 1950s with the

detailed empirical study of Kendall (1953) on the statistical properties of a set of economic

time series including commodity prices such as the Chicago wheat and New York cotton

prices. This study was the first to notice that the empirical distributions of successive

price changes deviate from normality mainly because they exhibit excess kurtosis. Then,

the issue of leptokurtosis was taken up by Mandelbrot (1963) who put forward the idea

that the observed leptokurtosis reflects the fact that the variance of commodity or stock

price changes is infinite. More specifically, Mandelbrot observed that the logarithmic price

changes within a specific period of time, say a day, is the sum of elementary logarithmic

price changes, ξi, between transactions that occur in that day. He then assumed that

the variance of these elementary price changes is infinite, which in turn implies that the

Central Limit Theorem is not applicable. As a result, the sum of ξi's converges not to

65
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the normal distribution, but instead, to a Stable Paretian distribution. The latter is

leptokurtic and has infinite variance.

An alternative explanation for the observed leptokurtosis in the empirical distributions

of price changes was offered by, among others, Clark (1973), and Blattberg and Gonedes

(1974). These studies attempt to explain leptokurtosis without sacrificing the finite-

variance assumption. In particular, they put forward the idea that the transactions are

not spread uniformly across time, which in turn implies that the underlying distribution

of price changes is a mixture of normals.

The two competing explanations for leptokurtosis mentioned above bare different im-

plications about the behavior of the distribution of logarithmic price changes as we move

from higher (say daily) to lower (say monthly) frequencies of observations. In particu-

lar, it has been observed that as we move from higher to lower frequencies the degree of

leptokurtosis diminishes and the empirical distributions tend to approximate normality.

This stylized fact, referred to as “Aggregational Gaussianity”, can be accounted for only

by the mixture of normals explanation of leptokurtosis and not by the infinite-variance

alternative. Indeed, the stable-Paretian explanation is characterised by the property of

“stability under addition” according to which if the daily price changes follow a stable

Paretian distribution with characteristic exponent equal to a, then the monthly price

changes also have to follow the same distribution. This in turn implies that the property

of infinite variance cannot coincide with that of Aggregational Gaussianity.

In late 1980's, when a new class of models, namely the GARCH models, was put for-

ward, the issue of the parallel existence of infinite variance and Aggregational Gaussianity

re-emerged in the context of the estimates of the GARCH parameters. In particular, the

estimation of GARCH models for commodity or stock price changes seemed to suggest (i)

the presence of a unit root (or near-to-unit root) in the conditional variance, which gave

rise to the so-called Integrated GARCH (IGARCH) models and (ii) the gradual declining

of conditional heteroskedasticity and the associated leptokurtosis of the unconditional dis-

tribution as we move from higher to lower frequencies of observation (see Diebold 1988,

Drost and Nijman 1993). Early enough, Nelson (1990) proved the stationarity of the

IGARCH(1,1) model. Nevertheless, in vew of the fact that the presence of a unit root
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in the conditional variance implies that the unconditional distribution of IGARCH has

infinite variance, a case in which the classical Central Limit Theorem (CLT) does not ap-

ply, the empirical studies seemed to suggest the simultaneous presence of two seemingly

contradictory facts: Aggregational Gaussianity and infinite variance.

The above mentioned inconsistency between infinite variance and Aggregational Gaus-

sianity motivated some authors to argue that the evidence of a unit root in the conditional

variance was in fact spurious. It may arise either from structural breaks in the uncon-

ditional variance (see Diebold, 1986, Lamoureux and Lastrapes, 1990, and Diebold and

Lopez, 1995) or from regime switching of the parameters of the conditional variance (see

Fornari and Mele 1997, and Fong and See 2001, among others). Even in this case, how-

ever, an infinite variance stationary model may arise. For example, in a recent paper, Liu

(2009) introduces the Integrated Markov Switching GARCH model, for which he proves

stationarity and infinite variance. Liu's result implies that infinite variance can occur

even if the conditional variance parameters in all-but-one regimes correspond to a finite

variance model. Put differently, one and only regime (even with a very small probability

of occurrence) with conditional variance parameters that do not correspond to a stable

GARCH, can be the reason that a stationary and ergodic Markov Switching GARCH

model has infinite variance.

In this chapter we aim at reconciling Aggregational Gaussianity and infinite variance

without bringing in question the GARCH specification. We show that infinite variance and

Aggregational Gaussianity can coexist, provided that all the moments of the unconditional

distribution whose order is less than two exist. This moment condition is satisfied in the

case of IGARCH processes, or put it differently, an IGARCH process is indeed a process

with barely infinite variance (see Kourogenis and Pittis 2008). In other words, what we

show in this chapter is that Aggregational Gaussianity can coexist with infinite variance,

once the latter arises from a unit root in the conditional variance.

The chapter is organised as follows: In Section 2 we present evidence indicating that

the price changes of six major crops, namely cocoa, coffee, corn, soybean, sugar and

wheat, observed at high frequencies, seem to be characterised by both leptokurtosis and

unit root in the conditional variance. We also show that both these effects tend to
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diminish as we move to lower frequencies. In Section 3 we explain why there is no paradox

in admitting the simultaneous existence of Aggregational Gaussianity and IGARCH, by

means of some limit theorems for mixing processes with barely infinite variance, developed

in the probability theory over the last twenty years or so. In this Section we also discuss

whether the mixing properties of an IGARCH process, obtained so far in the literature,

conform to those assumed in the relevant limit theorems. In Section 4 we discuss some

issues that arise in testing for Aggregational Gaussianity under infinite variance and

present some additional empirical evidence supporting the coexistence of infinite variance

and Aggregational Gaussianity. The last Section concludes the chapter.

4.2 Empirical Motivation: Distributional Character-

istics Of Crop Price Changes

The motivation for this chapter derives from analyzing the dataset of spot crop prices

obtained from S&P Goldman Sachs Commodity Indices for cocoa, coffee, corn, soybean,

sugar and wheat. In this dataset, the inception date of each crop price index ranges from

12/31/1969 to 1/6/1984. Figure 1 reports the empirical distributions of logarithmic price

changes for sugar at daily, weekly, monthly, quarterly semi-annual and annual frequencies

(similar results are obtained for all the crops considered here).

We also estimate a GARCH(1,1) model for the daily logarithmic price changes of all

the six crops under consideration (see Model (4.2)) of Section 3). The results may be

summarized as follows:

(i) The sum of the maximum likelihood estimates of the GARCH(1,1) parameters is

0.994, 0.999, 0.997, 0.993, 0.995 and 0.994 for cocoa, coffee, corn, soybean, sugar and

wheat daily price changes, respectively. These results suggest the presence of a near-to-

unit root in the conditional variance of the daily series. Note that this sum decreases

with the frequency of observation. For example, the sum of the GARCH parameters is

0.219, 0.4516, 0.752, 0.658, 0.885 and 0.776 for cocoa, coffee, corn, soybean, sugar and

wheat semi-annual price changes, respectively. These results suggest that, on average, the
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GARCH effects in semi--annual frequency are much weaker than the corresponding ones

for daily frequency.

(ii) Visual inspection of the empirical distributions of the crop price changes under con-

sideration suggests that these distributions are leptokurtic for daily, weekly and monthly

frequencies. Overall, the degree of leptokurtosis seems to decrease as we move from daily

to annual frequency at a slow rate. More specifically, the leptokurtosis does not seem to

decrease substantially before we reach at least the quarterly frequency.

(iii) Overall, the combined evidence from (i) and (ii) above, suggests the simultaneous

presence of a unit root in the conditional variance together with Aggregational Gaussianity

for all the six series under consideration.

In the appendix of this chapter we provide further empirical evidence that aggrega-

tional gaussianity appears in additional financial time series of interest. We present the

time plots and the corresponding histograms of daily, weekly, monthly and annual loga-

rithmic returns for 3 stock indices, namely SP500 (US), DAX (DE) and NIKKEI (JP),

and 3 US dollar spot rates with canadian dollar, british pound and japanese yen. Data

were obtained from Bloomberg and cover the period from January of 1971 to December

of 2009. Figures in the appendix demonstrates clearly that when we move fro high to

lower frequencies of data, the aggregational procedure leads to the Normal distribution.

Apart from the empirical evidence, in the appendix we included the same analysis for

simulated daily returns series that follow a GARCH(1,1) process with ARCH (α) and

GARCH (β) components adding to 0.95, 0.96, 0.97, 0.98, 0.99 and 1 (I-GARCH). This

series of figures demonstrates clearly that even in the case of infinite variance (IGARCH),

the distribution of lower frequency data (generated by the simulated daily returns) also

converge to the Normal distribution.
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4.3 Aggregational Gaussianity Under Barely Infinite

Variance

Let Rt be the one-period (say daily) continuously compounded return on a crop, defined

as Rt = pt− pt−1, where pt is the natural logarithm of the price of the particular crop. In

a similar fashion we define the k-period (say weekly or monthly) return Rτ (k) as:

Rτ (k) = pt − pt−k =
k∑
i=1

Rt−k+i. (4.1)

The new index, τ , is introduced for notational simplicity, representing the k-period inter-

val, in terms of t. More specifically, since we consider non-overlapping returns, the series

of k-period returns, produced by taking non-overlapping sums of the original one-period

return series, will be of the form {. . . , pt−k − pt−2k, pt − pt−k, pt+k − pt, . . .}. This means

that one unit in terms of τ will correspond to k units in terms of t.

Next, let us assume that the one-period returns, follow an Integrated GARCH(1,1)

(IGARCH(1,1)) process:

Rt = htνt

νt ∼ NIID(0, σ2
ν) and h2

t = c+ bh2
t−1 + γν2

t−1, with

c > 0, 0 ≤ b < 1, 0 ≤ γ < 1 and b+ γ = 1.

(4.2)

We shall attempt to answer the following question: Given that Rt follows an IGARCH

process with infinite variance, how does the distribution of Rτ (k) behave as the returns

horizon k increases? To answer this question, we must examine whether the probabilistic

properties of Rt are such that enable the application of a relevant limit theorem. To this

end, let us first briefly discuss the case of a stable GARCH process, that is when b+γ < 1.

It is well known that under the restriction b + γ < 1, Rt is a second-order stationary

process whose unconditional variance is equal to σRt = c/(1−(b+γ)). This process is also

β−mixing with exponential decay (see Carrasco and Chen 2002 and Francq and Zakoian

2006). Since a β−mixing process is also α−mixing, we can appeal to the central limit

theorem of Ibragimov (1962) and conclude that as k →∞, the sequence Rτ (k) converges
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in law to the normal distribution. Alternatively we may say that the distribution function

of Rt belongs to the domain of attraction of the normal law. Moreover, in this case, the

standardizing sequence is given by σRt
√
k, which enables us to say that the distribution

function of Rt belongs to the domain of normal attraction (DNA) of the normal law

(see Ibragimov and Linnik 1971). A similar result in a different context was obtained by

Diebold (1988) who showed that the GARCH effects tend to disappear under temporal

aggregation.

Let us now focus attention on the case under study, that is when b + γ = 1 in which

case, the variance of Rt is infinite. In this case we cannot apply the central limit theorem

mentioned above. Moreover, the results of Diebold (1988) are derived under the assump-

tion b + γ < 1 which means that they do not cover the IGARCH case. Therefore, we

cannot say anything about the temporal aggregation properties of IGARCH processes.

The presence of infinite variance seems to suggest that we must move away from the

central limit theorem into limit theorems developed for the case of random variables with

infinite variances. Historically, the problem described above was first dealt with by Lévy

(1935) in the context of independent and identically distributed (iid) random variables

and later by Ibragimov and Linnik (1971) for the case of mixing random variables (see

Kourogenis and Pittis 2010 for an extensive discussion). Given the infinite variance of Rt,

it seems reasonable to assume that Rt belongs to the domain of non-normal attraction

of a stable law with exponent a. If this were the case, it would have implied two things:

(a) the limiting distribution of Rτ (k) is a stable distribution (but not the normal distri-

bution);(b) the sequence by which the partial sum process, Rτ (k), is standardised cannot

be σRt
√
k.

However, the case of IGARCH is different: An IGARCH process exhibits barely infinite

variance meaning that all the moments E |u1|δ for every δ, 0 ≤ δ < 2 are finite (see

Corollary 1 in Kourogenis and Pittis 2008). In such a case, despite having infinite variance,

the Rt's belong to the domain of non-normal attraction of the normal law. In other words,

there exists a sequence {δk} , which necessarily has the form δk = L(k)
√
k, such that:

Rτ (k)

δk
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weakly converges to the normal distribution. The function L(k) is of particular interest: it

is usually referred to as “slowly varying (at infinity)” meaning that L(tx)
L(x)
→ 1 as x→∞ for

every t > 0. The limit theorems that ensure this result, are produced by Bradley (1988) or

Peligrad (1990) for ρ−mixing and ϕ−mixing sequences, respectively (see Kourogenis and

Pittis 2008, 2010). These results show that the finite variance assumption is not necessary

for the central limit theorem. More specifically, for strictly stationary sequences, (as is

the IGARCH case considered here) the central limit theorem amounts to the truncated

moment function, defined by:

H(x) = ER2
1I|R1|≤x ,

being slowly varying as x→∞, that is:

H(x) is slowly varying as x→∞ (4.3)

In fact, the condition of slow variation of H(x) is both necessary and sufficient for Rt to lie

in the domain of attraction of the normal distribution (see Ibragimov and Linnik 1971).

The requirement that H(x) is a slowly varying function is equivalent to the condition:

E |R1|δ <∞, 0 ≤ δ < 2. (4.4)

The latter condition amounts to saying that the Rt's have just barely infinite variance (see

Bradley 1988). This implies that the central limit theorem may hold even in cases that

the variance of the Rt's is infinite, provided that all the moments of order δ < 2 are finite.

The preceding discussion suggests that the empirical features of Aggregational Gaus-

sianity and Infinite Variance in crop price changes can coincide due to the limit theorems

for mixing sequences with barely infinite variance mentioned above. However, one word

of caution is in order. In order to apply the central limit theorem of Bradley (1988) or

that of Peligrad (1990) we must ensure that an IGARCH process is either ρ−mixing or

ϕ−mixing, respectively. As far as we know, the relevant literature is yet to produce such

a result. Having said this, it is worth mentioning Francq and Zakoian's (2006) relevant

result, which proves that an IGARCH process is β−mixing with exponential decay. How-
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ever since there is no proof to date that β−mixing implies either ρ−mixing or ϕ−mixing,

the use of the above mentioned theorems should be exercised with caution.

4.4 Testing for Aggregational Gaussianity Under

IGARCH

The preceding discussion must have made clear that Aggregational Gaussianity is al-

lowed to coincide with the assumption that the returns over the shortest horizon (say

daily) follow an IGARCH process with barely infinite variance. However to establish this

fact empirically, using formal statistical methods is rather tricky. The usual procedure

for evaluating whether a given empirical distribution is normal involves estimating the

sample skewness and kurtosis coefficients, α3 and α4, respectively. To this end, estab-

lishing Aggregational Gaussianity would imply to estimate these coefficients over various

frequencies, and observe that α3 and α4 tend to 0 and 3, respectively, as the frequency

of observation (returns horizon) decreases (increases). However, this strategy does not

work in the case under study, because the returns over the shortest horizon (one-period),

Rt, are assumed to follow an IGARCH process. In this case, the population skewness

and kurtosis coefficients are infinite, which in turn implies that the corresponding sample

estimates, α̂3 and α̂4 will diverge to infinity as the sample size (of daily observations)

increases.

Let us examine more closely the behavior of the estimated kurtosis coefficient, α̂4, of

Rτ (k) as k increases under the assumption that the one-period returns, Rt, is an IGARCH

process. To this end, we conduct a small Monte Carlo experiment. Specifically, we

generate 1000 near-to- IGARCH(1,1) series of length equal to 10056 which is the number

of daily observations in our sample. The conditional variance parameters were set equal to

b = 0.059299 and γ = 0.935634, which are the average values of the estimated parameters

across the three crops under consideration. For each of these 1000 replications, we generate

five more series, Rτ (k), k = 5, 20, 60, 120, and 240 according to (4.1), corresponding to

weekly, monthly, quarterly, semi-annual and annual frequencies. Note that the number
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of observations decreases with k; in particular we end up with 2011, 503, 168, 84 and 42

observations for k = 5, 20, 60, 120, and 240, respectively. Then, for each replication, we

estimate the kurtosis coefficient for all the available frequencies, namely k = 0, 5, 20, 60,

120, and 240 and take the average (referred to as α̂4,MC) across the 1000 replications for

each frequency. The results are reported in Figure (4.2), together with the corresponding

average estimated kurtosis coefficients (referred to as α̂4,D) across the six crops under

consideration.

The results may be summarised as follows:

(i) The Monte Carlo kurtosis coefficient, α̂4,MC appears to exhibit a pattern similar

to that observed for the kurtosis coefficient, α̂4,D, of the real data. In particular, α̂4,MC

increases temporarily as we move from k = 1 to k = 5 and then decreases with k.

(ii) The behaviour of α̂4,MC reported above is typical for IGARCH (or near-to-IGARCH)

processes. On the contrary for GARCH parameters safely inside the stationarity region

the behaviour of α̂4,MC is exactly that predicted by CLT, namely α̂4,MC converges mono-

tonically to 3 as the returns horizon increases.

(iii) The behaviour of α̂4,MC reported above may be due to the following reasons:

First, as k increases there are two opposite forces at work: The first one stems from the

fact that Rt does belong to the domain of attraction of the normal law, which means

that as k increases, the corresponding processes Rτ (k) become “more normal”. This force

creates a tendency for the estimates of the kurtosis coefficient to approach the value of

3. However, as k increases, the number of observations on the corresponding k−horizon

returns, available in a given time period, decreases. For example, for the time period

29/12/1969 to 12/11/2009 we have 10056 daily observations but only 2081 weekly, 480

monthly, 161 quarterly, 81 semi annual and 41 annual observations.

The smaller number of observations makes it harder for CLT to take effect, thus

creating a tendency for α̂4,MC to deviate from 3. The second reason, which may explain

the non-monotonicity in the behavior of α̂4,MC is related to the rate of convergence of

Rτ (k) to normal. In the absence of a finite second moment, the rate of convergence

to the normal distribution is expected to be much slower than the corresponding one
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for the finite-variance case. This property combined with the fact that the number of

observations decreases with k may explain the slow and non-monotonic way by which

α̂4,MC approaches the value of 3 as k increases. To this end, it is also interesting to note

that the rate of convergence to normality in the presence of a barely infinite variance as

suggested by the normalizing sequence, δk, is L(k)
√
k with L(k) being a slowly-varying

and possibly non-monotonic function.

4.5 Conclusions

Motivated by empirical evidence indicating that the price changes of six major crops,

when observed at high frequencies, seem to be characterised by both leptokurtosis and

unit root in the conditional variance, while both of these effects tend to diminish as one

moves to lower frequencies, we explain why there is no paradox in admitting the simulta-

neous existence of Aggregational Gaussianity and infinite variance. In particular, we show

that Aggregational Gaussianity and infinite variance can coexist, provided that all the

moments of the unconditional distribution whose order is less than two exist. Our theo-

retical explanation derives from limit theorems for mixing processes with barely infinite

variance, developed in the probability theory literature. More specifically, we suggest that

the limit theorems of Bradley (1988) or that of Peligrad (1990) for mixing sequences with

barely infinite variance, for ρ−mixing and ϕ−mixing sequences respectively, ensure the

coincidence of the empirical features of Aggregational Gaussianity and Infinite Variance

in crop price changes. Finally, we discuss some issues that arise in testing for Aggrega-

tional Gaussianity under infinite variance and present some additional empirical evidence

supporting the coexistence of IGARCH effects in high frequency data and Aggregational

Gaussianity.

4.6 Appendix
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Figure 4.1: Empirical distributions of crop returns
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Figure 4.2: Sample kurtosis of simulated and crop returns.
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Figure 4.3: Time Plot and Histogram of DAX Index Daily Returns
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Figure 4.4: Time Plot and Histogram of DAX Index Weekly Returns
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Figure 4.5: Time Plot and Histogram of DAX Index Monthly Returns
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Figure 4.6: Time Plot and Histogram of DAX Index Annual Returns
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Figure 4.7: Time Plot and Histogram of NIKKEI Index Daily Returns
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Figure 4.8: Time Plot and Histogram of NIKKEI Index Weekly Returns
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Figure 4.9: Time Plot and Histogram of NIKKEI Index Monthly Returns
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Figure 4.10: Time Plot and Histogram of NIKKEI Index Annual Returns
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Figure 4.11: Time Plot and Histogram of GBP/USD Daily Returns
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Figure 4.12: Time Plot and Histogram of GBP/USD Weekly Returns
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Figure 4.13: Time Plot and Histogram of GBP/USD Monthly Returns
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Figure 4.14: Time Plot and Histogram of GBP/USD Annual Returns
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Figure 4.15: Time Plot and Histogram of JPY/USD Daily Returns
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Figure 4.16: Time Plot and Histogram of JPY/USD Weekly Returns
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Figure 4.17: Time Plot and Histogram of JPY/USD Monthly Returns
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Figure 4.18: Time Plot and Histogram of JPY/USD Annual Returns



94 CHAPTER 4. AGGREGATIONAL GAUSSIANITY AND BARELY INFINITE VARIANCE

­20

­10

0

10

20

1970 1975 1980 1985 1990 1995 2000 2005

R_DAILY

0

200

400

600

800

1000

1200

­20 ­15 ­10 ­5 0 5 10 15 20

Ser ies: R_DAILY
Sample 29/12/1969 12/11
    /2009
Observations 10404

Mean ­0.003960
Median  0.049982
Maximum  19.07583
Minimum ­19.61908
Std. Dev.  4.408461
Skewness  0.009043
Kurtosis  3.083826

Jarque­Bera  3.187899
Probability  0.203122

Figure 4.19: Time Plot and Histogram of Simulated GARCH Daily Returns,α = 0.05, β =
0.90, α+ β = 0.95
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Figure 4.20: Time Plot and Histogram of Simulated GARCH Daily Returns, Weekly
Aggregation, α = 0.05, β = 0.90, α+ β = 0.95
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Figure 4.21: Time Plot and Histogram of Simulated GARCH Daily Returns, Monthly
Aggregation,α = 0.05, β = 0.90, α+ β = 0.95
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Figure 4.22: Time Plot and Histogram of Simulated GARCH Daily Returns, Annual
Aggregation, α = 0.05, β = 0.90, α+ β = 0.95
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Figure 4.23: Time Plot and Histogram of Simulated GARCH Daily Returns,α = 0.05, β =
0.91, α+ β = 0.96
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Figure 4.24: Time Plot and Histogram of Simulated GARCH Daily Returns, Weekly
Aggregation, α = 0.05, β = 0.91, α+ β = 0.96
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Figure 4.25: Time Plot and Histogram of Simulated GARCH Daily Returns, Monthly
Aggregation,α = 0.05, β = 0.91, α+ β = 0.96
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Figure 4.26: Time Plot and Histogram of Simulated GARCH Daily Returns, Annual
Aggregation, α = 0.05, β = 0.91, α+ β = 0.96
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Figure 4.27: Time Plot and Histogram of Simulated GARCH Daily Returns,α = 0.05, β =
0.92, α+ β = 0.97
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Figure 4.28: Time Plot and Histogram of Simulated GARCH Daily Returns, Weekly
Aggregation, α = 0.05, β = 0.92, α+ β = 0.97
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Figure 4.29: Time Plot and Histogram of Simulated GARCH Daily Returns, Monthly
Aggregation,α = 0.05, β = 0.92, α+ β = 0.97
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Figure 4.30: Time Plot and Histogram of Simulated GARCH Daily Returns, Annual
Aggregation, α = 0.05, β = 0.92, α+ β = 0.97
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Figure 4.31: Time Plot and Histogram of Simulated GARCH Daily Returns,α = 0.05, β =
0.93, α+ β = 0.98
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Figure 4.32: Time Plot and Histogram of Simulated GARCH Daily Returns, Weekly
Aggregation, α = 0.05, β = 0.93, α+ β = 0.98
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Figure 4.33: Time Plot and Histogram of Simulated GARCH Daily Returns, Monthly
Aggregation,α = 0.05, β = 0.93, α+ β = 0.98
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Figure 4.34: Time Plot and Histogram of Simulated GARCH Daily Returns, Annual
Aggregation, α = 0.05, β = 0.93, α+ β = 0.98
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Figure 4.35: Time Plot and Histogram of Simulated GARCH Daily Returns,α = 0.05, β =
0.94, α+ β = 0.99
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Figure 4.36: Time Plot and Histogram of Simulated GARCH Daily Returns, Weekly
Aggregation, α = 0.05, β = 0.94, α+ β = 0.99
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Figure 4.39: Time Plot and Histogram of Simulated GARCH Daily Returns,α = 0.05, β =
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Figure 4.40: Time Plot and Histogram of Simulated GARCH Daily Returns, Weekly
Aggregation, α = 0.05, β = 0.95, α+ β = 1
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Figure 4.41: Time Plot and Histogram of Simulated GARCH Daily Returns, Monthly
Aggregation,α = 0.05, β = 0.95, α+ β = 1
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Figure 4.42: Time Plot and Histogram of Simulated GARCH Daily Returns, Annual
Aggregation, α = 0.05, β = 0.95, α+ β = 1



CHAPTER 5

Selectivity, Market Timing and the Morningstar Star-Rating

System

5.1 Introduction

Designing appropriate methods to measure mutual fund (more generally, managed port-

folio) performance is an unresolved issue despite the existence of a large body of literature

on this topic (see, e.g., Hendricks et al., 1993, Goetzmann and Ibbotson, 1994, and Brown

and Goetzmann, 1995), as this requires overcoming a number of difficulties. Traditional,

unconditional approaches (see, e.g., Jensen, 1972) have been shown to be unreliable, in

the sense that they are unable to distinguish between common time-varying risk (premia)

and performance of individual portfolios. An alternative approach was suggested by Fer-

son and Schadt (1996), who put forward a conditional performance evaluation method.

They introduce conditioning (public) information variables into the model and are able

to estimate time-varying conditional betas. Their key point is that if it is possible to

replicate a managed portfolio strategy using publicly available information then such a

portfolio cannot be deemed to outperform the others - in other words, superior informa-

118
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tion and/or market timing ability cannot be invoked as an explanation in the presence

of time-varying risk (premia) which cannot be distinguished from average performance.

Applying their model to data for 67 mutual funds over the period 1968-1990, Ferson and

Schadt (1996) find that the estimated alphas are close to zero (rather than negative as

in the unconditional framework of Jensen, 1968 or Elton et al., 1992); also, they find no

evidence of the negative market timing performance reported by previous studies (such as

Treynor and Mazuy, 1966 and Merton and Henriksson, 1981), which had interpreted it as

an indication of poor performance. Overall, a conditional model leads to the conclusion

that funds perform much better than it would be inferred on the basis of a traditional, un-

conditional evaluation, which overlooks a possibly non-zero covariance between the betas

and market returns.

The paper by Ferson and Schadt (1996) and most other studies focus on the perfor-

mance of mutual funds themselves. By contrast, very little attention has been paid to

the usefulness of the Morningstar star-rating system of mutual funds, which is increas-

ingly used by investors to select mutual funds (and as a predictor of future performance,

despite the emphasis put by Morningstar on "achievement"). Its importance was docu-

mented, for instance, by a survey reported by Damato (1996) in the Wall Street Journal.

A few exceptions are the papers by Blume (1998), Sharpe (1998), Khorana and Nelling

(1998), and finally Blake and Morey (2000). The latter is most interesting in that, rather

than analysing persistence only, it examines the predictive ability of Morningstar ratings

for mutual fund performance. The conclusion of this study is that low ratings are indeed

associated with poor future performance, whilst it is not at all clear that very high rat-

ings produce a better future performance than slightly lower or average ratings. All in all,

Morningstar ratings by themselves appear to have only a slight advantage over alternative

methods to predict future fund performance. An intriguing idea has more recently been

put forward by Del Guercio and Tkac (2008), who apply an event-study methodology to

analyse more than 10,000 Morningstar star-rating changes - their evidence suggests that

it is the change in the star-rating (as opposed to the rating itself) which affects investment

flows into or out of mutual funds.

The present chapter focuses on whether Morningstar ratings themselves enable in-
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vestors to select funds that are likely to exhibit superior performance in the future. In-

stead of relying on out-of-sample performance measures as in Blake and Money (2000), we

conduct a full unconditional as well as conditional performance evaluation of the Morn-

ingstar rating system using the framework advocated by Ferson and Schadt (1996). More

in detail, we proceed as follows. We create five alternative portfolios of funds (funds-of-

funds). The first portfolio, named STAR1, consists of all the funds that in each time

period, t, are rated one-star by Morningstar. To be more specific, in period t=1 (the first

period in our sample) we invest an amount A$ in a portfolio consisting of all the funds

(equally weighted) that have been given one-star by Morningstar in period t=1. In pe-

riod t=2, the amount (1+R1∗
1 )×A (R1∗

1 being the return of the portfolio between periods

1 and 2) is invested again in a portfolio consisting solely of funds that in period 2 were

rated one-star by Morningstar. We continue this process until we reach period t=T, i.e.

the last period of our sample. In this way, we obtain a series of returns R1∗
1 ,R1∗

2 , ...,R1∗
T

generated by investing exclusively in one-star funds. These are interpreted as being a

random vector from the process {R1∗
t } generating one-star portfolio returns. We repeat

the same procedure for two-, three-, four- and five-star funds, thus obtaining samples

from the returns processes {R2∗
t } , {R3∗

t } , {R4∗
t } , {R5∗

t } , which are supposed to generate

returns for the two-, three-, four- and five-star funds respectively. We are interested in

examining whether the statistical properties of these five returns processes are different.

To put it differently, we wish to evaluate the following simple investment strategy:

if in each time period we create a portfolio consisting only of five-star funds, are the

risk-adjusted returns on this portfolio higher than the corresponding ones on a portfolio

consisting solely of, say, two-star funds? The idea is that if the better performance of

five-star fund is really due to superior management skills then these should be reflected

in the returns on a fund including only five-star funds.

Our study does not attempt to evaluate the performance of individual mutual funds.

Rather it aims to assess “an evaluation procedure”, namely that of Morningstar. In other

words, if we create a portfolio consisting only of those funds that in each time period have

received a five-star (or four-, three-, two-, one-) score by Morningstar, and then evaluate

the risk-adjusted performance of this portfolio by more traditional portfolio evaluation
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procedures, what would the result be? Will these traditional evaluation procedures detect

any differences in the risk-adjusted performance of the one-, two-, three-, four- and five-

star portfolios?

The remainder of the chapter is organised as follows. Section 2 describes the data and

analyses the statistical properties of the returns on the five funds-of-funds we construct.

Section 3 outlines the standard and conditional CAPM models we adopt to address the

issue of whether the better performance of higher-rated funds is in fact attributable to

superior management skills. Section 4 discusses the empirical results from both uncondi-

tional and conditional portfolio performance evaluation. Section 5 summarises the main

findings and offers some concluding remarks.

5.2 Statistical Properties of the Five Funds-of-Funds

Returns

The data used in our study were taken from Morningstar Direct, which provides historical

monthly returns of selected mutual funds and their star- based ranking calculated by

Morningstar. We focus on the subset represented by equity mutual funds, that is funds

that invest at least 90% of their Non-cash Adjusted Total Assets in equity securities. To

avoid dealing with currency risk exposure we only consider funds quoted in US Dollars.

At present, the Morningstar Direct database contains 21322 equity funds in US Dollars.

In order to perform our evaluation we need sufficiently long series, and therefore we have

restricted our sample to funds that have been star-rated for at least 10 years. This reduces

the sample to 1511 equity funds. For these funds, historical returns and their Morningstar

ranking are available since 01/1998.

We begin our analysis of the returns of the five funds-of-funds, STAR1, STAR2,

STAR3, STAR4 and STAR5 defined in the previous section by examining the univariate

properties of {R1∗
t } , {R2∗

t } , {R3∗
t } , {R4∗

t } , and {R5∗
t } . Table 1A reports descriptive statis-

tics for each of them, together with their first-order autocorrelation. Table 1B presents

estimates of the correlation matrix. The results can be summarised as follows:
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(i) The sample mean of returns is an increasing function of the number of stars. The

average monthly returns of STAR1 and STAR5 are 0.31% and 0.51% respectively.

(ii) The pattern is less clear for sample standard deviations: the smallest is exhibited

by STAR3, followed by STAR4 and STAR2. The standard deviation of STAR5 is the

second highest, after that of STAR1.

(iii) The distributions of all the five returns exhibit negative skewness, this being

highest for STAR2 and lowest for STAR5.

(iv) All the five returns series are serially uncorrelated, i.e. their degree of persistence

is zero.

(v) The estimated correlation coefficients are very large. They range from 0.87 (the

coefficient between STAR1 and STAR5) and 0.98 (the coefficient between STAR1 and

STAR2, STAR2 and STAR3 and also STAR3 and STAR4). With correlation coefficients

so close to unity, it is rather unlikely that any differences in the risk-adjusted performance

of these funds-of-funds will be detected whatever the definition of “risk”.

The greatest difference in mean returns is between STAR5 and STAR1, for which

the smallest correlation coefficient (0.87) is also obtained. To examine whether the mean

return of STAR5 is statistically different from the mean return of the other four portfolios,

we generate the return-differential series, ∆R5i∗
t = R5∗

t − Ri∗t , i = 1, 2, 3, 4, and test, by

means of a t-test, whether the means, µi, of ∆R5i∗
t are different from zero. This can be

done by running a regression of ∆R5i∗
t on a constant term, ci, that is ∆R5i∗

t = c+ νit and

testing the significance of the coefficient ci, i = 1, 2, 3, 4. The results are reported in Table

1C, together with a series of misspecification tests, in order to provide some information on

the time series properties of the four return-differential series, and establish whether the

conditions are met for the employed t-test to have good properties. Specifically, in addition

to the usual tests of serial correlation in νit, we also report the results from testing for the

presence of non-linear temporal dependence in νit, i.e. the first-order autocorrelation of

the squared residuals ν2
it along with the Ljung-Box Q(l)-statistic for testing the hypothesis

that the first l autocorrelations are equal to zero. Moreover, we report the well-known

BDS test proposed by Brock, Dechert, Scheinkman and LeBaron (1996), which is designed
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to test the stronger assumption that the noise series, νit, is independent and identically

distributed (i.i.d.). The results can be summarised as follows:

(i) The null hypothesis that the mean of return-differentials is equal to zero is not

rejected for any of the four series. Nevertheless, it might be worth noting that the point

estimates of the mean as well as the value of the t-statistic increase with the “star-

difference” (that is, they are bigger for ∆R51∗
t followed by ∆R52∗

t , ∆R53∗
t ,∆R54∗

t ).

(ii) The noise series νit, and hence the series ∆R5i∗
t , are not serially correlated but they

exhibit strong second-order temporal dependence. In particular, the BDS test strongly

rejects the null hypothesis that the series ∆R5i∗
t are i.i.d.

On the basis of the above results, we examine whether the inability to reject the

null hypothesis of zero return-differentials by the t-tests might be due to the presence

of non-linear dependence in νit, which has not been taken into account. Specifically, we

re-estimate the models ∆R5i∗
t = c+ νit, assuming that the errors νit follow GARCH(1,1)

processes, that is νit = hitεit, h
2
it = di + aih

2
it−1 + biε

2
it−1. The results, reported in Table

1C(ii), suggest the following:

(iii) When second-order dependence is taken into account, the statistical inference on

the existence of differentials in the average returns among the star-rated funds changes

drastically. The null hypothesis that the mean return-differential is zero is rejected for

∆R51∗
t , ∆R52∗

t , and ∆R53∗
t at the 5% level, and even for ∆R54∗

t at the 10% level. This

means that the star-rating system of Morningstar does produce a classification of funds

which exhibit some significant differences in terms of their average monthly returns.

(iv) The results reported above seem to be trustworthy since the hypothesis that the

standardised noise series, εit = νit/hit are i.i.d. is not rejected by the BDS test. Moreover,

additional tests (not reported) for the presence of structural breaks within the sample

seem to support the hypothesis that the standardised error process {εit} is identically

distributed.
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5.3 Risk-Adjusted Returns: The Models

In this section we investigate whether the higher average returns of the five-star funds are

the reward for the additional risk that the managers of these funds bear relative to the risk

incurred by the managers of, say, three-star funds or reflect instead superior management

skills of the managers of the five-star funds.

For this purpose, we consider an asset pricing model that describes the relationship

between the expected return and risk of the various portfolios under consideration. Specif-

ically, we adopt the conditional CAPM model of Ferson and Schadt (1996) and Shanken

(1990) in which the level of the systematic portfolio risk is a function of the observed vari-

ables (see also, Lettau and Ludvingson 2001). This in turn implies that the relationship

between the excess returns of the portfolio j and the excess returns of the market factor

is given by the following relationships:

rj,t+1 = bj(Zt)rm,t+1 + εj,t+1 (5.1)

E(εj,t+1 | Zt) = 0 (5.2)

E(εj,t+1rm,t+1 | Zt) = 0 (5.3)

where rjt = Rj∗t − Rft, i = 1, 2, ..., 5, Rft is the return of a one-month Treasury bill,

Zt = [Z1,t, Z2,t, . . . , Zn,t] is an n-vector of state variables observable by the managers at

time t, and rmt = Rmt − Rft with Rmt stands for the returns of the market factor. This

specification implies that the systematic risk of the portfolio j, as measured by bj(Zt),

changes with time. The time-varying nature of beta is due to the fact that the portfolio

manager receives at time t an “information signal”, contained in the state variables Zt, on

the basis of which he changes the beta of his portfolio. If the signal is “correct” and the

manager succeeds in “receiving” it, then the changes in the beta of the portfolio at time

t will be consistent with the realized returns rm,t+1 at time t+1. To put it differently, if

rm,t+1 > 0 then the correct interpretation of the signal implies that the manager will shift

the portfolio towards including stocks with high betas. The preceding discussion implies
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that the ability of the fund manager to “time” the market depends on the extent to which

he/she can translate the information content of Zt into predictions on the future behavior

of rm,t+1. This does not necessarily mean that “everybody” in the market can “read”

the information contained in Zt. In other words, although the variables Zt are indeed

publicly available, the information content of Zt might be available only to a “skilful”

fund manager.

The next question concerns the specification of the function bj(Zt). Since the true

functional form is unknown, we shall approximate it by using a first or second-order

Taylor series expansion. We begin by applying a first order approximation of βj, in which

case equation (5.1) becomes

rj,t+1 = βj,0 +
n∑
i=1

βj,iZi,trm,t+1 + εj,t+1 (5.4)

It is quite natural to assume that the dependent variable, rj,t+1, in (5.4) and rm,t+1 are

I(0) variables. However, the stationarity of Z1,t, Z2,t, . . . , Zn,t cannot be assumed a priori.

In the absence of stationarity of those variables, we may face the problem that (5.4) is an

“unbalanced” regression. As a result, before we proceed any further we must analyse in

detail the alternative models (all based on (5.4)) that arise depending on the statistical

properties of the variables Z1,t, Z2,t, . . . , Zn,t. Specifically, we need to distinguish three

cases:

(i) All the variables Z1,t, Z2,t, . . . , Zn,t are I(0). In this case, the new variables Zi,trm,t+1

will also be I(0) (given that the market returns variable rm,t+1 is quite naturally I(0)),

and equation (5.4) is legitimate since rj,t+1 is also quite naturally I(0).

(ii) Some (or all) of the variables Z1,t, Z2,t, . . . , Zn0,t, n0 ≤ n are I(1) and not cointe-

grated. In this case, the product variables Zi,trm,t+1, i = 1, 2, ..., n0 will have an asymp-

totically unbounded unconditional variance and will not be I(0). In such a case, we have

the problem of an “unbalanced regression” since the dependent variable, rj,t+1 is I(0).

(iii) Some (or all) of the variables Z1,t, Z2,t, . . . , Zn0,t, n0 ≤ n are I(1) and cointegrated.
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In this case, we proceed as follows: First, we rewrite (5.4) as

rj,t+1 = βj,0 + rm,t+1

n∑
i=1

βj,iZi,t + uj,t+1. (5.5)

Equation (5.5) shows that under the assumption that the returns processes {rj,t}t≥1

and {rm,t}t≥1 are I(0), the only case where some of the Zi,t can be I(1) is when the corre-

sponding coefficients are such that only multiples of the cointegration relations between

those Zi,ts that are cointegrated are left on the right-hand side of (5.5).

To see the difference between cases (ii) and (iii) more clearly, let us examine the

following example:

rj,t+1 = βj,0 +
(
βj,1Z1,t + βj,2Z2,t

)
rm,t+1 + uj,t+1 (5.6)

If Z1,t and Z2,t are not cointegrated and βj,1βj,2 ̸= 0, the unconditional variance of the

right-hand side will grow to infinity as t → ∞, violating our initial assumption that the

unconditional variance of rj,t+1 is bounded. Therefore the estimated values of βj,1 and

βj,2 will be very close to 0 when the sample is large. If, on the other hand, Z1,t and Z2,t

are cointegrated and satisfy

Z1,t = a0 + a1Z2,t + wt

where {wt}t≥1 is I(0), the only way for the unconditional variance of βj,1Z1,t + βj,2Z2,t to

remain asymptotically bounded, with nonzero βj,1 and βj,2, is the case where

βj,1Z1,t + βj,2Z2,t = λ (Z1,t − a1Z2,t) = λ (a0 + wt) , λ ∈ R.

The last equation implies that

βj,1 = λ

and

βj,2 = −a1βj,1 .

If we identify the cointegrating relationship between Z1,t and Z2,t, then we can rewrite
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(5.6) as

rj,t+1 = βj,0 + βj,1q1,trm,t+1 + uj,t+1 (5.7)

where q1,t = Z1,t − a1Z2,t = a0 + wt.

The previous example demonstrates that it is necessary for the sum
n∑
i=1

βj,iZi,t in (5.5)

to be I(0) in order for (5.5) to be a legitimate regression. It also suggests how to treat

the initial set of candidate state variables, in order to obtain in (5.5) a well-balanced

regression. Specifically, the following steps must be taken:

First, we identify all those state variables (elements of Zt) that are I(1). Assume that

the number of such I(1) variables is n0. If n0 > 0, without loss of generality, reordering

the variables if necessary, we can make sure that, for i ≤ n0, {Zi,t}t≥1 are I(1) and,

for n0 < i ≤ n, {Zi,t}t≥1 are I(0). Second, we identify any cointegrating relationships

between the processes {Zi,t}t≥1, 1 ≤ i ≤ n0. Let k < n0 be the rank of the cointegrating

system. This means that we can find a (k × n0) matrix A of order k, such that

A



Z1,t

Z2,t

...

Zn0,t


= Ut, (5.8)

where {Ut}t≥0 is I(0) with nontrivial coordinates Ui,t, 1 ≤ i ≤ k. Again, without any loss

of generality, we can reorder the variables Zi,t, 1 ≤ i ≤ n0 in (5.5), so that the first k

columns of A are linearly independent. Therefore, we can write A = [A1, A2] , where the

k × k matrix A1 is invertible. Then, left multiplication of (5.8) by A−1
1 yields

[
Ik, A

−1
1 A2

]
Zt = A−1

1 Ut ,
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which in turn gives 

Z1,t

Z2,t

...

Zk,t


= −A−1

1 A2



Zk+1,t

Zk+2,t

...

Zn0,t


+ A−1

1 Ut. (5.9)

The last equation is the first part of Phillips's (1991) triangular system. The second part

of this system is 

∆Zk+1,t

∆Zk+2,t

...

∆Zn0,t


= Vt , (5.10)

where Vt is also I(0). Equations (5.8) and (5.10) provide us with n0 I(0) processes that

can be considered as state variables in a new regression, replacing the Zi,t, 1 ≤ i ≤ n0.

Third, having defined the appropriate set, Wt, of I(0) state variables,

Wt = (Wi,t)1≤i≤n = [U1,t, U2,t, . . . , Uk,t,∆Zk+1,t, . . . ,∆Zn0,t, Zn0+1,t, . . . , Zn,t]
′

we can define the following regression

rj,t+1 = β∗j,0 +
k∑
i=1

β∗j,iUi,trm,t+1 +
n0∑
i=k+1

β∗j,i∆Zi,trm,t+1 +
n∑

i=n0+1

β∗j,iZi,trm,t+1 +uj,t+1. (5.11)

This regression can be rewritten in a more compact form in terms of Wt as

rj,t+1 = β∗j,0 +
n∑
i=1

β∗j,iWi,trm,t+1 + uj,t+1, (5.12)

or simply

rj,t = β∗j,0 +
d∑
i=1

β∗j,iXi,t + ζj,t, (5.13)

where Xi,t = Wi,t−1rm,t for 1 ≤ i ≤ n. The regression defined in (5.12) can be considered
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a first order approximation of the general model given by

rj,t+1 = β∗j,0 + β∗j(Wt)rm,t+1 + ε∗i,t+1, (5.14)

which involves only I(0) processes.

The preceding discussion is based on approximating the unknown function bj(Zt), or

equivalently β∗j(Wt), by using a first-order Taylor series expansion. Alternatively, we can

approximate β∗j(Wt) by using a second-order Taylor expansion. In such a case we have

rj,t+1 = β∗j,0 +
n∑
i=1

β∗j,iWi,trm,t+1 +
∑

1≤i≤k≤n
β∗j,i,kWi,tWk,trm,t+1 + ζj,t+1. (5.15)

The last equation involves n +

 n

2

 = n(n+1)
2

, d explanatory variables of the form

Wi,trm,t+1 or Wi,tWk,trm,t+1, 1 ≤ i ≤ k ≤ n, which can be denoted as Xl,t+1, 1 ≤ l ≤ d.

We can rewrite (5.15) as:

rj,t = bj,0 +
d∑
i=1

bj,iXi,t + ζj,t (5.16)

where bj,0 = β∗j,0, bj,i = β∗j,i and Xi,t = Wi,t−1rm,t for 1 ≤ i ≤ n, bj,i = β∗j,g,h and Xi,t is of

the form Wg,t−1Wh,t−1rm,t, when n+ 1 ≤ i ≤ d, for some 1 ≤ g, h ≤ n.

The use of polynomial approximations of (5.14) may simplify its treatment, but if the

order of approximation is underspecified, the estimation residuals are likely to be affected

by the missing part of β∗j . This is true even in the simple case where β∗j is a second-order

polynomial. For example, let the true model be:

rj,t+1 = β∗j,0 + β∗j,1W1,trm,t+1 + β∗j,2W2,trm,t+1 + β∗1,2,kW1,tW2,trm,t+1 + ζj,t+1

and assume that a first-order approximation is used:

rj,t+1 = β∗j,0 + β∗j,1W1,trm,t+1 + β∗j,2W2,trm,t+1 + uj,t+1.
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One can see that any estimation of β∗j,0, β∗j,1, and β∗j,2 using the first-order approximation

will have to compensate for the missing expected value of β∗1,2,kW1,tW2,trm,t+1. A non-zero

expectation of W1,tW2,trm,t+1 will result in biased estimates of some or all of β∗j,0, β∗j,1, and

β∗j,2. Another implication concerns the second-order properties of uj,t+1: it is clear that the

behavior of the estimated u′j,t+1s will be related to the missing term β∗1,2,kW1,tW2,trm,t+1,

and therefore these will exhibit conditional heteroscedasticity.

Finally, note that all the above models can be augmented by the market timing term,

γjr
2
m,t+1, proposed by Traynor and Mazui (1966). A positive (negative) timing coefficient

γj is interpreted as evidence suggesting superior (inferior) market timing abilities of the

corresponding fund manager.

5.3.1 Empirical Results

Unconditional Portfolio Performance Evaluation

We begin our empirical analysis by considering the so-called unconditional evaluation of

the star-rated funds-of-funds under consideration, which is based on the standard ver-

sion of CAPM. The latter assumes that bj(Zt) = bj ∀t. Under this hypothesis, the fund

managers do not attempt to “time” the market, so they do not actively change the betas

of their portfolios. Moreover this assumption also implies that the betas of the assets

forming the portfolios do not change over time, or if they change the changes in the beta

of one asset are exactly offset by those in the beta of another asset. Table 2A reports the

results from the OLS estimation of equation

rj,t = bjrm,t + γjr
2
m,t + εj,t+1 (5.17)

Given that the error terms in all the five regressions exhibit conditional heteroscedasticity,

we report the results based on heteroscedasticity-consistent (HC) standard errors in Table

2B, and those from explicitly assuming that the errors are GARCH(1,1) processes in Table

2C. The results can be summarised as follows:

(i) The OLS and HC estimates are quite similar, suggesting that the unconditional
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estimates of a for all the portfolios except STAR1 are positive and significantly different

from zero. Interestingly, the highest a is achieved by STAR5. On the contrary, the

estimates of the market timing coefficient γ appears to be insignificantly different from

zero for all portfolios.

(ii) When conditional heteroscedasticity is taken into account, the results change sig-

nificantly. In particular, the stock selection coefficient, a, now appears to be significantly

positive only for STAR3, STAR4 and STAR5. Moreover, the GARCH-based estimates

of a for all five portfolios appear to be smaller than the corresponding OLS-based esti-

mates. For example, the OLS and GARCH estimates of a for STAR5 are 0.52 and 0.31,

respectively. The GARCH estimates of γ (similarly to the corresponding OLS estimates)

are insignificantly different from zero. The overall picture emerging from the GARCH

estimates suggests that the five portfolios under consideration can be classified into two

groups. The first one consists of STAR1 and STAR2, and is characterised by neither

stock selection nor market timing abilities. The second one includes STAR3, STAR4 and

STAR5, and exhibits some stock selection ability (which is almost identical among the

three portfolios belonging to this group) but no market timing ability.

(iii) It is worth noting that, despite the constant beta assumption in this unconditional

fund performance evaluation, the estimates of a are generally positive. This is in contrast

with the early results of Jensen (1968) and the subsequent results of Elton et. al (1992)

(among others) who report negative estimates of a, which may be caused by (unaccounted)

time variation in the betas. This in turn implies that, despite the bias in the estimates

of a, caused by the possible time variation of the betas, a positive stock selection ability

can be inferred for STAR3, STAR4 and STAR5.

(iv) Related to (iii): Diagnostic tests (not reported) for parameter stability of equa-

tion (5.17) estimated by OLS indicate the presence of significant time variation in the

parameters of this model. However, this instability may be the result of omitted condi-

tional heteroscedasticity (i.e. it may come from time variation of the standard error of

the regression). When the GARCH effects are taken into account the observed instabil-

ity is reduced, though not entirely eliminated. The possible time variation of beta, in

particular, which may come from a response of the fund manager to changing economic
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conditions, is the focus of the next subsection.

Conditional Portfolio Performance Evaluation

The next issue is the selection of the variables in Zt. Ferson and Schadt (1996) suggest

including the one-month Treasury bill yield, z1t, the term spread, z2t, defined as the

difference between the constant-maturity 10-year Treasury bond yield and the 3-month

Treasury bill, and the quality spread, z3t, in the corporate bond market defined as the

Moody's BAA-rated corporate bond yield minus the AAA-rated corporate bond yield.

In addition, we include variables that are usually considered important indicators by the

financial community such as the weighted average of the foreign exchange value of the US

dollar against a subset of the broad index currencies, z4t, the Consumer Sentiment Index

of the University of Michigan, z5t, the price of oil, z6t, and the Chicago Board Options

Exchange volatility index (VIX), z7t.

As explained in the previous section, the choice of the appropriate model for condi-

tional portfolio evaluation depends on the statistical properties of the state variables z1t,

z2t, ..., z7t. The results from a variety of unit root tests, reported in Table 3A, unambigu-

ously indicate that the first six series are I(1) while the last one is I(0). However, the tests

on the cointegration properties of z1t, z2t, ..., z6t, reported in Table 3B, lead to less clear-

cut conclusions. In particular, when the lag-length, l, of the Vector Autoregressive model,

VAR(l), on which the two tests are based, is relatively large, both test statistics suggest

a cointegration rank, k, of at least one, and occasionally two. On the contrary, when l

is relatively small, both tests are unable to reject the null hypothesis of no cointegration.

As a result, we run three alternative conditional regressions assuming k = 0, k = 1 and

k = 2, with the results (assuming GARCH(1,1) errors and including the market timing

term γjr
2
m,t+1) being reported in Table 4A, 4B and 4C, respectively. The results can be

summarised as follows:

(i) The results are very robust across the three alternative cointegration rank assump-

tions. Indeed, the information criteria for k = 0 are very close to those for k = 1 or k = 2

for all five portfolios under consideration.
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(ii) Despite the significance of (some of) the state variables, the results on stock se-

lection (a) and market timing (γ) abilities from the conditional evaluation are similar to

those obtained from the unconditional evaluation. In particular, for k = 0 the stock se-

lection coefficient, a, appears to be significantly positive for STAR2, STAR3, STAR4 and

STAR5, whereas for k = 1 and k = 2 it appears to be significantly positive for STAR3,

STAR4 and STAR5. Concerning the latter portfolio, the highest estimate of (conditional)

a is 0.36, obtained for k = 2, whereas the lowest is equal to 0.30, obtained for k = 1.

Concerning market timing ability, no portfolio for any value of k produces a significantly

positive estimate of γj. On the contrary the estimates of γj are negative and in many

cases significantly so.

(iii) The results in (ii) suggest that the positive excess returns produced by STAR3,

STAR4 and STAR5 should be thought of as the result of superior stock selection rather

than market timing abilities.

5.4 Combining Morningstar Rating System with As-

set Allocation Strategies

The information provided by the Morningstar Rating System, regarding the relative com-

parison of mutual funds, is only one component that an investor might utilize for her

asset allocation decisions. Depending on the degree of efficiency, investors will always

seek for valuable information, like the Morningstar Rating System, that will allow them

to try to outperform the market. In this section, we compare the performance of com-

mon asset allocation strategies, namely momentum and contrarian, when applied either

unconditionally, that is with no additional information, on the universe of our dataset or

conditionally on the information provided by Morningstar, that is we apply these strate-

gies on the subsets of mutual funds with different star rating. In addition, we considered

the case where the investor follows a naive strategy of randomly selecting her assets. We

bask-tested all suggested strategies, for the whole sample period, that is January 1998

untiil September 2008, assuming that each month the investo re-allocates her assets.
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We constructed portfolios consisting of n = {5, 15, 30} mutual funds.In the case of

unconditional momentum (contrarian) strategy, we invested in the n funds that during the

previous month, succeeded the highest (lower) monthly returns among all funds included

in our dataset. In the case of conditional momentum (contrarian) strategy, we followed

the same decision rule but this time, we invested in the n funds with the highest (lower)

monthly return among the funds that during the previous month were rated the same.

When we applied the naive strategy, either unconditional or conditional, n assets were

randomly, using a random number generator of a uniform random variable, chosen from

the corresponding subset of mutual funds. For brevity, we outline the main results.of this

analysis, but in the appendix of this chapter, we included all the bask-testing strategies

considered here.

Figure (5.1) demonstrates that momentum strategy works remarkably better in com-

parison with the two alternatives. In most cases, contrarian strategy seems not to be the

most adequate strategy when investing in a fund of funds. In Figure () we can see that

applying momentum strategy, using the information provided by Morningstar, results in

increasing portfolio performance. In general we cannot observe a pattern that moving

from 1 Star rated fund of funds to higher rates, will engage higher performance for the

momentum strategy. Finally we can see that unconditional momentum strategy results

in higher portfolio performance, but as we can see from Table (5.1) this is achieved with

the cost of increasing risk, therefore resulting with a lower Sharpe ratio from the best

conditional case which is a Momentum Strategy applied on 4 - star rated funds.The last

column in Table (5.1), displays the p-value of the Null Hypothesis that Portfolio Mean

Return is 0.

5.5 Conclusions

This chapter adds to the rather limited number of studies which to date have attempted

to evaluate the Morningstar star-based system for ranking mutual funds (see, e.g., Blake

and Morey, 2000). Its aim is to provide evidence on whether portfolios assembled using
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Figure 5.1: Momentum, Contrarian & Naive Strategy with no additional information

higher-rated mutual funds consistently outperform those made up of funds with lower

Morningstar star-ratings. In particular, we are interested in examining whether a higher

rating reflects superior management skills of the managers of those funds, and there-

fore a simple investment strategy could be adopted which would systematically result in

higher average returns if the Morningstar ranking system is indeed informative about fund

performance, this strategy consisting of always selecting the highest-rated funds when cre-

ating a portfolio. For this purpose, first we examine the statistical properties of the five

funds-of-funds return series, i.e. the returns on the portfolios including respectively five-,

Strategy - Star - n Mean St.Dev. Sharpe Prob
Uncond. Momentum 5 1.45 8.69 0.17 0.06

Momentum 1 - 5 0.83 6.97 0.12 0.18
Momentum 2 - 5 0.73 8.11 0.09 0.31
Momentum 3 - 5 1.04 6.85 0.15 0.09
Momentum 4 - 5 1.16 6.40 0.18 0.04
Momentum 5 - 5 0.96 6.61 0.15 0.10

Table 5.1: Descriptive Characteristics of Portfolio Returns



136
CHAPTER 5. SELECTIVITY, MARKET TIMING AND THE MORNINGSTAR STAR-RATING

SYSTEM

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

98 99 00 01 02 03 04 05 06 07 08

UN_MOM_5
CON_MOM_1_5
CON_MOM_2_5

CON_MOM_3_5
CON_MOM_4_5
CON_MOM_5_5

Figure 5.2: Unconditional Momentum Strategy with 5 Funds (Un Mom 5) Vs Conditional
Momentum Strategy with 5 Funds (Con Mom 'Star' 5)

four-, three-, two- and one-star funds only (STAR5 to STAR1). We show that, provided

second-order dependence is taken into account, statistically significant return differentials

can indeed be found, the higher Morningstar rating being associated with higher returns.

In order to establish whether this is in fact due to superior management skills, we esti-

mate appropriate asset pricing models for risk-adjusted returns. Specifically, we consider

both a standard version of the CAPM model for unconditional portfolio performance

evaluation, and a conditional CAPM (see Ferson and Schadt, 1996, and Shanken, 1990)

in which portfolio risk is a function of observed variables in order to carry out a condi-

tional evaluation as well. The results based on the former specification (when allowing

for conditional heteroscedasticity) indicate that only the three highest-rated categories of

funds are characterised by some stock selection ability, whilst none of the five categories

exhibit market timing ability. Similar results are obtained for the conditional portfolio

evaluation, the evidence suggesting that the better performance of the STAR3, STAR4
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and STAR5 categories reflects superior stock selection rather than market timing abil-

ities. Overall, the implication for the Morningstar ranking system is that this is most

effective in identifying the worst-performing funds (those to which one or two stars are

assigned) rather than the best-performing ones: it can be used as a guide to avoid one-

and two-star rated funds, but it is not really able to discriminate between three-, four-

and five- star funds (although this does not rule out that mutual fund investors are more

sensitive to changes in the ratings compared with the ratings themselves, as highlighted

by Del Guercio and Tkac, 2008).

TABLES

Table 1
Time Series Properties of Monthly Returns of Star-Rated Funds-of-Funds

A. Univariate Characteristics

Fund-of-Funds mean s.d. skewn. kurt. J-B* min. max. ρ̂1 Q(12)*

STAR1 0.31 5.35 -0.90 5.24 0.00 -23.26 12.60 0.053 0.93

STAR2 0.39 4.70 -0.97 4.92 0.00 -19.90 8.96 0.091 0.97

STAR3 0.42 4.32 -0.95 4.47 0.00 -17.01 7.42 0.095 0.99

STAR4 0.45 4.35 -0.87 4.06 0.00 -16.15 8.71 0.094 0.95

STAR5 0.51 4.87 -0.70 4.08 0.00 -16.58 12.98 0.082 0.78

*:p-val

B. Correlation Matrix

STAR1 STAR2 STAR3 STAR4 STAR5

STAR1 1 0.98 0.95 0.93 0.87

STAR2 0.98 1 0.98 0.97 0.90

STAR3 0.95 0.98 1 0.98 0.92

STAR4 0.93 0.97 0.98 1 0.96

STAR5 0.87 0.90 0.92 0.96 1
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C. Testing for Zero Mean in Return-Differentials

(i) OLS: ∆R5i∗
t = ci + νit.

H0 : ci = 0

Serial Correlation Non-Linear Dependence

Return-Differential ĉi s.e.(ĉi) t-stat. ρ̂1(νit) Q(12)* ρ̂1(ν
2
it) Q(12)* BDS*

STAR5-1 0.19 0.23 0.82 0.051 0.38 0.47 0.00 0.00

STAR5-2 0.11 0.18 0.61 0.069 0.09 0.55 0.00 0.00

STAR5-3 0.09 0.16 0.53 0.029 0.08 0.45 0.00 0.00

STAR5-4 0.05 0.11 0.42 -0.009 0.11 0.52 0.00 0.00

*:p-val

(ii) GARCH(1,1): ∆R5i∗
t = ci + νit, νit = hitεit, h

2
it = di + aih

2
it−1 + biε

2
it−1

H0 : ci = 0

i.i.d. for standard. residuals

Return-Differential ĉi s.e.(ĉi) t-stat. BDS

STAR5-1 0.27 0.09 2.91 0.43

STAR5-2 0.14 0.06 2.13 0.70

STAR5-3 0.11 0.05 2.08 0.12

STAR5-4 0.05 0.03 1.80 0.52
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Table 2
Unconditional Evaluation of Star-Rated Funds-of-Funds

A. OLS

Fund-of-Funds a t(a) b t(b) γ t(γ) R
2

STAR1 0.42 1.63 1.05 18.20 -0.01 -1.84 0.79

STAR2 0.40 2.28 0.98 25.07 -0.01 -1.78 0.87

STAR3 0.37 3.20 0.95 36.47 -0.01 -1.91 0.93

STAR4 0.39 3.31 0.96 35.85 -0.00 -1.58 0.93

STAR5 0.52 2.47 0.99 20.86 -0.01 -1.56 083

Serial Cor. Non-Lin. Depend.

AIC SIC Q(12) Q(12) BDS

STAR1 4.653 4.720 0.59 0.00 0.00

STAR2 3.884 3.951 0.12 0.00 0.00

STAR3 3.049 3.116 0.15 0.02 0.04

STAR4 3.107 3.173 0.11 0.00 0.01

STAR5 4.268 4.334 0.13 0.00 0.00

B. Heteroscedasticity-Consistent s.e.'s

Fund-of-Funds a t(a) b t(b) γ t(γ)

STAR1 0.42 1.52 1.05 18.94 -0.01 -1.32

STAR2 0.40 2.10 0.98 25.52 -0.01 -1.13

STAR3 0.37 3.02 0.95 37.09 -0.01 -1.36

STAR4 0.39 3.19 0.96 35.03 -0.00 -1.31

STAR5 0.52 2.55 0.99 18.14 -0.01 -1.47

C. GARCH(1,1)
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Fund-of-Funds a t(a) b t(b) γ t(γ) AIC SIC

STAR1 -0.05 -0.36 1.05 24.39 0.00 0.07 4185 4.319

STAR2 0.15 1.22 0.99 32.82 0.00 0.25 3.547 3.681

STAR3 0.29 2.47 0.95 39.22 -0.00 -0.62 3.044 3.177

STAR4 0.31 2.88 0.96 38.21 -0.00 -0.86 3.068 3.202

STAR5 0.31 2.66 0.99 38.76 -0.00 -0.81 3.625 3.759
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Table 3
Statistical Properties of the State Variables

A. Unit Root Tests

Variable ADF PP DF-GLS MZa MZt

z1t -1.05 -1.25 -1.22 -4.71 -1.42

z2t -1.54 -2.06 -1.16 -2.66 -1.14

z3t -0.91 -0.65 -0.63 -3.59 -0.79

z4t -0.89 -0.60 -0.88 -2.32 -0.87

z5t -1.97 -1.75 -1.96 -6.35 -1.76

z6t 0.76 1.40 1.47 2.89 1.50

z7t -3.67 -3.38 -2.21 -12.15 -2.12

5% c.v.'s -2.87 -2.87 -1.94 -8.10 -1.98

B. Testing for Cointegration Among z1t, z2t, ..., z6t

l = 1 l = 6 5% c.v.'s

λ−max TR λ−max TR λ−max TR

k = 0 38.14 89.49 43.11 116.27 40.07 95.75

k = 1 26.81 51.35 32.49 73.15 33.87 69.81

k = 2 10.87 24.53 17.23 40.66 27.58 47.85

k = 3 9.21 13.65 14.14 23.42 21.13 29.79

k = 4 3.35 4.44 5.37 9.28 14.26 15.49

k = 5 1.08 1.08 3.91 3.91 3.84 3.84

Notes:

1) z1t =one-month treasury bill yield, z2t =constant-maturity 10-year Treasury bond

yield minus 3-month Treasury bill, z3t = Moody's BAA-rated corporate bond yield minus

AAA-rated corporate bond yield, z4t =the exchange rate of the dollar, z5t =the consumer

confidence index, z6t =the price of oil, z7t =the CBOE's VIX volatility index.
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2) ADF and PP refer to the standard Augmented Dickey-Fuller (1979) and Phillips-

Perron (1988) tests respectively for the null hypothesis of a unit root. The lag-length

and the bandwidth parameter in ADF and PP respectively, were selected by the Schwarz

information criterion and the Newey and West (1994) procedure respectively. DF-GLS

refers to the unit root test proposed by Elliot, Rothenberg and Stock (1996) based on GLS

detrended series. MZa and MZt are two of the four tests proposed by Ng and Perron

(2001).

3) l denotes the lag length of the unrestricted Vector Autoregressive Model (VAR)

based on which the Johansen (1991) maximum eigenvalue (λ − max) and trace (TR)

statistics were calculated.
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Table 4
Conditional Evaluation of Star-Rated Funds-of-Funds

(GARCH(1,1) Error Specification)

A: Cointegration Rank among z1t, z2t, ..., z6t is Equal to Zero.

∆z1t, ∆z2t, ..., ∆z6t and z7t are Employed as State Variables.

Significant State

Fund-of-Funds a t(a) γ t(γ) Variables AIC SIC

STAR1 -0.01 -0.02 -0.008 -1.12 ∆z4t, ∆z6t 4.175 4.353

STAR2 0.26 2.32 -0.008 -1.92 ∆z1t, ∆z2t, ∆z4t, ∆z6t 3.505 3.728

STAR3 0.33 3.42 -0.007 -2.71 ∆z4t, ∆z6t 3.004 3.183

STAR4 0.26 2.58 -0.005 -1.98 ∆z6t, z7t 3.016 3.194

STAR5 0.34 2.73 -0.010 -3.36 ∆z3t, ∆z6t, z7t 3.505 3.706

B: Cointegration Rank among z1t, z2t, ..., z6t is Equal to One.

Cointegration Relation, u1t, Together with z7t are Employed as State

Variables.

Fund-of-Funds a t(a) γ t(γ) AIC SIC

STAR1 -0.07 -0.50 -0.001 -0.23 4.179 4.357

STAR2 0.14 1.24 0.001 0.04 3.545 3.723

STAR3 0.23 2.23 -0.003 -0.85 3.043 3.222

STAR4 0.28 2.66 -0.004 -1.17 3.024 3.202

STAR5 0.30 2.47 -0.005 -1.57 3.531 3.709

C: Cointegration Rank among z1t, z2t, ..., z6t is Equal to Two.

Cointegration Relations, u1t, and u2t Together with z7t are Employed as State

Variables.



144
CHAPTER 5. SELECTIVITY, MARKET TIMING AND THE MORNINGSTAR STAR-RATING

SYSTEM

Fund-of-Funds a t(a) γ t(γ) AIC SIC

STAR1 -0.09 -0.61 -0.002 -0.326 4.193 4.394

STAR2 0.14 1.16 0.000 0.051 3.562 3.762

STAR3 0.23 2.07 -0.003 -0.961 3.056 3.256

STAR4 0.29 2.68 -0.003 -0.949 3.033 3.233

STAR5 0.36 3.10 -0.010 -3.01 3.544 3.745

5.6 Appendix
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Figure 5.3: Unconditional Momentum Strategy n = {5, 15, 30}
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Figure 5.4: Unconditional Contrarian Strategy n = {5, 15, 30}
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Figure 5.5: Unconditional Naive Strategy
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Figure 5.6: Morningstar Star Rates Portfolios
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Figure 5.7: Momentum & Morningstar Rating - 1 Star Strategy n = {5, 15, 30}
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Figure 5.8: Contrarian & Morningstar Rating - 1 Star Strategy n = {5, 15, 30}



5.6. APPENDIX 151

40000

80000

120000

160000

200000

240000

98 99 00 01 02 03 04 05 06 07 08

CON_RANDOM_1_5
CON_RANDOM_1_15
CON_RANDOM_1_30

Figure 5.9: Naive & Morningstar Rating - 1 Star Strategy n = {5, 15, 30}
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Figure 5.10: Momentum & Morningstar Rating - 2 Star Strategy n = {5, 15, 30}
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Figure 5.11: Contrarian & Morningstar Rating - 2 Star Strategy n = {5, 15, 30}
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Figure 5.12: Naive & Morningstar Rating - 2 Star Strategy n = {5, 15, 30}
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Figure 5.13: Momentum & Morningstar Rating - 3 Star Strategy n = {5, 15, 30}
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Figure 5.14: Contrarian & Morningstar Rating - 3 Star Strategy n = {5, 15, 30}
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Figure 5.15: Naive & Morningstar Rating - 3 Star Strategy n = {5, 15, 30}
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Figure 5.16: Momentum & Morningstar Rating - 4 Star Strategy n = {5, 15, 30}
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Figure 5.17: Contrarian & Morningstar Rating - 4 Star Strategy n = {5, 15, 30}
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Figure 5.18: Naive & Morningstar Rating - 4 Star Strategy n = {5, 15, 30}
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Figure 5.19: Momentum & Morningstar Rating - 5 Star Strategy n = {5, 15, 30}
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Figure 5.20: Contrarian & Morningstar Rating - 5 Star Strategy n = {5, 15, 30}
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Table 5.2: Descriptive Statistics: Portfolio Returns of Unconditional Strategies
Strategy - n Mean St.Dev. Sharpe Prob
Contrarian 5 -0.63 9.01 -0.07 0.43
Contrarian 15 -0.43 7.88 -0.05 0.54
Contrarian 30 -0.17 7.15 -0.02 0.79
Momentum 5 1.45 8.69 0.17 0.06
Momentum 15 0.97 7.45 0.13 0.14
Momentum 30 0.85 6.68 0.13 0.15

Naive 5 0.46 4.87 0.09 0.29
Naive 15 0.62 4.63 0.13 0.13
Naive 30 0.52 4.60 0.11 0.20

Table 5.3: Descriptive Statistics: Portfolio Returns of a Naive Investor Conditional on
the Morningstar Rating System

Strategy - Star - n Mean St.Dev. Sharpe Prob
Naive 1 -5 -0.15 6.24 -0.02 0.79
Naive 1 -15 0.19 5.61 0.03 0.71
Naive 1 -30 0.26 5.43 0.05 0.59
Naive 2 -5 0.25 4.74 0.05 0.56
Naive 2 -15 0.25 4.74 0.05 0.55
Naive 2 -30 0.26 4.66 0.06 0.53
Naive 3 -5 0.49 4.57 0.11 0.22
Naive 3 -15 0.33 4.21 0.08 0.37
Naive 3 -30 0.31 4.22 0.07 0.41
Naive 4 -5 0.42 4.50 0.09 0.30
Naive 4 -15 0.39 4.26 0.09 0.30
Naive 4 -30 0.34 4.14 0.08 0.36
Naive 5 -5 0.50 4.60 0.11 0.22
Naive 5 -15 0.49 4.26 0.11 0.20
Naive 5 -30 0.47 4.23 0.11 0.21
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Table 5.4: Descriptive Statistics: Portfolio Returns of a Contrarian Strategy, Conditional
on the Morningstar Rating System

Strategy - Star - n Mean St.Dev. Sharpe Prob
Contrarian 1 -5 -0.89 8.38 -0.11 0.23
Contrarian 1 -15 -0.32 6.67 -0.05 0.59
Contrarian 1 -30 -0.06 6.05 -0.01 0.90
Contrarian 2 -5 -0.26 7.91 -0.03 0.71
Contrarian 2 -15 -0.14 6.58 -0.02 0.82
Contrarian 2 -30 -0.04 5.98 -0.01 0.95
Contrarian 3 -5 0.05 7.39 0.01 0.94
Contrarian 3 -15 0.16 6.48 0.02 0.78
Contrarian 3 -30 0.15 5.81 0.03 0.78
Contrarian 4 -5 -0.01 7.08 0.00 0.99
Contrarian 4 -15 0.11 6.05 0.02 0.84
Contrarian 4 -30 0.18 5.62 0.03 0.72
Contrarian 5 -5 0.15 6.55 0.02 0.80
Contrarian 5 -15 0.25 5.94 0.04 0.63
Contrarian 5 -30 0.24 5.47 0.04 0.62

Table 5.5: Descriptive Statistics: Portfolio Returns of a Momentum Strategy, Conditional
on the Morningstar Rating System

Strategy - Star - n Mean St.Dev. Sharpe Prob
Momentum 1 -5 0.83 6.97 0.12 0.18
Momentum 1 -15 0.81 5.85 0.14 0.12
Momentum 1 -30 0.74 5.44 0.14 0.13
Momentum 2 -5 0.73 8.11 0.09 0.31
Momentum 2 -15 0.82 5.99 0.14 0.13
Momentum 2 -30 0.83 5.28 0.16 0.08
Momentum 3 -5 1.04 6.85 0.15 0.09
Momentum 3 -15 0.89 6.06 0.15 0.10
Momentum 3 -30 0.87 5.42 0.16 0.07
Momentum 4 -5 1.16 6.40 0.18 0.04
Momentum 4 -15 0.99 5.73 0.17 0.05
Momentum 4 -30 0.91 5.12 0.18 0.05
Momentum 5 -5 0.96 6.61 0.15 0.10
Momentum 5 -15 0.82 5.72 0.14 0.11
Momentum 5 -30 0.80 5.29 0.15 0.09
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