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Section 1 
Introduction 

In finance, volatility refers to the standard deviation of the continuously 

compounded returns of a financial instrument over a specific time horizon. It is often 

used to quantify the risk of the instrument over that time period and is typically 

expressed in annualized terms. What makes volatility a subject of extensive research 

is that, by nature, is unobservable. For this purpose we have to estimate it in some 

manner. There are two fundamentally different approaches for the determination of 

volatility. On the one hand, volatility can be determined by measuring the standard 

deviation of an asset’s prices over a given period of time. This method yields the 

historical volatility (or ex-post volatility). On the other hand, volatility can be 

measured by the prices of options contracts written upon the asset, i.e. the implied 

volatility. This method yields the current (ex-ante, or forward-looking) volatility 

implied by the market.  

Implied volatility of an option contract is the volatility implied by its market 

price based on an option pricing model. In other words, it is the volatility that, when 

used in a particular pricing model (i.e. Black-Scholes model), yields the current 

market price of that option. In general the implied volatility of a financial asset is the 

volatility implied by the options’ market prices that are written on it. Implied 

volatility is a forward-looking measure. It differs from historical volatility because the 

latter is calculated from the asset’s historical prices. In this study we are concerned 

about implied volatility and in particular about implied volatility indices.  

Implied volatility indices are constructed from a basket of options contracts. 

They represent the forward-looking volatility of an underlying stock index. In this 

manner is an investor’s forecast for the level of the market risk over a specific future 

horizon (most commonly over the next month).  

In the domestic literature, Skiadopoulos (2004) was the first to construct an 

implied volatility index for the Greek market (named GVIX) for the period October 

2000 to December 2002. He followed an altered, for liquidity reasons, Black-Scholes 

methodology. Siriopoulos and Fassas (2008) also constructed a Greek implied 

volatility index (named GRIV) for the period January 2004 to December 2008. They 

followed the new Chicago Board of Options Exchange’s (CBOE) VIX methodology. 
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 In this study we also construct an implied volatility index for the Greek 

market, named VASEX following the recently developed model-free methodology. 

Our study differs from the Siriopoulos and Fassas (2008) one, in that we apply several 

filters to our dataset, in order to remove unreliable options prices from our dataset, 

and from the subsequent calculations. In this way we aim to construct an index as less 

prone to flaws due to anomalies of the market as possible. Nevertheless, the liquidity 

of the Greek derivatives market is quite thin, so we cannot have a sufficient number of 

options with traded volume everyday to get the needed strip of options for the model 

to work. For this reason, we apply the cubic spline interpolation method in our dataset 

as proposed by Jiang and Tian [(2005) and (2007)], in order to make our dataset 

smoothed. As Jiang and Tian (2005) report, this curve fitting procedure for the 

volatility function does not falsifies the results and makes the volatility function to be 

closer to the well known volatility smile (or volatility skew, as we are concerned 

about stock options).   

 

1.1 A little bit of history about Implied Volatility Indices 

The idea of the construction of an implied volatility index dates back in 1989, 

when Brenner and Galai first suggested it. Implied volatility indices are constructed 

from call and put options contracts. They represent the forward-looking volatility of 

an underlying stock index. The maturities of the options contracts on the underlying 

stock index used are the nearby and the second nearby series. To reach to a single 

value for each day, a procedure of weighting the implied volatilities of the used 

options takes part. The idea behind this weighting scheme is the construction of a 

synthetic at-the-money (ATM) option that has a fixed time to maturity of thirty 

calendar days (or equivalently twenty-two trading days).  

Implied Volatility Indices have received an ever-increasing attention of the 

academic society and the market’s practitioners since 1993, when the Chicago Board 

of Options Exchange (CBOE) introduced the VIX index. The VIX index was the 

breakthrough in the field, since it was the first volatility index to be introduced by an 

official exchange and have daily quotes. A unique characteristic of this index was that 

it was the first one to use options contracts written on a stock index (S&P 100), rather 

than on individual stocks.  In this way, the index reflected the volatility of the whole 
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market (market risk), as proxied by the S&P 100, rather than a stock’s risk that 

contains idiosyncratic risk. The concept of taking into account a stock index is very 

important because in this way, due to portfolio diversification, the idiosyncratic risk 

of each stock is eliminated. The systematic risk, that remains, is the one that matters 

for asset allocation purposes. Since then many studies have been contacted. The index 

was mainly based on the work of Whaley (1993). Following the example of CBOE, in 

1994, the  Deutsche Börse also introduced an implied volatility index, named VDAX 

and in 1997 the French Marché des Options Négociables de Paris (MONEP) two 

implied volatility indices, named VX1 and VX6. Other exchanges continued and 

introduced their own implied volatility indices.  

The first launched implied volatility index, VIX was constructed using the 

Black-Scholes (1973) and Merton (1973) model. In this options pricing framework, 

the variables needed are the spot price of the underlying asset, the strike price of the 

option contract, the risk-free interest rate of return, the dividend yield of the 

underlying asset and of course the volatility. Given that all the others variables are 

known and observable and taking into consideration the market prices of the options 

as they formed by the demand and supply the only remaining variable is the volatility. 

By inverting the formula and solving for volatility we extract the so-called implied 

volatility.  

The Black-Scholes model has a set of assumptions that do not match the real 

circumstances. It assumes that the volatility is constant throughout the life of the 

option contract, but we know that volatility is a function of the strike price and the 

time to maturity. Given this fact, the computation of the VIX index requires eight 

options contracts for each day. Four options, for the near term contracts (i.e. two calls 

and two puts) and four for the second near term contracts. For all these options the 

implied volatilities are extracted and a weighting process takes place in order to reach 

to a single value [for a detailed description of the process, see Whaley, R.E. (2000) 

“The investor fear gauge”].  

Recently, in 2003 the CBOE updated the construction methodology of its 

volatility index. It shifted to a model-free calculation formula. The idea of a model-

free estimation of the implied volatility, independent from an option pricing formula, 

began with the creation of variance swaps. These products are derivatives that their 



7 
 

value depends only on the volatility. The formula underlying the new VIX 

computation is based on the concept of the fair value of future volatility. It is based on 

the works of Demeterfi et al. (1999) and Britten-Jones and Neuberger (2000) about 

variance and volatility swaps.  

The need for volatility swaps and in general, volatility derivatives has 

motivated the researchers to the construction of an implied volatility index. These 

instruments have payoffs that depend only on the volatility; hence they provide 

exposure to the realized volatilities of the asset returns. This index serves as an 

underlying asset, upon which volatility derivatives can be written. The investors 

willing to deal with them are those who want to hedge the Vega risk (or volatility 

risk). These products have recently attracted much interest because unlike the 

traditional derivatives contracts, such as stock options, they do not have exposure on 

the underlying asset’s price fluctuations.  

Another important change in the VIX implied volatility index calculation is 

that it uses options contracts written on the S&P500 stock index, rather than on 

S&P100. Even though the two stock indices are highly correlated, S&P500 is 

considered a more appropriate proxy of the United States stock market.  

The reasons behind the change in the methodology used to compute the VIX 

index are the following: 

• The old VIX index’s economic notion, which is the at-the-money implied 

volatility, is not explained exactly by a certain theoretical framework except 

for the Black-Scholes model. In contrast, the new VIX index represents the 

value of a linear portfolio of options and is theoretically more robust. 

• In the old VIX index calculation, was made a conversion of calendar days to 

trading days, leading to a technical upward bias and rendering the comparison 

of the implied volatility with the realized volatility impossible. 

• The last reason for the change has to do with the concept of variance swaps. 

The replication of the variance swaps cash flows using the old VIX was 

difficult. In contrast the new VIX approximates the most these cash flows. 

This is the reason why volatility derivatives where never written with 
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underlying asset the old VIX, whereas soon after the new VIX was launched it 

became the underlying asset of volatility derivatives. 

The CBOE continues to calculate and maintain the old VIX index based on the 

S&P 100 (OEX) index option prices. The one thing that has changed is its ticker 

symbol that is VXO. Simultaneously, the CBOE applied the model-free calculation to 

the VXN index which was launched in 1997, based on Nasdaq-100 option contracts. 

 

1.2 Related Literature – Some Empirical Findings 

There is an extensive and ever growing literature on implied volatility indices. 

The research has focused its efforts on the properties of these indices and their 

information content. 

A well known characteristic of the implied volatility indices is the negative 

and statistically significant relationship between the changes in the implied volatility 

and the returns of the underlying stock index. Researchers such as Whaley (1993, 

2000), Giot (2002a), Skiadopoulos (2004) and Siriopoulos and Fassas (2008) have 

dealt with it. Giot (2002a) studies, for the period 1995-2002 the relationship between 

the U.S. stock indices, S&P100 and Nasdaq 100 and the implied volatility indices that 

correspond to them, VIX and VXN respectively. He reports that positive stock index 

returns lead to decreased implied volatility levels and vice versa. He also reports that 

this relationship is asymmetric, meaning that the negative stock index returns lead to 

greater changes in the implied volatility levels than positive returns do. Whaley 

(2000) also reports this asymmetric relationship with refer to S&P100 returns and 

VIX changes, over the period 1995-2000. Simon (2003), reports the same findings for 

the relation of the Nasdaq-100 Index and the VXN index, using a dataset that spans 

the period January 1995 through May 2002. In the domestic literature, both 

Skiadopoulos (2004) and Siriopoulos and Fassas (2008) do observe this behavior 

between the stock index FTSE/ASE-20 and the Greek implied volatility measures that 

they constructed, namely GVIX and GRIV respectively.  

Another aspect with which the literature has dealt is the transmission of the 

implied volatility across international markets. Gemmill and Kamiyama (2000) study 

the transmission of the implied volatility among U.S., U.K. and Japan equity markets. 
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They employ a vector autoregressive (VAR) modeling framework and find that 

implied volatilities are correlated across markets and the changes of the implied 

volatilities are transmitted across them. By contrast, they report that the implied 

skewness of the volatility smile is a local phenomenon. Badshah (2009) studies the 

volatility transmission among the VIX, VXN, VDAX and VSTOXX indices and finds 

high correlation between the indices, which indicates that investors’ expectations 

about the future realized volatilities are related across the markets.  A fact that 

suggests to portfolio managers and option traders to incorporate these implied 

correlations into their models. He also reports that VIX is the most influential index, 

followed by the VDAX index. Jiang et al. (2009) on a working paper study the 

spillovers of the implied volatility and the effects of news announcements over the 

period 2001-2008. They use a sample of eight indices, four U.S. and four European. 

They report that European volatility indices are led by the U.S. ones and that these 

spillovers stem mainly from the lagged changes in the implied volatility indices and 

not from the individual news announcements.  

The information content and the predictive power of the implied volatility is 

also an area of great interest. Canina and Figlewski (1993) report that past volatility 

subsumes all the information content of implied volatility. They report that their 

results for the forecasting ability of the past volatility are invariant to whether implied 

volatility is included as an explanatory variable or not. Christensen and Prabhala 

(1998) however criticized the results of Canina and Figlewski. They focused on the 

ability of the S&P 100 index options implied volatility to forecast the future realized 

volatility. Their sample spanned the period 1983-1995 and they were the first to use 

non-overlapping data because as they state overlapping data tends to overstate the 

explanatory power of past volatility. They report that implied volatility does predict 

future realized volatility in isolation as well as in conjunction with the history of past 

realized volatility and that implied volatility subsumes the information content of past 

volatility.  

More recently, Jiang and Tian (2005) study the information content of the new 

VIX index, using data that span the period 1988-1994. They report that the model-free 

implied volatility contains all the information content of both at-the-money implied 

volatility and past realized volatility and is a more efficient forecast for future realized 

volatility. Carr and Wu (2006) study the predictability of realized variance and returns 
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to variance swap investments by using the VIX index and data spanning the period 

1990-2005. They report that VIX can predict movements in future realized volatility 

and that GARCH volatilities do not provide extra information when the VIX index is 

included as regressor. However they conclude that the predictability of the future 

realized volatility cannot help in the prediction of excess returns for investing in 

variance swaps. Areal (2008) also studies the forecasting ability of U.K. market’s 

implied volatility indices, with refer to the realized volatility, over the period 1993-

2001. He constructs three indices based on three different methodologies. An index 

constructed using the CBOE’s old methodology (Black-Scholes implied volatility), an 

index constructed using the model-free methodology and finally one index using a 

modified at-the-money implied volatility methodology, named alternative 

interpolation scheme that he proposes due to the limited liquidity of the U.K. market, 

as compared to the U.S. one. In contrast to other findings, he reports that the realized 

volatility is a better forecast of the future realized volatility than any of the other 

indices. He also reports that the model-free implied volatility index is the worst one, 

in forecasting concerns and he attributes it to the inefficient data on the FTSE-100 

index options available to construct such an index.  

 

1.3 Contribution to the existing literature 

As mentioned before, there are two studies on the construction of an implied 

volatility index for the illiquid and thin Greek market. Skiadopoulos (2004) 

constructed the GVIX index, using Black’s (1976) model and Siriopoulos and Fassas 

(2008) constructed the GRIV index, using the CBOE’s new methodology. In their 

study, Siriopoulos and Fassas (2008) use every available observation even if the 

prerequisites are not fully fulfilled (for example non zero traded volume) and fill 

when necessary missing option values using the Put-Call Parity. In this study we 

construct a new Greek implied volatility index, named VASEX using the CBOE’s 

new methodology, reinforcing it however with a tool provided by Jiang and Tian 

[(2005) and (2007)]. We use the cubic spline interpolation method to deal with the 

limited availability of strike prices due to the small size of the market and thus we end 

up with a smoothed data set.  We regard this process necessary since the limited 
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trading on the ADEX’s options and the subsequent elimination of options data 

through the filtering procedure turns the model not functional in a lot of cases.  

Finally, we access the information content of the VASEX index and its 

forecasting ability about the future realized volatility. Toward this end, we construct 

the GVIX implied volatility index proposed by Skiadopoulos (2004) in order to 

compare their forecasting ability. Since GVIX is a Black-Scholes implied volatility 

index we also study whether its information content is subsumed by the model-free 

VASEX index. This is an argument of great interest, as recently a lot of research is 

done in this field [see for example Areal (2008)]. However, to the best of our 

knowledge no previous research exists for the case of the Greek market and is limited 

for the cases of illiquid and low depth markets. 

 

1.4 Structure of the present study 

The rest of the study is structured as follows. First, in section 2 we present the 

data set and the screening that was made in order to remove unreliable data from our 

database and keep only those that are considered reliable, meaning that they are less 

prone to be flawed by anomalies of the market such as mispricing. In section 3, we 

describe the construction methodology of the Greek implied volatility index, VASEX 

and we study the properties of the index along with the properties of the underlying 

stock index, FTSE/ASE-20. In Section 4, we examine the relationship of VASEX 

with the FTSE/ASE-20, and hence with the Greek equity market. In particular, we test 

for the existence of the “leverage effect” and whether or not it is asymmetric. We also 

check the stability of the risk-return relationship and the impact of the Global 

financial crisis upon it. Then we implement a Granger-causality test to see whether 

the time series of the implied volatility index can help forecast the stock index returns 

and vice-versa. Towards the end of the section we test whether VASEX can be 

characterized as a leading-market indicator. In Section 5, we study the volatility 

spillovers across international markets via correlation analysis for the implemented 

indices VASEX, VIX, VDAX, VCAC, VSMI and VSTOXX, a Vector Autoregressive 

(VAR) model and Granger Causality tests. Finally, in section 6 we examine the 

relation between realized and implied volatility. The purpose is to access the 

information content of the implied volatility with respect to the forecast of the future 
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realized volatility. Toward this point, we construct a second implied volatility index 

(GVIX) for the Greek market following Skiadopoulos (2004) methodology in order to 

compare their forecasting ability. We also study whether the information content of 

GVIX is subsumed by the model-free VASEX index. The conclusions of this study 

are presented in the last section, 7. 
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Section 2 
 The Data set and its subsequent screening  
 

2.1 The Data Set 

• Options Data 

We use daily data on European style options traded on the Athens Derivatives 

Exchange (ADEX) and written on the FTSE/ASE-20 Index. The Data were obtained 

from the website of ADEX (www.ase.adex.gr) for the period January 2004 to 

December 2008. The raw data set consists of the strike prices, the closing prices of 

call and put options, the traded volume and the open interest for the shortest and the 

second shortest to maturity option series. 

• FTSE/ASE – 20 Index 

 Daily closing prices of the index for the period January 2004 to December 

2008 were downloaded from the DataStream. The FTSE/ASE-20 index is the Greek 

high capitalization index and contains the twenty largest corporations, with a view to 

capitalization and merchantability, listed in the Athens Stocks Exchange (ATHEX). 

This index was introduced in September 1997 and is revised twice a year. 

• Interest Rates 

We use the EURIBOR interest rate as a proxy of the risk-free interest rate. We 

obtained the data from DataStream. Daily interest rates for one, two, three weeks and 

one, two months were obtained. The interest rates for other maturities were calculated 

with linear interpolation. These interest rates are expressed in a discrete form so in 

order to convert them to equivalent continuously compounded interest rates we used 

the following formula: 

 

Where  

     :                   Equivalent interest rate with continuous compounding 

     :               Times of compounding per annum 

http://www.ase.adex.gr/
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   :               Interest rate compounded m times per annum 

However, the effect of any measurement errors in the calculation of the interest rates 

is small since the rho of out-of-the-money (OTM) options is small.  

 

 

 

• Dividends 

The FTSE/ASE-20 Index is a dividend paying asset.  Although at first sight 

we do not need the dividend yield to calculate the implied volatilities using the model-

free methodology we do need them in order to check whether the options to be used in 

the calculations violate the standard upper and lower bounds proposed by Merton 

(1973).  

Unfortunately DataStream or any other database does not provide the data 

needed, which is the dividend yield on the FTSE/ASE-20 Index. But even if these 

data were available, these dividend yields would be by nature backward-looking. 

There is no reason to expect that the actual recorded dividends reflect correctly the 

expected future dividends at the time that an option is priced. The aim though of this 

study is to construct an index that reflects the forward-looking volatility based on the 

expectations of the market participants.  

To circumvent this problem and calculate for each day and for each maturity 

the dividend yield implied by market prices, we follow a method proposed by Sahalia 

and Lo (1998). 

We use the Spot – Futures Parity in order to estimate the unobservable dividend yield. 

The Spot-Futures Parity is expressed as: 
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To derive the implied futures prices we use the Put - Call Parity relation, which must 

hold if arbitrage opportunities are to be avoided, independently of any option –pricing 

model: 

 

Where  

              : The price of the ATM call option  

            : The strike price of the options at time t, for maturity T 

              : The price of the ATM put option 

          : The Futures price at time t, for maturity T 

To infer the Futures prices from the Put-Call Parity, reliable call and put 

option prices are required. We choose the closest to the money options for each day 

and for each maturity and we interpolate linearly between them to construct a 

synthetic ATM option and access its theoretical price. We use these options that are 

traded close to the money because they are the most actively traded and therefore the 

most liquid and most considered to be priced “fairly”.  

After deriving the forward Index Level through the Put-Call Parity 

Relationship we have all the data required to use the Spot-Futures Parity. So we 

finally derive the implied dividend yields needed. 
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2.2 Screening the data 

The raw data set is screened for the purposes of the subsequent analysis. The 

scope is to remove unreliable data from our database and keep only those that are 

considered reliable, meaning that they are less prone to be flawed by anomalies of the 

market such as mispricing; they do not provide opportunities arbitrage opportunities 

to be executed and they are not affected by microstructure concerns. The expiration 

date of each option contract is the third Friday of the expiration month. 

The first step is to remove options with time to expiry less than five trading 

days. This is a standard practice in implied volatility indices calculation since options 

that are close to expiry are considered to be affected by liquidity and microstructure 

concerns. In the VIX index calculation for instance there is a roll over to the second 

and third shortest series contracts when the first – shortest series has less than eight 

calendar days to maturity. Unfortunately this possibility is not present in the case of 

the Greek market since ADEX introduces new options contracts only when the 

shortest series have expired. So, VASEX cannot be constructed for these days and this 

is a weakness of the constructed index. 

We also discard options with zero trading volume and less than 3/8 premium.  

The last step is to check whether the options that take part in the calculations 

violate the standard upper and lower arbitrage bounds. Given that the underlying asset 

of the FTSE/ASE-20 options, the FTSE/ASE-20 index, is a dividend paying asset we 

need to use the dividend yield as an input for the calculations. The implied dividend 

yield, calculated before following Ait-Sahalia and Lo (1998) method (the method is 

described before) is used for that scope. Options that violated these bounds were also 

discarded. 
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Section 3 
Implied volatility index, construction and properties 

 
 

3.1 VASEX Implied Volatility Index Construction 

Following the standard practice in constructing implied volatility indices the 

Greek Implied Volatility Index VASEX represents the implied volatility of a synthetic 

at-the-money ( ATM) option with 30 calendar days (22 trading days) to expiration.  

We use the model-free methodology that CBOE uses to construct the VIX 

Index in order to construct the VASEX Index.  

The Generalized formula used in the VASEX calculation is:   

      (1) 

Where 

                         is         

      :       Time to expiration, in minutes  

      :      Forward Index level derived from index option prices 

     :      Strike Price of the i-th out-of-the-money option; a call if   

and put if  .                                                                     

          :     The interval between strike prices – half the distance beween the 

strike  on either side of  Ki : 

 

      :     First strike below the forward index level, F 

        :     The risk-free interest rate to expiration       

:    The closing price for each option with strike  
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The options that take part in the above calculations are call and put options in 

the two nearest-term expiration months in order to bracket a 30-day calendar period. 

When the contract for the first expiration month is left with eight (8) days to 

expiration the CBOE in order to calculate the new VIX ‘rolls’ to the second and third 

contract months in order to minimize pricing anomalies that might occur close to 

expiration. However, for the case of the Greek market this is not possible since the 

ADEX does not provide option contracts for the third month until the first month 

contracts expire. So given this VASEX index was not calculated for the days where 

the first month contracts had less than five (5) trading days to expiration.  

The time of the VASEX calculation is assumed to be 10:30 a.m. (Athens 

time). The model-free calculation of the volatility index measures the timi to 

expiration, T, in minutes rather than days in order to replicate the precision that is 

commonly used by professional traders. The time to expiration is given by the 

following expression: 

 

Where… 

     = Number of minutes remaining until midnight of the curent 

day 

  = Number of minutes of minutes from midnight until 10:30 

a.m. on the settlement day 

   = Total number of minutes in the days between current day 

and the settlement day 

 

Below we describe briefly the basic steps in the calculation of (1) : 
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Step 1  

Determine the Forward Index Level, F, based on at-the-money option prices. 

The at-the-money strike is the strike price at which the difference between the all and 

put prices is the minimum. 

The formula used to calculate the forward index level is the following: 

 

Sort all of the options in ascending order by strike price. Select call options 

that have strike prices greater than  Ko  (OTM call options) and a non-zero price. 

After two consecutive calls with a price of zero are encountered, do not select any 

other calls. Select, also put options that have a strike prices less than  Ko  (OTM put 

options) and a non zero price. Again, after encountering two consecutive puts with a 

price of zero, do not select other puts. For the strike price  Ko select both the call and 

put and average them to get a single value. 

You should notice that two options are selected at  Ko  ,while a single option, 

either a call or a put, is used for every other strike price. This is done in order to 

center the strip of options around  Ko. However, these two option prices are averaged 

so as to avoid double counting.  

Step 2 

Calculate the volatility for both near and next term options:                 

       (1.1) 

 

      (1.2) 
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The constructed volatility index is an amalgam of the information reflected in 

the prices of all of the options used. The contribution of each option is proportional to 

its price (premium) and inversely proportional to its strike price.  

Step 3 

Finally we interpolate linearly between (1.1) and (1.2) to arrive at a single 

value with a constant maturity of 30 days to expiration. Then we get the square root of 

that value and we multiply it by 100 to get VASEX. 

 

 

 

An important difference between our methodology and the CBOE’s one is that 

the latter uses the midpoint of the bid-ask quote of options’ prices for the calculations 

above. However, we use the closing prices of the ADEX options. As Skiadopoulos 

(2004) states “The option prices quoted as ‘closing’ in ADEX are not the last-traded 

prices. They are settlement prices in the sense that ADEX uses an algorithm to 

calculate them. For the shortest expiry, the three nearest-to-the-money call and puts 

are used. For the second expiry series only the closest-to-the-money call and put is 

required. Then, Black’s (1976) model is used to back out the implied volatility using 

the last traded future price and a constant interest rate of 3%. In the next step, the 

arithmetic average of the implied volatility is obtained. Finally, the settlement option 

price is calculated using the average implied volatility and the future settlement price” 

Moreover, Skiadopoulos (2004) constructed the GVIX index in two different 

ways; one using the closing prices and another one using the midpoint of the bid-ask 

quote of the options’ prices and found that the volatility index constructed from bid–

ask quotes is more prone to noise. Therefore the choice of the options’ closing prices 

for the Greek case is justified.   
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3.2 Implementation Issues 

The general formula (1) that CBOE uses to extract the implied volatility is a 

discretized version of the following formula (2), and is based on the concept of fair 

value of future variance developed by Demeterfi et al. (DDKZ variance). So, unlike 

the traditional ex-ante volatility measure such as the Black-Scholes-Merton implied 

volatility, the DDKZ variance is extracted directly from traded option prices. 

 

 

 

 

 

So it assumes that prices are available for options with any strike price 

between a given range [ , ]. This is not realistic as strike prices for trading in 

the market are listed only at a fixed increment. The limited availability of strike prices 

is present even in very developed derivatives market, such as the CBOE. To 

circumvent this problem Jiang and Tian (2005) proposed a method that they 

implemented in order to smooth the data set as if there were a much greater number of 

available strikes. We found that this technique would be very useful in our case. The 

Greek Derivatives Market counts only ten years of operations and is considered an 

emerging one. The availability of strike prices for the options traded in ADEX is 

indeed limited and the intervals between the strike prices is relatively high, so we 

applied the smoothing method that we describe below.  

We reform the data set used in order to get a smoothed data set of option 

prices with a sufficiently large number of available strike prices. As far as options are 

listed for fixed strike prices the prices of the options with strike prices between any 

two listed strike prices are not directly observable. Hence, their prices must be 
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inferred from the known prices of listed options. Toward this point, various 

approaches have been proposed. Among the approaches used in previous research, the 

curve-fitting method was found to be the most practical and effective one. Some 

studies have applied the curve-fitting method directly to option prices [e.g. Bates 

(1991)], but the nonlinear relationship between strike prices and option prices leads to 

numerical difficulties. Like Jiang and Tian that followed Shimko (1993) and Sahalia 

and Lo (1998), we apply the curve-fitting method to implied volatilities and not to 

option prices.  

In particular, the curve-fitting method that is applied is the cubic spline interpolation. 

In the numerical analysis field, spline interpolation is a method of interpolation where 

the interpolant is a piecewise polynomial interpolation that is called spline. Among 

the different types of spline interpolation (i.e. Linear, Quadratic and Cubic spline 

interpolation) the cubic spline has the advantage that the obtained volatility function is 

smooth everywhere and provides an exact fit to the implied volatilities of the listed 

option prices that we can easily calculate. 

In the first step prices of listed call and put options are translated into implied 

volatilities using the Black-Scholes-Merton (BSM) Model. Each parameter of the 

model is known, except for the dividend yield and the volatility, of course. The 

dividend yield used, is the implied one calculated before. Then a smooth function is 

fitted to the calculated implied volatilities (Volatility function). Given the known 

volatility function, we can extract then the implied volatilities for any strike price Ki. 

After having calculated the implied volatilities that needed, we use once more the 

BSM model, but this time in order to translate the extracted implied volatilities into 

call and put option prices.   

In this stage we have to make clear that this curve-fitting method (cubic spline 

interpolation), does not make the assumption that the BSM model is the true model 

underlying the option prices. The results obtained (implied volatilities and option 

prices), should not be considered flawed due to the model used. The model is used 

just as a tool providing a one-to-one matching between option prices and implied 

volatilities.  
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3.3 Properties of the Greek implied volatility index, VASEX 

After all these process were done VASEX could be eventually constructed for 

only 705 days for the period January 2004 to December 2008. In order to study the 

time series properties of the constructed index formally we proceed as follows. Table 

1 shows the summary statistics (mean, median, maximum, minimum, standard 

deviation, skewness, kurtosis and the results from the Jarque-Bera test with its p-value 

in brackets) of the constructed implied volatility index and of the FTSE/ASE-20 

index. It also presents the first order autocorrelation and the results from the 

Augmented Dickey-Fuller unit root test statistic. The highest level of VASEX is 

53.12% and was reached on October 10, 2008 and the lowest level was 12.83% 

reached on November 14, 2005. The FTSE/ASE-20 Index reaches its highest level on 

November 11, 2007 and its lowest level on December 29, 2008 following, in the 

meanwhile, a downward trend. The mean of the VASEX is 20.37% and the median is 

19.26%. We see that the skewness of the distribution is 2.69 implying a longer right 

tail and the kurtosis is 13.6, well above 3, showing that the distribution has fat tails. 

Regarding the autocorrelation coefficient the standard 5% significance bound is    

2/√T = 2√705 = 53.1. The autocorrelations in the levels of the index are statistically 

significant and positive showing that it is a long-memory process. The conducted 

ADF test, including drift, for the existence or not of a unit root reject the existence of 

a unit root at 1% significance level whereas the results of the ADF test without 

including a drift for the process (-0.5842), suggests that there is a unit root at the same 

significance level (1%).  

Figure 1 illustrates the evolution of VASEX along with the evolution of 

FTSE/ASE-20. As can be seen in certain periods there seems to be a negative 

correlation between the changes in the VASEX and the changes in the FTSE/ASE-20. 

This phenomenon has been termed as leverage effect [see Figlewski and Wang 

(2000)]. 

Table 2 shows the summary statistics, the first order autocorrelation and the 

results from the ADF test for the daily changes of the implied volatility index and the 

returns of the FTSE/ASE-20 index. The daily changes of the implied volatility index 

have a mean of zero indicating that there is no trend. The negative autocorrelation of 

the daily changes confirms what literature has proofed about an implied volatility 
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index that is; ΔVASEX is a mean-reverting process. The implemented ADF test 

suggests the rejection of the null hypothesis of a unit root at 1% significance level.  

Figure 2 illustrates the evolution of the changes in the levels of the VASEX index. 

Statistics FTSE/ASE-20 VASEX
Mean 1893,60 20,37
Median 1879,51 19,26
Standard Deviation 494,75 5,15
Minimum 887,92 12,83
Maximum 2841,23 53,12
Skewness 0,05 2,69
Kurtosis 1,84 13,60
J-B Stat 40,11* 4150,24*
p-value 0,001 0,001
ρ 1 0,9932* 0,9291*
ADF -0,4481 -3,4597*  

Table 1: Summary Statistics. The entries report the summary statistics for the levels of the 
stock index FTSE/ASE-20 and the implied volatility index VASEX. The first order 
autocorrelation ρ1, the Jarque-Bera and the Augmented Dickey Fuller (ADF) test values are 
also reported. An asterisk denotes rejection of the null hypothesis at the 1% level. The null 
hypothesis for the first order autocorrelation, Jarque-Bera and the ADF tests is that the first 
order autocorrelation is zero, that the series is normally distributed and that the series has a 
unit root, respectively. The sample spans the period January 2004 to December 2008.  

Statistics R FTSE/ASE-20 ΔVASEX
Mean -0,0004 0,0001
Median 0,0015 0,0003
Standard Deviation 0,0192 0,0192
Minimum -0,1799 -0,1100
Maximum 0,0614 0,1022
Skewness -2,4336 -0,3300
Kurtosis 19,2451 9,7822
J-B Stat 8436,059* 1362,0765*
p-value 0,001 0,001
ρ 1 0,0988* -0,3392*
ADF -16,4060* -24,6452*  

Table 2: Summary Statistics. The entries report the summary statistics for the daily first 
differences of the stock index FTSE/ASE-20 and the implied volatility index VASEX. The 
first order autocorrelation ρ1, the Jarque-Bera and the Augmented Dickey Fuller (ADF) test 
values are also reported. An asterisk denotes rejection of the null hypothesis at the 1% level. 
The null hypothesis for the first order autocorrelation, Jarque-Bera and the ADF tests is that 
the first order autocorrelation is zero, that the series is normally distributed and that the series 
has a unit root, respectively. The sample spans the period January 2004 to December 2008.  
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Figure (1): Evolution of FTSE/ASE-20 and VASEX. This figure illustrates the evolution of 
the FTSE/ASE-20 along with the evolution of VASEX for the period January 2004 to 
December 2008. 
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Figure (2): Evolution of ΔVASEX. This figure illustrates the evolution of the changes in the 
levels of VASEX (ΔVASEX) the data span the period January 2004 to December 2008. 
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Figure (3): VASEX Autocorrelogram (up) and Partial-Autocorrelogram (down). 

 

Figure (4): ΔVASEX Autocorrelogram (up) and Partial-Autocorrelogram (down). 
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Section 4 
Relationship with the underlying stock index FTSE/ASE-20 

 
In this section we examine the relationship between the Greek implied 

volatility index, VASEX and the underlying Greek stock index, FTSE/ASE-20. We 

first examine the leverage effect or the “Investor’s fear gauge” property and then 

proceed with Granger causality tests in order to see whether the one index contains 

any information content, useful for the prediction of the other and vice – versa. 

 

4.1 Investor’s Fear Gauge - Leverage Effect 

 

In the Capital Asset Pricing Framework is predicted that the expected return 

depends on the expected risk (expected volatility). Moreover, in the implied volatility 

literature the statistically significant negative relationship between implied volatility 

indices and returns is documented. For example Fleming et al (1995), Whaley (2000), 

Giot (2002a) and Carr and Wu (2006) have found a negative relationship between the 

returns of S%P stock index and the changes in VIX index. They also confirm that this 

relationship is asymmetric. Within the domestic implied volatility literature 

Skiadopoulos (2004) and Siriopoulos and Fassas (2008) also confirm this negative 

relationship between the returns of FTSE/ASE-20 and their constructed implied 

volatility indices.  

The leverage effect states that when the stock price of a company falls, the 

company becomes more levered and riskier. This explanation of the increased 

volatility (associated with higher risk) that is applied to stocks is theoretical extended 

to stock indices as well. The explanation for the “leverage effect” has been called into 

question while several market anomalies have been associated with it. As Figlewski 

states, “A fall in the market price for the stock should increase its subsequent 

volatility, and a price rise off the same magnitude should reduce volatility by a 

comparable amount. However, the existence of a “leverage effect” is most commonly 

associated with falling, rather than rising, stock prices. This raises the question of 

whether it may be an asymmetrical phenomenon more closely related to negative 

returns than to leverage per se” [see Figlewski and Wang (2000)]. So, the conclusion 

is that the “leverage effect” is really a “down market effect”. 
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An explanation that could be given is that when the market returns decline 

there is an increased demand for put options. As the demand increases the prices of 

the options increase and hence observe the presence of higher implied volatilities. 

Furthermore this negative relationship is asymmetric: a positive/negative shock on the 

implied volatility of equal size does not have the same effect on the return of the 

market index.  That is where the interpretation of an implied volatility index as “the 

investor’s fear gauge” lies on. The more the level of the implied volatility increases 

the more panic there is in the market. The more the level of the implied volatility 

decreases, the more complacency there is in the market. 

To investigate whether this interpretation can be also attributed to VASEX we will 

execute the following regression. 

                             (4.1) 

Where  

 = ( / )  

 =  

The estimation output of the above regression is given below, in Table (3) 

Adj. R 2

Intercept ΔVASEX
Coeff. -0,00 -0,16* 0,025
t-stat. (-0,44) (-2,11)

Independent Variables
Dependent Variable: R t

 

Table (3): Results of the regression Rt = c + bΔVASEXt + εt. Reported values are the 
estimated coefficients of the regression, where ΔVASEXt denotes the changes and the of the 
implied volatility index and Rt the returns of the underlying stock index at time t. 
Heteroskedasticity and autocorrelation consistent Newey-West standard errors were estimated 
and the corrected t-values are reported. One asterisk denotes the rejection of the null 
hypothesis of a zero coefficient at 5% significance level. 

 

Because of the existence of autocorrelation and heteroskedasticity in the 

residuals of the above regression we use autocorrelation and heteroskedasticity 

consistent Newey-West standard errors which do not cause any change in the 
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estimated coefficient values but the standard errors and correspondingly the estimated 

t-values. The estimated beta coefficient of the ΔVASEX is statistically significant in a 

5% significance level and its negative sign implies that there is a negative relation 

between the returns of the FTSE/ASE-20 index and the changes in the levels of 

implied volatility. The interpretation of the negative coefficient of VASEX in the 

regression is that if VASEX falls by 100 basis points (1%) the return of FTSE/ASE-

20 will rise by 0.162%, whereas if VASEX rise by 100 basis points (1%) the return of 

FTSE/ASE-20 will fall by 0.162%.  

In order to estimate whether this negative relationship is asymmetric we 

follow Whaley’s (2000) and Skiadopoulos (2004) methodology in that we regress the 

logarithmic daily returns Rt of the FTSE/ASE-20 stock index on the daily changes Δ 

of VASEX and on the positive changes ΔVASEX+ of VASEX as a second regressor.   

So, ΔVASEX+ = ΔVASEX if ΔVASEX > 0 and ΔVASEX+ = 0, otherwise. 

The regression is expressed as: 

                (4.2) 

The estimation output is given below: 

Adj. R 2

Intercept ΔVASEX ΔVASEX+

Coeff. 0,00 0,17*** -0,70* 0,099
t-stat. (4,23) (1,85) (-3,51)

Independent Variables
Dependent Variable: R t

 

Table (4): Test for the existence of an asymmetric leverage effect. Reported values 
are the estimated coefficients of the regression Rt = c + ΔVASEXt + ΔVASEXt

+ + εt, where 
ΔVASEXt and ΔVASEXt

+ denote the changes and the positive changes respectively of the 
implied volatility index and Rt the returns of the underlying stock index at time t. 
Heteroskedasticity and autocorrelation consistent Newey-West standard errors were estimated 
and the corrected t-values are reported. One and three asterisks denote the rejection of the null 
hypothesis of a zero coefficient at 1% and 10% significance level respectively. 

 

The coefficient of ΔVASEXt  is statistically significant at the relatively low 

significance level of 10%. The coefficient of ΔVASEXt
+ is statistically significant at 

1% significance level. These results suggest that through the estimation period, the 
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positive changes of ΔVASEX are the ones that mainly affect the return of the 

FTSE/ASE-20. Curiously, the estimated coefficient of ΔVASEXt is positive, 

indicating that whatever the evolution of the implied volatility is the return of the 

FTSE/ASE-20 index will fall. In the cases where ΔVASEXt is positive        

(ΔVASEXt > 0) the fall of the FTSE/ASE-20 return will be greater. More specifically, 

we see that if VASEX falls by 100 basis points (1%) the return of FTSE/ASE-20 will 

fall by 0.17%, whereas if VASEX rises by 100 basis points (1%) the return of 

FTSE/ASE-20 will have a greater fall of 0.53%. This is indeed weird, given that we 

have ensured from the previous test [equation (4.1)], that the relation between 

ΔVASEX and FTSE/ASE- 20 returns is negative.  

The only possible explanation for this disturbance is the impact of the global 

financial crisis of 2008. The index was constructed for the time period January 2004 

to December 2008. The period from the beginning of 2004 up to almost October 

2007, excluding a slight downward trend in 2006 for two consecutive months (April 

to June) was an extremely positive one for the returns of the Athens Stock Exchange. 

However, from October 2007 to December 2008 (end of our sample) the FTSE/ASE-

20 index follows an intense downward trend, making only little corrections. In fact, 

this downward trend is driven by the global credit crisis that we are still going 

through. The fact that the stock index returns are falling almost continuously for a so 

long time period in our sample maybe explains why we got these strange results.  

 

4.2 Impact of the 2008 Global Financial Crisis 

To see whether the global financial (credit) crisis has an effect on the volatility 

and the stock returns of the Greek market and confirm our relative thoughts we 

proceed in running a third regression. In this case, we add two new regressors for the 

variables  ΔVASEXt and ΔVASEXt
+  , including a multiplicative dummy variable D 

in  the regression model of equation (4.2), that is: 

 (4.3) 

Where D = 1, if t > 1/1/2008 and D = 0, otherwise. The beginning of the global 

financial crisis dates back to the last months of the year 2007. It was then, that the 
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international stock exchanges began to get hailed by severe losses. For this reason, in 

this study we set the whole year 2008 as a period of financial turmoil. The estimated 

output is given in table (5).  

As we see, the coefficients b1 and b2 are statistically significant and different 

from zero. Moreover we see that the coefficient b1 is positive, implying that whatever 

the changes of the implied volatility index were during the prolonged period of the 

Athens Stock Exchange downturn, the return of the FTSE/ASE-20 index was 

negative. So we can claim that the prolonged fall of the returns of the Athens Stock 

Exchange, driven mainly by the global credit crisis, is the source of the disturbance on 

the risk-return relationship. 

 

Adj. R 2

Intercept ΔVASEX ΔVASEX+ DΔVASEX DVASEX+
Coeff. 0,00* -0,12*** -0,15 0,41* -0,76* 0,127
t-stat. (2,78) (-1,69) (-0,96) (3,69) (-2,89)

Dependent Variable: R t

Independent Variables

Table (5): Testing for the impact of the global financial crisis of 2008 on the risk-return 
relationship of the Greek market. Reported values are the estimated coefficients of the 
regression Rt = c + α1ΔVASEXt +  α2ΔVASEXt

+ + b1DΔVASEXt + b2DΔVASEXt
+ + εt. 

Heteroskedasticity and autocorrelation consistent Newey-West standard errors were estimated 
and the corrected t-values are reported. One, two and three asterisks denote the rejection of 
the null hypothesis of a zero coefficient at 1%, 5% and 10% significance level respectively. 

 

  It should be noted that in order to test the robustness of these results we run 

the regression, expressed in equation (4.2) using two sub-samples. One for the period 

before the crisis; which is January 2004 to December 2007 and one for the period 

January 2008 to December 2008. The results from these tests confirm the above 

conclusions. 
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4.3 Granger Causality Test 

A time series X is said to Granger-cause a time series Y if X helps in the 

prediction of Y, or equivalently if the coefficients of the lagged X’s statistically 

significant. When dealing with Granger causality it is important to note that the 

statement “X Granger causes Y” is not implying that Y is the effect or the result of X. 

This kind of causality measures precedence and information content but it does not by 

itself indicate causality in the more common use of the term (see Hamilton, 1994, for 

a more detailed description of the Granger Causality Test).  

In this section we perform a Granger Causality test in order to check whether 

ΔVASEX (R) helps to predict R (ΔVASEX). At this point we should note that in 

order to have robust results for the predictive power of variables we must have 

observations of a certain and fixed frequency. We should mention that VASEX could 

be constructed for very few days for the last months of the year 2008 due to the 

liquidity drought of the Athens Derivatives market; options contracts with traded 

volume different from zero were hardly recognized in most days, for the second 

shortest options contracts series. So, while up to July 2008 we have a sufficient 

number of observations to regard them as daily, for the last months of the year we 

have about thirty observations. This means that the changes of the implied volatility 

index (and the returns of the FTSE/ASE-20 index) for this time period would be more 

like weekly rather than daily. To avoid having flawed results in the test we rearrange 

our sample and include every observation within the time period January 2004 – July 

2008 (including this month). 

The Granger causality test consists of running bivariate regressions of the form: 

          (4.4) 

              (4.5) 

 

The null hypothesis is H0  

Or put it differently, we test two hypotheses, namely that “R does not Granger-cause 

ΔVASEX” and that “ΔVASEX does not Granger-cause R”.  
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The test for causality is based on an F-statistic that is calculated by estimating 

the above expressions in both unconstrained and constrained forms. The 

unconstrained forms are the above expressions (regressions) themselves whereas the 

constrained forms are the above regressions without the terms of the sum of the 

lagged values of the other variable or put it more simply, just the autoregressive 

regressions for each variable with the same lag length (K) used before. According to 

Hamilton (1994) a time series X fail to predict - does not Granger-causes – a time 

series Y if the Mean square error (MSE) of the unconstrained regression is the same 

as the MSE of the constrained regression.  

The interpretation of the null hypothesis is that R does not Granger-causes 

ΔVASEX in the first regression and that ΔVASEX does not Granger-causes R in the 

second regression.  

We execute the test two times, using one lag (K = 1) in the first test and two lags     

(K = 2) in the second test.  

Table (6) shows the results (F-statistics) of the Granger causality test and Table (7) 

shows the estimated coefficients along with the corresponding t-values and the 

adjusted R2 of the regressions. 

Let us have a look at the results of the Granger causality test using 1 lag first. 

We see that ΔVASEX Granger-causes R for a significance level of 5%. The adjusted 

R2 of the regression is just 0.005. This number is too small and we do not really 

expect that the information content of ΔVASEX to be really helpful in R’s prediction. 

The opposite is also true, meaning that R Granger causes ΔVASEX. The adjusted R2 

of this regression is 0.1799. This number is sufficiently high to claim that R really 

helps predict ΔVASEX. Now, let us see the results of the test using 2 lags. Once again 

both variables Granger-cause each other with the adjusted R2 lying on the same levels. 

These results are in line with Siriopoulos and Fassas (2008). Hence, the results 

provide us one important finding; the power of lagged values of R to help predict the 

changes in the levels of implied volatility. Consequently the future option prices can 

be forecasted and provide a tool for following the appropriate in each case strategy.  
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  Null Hypothesis: 2 lags
F-Stat. Prob. F-Stat. Prob.

RFTSE/ASE-20 does not Granger Causes ΔVASEX 4,80* 0,029 4,15* 0,016
ΔVASEX  does not Granger Causes   RFTSE/ASE-20 5,36* 0,021 3,20* 0,041

1 lag
Granger Causality for RFTSE/ASE-20 and ΔVASEX

 Table (6): Results from the Granger causality test between R and ΔVASEX. The results 
refer to the the equations (4.4) and (4.5). We use both 1 and 2 lags. The data spans the period 
January 2004 to July 2008. One asterisk denotes the rejection of the null hypothesis at the 5% 
significance level. 

 

Adj. R 2

Intercept Rt-1 Rt-2 ΔVASEX t-1 ΔVASEX t-2

Coeff. 0,00 0,02 − 0,09* − 0,51%
t-stat. (1,03) (0,52) − (2,31) −

Coeff. 0,00 0,02 0,02 0,07*** -0,04 0,42%
t-stat. (0,98) (0,50) (0,39) (1,67) (-1,02)

Adj. R 2

Intercept ΔVASEX t-1 ΔVASEX t-2 Rt-1 Rt-2

Coeff. 0,00 -0,44* − -0,08** − 17,99%
t-stat. (0,32) (-12,11) − (-2,19) −

Coeff. 0,00 -0,50* -0,15* -0,08** -0,07*** 19,67%
t-stat. (0,41) (-12,69) (-3,82) (-2,20) (-1,85)

1 lag (K = 1)
Dependent Variable: R t

2 lags (K = 2)

Dependent Variable: ΔVASEX t

1 lag (K = 1)

2 lags (K = 2)

Independent Variables

Independent Variables

Table (7): Granger causality tests between ΔVASEX and R. Results from the equations 
(4.4) and (4.5). The top panel refers to the test using 1 lag (K=1). The bottom panel refers to 
the test using 2 lags (K=2). The reported values are the estimated coefficients of the bivariate 
regressions and refer to the lagged values of ΔVASEX and the lagged values of R, at time t. 
T-values, R2 and adjusted R2 are also reported. One, two and three asterisks denote the 
rejection of the null hypothesis of a zero coefficient at 1%, 5% and 10% significance level 
respectively. 
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4.4 Is the Greek Implied Volatility Index, VASEX a Leading-Market Indicator? 

The contemporaneous negative relationship between implied volatility indices 

and the returns of the underlying stock indices is well documented by empirical 

results. It also holds for the Greek Implied volatility index (VASEX), as we reported 

previously. What is unclear though is whether implied volatility indices can indicate 

overbought or oversold market conditions and thus provide trading signals.  

This is a question that arises from the fact that when implied volatility indices 

reach very high levels the underlying stock indices usually their very low levels. 

Therefore, the ability of an implied volatility index to provide a market-timing tool to 

the investors is under research.  

Giot (2005b) examines whether the VIX and VXN indices can indicate if the 

condition of the U.S. market is overbought or oversold and thus provide trading 

signals. He reports that there is some evidence that one can expect positive forward-

looking returns for long positions in the stock indices when the implied volatility 

indices reach high levels. However, he reports that one can wait for extremely high 

levels of implied volatility to obtain really attractive forward-looking returns.  

In this subsection we examine the relationship of the Greek implied volatility 

index (VASEX) with the forward-looking returns of the underlying stock index 

(FTSE/ASE-20). 

In line with Giot, we study the relationship between the level of the Greek 

implied volatility index, VASEX, at a given time and the forward-looking 

(logarithmic) return of the FTSE/ASE-20 index for one (1), five (5), twenty (20) and 

sixty (60) days ahead. Hence, we look at the relationship between VASEXt and r1dt, 

r5dt, r20dt and r60dt.  

To examine whether extremely high implied volatility levels provide signals to 

an investor to take long positions on the underlying stock index we use the following 

process to determine our trading strategy: 

Step 1: 

At any given time t, we observe the T previous (historical) values of the 

implied volatility index, that is a set {VASEXi}, where . We set T to 
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be equal to one-hundred (T = 100), so we study the 100 previous values of the implied 

volatility. These implied volatility levels are classified according to twenty (20) 

equally spaced percentiles, i.e. 5%, 10%, 15%…95%. These percentiles refer to a state 

for the implied volatility and are denoted as S1, S2…S20. 

The set of the T values is the specification of our information set for each time 

t. We use a rolling window procedure for the determination of our information sets 

that is, each day we move one observation forward. 

Step 2: 

The implied volatility of each day, VASEXt, is compared with these 

percentiles and gets the corresponding rank. If VASEXt happens to be greater than the 

maximum of the its previous values, then it is classified with a rank St = 21. 

Step 3: 

Given the state of each t, for each day we compute the forward looking returns 

on the FTSE/ASE-20 stock index. The periods taken into consideration for the 

computation of these returns are 1 day, 5 days, 20 days and 60 days.  

If implied volatility is capable of providing trading signals for long positions 

on the stock index, then we should wait that the returns for these positions in the high-

volatility states should be sufficiently large. Table (8) reports the values and the 

standard deviations of the returns on our strategy for each one of the 21 volatility 

states. The results show that there is a clear increase, with some significant in some 

cases fluctuations though, in the level of risk that an investor faces as we move from 

low to high volatility states.  As for the returns, we see that there is not a clear pattern, 

at least for the middle states. However, we observe something really interesting. 

Contrasts to our beliefs, the forward-looking returns on the very low volatility periods 

are always positive while the forward-looking returns on the very high volatility 

regimes are always positive. This fact does not comply with what traders think about 

the signals contained in the spikes of implied volatility. What is also interesting to 

refer is that the increasing risk that we observe is not accompanied with higher returns 

as investors would expect.  
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State (S) R St. Dev R St. Dev R St. Dev R St. Dev
S1 0,03 0,82 0,74 2,13 1,83 4,20 8,10 6,64
S2 0,12 0,83 0,59 2,05 1,51 5,06 6,50 6,89
S3 -0,01 0,85 -0,03 2,06 -0,10 4,10 4,18 6,06
S4 0,12 1,02 0,15 2,31 2,09 4,92 4,26 10,30
S5 -0,03 1,37 -0,04 3,41 0,27 7,94 -0,89 19,32
S6 0,02 0,81 -0,03 2,96 0,78 5,58 1,09 16,11
S7 0,12 0,95 0,42 3,51 1,36 6,16 3,01 16,72
S8 0,12 1,01 -0,73 3,13 0,45 5,94 -1,14 17,26
S9 -0,06 1,01 -0,19 2,75 0,03 6,85 3,83 9,86
S10 -0,03 1,64 -0,51 3,11 0,55 6,78 -4,35 16,55
S11 -0,31 1,03 -0,06 2,73 -0,87 6,93 0,22 18,39
S12 -0,02 1,18 -1,36 3,84 -0,71 7,72 2,96 9,70
S13 0,41 1,30 0,47 3,66 -2,69 9,26 0,63 11,96
S14 -0,46 1,05 -0,39 3,73 -1,69 9,12 -2,52 17,68
S15 -0,27 1,16 0,68 2,69 3,52 3,10 4,36 12,53
S16 0,28 1,15 0,17 3,27 2,25 4,96 0,98 13,52
S17 0,19 1,62 0,30 2,95 2,76 3,16 -1,53 12,72
S18 0,26 1,20 -1,06 3,23 0,06 4,06 -9,05 16,60
S19 -0,55 2,47 -1,19 5,12 -3,52 8,56 -5,34 15,22
S20 -0,66 2,25 -1,64 4,72 -5,03 9,28 -7,38 16,08
S21 -0,47 3,04 -3,34 6,03 -9,24 13,39 -15,88 24,53

1 Day 5 Days 20 Days 60 Days
Forward-Looking Horizon

Table (8): Results of the trading strategy for the FTSE/ASE-20 index. In columns 2 to 9 
are reported respectively the average and standard deviation of the 1-, 5-, 20- and 60-day 
forward looking returns which belong to state S (first column). The time period is July 2004 - 
March 2009. 
 

 

To set the above analysis in an econometrics framework we will use the 

following regressions, used also by Giot (2005b): 

                            (4.6) 

 
                            (4.7) 

 
                          (4.8) 

 
                          (4.9) 
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Where 

, , …,  are dummy variables defined such that  if  and 

 elsewhere. Each coefficient  stands for the forward-looking return on the 

FTSE/ASE-20 at time t and over the given time horizon when  is classified into 

the state   .  

 

The estimation output is given below in table (9). The estimated t-statistics of 

the coefficients are computed using Newey-West autocorrelation and 

heteroskedasticity consistent standard errors, as the periods for which we compute the 

forward-looking returns are by construction overlapping. The estimated coefficients, 

which stand for the returns are the same as before, in table (8), but now we can infer 

whether or not they are statistically significant. We see that in general the returns for 

the middle categories are not statistically significant except for the categories D13 and 

D14 for the 1 - day forward-looking return. For the 5 -, 20 - and 60 - days forward-

looking returns in the very low volatility state S1, the coefficients of the dummy 

variable D1 are all statistically significant and positive. For the very high volatility 

states D19, D20 and D21 the coefficients are all negative and some of them 

statistically significant. Thus, our previous conclusions about the not favorable risk-

return relationship are confirmed. A possible explanation for the results that we get 

comes easily as we think about the circumstances during the time period that we 

study. The years 2004 to 2007 where extremely favorable for the investors as on the 

one hand the stock returns were sufficiently high and on the other hand, the volatility 

of the stock market was relatively low. However from the late months of 2007 until 

December 2008 that is the terminal month of our sample everything earned in all of 

these years was vanished due to the global financial crisis, with the volatility of the 

market reaching very high levels. So, it is not weird that the higher returns we observe 

happen to occur in the very low volatility regimes. We can say that since VASEX 

cannot provide profitable trading signals is not a market-leading indicator.  
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Dummy Variable r 1d r 5d r 20d r 60d
D1 0,03  (0,32) 0,74**  (2,13) 1,83**  (2,10) 8,10*  (6,32)
D2 0,12  (0,81) 0,59  (1,51) 1,51  (1,41) 6,50*  (4,62)
D3 -0,01  (-0,08) -0,03  (-0,06) -0,10  (-0,11) 4,18*  (3,15)
D4 0,12  (0,74) 0,15  (0,33) 2,09***  (1,95) 4,26**  (1,98)
D5 -0,03  (-0,10) -0,04  (-0,05) 0,27  (0,14) -0,89  (-0,20)
D6 0,02  (0,11) -0,03  (-0,05) 0,78  (0,56) 1,09  (0,29)
D7 0,12  (0,73) 0,42  (0,62) 1,36  (1,05) 3,01  (0,82)
D8 0,12  (0,56) -0,73  (-1,05) 0,45  (0,33) -1,14  (-0,28)
D9 -0,06  (-0,28) -0,19  (-0,29) 0,03  (0,02) 3,83  (1,61)
D10 -0,03  (-0,12) -0,51  (-0,80) 0,55  (0,38) -4,35  (-1,28)
D11 -0,31  (-1,16) -0,06  (-0,09) -0,87  (-0,49) 0,22  (0,05)
D12 -0,02  (-0,09) -1,36  (-1,54) -0,71  (-0,33) 2,96  (1,21)
D13 0,41***  (1,74) 0,47  (0,58) -2,69  (-1,19) 0,63  (0,22)
D14 -0,46**  (-2,04) -0,39  (-0,43) -1,69  (-0,64) -2,52  (-0,52)
D15 -0,27  (-1,29) 0,68  (1,39) 3,52*  (5,89) 4,36  (1,13)
D16 0,28  (1,52) 0,17  (0,22) 2,25**  (2,09) 0,98  (0,26)
D17 0,19  (0,65) 0,30  (0,51) 2,76*  (3,98) -1,53  (-0,49)
D18 0,26  (1,15) -1,06  (-1,63) 0,06  (0,07) -9,05**  (-2,26)
D19 -0,55  (-1,60) -1,19  (-1,20) -3,52***  (-1,76) -5,34  (-1,56)
D20 -0,66  (-1,64) -1,64***  (-1,69) -5,03**  (-2,50) -7,38**  (-2,25)
D21 -0,47  (-0,64) -3,39  (-1,44) -9,24***  (-1,68) -15,88  (-1,52)

Forward-Looking Horizon

Table (9): Regression results for the trading strategies of equations (4.6), (4.7), (4.8) and 
(4.9) for the FTSE/ASE-20 index. Each column gives the estimated coefficient for the 
dummy variable listed in the first column, respectively for the 1-, 5-, 20- and 60-day forward-
looking returns. Newey-West t-statistics are given in parenthesis. The time period is July 
2004 - March 2009. 
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Section 5 
Relationship with international markets 

 
 

In this section we examine the relationship of the Greek implied volatility 

index with other implied volatility indices. More specifically, we investigate whether 

there are any transmission effects of the implied volatility across several markets. 

More specifically we examine the transmission of volatility across the CBOE’s VIX 

index, the Deutsche Börse’s VDAX index, the Paris Bourse’s VCAC index, the SIX 

Swiss Exchange’s VSMI index, the European VSTOXX index and the Greek VASEX 

index.  

 

5.1 Evolution and Summary statistics of the implied volatility indices 

 

The data for the closing prices of the above indices were downloaded from 

DataStream and Bloomberg. Figure (5) shows the evolution of these six indices over 

the period January 2004 – December 2008.  

We can observe that the indices are moving together in certain time periods 

and that is why we expect that the indices are correlated up to some degree. As we can 

see VASEX is generally moving in higher levels than the other indices. That was 

expected as the spread among the implied volatility indices can be seen as the 

different level of riskiness among the countries – markets to which they refer. The 

Greek market is indeed riskier than the other markets taken into account in this study. 

Table (10)  presents the summary statistics of the above indices and their daily 

changes ( ) as well as the first order autocorrelation 

and the results from the ADF unit root test statistic. Figure () plots each implied 

volatility index separately, in order to have a clear demonstration of each one’s 

evolution through the period studied.   

The Jarque-Bera test values imply that none of the implied volatility indices is 

distributed normally either in the levels or in the first differences. In addition, most 

indices exhibit strong autocorrelation both in the levels and in their first differences. 

Finally, the values of the ADF test show that implied volatility indices are non-

stationary in the levels except for VDAX and VCAC where we can reject the null 
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hypothesis of the existence of a unit root at a 5% significance level, but they are all 

stationary in their first differences. 

Once again for the reasons mentioned before we will use for the scope of 

analysis the rearranged sample that covers the period January 2004 – July 2008 

(including July). At this point we should note that due to time zone differences the 

data is synchronized as far as it concerns the same calendar day.  

 

Evolution of the Implied Volatility Indices over the period January 2004 – 
December 2008 

 

Figure (5): The figure shows the daily evolution of the implied volatility indices 
over the period January 2004 to December 2008. The data set used for the 
construction of the figure was synchronized to deal with the days in which VASEX 
was calculated.  
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VIX VDAX VCAC VSMI VSTOXX
Mean 18,23 20,77 19,79 17,92 20,57 
Median 14,80 18,49 17,28 14,83 17,81 
St. Deviation 10,75 9,74 9,39 9,70 10,12 
Minimum 9,89 11,65 9,24 9,24 11,60 
Maximum 80,86 83,23 78,05 84,90 87,51 
Skewness 3,13 3,33 3,03 3,06 3,15 
Kurtosis 13,84 16,18 14,19 14,21 14,64 
J-B Stat 8513,31* 11856,83* 8638,76* 8586,01* 9313,20*
p-value 0,0010 0,0010 0,0010 0,0010 0,0010
ρ 1 0,984* 0,984* 0,976* 0,988* 0,981*
ADF -2,3178 -2,9581** -3,2853** -2,7124 -2,7552

ΔVIX ΔVDAX ΔVCAC ΔVSMI ΔVSTOXX
Mean 0,00 0,00 0,00 0,00 0,00
Median 0,00 0,00 0,00 0,00 0,00
St. Deviation 0,02 0,02 0,02 0,01 0,02
Minimum -0,17 -0,15 -0,21 -0,16 -0,14
Maximum 0,17 0,22 0,28 0,16 0,23
Skewness 0,28 2,08 1,04 0,33 2,55
Kurtosis 28,86 43,74 54,19 47,01 45,65
J-B Stat 36339,10* 91139,34* 139903,37* 101955,66* 97995,18*
p-value 0,001 0,001 0,001 0,001 0,001
ρ 1 -0,132* 0.086* -0,103* 0,183* -0,0382*
ADF -31,6336* -25,0945* -29,4664* -25,1197* -27,9112*

Panel B: Summary statistics for the daily changes in the implied volatility indices

Panel A: Summary statistics for the levels of the implied volatility indices

Table (10): Summary Statistics. The entries report the summary statistics for each of the 
implied volatility indices in the levels and the daily first differences. The first order 
autocorrelation ρ1, the Jarque-Bera and the Augmented Dickey Fuller (ADF) test values are 
also reported. One and two asterisks denote rejection of the null hypothesis at the 1% and 5% 
level, respectively. The null hypothesis for the first order autocorrelation, Jarque-Bera and the 
ADF tests is that the first order autocorrelation is zero, that the series is normally distributed 
and that the series has a unit root, respectively. The sample spans the period January 2004 to 
December 2008. 
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5.2 Correlation Analysis 

In order to have a first feeling of the relationship among the implied volatility 

indices under examination we have a look on their first order cross – correlations. 

Table (11) provides the correlation coefficients. 

ΔVASEX ΔVIX ΔVDAX ΔVCAC ΔVSTOXX ΔVSMI
ΔVASEX 1,00 0,15 0,27 0,26 0,27 0,15
ΔVIX 0,15 1,00 0,63 0,62 0,65 0,15
ΔVDAX 0,27 0,63 1,00 0,89 0,94 0,26
ΔVCAC 0,26 0,62 0,89 1,00 0,90 0,22
ΔVSTOXX 0,27 0,65 0,94 0,90 1,00 0,28
ΔVSMI 0,15 0,15 0,26 0,22 0,28 1,00
Table (11): Cross-correlations between the changes in the levels of implied volatility 
indices. The data used in the estimation of the correlation coefficients span the period January 
2004 to July 2008.  

 

As we can see the changes in the levels of the implied volatility indices are 

correlated up to a significant degree. ΔVASEX is most highly correlated with the 

changes of VSTOXX, VDAX and VCAC (ΔVSTOXX, ΔVDAX and ΔVCAC 

respectively) not ignoring however the correlations with the other indices. What we 

also see is that VIX, VDAX and VSTOXX are the indices that play the major role in 

transmitting the implied volatility levels. For a more formal and robust analysis we 

proceed the analysis, using the econometric methodology described below. 

5.3 Econometric Methodology 

In order to examine the spillovers of the implied volatility among the markets, 

a Vector Autoregressive model (VAR) and the Granger causality tests were used. 

These tests were executed for the time series of the changes of the implied volatility 

indices rather than the levels. The reason behind that is that the changes of the indices 

are all stationary and moreover they do not contain any idiosyncratic risks (i.e. 

country risk and political risk). Moreover, as Poon and Granger (2003) show, implied 

volatility does not stand for an unbiased measure of realized future volatility and 

using the changes in the levels of implied volatility reduces this bias. In addition, as 

Aboura and Villa (1999) mention it makes more sense to assume that the changes in 
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the level of the implied volatility indices lead to changes in the levels of the other 

implied volatility indices.  

5.3.1 VAR Analysis 

Vector autoregressions models have become popular through the work of Sims 

(1980) and they have been used extensively for analyzing the dynamics of 

macroeconomic systems. VAR models are widely used to capture the dynamic 

structure of interrelated time series. The main question addressed by VARs is the 

effect of a shock in a variable and its effect on the other variables of the system. The 

main advantage of VAR models is that they allow us to study jointly multiple time 

series and find the correlations between the disturbances across equations. On the 

other hand, in a single equations framework the impact of random disturbances on the 

system would be ignored. The VAR modeling framework has been employed in a 

number of studies to investigate the transmission of implied volatility across 

international markets. Evidence for the volatility spillover have been found i.e. by 

Gemmill and Kamiyama (2000), Aboura (2003), Nikkinen and Sahlström (2004c), 

Skiadopoulos (2004), Nikkinen et al. (2006), Siriopoulos and Fassas (2008), Äijö 

(2008b) and Badshah (2009). 

A VAR model analyzes each endogenous variable as a function of the lagged 

values of every other endogenous variable in the VAR system. The mathematical 

expression of the used standard VAR (1) model is: 

 

Where  

  is the (6×1) vector of changes in the implied volatility indices 

between t-1 and t, is a (6 x 1) vector of constants,  is a (6 x 6) matrix of 

coefficients and  is a (6 x 1) vector of residuals. 

To build the model we first define the endogenous variables, which is the matrix  

 = [                 ]' 
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The set of the exogenous variables included in the model is a (6×1) vector of 

constants. 

We will proceed in the analysis using a VAR (1) model. In order to avoid the 

over fitting of the employed model, the number of lags was chosen so as to minimize 

the Schwartz’s Bayesian Criterion (BIC) and to keep the model parsimonious. The 

VAR model will be estimated on a common sample of implied volatility indices. This 

common sample spans the period January 2004 to July 2008. After synchronization of 

the data, the total numbers of observations used for the VAR estimation are 672.  

Table (12) shows the estimated coefficients, the t-statistics and the adjusted R2 

for the VAR (1) model. One and two asterisks denote rejection of the null hypothesis 

of a zero coefficient at the 1% and 5% level, respectively. The highest adjusted R2 

statistic is almost 16%, reported for the VASEX index, whereas the lowest adjusted 

R2 statistic is 2.57% reported for the VSMI index. For the VIX, VDAX, VCAC and 

VSTOXX indices the adjusted R2 statistics are 3.88%, 3.35%, 4.84% and 4.81% 

respectively. This means that the Greek implied volatility index, VASEX, is more 

affected by implied volatility movements that are realized in other markets than the 

other indices. We can say that implied volatility spillovers do exist among the 

markets. What we can also say is that the lagged values of the VIX and VSTOXX 

indices are those which most influence the other indices, as their estimated 

coefficients are statistically different from zero in most cases.  

The indices used in the model are all European market volatility indices, 

except for the VIX index. So, the fact that the VSTOXX index transmits its volatility 

to them was anticipated. The changes of the VIX index’s lagged values are significant 

for the evolution of the VSTOXX and VDAX index. As far as it concerns the VASEX 

index, the results imply that its changes are affected by the first lagged values of the 

changes in the VCAC and VSMI index. The coefficients are 0.2538 and 0.1433 

respectively and they are significant at 5% significance level. The first order lagged 

values of VASEX, affect the evolution of the VCAC index as the estimated 

coefficient is statistically significant at 10% significance level. However, the impact 

of its changes is very small as we can see that the coefficient is just -0.0689.  
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ΔVASEX ΔVIX ΔVDAX ΔVCAC ΔVSTOXX ΔVSMI
C 0,000 0,000 0,000 0,000 0,000 0,000

(0,221) (0,240) (0,094) (0,160) (0,155) (0,090)
ΔVASEX (-1) -0,411* 0,028 -0,028 -0,069*** -0,035 0,023

(-10,939) (-0,835) (-0,814) (-1,902) (-0,970) (0,941)
ΔVIX (-1) -0,004 -0,253*  0,188* 0,272  0,267* 0,006

(-0,060) (-4,887) (3,565) (4,805) (4,777) (0,164)
ΔVDAX (-1) -0,018 0,195 -0,100 0,108 0,122 0,098

(-0,131) (1,604) (-0,811) (0,813) (0,932) (1,086)
ΔVCAC (-1)  0,254**  0,154*** 0,069 -0,128 0,120 0,007

(2,663) (1,822) (0,807) (-1,388) (1,322) (0,116)
ΔVSTOXX (-1) -0,180 -0,207*** -0,207*** -0,241*** -0,489* 0,015

(-1,333) (-1,732) (-1,704) (-1,850) (-3,796) (0,166)
ΔVSMI (-1)  0,143** -0,004 -0,028 -0,027 0,025 0,008

(2,308) (-0,067) (-0,495) (-0,444) (0,420) (0,186)
AIC -5,58 -5,83 -5,79 -5,65 -5,68 -6,43
BIC -5,53 -5,78 -5,74 -5,60 -5,63 -6,38
 Adj. R 2

15,99% 3,88% 3,35% 4,84% 4,81% 2,57%

VAR(1) model

 Table (12): Implied volatility spillovers across markets. The entries report results from the 
following VAR(1) model: ΔIVt = C + ΦΔIVt-1 + εt , where ΔIVt  = IVt – IVt-1  is the (6×1) 
vector of changed in the implied volatility indices between t-1  and  t, C is a (6×1) matrix of 
constants, Φ is a (6×6) matrix of coefficients and ε is a (6 x 1) vector of residuals. The 
number of lags has been chosen so as to minimize the BIC and to keep the model 
parsimonious. Closing prices for the U.S. and the European implied volatility indices have 
been used. The estimated coefficients, t-statistics in parentheses and the adjusted R2 are 
reported. One, two and three asterisks denote rejection of the null hypothesis of a zero 
coefficient at the 1%, 5% and 10% level, respectively. The model has been estimated for the 
period January 2004 to July 2008. 

 

After the parameters of the VAR model have been estimated, we test the 

stability of the model. In order for the VAR model to be stable (or stationary) all the 

inverse roots of the characteristic AR polynomial must have modulus less than one 

and lie inside the unit circle. The results from the VAR Stability Condition Check 

show that no root lies outside the unit circle and hence, confirm that the model is 

stable. 
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5.3.2 Granger Causality tests 

To investigate furthermore the volatility spillovers across international 

markets we also run pairwise Granger causality tests for the implied volatility indices. 

The tests were executed both for a lag length of two and for a lag length of four. The 

results are presented in tables (13) and (14). In table (13) we can see the Granger 

causality tests between VASEX and each one of the other indices in study. Table (14) 

provides us the results of the tests among the other indices.  

  Null Hypothesis: 4 lags
F-Statistic Probability F-Statistic Probability

ΔVIX does not Granger Cause ΔVASEX 2,35 0,096 4,83** 0,001
ΔVASEX does not Granger Cause ΔVIX 1,30 0,273 0,82 0,512

ΔVDAX does not Granger Cause ΔVASEX 2,96 0,052 5,24** 0,000
ΔVASEX does not Granger Cause ΔVDAX 1,43 0,240 0,94 0,441

ΔVCAC does not Granger Cause ΔVASEX 6,34** 0,002 7,15** 0,000
ΔVASEX does not Granger Cause ΔVCAC 2,20 0,112 1,06 0,376

ΔVSTOXX does not Granger Cause ΔVASEX 2,88 0,057 5,06** 0,001
ΔVASEX does not Granger Cause ΔVSTOXX 0,98 0,375 0,74 0,565

ΔVSMI does not Granger Cause ΔVASEX 5,95** 0,003 3,49** 0,008
ΔVASEX does not Granger Cause ΔVSMI 2,29 0,102 2,75* 0,028

2 lags
Granger Causality for Implied Volatility Indices

Table (13):  Granger Causality tests using 2 and 4 lags. The table reports the F-statistics 
and the probability for the pairwise bivariate regressions between the changes, Δ, in the level 
of VASEX index and the changes in the level of each one of the other indices in study. The 
data spans the period January 2004 to July 2008. 

 

As we see, when using two lags for the Granger causality test ΔVCAC and 

ΔVSMI do Granger-cause ΔVASEX, as the null hypothesis is rejected at 1% 

significance level. When we extend the testing, using four lags all the indices in study 

do Granger-cause ΔVASEX, with the null hypothesis been rejected at 1% significance 

level. From the other hand ΔVASEX does not Granger-causes none of the indices, but 

ΔVSMI as the null hypothesis can be rejected at a 5% significance level. In the cases 

of VIX, VDAX and VSTOXX it is noteworthy is that the null hypothesis that their 

changes do not Granger-cause the change in the level of VASEX is rejected at 1% 
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significance level when using four lags, whereas when including two lags the null 

hypothesis can be rejected only at a 10% significance level. This means that the 

information content of the changes in these indices is not fully incorporated directly to 

the movement of VASEX index. These findings are in line with Siriopoulos and 

Fassas (2008) suggesting that the transmission of the implied volatility across 

international markets has increased. 

The results of the Granger causality tests among the other indices imply that 

almost all indices do have some explanatory power for the changes of the each other. 

The indices that do not provide any information content for the evolution of each 

other are VDAX, VCAC and VSTOXX. The pairwise Granger causality tests for 

those reveal that there is not any Granger causality relationship among them. The only 

exception of this, is the case of the causality test between VCAC and VSTOXX using 

four lags, where we can see that the changes of VCAC (ΔVCAC) do Granger-cause 

the changes of VSTOXX (ΔVSTOXX), as the F-statistic of the regression is 2.2498 

implying significance at a 10% level.  

We should mention that the changes of the VIX index do Granger-cause the 

changes of all the other indices as the null hypothesis is rejected at a significance level 

of 1%. This implies that the CBOE’s index is indeed the one that transmits the 

implied volatility to each other international market. This finding is in line with the 

existing literature. See for example, Siriopoulos and Fassas (2008), whose findings do 

confirm the leading nature of the VIX index in the concept of transmitting volatility 

across the globe.  
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  Null Hypothesis: 4 lags
F-Statistic Probability F-Statistic Probability

  ΔVDAX does not Granger Cause ΔVIX 4,03* 0,018 3,82** 0,004
  ΔVIX does not Granger Cause ΔVDAX 10,43** 0,000 4,96** 0,001

  ΔVCAC does not Granger Cause ΔVIX 5,42** 0,005 4,39** 0,002
  ΔVIX does not Granger Cause ΔVCAC 15,11** 0,000 7,50** 0,000

  ΔVSTOXX does not Granger Cause ΔVIX 2,59 0,076 2,70* 0,030
  ΔVIX does not Granger Cause ΔVSTOXX 17,63** 0,000 8,65** 0,000

  ΔVSMI does not Granger Cause ΔVIX 0,12 0,886 0,26 0,901
  ΔVIX does not Granger Cause ΔVSMI 18,35** 0,000 14,29** 0,000

  ΔVCAC does not Granger Cause ΔVDAX 2,52 0,081 1,75 0,138
  ΔVDAX does not Granger Cause ΔVCAC 0,10 0,902 1,13 0,341

  ΔVSTOXX does not Granger Cause ΔVDAX 1,51 0,222 0,89 0,471
  ΔVDAX does not Granger Cause ΔVSTOXX 1,04 0,356 1,39 0,237

  ΔVSMI does not Granger Cause ΔVDAX 0,62 0,536 0,64 0,635
  ΔVDAX does not Granger Cause ΔVSMI 29,35** 0,000 22,07** 0,000

  ΔVSTOXX does not Granger Cause ΔVCAC 0,55 0,576 1,72 0,143
  ΔVCAC does not Granger Cause ΔVSTOXX 2,17 0,114 2,25 0,062

  ΔVSMI does not Granger Cause ΔVCAC 0,40 0,673 0,48 0,747
  ΔVCAC does not Granger Cause ΔVSMI 25,56** 0,000 20,33** 0,000

  ΔVSMI does not Granger Cause ΔVSTOXX 0,33 0,716 0,13 0,971
  ΔVSTOXX does not Granger Cause ΔVSMI 30,24** 0,000 20,88** 0,000

2 lags
Granger Causality for Implied Volatility Indices

Table (14):  Granger Causality tests using 2 and 4 lags. The table reports the F-statistics 
and the probability for the pairwise bivariate regressions between the changes, Δ, in the levels 
of the indices in study, except for VASEX. The data spans the period January 2004 to July 
2008. 
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Section 6 
The Relationship between Implied and Realized Volatility 

 

The implied volatility is widely regarded as the market’s forecast of the future 

volatility of the underlying asset’s returns over a specific time horizon. Moreover, if 

the markets are efficient then implied volatility should be an efficient prediction of the 

future realized volatility. This means that the implied volatility should contain all the 

available information of the market (Christensen and Prabhala, 1998).  

In this section we test whether the implied volatility can provide any 

information about the future realized volatility and if this information is superior to 

the pure past realized volatility. 

We use two measures of the implied volatility, the model-free implied 

volatility and the Black-Scholes implied volatility. Toward this point, we construct a 

second implied volatility index, following Skiadopoulos (2004) methodology. Since 

the latter is a Black-Scholes based measure, it allows us to investigate whether its 

information content is fully subsumed by the model-free implied volatility. This is an 

argument of great interest, as recently a lot of research is done in this field [see for 

example Jiang and Tian (2005)]. However, to the best of our knowledge no previous 

research exists for the case of the Greek market and is limited for the cases of illiquid 

and low depth markets. 

 

6.1 Construction of GVIX 

In this subsection we construct a second implied volatility index for the Greek 

market, named GVIX following Skiadopoulos (2004) methodology. Let us first 

introduce the steps of this construction method.  

In order to construct the index, we need for each day four options, two for 

each maturity. The options needed are the first available OTM options, one call and 

one put, for each maturity.  The prices of the call and put options are first transformed 

into implied volatilities using an options valuation model.  
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In our study, we will do a change of the original methodology. Skiadopoulos 

(2004) used the Black’s (1976) model that prices futures options in order to extract 

the implied volatilities of the options. He did so, to deal with the fact that the 

underlying asset, FTSE/ASE-20, is a dividend paying asset and data for the dividend 

yields are not available. The only prerequisite for the model to hold is that the options 

and futures contracts used have the same time to expiration. This is not applicable in 

our case because ADEX, since the beginning of 2007 has stopped introducing futures 

contracts for the two shortest expiries that we have for the options contracts. Hence, 

the options valuation model that we use is the Black-Scholes (1973) and Merton 

(1973) model. The dividend yield needed is already calculated before (implied 

dividend yield), using the Ait-Sahalia and Lo (1998) method.  

The mathematical expression of the Black-Scholes-Merton (1973) model is: 

 

 

Where  

 ,        

 

N(x) is the probability that a normally distributed variable with a mean of zero and a 

standard deviation of 1 is less than x.  

All the inputs, except for  are known. Solving the equation for σ, we extract 

the implied volatility of each option. In order to get the implied volatility we proceed 

as follows: 

 

Step 1  

Interpolate between the nearby implied volatilities and the second-nearby implied 

volatilities to get an at-the-money implied volatility for each maturity. The ATM 

nearby and second nearby implied volatilities (σ1 and σ2, respectively) are: 
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And 

 
 

 

Where 

      is the implied volatility of the at-the-money nearby contracts, 

      is the implied volatility of the at-the-money second-nearby contracts, 

   is the implied volatility of the first nearby OTM put option, 

  is the implied volatility of the first nearby OTM call option, 

   is the implied volatility of the first second-nearby OTM put option, 

  is the implied volatility of the first second-nearby OTM call option, 

     is the strike price of the corresponding first OTM put option for each maturity 

and 

    is the strike price of the corresponding first OTM call option for each maturity 

 

Step 2 – Final 

The final step is to interpolate linearly between the nearby and second nearby implied 

volatilities to create a thirty calendar day (or 22 trading day) implied volatility.  

 

 
 

It should be noted that in line with Whaley the implied volatility is based on 

trading days. So, if the time to expiration of an option is calculated using calendar 

days, we will end up with a volatility rate per calendar day. Working this way, would 
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meant that the variance of the returns on the stock indices over the weekends should 

be three times higher than it is over any other pair of trading days during a week. This 

is empirically rejected. As a consequence, we use trading days in the determination of 

the implied volatility.  

The formula used to transform the calendar days to trading days is according 

to Whaley: 

 
Where  

Nt is the number of trading days until expiration and  

Nc is the number of calendar days until expiration.  

 

The implied volatility rate is multiplied by the ratio of the square root of the number 

of calendar days to the square root of the number of trading days, that is: 

 

 
 

Where σt is the trading day implied volatility rate and σc is the calendar day implied 

volatility rate. 

 

6.2 Properties of GVIX and comparison with VASEX’s properties 

Figure () shows the evolution of the two Greek implied volatility indices 

through the period January 2004 to December 2008. Table 15 shows the summary 

statistics (mean, median, maximum, minimum, standard deviation, skewness, kurtosis 

and the results from the Jarque-Bera test with its p-value in brackets) of the 

constructed implied volatility indices together. It also presents the first order 

autocorrelation and the results from the Augmented Dickey-Fuller unit root test 

statistic.  

As can be seen, the index calculated with the old, Skiadopoulos methodology 

is generally moving in higher levels and is much more volatile than the index 
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calculated with the model-free methodology. The mean of the GVIX is 26.84% while 

the mean of VASEX is 20.37%. There is also a great difference in the range of the 

two indices. GVIX has a range of 75.79 percentage points while the VASEX has a 

range of just 40.28 percentage points. The standard deviation of the GVIX is 10.03% 

almost double than the standard deviation of VASEX (5.15%). The skewness and the 

kurtosis of the two indices are very close and they imply longer right tails and that the 

distributions have fat tails.  As we see from the Jarque-Bera statistic they are both not-

normally distributed. The highest level of GVIX is 87.70% and was reached on 

November 17, 2008 and the lowest level was 11.91% reached on November 8 2005. 

We remind that the highest level of VASEX is 53.12% and was reached on October 

10, 2008 and the lowest level was 12.83% reached on November 14 2005.  

The fact that GVIX is more volatile is not surprising since it is well 

documented that an implied volatility index, constructed using the Black-Scholes 

methodology is usually exhibiting this behavior. 

 

   

 
Figure (6): Evolution of the Greek implied volatility indices, VASEX and GVIX. The 
figure shows the daily evolution of the implied volatility indices over the period January 2004 
to December 2008. 
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0,001
0,9291*
-3,4597* -4,1189*

10,03
2,89

13,66
4320,939*

0,001
0,8813*

GVΙΧ
26,84
24,34
11,91
87,70

ADF

VASEX
20,37
19,26
12,83
53,12
5,15
2,69

Statistics
Mean
Median
Minimum
Maximum
St.Deviation

13,60
4150,24*

Skewness
Kurtosis
J-B Stat.
(Probability)
ρ 1

 
Table (15): Summary Statistics of the Greek Implied volatility indices. The entries report 
the summary statistics for the Greek implied volatility indices GVIX and VASEX. The first 
order autocorrelation ρ1, the Jarque-Bera and the Augmented Dickey Fuller (ADF) test values 
are also reported. An asterisk denotes rejection of the null hypothesis at the 1% level. The null 
hypothesis for the first order autocorrelation, Jarque-Bera and the ADF tests is that the first 
order autocorrelation is zero, that the series is normally distributed and that the series has a 
unit root, respectively. The sample spans the period January 2004 to December 2008.  

 

6.3 Methodology implemented for accessing the information content of the volatility 

forecasts 

The methodology used in order to derive the realized volatility is based on the 

standard practice, followed by the majority of the studies. Christensen and Prabhala 

have shown, that a sample with non-overlapping data yields more reliable regression 

estimates relative to regressions using overlapping data. For this reason, we calculate 

the realized volatilities over a one-month period. Following Corrado and Miller 

(2005) methodology, for the forecast of the realized volatility, we use the implied 

volatility value of the last trading day of the previous period. That is, we have the 

market’s expectation for the future realized volatility over the next month, as reflected 

in the implied volatility of the last trading of the prior month. This procedure ensures 

that our sample will have not overlapping observations.  

However, ADEX options, even the most liquid ones, written on the 

FTSE/ASE-20 index, are thinly traded, so we cannot have an observation for the 

implied volatility in the last day of each month. Therefore, we follow a methodology 
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proposed by Hansen (1999), who implemented it on his study about the relationship 

between implied and realized volatility in the low-liquidity Danish option and equity 

markets. The steps followed are the following: 

• We use the implied volatility of the previous day 

• If we have not an observation for the previous day, we move two days forward 

and use this implied volatility 

• If no observation exists at that day either, then we move three days back and 

use this implied volatility 

• If still no observation exists, we move four days forward and use this implied 

volatility. 

• Lastly, if this is not possible, we continue moving one trading day forward and 

use this implied volatility. 

 

As Hansen (1999) reports, this procedure preserves the non-overlapping nature 

of the data and makes it possible to avoid the serial correlation errors of the forecast. 

The greatest deviations from the last trading day were four trading days (e.g. we used 

the implied volatility of 4/2/2008, rather than the value of 31/1/2008).   

 

There is a debate over the use of trading or calendar days in the realized 

volatility calculations. Some argue that information arrives even when an exchange is 

closed and this should influence the price. However, lots of empirical studies have 

been done and researchers found that volatility is by far greater when the exchange is 

open than when it is closed. As a consequence, if daily data are used to measure 

volatility, the results suggest that days when the exchange is closed should be ignored. 

So, we proceed our study, using trading days. The number of trading days in each 

month is about twenty-two (except for the months where holidays exist) and the total 

number of trading days is assumed to be 252.  

We construct a time series of realized index returns volatilities. We take into 

consideration the daily closing prices of the FTSE/ASE-20. The realized volatility is 

calculated as the standard deviation of the daily index returns over the time period 

into consideration. That is,  
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Where  

        is the realized monthly volatility,  

      is the number of trading days per annum, 

           is the number of trading days in every month,  

     is the return of the FTSE/ASE-20 index on the day                             

and  

        is the average return over the period into consideration.  

 

6.4 Empirical Results 

Consistent with prior research [i.e., Christensen and Prabhala (1998), Hansen 

(1999) and Jiang and Tian (2005)], we employ both univariate and encompassing 

regressions to analyze the information content of volatility forecasts. In a univariate 

regression framework, realized volatility is regressed against a single volatility 

forecast. The encompassing regressions focus on the relative importance of different 

volatility forecasts as they use two or more volatility forecasts as explanatory 

variables for the realized volatility.  

 

The standard practice followed in order to assess the information content of the 

implied volatility is the estimation of the following regressions: 

                                            (6.1) 

                                             (6.2) 
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Where 

stands for the realized volatility for period t,  stands for the model-free 

implied volatility at the beginning of the period t (or, as explained before, the end of 

the period t-1) and   stands for the Black-Scholes implied volatility.  

 

According to Christensen and Prabhala (1998), via this regression we can examine at 

least three hypotheses.  

• First, if implied volatility carries some information about the future realized 

volatility α1 should not be zero. 

• Second, if the implied volatility is an unbiased predictor of the future realized 

volatility, then 0  and  1  

• Finally, if implied volatility is efficient, the residuals    of the regression 

should be a white noise process and uncorrelated with any variable in the 

market’s information set.  

Another debate on the literature is whether to use the raw series for the 

volatility measures or their natural logarithms. Christensen and Prabhala (1998) and 

Hansen (1999) for example transform the raw series into logarithmic form. They do 

so, since the logarithm of volatility is usually closer to the Normal distribution than 

volatility itself. In contrast Fleming (1998) uses the raw data series. Jiang and Tian 

(2005) use both the levels and the logarithms of the volatility measures. In this study, 

we use both methods.  

Also, in order to examine whether the past realized volatility can forecast the 

evolution of the future realized volatility, we run the following regression: 

                                  (6.3) 

Table (16) summarizes the results of the univariate regressions (6.1), (6.2) and (6.3). 
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Adjusted R2 D - W
intercept it

MF it
BS ht-1

Coeff. -0,13*** 1,64* − − 49,94% 1,79
t-stat. (‐2,00) (4,69) − −
Coeff. -0,01 − 0,76* − 43,76% 1,72
t-stat. (-0,16) − (3,55) −
Coeff. 0,08* − − 0,63* 38,70% 2,08
t-stat. (2,95) − − (4,11)

Coeff. 0,58*** 1,42* − − 45,12% 1,83
t-stat. (1,89) (7,78) − −
Coeff. -0,37 − 1,01* − 43,91% 1,92
t-stat. (-1,49) − (5,90) −
Coeff. -0,62* − − 0,63* 38,49% 2,24
t-stat. (3,20) − − (6,41)

Independent Variables

Univariate Regressions
Dependent Variable: Realized Volatility (h t )

Panel A: Results from equations  (6,1), (6,2) and (6,3) --- raw-series data

Panel B: Results from equations (6,1), (6,2) and (6,3) - log-transformed data

Table (16): Test for the information content of the volatility measures. Reported values 
are the estimated coefficients of the univariate regressions (6.1), (6.2) and (6.3). Panel A 
refers to the regressions estimated using the raw data set and Panel B refers to the regression 
estimated using log-transformed volatility series. Heteroskedasticity consistent White 
standard errors were estimated and the corrected t-statistics are reported. One, two and three 
asterisks denote the rejection of the null hypothesis of a zero coefficient at 1%, 5% and 10% 
significance level respectively.  

As can be seen, all the implied volatility measures do contain some 

information about the future realized volatility as the estimated coefficients are all 

statistically different from zero at 1% significance level. This is true both for the 

levels and for the logarithms of the series. The Durbin-Watson statistic is not 

statistically significant from two in every regression, thus indicating that there is no 

serial-correlation in the errors. In the regressions conducted using the raw-data series, 

the model-free implied volatility yields higher adjusted R-squared. However, this is 

stronger for the cases where we use the raw data series. Interestingly, the log-

transformed BS implied volatility appears to be an efficient and unbiased forecast of 

the future realized volatility. The estimated coefficient of the intercept is -0.37 and is 

not statistically different from zero and the estimated coefficient of it
BS is 1.01 which 

is very close to unity.  
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Next, we examine whether the information content of the implied volatility is 

superior to the information content of the past realized volatility, meaning that 

implied volatility contains all the information of the past realized volatility in 

explaining the future realized volatility.  

We proceed into the estimation of the following regressions: 

                                  (6.4) 

                                   (6.5) 

Where  

stands for realized volatility, as before and   stands for the realized volatility 

of the previous month.   and  stand for the model-free implied volatility and the 

Black-Scholes implied volatility respectively.  

As in the previous tests, we use both the levels and the log-transformed of the 

volatility measures. The results of the regressions are given below in table (17). The 

results obtained before [Table (16)] give support to the fact that historical volatility 

alone can help predict the future realized volatility with the obtained adjusted R-

squared to be around 39% for both the regression in the levels and in the log-

transformed values of the realized volatility. However, when measures of the implied 

volatility, either model-free or Black-Scholes, are incorporated in the regressions the 

estimated coefficients for the past realized volatility are becoming lower and 

statistically insignificant. Hence, both measures of implied volatility do contain all the 

information that historical volatility carries.  

Interestingly, as noted in the previous regressions when considering the levels 

of the time series the model-free implied volatility can explain a greater part of the 

regression. It yields a greater adjusted R-squared (49.53%) than the BS implied 

volatility (43.38%). However, when log-transformed series are taken into account the 

obtained adjusted R-squared values are again higher for the MF implied volatility but 

the difference between them is smaller. 
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Adjusted R2 D - W
intercept it

MF it
BS ht-1

Coeff. -0,15*** 1,81* − -0,08 49,53% 1,73
t-stat. (-1,94) (3,51) − (-0,48)
Coeff. 0,00 − 0,59 0,17 43,38% 1,82
t-stat. (0,11) − (1,55) (0,57)

Coeff. 0,41 1,15* − 0,16 45,26% 1,97
t-stat. (1,04) (3,09) − (0,98)
Coeff. -0,35 − 0,72** 0,23 44,71% 2,09
t-stat. (-1,44) − (2,43) (1,33)

Encompassing Regressions
Dependent Variable: Realized Volatility (h t )

Independent Variables

Panel B: Results from equation (6,4) and (6,5) --- log-transformed data

Panel A: Results from equations  (6,4) and (6,5) --- raw-series data

Table (17): Test for the superiority of the information content of the implied volatility 
measures over that of past realized volatility. Reported values are the estimated 
coefficients of the encompassing regressions (6.4) and (6.5) Panel A refers to the regression 
estimated using the raw data set and Panel B refers to the regression estimated using log-
transformed volatility series. Heteroskedasticity consistent White standard errors were 
estimated and the corrected t-statistics are reported. One, two and three asterisks denote the 
rejection of the null hypothesis of a zero coefficient at 1%, 5% and 10% significance level 
respectively. 

In order to investigate whether the information content of the model-free or 

the BS implied volatility is superior, we use the following equations: 

                                      (6.6) 

                             (6.7) 

The results of the regressions are given below, in table (18).On one hand, the 

results from the regressions in the levels show that the model-free implied volatility 

subsumes all the information content of the BS implied volatility. We see that the R2 

obtained is around 49%. In the previous regressions where we regressed the future 

realized volatility on the MF implied volatility and on the MF implied volatility 

together with the past realized volatility the R2 obtained was around 50%. Moreover, 

the estimated coefficient for the BS implied volatility in both regressions (6.6) and 

(6.7) is statistically insignificant. Hence suggesting that MF implied volatility by 

aggregating information across strips of options with different strike prices, retains 
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more information about the future realized volatility than the BS implied volatility 

does.  

On the other hand, the results from the regressions in the log-transformed 

series are quite different. We observe that none of the estimated coefficients for the 

volatility forecasts is statistically different from zero, as the t-statistics (computed 

using heteroskedasticity consistent White standard errors) cannot reject the null 

hypothesis of a zero coefficient. Nevertheless, we see that the R2 statistics are slightly 

higher than the R2 statistics that the univariate and encompassing regressions between 

the pairs MF implied volatility - past realized volatility and BS implied volatility – 

past realized volatility yielded. A clear answer cannot be given. Maybe the fact that 

the liquidity of the market does not provide as much data as would be preferred (such 

as the availability of data for the U.S. market) for the model-free implied volatility 

construction does play some role.  

What is clear though is the fact that both measures of implied volatility can 

provide a better forecast for the future realized volatility than the historical volatility 

can.  

Adjusted R2 D - W
intercept it

MF it
BS ht-1

Coeff. -0,12 1,42 0,12 − 49,22% 1,79
t-stat. (-1,39) (1,59) (0,28) −
Coeff. -0,14*** 1,63*** 0,15 -0,13 48,86% 1,70
t-stat. (-1,73) (1,91) (0,33) (-0,62)

Coeff. 0,26 0,83 0,48 − 46,31% 1,93
t-stat. (0,66) (1,66) (1,26) −

Coeff. 0,21 0,75 0,42 0,09 45,81% 1,98
t-stat. (0,49) (1,41) (1,04) (0,51)

Encompassing Regressions
Dependent Variable: Realized Volatility (h t )

Independent Variables
Panel A: Results from equations  (6,6) and (6,7) --- raw-series data

Panel B: Results from equation (6,6) and (6,7) --- log-transformed data

Table (18): Test for the superiority of the information content of implied volatility 
forecasts. Reported values are the estimated coefficients of the encompassing regressions 
(6.6) and (6.7). Panel A refers to the regression estimated using the raw data set and Panel B 
refers to the regression estimated using log-transformed volatility series. Heteroskedasticity 
consistent White standard errors were estimated and the corrected t-statistics are reported. 
One, two and three asterisks denote the rejection of the null hypothesis of a zero coefficient at 
1%, 5% and 10% significance level respectively. 
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Section 7 
Conclusions 

 

The purpose of this dissertation was to construct an implied volatility index for 

the Greek market. The construction methodology was the new CBOE’s, model-free 

methodology which we have reinforced with a recently developed tool that is the 

cubic spline interpolation. This was done in order to have a more accurate measure of 

the implied volatility and since the liquidity of the Greek market is limited, making 

the methodology not applicable in much cases, due to technical reasons. Next, the 

properties of VASEX were examined.  

In line with Whaley (2000), Giot (2002a) and within the domestic literature 

Skiadopoulos (2004) and Siriopoulos and Fassas (2008), we verified the existence of 

the so-called “leverage effect” that is the negative contemporaneous relationship 

between the changes of VASEX and the underlying’s stock index FTSE/ASE-20 

returns and hence can be used as a gauge of the investor’s fear. 

The tests for the existence of an asymmetric leverage effect though were 

confusing. More specifically the results implied that whatever the evolution of the 

changes in the levels of VASEX was, the response of the FTSE/ASE-20 would be 

negative returns, as the estimated coefficient for ΔVASEX was found positive. This is 

in contrast to our empirical findings relative to the negative relation between the 

changes of VASEX and the returns of FTSE/ASE-20. The only possible explanation 

is the extremely powerful effect of the recent global crisis on the risk-return 

relationship. The subsequent testing for the above mentioned impact revealed that the 

global financial crisis is indeed the source of this disturbance.  

The implemented Granger causality tests between the changes of VASEX and 

the returns of FTSE/ASE-20 showed that both indices contain some information 

useful for the prediction of the other, verifying Siriopoulos and Fassas (2008) 

findings. However, the information contained in VASEX for the FTSE/ASE-20 is 

limited. What seems to have stronger validity is the power of the lagged FTSE/ASE-

20 returns to help predict the future changes of the implied volatility index. This 

finding implies that an investor can use the information contained in the values of 

VASEX and the FTSE/ASE-20 of the past one or two periods in order to develop a 

profitable option strategy.  
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Next, in line with Giot (2005) we examined whether VASEX can provide a 

tool to the investors for profitable trading strategies triggered by extremely high levels 

of implied volatility. Our findings do not support the hypothesis that VASEX is a 

leading-market indicator. Nevertheless, they do give support to our argument about 

the disturbance of the risk-return relationship discussed previously, since they reveal 

the not favorable changes of the risk-return relationship as we move towards to higher 

implied volatility levels. Moreover, they suggest that entering a long position on the 

FTSE/ASE-20 index when implied volatility is peaking (like the period of the 2008 

financial crisis) leads to great losses, while for the lowest implied volatility levels the 

returns are relative high. 

We proceeded into the examination of volatility spillovers across international 

markets. We implemented a VAR model and Granger causality tests. The results 

showed that almost all the included indices (VIX, VDAX, VSTOXX, VCAC and 

VSMI) do have some explanatory power for the changes of VASEX. However, the 

information content of the changes in these indices is not fully incorporated directly to 

the movement of GVIX index, as the Granger causality tests revealed that all the other 

five indices studied do Granger-cause VASEX when using four lags (for the cases of 

VCAC and VSMI we find a causality from the second lag). On the other hand, the 

results support that VASEX does not Granger-causes any of these indices, but the 

Swiss VSMI.  

Moreover, the VAR model showed that the Greek implied volatility index 

VASEX is more affected by implied volatility movements of the international markets 

than the other indices, since inside the VAR system its adjusted R2 value is 

significantly higher than any other such value in the system. Also, in line with the 

current literature we find that VIX index is indeed the one that transmits the implied 

volatility to each other international market, as the lagged values of its changes do 

Granger-cause each other index. The results also reveal the VSTOXX index changes’ 

intense effect to the movement of each other index. In general, the findings suggest 

that the transmission of the implied volatility across international markets has 

increased. 

Finally, we were concerned about the information content of the implied 

volatility with a view to the forecast of the future realized volatility. Toward this 

point, we constructed a second implied volatility index, named GVIX following 

Skiadopoulos (2004) methodology. Since the latter is a Black-Scholes (BS) based 
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measure, it allows us to investigate whether its information content is fully subsumed 

by the model-free (MF) implied volatility.  

Our results support, in line with the relative literature that both measures of 

implied volatility are superior forecasts of the future realized volatility, compared to 

historical volatility. Moreover, the log-transformed BS implied volatility appears to be 

an efficient and unbiased forecast of the future realized volatility. As to whether or 

not the MF implied volatility subsumes all the information contained in the BS 

implied volatility the results were not clear for sure.  

On one hand, the results from the regressions in the raw-series data show that 

the MF implied volatility subsumes all the information content of the BS implied 

volatility as the adjusted R2 from the regressions do not increase when incorporating 

the latter in the regressors’ set. Actually, the highest adjusted R2 arises when taking 

into account as explanatory variable only the MF implied volatility. On the other 

hand, the results from the regressions in the log-transformed series are quite different, 

since they do not provide clear evidence neither for, nor against the superiority of the 

MF’s implied volatility information content. Nevertheless, they do give some limited 

support for the superiority of the MF implied volatility since including this regressor 

as explanatory variable the regressions’ adjusted R2 are in general higher. Maybe, the 

results would be clearer if the market depth was wider; allowing the model-free 

implied volatility to incorporate more information. As Whaley (2009) states for the 

implementation of the MF implied volatility “The only important requisite is that the 

underlying index option market has deep and active trading across a broad range of 

exercise prices”. 

What is clear though is the fact that both measures of implied volatility can 

provide a better forecast for the future realized volatility than the historical volatility 

do. So, they are both useful and can be implemented in the Greek market. This is a 

very important finding since it has many useful applications. For example, the 

volatility forecasting is extremely crucial for Value-at-Risk (VaR) purposes. Implied 

volatility can be applied within this framework, since it provides a better prediction of 

the future realized volatility and subsequently of the value-at-risk. Implied volatility 

can also be applied for portfolio management purposes, as a forward looking measure 

of the risk undertaken by investors. Further research could be done by examining 

these aspects.  
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