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ABSTRACT

Cognitive radio systems (CRSs) have been proposed as a promising technology
for intelligently handling the rapid evolution of wireless communications,
especially in terms of managing and allocating the scarce, radio spectrum in the
highly varying and disparate modern environments. A typical CRS implements a
so called “cognition cycle”, during which it senses its environment, evaluates a set
of candidate radio configurations to operate with and finally decides and adjusts
its operating parameters expecting to move the radio toward an optimized
operational state. Such a process is often proved to be rather arduous and time
consuming. Accordingly, learning mechanisms that are capable of exploiting
measurements sensed from the environment, gathered experience and stored
knowledge can be judged as rather beneficial in terms of speeding up the whole
cognition process. Framed within this statement, this paper introduces and
evaluates a mechanism which is based on a well-known unsupervised learning
technique, called Self-Organizing maps (SOM), and is used for assisting a CRS to
predict the bit-rate that can be obtained, when it senses specific input data from its
environment, such as Received Signal Strength Identification (RSSI), number of
input/output packets etc. Results show that the proposed method can provide

predictions which are correct up to a percent of 78.9%

Keywords: Cognitive Radio Systems (CRS), Cognition Cycle, Learning, Self-
Organizing Maps (SOMs)



CONTENTS

ABSTRACT ..ottt ettt e e e e e e eb s 3
CONTENTS.......oootertetrteeteneereenseesteseesseessesssessessssessessesss i TrngsonsesTratupens s dheseon 4
FIGURE LIST ...ttt e 5w on fag oS an s Saabegsba 6
TABLE LIST ......oooerreeeeeereeseserrseeeneeesseesrnss e e Sonbtge e esne iy Poonesinedh oo seens Sk s 9
CHAPTER 1: INTRODUCTION ..ottt ittt s 11
CHAPTER 2: SELF-ORGANIZING MAPS (SOMS) ....cccccceiieniiniiniaiennenn 15
2.1 Sequential Training AlZOTIthm ...........ccooviiiiiiiiiiiere e 17
2.1.1 Theoretical Base of Sequential Training Algorithm.........c...c..ccc.ce.. 17
2.1.2 The Sequential Training Algorithm in the SOM toolbox .................... 18

2.2 Batch Training AIOTithm ........c.ccoiviieriiiiieesiesie et 21
2.2.1 Theoretical Base of Batch Training Algorithm...........c.cccccvvevvieennnnn. 21
2.2.2 The Batch Training Algorithm in the SOM toolboX.........ccccccueeveneee. 22
CHAPTER 3: CONTRIBUTION OF THE SOM TECHNIQUE TO THE
PREDICTION OF THE BITRATE ........ccccccoioiiiiiiiiieeeeeeeeee e 23
CHAPTER 4: THE ALGORITHM AND THE SOM_AUTOLABEL
FUNCTION ...t e e iemiugeseeevessvessesssesssesseessesssesnessesssasseassesans 26
CHAPTER 5: TEST CASES AND RESULTS ....cccooiiiiiiiiniiieeeeeene 36
5.1 Comparison of the labelling Versions..........cccccceevveerierciieniecieeiecee e 36
5.1.1 Scenario of no normalization of the data samples ..........c.ccccveernennnee. 36
5.1.2 Scenario of normalization of the data samples to 1 ..........cccceeeeienee 38
5.1.3 Scenario of normalization of the variance of the data samples to 1..... 39

5.2 Selection of the variables of a data sample..........c.cccceevevieeieeiiinieeieeee, 40
5.2.1 Scenario of no normalization of the data samples ..........c.ccccvveenennnee. 41
5.2.2 Scenario of normalization of the data samples to 1 ..........cccceeeeienee 43
5.2.3 Scenario of normalization of the variance of the data samples to 1..... 44

5.3 Selection of the number of data samples...........ccccceeeierciienienciieniecieeeee 45
5.3.1 Scenario of no normalization of the data samples ..........c.ccccveeeereennnee. 46
5.3.2 Scenario of normalization of the data samples to 1 ..........cccceceeienee 48
5.3.3 Scenario of normalization of the variance of the data samples to 1..... 49

5.4 Selection of the training algorithm and its parameters...............cccecveennenee. 51



5.4.1 Scenario of no normalization of the data samples ..........c.ccccveerurennnee. 51

5.4.2 Scenario of normalization of the data samples to 1 ..........ccccvveeuneennnee. 58
5.4.3 Scenario of normalization of the variance of the data samples to 1..... 64
CHAPTER 6: CONCLUSIONS ...ttt 72
BIBLIOGRAPHY ..o e e sa e 73
ATEICIES .t neeennrceee e gl e i ooy T 73
WEDSILES ....eeveernreeeeenrenenrsneesrnsesnnessenesneessnseneessesogs Pinge i tugs o gfve hoseos Tty s oo rnasen 75
ANNEX A: SUMMARY IN GREEK LANGUAGE . .........ccccocniiniiniiinnn. 76
KEDAAAIO 1: EIGOYMYT 1eteeiiieiiieeeiieeeieeesieee et s e iaeeieaeaeeaeeessassn e sssesneeenenes 76
KEDAAAIO 2: Teyvikn SOM (Self-Organizing Maps).....cc..eeecieeeiveencreeennnnn. 80
KE®AAAIO 3: H Xprion g Teyvikn SOM oty Extipnon tov Bitrate........ 81
KEDAAAIO 4: ATIOTEAEGLLOTOL. .. .veenvieeiveeeeeeeiiesiaeeereessssasbeenseesnseenseesseenseesseens 85

4.1 Xoykpion towv VOTE, ADDI xon FREQ Exddcemv tov [Ipoypappatog85
4.2 Emoyn tov Metafintov mov Bo Xpnouomombovv oto Aeiyparto

AEOOUEVOV ..o i e Ty . B Fering s Foiag e et eeseneenseeesaeesnsasansntessesaes 87
4.3 Enthoyn tov AptOpod Tov AStyHAT®V AESOUEVOV ...c.eeeeeeeiieieeiieeeee 89
4.4 Emoyn tov Alyopifuov Exraidevong kot tov [Hopapétpaov tov ........ 92
KEDGAAAIO 5: ZUUTEPOOLLOTOL -.vvveeierinreeeeunreeeeesereeeessineeeeennnreeessssseeessssneeens 102
ANNEX B: MATLAB CODES ........ccoooiiiieeeeeeeee e 103
VETSION L2 M. o Torteg. e vesa iy ceeee ghgonaresersesonsesessnessnssssesssssasessossssssesssssssssasaseos 103
TTAININZ. T 1, s e e nve Taminge Hinitgo s Bage s e seeaessessessassessasssssesssssesssssasesssesssssasessaasense 103
CENLETS ML, . e TR T ettt s 105
dataevaluation. M ..........oorieeeiiie et e 110
VEISIOIITHIL. g ondogs oo glosegheseosseseeseessesssessssonsesessssessssssesssesnsessossssssasssssssesssaseos 114
(VT 111 B2 e iy B e SO OO OO O SO RO OO PURSPPUUPRT 114
71101 1 e USSP PO UUU U RUPRURO 116
100171 o 2 e R 117
COMEETS 3 T ittt ettt et e sbt e et sat e et e s bt et e st e et e b e e nees 117



FIGURE LIST

Figure 1. Simplified representation of cognitive radio cycle [2] .........ccoceeiinniann. 12
Figure 2. Representation of cognition CYCle.........cccvevvieviieeiiiriionieeneieienesienie s 13
Figure 3. The inserted data sample x affects its BMU and its neighborhood. The
solid and dash-doted lines correspond to the situation before and after the input of
the data SAMPLE [10] .eceiiiiieiieiiee e e et 15
Figure 4. Representation of local lattice structures: (a) hexagonal lattice and (b)
rectang@ular 1attice [10] ...ccoviiiiiieeiieeeie e e e eree e 16
Figure 5. Representation of different global map shapes: (a) Sheet (default value),
(b) Cylinder and (¢) Toroid [10] ...ccccuieiiiiiieeiiniie et et et ens 17
Figure 6. Learning Rate Functions: (a)’Linear’ (solid line), (b) ‘Power’ (dot-
dashed line) and (c) ‘Inv’ (dashed 1ine€) [10]....cccceeeviieeiiineniieeie e 19
Figure 7. Representation of Neighborhood functions. From left to right: (a)
Bubble, (b) Gaussian, (c) Cutgauss and (d) Ep [10] ..ccccoevvieiiiniiiiiiiiieeieeee, 20
Figure 8. Matlab Data File: the number of the first line refers to the number of the
parameters of the configuration, here equal to 5 (RSSI, Input PacKeTS, Output
PacKeTS, Input BYTES, Output BYTES), and the last column refers to the bitrate
which was used as label. Each line is a data sample and each column is a different
parameter of the coOnfiguration. .........cc.oeeieriieiiierieeieeie e 24
Figure 9. Initialization and Training SOM GUI as introduced in the SOM toolbox
(VETSION 2 St veee iz inibas e eesnneiiheeseessnsesssassssssnsassasesnsessesssnsessasssnsessesssnasssssssnsasses 27
Figure 10. Selection of the data file which will be loaded and used for the

initialization and the training. ..........ccceccveveiieiieiiiieriece e 28
Figure 11. Initialization phase using the SOM GUIL..........ccccceovvieiiiieicieeniieeee, 28
Figure 12. Change initialization parameters GUI ...........ccccoceviiiiniiniincnncnnne. 29
Figure 13. Training phase using the SOM GUI ............cccoeiiiiiiiiiiniiiieieee 29
Figure 14. Choice of the training algorithm.............cccooveerviieiiiiiiinieeceeeee 30
Figure 15. Change training parameters in case of batch training algorithm ........ 31
Figure 16. Change training parameters in case of sequential algorithm.............. 31
Figure 17. Save the trained SOM ..........ccociiiiiiiiiiiieciieee e 32

Figure 18. The cod-file will include the trained SOM .........cccoceeviriiicininiene 32



Figure 19. Example of som map using the VOTE version .........ccccceeeevveerveennee. 33
Figure 20. Example of som map using the ADD1 version .........ccccceeeevveerveeennee. 33
Figure 21. Example of som map using the FREQ version............c...cccccvinennne. 34
Figure 22. Scenario of no normalization of the data samples: Diagram of the

percentage of wrong predictions according to the number of the used data samples

Figure 23. Scenario of normalization of the data samples to 1: Diagram of the

percentage of wrong predictions according to the number of the used data samples

Figure 24. Scenario of normalization of the variance of the data samples to 1:
Diagram of the percentage of wrong predictions according to the number of the
USEd data SAMPLES .....eeeieeiieiiieiiee et sttt bttt e eneees 51
Figure 25. Batch training algorithm during the scenario of no normalization of
data samples: Diagram of predicted values of bitrate, Diagram of their real values
and Comparative Diagram of the above. The symbol * depicts the data samples
which have different predicted and real values........cc.ccoeceeevieniienieniiiieee, 54
Figure 26. Sequential training algorithm during the scenario of no normalization
of the data samples: Diagram of predicted values of bitrate, Diagram of their real
values and Comparative Diagram of the above. The symbol * depicts the data
samples which have different predicted and real values. ..........cccceceeveriencnnnne. 57
Figure 27. Batch training algorithm during scenario of normalization of the data
samples to 1: Diagram of predicted values of bitrate, Diagram of their real values
and Comparative Diagram of the above. The symbol * depicts the data samples
which have different predicted and real values............cccoocveeviiniiiiieniiieieeee, 60
Figure 28. Sequential training algorithm during the scenario of normalization the
data samples to 1: Diagram of predicted values of bitrate, Diagram of their real
values and Comparative Diagram of the above. The symbol * depicts the data
samples which have different predicted and real values. ..........cccccecveverierienenne. 64
Figure 29. Batch training algorithm during the scenario of normalization of the
variance of the data samples to 1: Diagram of predicted bitrate, Diagram of their
real values and Comparative Diagram of the above. The symbol * depicts the data

samples which have different predicted and real values. ..........cccccecveveriinienenne. 67



Figure 30. Sequential training algorithm during the scenario of normalization of
the variance of the data samples to 1: Diagram of predicted bitrate, Diagram of
their real values and Comparative Diagram of above. The symbol * depicts the

data samples which have different predicted and real values. .........cccoccooiinnan 71



TABLE LIST

Table 1. Data files and their containing variables............ccccoevviiiieenieniiiniieniinn. 41

Table 2. Scenario of no normalization of the data samples: The result of each case

Table 4. Scenario of normalization of the variance of the data samples to 1: The
result of each case ......c.cocceveeemceniecon e A e 45
Table 5. Scenario of no normalization of the data samples: Cases with different
number of data SAMPIES..........oovuiiiiiiiiiesiie e et 46
Table 6. Scenario of no normalization of the data samples: Percentage of wrong
predictions fOr €aCh CASE .......cccuiiiiiie ettt e re e e e e eaee e 47
Table 7. Scenario of normalization of the data samples to 1: Cases with different
number of data SAMPIES..........oooieiiin ittt 48
Table 8. Scenario of normalization of the data samples to 1: Percentage of wrong
predictions fOr €aCh CASE ... uuiivuiiiitie it ce e eaee e 48
Table 9. Scenario of normalization of the variance of the data samples to 1: Cases
with different number of data samples...........ccoevieiiiiiiiiniiee e, 50
Table 10. Scenario of normalization of the variance of the data samples to 1:
Percentage of wrong predictions for each case........ccccoecveeeviieeciieeciiecieeeeee 50
Table 11. Scenario of no normalization of the data samples: Test cases using
batch training algorithm in order to decide the most suitable values per each
AT B I i o ege s Faife e e cerueesserssseesssseessssasssssesessuesessasssssessessasssssesssssesssssnsssne 52
Table 12. Scenario of no normalization of the data samples: Test cases with
different sets of values of the neighborhood function, the length type and the
learning function while the parameters of the rough and fine-tuning phases remain
COMSTANT L.ttt et saae e 55
Table 13. Scenario of no normalization of the data samples: Test cases with
different values of the initial and the final radius, the training length and the initial
alpha during both phases while the neighborhood function is Gaussian, the length

type is epochs and the learning function iS iNV. ..........ccceeveveeriieriieenienieeieeere e 56



Table 14. Scenario of normalization of the data samples to 1: Test cases using
batch training algorithm in order to decide the most suitable values for each
PATAIMICTET ..ottt st e st s e ta e s badeann e e 58
Table 15. Scenario of normalization of the data samples to 1: Test cases with
different sets of values of the neighborhood function, the length type and the
learning function while the parameters of the rough and fine-tuning phases remain
CONSLANL ....coverrererrereernrerrensaneerressornereossaressessannessossarnens Minbtgs oo tug o sgfonch ooeos Mg eesanees 61
Table 16. Scenario of normalization of the data samples to 1: Test cases with
different values of the initial and the final radius, the training length and the initial
alpha during both phases while the neighborhood function is Gaussian, the length
type is epochs and the learning function is iNV. .......cccceveveeiiiieniiieneeneecnne 62
Table 17. Scenario of normalization of the variance of the data samples to 1: Test
cases using batch training algorithm in order to decide the most suitable values for
(6] 15 0T 1 €111 ] () o 5y W S o iy S U N 65
Table 18. Scenario of normalization of the variance of the data samples to 1: Test
cases with different values of the initial and the final radius, the training length
and the initial alpha during both phases while the neighborhood function is
Gaussian, the length type is epochs and the learning function is inv.................... 68
Table 19. Scenario of normalization of the variance of the data samples to 1: Test
cases with different sets of values of the neighborhood function, the length type
and the learning function while the parameters of the rough and fine-tuning phases

TEIMAIN CONSTANT ..o it oot e e e e e e e e et e e eeeeeeeeeae e eaaeeeeeeeeaannaaaeeeeeeeenennnan 69



CHAPTER 1: INTRODUCTION

Nowadays communications are getting more and more wireless and each one
needs its different piece of electromagnetic radio spectrum. However, this specific
natural source is limited. Moreover, its current static assignment often leads to its
underutilization. As a result the deployment of a technology which will have the

ability to exploit the underutilized frequency bands is needed.

One way out of this problem is the development and utilization of cognitive radio
systems [7] [8]. Cognitive systems have the ability to adjust their function
according to the external, environmental stimuli, the demands of the
users/applications and their past experience. Based on this ability, future cognitive
systems will be able to change their parameters (carrier frequency, radio access
technology, transmit power, modulation type etc), observe the results and decide
which is the best combination of those parameters in order to get into a better
operational state. So, in terms of flexible spectrum management concept, use of
cognitive systems will allow the use of a spectrum band in different radio access

technologies (RATSs) [2], [3].

A typical cognitive operation consists of three cooperative phases shown in Figure
1 [2] [8]. During, the first phase, known as “radio scene analysis”, the system
collects measurements from its environment (e.g. conditions related to
interference) and explores different configurations. In the 2nd phase, “channel
estimation and predictive modeling”, the output of the Ist phase is used for
discovering the capabilities of each candidate configuration, wherein past
experience of the system may also be used. Finally, in the last phase, known as
“configuration selection”, the system decides for the best configuration and

accordingly adjusts its operation parameters.

Further analysis of a cognitive system reveals the existence of a cognitive engine
(Figure 2), a software package which is the one that provides to cognitive radio

systems their capabilities [3]. Cognitive engines support software defined radios



by changing their parameters, observing them and taking measurements and
actions which are defined by the desired operational state. On the other hand,
software defined radios “learn the lesson” and store it in the knowledge base of
the cognitive engine. Another part of the cognitive engine, reasoning, decides
whether the actions are possible, given an environmental state, or not. This is
proved to be a very arduous and time-consuming task, which can be relaxed by

using learning mechanisms.

Measurements from
anvironment

Radio Scene
Information {";:::':T:b
Transimission g
Cnuﬁgﬂmfhn Measurements, e.g.,
Selection interference, data rate,
alc.
Refined information on Channel State
configuration capabilities, Estimation &
e.g., data rate, efc. Predictive
Modeling
Transmitter Receiver

Figure 1. Simplified representation of cognitive radio cycle [2]

Supervised learning through neural networks-based schemes have been used
recently in [1] [3]. Bayesian networks have been also used in [2]. Our proposal is
based on an unsupervised neural network technique, called Self-Organizing Maps
(SOMs). SOM is a technique for representation and classification of
multidimensional data into 2D maps. These maps consist of rectangular or
hexagonal cells on a regular grid and according to the technique; each data sample
correlates with one cell/neuron of the map in order to be closest to those who are
most like it. In this term, the created map represents the similarity of the data and

their classification. SOMs are very popular in data mining problems such as



identification of illicit drugs [13], chemical analysis [14], document collections
[16], speech recognition [17], identification of a cancer cell gene [18],
hematopoietic differentiation [19] and more. In our case we examined the
possibility of connecting parameters that can be achieved under a configuration in
question of a CRS, such as noise, received signal strength Indication (RSSI),
errors (input and output), packets (received and sent) and Bytes (received and
sent) with an anticipated QoS metric, namely the bitrate that can be achieved

under the same configuration.

Reasoning

% Knowledge
base
Learning

Cognitive Engine

Software
Defined
Radio

Figure 2. Representation of cognition cycle

Moreover, in order to validate the technique, we have setup and executed a
program by using MATLAB SOM toolbox. The developed SOMs are trained with
measurements that have taken place in a real working environment within our
University premises. The method exhibits a satisfactory capability of predicting
the achieved bitrate when facing both known and unknown exemplars

(combinations of achieved parameters given a configuration).

In order to do so, matlab data files, which consist of different parameters that are
observed as a result of the configuration in question of a CRS, including bitrate,
were created. Parameters, except for bitrate, were used for the training of a SOM
map and the respective data samples were depicted on it. Bitrate was used as a

label of the cell which was correlated to the respective data sampple. It is worth



mentioning that more than one combination of parameters may be correlated to

one cell.

Having trained the SOM map, we were able to proceed with the prediction of the
bitrate of known or unknown data samples. The prediction was based on a similar
idea to the training. First of all, each data sample was correlated to a cell by using
the same parameters which were used during the training. After the correlation,
the prediction of the bitrate was able to take part with respect to the label/bitrate of
the closest cells. Finally, conclusions were reached by comparing the predicted

bitrate of the data sample with its actual respective measured bitrate.

The rest of the thesis is structured as follows: a review of SOM technique is
presented in chapter 2 while a short analysis of our proposal is made in chapter 3.
A short analysis of the created algorithm is made in chapter 4. Chapter 5 presents
the results of our test cases, including a comparison of different versions of our
program (chapter 5.1), the choice of the variables of the input data samples
(chapter 5.2), different cases which include different number of data samples
(chapter 5.3) and different evaluating scenarios with different parameters of SOM
technique (chapter 5.4), are presented. Finally, in chapter 6, our conclusions are

presented.



CHAPTER 2: SELF-ORGANIZING MAPS (SOMs)

SOM, introduced by Teuvo Kohonen, is a type of neural network-based scheme
whose training algorithms are unsupervised. An overview of its theoretical base
may be found in [9]. It is a technique for representation and classification of
multidimensional data into 2D maps. These maps consist of cells, whose shape is
rectangular or hexagonal, on a regular grid. According to the technique, each data
sample correlates with one cell/neuron of the map, called Best Matching Unit
(BMU). The BMU and a neighborhood around it stretch towards the inserted data
sample (Figure 3). This process is called SOM training and results in an ordered
SOM map where similar neurons are close. In this term, the created map

represents the similarity of the data and their classification.
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Figure 3. The inserted data sample x affects its BMU and its neighborhood. The solid and dash-

doted lines correspond to the situation before and after the input of the data sample [10]

This attribute of SOM has made it very popular in data mining problems such as
identification of illicit drugs [13], chemical analysis [14], document collections
[16], speech recognition [17], identification of a cancer cell gene [18],
hematopoietic differentiation [19] and more. In our project we attempted to
predict the bitrate of a configuration according to other parameters that are

observed as a result of the specific configuration.

Two different training algorithms are used for SOM training: the sequential and

the batch training algorithm. In the first case each data sample is inserted in the



training process one by one, thus affecting its own best matching unit (BMU) and
a neighborhood around it. In case 2, all data samples are inserted together in the

process and eventually affect their BMUs and their neighbors at once.

In autumn of 1997 a toolbox for SOM technique, called SOM TOOLBOX, was
created while in spring of 2000 its 2" version was created and released,
executable in MATLAB version 5 or in newer versions. This toolbox enables the
user to manage the data, initialize and train the maps and finally represent and
analyze them. During the initialization and the training phases of the map, the user
is able to change many different parameters of the algorithm and select between
different combinations of the topology (local lattice structure, size of the map,
global map shape) and the training parameters. Figure 4 and Figure 5 depict

different local lattice structures and different global map shapes, respectively.
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Figure 4. Representation of local lattice structures: (a) hexagonal lattice and (b) rectangular lattice

[10]
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Figure 5. Representation of different global map shapes:'(a) Sheet (default value), (b) Cylinder
and (c¢) Toroid [10]

2.1 Sequential Training Algorithm

2.1.1 Theoretical Base of Sequential Training Algorithm

As mentioned above, this training algorithm is iterative as each data sample x is
inserted into the process by itself. In our project, data sample x is the combination
of the observed parameters of a configuration, except for the bitrate of the
configuration. The process is described below: First of all, a random data sample
x 1s selected and then its distance from each neuron my; is calculated. The neuron
which is closest to the selected data sample is called best matching unit (BMU) of
the data sample, denoted here by ¢, while m, is the cell which is finally associated

with the data sample/combination of the parameters of the configuration:

[ x(2)=m, (¢)|1<]|x(¢)—m,(t)l], (1)

where ||.|| is the method, according to which the distance is calculated. The method

which is most usually used is the Euclidean Distance.

Having correlated the data sample with its BMU, the weights of the BMU’s vector

and those of its neighbors change in order to become more alike with the weights



of the vector of the data sample. The equation that is used for this process is the

next one:

m;(t +1) = m, () + h, ([ x(t) —m,(2)], 2
where ¢ denotes the neuron, m is the weight which will be updated, x(?) is the data
sample and ¢ is the index of the regression step. The function /. is known as
neighborhood function and in case of being Gaussian is calculated by the

following equation:

b =a(texn| L2 ©
=a(t)exp| ————

C(x),l p 20_2 (t)

and describes the area around the BMU which will be affected by the calculations.

The factor a(?) is the learning-rate factor while a(?) corresponds to the width of the

neighbourhood function and they both decrease monotonically with the regression

steps.

Finally it’s worth mentioning that the training phase usually consists of two
phases. The first one is the rough phase where the initial learning rate and the
neighborhood radius are relatively large. On the other hand, during the 2™ phase,
which is called fine-tuning phase, the initial learning rate and the neighborhood
radius are small from the beginning. As a result, the map is approximately shaped

in the first phase while in the second one it is fine-tuned.

2.1.2 The Sequential Training Algorithm in the SOM toolbox

In case of using matlab toolbox, the calculation is slightly different due to the fact
that there may be some missing values of the variables of a data sample or the
selected “mask” may dictate something different. Considering the above facts, the
specific calculation transforms into the next equation:

[x—m|P=> w(x,—m,) @

keK



where & denotes the set of known (not missing) variables of sample vector x, xi
and my are k-th components of the sample and weight vectors and wy is the k-th

mask value.

Moreover, equation (2) transforms into the next equation:
m,(t+1)=m,(t)+a(t) h,()[x(1)—m,(1)] (5)
where neighborhood function /4.; and learning rate factor o(?) may be a number of

different functions.

There are three different functions which can be used as learning rate:

> Linear function: a(t) =a,(1- f/T) (6)
> Power function: a(f) = a, (0-005/% )l/T and (7)
> Inv function: a(t) = ao/(l +100 t/T), (8)

where T is a constant variable, called training length and ay is also a constant
variable, known as initial learning rate. Figure 6 shows the diagrams of these

functions:

[
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Figure 6. Learning Rate Functions: (a)’Linear’ (solid line), (b) ‘Power’ (dot-dashed line) and (c)
‘Inv’ (dashed line) [10]



In contrast with learning rate, neighborhood kernel does not depend on time.
Moreover, it does not depend on the distance between the neuron m. and the BMU

c¢. The four functions that may be used in this case are the following:

> Bubble: 1, (1) =1(c,—d) 9)
+ Gaussian: By (£) = €2 0
> Cutgauss: 1,(1) = ¢ 7 I(0, ~d,) and (an
> Ep: h,;(t)=max{0,1-(c,—d )}, (12)

Where o, is the radius of the neighborhood, da- = Fom s || is the distance

between the cells m. and m; and I(x) is the step of the function: /(x) =0 if

x <0 and I(x)=1if X = 0. Figure 7 depicts diagrams of the functions when

neighbourhood radius is 6=2:

4449

Figure 7. Representation of Neighborhood functions. From left to right: (a) Bubble, (b) Gaussian,
(c) Cutgauss and (d) Ep [10]



2.2 Batch Training Algorithm

2.2.1 Theoretical Base of Batch Training Algorithm

As well as in the case of sequential training algorithm, this algorithm is also
iterative. On the contrary to the previous training algorithm, in this one all data
samples are inserted simultaneously. Thus, it is quicker and does not demand the

specification of the learning rate.

All data samples are inserted in the process before any adjustments. In each

training step the new weight of each cell m is given by the following relation:

i h (t)xj

m(+1) =

j=1

where C = arg mink {H X, —m, H} denotes the BMU cell of data sample x; and

hic(?) 1s the neighbourhood function of BMU.

Alternatively, the sum of the vectors of each Voronoi region of the map can be

calculated first according to the following function:

Ny

$.(1) = ij ; (14)
j=1

where ny; is the number of data samples of cell i, and then the weights of the

vectors can be calculated by the equation:

Zm:h,.j (0)s,(1)

m(t+1) =2

2.y (©)
j=1

where m is the number of the neurons of the map.

(15)



Finally, it is worth mentioning that, like in the case of sequential training
algorithm, in this algorithm as well, the process is divided in two phases: the

rough and the fine-tuning phase.

2.2.2 The Batch Training Algorithm in the SOM toolbox

In the SOM toolbox, the batch training algorithm is executed using the alternative
with the Voronoi regions while, like in the case of sequential training algorithm,
the variables of the data samples which have missing values are ignored and data
sample x; is the combination of the observed parameters of a configuration, except
for bitrate. Finally, neighbourhood functions that can be used are the same with
those of the sequential training algorithm while there is no need of defining a

learning rate factor.



CHAPTER 3: CONTRIBUTION OF THE SOM
TECHNIQUE TO THE PREDICTION OF THE
BITRATE

As mentioned in chapter 1, we examined the possibility of connecting parameters
that are observed as a result of the configuration in question of CRS, such as
noise, received signal strength Indication (RSSI), number of errors (input and
output), number of packets (received and sent) and number of Bytes (received and
sent) with one QoS metric, the bitrate in order to predict it. This is done by using
the unsupervised training technique of SOM. However, as also mentioned in
chapter 2, SOM 1is a technique for representation and classification of

multidimensional data into 2D maps. So how could it be useful in our case?

To begin with, measurements that have taken place in a real working environment
within the premises of our University were used to create different data files. Each
file comprised a different test case including different combinations of the
parameters. The last column of each data file was the measured value of the
bitrate which was related to the combination and was taking part only for
separating the data samples. So, in each data file there was a number of columns
and each column was a different parameter of the data sample. Moreover, each

row of the data file corresponds to one different data sample x (see Figure 8).

In the sequence the created data file and SOM toolbox v.2 of MATLAB were
used to train the SOM. However, before training the SOM map, it was essential to
decide if the data would be normalized or not and according to what it would be
normalized. We examined three different scenarios for the normalization and run
many different test cases around them. The first scenario referred to data that had
not been normalized; the second one referred to data that had been normalized to
[0,1] and the last scenario referred to data whose variance had been normalized to
[0,1]. So, after having normalized or not the data according to the scenario, we

used them to train a SOM map. For facilitating the analysis, SOM toolbox offers



the ability to use labels in order to distinguish the data samples. In our case, each
label corresponds to the measured value of the bitrate of the data sample.
However, the fact that more than one data samples may have the same cell of the
map as BMU (m,) leads to the fact that each cell of the map may have more than
one labels appearing more than once. At this point, it is worth mentioning that
SOM toolbox offers enough different ways for labeling the map. In our case we
used three of them ending up with three different versions of our program,
respectively. The first way is to put on each cell only the most frequently
appearing label, the second one is to put all labels in descending order with
respect to the appearance frequency while the third one is to put all labels in
descending order with respect to their appearance frequency as before, but also

followed by the number of appearances.

1 5

2 #n R3I3I IPKETS QOPETS IEYTEZ OEYTES

3 -35 9&a 1750 JZes30 ggoes50 54
4 -32 9203 1430 31932 d45424 54
5 -32 B85 1680 31272 g45424 54
& -35 858 1679 3127z 45465 54
7 -36 520 1633 313385 45598 54
g -36 960 1315 331z 915702 54
9 -36 520 la32 31338 845595 54
10 -36 928 1766 32756 S87366 54
11 -34 20 1731 32328 73760 43
12 -33 9Za 1751 JZ586 gdgoes50 54
13 -33 924 1750 3zZ5e4 g80e50 54
14 -32 5594 1654 31494 S45655 54

Figure 8. Matlab Data File: the number of the first line refers to the number of the parameters of
the configuration, here equal to 5 (RSSI, Input PacKeTS, Output PacKeTS, Input BYTES, Output
BYTES), and the last column refers to the bitrate which was used as label. Each line is a data

sample and each column is a different parameter of the configuration.

At this point, the output of our program was a labeled SOM map (Figure 19,
Figure 20 and Figure 21) and our program was able to represent a new data
sample on the map but could not predict the bitrate of a data sample. In order to
train our program how to predict the bitrate of a data sample we transformed our

visualization into mathematical functions. Normally, a data sample has the same



bitrate with the bitrate of the closest cells. However, the closest cells may have
more than one different values of bitrate. So, we need to find the bitrate that

represents the most cells which are close to the BMU of the data sample.

In other words, cells which have the same bitrate comprise a cluster. In order to
define the bitrate we needed to find to which cluster the cell of the data sample
belonged. Trying to transform this thought to mathematical function the need of a
center of each cluster revealed. The center of a cluster may be calculated by the

equations

X = Z—(m) and V= Z’—y’(n)

where 7 is the number of cells which belong to the cluster, x; and y; are the co-
ordinates of the cell i and w; is the weight according to which the cell i participates
to the calculation. In the first two versions (VOTE, ADDI) w; is always equal to 1
while in the last version (FREQ) w; may be calculated by the following function:

k
e 18
N, (18),
where £ is the number of instances of the specific bitrate in the cell i and 7 is the

sum of the instances of all bitrates of the cell.

At this point, it was easy to predict the bitrate of a data sample. All that was
needed to be done was to find its BMU and then, find the center of the cluster that
was closest to the BMU. The bitrate of the data sample was the one that
represented the cluster. For calculating the distance we used the Euclidean

Distance.

Finally, for evaluating our process and reaching conclusions our program is able
to compare the predicted values of the bitrate of each data sample with its real
measurement. These comparisons are also expressed in percent. It is worth
mentioning that the data samples whose bitrates were predicted were inserted with

data files similar to those which were used for the training phase.



CHAPTER 4: THE ALGORITHM AND THE
SOM_AUTOLABEL FUNCTION

Our program depends on the 2™ version of SOM toolbox, so in order to be
functional MATLAB 5 (or newer versions) is required. As mentioned in chapter
3, three different versions of our program have been created and differ to the way
of representation and labeling while each version may be combined with three
different scenarios of normalization. The difference of representation arises from
the difference of the value of a parameter of a function called som_autolabel. In
the first version, the parameter of som_autolabel function is set to “VOTE”, in the
second one it is set to “ADD1” while in the third version it is set to “FREQ”. So,
in order to distinguish the three versions of our program, each version was named
after the parameter of the som_autolabel function which is used. As a result, the
first version is the “VOTE” version, the second one is the “ADD1” version and
the last one is the “FREQ” version. Finally, the VOTE, ADDI1 and FREQ versions
were compared to each other. All three of them have two basic phases: the

training and the evaluation one. Each phase may consist of one or more m-files.

The first phase is executed using the m-file training.m or trainingl.m, depending
on the version used, which consist of 8 functions of SOM toolbox. The first two
of them are the functions som read data and som normalize. These two are
responsible for reading the data file and normalizing the data samples. In cases of
the scenario of data without normalization the 2™ function did not exist. The next
function is the function som_gui. This specific function is a very basic one as it is
connected to a very useful user interface. Using this GUI (Figure 9) one may

control the initialization and the training part of SOM.

In order to train a SOM, we first need to load the file which will include the data
according to which the map will be trained. The data needs to be saved in a dat-
file in which each row is one data sample and each column is one variable or

component of the data sample. As soon as the reading of the data file and the



normalization process (when used) have finished the loading of the file becomes
available by following the next steps:
» Press “load” button
» The “load data” GUI appears (Figure 10), select “Ws” and then write “sd”
(sd is the name of the matlab variable, according to our program, which is
related with the data file after the normalization of the data samples or not)
» After having selected the data file, press the “load” button and the data

will load automatically.

-) SOM Toolbox -- Initialization & Training =13

File Edit Yiew Inser Tool Desktc Windo Help Load/3a Utilitie Infc InitfTra -~
Infnronatinn
Status =no action=
Map =empty=
Data =empty= LB
Initializatinn
e man sire:
lattice: shape:
LChance vales |
Training
training tvne
neigh: tracking:
Rough Finetune
radiuz initial: radiuz initial:
radius final: radiuz final:
training length: training length:
CLOSE
Lihange values |

Figure 9. Initialization and Training SOM GUI as introduced in the SOM toolbox (version 2)

When the data loads, at the SOM GUI the buttons “initialize” and “change values”
(in the initialization part) become available (Figure 11). Also, in the initialization
part, the “type”, the “map size”, the “lattice” and the “shape” have been selected
automatically. The “type” refers to the way that the data samples are used for the
initialization and may be “linear” or “random”. The “map size” refers to the
number of the output neurons of the SOM. As mentioned in [20], “the number of
output neurons in a SOM can be selected using the heuristic rule suggested by
Vesanto et al. (2000) [21], and applied in Park et al. (2006) [22] in a study of
diatom communities: the optimal number of map units is close to 5*sqrt(n), where
n is the number of training samples (sample vectors). In this case, the two largest

eigenvalues of the training data are first calculated, then the ratio between side



lengths of the map grid is set to the ratio between the two maximum eigenvalues.

The actual side lengths are finally set so that their product is close to the number

of map units determined according to Vesanto et al.’s rule.” The “lattice” refers to

the shape that each neuron has on the SOM and may be ‘“hexagonal” or

“rectangular”, as depicted in Figure 4.

) Load datal

EEX

File Edit W“iew Insert Tools Deskkop  Window Help N
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{F e Erowse
() File Load
Parameters for file
File tvpe dat file cancel
|| Miz=ing value e

Figure 10. Selection of the data file which will be loaded and used for the initialization and the

training.

J \SOM Toolbox - Initialization & Training
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Figure 11. Initialization phase using the SOM GUI

Finally, the “shape” refers to the global map shape and may be “sheet”, “cylinder”

or “toroid”, as depicted in Figure 5. Their values are set by default but in case one

decides to change them, he may use the “change values” button and the “change

initialization parameters” GUI appears (Figure 12). As soon as the new values are



selected, the “OK” button sets them in the SOM GUI. Finally, the “initialize”
button (Figure 11) initializes the SOM according to the given data and the given

preferences.

J Change initialization parameters!

Deskiop  Window  Help ﬂ

File Edit Yiew Insert Toals
Initialization parameters:
MmEk Size: [1E Bl MUt Ok
attice: hexa  w | =shape sheet W cancel
type: linesr  «

Figure 12. Change initialization parameters GUI

The next part of the SOM GUI is the training one. As soon as the initialization is
completed the “train” and the “change values” buttons (in the training section)
become available (Figure 13). In this part the user may choose the training

algorithm as well as its parameters.

&=

File Edit Wiew Inser Tool: Deskkc Windo Help LoadfSa Utilitie Infc Init/Tra =

) |SOM Toolbox -- Initialization & Training
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Status =map intialized=
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Data: =CDocuments and Settingzaimilis\To Syypapd
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Initializatinn
map size: [16 6]
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Lihange values |

Training
training type: batch

type: lingar
lattice:hexa

neigh: gaussian

tracking:1

TRAIN

Rough
radius intial:3
radius final:1
training length:3

) only finetune

Finetune
radius initial1
raciuz final:1
training length: 20

Chande vallues:

Figure 13. Training phase using the SOM GUI

Pressing the “change values” button will first trigger a new GUI on which one
may choose between the “batch” and the “sequential” training algorithms (Figure

14).



J Change values. E“E|@

@ Select training typel

| Eatch | ’Sequential] [ Cancel ]

Figure 14. Choice of the training algorithm

In case of batch training algorithm the following GUI appears (Figure 15). The
“mask” defines which of the variables will take part in the training of the SOM
and which will not. In order to specify them each variable should be chose from
the “set” and its value should be set to 1, in case of participation, or 0, in the
opposite case. The mask is the string of zeros and ones with respect to the value of
each variable. Another parameter that can be set through this GUI is the
“tracking”. Its possible level values are 0, 1 by default, 2 and 3. If the chosen level
is 0, then in matlab command window the estimated time can be seen while in
case of 1 the time is tracked in matlab command window. In case of 2 and 3, apart
from the track of time in the command window, there are also available diagrams.
If level 2 is the chosen the diagram concerns only the quantization error, while
case 3 includes also a diagram of the two first components of the data sample. The
last parameters that can be set through this GUI are the parameters of the batch
training algorithm which are the neighborhood function (“neigh.”), the initial and
the final radius and the training length of both rough and fine-tuning phases (see
chapter 2).
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Figure 15. Change training parameters in case of batch training algorithm

In case of the sequential training algorithm the GUI of Figure 16 is the one that
arises. Here, apart from the above parameters that can be changed there are also
some more. These parameters exist only in this training algorithm and they
concern the length type, the learning function, the order according to which the
data will be used in the sequential training algorithm and the alpha initial of both

rough and fine-tuning phases (see chapter 2).

) Change training parameters! EEIE|
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Figure 16. Change training parameters in case of sequential algorithm

The final step of the initial GUI is to close it. As soon as the “close” button is
pressed, the GUI of Figure 17 appears, waiting for the user to choose whether he

wants to save the created map or not. In our program it is necessary to save the



map as the file will be needed right after. The file will be saved as .cod file
(Figure 18).
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Figure 17. Save the trained SOM
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Figure 18. The cod-file will include the trained SOM

The next three functions of SOM TOOLBOX which are used in the training phase
concern the labeling of the created SOM. These functions are som read cod and
som_autolabel. Som_read cod is responsible for the reading part of the cod file,

which has been created and saved in the previous step.

Somautolabel is a very important function in our program as it associates the
som map structure created by the som read cod function with the data structure
created by the som_read data in order to add labels in the map and distinguish the
data samples on it. As a result, except the som map structure and the data
structure, one more parameter is needed. This parameter describes the way that
the labels will be added. As mentioned above, this specific parameter is also the

“source” of the three different versions of our program. In the first version, the



parameter is set to ‘vote’. This means that the only label which is added in the cell

is the one which appears more frequently (Figure 19).

case3.cod

Figure 19. Example of som map using the VOTE version

In the second version the parameter is set to ‘add1’ which means that all labels of
each cell are added. An example of this kind of labeling is shown in Figure 20.
It’s worth mentioning that the labels of each cell are ordered according to their

frequency even if their frequency is not shown.

case8.cod

Figure 20. Example of som map using the ADD1 version



In the last version of our program the parameter is set to ‘freq’. The only
difference between ‘add1’ and ‘freq’ lies in the fact that in the second case, apart
from the labels, the number of instances of each label is mentioned in brackets
next to the label. An example of the last choice used in our program is given at

Figure 21.
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Figure 21. Example of som map using the FREQ version

Finally, the three last functions are used for depicting the created SOM including
the labels which were added before. These functions are som_grid, som show and
som_show add. The first one creates a structure which consists of all the
parameters accompanied by the labels and the coordinates of each cell. The
coordinates will be useful later in the data evaluation part. The second function,
using the parameter empty, draws an empty map on which the labels by the last

function (som_show_add) are added.

At this point, the first phase of the program has been completed so the next phase
to analyse is the data evaluation one. This phase differs from version to version.
The VOTE and ADDI1 versions evaluate the data in a similar way but the FREQ

one is quite different.



In all versions the data evaluation is based on the calculation of the centre of each
cluster (group of cells with the same label) and, after having found the BMU (best
matching unit) of each data sample, which needs evaluation, the selection of the
cluster and the label of the data sample according to the distance between the
BMU of it and the centres of the clusters. As mentioned before, the difference of
the three versions (VOTE, ADDI, FREQ) arises from the different labelling

methods and lies in the way that they calculate the centres of the clusters.

The VOTE version calculates the centres by simply calculating the average of the
coordinations. As mentioned above, each cell has only one label, so the
calculation is simple. In the ADD1 version the calculation of the centres of the
clusters is also the average of the coordinations of the cell with the same label but
in this case each cell may have more than one label. However, each label is used
with the exact same way without variations. On the other hand, the FREQ version
depends on a weighted average of the coordinations of the cells with the same
label. This means that each cell with the same label takes part in the calculation of
the cluster centre according to its frequency in each cell which equals to the
number of instances of this label in this cell divided by the sum of the number of
instances of all labels in the same cell. So, each coordinate of the cell before its

participation in the calculation, is multiplied with its frequency.

Finally, in all versions, the predicted values of bitrate are compared to the
measured ones. The result of the comparison is also expressed in percent in the
command window of matlab. Moreover, a diagram of the predicted bitrate, a
diagram of measured bitrate and a comparison of the above are plotted in a new

figure.



CHAPTER 5: TEST CASES AND RESULTS

A number of test cases that correspond to variations of input parameters of the
proposed method have been set up in order to reach useful conclusions. In
particular, the focus is placed on exploring the following: a) which the best choice
between the three versions of the method (VOTE, ADDI and FREQ) is, b) what
variables of our data samples are going to be used, ¢) how many data samples are
needed for the training phase and d) what the training algorithm and the values of
its parameters should be. For evaluation and comparison reasons, the lower the
percent of the wrong prediction is, the better the choice. As a result, the metric
used was the number of data samples whose bitrate was wrongly predicted
(expressed in percent). The different test cases are presented and compared to

each other below for all three scenarios of normalization.

5.1 Comparison of the labelling versions

Having analyzed the three versions, we needed to compare them in order to use

the best one according to their results.

5.1.1 Scenario of no normalization of the data samples

As mentioned above, the VOTE version uses only the label that appears more
frequently when calculating the centres of the clusters. In this case, it is possible
that a label doesn’t appear in the created SOM even if it has been used as label in
a data sample. This happens because different data samples with the same or
different labels may have the same BMU but according to the som_autolabel(sm,
sd, ‘vote’) function, and as mentioned in chapter 4, only the most frequently
appeared label takes part into the calculations. As a result, less frequently

appeared labels may not appear in the created SOM.



This causes the elimination of one or more clusters as there is no centre of them.
In addition to the above, the program terminates a little after the calculation of the
centres as according to its programming it needs all four centres. Finally, even if
the program wouldn’t stop, the data, which were used for evaluation and belonged

to the eliminated cluster, would be correlated with a wrong cluster/label.

Trying to find a solution to the existing deficiency of VOTE version, ADDI1
version was created. In ADDI version, all possible labels of each cell participate
equally. So, each label that was used in the data file as label of a data sample,
even if it appeared only one time in a cell, was depicted at the created SOM. As a
result, in ADDI1 version, a label of a cell participated in the calculations of the

centres of the clusters independently of its instances.

For comparison reasons between the first two versions, we executed both versions
using the case8.data file in both training and evaluating phases. In order to do so,
we executed versionl2.m file and chose between the two versions right after. In
case of VOTE version, the centre of the cluster with label/bitrate equal to 24 was
(NaN, NaN) which meant that this cluster ceased to exist. Finally, the program
terminated mentioning an error as there was no centre calculated for the cluster
with bitrate equal to 24. On the other hand, in case of ADDI1 version, there was
one centre for each cluster (24, 36, 48 and 54). Moreover, the evaluation
completed with no matlab error and the percentage of wrong predictions was

found 47.8%.

For further comparison, we repeated the experiment using another data file. The
chosen file was case4.data. In this experiment both versions ended successfully in
results. In case of VOTE version the percentage of wrong predictions was 41.9%

while in case of ADD1 version it was 43.2%.

In conclusion, ADD1 version solved the problem of VOTE version but, in cases
where VOTE version worked properly, ADDI1 version had highest percentage of

wrong predictions.



The above conclusion led us in a new version, the FREQ version. In this version,
all types of labels of a cell appear followed by the number of instances that they
are correlated to the cell. So, contrarily to ADD1 version, they participate in the
calculation of the centres of the clusters unequally. Each cell that is correlated
with the label takes part in the calculation of the centre of the cluster with the
specific label according to the frequency of this label in this cell. As a result, the

centres are a weighted average of this frequency (see chapter 4).

Having created this version all that was left to be done was its comparison with
the VOTE and ADDI versions. In order to do so, we executed FREQ version
using the case4.data file in both training and evaluating phase. Executing
version3.m file revealed a percentage of wrong predictions equal to 35.7%. It is
worth mentioning that in all three versions the training parameters were the same.
The results of FREQ version were all better (with smaller percentage of wrong
bitrate) and thus FREQ version is the one that was used in the rest of the

experiments.

5.1.2 Scenario of normalization of the data samples to 1

The logical process was similar to the one used in the scenario of no
normalization of the data samples. The results were similar as well even if the

data files were not all the same.

The first data file that was used was casel.data. As well as in scenario of no
normalization of the data samples, in case of VOTE version, the centre of the
cluster with label/bitrate equal to 24 was (NaN, NaN) which meant that this
cluster ceased to exist and the program terminated mentioning an error as there
was no centre calculated for the cluster with bitrate equal to 24. On the other
hand, in case of ADDI1 version, there was one centre for each cluster (24, 36, 48
and 54) and the evaluation completed with no matlab error resulting in a

percentage of the wrong predictions equal to 47.4%.



Once again, we repeated the experiment using another data file. The chosen file
was, again, case4.data. In this experiment both versions ended successfully in
results. In case of VOTE version the percentage of wrong predictions was 37.8%

while in case of ADD1 version it was 39.2%.

As a result, similarly to the above scenario, ADD1 version solved the problem of
VOTE version but, in cases where VOTE version worked properly, ADDI1
version had highest percentage of wrong predictions. So, FREQ version was

tested as well.

In order to compare it with the VOTE and ADD1 versions, it was executed using
the case4.data file in both training and evaluating phase. Executing version3.m
file revealed a lower percentage of wrong predictions than the first two versions
and equal to 25.9%. Since the results of FREQ version were again all better (with
smaller percentage of wrong bitrate) FREQ version is the one that was used in the

rest of the experiments, as well as in the 1% scenario.

5.1.3 Scenario of normalization of the variance of the data samples to 1

The logical process was similar to the one used in the first two scenarios, the data
files which were used were the same with those of the 2™ scenario (casel.data,

case4.data) while the results were similar but not always the same.

In the first test case, using casel.data for the comparison between the VOTE and
the ADDI versions, the results were exactly the same with those of the 2™
scenario. In case of the VOTE version, there was no centre for the cluster of
bitrate equal to 24 and the program terminated mentioning matlab error while in
case of the ADD1 version there was a centre for each cluster and the percentage of

wrong predictions was found 47.4%.

In the second test case, using case4.data for the comparison between all three

versions the results were the following:



e In case of VOTE version: 37.3%
e In case of ADDI1 version: 39.7%
e In case of FREQ version: 28.1%

So, according to the above results, the main conclusions were the same with those
of the first two scenarios. First of all, ADDI version had solved the problem of
the VOTE version but in cases where the VOTE version worked properly, its
results were worse than those of the VOTE version leading to the need of the
FREQ version. Finally, the FREQ version, ended in better results than those of
both VOTE and ADDI versions and was selected to be the one that was used for

the rest of the experiments.

5.2 Selection of the variables of a data sample

The next step of our research concerns the variables of the data samples that suit
better for predicting the bitrate. In order to do so we created many different cases
which use the FREQ version of our program and the same training variables. Each
test case uses a different data file. The difference between them lied in the number

and the type of the variables of the data samples.

At the created cases there are nine variables of a data sample that are used in
different combinations, namely: noise, RSSI (Received Signal Strength
Identifier), number of input and output packets, number of input and output errors,
number of input and output bytes and bitrate. The combinations of the variables

for each case appear on the following table (Table 1).

So, using these cases with the FREQ version of our program, batch training
algorithm, Gaussian neighborhood function and both rough and fine-tuning phases
we received the results which appear on Table 2, Table 3 and Table 4. For the

rough phase, the initial radius was 3 while the final one was 1 and the training



length was 3. On the other hand, the same parameters for the fine-tuning phase

were 1, 1 and 20, respectively.

Table 1. Data files and their containing variables

Data | RSSI | Noise | Input Output | Input | Output | Input | Output | Bitrate
file Packets | Packets | Errors | Errors. | Bytes | Bytes
1 v v
2 v v v
3 v v v
4 v v v v
5 v v v v v
6 v v
7 v v v v v
8 v v v
9 v v v v v v v v
10 v v v v v
11 v v v
12 v v v v v
14 v v v v
15 v v v v
16 v v

5.2.1 Scenario of no normalization of the data samples

Before reaching conclusions from Table 2, we needed to compare same cases to

each other. As it can be seen from Table 1, casel and case6 data files contain the

same variables. However, they are different. Data samples of casel are ordered

according to the bitrate while these of case6 are not. The same difference appears

between case3 and case2 data files. Finally, in all cases, bitrate is used as label of

the data samples but there are four data files (case2, case3, caseS and casel4)

which also use it as a variable of the data samples. This last choice is actually




wrong because it is not proper to use as input the variable which we are going to
predict and is going to be our output. We only used these files in order to reach

some conclusions.

Having the above observations in mind, we may state our conclusions. First of all,
comparing casel with case6 and case2 with case3, it is clear that the result does
not depend on the fact that data samples are or are not ordered according to the

bitrate. The results in both cases are the same.

Table 2. Scenario of no normalization of the data samples: The result of each case

Case | Percentage of wrong predictions
1 36.7%
2 29.4%
3 29.4%
4 35.7%
5 43.5%
6 36.7%
7 38.1%
8 28.6%
9 54.1%
10 54.1%
11 31.9%
12 67.3%
14 68.6%
15 54.1%
16 43.5%

Our second conclusion refers to the existence or not of bitrate as variable of the
data sample. Comparing case 1 with case 2, case 4 with case 5 and case 8 with
case 14, whose only difference is the existence of bitrate as variable in cases 2, 5
and 14, it is also clear that this existence does not influence the results always in

the same way. In case 2 the result is reduced while in cases 5 and 14 it is



increased. Moreover, the case with the lowest percentage of wrong predictions is

not one of these whose data file contains the bitrate as a variable.

The case with the lowest percentage, equal to 28.6%, is case 8 whose variables are
the number of input and output packets and RSSI. Its variables are the ones that

are used in the rest of our research.

5.2.2 Scenario of normalization of the data samples to 1

As in the first scenario, before reaching conclusions from Table 3, we needed to
compare same cases to each other. Having the same observations in mind as in the
1** scenario, we may state our conclusions. First of all, comparing casel with
case6 and case2 with case3, similarly to the 1™ scenario, it is clear that the result
does not depend on the fact that data samples are or are not ordered according to

the bitrate. The results in both cases are the same.

Our second conclusion refers again to the existence or not of bitrate as variable of
the data sample. Contrarily to the 1% scenario, comparing case 1 with case 2, case
4 with case 5 and case 8 with case 14, whose only difference is the existence of
bitrate as variable in cases 2, 5 and 14, it is clear that this existence influence the
results always in the same way. In all cases the result is reduced. However, as
mentioned before, data files which use bitrate as a variable of data samples cannot
be used due to the fact that bitrate is supposed to be unknown in order to be

predicted.

Finally, the case with the lowest percentage which does not use the bitrate as
variable of the data samples, equal to 24.6%, was case 7 whose variables are the
number of input and output packets, the number of input errors, the number of
input Bytes and RSSI. Its variables are the ones that were used in the rest of our

research.



Table 3. Scenario of normalization of the data samples to 1: The result of each case

Case | Percentage of wrong predictions
1 36.7%
2 14.3%
3 14.3%
4 25.9%
5 6.8%
6 36.7%
7 24.6%
8 50.8%
9 25.1%
10 25.1%
11 27.0%
12 48.6%
14 11.1%
15 51.6%
16 56.2%

5.2.3 Scenario of normalization of the variance of the data samples to 1

As well as in the first two scenarios, before reaching conclusions from Table 4,
we needed to compare same cases to each other. In this scenario, the first two
conclusions, referring to the ordered data samples according to the bitrate and the
existence of the bitrate as parameter of the data samples, are the same with the ond
scenario: the result does not depend on the fact that data samples are or are not
ordered according to the bitrate, they are the same, and the existence of the bitrate
as parameter of the data samples always reduces the results but the bitrate cannot

be used as parameter of the data samples as it is the parameter in question.



Table 4. Scenario of normalization of the variance of the data samples to 1: The result of each case

Case | Percentage of wrong predictions
1 36.7%
2 16.7%
3 16.7%
4 28.1%
5 20.8%
6 36.7%
7 25.4%
8 25.4%
9 27.0%
10 25.7%
11 28.6%
12 60.0%
14 22.2%
15 43.5%
16 53.2%

Finally, the cases, which do not use bitrate as variable of the data samples, with
the lowest percentage, equal to 25.4%, are case 7, whose variables are the number
of input and output packets, the number of input errors, the number of input Bytes
and RSSI, and case 8, whose variables are the number of input and output packets
and RSSI. However, case 7 needs a better computer processor than case 8 because
of the fact that it has more variables. So, between these two choices, the best one

is case 8. Its variables are the ones that were used in the rest of our research.

5.3 Selection of the number of data samples

Having selected the variables of a data sample, we needed to decide the number of

data samples to participate in the training process. In order to do so we created



cases which included the variables in which we resulted from the analysis in

paragraph 5.2 for each scenario but different number of data samples.

For taking results we used once more the same parameters as before (FREQ
version of the program, batch training algorithm, Gaussian neighborhood
function, Rough phase: initial radius equal to 3, final one equal to 1 and training
length equal to 3, Fine-Tuning phase: initial radius equal tol, final one equal to 1

and training length equal to 20).

5.3.1 Scenario of no normalization of the data samples

In this scenario the created cases were 7, include the variables RSSI, number of

input and output packets and appear on the following table:

Table 5. Scenario of no normalization of the data samples: Cases with different number of data

samples

case | number of data samples
8 370
13 617
17 300
19 844
20 748
21 718
p.7) 668




Their results are depicted on Table 6:

Table 6. Scenario of no normalization of the data samples: Percentage of wrong predictions for

each case
case | percentage of wrong predictions
8 28.6%
13 26.4%
17 38.0%
19 39.8%
20 38.8%
21 34.4%
22 37.4%

According to the above results, the number of data samples affects the results of
our predictions but not always in the same direction. The diagram from these

results is depicted in Figure 22:

BOUo - :
T e —
30% 4 |- SERET TN . -
20% + - b }--- N .-
10% -4 |----{F---ff--- e e

percent of wrong
predictions

0% - N - : : ;
300 370 617 668 718 748 844

number of data samples

Figure 22. Scenario of no normalization of the data samples: Diagram of the percentage of wrong

predictions according to the number of the used data samples

Finally, the minimum result is 26.4% and appears when the number of data
samples is 617. Increasing the number of data samples up to 617 decreases the
percentage of wrong predictions but increasing them more than that value appears
to deteriorate the results. So, in case of no normalization of the data, the teat case

which was used for our next tests is the 13" one.



5.3.2 Scenario of normalization of the data samples to 1

In this scenario the created cases were 9, include the variables RSSI, input and

output packets, input errors and input Bytes and appear on the following table:

Table 7. Scenario of normalization of the data samples to 1: Cases with different number of data

samples

case | number of data samples
7 370
23 617
24 844
25 623
26 704
27 644
28 534
29 434
30 324

The results are depicted onTable 8.

Table 8. Scenario of normalization of the data samples to 1: Percentage of wrong predictions for

each case
case | Percentage of wrong predictions
7 24.6%
23 24.0%
24 25.9%
25 26.8%
26 26.4%
27 27.3%
28 27.0%
29 23.5%
30 25.3%




According to the above results, and similarly to the 1% scenario, the number of
data samples affects the results of our predictions but not always in the same

direction. The diagram from these results is depicted in Figure 23:
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Figure 23. Scenario of normalization of the data samples to 1: Diagram of the percentage of

wrong predictions according to the number of the used data samples

Analyzing the above diagram, it is easy to discern that the results fluctuate
between the values 23.5 and 27.3. The diagram has two local minimum points
((434, 23.5), (617, 24.0)) and two local maximum points ((534, 27.0), (644,
27.3)). Finally, the minimum result is 23.5% and appears when the number of data
samples is 434. So, the case which was used for our next tests during the scenario

of normalization of the data samples to 1 is the 29" one.

5.3.3 Scenario of normalization of the variance of the data samples to 1

In this scenario the created cases were 7, include the variables RSSI, input and

output packets and appear on the following table:



Table 9. Scenario of normalization of the variance of the data samples to 1: Cases with different

number of data samples

case | number of data samples
8 370
13 617
17 300
19 844
20 748
21 718
22 668

The results are depicted on Table 10.

Table 10. Scenario of normalization of the variance of the data samples to 1: Percentage of wrong

predictions for each case

case | Percentage of wrong predictions
8 25.4%
13 24.5%
17 30.0%
19 25.9%
20 27.3%
21 25.8%
s 23.1%

Once again, according to the above results, the number of data samples affects the
results of our predictions but not always in the same direction. The diagram from

these results is depicted in Figure 24:
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Figure 24. Scenario of normalization of the variance of the data samples to 1: Diagram of the

percentage of wrong predictions according to the number of the used data samples

Finally, the minimum result is 23.1% and appears when the number of data
samples is 668. Increasing the number of data samples up to 668 decreases the
percentage of wrong predictions but increasing them more than that value appears
to deteriorate the results. So, the case which was used for our next tests during

this scenario of normalization is the 22" one.

5.4 Selection of the training algorithm and its parameters

Our next concern was to decide between the two training algorithms and finding
the most suitable values for their parameters. In order to make such a decision we
firstly defined the most suitable values for each training algorithm separately and

then we compared them to each other.

5.4.1 Scenario of no normalization of the data samples

In order to decide which are the most suitable values for the parameters of the
batch training algorithm we tried different test cases changing only one parameter
at a time. The parameters were tested randomly. These test cases appear in the

following table:



Table 11. Scenario of no normalization of the data samples: Test cases using batch training

algorithm in order to decide the most suitable values per each parameter

Neighborhood Rough phase Fine-tuning phase Percentage of
Function Initial | Final | Training | Initial | Final | Training wrong
radius | radius length radius | radius length predictions
1 Gaussian 3 1 1 1 1 20 27.6%
2 | Gaussian 3 1 2 1 1 20 28.5%
3 | Gaussian 3 1 3 1 1 20 26.4%
4 Gaussian 3 1 4 1 1 20 26.4%
5 | Gaussian 3 1 5 1 1 20 27.1%
6 | Gaussian 3 1 6 1 1 20 26.3%
7 | Gaussian 3 1 7 1 1 20 27.1%
8 | Gaussian 3 1 6 J 1 60 26.7%
9 | Gaussian 3 1 6 1 1 50 26.1%
10 | Gaussian 3 1 6 1 1 45 27.1%
11 | Gaussian 3 1 6 1 1 49 25.8%
12 | Gaussian 3 1 6 1 1 48 25.8%
13 | Gaussian 3 1 6 | 1 47 27.2%
14 | Gaussian 4 1 6 1 1 48 26.3%
15 | Gaussian 5 1 6 1 1 48 25.6%
16 | Gaussian 6 1 6 1 1 48 26.4%
17 | Gaussian 4 1 6 1 1 47 26.7%
18 | Gaussian 5 1 6 1 1 47 26.9%
19 | Gaussian 6 1 6 1 1 47 26.6%
20 | Gaussian 7 1 6 1 1 47 26.3%
21| Gaussian 8 1 6 1 1 47 26.4%
22 | Gaussian 9 1 6 1 1 47 26.9%
23 | Gaussian 5 2 6 2 1 48 26.4%
24 | Gaussian 5 3 6 3 1 48 26.3%
25| Gaussian 5 4 6 4 1 48 27.9%
26 | Gaussian 5 5 6 5 1 48 29.0%
27 | Gaussian 7 2 6 2 1 47 27.2%




28 | Gaussian 7 3 6 3 1 47 29.0%
29 | Gaussian 7 4 6 4 1 47 29.8%
30 | Gaussian 7 5 6 5 1 47 26.7%
31 | Gaussian 7 6 6 6 1 47 26.9%
32 | Gaussian 7 7 6 7 1 47 27.2%
33 | Gaussian 5 1 6 1 0 48 27.2%
34 | Gaussian 7 1 6 1 0 47 28.2%
35| Cutgauss 5 1 6 1 1 48 31.9%
36 ep 5 1 6 1 1 48 27.6%
37 Bubble 5 1 6 1 1 48 25.8%

Comparing the results it is obvious that the best choice in the case of batch
training algorithm, when data samples are not normalized, is the 15™ one with the
following values of the parameters:
» Neighborhood: Gaussian
Initial radius for the rough phase: 5
Final radius for the rough phase: 1
Training length for the rough phase: 6
Initial radius for the fine-tuning phase: 1

Final radius for the fine-tuning phase: 1
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Training length for the fine-tuning phase: 48

Figure 25 depicts a) the predicted values of the bitrate, b) the real measured

values of the bitrate and ¢) a comparison among the two above.
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Figure 25. Batch training algorithm during the scenario of no normalization of data samples:
Diagram of predicted values of bitrate, Diagram of their real values and Comparative Diagram of

the above. The symbol * depicts the data samples which have different predicted and real values.

For the sequential training algorithm, following the same technique with the case
of the batch training algorithm, we created different test cases in this situation as
well. Although the technique is the same it’s worth mentioning an important
difference: in sequential training algorithm the samples do not enter the training
phase at the same time. As a result, the order that they enter the system causes
different results. In order to avoid such a situation we select the entrance of the

samples to be ordered according the data file.

Test cases which examine the possible values of the initial and the final radius, the
training length and the initial alpha during both rough and fine-tuning phases are
shown on Table 13. During these cases the neighborhood function, the length type
and the learning function are constant and equal to Gaussian, epochs and inv,
respectively. According to these test cases, the best choice is the 13™ set of values.
Keeping these parameters constant, the final parameters which are to be selected

are the neighborhood function, the length type and the learning function. In order



to do so, we created the next seven cases where the first set parameters remained
constant and we tested the rest of them. The results referring to these tests are

listed below (Table 12).

Finally, according to both tables (Table 12 and Table 13) the best set of values for
the sequential training algorithm when the data samples are not normalized is the
following:
v Neighborhood function: Gaussian
Length type: epochs
Learning function: inv
Initial radius for the rough phase: 3
Final radius for the rough phase: 1
Training length for the rough phase: 4
Initial alpha for the rough phase: 0.5
Initial radius for the finetuning phase: 1
Final radius for the finetuning phase: 1

Training length for the finetuning phase: 21
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Initial alpha for the finetuning phase: 0.05

Table 12. Scenario of no normalization of the data samples: Test cases with different sets of
values of the neighborhood function, the length type and the learning function while the

parameters of the rough and fine-tuning phases remain constant

Neighborhood Length Learning Percentage of wrong
function type function predictions
Cutgauss Epochs inv 30.5%

Ep Epochs nv 29.2%
Bubble Epochs inv 26.7%
Gaussian Samples inv 26.4%
Gaussian Epochs linear 25.8%
Gaussian Epochs power 25.6%




Table 13. Scenario of no normalization of the data samples: Test cases with different values of the
initial and the final radius, the training length and the initial alpha during both phases while the

neighborhood function is Gaussian, the length type is epochs and the learning function is inv.

Rough phase Finetuning phase Percentage

Radius | Radius | Training | Alpha | Radius | Radius | Training | alpha | of wrong

initial | final | length | initial | initial | final | length | initial | predictions
1 3 1 2 0.5 1 1 20 0.05 33.1%
2 3 1 3 0.5 1 1 20 0.05 28.4%
3 3 1 4 0.5 1 1 20 0.05 26.1%
4 3 1 5 0.5 1 1 20 0.05 28.8%
5 3 1 6 0.5 1 1 20 0.05 27.9%
6 3 1 7 0.5 1 1 20 0.05 28.4%
7 3 1 4 0.5 1 1 40 0.05 28.0%
8 3 1 4 0.5 1 1 35 0.05 28.7%
9 3 1 4 0.5 1 1 30 0.05 28.4%
10 3 1 4 0.5 1 1 25 0.05 28.8%
11 3 1 4 0.5 1 1 45 0.05 28.2%
12 3 1 4 0.5 1 1 19 0.05 27.7%
13 3 1 4 0.5 1 1 21 0.05 24.6%
14 3 1 4 0.5 1 1 22 0.05 25.6%
15 4 1 4 0.5 1 1 21 0.05 28.2%
16 2 1 4 0.5 1 1 21 0.05 34.2%
17 5 1 4 0.5 1 1 21 0.05 28.7%
18 6 1 4 0.5 1 1 21 0.05 28.4%
19 7 1 4 0.5 1 1 21 0.05 28.8%
20 3 2 4 0.5 2 1 21 0.05 27.6%
21 3 3 4 0.5 3 1 21 0.05 30.1%
2 3 1 4 0.5 1 0 21 0.05 29.2%
23 3 1 4 1 1 0 21 0.05 28.5%
24 3 1 4 0.51 1 0 21 0.05 31.9%
25 3 1 4 0.49 1 0 21 0.05 28.2%
26 3 1 4 0.5 1 1 21 0.10 28.0%




27 3 1 4 0.5 1 1 21 0.051 | 27.7%

28 3 1 4 0.5 1 1 21 0.049 | 25.0%

As previously, Figure 26 depicts a) the predicted values of the bitrate , b) the real

measured values of the bitrate and c¢) a comparison among the two above..
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Figure 26. Sequential training. algorithm during the scenario of no normalization of the data
samples: Diagram of predicted values of bitrate, Diagram of their real values and Comparative
Diagram of the above. The symbol * depicts the data samples which have different predicted and

real values.

The comparison of the set of the values of the batch training algorithm with the
one of the sequential training algorithm reveals that the first result, equal to
25.6%, 1s a little higher than the second one, equal to 24.6%. As the result refers
to wrong predictions, the first impression is that the best choice is the sequential
training algorithm. In addition we have measured the time that is needed to
complete the training phase of the SOM, which is sometimes crucial. According
to the program, batch training algorithm requires about 3 to 4 seconds to complete

the training phase, while sequential one requires about the double time (7-8




seconds). As a result, and because of the fact that the difference between the two
results is rather small, the choice between the two algorithms is subjective and

depends on the existence or not of the requirement of a quick training.

5.4.2 Scenario of normalization of the data samples to 1

As in the first scenario of normalization, in order to decide which are the most
suitable values for the parameters of the batch training algorithm we tried
different test cases changing only one parameter at a time. The parameters were,
once more, tested randomly. These test cases appear in the following table (

Table 14).

Comparing the results it is obvious that the best result is 22.6% and appears in two
cases, the 17" and the 29" one. We randomly selected case 17 where the
parameters are the following:
v" Neighborhood function: Gaussian
Initial radius for the rough phase: 3
Final radius for the rough phase: 1
Training length for the rough phase: 1
Initial radius for the fine-tuning phase: 1

Final radius for the fine-tuning phase: 1
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Training length for the fine-tuning phase: 9

Table 14. Scenario of normalization of the data samples to 1: Test cases using batch training

algorithm in order to decide the most suitable values for each parameter

Neighborhood Rough phase Finetuning phase Percentage

Function Initial | Final | Training | Initial | Final | Training | of wrong

radius | radius | length | radius | radius | length | predictions

1 Gaussian 3 1 1 1 1 20 22.8%
2 Gaussian 3 1 2 1 1 20 22.8%
3 Gaussian 3 1 3 1 1 20 23.5%
4 Gaussian 3 1 4 1 1 20 23.7%




5 Gaussian 3 1 5 1 1 20 23.5%
6 Gaussian 3 1 6 1 1 20 23.7%
7 Gaussian 3 1 7 1 1 20 23.7%
8 Gaussian 3 1 8 1 1 20 23.7%
9 Gaussian 3 1 9 1 1 20 23.7%
10 | Gaussian 3 1 1 1 1 31 22.8%
11 Gaussian 3 1 1 1 1 30 22.8%
12 Gaussian 3 1 1 1 1 29 22.8%
13| Gaussian 3 1 1 1 1 13 22.8%
14 | Gaussian 3 1 1 1 1 12 22.8%
15 Gaussian 3 1 1 1 1 11 22.8%
16 | Gaussian 3 1 1 1 1 10 22.8%
17 | Gaussian 3 1 1 1 1 9 22.6%
18 | Gaussian 3 1 1 1 1 8 23.7%
19 | Gaussian 3 1 1 1 1 5 23.3%
20 | Gaussian 1 1 1 1 1 9 23.0%
21 Gaussian 2 1 1 1 1 9 22.8%
22| Gaussian 4 1 1 1 1 9 23.5%
23 | Gaussian 5 1 1 1 1 9 23.0%
24 | Gaussian 6 1 1 1 1 9 23.3%
25| Gaussian 3 0 1 2 0 9 23.0%
26 | Gaussian 3 ) 1 2 1 9 23.0%
27 | Gaussian 3 3 1 3 1 9 23.5%
28 Gaussian 3 1 1 1 0 9 23.3%
29 | Cutgauss 3 1 1 1 1 9 22.6%
30 Ep 3 1 1 1 1 9 26.5%
31 Bubble 3 1 1 1 1 9 23.5%

A diagram of predicted values of bitrate, a diagram of their real values and a

comparative one of the above diagrams is depicted on Figure 27.
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Figure 27. Batch training algorithm during scenario of normalization of the data samples to 1:
Diagram of predicted values of bitrate, Diagram of their real values and Comparative Diagram of

the above. The symbol * depicts the data samples which have different predicted and real values.

Once more, for the sequential training algorithm, we created different test cases in
this situation as well and selected the ordered entrance of the data samples with
respect to their order in the data file. Test cases which examine the possible values
of the initial and the final radius, the training length and the initial alpha during
both phases are shown on Table 16. As well as in the 1% scenario of
normalization, during these cases the neighborhood function, the length type and
the learning function are constant and equal to Gaussian, epochs and inv,
respectively. According to these test cases, there are quite enough combinations
whose result is equal to 22.6% and between which we can choose. Between these
combinations, we randomly picked the 44™ set of values. Keeping these
parameters constant, the final parameters which are to be selected are the
neighborhood function, the length type and the learning function. In order to do
so, we created the next seven cases where the first set parameters remained

constant and we tested the rest of them. The results referring to these tests are



listed below (Table 15X@dipa! To apysio mpoéievons TS GAvVAPOPAS OEV
Ppédnke.).
Finally, according to both tables (Table 16 and Table 15X@dipa! To apyeio
TPoELEVON S TG avapopds oev PpéOnke.) the best set of values for the sequential
training algorithm is the following:
v" Neighborhood function: Gaussian
v" Length type: epochs
v" Learning function: inv
Initial radius for the rough phase: 4
Final radius for the rough phase: 1
Training length for the rough phase: 5
Initial alpha for the rough phase: 0.5
Initial radius for the finetuning phase: 1
Final radius for the finetuning phase: 1

Training length for the finetuning phase: 21
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Initial alpha for the finetuning phase: 0.055

Table 15. Scenario of normalization of the data samples to 1: Test cases with different sets of
values of the neighborhood function, the length type and the learning function while the

parameters of the rough and fine-tuning phases remain constant

Neighborhood Length Learning Percentage of wrong
function type function predictions
Cutgauss Epochs Inv 24.0%

Ep Epochs Inv 23.7%
Bubble Epochs Inv 24.2%
Gauss Samples Inv 25.8%
Gauss Epochs Linear 28.1%
Gauss Epochs Power 26.5%




Table 16. Scenario of normalization of the data samples to 1: Test cases with different values of
the initial and the final radius, the training length and the initial alpha during both phases while the

neighborhood function is Gaussian, the length type is epochs and the learning function is inv.

Rough phase Finetuning phase Percentage
Radius | Radius | Training | Alpha | Radius | Radius | Training | alpha | of wrong
initial | final | length | initial | initial | final | length | initial | predictions

1 3 1 1 0.5 1 1 20 0.05 30.0%
2 3 1 2 0.5 1 1 20 0.05 27.0%
3 3 1 3 0.5 1 1 20 0.05 24.9%
4 3 1 4 0.5 1 1 20 0.05 24.4%
5 3 1 5 0.5 1 1 20 0.05 23.5%
6 3 1 6 0.5 1 1 20 0.05 24.2%
7 3 1 7 0.5 1 1 20 0.05 23.5%
8 3 1 8 0.5 1 1 20 0.05 24.2%
9 3 1 9 0.5 1 1 20 0.05 23.7%
10 3 1 10 0.5 1 1 20 0.05 24.4%
11 3 1 5 0.5 1 1 31 0.05 23.3%
12 3 1 5 0.5 1 1 30 0.05 23.0%
13 3 1 5 0.5 1 1 29 0.05 23.0%
14 3 1 5 0.5 1 1 28 0.05 23.0%
15 3 1 5 0.5 1 1 27 0.05 23.3%
16 3 1 5 0.5 1 1 25 0.05 23.3%
17 3 1 5 0.5 1 1 22 0.05 23.3%
18 3 1 5 0.5 1 1 21 0.05 23.0%
19 3 1 5 0.5 1 1 19 0.05 24.0%
20 3 1 5 0.5 1 1 10 0.05 24.4%
21 1 1 5 0.5 1 1 21 0.05 24.7%
2 % 1 5 0.5 1 1 21 0.05 24.7%
23 4 1 5 0.5 1 1 21 0.05 22.8%
24 5 1 5 0.5 1 1 21 0.05 25.6%
25 6 1 5 0.5 1 1 21 0.05 25.8%
26 4 2 5 0.5 2 1 21 0.05 24.7%




27 4 3 5 0.5 3 1 21 0.05 23.7%
28 4 4 5 0.5 4 1 21 0.05 24.0%
29 4 1 5 0.5 1 0 21 0.05 23.3%
30 4 1 5 1 1 1 21 0.05 24.4%
31 4 1 5 0.55 1 1 21 0.05 24.7%
32 4 1 5 0.51 1 1 24 0.05 23.3%
33 4 1 5 0.49 1 1 21 0.05 22.8%
34 4 1 5 0.48 1 1 21 0.05 22.8%
35 4 1 5 0.47 1 1 21 0.05 22.8%
36 4 1 5 0.46 1 1 21 0.05 22.8%
37 4 1 5 0.45 1 1 21 0.05 22.8%
38 4 1 5 0.44 1 1 21 0.05 23.3%
39 4 1 5 0.40 1 1 21 0.05 23.5%
40 4 1 5 0.5 1 1 21 0.10 23.3%
41 4 1 5 0.5 1 1 21 0.060 | 23.3%
42 4 1 5 0.5 1 1 21 0.057 | 23.3%
43 4 1 3] 0.5 1 1 21 0.056 | 22.6%
44 4 1 5 0.5 1 1 21 0.055 | 22.6%
45 4 1 5 0.5 1 1 21 0.054 | 22.6%
46 4 1 5 0.5 1 1 21 0.053 | 22.6%
47 4 1 5 0.5 1 1 21 0.052 | 22.8%
48 4 1 5 0.5 1 1 21 0.051 | 22.8%
49 4 1 5 0.5 1 1 21 0.049 | 22.8%
50 4 1 5 0.5 1 1 21 0.048 | 22.8%
51 4 1 5 0.5 1 1 21 0.047 | 22.6%
52 4 1 5 0.5 1 1 21 0.046 | 23.0%
53 4 1 5 0.5 1 1 21 0.045 | 23.0%
54 4 I 5 0.5 1 1 21 0.040 | 23.5%

A diagram of predicted values of bitrate, a diagram of their real values and a

comparative one of the above diagrams is depicted on Figure 28.
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Figure 28. Sequential training algorithm during the scenario of normalization the data samples to
1: Diagram of predicted values of bitrate, Diagram of their real values and Comparative Diagram
of the above. The symbol * depicts the data samples which have different predicted and real

values.

Finally, the comparison of the set of the values of the batch training algorithm
with the one of the sequential training algorithm reveals that both results are equal
to 22.6%. However, as mentioned before, the time that is needed to complete the
training phase of the SOM is sometimes crucial and batch training algorithm is
quicker. According to the program, batch training algorithm requires less than one
1 second to complete the training phase while sequential one requires about four 4
to 5 seconds. As a result, the best choice between the two algorithms in this

scenario of normalization is the batch training algorithm.

5.4.3 Scenario of normalization of the variance of the data samples to 1

Following the same process as in the first two scenarios of normalization, for the

batch training algorithm we tried the test cases of the Table 17. Comparing the



results it is obvious that the best choice in this scenario in the case of batch
training algorithm is the 29™ one where
v" Neighborhood function: Gaussian
Initial radius for the rough phase: 4
Final radius for the rough phase: 1
Training length for the rough phase: 2
Initial radius for the fine-tuning phase: 1

Final radius for the fine-tuning phase: 1

DS NEE N N N

Training length for the fine-tuning phase: 10

Table 17. Scenario of normalization of the variance of the data samples to 1: Test cases using

batch training algorithm in order to decide the most suitable values for each parameter

Neighborhood Rough phase Finetuning phase Percentage
Function Initial | Final | Training | Initial | Final | Training | of wrong
radius | radius | length | radius | radius | length | predictions
1 Gaussian 3 1 1 1 1 20 23.2%
2 Gaussian 3 1 2 1 1 20 23.1%
3 Gaussian 3 1 3 1 1 20 23.4%
4 Gaussian 3 1 4 1 1 20 24.9%
5 Gaussian 3 1 5 1 1 20 23.8%
6 Gaussian 3 1 6 1 1 20 25.3%
7 Gaussian 3 | 7 1 1 20 23.2%
8 Gaussian 3 1 8 1 1 20 25.4%
9 Gaussian 3 | 9 1 1 20 25.4%
10 | Gaussian 3 1 2 1 1 60 24.3%
11| Gaussian 3 1 2 1 1 50 24.3%
12 | Gaussian 3 1 2 1 1 40 24.3%
13 Gaussian 3 1 2 1 1 30 24.3%
14 | Gaussian 3 1 2 1 1 17 23.1%
15 Gaussian 3 1 2 1 1 16 22.5%
16 | Gaussian 3 1 2 1 1 15 21.9%
17 | Gaussian 3 1 2 1 1 14 23.1%




18 | Gaussian 3 1 2 1 1 13 22.5%
19 Gaussian 3 1 2 1 1 12 22.0%
20 | Gaussian 3 1 2 1 1 11 22.3%
21 Gaussian 3 1 2 1 1 10 21.6%
22 Gaussian 3 1 2 1 1 9 23.7%
23 Gaussian 3 1 2 1 1 8 22.8%
24 | Gaussian 3 1 2 1 1 7 23.1%
25 Gaussian 3 1 2 1 1 6 24.0%
26 | Gaussian 3 1 2 | 1 5 24.6%
27 | Gaussian 3 1 2 1 1 4 24.1%
28 Gaussian 2 1 2 1 1 10 22.3%
29 | Gaussian 4 1 P 1 1 10 21.1%
30 | Gaussian 5 1 2 1 1 10 22.8%
31 Gaussian 6 1 ’ 1 1 10 23.7%
32 | Gaussian 4 2 2 2 1 10 24.4%
33 | Gaussian 4 3 2 3 1 10 25.7%
34 | Gaussian 4 4 2 4 1 10 26.5%
35| Gaussian 4 1 2 1 0 10 24.9%
36 | Cutgauss 4 1 2 1 1 10 27.1%
37 Ep 4 1 2 1 1 10 24.7%
38 Bubble 4 I 2 1 1 10 26.8%

As previously, Figure 29 depicts a) the predicted values of the bitrate , b) the real

measured values of the bitrate and c¢) a comparison among the two above.
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Figure 29. Batch training algorithm during the scenario of normalization of the variance of the
data samples to 1: Diagram of predicted bitrate, Diagram of their real values and Comparative
Diagram of the above. The symbol * depicts the data samples which have different predicted and

real values.

Accordingly, in the sequential training algorithm we created different test cases
and, as in the previous scenarios of normalization, we selected the ordered
entrance of the samples. Test cases which examine the possible values of the
initial and the final radius, the training length and the initial alpha during both
phases are shown on Table 18. During these cases the neighborhood function, the
length type and the learning function are once more constant and equal to
Gaussian, epochs and inv, respectively. According to these test cases, there are
quite enough combinations whose result is equal to 23.1% and between which we
can choose. Between these combinations, we randomly picked the 8" set of
values. Keeping these parameters constant, the final parameters which are to be
selected are the neighborhood function, the length type and the learning function.
In order to do so, we created the next seven cases where the first set parameters
remained constant and we tested the rest of them. The results referring to these

tests are listed in Table 19.



Table 18. Scenario of normalization of the variance of the data samples to 1: Test cases with

different values of the initial and the final radius, the training length and the initial alpha during

both phases while the neighborhood function is Gaussian, the length type is epochs and the

learning function is inv.

Rough phase Finetuning phase Percentage
Radius | Radius | Training | Alpha | Radius | Radius | Training | alpha | - of wrong
initial | final | length | initial | initial | final | length | initial | predictions

1 3 1 1 0.5 1 1 20 0.05 25.3%
2 3 1 2 0.5 1 1 20 0.05 25.6%
3 3 1 3 0.5 1 1 20 0.05 24.6%
4 3 1 4 0.5 1 1 20 0.05 25.4%
5 3 1 5 0.5 1 1 20 0.05 24.4%
6 3 1 6 0.5 1 1 20 0.05 24.6%
7 3 1 7 0.5 1 1 20 0.05 23.5%
8 3 1 8 0.5 1 1 20 0.05 23.1%
9 3 1 9 0.5 1 1 20 0.05 24.9%
10 3 1 10 0.5 1 1 20 0.05 24.7%
11 3 1 11 0.5 1 1 20 0.05 24.0%
12 3 1 12 0.5 1 1 20 0.05 24.1%
13 3 1 8 0.5 1 1 30 0.05 23.7%
14 3 1 8 0.5 1 1 25 0.05 23.7%
15 3 1 8 0.5 1 1 21 0.05 24.4%
16 3 1 8 0.5 1 1 19 0.05 24.9%
17 3 1 8 0.5 1 1 15 0.05 23.4%
18 3 1 8 0.5 1 1 10 0.05 23.8%
19 3 1 8 0.5 1 1 5 0.05 25.4%
20 1 1 8 0.5 1 1 20 0.05 23.7%
21 2 1 8 0.5 1 1 20 0.05 23.4%
22 4 1 8 0.5 1 1 20 0.05 24.9%
23 5 1 8 0.5 1 1 20 0.05 23.5%
24 6 1 8 0.5 1 1 20 0.05 25.0%
25 3 2 8 0.5 2 1 20 0.05 23.1%




26 3 3 8 0.5 3 1 20 0.05 27.1%
27 3 1 8 0.5 1 1 20 0.05 24.9%
28 3 1 8 1 1 1 20 0.05 24.0%
29 3 1 8 0.55 1 1 20 0.05 24.7%
30 3 1 8 0.54 1 1 20 0.05 23.2%
31 3 1 8 0.53 1 1 20 0.05 23.1%
32 3 1 8 0.52 1 1 20 0.05 23.1%
33 3 1 8 0.51 1 1 20 0.05 23.1%
34 3 1 8 0.49 1 1 20 0.05 24.9%
35 3 1 8 0.5 1 1 20 0.10 23.5%
36 3 1 8 0.5 1 1 20 0.056 | 23.7%
37 3 1 8 0.5 1 1 20 0.055 | 23.1%
38 3 1 8 0.5 1 1 20 0.054 | 23.1%
39 3 1 8 0.5 1 1 20 0.053 | 23.1%
40 3 1 8 0.5 1 1 20 0.052 | 23.1%
41 3 1 8 0.5 1 1 20 0.051 | 23.1%
42 3 1 8 0.5 1 1 20 0.049 | 24.9%

Table 19. Scenario of normalization of the variance of the data samples to 1: Test cases with

different sets of values of the neighborhood function, the length type and the learning function

while the parameters of the rough and fine-tuning phases remain constant

Neighborhood Length Learning Percentage of wrong

function type function predictions
Cutgauss Epochs nv 24.7%
Ep Epochs inv 22.5%
Bubble Epochs inv 26.5%
Ep Samples nv 26.2%
Ep Epochs linear 25.0%
Ep Epochs power 23.2%




Finally, according to both tables (Table 18 and Table 19) the best set of values for

the sequential training algorithm during this scenario of normalization is the

following:

v
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Neighborhood function: Ep

Length type: epochs

Learning function: inv

Initial radius for the rough phase: 3

Final radius for the rough phase: 1
Training length for the rough phase: 8
Initial alpha for the rough phase: 0.5
Initial radius for the finetuning phase: 1
Final radius for the finetuning phase: 1
Training length for the finetuning phase: 20
Initial alpha for the finetuning phase: 0.05

A diagram of predicted bitrate, a diagram of their real values and a comparison of

the above diagrams are depicted on Figure 30.
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Figure 30. Sequential training algorithm during the scenario of normalization of the variance of
the data samples to 1: Diagram of predicted bitrate, Diagram of their real values and Comparative
Diagram of above. The symbol * depicts the data samples which have different predicted and real

values.

Finally, the comparison of the set of the values of the batch training algorithm
with the one of the sequential training algorithm in this scenario of normalization
reveals that the first result, equal to 21.1%, is a little less than the second one,
equal to 22.5%. Moreover, as well as in the first two scenarios of normalization,
batch training algorithm proved to be quicker during the training phase as it
requires less than 1 second while sequential one requires about 7 to 8 seconds. As

a result, batch training algorithm is once more our best choice.



CHAPTER 6: CONCLUSIONS

Rapid evolution of wireless communications demands the use of systems capable
of intelligently adapting to the highly varying and disparate modern environments.
In these terms, Cognitive Radio Systems have been a very promising technology
but the cognition process, which they utilize in order to monitor, evaluate and
select a radio configuration to operate with, is often time-consuming, thus leading
to the necessity of a learning technique for speeding it up. In this paper we used
an unsupervised leaning technique, Self-Organizing Map, in order to train a CRS
to predict the bitrate that can be achieved under a combination of output
parameters of a configuration and based on its past experience. Going through
numerous test cases we achieved to predict correctly the bitrate at 79.9% of the
tested data samples. Such a method is expected to assist CRS to choose among the
different candidate configurations by taking into account the predictions of the

bitrate that can be achieved.
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ANNEX A: SUMMARY IN GREEK LANGUAGE

KE®AAAIO 1: Ewcaymy

Tnv ofuepov Nuépa, OA0 Kol TEPIOGOTEPEG EMKOWVAOVIEC YIVOVTOL OGVPUATES
amottdviog M Kobepio v Sk g LoV acOPUOTOV  GLYXVOTNT®V
niektpopoyvntikov mediov. Ilap’ O’ avtd n &v AOY® @QuoKY mnyn elval
nepropiopévn. EmmAéov, n otatikn avédBeon cvyvotitawv mov epaprodletor cuyva
oonyel otV un €Ktev 0EOMOINGN TOL MNAEKTPOUOYVNTIKOV (ACUATOS e
amotédespa vo Kobiotator avaykaio n dnpovpyia plag texvoroyiog mov Bo Exet

NV dvvaToTNTO Vo £EEPEVVE TIC GLYVOTNTES e Hikpn aglomoinon.

Tnv ambvinon o€ ovt) TNV OVAYKN £PYOVTOL VO KOADYOUV T «YVOOTIKA
acvppate  cvotiuoata» (Cognitive Radio  Systems) [7][8]. Ta ovompota
cognitive £yovv v duvatdT T, Vo TPOSapPUOCovy TNV Artovpyio TOVG COUEMVA
pe 1 eotepkég - mePPaAlOVIIKEG  GUVONKEC, TIC  OMOLTNOEL TOV
APNOTAOV/EPAPLOYDOV KOl TNV TPponyoVuevn eumelpio tovc. Bdoet avtig tovg g
Aettovpylag, TO HEAAOVIIKA OoVTA cvothuoto Bo &govv v dvvotdtnTo Vo
aALGCovV TG TMAPOUETPOVS TOVS (GLYVOTNTO PEPOVIOS OOAOV, TE(VOAOYiN
acVppatng tpocPaocng (radio access technology - RAT), 1oybg exkmounng, Tomog
SLOHOPP®ONG), VO TaPaKOAOVOOVVY T amoTEAECUATO KOt VO aroPacilovy yia ToV
BEATIOTO GLVOVOCUO OVTAOV TOV TOPUUETPOV LE OKOTO VO (PTAGOLV GTNV
Bértiot Aertovpyikng tovg katdotaon. ¢ ek TovTov, pe PAon TV AOYKN TG
EVUETAPANTNG Otayelptong TOL PAGUOTOG GLYVOTHTMOV, 1 YPNOT| TOV KYVOCTIKMOV
ocvotnuatwv» Ba kKataotinoel dvvary v xpnomn poag {ovng cvyvotntOV oE

TEPAUTEP® NG piag TeYVoroyiag acvppatne tpdsPfaong (RATs) [2], [3].
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Ewova 1. Amhomompévn Avomopdotaon Tov KukAov Agttovpyiag evog I'vaotikod AcvppoTon

Yvotuartog (Cognitive Radio Cycle) [2]

H Aertovpyla €vog cognitive GUGTAROTOS omoTeAEiTaL omd TIS TPEIC PACEIS TOV
anewkoviCovtal otnv Ewova 1 [2][8]. Katd tnv didpkela g Tpdng eaons, pacn
avdAivong padtocvyvotitov (radio scene analysis), 10 ocOotua AopPdvet
HeTPNoELS amd 10 TEPPAAAOY TOL () TG ThAVEG TapeOrEC) kot dokipalel Tnv
EQUPLOYT] SLOPOP®Y GUVOVACUDOV TAPAUETP®V. TNV OEVTEPT GAGCT, EKTIUNOM
TOL KOvOAMOD - Kol poviého mpoPfAeyng (channel estimation and predictive
modeling), ypnowonoteiton 1o anotédespa g 1™ @dong yu TV @don TG
e€epedivnong kol 1 moAoudtepn «eumepio» TOL ovotnuatog. Télog, otV
tedevtoio. @don, o@don emioyng mopauétpwv (configuration selection), Tto
GVOTNHO OTOPAUGILEL TOV BEATIOTO GLUVOLAGUO TOV TOPOUETPOV TOV KOl CTEAVEL
TIG EMAEYUEVEG, OO TIG TPOMYOUHEVES dVO PAGELS TOV KOKAOL Agltovpyiog TOL

GUOTNLOTOG, TYLES TOV TOPAUETPOV.

H mepatépm aviivon evoc «yvOOTIKOD GLUGTNUOTOC) ATOKAAVTTEL TNV VIapén
€VOG AEITOVPYIKOL TOKETOV, YVAOGTO MG «YVAOCTIKN» pnyovn (cognitive engine —
Ewova 2), to omoio guBhvetan yu tig dvvatdtrég tov [3]. Zvykekpiéva, ot

cognitive pnyoavég vmootnpilovv To Agtrtovpyikd kabopiopéva  acHpuaTo



oLOTAHOTO OAAALOVTOC TIC TIMEG TOV TOPOUETPMOV TOLG, TOPATPOVTAG TO
OTOTEAEGUATO OVTAOV TOV OAAXLYOV KOl AAUPAVOVTAG LETPNOELS KO EVEPYELEG TTOV
kaBopilovior omd v embounty KATAGTOOT AETOLPYIOG TOV  GUGTHUOTOC.
AVTIGTPOQMC, TO AEITOVPYIKE KOOOPIoUEVO AGVPLOTH GUGTHLOTO  EKTOUOEVOVTOL
Kot omofnkedovv to amoteléouata otny Paon dedopévav (knowledge base) tmv
cognitive pnyovov. Eva dAA0 TUqHO TG «YVOOTIKAG) HNYOVIS, YVOOTO M
«hoyun» (reasoning), omo@ocilel yoo TV KoTaAANAOTTA 1] OYL TV EVEPYELDV
dgdopévne o mepParioviikig  katdotaons. Télog, kabmg m  teElevtaia
dwokacio propel va givar emimovn Kot v amontel woAv ypovo, elval amopoitntn

Ko po, dtodikacio Kmaidgvong.

Reasoning

% Knowledge
base
Learning

Cognitive Engine

Software
Defined
Radio

Ewéva 2. Avanapdotacn evog KOKAOL EPYACI®V EVOG cognitive GLGTIALATOG

Y10 moapeABov. Exovv. yiver dbpopeg peAfteg Yoo TNV €vpeon pie Stodikaciog
exmaidoevong Omwg oynuate Pacicpéva oe vevpovikd [1][3] ko oe Bayesian
diktva [2]. Ly 01K HoG TEPITT®OT, TPOKELTAL YloL Mot OVEEEAEYKTI TEXVIKY|
VEVPOVIK®OV - OIKTO®V Yvoot o¢ Xapteg Avto-Opydvoong (Self-Organizing
Maps - SOMs). Ot Xdapteg Avto-Opydvmong eivat puo texvikn ometkoviong Kot
KT YOPLOTOINGNG TOALIAGTATOV EOOUEVOV GE d1oOLAGTATOVS XApTES. AvTol 01
YOPTES OAMOTEAOVVTIOL OO TETPAYOVIKEG M eEAYOVIKEG KLWEAEG Ol OToieg
Bpiokovion mwhve oe TAEYUO KOVOVIKOD GUOTHLOTOS VA KAOE delypa dedopévmv
avtiototyileton o€ pio KOYEAN/VELPOVA TOL YAPTN OGTE Vo £ivol 0G0 TO SLVATOV
70 KOVTA 6Ta LTOAOUTA GLYYEVIKA delypata. Yo autiv TV £vvola, 0 ¥GpTng Tov

ONuovpyeitol avamoploTd TNV OHOOTNTO TOV OEYUAT®V dedoUEVOV Kol TNV



Kot yoplomoinon tovc. A0Y®, AOITOV, TOL GLUYKEKPIUEVOL YOPAKTNPIOTIKOD TNG
TEYVIKNG, 1 TEYVIKN &lval TOAD OMUOQIMNG O TPOPANUATO  «AVAKAALYN G
dgdopévev (data mining) OT®G 1 AVAYVOPICT TOPEVOU®V VOPKOTIKOV OVGIDV
[13], ynuikng avéivong [14], cvirioyng doxyiov [16], avayvaopiong eovig [17],
avayvVOPIoT KaPKIVIKOL KuTtdpov [18] kol 010popomoinon UATIKOV KVTTApOV
[19]. v dwkn pog mepimtwon eEETAGTNKE N TOHOVOTNTA CUVOESTG TAPAUETPDV
TOV TTALPATNPOVVTIOL OC ATOTEALEGHO LG OLHOpPmONng, onwg etvar o B0pvPog, o
deiktng évtaong Anedévtog onpartog (received signal strength indication — RSSI),
gloepyopeva kat e€epyopeva Aadn, makéta ko Bytes, pe €éva H€Tpo modtntog Tov
onpotog (QoS), 6mwe elvar to bitrate mov umopel v emttevydel vtd Tov VIO

AUPIGPATNOTN GUVOIVAGHO TOV TAPOUUETPOV.

[Ma tov oxomd avtd kot v a&loAdynon g ev AOY® TeXVIKNG £xel Onovpyndet
Kol EKTEAECTEL £vOL TPOYPOLLULD XPNOULOTOLOVTAS TV £pYaAE0ON KN Nevpwvik®v
Awtdov tov MATLAB. Ou yéptec SOM mov avartdydnkov exkmodevTnrov
YPTCLOTOLDVTAG UETPNOELS TOV APV YDPO GE TPAYUOTIKO TEPPAAAOV eVTOG
TV opiov Tov [Havemommpuiov Tlepardg evad 10 TPOYpALHA EXEL TNV SLVATOTNTA
™G mpOPAeyng tov  bitrate 1060 YVOOTOV OGO KOl AYVOOTOV OElYHAT®V
dedopévav. Ot mpoPréyelg TeAKA GLYKpIvOvTol PE TIG TPOYUOTIKEG UETPNOELS

(MOTE VO, TPOKVYOLV GUUTEPAGLOLTAL.

[Mo va KoTasToby SLVATA TO TEPATAVE NTOV OTPoIiTNTN 1 ONovpyio apyeiwv
dedopévov - matlab mov amotelovvtal Omd  SLUPOPETIKEG TOPAUETPOVS  TOV
TOPOTNPOVVIOL OG OTOTEAEGHO TNG SLAUOPPMONG, CLUTEPIAAUPAVOUEVOD KoL TOV
bitrate, Kot 0t 0oieg ypnoILoTOMONKAY Yo TNV ekmaidevon Tov xaptn SOM evd
To. OstyHota TV SEGOUEVAOV ATEIKOVICTNKOV TAV® GTOV ONUOVPYNUEVO YAPTN UE
QVOYVOPIOTIKY ETIKETA TNV avTioToryn TY Tov bitrate. e avtd 10 onpeio eivan
d&o- Aoyov va ovaeépovope OtL oe kdBe wuywéAn Tov YApPTN wmopel va

avtiototyilovtot mepattépm Tov evog detypatog dedopévov (data sample).

2V GLVEKELD KOl £XOVTOG EKTALOEVCEL TOV XAPTN, NTOV dVVATH Kot 1 EKTIUNOT

Tov bitrate T6G0 YVOOTOV 060 KOl AYVOCSTOV dlypdTmv dedopévov. H ev Adym



extiunon tov bitrate axolovBel v S AoyKn pe TV EKTOIOELON TOL YAPTN:
Kot apynv, «aBe Oelypa Oedopévev  avtioToynOnke pe pio KLUyEAN
YXPNOOTOUDVTOG TG 1O1EG TAPAUETPOVS LE OVTES TOV PN CILOTOMONKAY Kotd TV
OLIPKELDL TNG EKTOIOELONG TOL YAPTN KOl GTNV GLVEXEWN £YVE 1| EKTIUNOT TOL

bitrate avaAloya LE TIG ETIKETEC TOV TANGCLECTEPOV KEAIDV.

Tehxd, T0 GLUTEPAGHATO TPOEKLYOV GLYKPIvOvTOg TS TIHEG TOVL bitrate twv
OEYHUATOV OESOUEVOV TTOV TTPOEKLYOV OO TO TPOYPOLLLOL UE TIG TPOYLOTIKES

UETPNGELS TOL bitrate TV 31V Se1yHATOV OESOUEVWV.

To vrdrowro ¢ epyaciog axorovbel Tnv £Eng dopn: oto Ke@AAoo 2 yiveton pio
avaokomnon g texVikng SOM eved pion oOvToun ovOAVoT NG TEYXVIKNG TOL
akohovOnOnke mapovcidleton oto kePdAoo 3. AkoAovBei pio cvvioun
mEPLYpap Tov alyopifuov mwov dnuovpyndnke oto KePAioto 4 Ko 1) TOPOLGIOCT
TOV OmOTELEGUATOV 6T0 ke@dAoto 5. To amotedéopata mepirapPdvovv v
OLYKPLON SLOPOPETIKMY EKSOYMV TOV TPOYPAUpHaTOS (5.1) Kot v emAoyn TV
petafAntav mapapetporoinons (5.2), tov. aplBpod TV SElYHAT®V OE00UEVOV
(5.3) ko Tov mopapétpov ekmaidocvons tov xaptn (5.4). Téhog, oto Kepdlato 6,

TOPOVGLALOVTOL TOL GUUTEPACULATE [LOG.

KE®AAAIO 2: Teyvikniy SOM (Self-Organizing Maps)

H teyvikn yaptov. mov ovtod-otopyovovovtol avartoydnke oamd tov Teuvo
Kohonen [9], amotehet Evav oyfpo Paciopévo oto veupmvikd diKTuo Kot oviKet
o€ €KEVO TO 100G TOV TEYVIKAOV EKTOIOELONG TOV TO OVOLEVOUEVO OTOTEAEGHLOL
dev eAéyyeton amd tov ypnotn. Mio cvvtoun mapovsioon g Bewpntikng Pdong
™mG - TEYVIKNG  vwmdpyer oto [9]. Eivar teyvikn  avoamopdotoong Kot
Katnyoplomoinong moAvdldotatwv dedopévev e dodbotatovg ybptec. Ot
YXOPTEG aWTOl AmOTEAOVVTOL OO TETPAYOVIKES 1 e€0y®VIKEG KUWEAES TTAVD GE
KOVOVIKO mAEypo. Xopeova pe v uébodo, KkdaBe delypa  dedopévev

avtiotolyiCetar pe  pio KoywéAn €tol ®ote 6T0 TEAOG TOPEUPEPT Oelypato



OOOUEVOV VO OVTIGTOL(OVV GE KOVTIIVEG KLuyéAes. YO autiv v évvola, o
TOPOYUEVOS  ¥GpTNG amewkovilel TNV opoldTNTO TV  O0OUEVOV Kol  TO

KOTNYOPLOMOLEl.

Emumiéov, n 1exviKn auTO-310pYavVOUEVOV YOPTMV YPNCILOTOEL dV0 aiyopifuovg
ekmoidevong: tov  odyopiBuo oeplokng  exmoidevong (sequential - training
algorithm) kot tov akyopiBpo opadikng exkmaidevong (batch training algorithm).
Xmv mpdtn mepintmon, Kabe deiypa dedopévav. €1GAYETOL OTNV SLodKAGTOL
ekmaidevong Eexymplotd amd Ta LTOAOITO KOl OLUHOPPOVEL TNV KLWEAN oIV
omoia avtiotoyel (BMU — Best Matching Unit) kot ti¢ yettovikés mge. Avribeta,
omv dgvtepn mepintwon T delypato dedOUEVOV  El0dyovtol Halikd otV
dwdwaocio ekmaidevong kot emnpedlovv TIG  KLWEAEG oIV Omoleg &youvv

avtiotoyynel (BMUs) kabd¢ kot T1g YEITOVIKES TOVG TOAPAAANAQL.

Téhog, to POvOT®PO ToVv 1997 dNUoVPYNONKE Yol TNV €V AOY® TEYVIKN M TPAOTN
gpyoreodnkn oo MATLAB, yvoot) og SOM TOOLBOX, gvd v dvoi&n tov
2000 avoBoduictnke pe v devtepn £kdoot| e, cvuPath pe v 5" ékdoon tov
MATLAB 1 vedtepec. Me avtiv v gpyaielobnkn o ypriotng tov MATLAB €yt
™V dvvaTOTNTA VO, SLOXEPIOTEL TO. OESOUEVE TOV, VO OPYLKOTOIOEL KOl VO
EKTTAOEVGEL TOV YEPTN TOL Kot &V TEAEL va Tov amelkovioel. [TapdAinia, katd TV
@aom G opytkomoinong kot e ekmaidgvong tov yaptrn, umopel kavelg va
emALEEL avapeco 6€ TANOMPO GLVOLAGUAOV TOV TOPAUETPMOV TNG TEYVIKNG
EEKVAOVTOG 0tO TNV TOTOAOYiR TOV XAPTN (TOTKT dopn mAEypatoc, péyebog xaptn

KOl GUVOALKO GO XAPTN) LEXPL TIG TOPAUETPOVS EKTAIOEVLONC.

KE®AAAIO 3: H Xpnon ¢ Teyvuc SOM otnv Extipnon tov
Bitrate

Onwc avagépOnke kot oto kepdiowo 1, oxomdg pog sivar va efetactel m
mOOVOTNTO GUVOECNG TOPAUETPMV TOV TOPATNPOVVIOL MG OTOTELECLO HLOG

TOPOUETPOTTOINGNG, OT®G €tvar 0 BOpVPog, 0 deikTNG 16YVOg TOL GNUATOG KoL TOL



eloepyopeva. ko e€epydueva mokéta, Bytes kor AGON pe pon peTpikn g
To10TNTOG TOV ONUaTOG OM®G eivon TO bitrate pe okomd v ektiunomn g TWNG
tov. EmmpocBétwc, oxkomdg pog etvor m ypnon g pn eAeyXOUEVNG TEXVIKNG
exmaidoevong SOM. Tlap’ 60’ avtd, dnwg emiong avagépbnke oto kePdioto 1, 1
TEYVIKN 0T VoL TEYVIKY OMEIKOVIONG Kol KOTIYOPLOTOINGNG TOAVIIAGTUTMV
delypdtov 0edoUévmV o€ d1e01dataTong Yaptes. [ldg Aowmdv givor ypnoiun oy

eKTiPNoN TG TIWNG TOV bitrate;

Apywcd, ot petpnioelg mov cLAAEYONKav péoca amd TPAYUATIKO TEPPAALOV
Aertovpyiag dktHov evtdg tov Tlavemomuiov Tlepomg, ypnopomomdnkay yio
v onuovpyia dupopetikdv apyeimv oecdopévev. tov matlab. Kdabe apyeio
amotelel piol JLPOPETIKY TEPITTMON EAEYYOL UE OLOUPOPETIKOVG GLVOVAGHOVG
tov mopapétpov. H tedevtaio ot)in tov deiypatog dedopévov givor movio 1
UETPNUEVT] avTioTolyn TN TOL bitrate kol YPNOCMOMOEITON MG ETIKETOL TOL
detypotog dedopévav. 'Etol, oe kdBe apyeio ocdopévov vrapyet Evag apBpuog
oTNAGV, Kobepioo ek TV omolmv &ivar pior SIpOPETIKY TOPAUETPOS, EVAD KAOE

yYpoapun Tov apyeiov eivat éva dtopopetiko detypo dedopévav x. (Ewova 3)

‘Exovtag Aowmdv oAokANpdGEL TNV 0pYAvEOCT) TOV OEOOUEVOV GE TETOW apyeio
NTav duvatn 1 ¥PNon TOV GTNV TeYVIKY ekmaidevong SOM. Ipwv v ypron Tovg
®OTOCO Eival amapaitntn N ANYn omdEAcNS O TPOG TNV KOVOVIKomoinon 1 Oyt
TV d0edouévav. Xpnowyomombnkav tpio. GEVAPLXL: GTO TPMOTO T OEGOUEVA
glonyOnoav avtovctlo Yopic va kavovikorofovv, 610 O0eVTEPO GEVAPLO TO
O€d0UEVO KAVOVIKOTOMONKOV MGTE VoL EXOVV TIHEG HETAED TOL UNOEVOS KOl TOL
évo. eV OTO TEAELTAIO0, KOVOVIKOTOMONKAY ®OGTE 1 OTOKAICT TOVG VO Eivorl
pHeTOED pnoevoc Kot €va. To amotéleospo ™ mapamdve dadikaciog ivol avtd
7OV YpNOOTOONKE €V TEAEL V1oL TNV ekmaidevon Tov xbptn SOM. Zvveyilovrog
v enefepyacio Tov YAPTN, NTOV OTOPAITNTN M YPNOTN ETIKETOV OCTE VA
dympilovion peTa&d tovg ta detypato dedopévav ent Tov xapt. Onwg, Aoutodv,
avapEpOnke Kol TPOTHTEPO, GTOV POAO TNG ETIKETOSC TOV OEIYUATMOV OEOOUEVOV
y¥pNoonomdnkay ot petpnuéveg Twég tov bitrate. Qo1dc0, TO YEYOVOS OTL

Tapomave omd Eva delypa dedopévov pumopel va avtiotoyndet oty 1010 Koyérn



TOV YAPTN, 0ONYEL AVATOPEVKTO GTNV OVTIOTOIYION L KOYEANG LLE TTOPOTAVE® TNG
plog etkétog mov pmopel va gppaviCetal pio | TePLocOTEPEG POPES. ZE AVTO TO
onueio etvon amapaitnto va onuewwbdel mog pmopodv va ypnoipomomfovv
napomdve and pio péBodol amewoviong TOV ETIKETOV Tov Yaptn. H mpdtn
puéBodog (ag v ovopdoovpe VOTE) glvat ) ypnon poOvVo eKeivng g ETIKETOC TOL
epeaviletoan ovyvotepa, 1 devtepn (ag v ovopdcovpe ADD1) givon ) epedvion
oAV tov mbavov etiketdv, pe @Bivovco oepd avéioya pe TovV optOuo
EUPAVIONG TOVG, EVAD otV TeEAevtain péBodo (ag v ovopdosovpe FREQ) dimia
and kabe etikéta epeavifetor Kot o aplBudg EREAVIONG TS OTNV CLYKEKPIUEVN

KOWYEAD.

Xe auTd TO ONUEIO TNG TPOGEYYIONG LOG TO OMOTEAEGHO €val 1) EUPAVIOT) EVOG
xapt SOM pe etikéteg mave otov omoio pmopet pev vo avtiotoyndel éva véo
detypo dedopuévav aAAd dev pumopet va extiunBet to bitrate avtov. Qg ex ToVTOL,
oTNV GLVEYEW NTAV omopoiTnT 1 HadnpoTicomoinomn g eOVOS TOV TPOEKVTTE.
Bdoel Tov culdoyiopumv pog, to bitrate Tov gloayBévtog tpog e&€taon delypatog
oedopévov o mpémel va glvar 160 pe oWTO TV OEYHATOV OEOOUEVOV TV
TANGLESTEPMV KLYEADV. Q6TOGO, 01 TANCIECTEPES KVWEAES UTOPEL VO TEPLEYOLY
detypoto dedopévay mov avTioToyovV oe bitrate pe TiéS meplocdtepes ¢ pia.
‘Etol, ftov amopaitnty 1 €0peon Tov bitrate mov avtictolyel oto TEPIGGATEPA

OelypoTo 0E00UEVOV TOV TANGIECTEP®V KOUYEADV.

5

#n RISI IPKTS OPKTS IBYTES OBYTES
-35 926 1750 32630 880650 54
-3z 908 1680 31932 S45424 54
-3& BGB8 1680 Ileve S45424 54
-35 BGB8 1679 Ileve S45468 54
-36 B90 1683 31336 845598 54
-36 960 1818 3361z 915702 54
-36 B90 16682 31336 845598 54
-36 9E8 1766 IETS6 g57366 54
-34 9E0 1731 JE3E6 873760 45
-33 9Ea 1751 3E386 G80650 54
-33 9E4 1750 3E564 G80650 54
-3Z B94 1654 31494 §45685 54

L - A N

e =]
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Ewoéva 3. Apyeio Aedopévov Matlab: o aptBpog e mpdTNG YPOUUNAG AVOQEPETOL GTOV APOUo
TOV PETARANTOV TNG TOPOUETPOTOINGTG TOV GUUUETEXOVY GE QLTI TNV VIO e&€taom mepinTmon,
o€ aVTo T0 apyeio givar 5 peTafAnTéC TOPAUETPOTOINGNG TOV GUUUETEXOVV (AEIKTNG VTGOS TOV

AeBévtoc onpatog, eioepyopeva kot egepydueva mokéta kot Bytes), kot n tedevtaio oThAn



OVOQEPETAL GTOV LETPMUEVO bitrate Tov ypnoiponoteitonr g etikéra. Kabe ypapun amoteiel éva

delypa dedopévev Kot Kabe GTAAN Hia S10QOPETIKN LETAPANTH TOPALUETPOTOINOTG.

Me Ao Adywo, Koyéleg mov mepiEyovv Osiypato dedouévov pe 1010 bitrate
amoteAoOv pio opdoa (cluster). Emopévog, yioo vo kabopiotel to bitrate evog
detypotog dedopévav eivar amapaitnto va avtiotoryndei pe éva cluster. Kabe

cluster €yet éva ké€vipo mov kKabopiletar amd T1g €€Ng e€l0MoELS:
Y Wi y Wi
x:ZT (1)  and y=27 2),

Omov n gival o aplBpdc TV KVYEADY TOV OVIKOVV GTO GUYKEKPIUEVO cluster, x;
KOl y; €lval 01 GUVTETAYIEVEG TOL KEAOV 1 kol w; givo To BApog e 1o omoio To
KEM i GUUUETEYEL GTOV VTTOAOYIGUO TMV CUVIETAYUEVOV TOV KEVIPOL Tov cluster.
210 TpmTo. 6V0 cevapla 10 Papog w; elvar TAVTOTE 16O HE TNV HOVASO £V GTO

TEAEVTOIO GEVAPLO KAVOVIKOTTOINGNG TO BApoc w; vrroAoyiletal and v oyéon 3:
.= 3),

Omov k givar ot popég eppdviong Tov cuykekplévou bitrate 6to kel i Kot 7 givat

0 apUOG TV FEIYUAT®V OEGOUEVAOV TNG KVWEANG.

Katomv kot ovtig g dwdikaciog etvor mAéov evkoAn m ektipnon tov bitrate
evog detypotog dedopévav apkel va avtiotoyndet pe plo koyén tov xaptn Kot
ev ovveyeia vo Ppedel 1o kévipo exeivov tov cluster mov eivar TAnciéotepo otV
emAeypévn koyéln. To bitrate tov Ogiypotog oedopévov eivor ekeivo mov
avrtiotoyel oto emkeypévo cluster. e Tov vmoloyiopd ¢ amdGTAGNG TOV

Kkévtpov tov cluster kot g KLYEANG ypnoyomodnke n Evikieideio andctoo.

Téhog, Yoo v a&loddynon g dadikaciog mov akolovdndnke kot v e&oymyn
CUUTEPACUATOV, TO TPOYPUUHO TOPEYEL TNV SVVOTOTNTA TNG GUYKPIONG TOV
TIUOV Tov bitrate OV TPOEKLYAV LE TIG TPAYUOTIKEG UETPNOEIS TOL. AL 1
GUYKPION OT0dIdETOL KOl GE TOGOGTO £V Eival amapaitnto va onuelmdel 6Tl Ta

TPOG LEAETN OelypaTo OEOOUEVMVY EICTXONCUV GTO TPOYPOLLO POV dEXTNKAY TV



{010 Tpogpyaoia Pe OVTA TOV APYIKA YPNCLLOTOMONKAY Yo TV EKTAIOELOT] TOL

yaptn SOM.

KE®AAAIO 4: Anoteréopata

Mo v e€aywyn COUTEPAGUATOV NTAV OTAPUITNTN N AP OTOTEAECUATOV OC
TPOG OAeG TIG MOOVEG TaPAUETPOVG TOV TTPoYphupotos. 'Etot, ntav anapaitnn n
EMAOYN NG KOTAAANANG ékdoomng tov mpoypdupatog (VOTE, ADD1 kot FREQ),
TOV KOTOAANA®V UETAPANTOV TOL Oelypotog Oedopévemy, ToL  KATAAANAOL
ap1Opol SEYHATOV OEOOUEVOV KOl TOV KOATOAANA®V TILOV TOV. TOPUUETPOV TNG
texvikng SOM. Oco yapmAdTePO T0 TOGOGTO ECPUAUEVMV EKTIUNGEWMY TOL bitrate
1660 KoAOTEPT M &V AOY® emAoyn. Q¢ €K TOLTOV, dNUIOVPYNONKAY SLAPOPETIKE
GEVAPLOL. TTOV EAEYYOLV TIG TOPOTAVE EPMTNOELG Kot cvykpibnkav Pdacer tov
OTOTEAECUATOC TOV  TOCOGTOV  ECQUAUEVEOV — EKTIUNCE®V Tov bitrate. Ot
OGUYKEKPILEVEG TEPUTTMCELS EAEYYOV Tapovoldloviol mopakdto Yoo OAo T

GEVAPLO KOVOVIKOTOINOTG.

4.1 Xvykpion tov VOTE, ADD1 kan FREQ Exddéccwv tov Ilpoypappatog

‘Exovtag avalvoet 11g Tpeic €KOOCELS TOV TPOYPAUUATOS OGS NTOV OTOPOATNTN 1
HETOED TOVG GUYKPIoN MOTE va. ypnotlpononbel n kaAdtepn €€ avtov Pacel Tov

OTOTEAEGLAT@V TOVC.

Onwg onuewwdnke kot mopondve, n ékdoon VOTE ypnoipomotel ywo tov
VTOAOYICUO TV  KEVIp®V ToV cluster pévo v etikéta mov eppavilertal
GLYVOTEPO GTNV. KLYEAN. Xg ALTHV TNV TepinTmon givor mhavo pia etucéto vo, unv
eppaviCeton otov dnpovpynuévo xaptn SOM av kot ypnoiLonomdnke oe Kémolo
ostypor  dedopévov. To ovykekpiuévo yeyovdg o@eiletor otOo YEYOVOG OTL
OLOLPOPETIKA Oetypato dedoUEVDVY UTOopel va avTIoTorynOovV pe TNV 10100 KLWERN
aKopo Kot av €Yovv OPopeTikn eTkéta. 'Etol, 6mwg ovaeépbnke kol oto

KePdAoo 3, pdvo 1 eTk€To pPE TNV UEYOADTEPY] GLYVOTNTO GUUUETEYEL GTOV



vIoAOYIoUO TV KEVIpWV TV cluster. Q¢ ek tovTOL, €TIKETEC UE WIKPOTEPT

GLYVOTNTO EVOEYETOL VOL UMV ELPAVICTOVV GTOV XapTn SOM.

To moapamdve odnyel otnv e&drewyn evog N mepiocotépov cluster kabmg dev
TPOKLTTEL KATO10 KEVTPO Yia avtd. EmimpocHitmc, o mpdypappa teppotilet Atyo
UETO TOV DTOAOYIGUO TOV KEVIPp®V KOOMOC &va amd avtd oev vrapyel. TEXoc,
akopo kot av vrobécovpe Ot 0 TPOYpoppa dev Ba teppdtile, T detypoto
dedopévmv mov Ba avikav oto cluster mov e&adeipdnke Oa cuoyeTiloOvTovGaV LE

AGBog cluster kKot emopévmg kot pe Adbog bitrate.

XV mpoomdfeld pog vo ETAOGOVUE TO TOPATAVE® GOAUALO. TOV TPOYPEUILOTOS
onuovpynnke n ekdoyn ADD1 tov TPOYPAUUATOS GTO 0010 CLUUUETEXOVY OAES
ot etkéteg €&icov yoo Tov vIoroylopd Tov kévipov tov cluster. 'Etol, kdabe
ETIKETOL TTOVL YPNOLUOTOIEITOL GTO aPYEID0 OEOOUEVMV EPPOVILETOL GTOV YAPTN TOL
dnpovpyetton axdpo kot av 6to KeA epeoviCeTor porg pio @opd. Qg ek TovToV,
omv ékdoon ADDI, pio eTIKETO GUUUETEYEL GTOV VTOAOYIGUO TOV KEVIPMOV TOV

cluster ave&dptra amd TIG POPES TOV EUPAVICETOL OTNV KVWEAN.

Mo v cdykplon TtV Tepardve £KO0CEMV eKTEAECAUE TIG (O1EG MEPMTAOGELS
eEAEYYOL Yo TNV KAOE €KOOON YPNOLULOTOLOVTOS TO. 1010 apyeio dEdOUEVODV TOCO
Yo TNV @Aacn ¢ ekmaidcvong 660 kot yw v @aon g agordynons. Ta
AmOTEAECUATO oG odnynoav. oto ovumépocpo ott 1 ADDI1  éxdoon tov
npoypbupotos éAvce 10 c@dipa g VOTE éxdoong alhd otig mepumtdoelg
exeiveg omov 1 €kdoon VOTE amédide amoteléopata, To amoTeAECUATO TG TOV

KaAvTepa ano exeiva g ADD1 ékdoong tov mpoypdppatoc.

To mapandve coumépacpo odnynce oty £kdoon FREQ tov mpoypdupotoc. Xe
LTIV TNV TEPITTMOOT|, amekoviovTol OAEG 01 ETIKETEG TOV £XOLV avTioToyNOel e
TNV KOYEAT GUVOOEVOUEVESG OO TOV apPlOUd TOL avTIGTOYNONKAY LLE TNV KOYEAN.
‘Eto1, avtiBeta pe v ékdoon ADDI, ot T1k€TEC GUUUETEYOVV GTOV VTOAOYICUO
TV KEVIpOV TV cluster avaloyo pe TV cLYVOTNTA TNG ETIKETAG GTNV KLWEAN

(kepdraro 3).



Telkd, Yo TRV 60YKPLoN Kot TG TEAELTALNG £KOOONG UE TIG TPOTYOVUEVES OVO,
exTeELEcOE Kot TOM 1010 apyeio dedOUEVOV TOGO GTNV AT EKTOUOEVLONC OGO Kot
omv @don afordynong. Eivar d&o Adyov va ovapepbel mog kou oTIC TPELS
TEPMTOGELS YpNoonomdnkav ot idleg mopduetpol ekmaidgvonc. Amd ta
amOTEAECUATO TTPOEKLYE OTL M KOAOTEPN €KdOON KOl Yo TO  Tpio. oevpla
kavovikoroinong eivor 1 FREQ kot €tot elvo avtr) mov ypnotiponoteitor kot oty

GUVEXELL TOV TELPOUATOV LLOGC.

4.2 Emioyf tov Meropintov mov 0a XpnoiwpomomBovv ota Acgiypata

Agdopévav

To enduevo otdd0 ™G £PEVVAC LA APOPOVCE GTNV ETAOYN TOV UETOPANTOV
mov ypnowomomOnkav ota  Oetypato  dgdopéveov. T tov okomd awtd
YPNCILOTOMON KAV JULPOPETIKEG TEPITTOCELG EAEYYOV e TV ékdoon FREQ tov
TPOYPAUUOTOS Kot TIG 101EG HETAPANTEG EKTTOIOEVONG VD T, apyEiol dESOUEVDV
Ntav 01 TOc0 Yoo TV QACN NG €Kmoidevong 060 Kol Yo TNV QAcT NG
agoroynong. H dapopd tov apyeiov dedopévav éykertor otov aptBpd Kot 6Tov

TOTO TOV PETARANTAOV TOV OELYHATOV OEOOUEVWDV.

Ot petoPAntég tov dSerypdtev d9edouEvVeV TTov YpNoomomonKay 6to cHVOAD
TOVG, G€ JPOPOVG GLVOLOCHOVG eivar ot e&Ng evvéa: BOpvPog, deiktng 1oyvog
tov AneBévrog onpatoc (RSSI), eoepydueva ko e€epydpeva makéto, A0 Kot

Bytes ko To bitrate.

ATd TNV GOYKPLON TOV TEPITTOCEDMV EAEYYOV TPOEKLY OV TOL EENG:
> Xe Kavéva omd To TPio. GEVAPLN KOVOVIKOTOINGNG T0, OMOTEAEGUOTO OEV
e€aptavror amd 1o £hv ta delypota dedopuévav givar o dataln avaroyng
tov bitrate Tovg 1} Oyt. Kot o11g 000 mepmtdoelg to amoteAéouato eivol
ioa peta&v tovg.
» XT0 GEVAPLO TOV [U1] KAVOVIKOTOUEVOV SEIYUATOV dedopévav, 1 VTtapén
M 6yt Tov bitrate ®¢ petafAnTn Tov delypatog dedopévmv dev emnpedlel Ta

ATOTEAEGATO TAVTOTE TTPOG TNV 1010 KOTEVOVVOT, G AALEC TEPIMTMOELG



pelove TO TOCOOTO ECQUAUEVOV EKTIUNCE®MV bitrate evd o€ GAAEG
Tpokarovoe TV avénon tov. EmmAéov, oe avtd T0 GEVAPLO 1| TEPITTOON
Katd v omoio AdPape TO MKPOTEPO TOGOGTO EGPUALUEVMV EKTIUNCEDV
bitrate dev NTOV KAmOw Omd €KElvEG TOL TO TEPLEYOV ®G UETAPANTY.
Avtifeta, ota GAAa cevdplo Kovovikoroinong, n vmapén tov bitrate wc
UETOPANTY) TPOKAAOVOE TTAVTOTE TNV UEIWON TOV TOGOGTOV EGPUALEVOV
extiunoewv bitrate. Tlap’ OA° avtd, n yprion tov bitrate g petafAn
elvar AovBoaopévn emdoyn kobmg to bitrate sivor - vnd  e€étaom
petafAnt) kot og kapio mepintwon ogv umopel va Bewpnbet  yvoot n
TIUN TOV.

Téhog, o1 emheypévec HETAPANTES O0QPEPOVY OO GEVAPLO GE GEVAPLO
kavovikomoinong. Koatd 1o ogvdplo TtV Un  KAVOVIKOTOUWUEV®V
ogdopévev, M TEPITTOON. HE TO  EAN(IOTO TOGOGTO ECQUAUEVAOV
exTiunoemv tov bitrate, ico pe 28,6%, nMrav ekeivo oto omoio ot
petaPAntés TtV delypdTmV dedOREVOV NTAV O OEIKING €VINoNG TOv
ANeBEVTOG ONUOTOC KoL TO EIGEPYOUEVA KOt EEPYOLEVO TAKETO EVED GTO
GEVAPLO KOVOVIKOTOINONG TV O£00UEVOV UETOED UNdevoc Ko éva, M
TEPIMTOON LE TO EAAYIOTO TOGOCTO EGPUAUEVOV EKTIUNCEWMV TOV bitrate,
ico pe 24,6%, Ntav ekeivo oto omoio ot petafAntéc tov derypdtov
dedopévemv Ntay 0 deiktng évtoong tov AneBEvtog oNUATOS Kol T
gloepyopeva makéto, AdOn kor Bytes kou ta egpydpeva maxéta. ‘Etol, ota
TPAOTA OV0 GEVAPLO KOUVOVIKOTOINGONG 1 EMAOYN TV UETAPANTOV MTaV
EexdBapn.  Avtifeto, m emioyn Tov petafintov  tov  derypdtov
OEJOUEVMV. OTO GEVAPLO KOVOVIKOTOINONG TNG OMOKAONG TV dedoUEVOV
dgv Ntav 1060 Eek@Bapn. e avtd 10 CEVAPLO, Ol TEPIMTMOELS TOV OEV
neptehdpPoavay to bitrate wg petafint kot lyav 10 YUUNAOTEPO TOGOGTO
E0QOANEVOV ekTIUNcE®VY bitrate, ico pe 25,4%, eivar 600. v mpod™
TEPITTOON 01 PETOPANTES TOV YPNOLLOTOMONKAY NTAV O OEIKTNG EVINONG
oV ANPHEVTOG oNUATOC Ko TaL ElEPYOUEVA TTaKETA, AAON Ko Bytes kot ta
eEepyoOUEVE TOKETO, EVA GTNV OEVTEPT TTEPIMTMOOT MTOV O OEIKTNG EVTAOTG
TOV ANEBEVTOC ONUOTOG KOl TA EIGEPYOUEVO. KOL EEEPYOUEVO TOKETAL.

Qo1660, 6TV TPOTY TEPIMTOON OMALTEITOL PEYOAVTEPT VTOAOYIOTIKN



WoY0¢ o€ oyxéon He TNV 0ebTeEPN kaboTtdvtog TNV 0ehTEPN EMIAOYN
BéAtiotn Abom ko Tic petaPAntég g, owtéc mov Ba ypnoyomombovv

GTNV GLVEYELD TNG EPELVOG.

4.3 Emloy1 tov ApiOpod Tov Astypdtov Asdopévev

‘Exyovtag emié€erl T1g petafAntég Tov Oelypatog 0E00UEV®VY, TO EMOUEVO GTAO10
glval n emAoyn tov aplBuod TV SEYHATOV OE00UEVOVY. TV Bal GUUUETACYOLV
oV ekmaidevorn tov yaptn. o Tov okomd awtd dNUoVPYNONKAY TEPIMTOGELS
eréyyov mov mepledduPoavoy T e HETAPANTEG TV JEIYUATOV OEOOUEVDV
(avéroya pe to omoteléopoto NG evotnrag 4.2 yioo to KaBe oevaplo

KOVOVIKOTOINoMG) AL O10popeTIKO aplOUO OEIYUATMY OEG0UEVOV.

Mo v AMyn amotedecpdToV ypnotpomomonkay Kot Tail ot i01eg TopaUeTpoL

exmaidevong kot m ékdoon FREQ tov mpoypdppatoc pog.

4.3.1 Xevapro Mn Koavovikomompévov Astypatov Agdopévov

ZOUPOVO LE TO ATOTEAECUATO, O APOUOS TOV SEYUATOV OEOOUEVOVY eMNPedleL Ta

OTOTEAEGIATOL TOV TOCOOTOV ECPUALEVOV EKTIUGEMY OAAG Ol TAVIOTE UE TOV

id10 tpomo. To ddypapio VTV TV amoTELEGUATOV Paivetal oty Ewova 4.
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Ewéva 4. Zevdpio pn Kovovikomompuévev SetydTmv ded0HEVOV: ALLYPULLLLO TOV TOGOGTOV TMV
E0QOALEV@V eKTIUNOE®V bitrate 6€ Guvaptnon pe Tov aplfpd TV Serypdtov SES0UEVOV TOV

ypnoomomdnkay oty eknaideven tov xaptn SOM.

Telkd, to €ldyoto oamotélecpo Mroav 26,4% ko eueoaviletor yoo aplOpd
derypdtov oedopévov ico pe 617. H avénon tov apBpod tov ostypdtwv
dedopévav péxpt v Tun 617 mpokoiel Ty peiwon TOL TOGOGTOV ECQUALEVOV
EKTIUNGE®V TOV bitrate aALG N TEPAUTEP® AENGN TOV TPOKAAEL TNV YEPOTEPEVOT)
TV anoteAecpatov. 'Etol, omv cuvéyela g €PELVOS Y100 TO GEVAPLO TOV UM
KOVOVIKOTOUUEVOV OTOTEAEGUATOV 0 OpPOUOG TOV OEIYUATOV OESOUEVOV TOV

YPNGOTOLOVVTOL KOTA TNV EKTAIOEVOT TOL YbpTn €ivor 617.

4.3.2 Xevapro Kavovikomompévov Agdopéveov Metald Tov Mndevog ko tng

Movadag

Opolo Le TO GEVAPLO TOV U1 KOVOVIKOTOMUEVOV dEGOUEVMV, TO OLAYPOLLO TOV

anoterecudTov ansikoviCetal otnv Ewkdva S.
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Ewéva 5. Zevdpio kovovikomompévay dedopévev oto daotnpa [0,1]: Atdypoppa Tov T0606TON

EGQPUAIEVOV EKTIUNGEMV TOV bitrate o€ cuvaptnon pe tov apliud Tmv SEIYLaTmV SedoUEVOV.

AvoAdovtag 1O Topomdve  OGyPOUIO  TOPOTNPOVUE OTL TO OTOTEAEGLOTO
dwkvpaivovral peta&d tov Twov 23,5% kot 27,3%. To odypappa €xet dvo
tomikd ehdyota ((434, 23,5), (617, 24,0)) ko dvo tomikd péyota ((534, 27,0),
(644, 27,3)). Télog, To eldyioto amotéAesa givar ico pe 23,5% kot epgavileton
v apud derypatwv dedopevov ico pe 434. 'Etol, yuoo ovtd 10 GEVAPLO, GTO
VILOAOITO NG €PEVVAG HaG ¥pNooTomOnNKay apyeio dEGOUEVOV TOV TEPLEYOVLV

434 detypata dedopévav.

4.3.3 Xevapro Kavovikomompéving Arokions Tov Astypndatov Agdopévav

Téhog, 10 OGypOaLUO. TV ATOTEAEGHATMV OVTOV TOV GEVAPIOL KOVOVIKOTOINGoTG

glval awtd ¢ mapakdto ewovos (Ewova 6).
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Ewéva 6. Zevaplo KovOVIKOTOUUEVTG SLOKOLOVONG TOV OEIYULATOV 0EG0UEVAV GTO SLACTNLLOL
[0,1]: Audypappio ToL TOGOGTOV EGQUALEVOV EKTIUNGE®MY TOV bitrate og oo Le Tov apBpd Tov

detypdtov dedouévay.

To ehdyroto anotédespa oe avtd to cevaplo givar ico pe 23,1% kot mpokvmTeL
v opBpd derypdtov dedopévov ico pe 668. H avénon tov opBpod twv
delypdtov dedopévov pPEypt TV TIu 668 HEWDBVEL TO TOGOGTO ECPOAUEVOV
eKTIUNoE®V Tov bitrate oAAG N TEPOUITEP® AdENOT OO AVTHY TNV T TPOKOAAEL
abENoN TOL TOGOGTOV ECQUALEVOV EKTIUNCE®V bitrate Kot YEPOTEPELOT] TOL
amoteAéopatos. ‘Etot, yio 10 vmdhomo e £peuvac HoG VIO dVTO TO GEVAPLO
Kavovikomoinong ypnoiporomdnkav apyeio dedopévov mov amaptifoviav amd

668 dciypato dEdOUEVDV.

4.4 Emoyn Tov AkyopiOpov Exnmaidogvong kot tov [lapapétpov tov

Tehevtaio otdd0 ™G €pevvag eivor m emloyn petald tov dVvo aryopiBuwv
eknaidevong g texvikng SOM Kot TV TGOV TV TopapéTpov toug. [a tov
oKomd avTo, Kot oto Tpio. GEVAPLO Kavovikomoinong, apyikd kabopictnke o
KOADTEPOG CLVOVAGHOG TOV TOPAUETPOV OV aAyOplOlo ekmaidgvong Ko GTnv
ocuvéxeln ovykpidnkav to PBéATiIoTO amoteEAéopota TV dVO  aAyopiBuwv

EKTTAIOEVOMG.

4.4.1 Zevapro Tov Mn Kavovikomompévov Agdopévav



[ v evpeon TV PEATIOTOV TILOV TOV TAPAUETP®V TOV aAyopiBuov palikng

eknaidevong dokipdotniay d1dpopes TEPTTOGELS ELEYYOVL aAralovToc KaOe popd

puévo pio K TV TopapéTpmy. Ot TapapeTpol SOKIUACTNKAY [LE TUYOI0 GEPJ.

Yvykpivovtog To amoTeAESHATO O PEATIOTOC GLUVOLAGHOS TOV TTPOEKLYE NTAV

eKetvog 6TovV 0moio 1Y VOLVV TA TOPAKATO:

v

AL NEENEEN

v

Yvvaptnon yerrviaong: ['kaovoavn

Apycn axtiva yio v «mpoyxepn» edon: 5

Telkn axtiva yio v «Ttpoyelpn» edon: 1
Awgpxela ekmaidgvong yo v «mpdyepn» edon: 6
Apyun axtiva yo v eaon telglomoinong: 1
Telwn axtiva yio v don teietomoinon: 1

Algpkelo ekmaidevong kot Ty Gacn tedelonoinong: 48

To ddypappo v eKTiUicE®V TOV bitrate, TOV TPOYLATIKOV LETPNCEMV TOL KO

TO GLYKPITIKO dtdypappo avtdv aneikovitovior otv Ewkova 7.
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Ewova 7. AhyopiBpog polikng exmoidevuong 6To GEVAPLO. PN KOVOVIKOTOUUEVOY OEdOUEVEV:
Atdypappo ektiunoe@v Tov bitrate, AtGypoppio TOV TPAYHOTIKOV LETPHOEDV KOl GLYKPLTIKO
Stbrypappo avtdv. To couforo * amekovilet o delyporto Sed0UEVMOV TOV OL THES TMV EKTIUGEMV

KOl Ol LETPTOELS TOL bitrate dtapépouv.

Xy mepintoon Tov aAyopifuov celplakng eknaidgevong, akoAovddvtag v o1
TEYVIKN HLE QLTNV TOV XPNOLUOTOMONKE GTNV TEPITTMAT TOL aAyopiBpov palikng
EKTTAIOELONG ONUOLPYHONKOV KoL TOAL SLOLPOPETIKES TEPUTTAOCELS EAEYYOV. AV Kot
N TEYVIKN KAt Pdon elvar n 10100 o€ vtV TV TEpinTon vrdpyer pio Pacikn
Slpopd: 6TovV OAYOPIOLO CEPLOKNG EKTOidEVONG Ta Oelypato dedoUEV@V OeV
€16ayovToL OAOL TAVTOYPOVOG KAl MG EK TOVTOV 1) GEPA [LE TNV OTOlOL EIGEPYOVTOL
GTO GUGTNLO TTPOKAAEL dLaPOPOTOGELS. [l TV amoPLYN TETOL®V KOTACTAGE®YV,
KOTA TNV OIAPKED TOV EAEYYOV EMAEXONKE v €10EPYOVIOL LE TNV GEPA TOL

epeovifovtatl 6to apyeio 0edoUEVOV.

TeAkd, o PEATIOTOC GLVOVAGUOC TOV TILAOV TOV TAPOUETPOV Y10 TOV 0AYOP1OLO
GEPLOKNG EKTaidgvoNg MTov 0 €ENG:

v' Xuvdaptnon Ferrviaong: 'kaovsiavy



Eidoc unxovg (Length type): epochs

Yvvapton Exraidevong (Learning function): inv
Apywn Axtiva yo tnv «mtpoyepn» eaon: 3
Apywn Axtiva yio v «mtpoyxepn» eaon: 1
Awgpkelo Exkmaidogvong yia v «mpdyepn» edon: 4
Apyikd Adopa yio v «mtpdyepn» @don: 0.5
Apyu Axtiva yio v @don tehetonoinong: 1

TeAwkn Axtiva yio v @don tedelonoinong: 1

SN N N N N NN

Awgpkelo Exkmaidgvong yia v @daon teieiomoinong: 21

(\

Apyikd Alepa ylo v @domn teketonoinong: 0.05
To dGypappo TOV EKTIUAGEOV TOV bitrate, TOV TPOUYLATIKOV. LETPTCEDV TOV KOl

TO GLYKPITIKO dtdypappo avtdv aneikovitovior otnv Ewkdva 8.

Diagram of Predicted Values of the Bitrate
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Diagram of the Real Values of the Bitrate
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5 Comparative Diagram of Predicted and Real Values of the Bitrate
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Ewévo 8. AlyopiOiog Gelplokng EKTOidEVONC OTO GEVAPLO [T KOVOVIKOTOMUEV®Y SESOUEVOV:
Adypapplo. TV EKTIUNCE®V TOL bitrate, TV TPOYHOTIKOV LETPNCEDY TOL KOl TO GLYKPLTIKO
Sudypappa avtdv. To cdpporo * ameucovilet Ta Selypoto SESOUEVOV TOV Ol TYEG TV EKTYUNCEDV

KOl Ol LETPNOELS TOL bitrate dtapépouv.



H o0ykpion tov amoteléopotog yio v mepimtwon tov oAyopifuov palikng
exmaidgvong e avtd tov alyopibuov ceplokig ekmaidgvong, ico pe 25,6%, eivan
AMyo vynAdtepo and 1o devtepo, ico pe 24,6%. Kobmg Aowmdv 1o amotérecpo
avoQEPETOL € AABOG EKTIUNGELS, 1| TPMTN EVIVTTMOOT] vt OTL 1| BEATIOT EmAoyN
glvar o alyoplBuog oeprokng exkmaidevong. Ilap® 6L’ avtd, o ypodvog oL
OTTOLTEITOL YL TV QACT EKTOUOEVONG ival KATOLES POPES 1O10HTEPAL CTIUOVTIKOC.
‘Eto1, av kot to omotédecpo tov aAyopiBpov ceplokng ekmaidevong eivon
KaAVTEPO, 0 aAYOpIOOg polikng ekmaidevong elval ypnyopoTEPOs. TOUPOVO, e
10 TPOYpappa, 0 oAyoplBpoc polikng exmaidosvong amoutel mepimov 3 pe 4
deutepOAemTa Yoo Vo, OAOKANPwOel M @don ekmaidevong evd o alyopiBuog
CEPLOKNG eKmaidgvong amottel oxeddv Tov Oumhdcto. ypovo (7-8 devtepdrental).
Q¢ €K TOLTOV, Kol ENEWN 1 SOPOPE TOV OMOTEAECUATOV TV dVO aAYopiBu®V
glval oYeTIKA piKpn, N emAoyn petald v 600 adyopifumv eivol VTOKEUEVIKY|
Ko €EapTaTOL amd TNV VIOPEN M OYL TG AVAYKNG OGS YPNYOPNS EKTOUOEVONC TOV

xoptn SOM.

4.4.2 Xevapro Kavovikomompévov Agdopévoy Metalv Tov Mndevog ko g

Movadag

Xpnoponoumvtag TV 0w d1odikacio OTMG 6TO GEVAPLO [N KOVOVIKOTOINoNG TOV
dedopévav, 0 BEATIOTOC GLVIVACHOG TOV TPOEKLYE Yid TOV OAYOpOHo palikng
ekmoidevong nTav o e€Ng:

v Tovaptnon yeuvioong: I'kaovoiavn
Apycn axtiva yio TNy «tpoyepn» eaon: 3
Telun axtiva yio v «tpoyxelpn» eaon: 1
Alapkelo EKTaidevong yio v «mpdyepn» edon: 1

Apyikn axtiva yo v aon teletomoinong: 1

K RAA K S

TeAucn axtiva yio v edon tehetonoinon: 1
V' Adpxketo eknaidevong katd Ty @domn tedetonoinong: 9
To ddypoppo TOV EKTIUACE®V TOV bitrate, TOV TPAYUATIKOV LETPNOEDV TOV KoL

TO GLYKPLTIKO dtdypappo avtdv aneikoviCoviar otnv Ewkdva 9.



measured bitrate predicted bitrate

bitrate comparison

Ewova 9. AlyopiBpog poalikng ekmaideuonsg 6To GEVAPLO- KOVOVIKOTOUUEVOV SESOUEVAOV GTO
dtompa [0,1]: Atdypappo ektipmogmy Tov bitrate, AtGypapjio TOV TPOYLOTIKOV LETPCEDV KoL

ovykprtkd dbrypappo ovtdy. To cdpporo * amewoviCel ta detypota dedOUEVOV TOV O TIES TV
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Diagram of the Real Values of the Bitrate
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EKTYNOEMV KOl Ol LETPTOELS TOL bitrate d10.pEPovV.

Avrtictolya, 0 BEATIOTOG GLVOVAGHOG TOV TYLMOV TOV TOPAUETPOV EKTOIOEVLONG Y10

TOV 0AYOPOUO GEPLOKNG EKTAIOEVONG GE VTO TO GEVAPLO TV O EENG:

v

CNRORE AR <]

Xvvaptnon ettvicong: ['kaovciovn

Eidog pnrovg (Length type): epochs

>vvaptnon Exnaidevong (Learning function): inv
Apyuc Axtiva yio v «mtpoyepn» eaon: 4

Apywn Axtiva yio v «mtpoyxepn» eaon: 1

Awapkelo Exkraidoevong yio v «mpdyepn» @don: 5
Apyikd Aroa yio v «mpdyepn» edon: 0.5

Apyun Axtiva yio v @don tehetonoinong: 1

TeAwkn Axtiva yio v @don tedelonoinong: 1
Augpkelo Exkraidgvong yia v @don tedeiomoinong: 21

Apyikd Adpa yuo v @domn teketonoinong: 0.055



To ddypoppo TOV EKTIUACE®V TOV bitrate, TMV TPAYUATIKOV LETPNOEDV TOV KoL

TO GLYKPITIKO dtdypoppo ovtodv anetkoviCovror otnv Ewova 10.

Diagram of Predicted Values of the Bitrate
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5 Comparative Diagram of Predicted and Real Values of the Bitrate

% 60 * B * * H# * H M Fkok

g— * Mok Sk

g 40 ET— pm— "

% 20 I * | | | | i ]

% 0 50 100 150 200 250 300 350 400 450
data sample

Ewova 10. AAyopiBog oelplokng eKToidguonNG GTO GEVAPLO KOVOVIKOTOUUEVDY JEG0UEVMV GTO
dtomnpa [0,1]: Atdypappo Tov eKTUcE®V TOV bitrate, TV TPAYLOTIKOV LETPNCEMY TOL KUl TO
ovykprtkd ddrypappa avtodv. To odpPoro * amewovilel ta deiyporo dedOUEVOV TOL OL TIWES TV

EKTIUNGEMV KOL.Ol LETPNGELG TOV bitrate Stapépovv.

Y€ 0UTO TO GEVAPLO KAVOVIKOTTOINGNG, ad TNV GUYKPLoT] TOV OOTEAEGLLOTOS TOV
alyopifpov paltkng eKTaidEVoNG e 0V TO TOL aAYOPIOLOVL GEPLUKNG EKTAIOELOTG
TPOKLATEL OTL TAL OVO amoteAéspata givar ica petald tovg pe Tiun 22,6%. Q¢ ex
TOUTOV, 1 TPMOTN evtomwon  eivor 6tL ot dvo aAydpBuol pmopoldv  va
ypnoworombovv e€icov. Qotd660, OTMG OvOEEPONKE KOl GTO TPONYOVUEVO
GEVAPLO KAVOVIKOTOINGNG, O ¥POVOG OV OTOLTEITAL Y10 TNV OAOKANP®ON TNG
QAoNG TG EKMOIdELONG €lval KATOEG (OPES 101AHTEPA ONUOVIIKOS Kol O
aAyopiOpog palikng  ekmaidevong  eivar  ypnyopoOTEPOS. TOUPOVO UE  TO
TPOYPOLO, CE OLTO TO GEVAPLO KOvovikomoinong, o oAyopiBpog palikng

exmaidevong amoattel Myotepo omd 1 deLTEPOAENTO VD O AAYOPIOLOC CEPLOKNG



exmaidevong amontel mepimov 4 pe 5 devtepOAenTO. ZVVETMG, 1 PEATIOTN EMAOYY

6€ aVTO TO GEVAPLO KOVOVIKOTOINo™MG €ivail 0 adyopBpog pnalikng EKTaidevonc.

4.4.3 Xevapro Kavovikomompévng ATokions Tov Astypatov Ao0pEVEOV

Y& autd 10 GEVAPLO, O PEATIGTOG GLVOVACUOG TOL TPOEKVYE Yo TOV aAyOp1fpo

palikng ekmoidevong Ntov €Keivog Yoo TOV OTO0 Ol TUUES TMV TOPOUETPOV

Qoivovtol TopoKaT®:

v

AN NEENEEN

v

Yvvaptnon yerrviaong: ['kaovoavn

Apyun aktiva yuo tnv «mtpoyepn» eaon: 4

TeAun axtiva yio v «tpdyepn» edon: 1
Algpela ekmaidgvong yioL v «mpoyep» edon: 2
Apyun axtiva ylo v @acn telelomoinong: 1
Telkn axtiva yio v @don teketomoinon: 1

Abipkela ekmaidevong katé v o teretomoinong: 10

To duypappo TOV EKTIUNGE®V TOV bitrate, TOV TPAYUOTIKOV LETPHCEDV TOL KoL

TO GLYKPITIKO S1dypoppe avtdv ametkoviCovtar otnv Ewova 11.
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Ewova 11. AdyopiBuoc polikng ekmaidenons 6To GEVAPLO KOVOVIKOTOMUEVIG OTOKAIONG TV
dedopévav oto ddotnua [0,1]: Atdypappor eKTiumoemy Tov bitrate, AGypOpLLO TOV TPOYLATIKMOV

LETPCEDV KOl GLYKPLTIKO dtdypoypipa ovtdv. To cvpforo * ameucoviletl Ta detypato dedopévav

OV Ol TIWESG TOV EKTIUNCEMY Kot 01 LETPNOELS TOV bitrate dtapépovv.

Avrtictolya, 0 BEATIOTOG GLVOVAGHOG TOV TYLMOV TOV TOPAUETPOV EKTOIOEVLONG Y10

TOV 0AYOPOUO GEPLOKNG EKTAIOEVONG GE VTO TO GEVAPLO TV O EENG:

v Xvvaptnon leirviaong: Ep

Eidog prrovg (Length type): epochs

>vvaptnon Exnaidevong (Learning function): inv
Apyuc Axriva yio v «mtpoyepn» eaon: 3
Apywn Axtiva yio v «mtpoyxepn» eaon: 1
Awapkelo Exkmaidogvong yio v «mpdyepn» edon: 8
Apyikd Aroa yio v «mpdyepn» edon: 0.5
Apyun Axtiva yio v @don tehetonoinong: 1
TeAwkn Axtiva yio v @don tedelonoinong: 1

Augpkelo Exkraidevong yio v @aon tedetonoinong: 20

CNRORE AR <]

Apyikd Adopa ylo v @domn teketonoinong: 0.05



To ddypoppo TOV EKTIUACE®V TOV bitrate, TMV TPAYUATIKOV LETPNOEDV TOV KoL

TO GLYKPITIKO d1dypoppo ovtodv anetkoviCovrot otnv Ewova 12.
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Ewova 12. AlyopiBpog oeiplokng eKmaideuons 6To GEVAPLO KAVOVIKOTOUUEVIG OTOKAIONG TOV
dedopévov oto ddotnue [0,17: Adypappo - tov ektiuoeov tov bitrate, TV TPAYULATIKOV
LETPNOE®V TOL KOl TO GLYKPLTIKO Sidypappa avtdv. To cvpPoro * oamewovilel ta deiypoto

O€d0UEVOV IOV O1 TULES TOV EKTIUNGEMV Kol 01 LETPNOELS TOV bitrate dtapépovv.

TéNog, o€ avTd T0 GEVAPLO KOVOVIKOTOINGNG, 1| CUYKPIGT TOV OMTOTEAEGLLOTOS TOV
alyopifpov paltkng eKTaidEVoNG e 0V TO TOL aAYOPIOLOVL GEPLUKNG EKTAIOELOTG
amokdAvye OTL TO TPAOTO amotérespa, ico pe 21,1%, sivor era@padg pKkpOTEPO
amd 10 OEVTEPO, 160 pe 22,5%. AvticTtoryo peTpriOnKov Kol G aVTO TO GEVAPLO Ot
APOVOL EKTOUOELONG TOL YAPTN. LVYKEKPUEVO, GE OVTO TO GEVAPLO, COUPMOVO. LE
TO TPOYPOURA O aAyoplOuog palikng ekmaidevong omoutel Alyotepo oamd 1
OgVTEPOLETTO €V 0 aAYOPIOLOG GEpLaKkTG ekmaidevong amattel mepimov 7 pe 8
devteporenta. Zuvovalovtag To mapundve omoteAéopata, 1 PEATIOTN €mAOYN|

glval 0 ahydpBpog palikng ekmaidogvonc.



KE®AAAIO 5: Xvunepaopora

H ypryopn €£€MEN TV aGHPUATOV ETIKOIVOVIOV OTOLTEL TNV YPTON GLCTNUATOV
oL £YOLV TNV duvaToTNTO VO TPpocappolovtol EEumva oto Totkika teptPdAiovta
™G ovyypovng emoyne. Ta cognitive cuotiuoto €ivol o TOAAL VTOCYOUEVT
TeXVOAOYiDL TPOC LTV TNV KateBuvon OAAL M «YVOOTIKNY dtaditkasio  Tov
y¥pNoonoovV Yo tov €Aeyyo, TV a&loddynon Kot TV emAoyn piog
TOPOUETPOTTOINONG €lval Guyvh 1dtaitepa ¥povofoOpa 0ONYOVIONG GTNV OVAYKY
YPNONG OGS TEYVIKNG EKTOUOELONG YO VO TNV EMTOYVVEL. ZTNV. EPYOCIO LOG
YPNOWOTOMGAUE e U1 EAEYYOUEVN TEYXVIKY] EKTOIOELONG, TOVG XAPTEG OWVTO-
opybvawong, yuo vo ekmodevcovpe o CRS va mpoPAiénet to bitrate mov pmopet va
emrevyfel vnd pio mopapeTpomoinon PAcel TG TPONYOVUEVNG EUTEPING TOVL.
[TparyaTOTOIOVTOG OPKETEC TEPUTTMOGES EAEYXOV KATAPEPAUE VO TPOPAEYOLLLE
omoTA 10 bitrate 6e 060610 79,9% TOV derypdtav dedopévav tov eréxdncav. H
TEYVIKN TOL TPOTEIVOLUE OVOUEVETAL Vo, BonBnoel To cognitive cHOTNUO GTNV
eMAOYY] HETAED SPOPETIKOV VITOYNPIOV  TOPUUETPOTOMGE®Y  AapPavovtog

VIOYNV TIC EKTIUNGELS TOL bitrate mov umopel va. emtevydet.



ANNEX B: MATLAB CODES

version12.m

training
centers?2

dataevaluation

training.m

echo off

ans='error!";

%selection of version
while ans=='error!'
input('type 1 for the Lst version or 2 for the 2nd version:', 's");
if ans=="1"
labeltype='vote';
elseif ans=="2"
labeltype='add1";
else sprintf(‘error!")
end

end

%call of som user interface in order to select the data file which contains
%the data samples for the training and to set the initialization and the

%itraining variables

%initialization and load of the data file which was used for the training

input('insert the name of the data file which will be used for the training:', 's");



sd =som read data([ans,'.data']); %data struct

clear ans

sd = som_normalize (sd, 'range");

som_gui

echo on

pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...

echo off

%initialization and load of the som map which was created after the

Y%itraining phase



input('insert the name of the cod file:', 's'");
sm =som_read cod([ans,'.cod']); %som map struct

clear ans

%autolabel of each data sample according the data file

auto = som_autolabel(sm, sd, labeltype);

%som grid struct, from this structure is possible to load both the labels of the
%.cells, from the .label field, and their coordinations from the .coord field.
%Thus, it is possible to sort out cells with the same labels and to define

%the center of their cluster.

sg =som_grid(sm);

sg.label = auto.labels;

% image of an empty som map

som_show(sm,'umat', ", 'bar', none')

%echo on
%pause % Strike any key to continue...

%echo off

%Ilabel addition on the cells of the empty som map

som_show add('label', auto)

centers2.m

%calculation of the centers of the clusters
mapsize=(sg.msize(1,1))*(sg.msize(1,2));
k1=0;
x1=0;



y1=0;
k2=0;
x2=0;
y2=0;
k3=0;
x3=0;
y3=0;
k4=0;
x4=0;
y4=0;
labelsize = size(sg.label);
for v=1:mapsize
for q=1:labelsize(2)
if sg.label{v,q}~=""
c(v,q) = str2num(sg.label{v,q});
else c(v,q)=0;
end
q=q+1;
end

end

for m=1:mapsize
for i=1:labelsize(2)
if c(m,1)==24 %selection of cells with

%Ilabel equal to 24

x1=x1+(sg.coord(m,1)); %oparticipation of the
%cell to the calculation
%of x coordinate of the
%center of the cluster
%whose cells have label
%equal to 24

yl=yl+(sg.coord(m,2)); %participation of the



%cell to the calculation
%of'y coordinate of the
%center of the cluster
%whose cells have
%Ilabel equal to 24
k1=kl+1; %number of cells with
%label equal to 24
m,; %cell that has been

%tested

elseif c(m,1)==36 %selection of cells with
%Ilabel equal to 36
x2=x2+(sg.coord(m,1)); %oparticipation of the
%cell to the calculation
%of x coordinate of the
%center of the cluster
%whose cells have label
%equal to 36
y2=y2+(sg.coord(m,2)); %participation of the
%cell to the calculation
%of'y coordinate of the
%center of the cluster
%whose cells have
%Ilabel equal to 36
k2=k2+1; %number of cells with
%Ilabel equal to 36

m; %cell that has been
Y%tested
elseif c(m,1)==48 %selection of cells
%with label equal

%oto 48



x3=x3+(sg.coord(m,1)); %oparticipation of the

%cell to the calculation
%of x coordinate of the
%center of the cluster
%whose cells have label

%equal to 48

y3=y3+(sg.coord(m,2)); %participation of the

k3=k3+1;

elseif ¢(m,1)==54

%cell to the calculation
%of'y coordinate of the
%center of the cluster
%whose cells have label
%equal to 48
%number of cells with

%Ilabel equal to 48

%cell that has been
Yotested

%selection of cells

%with label equal to 54

x4=x4+(sg.coord(m,1)); %oparticipation of the

%cell to the calculation
%of x coordinate of the
%center of the cluster
%whose cells have label

%equal to 54

y4=y4+(sg.coord(m,2)); Yoparticipation of the

k4=k4+1;

%cell to the calculation
%of'y coordinate of the
%center of the cluster
%whose cells have
%label equal to 54

%number of cells with



%Ilabel equal to 54

m; %.cell that has been
Y%tested
end
end
1=i+1;
m=m+1;
end

%center of the cluster whose cells have label equal to 24
cx1=x1/kl;
cyl=yl/kl;

%center of the cluster whose cells have label equal to 36
cx2=x2/k2;
cy2=y2/k2;

%center of the cluster whose cells have label equal to 48
cx3=x3/k3;
cy3=y3/k3;

%center of the cluster whose cells have label equal to 54
cx4=x4/k4;
cyd=y4/k4;

%all the centers of the clusters

cx = [cx1 ¢cx2 cx3 cx4];

cy = [cyl cy2 cy3 cy4];

sprintf(' center of the cluster whose cells have bitrate equal to 24 = (%0.3g,
%0.3g) \n center of the cluster whose cells have bitrate equal to 36 = (%0.3g,
%0.3g) \n center of the cluster whose cells have bitrate equal to 48 = (%0.3g,
%0.3g) \n center of the cluster whose cells have bitrate equal to 54 = (%0.3g,
%0.3g)", cx1, cyl, cx2, cy2, cx3, cy3, cx4, cy4)



%display of the centres of the clusters on the last datagram of the map
hold on
plot(cx, cy, 'rv')

dataevaluation.m

%estimation of the cluster to which a data sample belongs and as

% a result estimation of its bitrate as well

%read and load of the data file whose data samples will be tested
input('insert the name of the data file whose data samples will be tested:', 's');
ed = som read data([ans,'.data']); %data struct

clear ans

ed = som_normalize (sd, 'range');

%som_bmus depicts the number of the cell to which the data sample
%belongs

bmus = som_bmus(sm, ed);

%size of the table of bmus

1 = size(bmus);

%for each bmus, and thus for each cell that represents a data sample,

%is calculated its distance from the center of each cluster

for i=1:1(1)

%distance from the center of the cluster which has label/bitrate
%equal to 24
d1 = sqrt((cx1-sg.coord(bmus(i),1))"2 + (cyl-sg.coord(bmus(i),2))"2);



%distance from the center of the cluster which has label/bitrate
%equal to 36
d2 = sqrt((cx2-sg.coord(bmus(i),1))"2 + (cy2-sg.coord(bmus(i),2))*2);

%distance from the center of the cluster which has label/bitrate
%equal to 48
d3 = sqrt((cx3-sg.coord(bmus(i),1))"2 + (cy3-sg.coord(bmus(i),2))"2);

%distance from the center of the cluster which has label/bitrate
%equal to 54
d4 = sqrt((cx4-sg.coord(bmus(i),1))"2 + (cy4-sg.coord(bmus(i),2))"2);

%selection of the center of the clusters which is closer to the
%cell and classification of the data sample to the relevant

%cluster/bitrate

if d1<d2 && d1<d3 && d1<d4
bitrate(i) = 24;

elseif d2<d3 && d2<dl && d2<d4
bitrate(i) = 36;

elseif d3<d2 && d3<dl && d3<d4
bitrate(i) = 48;

elseif d4<d2 && d4<d3 && d4<dl
bitrate(i) = 54;

end

end

%display of the estimated bitrate of each data sample
k = bitrate';

%comparative diagram of the estimated values of the bitrate



%according to the SOM analysis per data sample and the real
%pvalues that have been measured during the collection of

%the data samples per data sample

figure(2);

subplot(3,1,1)

plot(k,'k-")

title('Diagram of Bitrate Estimations')
xlabel('data sample')

ylabel('bitrate")

a=size(ed.labels);

b=a(1,1);

for i=1:b

z(i,1)=str2num(ed.labels{i,1});

1=i+1;

end

figure(2);

subplot(3,1,2)

plot(z,'k-")

title('Diagram of the Real Values of the Bitrate')
xlabel('data sample')

ylabel('bitrate')

%calculation of the estimations that differ from the real
%measurements and the ones that are the same. ed.data field
%is a data struct field from which the data samples were

%Iloaded

w = size(k);

same = 0;



different = 0;

forn=1:w(1)

if k(n) == z(n)
same = same+1;
n=n-+1;

elseif k(n)~=z(n)
different = different + 1;
n=n+1;

end

end

same_per cent =same * 100 /w(1);

different per cent = different * 100 /w(1);

sprintf(' the number of the correct estimations is %d and in percent %0.3g%% and
\n the number of the wrong estimations is %d and in percent %0.3g%%', same,

same_per_cent, different, different per cent)

figure(2)

subplot(3,1,3)

plot(k,'k-.")

hold on

plot(z, 'k*-")

title('Comparative Diagram of Bitrate Estimations (dashdot line) and their Real
Values (solid line)")

xlabel('data sample')

ylabel('bitrate")



version3.m

training1
brandfr
totalfr
centers3

dataevaluation2

trainingl.m

echo off

%ecall of som user interface in order to select the data file which contains
%the data samples for the training and to set the initialization and the

%training variables

%initialization and load of the data file which was used for the training
input('insert the name of the data file which will be used for the training:', 's');
sd = som read data([ans,'.data']); %data struct

clear ans

sd = som_normalize (sd, 'range');

som_gui

echo on

pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...
pause % Strike any key to continue...

pause % Strike any key to continue...



pause % Strike any key to continue...

pause % Strike any key to continue...

pause % Strike any key to continue...

pause % Strike any key to continue...

pause % Strike any key to continue...

pause % Strike any key to continue...

pause % Strike any key to continue...

pause % Strike any key to continue...

pause % Strike any key to continue...

pause % Strike any key to continue...

pause % Strike any key to continue...

pause % Strike any key to continue...

pause % Strike any key to continue...

pause % Strike any key to continue...

pause % Strike any key to continue...

echo off

%initialization and load of the som map which was created after the
%training phase

input('insert the name of the cod file:', 's");

sm = som_read cod([ans,'.cod']); %som map struct

clear ans

%autolabel of each data sample according the data file

auto = som_autolabel(sm, sd, 'freq');

%som grid struct, from this structure is possible to load both the labels of the
%cells, from the .label field, and their coordinations from the .coord field.
%Thus, it is possible to sort out cells with the same labels and to define

%the center of their cluster.

sg =som_grid(sm);

sg.label = auto.labels;



% image of an empty som map
som_show(sm,'umat', ", 'bar', 'none')

colormap(gray)

%echo on
%pause % Strike any key to continue...

%echo off

%Ilabel addition on the cells of the empty som map

som_show add('label', auto, "TextColor', 'cyan')

brandfr.m

%seperation of the label/bitrate and the frequency/ocurrences
Isize = size(sg.label);
hlsize = Isize(2);

vlsize = Isize(1);

for vls = 1:vlsize
for hls = 1:hlsize
lab = sg.label {vls, hls};
if lab~=""
if lab(5)==")'
stbr = [lab(1), lab(2)];
br(vls, hls) = str2num(stbr);
stfr = lab(4);
fr(vls, hls) = str2num(stfr);
else
stbr = [lab(1), lab(2)];
br(vls, hls) = str2num(stbr);
stfr = [lab(4), lab(5)];



fr(vls, hls) = str2num(stfr);
end
else
br(vls, hls)=0;
fr(vls, hls)=0;
end
hls =hls + 1;
end
vls =vls + 1;

end

totalfr.m

%calculation of the total frequency/number of occurrences of

%eall labels per cell

for vls = 1:vlsize
tfr(vls,1) = 0;
for hls = 1:hlsize
tfr(vls,1) = tfr(vls,1) + fr(vls, hls);
hls = hls + 1;
end
vis=vls + I;

end

centers3.m

%calculation of the centers of the clusters
k1=0;
x1=0;
y1=0;



k2=0;
x2=0;
y2=0;
k3=0;
x3=0;
y3=0;
k4=0;
x4=0;
y4=0;

for vls = 1:vlsize
for hls = 1:hlsize
if tfr(vls,1)~=0

%selection of cells with label equal to 24

if br(vls, hls)==24

Y%participation of the cell to the calculation of x
%coordinate of the center of the cluster whose cells
%have label equal to 24
x1=x1+((fr(vls,hls))/tfr(vls,1))*(sg.coord(vls,1));
Y%participation of the cell to the calculation of y
%coordinate of the center of the cluster whose
%cells have label equal to 24
yl=yl+((fr(vls,hls))/tfr(vls,1))*(sg.coord(vls,2));
%number of cells with label equal to 24

k1=kl1+1;

%selection of cells with label equal to 36

elseif br(vls, hls)==36

%participation of the cell to the calculation of x
%coordinate of the center of the cluster whose cells
%have label equal to 36
x2=x2+((fr(vls,hls))/tfr(vls,1))*(sg.coord(vls,1));

Y%participation of the cell to the calculation of y



%coordinate of the center of the cluster whose cells
%have label equal to 36
y2=y2+((fr(vls,hls))/tfr(vls,1))*(sg.coord(vls,2));
%number of cells with label equal to 36

k2=k2+1;

%selection of cells with label equal to 48

elseif br(vls, hls)==48

Y%participation of the cell to the calculation of x
%coordinate of the center of the cluster whose cells
%have label equal to 48
x3=x3+((fr(vls,hls))/tfr(vls,1))*(sg.coord(vls,1));
Y%participation of the cell to the calculation of y
%coordinate of the center of the cluster whose cells
%have label equal to 48
y3=y3+((fr(vls,hls))/tfr(vls,1))*(sg.coord(vls,2));
%number of cells with label equal to 48

k3=k3+1;

%selection of cells with label equal to 54

el

seif br(vls, hls)==54
Y%participation of the cell to the calculation of x
%coordinate of the center of the cluster whose cells
%have label equal to 54
x4=x4+((fr(vls,hls))/tfr(vls,1))*(sg.coord(vls,1));
%participation of the cell to the calculation of y
%coordinate of the center of the cluster whose cells
%have label equal to 54
y4=y4+((fr(vls,hls))/tfr(vls,1))*(sg.coord(vls,2));
%number of cells with label equal to 54

k4=k4+1;

end

hls = hls + 1;

else



hls =hls + 1;
end
end
vls=vls + 1;

end

%center of the cluster whose cells have label equal to 24
cx1=x1/kl;
cyl=yl/kl;
%center of the cluster whose cells have label equal to 36
cx2=x2/k2;
cy2=y2/k2;
%center of the cluster whose cells have label equal to 48
cx3=x3/k3;
cy3=y3/k3;

%center of the cluster whose cells have label equal to 54
cx4=x4/k4;
cyd=y4/k4;

%all the centers of the clusters

cx = [cx1 cx2 ¢x3 cx4];

cy = [cyl cy2 cy3 cy4];

sprintf(' center of the cluster whose cells have bitrate equal to 24 = (%0.3g,
%0.3g) \n center of the cluster whose cells have bitrate equal to 36 = (%0.3g,
%0.3g) \n center of the cluster whose cells have bitrate equal to 48 = (%0.3g,
%0.3g) \n center of the cluster whose cells have bitrate equal to 54 = (%0.3g,
%0.3g)", cx1, cyl, cx2, cy2, cx3, cy3, cx4, cy4)

%display of the centers of the clusters on the last datagram of
%the map
hold on



plot(cx, cy, Tv")

dataevaluation2.m

%estimation of the cluster to which a data sample belongs and

% as a result estimation of its bitrate as well

%read and load of the data file whose data samples will be

Y%tested

input('insert the name of the data file whose data samples will be tested:', 's");
ed =som_read data([ans,'.data']); %data struct

clear ans

ed = som_normalize (sd, 'range');

%som_bmus depicts the number of the cell to which the data
%sample belongs

bmus = som_bmus(sm, ed);

%size of the table of bmus

1 = size(bmus);

%for each bmus, and thus for each cell that represents a data
%sample, is calculated its distance from the center of each

%cluster

for i=1:1(1)

%adistance from the center of the cluster which has label/bitrate
%equal to 24
d1 = sqrt((cx1-sg.coord(bmus(i),1))"2 + (cyl-sg.coord(bmus(i),2))"2);



%distance from the center of the cluster which has label/bitrate
%equal to 36
d2 = sqrt((cx2-sg.coord(bmus(i),1))"2 + (cy2-sg.coord(bmus(i),2))*2);

%distance from the center of the cluster which has label/bitrate
%equal to 48
d3 = sqrt((cx3-sg.coord(bmus(i),1))"2 + (cy3-sg.coord(bmus(i),2))"2);

%distance from the center of the cluster which has label/bitrate
%equal to 54
d4 = sqrt((cx4-sg.coord(bmus(i),1))"2 + (cy4-sg.coord(bmus(i),2))"2);

%selection of the center of the clusters which is closer to the
%cell and classification of the data sample to the relevant
%cluster/bitrate
if d1<d2 && d1<d3 && d1<d4
bitrate(i) = 24;
elseif d2<d3 && d2<dl && d2<d4
bitrate(i) = 36;
elseif d3<d2 && d3<dl && d3<d4
bitrate(i) = 48;
elseif d4<d2 && d4<d3 && d4<dl
bitrate(i) = 54;
end
end
%display of the estimated bitrate of each data sample
k = bitrate';

%comparative diagram of the estimated values of the bitrate
%according to the SOM analysis per data sample and the real
%values that have been measured during the collection of the

%data samples per data sample



figure(2)

subplot(3,1,1)

plot(k,'k-")

title('Diagram of Bitrate Estimations')
xlabel('data sample')

ylabel('bitrate")

a=size(ed.labels);

b=a(1,1);

t24=0;

t36=0;

t48=0;

t54=0;

for i=1:b

z(i,1)=str2num(ed.labels {i,1});

if z(1,1)==24
t24=t24+1;

elseif z(1,1)==36
t36=t36+1;

elseif z(i,1)==48
t48=t48+1;

elseif z(1,1)==>54
t54=t54+1;

end

1=i+1;

end

figure(2)

subplot(3,1,2)

plot(z, 'k-")

title('Diagram of the Real Values of the Bitrate')
xlabel('data sample')



ylabel('bitrate")

%calculation of the estimations that differ from the real
%measurements and the ones that are the same. ed.data field
%is a data struct field from which the data samples were

%loaded

w = size(k);
same = 0;
different = 0;
br24=0;
br36=0;
br48=0;
br54=0;

forn=1:w(1)
if k(n) == z(n)
same = same+1;
r(n)= NaN;
n=n+1;
elseif k(n)~=z(n)
different = different + 1;
r(n)=k(n);
if z(n)==24
br24=br24+1;
elseif z(n)==36
br36=br36+1;
elseif z(n)==48
br48=br48+1;
elseif z(n)==54
br54=br54+1;

end



n=n-+1;
end

end

same_per cent =same * 100 /w(1);

different per cent = different * 100 /w(1);

sprintf(' the number of the correct estimations is %d and in percent %0.3g%% and
\n the number of the wrong estimations is %d and in percent %0.3g%%', same,
same_per_cent, different, different per cent)

figure(2)

subplot(3,1,3)

plot(k,'k-."

hold on

plot(z, 'k-")

title('Comparative Diagram of Bitrate Estimations (dashdot line) and their Real
Values (solid line)")

xlabel('data sample')

ylabel('bitrate")

hold on

plot(r, 'k*")



	ABSTRACT
	CONTENTS
	FIGURE LIST
	TABLE LIST
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: SELF-ORGANIZING MAPS (SOMs)
	2.1 Sequential Training Algorithm
	2.1.1 Theoretical Base of Sequential Training Algorithm
	2.1.2 The Sequential Training Algorithm in the SOM toolbox

	2.2 Batch Training Algorithm
	2.2.1 Theoretical Base of Batch Training Algorithm
	2.2.2 The Batch Training Algorithm in the SOM toolbox


	CHAPTER 3: CONTRIBUTION OF THE SOM TECHNIQUE TO THE PREDICTION OF THE BITRATE
	CHAPTER 4: THE ALGORITHM AND THE SOM_AUTOLABEL FUNCTION
	CHAPTER 5: TEST CASES AND RESULTS
	5.1 Comparison of the labelling versions
	5.1.1 Scenario of no normalization of the data samples
	5.1.2 Scenario of normalization of the data samples to 1
	5.1.3 Scenario of normalization of the variance of the data samples to 1

	5.2 Selection of the variables of a data sample
	5.2.1 Scenario of no normalization of the data samples
	5.2.2 Scenario of normalization of the data samples to 1
	5.2.3 Scenario of normalization of the variance of the data samples to 1

	5.3 Selection of the number of data samples
	5.3.1 Scenario of no normalization of the data samples
	5.3.2 Scenario of normalization of the data samples to 1
	5.3.3 Scenario of normalization of the variance of the data samples to 1

	5.4 Selection of the training algorithm and its parameters
	5.4.1 Scenario of no normalization of the data samples 
	5.4.2 Scenario of normalization of the data samples to 1
	5.4.3 Scenario of normalization of the variance of the data samples to 1


	CHAPTER 6: CONCLUSIONS
	BIBLIOGRAPHY
	Articles
	Websites

	ANNEX A: SUMMARY IN GREEK LANGUAGE
	ΚΕΦΑΛΑΙΟ 1: Εισαγωγή
	ΚΕΦΑΛΑΙΟ 2: Τεχνική SOM (Self-Organizing Maps)
	ΚΕΦΑΛΑΙΟ 3: Η Χρήση της Τεχνική SOM στην Εκτίμηση του Bitrate
	ΚΕΦΑΛΑΙΟ 4: Αποτελέσματα
	4.1 Σύγκριση των VOTE, ADD1 και FREQ Εκδόσεων του Προγράμματος 
	4.2 Επιλογή των Μεταβλητών που θα Χρησιμοποιηθούν στα Δείγματα Δεδομένων
	4.3 Επιλογή του Αριθμού των Δειγμάτων Δεδομένων
	4.4 Επιλογή του Αλγορίθμου Εκπαίδευσης και των Παραμέτρων του

	ΚΕΦΑΛΑΙΟ 5: Συμπεράσματα

	ANNEX B: MATLAB CODES
	version12.m
	training.m
	centers2.m
	dataevaluation.m
	version3.m
	training1.m
	brandfr.m
	totalfr.m
	centers3.m
	dataevaluation2.m


