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ÌÝèïäïé Óýóôáóçò Ðïëõìåóéêþí ÄåäïìÝíùí âáóéóìÝíåò óå

Ôå÷íéêÝò Ìç÷áíéêÞò ÌÜèçóçò

ÁñéóôïìÝíçò Óôåñãßïõ Ëáìðñüðïõëïò

Ðåñßëçøç

Ïé ðñüóöáôåò åîåëßîåéò óôá çëåêôñïíéêÜ ìÝóá êáé ôá äßêôõá õðïëïãéóôþí Ý÷ïõí åðéôñÝ-

øåé ôç äçìéïõñãßá ìåãÜëùí êáôáíåìçìÝíùí óõëëïãþí ðïëõìåóéêþí áñ÷åßùí. Ùóôüóï,

ç Üìåóç äéáèåóéìüôçôá ðïëëþí ðüñùí ãéá êáèçìåñéíÞ ÷ñÞóç áðü ìåãÜëï åýñïò ÷ñç-

óôþí äçìéïõñãåß íÝåò ðñïêëÞóåéò. ÁõôÝò ïé ðñïêëÞóåéò ðñïêýðôïõí áðü ôï ãåãïíüò

üôé ïé ÷ñÞóôåò äåí ìðïñïýí íá åêìåôáëëåõôïýí ôïõò äéáèÝóéìïõò ðüñïõò áðïôåëåóìá-

ôéêÜ üôáí ç ðïóüôçôá ôçò ðëçñïöïñßáò áðáéôåß áðü ôïõò ÷ñÞóôåò Ýíá áðáãïñåõôéêÜ

ìåãÜëï ÷ñïíéêü äéÜóôçìá ãéá åîïéêåßùóç êáé êáôáíüçóç ôïõ ðåñéå÷ïìÝíïõ áõôÞò ôçò

äéáèÝóéìçò ðëçñïöïñßáò. ÊáôÜ óõíÝðåéá, ï êßíäõíïò õðåñöüñôùóçò ôùí ÷ñçóôþí ìå

ðëçñïöïñßåò åðéâÜëëåé íÝåò áðáéôÞóåéò óôá óõóôÞìáôá ëïãéóìéêïý ðïõ äéá÷åéñßæïíôáé

ìåãÜëåò ðïóüôçôåò ðëçñïöïñéþí. ÔÝôïéá óõóôÞìáôá åßíáé ôá ÓõóôÞìáôá Óýóôáóçò

(Recommender Systems, RS) ôá ïðïßá ðáñÝ÷ïõí ðëçñïöïñßåò êáôÜ ôñüðï þóôå íá åß-

íáé ðéï êáôÜëëçëåò êáé ðïëýôéìåò óôïõò ÷ñÞóôåò êáé íá áðïôñáðÝðåôáé ç óýã÷õóç ôùí

÷ñçóôþí áðü ôá ôåñÜóôéá ðïóÜ ðëçñïöïñéþí ôá ïðïßá, ÷ùñßò ôçí ÷ñÞóç ôùí Óõóôç-

ìÜôùí Óýóôáóçò, èá Ýðñåðå íá åîåôÜóïõí.

Óå áõôÞí ôçí äéáôñéâÞ áñ÷éêÜ, åñåõíÞóáìå ôç ÷ñÞóç õðïóõíüëùí áíôéêåéìåíéêþí

÷áñáêôçñéóôéêþí âáóéóìÝíùí óôï ðåñéå÷üìåíï ãéá ôç ìïíôåëïðïßçóç ôçò åîáôïìéêåõ-

ìÝíçò (õðïêåéìåíéêÞò) áíôßëçøçò ãéá ôçí ïìïéüôçôá ìåôáîý ôùí ðïëõìåóéêþí áíôé-

êåéìÝíùí. ÐáñïõóéÜæïõìå Ýíá Óýóôçìá Óýóôáóçò âáóéóìÝíï óôï ðåñéå÷üìåíï ðïõ

êáôáóêåõÜæåé ôá ðñüôõðá áíôßëçøçò ôùí ÷ñçóôþí ãéá ôçí ïìïéüôçôáò ìïõóéêþí êïì-

ìáôéþí êáé ôç óõó÷Ýôéóç äéáöïñåôéêþí ìÝôñùí ïìïéüôçôáò ìå äéáöïñåôéêïýò ÷ñÞóôåò.

Ôá áðïôåëÝóìáôá ôçò áîéïëüãçóçò ôïõ óõóôÞìáôïò åðáëÞèåõóáí ôç ó÷Ýóç ðïõ õðÜñ-

÷åé ìåôáîý õðïóõíüëùí ôùí áíôéêåéìåíéêþí ÷áñáêôçñéóôéêþí êáé ôçò åîáôïìéêåõìÝíçò

áíôßëçøçò ôùí ÷ñçóôþí ãéá ôçí ïìïéüôçôá ìïõóéêþí êïììáôéþí. Åðßóçò, áðü ôçí



áîéïëüãçóç ðñïÝêõøå óçìáíôéêÞ âåëôßùóç óôçí óýóôáóç åðïìÝíùí áíôéêåéìÝíùí âá-

óéóìÝíùí óôçí åîáôïìéêåõìÝíç áíôßëçøç ïìïéüôçôáò ôùí ÷ñçóôþí. Ç Ýñåõíá ãéá ôéò

ó÷Ýóåéò áõôÝò ìåôáîý ôùí áíôéêåéìåíéêþí ÷áñáêôçñéóôéêþí êáé ôçò áíôßëçøçò ïìïéü-

ôçôáò ôùí ÷ñçóôþí ðñïóöÝñåé ìéá Ýììåóç åîÞãçóç êáé áéôéïëüãçóç ãéá ôá óôïé÷åßá

ðïõ êÜðïéïò åðéëÝãåé. Ïé ÷ñÞóôåò ïìáäïðïéÞèçêáí óýìöùíá ìå óõãêåêñéìÝíá õðïóý-

íïëá ôùí ÷áñáêôçñéóôéêþí ðïõ áíôéðñïóùðåýïõí äéáöïñåôéêÝò ðôõ÷Ýò åíüò ìïõóéêïý

óÞìáôïò. ÁõôÞ ç áíÜèåóç êÜèå ÷ñÞóôç óå Ýíá óõãêåêñéìÝíï õðïóýíïëï ÷áñáêôçñéóôé-

êþí ìáò åðéôñÝðåé íá äéáôõðþóïõìå Ýììåóåò ó÷Ýóåéò ìåôáîý ôçò áíôßëçøÞò ôïõ/ôçò êáé

ôçò áíôßóôïé÷çò ïìïéüôçôáò ôùí áíôéêåéìÝíùí (ïìïéüôçôá ìïõóéêÞò) ðïõ ðåñéëáìâÜíï-

íôáé óôéò ðñïôéìÞóåéò ôïõ/ôçò. Óõíåðþò, ç åðéëïãÞ åíüò óõãêåêñéìÝíïõ õðïóõíüëïõ

÷áñáêôçñéóôéêþí ìðïñåß íá ìáò ðáñÝ÷åé ìéá áéôéïëüãçóç - äéêáéïëüãçóç ãéá ôïõò ðá-

ñÜãïíôåò ðïõ åðçñåÜæïõí ôçí áíôßëçøç ôïõ ÷ñÞóôç óôéò ðñïôéìÞóåéò ôïõ/ôçò.

Åðßóçò, åîåôÜóáìå ôç äéáäéêáóßá óýóôáóçò ùò Ýíá õâñéäéêü óõíäõáóìü áðïôåëïý-

ìåíï áðü ôáîéíïìçôÞ åêðáéäåõüìåíï ìå äåßãìáôá áðü ìéá ìüíï êëÜóç êáé áðü ößëôñá

óõíåñãáôéêÞò äéÞèçóçò. ÓõãêåêñéìÝíá, áêïëïõèÞóáìå Ýíá ó÷Þìá äéáäï÷éêþí âçìÜôùí

óôï ïðïßï ç äéáäéêáóßá óýóôáóçò áðïóõíôßèåôáé óå äýï åðßðåäá. Óôï ðñþôï åðßðåäï ç

ðñïóÝããéóÞ ìáò ðñïóðáèåß íá ðñïóäéïñßóåé ãéá êÜèå ÷ñÞóôç ìüíï ôá åðéèõìçôÜ óôïé-

÷åßá áðü ôï ìåãÜëï óýíïëï üëùí ôùí ðéèáíþí óôïé÷åßùí, ëáìâÜíïíôáò õðüøç ìüíï Ýíá

ìéêñü õðïóýíïëï ôï ïðïßï åßíáé äéáèÝóéìï êáé ðåñéëáìâÜíåé ôéò ðñïôéìÞóåéò ôïõ ÷ñÞóôç.

Ãéá áõôüí ôïí óêïðü, ÷ñçóéìïðïéÞóáìå Ýíáí ôáîéíïìçôÞ åêðáéäåõüìåíï ìå äåßãìáôá

ìüíï áðü ìéá êëÜóç, ï ïðïßïò óôï êïììÜôé ôçò åêðáßäåõóÞò ôïõ ÷ñçóéìïðïéåß ìüíï

èåôéêÜ ðáñáäåßãìáôá (åðéèõìçôÜ óôïé÷åßá ãéá ôá ïðïßá ïé ÷ñÞóôåò Ý÷ïõí åêöñÜóåé ìéá

ôéìÞ ðñïôßìçóçò-Üðïøçò), åðåéäÞ åßíáé ëïãéêÜ äýóêïëï ãéá ôïõò ÷ñÞóôåò íá åêöñá-

óôïýí ñçôÜ ôé èåùñïýí ùò ìç åðéèõìçôü êáé åðéðëÝïí áõôü áðáéôåß ìåãÜëï ÷ñïíéêü

äéÜóôçìá êáé ðñïóðÜèåéá óôçí áëëçëåðßäñáóç ôïõ ÷ñÞóôç ìå ôï Óýóôçìá Óýóôáóçò.

Óôï äåýôåñï åðßðåäï åöáñìüæåôáé åßôå ìéá ðñïóÝããéóç âáóéóìÝíç óôï ðåñéå÷üìåíï ðñï-

óÝããéóç åßôå Ýíá ößëôñï óõíåñãáôéêÞò äéÞèçóçò ãéá ïñßóåé Ýíá âáèìü åêôßìçóçò óôá

óôïé÷åßá áõôÜ. ÓõãêåêñéìÝíá, ôï ó÷Þìá äéáäï÷éêþí âçìÜôùí ðïõ ðñïôåßíåôáé êáé Ý÷åé

õëïðïéçèåß áðïôåëåßôáé áðü äýï äéáäï÷éêÜ ößëôñá: (1) ðñþôá ÷ñçóéìïðïéåßôáé ôï ðñïößë

åíüò ÷ñÞóôç ãéá íá ëçöèåß õðüøç Ýíáò ìéêñüò áñéèìüò áðü ôéò ðñïôéìÞóåéò ôïõ/ôçò êáé



(2)óôï äåýôåñï ößëôñï, ôï óýóôçìá óýóôáóçò áðïôéìÜ ìå âÜóç ìéá êëßìáêá åêôßìçóçò

ôá óôïé÷åßá ðïõ Ý÷ïõí ðñïêñéèåß áðü ôï ößëôñï ôïõ ðñþôïõ åðéðÝäïõ. ÊáôÜ áõôüí ôïí

ôñüðï, ôï õâñéäéêü óýóôçìá óýóôáóçò äéáäï÷éêþí ößëôñùí áðïöåýãåé ôá ãíùóôÜ ðñï-

âëÞìáôá ôùí óõóôçìÜôùí óýóôáóçò ðïõ âáóßæïíôáé óôï ðåñéå÷üìåíï êáé áõôþí ðïõ

âáóßæïíôáé ìüíï óå ößëôñá óõíåñãáôéêÞò äéÞèçóçò.

Ç âáóéêÞ éäÝá ðßóù áðü ôç äéêÞ ìáò ðñïóÝããéóç óýóôáóçò Þôáí üôé Ýíáò ÷ñÞ-

óôçò, áöïý åðéëÝîåé Ýíá óýíïëï åðéèõìçôþí óôïé÷åßùí óýìöùíá ìå ôéò ðñïôéìÞóåéò

ôïõ, óõìâïõëåýåôáé óôç óõíÝ÷åéá ôéò áðüøåéò Üëëùí ÷ñçóôþí ãéá áõôÜ ôá óôïé÷åßá,

Ýôóé þóôå íá åðéëÝîåé ôåëéêÜ ôá êáëýôåñá óôïé÷åßá ìÝóá áðü ôï áñ÷éêü óýíïëï ôùí

ðñïôéìÞóåþí ôïõ. Ôá ðåéñáìáôéêÜ áðïôåëÝóìáôá áðïêáëýðôïõí üôé ç õâñéäéêÞ áõôÞ

ðñïóÝããéóç îåðåñíÜ êáé ôçí ðñïóÝããéóç ðïõ âáóßæåôáé êáèáñÜ óôï ðåñéå÷üìåíï, êáèþò

êáé ôçí ðñïóÝããéóç ìå ÷ñÞóç ìüíï ößëôñùí óõíåñãáôéêÞò äéÞèçóçò. Ôá ðåéñáìáôéêÜ

áðïôåëÝóìáôá êáôáäåéêíýïõí áêüìç ôçí áðïôåëåóìáôéêüôçôá êáé ôçí óõíåéóöïñÜ ôùí

åðéìÝñïõò äéáäï÷éêþí ößëôñùí ôçò äéêÞò ìáò õâñéäéêÞò ðñïóÝããéóçò óå ó÷Ýóç ìå ôéò

áíôßóôïé÷åò ìåèüäïõò ðïõ âáóßæïíôáé åßôå ìüíï óôï ðåñéå÷üìåíï åßôå ìüíï óå ößëôñá

óõíåñãáôéêÞò äéÞèçóçò.





Machine Learning-based Recommendation Methods for

Multimedia Data

by

Aristomenis S. Lampropoulos

Abstract

Recent advances in electronic media and computer networks have allowed the cre-
ation of large and distributed repositories of information. However, the immediate
availability of extensive resources for use by broad classes of computer users gives
rise to new challenges in everyday life. These challenges arise from the fact that
users cannot exploit available resources e�ectively when the amount of information
requires prohibitively long user time spent on acquaintance with and comprehension
of the information content. Thus, the risk of information overload of users imposes
new requirements on the software systems that handle the information. Such systems
are calles Recommender Systems (RS) and attempt to provide information in a way
that will be most appropriate and valuable to its users and prevent them from being
overwhelmed by huge amounts of information that, in the absence of RS, they should
browse or examine.

In this thesis, �rstly, we explored the use of objective content-based features to
model the individualized (subjective) perception of similarity between multimedia
data. We present a content-based RS which constructs music similarity perception
models of its users by associating di�erent similarity measures to di�erent users. The
results of the evaluation of the system veri�ed the relation between subsets of objec-
tive features and individualized (music) similarity perception and exhibits signi�cant
improvement in individualized perceived similarity in subsequent recommended items.
The investigation of these relations between objective feature subsets and user percep-
tion o�er an indirect explanation and justi�cation for the items one selects. The users
are clustered according to speci�c subsets of features that re
ect di�erent aspects of
the music signal. This assignment of a user to a speci�c subset of features allows
us to formulate indirect relations between his/her perception and corresponding item
similarity (e.g. music similarity) that involves his/her preferences. Consequently,
the selection of a speci�c feature subset can provide a justi�cation-reasoning of the
various factors that in
uence the user's perception of similarity to his/her preferences.

Secondly, we addressed the recommendation process as a hybrid combination of
one-class classi�cation with collaborative �ltering. Speci�cally, we followed a cascade
scheme in which the recommendation process is decomposed into two levels. In the
�rst level, our approach attempts to identify for each user only the desirable items
from the large amount of all possible items, taking into account only a small portion
of his/her available preferences. Towards this goal we apply a one-class classi�cation
scheme, in the training stage of which only positives examples (desirable items for



which users have express an opinion-rating value) are required. This is very impor-
tant, as it is sensibly hard in terms of time and e�ort for users to explicitly express
what they consider as non-desirable to them. In the second level, either a content-
based or a collaborative �ltering approach is applied to assign a corresponding rating
degree to these items . Our cascade scheme �rst builds a user pro�le by taking into
consideration a small amount of his/her preferences and then selects possible desir-
able items according to these preferences which are re�ned and into a rating scale
in the second level. In this way, the cascade hybrid RS avoids known problems of
content-based or collaborative �ltering RS.

The fundamental idea behind our cascade hybrid recommendation approach was
to mimic the social recommendation process in which someone has already ideni�ed
some items according to his/her preferences and seeks the opinions of others about
these items, so as to make the best selection of items that fall within his/her in-
dividual preferences. Experimental results reveal that our hybrid recommendation
approach outperforms both a pure content-based approach or a pure collaborative
�ltering technique. Experimental results from the comparison between the pure col-
laborative and the cascade content-based approaches demonstrate the e�ciency of
the �rst level. On the other hand, the comparison between the cascade content-based
and the cascade hybrid approaches demonstrates the e�ciency of the second level and
justi�es the use of the collaborative �ltering method in the second level.
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Chapter 1

Introduction

Recent advances in electronic media and computer networks have allowed the cre-

ation of large and distributed repositories of information. However, the immediate

availability of extensive resources for use by broad classes of computer users gives

rise to new challenges in everyday life. These challenges arise from the fact that

users cannot exploit available resources e�ectively when the amount of information

requires prohibitively long user time spent on acquaintance with and comprehension

of the information content. Thus, the risk of information overload of users imposes

new requirements on the software systems that handle the information. One of these

requirements is the incorporation into the software systems of mechanisms that help

their users when they face di�culties during human-computer interaction sessions

or lack the knowledge to make decisions by themselves. Such mechanisms attempt

to identify user information needs and to personalize human-computer interactions.

(Personalized) Recommender Systems (RS) provide an example of software systems

that attempt to address some of the problems caused by information overload.

RS are de�ned in [1] as software systems in which \people provide recommenda-

tions as inputs, which the system then aggregates and directs to appropriate recipi-

ents." Today, the term includes a wider spectrum of systems describing any system

that provides individualization of the recommendation results and leads to a pro-

cedure that helps users in a personalized way to interesting or useful objects in a

large space of possible options. RS form an important research area because of the
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abundance of their potential practical applications.

Clearly, the functionality of RS is similar to the social process of recommenda-

tion and reduction of information that is useless or uninteresting to the user. Thus,

one might consider RS as similar to search engines or information retrieval systems.

However, RS are to be di�erentiated from search engines or information retrieval

systems as a RS not only �nds results, but additionally uses its embedded individ-

ualization and personalization mechanisms to select objects (items) that satisfy the

speci�c querying user needs. Thus, unlike search engines or information retrieval

systems, a RS provides information in a way that will be most appropriate and valu-

able to its users and prevents them from being overwhelmed by huge amounts of

information that, in the absence of RS, they should browse or examine. This is to

be contrasted with the target of a search engine or an information retrieval system

which is to \match" items to the user query. This means that a search engine or an

information retrieval system tries to form and return a ranked list of all those items

that match the query. Techniques of active learning such as relevance-feedback may

give these systems the ability to re�ne their results according to the user preferences

and, thus, provide a simple form of recommendation. More complex search engines

such as GOOGLE utilize other kinds of criteria such as \authoritativeness", which

aim at returning as many useful results as possible, but not in an individualized way.

A learning-based RS typically works as follows: (1) the recommender system

collects all given recommendations at one place and (2) applies a learning algorithm,

thereafter. Predictions are then made either with a model learnt from the dataset

(model-based predictions) using, for example, a clustering algorithm [2, 3] or on

the 
y (memory-based predictions) using, for example, a nearest neighbor algorithm

[2, 4]. A typical prediction can be a list of the top-N recommendations or a requested

prediction for a single item [5].

Memory-based methods store training instances during training which are can

be retrieved when making predictions. In contrast, model-based methods generalize

into a model from the training instances during training and the model needs to be

updated regularly. Then, the model is used to make predictions. Memory-based
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methods learn fast but make slow predictions, while model-based methods make fast

predictions but learn slowly.

The roots of RS can be traced back to Malone et al. [6], who proposed three forms

of �ltering: cognitive �ltering (now called content-based �ltering), social �ltering (now

called collaborative �ltering (CF)) and economic �ltering. They also suggested that

the best approach was probably to combine these approaches into the category of,

so-called, hybrid RS.

1.1 Formulation of the Recommendation Problem

In general, the recommendation problem is de�ned as the problem of estimating

ratings for the items that have not been seen by a user. This estimation is based on:

• ratings given by the user to other items,

• ratings given to an item by other users,

• and other user and item information (e.g. item characteristics, user demograph-

ics).

The recommendation problem can be formulated [7] as follows:

Let U be the set of all users U = {u1; u2; :::; um} and let I be the set of all possible

items I = {i1; i2; :::; in} that can be recommended, such as music �les, images, movies,

etc. The space I of possible items can be very large.

Let f be a utility function that measures the usefulness of item i to user u,

f : U × I → R; (1.1)

where R is a totaly ordered set (e.g. the set of nonnegative integers or real numbers

within a certain range). Then, for each user u ∈ U , we want to choose an item i′ ∈ I

that maximizes the user utility function, i.e.

∀u ∈ U; i′u = argmax
i∈I

f(u; i): (1.2)
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In RS, the utility of an item is usually represented by a rating, which indicates

how a particular user liked a particular item, e.g., user u1 gave the object i1 the rating

of R(1; 1) = 3, where R(u; i) ∈ {1; 2; 3; 4; 5}.

Each user uk, where k = 1; 2; :::;m, has a list of items Iuk about which the user

has expressed his/her preferences. It is important to note that Iuk ⊆ I, while it is

also possible for Iuk to be the null set. This latter means that users are not required

to express their preferences for all existing items.

Each element of the user space U can be de�ned with a pro�le that includes

various user characteristics, such as age, gender, income, marital status, etc. In the

simplest case, the pro�le can contain only a single (unique) element, such as User ID.

Recommendation algorithms enhance various techniques by operating

• either on rows of the matrix R, which correspond to ratings of a single user

about di�erent items,

• or on columns of the matrix R, which correspond to di�erent users' ratings for

a single item.

However, in general, the utility function can be an arbitrary function, including a

pro�t function. Depending on the application, a utility f can either be speci�ed by

the user, as is often done for the user-de�ned ratings, or computed by the application,

as can be the case for a pro�t-based utility function. Each element of the user space

U can be de�ned with a pro�le that includes various user characteristics, such as age,

gender, income, marital status, etc. In the simplest case, the pro�le can contain only

a single (unique) element, such as User ID.

Similarly, each element of the item space I is de�ned via a set of characteristics.

The central problem of RS lies in that a utility function f is usually not de�ned on

the entire U × I space, but only on some subset of it. This means that f needs to be

generalized to the entire space U × I. In RS, a utility is typically represented by

ratings and is initially de�ned only on the items previously rated by the users.

Generalizations from known to unknown ratings are usually done by:
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• specifying heuristics that de�ne the utility function and empirically validating

its performance, or

• estimating the utility function that optimizes a certain performance criterion,

such as Mean Absolute Error (MAE).

Once the unknown ratings are estimated, actual recommendations of an item to

a user are made by selecting the highest rating among all the estimated ratings for

that user, according to Eq. 1.2 . Alternatively, we can recommend the N best items

to a user. Additionally, we can recommend a set of users to an item.

1.1.1 The Input to a Recommender System

The input to a RS depends on the type of the �ltering algorithm employed. The

input belongs to one of the following categories:

1. Ratings (also called votes), which express the opinion of users on items. Rat-

ings are normally provided by the user and follow a speci�ed numerical scale

(example: 1-bad to 5-excellent). A common rating scheme is the binary rating

scheme, which allows only ratings of either 0 or 1. Ratings can also be gathered

implicitly from the user�s purchase history, web logs, hyper-link visits, browsing

habits or other types of information access patterns.

2. Demographic data, which refer to information such as the age, the gender and

the education of the users. This kind of data is usually di�cult to obtain. It is

normally collected explicitly from the user.

3. Content data, which are based on content analysis of items rated by the user.

The features extracted via this analysis are used as input to the �ltering algo-

rithm in order to infer a user pro�le.

1.1.2 The Output of a Recommender System

The output of a RS can be either a prediction or a recommendation.
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• A prediction is expressed as a numerical value, Ra;j = R(ua; ij), which represents

the anticipated opinion of active user ua for item ij. This predicted value should

necessarily be within the same numerical scale (example: 1-bad to 5- excellent)

as the input referring to the opinions provided initially by active user ua. This

form of RS output is also known as Individual Scoring.

• A recommendation is expressed as a list of N items, where N ≤ n, which

the active user is expected to like the most. The usual approach in that case

requires this list to include only items that the active user has not already

purchased, viewed or rated. This form of RS output is also known as Top-N

Recommendation or Ranked Scoring.

1.2 Methods of Collecting Knowledge about User Pref-

erences

To generate personalized recommendations that are tailored to the speci�c needs of

the active user, RS collect ratings of items by users and build user-pro�les in ways

that depend on the methods that the RS utilize to collect personal information about

user preferences. In general, these methods are categorized into three approaches:

• an Implicit approach, which is based on recording user behavior,

• an Explicit approach, which is based on user interrogation,

• a Mixing approach, which is a combination of the previous two.

1.2.1 The Implicit Approach

This approach does not require active user involvement in the knowledge acquisition

task, but, instead, the user behavior is recorded and, speci�cally, the way that he/she

reacts to each incoming piece of data. The goal is to learn from the user reaction

about the relevance of the data item to the user. Typical examples for implicit ratings

are purchase data or reading time of Usenet news [4]. In the CF system in [8], they
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monitored reading times as an indicator for relevance. This revealed a relationship

between time spent on reviewing data items and their relevance. In [9], the system

learns the user pro�le by passively observing the hyperlinks clicked on and those

passed over and by measuring user mouse and scrolling activity in addition to user

browsing activity. Also, in [10] they utilize agents that operate as adaptive Web site

RS. Through analysis of Web logs and web page structure, the agents infer knowledge

of the popularity of various documents as well as a combination of document similar-

ity. By tracking user actions and his/her acceptance of the agent recommendations,

the agent can make further estimations about future recommendations to the speci�c

user. The main bene�ts of implicit feedback over explicit ratings are that they remove

the cognitive cost of providing relevance judgements explicitly and can be gathered

in large quantities and aggregated to infer item relevance [11].

However, the implicit approach bears some serious implications. For instance,

some purchases are gifts and, thus, do not re
ect the active user interests. More-

over, the inference that purchasing implies liking does not always hold. Owing to the

di�culty of acquiring explicit ratings, some providers of product recommendation

services adopt bilateral approaches. For instance, Amazon.com computes recommen-

dations based on explicit ratings whenever possible. In case of unavailability, observed

implicit ratings are used instead.

1.2.2 The Explicit Approach

Users are required to explicitly specify their preference for any particular item, usually

by indicating their extent of appreciation on 5-point or 7-point Thurstone scales.

These scales are mapped to numeric values, e.g. Ri;j ∈ [1; 2; 3; 4; 5]. Lower values

commonly indicate least favorable preferences, while higher values express the user's

liking. 1 Explicit ratings impose additional e�orts on users. Consequently, users

often tend to avoid the burden of explicitly stating their preferences and either leave

1The Thurstone scale was used in psychology for measuring an attitude. It was developed by
Louis Leon Thurstone in 1928, as a means of measuring attitudes towards religion. It is made up of
statements about a particular issue. A numerical value is associated with each statement, indicating
how favorable or unfavorable the statement is judged to be.
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the system or rely upon \free-riding" [12]. Ratings made on these scales allow these

judgments to be processed statistically to provide averages, ranges, or distributions. A

central feature of explicit ratings is that the user who evaluates items has to examine

them and, then, to assign to them values from the rating scale. This imposes a

cognitive cost on the evaluator to assess the performance of an object [13].

1.2.3 The Mixing Approach

Newsweeder [14], a Usenet �ltering system, is an example of a system that uses

a combination of the explicit and the implicit approach, as it requires minimum

user involvement. In this system, the users are required to rate documents for their

relevance. The ratings are used as training examples for a machine learning algo-

rithm that is executed nightly to generate user interest pro�les for the next day.

Newsweeder is successful in reducing user involvement. However, the batch pro�ling

used in Newsweeder is a shortcoming as pro�le adaptation is delayed signi�cantly.

1.3 Motivation of the Thesis

The motivation of this thesis is based on the following facts that constitute important

open research problems in RS. It is well known that users hardly provide explicit feed-

backs in RS. More speci�cally, users tend to provide ratings only for items that they

are interested in and belong to their preferences and avoid, to provide feedback in the

form of negative examples, i.e. items that they dislike or they are not interested in.

As stated in [15, 16], \It has been known for long time in human computer interaction

that users are extremely reluctant to perform actions that are not directed towards

their immediate goal if they do not receive immediate bene�ts". However, common

RS based on machine learning approaches use classi�ers that, in order to learn user

interests, require both positive (desired items that users prefer) and negative exam-

ples (items that users dislike or are not interested in). Additionally, the e�ort for

collecting negative examples is arduous as these examples should uniformly represent

the entire set of items, excluding the class of positive items. Manually collecting
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negative samples could be biased and require additional e�ort by users. Moreover,

especially in web applications, users consider it very di�cult to provide personal data

and rather avoid to be related with internet sites due to lack of faith in the privacy of

modern web sites [15, 16]. Therefore, RS based on demographic data or stereotypes

that resulted from such data are very limited since there is a high probability that the

user-supplied information su�ers from noise induced by the fact that users usually

give fake information in many of these applications.

Thus, machine learning methods need to be used in RS, that utilize only positive

examples provided by users without additional information either in the form of

negative examples or in the form of personal information for them. PEBL [17] is an

example of a RS to which only positive examples are supplied by its users. Speci�cally,

PEBL is a web page classi�cation approach that works within the framework of

learning based only on positive examples and uses the mapping-convergence algorithm

combined with SVM.

On the other hand, user pro�les can be either explicitly obtained from user ratings

or implicitly learnt from the recorded user interaction data (i.e. user play-lists). In

the literature, collaborative �ltering based on explicit ratings has been widely stud-

ied while binary collaborative �ltering based on user interaction data has been only

partially investigated. Moreover, most of the binary collaborative �ltering algorithms

treat the items that users have not yet played/watched as the \un-interested in" items

(negative class), which, however, is a practically invalid assumption.

Collaborative �ltering methods assume availability of a range of high and low

ratings or multiple classes in the data matrix of Users-Items. One-class collaborative

�ltering proposed in [18] provides weighting and sampling schemes to handle one-class

settings with unconstrained factorizations based on the squared loss. Essentially, the

idea is to treat all non-positive user-item pairs as negative examples, but appropriately

control their contribution in the objective function via either uniform, user-speci�c

or item-speci�c weights.

Thereby, we must take into consideration that the recommendation process could

not only be expanded in a classi�cation scheme about users' preferences as in [17], but
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should also take into account the opinion of other users in order to eliminate the prob-

lem of \local optima" of the content-based approaches [15, 16]. On the other hand,

pure collaborative approaches have the main drawback that they tend to recommend

items that could possibly be biased by a group of users and to ignore information

that could be directly related to item content and a speci�c user's preferences. Thus,

an approach is required that pays particular attention to the above matters.

Most of the existing recommendation methods have as a goal to provide accurate

recommendations. However, an important factor for a RS is its ability to adapt ac-

cording to user perception and to provide a kind of justi�cation to a recommendation

which allow its recommendations to be accepted and trusted by users. Recommen-

dations based only on ratings , without taking into account the content of the rec-

ommended items fail to provide qualitative justi�cations.As stated in [19], \ when

the users can understand the strengths and limitations of a RS, the acceptance of its

recommendations is increased." Thus, new methods are needed that make enhanced

use of similarity measures to provide both individualization and an indirect way for

justi�cations for the items that are recommended to the users.

1.4 Contribution of the Thesis

The contribution of this thesis is two-fold. The �rst contribution develops, presents

and evaluates a content-based RS based on multiple similarity measures that at-

tempt to capture user perception of similarity and to provide individualization and

justi�cations of recommended items according to the similarity measure that was as-

signed to each user. Speci�cally, a content-based RS, called MUSIPER,2 is presented

which constructs music similarity perception models of its users by associating dif-

ferent similarity measures with di�erent users. Speci�cally, a user-supplied relevance

feedback procedure and related neural network-based incremental learning allow the

system to determine which subset of a full set of objective features approximates

more accurately the subjective music similarity perception of a speci�c user. Our

2MUSIPER is an acronym that stands for MUsic SImilarity PERception.
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implementation and evaluation of MUSIPER veri�es the relation between subsets of

objective features and individualized music similarity perception and exhibits signi�-

cant improvement in individualized perceived similarity in subsequent recommended

items. Additionally, the investigation of the relation between objective feature subsets

and user perception o�ers an explanation and justi�cation for the items one selects.

The selection of the objective feature subsets in MUSIPER was based on se-

mantic categorization of the features in a way that formed groups of features that

re
ect semantically di�erent aspects of the music signal. This semantic categorization

helped us to formulate indirect relations between a user's speci�c perception and cor-

responding item similarity (in this case, music similarity) that involves his/her prefer-

ences. Thus, the selected features in a speci�c feature subset provides a justi�cation-

reasoning for the factors that in
uence the speci�c user's perception of similarity

between objects and, consequently, for his/her preferences. As it was observed, no

single feature subset outperformed the other subsets for all uses. Moreover, it was ex-

perimentally observed that the users of MUSIPER were clustered by the eleven feature

subsets in MUSIPER into eleven corresponding clusters. It was also observed that,

in this clustering scheme, empty user clusters appeared, which implies that the corre-

sponding feature subsets failed to model the music similarity perception of any user

at all. On the other hand, there were other feature subsets the corresponding clusters

of which contained approximately 27% and 18% of the users of MUSIPER. These

two �ndings are indicative of the e�ect of qualitative di�erences of the correspond-

ing feature subsets. They provide strong evidence justifying our initial hypothesis

that relates feature subsets with the similarity perception of an individual. Addition-

ally, they indicate that users tend to concentrate around particular factors (features)

that eventually in
uence their perception of item similarity and corresponding item

preferences.

The second contribution of this thesis concerns the development and evaluation

of a hybrid cascade RS that utilizes only positive examples from a user Speci�cally, a

content-based RS is combined with collaborative �ltering techniques in order primar-

ily to predict ratings and secondly to exploit the content-based component to improve
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the quality of recommendations. Our approach focuses on:

1. using only positive examples provided by each user and

2. avoiding the \local optima" of the content-based RS component that tends to

recommend only items that a speci�c user has already seen without allowing

him/her to view the full spectrum of items. Thereby, a need arises for enhance-

ment of collaborative �ltering techniques that combine interests of users that

are comparable to the speci�c user.

Thus, we decompose the recommendation problem into a two-level cascaded rec-

ommendation scheme. In the �rst level, we formulate a one-class classi�cation prob-

lem based on content-based features of items in order to model the individualized

(subjective) user preferences into the recommendation process. In the second level,

we apply either a content-based approach or a collaborative �ltering technique to

assign a corresponding rating degree to these items. Our realization and evaluation

of the proposed cascade hybrid recommender approach demonstrates its e�ciency

clearly. Our recommendation approach bene�ts from both content-based and col-

laborative �ltering methodologies. The content-based level eliminates the drawbacks

of the pure collaborative �ltering that do not take into account the subjective pref-

erences of an individual user, as they are biased towards the items that are most

preferred by the remaining users. On the other hand, the collaborative �ltering level

eliminates the drawbacks of the pure content-based recommender which ignores any

bene�cial information related to users with similar preferences. The combination of

the two approaches into a cascade form mimics the social process where someone has

selected some items according to his/her preferences and, to make a better selection,

seeks opinions about these from others.

1.5 Outline of the Thesis

The thesis is organized as follows:
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In Chapter 2, related works are presented on approaches to address fundamental

problems of RS. In Chapter 3, the general problem and key de�nitions, paradigms, and

results are presented of the scienti�c discipline of learning, with particular emphasis on

machine learning. More speci�cally, we focus on statistical learning and the two main

paradigms that have developed in statistical inference: the parametric paradigm and

the general non-parametric paradigm. We concentrate our analysis on classi�cation

problems solved with the use of Support Vector Machines (SVM) as applicable to our

recommendation approaches. Particularly, we summarize the One-Class Classi�cation

approach and the application of One-Class SVM Classi�cation to the recommendation

problem.

Next, Chapter 4 presents features that are utilized to analyze the content of

multimedia data. Speci�cally, we present the MPEG-7 framework which forms a

widely adopted standard for processing multimedia �les. Additionally, we present

the MARSYAS framework for extraction of features from audio �les.

In Chapter 5, the content-based RS, called MUSIPER, is presented and analyzed.

MUSIPER uses multiple similarity measures in order to capture the perception of

similarity of di�erent users and to provide individualization and justi�cations for

items recommended according to the similarity measure assigned to each user.

In the following two Chapters 6 and 7, we present our cascade recommendation

methods based on a two-level combination of one-class SVM classi�ers with collabo-

rative �ltering techniques.

Finally, we summarize the thesis, draw conclusions and point to future related

research work in Chapter 8.
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Chapter 2

Related Work

In general, the methods implemented in RS fall within one of the following categories:

• Content-based Methods

• Collaborative Methods

• Hybrid Methods

The purpose of this chapter is to review the state of the art of these methods.

2.1 Content-Based Methods

Modern information systems embed the ability to monitor and analyze users' actions

to determine the best way to interact with them. Ideally, each user�s actions are

logged separately and analyzed to generate an individual user pro�le. All the infor-

mation about a user, extracted either by monitoring user actions or by examining the

objects the user has evaluated [20], is stored and utilized to customize services o�ered.

This user modeling approach is known as content-based learning. The main assump-

tion behind it is that a user's behavior remains unchanged through time; therefore,

the content of past user actions may be used to predict the desired content of their

future actions [21, 22]. Therefore, in content-based recommendation methods, the

rating R(u; i) of the item i for the user u is typically estimated based on ratings
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assigned by user u to the items In ∈ I that are \similar" to item i in terms of their

content, as de�ned by their associated features.

To be able to search through a collection of items and make observations about

the similarity between objects that are not directly comparable, we must transform

raw data at a certain level of information granularity. Information granules refer to

a collection of data that contain only essential information. Such granulation allows

more e�cient processing for extracting features and computing numerical representa-

tions that characterize an item. As a result, the large amount of detailed information

of one item is reduced to a limited set of features. Each feature is a vector of low

dimensionality, which captures some aspects of the item and can be used to determine

item similarity. Therefore, an item i could be described by a feature vector

F (i) = [feature1(i); feature2(i); feature3(i); :::featuren(i)]: (2.1)

For example, in a music recommendation application, in order to recommend mu-

sic �les to user u, the content-based RS attempts to build a pro�le of the user's

preferences based on features presented in music �les that the user u has rated with

high rating degrees. Consequently, only music �les that have a high degree of simi-

larity with these highly rated �les would be recommended to the user. This method

is known as \item-to-item correlation" [23]. The type of user pro�le derived by a

content-based RS depends on the learning method which is utilized by the system.

This approach to the recommendation process has its roots in information retrieval

and information �ltering [24, 25]. Retrieval-based approaches utilize interactive learn-

ing techniques such as relevance feedback methods, in order to organize and retrieve

data in an e�ective personalized way. In relevance feedback methods, the user is part

of the item-management process, which means that the user evaluates the results

provided by the system. Then, the system adapts, its performance according to the

user's preferences. In this way, the method of relevance feedback has the e�ciency not

only to take into account the user subjectivity in perceiving the content of items, but

also to eliminate the gap between high-level semantics and low-level features which
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are usually used for the content description of items [26, 27, 28].

Besides the heuristics that are based mostly on information retrieval methods

[24, 25, 26, 27, 28] such as the Rocchio algorithm or correlation-based schemes, other

techniques for content-based recommendation utilize Pattern Recognition/Machine

Learning approaches, such as Bayesian classi�ers [29], clustering methods, decision

trees, and arti�cial neural networks.

These techniques di�er from information retrieval-based approaches as they cal-

culate utility predictions based not on a heuristic formula, such as a cosine similarity

measure, but rather are based on a model learnt from the underlying data using sta-

tistical and machine learning techniques. For example, based on a set of Web pages

that were rated by the user as \relevant" or \irrelevant,", the naive Bayesian classi�er

is used in [29] to classify unrated Web pages.

Some examples of content-based methods come from the area of music data. In

[30, 31, 32, 33, 34], they recommend pieces that are similar to users' favorites in

terms of music content such as mood and rhythm. This allows a rich artist variety

and various pieces, including unrated ones, to be recommended. To achieve this,

it is necessary to associate user preferences with music content by using a practical

database where most users tend to rate few pieces as favorites.

A relevance feedback approach for music recommendation was presented in [30]

and based on the TreeQ vector quantization process initially proposed by Foote [35].

More speci�cally, relevance feedback was incorporated into the user model by mod-

ifying the quantization weights of desired vectors. Also, a relevance feedback music

retrieval system, based on SVM Active Learning, was presented in [31], which re-

trieves the desired music piece according to mood and style similarity.

In [36], the authors explore the relation between the user's rating input, musical

pieces with high degree of rating that were de�ned as the listener's favorite music, and

music features. Speci�cally, labeled music pieces from speci�c artists were analyzed in

order to build a correlation between user ratings and artists through music features.

Their system forms the user pro�le as preference for music pieces of a speci�c artist.

They con�rmed that favorite music pieces were concentrated along certain music
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features.

The system in [37] proposes the development of a user-driven similarity function by

combining timbre-, tempo-, genre-, mood-, and year-related features into the overall

similarity function. More speci�cally, similarity is based on a weighted combination

of these features and the end-user can specify his/her personal de�nition of similarity

by weighting them.

The work in [38] tries to extend the use of signal approximation and characteriza-

tion from genre classi�cation to recognition of user taste. The idea is to learn music

preferences by applying instance-based classi�ers to user pro�les. In other words,

this system does not build an individual pro�le for every user, but instead tries to

recognize his/her favorite genre by applying instance-based classi�ers to user rating

preferences by his/her music playlist.

2.2 Collaborative Methods

CF methods are based on the assumption that similar users prefer similar items or

that a user expresses similar preferences for similar items. Instead of performing

content indexing or content analysis, CF systems rely entirely on interest ratings

from the members of a participating community [39]. CF methods are categorized

into two general classes, namely model-based and memory-based [7, 2].

Model-based algorithms use the underlying data to learn a probabilistic model,

such as a cluster model or a Bayesian network model [2, 40], using statistical and

machine learning techniques. Subsequently, they use the model to make predictions.

The clustering model [41, 3] works by clustering similar users in the same class and

estimating the probability that a particular user is in a particular class. From there,

the clustering model computes the conditional probability of ratings.

Memory-based methods, store raw preference information in computer memory

and access it as needed to �nd similar users or items and to make predictions. In

[10], CF was formulated as a classi�cation problem. Speci�cally, based on a set of

user ratings about items, they try to induce a model for each user that would allow
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the classi�cation of unseen items into two or more classes, each of which corresponds

to di�erent points in the accepted rating scale.

Memory-based CF methods can be further divided into two groups, namely user-

based and item-based [42] methods. On the one hand, user-based methods look for

users (also called \neighbors") similar to the active user and calculate a predicted

rating as a weighted average of the neighbor's ratings on the desired item. On the

other hand, item-based methods look for similar items for an active user.

2.2.1 User-based Collaborative Filtering Systems

User-based CF systems are systems that utilizememory-based algorithms, mean-

ing that they operate over the entire user-item matrix R, to make predictions. The

majority of such systems mainly deal with user-user similarity calculations,

meaning that they utilize user neighborhoods, constructed as collections of similar

users. In other words, they deal with the rows of the user-item matrix, R, in order

to generate their results. For example, in a personalized music RS called RINGO

[43], similarities between the tastes of di�erent users are utilized to recommend mu-

sic items. This user-based CF approach works as follows: A new user is matched

against the database to discover neighbors, which are other customers who, in the

past, have had a similar taste as the new user, i.e. who have bought similar items

as the new user. Items (unknown to the new user) that these neighbors like are then

recommended to the new user. The main steps of this process are:

1. Representation of Input data,

2. Neighborhood Formation, and

3. Recommendation Generation.

1. Representation of Input Data

To represent input data, one needs to de�ne a set of ratings of users into a user-item

matrix, R, where each R(u; i) represents the rating value assigned by the user u to the
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item i. As users are not obligated to provide their opinion for all items, the resulting

user-item matrix may be a sparse matrix. This sparsity of the user-item matrix

is the main reason causing �ltering algorithms not to produce satisfactory results.

Therefore, a number of techniques were proposed to reduce the sparsity of the initial

user-item matrix to improve the e�ciency of the RS. Default Voting is the simplest

technique used to reduce sparsity. A default rating value is inserted to items for

which there does not exist a rating value. This rating value is selected to be neutral

or somewhat indicative of negative preferences for unseen items [2].

An extension of the method of Default Voting is to use either the User Average

Scheme or the Item Average Scheme or the Composite Scheme [44]. More speci�cally:

• In the User Average Scheme, for each user, u, the average user rating over all the

items is computed, R(u). This is expressed as the average of the corresponding

row in the user-item matrix. The user average is then used to replace any

missing R(u; i) value. This approach is based on the idea that a user's rating

for a new item could be simply predicted if we take into account the same user's

past ratings.

• In the Item Average Scheme, for each item, the item average over all users is

computed, R(i). This is expressed as the average of the corresponding column

in the user-item matrix. The item average is then used as a �ll-in for missing

values R(u; i) in the matrix.

• In the Composite Scheme, the collected information for items and users both

contribute to the �nal result. The main idea behind this method is to use the

average of user u on item i as a base prediction and then add a correction term

to it based on how the speci�c item was rated by other users.

The scheme works as follows: When a missing entry regarding the rating of

user u on item i is located, initially, the user average R(u) is calculated as

the average of the corresponding user-item matrix row. Then, we search for

existing ratings in the column which correspond to item i. Assuming that a set

of l users, U = {u1; u2; :::; ul}, has provided a rating for item i, we can compute
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a correction term for each user u ∈ L equal to �k = R(uk; i) − R(uk). After

the corrections for all users in U are computed, the composite rating can be

calculated as:

R(u; i) =

 R(u) +

l∑
k=1

�k

l
, if user u has not rated item i

R; if user u has rated item i with R :

(2.2)

An alternative way of utilizing the composite scheme is through a simple trans-

position: �rst compute the item average, R(ik), (i.e., average of the column

which corresponds to item i) and then compute the correction terms, �k, by

scanning through all l items I = {i1; i2; :::; il} rated by user k. The �ll-in value

of R(u; i) would then be:

R(u; i) = R(i) +

l∑
k=1

�k

l
; (2.3)

where l is the count of items rated by user u and the correction terms are

computed for all items in I as �k = R(u; ik)−R(ik)

After generating a reduced-dimensionality matrix, we could use a vector similarity

metric to compute the proximity between users and hence to form neighborhoods of

users [45], as discussed in the following.

2. Neighborhood Formation

In this step of the recommendation process, the similarity between users is calcu-

lated in the user-item matrix, R, i.e., users similar to the active user, ua, form a

proximity-based neighborhood with him. More speci�cally, neighborhood formation

is implemented in two steps: Initially, the similarity between all the users in the user-

item matrix, R, is calculated with the help of some proximity metrics. The second

step is the actual neighborhood generation for the active user, where the similarities

of users are processed in order to select those users that will constitute the neighbor-
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hood of the active user. To �nd the similarity between users ua and ub, we can utilize

the Pearson correlation metric. The Pearson correlation was initially introduced in

the context of the GroupLens project [4, 43], as follows: Let us assume that a set

of m users uk, where k = 1; 2; :::;m, Um = {u1; u2; :::; um}, have provided a rating

R(uk; il) for item il, where l = 1; 2; :::; n, In = {i1; i2; :::; in} is the set of items. The

Pearson correlation coe�cient is given by:

sim(ua; ub) =

n∑
l=1

(R(ua; il)−R(ua))(R(ub; il)−R(ub))√
n∑
l=1

(R(ua; il)−R(ua))2
n∑
l=1

(R(ub; il)−R(ub))2

: (2.4)

Another metric similarity uses the cosine-based approach [2], according to which

the two users ua and ub, are considered as two vectors in n-dimensional item-space,

where n = |In|. The similarity between two vectors can be measured by computing

the cosine angle between them:

sim(ua; ub) = cos(−→ua;−→ub) =

n∑
l=1

R(ua; il)R(ub; il)√
n∑
l=1

R(ua; il)2

√
n∑
l=1

R(ub; il)2

: (2.5)

In RS, the use of the Pearson correlation similarity metric to estimate the proximity

among users performs better than the cosine similarity [2].

At this point in the recommendation process, a single user is selected who is called

the active user. The active user is the user for whom the RS will produce predictions

and proceed with generating his/her neighborhood of users. A similarity matrix S

is generated, containing the similarity values between all users. For example, the ith

row in the similarity matrix represents the similarity between user ui and all the other

users. Therefore, from this similarity matrix S various schemes can be used in order

to select the users that are most similar to the active user. One such scheme is the

center-based scheme, in which from the row of the active user ua are selected those

users who have the highest similarity value with the active user.
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Another scheme for neighborhood formation is the aggregate neighborhood forma-

tion scheme. In this scheme, a neighborhood of users is created by �nding users who

are closest to the centroid of the current neighborhood and not by �nding the users

who are closest to the active user himself/herself. This scheme allows all users to take

part in the formation of the neighborhood, as they are gradually selected and added

to it.

3. Generation of Recommendations

The generation of recommendations is represented by predicting a rating, i.e., by

computing a numerical value which constitutes a predicted opinion of the active user

ua for an item ij unseen by him/her. This predicted value should be within the

same accepted numerical scale as the other ratings in the initial user-item matrix

R. In the generation of predictions, only those users participate that lie within the

neighborhood of the active user. In other words, only a subset of k users participate

from the m users in the set Um that have provided ratings for the speci�c item ij,

Uk ⊆ Um . Therefore, a prediction score Pua;ij is computed as follows [4]:

Pua;ij = R(ua) +

k∑
t=1

(R(ut; ij)−R(ut)) ∗ sim(ua; ut)

k∑
t=1

|sim(ua; ut)|
; where Uk ⊆ Ul (2.6)

Here, R(ua) and R(ut) are the average rating of the active user ua and ut, respec-

tively, while R(ut; ij) is the rating given by user ut to item ij. Similarity sim(ua; ut)

is the similarity among users ua and ut, computed using the Pearson correlation in

Eq. 2.4. Finally, the RS will output several items with the best predicted ratings as

the recommendation list.

An alternative output of a RS is the top-N recommendations output. In this case,

recommendations form a list of N items that the active user is expected to like the

most. For the generation of this list, users are ranked �rst according to their similarity

to the active user. The k most similar (i.e. most highly ranked) users are selected
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as the k-nearest neighbors of the active user ua. The frequency count of an item is

calculated by scanning the rating of the item by the k-nearest neighbors. Then, the

items are sorted based on frequency count. The N most frequent items that have not

been rated by the active user are selected as the top-N recommendations [46].

2.2.2 Item-based Collaborative Filtering Systems

A di�erent approach [42, 5] is based on item relations and not on user relations, as in

classic CF. Since the relationships between users are relatively dynamic, as they con-

tinuously buy new products, it is computationally hard to calculate the user-to-user

matrix online. This causes the user-based CF approach to be relatively expensive in

terms of computational load. In the item-based CF algorithm, we look into the set of

items, denoted by Iua , that the active user, ua, has rated and compute how similar they

are to the target item it. Then, we select the k most similar items Ik = {i1; i2; :::; ik},

based on their corresponding similarities {sim(it; i1); sim(it; i2); :::; sim(it; ik)}. The

predictions can then be computed by taking a weighted average of the active user's

ratings on these similar items. The main steps in this approach are the same as in

user-based CF. The di�erence in the present approach is that instead of calculating

similarities between two users who have provided ratings for a common item, we calcu-

late similarities between two items it, ij which have been rated by a common user ua.

Therefore, the Pearson correlation coe�cient and cosine similarity are, respectively,

given as:

sim(it; ij) =

n∑
l=1

(R(ul; it)−R(it))(R(ul; ij)−R(ij))√
n∑
l=1

(R(ul; it)−R(it))2
n∑
l=1

(R(ul; ij)−R(ij))2

(2.7)

sim(it; ij) = cos(
−→
it ;

−→
ij ) =

n∑
l=1

R(ul; it)R(ul; ij)√
n∑
l=1

R(ul; it)2

√
n∑
l=1

R(ul; ij)2

: (2.8)
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Next, the similarities between all items in the initial user-item matrix, R, are

calculated. The �nal step in the CF procedure is to isolate k items from n, (Ik ⊆ In)

in order to share the greatest similarity with item it for which we are seeking a

prediction, form its neighborhood of items, and proceed with prediction generation.

A prediction on item it for active user ua is computed as the sum of ratings given

by the active user on items belonging to the neighborhood Ik. These ratings are

weighted by the corresponding similarity, sim(it; ij) between item it and item ij,

with j = 1; 2; :::; k, taken from neighborhood Ik:

Pua;ij =

k∑
j=1

sim(it; ij) ∗R(ua; ij)

k∑
j=1

|sim(it; ij)|
where Ik ⊆ In: (2.9)

In [47], the authors proposed that the long-term interest pro�le of a user (task

pro�le) be established either by explicitly providing some items associated with the

current task or by implicitly observing the user behavior (intent). By utilizing the

item-to-item correlation matrix, items that resemble the items in the task pro�le are

selected for recommendation. Since they match the task pro�le, these items �t the

current task of the user. Before recommending them to the user, these items will be

re-ranked to �t the user interests based on the interest prediction.

2.2.3 Personality Diagnosis

Personality diagnosis may be thought of as a hybrid between memory and model-

based approaches of CF. The main characteristic is that predictions have meaningful

probabilistic semantics. Moreover, this approach assumes that preferences constitute

a characterization of their underlying personality type for each user. Therefore, taking

into consideration the active user's known ratings of items, it is possible to estimate

the probability that he/she has the same personality type with another user. The

personality type of a given user is taken to be the vector of \true" ratings for items

the user has seen. A true rating di�ers from the actually reported rating given by

a user by an amount of (Gaussian) noise. Given the personality type of a user, the
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personality diagnosis approach estimates the probability that the given user is of the

same personality type as other users in the system, and, consequently, estimates the

probability that the user will like some new item [48].

The personality type for each user uk is formulated as follows, where k = 1; 2; : : : ;m,

Um = {u1; u2; : : : ; um}, and the user uk has a number of preferred items in In =

{i1; i2; : : : ; in}:

true

R (uk) =

{
true

R (uk; i1);
true

R (uk; i2); : : : ;
true

R (uk; in)

}
: (2.10)

Here,
true

R (uk; il), with il ∈ In and l = 1; 2; : : : ; n, stands for true rating by user uk of

the item il. It is important to note the di�erence between true and reported (given)

ratings of the user. The true ratings encode the underlying internal preferences for a

user that are not directly accessible by the designer of the RS. However, the reported

ratings are those which were provided by users and utilized by the RS.

It is assumed that the reported ratings given by users include Gaussian noise. This

assumption has the meaning that one user could report di�erent ratings for the same

items under di�erent situations, depending on the context. Thus, we can assume that

the rating reported by the user for an item il is drawn from an independent normal

distribution with mean
true

R (uk; il). Particularly:

Pr

(
R(uk; il) = x|

true

R (uk; il) = y

)
∝ e−

(x−y)2

2�2 ; (2.11)

where � is a free parameter, x is the rating that the user has reported to the RS, and

y is the true rating value that the user uk would have reported if there no noise were

present.

Furthermore, we assume that the distribution of personality types in the rating

array R of users-items is representative of the personalities found in the target popu-

lation of users. Therefore, taking into account this assumption, we can formulate the

prior probability Pr

(
true

R (ua) = �

)
that the active user ua rates items accordingly

to a vector � as given by the frequency that the other users rate according to �.
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Thereby, instead of explicitly counting occurrences, we simply de�ne
true

R (ua) to be a

random variable that can take one of m values, (R(u1); R(u2); : : : ; R(um)), each with

probability 1
m
:

Pr

(
true

R (ua) = R(uk)

)
=

1

m
: (2.12)

Combining Eqs. 2.11 and 2.12 and given the active user's ratings, we can compute

the probability that the active user is of the same personality type as any other user,

by applying the Bayes rule:

Pr

(
true

R (ua) = R(uk)|R(ua; i1) = x1; : : : ; R(ua; in) = xn

)
∝ Pr

(
R(ua; i1) = x1|

true

R (ua; i1) = R(ua; i1)

)
: : : P r

(
R(ua; in) = xn|

true

R (ua; in) = R(ua; in)

)
·Pr

(
true

R (ua) = R(uk)

)
:

(2.13)

Hence, computing this quantity for each user uk, we can compute the probabil-

ity distribution for the active user's rating of an unseen item ij. This probability

distribution corresponds to the prediction Pua;ij produced by the RS and equals the

expected rating value of active user ua for the item ij:

Pua;ij = Pr (R(ua; ij) = xj|R(ua; i1) = x1; : : : ; R(ua; in) = xn)

=
m∑
k=1

Pr

(
R(ua; ij) = xj|

true

R (ua) = R(uk)

)
·Pr

(
true

R (ua) = R(uk)|R(ua; i1) = x1; : : : ; R(ua; in) = xn

)
:

(2.14)

The model is depicted as a naive Bayesian network with the structure of a classical

diagnostic model as follows:

• Firstly, we observe ratings and, using Eq. 2.13, compute the probability that

each personality type is the cause. Ratings can be considered as \symptoms"

while personality types as \diseases" leading to those symptoms in the diagnos-

tic model.
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• Secondly, we can compute the probability of rating values for an unseen item

using Eq. 2.14. The most probable rating is returned as the prediction of the

RS.

An alternative interpretation of personality diagnosis is to consider it as a cluster-

ing method with exactly one user per cluster. This is so because each user corresponds

to a single personality type and the e�ort is to assign the active user to one of these

clusters [3, 2].

An additional interpretation of personality diagnosis is that the active user is

assumed to be \generated" by choosing one of the other users uniformly at random

and adding Gaussian noise to his/her ratings. Given the active user's known ratings,

we can infer the probability that he/she be actually one of other users and then

compute probabilities for ratings of other items.

2.3 Hybrid Methods

Hybrid methods combine two or more recommendation techniques to achieve better

performance and to take out drawbacks of each technique separately. Usually, CF

methods are combined with content-based methods. According to [7], hybrid RS

could be classi�ed into the following categories:

• Combining Separate Recommenders

• Adding Content-Based Characteristics to Collaborative Models

• Adding Collaborative Characteristics to Content-Based Models

• A Single Unifying Recommendation Model.

Combining Separate Recommenders

The Hybrid RS of this category include two separate systems, a collaborative one and

a content-based one. There are four di�erent ways of combining these two separate

systems, namely the following:

28



• Weighted Hybridization Method. The outputs (ratings) acquired by individual

RS are combined together to produce a single �nal recommendation using either

a linear combination [49] or a voting scheme [10]. The P-Tango system [49]

initially gives equal weights to both recommenders, but gradually adjusts the

weights as predictions about user ratings are con�rmed or not. The system

keeps the two �ltering approaches separate and this allows the bene�t from

individual advantages.

• Switched Hybridization Method. The system switches between recommenda-

tion techniques selecting the method that gives better recommendations for

the current situation depending on some recommendation \quality" metric. A

characteristic example of such a recommender is The Daily Learner [50], which

selects the recommender sub-system that provides the higher level of con�dence.

Another example of this method is presented in [51] where either the content-

based or the collaborative �ltering technique is selected according to which of

the two provided better consistency with past ratings of the user.

• Mixed Hybridization Method. In this method, the results from di�erent recom-

mender sub-systems are presented simultaneously. An example of such a rec-

ommender is given in [52] where they utilize a content-based technique based

on textual descriptions of TV shows and collaborative information about users'

preferences. Recommendations from both techniques are provided together in

the �nal suggested program.

• Cascade Hybridization Method. In this method, one recommendation technique

is utilized to produce a coarse ranking of candidates, while the second tech-

nique focuses only on those items for which additional re�nement is needed.

This method is more e�cient than the weighted hybridization method which

applies all of its techniques on all items. The computational burden of this

hybrid approach is relatively small because recommendation candidates in the

second level are partially eliminated in the �rst level. Moreover this method

is more tolerant to noise in the operation of low-priority recommendations,
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since ratings of the high level recommender can only be re�ned, but never

over-turned [20]. In other words, cascade hybridization methods can be an-

alyzed into two sequential stages. The �rst stage (content-based method or

knowledge-based/collaborative) selects intermediate recommendations. Then,

the second stage (collaborative/content-based method or knowledge-based) se-

lects appropriate items from the recommendations of the �rst stage. Burke

[53] developed a restaurant RS called EntreeC. The system �rst selects several

restaurants that match a user's preferred cuisine (e.g., Italian, Chinese, etc.)

with a knowledge-based method. In the knowledge-based method, the authors

construct a feature vector according to de�ned attributes that characterize the

restaurants. This method is similar to content-based methods; however, it must

be noted that these metadata are content-independent and for this reason the

term knowledge-based is utilized. These restaurants are then ranked with a

collaborative method.

2.3.1 Adding Content-Based Characteristics to Collaborative

Models

In [10], the authors proposed collaboration via content. This is a method that uses a

prediction scheme similar to the standard CF, in which similarity among users is not

computed on provided ratings, but rather on the content-based pro�le of each user.

The underlying intuition is that like-minded users are likely to have similar content-

based models and that this similarity relation can be detected without requiring

overlapping ratings. The main limitation of this approach is that the similarity of

users is computed using Pearson's correlation coe�cient between content-based weight

vectors.

On the other hand, in [54] the authors proposed the content-boosted collaborative

�ltering approach, which exploits a content-based predictor to enhance existing user

data and then provides personalized suggestions through CF. The content-based pre-

dictor is applied to each row of the initial user-item matrix, corresponding to each
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user, and gradually generates a pseudo user-item matrix that is a full dense matrix.

The similarity between the active user, ua, and another user, ui, is computed with

CF using the new pseudo user-item matrix.

2.3.2 Adding Collaborative Characteristics to Content-Based

Models

The main technique of this category is to apply dimensionality reduction on a group

of content-based pro�les. In [55], the authors used latent semantic indexing to create

a collaborative view of a collection of user pro�les represented as term vectors. This

technique results in performance improvement in comparison with the pure content-

based approach.

2.3.3 A Single Unifying Recommendation Model

A general unifying model that incorporates content-based and collaborative charac-

teristics was proposed in [41], where the authors present the use of content-based and

collaborative characteristics (e.g., the age or gender of users or the genre of movies)

in a single rule-based classi�er. Single unifying models were also presented in [56],

where the authors utilized a uni�ed probabilistic method for combining collaborative

and content-based recommendations.

2.3.4 Other types of Recommender Systems

Demographics-based RS. The basis for recommendations in demographics-based

RS is the use of prior knowledge on demographic information about the users and

their opinions for the recommended items. Demographics-based RS classify their

users according to personal demographic data (e.g. age and gender) and classify

items into user classes. Approaches falling into this group can be found in Grundy

[57], a system for book recommendation, and in [58] for marketing recommendations.

Similarly to CF, demographic techniques also employ user-to-user correlations, but

di�er in the fact that they do not require a history of user ratings. An additional
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example of a demographics-based RS is described in [10], in which information about

users is taken from their home-pages to avoid the need to maintain a history of user

ratings. Demographic characteristics for users (e.g. their age and gender) is also

utilized in [41].

Knowledge-based RS. Knowledge-based RS use prior knowledge on how the

recommended items ful�ll the user needs. Thus, the goal of a knowledge-based RS is

to reason about the relationship between a need and a possible recommendation. The

user pro�le should encompass some knowledge structure that supports this inference.

An example of such a RS is presented in [53], where the system Entree uses some

domain knowledge about restaurants, cuisines, and foods to recommend a restaurant

to its users. The main advantage using a knowledge-based system is that there is no

bootstrapping problem. Because the recommendations are based on prior knowledge,

there is no learning time before making good recommendations. However, the main

drawback of knowledge-based systems is a need for knowledge acquisition for the

speci�c domain which makes di�cult the adaptation in another domain and not easily

adapted to the individual user as it is enhanced by prede�ned recommendations.

2.4 Fundamental Problems of Recommender Systems

Cold Start Problem. The cold-start problem [59] is related to the learning rate

curve of a RS. The problem could be analyzed into two di�erent sub-problems:

• New-User Problem, i.e., the problem of making recommendations to a new

user [60], where almost nothing is known about his/her preferences.

• New-Item Problem, i.e., the problem where ratings are required for items

that have not been rated by users. Therefore, until the new item is rated by

a satisfactory number of users, the RS would not be able to recommend this

item. This problem appears mostly in collaborative approaches and could be

eliminated with the use of content-based or hybrid approaches where content

information is used to infer similarities among items.
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This problem is also related, with the coverage of a RS, which is a measure for

the domain of items over which the system could produce recommendations. For

example, low coverage of the domain means that only a limited space of items is

used in the results of the RS and these results usually could be biased by pref-

erences of other users. This is also known as the problem of over-specialization.

When the system can only recommend items that score highly against a user's

pro�le, the user is limited to being recommended items that are similar to those

already rated. This problem, which has also been studied in other domains,

is often addressed by introducing some randomness. For example, the use of

genetic algorithms has been proposed as a possible solution in the context of

information �ltering [61].

Novelty Detection - Quality of Recommendations. From those items that

a RS recommends to users, there are items that are already known to the users and

items that are new (novel) and unknown to them. Therefore, there is a competitive-

ness between the desire for novelty and the desire for high quality recommendations.

One one hand, the quality of the recommendations [45] is related to \trust" that

users express for the recommendations. This means that a RS should minimize false

positive errors and, more speci�cally, the RS should not recommend items that are

not desirable. On the other hand, novelty is related with the \timestamp - age" of

items: the older items should be treated as less relevant than the newer ones and

this causes increase to the novelty rate. Thus, a high novelty rate will produce poor

quality recommendations because the users will not be able to identify most of the

items in the list of recommendations.

Sparsity of Ratings. The sparsity problem [7, 62] is related to the unavailability

of a large number of rated items for each active user. The number of items that are

rated by users is usually a very small subset of those items that are totally available.

For example, in Amazon, if the active users may have purchased 1% of the items

and the total amount of items is approximately 2 millions of books, this means that

there are only 20; 000 of books which are rated. Consequently, such sparsity in ratings

degrades the accurate selection of the neighbors in the step of neighborhood formation
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and leads to poor recommendation results.

A number of possible solutions have been proposed to overcome the sparsity prob-

lem such as content-based similarities, item-based CF methods, use of demographic

data and a number of hybrid approaches [20]. A di�erent approach to deal with

this problem is proposed in [63], where the authors utilized dimension reduction tech-

niques, such as singular value decomposition, in order to transform the sparse user-

item matrix R into a dense matrix. The SVD is a method for matrix factorization

that produces the best lower-rank approximations to the original matrix [10].

Scalability. RS, especially with large electronic sites, have to deal with a con-

stantly growing number of users and items [2, 3]. Therefore, an increasing amount

of computational resources is required as the amount of data grows. A recommen-

dation method, that could be e�cient when the number of data is limited, could be

very time-consuming and scale poorly. Such a method would be unable to generate

a satisfactory number of recommendations from a large amount of data. Thus, it is

important that the recommendation approach be capable of scaling up in a successful

manner [42].

Lack of Transparency Problem. RS are usually black boxes, which means that

RS are not able to explain to their users why they recommend those speci�c items.

In content-based approaches [64, 34], this problem could be minimized. However, in

collaborative approaches, predictions may be harder to explain than predictions made

by content-based models [19].

Gray Sheep User Problem. The majority of users falls into the class of so

called \white-sheep", i.e. those who have high correlation with many other users. For

these users, it should be easy to �nd recommendations. In a small or even medium

community of users, there are users whose opinions do not consistently agree or

disagree with any group of people [49]. There are users whose preferences are atypical

(uncommon) and vary signi�cantly from the norm. After neighborhood formation,

these users will not have many other users as neighbors. As a result, there will be

poor recommendations for them. From a statistical point of view, as the number of

users of a system increases, so does the probability of �nding other people with similar
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preferences, which means that better recommendations could be provided [65].

35





Chapter 3

The Learning Problem

Learning is an essential human function which allows change in order to become bet-

ter, according to a given criterion, when a similar situation occurs. Learning does not

adopt the situation of rote learning. Rote learning describes the raw direct implanta-

tion of knowledge into a learner without the need of inference or other transformation

of knowledge to be required by him/her. Rote learning focuses only on memorization

of given facts without the need to draw inferences from the incoming information.

However, the learning process deals with the di�culty to extract inferences and to

generalize a behavior when a novel situation arises. Therefore, learning could be

considered as a type of intelligence which covers a large spectrum of processes and is

di�cult to de�ne precisely.

Most of de�nitions of learning refer to it as the process to gain knowledge or skills,

by study, instruction or experience. Alternatively stated, learning could be regarded

as the modi�cation of a behavior tendency according to experiences which have been

acquired. Thus, learning embeds distinctive attributes of intelligent behavior. The

learning process, as it is referred in [66], could be decomposed into a number of tasks

such as \the acquisition of new declarative knowledge, the development of motor and

cognitive skills through instruction or practice, the organization of new knowledge

into general e�ective representations, and the discovery of new facts and through

observations and experimentation".

Taking into consideration the above aspects of the learning process, we could de-
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�ne as Machine Learning the computer science discipline which is related with the

computational modeling of learning into computers. In other words, Machine Learn-

ing is the study of how to develop algorithms, computer applications, and systems

that have the ability to learn and, thus, improve through experience their performance

at some tasks. Therefore, if a system is able to learn and adapt to such changes, this

helps the system designers to provide only the su�cient and necessary situations

without the need to foresee all possible situations. Consequently, we may not be able

to implement completely and exactly the desired process required of a system, but

we could construct a good and useful approximation to it.

3.1 Types of Learning

The machine learning model includes two main entities, the entity of teacher and the

entity of learner [66, 67]. The teacher plays the role of the entity that contains the

required knowledge in order to perform a given task, while the learner has to learn

the knowledge to perform the task. The amount of inference performed by the learner

on the information provided by the teacher de�nes the learning strategies. Usually

there is a trade-o� in the amount of e�ort required by the learner and the teacher. As

the learner is able to perform a larger amount of inference, the e�ort of the teacher

is decreasing and vice versa. Hence, we can de�ne three types of learning:

Learning from Instruction This type of learning consists of the learner acquiring

knowledge from the teacher and transforming it into an internal representation

for performing inferences. In this kind of learning, the role of the teacher is

crucial as he/she is responsible for organizing the knowledge in a way that

incrementally increases the learner's actual knowledge.

Learning by Analogy This type of learning consists of acquiring new facts or skills

by transforming and increasing existing knowledge that bears strong similarity

to the desired new concept or skill into a form e�ective and useful in the new

situation. This type of learning requires more inference on the part of the learner
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than does learning by heart (rote learning) or learning from instruction. A fact

or skill analogous in relevant parameters should be retrieved from memory and

then the retrieved knowledge should be applied to new situation.

Learning from Examples This the most important type of learning in terms of

relevance to computer science and constitutes the core of what is meant by the

term machine learning. Speci�cally, this is the learning approach which could

be considered as a problem of �nding desired dependencies using a \limited"

number of observations. This type of learning is driven from statistics, where

the problem focuses on how to use samples drawn from an unknown probability

distribution in order to decide from which distribution a new sample has been

drawn. A related problem is how to estimate the value of an unknown function

at a new point given the values of this function at a set of sample points. In

other words, given a set of a examples of a concept, the learner induces a general

concept description that describe the examples. In this type of learning, the

amount of inference performed by the learner is not limited as in learning from

instruction or in learning by analogy, but is, comparatively, much greater.

Generally, there are two subcategories of this type of learning namely inductive

and deductive learning. Inductive learning aims at obtaining or discovering

general relations-dependencies-rules from particular given examples which are

called training data. On the other hand, deductive learning attempts to use a

set of known relations-dependencies-rules that �t the observed training data.

Most machine learning approaches belong to the inductive learning category

and it is these methods that we will focus on in this chapter.

More speci�cally, learning from examples could be discriminated in three cat-

egories according to the way that the training data are utilized to �nd either

a dependence or an inference or a description for the general set of data in a

speci�c problem. These categories are:

Supervised Learning includes prediction and classi�cation tasks and consti-

tutes the main category of learning that we will focus on in our analysis.
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In supervised learning, the objects that are concerned under a speci�c

concept are pairs of input-output patterns. This means that data that be-

long to the same concept are already associated with target values, as, for

example, classes which de�ne the identities of concepts [68, 69, 70, 71, 72].

Unsupervised Learning is about understanding or �nding a concise descrip-

tion of data by passively mapping or clustering data according to some

order principles. This means that the data constitute only a set of objects

where a label is not available to de�ne the speci�c associated concept as

it is in supervised learning. Thus, the goal of unsupervised learning is to

create groups-clusters of similar objects according to a similarity criterion

and then to infer a concept that is shared among of these objects [70, 69].

Also, unsupervised learning includes algorithms that aim at providing a

representation from high-dimensional to low-dimensional spaces, while pre-

serving the initial information of data and o�ering a more e�cient compu-

tation. These techniques, called Dimensionality Reduction Methods, focus

mainly on confronting R. Belman's phenomenon known as \the curse of

dimensionality." This phenomenon is essentially the observation that in-

creasing the number of variables in multivariate problems requires expo-

nentially increasing the amount of computational resources.

Reinforcement Learning involves performing actions to achieve a goal [73].

In reinforcement learning, an agent learns by trial and error to perform an

action to receive a reward, thereby yielding an e�cient method to develop

goal-directed action strategies. Reinforcement learning was inspired by re-

lated phycological theories and is strongly related to the basal ganglia in

the brain. Reinforcement learning methodologies are related to problems

where the learning agent does not a priori know what it must do. Thus, the

agent must discover an action policy for maximizing the \expected gain"

de�ned by the rewards that the agents get in a given state. Reinforcement

learning di�ers from supervised learning because in reinforcement learning

neither input/output pairs are presented, nor sub-optimal actions explic-
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itly corrected, but the agents at a speci�c time t receive a state and upon

this information select an action. As a consequence, the agent receives for

its action a reinforcement signal or reward. Hence, as a given state has

no optimal action the challenge of a reinforcement learning algorithm is to

�nd a balance between exploration of possible actions and exploitation of

its current knowledge in order to maximize its reward. Additionally, the

reinforcement learning algorithm has to face the challenge to discover new

actions not tried in the past and thus to explore the state space. Taking

these facts into account, it is clear that there is not a prede�ned recipe

to give answer to the above dilemma. The environment of this type of

learning is typically formulated as a �nite-state Markov Decision Process

and reinforcement learning algorithms are highly related to dynamic pro-

gramming techniques. Most of these algorithms are based on estimating

value functions, i.e. functions of pairs of state-action that estimate how

good it is for the agent to be in a given state (or how good it is to perform

a given action in a given state). The notion of \how good" is de�ned in

terms of future rewards that can be expected or, more precisely, in terms of

expected returns. Of course, the rewards the agent may expect to receive

in the future depend on what actions it will take.

In the next section, we will analyze further only the statistical supervised learning

paradigms that are utilized mostly in RS and related algorithms in order to extract

inferences from user preferences on a set of items.

3.2 Statistical Learning

The learning process faces problems that are partially unknown, too complex or too

noisy. As we mentioned in the previous section, statistical learning techniques deal

with the di�cult learning process of �nding desired dependence-relation for an in�nite

domain using a �nite amount of given data [68, 71, 74]. In fact, there is an in�nite

number of such relations. Thus, the problem is to select the relation (i.e., to infer the
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dependence) which is the most appropriate. The answer to this problem is provided

by the principle of Occam's razor (also known as principle of parsimony): \Entities

should not be multiplied beyond necessity." This principle means that one should not

increase the number of entities unnecessarily or make further assumptions than are

needed to explain anything. In general, one should pursue the simplest hypothesis

available. Thereby, when many solutions are available for a given problem we should

select the simplest one because according to the interpretation of Occam's razor, \the

simplest explanation is the best" [68, 71, 74].

Consequently, we have to de�ne what is considered as the simplest solution. In or-

der to de�ne what a simple solution is, we need to use prior knowledge of the problem

to be solved. Often, this prior knowledge is the principle of smoothness. Speci�cally,

the smoothness principle states that physical changes do not occur instantaneously,

but all changes take place in a continuous way. If two points x1; x2 are close, then so

should be the corresponding outputs y1; y2. For example, if we have two points, one

of which is red and the other one is green, then if we will get a new point which is

very close to the red one, the principle of smoothness says that this point will most

probably be red. This means that the function (which describes the relation among

location of points and color) does not change abruptly, but its change takes place in

a continuous way. Therefore, the learning problem could be described as the search to

�nd a function which solves our task.

Taking into consideration the previous facts, two main paradigms are developed in

statistical inference: the particular parametric paradigm (parametric inference) and

the general paradigm (nonparametric inference).

3.2.1 Classical Parametric Paradigm

The classical parametric paradigm aims at creating simple statistical methods of

inference [68]. This approach of statistical inference was in
uenced by Fisher's work

in the area of discriminant analysis. The problem was to infer a functional dependence

by a given collection of empirical data. In other words, the investigator of a speci�c

problem knows the physical law that generates the stochastic properties of the data
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in the form of a function to be determined up to a �nite number of parameters. Thus,

the problem is reduced to the estimation of the parameters using the data. Fisher's

goal was to estimate the model that generates the observed signal. More speci�cally,

Fisher proposed that any signal X could be modeled as the sum of two components,

namely a deterministic component and random component:

Y = f(x; a) + �: (3.1)

In this model, f(x; a) is the deterministic part de�ned by values of a function which

is determined up to a limited number of parameters. On the other hand, � corresponds

to the random part describing noise added to the signal, which is de�ned by a known

density function. Thus, the goal was the estimation of the unknown parameters

in the function f(x; a). For this purpose, Fisher adopted the Maximum Likelihood

Method. The classical parametric paradigm could be called as Model Identi�cation as

the main philosophical idea is the traditional goal of science to discover or to identify

an existing law of nature that generates the statistical properties of data.

The classical parametric paradigm is based on three beliefs. The �rst belief states

that the number of free parameters, that de�ne a set of functions linear to them

and contain a good approximation to the desired function, is small. This belief is

based on Weiestrass's theorem, according to which \any continuous function can be

approximated by polynomials at any degree of accuracy" [68].

The second belief refers to the Central Limit Theorem which states that \the sum

of a large number of variables, under wide conditions, is approximated by normal

(Gaussian) law." Therefore, the underlying belief is that for most real life problems,

if randomness is the result of interaction among large numbers of random components,

then the statistical law of the stochastic element is the normal law [68].

The third belief states that the maximum likelihood method as an induction engine

is a good tool for estimating parameters of models even for small sample sizes. This

belief was supported by many theorems that are related with conditional optimality

of the method [68].
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However, the parametric paradigm demonstrates shortcomings in all of the beliefs

that it was based on. In real life multidimensional problems, it seems naive to consider

that we could de�ne a small set of functions that contained the desired functions,

because it is known that, if the desired function is not very smooth, the desired

level of accuracy causes an exponential increase of the number of free terms with an

increasing amount of variables. Additionally, real life problems cannot be described by

only classical distribution functions, while it has also been proven that the maximum

likelihood method is not the best one even for simple problems of density estimation

[68].

3.2.2 General Nonparametric - Predictive Paradigm

The shortcomings of the parametric paradigm for solving high-dimensional problems

have led to the creation of new paradigms as an attempt to analyze the problem

of generalization of statistical inference for the problem of pattern recognition. This

study started by Glivenko, Cantelli and Kolmogorov [68], who proved that the empir-

ical distribution function always converges to the actual distribution function. The

main philosophical idea of this paradigm arises from the fact that there is no reliable

a priori information about the desired function that we would like to approximate.

Due to this fact, we need a method to infer an approximation of the desired function

utilizing the given data under this situation. This means that this method should

be the best for the given data and a description of conditions should be provided in

order to achieve the best approximation to the desired function that we are looking

for.

As a result of the previous reasons, the need was created to state the general

principle of inductive inference which is known as the principle of Empirical Risk

Minimization (ERM). The principle of ERM suggests a decision rule (an indicator

function) that minimizes the so-called \empirical risk", i.e. the number of training

errors. [68, 71].

The construction of a general type of learning machine started in 1962, where

Rosenblatt [72, 68] proposed the �rst model of a learning machine known as per-
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ceptron. The underlying idea of the perceptron was already known in the literature

of neurophysiology. However, Rosenblatt was the �rst to formulate the physiological

concepts of learning with reward and punishment stimulus of perceptron as a program

for computers and showed with his experiments that this model can be generalized.

He proposed a simple algorithm of constructing a rule for separating data into cate-

gories using given examples. The main idea was to choose appropriate coe�cients of

each neuron during the learning process. The next step was done in 1986 with the

construction of the back-propagation algorithm for simultaneously �nding the weights

for multiple neurons of a neural network.

At the end of the 1960s, Vapnik and Chervonenkis started a new paradigm known

asModel Predictions or Predictive Paradigm [68]. The focus here is not on an accurate

estimation of the parameters or on the adequacy of a model on past observations,

but on the predictive ability, for example the capacity of making good predictions

for new observations. The classical paradigm (Model for Identi�cation) looks for a

parsimonious function f(x; a) belonging to a prede�ned set. On the other hand, in

the predictive paradigm the aim is not to approximate the true function (the optimal

solution) f(x; a0), but to get a function f(x; a) which gives as accurate predictions

as possible. Hence, the goal is not to discover the hidden mechanism, but to perform

well. This is known as \black box model" [75], which illustrates the above conception

while keeping the same formulation of the classical paradigm y = f(x; a) + �.

For example in the pattern recognition problem (also known as the classi�cation

problem), understanding the phenomenon (the statistical law that causes the stochas-

tic properties of data) would be a very complex task. In the predictive paradigm,

models such as arti�cial neural networks, support vector machines etc. attempt to

achieve a good accuracy in predictions of events without the need of the identi�cation-

deep understanding of events which are observed. The fundamental idea behind mod-

els that belong to the predictive paradigm is that the problem of estimating a model

of events is \hard or ill-posed" as it requires a large number of observations to be

solved \well" [68]. According to Hadamard a problem is \well-posed" if its solution

1. exists,
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2. is unique, and

3. is stable.

If the solution of the problem violates at least one of the above requirements, then

the problem is considered ill-posed.

Consequently, �nding a function for the estimation problem has led to the deriva-

tion of bounds on the quality of any possible solution. In other words, these bounds

express the generalization ability of this function. This resulted in the adoption of the

inductive principle of Structural Risk Minimization which controls these bounds. This

theory was constructed by Vapnik and Chervonenkis and its quintessence is the use

of what is called a capacity concept for a set of events (a set of indicator functions).

Speci�cally, Vapnik and Chervonenkis introduce the Vapnik Capacity (VC) Dimen-

sion which characterizes the variability of a set of indicator functions implemented

by a learning machine. Thus, the underlying idea to controling the generalization

ability of the learning machine pertains to \achieving the smallest bound on the test

error by controlling (minimizing) the number of the training errors; the machine (the

set of functions) with the smallest VC-dimension should be used" [68, 71].

Thus, there is a trade-o� between the following two requirements:

• to minimize the number of training errors and

• to use a set of functions with small VC-dimension.

On the one hand, the minimization of the number of training errors needs a selection

of function from a wide set of functions. On the other hand, the selection of this

function has to be from a narrow set of functions with small VC-dimension.

As a result, the selection of the indicator function that we will utilize to minimize

the number of errors, has to compromise the accuracy of approximation of training

data and the VC-dimension of the set of functions. The control of these two con-

tradictory requirements is provided by the Structural Risk Minimization principle

[68, 71].

46



3.2.3 Transductive Inference Paradigm

The next step beyond the model prediction paradigm was introduced by Vladimir

Vapnik with the publication of the Transductive Inference Paradigm [75]. The key

ideas behind the transductive inference paradigm arose from the need to create ef-

�cient methods of inference from small sample sizes. Speci�cally, in transductive

inference an e�ort is made to estimate the values of an unknown predictive function

at a given restricted subset of its domain in which we are interested and not in the

entire domain of its de�nition. This led Vapnik to formulate the Main Principle

[75, 68, 71]:

\If you possess a restricted amount of information for solving some problem, try to

solve the problem directly and never solve a more general problem as an intermediate

step. It is possible that the available information is su�cient for a direct solution, but

may be insu�cient to solve a more general intermediate problem."

The main principle constitutes the essential di�erence between newer approaches

and the classical paradigm of statistical inference based on use of the maximum likeli-

hood method to estimate a number of free parameters. While the classical paradigm

is useful in simple problems that can be analyzed with few variables, real world prob-

lems are much more complex and require large numbers of variables. Thus, the goal

when dealing with real life problems that are by nature of high dimensionality is to

de�ne a less demanding (i.e. less complex) problem which admits well-posed solu-

tions. This fact involves �nding values of the unknown function reasonably well only

at given points of interest, while outside of the given points of interest that function

may not be well-estimated.

The setting of the learning problem in the predictive paradigm, which is analyzed

in the next section, uses a two step procedure. The �rst step is the induction stage,

in which we estimate the function from a given set of functions using an induction

principle. The second step is the deduction stage, in which we evaluate the values

of the unknown function only at given points of interest. In other words, the solu-

tion given by the inductive principle derives results �rst from particular to general
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(inductive step) and then from general to particular (deductive step).

On the contrary, the paradigm of transductive inference forms a solution that

derives results directly from particular (training samples) to particular (testing sam-

ples).

In many problems, we do not care about �nding a speci�c function with good

generalization ability, but rather are interested in classifying a given set of examples

(i.e. a test set of data) with minimum possible error. For this this reason, the

inductive formulation of the learning problem is unnecessarily complex.

Transductive inference embeds the unlabeled (test) data in the decision making

process that will be responsible for their �nal classi�cation. Transductive inference

\works because the test set can give you a non-trivial factorization of the (discrimina-

tion) function class" [76]. Additionally, the unlabeled examples provide information

on the prior information of the labeled examples and \guide the linear boundary away

from the dense region of labeled examples" [77].

For a given set of labeled data points Train−Set = {(x1; y1); (x2; y2); :::; (xn; yn)},

with yi ∈ {−1; 1} and a set of test data points Test − Set = {xn+1; xn+2; :::; xn+k},

where xi ∈ Rd, transduction seeks among the feasible corresponding labels the one

y∗n+1; y
∗
n+2; :::; y

∗
n+k that has the minimum number of errors.

Also, transduction would be useful among other ways of inference in which there

are either a small amount of labeled data points available or the cost for annotating

data points is prohibitive. Hence, the use of the ERM principle helps in selections of

the \best function from the set of indicator functions de�ned in Rd, while transductive

inference targets only the functions de�ned on the working set Working − Set =

Train− Set
∪
Test− Set," which is a discrete space.

To conclude, the goal of inductive learning (classical parametric paradigm and pre-

dictive paradigm) is to generalize for any future test set, while the goal of transductive

inference is to make predictions for a speci�c working set. In inductive inference, the

error probability is not meaningful when the prediction rule is updated very abruptly

and the data point may be not independently and identically distributed, as, for ex-

ample, in data streaming. On the contrary, Vapnik [68] illustrated that the results
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from transductive inference are accurate even when the data points of interest and

the training data are not independently and identically distributed. Therefore, the

predictive power of transductive inference can be estimated at any time instance in

a data stream for both future and previously observed data points that are not inde-

pendently and identically distributed. In particular, empirical �ndings suggest that

transductive inference is more suitable than inductive inference for problems with

small training sets and large test sets [77].

3.3 Formulation of the Learning Problem

In here, we will follow the formulation of the problem of learnign from data for the

predictive paradigm [78, 68, 71], in accordance with concepts developed in the Vapnik

and Chervonenkis learning theory. The general learning problem of estimation of an

unknown dependence (function) between input and output of a system using a limited

number of observations constitutes of three components, as is illustrated in Fig. 3-1:

Figure 3-1: Learning from examples

1. The Generator (sampling distribution) produces random vectors x ∈ Rd, drawn

independently from a �xed probability density P (x) which is unknown.

2. The System (also known as the supervisor) produces an output value y for every

input vector x according to the �xed conditional density P (x|y) which is also

unknown.
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3. The Learning Machine is capable of implementing a set of approximating func-

tions f(x; a), which depend on a set of parameters a ∈ Λ, where Λ is a set of

allowed parameter values.

Hence, the learning problem can be de�ned as follows: Given a set of n train-

ing samples (xi; yi), i = 1; :::; n, which constitute n random independent identically

distributed observations produced according to an unknown joint probability den-

sity function (pdf): P (x; y) = P (x)P (y|x), select a function from the given set of

approximating functions f(x; a) which best approximates the System response.

We have to mention that the set of approximating functions of the Learning Ma-

chine should be chosen a priori and before the learning process is started. In the best

case, the selection of a set of approximating functions re
ects prior knowledge about

the System. This selection is dependent on the particular application at hand and lies

outside the scope of the learning problem. Common sets of approximating functions

may be radial based functions, multi-layer perceptrons, wavelets etc.

In order to measure the quality of an approximation function and to select the

best available approximation, one may measure the loss or discrepancy L(y; f(x; a))

between the System and the Learning Machine outputs for a given point x. In other

words, a Loss Function is de�ned as a non-negative function that measures the quality

of the approximating function f .

The expected value of the loss function is called the expected or prediction risk

functional.

R(a) =

∫
L(y; f(x; a))P (x; y) dx dy: (3.2)

Thereby, learning is the process of estimating the function f(x; a) which minimizes

the risk functional R(a) over the set of functions f(x; a) supported by the Learning

Machine using only the training data, as the joint probability distribution P (x; y) is

not known.

We cannot necessarily expect to �nd the optimal solution f(x; a0), so we denote

with f(x; a) as the estimate of the optimal solution obtained with �nite training data

using some learning procedure. This is illustrated in Fig. 3-2.
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Figure 3-2: Learning as a searching of the desired function

The learning process is divided into the following main problems:

• The problem of Pattern Recognition - Classi�cation

• The problem of Regression Estimation

• The Problem of Density Estimation.

For each of these problems, we have di�erent corresponding Loss functions as the

output y di�ers. However the goal of minimizing the risk functional based only on

training data, is common for all learning problems. In the next section we will give

the formulation and the loss functions for the problem of Classi�cation [78, 68, 71],

which is of interest in here.

3.4 The Problem of Classi�cation

The output y of the System in the classi�cation problem takes only two symbolic

values y ∈ {0; 1}, which correspond to the input x belonging to one or the other of two

classes. Within the framework of RS, the two classes could correspond, for example,

to items with low rating value (e.g. rating value in {1; 2}) and items with high rating

value (e.g. rating value in {3; 4; 5}), respectively. Consequently, the output of the

Learning Machine needs only to take on the two values 0 and 1. Thereby, the set

of functions f(x; a), a ∈ Λ, which take these two values become a set of indicator
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functions. The following loss function for this problem measures the classi�cation

error:

L(y; f(x; a)) = |y − f(x; a)| (3.3)

or

L(y; f(x; a)) =

 0

1

if y = f(x; a)

if y ̸= f(x; a)
(3.4)

Using the loss function, the risk functional 3.2 provides the probability of clas-

si�cation errors to occur. As a result, learning becomes the problem of �nding the

indicator function f(x; a0) which minimizes the probability of misclassi�cation using

only the training data.

It is useful to mention that, if the density P (x; y) is known, the given learning

task (classi�cation in this case) can be solved by minimizing Eq. 3.2 directly, without

a need for training data.

This implies that the density estimation problem is the most general of all learning

problems and, therefore, the most di�cult to solve with a �nite amount of data. This

remark has led Vapnik to de�ne the Main Principle [68], to which we referred in

a previous section. According to the main principle, we do not need to solve a

given learning problem by indirectly solving a harder problem such as that of density

estimation as an intermediate step. This principle is rarely followed under other

approaches, such as arti�cial neural networks [72, 79] where the classi�cation problem

is solved via density estimation.

3.4.1 Empirical Risk Minimization

With the above analysis taken into account, we can estimate the indicator function

f(x; a0) which minimizes the empirical risk (also known as the training error). In

Eq. 3.2, the expected risk functional R(a) is replaced by the empirical risk functional :
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Remp(a) =
1

n

n∑
i=1

L(yi; f(xi; a)): (3.5)

This inductive principle is called as Empirical Risk Minimization [68] and is uti-

lized to approximate the function f(x; a0) which minimizes the risk in Eq. 3.2 by the

function f(x; an) which minimizes the empirical risk in Eq. 3.5.

The ERM principle chooses the function f(x; a) that minimizes the empirical risk

or the average loss for the training data. The key problem according to Vapnik

[78, 68, 71] for a learning process based on the ERM principle is to ensure consistency

of the learning process that minimizes the empirical risk. This will guarantee that

the minimization of the empirical risk will converge to the true risk which cannot be

computed. Vapnik and Chervonenkis [74, 68] proved that the necessary and su�cient

conditions for consistency of the ERM principle is that the ratio of the VC-entropy of

the set of indicator functions on a sample of size n approaches to zero as the number

of observed data n approaches in�nity. VC entropy of the set of indicator functions

provides a measure of the expected diversity of the set of indicator functions with

respect to a sample of a given size, generated from some (unknown) distribution.

This de�nition of entropy is given in Vapnik [74, 68] in the context of statistical

learning theory and should not be confused with Shannon's entropy commonly used

in information theory. Thus, the ERM principle is intended for dealing with large

sample sizes.

Another important result of the VC theory on the generalization ability of the

learning machine from a set of totally bounded non-negative functions f(x; a) is the

following Inequality 3.6. This inequality is useful in model selection, as it provides

an upper limit for complexity for a given sample size and con�dence level, with no

assumptions about the type of approximating function and noise level in the data.

Speci�cally, the inequality for the classi�cation problem of two classes is:

R(a) ≤ Remp(a) +
"(n)

2

(
1 +

√
1 +

4Remp(a)

"(n)

)
(3.6)

with probability 1− � simultaneously for all functions f(x; a), including the function
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f(x; a0) and

"(n) = 4
h
(
ln 2n

h
+ 1
)
− ln(�)

n
; (3.7)

such that h is a VC-dimension and n data points of training set.

As stated previously, the VC dimension h of a set of indicator functions is the

maximum number of samples for which all possible binary classi�cations can be in-

duced (without error). For example, h will be the VC dimension of a set of indicator

functions, if there exist h samples that can be shattered by this set of functions but

there are no h − 1 samples that can be shattered by this set of functions. Here,

shattering is the process of �nding all possible 2h ways with correctly assigned labels.

The ERM principle works well when a large number of observed data is available,

since the law of large numbers states that

lim
n→∞

Remp(a) = R(a): (3.8)

From the above Inequality 3.6, we observe that, when n
h
is large, the second

summand on the right side of 3.6, which corresponds to the con�dence interval for

the empirical risk, approaches zero. Then, the true expected risk R(a) is close to the

value of the empirical risk Remp(a).

However, if n
h
is small, as with a limited number of observed data, there is no

guarantee for a solution based on expected risk minimization because a small empirical

risk Remp(a) requires a small true expected risk R(a).

We have to mention that the empirical risk Remp(a) in Inequality 3.6, depends

on a speci�c function from the set of functions, whereas the second term depends on

the VC dimension of the set of functions. Hence, minimization of the upper bound

of the true expected risk R(a) in Inequality 3.6 needs to minimize both terms of the

right hand side of the inequality. This means that it is necessary to make the VC

dimension a controlling variable. More precisely, we need to �nd the set of functions

with optimal VC dimension for a given training data. Thus, Vapnik proposed a new

principle known as Structural Risk Minimization.
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3.4.2 Structural Risk Minimization

Structural Risk Minimization (SRM) attempts to minimize the true expected risk

R(a), while paying attention to minimizing the Empirical Risk Remp(a) along with the

VC dimension of the set of functions. Thus, the VC dimension de�nes the complexity

of the set of functions and will not be confused with the number of free parameters

or degree of freedoms [78, 68, 71]. For a �nite training sample of size n, there exists

an optimal element of a structure providing minimum of prediction risk. The SRM

principle seeks to minimize the expected risk while avoiding under�tting and over�t-

ting using function complexity control [68, 71]. Under�tting occurs when the selected

function is not adequate to approximate the training data. While, there is over�tting

when the selected function is too complex that approximates excessively the training

data and results to be insu�cient to generalize well. Thus, the SRM principle pro-

vides a complexity ordering of the approximating functions. More speci�cally, \the

SRM principle suggests a trade-o� between the quality of approximation and the

complexity of the approximating function" [68].

The empirical risk Remp(a) decreases as the VC dimension increases. As the VC

dimension h is low compared to the number of training examples n, the con�dence

interval is narrow. This is illustrated in Fig. 3-3 (adapted from [68])

The inductive principle SRM provides a formal mechanism for choosing an optimal

complexity of a set of functions for a �nite sample. SRM has been originally proposed

and applied for classi�cation [68]. However, it is applicable to any learning problem,

where the risk functional has to be minimized.

Let the set S of functions f(x; a), a ∈ Λ have a structure that consists of nested

subsets Si, i = 1; 2; ::: of totally bounded non-negative functions

S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ Sn ⊂ : : : ; (3.9)

such that the VC dimension hi, i = 1; 2; : : : of the subsets satis�es

h1 ≤ h2 ≤ h3 ≤ · · · ≤ hn ≤ : : : : (3.10)
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Figure 3-3: Upper bound on Expected True Risk R(a) and Empirical Risk Remp(a)
as a function of VC dimension h

Then, the SRM principle chooses an optimal subset of the structure as a solution

to the learning problem. This particular optimal subset has a speci�c VC dimension

that yields the minimal guaranteed (i.e. lowest upper) bound on the true (expected)

risk.

There are two strategies to implement the SRM inductive principle in learning

algorithms and these are related to the two terms that participate in the upper bound

of 3.6:

• The �rst strategy is to minimize the empirical risk Remp(a) for a �xed VC

dimension h and

• the second strategy is to minimize the VC dimension, which involves minimiza-

tion of the con�dence interval term in 3.6 for the problem of classi�cation, while

the empirical risk Remp(a) remains constant (small).
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3.5 Support Vector Machines

The Support Vector Machine (SVM) is a supervised classi�cation system that �nds

an optimal hyperplane which separates data points that will generalize best to future

data [80, 71, 74, 81, 78, 82]. Such a hyperplane is the, so-called, maximum margin

hyperplane and maximizes the distance to the closest points from each class.

The SVM mainly relies on the following assumptions: In pattern recognition appli-

cations, usually we map the input vectors into a set of new variables (features), which

are selected according to a priori assumptions about the learning problem. These fea-

tures, rather than the original inputs, are then used by the learning machine. This

type of feature selection often has the additional goal of controlling complexity for

approximation schemes, where complexity is dependent on input dimensionality. In

other words, the feature selection process has the goal to reduce redundancy in the

data in order to reduce the problem complexity. On the contrary, SVM transform

data into a high-dimensional space which may convert complex classi�cation problems

(with complex decision surfaces) into simpler problems that can use linear discrimi-

nant functions. SVM do not place any restriction on the number of basis functions

(features) used to construct a high-dimensional mapping of the input data points.

Consequently, the dimensionality of data points (feature vectors), that describe our

data, does not in
uence signi�cantly the learning process. Hence, it is not necessary

to apply techniques of dimensionality reduction as in the classical paradigm in which

the dimensionality of the data points is a critical factor.

Moreover, linear functions with constraints on complexity are used to approxi-

mate or discriminate the input data points in the high-dimensional space. SVM use

linear estimators to perform approximation. This in contrast with arti�cial neural

networks which depend on nonlinear approximations applied directly on the input

space. Nonlinear estimators can potentially provide a more compact representation

of the approximation function; however, they su�er from two serious drawbacks: lack

of complexity measures and lack of optimization approaches that would provide a

globally optimal solution.
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Additionally, the linear approximating function that corresponds to the solution of

the dual quadratic optimization problem is given in the kernel representation rather

than in the typical basis function representation. The solution in the kernel represen-

tation is written as a weighted sum of the support vectors. The support vectors are

a subset of the training data corresponding to the solution of the learning problem.

Also, SVM are based on using only those training patterns that are near the

decision surface assuming they provide the most useful information for classi�cation.

SVM are based on statistical learning theory that we have analyze in previous sections

and implement the structural risk minimization (SRM) inductive principle in order

to e�ectively generalize data sets of limited size. Speci�cally, SVM de�ne a special

structure on a set of equivalence classes. In this structure, each element is indexed

by the margin size.

For these reasons, we select the use of SVM to address our problem. In the

remainder of this section, the basic theory of SVM will be given. Additionally, we will

present One Class SVM that are utilized in the new approach to the recommendation

process proposed in here.

3.5.1 Basics of Support Vector Machines

Let X = {(x1; y1); (x2; y2); : : : ; (xn; yn)}; where x ∈ Rd, y ∈ {−1; 1} be a set of d-

dimensional feature vectors corresponding to data points (e.g. recommended items).

Linearly Separable Data

In the simple case of separable training data, there exists a hyperplane decision func-

tion which separates the positive from the negative examples

f(x) = (w · x)− b; (3.11)

with appropriate parameters w, b [78, 82].

Let dpositive be the shortest distance from the separating hyperplane to the closest

positive example and dnegative the corresponding shortest distance from the separating
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hyperplane tothe closest negative example. The margin of the hyperplane is de�ned

as D = dpositive + dnegative. Consequently, the optimal hyperplane is de�ned as the

hyperplane with maximal margin. The optimal hyperplane separates the data without

error. Then, if all the training data satisfy the above requirements, we have:

(w · xi)− b ≥ 1 if yi = 1 hyperplane H1

(w · xi)− b ≤ −1 if yi = −1 hyperplane H−1

(3.12)

The above inequalities can be combined in the following form:

yi[(w · xi)− b] ≥ 1, i = 1; : : : ; n: (3.13)

Figure 3-4: Two class classi�cation. Support vectors are indicated with crosses

Thereby, the optimal hyperplane can be found by solving the primal optimization

problem:

minimize Φ(w) = 1
2
∥w∥2 = 1

2
(wT · w)

subject to yi[(w · xi)− b] ≥ 1, i = 1; : : : ; n:
(3.14)

In order to solve this optimization problem, we form the following Lagrange func-

tional:

L(w; b) =
1

2
∥w∥2 −

n∑
i=1

ai[yif(xi)− 1]; (3.15)

where the ai are Lagrange multipliers with ai ≥ 0. The Lagrangian L(w; b) must be

minimized with respect to the w and b so that the saddle point w0, b0 and a0i satisfy
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the conditions:
@L(w0;b0)

@b
=

n∑
i=1

a0i yi = 0

@L(w0;b0)
@w

= w0 −
n∑
i=1

yia
0
ixi = 0:

(3.16)

From the above equations, we obtain

n∑
i=1

a0i yi = 0, a0i ≥ 0 (3.17)

and

w0 =
n∑
i=1

yia
0
ixi, a

0
i ≥ 0: (3.18)

Also, the solution must satisfy the Karush-Kuhn-Tucker conditions:

a0i yi[(w0 · xi)− b0]− 1 = 0, i = 1; : : : ; n: (3.19)

The Karush-Kuhn-Tucker conditions are satis�ed at the solution of any con-

strained optimization problem whether it is convex or not and for any kind of con-

straints, provided that the intersection of the set of feasible directions with the set

of descent directions coincides with the intersection of the set of feasible directions

for linearized constraints with the set of descent directions. The problem for SVM

is convex and for convex problems the Karush-Kuhn-Tucker conditions are necessary

and su�cient for w0, b0 and a0i to be a solution. Thus, solving the SVM problem

is equivalent to �nding a solution to the Karush-Kuhn-Tucker conditions. Note that

there is a Lagrange multiplier ai for every training point.

The data points for which the above conditions are satis�ed and can have nonzero

coe�cients a0i in the expansion of 3.18 are called support vectors. As the support

vectors are the closest data points to the decision surface, they determine the location

of the optimal separating hyperplane (see Fig. 3-4).

Thereby, we can substitute Eq. 3.18 back into Eq. 3.15 and, taking into account
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the Karush-Kuhn-Tucker conditions, we obtain the functional

W (a) =
n∑
i=1

ai −
1

2

n∑
i=1

n∑
j=1

aiajyiyj(xi · xj): (3.20)

Consequently, we arrive at the, so-called, dual optimization problem:

maximize W (a) =
n∑
i=1

ai − 1
2

n∑
i=1

n∑
j=1

aiajyiyj(xi · xj)

subject to b
n∑
i=1

aiyi = 0,

ai ≥ 0:

(3.21)

We can obtain the optimal hyperplane as a linear combination of support vectors

(SV)

f(x) =
n∑
i=1

yia
0
i (xi · x) + b0

=
∑

i∈ SV

yia
0
i (xi · x) + b0:

(3.22)

The VC dimension h of a set of hyperplanes with margin b0 =
1

∥w0∥2 has the upper

bound

h ≤ min{∥ w0 ∥2; d}+ 1: (3.23)

The optimal separating hyperplane can be found following the SRM principle. Since

the data points are linearly separable, one �nds a separating hyperplane that has

minimum empirical risk (i.e., zero empirical error) from the subset of functions with

the smallest VC-dimension.

Linearly Nonseparable Data

Usually, data collected under real conditions are a�ected by outliers. Sometimes,

outliers are caused by noisy measurements. In this case, outliers should be taken

into consideration. This means that the data are not linearly separable and some of

the training data points fall inside the margin. Thus, the SVM has to achieve two

contradicting goals. On one hand, the SVM has to maximize the margin and on the

other hand the SVM has to minimize the number of nonseparable data [81, 78, 82].
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We can extend the previous ideas of separable data to nonseparable data by in-

troducing a slack positive variable �i ≥ 0 for each training vector. Thereby, we can

modify Eq. 3.12 in the following way

(w · xi)− b ≥ 1− �i if yi = 1 hyperplane H1

(w · xi)− b ≤ −1 + �i if yi = −1 hyperplane H−1

�i ≥ 0, i = 1; : : : ; n:

(3.24)

The above inequalities can be combined in the following form:

yi[(w · xi)− b] ≥ 1− �i, i = 1; : : : ; n: (3.25)

Obviously, if we take �i large enough, the constraints in Eq. 3.25 will be met for

all i. For an error to occur, the corresponding �i must exceed unity, therefore the

upper bound on the number of training errors is given by
∑
i=1

�i. To avoid the trivial

solution of large �i , we introduce a penalization cost C in the objective function in

Eq. 3.25, which controls the degree of penalization of the slack variables �i, so that,

when C increases, fewer training errors are permitted. In other words, the parameter

C controls the tradeo� between complexity (VC-dimension) and proportion of non-

separable samples (empirical risk) and must be selected by the user. A given value for

C implicitly speci�es the size of margin. Hence, the SVM solution can then be found

by (a) keeping the upper bound on the VC-dimension small and (b) by minimizing an

upper bound on the empirical risk so the primal optimization formulation (1-Norm

Soft Margin or the Box Constraint) becomes:

minimize Φ(�) = 1
2
∥w∥2 + C

n∑
i=1

�i

subject to yi[(w · xi)− b] ≥ 1− �i, i = 1; : : : ; n:

(3.26)

Following the same formalism of Lagrange multipliers leads to the same dual

problem as in Eq. 3.21, but with the positivity constraints on ai replaced by the
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constraints 0 ≤ ai ≤ C. Correspondingly, we end up with the Lagrange functional:

L(w; b; �) =
1

2
∥ w ∥2 ++ C

n∑
i=1

�i −
n∑
i=1

ai[yi((w · xi) + b)− 1− �i]−
n∑
i=1

ri�i (3.27)

with ái ≥ 0 and ri ≥ 0. The optimal solution has to ful�l the Karush-Kuhn-Tucker

conditions:
@L(w0;b0;�0)

@b
=

n∑
i=1

a0i yi = 0

@L(w0;b0;�0)
@w

= w0 −
n∑
i=1

yia
0
ixi = 0

@L(w0;b0;�0)
@�i

= C − ai − ri = 0:

(3.28)

Substituting back the Karush-Kuhn-Tucker conditions, into the initial Lagrange

functional we obtain the following objective function:

L(w; b; �) =
n∑
i=1

ai −
1

2

n∑
i=1

n∑
j=1

aiajyiyj(xi · xj): (3.29)

This objective function is identical to that for the separable case, with the additional

constraints C − ai − ri = 0 and ri ≥ 0 to enforce ai ≤ C, while �i ̸= 0 only if ri = 0

and therefore ai = C. Thereby the complementary Karush-Kuhn-Tucker conditions

become

ai[yi((xi · w) + b)− 1 + �i] = 0; i = 1; : : : ; n;

�i(ai − C) = 0; i = 1; : : : ; n:
(3.30)

The Karush-Kuhn-Tucker conditions imply that non-zero slack variables can only

occur when ai = C. The points with non-zero slack variables are 1
∥w∥ − �i, as their ge-

ometric margin is less than 1
∥w∥ . Points for which 0 < ai < C lie at the target distance

of 1
∥w∥ from the hyperplane. Hence, the dual optimization problem is formulated as

follows:

maximize W (a) =
n∑
i=1

ai − 1
2

n∑
i=1

n∑
j=1

aiajyiyj(xi · xj)

subject to
n∑
i=1

aiyi = 0,

0 ≤ ai ≤ C:

(3.31)

Thus, from the primal solution (w0; b0; �
0
i ), it can be shown that the optimal
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solution has to ful�l the following Karush-Kuhn-Tucker optimality conditions:

ai = 0 ⇒ yi[(w · xi)− b] ≥ 1 and �i = 0 ignored vectors

0 < ai < C ⇒ yi[(w · xi)− b] = 1 and �i = 0 error support vectors

ai = C ⇒ yi[(w · xi)− b] ≤ 1 and �i > 0 margin support vectors

(3.32)

and

w0 =
n∑
i=1

a0i yixi: (3.33)

The above equations indicate one of the most signi�cant characteristics of SVM:

since most patterns lie outside the margin area, their optimal ai are zero. Only

those training patterns xi which lie on the margin surface that is equal to the a priori

chosen penalty parameter C (margin support vectors), or inside the margin area (error

support vectors) have non-zero ai and are named support vectors SV [81, 78, 82].

The optimal solution gives rise to a decision function for the classi�cation problem

which consists of assigning any input vector x to one of the two classes according to

the following rule:

f(x) = sign(
∑
i∈ SV

yia
0
i (xi · x) + b0): (3.34)

According to Eq. 3.23, in an (in�nite-dimensional) Hilbert space, the VC-dimension

h of the set of separating hyperplanes with margin b0 =
1

∥w0∥2 depends only on ∥ w0 ∥2.

An e�ective way to construct the optimal separating hyperplane in a Hilbert space

without explicitly mapping the input data points into the Hilbert space can be done

using Mercer's Theorem. The inner product (Φ(xi) · Φ(xj)) in some Hilbert space

(feature space) H of input vectors xi and xj can be de�ned by a symmetric positive

de�nite function K(xi; xj) (called kernel) in the input space X

(Φ(xi) · Φ(xj)) = K(xi; xj): (3.35)

In other words, for a non-linearly separable classi�cation problem, we map the data

x from input space X ∈ Rd to some other (possibly in�nite dimensional) Euclidean

space H where the data are linearly separable, using a mapping function which we
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will call Φ:

Φ : X ∈ Rd 7→ H: (3.36)

Thus, we replace all inner products (xi · x) by a proper K(xi; xj) and the dual opti-

mization problem for the Lagrangian multipliers is formulated as follows:

maximize W (a) =
n∑
i=1

ai − 1
2

n∑
i=1

n∑
j=1

aiajyiyjK(xi; xj)

subject to
n∑
i=1

aiyi = 0,

0 ≤ ai ≤ C:

(3.37)

Di�erent kernel functions K(xi; xj) result in di�erent description boundaries in

the original input space. In here, we utilize the gaussian or the polynomial kernel

functions. These are of the respective forms:

K(xi; xj) = exp{−∥xi − xj∥2

2�2
}: (3.38)

and

K(xi; xj) = ((xi − xj) + 1)k; (3.39)

where k is the order of the polynomial kernel function. Thus, the corresponding

decision function is

f(x) = sign(
∑
i∈ SV

yia
0
iK(xi; x) + b0): (3.40)

We have to note that we get linear decision functions (Eq. 3.40) in the feature

space that are equivalent to nonlinear functions (Eq. 3.14). The computations do not

involve the Φ function explicitly, but depend only on the inner product de�ned in

H feature space which in turn is obtained e�ciently from a suitable kernel function.

The learning machines which construct functions of the form of Eq. 3.40 are called

Support Vector Machines (SVM).
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3.5.2 Multi-Class Classi�cation based on SVM

Let X be a labeled dataset containing n data points from K classes, !1, !2, : : : ,

!K . The goal is to classify new data points from the same distribution in one of

the K classes. The conventional way is to decompose the K-class problem into a

series of two-class problems and construct several binary classi�ers. This problem

of constructing and combining K binary classi�ers, such as SVM, constitutes an on

on-going research issue [83, 84].

The �rst approach to the problem follows a One Against All (OAA) strategy. The

OAA approach constructs K binary SVM with the ith one separating class i from all

the remaining classes. Given a data point x to classify, all the K SVM are evaluated

and the label of the class that has the largest value of the decision function is selected.

The second approach is the One Against One (OAO) or Pairwise strategy. The

OAO approach is constructed by training binary SVM to classify between pairs of

classes. Thus, the OAO model consists of K(K−1)
2

binary SVM for a K-class classi�ca-

tion problem. Each of the K(K−1)
2

SVM gives one vote for its of the target class and,

eventually, the given input sample x is assigned to the class with highest number of

votes [85].

Neither the OAA approach nor the OAO approach signi�cantly outperform one

another in terms of classi�cation accuracy. Their di�erence mainly lies in the training

time, testing speed and the size of the trained classi�er model. Although the OAA

approach only requires K binary SVM, its training is computationally more expensive

because each binary SVM is optimized on all the n training samples. Contrarily, the

OAO approach has K(K−1)
2

binary SVM to train; however, each SVM is trained on

2n
K

samples. The overall training speed is signi�cantly faster than that of the OAA

approach. As for the total size of the classi�er model, the OAO has much fewer

support vectors than the OAA.

In addition to the previous, the combination of classi�ers in the voting scheme

of the OAO approach can result in the possibility of ties or contradictory votings

[70]. Also, in OAA voting can lead in many rejections although the accuracy on
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the accepted data points is very good. In order to overcome these problems a lot

of alternative methods have been proposed. In [86], it is proposed to �t a simple

logistic function on the outputs and combine them with the maximum combining

rule in the case of the OAA approach. This does not improve over the voting method

with rejections, but no data points are rejected. Also, in [87] they make use of error-

correcting output codes, which changes the de�nition of the class a single classi�er

has to learn.

Moreover, there are methods that cast the output of the SVM classi�er into a

con�dence measure, such as posterior probability, since standard SVM do not provide

such probabilities. In [88, 89], the authors developed a post-processing method for

mapping the outputs of a single SVM into posterior probabilities.

The results presented in [90] on a comparison of several multi-class SVM methods

indicate that all these approaches are fundamentally very similar. However, the au-

thors conclude that the OAO approach is more practical, because the training process

is faster. This is corroborated further in [83], where the authors conclude that the

OAO and ECOC approaches are more accurate than the OAA approach. In LIBSVM

[91], which is utilized in here for muticlass SVM classi�cation, the OAO approach is

followed.
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3.6 One-Class Classi�cation

One-class classi�cation problems arise in many real world machine learning applica-

tions [92, 93, 94, 95, 96, 97], where a single class of patterns has to be distinguished

against the remainder of the pattern space. A main characteristic of this special type

of machine learning problems is that the class to be recognized, i.e. the target class,

occupies only a negligible volume in pattern space when compared to the volume oc-

cupied by the complementary space. This setting is encountered within the broader

framework of class imbalance problems where inductive learning systems attempt to

recognize the positive instances of a target concept. The target class, also referred

to as the target concept, is represented by only a few available positive patterns in

contrast to the vast complementary space of negative patterns. Identifying the nature

of the class imbalance problem is of crucial importance within the �eld of machine

learning which speci�cally relates to a) the degree of class imbalance which can be

measured by the di�erences in the prior class probabilities, b) the complexity of the

concept represented by the positive patterns, c) the overall size of the training set

and d) the classi�er involved.

In [97], the authors attempted to unify the relative research by focusing on the

nature of the class imbalance problem. Their �ndings indicate that the higher the

degree of class imbalance, the higher the complexity of the concept and the smaller the

overall training set, the greater the e�ect of class imbalances in classi�er performance.

This conclusion is justi�ed by the fact that high complexity and imbalance levels as

well as small training set sizes give rise to very small subclusters that classi�ers fail to

classify correctly. Their experiments involved several arti�cially generated domains of

varying concept complexity, training set size and degree of imbalance. The results of

those experiments revealed that the C5.0 classi�er was the most sensitive compared

against MLP and SVM which demonstrated the best overall performance as they

were not very sensitive to the problem.

In [98], it is stated that classi�cation problems with uneven class distributions

present several di�culties during training as well as during the evaluation process of
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the classi�ers. The context within which the authors conducted their experiments

was the customer insolvency problem which is characterized by a) very uneven dis-

tributions for the two classes of interest, namely the solvent and insolvent class of

customers b) small number of instances within the insolvent class (minority class)

and c) di�erent misclassi�cation costs for the two classes. In order to assess the e�ect

of imbalances in class distributions on the accuracy of classi�cation performance, sev-

eral classi�ers were employed such as Neural Networks(MLP), Multinomial Logistic

Regression, Bayesian Networks(hill climbing search), Decision Tree (pruned C4.5),

SVM and Linear Logistic Regression. The classi�cation results based on the True

Positive ratio which represents the ability of the classi�ers in recognizing the minor-

ity (positive) class (TP = Pr{predictedMinority|actuallyMinority}) demonstrate

poor e�ciency. More speci�cally the best overall classi�er was MLP while SVM and

Logistic Linear Regression treated all minority samples as noise.

The authors in [99] mention that in cases where the number of patterns originating

from the majority class greatly outnumber the number of patterns from the minority

class, certain discriminative learners tend to over�t. As an alternative approach

the authors propose the utilization of recognition-based learning paradigms often

referred to as novelty detection approaches where the model built by the classi�ers

is based on samples from the target (minority) class alone. Their �ndings suggest

that one - class (recognition based) learning, under certain conditions such as multi-

modality of the domain space, may, in fact, be superior to discriminative approaches

such as decision trees or neural networks. Similar results are also presented in [100]

where they demonstrate the optimality of one-class SVM [101] over two-class ones in

certain important imbalanced-data domains. Additionally, they argue that one-class

learning is related to aggressive feature selection methods which are more practical

since feature selection can often be too expensive to apply.

In [102], the authors show that the novelty detection approach is a viable solution

to the class imbalance problem. Speci�cally, the authors conducted experiments

using SVM-based classi�ers, on classi�cation problems where the class imbalance

was extreme, and found that novelty detectors are more accurate than balanced and
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unbalanced binary classi�ers. Their �ndings also demonstrate that novelty detectors

are more e�ective when the two classes under consideration exhibit a non-symmetrical

class relationship. This situation arises in practical classi�cation problems when each

class does not consist of homogeneous patterns. Speci�cally, a problem is called non-

symmetrical when only one-class is of interest and everything else belongs to another

class. The one-class classi�cation approach was also reported as a remedy for class

imbalance problems by [103] where they claim that one-class classi�cation can be

considered as an alternative solution at the algorithmic level.

3.6.1 One-Class SVM Classi�cation

A classi�er based on one-class support vector machines (One-Class SVM ) is a su-

pervised classi�cation system that �nds an optimal hypersphere which encompasses

within its bounds as many training data points as possible. The training patterns

originate only from one-class, namely the class of positive patterns. In the context of

item-based recommendation, the class of positive patterns is interpreted as the class

of desirable items for a particular user. A one-class SVM classi�er attempts to obtain

a hypersphere of minimal radius into a feature space H using an appropriate kernel

function that will generalize best on future data. This means that the majority of

incoming data pertaining to the class of positive patterns will fall within the bounds

of the learnt hypersphere. In this section we will describe the method for one-class

SVM proposed by [104].

Assuming that we have a setX of d dimensional data points xi X = {x1; x2; : : : ; xn};

where x ∈ Rd, i = {1; 2; : : : ; n}: Also, we have a function (map) Φ : Rd 7→ H that

maps the data points into a higher dimensional feature (inner product) space H such

that the inner product in the image of Φ can be computed by evaluating a kernel

K(xi; xj) = (Φ(xi) · Φ(xj)):

The purpose of one-class SVM is to construct a function (hyperplane) f that holds

most of the data points in its positive side, which means that f takes the value +1 in

the \small" region of data points and −1 elsewhere. The goal of the proposed method

is to map the data points into the feature space through the kernel function and to
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separate them from the origin with maximum margin.

The following quadratic problem can be formulated:

minimize 1
2
∥w∥2 + 1

�l

n∑
i=1

�i − %

subject to (w · Φ(xi)) ≥ %− �i, i = 1; : : : ; n;

where �i ≥ 0 and � ∈ (0; 1]:

(3.41)

In order to solve this optimization problem, we form the following Lagrange func-

tional:

L(w; %; �) =
1

2
∥ w ∥2 + 1

�l

n∑
i=1

�i − %−
n∑
i=1

ai[(w · Φ(xi))− %+ �i]−
n∑
i=1

ri�i (3.42)

with ai ≥ 0 and ri ≥ 0.

The optimal solution has to ful�l the Karush-Kuhn-Tucker conditions:

@L(w0;%0;�0)
@%

=
n∑
i=1

a0i − 1 = 0

@L(w0;%0;�0)
@w

= w0 −
n∑
i=1

a0iΦ(xi) = 0

@L(w0;%0;�0)
@�i

= 1
�l
− ai − ri = 0

(3.43)

Substituting back into the initial Lagrange, functional we obtain the following objec-

tive function:

L(w; %; �) =
n∑
i=1

ai − 1
2

n∑
i=1

n∑
j=1

aiaj(Φ(xi) · Φ(xj))

=
n∑
i=1

ai − 1
2

n∑
i=1

n∑
j=1

aiajK(xi; xj):
(3.44)

Hence, the dual optimization problem is formulated as follows:

maximize W (a) =
n∑
i=1

ai − 1
2

n∑
i=1

n∑
j=1

aiajK(xi; xj)

subject to
n∑
i=1

ai = 1,

0 ≤ ai ≤ 1
�l
:

(3.45)
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The optimal solution gives rise to a decision function of the following form:

f(x) =
∑
i∈ SV

a0iK(xi; xj) + %0 (3.46)

such that

f(x) =

 +1; if x ∈ X

−1; if x ∈ X;

 (3.47)

where

0 ≤ ai ≤
1

�n
;

n∑
j=1

ai = 1: (3.48)

The corresponding data points that the ai coe�cients are non-zero, so that w0 =
n∑
i=1

a0iΦ(xi), are the margin support vectors and de�ne the decision function.

The parameter � controls the trade-o� between two goals. On one hand, the goal

is that the decision function be positive for most of the data points that belong to

the training set. On the other hand, the goal is to also keep the complexity (VC

dimension) small, which depends on w according to Eq. 3.23. In [104], it was shown

that � = 1
nC

is an upper bound for the fraction of the target class data points outside

the estimated region and a lower bound on the fraction of the numbers of support

vectors. If � = 0 involves that the penalization of errors becomes in�nite C = ∞

and no target data points are allowed outside the estimated region. If � = 1 then the

kernel function of Eq. 3.46 reduces to a Parzen windows estimate of the underlying

density. If � < 1 ensures that the density of the data points will be represented only

from those that constitute the subset of support vectors.

Assume, that we are given X(ua) ⊆ X, which is the set of positive samples that

a particular user (active user, ua) provides to the system as an initial estimate of the

kind of items (�les) that he/she considers desirable. In other words, X(ua) is a subset

of indices that are rated as preferable items by the active user. The One-Class SVM

classi�er subsequently learns a hypersphere in the feature space that encompasses

as many as possible of the given positive samples. The induction principle which

forms the basis for the classi�cation of new items is stated as follows: a new sample
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is assigned to the class of desirable patterns if the corresponding feature vector lies

within the bounds of the learnt hypersphere, otherwise it is assigned to the class of

non-desirable patterns [95].

3.6.2 Recommendation as a One-Class Classi�cation Problem

The CF approach constitutes the major technique utilized in most of RS. As stated

in the previous section, such systems are hindered mainly by the New-Item Problem

and the Sparsity Problem. These problems arise as a consequence of the fact that it is

di�cult to collect a su�cient amount of ratings for the majority of our items. Thus, we

need methods that need to utilize only a small fraction of the total set of items that are

positively rated and confront the problem of missing negative (non-desirable) items.

An e�cient approach would be to decompose the initial recommendation problem

into the following form:

1. �rstly, identify only the desirable items from the large amount of all possible

items and

2. secondly, assign a corresponding rating degree to these.

Thus, a natural solution to the problem of identi�cation of only appropriate items

is to adopt the one class classi�cation approach in order to identify the desirable items

for a particular user.

The main problem dominating the design of an e�cient multimedia RS is the

di�culty faced by its users when attempting to articulate their needs. However, users

are extremely good at characterizing a speci�c instance of multimedia information as

preferable or not. This entails that it is possible to obtain a su�cient number of

positive and negative examples from the user in order to employ an appropriate

machine learning methodology to acquire a user preference pro�le. Positive and

negative evidence concerning the preferences of a speci�c user are utilized by the

machine learning methodology so as to derive a model of how that particular user

valuates the information content of a multimedia �le. Such a model could enable
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a RS to classify unseen multimedia �les as desirable or non-desirable according to

the acquired model of the user preferences. Thus, the problem of recommendation is

formulated as a binary classi�cation problem where the set of probable classes would

include two class instances, C+ = prefer/like and C− = not prefer/dislike. However,

the burden of obtaining a su�cient number of positive and negative examples from

a user is not negligible. Additionally, users �nd it sensibly hard to explicitly express

what they consider as non desirable since the reward they will eventually receive

does not outweigh the cost undertaken in terms of time and e�ort. It is also very

important to mention that the class of desirable patterns occupies only a negligible

volume of the patterns space since the multimedia instances that a particular user

would characterize as preferable are only few compared to the vast majority of the

non-desirable patterns.

This fact justi�es the highly unbalanced nature of the recommendation problem,

since non-targets occur only occasionally and their measurements are very costly.

Moreover, if there were available patterns from the non-target class, they could not

be trusted in principle as they would be badly sampled, with unknown priors and

ill-de�ned distributions. In essence, non-targets are weakly de�ned since they appear

as any kind of deviation or anomaly from the target objects. Since samples from

both classes are not available, machine learning models based on de�ning a boundary

between the two classes are not applicable. Therefore, a natural choice in order to

overcome this problem is to build a model that either provides a statistical description

for the class of the available patterns or a description concerning the shape/structure

of the class that generated the training samples. This insight has led us to reformulate

the problem of recommendation as a one-class classi�cation problem, where the only

available patterns originate from the target class to be learnt. Speci�cally, the class to

be considered as the target class is the class of desirable patterns while the comple-

mentary space of the universe of discourse corresponds to the class on non-desirable

patterns. Otherwise stated, our primary concern is to derive an inductive bias which

will form the basis for the classi�cation of unseen patterns as preferable or not. In the

context of building an item-based RS, available training patterns correspond to those
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multimedia instances that a particular user assigned to the class of preferable pat-

terns. The recommendation of new items is then performed by utilizing the one-class

classi�er for assigning unseen items in the database either in the class of desirable

patterns or in the complementary class of non-desirable patterns.

The general setting of the recommendation problem, where there is a unique

class of interest and everything else belongs to another class, manifests its extremely

non-symmetrical nature. Additionally, the probability density for the class of target

patterns may be scattered along the di�erent intrinsic classes of the data. For ex-

ample, the universe of discourse for our music piece RS is a music database which

is intrinsically partitioned into 10 disjoint classes of musical genres. Thus, the tar-

get class of preferable patterns for a particular may be formed as a mixing of the

various musical genres in arbitrary proportions. The non-symmetrical nature of the

recommendation problem is an additional fact validating its formulation as a one-class

learning problem.

Another important factor that leads toward the selection of one-class learning as a

valid paradigm for the problem of recommendation is that the related misclassi�cation

costs are analogously unbalanced. The quantities of interest are the false positive rate

and the false negative rate. The false positive rate expresses how often a classi�er

falsely predicts that a speci�c pattern belongs to the target class of patterns while it

originated from the complementary class. The false negative rate expresses how often

a classi�er falsely predicts that a speci�c pattern belongs to the complementary class

of patterns while it originated from the target class. In the context of designing a

music piece RS, the cost related to the false positive rate is of greater impact than the

cost related to the false negative rate. False positives result in recommending items

that a particular user would classify as non-desirable and, thus, e�ect the quality of

recommendation. In contrast, false negatives result in not recommending items that a

particular user would classify as desirable. Thus, it is of vital importance to minimize

the false positive rate which results in improving the accuracy of recommendation.
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Chapter 4

Content Description of Multimedia

Data

The rapid growth of multimedia technologies has led to the creation of large collections

of various types of multimedia data accessed and controlled by a wide range of users,

systems, applications and services. Here, the term multimedia data refers mainly to

data contained in audio, image, video, and text �les. Such data are characterized

by their large quantities, high complexity and format diversity. Thus, intelligent

methods, applications, systems, and services are needed that are able to process the

content in massive multimedia data collections and extract meaningful and useful

information. The ever-expanding range of web-based and mobile applications that

use audio, image, video, and text �le collections have triggered signi�cant research

e�orts into the direction of development of advanced tools for e�ective retrieval and

management of multimedia data [105, 106, 107, 108, 109, 110, 111, 112, 113].

The processing tasks of multimedia data are two-fold. On one hand, the aim is to

enhance the description of the content of multimedia data by annotating meta-data

to them [105, 114]. On the other hand, methodologies, techniques and processes are

developed that make use of the meta-information that has been extracted from the

multimedia data.

In general, two categories of meta-data are common: The �rst category includes

content-independent, also referred to as knowledge-based, meta-data. These meta-
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data are not concerned directly with the content (i.e., the raw multimedia data), but

rather are related to it. Thus, these meta-data are not extracted automatically in the

form of a function of the multimedia data content, but rather require e�orts to be

made by the multimedia data collection administrator and/or its users towards their

creation and maintenance. Usually, this kind of information (meta-data) is text-based

or categorical and utilized to o�er a semantic description of multimedia data. An

example of this kind of meta-data for music �le organization is the ID3 format, an

extension to the popular mp3 format which allows the user to add speci�c tags such

as song title, album name, artist or group name, etc. Two of the main drawbacks of

these meta-data are the following: (1) they re
ect the subjectivity of the annotator

and (2) the annotation process is prone to be inconsistent, incomplete, ambiguous,

and very di�cult to become automated.

The second category of meta-data includes content-dependent, also referred to as

content-based, meta-data. These meta-data are extracted as a function of the multi-

media data content via well-de�ned numerical computations. This meta-information

(meta-data) is based mainly on signal processing methodologies for multimedia data

[115] and aims at capturing the perceptual saliency of content. For this purpose, use

is made of methodologies from audio and [116, 117] and image processing [118, 119]

in order to extract information that describes the content in an objective way. This

processing is usually made by an extractor and leads to the transformation of raw

multimedia data into an essential level of information which is known as feature ex-

traction. The features consist a number of measures or variables or parameters that

allow a compact description of (aspects of) the raw data. In other words, the fea-

tures allow a computational representation of (aspects of) the multimedia content. A

number of features are organized in a vector form known as feature vector. Thereby,

for each multimedia item (audio/image/video/text) of a multimedia collection, the

values for each feature are extracted and used to construct the corresponding feature

vector which stands for the identity/signature of the initial multimedia �le.

Regarding the development of methodologies, techniques and processes that utilize

the meta-information for organizing and manipulating the multimedia data, machine
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learning techniques and algorithms can o�er an e�cient paradigm for addressing

these issues and providing an insight into the domain from which the data are drawn

[120, 66]. Machine learning techniques o�er the possibility of integration of both

low-level, content-based features addressing the more detailed perceptual aspects and

high-level semantic features underlying the more general conceptual aspects of multi-

media data. Hence, classi�cation, pattern recognition and information retrieval based

on the machine learning paradigm play an important role for �nding and managing

the latent correlation between low-level features and high-level concepts of large col-

lections of multimedia data. Thereby, the use of machine learning methodologies

provides an e�cient way to organize [67, 107] and access multimedia data collections

in a manner that surpasses the limitations of conventional databases and text-based

retrieval systems. Machine learning is capable of coping with the challenge to bridge

the gap between the semantic information enclosed in knowledge-based meta-data,

that represent the relatively more important interpretations of multimedia objects

as perceived by users, with the low-level content-based features, that are directly re-

lated to aspects of multimedia content. As it is feasible to apply statistical learning

methods and create similarity measures by using the statistical properties of low-level

features, a learning machine can be trained to model perceptual aspects of users rep-

resented in high-level conceptual information by using the information contained in

the low-level content-based features [34].

4.1 MPEG-7

MPEG-7 [121, 122, 123] is the ISO/IEC 15938 standard developed by the Moving

Pictures Expert Group. MPEG-7 aims at standardizing the description of multimedia

content data. It de�nes a standard set of descriptors that can be used to describe

various types of multimedia information. The standard is not aimed at any particular

application area, instead it is designed to support as broad a range of applications as

possible. Thus, it de�nes a library of elementary meta-data descriptors, which can

be grouped to hierarchical description schemes. Additionally, it provides a language
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Description De�nition Language (DDL) that allows the standard to be available in

extensions. The tools provided for capturing multimedia characteristics include not

only basic features such as timbre, colors, etc., but also provide the ability to extract

high level abstract features such as objects, time and interaction which require human

annotation.

4.1.1 Visual Content Descriptors

MPEG-7 standard [124, 121, 122, 125] speci�es a set of descriptors, each de�ning

the syntax and the semantics of an elementary visual low-level feature e.g., color or

shape. A brief overview of each descriptor is presented below, while more details can

be found in [124, 122].

In order to extract visual low-level features, we utilized the MPEG-7 eXperimen-

tation Model (MPEG-7 XM) [125, 126]. There are three subsets of low-level visual

descriptors:

• Color is one of the most important visual features in image and video content

analysis. Color features are relatively robust to changes in the background

colors and are independent of image size and orientation.

• Texture refers to the visual patterns that have or lack properties of homogene-

ity, that result from the presence of multiple colors or intensities in the image.

It is a property of virtually any surface, including clouds, trees, bricks, hair,

and fabric. It contains important structural information of surfaces and their

relationship to the surrounding environment.

• Shape In many image database applications, the shape of image objects pro-

vides a powerful visual clue for similarity matching. Typical examples of such

applications include binary images with written characters, trademarks, pre-

segmented object contours and 2-D/3-D virtual object boundaries. In image

retrieval, it is usually required that the shape descriptor be invariant to scaling,

rotation, and translation. Depending on the application, shape information can
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be 2-D or 3-D in nature. In general, 2-D shape description can be divided into

two categories, namely contour-based and region-based. The former uses only

boundary information of objects, suitable to describe objects that have similar

contour characteristics. The latter uses the entire shape region to extract a

meaningful description which is most useful when objects have similar spatial

distributions of pixels in objects.

Visual Color Descriptors

Scalable Color descriptor (SC) is a color histogram in the HSV color space, which is

uniformly quantized into 256 bins according to the tables provided in the normative

part. Histogram values are nonlinearly quantized using the Haar transform, down to

a preferred level. The binary presentation is scalable in terms of number of bins (256

in this study) and number of bitplanes.

Color Structure descriptor (CS) captures both global color content similar to a

color histogram and information about the local spatial structure of the content.

The spatial organization of colors in local neighborhoods is determined with a square

structuring element, the size of which is determined from the dimensions of the input

image. Descriptor produces a histogram.

Color Layout descriptor (CL) speci�es a spatial distribution of colors for high-

speed retrieval and browsing. Descriptor are extracted from an (8x8) array of local

dominant colors determined from the 64 (8x8) blocks the image is divided into. De-

scriptors are matched using a tailored similarity metric.

Visual Texture Descriptors

The Edge Histogram descriptor (EH) captures the spatial distribution of edges. Four

directions of edges (0 ±, 45 ±, 90 ±, 135 ±) are detected in addition to non-directional

ones. The input image is divided into 16 non-overlapping blocks and a block-based

extraction scheme is applied to extract the types of edges and calculate their relative

populations, resulting in a 80-dimensional vector.
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The Homogeneous Texture descriptor (HT) �lters the image with a bank of ori-

entation and scale tuned �lters that are modeled using Gabor functions. The �rst

and second moments of the energy in the frequency domain in the corresponding

sub-bands are then used as the components of the texture descriptor.

Visual Shape Descriptors

Region-Based Shape Descriptor using Angular Radial Transformation (ART) belongs

to the class of moment invariants methods for shape description. This descriptor is

suitable for shapes that can be best described by shape regions rather than contours.

The main idea behind moment invariants is to use region-based moments which are

invariant to transformations, as the shape feature. The MPEG-7 ART descriptor

employs a complex Angular Radial Transformation de�ned on a unit disk in polar

coordinates to achieve this goal. Coe�cients of ART basis functions are quantized

and used for matching. The descriptor is very compact (140 bits/region) and also

very robust to segmentation noise.

Contour-Based Shape Descriptor is based on curvature scale-space (CCS) repre-

sentations of contours and also includes of eccentricity and circularity values of the

original and �ltered contours. A CCS index is used for matching and indicates the

heights of the most prominent peak, and the horizontal and vertical positions on the

remaining peaks in the so-called CSS image. The average size of the descriptor is 122

bits/contour. Contour-Based Shape Descriptor allows to discriminate shapes which

have similar region but di�erent contour properties.

3-D Shape Descriptor or Shape Spectrum Descriptor is useful to compare natural

or virtual 3-D objects. The descriptor is based on a shape spectrum concept. Roughly

speaking, the shape spectrum is de�ned as the histogram of a shape index, computed

over the entire 3-D surface. The shape index itself measures local convexity of each

local 3-D surface. Histograms with 100 bins are used, each quantized by 12 bits.
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4.1.2 Audio Content Descriptors

The MPEG-7 Audio Framework [127, 121, 128] consists of seventeen Descriptors, rep-

resenting spectral and temporal features. They play an important role in describing

audio material and therefore provide a basis for the construction of higher-level audio

applications. The low-level audio descriptors can be categorized into the following

groups:

• Basic: Audio Waveform (AWF), Audio Power (AP).

• Basic Spectral: Audio Spectrum Envelop (ASE), Audio Spectrum Centroid

(ASC), Audio Spectrum Spread (ASS), Audio Spectrum Flatness (ASF).

• Basic Signal Parameters: Audio Fundamental Frequency (AFF) of quasi-periodic

signals and Audio Harmonicity (AH).

• Temporal Timbral descriptors: Log Attack Time (LAT), Temporal Centroid

(TC).

• Timbral Spectral descriptors: Harmonic Spectral Centroid (HSC), Harmonic

Spectral Deviation (HSD), Harmonic Spectral Spread (HSS), Harmonic Spectral

Variation (HSV) and Spectral Centroid.

• Spectral Basis: Audio Spectrum Basis (ASB) and Audio Spectrum Projection

(ASP).

Basic Descriptors

The two basic audio descriptors are temporally sampled scalar values for general use,

applicable to all kinds of signals. The AWF descriptor describes the audio waveform

envelope (minimum and maximum), typically for display purposes. It is used to

describe the minimum and maximum sampled amplitude values reached by audio

signal within the same period.

The AP describes the temporally-smoothed instantaneous power of samples in the

frame, (the mean of 10-ms frame is the fundamental resolution of this descriptor). In
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other words it is a temporally measure of signal content as a function of time and

o�ers a quick summary of a signal in conjunction with other basic spectral descriptors.

Basic Spectral Descriptors

The basic spectral audio descriptors all share a common basis, all deriving from the

short term audio signal spectrum (analysis of frequency over time). They are all based

on the ASE Descriptor, which is a logarithmic-frequency spectrum. This descriptor

provides a compact description of the signal spectral content and represents the similar

approximation of logarithmic response of the human ear. The ASE is a vector that

describes the short-term power spectrum of an audio signal. The resolution of the

ASE ranges between 1
16

of an octave and 8 octaves. Consequently, the wide range of

the ASE allows a suitable selection of level of spectral description information in terms

of spectral resolution of the logarithmic bands. The lowest band loEdge is normally

62:5 Hz and the width of the spectrum is then 8 octaves to the hiEdge of 16 kHz.

This which was chosen as a realistic limit of human hearing. The ASE is computed

by power spectrum based on a Fast Fourier Transform (FFT) of the frame of audio

signal samples. Usually, a frame size of 30 ms is utilized together with a Hamming

window function. Zero padding of the frame is used to allow for discrimination power

of two FFT sizes.

The ASC descriptor describes the center of gravity of the ASE. This Descriptor is

an economical description of the shape of the power spectrum. It is an indicator as to

whether the spectral content of a signal is dominated by high or low frequencies. The

ASC Descriptor could be considered as an approximation of perceptual sharpness of

the signal.

The ASS descriptor complements the ASC descriptor and equals the second mo-

ment of the ASE. Speci�cally, this decriptor indicates whether the signal content,

as it is represented by the power spectrum, is concentrated around its centroid or

spread out over a wider range of the spectrum. This gives a measure which allows

the distinction of noise-like sounds from tonal sounds.

The ASF describes the 
atness properties of the spectrum of an audio signal
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for each of a number of frequency bands. Thus, the signal is divided into nominal

quarter-octave resolution, logarithmically spaced, overlapping frequency bands and

the spectral 
atness is computed for each band. Spectral 
atness is the ratio of the

geometric mean to the arithmetic mean of spectral power within a band. When this

vector indicates a high deviation from a 
at spectral shape for a given band, this is

indicative of the presence of tonal components.

Signal Parameters

The signal parameters constitute a simple parametric description of the audio signal.

This group includes the computation of an estimate for the fundamental frequency

(F0) of the audio signal. The fundamental frequency is by itself a research area

in audio signal processing. For the purposes of the MPEG-7 standard there is no

normative algorithm for estimation of the fundamental frequency of the audio signal

as the scope of the standard is to remain open to future techniques that may become

available.

However, the speci�c requirement of the standard from all of these algorithms is

to provide a measure of periodicity for the signal analysis interval. The parameters

required by the standard are the loLimit and hiLimit which correspond to the lower

and upper limits of the frequency range in which F0 is contained. A measure of

con�dence on the presence of periodicity in the analysed part is a value belongs to

[0; 1] in which 0 indicates non-periodic signal. These measures are stored in theWeight

�eld of a SeriesOfScalar that stores a temporal series of AFF descriptors. Thus,

the AFF descriptor provides estimates of the fundamental frequency in segments in

which the audio signal is assumed to be periodic. This measure can be used by sound

matching algorithms as a weight for handling portions of a signal that are not clearly

periodic.

The AH represents the harmonicity of a signal, allowing distinction between

sounds with a harmonic spectrum (e.g., musical tones or voiced speech [e.g., vow-

els]), sounds with an inharmonic spectrum (e.g., metallic or bell-like sounds) and

sounds with a non-harmonic spectrum (e.g., noise, unvoiced speech, or dense mix-
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tures of instruments). The AH provides two measures of the harmonic properties

of a signal spectrum. These are the Harmonic Ratio (HR) and the Upper Limit of

Harmonicity (ULH). The HR gives the ratio of the harmonic components in the to-

tal power spectrum. The ULH is the frequency in the spectrum beyond which the

spectrum cannot be considered that possess harmonic content.

Timbral Descriptors

Timbral descriptors aim at describing perceptual features of instrument sounds. Tim-

bre refers to features that allow one to distinguish two sounds that are equal in pitch,

loudness and subjective duration. These descriptors are taking into account several

perceptual dimensions at the same time in a complex way.

Timbral Temporal Descriptors The Timbral Temporal descriptors describe tem-

poral characteristics of segments of sounds, and are especially useful for the

description of musical timbre (characteristic tone quality independent of pitch

and loudness). The Timbral Temporal descriptors are used only within an au-

dio segment and are intended to compute parameters of the signal envelope.

The signal envelope describes the energy change of the signal over time and

is generally equivalent to the known ADSR (Attack, Delay, Sustain, Release)

phases and the corresponding time limits of a musical sound. Attack is the

length of time required to reach its initial maximum volume. Decay is the time

taken for the volume to reach a second volume level known as sustain level. The

sustain level is the volume level at which sound sustains after the decay phase.

Usually, the sustain level is lower than the attack volume. Release, is the time

it takes for the volume to reduce to zero. However, it is not necessary for a

sound signal to include all four phases. Temporal Timbral descriptors describe

the signal power function over time. The power function is estimated as a local

mean square value of the signal amplitude value within a running window.

The Log Attack Time (LAT) descriptor characterizes the \attack" of a sound,

the time it takes for the signal to rise from silence to its maximum amplitude.
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The LAT is utilized for the description of onsets of single sound samples from

di�erent musical instruments. In MPEG-7, the LAT is de�ned as the decimal

base logarithm of the duration of the attack phase. This feature signi�es the

di�erence between a sudden and a smooth sound.

The Temporal Centroid (TC) descriptor computes a time-based centroid as the

time average over the energy envelope of the signal. This descriptor can be

utilized to distinguish between a decaying piano note and a sustained organ

note, when the lengths and the attacks of the two notes are identical.

Timbral Spectral Descriptors The Timbral Spectral descriptors are spectral fea-

tures extracted in a linear-frequency space. The analysis of harmonic structure

is particularly useful to capture the perception of musical timbre. Pitched mu-

sical instruments illustrate a high degree of harmonic spectral quality.

The Harmonic Spectral Centroid (HSC) descriptor is de�ned as the average,

over the signal duration, of the amplitude-weighted mean of the frequency of

the bins (the harmonic peaks of the spectrum) in the linear power spectrum.

HSC has a semantic similar to the other centroid descriptors such as the Audio

Spectrum Centroid (ASC), but applies only to the harmonic (non-noise) parts

of the musical tone and is used in distinguishing musical instrument timbres. It

is has a high correlation with the perceptual feature of \sharpness" of a sound.

Other timbral spectral descriptors are the following:

The Harmonic Spectral Deviation (HSD) measures the spectral deviation of the

harmonic peaks from the envelopes of the local envelopes.

The Harmonic Spectral Spread (HSS) measures the amplitude-weighted stan-

dard deviation (Root Mean Square) of the harmonic peaks of the spectrum,

normalized by the HSC.

The Harmonic Spectral Variation (HSV) is the normalized correlation between

the amplitude of the harmonic peaks between two subsequent time-slices of the

signal.
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Spectral Basis Representations

The Spectral Basis descriptors represent low-dimensional projections of a high-dimensional

spectral space to aid compactness and recognition. These descriptors are utilized for

audio classi�cation and indexing applications.

The Audio Spectrum Basis (ASB) is a series of (potentially time-varying and/or

statistically independent) basis functions that are derived from the Singular Value

Decomposition (SVD) or Independent Component Analysis (ICA) of a normalized

power spectrum.

The Audio Spectrum Projection descriptor is used together with the ASB de-

scriptor and represents low-dimensional features of a spectrum after projection upon

a reduced-rank basis. Together, the descriptors may be used to view and to represent

compactly the independent subspaces of a spectrogram. Often these independent

subspaces correlate strongly with di�erent sound sources.

4.2 MARSYAS: Audio Content Features

MARSYAS [129, 116] is a framework which provides a set of content-based features

for audio �les. In this section, we will present a summary of those features that are

utilized in this dissertation for the content-based analysis of music �les. Speci�cally,

each music piece is represented by a 30-dimensional objective feature vector, which

forms a mathematical abstraction attempting to encapsulate the information content

of the audio signal contained in each music �le. More speci�cally, the objective (i.e.,

computed directly from the audio signal) music characteristics can be categorized into

three di�erent types of features that are identi�ed as a) Music Surface-, b) Rhythm-,

and c) Pitch-related features.

Each �le, which has a duration of 30 seconds, is used as input to a feature extrac-

tion module. Speci�cally, short time audio analysis is used in order to break the signal

into small, possibly overlapping temporal segments of duration of 50 milliseconds (cov-

ering the entire duration of 30 seconds) and process each segment separately. These

segments are called \analysis windows" or \frames" and need to be short enough for
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the frequency characteristics of the magnitude spectrum to be relatively stable. On

the other hand, the term \texture window" describes the shortest window (minimum

amount of sound) that is necessary to identify music texture. The texture window is

set equal to 30 seconds in our system.

The actual objective features used in our system are the running mean, median

and standard deviation of audio signal characteristics computed over a number of

analysis windows. The feature vector constituents appear in Table 4.1.

4.2.1 Music Surface Features

For the purpose of pattern recognition/classi�cation of music �les, we use the statistics

of the spectral distribution over time of the corresponding audio signals and represent

the \musical surface" [117, 129, 116]. Some of these statistics are de�ned next.

• Spectral Centroid: This feature re
ects the brightness of the audio signal

and is computed as the balancing point (centroid) of the spectrum. It can be

calculated as

C =

N−1∑
n=0

Mt[n] · n

N−1∑
n=0

Mt[n]

(4.1)

whereMt[n] is the magnitude of the Fourier transform at frame t and frequency

bin n.

• Spectral Rollo�: This feature describes the spectral shape and is de�ned as

the frequency R = R(r) that corresponds to r% of the magnitude distribution.

It can be seen as a generalization of the spectral centroid, as the spectral centroid

is the roll-o� value that corresponds to r = 50% of the magnitude distribution.

In our system, we used a roll-o� value r = 95% which has been experimentally

determined. N is the length of the discrete signal stored in vector x.
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R∑
n=0

Mt[n] = r ·
N−1∑
n=0

Mt[n] (4.2)

• Spectral Flux: This feature describes the evolution of frequency with time

and is computed as the di�erence of the magnitude of the short-time Fourier

transform between the current and the previous frame. Therefore, the spectral


ux is a measure of local spectral change, given by the equation

SF =
N−1∑
n=0

(Nt[n]−Nt−1[n])
2 (4.3)

where Nt[n] and Nt−1[n] is the normalized magnitude of the short-time Fourier

transform at window t and t− 1, respectively.

• Zero-Crossings: A zero-crossing occurs when successive samples in a digital

signal have di�erent signs. The corresponding feature is de�ned as the number

of time-domain zero-crossings in the signal. This feature is useful in detecting

the amount of noise in a signal and can be calculated as

Zn =
∑
m

|sgn[x(m)]− sgn[x(m− 1)]| · w(n−m) (4.4)

where

sgn[x(n)] =

 1; x(n) ≥ 0

0; x(n )< 0
(4.5)

and

w(m) =

 1
2
; 0 ≤ m ≤ N − 1

0; otherwise.
(4.6)

• Short-Time Energy Function: The short-time energy of an audio signal

x(m) is de�ned as

En =
1

N

∑
m

[x(m) · w(n−m)]2 (4.7)
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where

w(m) =

 1; 0 ≤ m ≤ N − 1

0; otherwise.
(4.8)

In Eqs.4.4 and 4.8, x(m) is the discrete-time audio signal, n is the time index of

the short time energy and w(m) is a rectangular window. This feature provides a

convenient representation of the temporal evolution of the audio signal amplitude

variation.

• Mel-Frequency Cepstral Coe�cients (MFCCs): These coe�cients are

designed to capture short-term spectral features. After taking the logarithm

of the amplitude spectrum obtained from the short-time Fourier transform of

each frame, the frequency bins are grouped and smoothed according to the Mel-

frequency scaling, which has been designed in agreement with human auditory

perception. mfccs are generated by decorrelating the Mel-spectral vectors with

a discrete cosine transform.

4.2.2 Rhythm Features and Tempo

Rhythm features characterize the movement of music signals over time and contain

information as regularity of the tempo. The feature set for representing rhythm is

extracted from a beat histogram, that is a curve describing beat strength as a function

of tempo values, and can be used to obtain information about the complexity of the

beat in the music �le. The feature set for representing rhythm structure is based

on detecting the most salient periodicities of the signal and it is usually extracted

from the beat histogram. To construct the beat histogram, the time domain ampli-

tude envelope of each band is �rst extracted by decomposing the music signal into

a number of octave frequency band. Then, the envelopes of each band are summed

together followed by the computation of the autocorrelation of resulting sum envelop.

The dominant peaks of the autocorrelation function, corresponding to the various

periodicities of the signal envelope, are accumulated over the entire sound �le into a

beat histogram, in which each bin corresponds to the peak lag. The rhythmic content
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features are then extracted from the beat histogram and, generally, include the rela-

tive amplitude of the �rst and the second histogram peak, the ratio of the amplitude

of the second peak divided by the amplitude of the �rst peak, the periods of the �rst

and second peak, and the overall sum of the histogram.

4.2.3 Pitch Features

The pitch features describe melody and harmony information in a music signal. A

pitch detection algorithm decomposes the signal into two frequency bands and ampli-

tude envelopes are extracted for each frequency band where the envelope extraction is

performed via half-way recti�cation and low-pass �ltering. The envelopes are summed

and an enhanced autocorrelation function is computed so as to reduce the e�ect of

integer multiples of the peak of frequencies to multiple pitch detection. The domi-

nant peaks of the autocorrelation function are accumulated into pitch histograms and

the pitch content features extracted from the pitch histograms. The pitch content

features typically include the amplitudes and periods of maximum peaks in the his-

togram, pitch intervals between the two most prominent peaks, and the overall sums

of the histograms.

Table 4.1 summarizes the objective feature vector description.

Table 4.1: Feature vector of MARSYAS.

Feature ID Feature Name

1 Mean Centroid

2 Mean Rollo�

3 Mean Flux

4 Mean Zero-crossings

5 STD of Centroid

6 STD of Rollo�

7 STD of Flux

8 STD of Zero-crossings

9 Low Energy

[10 : : : 19] MFCCs

20 Beat A0

21 Beat A1

22 Beat RA

23 Beat P1

24 Beat P2

25 Beat Sum

26 Pitch FA0

27 Pitch UP0

28 Pitch FP0

29 Pitch IP0

30 Pitch Sum
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Chapter 5

Similarity Measures for

Recommendations based on

Objective Feature Subset Selection

In this chapter, we present a content-based RS for music �les, called MUSIPER,1 in

which individualized (subjective) music similarity perception models of the system

users are constructed from objective audio signal features by associating di�erent

music similarity measures to di�erent users. Speci�cally, our approach in developing

MUSIPER is based on investigating certain subsets in the objective feature set and

their relation to the subjective music similarity perception of individuals. Our starting

point has been the fact that each individual perceives di�erently the information

features contained in a music �le and assigns di�erent degrees of importance to music

features when assessing similarity between music �les. This leads to the hypothesis

that di�erent individuals possibly assess music similarity via di�erent feature sets and

there might even exist certain features that are entirely unidenti�able by certain users.

On the basis of this assumption, we utilize relevance feedback from individual users in

a neural network-based incremental learning process in order to specify that feature

subset and the corresponding similarity measure which exhibit the maximum possible

accordance with the user's music similarity perception. The approach followed in

1The acronym MUSIPER stands for MUsic SImilarity PERception.
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MUSIPER can be followed with any type of multimedia data. For example, a variation

of MUSIPER has been implemented and evaluated to function with image data [130].

5.1 Objective Feature-Based Similarity Measures

In Chapter 4, we described in detail the procedure which computes the (Marsyas

30-dimensional feature vector) feature vector, the constituents of which are utilized

as the objective features to rank similarity between music pieces. In this section,

we describe the process through which the values of the constituents of the corre-

sponding feature vectors are combined to generate a single value that represents the

degree of similarity between two music pieces. Simply listing all features for a pair of

music pieces and determining their overlap is not su�cient to model music similarity

perception [131, 37]. In our approach, this is achieved through the de�nition of an

appropriate similarity measure that exhibits the intrinsic ability to combine the con-

stituent values of the heterogeneous feature vector into the corresponding similarity

value between two music pieces. Moreover, the required similarity measure ought to

involve a substantially plastic learning ability that would serve the primary purpose

of MUSIPER, that is the ability to construct e�cient user models that re
ect the

information provided by their corresponding users.

Radial Basis Function Networks (rbfns) can serve as an ideal computational

equivalent of the previously described similarity measure as they are capable of re-

alizing essentially any non-linear mapping between spaces of high dimensions and,

therefore, approximating the non-linear function that maps the set of heterogeneous

feature vector values into a single similarity value [79, 72]. Moreover the back prop-

agation learning rule empowers them with the learning capability that justi�es these

computational models as suitable user model constructors.

Our approach was based on investigating links between objective audio signal

features and subjective music similarity perception. More speci�cally, we hypothe-

sized that there exist certain subsets of the original feature vector that could be more

salient for a certain individual as he/she valuates the perceived similarity of two music
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pieces. For this reason, we utilized a number of neural networks forced to function on

the basis of di�erent feature subsets of the original feature vector and, thus, realize

di�erent similarity measures. Each feature subset corresponded to a di�erent type

of audio features or their combinations. A detailed description of the speci�c feature

subsets realized in MUSIPER is included in the following section.

5.2 Architecture of MUSIPER

Modeling the subjective similarity perception of a certain individual may be compu-

tationally realized by the development of an appropriate similarity measure providing

the degree of resemblance between two music pieces as a real value in the [0; 1] in-

terval. Thus, the user modeling functionality embedded in our system consists of

developing similarity measures which would approximate the similarity values that

would be assigned by a speci�c user to pairs of music pieces. From a mathematical

point of view a similarity measure may be interpreted as a continuous non-linear map-

ping (F : Rn × Rn → [0; 1]; n ≤ 30) from the space of objective features to the [0; 1]

interval of similarity degrees which naturally leads us to the choice of Radial Basis

Functions Networks (RBFN's) that are capable of implementing arbitrary nonlinear

transformations of the input space. Moreover, the adopted incremental learning pro-

cedure lies in the core of the training process where the internal network parameters

are modi�ed according to the back propagation rule in response to the user supplied

similarity values concerning certain pairs of music pieces.

5.3 Incremental Learning

The overall system architecture is based on the adapted incremental learning tech-

nique depicted in Fig. 5-1. Speci�cally, our scheme consists of the following steps:

1. Seed the search with the target music piece corresponding to an existing music

piece in the system database. This step uses an o�ine process, where the

feature extractor extracts the set of values for the complete set of 30 features.
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Figure 5-1: MUSIPER Architecture.

Afterwards, a prede�ned number of subsets from the original feature vectors

set, C1,. . . ,CM , (e.g. M = 11 neural networks in the MUSIPER) are assessed

for their ability to capture the subjective music piece similarity perception of a

speci�c user. These subsets of the feature vector are fed into the corresponding

neural networks, which constitute database searchers (DBSearchers) running in

parallel and realizing M di�erent similarity measures (Fig. 5-1).

2. Each neural network retrieves the most similar music piece according to the

similarity measure it realizes.

3. The user valuates the set of the retrieved music pieces and ranks the degree

of similarity between the retrieved music pieces and the target music piece

according to his/her own perception. The user supplied similarity values are

stored in matrix E where E = [e0; e1; · · · ; en]T .

4. This information is subsequently used by the system in order to adjust the neural
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Figure 5-2: RBFN Architecture.

network parameters stored in matrix W where W = [w0; w1; · · · ; wn]
T as it is

implied by Eq. 5.13. This latter parameter re�nement involves the adaptation

of the entire neural network parameter set and constitutes the fundamental part

of the adopted training scheme.

5. The procedure is repeated for a preset number of times, during which the net-

work performance is recorded. In the end, we identify the neural network and

the corresponding feature subset that exhibited the most e�ective performance

in modeling the music similarity perception of the speci�c user.

5.4 Realization of MUSIPER

The topology of a RBFN involves a set of three layers as shown in Fig. 5-2, where

the �rst layer constitutes the input layer, the second layer is a hidden layer and the

third layer is the output layer. We must clarify that the number of hidden nodes for

each neural network is the same and does not depend on the number of the selected

features for that network as it was experimentally set to �ve in order to ensure that

the networks converge. Generally, the input, hidden and output layers contain a set of

p+1 (equal to the number of signals/features to be processed), N and only one node,

respectively. Each input node is connected with every hidden layer node and each

hidden layer node is connected with the output node. All these connections are called

synapses and are given associated synaptic weights. From the system theoretic point

of view, the transfer function between the input and the hidden layer is non-linear,

while the transfer function between the hidden and the output layer is linear
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In more detail, the output layer node realizes the function:

yout(n) = uout(n); (5.1)

where

uout(n) =
N∑
j=0

wj · yj(n): (5.2)

In Eq. 5.2, wj is the connection weight between the j-th hidden layer node and the

output node, yj(n) is the output of the j-th node in the hidden layer corresponding

to the n-th input pattern, and yout(n) is the output of the output node after the n-th

input pattern has been presented to the network and represents the similarity value

between two music pieces MA,MB. The j-th node of the hidden layer realizes the

following function:

y0(n) = 1 (5.3)

and

yj(n) = exp−{∥v
n − �j(n)∥2

2 · �2
j (n)

}; 1 ≤ j ≤ N: (5.4)

The zeroth node of the hidden layer can be considered as a bias term which is added

to the overall output of the network. Moreover, vn is the n-th input pattern, �j(n)

and �j(n) are the center and the spread, respectively, of the radial basis function

realized by the j-th node in the hidden layer, and yj(n) is the output of the j-th

hidden node. The parameter n indicates that we refer to the time instant after the

n-th input pattern has been presented to the network. On the other hand, the term

∥vn − �j(n)∥ corresponds to the Euclidean distance between the vectors vn and �j(n),

where vn,�j(n) � Rp.

Now, assume that CA and CB are the feature vector values that have been ex-

tracted from the music pieces MA and MB, where CA = [CA1 ; : : : ; CAp
] and CB =

[CB1 ; : : : ; CBp
]. According to the previous de�nitions of CA and CB, the input to the

neural network is denoted by v = [v1; : : : ; vp], where

vi = |CAi
− CBi

| ; 1 ≤ i ≤ p: (5.5)
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The fundamental adjustable parameters of the RBFN are those related to the

radial basis functions realized by the nodes of the hidden layer and the connection

weights between the hidden nodes and the output node of the network. Thus, the

set of the RBFN parameters includes the parameter set of each of the N nodes of

the hidden layer (and the corresponding radial basis functions Φj, 1 ≤ j ≤ N) that

can be presented in the general form Φj(v;�j; �j), together with the weight vector

w = [w0; w1; · · · ; wN ]. Each of the used radial basis functions performs a mapping

Φ : Rp −→ R where Φj is given by the equation

Φj = exp(−∥v− �j∥2

2 · �2
j

): (5.6)

The approximation ability of the RBFN lies in the adaptability of its parameters,

which allows us to train the RBFN to learn (approximate) essentially any desirable

similarity measure. The appropriate parameter values can be determined by using

a training set of input patterns that will force the RBFN parameters and the corre-

sponding input-output relation to attain the appropriate form. Speci�cally, the set of

training patterns is comprised of pairs of music feature vectors and the corresponding

similarity values as subjectively perceived by a certain user.

The training process of the RBFN can be reduced to a set of two distinct train-

ing stages. The �rst stage can be considered as a pretraining process in which the

weight values are the only parameters to be modi�ed. This stage serves as a weight

initialization procedure that corrects a random initial parameter setting. The input

pattern set used in the �rst training stage contains a number of elements equal to

the number of nodes in the hidden layer of the network. Thus, we need a set of pairs

of music feature vectors and corresponding similarity values that re
ect the objective

degree of similarity. We made use of a static objective similarity measure during the

�rst training stage, so as to achieve the weight values that are most appropriate for

modeling the subjective perception of a speci�c user.

After the end of the �rst training stage, the parameter modi�cation procedure

changes so that the entire parameter set (�j; �j;w) is adjusted with the presentation
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of every training pattern. In this way, the network behavior is re�ned in order to

approximate the desirable subjective similarity perception.

In order to compute the initial weight values, we must �rst consider the train-

ing input pattern set which consists of N + 1 music piece feature vectors, namely

(C0
A; C

0
B); (C

1
A; C

1
B); : : : ; (C

N
A ; C

N
B ). The corresponding similarity values are denoted

by the variables e0; e1; : : : ; eN where

ek =
∥∥Ck

A − Ck
B

∥∥ ; 0 ≤ k ≤ N: (5.7)

The input vectors for the corresponding feature vectors are: v0;v1; : : : ;vN , where:

vki =
∣∣Ck

Ai
− Ck

Bi

∣∣ ; 0 ≤ k ≤ N; 1 ≤ i ≤ p: (5.8)

Each of the desired similarity values e0; e1; : : : ; eN must equal the network output

after the presentation of the corresponding di�erence feature vectors v0;v1; : : : ;vN .

Thus, we get the set of equations

ek = w0 +
N∑
j=1

Φj(
∥∥vk − �j

∥∥ ; �j) · wj: (5.9)

Eq. 5.7 is readily put into the matrix form:
e0

e1
...

eN

 =


1 Φ1(∥v0 − �1∥ ; �1) · · · ΦN(∥v0 − �N∥ ; �N)

1 Φ1(∥v1 − �1∥ ; �1) · · · ΦN(∥v1 − �N∥ ; �N)
...

...
. . .

...

1 Φ1(
∥∥vN − �1

∥∥ ;�1) · · · ΦN(
∥∥vN − �N

∥∥ ;�N)




w0

w1

...

wN

 (5.10)

or in the abbreviated form:

E = ΦW (5.11)
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where E = [e0; e1; · · · ; en]T , W = [w0; w1; · · · ; wn]
T and

Φr;c =

 1; 0 ≤ r ≤ N; c = 1

Φc(∥vr − �c∥ ; �c); 0 ≤ r ≤ N; 1 ≤ c ≤ N:
(5.12)

Clearly, the initial weight vector can derived from the equation:

W = Φ−1E: (5.13)

However, the matrix Φ in the previous equations is usually substituted by the matrix

(Φ + �I) where � ≥ 0 so that matrix (Φ + �I) is always invertible. Thus, Eq. 5.13

becomes:

W = (Φ + �I)−1E: (5.14)

5.4.1 Computational Realization of Incremental Learning

In order to complete the description of the training process of the RBFN, we refer to

the second training stage. This stage coincides with the adopted incremental learning

procedure, during which the entire parameter set is modi�ed simultaneously. Our

description at this point will be restricted to giving the equations for modifying each

of the network parameters as they are derived via application of the back-propagation

algorithm. We have:

w0(n+ 1) = w0(n) +△w0(n); (5.15)

where △w0(n) is the correction for the w0 weight constituent after the presentation

of the n-th training pattern.

Similarly,

wj(n+ 1) = wj(n) +△wj(n); 1 ≤ j ≤ N; (5.16)

where △wj(n) is the correction for the wj weight constituent after the presentation

of the n-th training pattern. Also:

�ji(n+ 1) = �ji(n) +△�ji(n); 1 ≤ j ≤ N; (5.17)
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where △�ji(n) is the correction of the i-th constituent of the j-th function center and

�j(n+ 1) = �j(n) +△�j(n); 1 ≤ j ≤ N; (5.18)

where △�j(n) is the correction of the j-th function spread.

The correction values are given by the following equations

△w0(n) = n1 · e(n); (5.19)

where

e(n) = en − yout(n) (5.20)

is the network error at the presentation of the n-th training pattern, en is the desired

similarity value and yout(n) is the network response with respect to the input pattern

vn.

Similarly:

△wj(n) = n2 · e(n) · exp(−
∥vn − �j(n)∥2

2 · �2
j (n)

); (5.21)

△�ji(n) = n3 · wj(n) · exp(−
∥vn − �j(n)∥2

2 · �2
j (n)

) · v
n
i − �ji(n)

2 · �2
j (n)

; (5.22)

△�j(n) = n4 · wj(n) · exp(−
∥vn − �j(n)∥2

2 · �2
j (n)

) · ∥v
n − �j(n)∥2

2 · �3
j (n)

; (5.23)

where n1,n2,n3,n4 are the corresponding learning rates for the parameters.

5.5 MUSIPER Operation Demonstration

MUSIPER has been developed as a desktop application whose main graphical user

interface window appears in Fig. 5-3. The application window can be thought of as

being divided into two regions by a vertical line. This line separates and rounds up

the di�erent kinds of user activities that are supported by the system. Speci�cally,

the left region accumulates the user interface components that are related to the
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Figure 5-3: MUSIPER Interface.

music pieces database selection and the neural network manipulation. Moreover, this

part provides the basic query conduction operations that incorporate the target music

piece speci�cation.

The user must provide his/her own similarity estimation for each one of the music

pieces retrieved by the corresponding neural networks. This functionality is provided

in the right part of the application window and allows the user to listen to pairs

of music pieces by interacting with two di�erent components of Media Player and

subsequently typing in his/her own similarity estimation value. The user interaction

session ends when the user evaluates the music similarity for the complete set of

training examples for the total amount of training stages.

A very important functionality provided by MUSIPER is that its user is not

obligated to train MUSIPER in a single session. Instead, there is the capability of

saving the training session at any instant and continuing at a future moment after

loading his/her training pro�le.
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5.6 MUSIPER Evaluation Process

MUSIPER was evaluated by one hundred (100) users belonging to di�erent age groups

and having various music style preferences and related music education levels. As a

test database, we used a collection of one thousand (1000) western music pieces.

This collection is publicly accessible and has been used as a test bed for assessing

the relative performance of various musical genre classi�cation algorithms [132, 133].

The collection contains one hundred (100) pieces from each of the following ten (10)

classes of western music: blues, classical, country, disco, hiphop, jazz, metal, pop,

regge, and rock. Each piece has a duration of thirty (30) seconds.

The evaluation process consisted of three stages: At �rst, each participant was

asked to complete a questionnaire regarding user background information, which was

collected for statistical purposes and is summarized in Table 5.1.

Table 5.1: Statistics of Evaluation Stage I
Overall Favorite Music Genre Pop 54%

Age Range 18 to 61 (� = 29, �2 = 5; 44)
CDs Owned 10 to 200 (� = 113, �2 = 235; 11)

Hours Spent per Week Listening to Music 1 to 15 (� = 7, �2 = 2; 77)
Get Music From Filesharing P2P MP3 (47%)

Get Music From Internet Music Stores MP3 (17%)
Get Music From Music Stores CDs (36%)

Play Musical Instrument 41%, mostly the guitar or the piano
Professionally Involved in Music 4%

Participation in Evaluation of other Systems 56%

In the second step of the evaluation process, each participant was given a pre-

de�ned set of 11 pre-trained neural networks with corresponding feature subsets as

in Table 5.2. The process of selecting the feature subsets was not arbitrary. More

speci�cally, �rst we de�ned feature subsets containing features from only one seman-

tic category. The corresponding networks are identi�ed with numbers 2, 5, and 7,

respectively. Next, we considered combinations of the previous features from vari-

ous semantic categories in order to identify combinations of features from di�erent

semantic categories which appear to be e�cient. Corresponding networks included
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Table 5.2: Feature subsets per neural network.
Network IDs Feature Subsets Feature IDs

1 Complete feature set [1 : : : 30]
2 All beat-related features [20 : : : 25]
3 All mean-, standard deviation- and

low energy-related features [1 : : : 9]
4 All MFCC-related features [10 : : : 19]
5 All pitch-related features [26 : : : 30]
6 All beat- and pitch-related features [20 : : : 30]
7 All mean-, standard deviation-, MFCC-

and low energy-related features [1 : : : 19]
8 All MFCC- and pitch-related features [10 : : : 19]; [26 : : : 30]
9 All mean-, standard deviation-, MFCC-,

pitch- and low energy-related features [1 : : : 19]; [26 : : : 30]
10 All beat-, MFCC- and pitch-related features [10 : : : 30]
11 Mean and standard deviation of

zero-crossings and low energy features [4; 8; 9]

those identi�ed with numbers 6, 8, 9 and 10. For example, neural networks iden-

ti�ed with numbers 6 and 10 combine features from two (namely, pitch and beat

related features) and three (combination of beat, pitch and MFCC features) semantic

categories, respectively. Both networks are examples of feature combinations that

exhibit poor e�ciency in modeling music similarity perception. In contrast, neural

networks identi�ed with numbers 8 and 9 combine features from two semantic cate-

gories, namely, MFCC and pitch related features and music surface and pitch related

features, respectively. These networks are examples of feature combinations that ex-

hibit high e�ciency in modeling music similarity perception. The participants were

asked to feed back into the system a perceived degree of similarity to the target piece

of the returns of each network. Each participant fed back into the system for a total

number of six (6) training stages (epochs). Speci�cally, during the course of each

training stage, the user listened to a previously selected music piece which served as

the target song of the query and the corresponding most similar music pieces were

retrieved from the database by each neural network. Next, the user was directed to

supply his/her own similarity perception estimate for each one of the 11 pairs of songs

by typing in a similarity value in the [0; 1] interval. At this point, the user was given

the option to adapt the estimated similarity value provided by the system. After

completing all of the six training stages for every RBFN by providing a total of 66
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similarity values, each user conducted a save operation in order to update the record

of RBFN performance history and the newly estimated adjustable parameter values.

Finally, completion of the neural network training stage was followed by the third

evaluation stage during which each participant was prompted to provide some infor-

mation concerning the overall training and retrieval performance of the system.

5.7 System Evaluation Results

The second stage of the evaluation process revealed that:

1. During the training session of each user, there were neural networks whose

relevant performance in approximating the music similarity perception of that

particular user was consistently better than that of the remaining neural net-

works. Figs. 5-4 and 5-5 illustrate typical examples of this fact, as seen from

the plots of the time evolution of the error rates of the various networks. More

speci�cally in Fig. 5-4 it is clear that the feature subsets with identi�cation

numbers (IDs) {4,9,11} correspond to the neural networks with the best perfor-

mance while in Fig. 5-5 the best neural networks are those functioning on the

basis of the feature subsets with IDs {4,8,9}.

We evaluated the retrieval performance of our system for each user taking as

a measure of accuracy the mean error rate of the best neural network for that

user. The best network for a user was the one that exhibited the lowest error

rate. Table 5.3 summarizes the best neural network and corresponding mean

error rate for a set of 25 users.

A further justi�cation for the existence of certain neural networks, the ability of

which in modeling the subjective similarity perception of a user was consistently

better than that of the other networks is provided by comparing corresponding

precision evolutions. Speci�cally, precision is computed as in Eq. 5.24 for the

set of 11 neural networks. Figs. 5-6 and 5-7 illustrate the precision evolution

(precision value versus number of relevance feedbacks) for the complete set of
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Figure 5-4: Typical User Behavior I.

Figure 5-5: Typical User Behavior II.
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neural networks for a speci�c user whose feedbacks produced the results in

Fig. 5-12. Clearly, the neural network identi�ed by number 7 demonstrates the

best overall performance in modeling that speci�c user's similarity perception,

since the corresponding precision value sequence reaches a stable saturation

point after 9 retrievals/feedbacks. A similar saturated behavior is observed for

the neural network identi�ed by number 8, the precision of which saturates to

a considerably lower value.

Figure 5-6: Precision of Neural Networks 1-6 for the one user.

2. A second justi�cation of the user modeling ability of our system lies in the

observation that, even when certain neural network retrievals were assessed by

the user as unsatisfactory, the similarity values estimated by the neural net-
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Figure 5-7: Precision of Neural Networks 7-11 for the one user.

works were quite close to the perceived similarity values provided by the user.

A typical example of this observation is presented in Figs. 5-8 and 5-9, which

compare the similarity values estimated by each neural network to the corre-

sponding similarity values provided by a user for a set of 6 relevance feedbacks.

Speci�cally, it is observed that, even though neural networks identi�ed by the

numbers 1, 4 and 11 fail to provide e�cient retrievals, their estimated similarity

values are quite close to the ones provided by that user.

3. A third observation is that no single neural network and corresponding feature

subset outperformed all networks in all training sessions. On the contrary, the

system users are clustered by the eleven neural networks into 11 correspond-

ing clusters as in Fig. 5-10. We observe that the neural networks numbered
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Table 5.3: Best Neural Network per User.
User No Mean Error Rate NNs IDs

1 0:052567305 9
2 0:068916158 7
3 0:080797066 8
4 0:093290161 7
5 0:099306121 7
6 0:101553771 4
7 0:105191415 4
8 0:106715587 9
9 0:110695984 4
10 0:11238125 9
11 0:121527443 11
12 0:122296543 4
13 0:123571513 1
14 0:125683542 9
15 0:128536126 9
16 0:129964756 2
17 0:130741697 9
18 0:134278904 11
19 0:147017443 1
20 0:155501906 2
21 0:164345701 11
22 0:165889964 9
23 0:167231585 7
24 0:171717066 7
25 0:174795191 8

5,6 and 10 produce empty user clusters, which implies that the corresponding

feature subsets fail to model the music similarity perception of any user. On

the other hand, the neural networks numbered 9 and 7 produce clusters con-

taining approximately 27% and 18% of the users. This di�erence in network

performance lies with the qualitative di�erences of the corresponding feature

subsets. Speci�cally, the feature subsets used by neural networks 9 and 7 de-

scribe both acoustic and psychoacoustic music information. This observation

constitutes strong evidence justifying our initial hypothesis that relates feature

subsets with the similarity perception of an individual user.

4. The convergence of the incremental learning process was examined and illus-

trated in Figs. 5-11. Speci�cally, the time evolution of the error rates of all the

neural networks is shown over a total of 56 training cycles by the same user.

During this training, a total of 8 di�erent target music pieces were given and
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Figure 5-8: Comparison between network-estimated and user-supplied similarity val-
ues.

the system was trained for 7 epochs per given target.

5. It is important to observe the evolution of RBF centres and spreads during the

incremental learning process (relevance feedbacks). Such observation reveals

a smooth evolution of the centers and spreads of those RBFNs whose preci-

sion value saturated after a number of relevance feedbacks. We also noticed a

strong correlation between the saturated precision value of a neural network and

the corresponding evolution of its internal parameters. Speci�cally, when the

precision saturated to a value and stabilized in its vicinity, the corresponding

evolution of the network internal parameter values followed a smoother transi-

tion in subsequent feedbacks.
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Figure 5-9: Comparison between network-estimated and user-supplied similarity val-
ues.

The evolution of RBF centres and spreads during the incremental learning pro-

cess is illustrated in Figs. 5-12-5-15 for four di�erent users, respectively. Specif-

ically, for each of the four users, the centre and spread evolution are shown

for the neural network that exhibited the most e�ective performance among all

eleven networks in modeling the user music similarity perception. In each �gure,

the upper sub-�gure shows Euclidean distance evolution of the RBF centres and

spreads of the �ve nodes of the hidden network layer during the incremental

learning process. The vertical and horizontal axes indicate Euclidean distance

and number of relevance feedbacks, respectively. On the other hand, the lower

sub-�gure shows precision with respect to number of feedbacks, where precision
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Figure 5-10: Preferences Distribution.

is computed as

precision =
relevant music �les retrieved in top N returns

N
; (5.24)

with N = 25.

6. Further system tests were conducted, in which we experimented with various

initialization patterns and presence of outliers in the user supplied relevance

feedbacks. During the initialization process of MUSIPER (pretraining stage)

there is no reason to expect that certain training patterns would be more \appro-

priate" to adjust the internal network parameters. This is because the system

is initially trained so as to re
ect the Euclidean distance between patterns. As

the Euclidean distance is an objective similarity measure, there exist no prefer-
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Figure 5-11: Error Rate Convergence.
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Figure 5-12: Centers - Spreads evolution
Precision of Neural Network - User1.

Figure 5-13: Centers - Spreads evolution
Precision of Neural Network - User2.

able training patterns and any pair of target-retrieved feature vectors is equally

appropriate for pretraining. The incremental learning process transforms the

objective similarity measure provided by the Euclidean distance into a subjec-

tive one using the similarity values supplied by the user. Thus, the incremental

learning procedure tunes the initial settings of the internal network parameters.

However, the incremental learning process cannot be used for training from

scratch as it would require a prohibitively high number of relevance feedbacks

and system training time. These conclusions were experimentally corroborated.

On the other hand, the presence of outliers in the user-supplied feedbacks a�ects

the training process by extending the time needed (number of training stages)

for the neural networks to converge. However, as the number of relevance
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Figure 5-14: Centers - Spreads evolution
Precision of Neural Network - User3.

Figure 5-15: Centers - Spreads evolution
Precision of Neural Network - User4.

feedbacks increases the e�ect of outliers is gradually eliminated. This too was

experimentally observed.

Table 5.4 summarizes the information collected during the third evaluation stage

emphasizing the fact that the majority of the users observed the existence of certain

neural networks whose retrievals were signi�cantly better than the others. More-

over, most of the participants noticed a gradual improvement of the neural network

responses from training stage to training stage.
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Table 5.4: Statistics of Evaluation Stage III
How long (in minutes) did
you spent training the system? 27 mins on average
Did you observe a di�erence in 1 : 2%
the retrievals returned by the various 2 : 11%
neural networks during the 3 : 54%
same training epoch ? 4 : 24%
1(minimum di�erence) to 5(maximum di�erence) 5 : 9 %
Did you observe an improvement in 1 : 3%
the retrievals returned by the various 2 : 11%
neural networks from training 3 : 32%
stage to training stage 4 : 46%
1(minimum improvement) to 5(maximum improvement) 5 : 8%
Did you observe any speci�c neural 1 : 2%
network that systematically returned 2 : 22%
better retrievals than the other networks 3 : 34%
1 (minimum di�erence) to 5 (maximum di�erence) 4 : 36%

5 : 6%
Overall system assessment:
1(Misleading) 2 %
2 (Not Helpful) 17 %
3 (Good) 27 %
4 (Very Good) 32 %
5 (Excellent) 22 %
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Chapter 6

Cascade Recommendation Methods

In this chapter, we address the problem of recommendation by developing a two-

level cascade classi�cation architecture. The �rst-level classi�cation step involves the

incorporation of a one-class classi�er which is trained exclusively on positive patterns.

The one-class learning component of the �rst-level serves the purpose of recognizing

instances from the class of desirable patterns as opposed to non-desirable patterns. On

the other hand, the second-level classi�cation step is based on a multi-class classi�er,

which is also trained exclusively on positive data. However, the second-level classi�er

is trained to discriminate among the various (sub-)classes from which positive patterns

originate.

It must be mentioned that, within the entire pattern space V , the class of negative/non-

desirable patterns occupies a signi�cantly larger volume in comparison to the volume

occupied by the positive/desirable patterns. This is anticipated, as user preferences

are concentrated within a small fraction of the universe of discourse. Thus, in the

context of building an e�cient RS, it is crucial that the RS be able to recognize

the majority of instances that belong to the complementary space of non-desirable

data. This particular problem is addressed by the �rst-level component of the cas-

cade classi�cation architecture by developing a one-class classi�er trained exclusively

on samples from the smaller class of desirable patterns. In other words, the purpose

of the �rst-level classi�er is to address the extremely unbalanced nature of the ma-

chine learning problem that arises when a content-based, item-oriented approach is
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adopted to address the problem of recommendation. On the other hand, the second-

level classi�er addresses the problem of discriminating among the various (sub-)classes

of desirable patterns. The task of the second-level classi�er may be formulated as a

balanced multi-class machine learning problem, as the users' preferences are (more or

less) evenly distributed over the classes of desirable patterns.

In order to formulate the problem of recommendation as a two-level machine

learning problem, it is necessary to precisely de�ne the training and testing procedures

followed for both classi�ers. Clearly, the training procedure of classi�ers at both

levels is conducted exclusively on positive data. This is a very important aspect of

our approach, as, during the training process, we completely ignore the larger class

of non-desirable patterns. Negative (non-desirable) patterns are only used within the

testing procedure to accurately measure the e�ciency of the two-level classi�er in

predicting the class of unseen patterns.

6.1 Cascade Content-Based Recommendation

First-Level: One-Class SVM - Second-Level: Multi-Class SVM

Let U = {u1; u2; : : : ; um} and I = {i1; i2; : : : ; in} be the sets of users and items,

respectively of the database from which our RS makes recommendations. Each itam

in the database corresponds to a feature vector (e.g., a 30-dimensional MARSYAS

feature vector) in a high-dimensional Euclidean vector space V . Each user assigns a

unique rating value for each item in the database within the range of {0; 1; 2; 3}. Thus,

user ratings de�ne four disjoint classes of increasing degree of interest, namely C0,

C1, C2 and C3. C0 corresponds to the class of non-desirable/negative patterns, while

the class of desirable/positive patterns may be de�ned as the union (C1 ∪C2 ∪C3) of

C1, C2 and C3. In order to indicate the user involvement in de�ning the four classes

of interest, we may write that

∀u ∈ U; V = C0(u) ∪ C1(u) ∪ C2(u) ∪ C3(u); (6.1)
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where

C0(u) ∩ C1(u) ∩ C2(u) ∩ C3(u) = ∅: (6.2)

More speci�cally, letting R(u; i) be the rating value that the user u assigned to

item i, the four classes of interest may be de�ned via the following equations:

C0(u) = {i ∈ I : R(u; i) = 0}

C1(u) = {i ∈ I : R(u; i) = 1}

C2(u) = {i ∈ I : R(u; i) = 2}

C3(u) = {i ∈ I : R(u; i) = 3}

(6.3)

At this point, we need to mention that if I(u) denotes the subset of items for

which user u provided a rating, it follows that ∀u ∈ U; I(u) = I. Thus, the positive

(desirable) and the negative (non-desirable) classes of patterns for each user may be

de�ned as follows:

∀u ∈ U; P(u) = C1(u) ∪ C2(u) ∪ C3(u)

∀u ∈ U; N(u) = C0(u)
(6.4)

The training / testing procedure for the classi�ers at both levels involves partitioning

each class of the desirable patterns for each user into K disjoint subsets such that:

∀u ∈ U; j ∈ {1; 2; 3}; Cj(u) =
∪
k∈[K]

Cj(u; k); (6.5)

where

∀k ∈ [K]; |Cj(u; k)| =
1

K
|Cj(u)| such that

∩
k∈[K]

Cj(u; k) = ∅: (6.6)

Letting Cj(u; k) be the set of patterns from the positive class j that is used

throughout the testing procedure, the corresponding set of training patterns will be

denoted as Ĉj(u; k) and the following equation holds:

∀j ∈ {1; 2; 3};∀k ∈ [K]; Ĉj(u; k) ∪ Cj(u; k) = Cj(u): (6.7)
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In other words, Eq. 6.7 de�nes the K-fold cross validation partitioning that is utilized

to measure the performance accuracy of our cascade classi�cation scheme. Let P (u; k)

and N(u; k) be the sets of positive and negative patterns, respectively, as they are

presented to the �rst-level classi�er during the testing stage at fold k for a particular

user u. We have:

P (u; k) = C1(u; k) ∪ C2(u; k) ∪ C3(u; k) (6.8)

N(u; k) = C0(u; k) = C0(u) = N(u) (6.9)

In case the K-fold cross validation partitioning is not taken into consideration, the

set of positive patterns for a particular user may be referred to as P (u), so that

P (u) = C1(u) ∪ C2(u) ∪ C3(u).

The training procedure of the �rst level of our cascade classi�cation architecture

aims at developing one one-class classi�er per user. These one-class classi�ers are

trained to recognize those data instances that have originated from the positive class

of patterns. In other words, each one-class classi�er realizes a discrimination function

denoted by fu(v), where v is a vector in V that is learnt from the fraction of training

positive patterns. More speci�cally, if fu;k(v) is the discrimination function that

corresponds to user u at fold k, then this function would be the result of training the

one-class classi�er on Ĉ1(u; k)∪Ĉ2(u; k)∪Ĉ3(u; k). The purpose of each discrimination

function fu(v) is to recognize the testing positive patterns P (u) against the complete

set of negative patterns N(u).

On the other hand, the training procedure of the second level of our cascade

classi�cation architecture aims at developing one multi-class classi�er per user. This

is achieved by training the multi-class classi�er on the same set of positive data,

Ĉ1(u; k) ∪ Ĉ2(u; k) ∪ Ĉ3(u; k), but this time with the purpose to discriminate among

the various (sub-)classes of the data pertaining to the set P (u; k). In other words,

each second-level classi�er realizes a discrimination function denoted by gu(v), the

purpose of which is to partition the space of testing (positive) data P (u) into the 3

corresponding subspaces, C1(u), C2(u) and C3(u), of desirable patterns. To explicitly
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Figure 6-1: Cascade Content-based Recommender.
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indicate the discrimination function concerning user u at fold k, we use gu;k(v).

The recommendation ability of our system is based on its e�ciency when predict-

ing the rating value that a particular user assigned to an item which was not included

in the training set. Having in mind that P (u; k) ∪ N(u; k) is the full set of testing

data presented to the �st level of our cascade classi�cation mechanism, the one-class

component operates as a �lter that recognizes the items that a user assigned to the

class of desirable patterns. Speci�cally, the �rst-level discrimination function fu;k(v)

for user u at fold k partitions the set of testing data into positive and negative pat-

terns as illustrated in Fig. 6-1. In other words, the testing procedure concerning the

�rst-level of our cascade classi�er involves the assignment of a unique value within

the set {−1; 1} for each input element such that:

∀u ∈ U; ∀k ∈ [K]; ∀v ∈ P (u; k) ∪N(u; k); fu;k(v) ∈ {−1;+1}: (6.10)

The subset of testing instances that are assigned to the class of desirable patterns

are subsequently fed into the second-level classi�er which assigns to them a particular

rating value within the range of {1; 2; 3}. Speci�cally,

∀u ∈ U;∀k ∈ [K]; ∀v ∈ P (u; k) ∪N(u; k) : fu;k(v) = +1; gu;k(v) ∈ {1; 2; 3} (6.11)

Let the true rating value concerning an object v ∈ V for a particular user u at fold k

be Ru;k(v) so that the following equation holds:

∀u ∈ U; ∀k ∈ [K]; ∀j ∈ {0; 1; 2; 3}; Ru;k(v) = j ⇔ v ∈ Cj(u; k): (6.12)

The estimated rating value assigned by our system will be indicated as R̂u;k(v) and
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can be computed as in the following equation:

R̂u;k(v) =



0; ∀v ∈ P (u; k) ∪N(u; k) : fu;k(v) = −1;

1; ∀v ∈ P (u; k) ∪N(u; k) : fu;k(v) = +1 and gu;k(v) = 1

2; ∀v ∈ P (u; k) ∪N(u; k) : fu;k(v) = +1 and gu;k(v) = 2

3; ∀v ∈ P (u; k) ∪N(u; k) : fu;k(v) = +1 and gu;k(v) = 3.

(6.13)

6.2 Cascade Hybrid Recommendation

First-Level: One-Class SVM - Second-Level: Collaborative Filtering

As stated previously, the problem addressed in this chapter is that of building an

e�cient RS in the complete absence of negative examples. Since negative examples

are, in general, extremely di�cult to obtain, we employed classi�cation paradigms

that operate exclusively on the basis of positive patterns. This justi�es the incorpo-

ration of the one-class classi�cation component within the �rst-level of our cascade

classi�cation architecture. Thus, the �rst classi�cation level serves the purpose of

�ltering out the majority of the non-desirable patterns. However, as the ultimate

purpose of any RS is to provide its users with high quality recommendations, a com-

ponent is needed which predicts the true class of unseen patterns with high accuracy.

This is the rationale behind the second classi�cation level which takes as input the

set of patterns that were assigned to the class of desirable items by the �rst clas-

si�cation level. In order to provide high quality recommendations, it is vital that

the second-level classi�er correctly discriminate among the various (sub-)classes of

desirable patterns. Thus, the second-level classi�er is a multi-class one.

A natural modi�cation of our cascade classi�cation architecture consists of replac-

ing the second (multi-class) classi�cation level with a CF component, as illustrated in

Fig. 6-2. Having in mind that the �rst classi�cation level realizes the broader distinc-

tion between positive and negative patterns, the subsequent CF component produces

speci�c rating values within the range of {1; 2; 3}. Speci�cally, the CF methods that

we utilized were:

• Pearson Correlation [2]
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Figure 6-2: Cascade Hybrid Recommender.
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• Vector Similarity [2] and

• Personality Diagnosis [48]

Personality Diagnosis (PD) may be thought of as a hybrid between memory and

model-based approaches of CF. Its main characteristic is that predictions have mean-

ingful probabilistic semantics. Moreover, this approach assumes that preferences con-

stitute a characterization of their underlying personality type for each user. Therefore,

taking into consideration the active user�s known ratings of items, it is possible to

estimate the probability that he/she has the same personality type with another user.

The personality type of a given user is taken to be the vector of \true" ratings for

items the user has seen. A true rating di�ers by an amount of Gaussian noise from

the actual rating given by a user. Given the personality type of a user A, PD �nds the

probability that the given user is of the same personality type as other users in the

system and, subsequently, the probability that the user will like some new item [48].

The training and testing procedures concerning the second-level CF component

are identical to the ones used for the multi-class classi�cation component. Speci�cally,

training was conducted on the ratings that correspond to the set of patterns Ĉ1(u; k)∪

Ĉ2(u; k) ∪ Ĉ3(u; k). Accordingly, the testing procedure was conducted on the rating

values that correspond to the set of testing patterns ∪C1(u; k) ∪ C2(u; k) ∪ C3(u; k).

6.3 Measuring the E�ciency of the Cascade Classi-

�cation Scheme

The e�ciency of the adapted cascade classi�cation scheme was measured in terms

of the Mean Absolute Error and the Ranked Scoring measures. The Mean Absolute

Error (MAE) constitutes the most commonly measure used to evaluate the e�ciency

of RS. More formally, the MAE concerning user u at fold k may be de�ned as:

MAE(u; k) =
1

|P (u; k)|+ |N(u; k)|
∑

v∈P (u;k)∪N(u;k)

|Ru;k(v)− R̂u;k(v)| (6.14)
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The Ranked Scoring (RSC)[2] assumes that the recommendation is presented to

the user as a list of items ranked by their predicted ratings. Speci�cally, RSC assesses

the expected utility of a ranked list of items by multiplying the utility of an item for

the user by the probability that the item will be viewed by the user. The utility of

an item is computed as the di�erence between its observed rating and the default

or neutral rating d in the domain, which can be either the midpoint of the rating

scale or the average rating in the dataset. On the other hand, the probability of

viewing decays exponentially as the rank of items increases. Formally, the RSC of a

ranked list of items vj ∈ P (ui; k) ∪N(ui; k) sorted according to the index j in order

of declining Rui;k(vj) for a particular user ui at fold k is given by:

RSui;k =
∑

vj∈P (ui;k)∪N(ui;k)

max {Rui;k(vj)− d); 0} × 1

2(j−1)(i−1)
(6.15)

Having in mind that the set of testing patterns for the �rst-level classi�er at fold k

is formed by the patterns pertaining to the sets C0(u), C1(u; k), C2(u; k) and C3(u; k),

we may write that

|P (u; k)| = |C1(u; k)|+ |C2(u; k)|+ |C3(u; k)| (6.16)

and

|N(u; k)| = |C0(u)|: (6.17)

According to Eqs. 6.16 and 6.17, we may de�ne the true positive rate (TPR),

false negative rate (FNR), true negative rate (TNR), and false positive rate (FPR)

concerning user u for the k-th fold of the testing stage as follows:

TPR(u; k) =
TP (u; k)

|P (u; k)|
(6.18)

FNR(u; k) =
FP (u; k)

|P (u; k)|
(6.19)

TNR(u; k) =
TN(u; k)

|N(u; k)|
(6.20)
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and

FPR(u; k) =
FP (u; k)

|N(u; k)|
(6.21)

It is important to note that the quantities de�ned in Eqs. 6.18, 6.19, 6.20, and 6.21

refer to the classi�cation performance of the �rst-level classi�er in the adapted cas-

cade classi�cation scheme. More speci�cally, True Positive, TP (u; k), is the number

of positive/desirable patterns that were correctly assigned to the positive class of

patterns while False Negative, TN(u; k), is the number of positive/desirable patterns

that were incorrectly assigned to the negative class of patterns. Similarly, True Neg-

ative, TN(u; k), is the number of negative/non-desirable patterns that were correctly

assigned to the negative class of patterns, while False Positive, FP (u; k), is the num-

ber of negative/non-desirable patterns that were incorrectly assigned to the positive

class. More formally, having in mind Eq. 6.13, the above quantities may be described

as follows:

TP (u; k) = {v ∈ P (u; k) : fu;k(v) = +1} (6.22)

FP (u; k) = {v ∈ N(u; k) : fu;k(v) = +1} (6.23)

TN(u; k) = {v ∈ N(u; k) : fu;k(v) = −1} (6.24)

FN(u; k) = {v ∈ P (u; k) : fu;k(v) = −1} (6.25)

Computing the mean value for the above quantities over di�erent folds results in

the following equations:

TPR(u) =
1

K

∑
f∈F

TPR(u; k) (6.26)

FNR(u) =
1

K

∑
f∈F

FNR(u; k) (6.27)

TNR(u) =
1

K

∑
f∈F

TNR(u; k) (6.28)

FPR(u) =
1

K

∑
f∈F

FPR(u; k) (6.29)
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It is possible to bound the MAE for the complete two-level classi�er according to

its performance during the second stage of the multi-class classi�cation scheme. The

best case scenario concerning the classi�cation performance of the second-level (multi-

class) classi�er suggests that all the true positive patterns, which are passed to the

second classi�cation level, are correctly classi�ed. Moreover, the best case scenario

requires that all the false negative patterns of the �rst classi�cation level originated

from C1. Thus, the following inequality holds:

∀u ∈ U ∀k ∈ [K] MAE(u; k) ≥ FN(u; k) + FP (u; k)

|P (u; k)|+ |N(u; k)|
(6.30)

Given Eqs. 6.18,6.19, 6.20, and 6.21 and letting

�(u; k) =
|P (u; k)|
|N(u; k)|

=
|P (u)|
|N(u)|

= �(u) (6.31)

as the numbers of positive and negative patterns used during the testing stage do not

change for each fold and for each user, inequality 6.30 may be written as

MAE(u; k) ≥ FNR(u; k)× �(u)

�(u) + 1
+ FPR(u; k)× 1

�(u) + 1
: (6.32)

Given that

MAE(u) =
1

K

∑
k∈[K]

MAE(u; k); (6.33)

inequality 6.32 may be written as:

MAE(u) ≥ FNR(u)× �(u)

�(u) + 1
+ FPR(u)× 1

�(u) + 1
: (6.34)

If we consider the average value for the MAE over all users, we may write that:

MAE =
1

|U |
∑
u∈U

MAE(u): (6.35)
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This results in:

MAE ≥ 1

|U |
∑
u∈U

FNR(u)× �(u)

�(u) + 1
+ FPR(u)× 1

�(u) + 1
(6.36)

The worst case scenario concerning the classi�cation performance of the second

level is that the second-level (multi-class) classi�er incorrectly assigns all true positive

patterns to C3 while they truly originated from C1. In addition, all the false negative

patterns originate from C3 and all the false positive patterns are assigned to C3. Thus,

we may write the following inequality:

∀u ∈ U ∀f ∈ [K] MAE(u; k) ≤ 3× FN(u; k) + 2× TP (u; k) + 3× FP (u; k)

P (u; k) +N(u; k)
(6.37)

Given Eqs. 6.18,6.19, 6.20, 6.21 and 6.31, Eq. 6.37 may be written as:

MAE(u; k) ≤ 3× FNR(u; k)× �(u)

�(u) + 1
+

2× TPR(u; k)× �(u)

�(u) + 1
+

3× FPR(u; k)

�(u) + 1
(6.38)

Now, given Eq. 6.33, inequality 6.38 results in:

MAE(u) ≤ 3× FNR(u)× �(u)

�(u) + 1
+

2× TPR(u)× �(u)

�(u) + 1
+

3× FPR(u)

�(u) + 1
(6.39)

Thus, the average value for the MAE has an upper bound given by the following

inequality:

MAE ≤ 1

|U |
∑
u∈U

3× FNR(u)× �(u)

�(u) + 1
+

2× TPR(u)× �(u)

�(u) + 1
+

3× FPR(u)

�(u) + 1
:

(6.40)

Inequalities 6.36 and 6.40 imply that the minimum value for the average MAE

over all users is given as:

minu∈U MAE = 1
|U |
∑

u∈U
FNR(u)×�(u)

�(u)+1
+ FPR(u)

�(u)+1
: (6.41)
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Similarly, the maximum value for the average MAE over all users is given as:

maxu∈U MAE = 1
|U |
∑

u∈U
3×FNR(u)×�(u)

�(u)+1
+ 2×TPR(u)×�(u)

�(u)+1
+

1
|U |
∑

u∈U
3×FPR(u)
�(u)+1

:
(6.42)
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Chapter 7

Evaluation of Cascade

Recommendation Methods

The experimental results provided in this chapter correspond to the testing stage

of our system. Speci�cally, the evaluation process involved three recommendation

approaches:

1. The �rst approach corresponds to the standard collaborative �ltering method-

ologies, namely the Pearson Correlation, the Vector Similarity and the Person-

ality Diagnosis.

2. The second approach corresponds to the Cascade Content-based Recommenda-

tion methodology which was realized on the basis of a two-level classi�cation

scheme. Speci�cally, we tested one-class SVM for the �rst level, while the second

classi�cation level was realized as a multi-class SVM.

3. Finally, the third approach corresponds to the Cascade Hybrid Recommenda-

tion methodology which was implemented by a one-class SVM classi�cation

component at the �rst level and a CF counterpart at the second level. Speci�-

cally, the third recommendation approach involves three di�erent recommenders

which correspond to the di�erent CF methodologies that were embedded within

the second level.
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To evaluate our system, we tested its performance when used as a music �le RS.

In the following sections of this chapter, a detailed description is provided of the three

types of experiments that were conducted in order to evaluate the e�ciency of our

cascade recommendation architecture.

• The �rst type of experiments is described in Section 7.1 and demonstrates the

contribution of the one-class classi�cation component at the �rst level of our

cascade recommendation system. Speci�cally, we provide MAE and RSC mea-

surements concerning the mean overall performance of the standard collabo-

rative �ltering methodologies in the hybrid recommendation approach for the

complete set of users. Additionally, we measure the relative performance of the

Cascade Content-based Recommender against the performance of other recom-

mendation approaches in order to identify the recommendation system that

exhibits the best overall performance.

• The second type of experiments is described in Section 7.2 and demonstrates the

contribution of the second (multi-class) classi�cation level within the framework

of the Cascade Content-based Recommendation methodology. The main pur-

pose of this experimentation session is to reveal the bene�t in recommendation

quality obtained via the second (multi-class) classi�cation level.

7.1 Comparative study of Recommendation Meth-

ods

In this section, we provide a detailed description concerning the �rst type of ex-

periments. Our primary concern focused on conducting a comparative study of the

various recommendation approaches that were implemented. It is very important to

assess the recommendation ability of each individual system in order to identify the

one that exhibited the best overall performance. Speci�cally, the recommendation ac-

curacy was measured in terms of the average MAE over all folds for the complete set

of users. Our �ndings indicate that there was no recommendation approach that out-
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Figure 7-1: Content-based Recommender is the best for User 1
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performed the other approaches for the complete set of users. This means that there

were occasions for which the best recommendations for a particular user were given

by the standard CF approach. On the other hand, there were occasions for which ei-

ther the Cascade Content-based Recommender or the Cascade Hybrid Recommender

provided more accurate predictions concerning the true user ratings.

Typical examples of the previously mentioned situations are illustrated in Figs. 7-

1, 7-2 and 7-3. Speci�cally, Fig. 7-1 demonstrates that the best recommendation

approach for User1 was the Cascade Content-based Recommender. In order of de-

creasing e�ciency, the other recommendation approaches for User1 were the Cascade

Hybrid Recommender and standard CF. Furthermore, Fig. 7-2 demonstrates that

the best recommendation approach for User13 was the standard CF. The remaining

recommendation approaches for this user were the Cascade Hybrid Recommender,

which ranked second, and the Cascade Content-based Recommender, which ranked

third. Finally, Fig. 7-3 demonstrates that the Cascade Content-based Recommender

and the standard CF rank second and third, respectively, in terms of e�ciency.
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Figure 7-2: Collaborative Filtering Recommender is the best for User 13
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The most important �nding which results from the �rst set of experiments is that

the overall best recommendation approach over all users and folds was provided by

the Cascade Hybrid Recommender. This fact is explicitly illustrated in Fig. 7-4 in

which the hybrid approach presents the lowest average MAE taken over all users and

folds during the testing stage. It is worth mentioning that the pure content-based

and CF methodologies rank second and third, respectively, in terms of the overall

recommendation accuracy. This is not an accidental fact, but is rather an immediate

consequence of the incorporation of the one-class classi�cation component at the �rst

level of the cascade recommendation scheme.

The recommendation approaches that rely exclusively on CF estimate the rating

value that a particular user would assign to an unseen item on the basis of the ratings

that the other users have provided for the given item. In other words, the pure CF

approaches do not take into account the subjective preferences of an individual user,

as they are biased towards the items that are most preferred by the other users. The

major drawback of the standard CF approaches is that they disorientate the user by
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Figure 7-3: Hybrid Recommender is the best for User3
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operating exclusively on a basis formed by the preferences of the other users, ignoring

the particular preferences an individual user might have.

On the other hand, the pure content-based recommendation approaches fail to

exploit neighborhood information for a particular user. They operate exclusively on

classi�ers which are trained to be user-speci�c, ignoring any bene�cial information

related to users with similar preferences. A natural solution to the problems related

to the CF and content-based recommendation approaches would be the formation of

a hybrid RS. Such a system would incorporate the classi�cation power of the content-

based recommenders and the ability of standard CF approaches to estimate user

ratings on the basis of similar users' pro�les.

The Cascade Hybrid Recommendation approach presented in here mimics the so-

cial process in which someone has selected items according to his/her preferences and

seeks other people's opinions about these, in order to make a better selection. In

other words, the one-class classi�cation component, at the �rst level, provides spe-

cialized recommendations by �ltering out those items that a particular user would
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characterize as non-desirable. This is achieved through the user-speci�c training pro-

cess of the one-class classi�ers which are explicitly trained on user-de�ned positive

classes of patterns. On the other hand, the second level of recommendation exploits

the neighborhood of preferences formed by users with similar opinions. The recom-

mendation superiority exhibited by the Cascade Hybrid Recommender is based on

the more e�cient utilization of its CF component. This is achieved by constraining

its operation only on the subset of patterns that are already recognized as desirable.

Therefore, this approach resolves the problem of user disorientation by asking for the

opinions of other users only for the items that a particular user assigns to the positive

class of patterns.

Figure 7-4: MAE (Mean for all users)
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7.2 One-Class SVM - Fraction: Analysis

The purpose of this set of experiments is to reveal the contribution of the second

(multi-class) classi�cation level in the overall recommendation ability of the Cascade

138



Figure 7-5: MSE (Mean for all users)
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Content-based Recommender. Eqs. 6.41 and 6.42 provide the minimum and maxi-

mum values for the average MAE over all users, given the classi�cation performance

of the �rst (one-class) classi�cation level. Having in mind that these lower and upper

bounds on the average MAE concern the overall performance of the cascade recom-

mender at both levels, they re
ect the impact of the second (multi-class) classi�cation

component. The lower bound on the average MAE corresponds to the best case sce-

nario in which the second (multi-class) classi�cation level performs inerrably. On the

other hand, the upper bound on the average MAE corresponds to the worst case

scenario, in which the second (multi-class) classi�cation level fails completely. In this

context, if we measure the actual value of the average MAE over all users, we can

assess the in
uence of the second classi�cation level on the overall recommendation

accuracy of our system. Thus, if the actual value of the average MAE is close to

the lower bound, this implies that the second classi�cation level operated close to

the highest possible performance level. On the other hand, if the actual value of the
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Figure 7-6: Ranked Scoring (Mean for all users)
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average MAE is closer to its upper bound, this implies that the second classi�cation

level did not contribute signi�cantly to the overall performance of our recommender.

Fig. 7-7 shows the actual average MAE relative to its corresponding lower and

upper bound curves. Each curve is generated by parameterizing the one-class SVM

classi�er with respect to the fraction of the positive data that should be rejected

during the training process.

The relative performance of one-class SVM-based classi�er was measured in terms

of precision, recall, F1-measure and MAE, which are de�ned in the following. The

precision is de�ned as an average over all users and folds in relation to the average
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Figure 7-7: MAE Boundaries for One-Class SVM.

values for the true positives and the false positives:

Precision =
TP

TP + FP
: (7.1)

On the other hand, the recall is de�ned as the average over all users and folds in

relation to the average values for the true positives and the false negatives:

Recall =
TP

TP + FN
: (7.2)

Finally, the F1-measure is de�ned as the average value for the F1-measure over all

users and folds.

F1 =
2× Precision×Recall

Precision+Recall
(7.3)
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Figure 7-8: Hybrid Recommender 2nd Level Personality Diagnosis: Fraction Analysis.

The precision quanti�es the amount of information that is not lost, while the

recall expresses the amount of data that is not lost. Higher precision and recall

values indicate superior classi�cation performance. The F1-measure is a combination

of precision and recall which ranges within the [0; 1] interval. The minimum value (0)

indicates the worst possible performance, while the maximum value (1) indicates the

highest possible performance.

The MAE is a measure related to the overall classi�cation performance of the

Cascade Recommender. MAE values closer to zero indicate higher recommendation

accuracy. It is very important to note that in the context of the highly unbalanced

classi�cation problem related to recommendation, the quality that dominates the

level of the MAE is the number of the correctly classi�ed negative patterns, i.e. the

true negatives. Since the vast majority of patterns belong to the negative class,
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Figure 7-9: Hybrid Recommender 2nd Level Pearson Correlation: Fraction Analysis.

correctly identifying them reduces the overall classi�cation error. Thus, a lower MAE

value for the one-class SVM classi�er indicates that this classi�er performs better

in �ltering out non-desirable patterns. On the other hand, the F1-measure, that

speci�cally relates to precision and recall according to Eq. 7.3, is dominated by the

amount of positive patterns that are correctly classi�ed (i.e., true positives), according

to Eqs. 7.1 and 7.2. The F1-measure quanti�es the amount of true (thus, useful)

positive recommendations that the system provides to the user.

The previous �ndings are characteristic of the behavior of the one-class classi�ers

with respect to the fraction of positive and negative patterns that they identify during

their testing process. Our experiments indicate the following:

• The precision performance of the one-class SVM classi�er involves increasing

true negative rates as the fraction of positive patterns rejected during training
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Figure 7-10: Hybrid Recommender 2nd Level Vector Similarity: Fraction Analysis.

approaches 95%

• On the other hand, the recall performance of the one-class SVM classi�er in-

volves increasing true positive rates as the fraction of positive patterns rejected

during training approaches 5%.

An e�cient one-class classi�er attempts to achieve one of two goals: (1) to mini-

mize the fraction of false positives and (2) to minimize the fraction of false negatives.

Thus, it is a matter of choice whether the recommendation process will focus on in-

creasing the true positive rate or increasing the true negative rate. Increasing the true

negative rate results in lower MAE levels, while increasing the true positive rate re-

sults in higher F1-measure levels. Speci�cally, the fact that the non-desirable patterns

are signi�cantly higher in number than the desirable ones, suggests that the quality

of recommendation is crucially in
uenced by the number of the correctly identi�ed
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Figure 7-11: One Class SVM (Precision, Recall, F1)

negative patterns. In other words, constraining the amount of the false positive pat-

terns that pass to the second level of the RS increases the reliability (quality) of the

recommended items. The most appropriate measure to describe the quality of rec-

ommendation is given by the RSC, as the RSC illustrates the amount of true positive

items that are placed at the top of the ranked list. This fact is clearly demonstrated

in Fig. 7-6, where the RSC for the Cascade Content-based RS of the one-class SVM

classi�er outperforms the other recommendation approaches.

145





Chapter 8

Conclusions and Future Work

8.1 Summary - Conclusions

Recent advances in electronic media and computer networks have allowed the cre-

ation of large and distributed repositories of information. However, the immediate

availability of extensive resources for use by broad classes of computer users gives

rise to new challenges in everyday life. These challenges arise from the fact that

users cannot exploit available resources e�ectively when the amount of information

requires prohibitively long user time spent on acquaintance with and comprehension

of the information content. Thus, the risk of information overload of users imposes

new requirements on the software systems that handle the information. Such systems

are calles Recommender Systems (RS) and attempt to provide information in a way

that will be most appropriate and valuable to its users and prevent them from being

overwhelmed by huge amounts of information that, in the absence of RS, they should

browse or examine.

In this thesis, �rstly, we explored the use of objective content-based features to

model the individualized (subjective) perception of similarity between multimedia

data. We present a content-based RS which constructs music similarity perception

models of its users by associating di�erent similarity measures to di�erent users. The

results of the evaluation of the system veri�ed the relation between subsets of objec-

tive features and individualized (music) similarity perception and exhibits signi�cant
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improvement in individualized perceived similarity in subsequent recommended items.

The investigation of these relations between objective feature subsets and user percep-

tion o�er an indirect explanation and justi�cation for the items one selects. The users

are clustered according to speci�c subsets of features that re
ect di�erent aspects of

the music signal. This assignment of a user to a speci�c subset of features allows

us to formulate indirect relations between his/her perception and corresponding item

similarity (e.g. music similarity) that involves his/her preferences. Consequently,

the selection of a speci�c feature subset can provide a justi�cation-reasoning of the

various factors that in
uence the user's perception of similarity to his/her preferences.

Secondly, we addressed the recommendation process as a hybrid combination of

one-class classi�cation with CF. Speci�cally, we followed a cascade scheme in which

the recommendation process is decomposed into two levels. In the �rst level, our

approach attempts to identify for each user only the desirable items from the large

amount of all possible items, taking into account only a small portion of his/her

available preferences. Towards this goal we apply a one-class classi�cation scheme, in

the training stage of which only positives examples (desirable items for which users

have express an opinion-rating value) are required. This is very important, as it is

sensibly hard in terms of time and e�ort for users to explicitly express what they

consider as non-desirable to them. In the second level, either a content-based or a

CF approach is applied to assign a corresponding rating degree to these items . Our

cascade scheme �rst builds a user pro�le by taking into consideration a small amount

of his/her preferences and then selects possible desirable items according to these

preferences which are re�ned and into a rating scale in the second level. In this way,

the cascade hybrid RS avoids known problems of content-based or CF RS.

The fundamental idea behind our cascade hybrid recommendation approach was

to mimic the social recommendation process in which someone has already ideni�ed

some items according to his/her preferences and seeks the opinions of others about

these items, so as to make the best selection of items that fall within his/her in-

dividual preferences. Experimental results reveal that our hybrid recommendation

approach outperforms both a pure content-based approach or a pure CF technique.
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Experimental results from the comparison between the pure collaborative and the

cascade content-based approaches demonstrate the e�ciency of the �rst level. On

the other hand, the comparison between the cascade content-based and the cascade

hybrid approaches demonstrates the e�ciency of the second level and justi�es the use

of the CF method in the second level.

8.2 Current and Future Work

In this relation to the work reported in this thesis, we are currently investigating the

possibility of incorporating similar ideas into the construction of RS that are able

to recommend items not only to speci�c user, but also to groups of users. Such RS

utilize a combination (fusion) of RS based on game theory.

Another direction of current and future work is along the exploration of machine

learning approaches based on the transductive inference paradigm. Transductive

SVM approaches that utilize only positive and unlabeled data form a new, unexplored

direction for RS. Related research has the potential to lead to e�cient solutions to the

highly unbalanced nature of the classi�cation problem of RS. As mentioned earlier in

this thesis, it is common to be faced with situations in which positive and unlabeled

examples are available but negative examples cannot be obtained without paying an

additional cost. Therefore, the utilization of additional information that is contained

in unlabeled data can o�er the RS new possibilities to learn the user�s preferences

more e�ciently and to provide better recommendations.

These and other research avenues are currently being explored and related results

will be presented elsewhere in the future.
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Appendix A

Tables

Table A.1: Collaborative Filtering Methods
MAE MSE RS

Pearson Correlation 0,801478 1,305633 1,145911
Vector Similarity 0,79425 1,255552 1,201034

Personality Diagnosis 0,835894 1,312509 1,387292

Table A.2: Cascade Content-Based Recommender

CB: Oneclass Polynomial Kernel + Multiclass RBF SVM
Fraction: � of SVM MAE MSE RS TP TN FP FN Precision Recall F1

0,05 1,06 1,63 2,22 0,94 0,08 0,92 0,06 0,51 0,94 0,66
0,10 1,03 1,58 2,22 0,89 0,12 0,88 0,11 0,50 0,89 0,64
0,15 0,98 1,52 2,22 0,84 0,18 0,82 0,16 0,51 0,84 0,63
0,20 0,94 1,45 2,22 0,79 0,24 0,76 0,21 0,51 0,79 0,62
0,25 0,90 1,39 2,23 0,74 0,29 0,71 0,26 0,51 0,74 0,60
0,30 0,85 1,31 2,24 0,69 0,34 0,66 0,31 0,51 0,69 0,59
0,35 0,80 1,26 2,25 0,64 0,40 0,60 0,36 0,51 0,64 0,57
0,40 0,76 1,20 2,24 0,59 0,45 0,55 0,41 0,51 0,59 0,55
0,45 0,73 1,16 2,23 0,54 0,49 0,51 0,46 0,51 0,54 0,52
0,50 0,70 1,13 2,22 0,49 0,54 0,46 0,51 0,51 0,49 0,50
0,55 0,66 1,08 2,21 0,44 0,58 0,42 0,56 0,51 0,44 0,47
0,60 0,63 1,03 2,20 0,39 0,62 0,38 0,61 0,50 0,39 0,44
0,65 0,59 0,98 2,19 0,34 0,67 0,33 0,66 0,50 0,34 0,40
0,70 0,55 0,92 2,12 0,29 0,72 0,28 0,71 0,51 0,29 0,37
0,75 0,51 0,87 2,09 0,25 0,78 0,22 0,75 0,51 0,25 0,33
0,80 0,48 0,83 2,07 0,20 0,82 0,18 0,80 0,51 0,20 0,28
0,85 0,44 0,78 2,02 0,15 0,87 0,13 0,85 0,52 0,15 0,23
0,90 0,40 0,74 1,99 0,10 0,92 0,08 0,90 0,52 0,10 0,16
0,95 0,37 0,70 2,19 0,05 0,96 0,04 0,95 0,50 0,05 0,09
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Table A.3: Cascade Hybrid Recommender (One-Class SVM + Personality Diagnosis)

Hybrid: Oneclass Polynomial Kernel + Personality Diagnosis
Fraction: � of SVM MAE MSE RS TP TN FP FN Precision Recall F1

0,05 0,94 1,48 1,48 0,94 0,08 0,92 0,06 0,51 0,94 0,66
0,10 0,91 1,43 1,48 0,89 0,12 0,88 0,11 0,50 0,89 0,64
0,15 0,87 1,38 1,48 0,84 0,18 0,82 0,16 0,51 0,84 0,63
0,20 0,82 1,30 1,47 0,79 0,24 0,76 0,21 0,51 0,79 0,62
0,25 0,77 1,20 1,46 0,74 0,29 0,71 0,26 0,51 0,74 0,60
0,30 0,73 1,16 1,46 0,69 0,34 0,66 0,31 0,51 0,69 0,59
0,35 0,69 1,13 1,47 0,64 0,40 0,60 0,36 0,51 0,64 0,57
0,40 0,66 1,08 1,46 0,59 0,45 0,55 0,41 0,51 0,59 0,55
0,45 0,63 1,05 1,46 0,54 0,49 0,51 0,46 0,51 0,54 0,52
0,50 0,61 1,01 1,53 0,49 0,54 0,46 0,51 0,51 0,49 0,50
0,55 0,58 0,98 1,50 0,44 0,58 0,42 0,56 0,51 0,44 0,47
0,60 0,55 0,94 1,51 0,39 0,62 0,38 0,61 0,50 0,39 0,44
0,65 0,52 0,90 1,52 0,34 0,67 0,33 0,66 0,50 0,34 0,40
0,70 0,49 0,86 1,51 0,29 0,72 0,28 0,71 0,51 0,29 0,37
0,75 0,47 0,82 1,52 0,25 0,78 0,22 0,75 0,51 0,25 0,33
0,80 0,44 0,79 1,54 0,20 0,82 0,18 0,80 0,51 0,20 0,28
0,85 0,41 0,75 1,55 0,15 0,87 0,13 0,85 0,52 0,15 0,23
0,90 0,39 0,72 1,59 0,10 0,92 0,08 0,90 0,52 0,10 0,16
0,95 0,36 0,69 1,70 0,05 0,96 0,04 0,95 0,50 0,05 0,09

Table A.4: Cascade Hybrid Recommender (One-Class SVM + Pearson Correlation)

Hybrid: Oneclass Polynomial Kernel + Pearson Correlation
Fraction: � of SVM MAE MSE RS TP TN FP FN Precision Recall F1

0,05 0,94 1,52 1,46 0,94 0,08 0,92 0,06 0,51 0,94 0,66
0,10 0,90 1,46 1,48 0,89 0,12 0,88 0,11 0,50 0,89 0,64
0,15 0,85 1,38 1,48 0,84 0,18 0,82 0,16 0,51 0,84 0,63
0,20 0,81 1,30 1,45 0,79 0,24 0,76 0,21 0,51 0,79 0,62
0,25 0,77 1,23 1,45 0,74 0,29 0,71 0,26 0,51 0,74 0,60
0,30 0,72 1,14 1,46 0,69 0,34 0,66 0,31 0,51 0,69 0,59
0,35 0,68 1,09 1,45 0,64 0,40 0,60 0,36 0,51 0,64 0,57
0,40 0,65 1,04 1,50 0,59 0,45 0,55 0,41 0,51 0,59 0,55
0,45 0,62 1,00 1,48 0,54 0,49 0,51 0,46 0,51 0,54 0,52
0,50 0,60 0,97 1,51 0,49 0,54 0,46 0,51 0,51 0,49 0,50
0,55 0,57 0,94 1,49 0,44 0,58 0,42 0,56 0,51 0,44 0,47
0,60 0,54 0,91 1,48 0,39 0,62 0,38 0,61 0,50 0,39 0,44
0,65 0,51 0,86 1,53 0,34 0,67 0,33 0,66 0,50 0,34 0,40
0,70 0,48 0,82 1,47 0,29 0,72 0,28 0,71 0,51 0,29 0,37
0,75 0,45 0,78 1,52 0,25 0,78 0,22 0,75 0,51 0,25 0,33
0,80 0,43 0,75 1,51 0,20 0,82 0,18 0,80 0,51 0,20 0,28
0,85 0,40 0,72 1,54 0,15 0,87 0,13 0,85 0,52 0,15 0,23
0,90 0,38 0,70 1,55 0,10 0,92 0,08 0,90 0,52 0,10 0,16
0,95 0,36 0,68 1,66 0,05 0,96 0,04 0,95 0,50 0,05 0,09
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Table A.5: Cascade Hybrid Recommender (One-Class SVM + Vector Similarity)

Hybrid: Oneclass Polynomial Kernel + Vector Similarity
Fraction: � of SVM MAE MSE RS TP TN FP FN Precision Recall F1

0,05 0,94 1,52 1,44 0,94 0,08 0,92 0,06 0,51 0,94 0,66
0,10 0,90 1,46 1,45 0,89 0,12 0,88 0,11 0,50 0,89 0,64
0,15 0,85 1,38 1,47 0,84 0,18 0,82 0,16 0,51 0,84 0,63
0,20 0,81 1,30 1,44 0,79 0,24 0,76 0,21 0,51 0,79 0,62
0,25 0,77 1,23 1,45 0,74 0,29 0,71 0,26 0,51 0,74 0,60
0,30 0,72 1,15 1,43 0,69 0,34 0,66 0,31 0,51 0,69 0,59
0,35 0,68 1,09 1,39 0,64 0,40 0,60 0,36 0,51 0,64 0,57
0,40 0,65 1,04 1,48 0,59 0,45 0,55 0,41 0,51 0,59 0,55
0,45 0,62 1,00 1,46 0,54 0,49 0,51 0,46 0,51 0,54 0,52
0,50 0,60 0,97 1,50 0,49 0,54 0,46 0,51 0,51 0,49 0,50
0,55 0,57 0,94 1,48 0,44 0,58 0,42 0,56 0,51 0,44 0,47
0,60 0,55 0,91 1,45 0,39 0,62 0,38 0,61 0,50 0,39 0,44
0,65 0,51 0,86 1,54 0,34 0,67 0,33 0,66 0,50 0,34 0,40
0,70 0,48 0,83 1,49 0,29 0,72 0,28 0,71 0,51 0,29 0,37
0,75 0,45 0,79 1,53 0,25 0,78 0,22 0,75 0,51 0,25 0,33
0,80 0,43 0,76 1,52 0,20 0,82 0,18 0,80 0,51 0,20 0,28
0,85 0,40 0,72 1,55 0,15 0,87 0,13 0,85 0,52 0,15 0,23
0,90 0,38 0,70 1,55 0,10 0,92 0,08 0,90 0,52 0,10 0,16
0,95 0,36 0,68 1,68 0,05 0,96 0,04 0,95 0,50 0,05 0,09
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