[Tavemotuo Iepaiwg

Metantuyokd oty "Awaktikn g Teyvoloyiag kot Pnelokov
Xvotnuatov"

Katevbovvon: Awrvokevpikd Xvotiuato

NTOAIAXZ NIKOAAOX
ME-0687

Enideitn ko Xpnon Néwv Teyvoroyuwv Baciopévov oty J2EE
Apyrtektovikn yio v YAormoinon Enextdciuov Web Epappoyov
kot Web Services

EmPrénov: Aéktopac BéEpa-Ahedvopa ZtavpovAdkn

01/09/2009
1|Page

University Of Piraeus

Postgraduate Degree in "Technology Education and Digital
Systems"

Area of Study: Net Centric Systems

NTOLIAS NIKOLAOS
ME-0687

Use and Presentation of New Technologies Based on J2EE
Architecture for Implementing Scalable Web Applications and
Web Services

Superviser: Lecturer Vera-Alexandra Stavroulaki

01/09/2009

2| Page

Table of Contents

TABIE OF CONTENTS ..t e s S S e 3
TADIE OF FIQUIES ettt ettt ec e e e ee e e sveaeeadaae e iiune e e Fatbn e e s as Foan s Son onsh 5
FTEDIANIN covvvvereeerireerereesreersrecssuresseresssnesssressaressansossaessssss Ains e indrgeesnsdes foorseMhbuseosnsssnene 7
1. INrOAUCHON ..t gl e S i et 10

1.1. Complexity and Scalability Issues of Large Scale Web Applications . 10

1.2, State of TR Art ... e g e e et 11
1.3 Structure of the TRESIS......coiiiii it 13
2. Choice of Architecture and FrameworK...........ccivciueeieninieicnenineseeeeeene 15
3. Overview of SPriNG FraOMEWOIK.... oot et eeerreeeeeee e eeereeeeeveeeens 19
4. Show Face Application Presentation ...t eeceee et 21
4.1. Infroduction 10 SNOW FOCE ..c...coiuiiiiiniiiiiiieceecee e 21
4.2. High Level Presentation ...t 22
5. Layered Frameworks of SNOW FACE......ccoomiiiiiieee e 39
5.1. MOAEI LAY ET . ittt et e e e e e eera e e e e e estabeeeeeeeaenens 39
5.2. (Ofe] gl o] 11T e)Y SRR 40
5.3, VIBWLAYET criiecics it ettt e et e et a e e earae e etaee e 45
6. Application Package Structure and Design........coccvveecvieieccieee e, 52
6.1. PACKAGE STTUCTUIE. ... e e 52
7.. Main Concepts-and Integration Points-Configuration..........cccccceeveeeivieenns 61
7.1. Hibernate SEtUP AN USEeeeeeeieieeeeeee e 61
7.2. Transaction Management wWith AOPcoociiiiciiiiicie e, 66
7.3. APCOACNE THES 2.t e e a e e 68
7.4. LOG IN INTEICEPTON ot 71

3|Page

8. Presentation of a Request’s FUIl ROUNA THP wuveeeieiieciieeeee e 75

9. PerformanCe METTICS. ...couu i e s e 81
9.1. JMeter SETUP ANA TESTS . uuiiiiieieee it se i 81
9.2. Profiling the Application with the Help of jmeter...........cccooc i, 925

10. Application Configuration and Setup INStructionsccccievieeeiveeneenee. 101

11. Conclusion aNd FUTUIE WOTK......cooeeiiiiiniisiieteneciee i 104

12. REFEIENCES ...t B e e e 106

4| Page

Table of Figures

Figure 1. MVC Model DIAQram [5] .ottt e i iivas s e s asa e eeesas e ae e 16
Figure 2. General View of Spring Framework [6]oocueeiieiiesiiciine i e seieee e, 20
FIGUIE 3. LOGIN SCIEEN ...ttt e e eve e st e s s enaa s e e fre e e e seraneenes 23
Figure 4. EMpPty REQISTEI SCIEENviiieeeieeee et et 24
Figure 5. FAled REISTEr SCIrEENoiiieeee e ettt et et 25
Figure 6. Correctly Filled REQISTEI SCIEENcoocveii it 26
FIQUre 7. ADOUT PAQE SCIEEN ...t st eee s e e e e e e tveeesraeeenaes 27
Figure 8. Home Page after First LOG IN ... i et 28
Figure 9. Upload Screen with Valid INpUT ... 29
Figure 10. Failed Attempt to Upload a PDF (Not-Image) File........ccccooveeeivieicnnnnns 30
Figure 11. Home Page after Successful Image Upload.........oeoeeveeeeciiicicieeeenneeeenn, 31
FIGQUre 12. My PROTOS SCIEEN ... ittt tae e e sraee e 32
Figure 13. MAKE FriENAS SCIEENi vttt e e e et eerrae e 33
Figure 14. Home Page Screen with Requests, PNOTOScocveeevevieiicieiiieieic i 34
Figure 15. VIew YOUI FIIENAS SCIEEN........cocvee ettt e et 35
Figure 16. View Your Entire Friend’s IMages SCreen........uvvveveeeeciee e 36
FIQUre 17:LINKS PAGQE SCIEENottt et e e s vaee s 37
Figure 18. Life cycle of arequest in Spring MVC [3] ..., 4]
Figure 19. Java PACKAGE STTUCTUIEuviiciee e et 52
Figure 20. Contents of DOMAIN PACKAGEiooviiiiiiiieeeieee e 53
Figure 21. Contents of Repository PACKAGEooovveieeeviiieceee et 55

5|Page

Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 42.
Figure 43.
Figure 44.

Figure 45.

Contents of Service PACKAGEuuvvieiiiicecee e 56
Contents of Ut PACKAGEccuviiiieeeee e e e 56
Contents of Validators PACKAQGEcoovvieeeiiiieeeeeeecis e S7
Contents of Wel PACKAGEiiiiviiieeieece st e e esres 58
Normal Load Test CASE.......ueiiivervrnveniinncneceee i g coeeafe heee e BB coeeeuene 82
Results of Normal Load Test CASE......coviiriiiiiiiiieiieie e 84
Graph of Normal LoAd Test CASE....cuuvvivioriiiineieiiviiete e eeivsseeeeeeee e 85
Results of Normal Load Test CASE 2iviiviiniesiociiue sttt 87
Graph of Normal Load Test CASE 2..uuuuiivvureieeiiiisiieeeeeeeite e e 88
Results of High Load Test CaAse 3 ..ot e 89
Graph of High Load Test CaSe 3..iuiiiiieeiiiiinnnie e eeeteee e 90
Results of High Load TESt CASE 4viviiviines i 91
Graph of High Load Test CASE 4. oot eeeteee e 92
Results of Very High Load Test CasSe 5 .uuuviiiiiiiecieie e, 93
Graph of Very High Load Test Case S......vvvveeciiiiieieieeceee e, 94
JAVA VErsioN ChECKiviiiiiiiiieiieiee e 101
TomMC At SUCCESSTUL STAMT UD i 102
HSQLDB Server Successful STartup ..ouvvieeiee e 103

Show Face Successful Deploymentin TOMCAToooveveeeeeiieiccieeeeieee, 103

6| Page

HepiAnyn

nuepa M evpeion eEAmAmon TG ¥PNONG TOV TAYKOGUIOV 1GTOV Yl TPOCWOTLKOVS KO
EMAYYEAMLOTIKOVG AOYOLG €xel Gav AmOTEAEGHO vo. avENBodv Ol amoutnoelg amd Tig
OLOIKTLOKEG EQUPUOYEG GE pEYOAO Pabud, avtn 1 Kotdotoon €xel ONUIOVPYNCEL £VoV
4TVTO OYDVO, GTO TOL0G UTOPEL VO KOTACKEVAGEL TNV TANPESTEPN EPAPLOYN Yio KO
EMYEPNUOTIKO Kol Oyt uovo avtikeipevo. To amoTéAecuo TG TOPATOVEO KOTAGTAOTNG
Bonnoe oty ££EMEN TS OPYLITEKTOVIKNG TOV EPAPUOYDV OAAG ETioNG ONovPYNCE Kot
T0 WPOPANUA NG HEYOANG TOAVTAOKOTNTOG Kol TNG SLOKOAIOG GUVTNPNONG OVTMV.
XopoKTNPLoTIKA OT®G EXEKTAGIUOTNTO, d00ecIUOTNTO, EVKOAN GLVTIPNON Kot YoLpnAol
xpOVOL OamdKPIoNG OTA JAPOPO OUTNUATO TOV TEANTOV £ivol omopoitnta yo. TV
dNpovpYie pog EmTLYNHEVNG SLOOIKTLOKTG EPAPUOYNG.

2tV mapovoa gpyacio Oa yivel pio Tpoomddela Yo TNV KOTOCKEVT HL0G EQPOPHOYNS TOV
Ba d100éTel T TAPATAVED YOPAKTNPLOTIKE Kot TapAAANAQ Bo 0TOYEVEL GTO VO d1oTPNGEL
TNV TOALTAOKOTNTO 6TO €AAYIOTO duvatd eminedo. o va emtevyBel kTt T€T010 TPETEL
va Yivouv ot KATAAANAEG EMAOYEG GE EMIMEDO APYITEKTOVIKNG KO EMAOYNG TEXVOAOYIDV
mov Ba ypnowwomomBovv. Xe emOuEVo o0TAO0 TPEMEL Vo TopBovV Ol KATAAANAES
oxeS0OTIKEG OMOPACELS OV O EKUETAAALEVOVTIOL TV XPNOT CAAL Kol TNV GLVEPYAGIN
HETAED TOV VEOV QUTAV TEXVOLOYIDV.

Y eMmed0 APYITEKTOVIKNG 1 EXAOYN OTNV Guykekpluévn epyacia etvar to MVC (Model
View Controller) povtédo to omoio &ivar £tol dopnpévo dote vo mpowbel po mwoAv-
OTPOUATIKY oYXEIOGT TNG EQUPLOYNG KATA TNV OToin KAOe oTpdUa Elvol ETPOPTIGUEVO
HE TO VO TPOCQEPEL UL CLYKEKPIUEVT] OUAdO TOPOUOU®Y VANPECIOV. AV M
apyrtekTovikn dtoympilel T1g €vBHVEG Yo TNV TTEPAT®OTN EVOG CUTNHUOTOS TOL YPNOTN GE
emineda, £YOVING OOV OMOTEAEGUA TV KOADTEPT OPYAVOGCT) TOL KMOKO KoL TNV EALYLOTN
e€dpmmon petald Tov EMIMEd®V TPAYHO TOL OLEVKOAVVEL TIC GAAMYEC OV Umopel vo
YPEWGTOVV GTOV KOJIKA 1) TNV TPoSHNKN VEWV VINPECLAOV.

Ye eminedo teyvoloyiwv m Paon m omoia ypnopomombnke, mOvw otnv omoia
evoopatodnkay Kot GAkeg teyvoloyiec, eivan 1o Spring Framework. H emloyn g
CLYKEKPWEVNG TEYVOAOYIOG, 7OV YPNOUYOTOIEITE OTNV KOTOOKELT SLOOIKTLOK®OV
epappoymnv og Java Baciopévn oty J2EE mhatedpua, €ywve yuoo moAAovg Adyovg Ommg
ott PonBder oty peimon ™G TOAVTAOKOTNTOG TETOWWV EQAPUOYDV, OTOTEAEL &va
GLUVOMKO KOl OAOKANP®OUEVO TANICIO HE VEEG 10EEC KOl TEXVOAOYIEG TO OMOl0 €YEL TNV
duvatodTNTa Vo oVvEPYALETOL Pe GALEC LTAPYOVOEG TEXVOAOYieg o€ KAOe emimedo g
MVC apyitextovikig. Avtd divel) dvuvototnTa €mA0YNg TG PEATIOTNG Yiow TNV KAOE

7|1Page

nepintwon teyvoloyiag mov amouteitor yioo 1o kabe eminedo tov MVC poviéhov,
TaPEYOVTOS EVOV LEYAAO aplBLd cLVOLOGUMY KOl SVVATOTATAOV Kot Wtaitepn gveMEia.

H epappoyn n omola avamtoybnke dote vo emdeiel To TAEOVEKTNUOTO KOL TO TL
TPOCPEPOLVV 01 TEXVIKEG EMAOYEG TTOL £yvav apomdve ovopdletar Show Face. To Show
Face eivor pio omAn Olod1KTLOKY) EQOPUOYN TOV TPOGPEPEL KAMOLES VLANPECIES
KOWMOVIKNG OIKTO®ONG HEGO amd €vol €0YPNOTO Kol €VYXAPLOTO TEPPAAAOV Yo TOV
xpot. O e&uanpetnTNg OV YPNGIHOTOMONKE Yo VO PIAOEEVIOEL TNV EQOPLOYT] vt O
Apache Tomcat 6 o omoiog 0ev €&xel peydAeg OmMOUTNOELS GE OXEOT WE GAAOVLG
eEumnpeTég eQapuoy®v Kot pe tn Ponbewa tov Spring Framework pumopel va emtedécet
Aertovpyleg TOL TOAOTEPO OTOLTOVCOV TNV YPNON EEVINPETNTOV UE PEYAAES ATOLTNOELS,
Kk60T0G Kol ToAvTAokOTTO. H Bdon dedopévmv mov ypnotpomodnke yio TV epapuroyn
etvar 1 HSQL DB 1 omoia givor por «eda@pid» Pdon mov eKTeAeite 0TV pviun Tov
VTOAOYLOTH KOt Yo uTOV TO AOYO glvan 1daitepa ypriyopn, BEPara vdpyel meploptopog
oTOV OYKO OE00UEVMV TTOV UTOPEL VoL oY EPIOTEL.

Onwg avagépnke Topamdve 1 papUoyn TOPEXEL KATOEG ATAEG VITNPEGIEC KOWVMVIKNG
dwtowong. Iloo ocvykekpipéva €vag ypnoms oeov dNUOVPYNoEL Evay AOYOPLOGUO
pmopel va avePdlel Tig poToypapieg Tov otV £@appoyn kot va Tic PAénel o thumbnails
N oto apykd tovg péyeboc, emiong pmopel vo dtaypayeL amd 10 GOOCTNUO OToleg BEAEL.
Eniong pmopet va del TOVG VILAPYOVTES XPNOTES TNS EQUPLOYNG KO VO TOVG OTEIAEL Eval
aitnpo eiog OTmg Kot GALOL pmopovv vo. oteidovy otov idto. Kdamolog ypnotng pumopet
va deytel | va apvnOel Eva alitnua eilog. Xe mepintmon Tov T0 amodeyTel Kot 2 XproTe
yivovtal @ilot peta&d toug t0te pumopel o évog va PAETEL TIC pwToYpapieg Tov GAAOV
KaBmg Kol Kdmowo Tapomdve ototxeio Yoo avutodv. TEA0oG KAmolog ypNnotng Hmopel va
dwypdyet évav aAlo amd @ido tov, avTtd Ba €€l OC AMOTEAEGHO VO UV UTOPOLV VoL
BAEmoVV TIG PwTOYPAPIES O VOG TOV AALOV.

Metd Vv mopamdve cOVIOUN TEPLYPOPT] TG EQUPUOYNG, Ba yivel o avoaeopd oTig
TeQvoroYieg oV evowpotddnkav oto Spring Framework yio xéfe eninedo tov MVC
povtédov. Xto Model eninedo ypnoporomOnkav POJOs yia tov optopd tov pHoviEAov to
omoia dwyepiletar to Spring Container 660V 0popd TO transaction management T0 0mo{0
yivete pe- T€T010 TPOTO OCTE VO €lval cvyKevipouévo oe éva onpeio pe OAa o
TAEOVEKTHLOTO. 7OV OWTO ovverayeTon (gvkoAa oaAdaydv, kaboupdc kodwog). H
TexvoAOYior TOL emMAEXONKE Yoo TNV Swyeipion TV dedopévov pe v Pdaon elvar to
Hibernate to omoio cuvepydaletot pe To Spring 1010{TEPO EVKOAN KOl ATOTEAEGUOTIKA. XTO
eminedo View ypnoiporomdnkoy o yvootd html, css kot jsps ta onoio o€ GuVOLACUO LE
eCotepikég Piprotnkeg tov Spring kor v Piplodnkn Displaytag kdvovov mToAy
EVKOAOTEPN TNV OLGVVOEST UE TNV TAEVPE TOV €ELANPETNTY] OOTE 1| TANPOPOPIES VO
eneavifovtal 6Tov ¥pNoTy KOTAAANAG HLOPPOTOUEVES Kol Yopig va xperdlovtot ToAAES
YPOUUEG KMOWKO oL av&dvouy v moivmhiokotnta. Téhog oto Controller eminedo
8| Page

ypnopomodnke to Spring MVC 10 omoio eival evoopatopévo oto Spring Framework
Kot cvvepyalovror Wwaitepo KaAd dmwg eivor avapevopevo. Emiong o avtd 1o eminedo
ypnoyomomnkav o cvvdvacpd pe to Spring MVC ko 1o Apache Tiles ta omoia
LOPQOTTOLOVV HE EOKOAO TPOTO TNV 0PYAVMOT TNG TEMKNG ceAldag Tov PAETEL O XPNOTNG
OGOV apopd TO TEPLEYOUEVO NG, divovTag Kot TEAL TV duvaTOTNTO EVKOA®MY GAAYDV
AOY® TG CLYKEVTIPMONG VTG TNG TANpoopiog o€ £va onpeio (separation of concerns).

Oleg o1 mopoandve emAoyég yivave dote va pelwbel 060 givar Suvatd 1 TOAVTAOKOTN T
™G €QOPUOYNG KOOMG Kot v €ivor €0KOAN 1 GLVINPNOT TNG KO 1 TPOoONKn VE®V
Aertovpyltdv. Oia avtd kaBdg Kol 0 GYESCUOS TV TOKET®V TOV KMOKA Oivouv
ovyKekpLEVES gVBHVEG Ge KABE oMnElo TOV KMOKO KoL TOV OPYEI®V TOPAUETPOTOINGNG
€161 OCTE 1 CLVINPNOTN, N EMEKTOCIHOTNTA = Kol - Ol MOAVES HEAAOVTIKEG
aAlayég/mpocOnkeg va amoitovv Ayotepo komo. To emdpevo onpoavtikd onueio ivorl va
petpnOel 0 ¥pOVOG AmOKPIONG TG EPUPLOYNG OTO TOAVA OLTHHOTO EVOG XPNOTN AALA Kot
10 Qoptio mov umopel va avtégel otav eEummpetel TOAAOVG XPNOTEG TAOVTOYPOVA. AVTO
etvar 1dwaitepo onpovtikd ywort pio Epoappoyn 660 KoAd opyovouévn Kot av givol ov
OpYEL VO OTTOVTIGEL TO OLTHOTO TOV XPNOTMV KoL 0eV. Umopel v eELINPETNOEL PeYOAO
apOpd avToV, ival pUn AmTOTEAEGUOTIKY MG TPOG TO OKOTH TNG OAAL Kot SOUGYPNOTN.

Mo v pétpnong g amddoong g £QOpPUOYNS Xpnoilportomnke to Jmeter To omoio
etvan éva epyoleio mov Umopel VoL TPOGOUOIDGEL CULTHILATO YPNOTAOV TPOS TNV EPOUPLOYT|.
[N va yiver owtd KaTaokeLAoTNKAY S1AQOpa GEVAPLO XPNONG TS EPAPLOYNS oTo Jmeter
oto omoio. yivovtor outfoelg ot Pacikég Aertovpyieg g epappoyng omd Evov
TOPOUETPOTOGILO APIOUO TOVTOYPOVAOV YPNOTAOV UEGH GE KATOL0 OPIGUEVO S1ACTI AL
210, S1POPA GEVAPLO TOV EKTEAECTNKAY LE PVGLOAOYIKO £mC TOAD HEYAAO Ko 0pVGIKO
QOPTIO TOL GTATICTIKA OMOTEAEGILOL KO TOL YPAPN Lot TOV TapnyOnoav deiyvouv 10 OGO
KOAG CUUTEPIPEPETOL 1 EQOPUOYT] KO TPOSAPUOLETOL TNV £ELANPETNON UEYOADTEPOV
eoptiov (scalability). Téhog pe v ypnom ko evdg Profiling epyaieiov kataypdonke n
YPNON TOV TOP®V TOV GLOTNUOTOC € TEPLOOOVS EVIOVOL POPTOL (TOVL TAPNYOYE TO
Jmeter) 0mov Kot €Kel T0 AMOTEAEGHOTO OEIEAVE TN COOTN KO OPLOAY SLOXEIPLOT PViAUNG
Kol ENEEEPYACTIKNG LOYVG TTOL EKOVE 1] EQAPLLOYN.

Ev koataxAeidor o 0Ao¢ oyed0GHOC Kol Ol EMAOYEG TOL YIVOVE Y10, TNV VAOTOINGCT TOL
Show Face divouv 6vrwg mpootiBépevn afio oty epapuoyr] Kabdg kavomrolovv
OTTOOESELYHEVOL T CTLOVTIKG OVTA YOPAKTNPLOTIKA oL o Tpémet var £xet o cOyypovn
OLOIKTLOKY] EQOPHOYN VYNA®V omoutnoewv. TEAlog yivere kor o avo@opd o€
npooOnKec/PeATidGES TOV O LTOPOVGAV VO YIVOUV GOV LEAAOVTIKY €pYacia.

9| Page

1. Introduction

In this introductory part the objective of this thesis will be presented. The problem that
this thesis is trying to solve will be explained as well as the state of the art in similar
cases in real world applications. Finally in this chapter the structure of this report is
provided.

1.1. Complexity and Scalability Issues of Large Scale Web
Applications

Nowadays it is quite obvious that the requirements and features of web applications have
increased to a great degree given the wide spread adaptation and use of the World Wide
Web in most people’s everyday life for personal (education, entertainment etc) and
professional activities. This trend but also necessity has created a race in terms of who
will build the most complete web application to support the user’s needs and provide
satisfaction to the best possible level given today’s technologies.

This situation has lead to the development and progress of software engineering and
distributed computing to a great degree but also has created an important problem that
has to be solved. The problem is that today’s requirements have raised the complexity
and multiplied the challenges of building and maintaining a large scale web application.

Concepts and attributes of such an application include availability, scalability,
performance, maintainability, ease of use. To be more precise such applications are
required to have a minimum downtime per year which means that their services should be
available almost all the time. Scalability is also an important issue in order to be able to
expand the services provided to an even bigger audience or even add new ones in a
relatively easy way without having to restructure the whole existing application.
Performance is very important and achieving it while having to serve millions of requests
each day is a very difficult challenge. On top of all these, such applications require
maintenance that is also a troublesome issue and has to be taken into account from the
initial stages of the application’s development. Finally the ease of use is of outmost
importance to the end user that will use the application and has also to be taken into
account.

Having in mind all the above it is now clear that the development of such an application
is an extremely complex issue and requires great effort from the initial stage of the design

10| Page

and development. All of those well known large scale web applications did not start in
the form that are known today, they were much simpler but were designed in a way that
allowed further improvements and supported the attributes previously described and in
case they weren’t they were redesigned this way. So in the present thesis an attempt to
provide a solution to this problem will be made by using the MVC pattern and J2EE
architecture in order to build a simple application that supports such features and explain
the choices that were made in the technologies used and the design of the application in
the context of the attributes previously described.

1.2. State of The Art

After explaining the problem that is faced in such applications in this part real world
cases will be presented from some of the biggest applications in the world like Google,
eBay, Amazon, YouTube and Flickr. For each of the above cases some general
technological info will be presented and some stats regarding their performance and
achievements in each business model they support since all of them provide different
services and are the pioneers at what they do. Of course these cases are extreme examples
of the best architectures used combining multiple programming languages and great
distribution all over the world as well as custom solutions optimized to solve their
specific problems. The case presented in this thesis is much simpler but tries to
incorporate the basic principles and design methods that would allow its further
development, in other words to have the potentials for further improvement. All the info
provided below are from a web site that focuses on high scalability issues [9] and has
gathered information on some of the biggest web applications in the world. It has
extremely interesting contents regarding system architectures and technologies used in
each of them.

Google’s operating system platform is Linux and uses a large diversity of languages to
achieve its business goals; these are Java, Python, C++. In 2005 Google had indexed 8
billion web pages, by now this should be even bigger. In 2006 it was estimated that they
were using 450.000 low cost servers. Google also has created its own file system GFS
(Google File System) for data retrieval and there are more than 200 GFS clusters in
Google. Such a cluster can have 1000 or even 5000 machines. Pools of tens of thousands
of machines retrieve data from GFS clusters that run as large as 5 petabytes of storage.
Aggregate read/write throughput can be as high as 40 gigabytes/second across the cluster.

1M |Page

EBay uses also various technologies but the basic ones include: Java, Oracle,
WebSphere, Mix of Windows and UNIX. Architecture is strictly divided into layers: data
tier, application tier, search, operations. Now some stats concerning eBay which are
really impressive will follow:

e On an average day, it runs through 26 billion SQL queries and keeps tabs on 100
million items available for purchase.

e 212 million registered users, 1 billion photos

e 1 billion page views a day, 105 million listings, 2 petabytes of data, 3 billion API
calls a month

e 99.94% availability, measured as "all parts of site functional to everybody" vs. at
least one part of a site not functional to some users somewhere

15,000 application servers, all J2EE

Amazon as all large scale web applications also uses a great variety of technologies like
Linux, Oracle, C++, Perl, Java, Jboss. It started as one application talking to a back end.
It was written in C++. Amazon is not stuck with one particular approach. In some places
they use Jboss/Java, but they use only Servlets, not the rest of the J2EE stack. Now here
are some stats also:

e More than 55 million active customer accounts.
e More than 1 million active retail partners worldwide.

e - Around 100-150 services are accessed to build a page.

YouTube was founded on 02/2005. In 2006 it was acquired by Google and the number of
requests it served almost tripled within several months after Google took over.

12| Page

Technologies used include Apache, Python, Linux, MySQL, psyco (a dynamic python to
C compiler), lighttpd for video instead of Apache. Here are some stats:

e Supports the delivery of over 100 million videos per day.
e 3/2006 30 million video views/day

e 4/2006 100 million video views/day

Flickr is the web’s leading photo sharing site. It also uses a big variety of technologies to
support its services, some of them are PHP, MySQL, MemCached for a caching layer,
Squid, Linux, Perl, Java for the node service and many more. Here are some stats for
Flickr too:

e More than 4 billion queries per day.
e Around 470 million of photos, and keeps 4 or 5 sizes of each

e Over 400.000 photos being added every day

1.3. Structure of the Thesis

In this part after presenting the problem, the objective of the thesis and the state of the art,
the structure of the rest of this report will be presented. Then there is the part where the
choice of architecture and framework is explained based on the attributes a large scale
web application must have. After this a general overview of the selected framework and
its features is presented. Next part consists of a very quick presentation of the application
that will be developed in technical level as well as a more extensive high level
presentation of what the application can do and the possible use cases it supports. This is
done in order to help someone to understand what all the technical details that will follow
try to achieve and what is their real world context. Following is the part where the
technologies used in each application’s layer are presented and also related examples are
given based on what has been implemented in the application. The package structure and
code organization then are provided to show how concepts like scalability and separation

13| Page

of concerns happen in each layer and how this helps. Then main concepts of the
application are presented and how they are dealt with by also providing configuration
info on how to integrate multiple technologies together. After all the technical info and
software architecture has been presented a full round trip of a request is presented in
order to show how the various parts integrate with each other in a real sequence of a
request. Then an interesting chapter with performance metrics is provided to show in
practice the capabilities of the application and its design. Some info then on how to set up
the application of this thesis and the configuration required is presented. Finally there is
the conclusion part along with possible future work that can be done.

14| Page

2. Choice of Architecture and Framework

In order to develop the application that will be presented some choices had to be made
concerning the architecture and the framework that would be used. The choice of the
framework is a very important matter because it is highly associated with the qualities of
an application, for example scalability, expandability, ease of development and
maintenance, current and future support, licensing issues, documentation, activity of the
community that supports the framework and also stability and availability which are
qualities related to the framework’s maturity. All the above are very important issues
someone has to take in account when choosing a framework in order to develop an
application since this choice will be reflected on the application’s value and performance.
Finally the most important factor in this choice is the ability of the framework to support
the system architecture you intend to use.

Show Face application is based on J2EE application architecture. J2EE technologies can
be used to apply a well known architectural principle/design called MVC. MVC stands
for Model View Controller and started with Smalltalk [1], that was originally used to
match the input, processing, and output tasks with the graphical user model. However, it
is straightforward to map these concepts into the domain of multi-tier enterprise
applications. MVC divides an application in 3 different but collaborating layers.

e Model - The model layer has to do with the enterprise data and the business rules
that perform actions on them (access, edit data). Often the model serves as a
software approximation to a real-world process, so simple real-world modeling
techniques apply when defining the model.

e View - The view shows in a graphic way the contents of a model. It requests for
enterprise data from the model and specifies how that data should be presented.
The view layer should also adapt to model layer changes. This can be achieved by
using a push model, where the view registers itself with the model for change
notifications, or a pull model, where the view is responsible for calling the model
when it needs to retrieve the most current data (e.g. using Ajax technology).

o Controller - The controller intercepts view layer’s requests and directs them to
the suitable actions that access the model layer. In a stand-alone GUI client, user
interactions could be button clicks or menu selections, whereas in a Web

15| Page

application, they appear as GET and POST HTTP requests. The actions
performed by the model include activating business processes or changing the
state of the model. Based on the user interactions and the outcome of the model
actions, the controller responds by selecting an appropriate view.

Model

* Encapsulates application state

* Responds to state gueries

* Exposes application
functionality

» Nofifies views of changes

(i . /
View View Selection Controller
* Renders the models » Defines application behaviar
» Requests updates from models * Maps user actions to
» Sends user gesturestocontroller ' 1 1 1 1 | model updates

+ Allows controller to select view User Gestures » Selects view for response
» One for each functionality

Method Invocations
Events

Figure 1. MVC Model Diagram [5]

The MVC design pattern has a lot of design benefits. MVC separates design concerns
(data persistence and behavior, presentation, and control), decreases code duplication,
centralizes control, and makes the application easier to modify. MVC also helps
developers who are more able at a specific layer to concentrate only at that.

This pattern can be applied easily in J2EE architecture, and thus provides all the benefits
to the application that will be developed. The J2EE platform was intended to solve the
complexities that had to do with distributed and multi-tier application development and
had great success in standardizing system services. The main issue though is that the
fundamental problem of a simplified programming model was overlooked[2] and despite
of the great adoption it had in the late 1990s and early 2000s, developing multi-tier

16 | Page

applications on the J2EE platform was a difficult and complex task and required great
effort.

The choice of the Spring framework for the development of the Show Face application
has a lot to do with the complexity of the J2EE platform as well as many other
advantages it provides. The core J2EE platform consists of many technologies and APIs
which are really complex and usually have a long learning curve. The difficulties
encountered for the above reasons lead developing communities to look for other
alternatives. For this reasons a lot of new frameworks have appeared and were built on
various core J2EE APIs [2]. So today there is a great variety of frameworks to choose in
order to implement a multi-tier application based on the MVC pattern.

The Apache struts framework for example (one of the most well known and used
frameworks), helps to implement MVC architecture on the Controller layer and it is built
on top of J2EE’s servlet API. It provides various services and implementation out of the
box in order to ease and speed-up development of a web application. Some other well
known frameworks of this layer are Tapestry, Ice Faces and the newer Struts 2; all of
these mainly provide the same features with some differences that should be taken into
consideration when choosing one. But all of these are single-tier frameworks that address
the needs of one of the 3 MVC layers.

Now on the other side on the Model layer there are frameworks like Hibernate that was
created to solve the complex issues associated with J2EE’s entity beans [2]. With
Hibernate you can save data using POJOs (Plain Old Java Objects, simple classes) with
minimal configuration and effort. These POJOs since they are not distributed objects like
entity beans apart from being less complex also to lead to better application performance.

Spring framework also tries to address this complexity problem but unlike all the other
single-tier frameworks described before, it provides a comprehensive and multi-tier
framework that can be used in all tiers of an application [2]. Spring helps to compose the
whole application and provides many out of the box services in order to speed up and
ease an application development. Apart from these it also integrates with the best single-
tier frameworks and gives great flexibility and choices. These are the main reasons that
Spring framework was chosen for the development of the Show Face application.

17 | Page

Apart from those reasons above, Spring is one of the best choices not only because of its
unique nature to support all MVC layers in a J2EE application, but also it is a wide-
spread framework with great support and documentation as well as a big active
community that work on it in order to improve it even more.

18| Page

3. Overview of Spring Framework

Spring is an open-source framework, created by Rod Johnson and described in his book
Expert One-on-One: J2EE Design and Development [3]. As it was previously said
Spring’s purpose is to address the complexity of enterprise application development.
Spring makes it possible to use simple POJOs and make things that were previously
possible only with EJBs, which are more complex and not always necessary. Any Java
application can benefit from Spring in terms of simplicity, testability and loose coupling.

As an answer to the question of what Spring is the following statement is pretty
descriptive and meaningful, Spring is a lightweight inversion of control and aspect-
oriented container framework [3]. This is not an easy statement and in order to conceive
it better, the meaning of its attributes will have to be analyzed and connected with the
Show Face application in order to see how each of them affects the application.

o Lightweight. Spring is lightweight in terms of both size and overhead. The entire
Spring framework can be distributed in a JAR file whose size is just over 1 MB.
Also the processing overhead required by Spring is negligible. This can be seen in
Show Face application by checking the response time of the application. With
Spring’s lightweight attributes, use of POJOs instead of EJBs and several
application specific design choices the performance of Show Face application is
at a good level.

e [nversion of control. Spring promotes loose coupling through a technique known
as inversion of control (IoC). When IoC-is applied, objects are passively given
their dependencies instead of creating or looking for dependent objects for
themselves. This will be presented in the xml configuration files of the Show Face
application where dependency configuration will be demonstrated.

e Aspect-oriented. Spring comes with rich support for aspect-oriented programming
that helps development by separating application business logic from system
services (such as auditing and transaction management). Application objects do
what they’re supposed to do, follow just the business rules and are not mixed with
other system services. They are not responsible and aware of other system
concerns, such as logging or transactional support. In Show Face application the
transaction management happens with Spring AOP’s help, the transaction
management configuration is done on xml level thus leaving the business objects
to do their own job and be more readable. This way it obvious that separation of
concerns truly happens.

e (Container. Spring is a container in the sense that it contains and manages the life
cycle and configuration of application objects. How many times each of the beans
should be created (create one single instance of a bean or produce a new instance
every time one is needed) and how they should be associated with each other is

19| Page

completely handled by Spring based on xml configuration files defined by the
developer. That is why Spring is also a container and this can be seen in Show
Face application by the fact that a simple web server (servlet container) such as
tomcat has been used and not an application server.

e Framework. Spring makes it possible to configure and compose complex
applications from simpler components. Application objects are composed
declaratively, typically in an XML file as it will be shown in Show Face
application. Spring also provides much infrastructure functionality, leaving the
development of application logic to the developer and makes things less complex.

All these attributes of Spring help to write code that is cleaner, more manageable, and
easier to test. They also set the main stage on top of which other frameworks or Spring
sub-frameworks can be easily integrated. This will be done in the next section where the
sub-frameworks/frameworks that were integrated with Spring in order to build the show
face application, will be presented.

ORM

Hibernate
JPA
TopLink
JDO
0JB
iBatis

Web

Spring Web MVC
Framework Integration
Struts
WebWork
Tapestry
JSE
Rich View Support
J5Ps
Velocity
FreeMarker
PDF
Jasper Reports
Excel
Spring Portlet MVC

DAO

Spring JOBC
Transaction
management

JEE

JMX
JMS
JCA
Remoting
EJBs
Email

AOP

Spring AOP
AspectJ integration

Core

The loC container

Figure 2. General View of Spring Framework [6]

20| Page

4. Show Face Application Presentation

In this part a brief overall presentation of the application that was developed will be
made. As previously noted the whole circle of the application’s development will be
presented in the rest of the document trying to point out how concepts like availability,
scalability, performance and maintainability affect the choices made on the technologies
used, on how the integration happens between them and the design issues taken into
account to built an application in such a way that decreases overall complexity and still
supports the concepts previously noted. At the first part of this chapter a brief description
of the application will be given and the technologies that were selected will be noted.
Then a high level presentation of the application will be provided with screenshots and
use cases to show what it can do and how it looks like.

4.1. Introduction to Show Face

The application’s name is Show Face and the name has been chosen based on the name
of another large scale application named Facebook, of course there is no real connection
between these two apart from the general idea of social services they provide. Show Face
is a small application developed in the context of this thesis that provides several simple
social networking services. The application gives you the possibility to create an account
and then to upload and manage your images online, it supports most of the well known
image types. Apart from this you can also make on line friends from other users that have
subscribed to the application. When you make a friend then you can see his photos as
well as he can see yours. Through the presentation of this application various J2EE
related technologies will be demonstrated and also the integration between them will
show how to make a scalable and highly available web application.

Show Face has been implemented using a J2EE system architecture, and more
specifically with the use of Spring Framework version 2.5.5. The database used to
manage the data storage needs of the application is hsqldb which is a lightweight java-
based database. Finally the server that hosts Show Face is an apache tomcat (version 6)
distribution. The choice of a simple web server (servlet container) such as tomcat and not
an application server like Bea Weblogic or Jboss, was made because of the possibilities
that Spring Framework offers. With Spring (and Hibernate’s help too combined with
Aspect Oriented Programming expressions) it is possible use POJOs (Plain Old Java

21 | Page

Objects) and manage transactions and db interaction actions without the need of a
resource-demanding and cumbersome Application Server. Of course application servers
provide a lot of other facilities and integrated solutions but they are not always the best
choice, it depends on the project’s requirements. For more info and details on the
technologies used you can refer to the links page of Show Face application. The
architecture and design choices will be analyzed further after a high level presentation of
the application so as to have an overall view of how this application seems and the
possible use cases it supports.

4.2.High Level Presentation

In order to begin with the presentation you can see below (3) the first screen you
encounter when accessing the Show Face application. It is the login screen where you can
do certain actions. Log in if you are already a subscribed user, register yourself so that
you can Log In and have access and finally to see some info by clicking on the about
link. On the top of the page there are also certain links where you can see some info for
the creator of the application or sent him a mail. Of course if the login fails or a field is
missing during login, an appropriate message is being shown

22| Page

home Creator Info Send me an email

—SHOW FACE

menu
LogIn We “ome To Show Face
Register (for new Users)
About Log In
calendar ' Username : w
p d -
N S55W 0T [4 H
1
2 3 4 5 6 7 8 M

9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28

If you are not already a user please register

@ 2008-2009 by, Dolias Hikolaas | cellular +306947772397 | xhtml 1.0 | cs5 | desian by uli sobers
The time is :07-Feb-2005 20:05:23

Figure 3. Log-In Screen

Now as a next point the register functionality will be reviewed. The first (4) of the 3
below screenshots shows the register page as it is when you access it to subscribe. Then
at the second screen (5) you can see the same page with validation errors, from
incorrectly filled fields. Finally at the third screen (6) you can see the register form
correctly filled, and by submitting it your user account is created.

23| Page

home Creator Info Send me an email

—{SHOW FACE

menu
Log In
Register (for new users)
About

calendar |

Su

1
2 3 4 5 0 7 8
9 10 11 12 13 14 15
16 17 18 18 20 21 22
23 24 25 26 27 2B

24 |Page

Register New User

Here you can make a new account to access SHOW FACE
application

Name : l—
SurName @ li
Username : l—
Password : [|

Confirm Password l—
E-Mail ;
bLge
Sex . | Male vI

Register

@ 2008-2009 by... Dolias Nikalaos | cellular +306947772397 | xhtrl 1.0 | css | design by uli sobers
The time is 107-Feb-2008 20:07:34

Figure 4. Empty Register Screen

25| Page

home Creator Info Sendme an email

menu
Log In Register New User
Register (for new users)
About Here you can make a new account to access SHOW FACE
application

calendar [Neme : [l
SurName W

Su
1 Username : |ndol
23 4 56 7 8
Password ; Passwords do not much
210 11 12 13 14 15
16 17 18 19 20 21 22 Confirm l—
Passwords do nat much
23 24 25 26 27 23 Password ;

o asdasd is not a valid mail
E-Mail : [asdasd adldrens
Age l— Entry raquired.
Sex o |Male =

Register

@ 2008-2008 by... Dolias Nikolaos | cellular +306947772397 | xhtml 1.0 | cs5 | desian by uli sebers
The time is 107-Feb-2009 20:11 11

Figure 5. Failed Register Screen

home Creator Info Send me an email

SHOW FACE

menu
LogIn Register New User
Register (for new users)
Abaut Here you can make a new account to access SHOW FACE
application
calendar [Neme : [l
Surklame |Nikus
5u
1 Username Indo\
2 3 4 5 6 7 8
Password ; |uuu
9 10 11 12 13 14 15
16 17 18 19 20 21 22 Confirm Password Ir
23 24 25 26 27 28 :
E-Mail : Indu\iaa@gmailcmm
Age |23
Sex IMaIe v[

Fegister

@ 2008-200% by,., Dolias Mikolaos | cellular +306947772397 | xhtrnl 1.0 | css | design by uli sobers
The tire iz 107-Feb-200% 20:12:24

Figure 6. Correctly Filled Register Screen

After viewing the register section, the next thing that will be presented is the about page.
In that page (7) some general information for the application is provided, as well as the
context in which Show Face was created. Finally at the bottom of the about page, since

26 |Page

Show Face is part of a post graduate thesis, you can see the links of the Supervisor of the
thesis and of the student. These links are connected to their respective bio info pages.

home Creator Info Send me an email

SHOW FACE

menu
Log In About Show Face
Register (for new users)
About Here You can see some general information regarding Show Face application
Show Face is a Web Application that provides several simple social networking services. Here you can make an account
l d and Upload vaur images so you can access them anline from anywhere that web access s provided, even from a mobile
calendar ' device. Then you also have the option to make friends from the other users of Show Face and share yvaur photos with
thern,

Su

1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28

Show Face has been implernented as part of my post graduate thests of the M.5c. | have attended at the University OF
Firaeus, in order o dernonstrate same of the latest j2ee technologies and patterns which are integrated inta this
application, The MSc program's Htle is @ Master's Degree (M.5c.) in "Techanology Education and Digital Systerns” in the

area af Met Centric Systerns and you can access 1t herse . My supervisor on this thesis is Miss Vera-Aleksandra
Stauroulaly,

For more Info use the links below :

¥ Supervisor | Miss Wera-Aleksandra Stauroulaki
P Dolias Nikolaos

@ 2008-2009 by... Doliss Nikolaos | callular +306947772397 | xhtml 1.0 | css | design by uli sebers
The time i :07-Feb-2009 20:07:54

Figure 7. About Page Screen

After reviewing the pre-login pages and since now a valid account has been created, it is
possible to log into the application. Below (8) you can see the initial screen, the home

27 |Page

page, after the first login. Here there are three sections at the home page; the first one
shows the latest images that you have uploaded. The second one shows friend requests
that others have sent to you and you have to accept or reject them. The third section
shows friend requests you have sent but have not been answered by the other user yet, if
they are answered they will be removed and if your request was accepted this user will be
visible in View Your Friends link, if they rejected your invitation then you will be able to
sent them an invitation again from Make Friends link. These links and the others of the
post login menu will be later reviewed one by one.

home Creator Info Send me an email

SHOW FACE

menu
Home User Home Page
Upload Image
My Photos wyelcome ndol, it is now Sat Feb 07 2005700 EET 2009

Make Friends

Wiew Your Friends My Latest Images

Liriks You have no Photos uploaded
About
Log Cut Requests To Answer

Mo Requests To Answer

calendar . Your Pending Requests

Mo Sent Pending Reguests
Su

1
2 2 4 5 o F 8
o 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28

@ 2008-200% by... Dolizs Hikalaos | cellular +306547772397 | xhtml 1.0 | cs5 | design by uli sebers
The time is 107-Feb-2009 20/57:00

Figure 8. Home Page after First Log In

28| Page

As it is shown in the above screen (8) no action has been taken yet and that is why after
the first log in all the sections are empty. In order to start using the services the
application offers, the upload image functionality will follow next. In order to get to that
screen click on the respective link of the home page menu “Upload Image”. Then the
following screen (9) appears, there a name for the image has to be provided and give the
image file’s path in order to upload it. In case the file you provide is not an image file, a
validation error will appear on the page, like in screen (10) where an attempt to upload a
PDF file failed.

home Creator Info Send me an email

—SHOW FACE

menu
Home Upload Your Image
Upload Image
My Photos Here you can upload the images you want to share with your
Make Friends friends
Wigw Your Friends
Links Name : [My Firstimage
About Image : IC\DDEumEms and Settil| {Browse I
Log Cut Upload Image |
calendar [

Su

1
2 3 4 L5 858 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 20 27 28

© 2008-2009 by.., Dolias Nikelaos | cellular +306947772397 | xhtml 1,0 | cs5 | design by uli sobers
The time is 107-Feb-2009 21:48:25

Figure 9. Upload Screen with Valid Input

29 | Page

home Creator Info Send me an email

menu
Home Upload Your Image
Upload Irmage
My Photos Here you can upload the images you want to share with your
Make Friends friends
Wiew Your Friends
Links Mame ; |notimage test
f\:OLgu': Image 1|— Browse. m}i is not & supported Image
: Upload Image
calendar |

Su

1
2 3 45 68 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28

® 2008-200% by... Dolias Nikolaos | cellular +306947772397 | xhtrl 1,0 | s | design by uli sobars
The time is :07-Feb-2003 22:46:53

Figure 10. Failed Attempt to Upload a PDF (Not-Image) File

Finally if the image upload is successful you will be redirected to the home page, and in
your latest photos section you will see the thumbnail of the image you uploaded, as you
can see below (11) along with a confirmation message on the top of the page.

30| Page

home Creator Info Send me an email

SHOW FACE

menu

Your Image Has Been Uploaded
Home g B

Upload Image

My Photos User Home Page
Make Friends

)) wyelcome ndol, itis now Sat Feb 07 21:49:51 EET 2009
Wiew Your Friends

Links My Latest Images
About
Log Cut
My First Image
calendar | Y :

Requests To Answer
Su
1 Mo Requests To Answer
2 2 4 5 65 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28

Your Pending Requests

Mo Sent Pending Requests

@ 2008-2009 by... Dolias Mikelass | cellular +306947772397 | xhtml 1,0 | cs5 | design by uli sabers
The time is :07-Feb-2009 21:49;51

Figure 11. Home Page after Successful Image Upload

As it has been noted before, the image section of the home page only shows the latest 5
images you have uploaded, in case you want to see all your images you can click on My
Photos link from the menu, and you will be forwarded to the following screen (12). In
this page you can see all your images and also delete any image you do not want any
more by pressing the delete link.

31| Page

home Creator Info Send me an email

—{SHOW FACE

menu

Home

Upload Image

My Photos

Make Friends
Wigw Your Friends
Links

About

Log Out

calendar |

! ve Th F Su
1 2 3 4 5 6 7
g 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

The next functionality of the menu that will be reviewed is the mechanism to make
friends. By clicking on the menu link named Make Friends you will see the following
screen (13). There you can see the users you are able to invite to become your friends
(Send Friend Request). You will be given the ability to send a friend request to users that
are not already your friends or to users for which no request is pending between you and
him/her (neither accepted nor rejected). Finally by clicking the link “Send Friend

32| Page

All My Images

Here you can see all your Images

12 iterns found, displaying 1 to 5.[First/Prev] 1, 2, 3 [Mext/Last]
Image Name Image Delete Image

niew 1

new3

newd

new s

niewt

© 2008-2009 by... Dolias Mikolans | cellular +3063477723397 | shtml 1.0 | cs5 | design by uli sobers

e
&)

)

A
b

&l

x]

r.
[N

>

The tirme is :27-Jun-2009 17:56:16

Figure 12. My Photos Screen

Request” a request will be sent to the user of your choice (you can send of course
multiple requests). After this action the corresponding section in home page will be
updated as you will see later.

home tCreator Info Send me an email

SHOW FACE

menu
Home Ask Someone To Be Your Friend
Upload Image
My Photos Here you can send a Friend Request
Make Friends
Wiew Your Frisnds Sfand
Links Username Age Sex Friend
Request
About Cord
Log out adrmin 25 Male Friend
Reglest
Send
Calendar ' userl 22 Male RFra'end
equest
Su Send
1 lary 18 Male Friend
3 4 5 6|7 8 Request
o 10 11 12 13 14 15 Send
16 17 18 19 20 21 22 vasaras 33 Female RFneno’t
equies

23 24 28 26 27 28

@ 2008-2009 by, Dalias Mikelaos | cellular +306947772297 | xhtrl 1.0 | es5 | design by uli sobers
The tirme is :07-Feb-2009 22:47:50

Figure 13. Make Friends Screen

Now at the home page screenshot you can see below (14), the photos section has been
updated with more images. Also there is a request “userl” has sent you and asks you to
become friends, you can reject or accept it. Finally at the third section you can see that

33| Page

there is a pending request you have sent to user “admin”. If he accepts it you will become
friends and you will see him in the next link that will be presented, in case he rejects your
request you will be able to send him a new request from Make Friends link which was
previously examined.

home Creator Info Send me an email

menu
You Request Has Been Sent
Home
Upload Image
e User Home Page
Make Friends
welcome ndol, itis now Sat Feb 07 22:49:24 EET 2002
Wiew Your Friends
Links My Latest Images
About
Log Out
my pic Amsterdam bridge My First Image
calendar []

Requests To Answer
Su

1 From

Request Age Sex Accept Decline

z 3 4 5 & 7 8B User

9 10 11 12 13 14 15 ;

15 17 18 19 20 21 22 Frlehdt 1 27 Mal "> x
reques user ale v L

23 24 25 26 27 28 from :

Your Pending Requests

To
Request User Age Sex Status
Friend Request 0 "
Sent To - admin 25 Male Pending

© 2008-2009 by.., Dolias Hikeolacs | cellular +206247772297 | xhtml 1.0 | cs= | design by uli sobers
The tirme is :07-Feb-200% 22:45:24

Figure 14. Home Page Screen with Requests, Photos

The next thing to examine is the View Your Friends link. In this section you can see all
those that have accepted your friend invitation or you have accepted theirs. You can see
for each one of them the 5 latest images they uploaded and some more info on them. If
you want to see all their images you can click on the links “here” or “more photos...”
Also in case you change your mind at some point you can delete them from being your

34| Page

friends and you will stop sharing images. If you delete someone from your friends you
won’t be able to see him in View Your Friends link but you will be able to send him
again a friend request in Make Friends link. Here is a screen (15) that depicts the above
case.

home CreatorInfo Send me an email

SHOW FACE

menu
Home My Friends

Upload Image

My Photos Here You can see some of vour friends photos and info
Make Friends

W oLr Erlerds Your Friend's Paul Latest Fhotos

Links Faul (Male) is 25 years old, email : jtaylor@bmail.com
About
Log Qut

Fress here to see all your friend's photos

vz

. veryBig latest

kontos test more

calendar |

sa su more photos... Delete Paul from your friends
1

2 3 4 5 o6 |jgEl 8

o 10 11 12 12 14 13

16 17 18 19 20 21 22 Your Friend's john Latest Photos

23 24 25 2p 27 28

john {Male) is 22 years old, email | nfdree@sdf.qgr

Press here to see all your friend's photos

i
; A v Wi
tests masoula sofia aderfi
mare photos... Delete john from your friends

@ 2008-200% by... Dolias Mikolaos | cellular 306947772337 | xhtml 1.0 | css | desian by uli sobers
The time is :07-Feb-2009 22:559:45

Figure 15. View Your Friends Screen

35| Page

Then if you click on the link more “photos...” of screen (15) for a user, let’s say for John,
you will see all his pictures as you can see at the following screenshot (16).

home Creator Info Send me an email

SHOW FACE

menu
Home View john's All Images
Upload Image
My Photos Here you can see all john's Images

Make Friends

Wiew Your Friends Image Name

Links
About .
Log out Konto-Aris
calendar | m aderfi
L sofia

2 3 4 5 6l 8
9 10 11 12 13 14 15

16 17 18 10 20 21 22
23 24 25 26 27 28 masoula

> tests

@ 2008-2009 by... Dolias Nikolaos | cellular +306547772397 | xhtml 1.0 | cs3 | design by uli sobers
The time is 107-Feb-2009 23117134

Figure 16. View Your Entire Friend’s Images Screen

36 | Page

The final screen that will be reviewed is the Links page that can be accessed from the
menu. In this page there are links to the official sites of the tools — technologies used to
implement the Show Face Application. Here is the links page (17).

home Creator Info Send me an email

SHOW FACE

menu
Home Links
Upload Image
My Fhotos Here You can see some links to related technologies used for
Make Friends the application

Wiew Your Friends _ .
® 5pring Framework Official Site

Links rHibernate Official Site
About 5P Official Site
Log Gt ¥ Tiles 2 Official Site

Flogd] 1.2 Official Site
PHSQL DB Official Site
» Apache Tomcat & Official Site

¥ Ant Official Sit
Calendar ' ngS Ofﬁcgz?al é\?e

FFree C55 Template Used
Su ¥ Eclipse Offical Site
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28

@ Z005-200% by.., Dolias Nikalaos | cellular 4306947772397 | xhtrml 1,0 | csz | design by uli sobers
The time is :07-Feb-200% 23:00:17

Figure 17. Links Page Screen

The only action in the menu of the Show Face application that has not been yet presented
is the Log Out link. As you may already know this action is used to exit the Show Face
application and in case you press it you will be redirected to the log in screen. After

37 |Page

logging out you are required to provide again your credentials in the log in screen if you
want to access the services that Show Face provides.

This was a high level presentation of Show Face application where only minimal
technical and architectural information is disclosed. The next part will be the technical
analysis. In that part the software architecture of Show Face will be presented in detail as
well as the reasons for several design choices that were made. Also it will be more
obvious which part and requirements each of the selected technologies support in order to
have the final result.

38| Page

5. Layered Frameworks of Show Face

As it has been mentioned Spring will be used in Show Face application as the general
multi-tier framework choice. Now it will be examined which framework will be
integrated with Spring in each layer of the MVC pattern in order to build the application.

5.1. Model Layer

In the Model layer one of the most important features of Spring’s Container will be used.
This feature is its ability to manage application objects (POJOS) on its own without the
use of an application server. Spring’s container and the xml configuration will handle the
lifecycle of the objects that are created by the user and also of those created by Spring.
Moreover thanks to the Spring’s built in AOP support transactions with the database can
be managed in an easy way and keep transaction management decoupled from the
business objects, since transaction configuration will be in the xml files in the form of
AOP expressions.

Now apart from the main model of the application a choice has to be made as to which
one will be the data access framework which is very important since it is the way to
interact with the database. Some of the most well known data access solutions to interact
with a database are jdbc, hibernate and ibatis. Jdbc is the well known API of java that
defines how a client can access a database. When using jdbc it is the developer’s
responsibility to create the database connection, open and close it when required and do
manually the mapping of the java objects to the database, which means that a lot of
manual sql statements will have to be included in the code thus the complexity of the
code and the coupling of an application to the specific jdbc based implementation will be
high. This is something not desirable when implementing a scalable and relatively big
application with many objects and associations; on the other hand it is the simplest way
to interact with a database. Now on the other hand hibernate and ibatis are ORM (Object
Relational Mapping) persistence frameworks that associate directly a java object to a
relational database. Their main difference [4] is that hibernate allows the creation of an
object model by the user, and creates and maintains the relational database automatically
(based on configuration files), ibatis takes the reverse approach: the developer starts with
an SQL database and ibatis automates the creation of the Java objects. Ibatis approach is
mainly preferred in cases where the developer does not have full control on the database
schema. In Show Face application that is not the case since there is full control over the
database. Apart from this hibernate was chosen because of the great built in support that
Spring provides for it.

With Hibernate templates of Spring it is possible to access the database and retrieve or
insert populated java objects in very few lines of code without having to worry about

39 | Page

opening or closing the database connection or manually write sql statements (except from
cases where there is need to improve performance for example) [8]. Also you do not have
to surround with try catch statements every database interaction as in jdbc because
exception handling is taken care by Spring. It is also worth to explain how spring handles
exception handling concerning the db connection and how this helps. When jdbc forces
the developer to surround with try catch statements every db interaction this makes the
code cumbersome and more difficult to read, also this try catch block has no meaning
since it should be used to remedy an erroneous situation but if the database server is off
line there is nothing that can be done. This is what Spring has taken into account in the
interaction with hibernate and this way there is no need to surround with try catch blocks
every database interaction unless it is explicitly required to.

All these features concerning AOP, hibernate and the whole configuration of the model
layer will also be presented in following chapter with code samples from the Show Face
application.

5.2.Controller Layer

Concerning the web layer and more specifically the controller layer the choice for Show
Face is the Spring MVC framework. Spring MVC is a sub-framework inside the Spring
Framework that someone can choose to use in the web layer of an application. Of course
Spring integrates very well with most of the well known web frameworks available. The
choice for Spring’s proprietary web framework was made because of the ease in the
integration between them since they are made for the same project as well as the
flexibility to use Spring’s characteristics such as dependency injection etc in the web
layer, generally it offers whatever is required for building most kinds of web applications.
Since there are various web frameworks for J2EE applications each framework has its
advantages and disadvantages and it is not possible to conclude which one is the best.
Also there are usually workarounds to solve some of the differences they have. For
example Spring MVC does not support directly Ajax related tags to implement easily
such services, other frameworks do (Struts 2 for example). The solution in these cases is
to use one of the numerous Ajax frameworks that exist and manually integrate it with
Spring which will just need a little more manual configuration than the web frameworks
where this support is already built in.

Let’s explain now how Spring MVC handles a client request and see in more detail the
components that take part in such an action, meaning what happens when the client (a
web browser) sends an http request to the server that hosts the Show Face Application.
The flow will be described as shown in the picture below. The flow begins when a client

40 | Page

sends a request (1), then Spring’s MVC Dispatcher Servlet is the point of entrance for
every request and delegates it. As in other web frameworks Spring receives the requests
through a front controller servlet. This front controller servlet will receive the request and
then dispatch it to the correct component in order to process it, in this case the front
controller is the Dispatcher Servlet. In order for the request to be handled the Dispatcher
Servlet has to send it to the correct Controller (the Controller is the component that will
handle the request). The way to find the correct Controller is for the Dispatcher Servlet to
query another component (2) the HandlerMapping. The HandlerMapping usually maps a
URL object (the client’s request) to a Controller object that will explicitly handle this
request. After the Dispatcher Servlet has the correct Controller by asking the
HandlerMapping, it sends the request to the Controller (3) in order to process it (a well-
designed Controller performs little or no business logic itself and instead passes
responsibility for the business logic to one or more service objects). Once the controller
processes the request it returns (4) a ModelAndView object to the Dispatcher Servlet.
The ModelAndView object may contain a View object or a logical name of a View
object. If it contains a logical name of the View object and not the object itself (as in
Show Face Application) then the Dispatcher Servlet will have again to query another
object(5) to learn which one is the actual View object. This object is the ViewResolver
that based on the logical name it will point to the actual View object that should be used,
this is used in Show Face while using Apache Tiles 2 and a call to the ViewResolver is
required in order to get the reference to the actual View. Finally since now the Dispatcher
Servlet knows the View object, it dispatches the request to it (6) and now the View
Object is responsible for rendering a response back to the client.

Handler
Mapping

.
Request @ Dispatcher " Controller
B P - MDd&IAndVl&f I)i

\ Y :
ViewResolver

View |

Figure 18. Life cycle of a request in Spring MVC [3]

41 |Page

This whole process in order to be better understood will be described based on an
example of the Show Face Application. The example that will be used is based on what
happens when the user presses the register submission button in the register page of the
application (see screenshot 2). When the link is pressed the user’s browser will send a
URL request like this http://<Server Name>:<Port if not
80>/showface/registerUser.htm plus the registration data in the post request that are
not visible in the URL. As it has been described the request will be handled by Spring’s
MVC front controller which is the Dispatcher Servlet. Then in order to find to which
Controller this request should be sent to it asks the HandlerMapping. In Show Face
application the HandlerMapping has this association (defined in the configuration xml
files) “<prop key="/**/registerUser.htm">/registerUser.htm</prop>". This means that
for any url of the type /**/registerUser.htm the controller that will handle this request is
named “/registerUser.htm”. After checking in the xml servlet configuration file used for
Show Face for a defined controller named “/registerUser.htm” the entry below will be
found:

<bean name="/registerUser.htm"
class="showface.web.RegisterAccountFormController">
<property name="sessionForm" value="true"/>
<property name="commandName" value="account"/>
<property name="commandClass" value="showface.domain.Account"/>
<property name="validator">
<bean class="showface.validators.RegisterUserValidator"/>
</property>
<property name="formView" value="registeruser"/>
<property name="successView" value="login.htm"/>
<property name="accountManager" ref="accountManager"/>

</bean>

The above xml part of the configuration file has many parameters that are not required to
explain the flow of a request in Spring MVC , so only the needed ones will be analyzed.
The controller with the name “/registerUser.htm” has been found. The class attribute
nearby shows the java class that is the controller in reality and will do the job of the
registration action (not in controller level since it requires database access, it will
propagate the request in model layer via interfaces that are used in Show Face design).
When the controller finishes its work if everything goes fine and there is no validation
error (for example passwords do not much), then this command in the controller will be
executed:

return new ModelAndView (new RedirectView (getSuccessView()));

42 | Page

This command will return the new ModelAndView object to the Dispatcher Servlet. To
be more specific a redirect (not a forward) is requested in order to avoid double
submission errors. Let’s show the differences between these 2 actions, since they are
fundamental concepts in web applications.

Forward

o aforward is performed internally by the servlet

o the browser is completely unaware that it has taken place, so its original URL
remains intact

o any browser reload of the resulting page will simple repeat the original request,
with the original URL

Redirect

e aredirect is a two step process, where the web application instructs the browser to
fetch a second URL, which differs from the original

o abrowser reload of the second URL will not repeat the original request, but will
rather fetch the second URL

o redirect is marginally slower than a forward, since it requires two browser
requests, not one

o objects placed in the original request scope are not available to the second request

In general, a forward should be used if the operation can be safely repeated upon a
browser reload of the resulting web page.

This redirect is requested to be done on the result of the method getSuccessView(). Now
as it can be observed in the xml excerpt provided above there is one attribute called
“successView” and has as value “login.htm”. So method getSuccessView() will return
the URL that the browser should request. Now since redirect consists of 2 steps (2
browser requests) this is the second one (the first one was the register related URL that
checked up to now) and asks the browser to call the /**/login.htm URL. The whole
procedure up to now will be repeated since now a new request is made and the result will
be the final URL (the second one) that the browser will request to get its final View.
Checking the controller configuration of the second request /**/login.htm the following
can be found in the configuration file:

<bean name="/login.htm" class="showface.web.LogInFormController">
<property name="sessionForm" value="true"/>
<property name="commandName" value="login"/>

43 | Page

<property name="commandClass" value="showface.domain.Account"/>
<property name="validator">
<bean class="showface.validators.LogInValidator"/>
</property>
<property name="formView" value="loginUser"/>
<property name="successView" value="hello.htm"/>
<property name="accountManager" ref="accountManager"/>

</bean>

The attribute that will give the name of the final View Object is the one called
“formview” and has value “loginUser”. Attribute “successView” that was previously
used is only for submission actions when the user requests something. In this second
request just a view is needed and not to submit data. So the logical name of the final
View Object is “loginUser”.

Now in order for the Dispatcher Servlet to find the actual View Object the help of the
ViewResolver is required. In Show Face application the use of Apache Tiles 2 makes this
case a little bit more complex but again in the end the ViewResolver based on his
mapping will return the real view. The thing with the use of Tiles is that changes a little
bit the configuration file and it seems like this:

<bean id="tilesConfigurer"
class="org.springframework.web.servliet.view.tiles2.TilesConfigurer">
<property name="definitions">
<list>
<value>/WEB-INF/tiles—-defs.xml</value>
</list>
</property>
</bean>

<bean id="viewResolver"

class="org.springframework.web.servlet.view.UrlBasedViewResolver">
<property-name="viewClass"

value="org.springframework.web.servliet.view.tiles2.TilesView"/>

</bean>

With a few words these lines of xml configuration show how easy it is to integrate Spring
MVC with Tiles and the most important is that they show the resolver’s mapping is in the
file “ciles-defs.xm1”. So finally the ViewResolver integrated with Tiles mapping file
shows the connection of the logical name “loginUser” with its actual view in the part
below:

44 | Page

<definition name="loginUser" extends="main.layout.pre.login">
<put-attribute name="title" value="login.user.title"/>
<put—-attribute name="body" value="/WEB-INF/jsp/login. jsp"/>

</definition>

Tiles 2 will be explained in more detail later but for now what is important is the value of
attribute “body” which shows the real view object that the server will send to the
browser. This one is the login.jsp file, which will take the user to the login page after
performing a successful registration submission. To sum up the request’s sequence from
the beginning:

e http://<Server Name>:<Port if not 80>/showface/reqgisterUser.htm that will
instruct the browser to call a second URL.

e http://<Server Name>:<Port if not 80>/showface/login.htm that will return
to the server finally the real View Object which is the login.jsp page.

So through this redirect action it has been shown how Spring MVC internally handles
requests and which of its components are involved and what their part in this procedure
is.

5.3. View Layer

Concerning now the view layer things are much simpler than the other 2 layers. In order
to generate the view to the user html is mainly used. Of course in order to enrich pages
with other features and make them dynamic jsp code is also used to dynamically adjust
the view as well as jsp, spring and display tags that make certain things easier to
implement. With the use of the tags the code is cleaner and can be reused in multiple
pages as imports avoiding code duplication. Finally css is used to improve the looks of
the pages. A sample jsp page of Show Face application will be presented in order to
explain in more detail the above. The presented jsp page is “images.jsp”” and it is used to
show the user the photos he has uploaded as thumbnails. Also it provides the
functionality of deleting them or to view them in a new tab full sized, check screenshot
10 to see how it really looks.

45 | Page

<%@ include file="/WEB-INF/jsp/include. jsp"%>
<%@ taglib uri="http://displaytag.sf.net"” prefix="display" %>

<style type="text/css">
table.test {
background-color: #f8f8ff;
text—-align: center;

}
</style>

<html>

<head>
<title><fmt:message key="images.page.title" /></title>
<style>
.success {
color: green;
}
</style>
</head>

<body>

<h5 class="success"><c:out value="${model.success}" /></hb5>
<h1>A11 My Images</hl>

<h3>Here you can see all your Images</h3>

<c:out value="${model.info}" />

<display:table name="model.photosTable" id="testit" pagesize="5"
sort="1ist" requestURI="/viewMyImages.htm" class="test">

<display:column' title="Image Name" property="imgname"
sortable="true"/>

<display:c¢olumn title="Image">
<i><a
href="<%=request.getContextPath () %>/imageRetriever.htm?img=${testit.id}
&full=yes™. target="_blank">
<img
src="<%=request.getContextPath()%>/imageRetriever.htm?img=${testit.id}é&
full=no"/>

</i>
</display:column>

<display:ecolumn title="Delete Image'">

<i><a
href="<%=request.getContextPath () %>/deletelImage.htm?img=${testit.id}">
<img
src="<%=request.getContextPath()%>/css/grafics/delete.png" />
</i>

</display:column>

46 | Page

</display:table>
</body>
</html>

Now starting from the top there are 2 imports. The first one calls the “include.jsp” page
that contains the imports of the basic tags that will be used and it looks like this:

<%@ page session="false"%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core” %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<%Q@ taglib prefix="form" uri="http://www.springframework.org/tags/form"
5>

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

The first 2 ones are jsp tags and the next 2 are Spring specific tasks. All of them are used
to ease things up as it will be shown. The second import in “images.jsp” page is a very
useful tag library called displaytag that makes very easy the presentation of tables with
dynamic contents as well as its has built in paging functionality when correctly
configured.

Then something like this follows the2 imports:

<style type="text/css">
table.test {
background-color: #f8f8ff;
text—-align: center;

}

</style>

This is css styling used to give a specific appearance to the table that will be created
afterwards. Other important tags related parts are:

<fmt:message key="images.page.title" />

<c:out value="${model.infol}l" />

47 |Page

These are both jsp tags that are imported by “include.jsp” as it was previously shown.
The first one shows the title of the page by referencing to a key value. When this will be
compiled by the web server in order to be sent to the browser as html code this is what
happens. This key value will be checked in a file named messages.properties, Spring
knows where to resolve these values as in the xml configuration there is this entry:

<bean id="messageSource"
class="org.springframework.context.support.ResourceBundleMessageSource"
>

<property name="basename" value="messages'/>

</bean>

So by checking this key in the messages.properties values it will find:
images.page.title = View All My Images

And thus this value will be passed to the html page. The advantages of this is that you can
make easily such changes without having to search the whole code since all these are
accumulated in this properties file. Also this ~way it is possible to support
internationalization which means the ability to see the whole site in another language.
Show Face does not support this functionality but can be easily done. For example Spring
can be configured to search such messages in 2 files one for Greek -called
messages.gr.properties and one for English messages.en.properties. Then based on the
locale of the system or if the user wishes to change it, the appropriate messages of each
language will be used.

The second entry that was noted above is used to easily present a dynamic value that
came from the controller action to the html page. This c:out will output the real value to
put into the “model” Map for the key “info”. To make it more understandable let’s see
the code in the real action controller that sets this value:

Map<String, Object> myModel = new HashMap<String, Object>();
String info = "You have no Photos uploaded";

myModel .put ("info", info);

return new ModelAndView("images", "model", myModel) ;

48 | Page

As it is obvious a HasMap is created and an entry is inserted where the key is called
“info” and has as value the contents of the String variable created above. Then when
returning the ModelAndView (as it was shown in the flow of a request in Spring MVC)
three arguments are used, the first one is the logical name of the View Object that was
analyzed previously and the second one is the name of the map that will be used in the
view layer and populate it with dynamic data and the third argument is the real Map as an
object. This way with using the c:out tag it is much easier to present dynamic data sent
from the server in the html final view.

The last interesting thing to present in the view layer is the use of the displaytag that
makes presentation of dynamic tables very easy and also with minimal configuration it is
possible to add more features like sorting of selected columns and pagination which is
really important for performance other than practical issues, here is the particular point of
interest to analyze:

<display:table name="model.photosTable" id="testit" pagesize="5"
sort="1ist" requestURI="/viewMyImages.htm" class="test">

<display:column title="Image Name" property="imgname" sortable="true"/>

</display:table>

As it is obvious the specific tag prefix “<display:” is used in the beginning of the
expressions and then use the specific functionality for the creation of a table element. The
first attribute in the expression is name="model.photosTable"” this shows to the
dislpaytag library where to find the info that will populate the table. In the respective
controller action that provides the view layer with dynamic data as shown for a previous
tag there are the following related lines:

while(iter.hasNext ()) {
Object[] data = iter.next();

TableData tblData = new TableData();
tblData.setId(new Long(data[0].toString()));
tblData.setImgname (data[l].toString());
newList.add(tblData);

49 |Page

}
myModel .put ("photosTable", newList);

return new ModelAndView("images", "model", myModel);

The data that will be passed to the displaytag are populated as shown and to be more
specific a class TableData has been created which is a Pojo. This class has an id and an
imgname attribute and these are possible columns for a row that will be presented by
displaytag. All these TableData objects accumulated in an ArrayList are the rows of the
table. As previously shown this data is passed to the view layer through the
ModelAndView object. Now the table in displaytag knows where to search for them
since the name attribute has been defined.

Next attribute of the tag is id="testit" this way it 1S possible to use the testit variable
as a reference to the TableData object directly through jsp code if there is the need to do
something that displaytag cannot do and you need this value to be processed by jsp code.

Attribute pagesize="5" is used to say that pagination will be used and that the size of
each page that will presented to the user will contain 5 rows of the table, in order to see
the next page with other 5 rows he will have to navigate there by pressing the link that is
generated by displaytag.

Attribute sort="1ist" is used to tell to displaytag that the implantation of sorting in the
columns that will support it will be done by itself and not by an external custom sorter.
Displaytag has built in support to automatically sort most well known object types,
external sorting can be used to achieve custom results.

Attribute requestURI="/viewMyImages.htm" is used for the feature of pagination.
With pagination as explained the user will see the first 5 rows of the table, in order to see
the next fine ones, if they exist; the link to next page should be used. But in order to do
this and fetch the next five rows dislpaytag has to know from which controller to request
this data and that is why this attribute is used.

Attribute class="test" is used to link this specific table with the css style that was
defined in the begining of the jsp page, to give it specific attributes on how it will be
presented.

Now after all the attribute of display:table tag have been discussed let’s check the next
display tag provided above named display:column that is used as it is obvious to define
the attributes of a column.

50| Page

Attribute title="Tmage Name" simply defines the name of the column as it will be
presented to the user.

Attribute property="imgname” is used to tell the column which exact attribute of the
TableData object will be shown in the specified column. In the presented case this
column is assigned to show the attribute imgname of the TableData POJO.

Attribute sortable="true” finally tells diplaytag whether this column should be
sortable or not.

All the info on how to use displaytag and to get the jar that provides all these and more
functionalities have been obtained by its official site [7].

51 |Page

6. Application Package Structure and Design

In this section the java package organization of the application will be presented. Also it
will be explained why it was done this way and the benefits this has. A small reference to
the database model will also be made since it is related directly to the domain objects of
the application. Hibernate is an ORM (Object Relational Mapping) framework (as
previously noted) which directly maps java objects to database tables, for example
Account.java object is connected directly to the Accounts table in the db. Finally a brief
description of what each java action controller does will be provided, this way it will be
easier for someone to read the code or make a change.

6.1. Package Structure

In order to start with the package overall structure a screenshot will be provided that
depicts the overall schema. This schema only concerns the java files, of course there are
other files too like jsp, css, tag libraries and configuration files but for them their
packaging is more or less standard in the final deployment war file that is generated. The
war (web archive) file is a standardized structure of the files that is used by web servers
to deploy an application. So here is the java package structure (19).

Ell..:b showface

: ~[= domain
“L= repository
= service
L= kil

~[= walidators

Figure 19. Java Package Structure

As it is shown the java classes have been separated in 6 packages. Of course this has been
done for a reason as all classes in a package have similar functionality or serve the same
layer. This way it is easier to keep java code organized, it is easier to make changes and

52 | Page

find a file with a specific functionality once the meaning of each package/layer is
understood.

Starting with the domain layer, here are its contents in the screen below (20)

4 o

----- |I| fbstractIdentityersionedObject java
----- |I| Account. java

------ |I| Fequest.java

----- El TableData. java

- [J] Userlmage.java

Figure 20. Contents of Domain Package

These classes provide the domain level, the basic units that the application uses to store
and handle its data. To be more precise these are:

The Account class that holds the info for an account, it has an account’s attributes
as class variables, like name, surname password etc. Also the Account object is
directly related to the Account table in the database with Hibernate’s help and
more specifically with ORM (Object Relational Mapping).

The Request class models the relationship between 2 Accounts in the application.
For example a Request that correlates 2 users can be in 3 statuses. Pending if one
of the users has sent a friend request to the other and the other has no yet replied
(in order to update the status of their connection). Accepted if a user has sent a
friend request and the other user has accepted it. Rejected if a user has sent a
friend request and the other one rejected it. As in the case of the Account this
object also represents a table in the database, but also has some extra helper fields
in order to present data. For example the attribute verbalstatus that shows the
relation between 2 accounts but with a String representation for the user to view
it. In the database level though it is more effective to just use an integer instead of
a whole String to model three different states.

The Userlmage class holds all the data related to a picture that is uploaded in the
application. These can be the image’s name, the owner of the picture, the data
(bytes) of the image and also the data of the image’s thumbnail. All these info of
course also map directly to the third database table of the application that holds

53| Page

the pictures. Now it is worth to note that the data of the image’s thumbnail are
also kept in the database when a user uploads an image and are not generated on
the fly when a thumbnail is presented. This has been done like this in order to
improve the performance of the application when the user browses a page where
there are a lot of thumbnails that have to be loaded. This way by using a little
more database space for each image, the application’s performance has been
greatly improved.

e The AbstractldentityVersionedObject is a class that is extended by all the above 3
domain classes and this has to do with the database. This class has fields that are
common for all the database tables used in this application so instead of adding
these attributes to every class, they are created once and are extended by all the
domain objects used for database persistence. More specifically the first one is the
id of the model object. Since each model object is directly mapped to the database
(class attribute per column) the id of an entry is almost obligatory in all relational
db models so that is the job of the id attribute of AbstractldentityVersionedObject
class that is given to all the domain objects that extend it. Then the second
attribute is called version and is also very important. It shows the state of the
model object in the database, for example the Request class has some attributes
and these are stored in the database as an initial version. If the class itself changes
by adding a new attribute or by changing the type of an existing one, it is now
different from what it was and this is a new version. This helps to understand data
inconsistencies or stale data because of a new version. It is very helpful in the
stages of development where changes may happen often to adjust the domain
objects to the application’s requirements and points out inconsistencies that
elsewhere would be really difficult to spot.

e Finally the TableData object is not really used for persistence in the db but it is a
helper class that is used for the displaytag library. This helps with the data
presentation in the view layer and is used there to present tables in an easier way.

Then the next package that will be examined is the repository package, here is a
screenshot.

54 | Page

"Epository

-----] AccountDrao.java

----- |i| Hibernatesccountan, java
----- |i| HibernateRequestDao,java
----- |i| HibernatelserImagelan,java
----- |J| RequestDan.java

----- |J] UserImageban, java

Figure 21. Contents of Repository Package

As it is shown in this package there are the DAO files of the application. The Data
Access Object design pattern provides a technique for separating object persistence and
data access logic from any particular persistence mechanism or API. There are clear
benefits to this approach from an architectural perspective. For example if you want to
change the way data access has been implemented it is very easy to be done by changing
only these files. If this pattern was not followed it would be more difficult to implement
such a change, it could require restructuring the whole application.

Now to be more specific in this case there are the HibernateXXXXDao files and the
XXXXDao files. So there are 3 such pairs and this happens because use of interfaces is
done. The XXXXDao files are the interface classes that provide the available methods
that can be called to the classes of other layers. The HibernateXXXXDao files implement
the interfaces defined in the interface classes. So there is a pair of classes for managing
accounts in the database, another one for managing requests where as explained this
shows the connection between 2 accounts and finally the classes for managing images in
the databases. As it has already been noted this is done by using Hibernate (the
implementation of the Dao files), and more details will be given in the next chapter as to
how this exactly happens.

Now let’s move to the next package which is the Service package.

55| Page

= service

----- J| AccountManager, java

----- 4| LogInInterceptar, java

-----] RequestManager.java

----- \J| SimpledccountManager . java
-----] SimpleRequestManager, java
-----] simplellserImageManager . java
----- 4] UserImageManager.java

Figure 22. Contents of Service Package

This package is used in order to gather all the possible services that can be provided to
the controller layer. So here again the interface design pattern is used for the Manager
classes that contain all possible services that may be required for accounts, requests and
images. These managers connect to the dao files via the interfaces previously noted in the
repository layer, but apart from db access services they may provide other ones like
sorting, calculating something etc.

Apart from the manager classes there is also here the LoglnInterceptor file that is used to
check if a user that requests something is signed in the application. More details of how
the interceptor work will be presented in the next chapter.

Moving on to the utils layer here is a screenshot.

=0

“-|J] ThrowableRenderer, java

Figure 23. Contents of Util Package

This package as its names implies is used for utility classes that may provide a general
service for the application and are usually out of the main business scope. In this case
ThrowableRenderer is a utility class that is used with log4j logging mechanism. This
class helps to present in a better way exceptions in the log files thus helping in the
developing and maintaining of the application.

56 |Page

The next package that will be checked is the validators package.

ElEr validatars

----- m ImagelUploadYalidator . java

...... m LogInYalidator.java

------ m ReqiskerlJserialidator.java

Figure 24. Contents of Validators Package

In this package the classes used for validating user input data are kept. These classes are
connected to the respective controller classes. For example in the page where the user
registers himself to the application some data have to be filled in the form. Then by
submitting this request the appropriate controller will be chosen to fulfill the request. But
when there is the need to check the data provided (if the email is valid or a field was left
empty etc) the validator kicks in to make these checks and then control is given to the
actual controller. This way all such actions requiring user input data validation are kept
separated from the other parts of the code and this has its obvious advantages regarding
separation and organizing of the code and the responsibilities each class has. The
assigning of the validator class to the controller is made by the xml configuration file and
here is such a case in the application.

<bean name="/registerUser.htm"
class="showface.web.RegisterAccountFormController">
<property name="sessionForm" value="true"/>
<property name="commandName" value="account"/>
<property name="commandClass" value="showface.domain.Account"/>
<property hame="validator">
<bean class="showface.validators.RegisterUserValidator"/>
</property>
<property name="formView" value="registeruser"/>
<property name="successView" value="login.htm"/>
<property name="accountManager" ref="accountManager"/>
</bean>

As it is shown in the configuration of RegisterAccountFormController that performs
the register action there is the validator property that assigns the validator of this
controller and in this case it is the RegisterUserValidator class. In Show Face application
there are 2 more validator classes as it can be seen from the package screenshot. The

57 | Page

LogInValidator

that

checks user input data in the
ImageUploadValidator that checks input data of the form user fills to upload an image.

Finally here is the web package of the application.

== [

""" |J] DeleteFriendContraller.java

""" \J] ImageDeleteContraller. java

""" 1] ImageRetrieveController,java

---- |J] ImageUploadContraller,java

---- |31 InventoryCortroller, java

""" |J] LogInFormContraller, java

""" |J] LogoutController,java

""" |J] MakeFriendsContraller,java

""" |J] ProcessRequestContraller . java
""" 1] RegisterdccountFormController, java
---- |i| SendRrequestCantroller. java

---- 1] wiewsbourContraller java

-----] wiewalImagesController, java

"""] WiewFriendsController, java

"""] viewFriendsImagesController java
""" |J] wiewLinksControllerjava

Figure 25. Contents of Web package

login page

and

the

In this package as it can be deducted by the naming convention of the classes all the

controllers of the application are kept. As previously described these classes are assigned
with a job to do when the user request is sent to the server and it has been explained how
this works in Spring MVC section. Below a table is provided with each controller (16 in
total) and a brief description of what it does.

58| Page

DeleteFriendConftroller.java

Conftroller that performs the deletion
of someone as your friend

ImageDeleteConfroller.java

Controller that performs the deletion
of an image

ImageRetrieveController.java

Confroller that performs the retrieval
of image data as a byte array, it
returns thumbnail or full image
depending on request parameter

ImageUploadController.java

Controller that performs the
uploading of an image

InventoryConfroller.java

Conftroller that populates the home

page of the user with data required,
5 latest photo links, pending request
info

LoginFormController.java

Controller that performs the login
action

LogoutController.java

Controller that performs the logout
action

MakeFriendsController.java

Conftroller that populates the Make
Friends page with the available users
that you can send a friend request

Controller that performs actions on a
Request, accepts a request or
deletes arequest in case it is

9 | ProcessRequestConfroller.java rejected
Conftroller that performs the
registration of a new user to the
10 | RegisterAccountFormConfroller.java | system

11

SendRequestConftroller.java

Conftroller that sends the request to
a user which is in state Pending
initially

59 |Page

12

ViewAboutController.java

Conftroller that populates the About
page

13

ViewAlllmagesConftroller.java

Conftroller that populates My Photos
page, it constructs all the image links
and the deletion links too

14

ViewFriendsController.java

Controller that populates View Your
Friends page. constructs 5 latest
images links for each Friend, the
deletion link and the link to see all
friends images

15

ViewFriendsimagesController.java

Conftroller that populates the page
with all the images of one of your
friends

16

ViewlinksController.java

Controller that populates the Links
page

60| Page

7. Main Concepts and Integration Points-Configuration

In this part since the main structure has been presented from an object oriented view,
more details will be presented about configuration and integration issues of the
technologies used. First Hibernate will be examined regarding its setup and integration
with the application. The transaction management mechanism will then be presented.
More details on Tiles 2 will be given and explain how they help by building the web
pages in a modular way. Finally the login interceptor setup and use will be shown.

7.1. Hibernate Setup and Use

Since Hibernate is the data access framework that is used in the application, the first thing
that is required is the datasource that it will use to perform all its operations, in other
words info so as to connect to the database. In this application in order to decouple
database specific info and configuration from the application, the database has been
configured as a jndi resource in the Apache Tomcat server configuration. To be more
specific in Tomcat’s (version 6) conf folder in the file context.xml the following has been
added:

<Resource name="jdbc/MyDB"
auth="Container"
type="javax.sqgl.DataSource"
username="sa"
password=""
driverClassName="org.hsgldb.jdbcDriver"
maxActive="20"
maxIdle="10"
url="jdbc:hsgldb:hsqgl://localhost"

/>

So in this part a jndi resource with name “jdbc/MyDB” is configured, its type is a
DataSource which shows that this is a sql database, the username and password for db
access are provided as well as the database specific driver. In this case the database is an
HSQL database so the driver required for the connection is “org.hsqldb. jdbcDriver”.
This driver exists in hsqldb.jar file that must be provided to the server in its lib folder in
order to be able to- make the connection. Properties maxActive and maxIdle have to do
with the maximum number of active connections that can exist in the same time and with
the maximum number of idle connections that can be available. Finally the url of the

61 |Page

database is provided, this is the database’s location that in this case is localhost since the
server and the database are on the same machine.

All this info about the database connection exists on the server’s configuration as a jndi
resource. In the application the only thing that is needed in order to acquire a reference to
this database is the configuration of the datasource bean based only on its jndi name and
here is how this is done in spring’s configuration xml:

<bean id="dataSource"
class="org.springframework. jndi.JndiObjectFactoryBean'">

<property name="jndiName" value="java:comp/env/jdbc/MyDB"/>
</bean>

As it is shown with just a few lines and based on the full jndi name
"java:comp/env/jdbc/MyDB" the reference to the database is obtained and this is the
only dependency with the database without caring about its type, url etc.

Now that is clear how the reference to the datasource is obtained, let’s examine the main
configuration part of Hibernate, which 1s the configuration of the
hibernateSessionFactory bean.

<bean id="hibernateSessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">

<property name="dataSource" ref="dataSource"/>

<property name="mappingLocations">
<list>
<value>classpath*:*.hbm.xml</value>
</ 1list>
</property>

<property name="hibernateProperties'">
<props>
<prop key="hibernate.dialect">org.hibernate.dialect.HSQLDialect</prop>
</props>
</property>
</bean>

62 | Page

This bean is injected in all the HibernateXXXXDao files that were examined in the
previous chapter since they provide the Hibenrate’s session in order to perform actions on
the database. Back to the configuration now the first property is the datasource and it is
connected with the datasource bean that was previously shown. This is how Hibenrate is
now aware of the database info in order to perform actions on it. Next property is
mappingLocations and shows to a list of files that have the “.hbm” extension. These files
map the domain classes (Account, Request, UserImage) to the database tables, this is how
Hibernate manages to give populated java objects from database tables. Last property is
“hibernate.dialect” that is a specific sql dialect that hibernate uses(HSQL), an example
will be shown later.

An “hbm” file will now be presented to show how this object-relational mapping is
defined.

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD “3.0//ENY
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping default-lazy="false'">

<class name="showface.domain.UserImage" table="IMAGES">

<id name="id" column="IMG ID" type="long" unsaved-value="-1">
<generator class="sequence™>
<param name="sequence">PHOTOSEQ</param>
</generator>
</id>

<version name="version™ column="version" unsaved-value="null"
type="1long"/>

<property name="name" column="NAME" ‘not-null="true"/>
<property name="contents" column="CONTENTS" not-null="true"/>
<property name="thumb" column="THUMB" not-null="true"/>
<many-to-one~name="ownerid"” column="OWNERID"
class="showface.domain.Account" not-null="true"/>

</class>

</hibernate=mapping>

In this configuration file that is used by Hibernate the domain class UserImage is mapped
to the - database ‘table IMAGES <class name="showface.domain.UserImage"
table="IMAGES">. Then each of the class attributes is mapped to a database column. For
example the id attribute is mapped to the database column IMG_ID, moreover for this
case a SEQUENCE (an id generator in sql level) is created in the database and is
associated with this column in order to dynamically generate the id values for each new

63| Page

entry. A last thing that is worth noting is that Hibernate can also handle more complex
issues like many to one relationship cases and more. Such configuration files also exist
for the other 2 domain classes: Account and Request.

All the above had to do with configuration/integration issues of Hibernate with Spring.
Now that it is ready to be used from the HibernateXXXXDao classes it will be
demonstrated how easy it is to access and alter data with a few lines of code. All the
HibernateXXXXDao classes extend HibernateDaoSupport class and they implement
their corresponding interface. By extending this class provided by Spring it is very easy
to access the database. First thing to note here is that HibernateDaoSupport requires a
SessionFactory according to the documentation of the class and this is why there is the
need to inject the hibernateSessionFactory bean to all the HibernateXXXXDao files of
the application. This is simply done like this:

<bean id="userImageDao"
class="springapp.repository.HibernateUserImageDao">

<property name="sessionFactory"™. ref="hibernateSessionFactory"/>
</bean>

Now the full class of HibernateUserImageDao will be provided as an example in order to
show how it works and to pinpoint some features this kind of implementation has.

4 | Page

public class HibernatelUserImageDao extends HibernateDaoSupport implements UserImageDao {

%% Logger for this class and subclagaes *f
protected final Loy logger = LogFactory.getlogigetClass());

public void savelUserInage (UserIwage usrimg) {
logger.info ("3aving iwage: " + usrimg.getNawe());
getHibernateTemplate() .savetrUpdate (usrimg) ;

public void deletelUserImage (Userlwage usritg) {
logger.info ("Deleting image: " + usrimg.getId());
getHibernateTenplate() .delete (usrimg) ;

public List<UszserImage> getUserImageById(Long id){
logger . debuy ("getUser ImageById™) ;
Long[] crits = new Long[1]:
crits[0] = id;
return [List<UserImage>)getHibernateTemplate().find("from UserImage image where image.id = 2", ecrits);

public List<hyte[]> getUserThuwbById (Long id)!
logger.debug ("getUser ThurhBEyId™) ;
dtring query = "SELECT image.thunb from UserImage iwage where image,id=?2";
Long[] crits = new Long[1]:
prits[0] = id:
return [List<byte[]>)getHibernateTemplate (). find|query, crits);

public List<byte[]> getUserFulllmgById (Long id){
logger . debuy ("getUser Thunb ById™) ;
Jtring query = "SELECT image.contents frow UserImage image where image.id=?";
Long[] crits = new Long[1]:
crits[0] = id;
return [List<byte[]>)getHibernateTemplate (). find|query, crits);

public List<Chject[]> getImgldByUserId|Account userid]d
logger . debuy ("get IngIdByUserId™);
String cuery = "SELECT image.id, iwacge.nswe frow Userlmage iwace where image.ownerid=?";
Aeeount[] crits = new Lecount[1];
crits[0] = userid;
return [List<Obhiject[]>lgetHibernateTewplate (). find(query, crits);

65| Page

So it is obvious in the class declaration in the beginning what was previously discussed
about extending the HibernateDaoSupport class and implementing the interface which is
UserImageDao in this case. The first method called saveUserImage is just 3 lines long
and is used to save a new UserImage object in the IMAGE table in the db. With a closer
look it is clear that all the job is done by one line “getHibernateTemplate ()
.saveOrUpdate (usrimg) ;. This HibernateTemplate is provided by the class that is
extend and makes inserting an object very easy.

Unlike most traditional operations of accessing a database in this case there are several
things that should be pointed out. First of all there is nowhere in the code statements to
open and close the db connection, then there are not any obligatory, as in other cases, try
catch statements when accessing a database, no manual sql code is written in order to
perform the insert of the new object and finally no sign of statements or annotations
about transaction management. All these lead to a clean and readable code whose only
concern is to define what is needed by the database and does not have to worry about all
the above. All these are handled by Spring and Hibernate based on the configuration and
setup that was provided. As for the transaction management a configuration has also been
provided but it will be examined right after.

Of course in cases where the whole object is not needed from the database but only the
value of an attribute/column in order to reduce I/O actions and improve performance,
specific queries in HSQL can be written as it is shown in method getUserThumbByld and
in some others.

7.2. Transaction Management with AOP

After checking how the data access framework operates in the context of the application
concerning database I/O transactions, it is also very important to see how these
transactions are managed.

To begin with transaction management let’s see where it is needed based on a simple
example. Imagine that there is a method that transfers money from one bank account to
another. In order to perform such an action two update statements in the table with the
bank accounts should be done. One to remove the money from the first account (decrease
account’s balance) and one to add the money to the second account (increase account’s
balance). In case the first update is executed and then there is a network problem for
example and the second update is not executed, the money of the first account is lost.
This is an inconsistent case that could cause big problems. In cases like this a good

66 | Page

transaction management strategy is essential. In a managed transaction environment if
something like the above had happened the transaction would roll back. This means that
if the first update is executed and the second fails, all the changes made by these 2
updates which are in the same transaction will be reverted and everything would be as
before. In case though both updates were successful then the transaction would be
committed which means applied in the database.

In Show Face application the transaction management strategy is applied with the help of
AOP (Aspect Oriented Programming) expressions which are built in Spring. All the
transaction handling can be configured using AOP expressions in Spring’s configuration
xml thus having centralized control of transaction management and keep java code clean.

Fist of all the bean transactionManager is defined and the necessary attributes to handle
transactions are injected to the bean, the sessionFactory which is the
hibernateSessionFactory and the datasource which was defined previously in this chapter.

<bean id="transactionManager"
class="org.springframework.orm.hibernate3.HibernateTransactionManager">
<property name="sessionFactory" ref="hibernateSessionFactory"/>
<property name="dataSource" ref="dataSource"/>

</bean>

The next thing that will be checked is the AOP configuration which is based on a pointcut
and an advice. In AOP pointcut is a set of joint points which means specific points in the
program’s code execution. Advice is this extra behavior that is applied in the specified
pointcuts. In order to perceive this better the rest of the show face case will be presented.
Below is the part that defines the pointcuts (specific points in the program) where the
extra behavior (transaction management) will be applied.

<aop:config>

<aop:advisor pointcut="execution(* *..AccountManager.*(..))" advice-
ref="txAdvice"™/>

<aop:advisor pointcut="execution(* *..RequestManager.*(..))" advice-
ref="txAdvice"/>

<aop:advisor pointcut="execution(* *..UserImageManager.*(..))" advice-

ref="txAdvice"/>
</aop:config>

67 | Page

As it is shown three pointcuts are defined. The points of interest are the execution of any
method in any one of these three interfaces AccountManager, RequestManager,
UserImageManager. These are the “places” of interest because all database operations
begin from these classes and this is where the transaction should start. Moreover it can be
noticed that after each pointcut is defined, it is also assigned to an advice that will
perform the extra actions. In all three cases the advice of the pointcuts is “txadvice” that
will be shown below.

<tx:advice id="txAdvice" transaction-manager="transactionManager">
<tx:attributes>

<tx:method name="*save*" propagation="REQUIRED"/>

<tx:method name="*delete*" propagation="REQUIRED"/>

<tx:method name="*get*" propagation="SUPPORTS" />

</tx:attributes>

</tx:advice>

This specific advice that is followed by all the pointcuts of the application is a transaction
advice used for transaction management. The transactionManager bean is also provided
to the txadvice configuration. Then there are the attributes that say: if the name of the
method contains “save” or “delete” then a transaction is required, if the name of the
method contains “get” then transaction is supported. In Show Face there are 2 different
cases. When a user’s action changes data in the database, the database related actions
(related to the same user) should be in one transaction in order to be able to roll back in
case of any problem. The same thing applies for methods that contain save or delete in
their method-name, in such cases a transaction is required and if one does not already
exist a new one is created. The other case is for methods that contain “get” in their name,
these methods do not alter database data they just retrieve data. So transaction rules are
more flexible in this case where transaction is supported. If for a client request a
transaction already is running the “get” method execution will be made in that transaction
else no transaction will be initiated since there is no danger for such methods (“get”) to
cause data inconsistencies.

7.3. Apache Tiles 2

Apache Tiles 2 is used in the application and it is integrated with Spring’s MVC
viewResolver component. This is done because of the benefits that Tiles offer and result

68| Page

in the modularity of the web pages since they are separated in parts. What is more
important is that the page is separated in parts which can also be re-usable thus
decreasing the amount of same page parts that would otherwise have to be re-written.
This pattern that Tiles 2 use is called “The Composite View Pattern” and allows to create
pages that have a similar structure, in which each section of the page vary in different
situations [10]. This will be better explained by the following example.

Tiles configuration had been quickly presented in the part where a request in Spring
MVC was analyzed, but in this part some more details will be provided. Here is again the
configuration that is required in Spring’s xml files in order to integrate Tiles with the
viewResolver.

<bean id="tilesConfigurer"
class="org.springframework.web.servlet.view.tiles2.TilesConfigurer">
<property name="definitions">
<list>
<value>/WEB-INF/tiles-defs.xml</value>
</list>
</property>
</bean>

<bean id="viewResolver"

class="org.springframework.web.servlet.view.UrlBasedViewResolver'">
<property name="viewClass"

value="org.springframework.web.servlet.view.tiles2.TilesView"/>

</bean>

The first bean named "tilesConfigurer” is used in order to configure the final page
view and contains a property that shows to the tiles-defs.xml file. In this file the
configuration and layout of the jsp pages is included and each view’s logical name is
mapped finally to the real view object. The second bean named "viewResolver" is the
one that integrates Spring’s viewResolver with Tiles.

The main concept in Tiles is to separate each page in reusable parts and keep a certain
layout. In Show Face application there are 2 main layouts called "main.layout" and
"main.layout.pre.login". Both of them define the main layout of the application with
the difference that the fist one is used when a user has logged in and the other one is used
before the login or after the logout. The configuration of these 2 layouts in tiles-defs.xml
file is described like this:

69 | Page

<definition name="main.layout" template="/WEB-INF/jsp/main—layout.jsp">
<put-attribute name="title" value="Title of this page...should be
set!"/>

<put—-attribute name="header" value="/WEB-INF/jsp/header.jsp"/>
<put-attribute name="menu" value="/WEB-INF/jsp/menu.jsp"/>
<put-attribute name="body" value="/WEB-INF/jsp/empty-body. jsp"/>
<put—-attribute name="footer" value="/WEB-INF/jsp/footer.jsp"/>
</definition>

<definition name="main.layout.pre.login" template="/WEB-INF/jsp/main-
layout. jsp">

<put-attribute name="title" value="Title of this page...should be
set!"/>

<put-attribute name="header" value="/WEB-INF/jsp/header.jsp"/>
<put-attribute name="menu" value="/WEB-INF/jsp/preloginmenu. jsp"/>
<put-attribute name="body" value="/WEB-INF/jsp/empty-body.jsp"/>
<put-attribute name="footer" value="/WEB-INF/jsp/footer.jsp"/>
</definition>

As it is shown in the first layout the template page main-layout.jsp is used. This page
contains the attributes title, header, menu, body and footer that are inserted in the page as
defined in the definition of main.layout. The second definition called
main.layout.pre.login is exactly the same and adds the same attributes except from the
case of the menu attribute where another jsp is inserted. This is done because the menu of
a user cannot be the same before-after the login action. Now since the 2 main layouts of
the application have been created these are used all the time in order to present the
various views of the application. For example after a successful login action the logical
name of the view that will be requested will be “home”, in that case the viewResolver
will find in tiles-defs.xml file the following:

<definition name="home" extends="main.layout">
<put-attribute name="title" value="home.page"/>
<put-attribute name="body" value="/WEB-INF/jsp/hello.jsp"/>
</definition>

70| Page

This means that in order to present the view “home” that the main.layout definition will
be used since it is extended by the home definition (extends="main.layout"). So the
page created according to main.layout’s definition will be presented, but 2 attributes will
be overwritten by those described in the “home” definition. The title of the page will be
updated and also the body will contain a new jsp called “hello.jsp” which contains the
data of the home page.

The same happens for all the other views since the menu, header, footer do not have to
change every time and can be the same. This way the application keeps a consistent
layout when presented to the user and certain jsps like menu.jsp, header.jsp etc are
written just once and can be easily re-used thanks to Tiles.

7.4.Log In Interceptor

In this section the use of the login interceptor will be presented. In order for the user to
access a page of the application a request has to be made but whether or not this request
should be served depends on the user’s state. If the user has signed in the application then
all the services of the application should be available, if not only some. So in order to
check this for every request that is made this means that this code check should be added
in the beginning of all the 16 controllers of the application, which is not a good solution
taking into consideration time required, code repetition, difficulty of change in such an
implementation.

In order to solve this problem in an optimal way, avoiding all the above issues, the use of
an interceptor in Spring’s MVC handlerMapping configuration is required. As it was
described in previous chapter concerning the Spring MVC, the job of the
handlerMapping is to find the correct controller to serve a request based on the url of the
client’s request. Here is how the interceptor is configured first as a bean:

<bean id="loginInterceptor"
class="springapp.service.LogInInterceptor">

</bean>

And then how it fits in the overall handlerMapping configuration in Spring’s xml:

71| Page

<bean id="handlerMapping"
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping"
>

<property name="interceptors">
<list>

<ref bean="loginInterceptor"/>
</list>

</property>

<property name="mappings">

<props>

<prop key="/**/login.htm">/login.htm</prop>

<prop key="/**/registerUser.htm">/registerUser.htm</prop>
<prop key="/**/hello.htm">/hello.htm</prop>

<prop key="/**/priceincrease.htm">/priceincrease.htm</prop>
<prop key="/**/uploadimage.htm">/uploadimage.htm</prop>

<prop key="/**/imageRetriever.htm">/imageRetriever.htm</prop>
<prop key="/**/logOut.htm">/logOut.htm</prop>

<prop key="/**/viewMyImages.htm">/viewMyImages.htm</prop>
<prop key="/**/deleteImage.htm">/deleteImage.htm</prop>

<prop key="/**/makeFriends.htm">/makeFriends.htm</prop>

<prop key="/**/sendRequest.htm">/sendRequest.htm</prop>

<prop key="/**/processRequest.htm">/processRequest.htm</prop>
</props>

</property>

</bean>

As it can be seen in the configuration file the first property is used to define the list of
possible interceptors. In this application there is only one that was previously defined and
called loginlnterceptor. The next property called mappings helps the handlerMapping to
find the correct controller based on the url of the request.

Now that an interceptor is defined what will happen is that whenever a request comes to
the handlerMapping it won’t be passed to the appropriate controller (via the
DispatcherServlet) but it will be passed to the loginInterceptor. The loginInterceptor will
do its checks and if it returns true (the user is logged in) then the suitable controller will
be selected to fulfill the request, else in cases of false a redirect to the login page is

72 | Page

requested in order for the user to sign in. The initial request in case it required sign in will
not be served if the user is not signed in.

Finally let’s take a look at loginInterceptor’s code:

public class LogInInterceptor extends HandlerInterceptoridapter |
J*% Logger for this class and subclasses *f
protected final Logger log = Logger.getloggerigetClass()):

public hoolean preHandle|
HttplervletRequest recquest,
Httpl3ervletResponse response,
Chiject handler) throws Exception f
log.debuy("Inzide LogInlnterceptor™ + request.getRegquestURI())
HttpSeszion sess = request.getlession(false) ;
if (request.getRequestURI () . equals "/ showface/ login. htm™)
h| request.getRequestURI() .equals "/ showface/registerlser .. htm™)
|| reguest.getRequestURI() .equals ("/shoviace/viewdibout, htm™)) |
return true:

if (ses='=null)
Aocount logedin = (Locount)sess.getdttribute ("LogedInlocount™)
S log.debug ("Account "+ logedin. to3tringi));
if (logedin'=null] {
return true;

} else {
response.sendRedirect (request.getContextPath() + "/ login.htm");

return false:;

}
} else |
response.sendBedirect (request. getContextPath(] + "/login.htm™);

return false;

In the declaration of the interceptor class as it is shown HandlerInterceptorAdapter should
be extended, then the method preHandle of the extended class is implemented. In this

73| Page

method if the url of the request is related to the login, register or about page then
immediately true is returned without any further checks since these pages do not require
log in to be accessed. For all the other cases the HttpSession is checked in order to find if
there is a logged in account (when a user logs in his/hers account is put in the
HttpSession). If the user account is found in the HttpSession this means that a log in has
been performed so access to the specified request is allowed. In case the account is not
found then the user is redirected to the login page in order to sign in and the request that
was sent is not served since false is returned.

So with this simple and clean implementation an application universal login check has
been added and can be managed just by one class, avoiding complexity and code
duplication.

74 | Page

8. Presentation of a Request’s Full Round Trip

Now since every aspect of the application has been explained a full round trip of a
request will be presented in detail. This way most of the things described will be
encountered in their physical order in a real example. The example that will be shown
refers to what happens when the user presses the “Upload Image” button as shown in
picture (7). In this specific case the user uploads a new image in Show Face application.

The data required to upload the image have to be completed as in screenshot (7). They
are a name for the image and the full local path of the image file. Then user presses the
“Upload Image” button and the following request is sent to the server: http://<Server
Name>:<Port if not 80>/showface/uploadimage.htm.

At this point the request will be handled by Spring MVC once it reaches server side
(Controller Layer). First of all the Dispatcher Servlet will have to handle control to the
login Interceptor that was previously explained, every request has to be checked first
there, this is done to check whether the specific request requires log in or not. In this case
the uploading of an image requires the user to be logged in. If the user is not logged in or
the session has expired then the user is sent to the login page else the flow continues
normally. After a successful log in check by the interceptor control is given again to the
Dispatcher Servlet that will now have to find to which controller to delegate this request.
In order to do this it asks the HandlerMapping and as shown before this mapping exists in
its configuration:

<prop key="/**/uploadimage.htm">/uploadimage.htm</prop>

This means that the controller that should handle such requests is this one:

<bean name="/uploadimage.htm"
class="showface.web.ImageUploadController">

<property name="sessionForm" value="true"/>

<property name="commandName" value="userimage"/>

<property -name="commandClass" value="showface.domain.UserImage"/>
<property name="validator">

<bean class="showface.validators.ImageUploadValidator"/>
</property>

<property name="formView" value="uploadImage"/>

<property name="successView" value="hello.htm"/>

<property name="userImageManager" ref="userImageManager"/>
</bean>

75| Page

As it can be seen the controller class attribute shows the real controller file that should
handle this request, ImageUploadController. There are also other info and parameters like
the validator (checks user input data) class, the success view (the url that will be asked if
the request is successfully completed), the form view (the page the user sees and fills to
submit) and the page data mapping to a java domain object Userlmage, that will be
populated by the user’s input data.

In this specific case that the suitable controller has been found the Dispatcher Servlet will
first pass control to the validator in order to check user’s input and if no errors are found
only then the control will be passed to the controller to serve the request. Here is the
validator class.

76 | Page

package showface.wvalidators;
‘import org.apache.conmons. logging. Log;:[]
public class ImagelUploadvValidator implements Validator

S%% Logger for this class and subcolasses +/f
protected final Log logger = LogFactory.getlLogigetClassi()):;

public boolean supports(Class clazz) |
return UserImage.class.equals(clazz);

public void validate(Chject ob]j, Errors errors) |
UserImage pi = [(User Image) Dhjd
if (pi == null) {
errors.reject ("error.null-TImage™) ;

'

else |
if(pi.getMNamwme (j==null || pi.getlame () .lengthi)<l) {
errors.rejectValue ("nawe™, "required™);
H
if(pi.getContents()==null || pi.getContents().length<l) {

erraors.rejectValue ("contents", "redquired™) ;
y else if (pi.getContents().length>2097152) |
errors.rejectValue ("contents", "image-toolbig™)

logger.debug ("TEIETIET™ + pi.getContents().length):

The first thing that is checked is if the model object that is associated with the upload
image form is null or not. In that case a general error is added to Spring’s Error object.
Then the name of the image is checked in case it is not set. Now for the image file there
is a check to see that the file that will be uploaded is not a zero sized file (which
obviously is an error). An extra check is added to limit the maximum size of an image in
order to avoid cases of abuse (in Show Face the limit is 2 MB per image). In any case that
an error is found it is added in the Error object. This object if it contains any errors it will
be automatically used by Spring MVC and will populate the form with error messages
next to the erroneous fields like in screen (8) (this is also achieved thanks to Spring’s Tag

77 | Page

library that is used in the jsp page). For example for attribute “name” of the UserImage

class there is the following in the jsp to make the mapping and shows the errors:

<tr>

<td align="right" width="20%">Name :</td>
<td width="20%"><form:input path="name" /></td>
<td width="60%"><form:errors path="name" cssClass="error" /></td>

</tr>

In case though that no error is found in these checks, Dispatcher Servlet now delegates
control to ImageUploadController that is presented below.

37
35
39
40
41
42
43
44
45
46
47
43
49
50
51
<2
c3
54
55
o
<7
cg
53
60
61
62
63

65
13

protected ModelindView onSubmit|

HetpServietBegquest request,

HetplervletResponse response,

Chiect comwand,

BindException errors) throws ServletException, IOException |

// cast the hean

User Image hean = (UserImage) conmand;
hyte[] file = bean.getContentsi();

try k

BufferedImage image = ImagelO.read(new BytelrrayInputStream({file));

Image resized = image.getdcaledInstance (75, 52, Iwage.SCALE FAST):
log.debuyiresized. getWidth (null)) ;

BufferedImage bufferedImage = new BufferedImage (75,52, BufferedImage.TYPE 3BYTE BGR);
bufferedImage.createGraphics () .dravimage (resized, 0, 0, null):;

BytelrrayOutputStream out = new BytelrrayOutputStresm() .

ImageIo.writethufferedImage, "jpeg", out);

bhean.setThunb (out.tobytelrrayi()),

Aeeount loggedin = [Leeount)request.getiessionifalse) getittribute ("LogedIniccount™);
bhean.setOwnerid|loggedin) ;

user Imagelanager . savelser Irnage (bean) ;

out,close();

+ catch (Exception e) §

i

log.errorie):

errors.rejectValue ("contents", "iwg-invalid™):
Map model = errors.getModel():

return new ModelindView|"uploadImage™, model);

return new MNodelindView(new RedirectView(getduccessView()+"?success=Your Image Has Been Uploaded™)):

78 | Page

This is the main method of the Controller that will handle the request; its name is
onSubmit and is inherited by Spring’s SimpleFormController that all the controller
classes of Show Face extend. The job of this controller is to get the user input data that is
already mapped in the UserImage domain object and make the necessary transformations
(generate the image thumbnail and set the owner of the image). After the Userlmage bean
is fully populated (this is finished in line 56 of the above image) then the controller will
access the model layer in MVC architecture in order to persist the data in the database.
This is done in line 57 of the above image. At this specific point the control is given to
the back end layers of the application through the use of the interface class
UserlmageManager of service package. The interface method that is called is
saveUserImage and this above is its implementation in service package:

public void saveUserImage (UserImage usrimg) {
userImageDao.saveUserImage (usrimg) ;

}

This is a method in service package whose only job is to save the Userlmage model
object to the database and no other actions are required. That is why the only method
called is saveUserImage of interface class UserlmageDao of the repository package, so
control goes even deeper in the application’s architecture. In this part also the transaction
manager mechanism is taking care of the transaction. As it was shown in the
configuration of the transaction manager every method of class UserImageManager that
is called and contains the word “save’ as this one, requires a transaction within which it
will be executed. In case any problem comes up during the saving operation the
transaction will roll back and no stale or inconsistent data will be kept in the database.

Now in the repository package since there is the implementation of the persistence layer
of the application Hibernate will simply save the image in the database given the
configuration provided as shown in the previous chapter. Here is the implementation of
saveUserIlmage method in class HibernateUserImageDao:

public void saveUserImage (UserImage usrimg) {
logger.info("Saving image: " + usrimg.getName());
getHibernateTemplate () .saveOrUpdate (usrimg) ;

}

79 | Page

Thanks to Hibernate the image is saved in the database with just one call. If everything
has been executed successfully control returns from repository to service package and
from there back to the ImageUploadController (web package). There since everything is
ok and its job is complete it will return through a redirect action the final view to the user.
In the final view that will be returned, the user will see the home page of the application
with an additional image-upload-success message on its top as shown in screenshot (9).

This way the whole round trip of a request has been presented. The whole flow has been
presented by showing the various layers/packages of the application to take the control in
their real order to serve the request. Then control returns back the same way to the
controller that will give through a redirect action the final view to the user.

80| Page

9. Performance Metrics

In this chapter since the whole architecture and technological features of the application
have been thoroughly presented, it is now time to see what all these offer performance
wise. What are the response times of the application with normal load? How much can it
be stressed given the available hardware for the tests that will be conducted? How it uses
system resources? Such type of questions will be answered and statistical data will be
provided in this chapter.

9.1. Jmeter Setup and Tests

For testing this J2EE application the first tool that will be used is the well known in Java
community jmeter tool. Jmeter is a tool that can be used to measure performance of both
static and dynamic resources which include of course Show Face application. This tool
can be used to simulate various loads (heavy or not) on a server, network or object to test
its strength or to analyze overall performance under different load types [11].

All the tests are executed on the following Desktop PC:

Sughen;
bicrozaft Windows 2000
5.00.2195
Service Pack 4

Registered to:
Mikolaog Dolias

Computer;
[ntel[F] Pentium
[F)D CPU 2.80GHz
ATAAT COMPATIBLE
2.029.996 KB Rk

This info is provided in order to show in which hardware context the tests will be
performed, it is just a simple dual core windows PC and not a dedicated server that uses
any high performing operating system (eg linux, solaris). Also all the components are
being executed on the same machine (database server, apache tomcat, jmeter application,
profiling tool) so the machine is already consuming a lot of resources to accommodate all

81 |Page

of them. In real life things are different with dedicated servers and so on but despite this
fact such tests can still provide valuable data.

Apart from the info on the hardware certain tweaking actions took place to improve the
application’s performance regarding the system setup. The java memory heap size has
been increased for Tomcat server in order to be more durable against heavy load testing
and to avoid out of memory exceptions. Further on Tomcat’s configuration has been
tweaked a little in 2 files. In Tomcat’s conf folder in file context.xml the maximum
number of concurrent database connections has been increased to 50 (intial value 30) and
the maximum number of pooled (idle) database connections has been increased to 30
(initial value 10). The other file in conf folder that has been changed is server.xml, there
the maximum number of active threads that Tomcat can spawn has been set to 260 in
order to be able to serve heavy loads.

To start with the testing of the application a test case has to be defined on jmeter and

various configuration actions have to be done in order to create a good test case. To begin
with the first test a screen is provided that shows the normal load test plan and it will be
explained later on.

B2 ShowFace Normal Test.jmx (E:'jakarta-jmeter-2.3.4'ShowFace Normal Test.jmx]) - Apache JMeter (2:3:r =|0ix]
File Edit Run Options Help

0/3

& TestPlan

¢ [Srow Foce Uses Thread Group
A HTTP Request Defeuts || Name: |Shaw Face Users
4 HTTP Cookie Manager

s | Comments:
¢ Once Only Controler | Action to be taken after a Sampler error

{' Login ShowFace :
¢ W 5 Loop Cortr.. . () Continue () Stop Thread () Stop Test @ Stop Test Now

f’ Home Page

f’ Cpen Big Image ;
f’ Wiw My [mages §§ Mumber of Threads (users): |3E| |

Thread Properties

f" Make Friencs Ramp-Up Period {in seconds): |3D |
f’ View My Friends |
¢ ':.!' 2 Loap Cartr... :
ﬁ"’ Ul Imae [] Scheduler
¢ g Once Only Controler :
f’ Logaut ShawFace
Summary Report
Graph Resuts
| WorkBench

Loop Count: [] Forever ‘1 ‘

Figure 26. Normal Load Test Case

82| Page

In the above image (26) jmeter and the normal load test case is presented. On top of the
tree view is the element Test Plan that contains all the elements of a test. Right below this
the element named Show Face Users is a Thread group. This element is for example the
user or users that will perform the actions that are defined in the test. For this normal load
test case 30 users (threads) have been used that will perform for one time all the requests
defined below them, moreover within a period of 30 seconds all the threads/users will
have started sending requests (if this attribute was 0 all 30 threads would start requests at
the same time but this does not simulate well real life situations).

The main elements of the test case are all children of the Show Face Users element. The
first one named HTTP Requests Defaults is used to configure the server URL that will be
used in order to perform requests; this is a useful element in case the application is tested
in another system, then only the server parameters will be changed there since the action
specific URLs will be the same. The next element named HTTP Cookie Manager is used
to handle cookies sent by server in order to keep the session etc in order to behave like a
browser.

After this there are the loop controller elements. These elements are used in order to
execute once or repeat more times the requests that are defined as their children in the
tree view. The first controller that executes only once is used to send the log in request
since it has to be done only once. Then there is a loop controller that repeats for 5 times
the five requests it contains. These are the home page of the application, the opening of a
big image, the request for view my images page, for make friends page and for view my
friend’s page. So each user after login executes 5 times these 5 requests in the test case.
Then the upload image action is also tested but only for 2 times (to avoid cleaning the
database every time a test is executed from hundreds of images) and finally the logout
happens once as the login. Summing all these up this test case will make 30 users * 29
requests, which means 870 requests in total with no pause between them (even more
stressful than real life cases).

Finally the last 2 elements named Summary Report and Graph Results are used to gather
statistical info and create graphs that will be presented after the test has been executed.
These types of elements are called listeners in jmeter. Now from the menu bar, once the
application on Tomcat and the database server are up and running, select Run and then
Start. After waiting some time for the test to finish, check that there are no exceptions (in
the application log or database server). If that is the case it means that the load has been
handled with no problem.

83| Page

So after the above is done let’s examine the Summary Report that was generated based
on the application’s performance (27).

Lahel # Samples Ayerane iin Ml . Dy, Eror % Throughput KBisec A, Bytes

Login BhowFace A pitld 51 728 140,53 0,00% 1,0izec 344 4706
Harne Page 140 160 14 544 134 58 0,00% 4 3isec 14,63 34713
Open Big Image 140 178 B4 550 087 0,00% 4 Jizec 04307 16772480
e bty |mages 140 B g 410 717! 0,00% 4 3isec 2054 48883
Make Friends 140 148 12 Ba2 14977 0,00% 4 Jizec 916 21870
e Wy Friends 140 366 31 1139 274 i1 0,00% 4 izec 31,46 TR43,0
Upload Image kil 1808 f51 24903 540,78 0,00% 1,Bisec 5,61 3402
Logout ShowF ace A 188 14 G7d 172,81 0,00% a1 dimin 371 4910

OTAL Hl| 300 g 2403 472 A8 0,00% 23 disec fifa4 b4 2682831 4

Figure 27. Results of Normal Load Test Case

In the first column as it is shown there are the various requests defined in the test case.
These requests cover almost all the application’s actions so that the test is as close to a
real case as possible. The next column shows the number of the requests for each case.
Then the Average, Min and Max response times of each request in milliseconds are
shown. As it can be seen the average response times are really good since almost all of
them are under 300 milliseconds while in real life an acceptable limit would be 2 seconds
for most cases, in these cases the response times are very fast, the only exception is the
Upload Image request but this is normal since uploads always take more time. The total
average response time for the test is just 300 milliseconds which is a very good result.

Then there is the standard deviation column which is relatively big but this depends on
the load of the application, for example the initial requests were served faster than the
later ones but this is normal for a web site while its load increases. Even the max average
response times though are quick enough taking under 1 second. In the Error column there
is no error of course since the application handled the load relatively easy.

The next column shows the Throughput of the application, this shows the amount of
requests for each type that the application was able to serve for the given test; these
values are expected to be even higher in a more stressful test. The last 2 columns finally
have to do with the amount and rate of transferred data between the client (jmeter) and
the server. The only notable thing for this case is the size of bytes for the Open Big Image
request, this number is too big in relation to the other results but this is normal since in
that request a big image is requested from the server.

84 | Page

After checking the report results let’s move on to the graph result that is presented below
(28).

611 ms

o

5 P)
.\'-r g, ",-'"\ e a\.-‘lu,f‘"_ i i g R s MW |
A i T e gt I e

e,

B

am
-

L
.._.__:-'-"'_ﬁ-hl’
e ——
___.—-'-“'
HHI-"
.—u-\-_“-‘ﬂp.
__.v-u—n-'""—'ﬂ
e —
—_
—
—_——
—
—.._-‘-U—u- _FFNUH—
__"'\-.-...,,_, _____w—"_'_'_d—’-
ot II_’_,.“_,..-H-' =
i
s P
S
oms (4] M [*]
Mo of Samples 870 Latest Sample 19 Average 300
Throughput 1.382 037 iminute Median 133

Figure 28. Graph of Normal Load Test Case

In the graph presented there are 3 lines. The green one shows the average throughput of
the application in total based on the sample requests. As it can be seen the average
throughput is high and relatively stable despite the load increase as the time passes in the
test case (more threads/users are spawned to make requests). The blue line shows the
average response time in total as the test is executed. Here it is obvious as it was
previously stated that the response time increases as the load increases but again it goes
up to 300 milliseconds which is very fast. Finally the purple line shows the median value
85| Page

as the test progresses. The median is the limit that is used to separate the samples of this
test in 2 teams that have the same number of requests. To be more precise since the
overall median is 139 milliseconds this means that from the 870 samples/requests, half of
them were executed in less than 139 milliseconds and half of them in more. This is
another interesting statistical measure that shows the performance of the application.

Moving on to the second test something very interesting will be presented that will prove
in practice the scalability of the application since the performance has already been
shown. The test case will be exactly the same as previous but some simple JVM tuning
will be performed to show how the application without any code change but based on
setup and hardware configuration can improve its performance.

In the initial test the minimum java heap size that was allocated to Tomcat was set by this
environmental variable: CATALINA_OPTS= —-Xms256m —Xmx1024m. This means that
the initial heap size used by the JVM was 256 megabytes and the maximum 1024. Now
the new value that will be used for the next test will be: CATALINA_OPTS=-Xms512m
—Xmx512m —Xmn256m. This now means that the initial heap size has been augmented to
512 megabytes and it is allocated from the beginning which is good and the maximum
one has been set at the same value, it has been decreased. However there is a new
parameter —Xmn which is associated with garbage collector execution to free memory, its
correct value requires some testing in order to be selected for an application. In Show
Face case 256 megabytes were used. This value mainly cleans the first generation of the
groups that garbage collector handles (called Eden Age generation), this generation
includes the newly created objects.

In order to begin the test again Tomcat server has to be restarted in order for the new
value of CATALINA_OPTS to be taken into account. Also in order to obtain accurate
results the test case has to be run once for one user in order for Tomcat to perform first
time compilations in jsps when something is requested for the first time after the server
has started, after this the response time becomes stable and quicker (this was performed
for the first test too). So here is the Summary Report for the second test (29).

86 | Page

Lahel # Samples |Average| Min | Max | Std. Dev. | Error % Through.. KBfsec Awy. Bytes
Login ShowFace a0 5 17 GY 94490 0,00% 1,0/sec 3,80 34704
Home Fage 150 11 8 23 3,030 0,00% 41/sec 17,20 34712
Cpen Big Image 150 76 a9 102 13,53 0,00%[51isec 8204 47 16772480
Wiew by [mages 150 a G 21 1,76/ 0,00% 4,1/sec 24,34 4909 2
Make Friends 150 a 7 20 2080 0,00% 41/sec 10,84 21870
Wiew by Friends 150 5 20 47 4720 0,00% 41/sec 37,89 TE43.0
Upload Image 1] 435 294 9200 154,87 0,00% 2 0fzec 6,92 35800,7
Logout ShowFa... a0 11 G 27 4790 0,00% 1,0/sec 4452 44510
TOTAL aro 53 G 9200 114,22 0,00% 28 7Tisec 819727 29283510

Figure 29. Results of Normal Load Test Case 2

As it is shown above the same test with the same number of requests has been executed,
also the average bytes are almost the same since the requests returned the same data.
Apart from these two columns that are the same as expected, all the other columns with
statistical data have been improved. Total average response times (as well as Min and
Max) have been greatly improved, overall response time has been decreased from 300 to
53 milliseconds, this is a very big improvement (of course since both times are too small
in practice the difference cannot be seen unless in very heavy load situations). Apart from
this the total standard deviation has been decreased from 472,68 to just 114,22 which
shows that the application behavior regarding response times is more stable. Again no
error cases since such load can be easily handled. Finally total throughput and data rate
also improved from the previous test. In general this time execution was much quicker.
Below now the Graph Results are presented (30).

87 | Page

94 ms

0 ms q] I

Mo of Samples 2870 Latest Sample 6 Average 53
Throughput 1.719 87 7Iminute Median 13

Figure 30. Graph of Normal Load Test Case 2

As it is expected the results are much better in the graph too. Since the application now is
quicker the throughput has become more stable as well as the average response time and
the median. All 3 lines show very stable behavior. This happens because now it is very
easy to handle the load of this test case; it will be interesting to see what will happen
when the load increases in the next test that will be performed.

To conclude with the second test, it has been shown that the application is really scalable
since its performance has been increased and handles easier the same load without
performing any source code change but by just improving resource related attributes like
the JVM memory allocation of Tomcat.

88| Page

Now in the third test there is going to be a much bigger load in the application that looks
more like a denial of service attack than a real test case since the load that will be created
is too big and it is created within just a minute. To be more precise in this test there will
be again the same 29 requests per user without any pause between them (this 1s not like
real life cases since user requests have some pause time between them), but instead of 30
users now there will be 100 concurrent users that within 1 minute they will have send all
their requests to the server. This creates a total load of 2900 requests within a minute on a
simple desktop pc that hosts the application. Moreover for this test since the database
activity will be greatly increased compared to the previous tests there is also the need to
allocate more memory to the database server. Unfortunately since available resources are
limited only 512 megabytes will be allocated to the database server.

Now after executing the test here is the Summary Report (31).

Lahel # Sam...| Average hir Ml 2 Std. Dev. Error % Throughput KEB/sec A, Bvtes
Login ShowFace 100 10585 43 2832 Gd6 32 0,00% 1,Blsec 5,53 34830
Home Page 500 8545 4 2111 446,39 0,00% 5 48/ser 18,60 34832
Cpen Big Image 500 1733 &) g422 221918 0,00% 5.8/sec 893086 16772480
Wiew by mages s00 283 10 1814 270,27 0,00% A 4isec 26,33 45962 K
Make Friends 500 421 9 21487 351,99 0,00% g 4/sec 11,481 21880
Wiewy by Friends 500 1634 25 45900 113245 0,00% 54/sec 40,16 76440
Upload Image 200 81T G50 BE04 148677 0,00% 2 1sec 7,06 35128
Logout ShowFace 100 KXh a 1607 449 58 0,00% 1,1Isec 4,70 44520
TOTAL 2900 1109 A BEO4 148522 0,00% 249 alser 244849 2828474

Figure 31. Results of High Load Test Case 3

As it can be seen 2900 requests have been made and the total average response time is
about 1 second which again is a good result given the sudden and big load as well as the
limited resources of the test system. Of course such a response time is not bad at all but in
a better system it would be much quicker. Also in average response times it is worth
noting that the actions that have the 2 biggest delays are those that have to do with
database transactions that involve large amount of data like Open Big Image and Upload
Image, this has also to do with the limited resources (memory) that were allocated to the
database server. Apart from the response times again no error was reported and the
throughput rate remained at around 30 requests per second which shows the stability and
the limits of the system for this test. Finally the data rate has slightly increased from the
previous test. Below also the graph of this test is provided (32).

89 | Page

2843 ms
P -
) P e 5 o, ™
M// F ./\/ /\-,- //ﬂ MMWA'./ 7 "'\/"/M— //‘I_w W M v/-""""-
n—____—_——'—'—\—q___,_.—u—a__
\ ——— e,
II\II e .,
—
Dms [y i I [»
Ho of Samples 2300 Latest Sample 5 Average 1109

Throughput 1772, 808/minute Median 513

Figure 32. Graph of High Load Test Case 3

9 | Page

In the following test the previous test case will be modified in order to resemble more a real life case.
The same amount of requests and users will be used but now between each user’s requests there will
be a gap of 500 milliseconds also the requests will start within a period of 3 minutes. To sum up the
test case: In a period of 3 minutes 100 users will start sending requests (29 per user) and between each
user’s request there will be a gap of 500 milliseconds. Here are the report results (33).

Label #Samples Ayerane Wi hha Std. Dev. Etrar % Throughgut kBlsec By, Biytes
Login ShowFace 100 44 14 226 47,90 0,00% 33 Bimin 1,90 4670
Home Page a00 11] 122 767 0,00% 2, 2zec 742 34746
Open Big Image a00 121 a6 it 73,348 0,00% 2, 2zec 3881,27 16772480
Wiew by [mages a00 10] 184 12,83 0,00% 1 Xzer 10,44 48130
Wlake Friends a00 12] 187 18,44 0,00% 1 Xzer 4 67 21880
Wigw Wy Frignds a0 41 14 337 42,40 0,00% 1 Mzee 16,32 TE44.0
Upload Image 200 At 291 B7h 81,40 0,00% 1 1zeE 3,84 38124
Logout ShowFace 100] 4 107 12,08 0,00% 33 8imin 2 46 445210
TOTAL 24900 i1 4 f7E 103,21 0,00% 11 8/zee 2407 67 292837 3

Figure 33. Results of High Load Test Case 4

As it can be seen now that the load has been better dispersed in time and is more realistic the
performance of the application has dramatically improved. Now the total average response time is
only 61 milliseconds, the standard deviation is also small compared to other tests. No errors again and
the throughput is now less since the requests are more dispersed in time, the same applies for the data
rate. In general despite the big number of concurrent users the application is very stable and
performing in a possible real life situation. The stability can also be deducted from the graph of the
fourth test case which is provided below (34).

M| Page

160 ms

0 ms

4] Il D

Ho of Samples 2900 Latest Sample 10 Average 61

Throughput 714 961 /minute Median 14

Figure 34. Graph of High Load Test Case 4

92 | Page

Now let’s move on to the fifth and final test. In this final test the previous real life test
scenario will be used exactly as it is concerning number of requests per user (29), delay
between requests of a user (500 ms), time period within all users will start sending
requests (3 minutes). The important change is though that this test will be executed for
200 concurrent users instead of 100, this means double load within the same time that
requests were dispersed in the previous test. This test will show the application’s
performance in a really high load real life scenario. Here is the results report (35).

Lahel # Samples AvBraQe ir [LEES Std. Dev. Error % Throughput KEBIsec A, Bytes
Login ShowF ace 200 359 14 2798 535,60 0,00% 1,1/sec 374 3467 2
Harme Page 1000 419] 2280 435,95 0,00% 4 2sec 1414 34747
Open Big Image 1000 1020 58 aav4 1346,08 0,00% 4, 2zec G329 B3 1677248,0
Wiew Wy [mages 1000 156 f 1878 231 67 0,00% 4, Naec 20,06 4924 2
hake Friends 1000 271 f 24490 arary 0,00% 4, Naec 8,491 2188,0
Wiaw hdy Friends 1000 743 20 ar7va TER A2 0,00% 4, Msec 31,13 TE44.0
Upload Image 400 1597 2498 43749 100817 0,00% 2 1/sec 721 3512,8
Logout ShowFace 200 109 4 1928 213487 0,00% 1,1/sec 4 64 44520
TOTAL AE00 a76 4 gav4 856,26 0,00% 22 Bisec 651295 292839 3

Figure 35. Results of Very High Load Test Case 5

The first thing note in the table above is that the number of requests doubled as expected
to 5800 requests. The total average response time is much bigger than that of the previous
test but still it is a great value and taking into consideration the number of concurrent
users it is even better. Now the standard deviation has a big value but this is something to
be expected as the load on the system was getting bigger and bigger the response times
were increasing too. No errors again and the throughput rate is double that of the previous
test, this is normal since the number of users doubled. The same goes for the data rate.
Finally here is the graph results too (36).

Q| Page

1676 ms

0ms 4]

Mo of Samples 5800

Latest Sample 14 Average 576
Throughput 1.366 469/ minute Median 232

Figure 36. Graph of Very High Load Test Case 5

After all the above 5 test cases and the analysis that was provided on Show Face
application results, it has been shown that the architecture and design choices of the
application do have an impact on its performance and scalability. High load tests have
been executed with successful results and concepts like the scalability of Show Face
application have been presented in practice.

94| Page

9.2. Profiling the Application with the Help of jmeter

Now after measuring the application’s performance and behavior under different types of
load, more info will be provided on the resources the application needs during runtime
and the impact it has on the system. In order to provide such info a java profiling tool will
be used. There are various profiling tools but the one that was chosen for this test is
named YourKit [12]. This tool was chosen because it seemed really easy to use and
integrate with Tomcat for profiling of j2ee applications. It also can be used under various
operating systems and provides a nice help section with videos etc.

So how this profiling tool works and what info it provides? After installing the profiling
tool there is an option to integrate it with a local web server, amongst the list of options,
Tomcat 6 that Show Face uses, is provided. Then the startup.bat file of Tomcat is
provided to YourKit and it generates another file to startup Tomcat that includes several
options to support profiling. So when Tomcat is started through the edited by YourKit bat
file then the server can be profiled by YourKit UI (user interface).

What YourKit does is that while the application runs on Tomcat various info regarding
the application’s use of resources is recorded and presented for example cpu usage,
memory allocation, methods that are called and execution times of methods, hierarchy of
calls and many more other data. These are used to monitor an application and find
possible problems like memory leaks or method bottlenecks etc. Generally it provides
detailed info during the execution time of an application.

In order to present the profiler results for Show Face application something is needed to
work on the application to create some load in order for the profiler to be able to capture
the data that is needed. Of course in order to achieve this, a jmeter test will be executed
while the profiler monitors the application. The test that will be used is test number 4
from the previous section, to be more precise it is a test case with 100 users and 3
minutes ramp up period. Each user makes 29 requests to the application.

So after starting up the database server, tomcat from the edited by YourKit bat file,
jmeter-and YourKit UI, the profiling from YourKit Ul is started then jmeter test is started
and wait until all its threads are finished then from YourKit Ul stop the profiling and here
are the results. First graph (37) has to do with the CPU usage levels that tomcat needed in
order to fulfill the 2900 requests that were made by the test case.

95| Page

CPU Time

Total: 3:10 Inlast S mins: 2:48 Inlast min.: 0:33

100 %5

20 %

‘P time (%) |
60 % Lo |

40 %a

20 %

D% ||||||||||||||||||||||||||||||||||||||‘|"|
4:00 5:00 G:00 J:00

Figure 37. CPU Usage Graph

As it is show during the 5 minutes (approximate time) that were needed for the test to
complete the CPU usage level is presented. It is obvious that as time passed and more
user threads are spawned by jmeter the load gets bigger and so the CPU usage, of course
at the end as the load decreases CPU usage decreases too. Below another graph that
shows Tomcat’s number of threads in time is also presented (38).

Threads

Al Ii'ge threads: 43 Daemons: 42 Peak: 43 Total created: 45
50

1 All threads
40 &
] Dasmon threads
30 e
20 ;
10
I:I T T T T I T T T T T T T T T I T T T T T T T T T I T T T T T T T T T I T T T T T T T T T I T T T
E:DE 4:00 5:00 G600 00

Figure 38. Tomcat's Threads Graph
9 | Page

In the graph above as it is expected the count of threads increases as the load of the
application increases in order to be able to serve more requests. Now let’s see some
statistic results that the profiler tool gathered during the execution of the test. In the
following screen (39) there is some info on the SQL queries of the application regarding
the total execution time each needed the average execution time as well as the number of
times that this query was invoked.

Zal Time {ms) Avg, Time {ms) Invocation count
=-8SELECT 30.128 2%
select userimagel_ CONTENTS as col_0_0_ from IMAGES Lserimaged_ where userimageC_I 21,999 2% 43 500
select userimage(_IMS_ID as col_0_0_, userimaged_MAME as col_1_0_ from IMAGES userim 3,352 0 % 1 3.300
select accountD_ID as D0 _, accountD_wersion as versionD_, accountd MAME as MNAMED ,. 2,324 0% 1 2.000
salect requesto_REQ_IDras REG1 2, requestD_wversion as versionZ_, requestd_ FRIEMNDA = B 0% 1 800
select requestD_REQ_ID as REQL_2_, requestO_.wversion as versionz_, requesto_FRIENDA & ed47 0% 1 500
select requestD_REQ_ID as REQL_2_, requestO_wversion as versionz_, requestO_FRIENDA & 433 0%] 800
select requestD_REQ_ID as REQL_2_, request0_.wversion as versionz_, request_FRIENDA & 262 0%] 500
select accountO_IDr a3 IDO_, accoUntO_version a5 versionO_, accolnts_MNAME as NAMED_, . 133 0% 0 500
select accountD_ID as D0, accountD_version as versionD_, accountD MNAME as NAMED . 45 0% 0 100
= Other 22,305 2%

org.apache tomcat docp.dbcp. DelegatingStatement. closer) 9977 1% 1 9,400
org.apache tomcat. dbcp.dbcp PoolingDatasource$PoolGuardConnectionWrapper.clos 8911 1% o] 2,200
org.apache tomcat. dbep . dbcp DelegatingStatement . executeBatch () 232 0% 11 200
jabe:hsgldb:hegl: fAocahost 74 0% 15 24
org.apache tomcat. dbep.dbep PoolingDatasources$PoolGuardConnectionWrapper. corn M1 0% 1 200
CALL USER(D 137 0% 0] 200
org.hsgldb.jdbe. jdbeConnection.createStatement{int, int) 93 0% 4] 200
cal next value for PHOTOSED FTo0% o] 200
org.hsgidb.jdbc. jdbeStatement.close() 3l 0% o] 200

Figure 39. Profiler SQL Statistics

In the first tree there are the “SELECT” queries that the profiler recorded and the “Other”
tree contains mainly database actions performed automatically by Hibernate-Spring. As it
is show execution times are very quick and consist only a small part of the overall
execution time.

97 | Page

Moving on the next screen (40) there is info from the profiler on the requests for jsp-

servlet files. Again the execution times seem quick enough.

Call Time (ms) Avg. Time (ms) Invocation count
Jshowface/uploadimage.htm 74106 8% 370 200
Fshowface fviewFriends. him 35486 4 % 72 500
Jshowfacehelo.htm 25800 2% 32 200
Jfshowface/makeFriends.hitm 7147 1% 14 500
fshowfacefviewMyImages.htm 4343 0% g 500
fshowface foginhtm 2283 0% 11 200
fshowfacefogCut.htm 780w 0 100
Figure 40. Profiler JSP-Servlet Statistics
Now let’s check the memory related graphs produced by the profiler tool (41).
Heap Memory Non-Heap Memory Classes
Alocated: 486 MB Used: 23MB Limit 486 MB Alocated: 32MB Used: 32MB Limit: 96 MB Currently loaded: 4.966 Total unloaded: O
550 MB - 35 MB 5,500
440 MB 4 28 MB 4,400 /_,———[
330 MB 4 21 MB 3,300 /
220 MB 1 J 14 MB 2,200
110 MB A Nﬂ_/_,—:—u 7 MB 1.100
L1 T T T oTTT | LT o T L1 [rrr T Tt T T T T L e e) | S S Ta
1:00 2:00 3:00 1:00 2:00 3:00 1:00 2:00 3:00

Heap Memory

Alocated: 486 MB Used: 28 MB Limit: 486 MB

Non-Heap Memory

Mocated: 32MB Used: 32MB Limit: 96 MB

Classes

Currently loaded: 4.966

Total unloaded: O

550 MB 35 MB 5,500 4
& Allocated memory.
@ Allocated mermary L " |Loaded classes
440 MB 485 MB 28 MB [4,400 4 +4.966
Used memary
132 MB
330 MB 21 MB 3,300 4
220 MB ‘ 14 MB 2,200 4
it M il " |
110 MB -] I ' / w 7 v 1,100
L i T TETE o I 2 e e L W S T T T T e i A i) iR B T O
4:00 5:00 6:00 4:00 5:00 6:00 4:.00 5:00 6:00
Figure 41. JVM Graphs

98| Page

In the figure above (41) there are 3 graphs in 2 different time periods. First line has the
three graphs from O to 3.5 minutes of the profiling period and the second line contains the
same graphs from 3.5 minutes to the end of the profiling period. In order to check better
the 2 memory related graphs (heap, non heap) some further info on the JVM will be
provided. The JVM memory consists of the following segments:

e Heap memory, which is the storage for Java objects

e Non-Heap memory which is used by Java to store loaded classes and other meta-
data

e JVM code itself, JVM internal structures etc.

Now taking into account the above heap memory graph, it shows the runtime usage of the
heap memory during the application’s execution. As it is obvious in the beginning the
memory usage is low but it augments as time passes and the jmeter test increases the test
threads it spawns to make requests. This makes the application to require more memory
and so it does use. Then in the second line graph for heap memory when the memory size
reaches around 220 MB the line drops down and increases again all the time creating this
pattern that is shown. This happens because of the —Xmn 256m parameter that was added
for JVM tunning in CATALINA_OPTS environmental variable. This attribute as it was
explained, when the heap size reaches the specified value, it calls the garbage collector to
clean up memory releasing resources from the Eden Age generation (newly created
objects). So in sum the usage of heap memory of Show Face application is normal and no
memory leak or unexplained behaviour is to be observed in the graph. Finally something
very important to note is that value of —Xmn parameter has to be chosen very carefully
and after testing and profiling of the application. A very small value in relation with an
application’s memory needs can lead to excessive calls to the garbage collector and
excessive usage of the garbage collector consumes resources and can degrade the
application’s performance. In this case that the application was profiled under a stress
situation there were 74 garbage collector calls that took 1 second of the total processing
time (if it was not a stress period profiling, garbage collector calls should be considerably
less).

Finally the other 2 graphs, Non-Heap Memory and Classes are identical and there is a
reason for this. As it has been explained previously non heap memory is used to store
mainly loaded classes and the Classes graph shows the number of loaded classes in the
memory. So they depict approximately the same thing but using other metrics. As it can
be seen the vast majority of classes are loaded from the start up of tomcat so already in
the beginning 3300 classes are loaded. As the application starts serving requests some
additional classes are loaded in the non heap memory that are required and from that
point on the line remains stable since whatever was needed has been loaded, the multiple

99 | Page

requests are just asking the same things for multiple users so no new class is needed to be
loaded in the non heap memory.

Finally after checking the application’s behavior and resources it uses through this
profiling tool, everything seems normal concerning CPU and memory usage and
execution times seem good and in accordance with the response times of the jmeter tests
in the previous sections of this chapter. The application’s performance and scalability has
been measured and its design and architecture benefits show their real meaning in this
area.

100 | Page

10.Application Configuration and Setup Instructions

The application requires some configuration and certain steps for someone to set it up, in
this chapter this info will be presented. To begin, java version that is required for the
application but also for the web server is 1.5 or bigger. To check this in Windows
command line type java —version and the current system’s info concerning java will
appear. For example:

et Chouild 1.6.0_10-h33)
‘build 11.0-h15, mixed mode, sharingd

Figure 42. Java Version Check

Now the files that will be needed to setup the application are:

e An Apache Tomcat version 6 binary distribution preferably in zip format, for
example apache-tomcat-6.0.18.zip.

e The folder that will be provided which contains the database files of the
application already set up with some initial data.

e The WAR (Web ARchive) file of the application. This contains the Show Face
application ready to be deployed to the web server (showface.war).

Starting with the web server installation the only thing needed to be done is to unzip the
distribution preferably to a path without any spaces, for example C:\apache-tomcat-
6.0.18, in the rest of the instructions this path will be considered as the root path of
Apache Tomcat. Now since the web server is installed what has to be done is to configure
the datasource as it was stated in a previous chapter. Go to C:\apache-tomcat-6.0.18\conf
folder. There open file “context.xml” and within the <Context>(HERE)</Context> tags
add the following:

<Resource name="jdbc/MyDB"
auth="Container"
type="javax.sgl.DataSource"
username="sa"

password=""

101 |Page

driverClassName="org.hsgldb. jdbcDriver"
maxActive="20"

maxIdle="10"
url="jdbc:hsgldb:hsqgl://localhost"

/>

This will provide via jndi the reference to the database connection. After this is done, a
last step to configure the web server is to add hsqldb.jar file in the lib folder of Tomcat,
C:\apache-tomcat-6.0.18\lib. This is required as in there is the database driver that was
previously defined in “context.xml” file. Now Tomcat is ready to be started and this can
be done in C:\apache-tomcat-6.0.18\bin folder by executing startup.bat. A successful
start up screen shot should be like this:

15 Y?E 2809 5:51:59 HH org.apache.catalina.core.fprLifecyclelistener init

INFO: The APR bazed Apache Tomcat Mative library vhich allows optimal performanc
e in production environments was not found on the java.library.path: C:»Program
FilessJavasjdkl .6 .B_18xbin; . ;C:SWINNT~Sun“Javasbin;C:~WIHNNT~spstem32 ; C:~WINNT ;C:
SHINNT~system32 s Ca~WINNT ; Ca~WINNT~Syztemi2~Whem;E:~ant~bin;C:*“Program Files>.Java
~Jdki.6.8_18~bhin:C:“Program Files“Microsoft SQL Server-88~Toolszs“Binn%;C:“Program
Files“Microzoft S5QL Server~?@0-DTS5“Binn~;C:“Program Files“Microzoft 5QL Server?
B~ Toolssbinn“;G:“Program Files“Microsoft S5QL Server:\?8-~Tools“Binn“USShell“Common
S IDES;C:“Program Files“Microsoft Uisuwal Studico B5\Common?“~IDE“Privatefssembhlies™
;Cisocdj_extended~j2eeshome s Cis0raHome?2%bin; C:sProgram Files~IDH Computer Solut
ionssUltraEdit—-32:C:5\Program Files“QuickTime~QTSystem~:C:“Sun“~AppServersbin
15 ¥PE 2889 5:51:59 HH org.apache.coyote . httpll.HttpliProtocol init

INFO: Initializing Coyote HITP-1.1 on http—8888
15 ¥Y?E 2889 5:51:59 HH org.apache.catalina.startup.Catalina load
INFO: Initialization processed in Y13 ms
15 R¥YPE 2889 5:52:88 HH org.apache.catalina.core.StandardService stapt
INFO: Starting service Catalina
15 Y?E 2809 5:52:88 HH org.apache.catalina.core.StandardEngine start
INFO: Starting Servlet Engine: Apache Tomcats6.8.18
15 Y?E 2809 5:52:81 HH org.apache.coyote.httpll .HttpliProtocol start
INFO: Starting Coyote HITP-1.1 on http—8A8A
15 Y?E 2809 5:52:81 HH org.apache.jk.common.ChannelSocket init
INFO: JK: ajpl3 listening on #A.8_0_.0:8009
15 ¥YPE 2889 5:52:01 HH org.apache.jk.server.JkMain start
INFO: Jk r»unning ID=8 time=8.47 config=null
15 ¥PE 2889 5:52:01 HHY org.apache.catalina.startup.Catalina start
Server startup in 1194 ms

Figure 43. Tomcat Successful Start Up

Now that Tomcat is up and running the database server should also be started. Go to the
provided folder in the cd named ‘“showface”. This folder contains the source code of
Show Face as an Eclipse project ready to be imported and the database folder. Copy the

102 | Page

whole “showface” directory to a local disk and go to folder “...\showface\hsqldb”. Inside
this folder execute ‘“‘starthsqlserver.bat” and the database server should be up and

running. A successful start up screen shot should be like this:

Figure 44. HSQLDB Server Successful Startup

At this point both web and database servers are up and running so now it is time to
deploy the war file (showface.war). The deployment is very simple, the only thing
required to do is to copy the provided showface.war file in this folder of Tomcat:
C:\apache-tomcat-6.0.18\webapps. When this is done check the Tomcat console that will
find the new application and deploy it. If everything works fine something like this
should be shown at the end of the console logs:

15 Y9E 2089 5:52:81 HH org.apache.catalina.startup.Catalina start

INFO: Server startup in 1194 ms

15 Y?E 20887 5:57:31 HH org.apache.catalina.startup.HostConfig deployWAR

INFO: Deploying web application archive showface.uwar

%51ﬁT?E 2809 5:57:32 HH org.apache.catalina.loader.WlebappClassLloader validatedJar
ile

INFO: validatedJarFile{C:%apache—tomcat—6.0.18webappssshouf ace“WEB-IHNF~1ibh“servl
et—api.jar? — jar not loaded. See Servlet Spec 2.3, section 2.7.2. Offending cla
s5: JavaxsservletsServlet.class

log4j:=WARN Mo appenders could he found for logger Corg.springframework.weh.conte
wt.ContextLoader?.

log4j:=WARM Pleasze initialize the log4j zyztem properly.

Figure 45. Show Face Successful Deployment in Tomcat

If everything has been done with no problems the application can now be accessed from a
web browser by writing: http://localhost:8080/showface/ (or any other port that Tomcat
might have been configured to run, 8080 is the default one).

103 | Page

11.Conclusion and Future Work

Throughout the whole thesis Show Face demonstration application has been presented in
great detail regarding technological and architectural choices trying to give an insight in
solving the problem that refers to complexity and scalability of large scale applications.
As it has been shown great care has been taken in every step of the application’s design
concerning various issues. A clean and well defined architecture has been defined
following the MVC pattern. This resulted in having several discrete packages or
abstraction layers that each of them had its assigned responsibilities. Moreover the idea of
separation of concerns and use of centralized control for certain issues like transaction
management has been followed wherever possible, this way the maintainability and
expandability of the application are improved. Dependency points on configuration issues
like database setup have been decreased as much as possible. All the above combined
with various new and performing technologies that have been integrated and used show
how to build an application that can meet today’s needs and can adapt in quickly
changing environments and needs.

Now apart from the work that has already been presented there is more that can be done
regarding future work, which could improve the application even more and introduce
some new concepts. One such idea is the use of a caching mechanism that could improve
even more performance by reducing database Input / Output actions. The setup and
modification of the application required to operate in a clustered architecture would also
be a modification of great interest. Apart from performance related improvements new
features could be added in order to integrate more technologies like the use of Ajax
model to implement a simple web chat mechanism in the application. Of course these are
some suggestions and there are many things that can be done in the above context.

104 | Page

12. References

1. http://java.sun.com/blueprints/patterns/MVC-detailed.html

2. D. Kayal . Pro Java EE Spring Patterns. Apress. 2008.

3. C. Walls, R. Breidenbach. Spring in Action. Manning. 2005.

4. C. Begin, B. Goodin and L. Meadors. iBATIS in Action. Manning. 2007.
5. http://java.sun.com/developer/technical Articles/J2EE/despat/

6. Rod Johnson et al. The Spring Framework — Reference Documentation. 2008.
7. http://displaytag.sourceforge.net/1.2/

8. J. Machacek et al. Pro Spring 2.5. Apress. 2008.

9. http://highscalability.com/

10. http://tiles.apache.org/2.0/framework/tutorial/pattern.html

11. http://jakarta.apache.org/jmeter/index.html

12. http://www.yourkit.com/

106 | Page

