

ΑΠΟΜΑΚΡΥΝΣΗ ΡΥΠΩΝ ΑΠΟ ΥΓΡΑ ΒΙΟΜΗΧΑΝΙΚΑ ΑΠΟΒΛΗΤΑ

ΑΘΑΝΑΣΙΑΣ ΜΠΟΥΝΤΡΗ

ΕΠΙΒΛΕΠΟΝΤΕΣ ΚΑΘΗΓΗΤΕΣ : Φ. ΜΠΑΤΖΙ<mark>ΑΣ, Δ. ΣΙΔΗΡΑΣ</mark>

Alternating Adsorption Desorption Towers

ΙΑΝΟΥΑΡΙΟΣ 2009

alves controlling feed into fowers

5. Low BTU dehydrated Feed

ΠΕΡΙΕΧΟΜΕΝΑ

ΠΕΡΙΕΧΟΜΕΝΑ	1
ΠΡΟΛΟΓΟΣ	
1. ΕΙΣΑΓΩΓΗ	
1.1 Προσρόφηση – Προσροφητικά υλικά	
1.2 Διεργασίες – εφαρμογές προσρόφησης	
1.3 Προσροφητικά υλικά βιομηχανικής χρήσης – ενεργός άνθρακας	
1.4 Ισορροπία – μοντέλα ισόθερμων προσρόφησης	9
1.4.1 Ισόθερμη Freundlich	9
1.4.2 Ισόθερμη Langmuir	9
1.4.3 Ισόθερμη Sips (Langmuir-Freundlich)	10
1.4.4 Ισόθερμες Fritz-Schluender και Redlich-Peterson	10
1.4.5 Ισόθερμη Radke-Prausnitz	10
1.4.6 Ισόθερμη Tóth	11
1.4.7 Ισόθερμη UNILAN	11
1.5 Είδη ισόθερμων	11
1.6 Αρχές της προσρόφησης – Διαγράμματα συγκέντρωσης σε σταθεροποιημ	ένες κλίνες 14
1.7 Καμπύλες διάσπασης (breakthrough curves)	15
1.8 Προσδιορισμός της βέλτιστης συγκέντρωσης χρωστικής σε επεξεργασμέν	α απόβλητα
βαφείου	16
2. ΔΗΜΙΟΥΡΓΙΑ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ ΠΡΟΣΡΟΦΗΣΗΣ	
3. ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ	
3.1. Ισόθερμες	
3.2. Κινητική	
4. ΕΠΕΞΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ	
4.1. Ισόθερμες	
4.2. Κινητική	
5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΖΗΤΗΣΗ	24
5.1 Συνθήκες προκατεργασίας προσροφητικών υλικών	
5.2 Παρουσίαση αποτελεσμάτων ισόθερμων	24
5.2.1. Αναλυτικοί Πίνακες Ισόθερμων	
5.2.2. Συγκεντρωτικοί Πίνακες Ισοθέρμων	

5.2.3 Συζήτηση αποτελεσμάτων ισόθερμων	69
5.4. Παρουσίαση Αποτελεσμάτων Κινητικής	70
5.3.1. Αναλυτικοί Πίνακες Κινητικής	71
5.3.2. Συγκεντρωτικοί Πίνακες Κινητικής	147
5.3.3 Συζήτηση αποτελεσμάτων κινητικής	149
6. ΣΥΜΠΕΡΑΣΜΑΤΑ	150
7. ΒΙΒΛΙΟΓΡΑΦΙΑ	152
8. ПАРАРТНМА	159
8.1 Προσδιορισμός συγκέντρωσης διαλύματος με τη βοήθεια φασματοφωτόμετρου	159
8.2. Καμπύλη αναφοράς χρωστικής ουσίας Μπλε του Μεθυλενίου	162
8.3 Βάση Δεδομένων Προσρόφησης	163

ΠΡΟΛΟΓΟΣ

Η παρούσα διπλωματική εργασία αποτελεί συμβολή στην έρευνα και ανάπτυξη βιομηχανικών προϊόντων που προέρχονται από την επεξεργασία στερεών απορριμμάτων. Όταν τα προϊόντα αυτά χρησιμοποιούνται σε διεργασίες απομάκρυνσης/εξουδετέρωσης ρύπων, επιτυγχάνεται μία διπλή περιβαλλοντική παρέμβαση και δημιουργούνται εξωτερικές οικονομίες (external economies) που αποτελούν τη βάση ανάπτυξης μιας ενδιαφέρουσας επιστημονικής/τεχνολογικής περιοχής που έχει γίνει γνωστή με το όνομα Βιομηχανική Οικολογία (Industrial Ecology).

Πέραν των Καθηγητών που επέβλεψαν/καθοδήγησαν την ερευνητική προσπάθειά μου και στους οποίους οφείλω τη μύησή μου στις μεθόδους της επιστημονικής διερεύνησης των ιδιοτήτων καινοτομιών υλικών, ευχαριστώ το προσωπικό του Εργαστηρίου Προσομοίωσης Βιομηχανικών Διεργασιών που αφιέρωσε σημαντικό χρόνο στην εκπαίδευσή μου ώστε να είμαι σε θέση να χειρίζομαι τον κατάλληλο εξοπλισμό για την εκτέλεση των απαιτούμενων πειραματικών μετρήσεων. Επίσης, ευχαριστώ τον Αναλυτή Συστημάτων Δρα Α. Μπατζιά για την πολύτιμη συμβολή του στην πολυκριτηριακή επιλογή (κάτω από συνθήκες αβεβαιότητας) κινητικού υποδείγματος προσρόφησης.

Η αναγνώριση του έργου στο οποίο συμμετείχα, όπως φαίνεται από τις παρακάτω δύο δημοσιεύσεις σε Πρακτικά Διεθνών Συνεδρίων παγκοσμίου κύρους, μου δίνει την αναγκαία δύναμη να συνεχίσω και να ολοκληρώσω την προσπάθεια σε ανώτερο επίπεδο, με την υποστήριξη των γονιών μου που ήταν συνεχώς αλλά διακριτικά κοντά μου σε μία μακρά πορεία όπου επιστημονικές/επαγγελματικές/ προσωπικές εξελίξεις αλληλοεμπλέκονται.

- A.N. Bountri, F.A. Batzias (2008). Optimal choice of kinetic model for adsorption on modified lignocellulosics coming from agricultural/forestry residues. *Proc. 18th International Congress of Chemical and Process Engineering,* CHISA 2008, Prague, Czech Republic.
- D.K. Sidiras, D.F. Batzias, A.N. Bountri (2009). Acid hydrolysed beech sawdust as an activated carbon low-cost substitute. *Proc. 17th European Biomass Conference*, Hamburg, Germany, in press.

1. ΕΙΣΑΓΩΓΗ

1.1 Προσρόφηση – Προσροφητικά υλικά

Προσρόφηση είναι το φαινόμενο κατά το οποίο επιφάνειες στερεών ή υγρών σωμάτων συγκρατούν ξένες ουσίες από αέρια ή υγρά (μίγματα). Η επιφάνεια που συγκρατεί την ουσία λέγεται προσροφητικό μέσο (absorbent), ενώ η συγκρατούμενη ουσία λέγεται προσροφούμενη ουσία (absorbate). Η διαφορά του φαινομένου της προσρόφησης από αυτό της απορρόφησης συνίσταται στο γεγονός ότι, κατά την προσρόφηση η προσροφούμενη ουσία συσσωρεύεται στην επιφάνεια του προσροφητικού μέσου, ενώ αντίθετα κατά την απορρόφηση μόρια της ξένης ουσίας διεισδύουν ανάμεσα στα μόρια του απορροφητικού μέσου. Στην πραγματικότητα το φαινόμενο της προσρόφησης δε συμβαίνει αυτούσιο, αλλά συνοδεύεται πάντα από αυτό της απορρόφησης σε μικρά επίπεδα.

Το φαινόμενο της προσρόφησης παρατηρήθηκε αρχικά στις επιφάνειες στερεών ουσιών και αργότερα σε υγρές επιφάνειες. Στις υγρές επιφάνειες ωστόσο οι ξένες ουσίες συγκρατούνται με μικρότερη δύναμη σε σχέση με τις στερεές. Τα στερεά σώματα είναι πηγές ελκτικών δυνάμεων, γιατί τα άτομά τους συνορεύουν μονόπλευρα με τα ομοειδή άτομα του πλέγματος τους. Κατά αυτό τον τρόπο δημιουργούνται ελεύθερες μονάδες συγγένειας στην επιφάνεια των στερεών, η οποία μπορεί να συγκρατεί ξένα μόρια ή άτομα πολύ ισχυρά. Η προσρόφηση στην επιφάνεια στερεών σωμάτων χωρίζεται σε δύο κατηγορίες, τη φυσική ρόφηση και τη χημική ρόφηση (χημειορόφηση), η πρώτη εκ των οποίων αποδίδεται σε ασθενείς δυνάμεις van der Waals, ενώ η δεύτερη σε δυνάμεις χημικού δεσμού. (Στην ελληνική γλώσσα ο όρος ρόφηση χρησιμοποιείται για τη γενική έννοια του όλου φαινομένου προσρόφησης – εκρόφησης, καθώς και για την προσρόφηση μόνο).

Οι εργασίες προσρόφησης βασίζονται στις ιδιότητες ορισμένων πορωδών στερεών σωμάτων, τα οποία προσροφούν φυσικά αέρια ή υγρά από αραιά διαλύματα. Τα περισσότερα προσροφητικά είναι υλικά με μεγάλο πορώδες, στα οποία η προσρόφηση λαμβάνει χώρα κυρίως στα τοιχώματα των πόρων ή σε συγκεκριμένες θέσεις μέσα στο σωματίδιο. Επειδή γενικά οι πόροι είναι πολύ μικροί, η εσωτερική ειδική επιφάνεια (επιφάνεια ανά μονάδα μάζας) είναι τάξεις μεγέθους μεγαλύτερη από την εξωτερική ειδική επιφάνεια και συχνά φτάνει τα 500-1000 m²/g. Ο διαχωρισμός πραγματοποιείται επειδή οι διαφορές στο μοριακό βάρος, στο σχήμα ή την πολυπλοκότητα προκαλούν την ισχυρότερη συγκράτηση ορισμένων

μορίων στην επιφάνεια, σε σύγκριση με άλλα μόρια ή επειδή οι πόροι είναι πολύ μικροί και δεν επιτρέπουν την είσοδο των μεγαλύτερων μορίων. Σε πολλές περιπτώσεις η προσροφούμενη ουσία συγκρατείται πολύ ισχυρά, με αποτέλεσμα να μην είναι δυνατή η πλήρης απομάκρυνση της από το ρευστό, με πολύ μικρή προσρόφηση των άλλων συστατικών. Στη συνέχεια θα πρέπει να αναγεννηθεί το προσροφητικό, έτσι ώστε να ληφθεί η προσροφούμενη ουσία σε συμπυκνωμένη ή σχεδόν καθαρή μορφή. Μερικά από τα στερεά του ίδιου τύπου χρησιμοποιούνται για την προσρόφηση ατμών και υγρών, μολονότι για τα υγρά χρησιμοποιούνται συχνά προσροφητικά με μεγαλύτερους πόρους.

1.2 Διεργασίες - εφαρμογές προσρόφησης

Κάποιες από τις εφαρμογές της προσρόφησης ατμών είναι η ανάκτηση των οργανικών διαλυτών που χρησιμοποιούνται στα χρώματα, στις μελάνες εκτύπωσης και στα διαλύματα για τη μορφοποίηση φιλμ ή την επένδυση ινών. Ο αέρας που περιέχει διαλύτη θα πρέπει να σταλεί πρώτα σε ένα συμπυκνωτή που ψύχεται με νερό ή άλλο ψυκτικό μέσο για τη συλλογή μέρους του διαλύτη. Ωστόσο δεν είναι γενικά πρακτική η ψύξη του αερίου κάτω από τη θερμοκρασία του περιβάλλοντος για να μειωθούν οι απώλειες σε διαλύτη. Ο αέρας που περιέχει μια μικρή ποσότητα διαλύτη περνά μέσα από μια κλίνη σωματιδίων προσρόφησης από άνθρακα, τα οποία έχουν τη δυνατότητα να μειώθουν τη συγκέντρωση του διαλύτη σε λιγότερο από 1 ppm (Σχήμα 1.1). Η προσρόφηση σε άνθρακα χρησιμοποιείται επίσης για την απομάκρυνση ρυπαντικών, όπως τα H_2S ή CS_2 και άλλων ενώσεων με έντονη οσμή, από τον αέρα που κυκλοφορεί σε συστήματα εξαερισμού. Επιπλέον ο άνθρακας χρησιμοποιείται στα περισσότερα καινούρια αυτοκίνητα για να εμποδίσει την έξοδο των ατμών της βενζίνης στον αέρα. Επίσης η αέρια χρωματογραφία αποτελεί μια σημαντική εφαρμογή της προσρόφησης ατιμών.

Η ξήρανση των αερίων πραγματοποιείται συχνά με την προσρόφηση του νερού σε silica gel, σε αλουμίνα ή σε άλλα ανόργανα πορώδη στερεά. Οι ζεόλιθοι ή τα μοριακά κόσκινα (φυσικά ή συνθετικά αργιλοπυριτικά άλατα με κανονική δομή πόρων) είναι ιδιαίτερα αποτελεσματικοί στην επεξεργασία αερίων χαμηλού σημείου δρόσου (-75°C). Η προσρόφηση σε μοριακά κόσκινα μπορεί επίσης να χρησιμοποιηθεί για το διαχωρισμό οξυγόνου και αζώτου, για τη συλλογή καθαρού υδρογόνου από το αέριο σύνθεσης και για το διαχωρισμό καθαρών παραφινών από διακλαδισμένες παραφίνες και αρωματικά.

Η προσρόφηση από την υγρή φάση βρίσκει εφαρμογή στην απομάκρυνση οργανικών συστατικών από πόσιμο νερό ή υδατικά απόβλητα, χρωματισμένων προσμίξεων από διαλύματα σακχάρων και φυτικά έλαια καθώς και νερού από οργανικά υγρά. Η προσρόφηση μπορεί επίσης να χρησιμοποιηθεί για την ανάκτηση προϊόντων αντίδρασης τα οποία δε διαχωρίζονται με απόσταξη ή κρυστάλλωση, καθώς επίσης και στην υγρή χρωματογραφία.

Η χρήση ενεργοποιημένου άνθρακα για την απομάκρυνση ρυπαντικών ουσιών από υδατικά απόβλητα αποτελεί χαρακτηριστικό και πολύ σημαντικό παράδειγμα

προσρόφησης. Τα προσροφητικά από άνθρακα χρησιμοποιούνται επίσης για την απομάκρυνση ιχνών οργανικών ουσιών από παροχές νερού ύδρευσης, με αποτέλεσμα τη βελτίωση της γεύσης και τη μείωση της πιθανότητας σχηματισμού τοξικών ενώσεων κατά τη χλωρίωση. Οι κλίνες του άνθρακα που χρησιμοποιούνται στις εφαρμογές αυτές έχουν διάμετρο πολλών ft και ύψος μέχρι 10 m (30 ft) και μπορούν να λειτουργούν πολλές κλίνες παράλληλα. Οι ψηλές κλίνες εξασφαλίζουν την επαρκή επεξεργασία, επειδή ο ρυθμός προσρόφησης από τα υγρά είναι πολύ μικρότερος απ' ότι από τα αέρια. Επιπλέον, ο εξαντλημένος (χρησιμοποιημένος) άνθρακας πρέπει να απομακρυνθεί από την κλίνη για να αναγεννηθεί, επομένως ανάμεσα στις αναγεννήσεις παρεμβάλλονται σχετικά μεγάλα χρονικά διαστήματα.

Μια εναλλακτική μέθοδος επεξεργασίας υδατικών αποβλήτων είναι η προσθήκη άνθρακα σε σκόνη σε μια δεξαμενή διαλύματος χρησιμοποιώντας μηχανικούς αναδευτήρες ή σκεδαστήρες αέρα για να διατηρηθούν σε αιώρηση τα σωματίδια. Όταν τα σωματίδια είναι λεπτόκοκκα, η προσρόφηση είναι πολύ πιο γρήγορη απ' ότι με κοκκώδη άνθρακα, όμως στην περίπτωση αυτή χρειάζονται μεγάλα μηχανήματα για την απομάκρυνση του εξαντλημένου άνθρακα με κατακάθιση ή διήθηση. Η επεξεργασία με άνθρακα σε σκόνη μπορεί να γίνει με ασυνεχή ή συνεχή τρόπο, με ελεγχόμενη προσθήκη άνθρακα στο ρεύμα των αποβλήτων και συνεχή απομάκρυνση του εξαντλημένου άνθρακα.

1.3 Προσροφητικά υλικά βιομηχανικής χρήσης – ενεργός άνθρακας

Κάποιες από τις ουσίες που χρησιμοποιούνται ευρέως στη βιομηχανία είναι ο ενεργός άνθρακας, η αλουμίνα, το silica gel και τα μοριακά κόσκινα. Στον Πίνακα 1.1 παρουσιάζονται οι φυσικές ιδιότητες των ουσιών αυτών. Μετά την διαδικασία της προσρόφησης το προσροφητικό μέσο είναι δυνατό να απορριφθεί ύστερα από μια χρήση, πρακτικά όμως τα οικονομικά της διαδικασίας καθιστούν απαραίτητη την αναγέννηση του προσροφητικού με απώτερο σκοπό την επαναχρησιμοποίησή του. Ο ενεργός άνθρακας, που χρησιμοποιείται κατά κανόνα (Σχήμα 1.2), μπορεί να αναγεννηθεί είτε χημικά είτε θερμικά.

(a) Στη χημική αναγέννηση, ο ενεργός άνθρακας έρχεται σε επαφή με χημικά που αποσυνθέτουν ή οξειδώνουν τα ξένα σώματα που προσροφήθηκαν. Η χημική αναγέννηση είναι μόνο μερικώς δραστική στο να ξαναδίνει την ικανότητα της προσρόφησης στον ενεργό άνθρακα και επομένως χρησιμοποιείται ελάχιστα.

(β) Η θερμική διαδικασία αναγέννησης του ενεργού άνθρακα έχει τρία κύρια βήματα:

- ο Την εξάτμιση του νερού κοντά στους 100 °C
- ο Το ψήσιμο του ενεργού άνθρακα σε θερμοκρασίες έως $800 \, {}^{0}\text{C}$
- ο Την ενεργοποίησή του μεταξύ $800 \, {}^{0}$ C και $950 \, {}^{0}$ C.

Οι απώλειες του άνθρακα, κατά την διάρκεια της θερμικής αναγέννησης κυμαίνονται συνήθως μεταξύ 5-10% της ποσότητάς του. Επομένως με τη μέθοδο αυτή επιτυγχάνεται μείωση των εξόδων της διαδικασίας προσρόφησης.

Πίνακας 1.1. Φυσικές ιδιότητες τυπικών προσροφητικών υλικών.

			1		1
Τύπος	mesh	$ ho_b$	d	3	α
Ενεργός Άνθρακας	4/6"	480	3,9	0,34	1000
	6/8		2,8	0,34	1500
	8/10		1,9	0,34	2150
Silica gel	3/8"	720	3,9	0,35	800
	6/16		1,8	0,35	2400
Αλουμίνα	4/8"	830	3,9	0,25	1200
	8/14		1,8	0,25	1600
	14/28		0,8	0,30	3200
Μοριακά Κόσκινα	1/16"	720	1,8	0,34	2150
	1/8		3,1	0,34	1300
	8/12		2,0	0,37	1900

όπου: $ρ_b = φ$ αινόμενη πυκνότητα, kg/m³

d = φ αιν όμενη δι άμετρος, mm

ε = πορώδες κλίνης

Ειδική θερμότητα Cp =
$$0,22 - 0,25$$
 kcal/kg^oC

Θερμοκρασία αναγέννησης : 100 - 500 °C

Σχήμα 1.2. Τυπικό διάγραμμα διεργασιών για την επεξεργασία σκραπ (καταλοίπων) ζάχαρης.

1.4 Ισορροπία – μοντέλα ισόθερμων προσρόφησης

Η ισόθερμη προσρόφησης αντιπροσωπεύει τη σχέση ισορροπίας ανάμεσα στη συγκέντρωση της προσροφούμενης ουσίας στη ρευστή φάση και στη συγκέντρωση στα σωματίδια του προσροφητικού υλικού σε δεδομένη θερμοκρασία. Στην περίπτωση των αερίων η συγκέντρωση εκφράζεται συνήθως ως ποσοστό moles ή ως μερική πίεση, ενώ στα υγρά η συγκέντρωση μετριέται συχνά σε μονάδες μάζας ανά όγκο, όπως mg/L (ppm) ή μg/L (ppb). Η συγκέντρωση της προσροφούμενης ουσίας στο στερεό εκφράζεται συνήθως ως μάζα που προσροφάται ανά μονάδα μάζας του προσροφητικού. Επειδή δεν έχει βρεθεί μέχρι τώρα μια εξίσωση για την περιγραφή όλων των μηχανισμών και των σχημάτων της ισόθερμης προσρόφησης, έχουν αναπτυχθεί διάφορα μοντέλα που περιγράφουν το φαινόμενο.

1.4.1 Ισόθερμη Freundlich

Η ισόθερμη Freundlich δίνεται από την εξίσωση: $\mathbf{q} = \mathbf{K}_{\mathbf{F}} \mathbf{C}_{\mathbf{e}}^{1/\mathbf{n}}$ (1) όπου q είναι η ποσότητα που προσροφάται ανά μονάδα μάζας του προσροφητικού (mg/g), $\mathbf{C}_{\mathbf{e}}$ η συγκέντρωση της προσροφούμενης ουσίας στην ισορροπία (mg/L) και $\mathbf{K}_{\mathbf{F}}$ και n οι σταθερές Freundlich που σχετίζονται με την χωρητικότητα και την ένταση της προσρόφησης αντίστοιχα. Μετασχηματίζοντας τη σχέση (1) στη λογαριθμική της μορφή προκύπτει η σχέση: **logq = log \mathbf{K}_{\mathbf{F}} + 1/n log\mathbf{C}_{\mathbf{e}} (2)**. Οι σταθερές Freundlich $\mathbf{K}_{\mathbf{F}}$ και n μπορούν να υπολογιστούν με γραμμική παλινδρόμηση βάσει πειραματικών δεδομένων προσρόφησης. Βασιζόμενοι σε πειραματικά δεδομένα για τη χρωστική Methylene Blue σε θερμοκρασία 23°C, σε όξινες και βασικές συνθήκες [46] έγιναν υπολογισμοί των τιμών των σταθερών με τη βοήθεια γραμμικής και μη γραμμικής παλινδρόμησης. Οι τιμές που προέκυψαν δε διέφεραν μεταξύ τους σημαντικά, ωστόσο υιοθετήθηκε η ανάλυση γραμμικής παλινδρόμησης λόγω της συμβατότητας της με διαθέσιμα πειραματικά δεδομένα πολυάριθμων ερευνητών. Η δυνατότητα εφαρμογής της εξίσωσης Freundlich σε πειραματικά δεδομένα αποδεικνύει ότι η επιφάνεια του προσροφητικού είναι πιθανότατα ετερογενής.

1.4.2 Ισόθερμη Langmuir

Η εξίσωση της ισόθερμης Langmuir βασίζεται στο ακόλουθο 'ψευδομονοστρωματικό' μοντέλο προσρόφησης: $\mathbf{q} = (\mathbf{K}_L \mathbf{q}_m \mathbf{C}_e)/(1 + \mathbf{K}_L \mathbf{C}_e)$ (3) ή μετασχηματισμένο σε γραμμική μορφή: $1/\mathbf{q} = 1/\mathbf{q}_m + (1/\mathbf{K}_L \mathbf{q}_m)(1/\mathbf{C}_e)$ (4) όπου \mathbf{K}_L είναι η σταθερά Langmuir που σχετίζεται με την ενέργεια της προσρόφησης (L/mg) και \mathbf{q}_m είναι το ποσό της χρωστικής που έχει προσροφηθεί σε συνθήκες κορεσμού (mg/g). Στην περίπτωση που τα πειραματικά δεδομένα ισόθερμης προσεγγίζουν την εξίσωση Langmuir, οι παράμετροι \mathbf{K}_L και \mathbf{q}_m προκύπτουν αν παρασταθεί γραφικά ο όρος 1/q συναρτήσει του όρου 1/ \mathbf{C}_e .

1.4.3 Ισόθερμη Sips (Langmuir-Freundlich)

Η ισόθερμη Sips δίνεται από την εξίσωση: $\mathbf{q} = {\mathbf{q}_m(\mathbf{K}_L \mathbf{C}_e)^{1/n}}/{\{\mathbf{1}+(\mathbf{K}_L \mathbf{C}_e)^{1/n}\}}$ (5) όπου K_L είναι η σταθερά Langmuir (L/mg), q_m είναι η ποσότητα της χρωστικής που έχει προσροφηθεί σε συνθήκες κορεσμού (mg/g) και η είναι η σταθερά Freundlich. Όταν τα πειραματικά δεδομένα προσεγγίζουν την ισόθερμη Sips, οι παράμετροι K_L, q_m και η λαμβάνονται με μη γραμμική ανάλυση παλινδρόμησης.

1.4.4 Ισόθερμες Fritz-Schluender και Redlich-Peterson

Η εξίσωση της ισόθερμης Fritz-Schluender βασίζεται στο επόμενο μοντέλο προσρόφησης: $\mathbf{q} = (\mathbf{K}_L \mathbf{q}_m \mathbf{C}_e)/(\mathbf{1} + \mathbf{K}_L \mathbf{C}_e^{\mathbf{1/n}})$ (6) όπου \mathbf{K}_L είναι η σταθερά Langmuir (L/mg), \mathbf{q}_m η ποσότητα της χρωστικής που έχει προσροφηθεί σε συνθήκες κορεσμού (mg/g) και n είναι η σταθερά Freundlich. Η εξίσωση της ισόθερμης Redlich-Peterson: $\mathbf{q} = \mathbf{K}_R \mathbf{C}_e/(\mathbf{1} + \boldsymbol{\alpha}_R \mathbf{C}_e^{\beta})$ (7) μπορεί να μετασχηματιστεί στην ισόθερμη Fritz-Schluender με αντικατάσταση των όρων $\mathbf{K}_R = \mathbf{K}_L \mathbf{q}_m$, $\boldsymbol{\alpha}_R = \mathbf{K}_L$ και $\beta = \mathbf{1/n}$. Αν τα πειραματικά δεδομένα ισόθερμης πλησιάζουν την εξίσωση Fritz-Schluender οι παράμετροι \mathbf{K}_L , \mathbf{q}_m και n μπορούν να προκύψουν με μη γραμμική ανάλυση παλινδρόμησης.

1.4.5 Ισόθερμη Radke-Prausnitz

Η ισόθερμη Radke-Prausnitz περιγράφεται από τη σχέση: $\mathbf{q} = (\mathbf{K}_L \mathbf{q}_m \mathbf{C}_e)/(1 + \mathbf{K}_L \mathbf{C}_e)^{1/n}$ (8) όπου \mathbf{K}_L είναι η σταθερά Langmuir (L/mg), \mathbf{q}_m είναι η ποσότητα της χρωστικής που έχει προσροφηθεί σε συνθήκες κορεσμού (mg/g) και η είναι η σταθερά Freundlich. Στην περίπτωση που τα πειραματικά δεδομένα προσεγγίζουν την εξίσωση Radke-Prausnitz, ανάλυση μη γραμμικής παλινδρόμησης δίνει τις τιμές των παραμέτρων K_L , q_m και n.

1.4.6 Ισόθερμη Tóth

Η εξίσωση της ισόθερμης Tóth βασίζεται στο μοντέλο προσρόφησης: $\mathbf{q} = \mathbf{q}_m \mathbf{C}_e / (\mathbf{1}/\mathbf{K}_L + \mathbf{C}_e^{1/n})^n$ (9) όπου \mathbf{K}_L είναι η σταθερά Langmuir (L/mg), \mathbf{q}_m είναι η ποσότητα της χρωστικής που έχει προσροφηθεί σε συνθήκες κορεσμού (mg/g) και η είναι η σταθερά Freundlich. Όταν τα πειραματικά δεδομένα πλησιάζουν την εξίσωση Tóth, οι τιμές των παραμέτρων \mathbf{K}_L , \mathbf{q}_m και η εξάγονται με μη γραμμική παλινδρόμηση.

1.4.7 Ισόθερμη UNILAN

Η εξίσωση που δίνει την ισόθερμη UNILAN είναι η ακόλουθη: $\mathbf{q} = (\mathbf{q}_m/2\mathbf{s})\mathbf{ln}\{(\mathbf{1}+\mathbf{K}_L\mathbf{C}_e\mathbf{e}^s)/(\mathbf{1}+\mathbf{K}_L\mathbf{C}_e\mathbf{e}^s)\}$ (10) όπου \mathbf{K}_L είναι η σταθερά Langmuir (L/mg), \mathbf{q}_m είναι η ποσότητα της χρωστικής που έχει προσροφηθεί σε συνθήκες κορεσμού (mg/g) και s είναι μία σταθερά. Αν τα πειραματικά δεδομένα περιγράφονται από την ισόθερμη UNILAN, οι παράμετροι \mathbf{K}_L , \mathbf{q}_m και s λαμβάνονται με ανάλυση μη γραμμικής παλινδρόμησης.

1.5 Είδη ισόθερμων

Στο Σχήμα 1.3 παρουσιάζονται μερικές τυπικές ισόθερμες. Η γραμμική ισόθερμη ξεκινά από την αρχή των αξόνων και η ποσότητα που προσροφάται είναι ανάλογη της συγκέντρωσης του ρευστού. Οι ισόθερμες που είναι κυρτές προς τα επάνω είναι οι "προτιμώμενες", επειδή μπορεί να επιτευχθεί ένα σχετικά υψηλό φορτίο στερεού όταν η συγκέντρωση στο ρευστό είναι μικρή. Η ισόθερμη Langmuir κατατάσσεται στις προτιμώμενες όταν η σταθερά της προσρόφησης είναι μεγάλη και το γινόμενο της σταθεράς επί την αρχική συγκέντρωση του ρευστού είναι πολύ μεγαλύτερο της μονάδας η ισόθερμη είναι ισχυρά προτιμώμενη, ενώ όταν το γινόμενο της σταθεράς επί την αρχική συγκέντρωση του ρευστού είναι μικρότερο της μονάδας η ισόθερμη είναι σχεδόν γραμμική. Η ισόθερμη Langmuir βασίζεται στην παραδοχή της ομοιόμορφης επιφάνειας, η οποία δεν ισχύει, όμως η σχέση που την περιγράφει ισχύει με καλή ακρίβεια για τα αέρια τα οποία προσροφώνται ασθενώς. Για ισχυρά προτιμώμενες ισόθερμες η εμπειρική εξίσωση Freundlich δίνει καλύτερη προσομοίωση, ιδιαίτερα για την προσρόφηση από υγρά. Η οριακή περίπτωση μιας πολύ προτιμώμενης ισόθερμης είναι η μη αντιστρεπτή προσρόφηση, όπου η ποσότητα που προσροφάται είναι ανεξάρτητη της συγκέντρωσης μέχρι πολύ χαμηλές τιμές. Σε όλα τα συστήματα η ποσότητα που προσροφάται μειώνεται με την αύξηση της θερμοκρασίας, ακόμα και σε περιπτώσεις που χαρακτηρίζονται μη αντιστρεπτές. Ωστόσο για την εκρόφηση απαιτείται πολύ υψηλότερη θερμοκρασία, όταν η προσρόφηση είναι ισχυρά προτιμώμενη ή μη αντιστρεπτή παρά όταν οι ισόθερμες είναι γραμμικές.

Μια ισόθερμη που είναι κοίλη προς τα επάνω χαρακτηρίζεται "μη προτιμώμενη" επειδή επιτυγχάνονται σχετικά χαμηλά φορτία στερεού και επειδή δημιουργεί μέσα στην κλίνη ζώνες μεταφοράς μάζας με μεγάλο μήκος. Οι ισόθερμες αυτού του τύπου είναι σπάνιες, αξίζει όμως τον κόπο να μελετηθούν γιατί βοηθούν στην καλύτερη κατανόηση της διαδικασίας αναγέννησης του προσροφητικού μέσου.

Σχήμα 1.3. Ισόθερμες προσρόφησης.

Για να φανεί η ποικιλία των σχημάτων των ισόθερμων για ένα μόνο προσροφητικό, παρουσιάζονται δεδομένα προσρόφησης του νερού από τον αέρα σε τρία ξηραντικά μέσα, Σχήμα 1.4. To silica gel έχει μια σχεδόν γραμμική ισόθερμη για σχετική υγρασία μέχρι 50 % και η τελική δυναμικότητά του είναι περίπου διπλάσια των άλλων στερεών. Σε υψηλά ποσοστά υγρασίας οι μικροί πόροι γεμίζουν με υγρό με τριχοειδή συμπύκνωση και η ολική ποσότητα που προσροφάται εξαρτάται από τον όγκο των μικρών πόρων και όχι μόνο από την ειδική επιφάνεια. Το νερό συγκρατείται πολύ ισχυρά από τα μοριακά κόσκινα και η προσρόφηση του είναι σχεδόν μη αντιστρεπτή, όμως ο όγκος των πόρων δεν είναι τόσο μεγάλος όσο του silica gel. Οι καμπύλες του σχήματος βασίζονται στη σχετική υγρασία, με αποτέλεσμα οι ισόθερμες να πέφτουν πάνω σε μια μόνο καμπύλη για μια περιοχή θερμοκρασιών. Αξίζει να σημειωθεί ότι, με εξαίρεση τα μοριακά κόσκινα, η ποσότητα που προσροφάται σε μια δεδομένη μερική πίεση μειώνεται κατά πολύ με την αύξηση της θερμοκρασίας. Για τον αέρα που περιέχει 1 % H₂O στους 20oC ισχύει H _R = 7,6 mm Hg/17,52*100 = 43,4% και η ποσότητα που προσροφάται στο silica gel είναι W = 0,26 lb/lb. Για την ίδια συγκέντρωση στους 40oC, H _R = 7,6 mm Hg/55,28*100 = 13,7% και W = 0,082 lb/lb.

Σχήμα 1.4. Ισόθερμες προσρόφησης για νερό σε αέρα από 20 έως 50°C.

1.6 Αρχές της προσρόφησης – Διαγράμματα συγκέντρωσης σε σταθεροποιημένες κλίνες

Κατά την προσρόφηση σε μια σταθεροποιημένη κλίνη οι συγκεντρώσεις στο ρευστό και στο στερεό μεταβάλλονται με το χρόνο και με τη θέση στην κλίνη. Αρχικά η μεταφορά μάζας λαμβάνει χώρα κυρίως κοντά στην είσοδο της κλίνης, όπου το ρευστό έρχεται για πρώτη φορά σε επαφή με το προσροφητικό. Αν το στερεό δεν περιέχει αρχικά προσροφούμενη ουσία, η συγκέντρωση στο ρευστό μειώνεται εκθετικά με την απόσταση και γίνεται ουσιαστικά ίση με το μηδέν πριν το τέλος της κλίνης. Αυτό το προφίλ της συγκέντρωσης παρουσιάζεται ως καμπύλη t_1 στο Σχήμα 1.5 (α), όπου c/c_0 είναι ο λόγος της συγκέντρωσης του ρευστού προς την αρχική συγκέντρωση της τροφοδοσίας. Μετά από μερικά λεπτά το στερεό κοντά στην είσοδο γίνεται σχεδόν κορεσμένο και το μεγαλύτερο μέρος της μεταφοράς μάζας λαμβάνει χώρα μακριά από την είσοδο. Το προφίλ της συγκέντρωσης αποκτά σχήμα S, όπως φαίνεται από την καμπύλη t2. Η περιοχή όπου πραγματοποιείται το μεγαλύτερο μέρος της μεταβολής συγκέντρωσης ονομάζεται ζώνη μεταφοράς μάζας και τα όρια που συνήθως λαμβάνονται είναι οι τιμές του λόγου c/c_0 από 0,95 έως 0,05. Με την πάροδο του χρόνου η ζώνη μεταφοράς μετακινείται προς τα κάτω στην κλίνη, όπως φαίνεται από τα προφίλ t3 και t4. Παρόμοια προφίλ μπορούν να σχεδιαστούν και για τη μέση συγκέντρωση της προσροφούμενης ουσίας στο στερεό. Όπως φαίνεται από το σχήμα των προφίλ αυτών στην είσοδο το στερεό είναι σχεδόν κορεσμένο, στη ζώνη μεταφοράς μάζας εμφανίζεται μια μεγάλη μεταβολή, ενώ στο τέλος της κλίνης η συγκέντρωση είναι ίση με μηδέν. Αντί να σχεδιαστεί η πραγματική συγκέντρωση στο στερεό, στο διάγραμμα παρουσιάζεται (με τη μορφή διακεκομμένης γραμμής) η συγκέντρωση στο ρευστό σε ισορροπία με το στερεό σε χρόνο t_2 . Η συγκέντρωση αυτή θα πρέπει να είναι πάντα μικρότερη από την πραγματική συγκέντρωση του ρευστού. Η διαφορά των συγκεντρώσεων (ή κινητήρια δύναμη) είναι μεγάλη στα σημεία όπου το προφίλ της συγκέντρωσης είναι απότομο και η μεταφορά μάζας είναι ταχύτατη.

Σχήμα 1.5. (a) Προφίλ συγκέντρωσης και (b) καμπύλη διάσπασης για προσρόφηση σε σταθεροποιημένη κλίνη.

1.7 Καμπύλες διάσπασης (breakthrough curves)

Οι σταθεροποιημένες κλίνες οι οποίες περιλαμβάνουν εσωτερικές διατάξεις που θα επέτρεπαν τη μέτρηση των προφίλ της συγκέντρωσης είναι πολύ λίγες. Ωστόσο αυτά τα προφίλ μπορούν να προβλεφθούν και να χρησιμοποιηθούν για το σχεδιασμό της γραφικής παράστασης της συγκέντρωσης του ρευστού που εξέρχεται από την κλίνη ως προς το χρόνο. Η καμπύλη του Σχήματος 1.5 (b) ονομάζεται καμπύλη διάσπασης. Σε χρόνους t_1 και t_2 η συγκέντρωση εξόδου πρακτικά είναι ίση με μηδέν, όπως φαίνεται και στο Σχήμα 1.5 (α). Όταν η συγκέντρωση αποκτήσει κάποια οριακή επιτρεπτή τιμή, ή κάποιο σημείο διάσπασης η ροή διακόπτεται ή οδηγείται σε μια καινούρια κλίνη προσροφητικού. Το σημείο διάσπασης λαμβάνεται συχνά ως σχετική συγκέντρωση 0,05 ή 0,10 και αφού μια τέτοια υψηλή συγκέντρωση συναντάται μόνο στο τελευταίο κομμάτι του ρευστού, το μέσο κλάσμα της διαλυμένης ουσίας που απομακρύνεται από την αρχή έως το σημείο διάσπασης είναι συχνά ίσο με 0,99 ή και μεγαλύτερο.

Αν συνεχιστεί η προσρόφηση και μετά το σημείο διάσπασης, η συγκέντρωση αυξάνεται σε 0,5 περίπου και στη συνέχεια προσεγγίζει λίγο πιο αργά το 1.0, όπως φαίνεται στο Σχήμα 1.5 (b). Αυτή η καμπύλη σχήματος S είναι παρόμοια με τα προφίλ της εσωτερικής συγκέντρωσης και πολλές φορές είναι συμμετρική. Με τη βοήθεια ισοζυγίων μάζας μπορεί να αποδειχθεί ότι το εμβαδόν της επιφάνειας ανάμεσα στην καμπύλη και σε μια γραμμή στο $c/c_0 = 1,0$ είναι ανάλογο με την ολική ποσότητα της διαλυμένης ουσίας που προσροφάται, αν όλη η κλίνη έρθει σε ισορροπία με την τροφοδοσία. Η ποσότητα που προσροφάται είναι επίσης ανάλογη με το εμβαδόν της ορθογωνικής επιφάνειας στα αριστερά της διακεκομμένης γραμμής στο t^* , που είναι ο ιδανικός χρόνος προσρόφησης για κατακόρυφη καμπύλη διάσπασης. Όταν η καμπύλη είναι συμμετρική, το t^* αντιπροσωπεύει επίσης το χρόνο στον οποίο ο λόγος c/c_0 προσεγγίζει το 0,5. η μετακίνηση του μετώπου της προσρόφησης μέσα στην κλίνη και η επίδραση των μεταβλητών της διεργασίας στο t^*

1.8 Προσδιορισμός της βέλτιστης συγκέντρωσης χρωστικής σε επεξεργασμένα απόβλητα βαφείου

Το βέλτιστο (optimum) βρίσκεται στο σημείο τομής των καμπυλών του διαφορικού κόστους. Η μαθηματική απόδειξη είναι η ακόλουθη:

$$\frac{dK_{i}}{dC} = \frac{d(K_{1} + K_{2})}{dC} = 0 \Rightarrow \frac{dK_{1}}{dC} + \frac{dK_{2}}{dC} = 0 \Rightarrow \frac{dK_{1}}{dC} - \left(-\frac{dK_{2}}{dC}\right) = 0$$
exactify $dK2 / dC < 0$ égoupe :
$$\left|\frac{dK_{1}}{dC}\right| - \left|\frac{dK_{2}}{dC}\right| = 0 \Rightarrow \left|\frac{dK_{1}}{dC}\right| = \left|\frac{dK_{2}}{dC}\right|$$

2. ΔΗΜΙΟΥΡΓΙΑ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ ΠΡΟΣΡΟΦΗΣΗΣ

Ο μεγάλος αριθμός αποτελεσμάτων που προκύπτουν από τον συνδυασμό πειραματικών μετρήσεων και υποδειγμάτων (ισόθερμων και κινητικών) προσρόφησης δημιουργεί την ανάγκη χρησιμοποίησης μιας σχεσιακής βάσης δεδομένων (Relational Data Base – RDB), προκειμένου να αποθηκεύονται τα αποκτώμενα στοιχεία σε εύκολα ανακτήσιμη αλλά και αξιοποιήσιμη μορφή. Ως τέτοια RDB, χρησιμοποιήθηκε η Microsoft Access, ώστε η αναζήτηση των στοιχείων να μπορεί να γίνεται μέσω SQL (Structured Query Language) και η επεξεργασία αυτών να γίνεται στο ίδιο προγραμματιστικό περιβάλλον μέσω της ενσωματωμένης στο συγκεκριμένο λογισμικό γλώσσας VBA (Visual Basic for Applications). Στη συνέχεια, εμφανίζονται στιγμιότυπα (screenshots) (α) του Πίνακα των Δεδομένων στην Microsoft Access (Σχήμα 2-1), (β) της δομής του Πίνακα σε προβολή σχεδίασης (Σχήμα 2-2) και (γ) της Φόρμας εισαγωγής δεδομένων στον Πίνακα (Σχήμα 2-3).

🖉 Mi	cros	oft Access	- [Know	ledge Ba	se Adsorpt	ion : l	Πίνακας]						_ & X
Ap	οχείο	<u>Ε</u> πεξεργασία Π	ροβολή Εισαγ	ωγή Μορφή	Εχγραφές Εργ	α <u>λ</u> εία <u>Π</u> α	ιράθυρο <u>Β</u> οήθε	a Ad	lo <u>b</u> e PDF				_ 8 ×
N -		🛋 🖪 👯 🐰	Ba 🖻 🚿	⊡ @. ≜ I	01 🐨 🏹	7 44	▶∗ 🕅 📶 🏄	-	?				
	No					CONST		DA		ADSODRENT	ADSODRATE		DDETDEA.
Ap	1	ISOTHERMS	MECHANISI	KINL IIC MO		KI		ne=	(amk/LCo)/	Hazalnut scalls	Methylene hlue	recycle nurnose	the challes
	2	ISOTHERMS			LANGMUIR	KI.	ce am a	ne=	(amKLCe)/[(amKLCe)/[Hazelnut scells	Acid blue 25	recycle purpose	the shells y
	3 3	ISOTHERMS			LANGMUR	KI	ce am a	ne=	(amKLCe)/[kudzu	Basic Yellow 21	removal of cont:	air dried ar
	1 4	ISOTHERMS			LANGMUIR	KI	ce am a	de=	(amKLCe)/[kudzu	Basic Red 22	removal of cont:	air dried ar
5	5 5	ISOTHERMS			LANGMUIR	KL	ce am a	de=	(amKLCe)/I	peat	Basic Red 22	wastewater / te	milled, air
E F	6	ISOTHERMS			LANGMUIR	KI	ce am a	de=	(amKLCe)/I	neat	Basic Blue 3	wastewater / te	milled air
7	7	ISOTHERMS			LANGMUIR	KL	ce am a	ae=	(amKLCe)/i	peat	Basic Yellow 2'	wastewater / te	milled, air
Ξ	8	ISOTHERMS			LANGMUIR	KL	ce am a	ae=	(amKLCe)/I	neem trees	Brillant Green	textile industry	washed.dri
9	9	ISOTHERMS			LANGMUIR	KL	ce am a	qe=	(gmKLCe)/[date pits	Methylene blue	textile industry	washed,dri
10) 10	ISOTHERMS			LANGMUIR	KL	ce am a	qe=	(gmKLCe)/[almond	Methylene blue	wastewater	dried, mixe
11	11	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(gmKLCe)/	walnut	Methylene blue	wastewater	dried, mixe
12	2 12	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/	hazelnut scells	Methylene blue	wastewater	dried, mixe
13	3 13	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/	appricot stones	Methylene blue	wastewater	dried, mixe
14	14	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[appricot stones	Phenol	wastewater	dried, mixe
15	5 15	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/	almond	Phenol	wastewater	dried, mixe
16	5 16	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[walnut	Phenol	wastewater	dried, mixe
17	17	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[hazelnut scells	Phenol	wastewater	dried, mixe
18	8 18	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[appricot stones	iodine	wastewater	dried, mixe
19	9 19	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/	almond	iodine	wastewater	dried, mixe
20	20	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[sawdust	congo Red	wastewater(text	cleaned,wa
21	21	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[walnut	iodine	wastewater	dried,mixe
22	22	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[hazelnut scells	iodine	wastewater	dried,mixe
23	3 23	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[coir bith	Acid Violet	wastewater / te	dried,sieve
24	24	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[coir bith	Brilliant Blue	wastewater / te	dried,sieve
25	5 25	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[coir bith	Rhodamine B	wastewater / te	dried,sieve
26	6 26	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[coir bith	Methylene blue	wastewater / te	dried,sieve
27	27	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[appricot stones	Methylene blue	wastewater	dried,mixe
28	3 28	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[bamboo dust	Methylene blue	textile industry	washed,dri
29	29	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[coconut shell	Methylene blue	textile industry	washed,dri
30) 30	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[groundnut shell	Methylene blue	textile industry	washed,dri
31	31	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[rice husk	Methylene blue	textile industry	washed,dri
32	2 32	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[straw	Methylene blue	textile industry	washed,dri
33	33	ISOTHERMS			LANGMUIR	KL	ce qm q	qe=	(qmKLCe)/[coir pith	Congo Red	textile industry(dried in su 🔻
Εγγρας	ρή: 🔳		1 🕨 🖻 🍽	* από 192		4							►
Προβο)	λή φύλ	λου δεδομένων											AP
8 4 é	var	ν ξ η 📄	data base	💌 A1	ΠΛΩΜΑΤΙΚΗ		Microsoft Excel		Knowle	dae Base 🛛	I Knowledge Ba	se EN 🕥	1:43 uu

Σχήμα 2-1. Βάση Δεδομένων Προσρόφησης (Microsoft Access) – Στιγμιότυπο (screenshot) Πίνακα Δεδομένων.

Δοχείο Επεξεογοσία	Ποοβολή Εισανωνή Ε	οναλεία Παράθυρο Βρά	άθεια Adobe PDE			_ /# ×
	8 B B > P	ĭ ⇒ - ⇒ œ	/ ײ ≈ * ײ			
Όνομα πεδίου	Τύπος δεδομένων			Περιγραφή		~
8	Αυτόματη αρίθμηση					
0	Αριθμος					
OPIC	Κείμενο					
	KEIJEVO					
INETIC MODEL ORDER	Keluevo					
ONSTANT	Κείμενο					
ONDIANT	Κείμενο					
ARIADLED FARADLETERS	C Keluevo					
INSORBENT	Keiusvo					
DSORBATE	Keiuevo					
PPLICATIONS	Keiuevo					
RETREATMENT	Κείμενο					
EFERENCE	Κείμενο					
						~
			Ιδιότητες πεδίου			
aunste la 1						
ενικές Εμφανιση						
γεθος πεδίου	Ακέραιος με	γάλου μήκους				
ες πμές	Βηματικά					
ρφή						
ζάντα						
ευρετήριο	Ναι (Δεν επι	φέπονται διπλότυπα)				
			Τα ονόμ	ατα πεδίων μπορούν να έχουν έως	; 64 χαρακτήρες (με τα κενά). Για Βοήθεια πατι	ήστε F1.
ολή σχεδίασης. F6 = Eva	λλαγή τμημάτων παραθύρα	υ. F1 = Βοήθεια.				AP

Σχήμα 2-2. Βάση Δεδομένων Προσρόφησης – Στιγμιότυπο (screenshot) της δομής του Πίνακα σε προβολή σχεδίασης

	1.12	(1.)	1 1 P A I A				
2	MICroso	ort Access - [Kno	wiedge base Adsorpt	ion]			
	B <u>Α</u> ρχείο <u>Ε</u>	πεξεργασία Π <u>ρ</u> οβολή Εκ	σαγ <u>ω</u> γή <u>Μ</u> ορφή Ε <u>γ</u> γραφές Εργα	ι <u>λ</u> εία <u>Π</u> αράθυρο <u>Β</u> οήθ	icia Ado <u>b</u> e PDF		_ 8 ×
	🖌 • 🔜 é	5 🖪 🖤 🕺 🖻 🖻 s	S 🗠 🛞 💔 👬 🧟 🖉 🖉	7 📫 🕨 🕅 📑	🗗 🛅 • 🕄 •		
		 Arial Greek 	▼ 8 ▼ B <i>I</i> <u>U</u>	≣≣≣ 🥸 •	<u>A</u> • <u>4</u> • <u>•</u> • <u>•</u> •		
▶	Αρ	1	PARAMETER ge=(gmKLCe	:)/[1+(KLCe)]			
	No		1				
	TOPIC	ISOTHERMS	ADSORBENT Hazelnut sci	ells			
			ADSORBATE Methylene h	110			
	MECHANISM		ADSORDATE Meanyione b	ac			
	KINETIC MOD	DE	APPLICATION recycle purp	ose / color removal			
			from dyehou	se effluents			
	MODEL	LANGMUIR	PRETREATME the shells w deionised w	ere washed with ater and dried in air			
	CONCTANT		REFERENCE F.Ferrero Jo	urnal of Hazardous			
	CONSTANT	KL	Materials 14	2 (2007) 144-152			
	VARIABLES	F ce qm q					
Εı	γραφή: 🚺		• * anó 192				
Π	ροβολή φόρμα	ıç					AP
1	🛃 έναρι	🛐 🦾 data base	📓 ΔΙΠΛΩΜΑΤΙΚΗ	Microsoft Exce	l 🛛 👜 Knowledge Base	😫 Knowledge Base	ΕΝ 🔇 🕼 1:46 μμ

Σχήμα 2-3. Βάση Δεδομένων Προσρόφησης – Στιγμιότυπο (screenshot) Φόρμας εισαγωγής δεδομένων στον Πίνακα.

3. ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

3.1. Ισόθερμες

- Τοποθετούνται 500 mL δλμ συγκέντρωσης 60/1000, 40/1000, 28/1000, 20/1000, 16/1000 & 8/1000 σε Methylene Blue (Μπλε του Μεθυλενίου) διαδοχικά σε κωνικές φιάλες.
- Για καθένα από τα διαλύματα λαμβάνεται ποσότητα υγρού 3,5 mL εντός 3 κυβετών που ακολούθως τοποθετούνται στο «καρουσέλ» για μέτρηση της απορρόφησης (Absorbance ABS) για μήκος κύματος λ = 664 nm, που αντιστοιχεί στη χρωστική Methylene Blue (Μπλε του Μεθυλενίου)
- iii. Την κάθε μέτρηση ακολουθεί αποθήκευση των τιμών.
- iv. Προστίθεται 0,5 g προσροφητικού υλικού (εκάστοτε προκατεργασίας) σε κάθε διάλυμα, γίνεται ανάδευση με ραβδί και τα έξι διαλύματα αποθηκεύονται για χρονικό διάστημα μίας εβδομάδας.
- Νε το πέρας του διαστήματος λαμβάνεται από κάθε διάλυμα δείγμα το οποίο φιλτράρεται και τοποθετείται σε δοκιμαστικό σωλήνα.
- Για καθένα από τα έξι δείγματα λαμβάνεται ποσότητα υγρού 3,5 mL εντός 3 κυβετών που ακολούθως τοποθετούνται στο «καρουσέλ» για μέτρηση της απορρόφησης.

3.2. Κινητική

- Τοποθετούνται 1000 mL δλμ συγκέντρωσης 60/1000, 40/1000, 28/1000, 20/1000, 16/1000 & 8/1000 σε Methylene Blue (Μπλε του Μεθυλενίου) διαδοχικά σε κωνικές φιάλες.
- Τοποθετείται το ποτήρι ζέσεως στον μαγνητικό αναδευτήρα (500-600 rpm) και λαμβάνεται με σιφόνι αρχικό δείγμα (≈ 11 ml) χρόνου μηδέν, προτού προστεθεί το προσροφητικό μέσο στο διάλυμα.
- Προστίθεται 1 g πριονίδι στο διάλυμα, μετριέται χρόνος 5 min και λαμβάνεται επόμενο δείγμα. Το δείγμα φιλτράρεται αμέσως και αποθηκεύεται σε δοκιμαστικό σωλήνα.
- iv. Κάθε 5 min λαμβάνεται δείγμα από το διάλυμα, φιλτράρεται και αποθηκεύεται.
- v. Η διαδικασία επαναλαμβάνεται μέχρι τη λήψη 20 συνολικά δειγμάτων.

- vi. Τοποθετείται κυβέτα με (απιονισμένο) νερό στη θέση 1 του «καρουσέλ» του φασματοφωτομέτρου.
- vii. Για καθένα από τα 20 δείγματα λαμβάνεται ποσότητα υγρού 3,5 mL εντός 2 κυβετών που ακολούθως τοποθετούνται στο «καρουσέλ» για μέτρηση της απορρόφησης (Absorbance ABS) για μήκος κύματος λ = 664 nm, που αντιστοιχεί στη χρωστική Methylene Blue (Μπλε του Μεθυλενίου)
- vii. Την κάθε μέτρηση ακολουθεί αποθήκευση των τιμών.

4. ΕΠΕΞΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

4.1. Ισόθερμες

Οι μετρήσεις που προέκυψαν (απορρόφηση ABS, συγκέντρωση C) για τα διαλύματα πριν την προσθήκη του προσροφητικού υλικού και μετά το πέρας μίας εβδομάδας αφού προστέθηκε αυτό, καταγράφονται σε πίνακα αρχείου Excel. Βάσει αυτών γίνονται υπολογισμοί των q, logC_e, logq της λογαριθμικής μορφής της ισόθερμης Freundlich, logq = logK_F + (1/n)logC_e και παριστάνονται γραφικά τα ζεύγη (logC_e, logq). Μέσω του προγράμματος Excel προκύπτει η βέλτιστη ευθεία της μορφής y = a + bx που περιγράφει τα σημεία, καθώς και ο αντίστοιχος συντελεστής συσχέτισης. Στην προκειμένη περίπτωση a =logK_F και b=1/n. Έτσι είναι δυνατό να υπολογιστούν οι παράμετροι $K_F = 10^a$ και n = 1/b της ισόθερμης, για κάθε προσροφητικό υλικό.

4.2. Κινητική

Οι μετρήσεις που προέκυψαν (απορρόφηση ABS, συγκέντρωση C) για κάθε 5λεπτο καταγράφονται σε πίνακα αρχείου excel. Βάσει της εξίσωσης Lagergren θα ισχύει:

$$\ln\left(\frac{C-C_{\infty}}{C_{0}-C_{\infty}}\right) = -k \cdot t \Longrightarrow \ln(C-C_{\infty}) = \ln(C_{0}-C_{\infty}) - k \cdot t \quad (1)$$

όπου: C, C_0, C_∞ , η τιμή της συγκέντρωσης της χρωστικής ουσίας στο διάλυμα τη χρονική στιγμή t, t₀ και t_∞, αντίστοιχα, t ο χρόνος και k ο συντελεστής ρυθμού πρώτης τάξης. Θεωρούνται τιμές για το C_∞ από το 0 ως την μικρότερη ακέραιη τιμή της C. Για κάθε τιμή που θεωρείται υπολογίζεται η τετμημένη $y=\ln(C-C_\infty)$ και κατασκευάζεται το διάγραμμά της τιμής y συναρτήσει του χρόνου t (min). Η εξίσωση που προκύπτει είναι της μορφής $y = a + b \cdot x$ όπου $y = \ln(C - C_\infty)$ και x = t. Σε αντιστοιχία με τη σχέση (1) έχουμε ότι k=-b και $a = \ln(C_0 - C_\infty) \Rightarrow e^a = C_0 - C_\infty \Rightarrow C_0 = e^a + C_\infty$. Στη συνέχεια για τις τιμές των C_0 , k και C_∞ που προκύπτουν, υπολογίζεται η θεωρητική τιμή της συγκέντρωσης $C_{θεαρητικό} = C_\infty + (C_0 - C_\infty) \cdot e^{-k \cdot t}$. Τέλος υπολογίζεται το τυπικό σφάλμα απόκλισης $s = \sqrt{\frac{\sum (C - C_{\theta \varepsilon \omega \rho \eta \tau \iota \kappa \delta})^2}{n - p}}$ όπου n ο αριθμός των μετρήσεων που πραγματοποιήθηκαν (n=20) και p το πλήθος των παραμέτρων (p=3, δηλ. α, b, C_∞). Για τις διάφορες τιμές C_∞ που θεωρούνται υπολογίζονται οι αντίστοιχες αποκλίσεις s. Από τη μικρότερη τιμή του s που προκύπτει (αυτή που πλησιάζει περισσότερο το 0) λαμβάνεται η βέλτιστη τιμή των C_∞, C₀ και k. Για τις τιμές αυτές υπολογίζεται το C_{θεωρητικό} και κατασκευάζεται η γραφική παράσταση της τιμής του συναρτήσει του χρόνου.

5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΖΗΤΗΣΗ

5.1 Συνθήκες προκατεργασίας προσροφητικών υλικών

Στα πλαίσια της παρούσας εργασίας μελετήθηκε η προσρόφηση από διάλυμα 500 mL χρωστικής ουσίας Μπλε του Μεθυλενίου (Methylene Blue) σε χρονικό διάστημα μίας εβδομάδας (ώστε να επέλθει ισορροπία). Ως προσροφητικό μέσο χρησιμοποιήθηκε πριονίδι πεύκου 0,5 g. Η προσρόφηση περιγράφεται από την εξίσωση της ισόθερμης Freundlich. Επίσης, μελετήθηκε η προσρόφηση από διάλυμα 1000 mL χρωστικής ουσίας Μπλε του Μεθυλενίου (Methylene Blue) σε διάφορα χρονικά διάστηματα (π.χ. 5 ή 10 min) ώστε να προσδιοριστούν οι κινητικές παράμετροι της προσρόφηση. Ως προσροφητικό μέσο χρησιμοποιήθηκε πριονίδι πεύκου 1 g. Η κινητική της προσρόφησης περιγράφεται από την εξίσωση Langergen.

Το πριονίδι πεύκου χρησιμοποιήθηκε στην απροκατέργαστη μορφή του (original) και προκατεργασμένο σε μία σειρά συνθηκών συγκέντρωσης H_2SO_4 (0,1125, 0,225, 0,45, 0,9, 1,8, 3,6 N) στους 100°C. Ο χρόνος προθέρμανσης ήταν 40 λεπτά.

Σύμφωνα με την βιβλιογραφία, από πειράματα κινητικής προσρόφησης σε διαλύματα χρωστικών ουσιών Methylene Blue και Red Basic 22 από πριονίδι πεύκου [44], βάσει των τιμών της σταθεράς 'χωρητικότητας' της προσρόφησης K_F του μοντέλου Freundlich και της χωρητικότητας q_m του μοντέλου Langmuir, προέκυψε αύξηση της ικανότητας του προσροφητικού μέσου, ως αποτέλεσμα της προκατεργασίας που υπέστη. Σε εντονότερες, δε, συνθήκες προκατεργασίας αποτέλεσε η διερεύνηση της πιθανής βελτίωσης της ικανότητας των προσροφητικών υλικών στην προσρόφηση της χρωστικής Methylene Blue, κατόπιν προκατεργασίας στις προαναφερθείσες συνθήκες.

5.2 Παρουσίαση αποτελεσμάτων ισόθερμων

Για καθένα από τα υλικά που χρησιμοποιήθηκαν ως προσροφητικά μέσα (ανάλογα με τις συνθήκες προκατεργασίας), παρατίθενται πίνακες με τα πειραματικά δεδομένα των συγκεντρώσεων κάθε διαλύματος: αρχικής συγκέντρωσης C_0 (σειρά έξι αραιώσεων) και συγκέντρωσης ισορροπίας C_e , καθώς και με τις τιμές των παραμέτρων q, logq και log C_e , οι

οποίες υπολογίζονται στο φύλλο Excel. Ακολουθούν πίνακες με τις τιμές των σταθερών K_F και n της ισόθερμης Freundlich, όπως προκύπτουν από τους υπολογισμούς, και γραφήματα του λογάριθμου της ποσότητας που προσροφάται ανά μονάδα μάζας του προσροφητικού μέσου logq, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία logC_e. Στη συνέχεια για κάθε σειρά προκατεργασίας, οι τιμές των σταθερών αυτών τοποθετούνται σε συγκεντρωτικούς πίνακες και κατασκευάζονται διαγράμματα της παραμέτρου K_F , συναρτήσει του χρόνου προκατεργασίας του υλικού, t_{pretreatment}.

5.2.1. Αναλυτικοί Πίνακες Ισόθερμων

	πριονίδι πεύκου απροκατέργαστο								
	C 1	C 2	C 3	C 4	C5	C6			
$C_0(t=0)$	13,49	10,35	7,60	4,65	3,16	1,37			
Ce (t=168)	4,54	3,16	2,40	1,23	0,60	0,31			
Ce	4,54	3,16	2,40	1,23	0,60	0,31			
q	8,96	7,19	5,20	3,42	2,57	1,07			
				INV		×			
logCe	0,6569	0,4995	0,38	0,088	-0,22	-0,51			
logq	0,9521	0,8566	0,716	0,534	0,41	0,028			

Πίνακες 5.2.1-1 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου απροκατέργαστο.

Σχήμα 5.2.1-1 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου απροκατέργαστο.

Πίνακες 5.2.1-2 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο								
	C 1	C 2	C 3	C 4	C 5	C 6			
C_0 (t=0)	147,48	104,75	79,44	48,29	30,75	12,88			
Ce (t=168)	118,99	80,98	57,35	29,32	19,58	11,10			
Ce	118,99	80,98	57,35	29,32	19,58	11,10			
q	28,49	23,76	22,09	18,97	11,17	1,78			
				11	111	~			
logCe	2,075508	1,908385	1,75852	1,467	1,292	1,045			
logq	1,454633	1,375927	1,3442	1,278	1,048	0,25			

Σχήμα 5.2.1-2 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο									
	C 1	C 2	C 3	C 4	C 5	C 6				
C_0 (t=0)	146,57	107,08	80,71	49,22	35,86	16,00				
Ce (t=168)	119,23	83,18	57,30	28,07	15,87	7,99				
Ce	119,23	83,18	57,30	28,07	15,87	7,99				
q	27,35	23,91	23,42	21,15	19,99	8,00				
				1	020	1				
logCe	2,076369	1,919995	1,75812	1,448	1,201	0,903				
logq	1,436891	1,378558	1,36953	1,325	1,301	0,903				

Πίνακες 5.2.1-3 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-3 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 1h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο								
	C 1	C 2	C 3	C 4	C 5	C 6			
C_0 (t=0)	147,97	106,08	82,32	52,20	25,80	15,77			
Ce (t=168)	112,13	76,83	48,29	23,94	14,10	9,45			
Ce	112,13	76,83	48,29	23,94	14,10	9,45			
q	35,84	29,26	34,04	28,26	11,71	6,32			
				11		~			
logCe	2,049723	1,885505	1,68384	1,379	1,149	0,975			
logq	1,554317	1,466241	1,53194	1,451	1,068	0,801			

Πίνακες 5.2.1-4 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-4 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 2h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο								
	C 1	C 2	C 3	C 4	C 5	C 6			
C_0 (t=0)	143,38	100,88	70,35	39,97	26,46	13,70			
Ce (t=168)	112,83	75,64	48,15	21,32	13,83	12,32			
Ce	112,83	75,64	48,15	21,32	13,83	12,32			
q	30,54	25,25	22,20	18,65	12,63	1,38			
				11	~~~~	2			
logCe	2,049723	1,885505	1,68384	1,379	1,149	0,975			
logq	1,554317	1,466241	1,53194	1,451	1,068	0,801			

Πίνακες 5.2.1-5 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 3h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-5 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 3h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο									
	C 1	C 2	C 3	C 4	C 5	C 6				
C_0 (t=0)	145,74	101,94	77,91	47,94	33,53	17,48				
Ce (t=168)	112,18	75,96	44,65	20,50	12,49	6,05				
Ce	109,59	75,56	48,07	21,71	10,84	6,05				
q	37,43	31,57	31,81	28,07	20,61	10,19				
				2	000					
logCe	2,03978	1,878299	1,68191	1,337	1,035	0,782				
logq	1,57322	1,499301	1,5025	1,448	1,314	1,008				

Πίνακες 5.2.1-6 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 4h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-6 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 4h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο						
	C 1	C 2	C 3	C 4	C.5	C 6
C_0 (t=0)	147,02	107,13	79,88	49,78	31,45	16,25
Ce (t=168)	109,59	75,56	48,07	21,71	10,84	6,05
C NK 3						
Ce	109,59	75,56	48,07	21,71	10,84	6,05
q	37,43	31,57	31,81	28,07	20,61	10,19
logCe	2,03978	1,878299	1,68191	1,337	1,035	0,782
logq	1,57322	1,499301	1,5025	1,448	1,314	1,008

Πίνακες 5.2.1-7 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 5h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-7 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 5h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο						
	C 1	C 2	C 3	C 4	C 5	C 6
C_0 (t=0)	153,17	107,43	79,46	51,72	28,49	16,22
Ce (t=168)	115,04	78,73	51,99	24,60	14,19	7,52
Ce	115,04	78,73	51,99	24,60	14,19	7,52
q	38,14	28,70	27,47	27,13	14,30	8,71
logCe	2,060832	1,896114	1,71592	1,391	1,152	0,876
logq	1,58136	1,457909	1,43891	1,433	1,155	0,94

Πίνακες 5.2.1-8 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 0,5h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-8 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 0,5h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο						
	C 1	C 2	C 3	C 4	C 5	C 6
C_0 (t=0)	150,82	107,08	82,52	49,81	38,09	17,50
Ce (t=168)	113,67	77,54	51,88	24,39	15,95	10,20
Ce	113,67	77,54	51,88	24,39	15,95	10,20
q	37,16	29,54	30,64	25,42	22,14	7,30
logCe	2,055627	1,889538	1,71503	1,387	1,203	1,009
logq	1,570041	1,470441	1,48622	1,405	1,345	0,863

Πίνακες 5.2.1-9 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 1h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-9 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο						
	C 1	C 2	C 3	C 4	C 5	C 6
$C_0(t=0)$	144,55	109,27	81,52	49,22	32,27	15,33
Ce (t=168)	115,62	76,01	47,19	23,06	10,51	5,88
Ce	115,62	76,01	47,19	23,06	10,51	5,88
q	28,93	33,26	34,33	26,16	21,77	9,45
logCe	2,063045	1,88086	1,67387	1,363	1,021	0,769
logq	1,461346	1,521962	1,53564	1,418	1,338	0,975

Πίνακες 5.2.1-10 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-10 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).
πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C 6	
C_0 (t=0)	149,63	108,31	81,74	51,35	33,48	15,33	
Ce (t=168)	111,70	73,97	48,82	24,54	13,73	5,28	
				/	210	110	
Ce	111,70	73,97	48,82	24,54	13,73	5,28	
q	37,93	34,34	32,92	26,81	19,75	10,05	
logCe	2,048072	1,869043	1,68861	1,39	1,138	0,723	
logq	1,578961	1,535832	1,51742	1,428	1,296	1,002	

Πίνακες 5.2.1-11 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο					
logK _F	0,769942				
1/n 📐	0,422131				
K _F	5,887646				
n	2,368935				
R ²	0,926				

Σχήμα 5.2.1-11 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C 6	
C_0 (t=0)	149,85	107,18	79,95	48,07	32,97	14,66	
Ce (t=168)	120,97	84,10	54,35	31,66	17,90	7,24	
Ce	120,97	84,10	54,35	31,66	17,90	7,24	
q	28,88	23,08	25,61	16,41	15,06	7,42	
logCe	2,082681	1,924787	1,73517	1,501	1,253	0,86	
logq	1,460552	1,363309	1,40835	1,215	1,178	0,87	

Πίνακες 5.2.1-12 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο			
logK _F	0,535465		
1/n 📐	0,457766		
K _F	3,431353		
n	2,184522		
R ²	0,922		

Σχήμα 5.2.1-12 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C 6	
C_0 (t=0)	148,21	109,32	80,69	49,68	31,90	14,59	
Ce (t=168)	115,78	76,95	48,21	22,05	13,46	7,40	
				/	2112	110	
Ce	115,78	76,95	48,21	22,05	13,46	7,40	
q	32,44	32,37	32,48	27,63	18,44	7,19	
				11	111	5	
logCe	2,063621	1,886204	1,68311	1,343	1,129	0,869	
logq	1,511023	1,51016	1,51162	1,441	1,266	0,856	

Πίνακες 5.2.1-13 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-13 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C.6		
C_0 (t=0)	148,46	109,52	81,96	50,53	33,10	14,00		
Ce (t=168)	109,05	78,06	47,27	21,12	12,80	8,18		
				<	4113	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Ce	109,05	78,06	47,27	21,12	12,80	8,18		
q	39,41	31,46	34,69	29,41	20,30	5,82		
				24	~~~			
logCe	2,037622	1,89243	1,6746	1,325	1,107	0,913		
logq	1,59561	1,497729	1,54016	1,468	1,307	0,765		

Πίνακες 5.2.1-14 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-14 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C 6	
C_0 (t=0)	147,48	109,59	81,74	50,15	31,37	13,17	
Ce (t=168)	104,75	72,77	45,56	23,01	12,95	9,36	
Ce	104,75	72,77	45,56	23,01	12,95	9,36	
q	42,73	36,82	36,18	27,15	18,42	3,81	
logCe	2,020137	1,861937	1,65857	1,362	1,112	0,971	
logq	1,630729	1,566141	1,55847	1,434	1,265	0,581	

Πίνακες 5.2.1-15 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-15 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C 6		
C_0 (t=0)	146,09	105,45	80,64	51,75	33,53	13,73		
Ce (t=168)	110,58	75,19	45,13	23,37	11,91	8,20		
Ce	110,58	75,19	45,13	23,37	11,91	8,20		
q	35,50	30,26	35,51	28,38	21,62	5,53		
logCe	2,043691	1,876152	1,65446	1,369	1,076	0,914		
logq	1,550285	1,480894	1,55034	1,453	1,335	0,743		

Πίνακες 5.2.1-16 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

	1 million 1			
πριονίδι πεύκου προκατεργασμένο				
logK _F 0,551427				
1/n 🔨	0,537725			
K _F	3,559814			
n	1,859688			
R ²	0,606			

Σχήμα 5.2.1-16 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C.6	
C_0 (t=0)	147,23	108,09	82,01	49,62	32,30	16,07	
Ce (t=168)	106,69	75,64	45,56	19,66	9,24	3,89	
				~	N/V	1000	
Ce	106,69	75,64	45,56	19,66	9,24	3,89	
q	40,54	32,45	36,45	29,97	23,06	12,18	
				2	~		
logCe	2,028137	1,878727	1,65857	1,294	0,966	0,59	
logq	1,607862	1,51126	1,56168	1,477	1,363	1,086	

Πίνακες 5.2.1-17 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-17 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C 6	
C_0 (t=0)	149,53	109,39	80,00	49,36	33,10	13,95	
Ce (t=168)	113,41	77,42	47,94	22,41	11,96	7,90	
Ce	113,41	77,42	47,94	22,41	11,96	7,90	
q	36,11	31,98	32,06	26,95	21,14	6,05	
logCe	2,054661	1,888846	1,6807	1,35	1,078	0,898	
logq	1,557666	1,504822	1,50599	1,43	1,325	0,781	

Πίνακες 5.2.1-18 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-18 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C 6		
C_0 (t=0)	150,24	106,28	80,27	51,25	32,25	14,91		
Ce (t=168)	114,65	78,90	47,41	21,84	9,78	4,76		
Ce	114,65	78,90	47,41	21,84	9,78	4,76		
q	35,59	27,38	32,87	29,41	22,47	10,15		
				11		<		
logCe	2,059388	1,897062	1,67583	1,339	0,99	0,677		
logq	1,551327	1,437448	1,51675	1,468	1,352	1,006		

Πίνακες 5.2.1-19 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-19 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C 6		
C_0 (t=0)	149,88	106,30	81,10	51,22	32,46	14,24		
Ce (t=168)	108,21	74,39	46,01	19,89	11,84	7,77		
					Ser.			
Ce	108,21	74,39	46,01	19,89	11,84	7,77		
q	41,67	31,91	35,09	31,33	20,62	6,48		
				~	000			
logCe	2,034276	1,871525	1,66289	1,299	1,073	0,89		
logq	1,619843	1,503938	1,54518	1,496	1,314	0,811		

Πίνακες 5.2.1-20 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-20 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C 6		
C_0 (t=0)	151,08	109,67	82,37	49,94	32,33	14,37		
Ce (t=168)	109,52	74,39	45,61	20,37	10,55	5,28		
Ce	109,52	74,39	45,61	20,37	10,55	5,28		
q	41,56	35,27	36,76	29,57	21,77	9,08		
				~	000			
logCe	2,039486	1,871525	1,65908	1,309	1,023	0,723		
logq	1,618657	1,547463	1,56538	1,471	1,338	0,958		

Πίνακες 5.2.1-21 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-21 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο						
	C 1	C 2	C 3	C 4	C 5	C 6	
C_0 (t=0)	141,23	109,47	80,61	50,66	33,58	13,29	
Ce (t=168)	106,99	73,29	50,37	21,40	14,32	6,41	
				<	Y/	NS'	
Ce	106,99	73,29	50,37	21,40	14,32	6,41	
q	34,25	36,18	30,25	29,26	19,27	6,88	
				2	~~~		
logCe	2,029329	1,865063	1,70215	1,33	1,156	0,807	
logq	1,534603	1,558415	1,48068	1,466	1,285	0,838	

Πίνακες 5.2.1-22 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-22 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C 6		
C_0 (t=0)	149,85	108,68	81,23	50,02	31,79	14,39		
Ce (t=168)	113,36	77,94	44,54	18,84	11,10	5,19		
Ce	113,36	77,94	44,54	18,84	11,10	5,19		
q	36,49	30,74	36,69	31,18	20,69	9,20		
				~	000			
logCe	2,054467	1,891744	1,64875	1,275	1,045	0,715		
logq	1,562126	1,487738	1,5645	1,494	1,316	0,964		

Πίνακες 5.2.1-23 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-23 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C 6		
C_0 (t=0)	149,85	108,68	81,23	50,02	31,79	14,39		
Ce (t=168)	113,36	77,94	44,54	18,84	11,10	5,19		
Ce	113,36	77,94	44,54	18,84	11,10	5,19		
q	36,49	30,74	36,69	31,18	20,69	9,20		
				1	020	1		
logCe	2,054467	1,891744	1,64875	1,275	1,045	0,715		
logq	1,562126	1,487738	1,5645	1,494	1,316	0,964		

Πίνακες 5.2.1-24 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-24 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο						
	C 1	C 2	C 3	C 4	C 5	C 6	
C_0 (t=0)	149,17	108,95	81,37	49,17	31,47	14,49	
Ce (t=168)	114,15	74,67	50,10	13,68	13,68	6,97	
				/	AW		
Ce	114,15	74,67	50,10	13,68	13,68	6,97	
q	35,02	34,28	31,27	35,49	17,79	7,52	
				11		Y	
logCe	2,05746	1,873122	1,69985	1,136	1,136	0,843	
logq	1,544352	1,535098	1,49514	1,55	1,25	0,876	

Πίνακες 5.2.1-25 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-25 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

		πριονίδι πε	ύκου προκα	τεργασμένο		2
	C 1	C 2	C 3	C 4	C.5	C 6
C_0 (t=0)	149,17	106,96	80,91	48,55	31,31	14,29
Ce (t=168)	112,23	79,59	51,14	23,68	12,66	6,86
				~	112	~ >
Ce	112,23	79,59	51,14	23,68	12,66	6,86
q	36,94	27,38	29,77	24,87	18,65	7,43
					~ ~ ~	~
logCe	2,050111	1,900832	1,70876	1,374	1,102	0,836
logq	1,567477	1,437383	1,47376	1,396	1,271	0,871

Πίνακες 5.2.1-26 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 1,8 N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

πριονίδι προκατε	ι πεύκου ργασμένο	2
logK _F	0,637467	1
1/n	0,467128	-
K _F	4,339773	
n	2,140741	
\mathbf{R}^2	0,797	

Σχήμα 5.2.1-26Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 1,8 N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο						
	C 1	C 2	C 3	C 4	C 5	C 6	
C_0 (t=0)	148,14	108,95	81,47	49,57	31,42	14,59	
Ce (t=168)	112,88	77,07	47,41	22,51	11,98	5,35	
				<	4113	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Ce	112,88	77,07	47,41	22,51	11,98	5,35	
q	35,26	31,88	34,06	27,06	19,44	9,24	
				22	~ ~ ~ ~ ~	No.	
logCe	2,05263	1,886901	1,67583	1,352	1,079	0,728	
logq	1,547265	1,503485	1,5323	1,432	1,289	0,966	

Πίνακες 5.2.1-27 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 1,8 N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-27 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 1,8 N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min)

	πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C 6		
C_0 (t=0)	145,33	105,64	80,64	50,79	33,72	21,74		
Ce (t=168)	113,51	74,77	51,09	23,16	12,49	6,08		
Ce	113,51	74,77	51,09	23,16	12,49	6,08		
q	31,82	30,88	29,55	27,63	21,23	15,66		
				1	000	1		
logCe	2,055047	1,873701	1,7083	1,365	1,097	0,784		
logq	1,502713	1,489668	1,4706	1,441	1,327	1,195		

Πίνακες 5.2.1-28 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 1,8 N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-28 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 1,8 N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο						
	C 1	C 2	C 3	C 4	C 5	C.6	
C_0 (t=0)	146,30	107,04	77,94	50,21	33,29	19,20	
Ce (t=168)	110,14	75,06	47,46	21,89	12,54	5,85	
				<	4113	15	
Ce	110,14	75,06	47,46	21,89	12,54	5,85	
q	36,16	31,97	30,48	28,32	20,75	13,34	
				2	~~~	14m	
logCe	2,041933	1,875433	1,67632	1,34	1,098	0,767	
logq	1,558205	1,504759	1,48398	1,452	1,317	1,125	

Πίνακες 5.2.1-29 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 1,8 N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-29 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 1,8 N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C 6		
C_0 (t=0)	141,20	107,30	81,01	51,06	33,66	18,64		
Ce (t=168)	109,99	73,29	43,65	19,10	9,03	4,76		
					Ser.			
Ce	109,99	73,29	43,65	19,10	9,03	4,76		
q	31,21	34,01	37,35	31,96	24,63	13,88		
				~	000	1		
logCe	2,041346	1,865063	1,64002	1,281	0,956	0,677		
logq	1,494308	1,531624	1,57231	1,505	1,392	1,142		

Πίνακες 5.2.1-30 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 1,8 N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-30 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 1,8 N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο						X
	C 1	C 2	C 3	C 4	C 5	C6
C_0 (t=0)	14,16	11,32	8,03	4,97	3,34	1,49
Ce (t=168)	3,00	1,63	1,11	0,44	0,32	0,22
Ce	3,00	1,63	1,11	0,44	0,32	0,22
q	11,17	9,70	6,92	4,52	3,02	1,27
logCe	0,4769	0,2115	0,044	-0,35	-0,5	-0,67
logq	1,0479	0,9866	0,84	0,655	0,481	0,105

Πίνακες 5.2.1-31 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 1,8 N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

	and the second s	
πριονίδι : προκατερ	πεύκου γασμένο	1
logK _F	0,7843	
1/n	0,752	
K _F	6,0862	1
An M	1,3297	2
R ²	0,893	
< " < /	0,075	

Σχήμα 5.2.1-31 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 1,8 N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο						
	C 1	C 2	C 3	C 4	C 5	C 6	
C_0 (t=0)	13,41	10,51	7,67	4,95	3,24	1,56	
Ce (t=168)	3,25	1,71	1,00	0,47	0,37	0,17	
Ce	3,25	1,71	1,00	0,47	0,37	0,17	
q	10,16	8,80	6,67	4,48	2,86	1,38	
				1	000	1	
logCe	0,5122	0,233	-0	-0,33	-0,43	-0,77	
logq	1,0069	0,9446	0,824	0,651	0,457	0,141	

Πίνακες 5.2.1-32 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6 N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-32 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6 N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο						
	C 1	C 2	C 3	C 4	C 5	C6
C_0 (t=0)	13,92	10,35	7,65	4,59	3,11	1,46
Ce (t=168)	3,43	1,92	1,32	0,65	0,44	0,27
Ce	3,43	1,92	1,32	0,65	0,44	0,27
q	10,49	8,44	6,34	3,94	2,67	1,18
logCe	0,5357	0,2823	0,119	-0,19	-0,36	-0,57
logq	1,0207	0,9262	0,802	0,596	0,426	0,073

Πίνακες 5.2.1-33 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6 N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

	and the second second	_
πριονίδι πεύκου προκατεργασμένο		
logK _F	0,6652	
1/n	0,8247	
K _F	4,6259	0
<u>\</u> 1	1,2126	4
R ²	0,941	

Σχήμα 5.2.1-33 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6 N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο						
	C 1	C 2	C 3	C 4	C 5	C 6
C_0 (t=0)	11,64	8,33	6,30	4,02	2,45	1,10
Ce (t=168)	3,10	2,09	1,19	0,56	0,33	0,10
Ce	3,10	2,09	1,19	0,56	0,33	0,10
q	8,54	6,25	5,10	3,45	2,13	1,00
logCe	0,4916	0,3196	0,077	-0,25	-0,48	-1
logq	0,9313	0,7956	0,708	0,538	0,328	0,001

Πίνακες 5.2.1-34 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6 N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

πριονίδι : προκατερ	πεύκου γασμένο
logK _F	0,6368
1/n	0,6144
K _F	4,3336
An N	1,6277
R ²	0,990

Σχήμα 5.2.1-34 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6 N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

	πριονίδι πεύκου προκατεργασμένο					VA
	C 1	C 2	C 3	C 4	C 5	C 6
C_0 (t=0)	14,04	12,09	8,55	5,22	3,55	1,68
Ce (t=168)	1,25	0,76	0,46	0,23	0,19	0,13
Ce	1,25	0,76	0,46	0,23	0,19	0,13
q	12,79	11,33	8,09	4,99	3,36	1,55
logCe	0,0964	-0,1166	-0,34	-0,64	-0,72	-0,89
logq	1,1069	1,0541	0,908	0,698	0,527	0,19

Πίνακες 5.2.1-35 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 3,6 N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

πριονίδι προκατε	πεύκου ργασμένο
logK _F	1,1264
1/n	0,8742
K _F	13,38
An S	1,1439
R ²	0,900

Σχήμα 5.2.1-35 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6 N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο						
	C 1	C 2	C 3	C 4	C 5	C 6
C_0 (t=0)	13,26	10,55	7,72	4,62	3,34	1,53
Ce (t=168)	1,95	1,27	0,65	0,35	0,28	0,18
Ce	1,95	1,27	0,65	0,35	0,28	0,18
q	11,32	9,29	7,07	4,27	3,05	1,36
logCe	0,289	0,1023	-0,19	-0,46	-0,55	-0,75
logq	1,0537	0,9679	0,849	0,631	0,485	0,132

Πίνακες 5.2.1-36 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6 N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

	10 million
πριονίδι προκατε	ι πεύκου ργασμένο
logK _F	0,8979
1/n 🔨	0,8225
K _F	7,9053
n	1,2158
R ²	0,910

Σχήμα 5.2.1-36 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6 N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

πριονίδι πεύκου προκατεργασμένο							
	C 1	C 2	C 3	C 4	C 5	C 6	
C_0 (t=0)	13,72	10,93	8,07	5,11	3,37	1,63	
Ce (t=168)	1,65	0,94	0,58	0,31	0,26	0,15	
				\square	11/1	1	
Ce	1,65	0,94	0,58	0,31	0,26	0,15	
q	12,07	9,99	7,49	4,81	3,11	1,48	
logCe	0,2167	-0,0272	-0,23	-0,51	-0,58	-0,82	
logq	1,0817	0,9996	0,874	0,682	0,492	0,171	

Πίνακες 5.2.1-37 Πειραματικά δεδομένα και υπολογισμοί παραμέτρων για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6 N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.2.1-37 Λογάριθμος της ποσότητας που προσροφάται ανά μονάδα προσροφητικού, συναρτήσει του λογάριθμου της συγκέντρωσης του διαλύματος σε ισορροπία για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6 N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

5.2.2. Συγκεντρωτικοί Πίνακες Ισοθέρμων

Παρακάτω παρουσιάζονται οι συγκεντρωτικοί πίνακες με τις τιμές των παραμέτρων της εξίσωσης Freundlich ανάλογα με τις συνθήκες προκατεργασίας του προσροφητικού μέσου και τα διαγράμματα της παραμέτρου K_F, συναρτήσει του χρόνου προκατεργασίας του κάθε προσροφητικού υλικού, t_{pretreatment}.

H ₂ SO ₄ 0,1125N στους 100°C					
t _{προκατεργασίας} (h)	K _F				
0	2,9782	1,3569			
1,17	0,3561	1,0112			
1,67	5,2164	2,7289			
2,67	2,2090	1,5708			
3,67	0,5406	1,0988			
4,67	8,6022	3,2799			
5,67	6,8870	2,6387			
		\geq			
n _{average}	11.20	1,9550			
STDEV	111	0,9084			

Πίνακας 5.2.2-1 Συγκεντρωτικός πίνακας σταθερών K_F και n της ισόθερμης Freundlich για πριονίδι πεύκου προκατεργασμένο με H_2SO_4 0,1125N στους 100°C

συμπεριλαμβανομένου χρόνου προθέρμανσης 40 min

Σχήμα 5.2.2-1 Γραφική απεικόνιση της σταθεράς χωρητικότητας της προσρόφησης K_F , συναρτήσει του χρόνου προκατεργασίας για πριονίδι πεύκου προκατεργασμένο με H_2SO_4 0,1125N στους 100°C.

H ₂ SO ₄ 0,225N στους 100°C					
t _{προκατεργασίας} (h)	K _F	n			
0	2,9782	1,3569			
1,17	3,9275	2,0467			
1,67	3,6572	1,9444			
2,67	7,4275	2,8997			
3,67	5,8876	2,3689			
4,67	3,4314	2,1845			
5,67	4,2584	2,0771			
	IA				
n _{average}	~	2,1255			
STDEV		0,4644			

Πίνακας 5.2.2-2 Συγκεντρωτικός πίνακας σταθερών K_F της ισόθερμης Freundlich για πριονίδι πεύκου προκατεργασμένο με H_2SO_4 0,225N στους 100°C .

Σχήμα 5.2.2-2 Γραφική απεικόνιση της σταθεράς χωρητικότητας της προσρόφησης K_F , συναρτήσει του χρόνου προκατεργασίας για πριονίδι πεύκου προκατεργασμένο με H_2SO_4 0,225N στους 100°C.

	5				
H ₂ SO ₄ 0,45N στους 100°C					
t _{προκατεργασίας} (h)	K _F	n			
0	2,9782	1,3569			
1,17	3,3462	1,7802			
1,67	1,4710	1,2783			
2,67	3,5598	1,8597			
3,67	9,8161	3,1704			
4,67	3,8080	1,9367			
5,67	8,6312	3,1813			
	17				
n _{average}	~	2,0805			
STDEV		0,7881			

Πίνακας 5.2.2-3 Συγκεντρωτικός πίνακας σταθερών K_F της ισόθερμης Freundlich για πριονίδι πεύκου προκατεργασμένο με H_2SO_4 0,45N στους 100°C .

Σχήμα 5.2.2-3 Γραφική απεικόνιση της σταθεράς χωρητικότητας της προσρόφησης K_F , συναρτήσει του χρόνου προκατεργασίας για πριονίδι πεύκου προκατεργασμένο με H_2SO_4 0,45N στους 100°C.

H ₂ SO ₄ 0,9N στους 100°C					
t _{προκατεργασίας} (h)	K _F	n			
0	2,9782	1,3569			
1,17	3,9740	1,8808			
1,67	6,1871	2,3003			
2,67	3,9180	1,9309			
3,67	7,0856	2,6270			
4,67	7,0856	2,6270			
5,67	5,8949	2,4106			
	IA				
n _{average}	~	2,1619			
STDEV		0,4644			

Πίνακας 5.2.2-4 Συγκεντρωτικός πίνακας σταθερών K_F της ισόθερμης Freundlich για πριονίδι πεύκου προκατεργασμένο με H_2SO_4 0,9N στους 100°C.

Σχήμα 5.2.2-4 Γραφική απεικόνιση της σταθεράς χωρητικότητας της προσρόφησης K_F , συναρτήσει του χρόνου προκατεργασίας για πριονίδι πεύκου προκατεργασμένο με H_2SO_4 0,9N στους 100°C.

	, J				
H ₂ SO ₄ 1,8N στους 100°C					
t _{προκατεργασίας} (h)	K _F	n			
0	2,9782	1,3569			
1,17	4,3398	2,1407			
1,67	6,0805	2,4607			
2,67	11,4347	4,2768			
3,67	8,9350	3,2177			
4,67	12,6869	4,1951			
5,67	6,0862	1,3297			
	12				
n _{average}	~	2,9413			
STDEV		1,1674			

Πίνακας 5.2.2-5 Συγκεντρωτικός πίνακας σταθερών K_F της ισόθερμης Freundlich για πριονίδι πεύκου προκατεργασμένο με H_2SO_4 1,8N στους 100°C.

Σχήμα 5.2.2-5 Γραφική απεικόνιση της σταθεράς χωρητικότητας της προσρόφησης K_F , συναρτήσει του χρόνου προκατεργασίας για πριονίδι πεύκου προκατεργασμένο με H_2SO_4 1,8N στους 100°C.

	, J				
H ₂ SO ₄ 3,6N στους 100°C					
t _{προκατεργασίας} (h)	K _F	n			
0	2,9782	1,3569			
1,17	5,7353	1,4787			
1,67	4,6259	1,2126			
2,67	4,3336	1,6277			
3,67	13,38	1,1439			
4,67	7,9053	1,2158			
5,67	9,9182	1,1691			
	17				
n _{average}	~	1,3150			
STDEV		0,1813			

Πίνακας 5.2.2-6 Συγκεντρωτικός πίνακας σταθερών K_F της ισόθερμης Freundlich για πριονίδι πεύκου προκατεργασμένο με H_2SO_4 3,6N στους 100°C.

Σχήμα 5.2.2-6 Γραφική απεικόνιση της σταθεράς χωρητικότητας της προσρόφησης K_F , συναρτήσει του χρόνου προκατεργασίας για πριονίδι πεύκου προκατεργασμένο με H_2SO_4 3,6N στους 100°C.

5.2.3 Συζήτηση αποτελεσμάτων ισόθερμων

Για να διερευνηθεί η επίδραση της προκατεργασίας του πριονιδιού πεύκου στην προσροφητική του ικανότητα, γίνεται σύγκριση των τιμών των παραμέτρων της ισόθερμης Freundlich K_F και n, που προσδιορίζονται για κάθε συγκεκριμένο σύνολο συνθηκών προκατεργασίας, με εκείνες του απροκατέργαστου υλικού. Εξετάζεται η μεταβολή των τιμών των K_F και n ως προς τον χρόνο της προκατεργασίας.

Η προκατεργασία του πριονιδίου πεύκου με H_2SO_4 έχει πραγματοποιηθεί για 0,5 έως 5 ώρες προκατεργασίας στους 100°C. Η βέλτιστη καμπύλη που περιγράφει την μεταβολή των πειραματικών τιμών της παραμέτρου της χωρητικότητας K_F της εξίσωσης Freundlich συναρτήσει του χρόνου προκατεργασίας είναι η ευθεία (βλ. Σχήματα 5.2.2-1 έως 5.2.2-6, όπου το τετράγωνο του συντελεστή συσχέτισης είναι R²=0,3168 έως 0,8365).. Η τιμή της σταθεράς K_F αυξάνεται αυξανομένου του χρόνου προκατεργασίας, φτάνοντας σε τιμή σχεδόν τετραπλάσια της τιμής της σταθεράς K_F του απροκατέργαστου υλικού (βλ. Πίνακες 5.2.2-1 έως 5.2.2-6). Επομένως με την προκατεργασίας t_{pretreatment} (βλπ. Σχήματα 5.2.2-1 έως 5.2.2-6). Για 0,225N H₂SO₄ η παράμετρος K_F δεν έχει στατιστικά σημαντική συσχέτιση ως προς τον χρόνο προκατεργασίας t_{pretreatment} πιθανά λόγω ιδιαίτερα αυξημένων πειραματικών σφαλμάτων (βλ. Σχήμα 5.2.2-2, όπου R²=0,0501). Η αύξηση της συγκέντρωσης του θεϊκού οξέος ευνοεί την αύξηση της τιμή της σταθεράς K_F αυξανομένου του χρόνου προκατεργασίας.

Η σταθερά έντασης n της ισόθερμης Freundlich για όλους τους χρόνους προκατεργασίας κυμαίνεται από 1,3-2,9 με μέσο όρο n=2,1και τυπική απόκλιση 0,5.

5.4. Παρουσίαση Αποτελεσμάτων Κινητικής

Για καθένα από τα υλικά που χρησιμοποιήθηκαν ως προσροφητικά μέσα (διαφορετικές συνθήκες προκατεργασίας), συντάσσονται πίνακες Excel με την επεξεργασία των πειραματικών αποτελεσμάτων και κατασκευάζονται γραφικές παραστάσεις (α) των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου προσρόφησης t, όπως αυτές προκύπτουν από την προαναφερθείσα επεξεργασία, (β) του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή προσρόφησης t μείον τη συγκέντρωση σε άπειρο χρόνο t_∞, ln(C- C_∞), συναρτήσει του χρόνου προσρόφησης t και (γ) του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης σε χρονική στιγμή τηροσρόφησης t και (γ) του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης σε χρονική στιγμή τηροσρόφησης t και (γ) του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης σε χρονική στιγμή τηροσρόφησης t και (γ) του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης σε χρονική στιγμή στιγμή τηροσρόφησης t και τη συγκέντρωση σε άπειρο χρόνο t_∞ προς τη διαφορά αρχικής συγκέντρωσης του διαλύματος μείον τη συγκέντρωση σε άπειρο χρόνο t_∞, ln[(C- C_∞)/(C₀- C_∞)].

Για μια από τις σειρές συνθηκών προκατεργασίας του πριονιδίου ενδεικτικά συντάσσεται συγκεντρωτικός πίνακας που περιλαμβάνει (i) τις αρχικές πειραματικές συγκεντρώσεις των διαλυμάτων ανά αραίωση, C_o, (ii) τις τιμές των σταθερών ταχύτητας προσρόφησης, k, που προκύπτουν για κάθε προκατεργασμένο υλικό για τις έξι αραιώσεις, (iii) μέσους όρους σταθερών ταχύτητας προσρόφησης, k, ανά συγκεκριμένες συνθήκες προκατεργασίας, k_{AVERAGE}, (iv) μέσους όρους σταθερών ταχύτητας προσρόφησης, k, ανά αραίωση, k_{average}.

Βάσει των τιμών του συγκεντρωτικού πίνακα κατασκευάζονται διαγράμματα (α) μέσου όρου των σταθερών ταχύτητας προσρόφησης, k, ανά συγκεκριμένες συνθήκες προκατεργασίας, k_{AVERAGE}, συναρτήσει του χρόνου προκατεργασίας, t_{pretreatment}, (β) μέσου όρου των σταθερών ταχύτητας προσρόφησης, k, ανά αραίωση, k_{average}, συναρτήσει της αρχικής συγκέντρωσης του διαλύματος, C_o.

Στη συνέχεια παρατίθενται οι προαναφερθέντες πίνακες και διαγράμματα για όλα τα προσροφητικά υλικά που χρησιμοποιήθηκαν.

70

5.3.1. Αναλυτικοί Πίνακες Κινητικής

Πριονίδι πεύκου απροκατέργαστο												
	Πειραματικές τιμές				Θεωρητικές τιμές							
t									1900	111		
(min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l
0	13,7582	11,5817	7,25144	4,63593	4,91954	3,05323	11,7901	8,70915	5,01363	4,89128	3,10553	1,62102
5	10,2871	7,27475	4,05529	2,58067	3,4289	2,05527	10,9136	7,85184	4,39004	3,9236	2,56083	1,33127
10	9,77934	6,66156	3,41673	2,19751	3,00856	1,26376	10,1808	7,15113	3,88953	3,18143	2,12946	1,10112
15	9,23822	6,34669	3,11619	2,08327	1,48315	0,81505	9,568	6,57842	3,4878	2,61219	1,78784	0,91832
20	8,5821	6,01136	3,03902	1,91771	1,08978	0,58736	9,0556	6,11032	3,16535	2,17561	1,51729	0,77312
25	8,35456	5,53983	2,91111	1,82049	0,91902	0,42593	8,62714	5,72773	2,90655	1,84076	1,30303	0,65779
30	8,12858	5,249	2,71232	1,74541	0,92637	0,40571	8,26888	5,41502	2,69882	1,58395	1,13334	0,56618
35	7,96211	5,17969	2,65154	1,62942	0,91168	0,38223	7,96931	5,15944	2,53209	1,38697	0,99896	0,49342
40	7,67593	4,92157	2,44725	1,53564	0,835	0,38223	7,71881	4,95054	2,39827	1,2359	0,89254	0,43562
45	7,5787	4,71285	2,40486	1,42891	0,72689	0,35722	7,50936	4,7798	2,29086	1,12004	0,80826	0,38972
50	7,43491	4,63188	2,28999	1,36335	0,75196	0,36055	7,33422	4,64025	2,20465	1,03117	0,74152	0,35326
55	7,27942	4,64402	2,22563	1,1764	0,71261	0,33898	7,18777	4,52619	2,13545	0,96301	0,68866	0,32429
60	7,26542	4,42755	2,06927	0,94662	0,67883	0,33071	7,06531	4,43297	2,07991	0,91073	0,6468	0,30129
65	7,01684	4,41137	2,00136	0,87689	0,64524	0,31094	6,96292	4,35677	2,03533	0,87064	0,61365	0,28302
70	6,98054	4,31023	1,93163	0,84227	0,64171	0,30766	6,8773	4,29449	1,99955	0,83989	0,58739	0,2685
75	6,88588	4,33046	1,89188	0,80419	0,61009	0,28637	6,80571	4,24359	1,97083	0,8163	0,5666	0,25698
80	6,77871	4,20504	1,9854	0,77352	0,57342	0,2717	6,74584	4,20199	1,94778	0,79821	0,55013	0,24782
85	6,68357	4,10994	1,96348	0,77712	0,54911	0,25385	6,69579	4,16799	1,92928	0,78434	0,53709	0,24055
90	6,59795	4,18683	1,9376	0,76992	0,54218	0,2393	6,65393	4,14019	1,91443	0,7737	0,52677	0,23477
95	6,57173	4,09779	1,91373	0,75375	0,4974	0,2168	6,61893	4,11748	1,90251	0,76554	0,51859	0,23018

Πίνακας 5.3.1-1 Πειραματικά αποτελέσματα και επεξεργασία αυτών για απροκατέργαστο πριονίδι πεύκου.

Πίνακας 5.3.1-2 Πειραματικά αποτελέσματα και επεξεργασία αυτών για απροκατέργαστο πριονίδι πεύκου.

Πριονίδι πεύκου απροκατέργαστο											
C_{e} (mg/L)	6,4403	4,01584	1,85404	0,73868	0,48745	0,21246					
C _o (mg/L)	11,7901	8,7092	5,0136	4,8913	3,1055	1,6210					
k (min ⁻¹)	0,0358	0,0403	0,0440	0,0531	0,0467	0,0461					
sum	4,94591	8,98685	5,55809	5,56053	21,1986	15,9578					
n-p	18	18	18	18	18	18					
s	0,52419	0,70659	0,55568	0,5558	1,08522	0,94156					
Πριονίδι πεύκου απροκατέργαστο											
--------------------------------	----------	----------	----------	----------	----------	----------	--	--	--	--	--
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4					
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l					
0	1,99032	2,02364	1,68592	1,36027	1,48887	1,04408					
5	1,34724	1,18139	0,78903	0,61085	1,0789	0,61129					
10	1,20568	0,97294	0,44641	0,37764	0,9247	0,05003					
15	1,02888	0,84624	0,23282	0,29609	-0,00432	-0,50653					
20	0,76165	0,69091	0,16973	0,16469	-0,50695	-0,98111					
25	0,64933	0,42133	0,0555	0,07864	-0,84033	-1,54429					
30	0,52371	0,20958	-0,15282	0,00671	-0,82344	-1,64381					
35	0,4199	0,15173	-0,22628	-0,1157	-0,85749	-1,77331					
40	0,21159	-0,09901	-0,52221	-0,22694	-1,05687	-1,77331					
45	0,12963	-0,36095	-0,59635	-0,37072	-1,42947	-1,93267					
50	-0,0054	-0,48444	-0,83023	-0,47052	-1,3299	-1,90996					
55	-0,17539	-0,46492	-0,98995	-0,82617	-1,49096	-2,06739					
60	-0,19222	-0,88743	-1,53606	-1,57047	-1,65352	-2,13496					
65	-0,55071	-0,92752	-1,91516	-1,97896	-1,84654	-2,31791					
70	-0,61573	-1,22283	-2,55629	-2,26734	-1,86913	-2,35184					
75	-0,80838	-1,15638	-3,27445	-2,72551	-2,09857	-2,60498					
80	-1,0835	-1,66494	-2,02978	-3,35686	-2,45385	-2,82624					
85	-1,41357	-2,36341	-2,21235	-3,25852	-2,78622	-3,18488					
90	-1,84734	-1,76613	-2,48218	-3,46588	-2,90536	-3,61782					
95	-2,02925	-2,50157	-2,81852	-4,19471	-4,61038	-5,44081					
		10	1	11							
Ce	6,4403	4,01584	1,85404	0,73868	0,48745	0,21246					
Co	11,7901	8,70915	5,01363	4,89128	3,10553	1,62102					
ln(Co-Ce)	1,6771	1,5461	1,1504	1,4237	0,9624	0,3426					
k	0,0358	0,0403	0,0440	0,0531	0,0467	0,0461					
R	-0,9860	-0,9840	-0,9594	-0,9677	-0,9528	-0,9311					
R^2	0,9721	0,9683	0,9204	0,9364	0,9078	0,8670					

Πίνακας 5.3.1-3 Πειραματικά αποτελέσματα και επεξεργασία αυτών για απροκατέργαστο πριονίδι πεύκου.

		Πριονίδι π	εύκου απροκ	<i>κατέργαστο</i>		~
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l
0	0,31326	0,4775	0,53548	-0,06346	0,52643	0,70151
5	-0,32981	-0,36475	-0,36142	-0,81289	0,11646	0,26872
10	-0,47137	-0,5732	-0,70403	-1,0461	-0,03774	-0,29254
15	-0,64818	-0,6999	-0,91762	-1,12765	-0,96676	-0,84909
20	-0,91541	-0,85523	-0,98072	-1,25904	-1,46939	-1,32368
25	-1,02772	-1,12481	-1,09494	-1,34509	-1,80277	-1,88686
30	-1,15335	-1,33656	-1,30326	-1,41703	-1,78588	-1,98637
35	-1,25715	-1,39441	-1,37672	-1,53944	-1,81994	-2,11588
40	-1,46547	-1,64515	-1,67265	-1,65068	-2,01931	-2,11588
45	-1,54743	-1,90709	-1,74679	-1,79446	-2,39191	-2,27524
50	-1,68245	-2,03057	-1,98068	-1,89426	-2,29234	-2,25252
55	-1,85245	-2,01106	-2,14039	-2,2499	-2,4534	-2,40995
60	-1,86928	-2,43357	-2,6865	-2,99421	-2,61596	-2,47753
65	-2,22776	-2,47366	-3,0656	-3,4027	-2,80898	-2,66048
70	-2,29278	-2,76897	-3,70673	-3,69107	-2,83157	-2,69441
75	-2,48544	-2,70251	-4,4249	-4,14924	-3,06101	-2,94754
80	-2,76055	-3,21108	-3,18023	-4,7806	-3,41629	-3,1688
85	-3,09062	-3,90955	-3,36279	-4,68226	-3,74867	-3,52745
90	-3,52439	-3,31227	-3,63262	-4,88961	-3,8678	-3,96039
95	-3,7063	-4,04771	-3,96896	-5,61845	-5,57282	-5,78337
		~	1111	110		
Ce	6,4403	4,01584	1,85404	0,73868	0,48745	0,21246
Со	11,7901	8,70915	5,01363	4,89128	3,10553	1,62102
k	0,0358	0,0403	0,0440	0,0531	0,0467	0,0461

Πίνακας 5.3.1-4 Πειραματικά αποτελέσματα και επεξεργασία αυτών για απροκατέργαστο πριονίδι πεύκου.

Σχήμα 5.3.1-1 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για το απροκατέργαστο πριονίδι πεύκου.

Σχήμα 5.3.1-2 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , ln(C- C_{∞}), συναρτήσει του χρόνου t, για το απροκατέργαστο πριονίδι πεύκου.

Σχήμα 5.3.1-3 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_∞) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_∞) για το απροκατέργαστο πριονίδι πεύκου.

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H ₂ SO ₄ , για 0,5 h (χρόνος προθέρμανσης 40 min).													
			Πειραματ	τικές τιμές			Θεωρητικές τιμές							
t								1	5	~	/			
(min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l		
0	12 8342	9 89063	8 60415	4 61772	2 5746	1 46763	9 61257	7 40435	7 34467	2 66806	1 31905	0 50901		
5	8.51092	6.08927	5.31229	2.63736	1.3307	0.53181	8.80549	6.5845	6.27396	2,2988	1.11541	0.45389		
10	7,93176	5,69248	4,72297	2,11329	0,94662	0,42931	8,13224	5,91074	5,41529	1,99551	0,95324	0,40728		
15	7,50651	5,11047	4,17469	1,46569	0,74299	0,34063	7,57064	5,35702	4,72666	1,74641	0,82411	0,36786		
20	6,52815	4,49026	3,7474	1,39995	0,72689	0,288	7,10217	4,90197	4,1744	1,54182	0,72128	0,33453		
25	6,53468	4,31428	3,44514	1,22569	0,63819	0,2717	6,71139	4,528	3,7315	1,37378	0,63939	0,30633		
30	6,35313	4,0067	3,27866	1,19344	0,56994	0,24738	6,3854	4,22067	3,37631	1,23576	0,57418	0,28249		
35	6,26965	3,76969	3,17712	0,83681	0,46664	0,24253	6,11348	3,9681	3,09146	1,12241	0,52226	0,26232		
40	5,75878	3,7109	3,02074	0,90434	0,43607	0,25061	5,88665	3,76053	2,86302	1,02931	0,48091	0,24527		
45	5,6243	3,59125	2,66977	0,90068	0,42424	0,22321	5,69744	3,58994	2,67981	0,95284	0,44798	0,23084		
50	5,52543	3,53241	2,83805	0,91168	0,3906	0,2717	5,5396	3,44975	2,53289	0,89003	0,42176	0,21864		
55	5,32251	3,44108	2,59079	0,855	0,41918	0,212	5,40794	3,33454	2,41506	0,83845	0,40088	0,20833		
60	5,35931	3,32333	2,46946	0,78613	0,34892	0,1738	5,29811	3,23986	2,32056	0,79608	0,38425	0,1996		
65	5,2286	3,21367	2,31817	0,80058	0,34229	0,17855	5,20649	3,16205	2,24478	0,76128	0,37101	0,19222		
70	5,18376	3,19336	2,33832	0,78794	0,35556	0,15487	5,13007	3,0981	2,184	0,7327	0,36047	0,18598		
75	5,20821	3,09588	2,37057	0,74479	0,35058	0,16274	5,06632	3,04555	2,13526	0,70923	0,35207	0,1807		
80	4,84249	3,03699	2,04128	0,78613	0,38223	0,212	5,01314	3,00236	2,09618	0,68995	0,34538	0,17624		
85	5,04135	2,96389	1,97743	0,7144	0,38558	0,18014	4,96878	2,96687	2,06483	0,67411	0,34006	0,17247		
90	4,99666	2,94765	2,05327	0,6877	0,34892	0,2184	4,93178	2,9377	2,03969	0,66111	0,33582	0,16927		
95	4,91345	2,86037	1,99537	0,61359	0,32576	0,19125	4,90091	2,91373	2,01953	0,65043	0,33244	0,16657		

Πίνακας 5.3.1-5 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-6 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονίδι	Πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,1125N H ₂ SO ₄ , για 0,5 h											
C_{e} (mg/L)	4,74564	2,80317	1,93788	0,60132	0,31925	0,15177						
C_{o} (mg/L)	9,6126	7,4044	7,3447	2,6681	1,3191	0,5090						
k (min ⁻¹)	0,0363	0,0392	0,0441	0,0394	0,0456	0,0335						
sum	10,9914	6,88164	3,84342	18,2923	6,25128	4,31949						
n-p	29	29	24	24	24	24						
S	0,61564	0,48713	0,40018	0,87303	0,51036	0,42424						

Πίνακας 5.3.1-7 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H ₂ SO ₄ , για 0,5 h										
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4				
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l				
0	2,09045	1,95833	1,89706	1,39038	0,81331	0,27449				
5	1,32582	1,1897	1,21622	0,71101	0,01139	-0,96747				
10	1,1588	1,06102	1,02428	0,41341	-0,4662	-1,28181				
15	1,01554	0,83608	0,80505	-0,14575	-0,85861	-1,66673				
20	0,57802	0,523	0,59306	-0,22486	-0,89736	-1,99341				
25	0,58168	0,41285	0,4103	-0,47101	-1,14274	-2,12087				
30	0,47467	0,18526	0,29325	-0,52405	-1,38353	-2,34753				
35	0,42134	-0,03405	0,2145	-1,44607	-1,91466	-2,39954				
40	0,01306	-0,0968	0,07961	-1,19395	-2,14708	-2,31427				
45	-0,12936	-0,23815	-0,31213	-1,20612	-2,25387	-2,63885				
50	-0,24873	-0,31575	-0,10517	-1,17003	-2,64008	-2,12087				
55	-0,55014	-0,44955	-0,42631	-1,37167	-2,30328	-2,80968				
60	-0,48829	-0,65361	-0,63189	-1,68841	-3,51744	-3,81527				
65	-0,72782	-0,89037	-0,96682	-1,61317	-3,77032	-3,62002				
70	-0,82526	-0,94111	-0,9152	-1,6787	-3,31548	-5,7772				
75	-0,77095	-1,22856	-0,83774	-1,94166	-3,46303	-4,51228				
80	-2,33459	-1,4532	-2,26912	-1,68841	-2,76483	-2,80968				
85	-1,21838	-1,82806	-3,23023	-2,1797	-2,71308	-3,56252				
90	-1,38222	-1,93459	-2,15942	-2,44898	-3,51744	-2,70859				
95	-1,7849	-2,86107	-2,85611	-4,40045	-5,03361	-3,23187				
	/	7 1	1	1						
Ce	4,74564	2,80317	1,93788	0,60132	0,31925	0,15177				
Со	9,6126	7,40435	7,34467	2,66806	1,31905	0,50901				
ln(Co-Ce)	1,5825	1,5263	1,6877	0,7260	-0,0002	-1,0294				
k	0,0363	0,0392	0,0441	0,0394	0,0456	0,0335				
R	-0,9617	-0,9805	-0,9530	-0,9231	-0,9297	-0,7611				
R^2	0,9248	0,9614	0,9082	0,8521	0,8643	0,5792				

Πίνακας 5.3.1-8 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l						
0	0,50799	0,43201	0,2094	0,66441	0,8135	1,30385						
5	-0,25664	-0,33661	-0,47143	-0,01497	0,01158	0,06189						
10	-0,42366	-0,46529	-0,66337	-0,31256	-0,46601	-0,25246						
15	-0,56692	-0,69023	-0,8826	-0,87172	-0,85842	-0,63737						
20	-1,00444	-1,00331	-1,0946	-0,95083	-0,89717	-0,96405						
25	-1,00079	-1,11347	-1,27736	-1,19698	-1,14255	-1,09151						
30	-1,10779	-1,34105	-1,3944	-1,25002	-1,38334	-1,31817						
35	-1,16112	-1,56036	-1,47316	-2,17204	-1,91447	-1,37018						
40	-1,5694	-1,62311	-1,60805	-1,91993	-2,14689	-1,28491						
45	-1,71182	-1,76447	-1,99978	-1,9321	-2,25368	-1,60949						
50	-1,8312	-1,84206	-1,79282	-1,896	-2,63989	-1,09151						
55	-2,1326	-1,97586	-2,11397	-2,09764	-2,30309	-1,78033						
60	-2,07075	-2,17992	-2,31955	-2,41438	-3,51725	-2,78592						
65	-2,31028	-2,41668	-2,65447	-2,33914	-3,77013	-2,59066						
70	-2,40772	-2,46742	-2,60286	-2,40467	-3,31529	-4,74785						
75	-2,35341	-2,75488	-2,5254	-2,66763	-3,46284	-3,48292						
80	-3,91706	-2,97951	-3,95678	-2,41438	-2,76464	-1,78033						
85	-2,80085	-3,35438	-4,91788	-2,90568	-2,71288	-2,53316						
90	-2,96468	-3,4609	-3,84707	-3,17495	-3,51725	-1,67923						
95	-3,36736	-4,38738	-4,54376	-5,12642	-5,03342	-2,20252						
	1	× ~		1								
Ce	4,74564	2,80317	1,93788	0,60132	0,31925	0,15177						
Co	9,61257	7,40435	7,34467	2,66806	1,31905	0,50901						
k	0,0363	0,0392	0,0441	0,0394	0,0456	0,0335						

Σχήμα 5.3.1-4 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H_2SO_4 , για 0,5

Σχήμα 5.3.1-5 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , ln(C- C_{∞}), συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 0,5

Σχήμα 5.3.1-6 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_∞) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_∞) για πριονίδι πεύκου προκατέργασμενο στους 100°C, με 0,1125N H₂SO₄, για 0,5 h

Πριονί	Πριονίοι πεύκου προκατεργασμένο στους 100 C, με 0,1125Ν H ₂ SO ₄ , γία 1 n (χρονός προθερμανσής 40 min).												
			Πειραματ	ικές τιμές			Θεωρητικές τιμές						
t								2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2		
(min)	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4	
()	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l	
0	13,0996	9,19316	7,06011	4,47812	2,92329	1,44826	11,5009	7,34373	4,96574	2,98439	1,57147	1,08528	
5	10,2213	6,54121	4,53881	4,12208	1,2733	0,80781	10,3952	6,36165	4,25091	2,52944	1,35064	0,90994	
10	8,67625	5,30208	3,76767	1,91373	0,98358	0,51974	9,46542	5,57546	3,68588	2,16768	1,16916	0,76575	
15	7,87142	4,78373	3,0776	1,86806	0,83863	0,41412	8,68356	4,94608	3,23926	1,88002	1,02003	0,64717	
20	7,4468	3,96621	2,6799	1,48195	0,75375	0,3906	8,02609	4,44224	2,88623	1,65129	0,89746	0,54966	
25	6,95793	3,77577	2,4634	1,24662	0,63995	0,38223	7,47323	4,0389	2,60718	1,4694	0,79674	0,46947	
30	6,75651	3,59936	2,34839	1,11043	0,63643	0,36888	7,00832	3,71601	2,38661	1,32478	0,71396	0,40353	
35	6,61327	3,43499	2,1153	1,03931	0,62588	0,3539	6,61739	3,45752	2,21226	1,20978	0,64594	0,3493	
40	6,37892	3,25632	1,97544	1,02628	0,59434	0,33567	6,28865	3,25059	2,07445	1,11833	0,59003	0,30471	
45	6,13999	3,11213	1,94954	1,00954	0,55951	0,31259	6,01221	3,08493	1,96552	1,04562	0,54409	0,26803	
50	5,86277	2,8827	1,88989	1,00583	0,537	0,288	5,77975	2,95232	1,87942	0,9878	0,50633	0,23788	
55	5,85235	2,82994	1,86607	0,99099	0,5163	0,2717	5,58428	2,84616	1,81136	0,94182	0,4753	0,21307	
60	5,70697	2,83805	1,71388	0,9227	0,45473	0,24738	5,41991	2,76117	1,75756	0,90526	0,4498	0,19268	
65	5,52954	2,69814	1,67847	0,87141	0,431	0,23769	5,28169	2,69313	1,71504	0,87619	0,42885	0,17591	
70	5,22452	2,73259	1,67651	0,85682	0,44285	0,2152	5,16546	2,63867	1,68142	0,85308	0,41163	0,16212	
75	5,19802	2,688	1,65099	0,86959	0,42931	0,204	5,06772	2,59507	1,65486	0,8347	0,39747	0,15077	
80	5,14303	2,55033	1,65687	0,87872	-0,41749	0,18014	4,98553	2,56016	1,63385	0,82008	0,38584	0,14145	
85	4,91954	2,54426	1,64118	0,81686	0,40067	0,14701	4,91642	2,53222	1,61726	0,80846	0,37628	0,13378	
90	4,88506	2,49573	1,61767	0,79696	0,37555	0,12044	4,85831	2,50985	1,60413	0,79922	0,36843	0,12747	
95	4,64402	2,46946	1,58637	0,77892	0,33898	0,10028	4,80944	2,49195	1,59376	0,79187	0,36197	0,12228	

Πίνακας 5.3.1-9 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-10 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Πριονίδι	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H_2SO_4 , για 1 h											
C_{e} (mg/L)	4,55114	2,42007	1,55464	0,76335	0,3322	0,09827						
C_{o} (mg/L)	11,5009	7,3437	4,9657	2,9844	1,5715	1,0853						
k (min ⁻¹)	0,0347	0,0445	0,0470	0,0458	0,0392	0,0391						
sum	4,85343	3,89391	4,59397	20,8165	4,69221	4,36778						
n-p	29	29	24	24	24	24						
S	0,4091	0,36643	0,43751	0,93132	0,44216	0,4266						

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H ₂ SO ₄ , για 1 h										
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4				
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l				
0	2,14575	1,91296	1,70574	1,31232	0,95208	0,3001				
5	1,73521	1,41613	1,09332	1,21156	-0,0607	-0,34314				
10	1,41709	1,05848	0,79436	0,1401	-0,42867	-0,864				
15	1,20005	0,86021	0,42066	0,09958	-0,68037	-1,15249				
20	1,06321	0,43576	0,11801	-0,33044	-0,86381	-1,22987				
25	0,87829	0,30432	-0,09567	-0,72718	-1,17846	-1,25891				
30	0,79089	0,16491	-0,23099	-1,0582	-1,18997	-1,30709				
35	0,72374	0,01481	-0,57865	-1,28747	-1,22527	-1,36402				
40	0,6031	-0,17883	-0,86561	-1,33586	-1,33887	-1,43801				
45	0,46301	-0,36809	-0,92912	-1,40162	-1,48143	-1,54031				
50	0,27127	-0,77084	-1,09289	-1,41683	-1,58574	-1,66215				
55	0,26329	-0,89193	-1,16658	-1,47998	-1,69227	-1,75199				
60	0,14482	-0,87232	-1,83736	-1,83664	-2,09943	-1,9031				
65	-0,02184	-1,27992	-2,08883	-2,225	-2,3147	-1,97025				
70	-0,39545	-1,16309	-2,10482	-2,37002	-2,20142	-2,14621				
75	-0,43559	-1,31704	-2,33983	-2,24204	-2,33196	-2,24684				
80	-0,52444	-2,03829	-2,28052	-2,15959	-2,46169	-2,50265				
85	-0,9986	-2,086	-2,44718	-2,92782	-2,68142	-3,02123				
90	-1,09686	-2,58154	-2,76422	-3,39274	-3,13845	-3,80895				
95	-2,37644	-3,00802	-3,45058	-4,16186	-4,99384	-6,21185				
	X		100	7						
Ce	4,55114	2,42007	1,55464	0,76335	0,3322	0,09827				
Со	11,5009	7,34373	4,96574	2,98439	1,57147	1,08528				
ln(Co-Ce)	1,9387	1,5941	1,2270	0,7980	0,2145	-0,0131				
k /	0,0347	0,0445	0,0470	0,0458	0,0392	0,0391				
R	-0,9612	-0,9882	-0,9891	-0,9645	-0,9298	-0,8545				
R^2	0,9238	0,9766	0,9783	0,9302	0,8645	0,7301				

Πίνακας 5.3.1-11 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-12 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H ₂ SO ₄ , για 1 h											
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4					
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l					
0	0,20704	0,31891	0,47871	0,51434	0,73756	0,31317					
5	-0,2035	-0,17792	-0,13372	0,41359	-0,27522	-0,33006					
10	-0,52162	-0,53557	-0,43268	-0,65788	-0,64319	-0,85092					
15	-0,73866	-0,73384	-0,80638	-0,69839	-0,89489	-1,13941					
20	-0,8755	-1,1583	-1,10902	-1,12842	-1,07833	-1,21679					
25	-1,06042	-1,28973	-1,32271	-1,52516	-1,39298	-1,24584					
30	-1,14782	-1,42914	-1,45802	-1,85618	-1,40449	-1,29401					
35	-1,21497	-1,57924	-1,80569	-2,08544	-1,43979	-1,35095					
40	-1,33561	-1,77289	-2,09265	-2,13384	-1,55339	-1,42493					
45	-1,4757	-1,96215	-2,15616	-2,1996	-1,69595	-1,52723					
50	-1,66744	-2,3649	-2,31992	-2,2148	-1,80026	-1,64907					
55	-1,67542	-2,48598	-2,39362	-2,27796	-1,90679	-1,73892					
60	-1,79389	-2,46637	-3,0644	-2,63462	-2,31395	-1,89002					
65	-1,96055	-2,87397	-3,31586	-3,02298	-2,52922	-1,95718					
70	-2,33416	-2,75715	-3,33186	-3,168	-2,41594	-2,13313					
75	-2,3743	-2,91109	-3,56686	-3,04001	-2,54648	-2,23376					
80	-2,46315	-3,63235	-3,50756	-2,95757	-2,67621	-2,48957					
85	-2,93731	-3,68005	-3,67421	-3,72579	-2,89594	-3,00816					
90	-3,03557	-4,17559	-3,99126	-4,19072	-3,35297	-3,79588					
95	-4,31515	-4,60207	-4,67761	-4,95984	-5,20836	-6,19877					
			1	1							
Ce	4,55114	2,42007	1,55464	0,76335	0,3322	0,09827					
Со	11,5009	-7,34373	4,96574	2,98439	1,57147	1,08528					
k	0,0347	0,0445	0,0470	0,0458	0,0392	0,0391					

Σχήμα 5.3.1-7 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H_2SO_4 , για 1 h

Σχήμα 5.3.1-8 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , $\ln(C - C_{\infty})$, συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 1 h

Σχήμα 5.3.1-9 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_∞) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_∞) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,1125N H₂SO₄, για 0,5 h

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H ₂ SO ₄ , για 0,5 h (χρόνος προθέρμανσης 40 min).												
			Πειραματ	ικές τιμές			Θεωρητικές τιμές						
t								2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2		
(min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	
0	14,2742	11,7102	7,96211	5,15728	3,54459	1,53564	11,9214	9,30615	6,3135	3,62592	2,49685	0,83289	
5	10,4312	7,80159	5,02509	2,65559	1,88393	0,73941	10,8493	8,22493	5,47679	3,06598	2,13286	0,70891	
10	9,71466	6,74321	4,44171	2,33227	1,59614	0,54045	9,96723	7,3628	4,80861	2,62655	1,83771	0,60989	
15	9,03913	6,30384	3,94596	2,13934	1,4096	0,50942	9,24141	6,67536	4,27502	2,28168	1,59838	0,53082	
20	8,31731	5,81072	3,45935	1,85219	1,27903	0,431	8,64419	6,12721	3,8489	2,01103	1,40431	0,46766	
25	7,88646	5,47612	3,41064	1,69223	1,18775	0,37722	8,15278	5,69014	3,50861	1,79862	1,24694	0,41722	
30	7,60048	5,29186	3,15884	1,58832	1,0748	0,36554	7,74843	5,34163	3,23687	1,63193	1,11934	0,37694	
35	7,44918	5,15728	3,02277	1,5084	1,04677	0,33402	7,41572	5,06374	3,01985	1,5011	1,01586	0,34477	
40	6,96471	4,78373	2,85023	1,39609	0,88237	0,32082	7,14196	4,84216	2,84655	1,39843	0,93196	0,31908	
45	6,85674	4,77158	2,7407	1,34606	0,84408	0,29127	6,9167	4,66548	2,70816	1,31786	0,86392	0,29856	
50	6,7676	4,58939	2,65356	1,25804	0,83681	0,27984	6,73135	4,5246	2,59764	1,25462	0,80875	0,28217	
55	6,6968	4,53678	2,60699	1,30771	0,77172	0,27495	6,57884	4,41226	2,50938	1,20499	0,76401	0,26909	
60	6,59577	4,40935	2,5119	1,22949	0,76633	0,29127	6,45335	4,32269	2,4389	1,16605	0,72774	0,25863	
65	6,29101	4,25359	2,40082	1,12547	0,7251	0,24092	6,3501	4,25127	2,38262	1,13548	0,69832	0,25029	
70	6,33597	4,20099	2,35847	1,10479	0,69125	0,23286	6,26513	4,19432	2,33767	1,11149	0,67447	0,24362	
75	6,25685	4,17671	2,33227	1,08978	0,68593	0,22964	6,19523	4,14891	2,30178	1,09267	0,65512	0,2383	
80	6,15905	4,06541	2,32824	1,07854	- 0,6877	0,22482	6,1377	4,1127	2,27311	1,07789	0,63944	0,23404	
85	6,10405	4,06541	2,23568	1,06919	0,63995	0,2652	6,09037	4,08383	2,25022	1,0663	0,62672	0,23065	
90	6,02817	4,05731	2,20354	1,05424	0,61535	0,22161	6,05143	4,06081	2,23194	1,0572	0,61641	0,22793	
95	5,99036	4,05124	2,20555	1,04491	0,58387	0,24576	6,01938	4,04245	2,21734	1,05005	0,60805	0,22577	

Πίνακας 5.3.1-13 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-14 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονίδι	Πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,225N H ₂ SO ₄ , για 0,5 h											
$C_e (mg/L)$	5,87055	3,97021	2,15947	1,02401	0,57219	0,21718						
C _o (mg/L)	11,9214	9,3062	6,3135	3,6259	2,4968	0,8329						
k (min ⁻¹)	0,0390	0,0453	0,0450	0,0485	0,0419	0,0450						
sum	6,10102	6,68318	3,35723	11,2746	15,4216	4,12301						
n-p	29	29	24	24	24	24						
S	0,45867	0,48006	0,37401	0,6854	0,8016	0,41448						

٦

Πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,225N H ₂ SO ₄ , για 0,5 h											
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4					
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l					
0	2,12867	2,0464	1,75831	1,41907	1,08937	0,27647					
5	1,51747	1,34322	1,05279	0,48955	0,27136	-0,64964					
10	1,34654	1,01993	0,82516	0,2687	0,02367	-1,12925					
15	1,15328	0,84742	0,58025	0,10915	-0,17745	-1,23017					
20	0,89476	0,61004	0,26228	-0,18853	-0,34695	-1,54263					
25	0,70107	0,40939	0,22408	-0,40313	-0,48522	-1,83232					
30	0,54808	0,27888	-0,00063	-0,57215	-0,68794	-1,90807					
35	0,45656	0,17149	-0,14698	-0,72487	-0,74532	-2,14695					
40	0,08998	-0,20639	-0,36996	-0,98864	-1,1706	-2,26685					
45	-0,0139	-0,22144	-0,5426	-1,13306	-1,30235	-2,60243					
50	-0,10865	-0,47937	-0,70503	-1,45229	-1,32945	-2,76997					
55	-0,19086	-0,56816	-0,80403	-1,25984	-1,61178	-2,85118					
60	-0,32129	-0,82296	-1,04289	-1,58239	-1,6392	-2,60243					
65	-0,86642	-1,26097	-1,42149	-2,28813	-1,87788	-3,74061					
70	-0,76483	-1,4663	-1,61443	-2,51601	-2,1281	-4,15522					
75	-0,95116	-1,57746	-1,75559	-2,72153	-2,17388	-4,38488					
80	-1,24306	-2,35184	-1,77918	-2,90893	-2,15839	-4,87398					
85	-1,45461	-2,35184	-2,5742	-3,09714	-2,69179	-3,03615					
90	-1,84756	-2,44073	-3,12196	-3,49896	-3,14297	-5,41886					
95	-2,12187	-2,513	-3,0774	-3,86809	-4,4501	-3,55495					
		10									
Ce	5,87055	3,97021	2,15947	1,02401	0,57219	0,21718					
Со	11,9214	9,30615	6,3135	3,62592	2,49685	0,83289					
ln(Co-Ce)	1,8002	1,6745	1,4241	0,9562	0,6547	-0,4850					
k	0,0390	0,0453	0,0450	0,0485	0,0419	0,0450					
R	-0,9920	-0,9907	-0,9863	-0,9899	-0,9643	-0,9188					
R^2	0,9840	0,9816	0,9729	0,9798	0,9300	0,8441					

Πίνακας 5.3.1-15 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,225N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-16 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,225N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H_2SO_4 , για 0,5 h										
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4				
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l				
0	0,32847	0,37194	0,33423	0,46283	0,43462	0,76145				
5	-0,28272	-0,33124	-0,37129	-0,4667	-0,38339	-0,16466				
10	-0,45365	-0,65454	-0,59892	-0,68754	-0,63108	-0,64427				
15	-0,64691	-0,82704	-0,84383	-0,8471	-0,83219	-0,74519				
20	-0,90543	-1,06443	-1,1618	-1,14477	-1,0017	-1,05765				
25	-1,09912	-1,26507	-1,2	-1,35938	-1,13996	-1,34734				
30	-1,25211	-1,39558	-1,42471	-1,52839	-1,34269	-1,42309				
35	-1,34364	-1,50298	-1,57106	-1,68111	-1,40007	-1,66197				
40	-1,71021	-1,88086	-1,79404	-1,94489	-1,82535	-1,78187				
45	-1,8141	-1,89591	-1,96668	-2,0893	-1,9571	-2,11745				
50	-1,90884	-2,15384	-2,12911	-2,40853	-1,9842	-2,28499				
55	-1,99106	-2,24262	-2,22811	-2,21609	-2,26653	-2,3662				
60	-2,12149	-2,49742	-2,46696	-2,53864	-2,29395	-2,11745				
65	-2,66661	-2,93544	-2,84557	-3,24437	-2,53263	-3,25563				
70	-2,56502	-3,14076	-3,03851	-3,47225	-2,78285	-3,67024				
75	-2,75136	-3,25193	-3,17967	-3,67778	-2,82863	-3,8999				
80	-3,04325	-4,0263	-3,20326	-3,86517	-2,81314	-4,389				
85	-3,2548	-4,0263	-3,99828	-4,05339	-3,34653	-2,55117				
90	-3,64776	-4,11519	-4,54604	-4,4552	-3,79772	-4,93388				
95	-3,92207	-4,18746	-4,50148	-4,82434	-5,10485	-3,06997				
			1							
Ce	5,87055	3,97021	2,15947	1,02401	0,57219	0,21718				
Co	11,9214	9,30615	6,3135	3,62592	2,49685	0,83289				
k	0,0390	0,0453	0,0450	0,0485	0,0419	0,0450				

Σχήμα 5.3.1-10 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 0,5

Σχήμα 5.3.1-11 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , ln(C- C_{∞}), συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 0,5

Σχήμα 5.3.1-12 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 0,5 h

Πίνακας 5.3.1-1	7 Πειραματικά	αποτελέσματα	και επεξεργασία	αυτών για	πριονίδι π	τεύκου πρ	οοκατεργασμένο
στους 100°C, με	0,225N H ₂ SO ₄ ,	για 1 h (χρόνος	ς προθέρμανσης 4	0 min).		L.	

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H ₂ SO ₄ , για 1 h (χρόνος προθέρμανσης 40 min).											
			Πειραματ	ικές τιμές				G	Θεωρητι	κές τιμές	0	
t								24	11	< >	5	
(min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l
0	13,4385	10,3325	7,75455	4,9236	2,20153	1,14241	10,6033	7,41574	5,43907	3,0269	1,40249	0,66085
5	9,4585	6,47388	4,50037	2,84211	1,07667	0,48029	9,64243	6,64798	4,81297	2,67748	1,18049	0,58475
10	8,18314	5,60779	3,88519	2,10929	0,92821	0,45303	8,84088	6,01038	4,29476	2,38528	1,00454	0,52021
15	7,94439	5,12268	3,44311	1,99537	0,7251	0,43607	8,17226	5,48086	3,86583	2,14095	0,86509	0,46546
20	7,10816	4,74525	3,15884	1,84624	0,69303	0,4158	7,61453	5,0411	3,51081	1,93663	0,75456	0,41902
25	6,68798	4,46396	2,87458	1,6451	0,66289	0,35556	7,14929	4,67589	3,21697	1,76577	0,66695	0,37963
30	6,58483	4,32439	2,74678	1,48897	0,63995	0,3906	6,76121	4,37259	2,97375	1,6229	0,59752	0,34621
35	6,20362	4,08565	2,63128	1,39416	0,49912	0,26682	6,43749	4,12071	2,77244	1,50343	0,54249	0,31787
40	5,97568	3,7474	2,61711	1,29814	0,49226	0,22803	6,16746	3,91152	2,60582	1,40353	0,49887	0,29383
45	5,92751	3,67643	2,58067	1,35374	0,43776	0,22161	5,9422	3,7378	2,46791	1,31998	0,4643	0,27344
50	5,8461	3,59531	2,34839	1,22189	0,53527	0,34892	5,75431	3,59352	2,35376	1,25012	0,4369	0,25615
55	5,74012	3,49183	2,29804	1,18208	0,38725	0,22803	5,59757	3,4737	2,25928	1,19171	0,41518	0,24148
60	5,66353	3,38424	2,38872	1,09353	0,40739	0,25061	5,46683	3,3742	2,18108	1,14286	0,39797	0,22903
65	5,50693	3,30912	2,16942	1,06171	0,43776	0,24576	5,35777	3,29156	2,11636	1,10201	0,38433	0,21848
70	5,37159	3,26444	2,1634	1,17073	0,39899	0,2136	5,2668	3,22293	2,06278	1,06785	0,37352	0,20952
75	5,345	3,20149	2,12932	1,12923	0,36888	0,2136	5,19091	3,16593	2,01844	1,03928	0,36495	0,20193
80	5,1858	3,17305	2,06727	1,13676	0,33898	0,25709	5,12761	3,1186	1,98174	1,0154	0,35815	0,19549
85	5,082	3,20555	2,08327	1,06919	0,33898	0,2088	5,07481	3,07929	1,95136	0,99542	0,35277	0,19002
90	5,00072	3,07963	1,86409	0,91168	0,3539	0,20081	5,03077	3,04664	1,92622	0,97872	0,3485	0,18539
95	4,90737	2,94562	1,84228	0,99099	0,36721	0,16274	4,99402	3,01953	1,9054	0,96476	0,34512	0,18146

Πίνακας 5.3.1-18 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H_2SO_4 , για 1 h										
C_{e} (mg/L)	4,80922	2,88671	1,80543	0,89344	0,3322	0,15949				
C_{o} (mg/L)	10,6033	7,4157	5,4391	3,0269	1,4025	0,6608				
k (min ⁻¹)	0,0363	0,0371	0,0378	0,0358	0,0465	0,0329				
sum	9,28477	9,02407	6,23344	27,9762	3,5389	3,06413				
n-p	29	29	24	24	24	24				
S	0,56583	0,55783	0,50963	1,07966	0,384	0,35731				

Πριονίδ	Πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,1125N H ₂ SO ₄ , για 1 h										
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4					
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l					
0	2,15516	2,00765	1,78324	1,3938	0,62558	-0,01722					
5	1,53671	1,27737	0,99137	0,66715	-0,29508	-1,13695					
10	1,21607	1,00103	0,73225	0,19544	-0,51749	-1,22575					
15	1,14268	0,80468	0,49328	0,09706	-0,93419	-1,28525					
20	0,83245	0,61979	0,30262	-0,04835	-1,01934	-1,36135					
25	0,63061	0,45568	0,06686	-0,28548	-1,10656	-1,62927					
30	0,57415	0,36303	-0,06044	-0,51831	-1,17846	-1,46485					
35	0,33246	0,18144	-0,19134	-0,69171	-1,79025	-2,23183					
40	0,15397	-0,15002	-0,20865	-0,90462	-1,83219	-2,68027					
45	0,1118	-0,23607	-0,25458	-0,77588	-2,24844	-2,77869					
50	0,03622	-0,34447	-0,61072	-1,11338	-1,59421	-1,66373					
55	-0,07161	-0,50233	-0,70805	-1,24261	-2,89947	-2,68027					
60	-0,15746	-0,69809	-0,53908	-1,60899	-2,58776	-2,39557					
65	-0,35996	-0,86178	-1,01065	-1,78221	-2,24844	-2,45026					
70	-0,5756	-0,97356	-1,02732	-1,28272	-2,70625	-2,91681					
75	-0,62404	-1,15588	-1,12737	-1,44483	-3,30561	-2,91681					
80	-0,97663	-1,25055	-1,34005	-1,41339	-4,99384	-2,32692					
85	-1,29909	-1,14306	-1,28073	-1,73873	-4,99384	-3,0097					
90	-1,65287	-1,64545	-2,8361	-4,00449	-3,83038	-3,18636					
95	-2,32129	-2,8317	-3,30102	-2,32747	-3,35211	-5,7276					
	1	an a	111								
Ce	4,80922	2,88671	1,80543	0,89344	0,3322	0,15949					
Со	10,6033	7,41574	5,43907	3,0269	1,40249	0,66085					
ln(Co-Ce)	1,7568	1,5105	1,2902	0,7577	0,0679	-0,6904					
k /	0,0363	0,0371	0,0378	0,0358	0,0465	0,0329					
R	-0,9755	-0,9710	-0,9394	-0,9096	-0,9250	-0,8408					
R ²	0,9516	0,9428	0,8825	0,8274	0,8556	0,7069					

Πίνακας 5.3.1-19 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-20 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκο	v
προκατεργασμένο στους 100°C, με 0,225N H ₂ SO ₄ , για 1 h (χρόνος προθέρμανσης 40 min	ı).

Πριονίδι π	εύκου προκ	ατεργασμένα	ο στους 100°	С, µε 0,225	N H ₂ SO ₄ , γ u	x l h
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l
0	0,39832	0,49714	0,49301	0,63606	0,55765	0,67321
5	-0,22013	-0,23314	-0,29886	-0,0906	-0,36301	-0,44651
10	-0,54077	-0,50948	-0,55798	-0,56231	-0,58542	-0,53532
15	-0,61416	-0,70583	-0,79695	-0,66068	-1,00211	-0,59482
20	-0,9244	-0,89072	-0,98761	-0,80609	-1,08727	-0,67091
25	-1,12623	-1,05482	-1,22337	-1,04322	-1,17449	-0,93884
30	-1,1827	-1,14747	-1,35067	-1,27605	-1,24639	-0,77442
35	-1,42438	-1,32907	-1,48158	-1,44945	-1,85818	-1,5414
40	-1,60287	-1,66053	-1,49889	-1,66236	-1,90012	-1,98984
45	-1,64504	-1,74658	-1,54482	-1,53363	-2,31637	-2,08825
50	-1,72063	-1,85497	-1,90096	-1,87112	-1,66214	-0,97329
55	-1,82845	-2,01284	-1,99829	-2,00035	-2,96739	-1,98984
60	-1,9143	-2,2086	-1,82932	-2,36674	-2,65569	-1,70514
65	-2,1168	-2,37229	-2,30088	-2,53995	-2,31637	-1,75983
70	-2,33244	-2,48407	-2,31756	-2,04046	-2,77417	-2,22637
75	-2,38088	-2,66639	-2,4176	-2,20258	-3,37354	-2,22637
80	-2,73347	-2,76106	-2,63029	-2,17113	-5,06177	-1,63648
85	-3,05594	-2,65357	-2,57097	-2,49647	-5,06177	-2,31926
90	-3,40971	-3,15596	-4,12633	-4,76223	-3,89831	-2,49593
95	-4,07813	-4,34221	-4,59125	-3,08521	-3,42004	-5,03716
	/	4 1	11	13		
Ce	4,80922	2,88671	1,80543	0,89344	0,3322	0,15949
Co	10,6033	7,41574	5,43907	3,0269	1,40249	0,66085
k	0,0363	0,0371	0,0378	0,0358	0,0465	0,0329

Σχήμα 5.3.1-13 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 1 h

Σχήμα 5.3.1-14Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , $ln(C - C_{\infty})$, συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 1 h

Σχήμα 5.3.1-15 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,225N H₂SO₄, για 1 h

Πίνακας 5.3.1-21 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H ₂ SO ₄ , για 0,5 h (χρόνος προθέρμανσης 40 min).											
			Πειραματ	ικές τιμές			Θεωρητικές τιμές					
t								<<	11		22	
(min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l
0	13,6903	10,1116	7,58112	4,78981	3,37409	1,85219	10,6673	6,8152	6,31952	3,75543	2,19071	0,94196
10	8,85113	5,25716	4,5469	2,78126	1,61179	0,66466	9,56733	6,05641	5,43004	3,17966	1,8282	0,78735
20	7,96464	4,88101	3,75956	2,23166	1,27139	0,49226	8,66188	5,43738	4,72104	2,71958	1,54173	0,66537
30	7,42066	4,47407	3,70685	1,92169	1,08604	0,46834	7,9165	4,93238	4,15591	2,35193	1,31534	0,56913
40	6,93085	4,13422	3,32333	1,80664	1,01512	0,40235	7,30292	4,52041	3,70545	2,05816	1,13643	0,4932
50	6,46955	4,03909	3,24617	1,65687	0,92454	0,36888	6,79781	4,18432	3,3464	1,82342	0,99504	0,43329
60	6,09349	3,88317	3,18118	1,59223	0,86776	0,34892	6,38201	3,91013	3,0602	1,63584	0,88331	0,38603
70	5,87946	3,61559	3,12431	1,45407	0,74479	0,42255	6,03973	3,68646	2,83207	1,48595	0,79501	0,34874
80	5,74634	3,48777	2,79343	1,35374	0,71796	0,38725	5,75796	3,50398	2,65023	1,36618	0,72523	0,31932
90	5,546	3,38221	2,64951	1,32495	0,69125	0,31423	5,52601	3,35512	2,50529	1,27047	0,67009	0,29611
100	5,4515	3,2685	2,49775	1,29049	0,64876	0,34395	5,33507	3,23367	2,38976	1,19399	0,62651	0,27779
110	5,32455	3,21367	2,39679	1,25423	0,62061	0,2831	5,17789	3,1346	2,29767	1,13288	0,59207	0,26334
120	5,1858	3,15478	2,30005	1,22759	0,59434	0,2184	5,0485	3,05378	2,22427	1,08405	0,56486	0,25194
130	5,07793	3,0776	2,20354	1,17262	0,60133	0,23447	4,94198	2,98784	2,16576	1,04503	0,54335	0,24295
140	4,98651	2,99029	2,16139	1,07293	0,56125	0,25547	4,8543	2,93405	2,11913	1,01385	0,52636	0,23585
150	4,91143	2,92735	2,10328	1,0207	0,537	0,28637	4,78212	2,89017	2,08195	0,98893	0,51292	0,23026
160	4,7655	2,87864	2,03329	0,97432	0,50942	0,23286	4,7227	2,85437	2,05232	0,96903	0,50231	0,22584
170	4,66224	2,83805	2,01932	0,93005	0,48029	0,2152	4,67379	2,82517	2,0287	0,95312	0,49392	0,22235
180	4,58736	2,76909	1,99138	0,92637	0,47175	0,22161	4,63352	2,80134	2,00988	0,9404	0,48729	0,2196
190	4,53678	2,75084	1,97544	0,90801	0,48542	0,2136	4,60038	2,7819	1,99487	0,93025	0,48205	0,21743

Πίνακας 5.3.1-22 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

		11								
Πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H ₂ SO ₄ , για 0,5 h										
$C_e (mg/L)$	4,44605	2,69582	1,93593	0,88985	0,46232	0,20932				
C _o (mg/L)	10,6673	6,8152	6,3195	3,7554	2,1907	0,9420				
k (min ⁻¹)	0,0195	0,0204	0,0227	0,0224	0,0235	0,0237				
sum	10,854	12,235	3,82716	14,2136	9,44037	5,78825				
n-p	29	29	24	24	24	24				
S	0,61178	0,64953	0,39933	0,76957	0,62718	0,4911				

Πίνακας 5.3.1-23 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονίδ	ι πεύκου προ	οκατεργασμέ	ένο στους 10	0°C, με 0,45	$5 \text{N} \text{H}_2 \text{SO}_4, \gamma$	ια 0,5 h
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l
0	2,224	2,00362	1,7308	1,36097	1,06876	0,49644
10	1,48276	0,94053	0,95972	0,63732	0,13931	-0,78671
20	1,25806	0,7817	0,60083	0,29402	-0,21186	-1,26253
30	1,09012	0,57563	0,5715	0,03134	-0,47205	-1,35086
40	0,91019	0,36353	0,32744	-0,08688	-0,59276	-1,64496
50	0,70483	0,29511	0,27021	-0,26524	-0,77172	-1,83538
60	0,49922	0,17172	0,21934	-0,35327	-0,90277	-1,96899
70	0,36006	-0,08363	0,1726	-0,57232	-1,26418	-1,5454
80	0,26259	-0,23326	-0,15374	-0,7681	-1,36396	-1,72638
90	0,09526	-0,37631	-0,33746	-0,83218	-1,4743	-2,25468
100	0,00543	-0,55742	-0,57656	-0,91468	-1,6796	-2,00528
110	-0,12953	-0,65807	-0,77466	-1,00954	-1,84331	-2,60668
120	-0,30144	-0,77881	-1,01026	-1,08547	-2,02477	-4,70189
130	-0,45905	-0,96291	-1,31822	-1,26312	-1,97316	-3,68306
140	-0,61533	-1,2226	-1,48959	-1,69783	-2,31332	-3,07603
150	-0,76491	-1,46305	-1,78764	-2,03373	-2,59454	-2,56338
160	-1,14115	-1,69927	-2,32928	-2,47131	-3,0554	-3,74923
170	-1,53159	-1,95029	-2,48424	-3,21381	-4,01903	-5,13735
180	-1,95676	-2,61365	-2,89215	-3,30976	-4,66333	-4,39931
190	-2,3998	-2,90012	-3,23123	-4,00852	-3,76797	-5,45569
	/	7 1	11	14		
Ce	4,44605	2,69582	1,93593	0,88985	0,46232	0,20932
Со	10,6673	6,8152	6,31952	3,75543	2,19071	0,94196
ln(Co-Ce)	1,8280	1,4157	1,4779	1,0528	0,5472	-0,3111
k	0,0195	0,0204	0,0227	0,0224	0,0235	0,0237
R	-0,9801	-0,9789	-0,9836	-0,9638	-0,9659	-0,9070
R^2	0,9605	0,9582	0,9675	0,9289	0,9329	0,8227

Πίνακας 5.3.1-24 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H_2SO_4 , για 0,5 h										
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4				
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l				
0	0,39603	0,58791	0,25294	0,30819	0,52157	0,80755				
10	-0,34521	-0,47517	-0,51815	-0,41545	-0,40789	-0,47561				
20	-0,5699	-0,634	-0,87704	-0,75875	-0,75905	-0,95142				
30	-0,73785	-0,84007	-0,90637	-1,02143	-1,01925	-1,03975				
40	-0,91777	-1,05217	-1,15043	-1,13965	-1,13995	-1,33385				
50	-1,12313	-1,12059	-1,20766	-1,31801	-1,31891	-1,52428				
60	-1,32874	-1,24398	-1,25853	-1,40605	-1,44996	-1,65789				
70	-1,46791	-1,49933	-1,30527	-1,62509	-1,81138	-1,2343				
80	-1,56538	-1,64897	-1,6316	-1,82087	-1,91115	-1,41527				
90	-1,7327	-1,79201	-1,81532	-1,88495	-2,0215	-1,94358				
100	-1,82253	-1,97313	-2,05443	-1,96745	-2,2268	-1,69417				
110	-1,9575	-2,07377	-2,25253	-2,06232	-2,3905	-2,29557				
120	-2,12941	-2,19451	-2,48813	-2,13824	-2,57196	-4,39079				
130	-2,28701	-2,37861	-2,79609	-2,31589	-2,52035	-3,37195				
140	-2,4433	-2,6383	-2,96746	-2,7506	-2,86051	-2,76493				
150	-2,59287	-2,87876	-3,26551	-3,08651	-3,14173	-2,25227				
160	-2,96912	-3,11498	-3,80715	-3,52408	-3,6026	-3,43812				
170	-3,35955	-3,36599	-3,96211	-4,26659	-4,56622	-4,82624				
180	-3,78473	-4,02936	-4,37002	-4,36254	-5,21052	-4,0882				
190	-4,22777	-4,31582	-4,7091	-5,0613	-4,31516	-5,14459				
			1	5						
Ce	4,44605	2,69582	1,93593	0,88985	0,46232	0,20932				
Со	10,6673	6,8152	6,31952	3,75543	2,19071	0,94196				
k	0,0195	0,0204	0,0227	0,0224	0,0235	0,0237				
		11 1	A	,	,					

Σχήμα 5.3.1-16 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 0,5

Σχήμα 5.3.1-17 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_∞, ln(C- C_∞), συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H_2SO_4 , για 0,5

Σχήμα 5.3.1-18 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 0,5 h

Πίνακας 5.3.1-25 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονί	δι πεύκου 2	προκατεργί	ασμένο στο	ως 100°C,	με 0,9N H ₂	SO4, για 0	,5 h (χρόνο	ς προθέρμα	ανσης 40 n	nin).	1. A.	
			Πειραματ	ικές τιμές					Θεωρητι	κές τιμές		
t								(
(min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l
0	13,3677	10,1389	6,98734	3,75753	3,26444	1,3499	10,477	8,10287	4,26309	1,56902	1,59759	0,72875
5	8,45933	5,69662	3,35785	2,14736	1,3307	0,31259	9,19716	6,93996	3,51602	1,40563	1,34717	0,57754
10	7,02366	4,99463	2,74881	1,6353	1,08604	0,31259	8,15712	5,99286	2,94322	1,26831	1,14386	0,45988
15	6,47388	4,48621	2,39679	1,3403	0,80781	0,29454	7,31196	5,22152	2,50405	1,1529	0,97878	0,36832
20	5,95681	3,9338	2,03929	1,08791	0,70905	0,22161	6,62516	4,59333	2,16733	1,0559	0,84476	0,29708
25	5,61811	3,70482	1,83237	0,97062	0,7412	0,1738	6,06705	4,08172	1,90916	0,97438	0,73595	0,24164
30	5,40025	3,55473	1,67258	0,88237	0,54738	0,20081	5,61352	3,66506	1,71121	0,90586	0,6476	0,1985
35	5,32251	3,35176	1,49868	0,82955	0,54218	0,19285	5,24497	3,32572	1,55945	0,84828	0,57587	0,16494
40	5,13286	3,02074	1,36143	0,69481	0,44793	0,15172	4,94548	3,04935	1,44309	0,79988	0,51764	0,13882
45	4,75335	2,91923	1,32303	0,68415	0,42762	0,13136	4,7021	2,82427	1,35387	0,7592	0,47035	0,11849
50	4,5995	2,84414	1,3192	0,63467	0,40235	0,12356	4,50433	2,64097	1,28546	0,72501	0,43197	0,10268
55	4,52262	2,688	1,26567	0,61535	0,37722	0,11733	4,34361	2,49168	1,23302	0,69628	0,4008	0,09037
60	4,43564	2,73057	1,20481	0,58736	0,37221	0,10492	4,21301	2,37009	1,19281	0,67213	0,37549	0,0808
65	4,36889	2,55842	1,14807	0,58561	0,38558	0,08793	4,10689	2,27107	1,16197	0,65184	0,35495	0,07334
70	4,17874	2,53617	1,16317	0,55604	0,37054	0,08332	4,02064	2,19043	1,13834	0,63478	0,33827	0,06755
75	4,0897	2,41898	1,09916	0,57516	0,36554	0,06798	3,95056	2,12475	1,12021	0,62044	0,32472	0,06303
80	4,02897	1,98141	1,1217	0,72153	0,35556	0,06187	3,89361	2,07126	1,10632	0,60839	0,31373	0,05952
85	3,73929	1,96149	1,08416	0,74837	0,32906	0,05425	3,84733	2,0277	1,09566	0,59827	0,3048	0,05679
90	3,77375	2,02331	1,08229	0,67351	0,31423	0,0573	3,80972	1,99222	1,08749	0,58976	0,29755	0,05466
95	3,72104	1,87401	1,09916	0,75375	0,2717	0,04817	3,77916	1,96333	1,08123	0,5826	0,29167	0,05301

Πίνακας 5.3.1-26 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονίδ	δι πεύκου προ	κατεργασμέν	ο στους 100°	Ċ, με 0,9N H	I ₂ SO ₄ , για 0,5	h
$C_e (mg/L)$	3,64662	1,83653	1,06064	0,54492	0,26626	0,04721
C_{o} (mg/L)	10,4770	8,1029	4,2631	1,5690	1,5976	0,7287
k (min ⁻¹)	0,0415	0,0411	0,0531	0,0348	0,0417	0,0502
sum	11,8635	8,34796	7,53525	7,0019	9,27145	6,03674
n-p	18	18	18	18	18	18
s	0,81184	0,68101	0,64701	0,62369	0,71769	0,57912

Πίνακας 5.3.1-27 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονίδ	δι πεύκου πρ	οκατεργασμ	ένο στους 1	00°C, με 0,9	N H ₂ SO ₄ , γι	α 0,5 h
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l
0	2,2743	2,11654	1,77947	1,16708	1,098	0,26443
5	1,57126	1,35069	0,83169	0,47152	0,06245	-1,3266
10	1,217	1,14997	0,52364	0,08652	-0,19873	-1,3266
15	1,03931	0,97444	0,28979	-0,22894	-0,61333	-1,39702
20	0,83733	0,74064	-0,02159	-0,61067	-0,81468	-1,7464
25	0,67879	0,62503	-0,25912	-0,85401	-0,74457	-2,06677
30	0,56169	0,54128	-0,49113	-1,08633	-1,269	-1,87338
35	0,51634	0,41557	-0,82545	-1,25657	-1,28765	-1,92664
40	0,39625	0,16908	-1,20135	-1,89787	-1,70557	-2,25843
45	0,10141	0,07946	-1,33792	-1,97163	-1,82418	-2,4752
50	-0,04826	0,00758	-1,35264	-2,41075	-1,99451	-2,57246
55	-0,13239	-0,16079	-1,58461	-2,65322	-2,19863	-2,65752
60	-0,23696	-0,11201	-1,93679	-3,15976	-2,24482	-2,85234
65	-0,32535	-0,32588	-2,43694	-3,20174	-2,126	-3,20094
70	-0,63089	-0,35719	-2,27763	-4,49893	-2,26068	-3,32123
75	-0,81401	-0,5405	-3,25665	-3,49872	-2,30982	-3,87399
80	-0,96142	-1,9318	-2,79589	-1,7338	-2,41578	-4,22232
85	-2,37875	-2,07975	-3,74995	-1,59233	-2,76785	-4,95548
90	-2,06258	-1,67782	-3,83294	-2,05111	-3,03726	-4,59619
95	-2,59802	-3,28394	-3,25665	-1,56623	-5,21508	-6,94499
	/	7 1	1			
Ce	3,64662	1,83653	1,06064	0,54492	0,26626	0,04721
Со	10,4770	8,10287	4,26309	1,56902	1,59759	0,72875
ln(Co-Ce)	1,9214	1,8352	1,1639	0,0238	0,2862	-0,3834
k	0,0415	0,0411	0,0531	0,0348	0,0417	0,0502
R	-0,9627	-0,9362	-0,9839	-0,7290	-0,9252	-0,9329
R^2	0,9267	0,8765	0,9682	0,5315	0,8560	0,8703

Πίνακας 5.3.1-28 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	784
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	132
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	132
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	361
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	299
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	336
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	998
40 -1,52514 -1,66611 -2,36527 -1,92168 -1,99174 -1,87 45 -1,81998 -1,75573 -2,50184 -1,99544 -2,11035 -2,09 50 -1,96965 -1,82761 -2,51655 -2,43456 -2,28068 -2,18 55 -2,05377 -1,99598 -2,74853 -2,67703 -2,48481 -2,27	323
45 -1,81998 -1,75573 -2,50184 -1,99544 -2,11035 -2,09 50 -1,96965 -1,82761 -2,51655 -2,43456 -2,28068 -2,18 55 -2,05377 -1,99598 -2,74853 -2,67703 -2,48481 -2,27	502
50 -1,96965 -1,82761 -2,51655 -2,43456 -2,28068 -2,18 55 -2,05377 -1,99598 -2,74853 -2,67703 -2,48481 -2,27	79
55 -2 05377 -1 99598 -2 74853 -2 67703 -2 48481 -2 27	906
	111
60 -2,15835 -1,9472 -3,10071 -3,18357 -2,53099 -2,46	394
65 -2,24674 -2,16108 -3,60086 -3,22555 -2,41217 -2,81	753
70 -2,55228 -2,19238 -3,44155 -4,52274 -2,54686 -2,93	783
75 -2,7354 -2,3757 -4,42056 -3,52253 -2,59599 -3,49)59
80 -2,8828 -3,767 -3,95981 -1,75761 -2,70196 -3,83	391
85 -4,30013 -3,91495 -4,91387 -1,61614 -3,05402 -4,57	208
90 -3,98396 -3,51301 -4,99686 -2,07492 -3,32344 -4,21	278
95 -4,5194 -5,11914 -4,42056 -1,59004 -5,50126 -6,56	59
Ce 3,64662 1,83653 1,06064 0,54492 0,26626 0,04	/21
Co 10,477 8,10287 4,26309 1,56902 1,59759 0,72	375
k 0,0415 0,0411 0,0531 0,0348 0,0417 0,0	502

Σχήμα 5.3.1-19 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 0,5

Σχήμα 5.3.1-20 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , $\ln(C-C_{\infty})$, συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 0,5

Σχήμα 5.3.1-21 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 0,5 h

Πίνακας 5.3.1-29 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονί	δι πεύκου :	προκατεργα	σμένο στου	ς 100°C, με	3,6N H ₂ SC	D4, για 0,5 Ι	1 (χρόνος π	τροθέρμανα	σ ης 40 min		5	
			Πειραματ	ικές τιμές			Θεωρητικές τιμές					
t								1			1	
(min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l
0	14,083	10,8509	7,77927	4,72095	3,15884	1,70207	11,5226	8,27664	6,2311	2,58169	0,98781	0,66213
10	8,30935	5,61192	4,17267	1,78687	1,01512	0,65936	9,83435	6,73607	5,00699	2,12517	0,82787	0,59424
20	7,1726	4,53881	3,57908	1,39224	0,72689	0,5163	8,49958	5,55568	4,07045	1,76443	0,70322	0,53853
30	6,73214	4,23336	3,00044	1,18965	0,58038	0,45813	7,4443	4,65127	3,35392	1,47938	0,60608	0,49281
40	6,01976	3,69468	2,41696	0,91719	0,482	0,44963	6,60998	3,9583	2,80572	1,25414	0,53038	0,45531
50	5,69041	3,27257	2,16942	0,90434	0,42086	0,41749	5,95036	3,42735	2,3863	1,07616	0,47139	0,42453
60	5,4105	3,05729	2,02131	0,84227	0,39563	0,41244	5,42886	3,02054	2,06541	0,93551	0,42542	0,39928
70	5,20821	2,84008	1,84228	0,81324	0,35722	0,39731	5,01655	2,70883	1,81991	0,82438	0,38959	0,37856
80	4,79386	2,52403	1,65884	0,71796	0,31752	0,39899	4,69058	2,47001	1,63208	0,73657	0,36167	0,36156
90	4,62379	2,30408	1,47927	0,69125	0,30602	0,34726	4,43286	2,28702	1,48837	0,66718	0,33991	0,34761
100	4,48014	2,18748	1,45988	0,67351	0,29946	0,28964	4,22911	2,14681	1,37843	0,61234	0,32295	0,33617
110	4,27989	2,12932	1,44052	0,65229	0,29454	0,30437	4,06802	2,03938	1,29431	0,56902	0,30974	0,32678
120	4,05934	2,01932	1,26567	0,57516	0,29946	0,29946	3,94066	1,95707	1,22995	0,53478	0,29944	0,31907
130	3,94191	1,9197	1,2371	0,56472	0,28474	0,30437	3,83997	1,894	1,18071	0,50773	0,29142	0,31275
140	3,78793	1,90777	1,2105	0,537	0,28147	0,3093	3,76036	1,84568	1,14304	0,48635	0,28516	0,30756
150	3,7778	1,88989	1,19533	0,51337	0,29127	0,29946	3,69742	1,80866	1,11422	0,46946	0,28029	0,3033
160	3,67441	1,74935	1,07293	0,50255	0,28964	0,30437	3,64766	1,78029	1,09217	0,45611	0,27649	0,29981
170	3,56488	1,74146	1,06171	0,43946	0,27007	0,31752	3,60832	1,75855	1,0753	0,44556	0,27353	0,29694
180	3,53241	1,72176	1,04864	0,42255	0,29127	0,30437	3,57721	1,7419	1,06239	0,43723	0,27122	0,29459
190	3,53038	1,72964	1,04118	0,41412	0,26845	0,29946	3,55262	1,72914	1,05252	0,43064	0,26943	0,29266

Πίνακας 5.3.1-30 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 3,6N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονίδ	δι πεύκου προ	οκατεργασμέν	ο στους 100°	Ċ, με 0,9N H	$_2$ SO ₄ , για 0,5	h
C_{e} (mg/L)	3,45978	1,68732	1,02036	0,40584	0,26308	0,28384
$C_o (mg/L)$	11,5226	8,2766	6,2311	2,5817	0,9878	0,6621
k (min ⁻¹)	0,0235	0,0266	0,0268	0,0235	0,0249	0,0198
sum	11,7943	9,24077	3,70522	17,2432	6,46449	5,32393
n-p	29	29	24	24	24	24
s	0,63773	0,56449	0,39292	0,84762	0,51899	0,47099

Πίνακας 5.3.1-31 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονίδ	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6N H_2SO_4 , για 0,5 h								
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4			
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l			
0	2,36305	2,21524	1,91086	1,46212	1,06325	0,34941			
10	1,57889	1,36726	1,14814	0,32283	-0,28497	-0,97946			
20	1,31179	1,04784	0,93951	-0,0137	-0,76827	-1,45905			
30	1,18551	0,93454	0,68314	-0,24359	-1,14789	-1,74707			
40	0,94	0,69682	0,33405	-0,6707	-1,51906	-1,79705			
50	0,80229	0,46074	0,13895	-0,69614	-1,84652	-2,01255			
60	0,6682	0,31479	0,00096	-0,82913	-2,02077	-2,0511			
70	0,55872	0,14216	-0,19611	-0,89796	-2,3629	-2,17626			
80	0,28824	-0,17827	-0,44866	-1,16435	-2,91058	-2,16158			
90	0,15187	-0,48328	-0,7789	-1,25381	-3,14801	-2,75799			
100	0,02016	-0,69284	-0,82207	-1,31798	-3,3138	-5,15115			
110	-0,19831	-0,81645	-0,86712	-1,40057	-3,45888	-3,88581			
120	-0,51156	-1,10264	-1,40521	-1,77597	-3,3138	-4,15971			
130	-0,72954	-1,4594	-1,52904	-1,83958	-3,83238	-3,88581			
140	-1,11426	-1,51209	-1,65997	-2,03135	-3,9957	-3,67079			
150	-1,14562	-1,59668	-1,74311	-2,22992	-3,56868	-4,15971			
160	-1,53883	-2,78012	-2,94553	-2,33602	-3,62841	-3,88581			
170	-2,25284	-2,91614	-3,18556	-3,39266	-4,96261	-3,39089			
180	-2,62228	-3,36868	-3,56545	-4,09162	-3,56868	-3,88581			
190	-2,65062	-3,1626	-3,87167	-4,79362	-5,22713	-4,15971			
	/	7 1	11						
Ce	3,45978	1,68732	1,02036	0,40584	0,26308	0,28384			
Со	11,5226	8,27664	6,2311	2,58169	0,98781	0,66213			
ln(Co-Ce)	2,0873	1,8854	1,6507	0,7774	-0,3220	-0,9721			
k	0,0235	0,0266	0,0268	0,0235	0,0249	0,0198			
R	-0,9840	-0,9868	-0,9824	-0,9476	-0,9355	-0,8506			
R^2	0,9683	0,9737	0,9652	0,8980	0,8752	0,7235			

Πίνακας 5.3.1-32 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 3,6N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονίδι π	τεύκου προκ	ατεργασμένα	ο στους 100°	C, με 3,6N l	H_2SO_4 , yia 0	,5 h
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l
0	0,27578	0,32979	0,26014	0,6847	1,3852	1,3215
10	-0,50838	-0,51819	-0,50259	-0,45459	0,03699	-0,00736
20	-0,77548	-0,83761	-0,71121	-0,79112	-0,44632	-0,48696
30	-0,90175	-0,95091	-0,96758	-1,02101	-0,82594	-0,77498
40	-1,14726	-1,18863	-1,31668	-1,44813	-1,1971	-0,82495
50	-1,28498	-1,42471	-1,51178	-1,47357	-1,52457	-1,04046
60	-1,41907	-1,57066	-1,64977	-1,60655	-1,69882	-1,07901
70	-1,52854	-1,74329	-1,84683	-1,67538	-2,04095	-1,20416
80	-1,79902	-2,06372	-2,09939	-1,94177	-2,58863	-1,18948
90	-1,93539	-2,36873	-2,42962	-2,03123	-2,82605	-1,78589
100	-2,0671	-2,57829	-2,47279	-2,0954	-2,99185	-4,17906
110	-2,28558	-2,7019	-2,51784	-2,17799	-3,13693	-2,91372
120	-2,59882	-2,98809	-3,05593	-2,55339	-2,99185	-3,18761
130	-2,81681	-3,34485	-3,17976	-2,617	-3,51043	-2,91372
140	-3,20152	-3,39754	-3,31069	-2,80877	-3,67375	-2,6987
150	-3,23289	-3,48213	-3,39383	-3,00734	-3,24672	-3,18761
160	-3,6261	-4,66557	-4,59625	-3,11344	-3,30646	-2,91372
170	-4,3401	-4,80159	-4,83628	-4,17008	-4,64065	-2,4188
180	-4,70955	-5,25413	-5,21618	-4,86904	-3,24672	-2,91372
190	-4,73788	-5,04805	-5,52239	-5,57104	-4,90517	-3,18761
			1			
Ce	3,45978	1,68732	1,02036	0,40584	0,26308	0,28384
Co	11,5226	8,27664	6,2311	2,58169	0,98781	0,66213
k	0,0235	0,0266	0,0268	0,0235	0,0249	0,0198

Σχήμα 5.3.1-22 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6N H₂SO₄, για 0,5

Σχήμα 5.3.1-23 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , ln(C- C_{∞}), συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6N H₂SO₄, για 0,5

Σχήμα 5.3.1-24 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 3,6N H₂SO₄, για 0,5 h

Πίνακας 5.3.1-33 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Πριονί	δι πεύκου 2	προκατεργα	σμένο στοι	ος 100°C, μ	ιε 0,45N H	₂ SO ₄ , για 1	h (χρόνος	προθέρμαν	νσης 40 mi	n).	~	
			Πειραματ	ικές τιμές			Θεωρητικές τιμές					
t								<<			22	
(min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l
0	13,0557	9,97023	7,44442	4,88101	3,28272	1,62158	11,4216	6,9733	5,26734	2,94365	1,59587	0,58393
10	8,02827	5,28165	4,94388	2,10729	1,4096	0,57864	10,0034	6,04135	4,4611	2,42828	1,36642	0,51493
20	7,55698	4,76752	3,27257	1,7257	1,08791	0,38725	8,84607	5,29933	3,81598	2,02491	1,17968	0,45695
30	7,04187	4,27585	2,76909	1,37875	0,86959	0,34892	7,90156	4,70853	3,29978	1,70921	1,0277	0,40823
40	6,5325	3,97228	2,52606	1,30962	0,81324	0,33402	7,13075	4,23813	2,88673	1,46211	0,904	0,36728
50	6,27605	3,65616	2,46744	1,15751	0,73047	0,31259	6,50169	3,86359	2,55623	1,26871	0,80333	0,33287
60	6,03869	3,56488	2,1153	0,99655	0,60133	0,27984	5,98832	3,56538	2,29177	1,11734	0,7214	0,30396
70	5,56864	3,40657	2,03329	0,9411	0,57168	0,26195	5,56936	3,32794	2,08017	0,99887	0,65471	0,27966
80	5,42484	3,23398	1,84228	0,89335	0,54738	0,25061	5,22745	3,13889	1,91085	0,90614	0,60044	0,25924
90	5,31433	3,104	1,76317	0,86229	0,52491	0,23447	4,94842	2,98837	1,77536	0,83357	0,55627	0,24208
100	5,05151	2,93547	1,68437	0,81143	0,52147	0,2104	4,72071	2,86852	1,66696	0,77677	0,52032	0,22766
110	4,89723	2,79343	1,61963	0,78433	0,50083	0,20081	4,53487	2,7731	1,58021	0,73231	0,49107	0,21555
120	4,68046	2,67787	1,56879	0,75734	0,49055	0,18966	4,38321	2,69712	1,5108	0,69751	0,46725	0,20537
130	4,51453	2,62926	1,51034	0,71261	0,47005	0,23447	4,25943	2,63663	1,45526	0,67028	0,44787	0,19681
140	4,26775	2,60091	1,45988	0,68948	0,44285	0,22803	4,15843	2,58846	1,41082	0,64896	0,4321	0,18962
150	4,1241	2,56246	1,41732	0,647	0,45133	0,15487	4,07599	2,55011	1,37526	0,63228	0,41926	0,18358
160	4,02087	2,52403	1,3749	0,62412	0,43438	0,1738	4,00872	2,51958	1,34681	0,61922	0,40882	0,1785
170	3,95001	2,5018	1,34222	0,59958	0,41918	0,19922	3,95382	2,49527	1,32404	0,609	0,40031	0,17423
180	3,84062	2,47148	1,30771	0,59784	0,40235	0,1849	3,90901	2,47591	1,30583	0,601	0,39339	0,17064
190	3,78591	2,44927	1,25804	0,58387	0,37054	0,18331	3,87245	2,4605	1,29125	0,59474	0,38776	0,16763

Πίνακας 5.3.1-34 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Πριονίά	δι πεύκου προ	οκατεργασμέν	νο στους 100	°C, με 0,45N	H ₂ SO ₄ , για 1	h
$C_e (mg/L)$	3,71019	2,40028	1,23288	0,57219	0,36313	0,15177
C _o (mg/L)	11,4216	6,9733	5,2673	2,9436	1,5959	0,5839
k (min ⁻¹)	0,0203	0,0228	0,0223	0,0245	0,0206	0,0174
sum	9,97729	10,1769	5,74053	12,9989	10,0684	5,33444
n-p	29	29	24	24	24	24
S	0,58655	0,59239	0,48907	0,73595	0,6477	0,47145

Πίνακας 5.3.1-35 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Πριονί	δι πεύκου πρ	οκατεργασμ	ιένο στους 1	00°C, με 0,4	5N H ₂ SO ₄ , γ	na 1 h
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l
0	0,19219	0,50401	0,43154	0,59716	0,8622	1,2241
10	-0,57989	-0,46191	-0,08357	-0,43491	-0,16382	-0,01231
20	-0,69546	-0,65845	-0,68208	-0,7207	-0,53113	-0,60716
30	-0,83922	-0,89126	-0,96556	-1,07848	-0,88956	-0,78483
40	-1,00514	-1,06782	-1,13777	-1,16808	-1,00751	-0,86343
50	-1,10041	-1,29234	-1,18416	-1,39911	-1,21072	-0,98854
60	-1,19747	-1,3678	-1,51997	-1,72068	-1,64388	-1,21621
70	-1,42296	-1,5139	-1,6175	-1,86072	-1,77684	-1,36668
80	-1,50349	-1,70205	-1,89016	-1,99933	-1,90074	-1,4753
90	-1,57011	-1,87154	-2,02922	-2,10103	-2,03075	-1,65359
100	-1,74905	-2,14531	-2,19008	-2,29381	-2,05229	-1,99764
110	-1,87124	-2,45375	-2,34487	-2,41402	-2,19191	-2,17614
120	-2,07288	-2,80178	-2,48579	-2,55008	-2,26953	-2,43402
130	-2,26043	-2,9943	-2,67695	-2,82662	-2,44498	-1,65359
140	-2,62688	-3,12645	-2,8777	-3,00664	-2,73856	-1,7346
150	-2,9248	-3,3392	-3,08533	-3,45631	-2,63743	-4,93824
160	-3,21168	-3,60964	-3,34669	-3,82137	-2,85087	-2,97631
170	-3,47058	-3,80772	-3,60823	-4,46096	-3,09087	-2,2092
180	-4,0796	-4,16238	-3,98747	-4,52692	-3,44801	-2,56845
190	-4,62344	-4,53641	-5,07734	-5,31361	-5,11405	-2,61755
	/	7 1	11	4		
Ce	3,71019	2,40028	1,23288	0,57219	0,36313	0,15177
Со	11,4216	6,9733	5,26734	2,94365	1,59587	0,58393
ln(Co-Ce)	0,0203	0,0228	0,0223	0,0245	0,0206	0,0174
k	0,19219	0,50401	0,43154	0,59716	0,8622	1,2241
R	-0,57989	-0,46191	-0,08357	-0,43491	-0,16382	-0,01231
R^2	-0,69546	-0,65845	-0,68208	-0,7207	-0,53113	-0,60716

	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l
0	0,19219	0,50401	0,43154	0,59716	0,8622	1,2241
10	-0,57989	-0,46191	-0,08357	-0,43491	-0,16382	-0,01231
20	-0,69546	-0,65845	-0,68208	-0,7207	-0,53113	-0,60716
30	-0,83922	-0,89126	-0,96556	-1,07848	-0,88956	-0,78483
40	-1,00514	-1,06782	-1,13777	-1,16808	-1,00751	-0,86343
50	-1,10041	-1,29234	-1,18416	-1,39911	-1,21072	-0,98854
60	-1,19747	-1,3678	-1,51997	-1,72068	-1,64388	-1,21621
70	-1,42296	-1,5139	-1,6175	-1,86072	-1,77684	-1,36668
80	-1,50349	-1,70205	-1,89016	-1,99933	-1,90074	-1,4753
90	-1,57011	-1,87154	-2,02922	-2,10103	-2,03075	-1,65359
100	-1,74905	-2,14531	-2,19008	-2,29381	-2,05229	-1,99764
110	-1,87124	-2,45375	-2,34487	-2,41402	-2,19191	-2,17614
120	-2,07288	-2,80178	-2,48579	-2,55008	-2,26953	-2,43402
130	-2,26043	-2,9943	-2,67695	-2,82662	-2,44498	-1,65359
140	-2,62688	-3,12645	-2,8777	-3,00664	-2,73856	-1,7346
150	-2,9248	-3,3392	-3,08533	-3,45631	-2,63743	-4,93824
160	-3,21168	-3,60964	-3,34669	-3,82137	-2,85087	-2,97631
170	-3,47058	-3,80772	-3,60823	-4,46096	-3,09087	-2,2092
180	-4,0796	-4,16238	-3,98747	-4,52692	-3,44801	-2,56845
190	-4,62344	-4,53641	-5,07734	-5,31361	-5,11405	-2,61755
		1	120	00		
Ce	3,71019	2,40028	1,23288	0,57219	0,36313	0,15177
Co	11,4216	6,9733	5,26734	2,94365	1,59587	0,58393
k	0,0203	0,0228	0,0223	0,0245	0,0206	0,0174

Πίνακας 5.3.1-36 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.3.1-25 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 1 h

Σχήμα 5.3.1-26 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , ln(C- C_{∞}), συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 1 h

Σχήμα 5.3.1-27 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_∞) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_∞) για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 1 h

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45Ν H ₂ SO ₄ , για 2 h (χρόνος προθέρμανσης 40 min).												
	Πειραματικές τιμές						Θεωρητικές τιμές					
t								2		1	2	
(min)	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4
		10.0400		111g/1		111g/1		ing/L	nig/L		1 0 770 0	
0	12,8485	10,2489	4,79183	4,67438	3,42687	1,61767	10,041	6,38988	5,12/8/	3,20461	1,97723	0,67292
10	8,20926	5,69041	4,02695	2,17744	1,59028	0,58736	8,96896	5,60472	4,34423	2,69392	1,60241	0,58331
20	7,30749	4,84452	3,22383	1,77699	1,03	0,49055	8,08158	4,96631	3,72214	2,28295	1,3171	0,51014
30	6,81431	4,23336	2,85226	1,57465	0,95031	0,44285	7,34706	4,44722	3,2283	1,95223	1,0999	0,45039
40	6,2846	3,57096	2,61913	1,456	0,82592	0,38558	6,73906	4,02515	2,83627	1,68609	0,93457	0,40159
50	6,04711	3,31927	2,55842	1,4096	0,7412	0,33898	6,23579	3,68197	2,52506	1,47192	0,80872	0,36174
60	5,66147	3,15478	2,18948	1,30771	0,69303	0,32411	5,81921	3,40293	2,278	1,29958	0,71291	0,3292
70	5,26532	2,94765	2,06927	1,1764	0,65053	0,26682	5,47439	3,17604	2,08188	1,16088	0,63999	0,30263
80	5,15525	2,88067	1,99138	1,05984	0,59958	0,2184	5,18897	2,99156	1,92619	1,04927	0,58447	0,28093
90	4,98854	2,79545	1,93362	0,98913	0,55084	0,288	4,95271	2,84156	1,8026	0,95945	0,54221	0,26321
100	4,93983	2,73462	1,82049	0,92086	0,56125	0,23125	4,75715	2,71959	1,70448	0,88717	0,51004	0,24874
110	4,72702	2,65356	1,70994	0,87506	0,50942	0,20081	4,59528	2,62042	1,62659	0,82901	0,48556	0,23693
120	4,58534	2,58675	1,67651	0,84227	0,46153	0,2717	4,46129	2,53979	1,56476	0,7822	0,46692	0,22728
130	4,50644	2,53617	1,62942	0,80781	0,44454	0,22482	4,35038	2,47422	1,51568	0,74454	0,45273	0,2194
140	4,34058	2,48563	1,56489	0,77712	0,42424	0,26033	4,25857	2,42091	1,47671	0,71422	0,44192	0,21297
150	4,26371	2,43917	1,44052	0,73941	0,44115	0,2072	4,18258	2,37757	1,44578	0,68983	0,4337	0,20771
160	4,21313	2,37057	1,42505	0,7037	-0,43946	0,204	4,11968	2,34232	1,42122	0,6702	0,42744	0,20342
170	4,08363	2,33832	1,38068	0,65406	0,42762	0,20081	4,06761	2,31367	1,40173	0,65441	0,42268	0,19992
180	4,01075	2,29602	1,3672	0,63643	0,4158	0,18807	4,02451	2,29037	1,38626	0,64169	0,41905	0,19705
190	3,89532	2,23367	1,35374	0,60133	0,4158	0,2184	3,98884	2,27142	1,37397	0,63146	0,41629	0,19472

Πίνακας 5.3.1-37 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-38 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H ₂ SO ₄ , για 2 h										
C_{e} (mg/L)	3,81741	2,189	1,32667	0,58931	0,40749	0,18431				
C _o (mg/L)	10,0410	6,3899	5,1279	3,2046	1,9772	0,6729				
k (min ⁻¹)	0,0189	0,0207	0,0231	0,0217	0,0273	0,0203				
sum	9,77702	15,4442	0,73586	10,747	10,4611	5,21964				
n-p	29	29	24	24	24	24				
S	0,58064	0,72977	0,1751	0,66917	0,66021	0,46635				

1
Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H_2SO_4 , για 2 h													
C=14 $C=10$ $C=7.1$ $C=4.1$ $C=2.9$ $C=1.4$													
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l							
0	2,20067	2,0869	1,24276	1,40734	1,10505	0,36002							
10	1,47975	1,25317	0,99336	0,46256	0,16788	-0,90871							
20	1,24992	0,97664	0,64036	0,172	-0,47399	-1,1834							
30	1,09758	0,71509	0,42238	-0,01477	-0,61097	-1,35273							
40	0,90308	0,32351	0,25655	-0,14307	-0,87124	-1,60313							
50	0,80187	0,12246	0,20844	-0,1981	-1,09747	-1,86649							
60	0,61197	-0,03482	-0,14755	-0,33073	-1,25336	-1,96755							
70	0,37012	-0,27621	-0,2976	-0,53257	-1,41453	-2,49486							
80	0,29105	-0,36865	-0,40839	-0,75388	-1,64976	-3,37879							
90	0,15796	-0,50012	-0,49931	-0,91672	-1,94245	-2,26637							
100	0,11548	-0,60583	-0,70557	-1,10397	-1,87236	-3,05894							
110	-0,09474	-0,76666	-0,959	-1,25261	-2,28346	-4,10449							
120	-0,26406	-0,92194	-1,05027	-1,37453	-2,91802	-2,43743							
130	-0,37248	-1,05794	-1,19484	-1,52096	-3,29542	-3,20628							
140	-0,64787	-1,21527	-1,43456	-1,67229	-4,08941	-2,57682							
150	-0,80678	-1,38561	-2,17288	-1,89641	-3,39138	-3,77729							
160	-0,92705	-1,70612	-2,31892	-2,16808	-3,44302	-3,92764							
170	-1,32347	-1,90167	-2,91862	-2,73719	-3,90571	-4,10449							
180	-1,64332	-2,23468	-3,20561	-3,055	-4,78956	-5,58294							
190	-2,55225	-3,10838	-3,60915	-4,42063	-4,78956	-3,37879							
		10											
Ce	3,81741	2,189	1,32667	0,58931	0,40749	0,18431							
Со	10,0410	6,38988	5,12787	3,20461	1,97723	0,67292							
ln(Co-Ce)	1,8283	1,4353	1,3353	0,9614	0,4509	-0,7162							
k	0,0189	0,0207	0,0231	0,0217	0,0273	0,0203							
R	-0,9753	-0,9765	-0,9793	-0,9576	-0,9803	-0,8757							
R^2	0,9512	0,9536	0,9590	0,9170	0,9609	0,7668							

Πίνακας 5.3.1-39 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-40 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

Πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H ₂ SO ₄ , για 2 h												
C=14 $C=10$ $C=7.1$ $C=4.1$ $C=2.9$ $C=1.4$												
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l						
0	0,37232	0,65161	-0,09256	0,44596	0,65414	1,07622						
10	-0,3486	-0,18213	-0,34196	-0,49882	-0,28303	-0,19251						
20	-0,57842	-0,45865	-0,69496	-0,78938	-0,9249	-0,4672						
30	-0,73077	-0,72021	-0,91294	-0,97615	-1,06188	-0,63653						
40	-0,92527	-1,11179	-1,07876	-1,10445	-1,32215	-0,88693						
50	-1,02648	-1,31284	-1,12688	-1,15948	-1,54838	-1,15029						
60	-1,21638	-1,47012	-1,48287	-1,2921	-1,70427	-1,25135						
70	-1,45823	-1,71151	-1,63292	-1,49395	-1,86544	-1,77866						
80	-1,5373	-1,80394	-1,74371	-1,71526	-2,10067	-2,66259						
90	-1,67038	-1,93542	-1,83462	-1,8781	-2,39336	-1,55016						
100	-1,71287	-2,04112	-2,04089	-2,06535	-2,32327	-2,34274						
110	-1,92309	-2,20195	-2,29432	-2,21399	-2,73436	-3,38829						
120	-2,09241	-2,35723	-2,38559	-2,33591	-3,36893	-1,72123						
130	-2,20082	-2,49324	-2,53016	-2,48234	-3,74633	-2,49008						
140	-2,47621	-2,65057	-2,76988	-2,63367	-4,54032	-1,86062						
150	-2,63513	-2,8209	-3,5082	-2,85779	-3,84229	-3,06109						
160	-2,7554	-3,14142	-3,65423	-3,12946	-3,89393	-3,21144						
170	-3,15181	-3,33697	-4,25394	-3,69857	-4,35662	-3,38829						
180	-3,47167	-3,66998	-4,54093	-4,01638	-5,24047	-4,86674						
190	-4,38059	-4,54367	-4,94447	-5,38201	-5,24047	-2,66259						
			1									
Ce	3,81741	2,189	1,32667	0,58931	0,40749	0,18431						
Со	10,041	6,38988	5,12787	3,20461	1,97723	0,67292						
k	0,0189	0,0207	0,0231	0,0217	0,0273	0,0203						

Σχήμα 5.3.1-28 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 2 h

Σχήμα 5.3.1-29 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , $\ln(C-C_{\infty})$, συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 2 h

Σχήμα 5.3.1-30 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 2 h

Πίνακας 5.3.1-41 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H2SO4, για 3 h (χρόνος προθέρμανσης 40 min).												
			Πειραματ	ικές τιμές			Θεωρητικές τιμές						
t								<<	11		2		
(min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	
0	13,2427	9,88074	7,89148	4,94794	2,40284	1,2924	9,42333	7,89869	5,72362	2,95434	1,32452	0,63033	
10	8,19096	5,86694	4,15243	2,24372	0,97062	0,48371	8,28038	6,61578	4,84519	2,42623	1,09823	0,55738	
20	6,64617	5,1003	3,7251	1,79082	0,77712	0,44963	7,35583	5,6098	4,14811	2,01708	0,91989	0,49683	
30	5,87737	4,7412	3,14056	1,43858	0,70192	0,39228	6,60795	4,82097	3,59495	1,7001	0,77935	0,44659	
40	5,4105	4,29607	2,86443	1,24281	0,54391	0,36888	6,00297	4,20242	3,15598	1,45452	0,66859	0,40489	
50	5,23676	3,37612	2,60294	1,12735	0,49397	0,32741	5,51359	3,71739	2,80764	1,26427	0,58131	0,37029	
60	5,082	3,11619	2,421	1,05611	0,46493	0,29946	5,11772	3,33706	2,53122	1,11687	0,51252	0,34157	
70	4,82425	2,90705	2,29602	0,97617	0,43776	0,29291	4,7975	3,03882	2,31186	1,00267	0,45831	0,31774	
80	4,44778	2,8056	2,22362	0,93557	0,41412	0,2717	4,53846	2,80497	2,13779	0,9142	0,41558	0,29797	
90	4,26573	2,67585	2,08727	0,86776	0,38893	0,27007	4,32893	2,62159	1,99966	0,84565	0,38192	0,28155	
100	4,22932	2,57865	1,94954	0,81686	0,37722	0,26682	4,15943	2,4778	1,89004	0,79255	0,35538	0,26793	
110	4,10386	2,46542	1,85616	0,78073	0,35889	0,2652	4,02232	2,36505	1,80306	0,75141	0,33447	0,25663	
120	3,98038	2,34839	1,77699	0,74479	0,33732	0,27495	3,91141	2,27664	1,73403	0,71954	0,31799	0,24725	
130	3,89735	2,24171	1,72964	0,71261	0,31423	0,25547	3,82169	2,20731	1,67926	0,69484	0,30501	0,23946	
140	3,82036	2,16942	1,6883	0,69303	0,29782	0,27007	3,74911	2,15294	1,63579	0,67571	0,29477	0,233	
150	3,75753	2,11329	1,63334	0,66997	0,32741	0,24415	3,69041	2,11032	1,60129	0,66089	0,28671	0,22764	
160	3,68049	2,08127	1,58637	0,64347	0,29618	0,23125	3,64292	2,07689	1,57392	0,64941	0,28035	0,22319	
170	3,60139	2,05327	1,55318	0,62939	0,2652	0,2184	3,6045	2,05068	1,5522	0,64051	0,27534	0,2195	
180	3,5527	2,0273	1,52007	0,64524	0,26195	0,2152	3,57343	2,03013	1,53496	0,63362	0,27139	0,21644	
190	3,51212	1,99537	1,49868	0,62236	0,2717	0,2056	3,54829	2,01401	1,52128	0,62828	0,26828	0,21389	

Πίνακας 5.3.1-42 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

		1.1									
Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H_2SO_4 , για 3 h											
$C_e (mg/L)$	3,44188	1,95546	1,46871	0,60992	0,25671	0,20149					
C _o (mg/L)	9,4233	7,8987	5,7236	2,9543	1,3245	0,6303					
k (min ⁻¹)	0,0212	0,0243	0,0231	0,0255	0,0238	0,0186					
sum	16,1093	4,9768	5,73472	18,9207	3,60867	4,50566					
n-p	29	29	24	24	24	24					
S	0,74531	0,41426	0,48882	0,8879	0,38776	0,43328					

Πίνακας 5.3.1-43 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H ₂ SO ₄ , για 3 h											
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4					
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l					
0	2,28246	2,07006	1,85985	1,46742	0,76366	0,08702					
10	1,55795	1,36392	0,98721	0,49091	-0,33699	-1,26508					
20	1,16449	1,14576	0,81377	0,16628	-0,65314	-1,39375					
30	0,89015	1,02451	0,51393	-0,18794	-0,8092	-1,65659					
40	0,67733	0,85041	0,33341	-0,45746	-1,24757	-1,78744					
50	0,58494	0,35112	0,12595	-0,65888	-1,43858	-2,07209					
60	0,49477	0,14904	-0,04888	-0,80701	-1,56915	-2,32313					
70	0,3238	-0,04962	-0,18957	-1,00442	-1,70897	-2,39231					
80	0,00588	-0,16236	-0,28115	-1,12192	-1,84891	-2,65626					
90	-0,19376	-0,32797	-0,48036	-1,3554	-2,02333	-2,6797					
100	-0,23897	-0,47291	-0,73224	-1,57532	-2,11604	-2,72826					
110	-0,41251	-0,67343	-0,94818	-1,76721	-2,28106	-2,75343					
120	-0,61896	-0,93413	-1,17675	-2,00345	-2,51809	-2,61094					
130	-0,78643	-1,2509	-1,34351	-2,276	-2,85564	-2,91918					
140	-0,97159	-1,54201	-1,51598	-2,48755	-3,19162	-2,6797					
150	-1,15311	-1,84625	-1,80405	-2,81251	-2,64932	-3,15456					
160	-1,43291	-2,07305	-2,13995	-3,3945	-3,23227	-3,51451					
170	-1,83562	-2,32475	-2,4713	-3,93861	-4,76939	-4,07963					
180	-2,1998	-2,63335	-2,96888	-3,34331	-5,25162	-4,28971					
190	-2,6558	-3,22119	-3,50744	-4,38625	-4,20057	-5,49384					
	/	7 1	1								
Ce	3,44188	1,95546	1,46871	0,60992	0,25671	0,20149					
Со	9,4233	7,89869	5,72362	2,95434	1,32452	0,63033					
ln(Co-Ce)	1,7887	1,7823	1,4481	0,8520	0,0656	-0,8467					
k	0,0212	0,0243	0,0231	0,0255	0,0238	0,0186					
R	-0,9858	-0,9933	-0,9856	-0,9840	-0,9525	-0,9234					
R^2	0,9718	0,9867	0,9714	0,9682	0,9073	0,8526					

Πίνακας 5.3.1-44 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

Πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H ₂ SO ₄ , για 3 h													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l							
0	0,4938	0,28781	0,41178	0,61538	0,69806	0,93368							
10	-0,23071	-0,41834	-0,46087	-0,36113	-0,4026	-0,41842							
20	-0,62417	-0,63649	-0,63431	-0,68576	-0,71874	-0,54709							
30	-0,89851	-0,75774	-0,93414	-1,03998	-0,87481	-0,80992							
40	-1,11133	-0,93184	-1,11466	-1,3095	-1,31317	-0,94078							
50	-1,20372	-1,43113	-1,32212	-1,51092	-1,50419	-1,22542							
60	-1,29389	-1,63321	-1,49696	-1,65905	-1,63475	-1,47646							
70	-1,46486	-1,83188	-1,63764	-1,85646	-1,77458	-1,54565							
80	-1,78278	-1,94462	-1,72922	-1,97396	-1,91452	-1,8096							
90	-1,98243	-2,11023	-1,92843	-2,20744	-2,08893	-1,83303							
100	-2,02763	-2,25516	-2,18031	-2,42736	-2,18165	-1,88159							
110	-2,20117	-2,45568	-2,39625	-2,61925	-2,34667	-1,90677							
120	-2,40762	-2,71638	-2,62482	-2,85549	-2,5837	-1,76428							
130	-2,57509	-3,03315	-2,79158	-3,12804	-2,92124	-2,07252							
140	-2,76025	-3,32426	-2,96405	-3,33959	-3,25722	-1,83303							
150	-2,94177	-3,6285	-3,25213	-3,66455	-2,71492	-2,3079							
160	-3,22158	-3,8553	-3,58802	-4,24654	-3,29788	-2,66785							
170	-3,62428	-4,10701	-3,91937	-4,79065	-4,835	-3,23296							
180	-3,98847	-4,4156	-4,41695	-4,19535	-5,31723	-3,44304							
190	-4,44447	-5,00344	-4,95551	-5,23829	-4,26617	-4,64718							
		100	1	1									
Ce	3,44188	1,95546	1,46871	0,60992	0,25671	0,20149							
Co	9,42333	7,89869	5,72362	2,95434	1,32452	0,63033							
k	0,0212	0,0243	0,0231	0,0255	0,0238	0,0186							
	122	N N											

Σχήμα 5.3.1-31 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 3 h

Σχήμα 5.3.1-32 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , $\ln(C-C_{\infty})$, συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 3 h

Σχήμα 5.3.1-33 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 3 h

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H ₂ SO ₄ , για 4 h (χρόνος προθέρμανσης 40 min).												
			Πειραματ	ικές τιμές			Θεωρητικές τιμές						
t								2		< >	2		
(min)	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4	
	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l	
0	13,4132	8,97205	7,18646	4,79386	3,29287	1,95153	9,744	6,32106	5,25019	2,72977	1,79288	0,99052	
10	7,99257	5,25104	3,8467	2,27992	1,55903	0,72153	8,61778	5,44627	4,44121	2,26844	1,47985	0,80359	
20	7,12423	4,49633	3,40251	1,90578	1,11794	0,59609	7,70128	4,74583	3,79276	1,91198	1,23224	0,65878	
30	6,29315	3,89937	2,81777	1,54344	0,86594	0,43946	6,95546	4,185	3,27298	1,63653	1,03638	0,54661	
40	5,84402	3,57908	2,50786	1,40188	0,72332	0,35722	6,34853	3,73595	2,85634	1,42369	0,88145	0,45971	
50	5,45355	3,29287	2,30609	1,2333	0,66466	0,38893	5,85462	3,3764	2,52237	1,25923	0,7589	0,3924	
60	5,3082	2,95577	2,13533	1,0748	0,62061	0,36221	5,45269	3,08852	2,25467	1,13214	0,66196	0,34026	
70	4,97636	2,66977	1,91174	0,95769	0,58213	0,28637	5,12561	2,85801	2,04009	1,03395	0,58528	0,29987	
80	4,80601	2,51797	1,85814	0,87872	0,52147	0,27658	4,85944	2,67345	1,86809	0,95807	0,52463	0,26858	
90	4,68451	2,45532	1,7928	0,855	0,47516	0,23286	4,64283	2,52567	1,73022	0,89944	0,47665	0,24435	
100	4,57927	2,39275	1,75922	0,83137	0,44115	0,2168	4,46656	2,40735	1,61971	0,85413	0,4387	0,22557	
110	4,48621	2,35444	1,65687	0,81324	0,40571	0,20241	4,32312	2,31261	1,53113	0,81912	0,40869	0,21103	
120	4,33248	2,27791	1,55513	0,79335	0,36221	0,2104	4,20639	2,23675	1,46012	0,79207	0,38494	0,19976	
130	4,23943	2,23568	1,48315	0,78794	0,34229	0,19125	4,1114	2,17602	1,4032	0,77117	0,36616	0,19103	
140	4,13624	2,19551	1,42118	0,77172	0,38725	0,2056	4,03409	2,12738	1,35758	0,75502	0,3513	0,18427	
150	4,03707	2,14535	1,36143	0,75555	0,34395	0,18331	3,97119	2,08845	1,32101	0,74254	0,33955	0,17904	
160	3,93583	2,09327	1,3058	0,72689	-0,37054	0,1738	3,91999	2,05727	1,2917	0,73289	0,33026	0,17498	
170	3,86696	2,03529	1,26567	0,7144	0,34229	0,1659	3,87833	2,0323	1,2682	0,72544	0,3229	0,17184	
180	3,81631	2,00136	1,24662	0,74299	0,32246	0,18649	3,84443	2,01232	1,24936	0,71968	0,31709	0,1694	
190	3,77172	1,97145	1,19723	0,7144	0,30109	0,16432	3,81684	1,99631	1,23427	0,71523	0,31249	0,16752	

Πίνακας 5.3.1-45 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-46 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H_2SO_4 , για 4 h											
C_{e} (mg/L)	3,69629	1,93202	1,17328	0,70011	0,29507	0,16104						
C _o (mg/L)	9,7440	6,3211	5,2502	2,7298	1,7929	0,9905						
k (min ⁻¹)	0,0206	0,0222	0,0221	0,0258	0,0234	0,0255						
sum	15,178	7,34056	4,72302	13,0961	6,91404	7,53509						
n-p	29	29	24	24	24	24						
S	0,72345	0,50311	0,44361	0,7387	0,53674	0,56032						

1

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H ₂ SO ₄ , για 4 h													
C=14 $C=10$ $C=7.1$ $C=4.1$ $C=2.9$ $C=1.4$ mg/l mg/l mg/l													
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l							
0	2,27386	1,95161	1,79395	1,40946	1,09788	0,58249							
10	1,45775	1,19967	0,98336	0,45731	0,23425	-0,57893							
20	1,23196	0,94169	0,80166	0,18704	-0,19496	-0,83229							
30	0,9543	0,67669	0,49743	-0,1704	-0,5606	-1,27862							
40	0,76441	0,49899	0,28862	-0,35415	-0,84806	-1,62868							
50	0,56376	0,30811	0,1247	-0,62888	-0,99536	-1,47889							
60	0,47743	0,02347	-0,03869	-0,98165	-1,12228	-1,60356							
70	0,24692	-0,30415	-0,30318	-1,3564	-1,24809	-2,07678							
80	0,10412	-0,53453	-0,37855	-1,72255	-1,48548	-2,15808							
90	-0,01185	-0,64759	-0,47882	-1,865	-1,71429	-2,63353							
100	-0,12445	-0,77494	-0,53454	-2,03059	-1,92361	-2,88663							
110	-0,23582	-0,86176	-0,72652	-2,17922	-2,20153	-3,18516							
120	-0,45224	-1,06163	-0,96272	-2,37254	-2,70095	-3,00862							
130	-0,61038	-1,19185	-1,17162	-2,43236	-3,05297	-3,49929							
140	-0,82107	-1,33376	-1,39472	-2,63645	-2,38401	-3,11081							
150	-1,07651	-1,54491	-1,67052	-2,89245	-3,01849	-3,80428							
160	-1,42902	-1,82479	-2,02107	-3,61994	-2,584	-4,36087							
170	-1,768	-2,27042	-2,38174	-4,24834	-3,05297	-5,32575							
180	-2,12009	-2,66881	-2,61273	-3,14917	-3,59754	-3,67102							
190	-2,58449	-3,23325	-3,73202	-4,24834	-5,11236	-5,71795							
		10											
Ce	3,69629	1,93202	1,17328	0,70011	0,29507	0,16104							
Co	9,7440	6,32106	5,25019	2,72977	1,79288	0,99052							
ln(Co-Ce)	1,7997	1,4791	1,4053	0,7079	0,4040	-0,1870							
k	0,0206	0,0222	0,0221	0,0258	0,0234	0,0255							
R	-0,9826	-0,9853	-0,9737	-0,9782	-0,9579	-0,9579							
R^2	0,9654	0,9708	0,9480	0,9568	0,9177	0,9177							

Πίνακας 5.3.1-47 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-48 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l						
0	0,47418	0,4725	0,38862	0,70159	0,69387	0,76944						
10	-0,34193	-0,27944	-0,42198	-0,25056	-0,16975	-0,39198						
20	-0,56772	-0,53742	-0,60368	-0,52083	-0,59896	-0,64534						
30	-0,84538	-0,80242	-0,90791	-0,87827	-0,96461	-1,09167						
40	-1,03527	-0,98012	-1,11672	-1,06202	-1,25206	-1,44173						
50	-1,23592	-1,171	-1,28064	-1,33675	-1,39937	-1,29194						
60	-1,32225	-1,45564	-1,44403	-1,68952	-1,52628	-1,41661						
70	-1,55276	-1,78327	-1,70852	-2,06427	-1,65209	-1,88983						
80	-1,69556	-2,01364	-1,78388	-2,43042	-1,88948	-1,97113						
90	-1,81153	-2,12671	-1,88416	-2,57287	-2,1183	-2,44658						
100	-1,92413	-2,25405	-1,93988	-2,73845	-2,32762	-2,69968						
110	-2,0355	-2,34087	-2,13185	-2,88709	-2,60553	-2,99821						
120	-2,25192	-2,54074	-2,36806	-3,08041	-3,10495	-2,82167						
130	-2,41006	-2,67096	-2,57695	-3,14022	-3,45698	-3,31234						
140	-2,62075	-2,81287	-2,80006	-3,34432	-2,78802	-2,92386						
150	-2,87619	-3,02402	-3,07585	-3,60032	-3,4225	-3,61733						
160	-3,2287	-3,3039	-3,42641	-4,32781	-2,98801	-4,17392						
170	-3,56768	-3,74953	-3,78708	-4,95621	-3,45698	-5,1388						
180	-3,91977	-4,14792	-4,01807	-3,85704	-4,00154	-3,48407						
190	-4,38417	-4,71236	-5,13735	-4,95621	-5,51636	-5,531						
		~~ .	1	~								
Ce	3,69629	1,93202	1,17328	0,70011	0,29507	0,16104						
Со	9,744	6,32106	5,25019	2,72977	1,79288	0,99052						
k	0,0206	0,0222	0,0221	0,0258	0,0234	0,0255						

Σχήμα 5.3.1-34 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 4 h

Σχήμα 5.3.1-35 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , ln(C- C_w), συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 4 h

Σχήμα 5.3.1-36 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 4 h

Πίνακας 5.3.1-49 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H ₂ SO ₄ , για 5 h (χρόνος προθέρμανσης 40 min).												
			Πειραματ	ικές τιμές			Θεωρητικές τιμές						
t								<<	11		22		
(min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	
0	12,801	9,53345	7,13802	4,49835	3,23195	1,56684	9,73026	6,4676	5,03986	2,89492	1,33615	0,60777	
10	8,03594	5,26532	4,01278	2,13733	1,36528	0,63995	8,64103	5,59506	4,28301	2,39795	1,16578	0,53589	
20	7,3946	4,63188	3,14259	1,71191	1,08604	0,51114	7,75052	4,8903	3,6741	2,00675	1,02414	0,4759	
30	6,41553	4,02087	2,77314	1,46182	0,94478	0,46323	7,02247	4,32106	3,1842	1,69883	0,90638	0,42585	
40	6,02397	3,51009	2,55235	1,30962	0,84772	0,3906	6,42724	3,86129	2,79006	1,45644	0,80847	0,38407	
50	5,69041	3,23601	2,21157	1,19344	0,76453	0,35058	5,94061	3,48992	2,47296	1,26565	0,72708	0,34921	
60	5,37568	2,95374	2,05927	1,02442	0,66997	0,33236	5,54275	3,18997	2,21783	1,11547	0,6594	0,32012	
70	5,09013	2,79951	1,94158	0,89518	0,55431	0,30437	5,21748	2,9477	2,01258	0,99725	0,60314	0,29585	
80	4,90331	2,62116	1,8621	0,86411	0,49055	0,27495	4,95155	2,75201	1,84744	0,9042	0,55637	0,27559	
90	4,76347	2,53212	1,74146	0,84954	0,44624	0,26195	4,73414	2,59396	1,71458	0,83095	0,51748	0,25868	
100	4,58939	2,49169	1,68044	0,80419	0,41244	0,22482	4,55639	2,4663	1,60769	0,77329	0,48514	0,24457	
110	4,50644	2,43917	1,60397	0,77532	0,37889	0,20241	4,41107	2,36318	1,52169	0,72791	0,45826	0,2328	
120	4,42351	2,40082	1,52396	0,73404	0,44285	0,18966	4,29226	2,2799	1,4525	0,69219	0,43591	0,22297	
130	4,29607	2,32421	1,45213	0,7037	0,43269	0,17697	4,19513	2,21263	1,39684	0,66407	0,41733	0,21477	
140	4,16862	2,21559	1,39224	0,66997	0,38391	0,204	4,11571	2,15829	1,35205	0,64193	0,40189	0,20793	
150	4,10994	2,1634	1,36335	0,65053	0,33236	0,18331	4,05079	2,11441	1,31602	0,62451	0,38904	0,20222	
160	4,02695	2,11329	1,32495	0,63115	0,4158	0,1849	3,99771	2,07896	1,28703	0,61079	0,37837	0,19746	
170	3,96621	2,06127	1,27903	0,61009	0,38725	0,27658	3,95431	2,05033	1,26371	0,6	0,36949	0,19348	
180	3,90747	2,01932	1,2409	0,57864	0,42086	0,25223	3,91883	2,0272	1,24495	0,5915	0,36211	0,19016	
190	3,83657	1,96946	1,19154	0,5715	0,44454	0,23447	3,88983	2,00852	1,22985	0,58481	0,35597	0,18739	

Πίνακας 5.3.1-50 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

		1 1									
Πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H ₂ SO ₄ , για 5 h											
$C_e (mg/L)$	3,75984	1,93007	1,16771	0,56007	0,32572	0,17343					
C _o (mg/L)	9,7303	6,4676	5,0399	2,8949	1,3361	0,6078					
k (min ⁻¹)	0,0201	0,0214	0,0217	0,0239	0,0185	0,0181					
sum	10,6109	9,99366	5,10998	13,3457	9,27163	5,29202					
n-p	29	29	24	24	24	24					
S	0,60489	0,58703	0,46143	0,7457	0,62154	0,46958					

Πίνακας 5.3.1-51 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H ₂ SO ₄ , για 5 h										
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4					
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l					
0	2,20178	2,02859	1,7868	1,37074	1,06686	0,33175					
10	1,45304	1,20455	1,04559	0,45569	0,0388	-0,76245					
20	1,29054	0,99392	0,68051	0,14136	-0,27402	-1,08557					
30	0,97671	0,73755	0,47339	-0,10343	-0,47955	-1,23856					
40	0,81719	0,45744	0,32544	-0,28828	-0,65008	-1,52707					
50	0,65782	0,26693	0,04292	-0,45671	-0,82369	-1,73075					
60	0,47986	0,0234	-0,11479	-0,76713	-1,06638	-1,83926					
70	0,2854	-0,1399	-0,25635	-1,0933	-1,47582	-2,03298					
80	0,13407	-0,36948	-0,36472	-1,19059	-1,80283	-2,28746					
90	0,00363	-0,50741	-0,55556	-1,23971	-2,11594	-2,42452					
100	-0,18687	-0,57693	-0,66801	-1,4101	-2,44509	-2,9683					
110	-0,29222	-0,67511	-0,82953	-1,53596	-2,93422	-3,54124					
120	-0,40997	-0,75342	-1,03212	-1,74887	-2,14449	-4,12061					
130	-0,62318	-0,93103	-1,25731	-1,94051	-2,23522	-5,6438					
140	-0,89457	-1,25344	-1,49377	-2,2082	-2,84408	-3,48762					
150	-1,04954	-1,4553	-1,63146	-2,40289	-5,01355	-4,61714					
160	-1,3201	-1,69705	-1,84998	-2,64397	-2,40698	-4,46817					
170	-1,57809	-2,03104	-2,19536	-2,99545	-2,78815	-2,27155					
180	-1,913	-2,41634	-2,61465	-3,98634	-2,35235	-2,54087					
190	-2,56744	-3,23426	-3,73677	-4,47151	-2,13012	-2,79622					
	/	1 1	11	4							
Ce	3,75984	1,93007	1,16771	0,56007	0,32572	0,17343					
Со	9,7303	6,4676	5,03986	2,89492	1,33615	0,60777					
ln(Co-Ce)	1,7868	1,5124	1,3538	0,8479	0,0104	-0,8339					
k	0,0201	0,0214	0,0217	0,0239	0,0185	0,0181					
R	-0,9801	-0,9789	-0,9836	-0,9638	-0,9659	-0,9070					
R^2	0,9605	0,9582	0,9675	0,9289	0,9329	0,8227					

	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4
(min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l
0	0,41497	0,51621	0,43299	0,5228	1,05648	1,16568
10	-0,33378	-0,30783	-0,30822	-0,39226	0,02842	0,07148
20	-0,49627	-0,51846	-0,6733	-0,70659	-0,28439	-0,25164
30	-0,81011	-0,77483	-0,88041	-0,95137	-0,48992	-0,40463
40	-0,96963	-1,05494	-1,02837	-1,13623	-0,66046	-0,69314
50	-1,129	-1,24546	-1,31088	-1,30466	-0,83406	-0,89683
60	-1,30696	-1,48899	-1,46859	-1,61508	-1,07675	-1,00533
70	-1,50142	-1,65229	-1,61016	-1,94125	-1,4862	-1,19906
80	-1,65275	-1,88187	-1,71853	-2,03854	-1,81321	-1,45353
90	-1,78319	-2,01979	-1,90937	-2,08765	-2,12632	-1,59059
100	-1,97369	-2,08931	-2,02182	-2,25805	-2,45546	-2,13437
110	-2,07904	-2,18749	-2,18334	-2,3839	-2,94459	-2,70731
120	-2,19679	-2,26581	-2,38593	-2,59681	-2,15486	-3,28669
130	-2,41	-2,44342	-2,61112	-2,78845	-2,24559	-4,80988
140	-2,68139	-2,76583	-2,84758	-3,05614	-2,85446	-2,65369
150	-2,83636	-2,96768	-2,98527	-3,25084	-5,02392	-3,78322
160	-3,10691	-3,20943	-3,20379	-3,49192	-2,41735	-3,63425
170	-3,36491	-3,54342	-3,54916	-3,84339	-2,79853	-1,43762
180	-3,69982	-3,92872	-3,96846	-4,83429	-2,36273	-1,70694
190	-4,35426	-4,74665	-5,09058	-5,31946	-2,14049	-1,9623

5,03986

2,89492

1,33615

0,60777

Πίνακας 5.3.1-52 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,45N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

6,4676

Co

9,73026

Σχήμα 5.3.1-37 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H_2SO_4 , για 5 h

Σχήμα 5.3.1-38 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , ln(C- C_{∞}), συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 5 h

Σχήμα 5.3.1-39 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H₂SO₄, για 5 h

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H ₂ SO ₄ , για 0,5 h (χρόνος προθέρμανσης 40 min).												
			Πειραματ	ικές τιμές			Θεωρητικές τιμές						
t								2		< >	3		
(min)	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4	
	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l	
0	13,3677	10,1389	6,98734	3,75753	3,26444	1,3499	10,477	8,10287	4,26309	1,56902	1,59759	0,72875	
10	8,45933	5,69662	3,35785	2,14736	1,3307	0,31259	9,19716	6,93996	3,51602	1,40563	1,34717	0,57754	
20	7,02366	4,99463	2,74881	1,6353	1,08604	0,31259	8,15712	5,99286	2,94322	1,26831	1,14386	0,45988	
30	6,47388	4,48621	2,39679	1,3403	0,80781	0,29454	7,31196	5,22152	2,50405	1,1529	0,97878	0,36832	
40	5,95681	3,9338	2,03929	1,08791	0,70905	0,22161	6,62516	4,59333	2,16733	1,0559	0,84476	0,29708	
50	5,61811	3,70482	1,83237	0,97062	0,7412	0,1738	6,06705	4,08172	1,90916	0,97438	0,73595	0,24164	
60	5,40025	3,55473	1,67258	0,88237	0,54738	0,20081	5,61352	3,66506	1,71121	0,90586	0,6476	0,1985	
70	5,32251	3,35176	1,49868	0,82955	0,54218	0,19285	5,24497	3,32572	1,55945	0,84828	0,57587	0,16494	
80	5,13286	3,02074	1,36143	0,69481	0,44793	0,15172	4,94548	3,04935	1,44309	0,79988	0,51764	0,13882	
90	4,75335	2,91923	1,32303	0,68415	0,42762	0,13136	4,7021	2,82427	1,35387	0,7592	0,47035	0,11849	
100	4,5995	2,84414	1,3192	0,63467	0,40235	0,12356	4,50433	2,64097	1,28546	0,72501	0,43197	0,10268	
110	4,52262	2,688	1,26567	0,61535	0,37722	0,11733	4,34361	2,49168	1,23302	0,69628	0,4008	0,09037	
120	4,43564	2,73057	1,20481	0,58736	0,37221	0,10492	4,21301	2,37009	1,19281	0,67213	0,37549	0,0808	
130	4,36889	2,55842	1,14807	0,58561	0,38558	0,08793	4,10689	2,27107	1,16197	0,65184	0,35495	0,07334	
140	4,17874	2,53617	1,16317	0,55604	0,37054	0,08332	4,02064	2,19043	1,13834	0,63478	0,33827	0,06755	
150	4,0897	2,41898	1,09916	0,57516	0,36554	0,06798	3,95056	2,12475	1,12021	0,62044	0,32472	0,06303	
160	4,02897	1,98141	1,1217	0,72153	-0,35556	0,06187	3,89361	2,07126	1,10632	0,60839	0,31373	0,05952	
170	3,73929	1,96149	1,08416	0,74837	0,32906	0,05425	3,84733	2,0277	1,09566	0,59827	0,3048	0,05679	
180	3,77375	2,02331	1,08229	0,67351	0,31423	0,0573	3,80972	1,99222	1,08749	0,58976	0,29755	0,05466	
190	3,72104	1,87401	1,09916	0,75375	0,2717	0,04817	3,77916	1,96333	1,08123	0,5826	0,29167	0,05301	

Πίνακας 5.3.1-53 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9 N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-54 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονίδ	Πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9 N H ₂ SO ₄ , για 0,5 h											
$C_e (mg/L)$	3,64662	1,83653	1,06064	0,54492	0,26626	0,04721						
$C_o (mg/L)$	10,4770	8,1029	4,2631	1,5690	1,5976	0,7287						
k (min ⁻¹)	0,0415	0,0411	0,0531	0,0348	0,0417	0,0502						
sum	11,8635	8,34796	7,53525	7,0019	9,27145	6,03674						
n-p	18	18	18	18	18	18						
S	0,81184	0,68101	0,64701	0,62369	0,71769	0,57912						

1

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0.9N H ₂ SO ₄ , για 0,5 h											
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4					
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l					
0	2,2743	2,11654	1,77947	1,16708	1,098	0,26443					
10	1,57126	1,35069	0,83169	0,47152	0,06245	-1,3266					
20	1,217	1,14997	0,52364	0,08652	-0,19873	-1,3266					
30	1,03931	0,97444	0,28979	-0,22894	-0,61333	-1,39702					
40	0,83733	0,74064	-0,02159	-0,61067	-0,81468	-1,7464					
50	0,67879	0,62503	-0,25912	-0,85401	-0,74457	-2,06677					
60	0,56169	0,54128	-0,49113	-1,08633	-1,269	-1,87338					
70	0,51634	0,41557	-0,82545	-1,25657	-1,28765	-1,92664					
80	0,39625	0,16908	-1,20135	-1,89787	-1,70557	-2,25843					
90	0,10141	0,07946	-1,33792	-1,97163	-1,82418	-2,4752					
100	-0,04826	0,00758	-1,35264	-2,41075	-1,99451	-2,57246					
110	-0,13239	-0,16079	-1,58461	-2,65322	-2,19863	-2,65752					
120	-0,23696	-0,11201	-1,93679	-3,15976	-2,24482	-2,85234					
130	-0,32535	-0,32588	-2,43694	-3,20174	-2,126	-3,20094					
140	-0,63089	-0,35719	-2,27763	-4,49893	-2,26068	-3,32123					
150	-0,81401	-0,5405	-3,25665	-3,49872	-2,30982	-3,87399					
160	-0,96142	-1,9318	-2,79589	-1,7338	-2,41578	-4,22232					
170	-2,37875	-2,07975	-3,74995	-1,59233	-2,76785	-4,95548					
180	-2,06258	-1,67782	-3,83294	-2,05111	-3,03726	-4,59619					
190	-2,59802	-3,28394	-3,25665	-1,56623	-5,21508	-6,94499					
		10									
Ce	3,64662	1,83653	1,06064	0,54492	0,26626	0,04721					
Co	10,4770	8,10287	4,26309	1,56902	1,59759	0,72875					
ln(Co-Ce)	1,9214	1,8352	1,1639	0,0238	0,2862	-0,3834					
k	0,0415	0,0411	0,0531	0,0348	0,0417	0,0502					
R	-0,9627	-0,9362	-0,9839	-0,7290	-0,9252	-0,9329					
R^2	0,9267	0,8765	0,9682	0,5315	0,8560	0,8703					

Πίνακας 5.3.1-55 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-56 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0.9N H₂SO₄, για 0,5 h (χρόνος προθέρμανσης 40 min).

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0.9N H_2SO_4 , για 0,5 h													
	t (min) $C=14$ $C=10$ $C=7.1$ $C=4.1$ $C=2.9$ $C=1.4$ mg/l mg/l mg/l												
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l							
0	0,35292	0,28135	0,61555	1,14327	0,81183	0,64784							
10	-0,35012	-0,4845	-0,33222	0,44772	-0,22373	-0,9432							
20	-0,70438	-0,68522	-0,64027	0,06271	-0,48491	-0,9432							
30	-0,88207	-0,86075	-0,87413	-0,25275	-0,89951	-1,01361							
40	-1,08405	-1,09455	-1,18551	-0,63448	-1,10085	-1,36299							
50	-1,24259	-1,21017	-1,42304	-0,87782	-1,03074	-1,68336							
60	-1,35969	-1,29391	-1,65504	-1,11014	-1,55518	-1,48998							
70	-1,40504	-1,41963	-1,98937	-1,28038	-1,57382	-1,54323							
80	-1,52514	-1,66611	-2,36527	-1,92168	-1,99174	-1,87502							
90	-1,81998	-1,75573	-2,50184	-1,99544	-2,11035	-2,09179							
100	-1,96965	-1,82761	-2,51655	-2,43456	-2,28068	-2,18906							
110	-2,05377	-1,99598	-2,74853	-2,67703	-2,48481	-2,27411							
120	-2,15835	-1,9472	-3,10071	-3,18357	-2,53099	-2,46894							
130	-2,24674	-2,16108	-3,60086	-3,22555	-2,41217	-2,81753							
140	-2,55228	-2,19238	-3,44155	-4,52274	-2,54686	-2,93783							
150	-2,7354	-2,3757	-4,42056	-3,52253	-2,59599	-3,49059							
160	-2,8828	-3,767	-3,95981	-1,75761	-2,70196	-3,83891							
170	-4,30013	-3,91495	-4,91387	-1,61614	-3,05402	-4,57208							
180	-3,98396	-3,51301	-4,99686	-2,07492	-3,32344	-4,21278							
190	-4,5194	-5,11914	-4,42056	-1,59004	-5,50126	-6,56159							
			1	1									
Ce	3,64662	1,83653	1,06064	0,54492	0,26626	0,04721							
Со	10,477	8,10287	4,26309	1,56902	1,59759	0,72875							
k	0,0415	0,0411	0,0531	0,0348	0,0417	0,0502							

Σχήμα 5.3.1-40 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 0,5

Σχήμα 5.3.1-41Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , ln(C- C_w), συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 0,5

Σχήμα 5.3.1-42 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_∞) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_∞) για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9 N H₂SO₄, για 0,5 h

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H ₂ SO ₄ , για 1 h (χρόνος προθέρμανσης 40 min).												
			Πειραματ	ικές τιμές			Θεωρητικές τιμές						
t								2		~ >	2		
(min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	
0	13,5713	9,86101	7,44918	4,62176	2,9781	1,30388	12,4532	8,14502	5,43611	2,19712	0,81652	0,43222	
10	10,308	6,36387	3,78793	1,70797	1,05424	0,41918	10,6395	6,97947	4,50932	1,82534	0,74527	0,36856	
20	8,59863	5,13693	3,104	1,22759	0,8223	0,30273	9,21525	6,05321	3,78289	1,5353	0,68417	0,31748	
30	7,74468	4,93577	2,76909	1,16884	0,7037	0,25061	8,09679	5,3171	3,2135	1,30901	0,63176	0,27652	
40	6,77871	4,34867	2,39679	1,04304	0,55084	0,23447	7,21847	4,73211	2,76721	1,13247	0,58681	0,24365	
50	6,4544	4,04922	2,20354	0,89701	0,50598	0,2136	6,52872	4,26722	2,41741	0,99475	0,54826	0,21729	
60	5,92542	3,86696	2,07327	0,85318	0,44285	0,18014	5,98707	3,89777	2,14323	0,8873	0,5152	0,19615	
70	5,66353	3,76361	1,93362	0,81505	0,44454	0,16906	5,56171	3,60416	1,92832	0,80347	0,48684	0,17919	
80	5,15321	3,44311	1,83237	0,70905	0,38558	0,15802	5,22768	3,37083	1,75988	0,73807	0,46253	0,16558	
90	5,07387	3,23804	1,70207	0,64876	0,36721	0,15487	4,96536	3,1854	1,62785	0,68704	0,44167	0,15467	
100	4,81412	3,08369	1,58832	0,64171	0,35722	0,15959	4,75937	3,03804	1,52436	0,64724	0,42378	0,14591	
110	4,80601	3,02074	1,55708	0,62412	0,34726	0,13604	4,5976	2,92094	1,44325	0,61618	0,40844	0,13889	
120	4,48823	2,9172	1,40574	0,60658	0,3456	0,12356	4,47056	2,82787	1,37967	0,59195	0,39528	0,13326	
130	4,41541	2,90299	1,40767	0,57864	0,3539	0,11889	4,3708	2,75391	1,32984	0,57305	0,384	0,12874	
140	4,36485	2,70624	1,38453	0,56994	0,3906	0,11422	4,29246	2,69513	1,29078	0,55831	0,37432	0,12511	
150	4,22325	2,70624	1,3403	0,55431	0,44793	0,11267	4,23094	2,64842	1,26016	0,5468	0,36602	0,12221	
160	4,14434	2,58472	1,23139	0,54565	-0,37221	0,122	4,18263	2,6113	1,23617	0,53783	0,3589	0,11987	
170	4,14029	2,57056	1,2105	0,52491	0,33732	0,12979	4,14469	2,5818	1,21736	0,53082	0,3528	0,118	
180	4,09982	2,54223	1,17829	0,53354	2,20755	0,12511	4,11489	2,55836	1,20262	0,52536	0,34756	0,1165	
190	4,08767	2,51797	1,17262	0,5163	0,32246	0,13136	4,0915	2,53973	1,19106	0,5211	0,34307	0,1153	

Πίνακας 5.3.1-57 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9 N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-58 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H ₂ SO ₄ , για 1 h											
$C_e (mg/L)$	4,00592	2,46761	1,14917	0,50597	0,31601	0,11042						
C _o (mg/L)	12,4532	8,1450	5,4361	2,1971	0,8165	0,4322						
k (min ⁻¹)	0,0483	0,0460	0,0487	0,0497	0,0307	0,0441						
sum	2,15047	4,58477	5,46989	17,0252	12,6792	5,51642						
n-p	29	29	24	24	24	24						
S	0,27231	0,39761	0,4774	0,84225	0,72684	0,47943						

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H ₂ SO ₄ , για 1 h											
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4						
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l						
0	2,25815	2,00059	1,84055	1,41483	0,97911	0,17686						
10	1,84088	1,36002	0,97031	0,18399	-0,30351	-1,17519						
20	1,52447	0,98182	0,67031	-0,32626	-0,68066	-1,64861						
30	1,31875	0,90347	0,48238	-0,41119	-0,94755	-1,96473						
40	1,01985	0,63183	0,22124	-0,62163	-1,44891	-2,08704						
50	0,89547	0,45844	0,05294	-0,93895	-1,66089	-2,27129						
60	0,65206	0,33601	-0,07894	-1,05783	-2,06489	-2,66324						
70	0,50538	0,25929	-0,24277	-1,17417	-2,05162	-2,8363						
80	0,1374	-0,0248	-0,38096	-1,59419	-2,6655	-3,04492						
90	0,06574	-0,2608	-0,59257	-1,94638	-2,9721	-3,11335						
100	-0,21295	-0,48437	-0,8229	-1,99702	-3,18907	-3,01237						
110	-0,22303	-0,59215	-0,89669	-2,13583	-3,46579	-3,6641						
120	-0,72916	-0,79941	-1,36035	-2,2965	-3,5203	-4,33214						
130	-0,89283	-0,83153	-1,35286	-2,62188	-3,27315	-4,77131						
140	-1,02463	-1,43283	-1,44663	-2,74945	-2,59578	-5,57112						
150	-1,52635	-1,43283	-1,65479	-3,02962	-2,02556	-6,09531						
160	-1,97747	-2,14462	-2,49826	-3,22714	-2,87888	-4,45831						
170	-2,00715	-2,27353	-2,79142	-3,96652	-3,84855	-3,94366						
180	-2,36556	-2,59527	-3,53613	-3,59113	0,63739	-4,22006						
190	-2,50405	-2,98857	-3,75278	-4,57309	-5,04379	-3,86616						
		10										
Ce	4,00592	2,46761	1,14917	0,50597	0,31601	0,11042						
Co	12,4532	8,14502	5,43611	2,19712	0,81652	0,43222						
ln(Co-Ce)	2,1338	1,7365	1,4556	0,5254	-0,6921	-1,1338						
k	0,0483	0,0460	0,0487	0,0497	0,0307	0,0441						
R	-0,9957	-0,9881	-0,9751	-0,9808	-0,5955	-0,8610						
R ²	0,9915	0,9764	0,9509	0,9620	0,3546	0,7413						

Πίνακας 5.3.1-59 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4
(min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l
0	0,12431	0,26409	0,38498	0,88942	1,67124	1,31066
10	-0,29296	-0,37648	-0,48526	-0,34142	0,38862	-0,04139
20	-0,60937	-0,75467	-0,78527	-0,85167	0,01147	-0,51481
30	-0,81508	-0,83302	-0,9732	-0,93659	-0,25542	-0,83093
40	-1,11399	-1,10466	-1,23434	-1,14703	-0,75678	-0,95324
50	-1,23837	-1,27805	-1,40263	-1,46436	-0,96876	-1,13749
60	-1,48178	-1,40049	-1,53451	-1,58324	-1,37276	-1,52944
70	-1,62846	-1,47721	-1,69834	-1,69958	-1,35949	-1,7025
80	-1,99643	-1,76129	-1,83653	-2,1196	-1,97337	-1,91112
90	-2,0681	-1,9973	-2,04815	-2,47178	-2,27997	-1,97955
100	-2,34679	-2,22086	-2,27847	-2,52243	-2,49694	-1,87856
110	-2,35687	-2,32865	-2,35226	-2,66123	-2,77366	-2,53029
120	-2,863	-2,53591	-2,81593	-2,82191	-2,82817	-3,19834
130	-3,02667	-2,56802	-2,80843	-3,14729	-2,58102	-3,63751
140	-3,15847	-3,16932	-2,90221	-3,27485	-1,90365	-4,43732
150	-3,66019	-3,16932	-3,11037	-3,55503	-1,33343	-4,96151
160	-4,11131	-3,88111	-3,95383	-3,75254	-2,18675	-3,32451
170	-4,14099	-4,01003	-4,24699	-4,49192	-3,15642	-2,80986
180	-4,4994	-4,33176	-4,99171	-4,11653	1,32952	-3,08626
190	-4,63789	-4,72507	-5,20836	-5,0985	-4,35166	-2,73236
		11	725	50		
Ce	4,00592	2,46761	1,14917	0,50597	0,31601	0,11042
Co	12,4532	8,14502	5,43611	2,19712	0,81652	0,43222
	0,0483	0,0460	0,0487	0,0497	0,0307	0,0441

Πίνακας 5.3.1-60 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9 N H₂SO₄, για 1 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.3.1-43 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 1 h

Σχήμα 5.3.1-44 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , ln(C- C_{∞}), συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 1 h

Σχήμα 5.3.1-45 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_∞) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_∞) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 1 h

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H ₂ SO ₄ , για 2 h (χρόνος προθέρμανσης 40 min).												
			Πειραματ	ικές τιμές			Θεωρητικές τιμές						
t								2		~ >	2		
(min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	
0	13,9273	10,9377	7,41355	4,70273	3,41876	1,71782	9,52382	8,17622	5,06687	2,60353	1,39759	0,59786	
10	7,58595	5,43509	3,9905	2,13934	1,28285	0,47175	8,32697	6,76078	4,23734	2,12187	1,17365	0,51474	
20	6,78982	4,7169	3,58111	1,52591	0,9227	0,37722	7,35782	5,6552	3,58247	1,7473	0,99649	0,44733	
30	5,95472	3,9986	2,90096	1,24852	0,78613	0,31588	6,57306	4,79164	3,06547	1,45603	0,85635	0,39266	
40	5,18784	3,62573	2,41696	0,93189	0,55778	0,29946	5,9376	4,11713	2,65733	1,22951	0,74549	0,34831	
50	5,17561	3,3213	2,07527	0,87689	0,54045	0,22964	5,42304	3,59029	2,33511	1,05337	0,65779	0,31235	
60	4,9094	3,17102	1,91373	0,78974	0,50427	0,24576	5,00638	3,17877	2,08074	0,91639	0,58841	0,28318	
70	4,64807	2,99435	1,77699	0,71975	0,47346	0,23769	4,66899	2,85734	1,87993	0,80986	0,53353	0,25952	
80	4,30417	2,66774	1,59419	0,70014	0,482	0,2393	4,39578	2,60628	1,72139	0,72703	0,49011	0,24033	
90	4,26371	2,53414	1,58246	0,6806	0,431	0,22321	4,17456	2,41018	1,59624	0,66261	0,45576	0,22476	
100	4,07755	2,44321	1,45988	0,65406	0,42762	0,22161	3,99542	2,25701	1,49743	0,61251	0,42859	0,21214	
110	3,85886	2,37057	1,44439	0,63467	0,42255	0,212	3,85037	2,13737	1,41943	0,57356	0,4071	0,2019	
120	3,79604	2,09728	1,41539	0,61359	0,44454	0,2104	3,73291	2,04392	1,35785	0,54326	0,3901	0,19359	
130	3,80212	1,99737	1,35374	0,55431	0,38558	0,19285	3,6378	1,97093	1,30924	0,5197	0,37665	0,18686	
140	3,59531	1,99737	1,33454	0,5163	0,35722	0,19603	3,56078	1,91392	1,27086	0,50138	0,36601	0,1814	
150	3,58111	1,95751	1,28667	0,50598	0,37722	0,19125	3,49842	1,86939	1,24056	0,48714	0,35759	0,17697	
160	3,50603	1,81851	1,27521	0,49912	-0,36721	0,18014	3,44792	1,8346	1,21664	0,47606	0,35093	0,17337	
170	3,39642	1,78687	1,2124	0,45473	0,34395	0,16906	3,40703	1,80744	1,19776	0,46744	0,34566	0,17046	
180	3,36191	1,76711	1,16317	0,45983	0,34395	0,16748	3,37391	1,78622	1,18285	0,46074	0,3415	0,16809	
190	3,29896	1,74541	1,14996	0,44624	0,33236	0,16117	3,3471	1,76964	1,17109	0,45553	0,3382	0,16618	

Πίνακας 5.3.1-61 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9 N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-62 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H_2SO_4 , για 2 h											
C_{e} (mg/L)	3,23299	1,7105	1,12696	0,43731	0,32572	0,15794						
C _o (mg/L)	9,5238	8,1762	5,0669	2,6035	1,3976	0,5979						
k (min ⁻¹)	0,0422	0,0494	0,0473	0,0503	0,0469	0,0419						
sum	21,346	11,353	5,79302	12,8314	9,61457	7,10752						
n-p	29	29	24	24	24	24						
S	0,85795	0,62569	0,4913	0,73119	0,63294	0,54419						

1

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H_2SO_4 , για 2 h										
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4					
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l					
0	2,36971	2,22215	1,83842	1,45054	1,12915	0,4446					
10	1,47086	1,31496	1,05206	0,53182	-0,04381	-1,15898					
20	1,26887	1,10074	0,89778	0,08489	-0,51587	-1,51743					
30	1,00127	0,82772	0,57324	-0,20923	-0,77562	-1,84559					
40	0,67031	0,64984	0,25465	-0,70405	-1,46076	-1,95538					
50	0,66404	0,47673	-0,05308	-0,82194	-1,53834	-2,6353					
60	0,51666	0,3788	-0,23981	-1,04291	-1,72289	-2,43251					
70	0,34719	0,24986	-0,43074	-1,26431	-1,9123	-2,52889					
80	0,06876	-0,0437	-0,76093	-1,33624	-1,85612	-2,50887					
90	0,03026	-0,19402	-0,78635	-1,4135	-2,25115	-2,72922					
100	-0,16893	-0,31101	-1,09985	-1,52903	-2,28378	-2,75412					
110	-0,46861	-0,41541	-1,1475	-1,62274	-2,33477	-2,91783					
120	-0,57438	-0,94991	-1,2433	-1,73568	-2,13012	-2,94788					
130	-0,56364	-1,24874	-1,48376	-2,14562	-2,81573	-3,35524					
140	-1,01522	-1,24874	-1,57223	-2,53846	-3,45755	-3,26793					
150	-1,05521	-1,39834	-1,83438	-2,67842	-2,96614	-3,4019					
160	-1,29811	-2,2255	-1,90883	-2,78376	-3,18224	-3,80793					
170	-1,81132	-2,57219	-2,45994	-4,05048	-4,0047	-4,4995					
180	-2,04853	-2,8715	-3,31836	-3,79357	-4,0047	-4,65281					
190	-2,71841	-3,35503	-3,7723	-4,71893	-5,01355	-5,73733					
		100	\langle / \rangle								
Ce	3,23299	1,7105	1,12696	0,43731	0,32572	0,15794					
Со	9,5238	8,17622	5,06687	2,60353	1,39759	0,59786					
ln(Co-Ce)	1,8391	1,8665	1,3712	0,7730	0,0694	-0,8212					
k	0,0422	0,0494	0,0473	0,0503	0,0469	0,0419					
R	-0,9819	-0,9813	-0,9778	-0,9682	-0,9562	-0,9301					
R ²	0,9641	0,9630	0,9561	0,9374	0,9143	0,8651					

Πίνακας 5.3.1-63 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-64 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9 N H₂SO₄, για 2 h (χρόνος προθέρμανσης 40 min).

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H ₂ SO ₄ , για 2 h											
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4					
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l					
0	0,53062	0,35564	0,46726	0,67756	1,05974	1,26579					
10	-0,36824	-0,55156	-0,3191	-0,24116	-0,11322	-0,33779					
20	-0,57022	-0,76577	-0,47338	-0,68809	-0,58528	-0,69625					
30	-0,83782	-1,03879	-0,79792	-0,98221	-0,84503	-1,02441					
40	-1,16878	-1,21668	-1,11651	-1,47703	-1,53017	-1,1342					
50	-1,17505	-1,38978	-1,42424	-1,59492	-1,60775	-1,81412					
60	-1,32244	-1,48772	-1,61097	-1,81589	-1,7923	-1,61133					
70	-1,4919	-1,61665	-1,8019	-2,03729	-1,98171	-1,7077					
80	-1,77033	-1,91021	-2,13209	-2,10922	-1,92553	-1,68769					
90	-1,80883	-2,06053	-2,15751	-2,18648	-2,32056	-1,90803					
100	-2,00802	-2,17752	-2,47101	-2,30201	-2,35319	-1,93293					
110	-2,3077	-2,28193	-2,51866	-2,39572	-2,40418	-2,09665					
120	-2,41347	-2,81642	-2,61446	-2,50866	-2,19953	-2,12669					
130	-2,40273	-3,11525	-2,85492	-2,9186	-2,88514	-2,53405					
140	-2,85432	-3,11525	-2,94339	-3,31144	-3,52696	-2,44674					
150	-2,8943	-3,26486	-3,20554	-3,4514	-3,03555	-2,58071					
160	-3,13721	-4,09201	-3,27999	-3,55674	-3,25165	-2,98675					
170	-3,65041	-4,43871	-3,8311	-4,82346	-4,07411	-3,67831					
180	-3,88762	-4,73801	-4,68952	-4,56655	-4,07411	-3,83162					
190	-4,55751	-5,22155	-5,14346	-5,49191	-5,08296	-4,91615					
			1	1							
Ce	3,23299	1,7105	1,12696	0,43731	0,32572	0,15794					
Со	9,52382	8,17622	5,06687	2,60353	1,39759	0,59786					
k	0,0422	0,0494	0,0473	0,0503	0,0469	0,0419					

Σχήμα 5.3.1-46 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 2 h

Σχήμα 5.3.1-47 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , ln(C- C_{∞}), συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 2 h

Σχήμα 5.3.1-48 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_∞) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_∞) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 2 h

	C-14	C-10	0-7.1	C-4.1			C=14	C=10	C=7.1		C=2.9	C=1.4
t (min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	mg/L theor	mg/L theor	mg/L theor	C=4.1 mg/l theor	mg/L theor	mg/L theor
0	13,4741	10,4206	7,60775	4,83033	3,09182	1,57465	10,0294	7,54699	5,2691	2,24329	1,51154	0,51446
5	8,71537	6,07239	3,73726	1,8403	1,04304	0,49569	8,82346	6,37684	4,32395	1,87305	1,23273	0,45519
10	7,33095	5,05761	3,00044	1,46569	1,00583	0,37889	7,83891	5,44334	3,58833	1,57984	1,01311	0,40499
15	6,67916	4,39721	2,68395	1,18775	0,75375	0,31423	7,03508	4,69861	3,01579	1,34765	0,84013	0,36248
20	5,59542	3,57705	2,55842	1,01512	0,51802	0,288	6,37881	4,1045	2,57018	1,16377	0,70387	0,32647
25	5,56658	3,21976	2,13132	0,84772	0,44793	0,25385	5,84299	3,63053	2,22336	1,01815	0,59654	0,29597
30	5,20821	3,09182	1,89982	0,83318	0,43438	0,26357	5,40553	3,25242	1,95343	0,90284	0,512	0,27014
35	4,92562	2,66977	1,77896	0,7251	0,40739	0,23125	5,04837	2,95077	1,74333	0,81152	0,44541	0,24827
40	4,64807	2,72854	1,46569	0,70905	0,3539	0,22964	4,75677	2,71012	1,57982	0,7392	0,39296	0,22974
45	4,47205	2,57056	1,43471	0,69125	0,33898	0,19285	4,5187	2,51814	1,45255	0,68194	0,35164	0,21404
50	4,2192	2,51999	1,37875	0,65053	0,42593	0,2168	4,32432	2,36499	1,3535	0,63658	0,3191	0,20075
55	4,23134	2,39679	1,34798	0,57516	0,39395	0,19444	4,16563	2,2428	1,27641	0,60067	0,29346	0,1895
60	4,09982	2,14936	1,27139	0,56472	0,32082	0,18172	4,03606	2,14533	1,2164	0,57223	0,27327	0,17996
65	4,12815	2,11129	1,18208	0,60133	0,26682	0,16117	3,93028	2,06757	1,1697	0,5497	0,25736	0,17189
70	3,9905	2,08527	1,18208	0,55951	0,22482	0,13604	3,84392	2,00553	1,13336	0,53187	0,24484	0,16505
75	3,94798	2,03529	1,13865	0,54565	0,29454	0,12979	3,7734	1,95605	1,10507	0,51774	0,23497	0,15925
80	3,7251	1,92765	1,10104	0,50598	0,23286	0,24738	3,71583	1,91656	1,08305	0,50656	0,2272	0,15435
85	3,76767	1,89188	1,05424	0,4974	0,20241	0,1849	3,66883	1,88507	1,06591	0,4977	0,22107	0,15019
90	3,58111	1,86806	1,02628	0,47346	0,2104	0,16748	3,63046	1,85994	1,05258	0,49068	0,21625	0,14667
95	3,53038	1,79675	1,04864	0,50255	0,22964	0,15959	3,59913	1,83989	1,0422	0,48513	0,21245	0,14369

Πίνακας 5.3.1-65 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-66 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,45N H_2SO_4 , για 3 h											
$C_e (mg/L)$	3,45978	1,76082	1,00575	0,46399	0,19836	0,1272						
C _o (mg/L)	10,0294	7,5470	5,2691	2,2433	1,5115	0,5145						
k (min ⁻¹)	0,0406	0,0452	0,0501	0,0467	0,0477	0,0332						
sum	13,148	9,20911	6,30897	13,1582	7,80913	6,10998						
n-p	29	29	24	24	24	24						
s	0,67333	0,56352	0,51271	0,74044	0,57042	0,50456						

Πίνακας 5.3.1-67 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9 N H ₂ SO ₄ , για 3 h									
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4				
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l				
0	1,65929	1,4613	1,00485	0,31941	-0,16879	-0,99834				
10	1,35356	1,19295	0,69049	0,0017	-0,21385	-1,37955				
20	1,16919	0,96941	0,51772	-0,32329	-0,58808	-1,67647				
30	0,75877	0,59676	0,43997	-0,59579	-1,14049	-1,82757				
40	0,74517	0,37772	0,11829	-0,95781	-1,388	-2,06634				
50	0,55872	0,28593	-0,11197	-0,99643	-1,44384	-1,99234				
60	0,38244	-0,09546	-0,2572	-1,34279	-1,56528	-2,26286				
70	0,17252	-0,03281	-0,77666	-1,40626	-1,86084	-2,27844				
80	0,0122	-0,21104	-0,84639	-1,48163	-1,96169	-2,72345				
90	-0,27519	-0,27552	-0,98618	-1,67911	-1,48031	-2,41239				
100	-0,25933	-0,4526	-1,07228	-2,1967	-1,63171	-2,6995				
110	-0,44622	-0,94535	-1,3256	-2,29527	-2,1	-2,90907				
120	-0,40291	-1,04847	-1,73543	-1,98526	-2,68147	-3,38228				
130	-0,6335	-1,12562	-1,73543	-2,34837	-3,63207	-4,72778				
140	-0,71702	-1,2929	-2,0182	-2,50523	-2,3415	-5,95383				
150	-1,32681	-1,79075	-2,35087	-3,17019	-3,36677	-2,11878				
160	-1,17801	-2,03211	-3,02644	-3,39875	-5,5095	-2,8525				
170	-2,10923	-2,23269	-3,88609	-4,65972	-4,41982	-3,21187				
180	-2,65062	-3,32604	-3,14916	-3,2555	-3,46468	-3,42979				
190			10							
	/	7 1	1							
Ce	10,0294	7,54699	5,2691	2,24329	1,51154	0,51446				
Со	1,8825	1,7555	1,4501	0,5762	0,2725	-0,9487				
ln(Co-Ce)	0,0406	0,0452	0,0501	0,0467	0,0477	0,0332				
k	-0,9731	-0,9802	-0,9826	-0,9588	-0,9135	-0,7458				
R	0,9469	0,9608	0,9654	0,9192	0,8344	0,5562				
R^2	1,65929	1,4613	1,00485	0,31941	-0,16879	-0,99834				

	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4
(min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l
0	0,42156	0,40322	0,43732	0,8977	0,79	1,31846
10	-0,22316	-0,29417	-0,4452	-0,25682	-0,44124	-0,04968
20	-0,52889	-0,56252	-0,75957	-0,57452	-0,4863	-0,43089
30	-0,71326	-0,78606	-0,93233	-0,89951	-0,86053	-0,72781
40	-1,12368	-1,15871	-1,01008	-1,17201	-1,41294	-0,87891
50	-1,13728	-1,37775	-1,33176	-1,53403	-1,66045	-1,11768
60	-1,32373	-1,46954	-1,56203	-1,57266	-1,71629	-1,04368
70	-1,50002	-1,85093	-1,70726	-1,91901	-1,83773	-1,3142
80	-1,70993	-1,78828	-2,22671	-1,98248	-2,13329	-1,32978
90	-1,87025	-1,96651	-2,29644	-2,05786	-2,23414	-1,77479
100	-2,15764	-2,031	-2,43624	-2,25533	-1,75276	-1,46373
110	-2,14179	-2,20808	-2,52233	-2,77293	-1,90416	-1,75084
120	-2,32867	-2,70082	-2,77565	-2,87149	-2,37245	-1,96041
130	-2,28536	-2,80394	-3,18548	-2,56148	-2,95392	-2,43362
140	-2,51595	-2,88109	-3,18548	-2,9246	-3,90452	-3,77912
150	-2,59947	-3,04837	-3,46825	-3,08145	-2,61395	-5,00517
160	-3,20926	-3,54622	-3,80092	-3,74641	-3,63922	-1,17012
170	-3,06046	-3,78758	-4,4765	-3,97498	-5,78195	-1,90384
180	-3,99168	-3,98816	-5,33614	-5,23594	-4,69227	-2,26321
190	-4,53307	-5,08151	-4,59921	-3,83172	-3,73713	-2,48113
		1	125	011		
Ce	3,45978	1,76082	1,00575	0,46399	0,19836	0,1272
Co	10,0294	7,54699	5,2691	2,24329	1,51154	0,51446
	0,0406	0,0452	0,0501	0,0467	0,0477	0,0332

Πίνακας 5.3.1-68 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9 N H₂SO₄, για 3 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.3.1-49 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 3 h

Σχήμα 5.3.1-50 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , ln(C- C_{∞}), συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 3 h

Σχήμα 5.3.1-51 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_∞) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_∞) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 3 h

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H2SO4, για 4 h (χρόνος προθέρμανσης 40 min).												
			Πειραματ	πκές τιμές			Θεωρητικές τιμές						
t								22	11	< >	3		
(min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	
0	12,4752	9,33834	6,95115	4,51655	3,1365	1,60201	10,7421	6,39302	5,71428	1,61918	1,32829	0,62553	
10	7,02821	5,35727	4,01278	1,32687	1,1443	0,4974	8,78463	5,61368	4,70412	1,39226	1,13643	0,5254	
20	5,961	4,26371	2,99841	1,0207	0,85136	0,42762	7,2616	4,96798	3,91298	1,20716	0,97977	0,44527	
30	5,21841	3,92975	2,67382	0,88969	0,6682	0,3456	6,07659	4,43301	3,29336	1,05616	0,85184	0,38115	
40	4,56713	3,58516	2,4533	0,75375	0,65759	0,31423	5,15458	3,98977	2,80809	0,93299	0,74737	0,32983	
50	4,22729	3,46138	2,28395	0,73047	0,55257	0,28964	4,4372	3,62254	2,42803	0,83251	0,66206	0,28875	
60	3,86088	3,25023	2,15337	0,67529	0,49055	0,26195	3,87903	3,31828	2,13037	0,75055	0,5924	0,25588	
70	3,77577	3,10807	1,9376	0,67351	0,482	0,23608	3,44475	3,06619	1,89725	0,68369	0,53551	0,22957	
80	3,43905	2,85429	1,79082	0,61885	0,45133	0,212	3,10685	2,85734	1,71467	0,62915	0,48906	0,20852	
90	3,26444	2,82791	1,60592	0,56472	0,43438	0,18807	2,84394	2,68429	1,57167	0,58467	0,45113	0,19167	
100	2,73867	2,46946	1,55318	0,55951	0,40907	0,16117	2,63938	2,54092	1,45968	0,54837	0,42015	0,17818	
110	2,7407	2,47755	1,60397	0,50255	0,42086	0,15172	2,48023	2,42213	1,37197	0,51877	0,39486	0,16739	
120	2,67179	2,41898	1,36913	0,51802	0,40907	0,14544	2,35639	2,32372	1,30328	0,49462	0,3742	0,15876	
130	2,51999	2,3867	1,41346	0,54565	0,39731	0,14074	2,26004	2,24218	1,24948	0,47492	0,35734	0,15184	
140	2,24975	2,18948	1,25042	0,45813	0,36221	0,17064	2,18507	2,17462	1,20734	0,45885	0,34356	0,14631	
150	2,04128	2,29602	1,24852	0,42255	0,34395	0,12667	2,12674	2,11864	1,17434	0,44575	0,33232	0,14188	
160	1,96149	2,10328	1,13488	0,46493	-0,33071	0,13292	2,08136	2,07227	1,1485	0,43505	0,32313	0,13834	
170	2,03329	1,88592	1,10855	0,39563	0,33236	0,15644	2,04605	2,03385	1,12826	0,42633	0,31563	0,1355	
180	2,00734	2,07127	1,09541	0,48371	0,32741	0,14701	2,01858	2,00201	1,1124	0,41922	0,30951	0,13324	
190	2,03729	2,01532	1,07667	0,42086	0,288	0,13917	1,9972	1,97564	1,09999	0,41341	0,30451	0,13142	

Πίνακας 5.3.1-69 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9 N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-70 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H_2SO_4 , για 4 h											
C_{e} (mg/L)	1,92226	1,8482	1,05514	0,38772	0,28224	0,12414						
C_{o} (mg/L)	10,7421	6,3930	5,7143	1,6192	1,3283	0,6255						
k (min ⁻¹)	0,0502	0,0376	0,0489	0,0407	0,0405	0,0446						
sum	9,57529	9,80569	3,48639	10,4436	7,8149	8,21185						
n-p	29	29	24	24	24	24						
S	0,57462	0,58149	0,38114	0,65966	0,57063	0,58494						

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H_2SO_4 , για 4 h										
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4				
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l				
0	2,3564	2,01359	1,77428	1,418	1,04881	0,3906				
10	1,63041	1,25535	1,08439	-0,06278	-0,14843	-0,98547				
20	1,39593	0,88191	0,66437	-0,45732	-0,56366	-1,19246				
30	1,19275	0,73311	0,48161	-0,68921	-0,95202	-1,50749				
40	0,97262	0,55214	0,33516	-1,00503	-0,9799	-1,66025				
50	0,8351	0,47821	0,20605	-1,07076	-1,3081	-1,79881				
60	0,66198	0,33792	0,0937	-1,2463	-1,56874	-1,98188				
70	0,61708	0,231	-0,12504	-1,25248	-1,61067	-2,18979				
80	0,4166	0,00607	-0,30696	-1,46475	-1,77734	-2,43206				
90	0,2943	-0,0205	-0,59641	-1,73158	-1,88298	-2,74989				
100	-0,20283	-0,476	-0,69707	-1,76146	-2,06492	-3,29608				
110	-0,20035	-0,46308	-0,59997	-2,16429	-1,97601	-3,59054				
120	-0,2883	-0,56075	-1,15841	-2,03789	-2,06492	-3,84893				
130	-0,51462	-0,61897	-1,02633	-1,84562	-2,16224	-4,09836				
140	-1,11629	-1,07504	-1,6333	-2,65344	-2,52607	-3,06831				
150	-2,12843	-0,80336	-1,6431	-3,35723	-2,78538	-5,97817				
160	-3,23832	-1,36617	-2,52899	-2,56115	-3,02678	-4,73557				
170	-2,19792	-3,27761	-2,92979	-4,8393	-2,99327	-3,43262				
180	-2,46414	-1,50029	-3,21214	-2,34354	-3,09734	-3,77786				
190	-2,16258	-1,78902	-3,83815	-3,40688	-5,15681	-4,19745				
		100								
Ce	1,92226	1,8482	1,05514	0,38772	0,28224	0,12414				
Co	10,7421	6,39302	5,71428	1,61918	1,32829	0,62553				
ln(Co-Ce)	2,1770	1,5140	1,5388	0,2082	0,0450	-0,6904				
k	0,0502	0,0376	0,0489	0,0407	0,0405	0,0446				
R	-0,9571	-0,9309	-0,9723	-0,8977	-0,9287	-0,8854				
R ²	0,9160	0,8665	0,9454	0,8059	0,8624	0,7839				

Πίνακας 5.3.1-71 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

Πίνακας 5.3.1-72 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9 N H₂SO₄, για 4 h (χρόνος προθέρμανσης 40 min).

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H_2SO_4 , για 4 h											
	C=14	C=10	C=7.1	C=4.1	C=2.9	C=1.4					
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l					
0	0,1794	0,4996	0,23544	1,20979	1,00379	1,08098					
10	-0,5466	-0,25864	-0,45444	-0,27098	-0,19345	-0,29509					
20	-0,78107	-0,63208	-0,87446	-0,66552	-0,60868	-0,50207					
30	-0,98425	-0,78087	-1,05722	-0,89742	-0,99704	-0,81711					
40	-1,20438	-0,96185	-1,20367	-1,21323	-1,02491	-0,96987					
50	-1,34191	-1,03578	-1,33279	-1,27896	-1,35312	-1,10843					
60	-1,51503	-1,17607	-1,44513	-1,4545	-1,61376	-1,29149					
70	-1,55992	-1,28298	-1,66387	-1,46068	-1,65569	-1,49941					
80	-1,7604	-1,50792	-1,84579	-1,67295	-1,82236	-1,74168					
90	-1,88271	-1,53449	-2,13524	-1,93978	-1,928	-2,05951					
100	-2,37984	-1,98999	-2,2359	-1,96966	-2,10994	-2,6057					
110	-2,37736	-1,97706	-2,1388	-2,37249	-2,02103	-2,90016					
120	-2,46531	-2,07473	-2,69724	-2,24609	-2,10994	-3,15855					
130	-2,69162	-2,13296	-2,56516	-2,05383	-2,20726	-3,40798					
140	-3,29329	-2,58903	-3,17213	-2,86165	-2,57109	-2,37793					
150	-4,30544	-2,31734	-3,18193	-3,56543	-2,8304	-5,28778					
160	-5,41532	-2,88016	-4,06782	-2,76935	-3,0718	-4,04519					
170	-4,37493	-4,7916	-4,46862	-5,0475	-3,03829	-2,74224					
180	-4,64114	-3,01428	-4,75098	-2,55174	-3,14235	-3,08748					
190	-4,33958	-3,30301	-5,37698	-3,61508	-5,20183	-3,50707					
			1	1							
Ce	1,92226	1,8482	1,05514	0,38772	0,28224	0,12414					
Co	10,7421	6,39302	5,71428	1,61918	1,32829	0,62553					
k	0,0502	0,0376	0,0489	0,0407	0,0405	0,0446					
	11	11 15									

Σχήμα 5.3.1-52 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 4 h

Σχήμα 5.3.1-53 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞} , $\ln(C - C_{\infty})$, συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9 N H₂SO₄, για 4 h

Σχήμα 5.3.1-54 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_∞) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_∞) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H_2SO_4 , για 4 h

Πίνακας 5.3.1-73 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

Πριονί	δι πεύκου 2	τροκατεργι	ασμένο στα	ως 100°C,	με 0,9N H ₂	2SO4, για 5	h (χρόνος	προθέρμαν	νσης 40 min	ı).	~	
			Πειραματ	ικές τιμές			Θεωρητικές τιμές					
t								<<	11		22	
(min)	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l	C=14 mg/L	C=10 mg/L	C=7.1 mg/L	C=4.1 mg/l	C=2.9 mg/l	C=1.4 mg/l
0	13,6228	10,6036	7,1934	4,71082	3,11416	1,49285	10,447	7,20602	4,94972	2,45353	1,70201	0,63191
10	8,35723	5,64081	3,50603	2,06727	1,24281	0,50427	9,13244	6,17475	3,9866	2,10325	1,351	0,52307
20	7,01457	4,61569	3,02683	1,62942	0,97247	0,40235	8,06258	5,34141	3,25463	1,81697	1,08533	0,43777
30	6,58047	4,30619	2,52403	1,36528	0,72868	0,29618	7,19185	4,668	2,69833	1,58299	0,88426	0,37092
40	5,96939	3,61559	2,09928	1,28858	0,60308	0,28474	6,48317	4,12383	2,27554	1,39177	0,73207	0,31853
50	5,64494	3,42485	1,95352	1,14241	0,56646	0,29127	5,90639	3,6841	1,95423	1,23549	0,61688	0,27748
60	5,10641	3,13447	1,94954	1,05611	0,49226	0,24738	5,43697	3,32876	1,71003	1,10776	0,5297	0,2453
70	4,92765	2,91314	1,51034	0,87506	0,42931	0,19922	5,05491	3,04162	1,52444	1,00337	0,46372	0,22009
80	4,69665	2,83805	1,45213	0,87689	0,40067	0,17855	4,74396	2,80959	1,38339	0,91805	0,41377	0,20032
90	4,74322	2,75895	1,30005	0,79696	0,36721	0,17222	4,49088	2,62209	1,27619	0,84833	0,37597	0,18484
100	4,30012	2,35645	1,15656	0,7251	0,37722	0,16906	4,28491	2,47058	1,19472	0,79134	0,34736	0,1727
110	4,35878	2,30005	1,14619	0,65759	0,34726	0,17539	4,11727	2,34815	1,1328	0,74476	0,32571	0,16319
120	4,13017	2,421	1,05424	0,71261	0,32411	0,16274	3,98083	2,24921	1,08574	0,7067	0,30932	0,15573
130	4,01885	2,3222	1,03745	0,73583	0,2831	0,1849	3,86978	2,16926	1,04998	0,67559	0,29692	0,14989
140	3,89127	2,2397	1,03559	0,72153	0,31094	0,13448	3,77941	2,10465	1,0228	0,65016	0,28753	0,14531
150	3,83252	2,1213	0,98173	0,74658	0,3093	0,13604	3,70585	2,05245	1,00214	0,62938	0,28042	0,14173
160	3,71901	2,07127	0,95585	0,70192	0,27333	0,13917	3,64599	2,01026	0,98644	0,6124	0,27504	0,13892
170	3,57705	2,00734	1,0114	0,63115	0,2652	0,13136	3,59726	1,97617	0,97451	0,59852	0,27097	0,13671
180	3,52227	1,92765	0,97617	0,58213	0,26845	0,16117	3,55761	1,94863	0,96544	0,58717	0,26789	0,13498
190	3,45326	1,87004	0,96508	0,54738	0,26357	0,13448	3,52533	1,92637	0,95855	0,5779	0,26556	0,13363

Πίνακας 5.3.1-74 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

Πριονί	Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H ₂ SO ₄ , για 5 h											
$C_e (mg/L)$	3,3842	1,83264	0,93673	0,53643	0,2583	0,12873						
C_{o} (mg/L)	10,4470	7,2060	4,9497	2,4535	1,7020	0,6319						
k (min ⁻¹)	0,0412	0,0426	0,0549	0,0404	0,0557	0,0487						
sum	12,8269	12,9849	5,44708	13,0212	7,6827	6,1193						
n-p	29	29	24	24	24	24						
S	0,66506	0,66914	0,4764	0,73658	0,56578	0,50495						
Πίνακας 5.3.1-75 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

Πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H ₂ SO ₄ , για 5 h													
C=14 C=10 C=7.1 C=4.1 C=2.9 C=1.4 t (min) mg/L mg/L mg/L mg/l mg/l mg/l													
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l							
0	2,32617	2,17144	1,83365	1,42897	1,04937	0,31051							
10	1,60403	1,33715	0,94363	0,42581	-0,01562	-0,9794							
20	1,28933	1,02355	0,73721	0,08892	-0,33663	-1,29603							
30	1,16198	0,90565	0,46204	-0,18772	-0,75422	-1,78706							
40	0,9498	0,57827	0,15061	-0,28482	-1,06485	-1,85785							
50	0,81569	0,46512	0,01665	-0,5009	-1,17714	-1,81682							
60	0,54361	0,26377	0,01273	-0,65455	-1,45261	-2,13159							
70	0,43402	0,07743	-0,5558	-1,08283	-1,76607	-2,6523							
80	0,2719	0,0054	-0,66281	-1,07745	-1,94937	-2,99923							
90	0,30677	-0,07655	-1,01246	-1,34503	-2,21725	-3,13516							
100	-0,08782	-0,64662	-1,51489	-1,66772	-2,12933	-3,21064							
110	-0,02575	-0,76055	-1,56325	-2,11062	-2,41956	-3,06492							
120	-0,29306	-0,53041	-2,14124	-1,73623	-2,72099	-3,38091							
130	-0,45468	-0,71425	-2,2954	-1,61242	-3,69685	-2,87938							
140	-0,6791	-0,89879	-2,31408	-1,68684	-2,94427	-5,15817							
150	-0,80225	-1,24249	-3,1012	-1,55993	-2,97598	-4,91771							
160	-1,09417	-1,43286	-3,95718	-1,79881	-4,19812	-4,56157							
170	-1,64584	-1,74467	-2,59468	-2,35681	-4,97695	-5,94187							
180	-1,98001	-2,35374	-3,2329	-3,08574	-4,59083	-3,42837							
190	-2,6727	-3,28606	-3,56314	-4,51464	-5,24545	-5,15817							
	/	7 1	11	4									
Ce	3,3842	1,83264	0,93673	0,53643	0,2583	0,12873							
Со	10,4470	7,20602	4,94972	2,45353	1,70201	0,63191							
ln(Co-Ce)	1,9548	1,6815	1,3895	0,6508	0,3672	-0,6868							
k	0,0412	0,0426	0,0549	0,0404	0,0557	0,0487							
R	-0,9763	-0,9680	-0,9790	-0,9207	-0,9746	-0,9121							
R^2	0,9531	0,9371	0,9584	0,8476	0,9498	0,8319							

C=14 C=10 C=7.1 C=4.1 C=2.9 C=1.4 t (min) mg/L mg/L mg/L mg/l mg/l mg/l														
t (min)	mg/L	mg/L	mg/L	mg/l	mg/l	mg/l								
0	0,37133	0,48999	0,44411	0,77816	0,68216	0,99731								
10	-0,35081	-0,34431	-0,4459	-0,225	-0,38283	-0,2926								
20	-0,6655	-0,65791	-0,65232	-0,56189	-0,70385	-0,60923								
30	-0,79285	-0,7758	-0,9275	-0,83853	-1,12144	-1,10026								
40	-1,00504	-1,10319	-1,23892	-0,93563	-1,43206	-1,17105								
50 -1,13914 -1,21634 -1,37288 -1,15171 -1,54436 -1,13002														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
70	-1,52081	-1,60403	-1,94534	-1,73364	-2,13329	-1,9655								
80	-1,68294	-1,67606	-2,05235	-1,72826	-2,31659	-2,31243								
90	-1,64807	-1,758	-2,402	-1,99584	-2,58447	-2,44836								
100	-2,04266	-2,32807	-2,90443	-2,31854	-2,49654	-2,52384								
110	-1,98058	-2,442	-2,95278	-2,76143	-2,78678	-2,37812								
120	-2,2479	-2,21187	-3,53078	-2,38704	-3,0882	-2,69411								
130	-2,40951	-2,3957	-3,68494	-2,26323	-4,06407	-2,19258								
140	-2,63394	-2,58025	-3,70361	-2,33765	-3,31149	-4,47138								
150	-2,75709	-2,92395	-4,49073	-2,21075	-3,3432	-4,23091								
160	-3,04901	-3,11431	-5,34672	-2,44963	-4,56534	-3,87477								
170	-3,60067	-3,42613	-3,98421	-3,00762	-5,34416	-5,25507								
180	-3,93484	-4,0352	-4,62243	-3,73655	-4,95804	-2,74157								
190	-4,62754	-4,96752	-4,95267	-5,16545	-5,61266	-4,47138								
Ce	3,3842	1,83264	0,93673	0,53643	0,2583	0,12873								
Со	10,447	7,20602	4,94972	2,45353	1,70201	0,63191								
k	0,0412	0,0426	0,0549	0,0404	0,0557	0,0487								

Πίνακας 5.3.1-76 Πειραματικά αποτελέσματα και επεξεργασία αυτών για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9N H₂SO₄, για 5 h (χρόνος προθέρμανσης 40 min).

Σχήμα 5.3.1-55 Γραφική απεικόνιση των πειραματικών και θεωρητικών συγκεντρώσεων συναρτήσει του χρόνου για πριονίδι πεύκου προκατεργασμένο στους 100° C, με 0,9N H₂SO₄, για 5 h

Σχήμα 5.3.1-56 Γραφική απεικόνιση του νεπέριου λογάριθμου της διαφοράς συγκέντρωσης σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_∞, ln(C- C_∞), συναρτήσει του χρόνου t, για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 5 h

Σχήμα 5.3.1-57 Γραφική απεικόνιση του νεπέριου λογάριθμου του λόγου της διαφοράς συγκέντρωσης (σε χρονική στιγμή t μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) προς τη διαφορά συγκέντρωσης (αρχικής του διαλύματος μείον τη συγκέντρωση σε χρονική στιγμή t_{∞}) για πριονίδι πεύκου προκατεργασμένο στους 100°C, με 0,9N H₂SO₄, για 5 h

5.3.2. Συγκεντρωτικοί Πίνακες Κινητικής

Στη συνέχεια παρατίθενται ο συγκεντρωτικός πίνακας και διαγράμματα, για τη σταθερά ταχύτητας προσρόφησης k του Methylene Blue σε πριονίδι πεύκου προκατεργασμένο στους 100° C με H₂SO₄ 0.9N.

Πίνακας 5.3.2-1. Συγκεντρωτικός πίνακας της σταθεράς ταχύτητας προσρόφησης k του Methylene Blue σε πριονίδι πεύκου προκατεργασμένο στους 100° C με H₂SO₄ 0.9N.

				k (min	-1)	1		
Co (mg/L)	απροκατέργαστο	0,5 h	1 h	2 h	3 h	4 h	5 h	kaverage
13,5	0,0358	0,0415	0,0483	0,0422	0,0406	0,0502	0,0412	0,0428
10,4	0,0403	0,0411	0,0460	0,0494	0,0452	0,0376	0,0426	0,0432
7,3	0,0440	0,0531	0,0487	0,0473	0,0501	0,0489	0,0549	0,0496
4,5	0,0531	0,0348	0,0497	0,0503	0,0467	0,0407	0,0404	0,0451
3,4	0,0467	0,0417	0,0307	0,0469	0,0477	0,0405	0,0557	0,0443
1,7	0,0461	0,0502	0,0441	0,0419	0,0332	0,0446	0,0487	0,0441
average	0,0443	0,0437	0,0446	0,0463	0,0439	0,0437	0,0473	0,0448

100°C, 0,9N H₂SO₄

Σχήμα 5.3.2-1. Γραφική απεικόνιση της σταθεράς ταχύτητας προσρόφησης k του Methylene Blue σε πριονίδι πεύκου προκατεργασμένου στους 100° C με H₂SO₄ 0,9N , συναρτήσει της αρχικής συγκέντρωσης του διαλύματος Methylene Blue C₀ (mg/L).

Σχήμα 5.3.2-2. Γραφική απεικόνιση της σταθεράς ταχύτητας προσρόφησης k του Methylene Blue σε πριονίδι πεύκου προκατεργασμένου στους 100° C με H₂SO₄ 0,9N, συναρτήσει του χρόνου προκατεργασίας του προσροφητικού μέσου.

5.3.3 Συζήτηση αποτελεσμάτων κινητικής

Για να διερευνηθεί η επίδραση της προκατεργασίας του πριονιδιού πεύκου στην ταχύτητα της προσρόφησης, γίνεται σύγκριση της τιμής της παραμέτρου της σταθεράς ταχύτητας προσρόφησης k του Methylene Blue σε πριονίδι πεύκου προκατεργασμένο στους 100°C με H₂SO₄ 0,1125-3,6N (βλ. Πίνακας 5.3.2-1). Εξετάζεται η μεταβολή της τιμής της παραμέτρου της σταθεράς ταχύτητας προσρόφησης k ως προς τον χρόνο της προκατεργασίας.

Η προκατεργασία του πριονιδιού πεύκου με H₂SO₄ έχει πραγματοποιηθεί για 0,5 έως 5 ώρες προκατεργασίας στους 100°C. Η τιμή της σταθεράς ταχύτητας προσρόφησης k της εξίσωσης κινητικής πρώτης τάξης του Langergren είναι ανεξάρτητη από την αρχική συγκέντρωση του διαλύματος σε Methylene Blue (βλ. Σχήμα 5.3.2-1, όπου το τετράγωνο του συντελεστή συσχέτισης είναι R²=0,0487). Η τιμή της σταθεράς ταχύτητας προσρόφησης k της εξίσωσης κινητικής πρώτης τάξης του Langergren είναι ανεξάρτητη από τον χρόνο προκατεργασίας (βλ. Σχήμα 5.3.2-2, όπου το τετράγωνο του συντελεστή συσχέτισης είναι R²=0,198). Παρόλα αυτά, η ταχύτητα προσρόφησης $\frac{dC}{dt}$ αυξάνεται με την προκατεργασία

του υλικού, γιατί $\frac{dC}{dt} = -k(C_0 - C_\infty)$ και η διαφορά $(C_0 - C_\infty)$ αυξάνει, καθώς η συγκέντρωση C_∞ του Methylene Blue σε άπειρο χρόνο μειώνεται όταν η ικανότητα προσρόφησης (capacity K_F) ενισχύεται αυξανομένου του χρόνου προκατεργασίας t_{pretreatment} και συνεπώς (βλ. Κεφάλαιο 5.2.3). Συνεπώς, η αύξηση της συγκέντρωσης του θεϊκού οξέος ευνοεί την αύξηση της ταχύτητας προσρόφησης γιατί ευνοεί τον ρυθμό αύξησης της τιμής της σταθεράς K_F αυξανομένου του χρόνου προκατεργασίας (βλ. Κεφάλαιο 5.2.3).

6. ΣΥΜΠΕΡΑΣΜΑΤΑ

Μελετήθηκε η επίδραση των συνθηκών προκατεργασίας του πριονιδιού πεύκου με θειικό οξύ, προκειμένου να βελτιωθεί η προσροφητική ικανότητά του. Πραγματοποιήθηκε σύγκριση των τιμών των παραμέτρων K_F και n της ισόθερμης εξίσωσης Freundlich, που προσδιορίσθηκαν για προκατεργασμένο υλικό (σε συνθήκες που καλύπτουν ευρεία περιοχή τιμών των παραμέτρων ελέγχου της διεργασίας), με τις τιμές των παραμέτρων K_F και n του μη-προκατεργασμένου υλικού. Εξετάστηκε η συνάρτηση μεταβολής των τιμών των K_F ως προς τον χρόνο της προκατεργασίας. Βρέθηκε ότι η βέλτιστη καμπύλη που περιγράφει την μεταβολή των πειραματικών τιμών της παραμέτρου της χωρητικότητας K_F της εξίσωσης Freundlich συναρτήσει του χρόνου προκατεργασίας είναι η ευθεία. Η τιμή της σταθεράς K_F αυξάνεται μέχρι 4 φόρες ως προς την τιμή της σταθεράς K_F του απροκατέργαστου υλικού, αυξανομένου του χρόνου προκατεργασίας. Επομένως η ικανότητα προσρόφησης ενισχύεται αυξανομένου του χρόνου προκατεργασίας. Παρατηρήθηκε ότι η αύξηση της συγκέντρωσης του θεϊκού οξέος ευνοεί τον ρυθμό αύξησης της τιμής της σταθεράς K_F αυξάνου του χρόνου προκατεργασίας. Η σταθερά έντασης n της ισόθερμης Freundlich για όλους του χρόνους προκατεργασίας κυμαίνεται από 1,3-2,9 με μέσο όρο n=2,1.

Για να διερευνηθεί η επίδραση της προκατεργασίας του πριονιδιού πεύκου στην ταχύτητα της προσρόφησης, γίνεται σύγκριση της τιμής της παραμέτρου της σταθεράς ταχύτητας προσρόφησης k του Methylene Blue σε πριονίδι πεύκου προκατεργασμένο. Η τιμή της σταθεράς ταχύτητας προσρόφησης k της εξίσωσης κινητικής πρώτης τάξης του Langergren ευρίσκεται ότι είναι ανεξάρτητη (α) από την αρχική συγκέντρωση του διαλύματος σε Methylene Blue και (β) από τον χρόνο προκατεργασίας. Παρόλα αυτά, η ταχύτητα προσρόφησης $\frac{dC}{dt}$ αποδεικνύεται ότι αυξάνεται με την προκατεργασία του υλικού. Η αύξηση αυτή αποδίδεται στο ότι η διαφορά $(C_0 - C_\infty)$ αυξάνεται, καθώς η συγκέντρωση C_∞ του Methylene Blue σε άπειρο χρόνο μειώνεται όταν η ικανότητα προσρόφησης (capacity K_F) ενισχύεται αυξανομένου του χρόνου προκατεργασίας t_{pretreatment}, με συνέπεια την αύξηση της ταχύτητας $\frac{dC}{dt} = -k(C_0 - C_\infty)$. Συνεπώς, η αύξηση της συγκέντρωσης του θεϊκού οξέος ευνοεί την αύξηση της ταχύτητας προσρόφησης αφού ευνοεί τον ρυθμό αύξησης της τιμής της σταθεράς K_F αυξανομένου του χρόνου προκατεργασίας. Οι εκτιμήσεις τιμών των παραμέτρων, που οδήγησαν στο συμπέρασμα αυτό, αποτελούν ουσιαστική συμβολή στην εφαρμογή της μεθόδου σε μεγάλη/βιομηχανική κλίμακα.

Σημειώνεται ότι ο μεγάλος αριθμός αποτελεσμάτων που προκύπτουν από τον συνδυασμό πειραματικών μετρήσεων και υποδειγμάτων (ισόθερμων και κινητικών) προσρόφησης δημιούργησε την ανάγκη χρησιμοποίησης μιας σχεσιακής βάσης δεδομένων (Relational Data Base – RDB), προκειμένου να αποθηκεύονται τα αποκτώμενα στοιχεία σε εύκολα ανακτήσιμη αλλά και αξιοποιήσιμη μορφή. Ως τέτοια RDB, χρησιμοποιήθηκε η Microsoft Access, ώστε η αναζήτηση των στοιχείων να μπορεί να γίνεται μέσω SQL (Structured Query Language) και η επεξεργασία αυτών να γίνεται στο ίδιο προγραμματιστικό περιβάλλον μέσω της ενσωματωμένης στο συγκεκριμένο λογισμικό γλώσσας VBA (Visual Basic for Applications). Με αντιπροσωπευτικά παραδείγματα, αποδεικνύεται η εφαρμοσιμότητα / χρησιμότητα της μεθόδου ενώ είναι εφικτή και η επέκταση αυτής προς την κατεύθυνση του διαρκούς εμπλουτισμού της RDB μέσω ευφυούς μηχανισμού αναζήτησης (Intelligent Agent) που ανακαλύπτει / επεξεργάζεται δεδομένα (data mining) σε εξωτερικές Βάσεις Πληροφοριών.

7. ΒΙΒΛΙΟΓΡΑΦΙΑ

- Abo-Elela SI, el-Dib MA. Color removal via adsorption on wood shaving. Sci.Tot.Envir.1987; 66: 269.
- 2. Allen SJ, Gan Q, Matthews R, Johnson PA. Comparison of optimized isotherm models for basic dye adsorption by kudzu. Biores. Techn. 2003; 88: 143.
- 3. Annadurai G, Juang R-S, Lee D-J. Use of cellulose based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 2002; B92: 263.
- 4. Batzias F.A., D.K. Sidiras, Dye adsorption by calcium chloride treated beech sawdust in batch and fixed-bed systems, J Hazard. Mater. 114(1-3) (2004) 167.
- Batzias F.A., D.K. Sidiras, Optimal design of adsorption tower equipped with a novel packed biomass bed for colouring-processes-wastewater treatment, CHISA 2004, Proc. 16th Intern. Congress of Chem. & Process Eng., 22-26 August 2004, Prague, Czech Republic.
- Batzias FA, Sidiras DK. Wastewater Treatment with Gold Recovery through Adsorption by Activated Carbon. Water Pollution IV: Modelling, Measuring and Prediction, Ed. Brebbia C.A., Series: Progress in Water Resources, WIT Press, Southampton, 2001; 3: 533.
- 7. Bohart GS, Adams EQ. Adsorption in columns. J.Chem.Soc. 1920; 42.
- Carrillo F, Lis MJ, Valldeperas J. Sorption isotherms and behaviour of direct dyes on lyocel fibres. Dyes & Pigments. 2002; 53: 129.
- Chubar A, Carvalho JR, Correia MJN. Heavy metals biosorption on cork biomass: effect of the pre-treatment. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2004; 238: 51.
- 10. Chun L, Hongzhang C, Zuohu L. Adsorption of Cr(VI) by Fe-modified steam exploded wheat straw. Proc.Biochem. 2003, in press.
- 11. Clark RM. Modeling TOC removal by GAC: The general logistic function. J. Am.Wat.Works Assoc. 1987; 79 (1): 33.
- 12. Crank G. The mathematics of diffusion. London, New York: Clarendon Press, 1993.
- El-Shobaky GA, Youssef AM. Chemical activation of charcoals. Surface Techn. 1978; 7(3): 209.

- 14. Garg VK, Gupta R, Yadav A-B, Kumar R. Dye removal from aqueous solutions by adsorption on treated sawdust. Biores. Techn. 2003; 89: 121.
- Hutchins RA. New method simplifies design of activated-carbon systems. Chem. Eng. 1973; 80 (19): 133.
- Ibrahim NA, Hashem A, Abou-Shosha MH. Amination of wood sawdust for removing anionic dyes from aqueous solutions. Polym.-Plast.Techol.&Eng. 1997; 36(6): 963.
- 17. Jawaid MNA, Weber TW. Effect of mineral salts on adsorption and regeneration of activated carbon. Carbon. 1979; 17(2): 97.
- 18. Kannan N, Sundaram MM. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons a comparative study. Dyes & Pigments. 2001; 51: 25.
- 19. Low KS, Lee CK, Ng AY. Column study on the sorption of Cr(IV) using quaternized rice hall. Biores. Techn. 1999; 68: 205.
- 20. McKay G, Duri BA. Simplified model for the equilibrium adsorption of dyes from mixtures using activated carbon. Chem. Eng. &Proc. 1987; 22(3): 145.
- 21. Meshko V, Markovska L, Mincheva M, Rondrigues AE. Adsorption of basic dyes on granular activated carbon and natural zeolite. Wat. Res. 2001; 35 (14): 3357.
- 22. Mohan SV, Rao NC, Karthikeyan J. Adsorption removal of direct azo dye from aqueous phase onto coal based sorbents: a kinetic and mechanistic study. J. Hazard. Mater. 2002; B90: 189.
- 23. Namasivayam C, Kumar MD, Begum RA. 'Waste' coir pith a potential biomass for the treatment of dyeing wastewaters. Biom.Bioenerg. 2001; 21: 477.
- 24. Namasivayam C, Radhika R, Suba S. Uptake of dyes by a promising locally available agricultural solid waste: coir pith. Waste Management. 2001; 21: 381.
- 25. Nassar MM, Magdy YH. Removal of different basic dyes from aqueous solutions by adsorption on palm-fruit bunch particles. Chem. Eng. J. 1997; 66: 223.
- Nassar MM. Intra-particle diffusion of basic red and basic yellow dyes on palm fruit bunch. Wat.Sci. & Techn. 1999; 40(7): 133.
- 27. Nigam P, Armour G, Banat IM, Singh D, Marchant R. Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Biores. Techn. 2000; 72: 219.
- Oulman CS. Logistic curve as a model for carbon bed design. J.Am.Wat. Works Assoc. 1980; 72(1): 50.
- 29. Poots VJP, McKay G, Healy JJ. Removal of basic dye from effluent using wood as an adsorbent. J. Wat. Poll. Contr. Fed. 1978; 50 (5): 926.

- 30. Rajeshwarisivaraj, Sivakumar S, Senthilkumar P, Subburam V. Carbon from cassava peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from aqueous solution. Biores. Techn. 2001; 80: 233.
- 31. Robinson, T, Chandran, B, Naidu G-S, Nigam, P. Studies on the removal of dyes from a synthetic textile effluent using barley husk in static-bath and in a continuous flow, packed-bed, reactor. Biores. Techn. 2002; 85: 43.
- 32. Robinson, T, Chandran, B, Nigam, P. Removal of dyes from a synthetic textile effluent by biosorption on apple pomace and wheat straw. Water Res. 2002; 36: 2824.
- Robinson, T, Chandran, B. Nigam, P. The effect of pretreatments of three waste residues, wheat straw, corncobs and barley husks on dye adsorption. Biores. Techn., 2002; 85: 119.
- Saeman JF, Bubl JF, Harris EE., Quantitative saccharification of wood and cellulose. Ind. Eng. Chem. Anal. Ed. 1945; 17: 35.
- 35. Segal L, Greely JJ, Martin AE, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Res. J. 1959 ; 29: 786.
- 36. Shukla A, Zhang Y-H, Dubey P, Margrave JL. The role of sawdust in the removal of unwanted materials from water. J. Hazard. Mater. 2002; B95: 137.
- 37. Somogyi M. Notes on Sugar Determination. J. Biol. Chem. 1952; 195: 19.
- 38. Tappi Standards. Atlanta, Tappi Tests Methods, 1997.
- 39. Trivedi HC, Patel VM, Patel RD. Adsorption of cellulose triacetate on calcium silicate. Eur. Polym. J. 1973; 9:525.
- 40. Tsai WT, Chang CY, Lin MC, Chien SF, Sun HF, Hsieh MF. Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl₂ activation. Chemosphere. 2001; 45: 51.
- Van Vliet BM, Weber WJ. Comparative performance of synthetic adsorbents and activated carbon for specific compound removal from wastewaters. J. Water Poll. Contr. Fed. 1981; 53 (11): 1585.
- 42. Walker GM, Weatherley LR. Adsorption of dyes from aqueous solution the effect of adsorbent pore size distribution and dye aggregation. Chem. Eng. J. 2001; 83: 201.
- 43. Walker GM, Weatherley LR. COD removal from textile industry effluent: pilot plant studies. Chem.Eng.J. 2001; 84: 125.
- 44. F. A. Batzias, D. K. Sidiras, Dye adsorption by prehydrolyzed beech sawdust in batch and fixed-bed systems, Bioresource Technology, 2007, 98, 1208-1217.

- 45. F. A. Batzias, D. K. Sidiras, Simulation of methylene blue adsorption by salts-treated beech sawdust in batch and fixed-bed systems, Journal of Hazardous Materials, 2007, 149, 8-17.
- 46. F.A. Batzias, D.K. Sidiras, Simulation of dye adsorption by beech sawdust as affected by pH, Journal of Hazardous Materials, 2007, 141, 668–679.
- 47. D. Sidiras, E. Koukios, Simulation of acid-catalysed organosolv fractionation of wheat straw, Bioresource Technology, 2004, 94, 91–98.
- Robert H. Perry, Don W. Green, Perry's Chemical Engineers' Handbook 1997, 16, 1-52.
- Warren L. McCabe, Julian C. Smith, Peter Harriott, Βασικές Φυσικές Διεργασίες Μηχανικής, 6^η εκδοση, 2003, 25, 931-982.
- 50. Θ. Ν. Σκουλικίδη, Φυσικοχημεία Ι2, ΣΤ' έκδοση, Αθήνα 1984, ΙΙΙ, 321-387.
- 51. Γεωργίου Δ. Σαραβάκου, Τεχνική Φυσικών Διαχωρισμών, Β΄εκδοση, Αθήνα 1985, 10, 356-367.
- Ιωάννης Δ. Χανδρινός, Στοιχεία Αρχές Χημικής Κινητικής και Κατάλυσης, Τρίτη έκδοση, Ε. Μ. Π., Αθήνα 1997, 3, 144-154.
- 53. Φ. Ρουμπάνη-Καλαντζοπούλου, Χημική Κινητική και Κατάλυση, Αθήνα 1998, ΙΙΙ, Γ,6, 171-178.
- 54. Φυσικές Μέθοδοι Ανάλυσης Εργαστηριακές Ασκήσεις, Συλλογική έκδοση Εργαστηρίου Ανόργανης και Αναλυτικής Χημείας, Ε.Μ.Π., Αθήνα 1999, ΙΙΙ, 8-9, 73-86, Ι, 4, 37-42.
- 55. http://en.wikipedia.org
- 56. Christopher A. Toles, Wayne E. Marshall, Mitchell M. Johns, Lynda H. Wartelle, Andrew McAloon. Acid-activated carbons from almond shells: physical, chemical and adsorptive properties and estimated cost of production. Bioresource Technology, Volume 71, Issue 1, January 2000, Pages 87-92
- 57. Christopher A. Toles, Wayne E. Marshall, Lynda H. Wartelle, Andrew McAloon. Steam- or carbon dioxide-activated carbons from almond shells: physical, chemical and adsorptive properties and estimated cost of production. Bioresource Technology, Volume 75, Issue 3, December 2000, Pages 197-203
- Jian Sun, E. J. Hippo, H. Marsh, W. S. O'Brien, J. C. Crelling. Activated carbon produced from an Illinois Basin coal. Carbon, Volume 35, Issue 3, 1997, Pages 341-352

- 59. Peter Bayer, Edda Heuer, Ute Karl, Michael Finkel. Economical and ecological comparison of granular activated carbon (GAC) adsorber refill strategies. Water Research, Volume 39, Issue 9, May 2005, Pages 1719-1728
- 60. S. Rio, L. Le Coq, C. Faur, D. Lecomte, P. Le Cloirec. Preparation of Adsorbents from Sewage Sludge by Steam Activation for Industrial Emission Treatment. Process Safety and Environmental Protection, Volume 84, Issue 4, July 2006, Pages 258-264
- 61. Md. Zahangir ALAM, Suleyman A. MUYIBI, Mariatul F. MANSOR, Radziah WAHID. Activated carbons derived from oil palm empty-fruit bunches: Application to environmental problems. Journal of Environmental Sciences, Volume 19, Issue 1, January 2007, Pages 103-108
- Isabel M. Lima, Andrew McAloon, Akwasi A. Boateng. Activated carbon from broiler litter: Process description and cost of production. Biomass and Bioenergy, Volume 32, Issue 6, June 2008, Pages 568-572
- 63. Angel Linares-Solano, Diego Cazorla-Amorós. Adsorption on Activated Carbon Fibers. Adsorption by Carbons, 2008, Pages 431-454
- 64. W.J. Frederick Jr., S.J. Lien, C.E. Courchene, N.A. DeMartini, A.J. Ragauskas, K. Iisa. Production of ethanol from carbohydrates from loblolly pine: A technical and economic assessment. Bioresource Technology, Volume 99, Issue 11, July 2008, Pages 5051-5057
- 65. Carlo N Hamelinck, Geertje van Hooijdonk, André PC Faaij. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and longterm. Biomass and Bioenergy, Volume 28, Issue 4, April 2005, Pages 384-410
- 66. CP Mitchell, AV Bridgwater, DJ Stevens, AJ Toft, MP Watters. Technoeconomic assessment of biomass to energy. Biomass and Bioenergy, Volume 9, Issues 1-5, 1995, Pages 205-226
- 67. Margareta von Sivers, Guido Zacchi. A techno-economical comparison of three processes for the production of ethanol from pine. Bioresource Technology, Volume 51, Issue 1, 1995, Pages 43-52
- 68. Carroll R. Keim. Technology and economics of fermentation alcohol An update. Enzyme and Microbial Technology, Volume 5, Issue 2, March 1983, Pages 103-114
- Richard A. Baltz, Andy F. Burcham, Oliver C. Sitton, Neil L. Book. The recycle of sulfuric acid and xylose in the prehydrolysis of corn stover. Energy, Volume 7, Issue 3, March 1982, Pages 259-265

- 70. G. Skodras, Ir. Diamantopoulou, A. Zabaniotou, G. Stavropoulos, G.P. Sakellaropoulos. Enhanced mercury adsorption in activated carbons from biomass materials and waste tires. Fuel Processing Technology, Volume 88, Issue 8, August 2007, Pages 749-758
- 71. G.G. Stavropoulos, A.A. Zabaniotou. Production and characterization of activated carbons from olive-seed waste residue. Microporous and Mesoporous Materials, Volume 82, Issues 1-2, 5 July 2005, Pages 79-85
- 72. Walid K. Lafi. Production of activated carbon from acorns and olive seeds. Biomass and Bioenergy, Volume 20, Issue 1, January 2001, Pages 57-62
- 73. F. Vegliò, F. Beolchini, M. Prisciandaro. Sorption of copper by olive mill residues.Water Research, Volume 37, Issue 20, December 2003, Pages 4895-4903
- 74. S. H. Gharaibeh, Wail Y. Abu-el-sha'r, M. M. Al-Kofahi. Removal of selected heavy metals from aqueous solutions using processed solid residue of olive mill products. Water Research, Volume 32, Issue 2, February 1998, Pages 498-502
- 75. Francesca Pagnanelli, Luigi Toro, Francesco Vegliò. Olive mill solid residues as heavy metal sorbent material: a preliminary study. Waste Management, Volume 22, Issue 8, December 2002, Pages 901-907
- 76. Andrew Bousher, Xiaodong Shen, Robert G.J. Edyvean. Removal of coloured organic matter by adsorption onto low-cost waste materials. Water Research, Volume 31, Issue 8, August 1997, Pages 2084-2092
- 77. F. Ferrero. Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust. Journal of Hazardous Materials, Volume 142, Issues 1-2, 2 April 2007, Pages 144-152
- 78. Saima Q. Memon, Najma Memon, Amber R. Solangi, Jamil-ur-Rehman Memon. Sawdust: A green and economical sorbent for thallium removal. Chemical Engineering Journal, Volume 140, Issues 1-3, 1 July 2008, Pages 235-240
- 79. P. Misaelides, D. Zamboulis, Pr. Sarridis, J. Warchoł, A. Godelitsas.Chromium (VI) uptake by polyhexamethylene-guanidine-modified natural zeolitic materials. Microporous and Mesoporous Materials, Volume 108, Issues 1-3, 1 February 2008, Pages 162-167
- 80. G. E. Christidis, P. W. Scott, A. C. Dunham. Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece. Applied Clay Science, Volume 12, Issue 4, October 1997, Pages 329-347

- Rashmi Sanghi and Bani Bhattacharya. Review on decolorisation of aqueous dye solutions by low cost adsorbents. Color. Technol., 118 (2002) 256-269.
- 82. F. A. Batzias and D. K. Sidiras, Simulation of dye adsorption by beech sawdust as affected by pH, Journal of Hazardous Materials. 141(3), 668-679 (2007).
- 83. F.A. Batzias, D.K. Sidiras, E. Schroeder and C. Weber, Simulation of dye adsorption on hydrolyzed wheat straw in batch and fixed-bed systems, Chemical Engineering Journal, in press, available online on ScienceDirect.
- 84. F. A. Batzias, D. K. Sidiras. Calcium Chloride Treated Lignocellulosic Biomass As An Activated Carbon Substitute. Proc. 14th European Biomass Conference. Biomass for Energy, Industry and Climate Protection. Palais des Congrès. Paris, France 17-21 October 2005. pp. 1779-1782
- 85. F. A. Batzias and D. K. Sidiras, Zinc chloride treated beech sawdust as an activated carbon low-cost substitute, 15th European Biomass Conference, 07 - 11 May 2007, ICC Berlin, Germany, pp. 2121-2130.
- 86. D.K. Sidiras, Lignocellulosic materials as low cost adsorbents for wastewater dye removal, 16th European Biomass Conference, 02-06 June 2008, Valencia, Spain, pp. 1697-1705.
- 87. A.F. Batzias, D.K. Sidiras, Thermochemical conversion of waste biomass to obtain activated carbon substitutes for dye adsorption – A decision making approach on kinetics, 16th European Biomass Conference, 02-06 June 2008, Valencia, Spain, pp. 1727-1732.

8. ПАРАРТНМА

8.1 Προσδιορισμός συγκέντρωσης διαλύματος με τη βοήθεια

φασματοφωτόμετρου

Σχήμα 7.1. Φασματοφωτόμετρο UV-VIS τύπου HACH 1 στο Εργαστήριο Προσομοίωσης Βιομηχανικών Διεργασιών του τμήματος Βιομηχανικής Διοίκησης και Τεχνολογίας του Πανεπιστημίου Πειραιά.

Αν I_0 και I_1 οι εντάσεις της προσπίπτουσας σε διάλυμα και εξερχόμενης από αυτό ακτινοβολίας, αντίστοιχα, τότε ο λόγος I_1/I_0 δίνεται από τη σχέση :

$$-\log\frac{I_1}{I_0} = \varepsilon * c * l$$

(Νόμος Beer-Lambert) (1)

όπου ο αριστερός όρος της ισότητας λέγεται απορρόφηση Α (παλαιότερα οπτική πυκνότητα), ε = συντελεστής απορρόφησης (παλαιότερα συντελεστής απόσβεσης), ο οποίος εξαρτάται από τη συχνότητα της προσπίπτουσας ακτινοβολίας (1/M*cm), c = συγκέντρωση του διαλύματος (M) και 1 = μήκος διαδρομής που ακολουθεί η ακτινοβολία μέσα στο διάλυμα (cm). Το φασματοφωτόμετρο είναι ένα όργανο που μετρά τη διαπερατότητα T (= I_1/I_0) και τη δίνει ως κλάσμα ή ποσοστό στην περιοχή 0-1 ή 0-100%, αντίστοιχα. Σε ιδιαίτερη κλίμακα ανάγνωσης δίνει κατευθείαν την απορρόφηση :

$$A = -\log \frac{I_1}{I_o}$$

Αν μετρηθεί η απορρόφηση η διαλυμάτων διαφορετικής (γνωστής) συγκέντρωσης C_i (i = 1, 2, 3, ..., n) σε διαλυμένη ουσία, είναι δυνατό να απεικονιστούν τα ζεύγη (C_i , A_i) ως σημεία σε σύστημα αξόνων και να χαραχθεί η πλησιέστερη προς αυτά ευθεία, που διέρχεται από την αρχή των αξόνων, αφού η έκφραση :

(2)

(3)

(4)

$$A = b * C, \quad \acute{o}\pi ov \ b = \varepsilon * 1$$

είναι απλή αναλογική σχέση χωρίς σταθερό όρο. Για να χρησιμοποιηθεί αυτή η σχέση, πρέπει να χρησιμοποιούνται κυψελίδες ίσου πάχους ώστε το μήκος διαδρομής της ακτινοβολίας να μένει σταθερό. Για μεγαλύτερη ακρίβεια στον προσδιορισμό της ευθείας, υπολογίζεται η κλίση b με τη βοήθεια της ακόλουθης σχέσης (4), η οποία εξάγεται με γραμμική παλινδρόμηση με τη μέθοδο των ελαχίστων τετραγώνων :

$$b = \frac{\sum_{i=1}^{n} C_i A_i}{\sum_{i=1}^{n} C_i^2}$$

Στη συνέχεια δίνεται διάλυμα άγνωστης συγκέντρωσης C_{χ} , στην ίδια διαλυμένη ουσία, και μετριέται η απορρόφηση του A_{χ} . Με τη βοήθεια της σχέσης (3) υπολογίζεται η τιμή της άγνωστης συγκέντρωσης C_{χ} , αφού η τιμή της παραμέτρου b έχει εκτιμηθεί προηγούμενα από τη σχέση (4).

Όταν είναι γνωστή η περιοχή στην οποία λαμβάνει τιμές η άγνωστη συγκέντρωση C_x, μετριέται η απορρόφηση A_i διαλυμάτων συγκέντρωσης C_i, i = 1, 2, 3, ..., n που καλύπτουν την περιοχή αυτή και απεικονίζονται τα ζεύγη (C_i, A_i) με τη βοήθεια H/Y ως διαγράμματα διασποράς των μετρήσεων (scatter diagram). Αν οι μετρήσεις φαίνεται ότι ακολουθούν μη γραμμική πορεία, η άγνωστη συγκέντρωση C_χ προσδιορίζεται με μέτρηση της απορρόφησης A_χ και παρεμβολή Lagrange, η οποία επιτυγχάνεται με το αντίστοιχο πρόγραμμα H/Y. Αν οι μετρήσεις φαίνεται ότι ακολουθούν γραμμική πορεία, τότε χρησιμοποιείται το γραμμικό υπόδειγμα με σταθερό όρο:

$$A = \alpha + bC \tag{5}$$

του οποίου οι τιμές των παραμέτρων α, b εκτιμώνται με γραμμική παλινδρόμηση με τη μέθοδο των ελαχίστων τετραγώνων:

$$a = \frac{(\sum A_{i})(\sum C_{i}^{2}) - (\sum C_{i})(\sum C_{i}A_{i})}{n\sum C_{i}^{2} - (\sum C_{i})^{2}}$$
(6)
$$b = \frac{n\sum C_{i}A_{i} - (\sum C_{i})(\sum A_{i})}{n\sum C_{i}^{2} - (\sum C_{i})^{2}}$$
(7)

Αφού προσδιοριστούν οι τιμές των παραμέτρων α και b, με τη βοήθεια της σχέσης (5) μπορεί να υπολογιστεί η άγνωστη συγκέντρωση C_x διαλύματος του οποίου μετριέται η απορρόφηση A_x . Η εκτίμηση του σφάλματος $S_{C\chi}$ που διαπράττεται με τον υπολογισμό αυτό είναι εξαιρετικά πολύπλοκη, καθώς εδώ μετριέται η εξαρτημένη μεταβλητή και υπολογίζεται η ανεξάρτητη, ακολουθείται δηλαδή πορεία αντίστροφη αυτής που υποδεικνύει η τυποποιημένη στατιστική ανάλυση. Στην περίπτωση αυτή, οι περισσότεροι αναλυτές χρησιμοποιούν τη σχέση:

$$S_{C_{\chi}} = \frac{S_{A/C}}{b} \left[\frac{1}{m} + \frac{1}{n} + \frac{(A_{\chi} - \overline{A})^2}{b^2 \sum (C_i - \overline{C})^2} \right]^{1/2}$$
(8)

όπου:

n ο αριθμός των μετρήσεων απορρόφησης ή διαλυμάτων διαφορετικής γνωστής συγκέντρωσης (μια μέτρηση για κάθε διάλυμα)

Ā η μέση τιμή των n μετρήσεων απορρόφησης

m ο αριθμός των μετρήσεων n δειγμάτων του ίδιου άγνωστου διαλύματος (μια μέτρηση για κάθε δείγμα)

 A_{χ} η μέση τιμή των m
 μετρήσεων απορρόφησης

 $S_{A/C}$ το σφάλμα της εκτίμησης της εξαρτημένης μεταβλητής πάνω στην ανεξάρτητη, το οποίο δίνεται από την έκφραση:

$$S_{A/C} = \left[\frac{\sum (A_i - \hat{A}_i)^2}{n - 2}\right]^{1/2} \quad (9)$$

$$\label{eq:alpha} \begin{split} & \text{det} \alpha + bC_i, \, i=1,\,2\dots\,n. \end{split}$$

8.2. Καμπύλη αναφοράς χρωστικής ουσίας Μπλε του Μεθυλενίου.

Σχήμα 7.3. Καμπύλη αναφοράς χρωστικής ουσίας Μπλε του Μεθυλενίου.

8.3 Βάση Δεδομένων Προσρόφησης

No	TOPI C	MEC HANI SM	KINE TIC MOD EL	MODE L	CONST ANT	VARI ABLE S PARA	PARAMETER IDENTIFICAT ION	ADSOR BENT	ADSOR BATE	APPLICATIONS	PRETREATMENT	REFERENCE
1	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Hazelnut scells	Methyle ne blue	recycle purpose / color removal from dyehouse effluents	the shells were washed with deionised water and dried in air over at 1000C for 24 h.	F.Ferrero Journal of Hazardous Materials 142 (2007) 144-152
2	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Hazelnut scells	Acid blue 25	recycle purpose / color removal from dyehouse effluents	the shells were washed with deionised water and dried in air over at 1000C for 24 h.	F.Ferrero Journal of Hazardous Materials 142 (2007) 144-152
3	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	kudzu	Basic Yellow 21	removal of contaminants from wastewater	air dried and sieved	J.Allen Bioresource Technology Vol.88 Issue 2 (2003) 143-152
4	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	kudzu	Basic Red 22	removal of contaminants from wastewater	air dried and sieved	J.Allen Bioresource Technology Vol.88 Issue 2 (2003) 143-152
5	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	peat	Basic Red 22	wastewater / textiles industries	milled, air dried and sieved	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332
6	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	peat	Basic Blue 3	wastewater / textiles industries	milled, air dried and sieved	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332
7	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	peat	Basic Yellow 21	wastewater / textiles industries	milled, air dried and sieved	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332
8	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	neem trees	Brillant Green	textile industry	washed,dried and crushed into a fine powder	Bhattacharyya and Sarma. Dyes and Pigments 57 (2003) 211-222
9	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	date pits	Methyle ne blue	textile industry	washed,dried ,sieved,carbonisation,a ctivation,washed with 0.1 M H2SO4	Banat et al. Process Biochemistry 39 (2003)193- 202
10	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	almond	Methyle ne blue	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
11	ISOT HER MS		1	LANG MUIR	R	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	walnut	Methyle ne blue	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
12	ISOT HER MS		1	LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	hazelnut scells	Methyle ne blue	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
13	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	appricot stones	Methyle ne blue	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
14	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	appricot stones	Phenol	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195

Πίνακας 8.3-1. Βάση Γνώσης Προσρόφησης – Δεδομένα

15	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	almond	Phenol	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
16	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	walnut	Phenol	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
17	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	hazelnut scells	Phenol	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
18	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	appricot stones	iodine	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
19	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	almond	iodine	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
20	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	sawdust	congo Red	wastewater(textile,l eader;food processing,dyeing,c osmetics,paper and	cleaned,washed,distill ed,dried	Jain and Sikarwar.Journal of Hazardous Materials 152(2008)942-948
21	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	walnut	iodine	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
22	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	hazelnut scells	iodine	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
23	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	coir bith	Acid Violet	wastewater / textiles industries	dried,sieved,used without any pretreatment to avoid extra expenditure	Namasivayam et al.Biomass and Bioenergy 21(2001)477-483
24	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	coir bith	Brilliant Blue	wastewater / textiles industries	dried,sieved,used without any pretreatment to avoid extra expenditure	Namasivayam et al.Biomass and Bioenergy 21(2001)477-483
25	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	coir bith	Rhodam ine B	wastewater / textiles industries	dried,sieved,used without any pretreatment to avoid extra expenditure	Namasivayam et al.Biomass and Bioenergy 21(2001)477-483
26	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	coir bith	Methyle ne blue	wastewater / textiles industries	dried,sieved,used without any pretreatment to avoid extra expenditure	Namasivayam et al.Biomass and Bioenergy 21(2001)477-483
27	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	appricot stones	Methyle ne blue	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
28	ISOT HER MS	1	LANG MUIR	KĿ	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	bamboo dust	Methyle ne blue	textile industry	washed,dried,carbonis ed,acid treated	Kannan and Sundaran.Dyes and Pigments 51(2001)25- 40
29	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	coconut shell	Methyle ne blue	textile industry	washed,dried,carbonis ed,acid treated	Kannan and Sundaran.Dyes and Pigments 51(2001)25- 40
30	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	groundnu t shell	Methyle ne blue	textile industry	washed,dried,carbonis ed,acid treated	Kannan and Sundaran.Dyes and Pigments 51(2001)25- 40

31	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	rice husk	Methyle ne blue	textile industry	washed,dried,carbonis ed,acid treated	Kannan and Sundaran.Dyes and Pigments 51(2001)25- 40
32	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	straw	Methyle ne blue	textile industry	washed,dried,carbonis ed,acid treated	Kannan and Sundaran.Dyes and Pigments 51(2001)25- 40
33	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	coir pith	Congo Red	textile industry(paper,rubb er,plastics,paints,pri nting,inks art and	dried in sunlight for 5h,sieved	Namasívayam and Kavitha.Dyes and Pigments 54(2002)47-58
34	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	phenol	sawdust	municipal and industrial wastewater	washed,dried,chemical activation ZnCl2	Mohanty and Biswas.Chemical Engineering Journal 115(2005)121-131
35	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	basic red 46	clay wood	dye industry wastewater	washed, dried, sieved	Yeddou and Bensmaili.Desalination 185(2005)499-508
36	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Cr(VI)	sawdust	industrial,agricultur al and domestic wastes	washed,dried,immerse d in 2N NaOH	Kumar Meena et.al.Journal of Hazardous Materials 150(2008)604-611
37	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Pb(II)	sawdust	industrial,agricultur al and domestic wastes	washed,dried,immerse d in 2N NaOH	Kumar Meena et.al.Journal of Hazardous Materials 150(2008)604-611
38	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Pb(II)	pith	industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla	washed,drying,activati on,carbonised	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299
39	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Pb(II)	bagasse	industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla	washed,drying,activati on,carbonised	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299
40	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	malachite green	sawdust	textile,cosmetics,pri nting,dying,food coloring,papermaki ng	chemical activation with ZnCl2	Akmil-Basar et.al.Journal of Hazardous Materials B127(2005)73-80
41	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	malachite green	pet	textile,cosmetics,pri nting,dying,food coloring,papermaki ng	chemical activation with NaOH	Akmil-Basar et.al.Journal of Hazardous Materials B127(2005)73-80
42	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Pb(II)	sawdust	industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla	washed,drying,activati on,carbonised	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299
43	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Hg(II)	sawdust	industrial,agricultur al and domestic wastes	wasted,dried,immerse d in 2N NaOH	Kumar Meena et.al.Journal of Hazardous Materials 150(2008)604-611
44	ISOT HER MS	10	LANG MUIR	R	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	acid orange 10	sugarca ne bagasse	wastewater	chemichal activation with ZnCl2	Tsai et al.Chemosphere 45(2001)51-58
45	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Cu(II)	sawdust	industrial,agricultur al and domestic wastes	washed,dried,immerse d in 2N NaOH	Kumar Meena et.al.Journal of Hazardous Materials 150(2008)604-611
46	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	acid yellow 36	sawdust	industrial wastes	washed,dried,carbonis ed, steam-activation	Malik.Dyes and Pigments 56(2003)239-249

47	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	acid yellow 36	rice - husk	industrial wastes	washed,dried,carbonis ed, steam-activation	Malik.Dyes and Pigments 56(2003)239-249
48	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	basic blue 69	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
49	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	acid blue 264	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
50	ISOT HER MS	3		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	methylen e blue	pinewo od	industrial wastes	dried, heated, activation	Tseng et al, Carbon 41(2003)487-495
51	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	phenol	pinewo od	industrial wastes	dried, heated, activation	Tseng et al.,Carbon 41(2003)487-495
52	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	3 - chloroph enol	pinewo od	industrial wastes	dried, heated, activation	Tseng et al, Carbon 41(2003)487-495
53	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	o - cresor	pinewo od	industrial wastes	dried, heated, activation	Tseng et al.,Carbon 41(2003)487-495
54	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Cr(VI)	pine sawdust	wastewater	washed with distilled water,dried	Gode et al, Journal of Hazarous Marerials 152(2008)1201-1207
55	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]					
56	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Pb(II)	12	7		
57	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Pb(II)	/			
58	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	4 chloroph enol	rattan sawdust	industry	washed, dried, sieved	Hameed et al.Desalination 225 (2008) 185-198
59	ISOT HER MS		/	LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Cr(VI)	coir pith	wastewater	washed, dried, sieved	Namasivayan and Sureshkumar. Bioresource Technology 99(2008)2218- 2225
60	ISOT HER MS		1	LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Cr(III)	coir pith	wastewater	washed, dried, sieved	Namasivayan and Sureshkumar. Bioresource Technology 99(2008)2218- 2225
61	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	methyl violet	4 chlorop henol	paper,textile,leather ,dye house,pharmaceutic al,food,cosmetics	washed, sieved	Ofomaja and Ho.Bioresource Technology (2007)
62	ISOT HER MS			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	methylen e blue	palm shell	textile, leather, paper plastics	washed,dried, dried shell was crushed and sieved	Tan et al. Desalination 225(2008)13-18

63	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	methyl paration	waterm elon peels	spaying in corps,droplets of methyl parathion in the air fall on soil,	washed, dried, sieved	Memon et al, Chemical Engineering Journal 138(2008)616-621
64	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Pb(II)	lichen	storage batery, manufacturing,print ing pigments,fuels,phot	washed, dried, sieved	Uluozlu et.al Bioresource Technology 99(2008)2972- 2980
65	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Pb(II)	peanut husk	electroplating,metal finishing,textile,stor age batteries,mining,pla	washed, dried, sieved	Zhai et al.Journal of Hazardous Materias 141(2007)163-167
66	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Cr(III)	peanut husk	electroplating,metal finishing,textile,stor age batteries,mining,pla	washed, dried, sieved	Zhai et al.Journal of Hazardous Materias 141(2007)163-167
67	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Cu(II)	peanut husk	electroplating,metal finishing,textile,stor age batteries,mining,pla	washed, dried, sieved	Zhai et al.Journal of Hazardous Materias 141(2007)163-167
68	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	nitrilotria cetic acid	sawdust	pulp and paper industries	steam pyrolisis	Krishnan.Colloids and Surfaces A: Physicochem.Eng.Aspects3 17(2008)344-351
69	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	methylen e blue	cedar sawdust	coloring paper, dyeing cottons,wools,coati ng for paper stock	washing, grinding, size classification by sieving	Hamdaoui.Journal of Hazardous Materials B 138(2006)
70	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	methylen e blue	crushed brick	coloring paper, dyeing cottons,wools,coati ng for paper stock	washing, grinding, size classification by sieving	Hamdaoui.Journal of Hazardous Materials B 138(2006)
71	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Cr(VI)	rhizopu s arrhizus	wastewater		Preetha and Viruthagiri.Separation and Purification Technology 57(2007)126-133
72	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Cr(VI)	pine sawdust	wastewater	washed,dried,sieved	Uysan and Ar.Journal of Hazardous Materials 149(2007)482-491
73	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Cr(VI)	chitin	contamination of waters by heavy metals	ground and sieved	Sag and Aktay.Process Biochemistry 36(2001)1187-1197
74	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Cr(VI)	granual activate d carbon	wastewater, textile dyeing, chemical and pigments production	size of 2,5mm	Quintelas et al.Journal of Hazardous Material 153 (2008) 799-809
75	ISOT HER MS	/	LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	bismark brown	rubberw ood tree	wastewater, textile,dyeing industries	carbonized, activated by chemical, steam activation	Velan et al.Journal of Hazardous Materials B126(2005)63-70
76	ISOT HER MS	100	LANG MUIR	R.	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	Cr(VI)	granual activate d carbon	textile dyeing, chemical and pigments production	washed in 60% nitric acid	Travares et al. Journal of Hazardous Material 153 (2008) 799-809
77	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	methylen e blue	beech sawdust	wastewater	H2SO4	Batzias and Sidiras.Journal of Hazardous Materials 149(2007)8-17
78	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	methylen e blue	beech sawdust	wastewater, dyeing, textile, tannery, paint industry	prehydrolysis 1000C, 1,8M H2SO4	Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217

79			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	red basic 22	beech sawdust	wastewater, dyeing, textile, tannery, paint industry	prehydrolysis 1000C, 1,8M H2SO4	Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217
80	ISOT HER MS		LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	methylen e blue	beech sawdust	dyeing, textile, tannery and paint industry	1h 20% w/v CaCl2	Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174
81			LANG MUIR	KL	ce qm q	qe=(qmKLCe)/ [1+(KLCe)]	red basic 22	beech sawdust	dyeing, textile, tannery and paint industry	1h 20% w/v CaCl2	Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174
82	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	bismark brown	rubberw ood tree	wastewater, textile,dyeing industries	carbonized, activated by chemical, steam activation	Velan et al.Journal of Hazardous Materials B126(2005)63-70
83			FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	methylen e blue	beech sawdust	wastewater	H2SO4	Batzias and Sidiras.Journal of Hazardous Materials 149(2007)8-17
84			FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	methylen e blue	beech sawdust	wastewater, dyeing, textile, tannery, paint industry	prehydrolysis 1000C, 1,8M H2SO4	Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217
85			FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	red basic 22	beech sawdust	wastewater, dyeing, textile, tannery, paint industry	prehydrolysis 1000C, 1,8M H2SO4	Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217
86			FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	methylen e blue	beech sawdust	dyeing, textile, tannery and paint industry	1h 20% w/v CaCl2	Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174
87			FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	red basic 22	beech sawdust	dyeing, textile, tannery and paint industry	1h 20% w/v CaCl2	Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174
88			FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	basic red 46	clay wood	dye industry wastewater	washed, dried, sieved	Yeddou and Bensmaili.Desalination 185(2005)499-508
89	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	Cr(VI)	chitin	contamination of waterw by heavy metals	ground and sieved	Sag and Aktay.Process Biochemistry 36(2001)1187-1197
90	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	methylen e blue	cedar sawdust	coloring paper, dyeing cottons,wools,coati ng for paper stock	washing, grinding, size classification by sieving	Hamdaoui.Journal of Hazardous Materials B 138(2006)
91	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	Cr(VI)	granual activate d carbon	textile dyeing, chemical and pigments production	washed in 60% nitric acid	Travares et al. Journal of Hazardous Material 153 (2008) 799-809
92	ISOT HER MS	1	FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	methylen e blue	crushed brick	coloring paper, dyeing cottons,wools,coati ng for paper stock	washing, grinding, size classification by sieving	Hamdaoui.Journal of Hazardous Materials B 138(2006)
93	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	Cr(VI)	granual activate d carbon	wastewater, textile dyeing, chemical and pigments production	size of 2,5mm	Quintelas et al.Journal of Hazardous Material 153 (2008) 799-809
94	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	Pb(II)	peanut husk	electroplating,metal finishing,textile,stor age batteries,mining,pla	washed, dried, sieved	Zhai et al.Journal of Hazardous Materias 141(2007)163-167

95	ISOT HER MS		FREUN DLICH	Kf n	qe ce	qe=KfCe1/n	Cr(III)	peanut husk	electroplating,metal finishing,textile,stor age batteries,mining,pla	washed, dried, sieved	Zhai et al.Journal of Hazardous Materias 141(2007)163-167
96	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	Cu(II)	peanut husk	electroplating,metal finishing,textile,stor age batteries,mining,pla	washed, dried, sieved	Zhai et al.Journal of Hazardous Materias 141(2007)163-167
97	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	Cr(VI)	pine sawdust	wastewater	washed,dried,sieved	Uysan and Ar.Journal of Hazardous Materials 149(2007)482-491
98	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	Cr(VI)	coir pith	wastewater	washed, dried, sieved	Namasivayan and Sureshkumar. Bioresource Technology 99(2008)2218- 2225
99	ISOT HER MS		FREUN DLICH	Kf n	qe ce	qe=KfCe1/n	methylen e blue	palm shell	textile, leather, paper plastics	washed,dried, dried shell was crushed and sieved	Tan et al. Desalination 225(2008)13-18
100	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	methyl paration	waterm elon peels	spaying in corps,droplets of methyl parathion in the air fall on soil,	washed, dried, sieved	Memon et al, Chemical Engineering Journal 138(2008)616-621
101	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	Cr(III)	coir pith	wastewater	washed, dried, sieved	Namasivayan and Sureshkumar. Bioresource Technology 99(2008)2218- 2225
102	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	Pb(II)	lichen	storage batery, manufacturing,print ing pigments,fuels,phot	washed, dried, sieved	Uluozlu et.al Bioresource Technology 99(2008)2972- 2980
103	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	Cr(HI)	coir pith	wastewater	washed, dried, sieved	Namasivayan and Sureshkumar. Bioresource Technology 99(2008)2218- 2225
104	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	rattan sawdust	sawdust	industry	washed, dried, sieved	Hameed et al.Desalination 225 (2008) 185-198
105	5 ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	methyl violet	4 chlorop henol	paper,textile,leather ,dye house,pharmaceutic al,food,cosmetics	washed,sieved	Ofomaja and Ho.Bioresource Technology (2007)
106	5 ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	nitrilotria cetic acid	sawdust	pulp and paper industries	steam pyrolisis	Krishnan.Colloids and Surfaces A: Physicochem.Eng.Aspects3 17(2008)344-351
107	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	Cr(VI)	sawdust	wastewater	washed with distilled water,dried	Gode et al, Journal of Hazarous Marerials 152(2008)1201-1207
108	BISOT HER MS	/	FREUN DLICH	Kfn	qe ce	qe=KfCe1/n		pine sawdust			
109	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	acid yellow 36		industrial wastes	washed,dried,carbonis ed, steam-activation	Malik.Dyes and Pigments 56(2003)239-249
110	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	sawdust	sawdust	wastewater(textile,l eader;food processing,dyeing,c osmetics,paper and	cleaned,washed,distill ed,dried	Jain and Sikarwar.Journal of Hazardous Materials 152(2008)942-948

111	l ISOT HER MS	FREUY DLICH	N Kf n	qe ce	qe=KfCe1/n	basic blue 69	congo Red	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
112	2 ISOT HER MS	FREUY DLICH	N Kf n	qe ce	qe=KfCe1/n	acid blue 264	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
113	3 ISOT HER MS	FREUN DLICH	l Kf n	qe ce	qe=KfCe1/n	methylen e blue	pinewo od	industrial wastes	dried, heated, activation	Tseng et al, Carbon 41(2003)487-495
114	4 ISOT HER MS	FREUN DLICH	JKfn	qe ce	qe=KfCe1/n	phenol	pinewo od	industrial wastes	dried, heated, activation	Tseng et al, Carbon 41(2003)487-495
115	5 ISOT HER MS	FREUY DLICH	l Kf n	qe ce	qe=KfCe1/n	3 - chloroph enol	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
116	5 ISOT HER MS	FREUN DLICH	J Kf n	qe ce	qe=KfCe1/n	acid yellow 36	pinewo od	industrial wastes	washed,dried,carbonis ed, steam-activation	Malik.Dyes and Pigments 56(2003)239-249
117	7 ISOT HER MS	FREUY DLICH	l Kf n	qe ce	qe=KfCe1/n	o - cresor	rice - husk	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
118	8 ISOT HER MS	FREU) DLICH	l Kf n	qe ce	qe=KfCe1/n	acid orange 10	pinewo od	wastewater	chemichal activation with ZnCl2	Tsai et al.Chemosphere 45(2001)51-58
	TOOT		1 17.0		TTOO 11	The The State	1000	1		
119	HER MS	FREUN DLICH	NKI n	qe ce	qe=KfCeI/n	peat	sugarca ne bagasse	wastewater / textiles industries	milled, air dried and sieved	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332
119	HER MS ISOT HER MS	FREUN DLICH FREUN DLICH	Kfn ↓Kfn	qe ce qe ce	qe=KfCe1/n qe=KfCe1/n	peat Pb(II)	sugarca ne bagasse	industries(electropl ating,dyes,textiles,t aneries,oil refineries,electropla	milled, air dried and sieved washed,drying,activati on,carbonised	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299
119	I ISOT HER MS I ISOT HER MS I ISOT HER MS	FREUN DLICH FREUN DLICH FREUN DLICH	Kfn Kfn	qe ce qe ce qe ce	qe=KfCe1/n qe=KfCe1/n qe=KfCe1/n	Pb(II)	sugarca ne bagasse sawdust	industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla ating,dyes,textiles,t anneries,oil refineries,oil refineries,electropla	milled, air dried and sieved washed,drying,activati on,carbonised washed,drying,activati on,carbonised	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299
119 120 121	HER MS DISOT HER MS I ISOT HER MS 2 ISOT HER MS	FREUN DLICH FREUN DLICH FREUN DLICH FREUN DLICH	Kfn I Kfn I Kfn	qe ce qe ce qe ce qe ce	qe=KfCe1/n qe=KfCe1/n qe=KfCe1/n	Pb(II) Pb(II) Pb(II)	sugarca ne bagasse sawdust pith	wastewater / textiles industries industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla	milled, air dried and sieved washed,drying,activati on,carbonised washed,drying,activati on,carbonised washed,drying,activati on,carbonised	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299
119 120 121	I ISOT HER MS DISOT HER MS I ISOT HER MS 3 ISOT HER MS	FREUN DLICH FREUN DLICH FREUN DLICH FREUN DLICH	Kfn Kfn Kfn Kfn	qe ce qe ce qe ce qe ce qe ce	qe=KfCe1/n qe=KfCe1/n qe=KfCe1/n qe=KfCe1/n	Pb(II) Pb(II) Cr(VI)	sugarca ne bagasse sawdust pith bagasse	wastewater / textiles industries industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla industrial,agricultur al and domestic wastes	milled, air dried and sieved washed,drying,activati on,carbonised washed,drying,activati on,carbonised washed,drying,activati on,carbonised wasted,dried,immerse d in 2N NaOH	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Kumar Meena et.al.Journal of Hazardous Materials 150(2008)604-611
119 120 121 122 123 124	I ISOT HER MS I ISOT HER MS I ISOT HER MS I ISOT HER MS I ISOT HER MS	FREUN DLICH FREUN DLICH FREUN DLICH FREUN DLICH FREUN DLICH	Kfn Kfn Kfn Kfn Kfn	qe ce qe ce qe ce qe ce qe ce	qe=KfCe1/n qe=KfCe1/n qe=KfCe1/n qe=KfCe1/n qe=KfCe1/n	peat Pb(II) Pb(II) Pb(II) Cr(VI) Pb(II)	sugarca ne bagasse sawdust pith bagasse sawdust	wastewater / textiles industries industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla industrial,agricultur al and domestic wastes industrial,agricultur al and domestic wastes	milied, air dried and sieved washed,drying,activati on,carbonised washed,drying,activati on,carbonised washed,drying,activati on,carbonised wasted,dried,immerse d in 2N NaOH wasted,dried,immerse d in 2N NaOH	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Kumar Meena et.al.Journal of Hazardous Materials 150(2008)604-611 Kumar Meena et.al.Journal of Hazardous Materials 150(2008)604-611
119 120 121 122 122 122	I ISOT HER MS DISOT HER MS I ISOT HER MS ISOT HER MS ISOT HER MS ISOT HER MS ISOT HER MS	FREUN DLICH FREUN DLICH FREUN DLICH FREUN DLICH FREUN DLICH FREUN DLICH	Kfn Kfn Kfn Kfn Kfn Kfn	qe ce qe ce qe ce qe ce qe ce qe ce	qe=KfCe1/n qe=KfCe1/n qe=KfCe1/n qe=KfCe1/n qe=KfCe1/n	peat Pb(II) Pb(II) Pb(II) Cr(VI) Pb(II) Hg(II)	sugarca ne bagasse sawdust pith bagasse sawdust sawdust	wastewater / textiles industries industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla industrial,agricultur al and domestic wastes industrial,agricultur al and domestic wastes	milled, air dried and sieved washed,drying,activati on,carbonised washed,drying,activati on,carbonised washed,drying,activati on,carbonised wasted,dried,immerse d in 2N NaOH wasted,dried,immerse d in 2N NaOH	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Kumar Meena et.al.Journal of Hazardous Materials 150(2008)604-611 Kumar Meena et.al.Journal of Hazardous Materials 150(2008)604-611

127	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	phenol	sawdust	municipal and industrial wastewater	washed,dried,chemical activation ZnCl2	Mohanty and Biswas.Chemical Engineering Journal 115(2005)121-131
128	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	coir pith	Basic Red 22	textile industry(paper,rubb er,plastics,paints,pri nting,inks art and	dried in sunlight for 5h,sieved	Namasivayam and Kavitha.Dyes and Pigments 54(2002)47-58
129	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	peat	sawdust	wastewater / textiles industries	milled, air dried and sieved	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332
130	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	peat	Congo Red	wastewater / textiles industries	milled, air dried and sieved	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332
131	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	neem trees	Basic Blue 3	wastewater / textiles industries	washed,dried and crushed into a fine powder	Bhattacharyya and Sarma. Dyes and Pigments 57 (2003) 211-222
132	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	almond	Basic Yellow 21	textile industry	dried, mixed with solution ZnCl2, dehydrated, acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
133	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	coir bith	Brillant Green	wastewater / textiles industries	dried, sieved, used without any pretreatment to avoid extra expenditure	Namasivayam et al.Biomass and Bioenergy 21(2001)477-483
134	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	coir bith	Methyle ne blue	wastewater / textiles industries	dried,sieved,used without any pretreatment to avoid extra expenditure	Namasivayam et al.Biomass and Bioenergy 21(2001)477-483
135	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	coir bith	Acid Violet	wastewater / textiles industries	dried,sieved,used without any pretreatment to avoid extra expenditure	Namasivayam et al.Biomass and Bioenergy 21(2001)477-483
136	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	coir bith	Brilliant Blue	wastewater / textiles industries	dried,sieved,used without any pretreatment to avoid extra expenditure	Namasivayam et al.Biomass and Bioenergy 21(2001)477-483
137	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	walnut	Rhodam ine B	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
138	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	hazelnut scells	Methyle ne blue	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
139	ISOT HER MS	/	FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	appricot stones	Methyle ne blue	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
140	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	almond	Methyle ne blue	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
141	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	walnut	Methyle ne blue	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195
142	ISOT HER MS		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	hazelnut scells	Phenol	wastewater	dried,mixed with solution ZnCl2,dehydrated,acti vated	Aygun et al.Microporous and Mesoporous Materials 66(2003)189-195

143	ISOT		FREUN	Kfn	qe ce	qe=KfCe1/n	appricot	Phenol	wastewater	dried, mixed with	Aygun et al.Microporous
	HER MS		DLICH				stones			solution ZnCl2,dehydrated,acti vated	and Mesoporous Materials 66(2003)189-195
144	ISOT		FREUN	Kfn	qe ce	qe=KfCe1/n	almond	Phenol	wastewater	dried, mixed with	Aygun et al. Microporous
	MS		DLICH							ZnCl2,dehydrated,acti vated	66(2003)189-195
145	ISOT		FREUN	Kfn	qe ce	qe=KfCe1/n	walnut	Phenol	wastewater	dried, mixed with	Aygun et al.Microporous
	MS		DLICH							ZnCl2,dehydrated,acti vated	66(2003)189-195
146	ISOT HER		FREUN	Kfn	qe ce	qe=KfCe1/n	hazelnut scells	iodine	wastewater	dried, mixed with	Aygun et al. Microporous and Mesoporous Materials
	MS		DLieii				Seens		17	ZnCl2,dehydrated,acti vated	66(2003)189-195
147	ISOT HER		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	appricot stones	iodine	wastewater	dried, mixed with solution	Aygun et al.Microporous and Mesoporous Materials
	MS		DLieii				5101105			ZnCl2,dehydrated,acti vated	66(2003)189-195
148	BISOT HER		FREUN	Kfn	qe ce	qe=KfCe1/n	bamboo dust	iodine	textile industry	washed, dried, carbonis	Kannan and Sundaran.Dyes and Pigments 51(2001)25-
	MS		DEICH				uust	6			40
149	ISOT HER		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	coconut shell	iodine	textile industry	washed, dried, carbonis ed acid treated	Kannan and Sundaran.Dyes and Pigments 51(2001)25-
	MS						<		ID,		40
150	ISOT HER		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	groundnu t shell	Methyle	textile industry	washed,dried,carbonis	Kannan and Sundaran.Dyes and Pigments 51(2001)25-
	MS		DLieii			~					40
15	ISOT HER		FREUN	Kfn	qe ce	qe=KfCe1/n	rice husk	Methyle	textile industry	washed, dried, carbonis	Kannan and Sundaran.Dyes
	MS		DEICH			in					40
152	2 ISOT HER		FREUN	Kfn	qe ce	qe=KfCe1/n	straw	Methyle	textile industry	washed,dried,carbonis	Kannan and Sundaran.Dyes and Pigments 51(2001)25-
	MS		DEICH		1		1				40
153	ISOT HER		FREUN DLICH	Kfn	qe ce	qe=KfCe1/n	N	Methyle			
	MS			4			-				
154	ISOT		TEMKI N	1	V	qe=[(RT/b)(ln	neem	Methyle		milled, air dried and	G.Mckay et al. Journal of
	MS		<u> </u>				uces	ne blue		sieveu	Science 280 (2004) 322-332
155	5 ISOT HER		TEMKI N		1	qe=[(RT/b)(ln ACe)]	methylen	palm shell	textile,leather,paper	washed,dried,dried	Tan et al. Desalination
	MS				X		e olue	SHCH	plastics	sieved	225(2000)15-10
156	SISOT	1	TEMKI	11	2	qe=[(RT/b)(ln	rattan		industry	washed,dried, sieved	Hameed et al.Desalination
	MS				0	ACC)]	sawuust				225 (2008) 185-198
157	ISOT		TEMKI N			qe=[(RT/b)(ln	date pits	4 chloron	wastewater /	milled, air dried and	G.Mckay et al. Journal of
	MS		1					henol	industries	Sic rea	Science 280 (2004) 322-332
158	ISOT HER		TEMKI N			qe=[(RT/b)(ln ACe)]	peat	Basic Red 22	wastewater / textiles industries	milled, air dried and	G.Mckay et al. Journal of Colloid and Interface
	MS							2004 22	industries		Science 280 (2004) 322-332

159	9 ISOT HER MS		REDLI CH PETER SON			qe=(KRCe)[1+ (aR CBe)]	rattan sawdust	Basic Blue 3	industry	washed,dried, sieved	Hameed et al.Desalination 225 (2008) 185-198
160	0 ISOT HER MS		REDLI CH PETER SON			qe=(KRCe)[1+ (aR CBe)]	Cr(VI)	rhizopu s arrhizus	wastewater		Preetha and Viruthagiri.Separation and Purification Technology 57(2007)126-133
16	1 ISOT HER MS		REDLI CH PETER SON			qe=(KRCe)[1+ (aR CBe)]	methylen e blue	palm shell	textile,leather,paper plastics	washed,dried,dried shell was crushed and sieved	Tan et al. Desalination 225(2008)13-18
162	2 ISOT HER MS		REDLI CH PETER SON			qe=(KRCe)[1+ (aR CBe)]	Cr(VI)	granual activate d carbon	wastewater, textile dyeing, chemical and pigments production	size of 2,5mm	Quintelas et al.Journal of Hazardous Material 153 (2008) 799-809
163	3 ISOT HER MS		REDLI CH PETER SON			qe=(KRCe)[1+ (aR CBe)]	Cr(VI)	granual activate d carbon	textile dyeing, chemical and pigments production	washed in 60% nitric acid	Travares et al. Journal of Hazardous Material 153 (2008) 799-809
164	4 ISOT HER MS		REDLI CH PETER SON			qe=(KRCe)[1+ (aR CBe)]	Cr(VI)	chitin	contamination of waters by heavy metals	ground and sieved	Sag and Aktay.Process Biochemistry 36(2001)1187-1197
16:	5 ISOT HER MS		REDLI CH PETER SON			qe=(KRCe)[1+ (aR CBe)]	methyl violet	4 chlorop henol	paper,textile,leather ,dye house,pharmaceutic al,food,cosmetics	washed,sieved	Ofomaja and Ho.Bioresource Technology (2007)
160	6 ISOT HER MS		REDLI CH PETER SON			qe=(KRCe)[1+ (aR CBe)]	peat	sawdust	wastewater / textiles industries	milled, air dried and sieved	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332
16	7 ISOT HER MS		REDLI CH PETER SON			qe=(KRCe)[1+ (aR CBe)]	peat	Basic Yellow 21	wastewater / textiles industries	milled, air dried and sieved	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332
168	8 ISOT HER MS		REDLI CH PETER SON		1	qe=(KRCe)[1+ (aR CBe)]	peat	Basic Red 22	wastewater / textiles industries	milled, air dried and sieved	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332
169	9 ISOT HER MS		ТОТН	4	$\langle \rangle$	qe=[(KTCe)/(at + Cte)1/t]	peat	Basic Blue 3	wastewater / textiles industries	milled, air dried and sieved	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332
170	0 ISOT HER MS		тотн		1/1	qe=[(KTCe)/(at + Cte)1/t]	Cr(VI)	granual activate d carbon	textile dyeing, chemical and pigments production	washed in 60% nitric acid	Travares et al. Journal of Hazardous Material 153 (2008) 799-809
17	1 ISOT HER MS	/	тотн	10	1111	qe=[(KTCe)/(at + Cte)1/t]	peat	Basic Yellow 21	wastewater / textiles industries	milled, air dried and sieved	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332
172	2 ISOT HER MS	1	тотн		m	qe=[(KTCe)/(at + Cte)1/t]	peat	Basic Red 22	wastewater / textiles industries	milled, air dried and sieved	G.Mckay et al. Journal of Colloid and Interface Science 280 (2004) 322-332
173	3 ISOT HER MS		ELOVI CH	a b	dqt dt	dqt/dt=aexp(- bqt)	basic blue 69	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
	ISOT HER MS		ELOVI CH	a b	dqt dt	dqt/dt=aexp(- bqt)	acid blue 264	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495

	ISOT HER MS		ELOVI CH	a b	dqt dt	dqt/dt=aexp(- bqt)	methylen e blue	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
	ISOT HER MS		ELOVI CH	a b	dqt dt	dqt/dt=aexp(- bqt)	phenol	pinewo od	industrial wastes	dried, heated, activation	Tseng et al.,Carbon 41(2003)487-495
	ISOT HER MS		ELOVI CH	a b	dqt dt	dqt/dt=aexp(- bqt)	3 - chloroph enol	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
	ISOT HER MS		ELOVI CH	a b	dqt dt	dqt/dt=aexp(- bqt)	o - cresor	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
174	ISOT HER MS		DUBIN IN RADU SHKEV	β.	qe qs ε	qe=qsexp(-βε2)	Cr(VI)	coir pith	wastewater	washed,dried, sieved	Namasivayam and Sureshkumar. Bioresource Technology 99(2008)2218- 2225
175	ISOT HER MS		DUBIN IN RADU SHKEV	β.	qe qs ε	qe=qsexp(-βε2)	Cr(III)	coir pith	wastewater	washed,dried, sieved	Namasivayam and Sureshkumar. Bioresource Technology 99(2008)2218- 2225
176	ISOT HER MS		DUBIN IN RADU SHKEV	β	qe qs ε	qe=qsexp(-βε2)	Cr(VI)	granual activate d carbon	textile dyeing, chemical and pigments production	washed in 60% nitric acid	Travares et al. Journal of Hazardous Material 153 (2008) 799-809
177	ISOT HER MS		DUBIN IN RADU SHKEV	β	qe qs ε	qe=qsexp(-βε2)	methyl parathion	waterm elon peels	spaying in corps,droplets of methyl parathion in the air fall on soil,	washed,dried, sieved	Memon et al, Chemical Engineering Journal 138(2008)616-621
178	ISOT HER MS		DUBIN IN RADU SHKEV	β	qe qs ε	qe=qsexp(-βε2)	Pb(II)	lichen	storage batery, manufacturing,print ing pigments,fuels,phot	washed,dried, sieved	Uluozlu et.al Bioresource Technology 99(2008)2972- 2980
179	ISOT HER MS		DUBIN IN RADU SHKEV	β	qe qs ε	qe=qsexp(-βε2)	rattan sawdust	Basic Blue 3	industry	washed, dried, sieved	Hameed et al.Desalination 225 (2008) 185-198
180	ISOT HER MS		DUBIN IN RADU SHKEV	β	qe qs ε	qe=qsexp(-βε2)	2/10	4 chlorop henol		chemical activation with ZnCl2	Akmil-Basar et.al.Journal of Hazardous Materials B127(2005)73-80
181	ISOT HER MS		SIPS	11/1	111	qe=(KSCe1/bs) /(1+asCe1/bs)	Cr(VI)	granual activate d carbon	textile dyeing, chemical and pigments production	washed in 60% nitric acid	Travares et al. Journal of Hazardous Material 153 (2008) 799-809
182	ISOT HER MS	1	SIPS	10	21/1	qe=(KSCe1/bs) /(1+asCe1/bs)					
183	ВАТ СН	FIRS T - ORD ER	LAGER GREN	kl	qe t qt	qt = qe[1- e- (k1t)]	methylen e blue	palm shell	textile,leather,paper plastics	washed,dried,dried shell was crushed and sieved	Tan et al. Desalination 225(2008)13-18
184	ВАТ СН	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	basic blue 69		industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
185	BAT CH	FIRS T - ORD ER	LAGER GREN	.k1	qe t qt	qt = qe[1 - e - (k t)]	methyl parathion	waterm elon peels	spaying in corps,droplets of methyl parathion in the air fall on soil,	washed, dried, sieved	Memon et al, Chemical Engineering Journal 138(2008)616-621

186	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	acid blue 264	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
187	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	methylen e blue	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
188	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	phenol	pinewo od	industrial wastes	dried, heated, activation	Tseng et al.,Carbon 41(2003)487-495
189	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	sawdust	pinewo od	wastewater(textile,1 eader;food processing,dyeing,c osmetics,paper and	cleaned,washed,distill ed,dried	Jain and Sikarwar.Journal of Hazardous Materials 152(2008)942-948
190	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	3 - chloroph enol	congo Red	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
191	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	o - cresor	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495
192	ВАТ СН	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	nitrilotria cetic acid	pinewo od	pulp and paper industries	steam pyrolisis	Krishnan.Colloids and Surfaces A: Physicochem.Eng.Aspects3 17(2008)344-351
193	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	malachite green	sawdust	textile,cosmetics,pri nting,dying,food coloring,papermaki ng	chemical activation with NaOH	Akmil-Basar et.al.Journal of Hazardous Materials B127(2005)73-80
194	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	malachite green	sawdust	textile,cosmetics,pri nting,dying,food coloring,papermaki ng		
195	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	acid yellow 36	pet	industrial wastes	washed,dried,carbonis ed, steam-activation	Malik.Dyes and Pigments 56(2003)239-249
196	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	acid yellow 36	sawdust	industrial wastes	washed,dried,carbonis ed, steam-activation	Malik.Dyes and Pigments 56(2003)239-249
197	BAT CH	FIRS T - ORD ER	LAGER GREN	kl l	qe t qt	qt = qe[1- e- (k1t)]	>	rice - husk		washed,dried and crushed into a fine powder	Bhattacharyya and Sarma. Dyes and Pigments 57 (2003) 211-222
198	BAT CH	FIRS T - ORD ER	LAGER GREN	*	qe t qt	qt = qe[1- e- (k1t)]	coir bith		wastewater / textiles industries	dried,sieved,used without any pretreatment to avoid extra expenditure	Namasivayam et al.Biomass and Bioenergy 21(2001)477-483
199	BAT CH	FIRS T - ORD ER	LAGER GREN	kl	qe t qt	qt = qe[1- e- (k1t)]	coir bith	Brillant Green	wastewater / textiles industries	dried,sieved,used without any pretreatment to avoid extra expenditure	Namasivayam et al.Biomass and Bioenergy 21(2001)477-483
200	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	coir bith	Acid Violet	wastewater / textiles industries	dried,sieved,used without any pretreatment to avoid extra expenditure	Namasivayam et al.Biomass and Bioenergy 21(2001)477-483
201	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	coir bith	Brilliant Blue	wastewater / textiles industries	dried,sieved,used without any pretreatment to avoid extra expenditure	Namasivayam et al.Biomass and Bioenergy 21(2001)477-483

202	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	bamboo dust	Rhodam ine B	textile industry	washed,dried,carbonis ed,acid treated	Kannan and Sundaran.Dyes and Pigments 51(2001)25- 40
203	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	coconut shell	Methyle ne blue	textile industry	washed,dried,carbonis ed,acid treated	Kannan and Sundaran.Dyes and Pigments 51(2001)25- 40
204	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	groundnu t shell	Methyle ne blue	textile industry	washed,dried,carbonis ed,acid treated	Kannan and Sundaran.Dyes and Pigments 51(2001)25- 40
205	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	rice husk	Methyle ne blue	textile industry	washed,dried,carbonis ed,acid treated	Kannan and Sundaran.Dyes and Pigments 51(2001)25- 40
206	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	straw	Methyle ne blue	textile industry	washed,dried,carbonis ed,acid treated	Kannan and Sundaran.Dyes and Pigments 51(2001)25- 40
207	'BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	phenol	Methyle ne blue	municipal and industrial wastewater	washed,dried,chemical activation ZnCl2	Mohanty and Biswas.Chemical Engineering Journal 115(2005)121-131
208	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	Pb(II)	sawdust	industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla	washed,drying,activati on,carbonised	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299
209	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	Pb(II)	pith	industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla	washed,drying,activati on,carbonised	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299
210	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	Pb(H)	bagasse	industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla	washed,drying,activati on,carbonised	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299
211	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]		sawdust	9		
212	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	coir pith	/	textile industry(paper,rubb er,plastics,paints,pri nting,inks art and	dried in sunlight for 5h,sieved	Namasivayam and Kavitha.Dyes and Pigments 54(2002)47-58
213	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	Cr(VI)	sawdust	industrial,agricultur al and domestic wastes	wasted,dried,immerse d in 2N NaOH	Kumar Meena et.al.Journal of Hazardous Materials 150(2008)604-611
214	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	Pb(II)	sawdust	industrial,agricultur al and domestic wastes	wasted,dried,immerse d in 2N NaOH	Kumar Meena et.al.Journal of Hazardous Materials 150(2008)604-611
215	BAT CH	FIRS T - ORD ER	LAGER GREN	kl	qe t qt	qt = qe[1- e- (k1t)]	Hg(II)	sawdust	industrial,agricultur al and domestic wastes	wasted,dried,immerse d in 2N NaOH	Kumar Meena et.al.Journal of Hazardous Materials 150(2008)604-611
216	BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1 - e - (k1t)]	Cu(II)	sawdust	industrial,agricultur al and domestic wastes	wasted,dried,immerse d in 2N NaOH	Kumar Meena et.al.Journal of Hazardous Materials 150(2008)604-611
217	'BAT CH	FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1 - e - (k1t)]	Pb(II)	peanut husk	electroplating,metal finishing,textile,stor age batteries,mining,pla	washed, dried, sieved	Zhai et al.Journal of Hazardous Materias 141(2007)163-167

218	BAT CH		FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	Cr(III)	peanut husk	electroplating,metal finishing,textile,stor age batteries,mining,pla	washed, dried, sieved	Zhai et al.Journal of Hazardous Materias 141(2007)163-167
219	BAT CH		FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	Cu(II)	peanut husk	electroplating,metal finishing,textile,stor age batteries,mining,pla	washed, dried, sieved	Zhai et al.Journal of Hazardous Materias 141(2007)163-167
220	ВАТ СН		FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	Cr(VI)	pine sawdust	wastewater	washed, dried, sieved	Uysan and Ar.Journal of Hazardous Materials 149(2007)482-491
221	BAT CH		FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	basic magenta	sawdust	textile industry	oxidizing peat,gelling,coating,w ashong,sieving	Sun and Yang.Water Research 37(2003)1535- 1544
222	BAT CH		FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	basic brillant green	peat	textile industry	oxidizing peat,gelling,coating,w ashong,sieving	Sun and Yang.Water Research 37(2003)1535- 1544
223	BAT CH		FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	methylen e blue	indian rosewoo d sawdust	wastewater, textile, paper, printing, leather, food,cosmetics	washed,dried,sieved	Garg et al, Dyes and Pigments 63(2004) 243-250
224	BAT CH		FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	methylen e blue	beech sawdust	wastewater	H2SO4	Batzias and Sidiras.Journal of Hazardous Materials 149(2007)8-17
	BAT CH		FIRS T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]					
			FIDC				1 m	1 m 17 m	1. A.	the the second sec		
225	ВАТ СН		T - ORD ER	LAGER GREN	k1	qe t qt	qt = qe[1- e- (k1t)]	methylen e blue	beech sawdust	wastewater, dyeing, textile, tannery, paint industry	prehydrolysis 1000C, 1,8M H2SO4	Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217
225 226	BAT CH BAT CH		FIRS T - ORD ER FIRS T - ORD ER	LAGER GREN LAGER GREN	k1 k1	qe t qt qe t qt	qt = qe[1- e- (k1t)] qt = qe[1- e- (k1t)]	methylen e blue red basic 22	beech sawdust beech sawdust	wastewater, dyeing, textile, tannery, paint industry wastewater, dyeing, textile, tannery, paint industry	prehydrolysis 1000C, 1,8M H2SO4 prehydrolysis 1000C, 1,8M H2SO4	Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217 Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217
225 226 227	BAT CH BAT CH		FIRS T - ORD ER FIRS T - ORD ER FIRS T - ORD ER	LAGER GREN GREN LAGER GREN	k1 k1 k1	qe t qt qe t qt qe t qt	qt = qe[1- e- (k1t)] qt = qe[1- e- (k1t)] qt = qe[1- e- (k1t)]	methylen e blue red basic 22 methylen e blue	beech sawdust beech sawdust beech sawdust	wastewater, dyeing, textile, tannery, paint industry wastewater, dyeing, textile, tannery, paint industry dyeing, textile, tannery and paint industry	prehydrolysis 1000C, 1,8M H2SO4 prehydrolysis 1000C, 1,8M H2SO4 1h 20% w/v CaCl2	Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217 Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217 Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174
225 226 227 228	BAT CH BAT CH BAT CH BAT CH		FIRS T - ORD ER FIRS T - ORD ER FIRS T - ORD ER FIRS T - ORD ER	LAGER GREN LAGER GREN LAGER GREN	k1 k1 k1	qe t qt qe t qt qe t qt qe t qt	qt = qe[1- e- (k1t)] qt = qe[1- e- (k1t)] qt = qe[1- e- (k1t)] qt = qe[1- e- (k1t)]	methylen e blue red basic 22 methylen e blue red basic 22	beech sawdust beech sawdust beech sawdust	wastewater, dyeing, textile, tannery, paint industry wastewater, dyeing, textile, tannery, paint industry dyeing, textile, tannery and paint industry dyeing, textile, tannery and paint industry	prehydrolysis 1000C, 1,8M H2SO4 prehydrolysis 1000C, 1,8M H2SO4 1h 20% w/v CaCl2 1h 20% w/v CaCl2	Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217 Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217 Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174 Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174
225 226 227 228 229	BAT CH BAT CH BAT CH BAT CH BAT CH		FIRS T - ORD ER FIRS T - ORD ER FIRS T - ORD ER FIRS T - ORD ER FIRS T - ORD ER	LAGER GREN LAGER GREN LAGER GREN LAGER GREN	k1 k1 k1 k1	qe t qt qe t qt qe t qt qe t qt qe t qt	qt = qe[1- e- (k1t)] qt = qe[1- e- (k1t)] qt = qe[1- e- (k1t)] qt = qe[1- e- (k1t)]	methylen e blue red basic 22 methylen e blue red basic 22	beech sawdust beech sawdust beech sawdust	wastewater, dyeing, textile, tannery, paint industry wastewater, dyeing, textile, tannery, paint industry dyeing, textile, tannery and paint industry dyeing, textile, tannery and paint industry	prehydrolysis 1000C, 1,8M H2SO4 prehydrolysis 1000C, 1,8M H2SO4 1h 20% w/v CaCl2 1h 20% w/v CaCl2	Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217 Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217 Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174 Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174
225 226 227 228 229 230	BAT CH BAT CH BAT CH BAT CH BAT CH	INTR A- PART ICLE	FIRS T - ORD ER FIRS T - ORD ER FIRS T - ORD ER FIRS T - ORD ER FIRS T - ORD ER	LAGER GREN LAGER GREN LAGER GREN LAGER GREN WEBE R AND MORIS	k1 k1 k1 k1 Kp	qe t qt qe t qt qe t qt qe t qt qe t qt	qt = qe[1-e-(k1t)] $qt = qe[1-e-(k1t)]$ $qt = qe[1-e-(k1t)]$ $qt = qe[1-e-(k1t)]$ $qt = qe[1-e-(k1t)]$ $qt = kpt1/2$	methylen e blue red basic 22 methylen e blue red basic 22 Pb(II)	beech sawdust beech sawdust beech sawdust beech sawdust	wastewater, dyeing, textile, tannery, paint industry wastewater, dyeing, textile, tannery, paint industry dyeing, textile, tannery and paint industry dyeing, textile, tannery and paint industry wastewater	prehydrolysis 1000C, 1,8M H2SO4 prehydrolysis 1000C, 1,8M H2SO4 1h 20% w/v CaCl2 1h 20% w/v CaCl2 washed,dried,sieved	Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217 Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217 Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174 Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174 Zhai et al.Journal of Hazardous Materias 141(2007)163-167
225 226 227 228 229 230 231	BAT CH BAT CH BAT CH BAT CH BAT CH BAT CH	INTR A- PART ICLE INTR A- PART ICLE	FIRS T - ORD ER FIRS T - ORD ER FIRS T - ORD ER FIRS T - ORD ER FIRS	LAGER GREN LAGER GREN LAGER GREN LAGER GREN LAGER GREN WEBE R AND MORIS WEBE	k1 k1 k1 k1 k1 Kp Kp	qe t qt qe t qt qe t qt qe t qt qe t qt qt t	qt = qe[1-e-(k t)] $qt = qe[1-e-(k t)]$ $qt = qe[1-e-(k t)]$ $qt = qe[1-e-(k t)]$ $qt = qe[1-e-(k t)]$ $qt = Kpt1/2$	methylen e blue red basic 22 methylen e blue red basic 22 Pb(II) methylen e blue	beech sawdust beech sawdust beech sawdust peanut husk beech sawdust	wastewater, dyeing, textile, tannery, paint industry wastewater, dyeing, textile, tannery, paint industry dyeing, textile, tannery and paint industry dyeing, textile, tannery and paint industry wastewater wastewater	prehydrolysis 1000C, 1,8M H2SO4 prehydrolysis 1000C, 1,8M H2SO4 1h 20% w/v CaCl2 1h 20% w/v CaCl2 washed,dried,sieved H2SO4	Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217 Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217 Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174 Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174 Zhai et al.Journal of Hazardous Materias 141(2007)163-167 Batzias and Sidiras.Journal of Hazardous Materials 149(2007)8-17

233	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	red basic 22	beech sawdust	wastewater, dyeing, textile, tannery, paint industry	prehydrolysis 1000C, 1,8M H2SO4	Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217
234	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	methylen e blue	beech sawdust	dyeing, textile, tannery and paint industry	1h 20% w/v CaCl2	Batzias and Sidiras Journal of Hazardous Materials B114(2004)167-174
235	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	red basic 22	beech sawdust	dyeing, textile, tannery and paint industry	1h 20% w/v CaCl2	Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174
236	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	Cr(III)	peanut husk	wastewater	washed,dried,sieved	Zhai et al.Journal of Hazardous Materias 141(2007)163-167
237	ВАТ СН	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	Cu(II)	peanut husk	wastewater	washed,dried,sieved	Zhai et al.Journal of Hazardous Materias 141(2007)163-167
238	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2		6			
239	ВАТ СН	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	methylen e blue	palm shell	textile,leather,paper plastics	washed,dried,dried shell was crushed and sieved	Tan et al. Desalination 225(2008)13-18
240	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	methyl parathion	waterm elon peels	spaying in corps,droplets of methyl parathion in the air fall on soil,	washed,dried,sieved	Memon et al, Chemical Engineering Journal 138(2008)616-621
241	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	acid yellow 36	Congo Red	industrial wastes	washed,dried,carbonis ed, steam-activation	Malik.Dyes and Pigments 56(2003)239-249
242	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	acid yellow 36	sawdust	industrial wastes	washed,dried,carbonis ed, steam-activation	Malik.Dyes and Pigments 56(2003)239-249
243	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	basic magenta	rice - husk	textile industry	oxidizing peat,gelling,coating,w ashong,sieving	Sun and Yang.Water Research 37(2003)1535- 1544
244	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	basic brillant green	peat	textile industry	oxidizing peat,gelling,coating,w ashong,sieving	Sun and Yang.Water Research 37(2003)1535- 1544
245	ВАТ СН	INTR A- PART ICLE	/	WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2		peat	textile industry	washed,dried ,sieved,carbonisation,a ctivation,washed with 0.1 M H2SO4	Banat et al. Process Biochemistry 39 (2003)193- 202
246	BAT CH	INTR A- PART ICLE	1	WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	Pb(II)	Brillant Green	industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla	washed,drying,activati on,carbonised	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299
247	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	Pb(II)	pith	industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla	washed,drying,activati on,carbonised	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299
248	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	malachite green	bagasse	textile,cosmetics,pri nting,dying,food coloring,papermaki ng		

249	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	malachite green	sawdust	textile,cosmetics,pri nting,dying,food coloring,papermaki ng		
250	ВАТ СН	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	Pb(II)	pet	industries(electropl ating,dyes,textiles,t anneries,oil refineries,electropla	washed,drying,activati on,carbonised	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299
251	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	phenol	sawdust	municipal and industrial wastewater	washed,dried,chemical activation ZnCl2	Mohanty and Biswas.Chemical Engineering Journal 115(2005)121-131
252	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2		sawdust	1	DX	
253	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2					
254	BAT CH	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2		6			
255	ВАТ СН	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2	~				
256	ВАТ СН	INTR A- PART ICLE		WEBE R AND MORIS	Кр	qt t	qt=Kpt1/2					
	DAT			***								
257	CH		SEC OND - ORD	HO AND MCKA Y	К2	dq dt qe q	$\frac{dq}{dt} = K2(qe)$	basic magenta		textile industry	washed,drying,activati on,carbonised	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299
257 258	BAT CH BAT CH		SEC OND ORD SEC OND - ORD	HO AND MCKA Y HO AND MCKA Y	K2 K2	dq dt qe q dq dt qe q	dq / dt = K2(qe $-q)2$ $dq / dt = K2(qe$ $-q)2$	basic magenta basic brillant green	peat	textile industry	washed,drying,activati on,carbonised washed,drying,activati on,carbonised	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299
257 258 259	BAT CH BAT CH BAT CH		SEC OND - ORD - SEC OND - ORD - ORD - ORD	HO AND MCKA Y HO AND MCKA Y HO AND MCKA Y	K2 K2 K2	dq dt qe q dq dt qe q dq dt qe q	dq / dt = K2(qe $-q)2$ $dq / dt = K2(qe$ $-q)2$ $dq / dt = K2(qe$ $-q)2$	basic magenta basic brillant green Pb(II)	peat peanut husk	textile industry textile industry wastewater	washed,drying,activati on,carbonised washed,drying,activati on,carbonised washed,dried,sieved	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Zhai et al.Journal of Hazardous Materias 141(2007)163-167
257 258 259 260	BAT CH BAT CH BAT CH BAT CH		SEC OND - ORD - SEC OND - ORD - SEC OND - SEC OND - ORD - SEC OND	HO AND MCKA Y HO AND MCKA Y HO AND MCKA Y HO AND MCKA Y	K2 K2 K2 K2	dq dt qe q dq dt qe q dq dt qe q dq dt qe q	$\frac{dq / dt = K2(qe - q)2}{dq / dt = K2(qe - q)2}$ $\frac{dq / dt = K2(qe - q)2}{dq / dt = K2(qe - q)2}$ $\frac{dq / dt = K2(qe - q)2}{dq / dt = K2(qe - q)2}$	basic magenta basic brillant green Pb(II) Cr(III)	peat peanut husk	textile industry textile industry wastewater wastewater	washed,drying,activati on,carbonised washed,drying,activati on,carbonised washed,dried,sieved washed,dried,sieved	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Zhai et al.Journal of Hazardous Materias 141(2007)163-167 Zhai et al.Journal of Hazardous Materias 141(2007)163-167
257 258 259 260 261	BAT CH BAT CH BAT CH BAT CH BAT CH		SEC OND - ORD - SEC OND - ORD - ORD - ORD - ORD - ORD - ORD - ORD - ORD - ORD - ORD - ORD - ORD - ORD - ORD - SEC OND - ORD - O - ORD - O - ORD - O - ORD - O - O - O - O - O - O - O - O - O -	HO AND MCKA Y HO AND MCKA Y HO AND MCKA Y HO AND MCKA Y	K2 K2 K2 K2 K2	dq dt qe q dq dt qe q dq dt qe q dq dt qe q dq dt qe q	dq / dt = K2(qe - q)2 $dq / dt = K2(qe - q)2$	basic magenta basic brillant green Pb(II) Cr(III) Cu(II)	pearut husk peanut husk	textile industry textile industry wastewater wastewater wastewater	washed,drying,activati on,carbonised washed,drying,activati on,carbonised washed,dried,sieved washed,dried,sieved washed,dried,sieved	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Zhai et al.Journal of Hazardous Materias 141(2007)163-167 Zhai et al.Journal of Hazardous Materias 141(2007)163-167 Zhai et al.Journal of Hazardous Materias 141(2007)163-167
257 258 259 260 261 262	BAT CH BAT CH BAT CH BAT CH BAT CH BAT CH		SEC OND - ORD - SEC OND - ORD - SEC OND - ORD - ORD - ORD - ORD - ORD - ORD - ORD - SEC OND - SEC OND - ORD - SEC OND - SEC OND - SEC OND - SEC OND - SEC OND - SEC OND - SEC OND - SEC OND - SEC OND - SEC OND - SEC OND - SEC OND - SEC OND - SEC OND - SEC OND - SEC - ORD - SEC - ORD - SEC - ORD - SEC - ORD - SEC - ORD - SEC - ORD - SEC - O - ORD - SEC - O - O - O - O - O - O - O - O - - O - O - - O - - - O -	HO AND MCKA Y HO AND MCKA Y HO AND MCKA Y HO AND MCKA Y HO AND MCKA Y	K2 K2 K2 K2 K2 K2	dq dt qe q dq dt qe q dq dt qe q dq dt qe q dq dt qe q dq dt qe q	dq / dt = K2(qe - q)2 $dq / dt = K2(qe - q)2$	basic magenta basic brillant green Pb(II) Cr(III) Cu(II) basic blue 69	peat peanut husk peanut husk peanut husk	textile industry textile industry wastewater wastewater wastewater industrial wastes	washed,drying,activati on,carbonised washed,drying,activati on,carbonised washed,dried,sieved washed,dried,sieved washed,dried,sieved dried, heated, activation	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Zhai et al.Journal of Hazardous Materias 141(2007)163-167 Zhai et al.Journal of Hazardous Materias 141(2007)163-167 Zhai et al.Journal of Hazardous Materias 141(2007)163-167 Tseng et al.Carbon 41(2003)487-495
257 258 259 260 261 262 263	BAT CH BAT CH BAT CH BAT CH BAT CH BAT CH BAT CH		SEC OND - ORD - - ORD - ORD - ORD - ORD - ORD - ORD - O - ORD - ORD - ORD - ORD - ORD - ORD - ORD - ORD - ORD - ORD - ORD - ORD - O ORD - O ORD - O ORD - O O - O O - O O - O O - O O - O O - O O - O	HO AND MCKA Y HO AND MCKA Y HO AND MCKA Y HO AND MCKA Y HO AND MCKA Y HO AND MCKA Y	K2 K2 K2 K2 K2 K2 K2	dq dt qe q dq dt qe q dq dt qe q dq dt qe q dq dt qe q dq dt qe q dq dt	dq / dt = K2(qe - q)2 $dq / dt = K2(qe - q)2$	basic magenta basic brillant green Pb(II) Cr(III) Cu(II) basic blue 69 acid blue 264	peat peanut husk peanut husk peanut husk peat pinewo od	textile industry textile industry wastewater wastewater wastewater industrial wastes industrial wastes	washed,drying,activati on,carbonised washed,drying,activati on,carbonised washed,dried,sieved washed,dried,sieved dried, heated, activation dried, heated, activation	Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Ayyappan et.al.Process Biochemistry 40(2005)1293-1299 Zhai et al.Journal of Hazardous Materias 141(2007)163-167 Zhai et al.Journal of Hazardous Materias 141(2007)163-167 Zhai et al.Journal of Hazardous Materias 141(2007)163-167 Tseng et al.Carbon 41(2003)487-495
265	BAT CH	SEC OND - ORD	HO AND MCKA Y	K2	dq dt qe q	$\frac{dq}{dt} = K2(qe)$	phenol	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495	
-----	------------	------------------------	--------------------------	--------------------	-----------------	-------------------------------	-------------------------	------------------------------------	---	------------------------------	---	
266	BAT CH	SEC OND - ORD	HO AND MCKA Y	К2	dq dt qe q	$\frac{dq}{dt} = K2(qe)$	3 - chloroph enol	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495	
267	BAT CH	SEC OND - ORD	HO AND MCKA Y	К2	dq dt qe q	$\frac{dq}{dt} = K2(qe)$	o - cresor	pinewo od	industrial wastes	dried, heated, activation	Tseng et al,.Carbon 41(2003)487-495	
268	BAT CH	SEC OND - ORD	HO AND MCKA Y	К2	dq dt qe q	$\frac{dq}{dt} = K2(qe - q)2$			1	DX		
269	BAT CH	SEC OND - ORD	HO AND MCKA Y	К2	dq dt qe q	dq / dt = K2(qe - q)2						
270	BAT CH							6				
271	BAT CH						<					
272	BAT CH					1						
273	BAT CH					A	Z					
274	BAT CH				1				7			
275	BAT CH			1	\leq		X	/				
276	BAT CH		REICH ENBER G		111	Q= 1- (6e- Bt/π2)	methyl parathion	waterm elon peels	spaying in corps,droplets of methyl parathion in the air fall on soil,	washed,dried,sieved	Memon et al, Chemical Engineering Journal 138(2008)616-621	
277	COL UMN	/	BOHA RT- ADAM S	x (bed depth)	utN KCI C	ln[(Ci/C)- 1]=[(KNx)/u]	Cr(VI)	Granual activate d carbon	wastewater, textile dyeing, chemical and pigments production	size of 2,5mm	Quintelas et al.Journal of Hazardous Material 153 (2008) 799-809	
278	COL UMN	1	BOHA RT- ADAM S	x (bed depth)	utN KCI C	ln[(Ci/C)- 1]=[(KNx)/u]	Cr(VI)	rhizopu s arrhizus	wastewater		Preetha and Viruthagiri.Separation and Purification Technology 57(2007)126-133	
279	COL UMN		BOHA RT- ADAM S	x (bed depth)	utN KCI C	ln[(Ci/C)- 1]=[(KNx)/u]	Cr(VI)	Granual activate d carbon	textile dyeing, chemical and pigments production	washed in 60% nitric acid	Travares et al. Journal of Hazardous Material 153 (2008) 799-809	
280	COL UMN		BOHA RT- ADAM S	x (bed depth)	utN KCI C	ln[(Ci/C)- 1]=[(KNx)/u]	methylen e blue	beech sawdust	wastewater	H2SO4	Batzias and Sidiras.Journal of Hazardous Materials 149(2007)8-17	

281	COL UMN		BOHA RT- ADAM S	x (bed depth)	u t N K CI C	ln[(Ci/C)- 1]=[(KNx)/u]	methylen e blue	beech sawdust	wastewater, dyeing, textile, tannery, paint industry	prehydrolysis 1000C, 1,8M H2SO4	Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217
282	COL UMN		BOHA RT- ADAM S	x (bed depth)	utN KCI C	ln[(Ci/C)- 1]=[(KNx)/u]	red basic 22	beech sawdust	wastewater, dyeing, textile, tannery, paint industry	prehydrolysis 1000C, 1,8M H2SO4	Batzias and Sidiras. Bioresource Technology 98(2007)1208-1217
283	COL UMN		BOHA RT- ADAM S	x (bed depth)	utN KCI C	ln[(Ci/C)- 1]=[(KNx)/u]	methylen e blue	beech sawdust	dyeing, textile, tannery and paint industry	1h 20% w/v CaCl2	Batzias and Sidîras.Journal of Hazardous Materials B114(2004)167-174
284	COL UMN		BOHA RT- ADAM S	x (bed depth)	utN KCI C	ln[(Ci/C)- 1]=[(KNx)/u]	red basic 22	beech sawdust	dyeing, textile, tannery and paint industry	1h 20% w/v CaCl2	Batzias and Sidiras.Journal of Hazardous Materials B114(2004)167-174
285	COL UMN		BOHA RT- ADAM S	x (bed depth)	utN KCI C	ln[(Ci/C)- 1]=[(KNx)/u]	methylen e blue	cedar sawdust	coloring paper, dyeing cottons,wools,coati ng for paper stock	washing, grinding, size classification by sieving	Hamdaoui.Journal of Hazardous Materials B 138(2006)
286	COL UMN		BOHA RT- ADAM S	x (bed depth)	utN KCI C	ln[(Ci/C)- 1]=[(KNx)/u]	methylen e blue	crushed brick	coloring paper, dyeing cottons,wools,coati ng for paper stock	washing, grinding, size classification by sieving	Hamdaoui.Journal of Hazardous Materials B 138(2006)
287	COL UMN		BOHA RT- ADAM S	x (bed depth)	utN KCI C	ln[(Ci/C)- 1]=[(KNx)/u]	Cr(VI)	chitin	contamination of waters by heavy metals	ground and sieved	Sag and Aktay.Process Biochemistry 36(2001)1187-1197
288	COL UMN		BOHA RT- ADAM S	x (bed depth)	utN KCI C	ln[(Ci/C)- 1]=[(KNx)/u]	hazelnut scells	Methyle ne blue	recycle purpose / color removal from dyehouse effluents	the shells were washed with deionised water and dried in air over at 1000C for 24 h.	F.Ferrero Journal of Hazardous Materials 142 (2007) 144-152
289	COL UMN		BOHA RT- ADAM S	x (bed depth)	utN KCI C	ln[(Ci/C)- 1]=[(KNx)/u]	hazelnut scells	Acid Violet	recycle purpose / color removal from dyehouse effluents	the shells were washed with deionised water and dried in air over at 1000C for 24 h.	F.Ferrero Journal of Hazardous Materials 142 (2007) 144-152
290	COL UMN		BDST	VO	NO CO Z tb ZO	tb=((NO/COV O)/(Z-ZO)	methylen e blue	cedar sawdust	coloring paper, dyeing cottons,wools,coati ng for paper stock	washing, grinding, size classification by sieving	Hamdaoui.Journal of Hazardous Materials B 138(2006)
291	COL UMN		BDST	vo	NO CO Z tb ZO	tb=((NO/COV O)/(Z-ZO)	methylen e blue	crushed brick	coloring paper, dyeing cottons,wools,coati ng for paper stock	washing, grinding, size classification by sieving	Hamdaoui.Journal of Hazardous Materials B 138(2006)
292	COL UMN		BDST	vo	NO CO Z tb ZO	tb=((NO/COV O)/(Z-ZO)	bismark brown	rubberw ood tree	wastewater, textile, dyeing industies	carbonized, activated by chemical, steam activation	Velan et al.Journal of Hazardous Materials B126(2005)63-70
293	COL UMN	/	BDST	vo	NO CO Z tb ZO	tb=((NO/COV O)/(Z-ZO)	hazelnut scells	Methyle ne blue	recycle purpose / color removal from dyehouse effluents	the shells were washed with deionised water and dried in air over at 1000C for 24 h.	F.Ferrero Journal of Hazardous Materials 142 (2007) 144-152
294	COL UMN	1	BDST	vo	NO CO Z tb ZO	tb=((NO/COV O)/(Z-ZO)	hazelnut scells	Acid Violet	recycle purpose / color removal from dyehouse effluents	the shells were washed with deionised water and dried in air over at 1000C for 24 h.	F.Ferrero Journal of Hazardous Materials 142 (2007) 144-152
295	COL UMN		BDST	vo	NO CO Z tb ZO	tb=((NO/COV O)/(Z-ZO)					
296	COL UMN		CLAR K	A r	CO C t	(CO/C)n-1- 1=Ae-rt	methylen e blue	cedar sawdust	coloring paper, dyeing cottons,wools,coati ng for paper stock	washing, grinding, size classification by sieving	Hamdaoui.Journal of Hazardous Materials B 138(2006)

297	COL UMN	CLAR K	A r	CO C t	(CO/C)n-1- 1=Ae-rt	methylen e blue	crushed brick	coloring paper, dyeing cottons,wools,coati ng for paper stock	washing, grinding, size classification by sieving	Hamdaoui.Journal of Hazardous Materials B 138(2006)
298	COL UMN	CLAR K	A r	CO C t	(CO/C)n-1- 1=Ae-rt	Cr(VI)	chitin	contamination of waters by heavy metals	ground and sieved	Sag and Aktay.Process Biochemistry 36(2001)1187-1197
299	COL UMN	CLAR K	A r	CO C t	(CO/C)n-1- 1=Ae-rt					
300	COL UMN	CLAR K	A r	CO C t	(CO/C)n-1- 1=Ae-rt			1	D.	
301	COL UMN	WOLB ORSK A		C CO Ba NO t Cb CS	ln(C/CO)=(Ba CO/NO)t- Ba(Cb-CS)	methylen e blue	cedar sawdust	coloring paper, dyeing cottons,wools,coati ng for paper stock	washing, grinding, size classification by sieving	Hamdaoui.Journal of Hazardous Materials B 138(2006)
302	COL UMN	WOLB ORSK A		C CO Ba NO t Cb CS	ln(C/CO)=(Ba CO/NO)t- Ba(Cb-CS)	Cr(VI)	rhizopu s arrhizus	wastewater		Preetha and Viruthagiri.Separation and Purification Technology 57(2007)126-133
303	COL UMN	WOLB ORSK A		C CO Ba NO t Cb CS	ln(C/CO)=(Ba CO/NO)t- Ba(Cb-CS)	Cr(VI)	Granual activate d carbon	textile dyeing, chemical and pigments production	washed in 60% nitric acid	Travares et al. Journal of Hazardous Material 153 (2008) 799-809
304	COL UMN	WOLB ORSK A		C CO Ba NO t Cb CS	ln(C/CO)=(Ba CO/NO)t- Ba(Cb-CS)	methylen e blue	crushed brick	coloring paper, dyeing cottons,wools,coati ng for paper stock	washing, grinding, size classification by sieving	Hamdaoui.Journal of Hazardous Materials B 138(2006)
305	COL UMN	WOLB ORSK A		C CO Ba NO t Cb CS	ln(C/CO)=(Ba CO/NO)t- Ba(Cb-CS)	Cr(VI)	Granual activate d carbon	wastewater, textile dyeing, chemical and pigments production	size of 2,5mm	Quintelas et al.Journal of Hazardous Material 153 (2008) 799-809
306	COL UMN	WOLB ORSK A		C CO Ba NO t Cb CS	ln(C/CO)=(Ba CO/NO)t- Ba(Cb-CS)	Cr(VI)	chitin	contamination of waters by heavy metals	ground and sieved	Sag and Aktay.Process Biochemistry 36(2001)1187-1197
307	COL UMN	YOON AND NELSO N	KYN	C CO t	ln(C/CO- C)=KYNt- t1/2KYN	Cr(VI)	Granual activate d carbon	textile dyeing, chemical and pigments production	washed in 60% nitric acid	Travares et al. Journal of Hazardous Material 153 (2008) 799-809
308	COL UMN	YOON AND NELSO N	KYN	C CO t	ln(C/CO- C)=KYNt- t1/2KYN	2				
309	COL UMN	YOON AND NELSO N	KYN	C CO t	ln(C/CO- C)=KYNt- t1/2KYN	Cr(VI)	Granual activate d carbon	wastewater, textile dyeing, chemical and pigments production	size of 2,5mm	Quintelas et al.Journal of Hazardous Material 153 (2008) 799-809
310	COL UMN	YOON AND NELSO N	KYN	C CO	ln(C/CO- C)=KYNt- t1/2KYN	methylen e blue	cedar sawdust	coloring paper, dyeing cottons,wools,coati ng for paper stock	washing, grinding, size classification by sieving	Hamdaoui.Journal of Hazardous Materials B 138(2006)
311	COL UMN	YOON AND NELSO N	KYN	C CO t	ln(C/CO- C)=KYNt- t1/2KYN	methylen e blue	crushed brick	coloring paper, dyeing cottons,wools,coati ng for paper stock	washing, grinding, size classification by sieving	Hamdaoui.Journal of Hazardous Materials B 138(2006)
312	COL UMN	THOM AS	KTh	Co C qo X O Veff	ln((Co/C)-1)= (KThqoX/Q)- KTh(Co/O)Vef					