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INTRODUCTION 

 

The globalisation of trade and financial transactions and the relatively recent 

deregulation of equity markets, combined with the rapid growth in 

telecommunications technology have strengthened the international interdependence 

among the various capital markets. Under these circumstances the need for a 

quantitative investigation of the causal interconnections between the individual 

markets, becomes more necessary than ever. This kind of knowledge is of particular 

importance not only for the individuals participating in these markets but also for the 

governmental supervisory and regulatory agencies. Inside this framework and during 

the last twenty years, an entire literature that seeks to study the volatility transmission 

mechanism has been developed. Simultaneously an increasing number of studies 

report the presence of a phenomenon that appears to characterize a large number of 

financial and economic time series. This is the so called long memory in the volatility 

of financial time series. 

 The principal aim of our study is to investigate the finite sample statistical 

properties for a group of methodologies which have been proposed in the econometric 

literature for the detection of causal relations in variance as well as in the mean. More 

specifically through extensive Monte Carlo simulations we attempt a thorough 

examination of the performance of the various methodologies under different states 

for the series studied as well as under the presence of long memory. For this purpose 

we use alternative Data Generating Processes such as the GARCH and FIGARCH 

models that will be described in detail in the following chapters. The methodologies 

we use belong in two categories. The first one is based on the estimation of the cross 

correlation function for the (squared) standardized residuals that are obtained from the 

estimation of univariate GARCH models, while the second one uses the residuals of 

the same models but takes the form of a Lagrange Multiplier test. The innovative part 

of this study lies on the fact that for the first time to our knowledge such an extensive 

in depth analysis of the competing causality tests is conducted. This feature makes our 

study particularly important for both theoretical and applied econometricians as well 

as for the professionals in the field of financial economics. 

Our work has the following structure. In the first chapter we introduce the reader 

in the notion of volatility. In the second chapter we initially discuss the general 

concept of causality and then provide a thorough description of the various causality 
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in variance / mean tests. In the third chapter we define the notion of long memory in 

both the first and second moments and then describe in detail the FIGARCH model. 

In the fourth chapter the Monte Carlo design of our study is discussed and we present 

the most important of our empirical results. The appendix is organized in four parts. 

In the first one we provide the MatLab Code that was used in this study, in the second 

part we present a large number of figures and graphs that were omitted from the main 

part of the dissertation for brevity reasons, in the third part we present the results of an 

empirical application using real time series data, and in the fourth part we provide the 

empirical results of three additional Monte Carlo experiments. Finally we would like 

to note that  part of this study has been included in a working paper that we are 

preparing this period and in which a great part of our MatLab code has been used. 

 

In this point I would like to express my thanks to Dr. Christina Christou for 

her important support and valuable guidance during the preparation of my 

Dissertation.  Dr. Christou was always willing to answer any of my questions.  
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CHAPTER 1 :  MODELING FINANCIAL VOLATILITY  

 

1.1 INTRODUCTION TO VOLATILITY 

 

The notion of volatility is of great importance in the field of finance. This is due 

to a number of reasons. Firstly, when asset prices fluctuate in an extreme way and in 

very short time intervals then it is difficult for the participants in the stock markets to 

accept that the reasons of these abrupt changes, are exclusively related with the arrival 

information that concerns the economic fundamentals. This fact leads the investors to 

distrust against the capital markets with a direct consequence the reduction of the 

capital inflows in the financial markets. Secondly for every listed corporation the 

volatility of its stock constitutes a factor that determines the probability of default of 

this company. The higher the volatility given the capital structure of a company, the 

higher also the probability of bankruptcy. Thirdly, volatility affects the liquidity of the 

markets and it is positively related with the bid ask spreads defined by market makers. 

Fourthly the hedging strategies applied from investment portfolios managers depend 

directly on the level of financial market volatility. Fifthly, economic and financial 

theory converge to the fact that consumers/investors are risk averse something 

implying that the higher the volatility in the stock markets, the higher the 

compensation of the investors should be. A high degree of risk will lead to decreased 

participation in the investment process through the financial mechanism. Finally a 

systematically high level of volatility can lead the regulatory and supervisory 

authorities to force the various financial corporations to allocate a higher percentage 

of their available capital in more liquid but less efficient investments.  

Regarding the concept of volatility we indicatively mention two important 

studies, those of Bollerslev, Chou & Kroner (1992) and Daly (2008).  The concept 

of volatility is directly linked with the notions of non forecasting ability, uncertainty 

and risk. It is also synonymous with the non efficient operation of financial markets in 

the sense that the stock titles are not priced always in their true intrinsic value but 

occasionally there are significant deviations between the latter value and the market 

price of a stock. Traditionally volatility was interpreted as the variance of financial 

returns and constituted the building block of the modern portfolio theory, the capital 

asset pricing models and the arbitrage pricing models. The oldest and most frequently 

used, measure of variation is the standard deviation of returns derived from the 
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discipline of statistics. In this chapter however we will not describe this vital but very 

simple notion but we will directly present an important concept of measuring financial 

volatility that depends on a new class of heteroscedastic models.  

 

1.2 QUANTIFYING VOLATILITY   

 

1.2.1 ARCH MODELS   

 

The most important step in the field of financial volatility forecasting was made 

with the development of the Autoregressive Conditionally Heteroscedastic class of 

models from Engle (1982). The most significant contribution of these models was the 

introduction of a strict mathematical formalization of the notion of volatility, 

facilitating in this way the in depth analysis of the dynamics of economic and 

financial time series. The idea behind this new class of volatility models was the 

observation that earlier researchers have made, about the phenomenon that big (small) 

changes in asset prices tend to be followed by big (small) changes. The ARCH 

specification as it is usually referred to, captures some of the most frequently 

observed properties of financial time series, such as the excess kurtosis of returns, the 

time varying volatility and the volatility clustering. Alternatively the ARCH effects 

are used to denote the presence of autocorrelation in the second order moments 

process. This serial correlation of volatility is the key element behind the 

predictability of this quantity.  

We must say now that the presence of ARCH effects is not in contrast with the 

efficient market hypothesis according to which the past returns of financial assets 

cannot be used in order to achieve systematically abnormal returns in the future. The 

absence of autocorrelation in the returns does not necessarily means that the forecast 

errors are generally independent. This means that a possible existence of non linear 

relations governing the stochastic process of residuals can simultaneously be in 

accordance with the efficiency of the markets. Non linearities in the innovations 

process can simply denote the presence of linear relations in the conditional variance 

process of the errors. A possible source of these volatility clustering effects is the 

autocorrelation in the news arrival process meaning that information arrives in the 

market, in clusters and not in uniformly distributed time points. In other words the 

stochastic process that describes the flow of information in the market is characterized 
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by linear dependence with the quantity of information that reaches in the market to be 

a function of time. An important research regarding the presence of time varying 

conditional heteroscedasticity is of Lamourex & Lastrapes (1990). 

The ARCH models have been used in a vast number of empirical applications 

such as the statistical tests of the CAPM and APT pricing models, in the study of the 

information flow across countries and financial markets, in the design of efficient 

hedging strategies, in modelling the relation between time varying volatility and risk 

premium, in the analysis of the monetary policies effects in the economy etc. 

Returning now to the intuition of these models we have to say that an important 

characteristic of this new class is the fact that the variance of the forecast error is a 

function of the size of past errors. In a regression model a shock (error) is generally 

the deviation of the specific realized value of the dependent variable under study from 

the conditional mean of the latter variable. In an ARCH model the conditional 

variance of the forecast error is a positive function of the size of its own past values. 

This means that large errors (irrespectively of their sign) will tend to be followed by 

large errors and conversely. The order of the model will be determined from the time 

duration that a shock will influence the conditional volatility. An obvious advantage 

of this kind of models is that they consider the conditional volatility to be time 

varying instead of being constant through time. The traditionally assumed constancy 

of variance is a very simplified and not  realistic hypothesis. However the 

unconditional or long term variance in the ARCH models is considered to be constant. 

It is now time to formalize our discussion.  

From the field of econometrics we know that the best possible forecast for the 

value that a random variable yt can take in a certain future time point, conditional on 

the information from the past realization of this variable, is given from the conditional 

mean 1( / )t tE Y Y − . The conditional mean can be calculated using either the conditional 

probability function or the conditional probability density function when using 

discrete or continuous variables respectively. The above mentioned forecast is also a 

random variable and thus follows a certain probability distribution and has a variance 

equal to 1( / )t tVar Y Y − . Once more this conditional variance can be assumed to be a 

random variable as it is dependent on past information. Let�s consider now the classic 

autoregressive time series model of first order t 1y t tyγ ε−= +  where the error {εt} 

constitutes a white noise process with variance V(ε) = σ2   . The conditional mean of  yt    
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2
0 1 1t th a a y −= +

1/ 2
t t ty hε=

( ) 1tV ε =

1/ ~ (0, )t t ty N hψ −

2
0 1 1t th a a y −= +

1/ ~ ( , )t t t ty N x hψ β−

t t ty xε β= −

is equal   to 1tyγ −  while the unconditional mean is equal to zero. The most important 

contribution of time series models sources from the use of the conditional mean 

concept. The conditional variance of y is equal to σ2 while the unconditional Variance 

is equal to σ2   / 1 � γ2. Obviously there is a direct decrease in the uncertainty of the 

future forecasts of y when using past information. This observation leads us to the 

parallel conclusion that we could also achieve more accurate variance forecasts if we 

incorporated into the corresponding models the information from past realizations of 

volatility. The classic approach to the concept of heteroscedasticity is with the 

incorporation in the regression models of an extra regressor, an exogenous variable χt. 

In the field of financial econometrics however a relatively different approach must be 

followed. This is due to the need to adequately describe the reasons behind the time 

varying nature of volatility. A first attempt was made by Granger & Anderson (1978) 

but in their case the unconditional variance could be equal either to zero or infinity 

and this characteristic meant that their model was inadequate. 

An alternative and more preferable model is the following  

                                  

 

 

 

This model is called ARCH. If we additionally impose the normality assumption and 

given the information set Ψt available at time t we can formulate the following 

relations using the conditional distribution. 

 

  

The conditional variance or skedastic function can alternatively be written in the form 

1 2 3( , , ,..., , )t t t t t ph h y y y y a− − − −=  Where p denotes the order of the ARCH stochastic 

process and α denotes a vector with unknown parameters. The regression ARCH 

models can be constructed assuming that the conditional mean of yt  is equal to χt β 

and is simply a linear combination of lagged endogenous and exogenous variables 

that are all contained in the information set. In a more general formulation we can 

have the following: 
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1 2( , ,..., , )t t t t ph h aε ε ε− − −=

1 1( ,..., , , ,..., , )t t t p t t t ph h x x x aε ε− − − −=

21 1log /
2 2t t t tl h y h= − −

1 2( , ,..., , )t t t t ph h aε ε ε− − −=

21 ( 1)
2

t t t

t t

l h y
a h a h

∂ ∂= −
∂ ∂

2 2 2

2

1 1( ) [ 1] [ ]
' 2 ' ' 2

t t t t t t

t t t t

l h h y y h
a a h a a h h a h a
∂ ∂ ∂ ∂ ∂= − + −

∂ ∂ ∂ ∂ ∂ ∂

 

or  

 

 

       The ARCH regression model with its intrinsic property to allow the conditional 

variance to be time varying and predictable is very useful for studying a characteristic 

of forecasting procedures that has to do with the fact that the extent of uncertainty is a 

function of the time horizon that we use for conducting forecasts. This specification is 

also the mathematical representation of the empirical observation that the forecast 

errors tend to cluster through time and depending on their size. We can alternatively 

consider an ARCH as a more complicated regression model in which the disturbances 

are not the occasional white noise but instead follow an ARCH process. In this way 

we can also partially resolve the misspecification problems often encountered in the 

classic regression models. Let�s assume now that the underlying generating 

mechanism behind the values of yt  is an ARCH process with the properties mentioned 

above. The mean of yt  as well all the autocovariances will be equal to zero. The joint 

probability density function (PDF) of this process is equal to the product of all the 

univariate PDF and taking the logarithm of this product we get the log likelihood 

function. 

                   

 

 

 

 In order now to estimate the unknown vector α we must maximize the log likelihood 

function. The first and second order conditions are the following:                                                 

 

First Order Conditions:  

 

 

Second Order Conditions:  

       (Hessian) 

 

The Information Matrix is equal to the negative value of the expectation of the 

Hessian Matrix and is given by: 
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With its consistent estimator  

 

  

The most efficient estimation method of the unknown parameters is the 

Maximum Likelihood estimation that is the default method used in the previous lines 

but the least squares could be an alternative but less efficient equivalent. The function 

h of order p has the following specification  

 

The ARCH model of order one is very simple but can also be particularly useful. 

According to this specification a high value of y in time t will lead in an increased 

forecast for the variance in the next period. However in the more distant future (e.g. in 

time t+2) the memory of the process will not remember this high value of y. An 

ARCH process generates realizations with fatter tails compared with the normal 

distribution. The conditions in order the ARCH process to have finite long term 

variance (to be second order stationary) are that all the roots of the characteristic 

equation lie outside the unit circle given that 0 10  ,..., 0pa a a> ≥ . This long run 

unconditional Variance is equal to  

 

 

                                                                           

1.2.2 GARCH MODELS 

 

The innovation of this class of models that were introduced in financial 

econometrics by Bollerslev (1986) is that they allowed the past conditional variance 

to enter the conditional volatility ARCH model. They also helped to obtain a more 

parsimonious representation for the variance specification reducing significantly the 

number of unknown parameters. Thus in a GARCH model the forecast for the next 

period�s variance depends both on the past realized volatility (as estimated from the 

squared errors) and on the past conditional volatility. This parameterization 

constitutes a generalization of ARCH representations and allows a more flexible 

structure in the lagged residuals that enter the model. GARCH models are able to 
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1/ ~ (0, )t t tN hε ψ −

2
0

1 1

q p

t i t i i t i
i i

h a a hε β− −
= =

= + +∑ ∑ 2
0 ( ) ( ) ,t ta A L B L hε= + +

0,    0p q≥ >

0 0,   0,    1,...,ia a i q> ≥ =

0,   1,...,i i pβ ≥ =

capture more parsimoniously the long memory characteristics that govern the 

volatility stochastic process. Let�s now assume that we have a discrete time stochastic 

process {εt} and that tψ  is the information set (or σ � algebra) available on time t. 

Then the GARCH (p,q) process is given by the following formulations: 

 

 

 

 

 

 

 

 

When p equals zero then the GARCH process is equivalent to an ARCH(q) 

process. If both p and q equal zero then {εt} is simply a white noise process. In 

contrast to the simple ARCH model where the conditional variance is a function of 

past realized volatility, in the more advanced GARCH specification the conditional 

variance is also a function of past conditional volatility allowing to formulate a better 

adapting learning mechanism for the volatility modeling procedure. The GARCH 

model can be constructed by utilizing the residuals (innovations) of a linear regression 

model, ' ,t t ty x bε = −  where yt  is the dependent variable, with χt  being the vector 

containing all the independent variables and b being the vector with the unknown 

parameters. In the case that all the roots of the characteristic equation 1-Β(z) = 0 lie 

outside the unit circle then the conditional variance model can also be equivalently 

expressed as  

 

 

From the above formulation we can observe that a GARCH model is simply an 

infinite order ARCH representation with δi   derived from 1( ) ( )(1 ( ))D L A L B L −= −  

 

 

and calculated through 
1

,     1,...,
n

i i j i j
j

a i qδ β δ−
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1 1 2
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where n = min ( p , t-1 ) If however B(1) < 1 then δi will decay for all i which are 

greater than m with m = max{p,q}. In regard with the stationarity conditions we have 

the following facts. The GARCH stochastic process will be stationary if given that   

Ε (εt) =0 , cov (εt, εs ) = 0 & Var (et) = a0 (1-A (1)-B (1))-1  we have that Α(1)+Β(1) < 1 

An equivalent representation for the GARCH model is the following:  

 

 

 

 

 

 

Where vt is the shock to volatility. Thus we can also consider the GARCH process as 

an ARMA (m,p)  process in the squared residuals with m=max{p,q}. The more simple 

but also occasionally used in empirical applications is the GARCH(1,1) model given 

by 2
t 0 1 1 1 1 0 1 1h ,   0 , 0,   0t ta a h aε β α β− −= + + ≥ ≥ ≥  

The GARCH (1,1) process will be stationary if and only if 1 1 1a β+ <  

The necessary and sufficient conditions in order to ensure the existence of the second 

order moments of a GARCH (1,1) process are the following: 

 

 

 

 

If β1 = 0 then the condition mentioned above takes the same form as that of the ARCH 

models, 1 1m
mα α <  . If now in an ARCH (1) we have that 1/

1 ( ) m
ma a −>  then the second 

order moments will not exist. In contrast to that, if in a GARCH(1,1)   

 

 

this does not imply anything about the second order moments existence. This is due to 

the long memory feature underlying this kind of process. The kurtosis coefficient is 

by construction equal to 

( ) ( )( ) ( )2 24 2 2 2 2 2 1
1 1 1 1 13 6 (1 2 3 )t t tk E E Eε ε ε α β α β α

− −= − = − − −  

as these processes are more leptokurtic (fatter tails) than what the normal distribution 

hypothesis defines.  
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In regard now with the estimation procedures for the GARCH models we will 

simply recall some important formulations without extending our discussion in a more 

depth analysis as it is not necessary for the purposes of this study. Thus we have the 

following: 

 

 

 

 

 

 

 

 

 

In order to estimate the unknown parameters of this model we just maximize the log 

likelihood function in respect with these parameters. Taking the partial derivatives of 

these functions we have for the conditional variance model: 
2
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Concluding our presentation of the ARCH/GARCH family of models we would 

like to mention a weakness of these parameterizations. This drawback lies on the fact 

that they are not able to capture the asymmetries occasionally observed in the 

volatility process. More specifically Nelson (1991) were among the first researchers 

to discover the difference between the impact of good and bad news in the volatility  

of financial time series. This means that it is not only the size but also the sign of a 

shock that can determine and influence the conditional volatility. Unfortunately the 

GARCH model can capture only the size effects. Frequently however we observe 

these asymmetric effects occurring in the volatility processes. Through these 

considerations, a new alternative approach was born and used to model the time 

varying nature of volatility. This is the so called Exponential GARCH model. 

In contrast to the conventional GARCH model it is not necessary anymore to impose 

restrictions in the ARCH and GARCH parameters to ensure that the conditional 

variance will receive positive values. This new model allows for a different impact of 

good/bad news in volatility. More specifically in this specification we have two 

important innovative features: 

 

1.  Negative shocks can have a stronger impact in the conditional volatility  forecasts 

compared with  positive shocks of the same magnitude. 

2.  Powerful shocks have a bigger effect in the volatility process compared with the 

effects of the same shocks when using the GARCH model.  

 

The mathematical representation of this class of models is the following: 
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With degrees of freedom, v>2  
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CHAPTER 2 :  THE CONCEPT OF CAUSALITY 
 
 
2.1 INTRODUCTION TO GRANGER CAUSALITY 

 

One of the most influential econometricians in the concept of causality is Clive 

Granger (1969, 1980). According to his theoretical formulations we say that the 

random variable Υn causes Χn+1    when the following relation is in effect. 

 

 

with A being the set that contains all the possible values that X can take, and Ω being 

the information set (or σ-algebra) involving the maximum available information 

regarding the history of these two random variables. Thus a causal relation with 

direction from Y to X will exist when Υn  contains some kind of information regarding 

the values that Χn+1   can take. The whole theory on causality depends on the 

fundamental axiom that the past or the present can influence the future. We may 

interpret the notion of causality from a number of different viewpoints. In order to be 

more precise we will confine now our discussion in the context of Granger causality 

between two random variables. In contrast to the field of Mathematics, in Statistics 

and Econometrics the existence of deterministic relations is a utopia and that�s why 

we must be satisfied with the derivation of stochastic causal relations. So we will say 

that event A will possibly (but not certainly) happen when event B is realized.  

In this point we must also refer to another important axiom according to which 

every true and existent causal relation must remain constant through time regarding 

the direction of movement but on the contrary the power of this relation as well as its 

time span can vary. In the next lines we will present some more practical and 

empirically testable definitions of Causality. In order to achieve this we must modify 

the definition (1). So let�s assume that we want to examine whether a vector stochastic 

process Υt   influences another multidimensional random process Χt.  We define as Jn 

the information set available at time n that contains all the terms of the vector process 

Ζt.  Ζt  does not contain any of the terms of Υt  while it includes all the terms of Χt . We 

thus have that Jn : Zn-j , j >= 0 . We also define the information set J�n for which J�n : 

Zn-j   , Yn-j,  j >= 0.  Consequently we have the following definitions: 

 

( )n+1 n+1Prob X | Prob (X | )      (1)n n nA A Y∈ Ω ≠ ∈ Ω −
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when 

 

If J�n = Ωn   then we will also have that  

 

 

when  

 

             

 

when  

   

 

 

when  

 

When we discuss about causality in mean we refer to a kind of causality that is 

substantially weaker than the general concept of causality as it does not involve the 

whole probability distribution of the random variable. Simultaneously this type of 

causality is much more useful from a practical perspective as it can be empirically 

tested using the point estimates from a least squares estimation methodology. In order 

to prove the validity of the above argument we can simply recall the fact that the 

conditional mean can be expressed as a regression function that may be specified as a 

linear model and for which we have to estimate some unknown parameters.  

In the case that 2 2( | , ) ( | )n nX J Y X Jσ σ<  then we will say that random variable 

Y is causally related with X with the former causing the latter. In other words the 

knowledge of the information in Υn can help us to conduct more accurate forecasts 

regarding Χn+1 and decreases the uncertainty of the predictions. We have to remind 

here that the causal relations we have discussed up to this point are linear. The 

introduction of non linear relations would require that the information contained in 

information set Jn can also be utilised in a non linear way. Another causal link that 

must also be mentioned is that of a feedback relation. When Υn causes Χn+1   and 

simultaneously Χn  causes  Υn+1  then there will exist a bidirectional feedback causality. 

Not  Cause '
1 n1.   , ( J )n nY X + →

' '
1 1 1 1( / ) ( / ) ( / ) ( / )n n n n n n n nF X J F X J E X J E X J+ + + += ⇒ =

  Cause '
1 n2.   , ( J )n nY X +→

' '
1 1 1 1( / ) ( / ) ( / ) ( / )n n n n n n n nF X F X E X E X+ + + +Ω ≠ Ω ⇒ Ω ≠ Ω

  Not Cause in Mean '
1 n3.   , ( J )n nY X + →

'
1 1( / ) ( / ) 0n n n nE X J E X J+ +− =

   Cause in Mean '
1 n4.   , ( J )n nY X + →

'
1 1( / ) ( / ) 0n n n nE X J E X J+ +− ≠
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In the following lines it is necessary to refer to some of the problems that occur 

during the examination of causal relations. Firstly the frequency of the empirical data 

that sometimes cannot be exclusively determined by the researcher but depends on the 

nature and availability of this kind of data can in some occasions lead to misleading 

results regarding the type of causality. For example due to a non suitable frequency 

selection it is possible to derive the conclusion of the presence of instaneous causality 

when the true relationship is of some other type. In this point we must formalize the 

type of causality just mentioned. We will say that there exists an instaneous causal 

relation between Χn+1 and Υn+1 when the following condition is fulfilled. 

1 1 1( / , ) ( / )n n n n nE X J Y E X J+ + +≠ .  

A different but equally important problem often occurring in empirical research 

is the omission of important exogenous explanatory variables from the econometric 

models used during the causality tests. This misspecification of the models can lead 

once more to biased results. Characteristic of this problem is the following case. Let�s 

assume that we ignore the existence of variable X that truly influences the values of Y. 

Then the forecast error that we conduct can be considered of being dependent on 

another variable Z which can erroneously be thought to influence Y when this is not 

true in practice. In finance it is not unusual to conduct forecast errors. There will 

always exist an independent variable that will have been mistakenly omitted from the 

estimated models. Another important consideration that must also be taken into 

account by the researchers in this field is that occasionally the time period in which 

we measure a certain variable may differ from the time period that an event that led 

this variable to take the measured value, has been realized. For example the 

unemployment rates of March, will become known on April the earliest.  

Concluding our introductory remarks in the concept of causality we must 

illuminate the ultimate objective of the study of causal relations from an econometric 

perspective. This is not just the construction of models that can make a good fit in the 

sample data but of models that perform an equally good job when forecasting out of 

sample. In other words the increased forecasting accuracy of the econometric models 

that we use will possibly mean that the correct causal relation was detected.  
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2.2 CAUSALITY IN VARIANCE TESTS 

 

2.2.1 THEORETICAL MOTIVATION 

 

Ross (1989) formulated the opinion that the volatility of a stock market in a no 

arbitrage economy is directly related to the flow of information. Under this framework 

we can interpret the transmission of volatility as the result of information transmission 

among the markets or other variables. If two capital markets are informationaly 

efficient then it will not be expected to observe any volatility spillovers between them. 

It must be also noted that the observed interactions among the international markets 

are not of the intensity and power that one would expect given the low cost of 

information, the globalization of the financial markets and the simplicity of 

conducting financial transactions in various different places around the world. We 

must not however surge to decide that the capital markets are efficient. The absence of 

volatility spillovers may be in fact attributed to the varying construction methods of 

the stock indices used in empirical studies or to differences in industrial structures and 

foreign exchange policies across the different international markets. 

 There are two main channels of volatility transmission. The first is through the 

existing structural linkages between the financial markets and the real economies of 

the volatility interrelated countries. The second is due to the portfolio rebalancing 

applied by international investors when a crisis or an unfortunate event takes place in 

the country that they have accumulated a part of their investment capital. We must 

also note that there are different setups inside which we can study the existence of 

volatility transmission phenomena. More specifically we can have markets with non 

overlapping trading hours and markets with perfect synchronization in their trading 

hours. In the first case it is advisable to use only trading time returns when conducting 

causality in variance tests. This is essential because a possible existence of 

asynchronous trading or stale quotes would spuriously induce volatility spillovers 

effects. In the second case we can choose between Trading Time or Daily returns. 

Finally we would like to note the importance of the correct specification of the 

econometric models used through the tests in order to derive more reliable results. 
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2.2.2 THE IMPORTANCE OF VOLATILITY SPILLOVERS 

 

The causality in variance tests are of particular importance for a number of reasons.  

 

1. From the investors viewpoint the knowledge of possible interactions among the 

financial markets is useful in order to be able to effectively hedge the various types of 

undertaken risks and simultaneously efficiently diversify his investment portfolio. For 

example if it is known in advance that two specific stock markets exhibit significant 

volatility  linkages then the rational investor would be expected to allocate a part of 

his capital in an another more isolated market and not just between the two above 

mentioned interdependent markets in order to reduce his non systematic risk. 

 

2. From the viewpoint of the government and monetary authorities this kind of 

knowledge can be of particular importance. A foreign stock market crash could have a 

serious negative impact in the domestic financial system as well as in the welfare of 

this country. Thus in order to be able to achieve a better stabilizing and shielding 

policy, an essential step should be the study of the causality interrelations among the 

various countries. 

 

3.  The perception of the nature and direction of volatility spillovers can lead in 

important conclusions in regard with the extent of financial contagion events (e.g. 

volatility transmission mechanism being more powerful during a crisis). The absence 

for example of volatility  transmissions from foreign economies towards the domestic 

one will mean that the volatility  of the domestic stock market is generated mainly 

from domestic shocks and that this economy is shielded from foreign disturbances. 

These characteristics must be taken in account from the regulatory agencies as well as 

from other supervisory authorities in order to implement the more suitable policy for 

each country.  

 

4.   The study of causal relations in variance is also of particular importance from an 

applied econometrician�s perspective as it will help in the construction of well 

specified models that can more accurately capture the volatility dynamics and will 

also lead to the design of more accurate asset pricing models. A huge leap can also be 

made in the design of more effective risk management tools and methodologies. 
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2.2.3 THE CHEUNG & NG TEST 

 

This methodology was proposed by Cheung and Ng (1996) for testing the null 

hypothesis of non causality in variance between two time series and it is based on the 

estimation of the cross correlation function (CCF). We must however mention that the 

concept of CCF based testing was firstly introduced by Haugh (1976). This 

researcher has designed a two step methodology for testing the interdependence 

between two covariance stationary time series with homoscedastic errors. His main 

contribution is the proof that the asymptotic distribution of the CCF estimators for 

two white noise processes (that is already known from theory) is identical to the 

asymptotic distribution of the CCF estimators for two residuals series obtained from 

the estimation of univariate ARMA models. Haugh has also proved also that the 

presence of autocorrelation in a time series could inflate the variance of the CCF 

estimators and induce linear dependence among the different estimates.  

The above considerations have led to the important conclusion that a robust 

causality in variance test could be constructed using as inputs the residuals of well 

specified conditional models. This conclusion was however not yet complete. The 

stylized feature of volatility clustering should also be removed from the residuals of 

the ARMA models. This step would finally transform the residuals in stochastic 

processes closely resembling the white noise random processes. This necessitated the 

use of GARCH models for filtering the persistence of volatility. It is necessary to note 

also that even after the use of GARCH models for standardizing the estimated 

residuals if there still remains some temporal dependence in these series this could be 

the source of spurious correlations in the conditional second moments falsely leading 

to the conclusion of the existence of lead/lag relationships between the volatility 

processes. We can now turn our discussion to the Cheung & Ng causality in variance 

test.  

Cheung & Ng have developed a technique based on the two step CCF approach. 

In the first stage they estimate univariate ARMA/GARCH models and obtain the 

squared standardized innovations and in the second step they estimate the CCF and 

test for the significance of the various cross correlation coefficients being able in this 

way to detect any possible volatility spillovers between the two series studied. This 

method can also be used in order to check for causality in the mean by simply using 

the standardized residuals instead of their squares, as input in the CCF. But let�s now 
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formalize our discussion. The basic building block is the existence of two stationary 

and ergodic time series and two information sets that are generated as following 

 

 

We will say that Yt   Granger causes Xt+1    if the following relation is true. 

 

 

Where , 1x tµ +  is the conditional mean of Xt+1   conditioned on the σ-algebra It. 

There will exist feedback in variance when X causes Y and simultaneously Y causes 

X. Finally we will have instaneous causality in variance when   

 

 

In order to be able to empirically test these types of causal relations it is needed to 

impose some additional structure. This will be done in the framework of specific 

econometric models. 

 

 

 

The conditional mean and conditional Variance models are given through the 

following relations.  

 

 

 

 

 

 

Where 

 
We can now obtain the squared standardized innovations by simply estimating the 

above models. These appropriately filtered residuals are given from the following 

relations. 

 

{ , 0}t t jI X j−= ≥ { , , 0}t t j t jJ X Y j− −= ≥

2 2
1 , 1 1 , 1{( ) / } {( ) / }t X t t t X t tE X I E X Jµ µ+ + + +− ≠ −

2 2
1 , 1 1 , 1 1{( ) / } {( ) / }t X t t t X t t tE X J E X J Yµ µ+ + + + +− ≠ − +

0.5
, ,t X t x t tX hµ ε= +

0.5
, ,t Y t y t tY hµ ζ= +

{ } ~ (0,1) Standardized Innovationst WNε ⇒

{ } ~ (0,1) Standardized Innovationst WNζ ⇒

00

z,t , ,
1

µ ( )    (1) ARMA MODELz i z t i
i

Zµφ θ −
=

= →∑
00

2
z,t ,0 , , , ,0

1
h ( ){( )  }    (2) GARCH MODELz z i z h t i z t i z

i
Zϕ ϕ θ µ ϕ− −

=

= + − − →∑

, ,: 1 Parameters Vectorz w z wpθ × →

,W hµ= , , ,( )  Uniquely Defined Function of z i z zµ µφ θ θ→

, , ,( ) Uniquely Defined Function of  z i z h z hϕ θ θ→,Z X Y=

2 2 2 2
t , , t , ,U (( ) / )  , V (( ) / )t x t x t t t y t y t tX h Y hµ ε µ ζ= − = = − =

t tI J⊆



 

MSc in Banking and Financial Management, University of Piraeus, 2008 

- 23 -

These residuals will be used in the next step as inputs for the estimation of the Cross 

Correlation Function. The CCF is calculated through the sample cross correlation 

coefficients. For example the sample cross correlation at lag k,  ( )uvr k  is computed 

from the following equation { } 1/ 2( ) ( ) (0) (0)uv uv uu vvr k C k C C −=  

With  

 

 

 

 

 

1

1

1
1

t t

t t

k Y X
k X Y

−

+

= ⇒ →
= − ⇒ →

 

Given now the assurance that the second order moments of the squared 

standardized innovations are existent and finite and in combination with the 

hypothesis that these two residual series are independent we will have that   

 

.  

 

Consequently based on the discussion made above, a proper causality in variance test 

can be constructed. As it is widely known the squared standardized residuals are not 

observable and thus we should use their estimators. This means that we will finally 

use the sample estimators of the CCF � ( )uvr k  in order to test the null hypothesis of non 

causality in variance. Thus we will have: 
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Finally using all the above results in combination with the fact that the 

asymptotic distribution of the CCF estimator is already known, the following test 

statistics can be constructed that follow either the standard normal or the chi-square 

distribution. 

 

1.  

 

The above test statistic is used to test the significance of a cross correlation coefficient 

at a specified lag. Another test statistic that we can use is the following: 

 

2. 

 

Using the above test function we can check for the joint existence of causality 

from lag j up to lag k, and this test function follows a chi-square distribution. We must 

note here that the choice of the values of indicators j and k will depend from the exact 

form of the alternative hypothesis. When we do not know in advance the direction of 

causality it is preferable to conduct a bidirectional test setting �j = k = m. In the 

opposite case that we want to test for a specific direction in causality for example 

whether y causes x then we should set j =1 και k = m. It is also necessary to note here 

the importance of the correct specification of the ARMA/GARCH models. In order to 

test whether a proper specification has been done a usual post estimation test is that 

based on the Ljung-Box Q-statistics (1978) on the standardized and squared 

standardized residuals. We can now continue the presentation of the available test 

statistics. The following test statistic is optimized for using with smaller samples. 

 

3. 

 

where 

 

The advantage of this test statistic is that its distribution is closer the chi-square 

density when we make use of small samples. 

The Cheung & Ng methodology has some certain advantages compared with 

alternative methodologies that make use of multivariate GARCH models. Firstly this 

technique does not demand the simultaneous modeling of the inter and intra series 
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dynamics something that renders it much easier to use. This fact also implies an 

observable superiority of this method in the case of a multiple series study. Secondly 

there exists a greater degree of uncertainty in regard with the correct specification of a 

multi dimensional model as well as with the asymptotic properties of its Maximum 

Likelihood Estimators. The Cheung & Ng methodology is robust against asymmetric 

and leptokurtic errors and asymptotically robust in deviations from the normality 

assumption for the unconditional distribution. It can also be used to study causal 

relations extending for longer time spans in comparison with the multivariate methods. 

A draw back of the Cheung & Ng test is that it is not designed to detect the presence 

of non linear causal relations. 

 

 

2.2.4 THE HONG TEST 

 

The methodology that will be presented in this section is due to Hong (2001) 

and is an extensively modified version of the Cheung & Ng Test. The main 

contribution of Hong lies on using weighting functions inside the test functions. More 

specifically he had claimed that there is an inverse relation between the lag length and 

the weight that must be given to the corresponding cross correlation coefficient. We 

can now proceed with the description of the test. Let�s assume that we have two 

strictly stationary stochastic processes. 

 

 

 

We also have the following information sets (σ � algebras) 

 

 

  

As we have already discussed in previous sections, according to Granger (1969)  

 

 

 

We shall remind here that the null hypothesis that we want to test, is the non causality 

in variance between two time series. The null and the alternative hypotheses are: 
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The three different possible types of causal relations in Variance are the following: 

1. Unidirectional Volatility Spillover 

 

 

 

2. Feedback in Variance 

 

 

 

3. Instaneous Causality in Variance 

 

 

The absence of causal relations in the first or second moments between two time 

series does not imply anything about the general causal link that may exist between 

them. It is possible that the two processes are causally interrelated in higher order 

moments. We can now continue with the Hong testing procedures. The cornerstone 

for the construction of this type of tests are the residuals. 

 

 

 

The underlying generating mechanism of residuals is 0 1/ 2( )it it ithε ξ=  where { }itξ  are 

the standardized residuals and 0
1( )it ith f I −=  is the conditional volatility. In a more 

illustrative way we will have the following relations: 
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The null and the alternative hypotheses can be also rewritten in terms of the 

standardized residuals. 
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The model specifications that will be used through the tests are the following: 

 

 

 

 

 

 

 

 

 

 

 

From the estimation of the above models we can now obtain the centralized squared 

standardized innovations. 

 

 

 

 

 

 

 

 

These residuals will be subsequently used as input for the estimation of CCF. As we 

have already discussed in the Cheung & Ng Test, the cross correlation function is 

calculated through the following procedure 1/ 2� � �� ( ) { (0) (0)} ( )uv uu vv uvj C C C jρ −=  
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Hong has claimed that the volatility transmission between two variables 

gradually weakens as the time distance between them increases. This theoretical 

suggestion according to him should also be implemented during the causality in 

variance tests.  

The answer to these considerations came with the introduction of a new 

generation of test statistics that are designed to weight more heavily the low lag cross 

correlation coefficients. The weighting scheme depends upon specific kernel 

functions. The most important such functions, proposed in literature are the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed test statistic is the following: 
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The values obtained through the above test must be compared with upper tailed 

standard normal distribution critical values. A slightly modified version of 

aforementioned test function that is asymptotically equivalent is the following: 
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Finally another test statistic that it is recommended in cases that we do not have any 

ex ante information in regard with the direction of the causal relation. Is the following: 
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The values obtained using this test statistic must once more be compared with the 

critical values that correspond to the upper tail of a standard normal distribution. 

 

 

2.2.5 THE LAGRANGE MULTIPLIER TEST 

 

The causality in variance test that we will discuss in this section was proposed 

by Hafner & Herwartz (2006) and is in fact a Lagrange Multiplier test. We must 

also note that their study was based on an earlier work of Lundbergh & Terasvirta 

(2002) who used the LM tests for misspecification testing of GARCH models. But 

let�s proceed now with the presentation of the methodology. The discussion that will 

be made in the following lines describes a unidirectional test for volatility  spillover 

for a certain direction. Of course if we want to test for the existence of causality in 

variance in the opposite direction we will just use an exactly analogous procedure. 

Thus we assume that we have the stochastic process   { },n
t t Nε ∈ ℜ ∈ that is defined 

in a probability space (Ω,F,P). We also make the assumption of stationarity for this 

process and that  [ ]1| 0t tE Fε − =   where F denotes the σ-algebra (or more simply the 

information set). 
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The Null hypothesis that we want to test is that of non causality in variance and 

can be mathematically formulated as ( )
0 1 1: ( / ) ( / )j

it t it tH Var F Var Fε ε− −=  

With , 1,..., ,i j N i j= ≠  and ( )
,\ ( )j

t t jtF F tσ ε τ= ≤ . For testing the above hypothesis 

we should consider the use of a specific econometric specification. So we will have 

the following mathematical expressions: 

 

 

 

 

 

 

In order to be accurate we must clarify that the realized volatility  is 

approximated through the use of the squared residuals. In the term jtz  we included the 

conditional and realized volatility of variable j that we want to examine whether it 

transmits its own volatility to variable i. It is clearly observable that in the way that we 

have specified our GARCH model, we have implanted inside the underlying process 

of residuals (shocks) of variable i, the dynamics of the residuals of another foreign 

variable j. In this way the proposed specification has by construction a causality in 

variance structure from variable j to variable i with the shocks in market/variable j 

being directly transmitted in market/variable i. 

From a different viewpoint however we technically introduced a 

misspecification in the constructed GARCH model as the proper one would be that in 

which vector zjt  would be empty. Thus in the case of a misspecification test where the 

null hypothesis considers that the selected model is correctly specified this would also 

imply the absence of volatility spillovers. If the estimated model is found to be 

misspecified then this would also mean that there exists a causal relation in variance. 

The concluding remark and the key concept behind this test is to perceive the 

causality in variance test as a misspecification test. The true correctly specified 

GARCH model will be that where there are not any volatility  spillovers while the 

misspecified would be that in which the underlying generating mechanism of 

residuals process will also include the influences from shocks in another variable. 

Under this framework the null and alternative hypotheses can be expressed as 

following: 

2  Underlying Generating Mechanism of Residualsit it it tgε ξ σ= →

'1 Misspecification Indicatort jtg z π= + →

2 2
1 1( , ) ' Past Foreign Conditional & Realized Volatility jt jt jtz ε σ− −= →

2 2 2
, 1 , 1 GARCH(1,1) Modelit i i i t i i taσ ω ε β σ− −= + + →
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It is now possible to construct a test function that will be based on the estimation of 

univariate GARCH models. The score function of the log likelihood function of εit  

that corresponds to the normal distribution is obtained from 2( 1) / 2it itx ξ −  where 

2 2( / )it it it ix σ σ θ−= ∂ ∂  and ( , , ) 'i i i iaθ ω β= . 

The proposed test statistic will have the following specification 

 

 

 

 

 

 

 

This test statistic converges in distribution in a random variable that is chi-square 

distributed with two degrees of freedom. An alternative method to estimate LMλ  is 

through a regression based procedure. The steps for this equivalent methodology are: 

 

1. We estimate GARCH(1,1) models for εit   and εjt   and then obtain the standardized 

residuals ξit  , the derivatives χit  and the conditional Variances 2
jtσ  

2. We then regress 2 1itξ −  on the terms '
itx  and 2 2

1 1,jt jtε σ− −  . The latter pair is contained 

inside the '
jtz  

3.  The  λLM   test statistic would be obtained by calculating the product T * R2   , where 

T is the sample size and R2  is the coefficient of determination obtained from the 

regression in step II. The asymptotic distribution of this alternative test statistic will 

be a chi square with two degrees of freedom (under the null hypothesis) 

 

In the following section we provide an extensive literature review regarding the field 

of causality as well as the empirical findings of some important studies.  
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2.3 LITERATURE REVIEW ON CAUSALITY 
 

Engle, Ito & Lin (1990) attribute the volatility clustering pattern observed in 

economic and financial time series in two factors. Firstly, behind these non linear 

dynamics there exists the autocorrelation in the news arrival process that describes the 

flow of new information in the market. They argue that occasionally, the news come 

in clusters (big volume of news becomes known in the same time point) something 

implying the existence of a non smooth flow of information. Secondly the existence 

of heterogeneous expectations as well as the use of inside information (violation of 

the efficient market hypothesis) among the participants in the markets create the 

sufficient conditions for a persistent turbulence in the market after a shock. An 

absence of volatility spillovers is a sign that the sources of disturbances in a certain 

market have local characteristics and influence only the domestic market. Conversely 

the existence of volatility transmission can be attributed to various factors such as 

synergies or competitive policies of the central banks, the distribution of 

expectations/fears of a market in others relating with the former and finally to changes 

in common fundamental factors that jointly affect the markets. In their study Engle, 

Ito & Lin use daily data on the exchange rate Dollar/Yen exchange rate for the period 

from October 1985 until September 1986. The innovative element of their research is 

the decomposition of the daily change in Exchange rate, in four individual changes 

that take place in the four most important international foreign exchange markets 

(Pacific , Tokyo , London , New York ) that are opened in non overlapping time 

periods, and 24 hours per day. Their final conclusion is in favour of volatility 

transmission across the markets studied.  

  Hamao, Masulis & Ng (1990) investigate the existence of cross-correlation 

between the volatilities of different stock markets. They use daily opening and closing 

prices from Tokyo, London and New York equity markets with their sample spanning 

from April 1985 until March 1988. The fundamental objective of their research was to 

examine whether the volatility of a stock market is transmitted to the next market to 

open. An important procedure followed through their study was the decomposition of 

the total daily price changes of each of the indexes used, in the open to close and close 

to open components. This technique allowed the separate analysis of the effects of 

foreign market volatility in the opening prices of the domestic market and in the 

prices during trading hours. They also attempted to determine the reasons behind the 
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cross market volatility transmission. According to these authors such phenomena can 

either be attributed in fundamental international factors that simultaneously influence 

the stock markets or alternatively constitute a causal relation that characterizes the 

markets that open and close sequentially during a trading day. The specification used 

in this study is the GARCH in Mean model as it can adequately describe the effects of 

volatility in the conditional mean. In order to overcome the spurious autocorrelation 

caused by the asynchronous trading of the markets they used a moving average model, 

filtering in this way the autocorrelation in the first moments. The necessity for the 

above action is dictated from the hypothesis of the ARCH models, that the conditional 

residuals are not serially correlated. The basic conclusion of this study is that there 

exists volatility transmission from the New York and London markets to Tokyo but 

no reverse relation is observed. 

Baillie & Bollerslev (1991) use a GARCH specification with dummy variables 

for modelling the intradaily pattern in financial volatility using data from four 

exchange rates in an hourly basis and for a period of six months (January 1986 until 

July 1986) in order to examine the presence of volatility spillovers among the foreign 

exchange markets. The reason behind the usage of hourly data lies on the fact that in 

this way the researchers are able to discriminate between factors that are related 

exclusively to the exchange rates and factors that characterize the corresponding 

markets. For the conditional mean specification they choose a moving average 

parameterization that is compatible with the efficient market hypothesis while  

describing sufficiently accurate, the spurious  autocorrelation caused by the 

asynchronous trading in the markets. According to these authors the existence of time 

varying conditional heteroscedasticity roots in the instability observed in the stock 

market prices after the arrival of new information which results in particularly 

extensive transactions until the complete incorporation of the new information in the 

prices.  According to Baillie & Bollerslev and in contrast to the conclusions of other 

studies there are minimal signs of systematic volatility transmission among the 

financial markets investigated in their research. The observed persistence in volatility 

appears to be short lived. It lasts for a few hours and is eliminated after a few days. 

Ito, Engle & Lin (1992) study the nature of volatility transmission across 

international stock markets. More specifically they analyze the importance of 

monetary policy coordination among the central banks of various countries and the 

effects of gradual private information dissemination, in the creation of volatility 



 

MSc in Banking and Financial Management, University of Piraeus, 2008 

- 34 -

spillovers. Through their study three non overlapping time periods are used during 

which policy coordination of different intensity and nature among the monetary 

authorities is exhibited. They call as a �Heat Wave� the case when the existence of 

autocorrelation in the volatility  of a specific market has local/national characteristics 

and is not transmitted to other countries and as a �Meteor Shower� the case when 

volatility is transmitted across the various markets. According to these authors the 

Meteor Shower phenomenon constitutes a failure of the market to completely make 

use of all the available information and is clearly a violation of the efficient market 

hypothesis. An important factor that is researched in this study is the role of the 

cooperative/competitive policies of central banks in the creation of Meteor Shower 

effects.  Also using a variance decomposition methodology, the authors analyze the 

separate contribution of Heat Wave and Meteor Shower characteristics in the 

volatility of financial markets. The Meteor Shower hypothesis presupposes that the 

information concerning a specific market can be effectively used for foreign markets 

volatility forecasting. Regarding the econometric specification selected in this 

particular study a GARCH model is used  while the dataset is consisted from daily 

observations for four non overlapping foreign exchange markets ( Pacific , Tokyo , 

Europe  And  New  York.  ). The sample covers the period from February 1979 until 

December 1988. The final conclusion of this study is that the volatility of the 

exchange rates has the characteristics of a Meteor Shower in the sense that it is 

transmitted across the various markets as the globe turns.  

Karolyi (1995) attempts an inquiry in the dynamic characteristics of returns and 

volatility in the stock markets of New York and Toronto. The dataset used includes 

daily observations of the closing prices of the two basic indexes of these markets. The 

time span of the sample covers the period from April 1981 until December 1989. An 

important feature of the data used in this study is that the two markets are trading in 

overlapping trading hours a fact that helps to overcome the problems occurring due to 

the asynchronous trading in these markets. An important consideration according to 

the author is that the conclusions in regard with the nature and intensity of the causal 

relations between the two markets may also depend on the parameterization used to 

describe the intra market dynamics. He argues that when using Multivariate GARCH 

models the volatility transmission effects appear to be weaker than the case where 

VAR models are used. In order to prove his suggestions Karolyi uses various 

alternative specifications for the causality in variance test. These are a BEKK-
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GARCH model, a VAR model consisted of  a vector white noise stochastic process 

for the residuals and with a constant variance covariance matrix, a bivariate constant 

correlation GARCH and finally a pair of two univariate GARCH models that allow 

any interaction between the two time series to be demonstrated only in the first order 

moments. The empirical conclusion of this study is that a bivariate GARCH model 

describes adequately the cross market dynamics of the markets examined. It seems 

also that the spurious autocorrelation generated by the asynchronous trading of the 

markets cannot explain in this case the cross market dependencies. Finally through the 

comparison of Canadian stocks dually listed in both exchanges and of stocks listed 

only in the domestic market Karolyi illuminates the impact of restrictions and 

investment barriers on the dynamic behaviour and interdependence among the 

financial markets. 

Koutmos & Booth (1995) examine the existence of causal relations in the first 

and second order moments of returns across the stock markets of New York, Tokyo 

and London. They also mention the importance of modeling the asymmetric impact of 

news in the volatility transmission mechanism. For capturing this effect they make use 

of an Exponential GARCH specification through their study. Their dataset consists of 

daily observations for the basic index of each market. The sample period spans from 

September 1986 until December 1993. The choice of the exact parameterization for 

the conditional variance models is made, seeking to obtain the best possible modeling 

capability of the volatility dynamics of the stock markets examined in this study and 

with the additional feature of capturing the asymmetric effects of domestic and 

foreign shocks. The authors also refer to the bias in results that can be induced when 

using data from markets with overlapping trading hours. The asynchronous trading 

often observed in the financial markets may be a source of spurious autocorrelations. 

That�s why they use moving average representations for the conditional first moments 

modeling, in order to filter the serial correlation. In this direction it is also helpful the 

use of value weighted stock market indexes.  

Finally the additional assumption of constant conditional correlation is made in 

order to reduce the number of unknown parameters. According to Koutmos & Booth 

there is an asymmetry in the transmission of shocks in the markets studied in their 

research. They also detect that after the stock markets crash in 1987, there is an 

increased interconnection between the markets. Regarding now the spillover effects 

across the markets they observe spillovers in the mean from New York to Tokyo and 
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from Tokyo to New York and London. In the second moments there exist volatility 

spillovers from New York and London to Tokyo, from Tokyo and New York to 

London and from London and Tokyo to New York. The basic concluding remark is 

that the examined markets demonstrate a significant interconnection, with the impact 

of negative news being more powerfully transmitted across the countries compared 

with the news of positive sign. 

Booth, Martikainen & Tse (1997) investigate the volatility linkages among the 

stock markets of Denmark, Norway, Sweden and Finland. They use daily 

observations for the main index of each market with their dataset spanning from May 

1988 until June 1994. An important element that characterizes this study is the 

uniformity in the structural characteristics of the markets studied something that 

renders them ideal for an unbiased examination of the volatility transmission patterns 

across them. There is also an impressive convergence in the policies followed by the 

above mentioned countries. Regarding to the methodology used, they select a 

multivariate exponential GARCH model. The results of their research are as follows. 

There is evidence for volatility transmission from Sweden to Finland with a weaker 

pattern observed in the reverse direction. The causality in variance discovered in this 

research can be mainly attributed in the economic cooperation of these countries. 

Hu, Chen, Fok & Huang (1997) study the presence of causal relations among 

the volatilities of different financial markets.  More specifically they use the returns of 

basic indices from the markets of New York, Tokyo, Taiwan, Hong-Kong and 

Shanghai. The data are in a daily basis and cover the period from October 1992 until 

February 1996. The methodology used is based on the Cheung & Ng Test Statistic. 

The information received through the above causality in variance tests, is successively 

used for the construction of econometric models enriched with (empirically verified) 

augmented forecasting capabilities that allow the more accurate modelling of the 

second order moments processes. In regard with the existence of causal relations in 

volatility the researchers report firstly the existence of volatility transmission from 

Tokyo to New York, the existence of bidirectional causal relations in variances 

between Hong-Kong and New York and finally the existence of powerful 

simultaneous interactions between all the markets. An equally important finding is 

that when incorporating the effect of volatility spillovers in the models used then a 

decrease in volatility persistency is observed. In other words the persistence in 

volatility can some times be partially attributed to the effect of foreign volatility in the 
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domestic one. It is also argued that geographic proximity and the economic ties 

between two countries do not essentially involve the existence of volatility 

transmission phenomena.  Finally it is reported that the volatility of the Tokyo and 

New York markets is the result of a generating mechanism which is influenced from 

fundamental factors. These factors indirectly influence the other markets and this is 

the basic reason behind volatility spillovers from the aforementioned markets to the 

two other developing markets. 

Tse (1998) examines the information transmission mechanism between the 

American and Japanese financial markets. More specifically the author uses data for 

the three month interest rate futures contracts in Eurodollar and Euro Yen covering a 

period from June 1990 until July 1996. The reason for the choice of these two specific 

markets is according to Tse, the fact that they do not suffer from the asynchronous 

trading/stale quotes problems as well as from the market segmentation, that are factors 

which often lead to spurious results concerning the volatility  spillovers across the 

markets. According to Tse the volatility transmission is not the result of the impact 

that certain fundamental factors have on the markets but constitute signs of efficient 

markets hypothesis violation. He also argues that when the financial markets work 

efficiently then the opening prices of the domestic markets will incorporate in a fast 

pace, the new (if any) information concerning the foreign markets and consequently 

the closing prices will not carry any additional information in regard to the foreign 

markets. Thus when using opening and closing prices it is not expected to observe any 

volatility spillovers (given the efficiency of the specific market). 

    The author uses a two dimensional constant correlation EGARCH model in 

order to examine the volatility linkages between the markets and the contemporaneous 

correlations for the investigation of the information transmission mechanism. The 

reason for choosing the exponential model is in order to investigate a possible 

asymmetry in the volatility transmission, a feature implying that negative news in a 

market may cause more powerful increase in the volatility of the other market in 

comparison with the effect of good news. The final conclusion reached through this 

study is that the information is generally transmitted across the international markets. 

However there is an absence of any causal relations in variance as the opening prices 

in the various markets absorb sharply any foreign information and thus do not allow 

any volatility spillovers to become observable in the empirical data.  
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Comte & Lieberman (2000) in their research formulate two new definitions 

regarding the causality in the second moments from which the first one is of a 

Granger type while the second one is a linear version of the Granger non Causality 

and depends on the projection on Hilbert spaces. Their theoretical definitions acquire 

a more explicit mathematical structure through the use of multidimensional ARMA 

models enriched with GARCH disturbance terms. The above econometric structure 

allows the empirical testing of the causality definitions proposed by the two 

researchers through the imposition of alternative restrictions in the parameters of the 

models. Then, alternative types of tests such as the  Likelihood  Ratio  Test , the  

Lagrange  Multiplier  Test  and the   Wald  Tests  can be conducted in order to detect 

the existence and the direction of any causal relations in the second moments. More 

specifically the authors use daily returns of dually listed stocks in the Tel Aviv stock 

market and New York stock exchange as well as the returns of the general index of 

the Tel Aviv stock market for the period between June 1988 and March 1998. Due to 

the non overlapping trading hours in the two equity markets, it is possible to 

investigate with a high degree of credibility, the effects of the volatility of the 

American stock market on the Israeli market. Finally it has been proved that there 

exist statistically important causal relations in the volatilities of the two markets 

despite a negligible ambiguity on the asymptotic properties of the tests conducted 

using the multivariate methodologies.  

Brooks & Henry (2000) seek to model the transmission of shocks and the 

interdependence of volatility among the stock markets of America, Japan and 

Australia. They use weekly observations for the basic index of each market and the 

sample period spans from January 1980 until June 1988. The use of this particular 

frequency of observations is chosen in order to smooth the problem of spurious 

volatility spillovers observed in markets characterized from asynchronous trading 

something that is intensified in the case of daily data. They use both parametric and 

non parametric techniques through their research. In the first step the non linear 

Granger causality test proposed by Hiemstra & Jones (1994) is used. According to 

this test there is powerful evidence for the presence of causal relations from the U.S. 

and Japan to Australia and weaker signs for a spillover direction from Japan to the 

U.S.  In the second step and having in mind the results from the previous method they 

make use of a VARMA � GARCH (BEKK) model modified to incorporate any 

potential asymmetries in the volatility transmission mechanism. The asymmetry can 
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characterize the effect of the sign of the past own market�s innovations on the 

conditional volatility of the foreign market as well as on the conditional covariance 

between the two markets. The main  conclusions  of this study  are the existence  of 

volatility  transmission from the  American  to the   Australian  market  that  is also 

characterized  from  asymmetry. There is also a causal interconnection between the 

Japanese and the American markets. 

Vilasuso (2001) investigated whether the presence of autocorrelation in the 

second order moments and the simultaneous existence of causal relations in the 

volatility of the financial time series, could distort the reliability of the causality in 

mean tests. His research concerns the regression based method for causality in mean 

detection that has been proposed from Granger (1969). This method is based on the 

use of VAR models as a specification for the conditional mean. The most important 

results that the author has attained are the following: 

 

1. VAR models have two important drawbacks: 

1.1 The O.L.S standard errors are not consistent because of the use of lagged    

dependent variables inside the VARs and this can lead to serious errors in the 

hypothesis testing procedures. 

1.2. The corresponding techniques for the detection of causal relations that are based 

on the least squares approach cannot discriminate between the two kinds of causality 

(In the first and in the second moments) 

 

2. When we have the presence of time varying conditional heteroscedasticity in the 

time series used in the empirical study then it is possible to have serious distortions in 

the reliability of the causality in variance methodologies. 

 

3. If the above observable pattern of the financial time series is combined with the 

simultaneous existence of causal relations in the variance processes then the problem 

of discriminating between the two Causality types is even more intense. This 

argument is proved through Monte Carlo simulations. 

 

Kanas and Kouretas (2002) studied the existence of causal relations in the 

means and variances of the exchange rates among four (main and parallel) Latin 

American markets (Argentina, Brazil, Mexico and Chile). Their sample includes data 
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in a monthly basis and covers the period from 1976 until 1993. Their methodology is 

based on the two step Cheung & Ng test for causality in variance. In the first step the 

researchers use EGARCH models in order to capture the leverage effects of volatility 

shocks. The conditional distribution selected for the residuals is the Generalized Error 

Distribution in order to account for the severe kurtosis in the time series used in this 

particular study. The authors also investigate whether the presence of causality in 

variance can influence the existence of causal relations in the first order moments.  

Their main empirical finding is that the existence of causality in volatility can 

have a significant impact in causality in mean tests in the case that a GARCH in mean 

or EGARCH in mean specification is used. More specifically they generate data 

characterized from causality in variance and then use two alternative specifications for 

the conditional mean model before studying for mean spillovers. In the first case the 

GARCH term is included in the mean model and in the second case it does not. They 

then test for causality in mean using both specifications and not surprisingly derive 

different results. Their basic conclusions regarding volatility spillovers are that there 

exist important signs of the presence of causal relations among the second order 

moments both between the official and parallel markets inside each country and 

across the different markets. Causality characterizes also the first order moments. 

Finally it is suggested that the preferable specification for modelling the volatility in 

the various markets, is the Exponential GARCH that has the added capability to 

model the asymmetric effects of shocks in volatility. 

Sola, Spagnolo & Spagnolo (2002) introduce a new methodology for testing 

the causality in variance hypothesis. According to these authors, the existing 

GARCH-based causality in variance methodologies have a serious drawback which is 

the hypothesis of symmetric volatility transmission under periods of either high or 

low volatility. In other words stock market volatility is transmitted in the same way 

regardless of the state (turbulent / calm) of the financial market. The proposed 

technique makes use of a Markov Switching parameterization allowing for four 

different states of nature in the volatility process. Their methodology has the key 

advantage of considering a financial crisis as a non frequent event by not inducing it 

as a structural relationship. Thus financial crises are assumed to be sporadic, not 

systematic events. For their empirical research they use data for three emerging 

markets namely, Thailand, South Korea and Brazil. Two bivariate models are 

estimated, where the dependent variable (stock market returns) is assumed to be a four 
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state Markov Process. The sample covers the period from January 1980 until January 

2001. The authors denote as a volatility spillover from market i to market j, the case 

when a high volatility state in market i at time t-1, leads market j to a high volatility 

state in time t or later. The concluding result of their empirical study is in favor of 

volatility transmission from Thailand to South Korea. No other variance spillovers 

were observed during Likelihood Ratio tests of restricted (Contagion) versus 

unrestricted parameterizations (Independency) as the alternative hypothesis of 

independence was not rejected. 

Caporale, Pittis & Spagnolo (2002) investigate the presence of causal relations 

between the stock market volatility and the exchange rates volatility in four East 

Asian countries. They use daily data from the financial markets of Japan Indonesia, 

South Korea and Thailand for the period from January 1987 up to January 2000. In 

order to check for the existence of an interconnection between the second order 

moments, they make use of a multivariate BEKK GARCH framework in which they 

impose specific alternative restrictions in the cross market volatility transmission 

parameters. They afterwards conduct Likelihood Ratio tests through which they 

compare the restricted GARCH models against the unrestricted Full BEKK 

parameterization. In this way they are able to detect the nature and the direction of 

volatility spillovers (if any). The authors also conduct a Monte Carlo simulation in 

order to asses the probability of type I errors when using the LR tests in a multivariate 

framework. They show that for a large number of observations (larger that 3000 

observations) the frequency of rejection of the null hypothesis approaches 

satisfactorily its asymptotic equivalent. Regarding the results of their empirical study 

of the volatility transmission between the above mentioned markets the authors report 

that the direction of volatility is from the stock market to the exchange rates.  

Alaganar & Bhar (2003) studied the transmission of information between pairs 

of economic variables using causality in variance detection methodologies. According 

to these researchers, the conclusions in regard to the presence or not of causal 

relations facilitate the construction of more objective multidimensional models and 

help the selection of a more realistic lag length in the models used. In this way there is 

no need to presuppose the volatility interconnection structure between two 

markets/variables something that is essential to be done when more complex models 

are directly used. The methodology followed by the authors is based on the two step 

causality in variance test proposed by Cheung & Ng and makes use of GARCH 
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models. Their sample includes daily observations of the basic stock market indices of 

seven countries of OECD as well as weekly data for the prices of ten year government 

bonds and three month treasury bills. The sample covers the period from January 

1990 until December 2000. The study concludes with the proposition that there exist 

significant signs of volatility transmission from the stock markets to the interest-rates 

and reversely with the intensity and the direction of transmission varying across 

countries. The important element here is the discovery of bidirectional causal relations 

instead of unidirectional causality from interest-rates to the stock markets as 

suggested from the economic theory. 

Pantelidis & Pittis (2004) investigate the impact that the presence of neglected 

causality in mean can have on the finite sample properties of the various causality in 

variance tests. More specifically in their study they quantitatively describe the 

interdependence that exists between the two most frequently used notions of causality 

in the discipline of finance. Their critique is focused on the tests that make use of the 

cross correlation function. These are the Cheung & Ng and Hong methodologies that 

are designed to detect the presence of causal relations in variance but without however 

accounting by construction for any simultaneous existence of causality in the first 

moments. This weakness can be in some occasions materialized through a negative 

effect in the empirical size of the tests. Hence using directly these techniques without 

first, modeling any first order moments linkage can induce spurious results in the 

causality in variance tests. This misperception and confusion of the two concepts of 

causality when using the cross correlation based methods is demonstrated through a 

Monte Carlo simulation that the authors have conducted. In this way they demonstrate 

the importance of the correct conditional mean specification and the fact that this 

procedure must not only depend on the correct modeling of the temporal structure of 

the time series studied but also on the correct modeling of the inter series dynamics.  

Malik (2005) investigates the volatility interdependence between the British 

Pound and Euro, Dollar denominated exchange rates. He uses data both in an hourly 

and daily basis. The sample with the hourly observations covers the period from 

December 2001 until March 2002 and contains 1892 trading hours. The alternative 

sample with the daily observations spans from January 1999 through July 2002. He 

initially observes that the two currencies demonstrate the highest volatility during the 

trading hours that the European markets are open. This increased volatility  can be 

attributed either to the increased information flowing to these markets during these 
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trading hours or to the use of private information from some investors. The 

significance of the impact of the American economy on the European currencies can 

be clearly seen from the fact that the volatility remains high even after the closing of 

the European markets when only the New York market is open. It can also be 

observed that the Euro currency is more volatile than the British Pound irrespectively 

of the frequency of the data used in the study.  

Afterwards, Malik attempts to conduct a comparison between Standard GARCH 

models and Long Memory FIGARCH models, in order to choose the specification 

that can more accurately describe the exchange rates series dynamics. A separate 

comparison is made for the two frequencies used. He firstly uses the hourly data. In 

this case he also incorporates hourly dummy variables in order to capture the 

intradaily pattern in the exchange rates. The two currencies demonstrate an impressive 

homogeneity in their dynamic behavior through the trading day. The conclusion in 

this case is that the use of conventional GARCH models is preferable in order to 

capture the volatility  dynamics in the exchange rate series. The conclusions are 

substantially different in the case that daily data are used. The highest volatility 

appears to be realized on Mondays and a possible reason for this anomaly is the 

accumulation of considerable volume of information during the weekends. The sum 

of the estimated coefficients is very close to unity this time, something that initially 

can lead to the conclusion of being in front of an infinite memory IGARCH type 

stochastic process but finally the FIGARCH model is found to work better. 

Dijk, Osborn & Sensier (2005) investigate the effects of structural breaks in 

volatility,  on the empirical size of various causality in variance tests when the former 

are not taken into account while performing the above mentioned tests. The critique 

focuses on the Cheung & Ng and Hong cross correlation based methodologies. The 

authors build up their discussion referring briefly to the empirical evidence of 

frequent structural changes in the conditional volatility processes of a large number of 

financial time series. This fact is the reason behind the necessity of testing for the 

existence of breaks in the variance process before attempting to test for causal 

relations in volatility. For this reason they conduct a Monte Carlo study in which they 

generate data enriched with the aforementioned characteristic. The empirical 

conclusions reached by these authors are the following: 
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1. When the structural break in volatility concerns only one of the time series studied 

then the consequences in the credibility of the causality in variance tests if this event 

is ignored will be of minimal importance. 

 

2. In the case that there is a simultaneous structural break in both of the series then as 

is demonstrated through Monte Carlo simulation there will be an important increase in 

the empirical size of the tests that of course will dampen the reliability of the tests. 

 

3. It is observed that the greatest distortion in the empirical size of the tests happens 

when the structural break is simultaneous for the two series. As the time span between 

the structural changes in the volatility processes of the two series increases the 

distorting effect of breaks, gradually weakens. 

 

Inagaki (2007) examined the existence of systematic volatility transmission 

between two nominal exchange rates, the U.S. dollar denominated Euro currency and 

the U.S. dollar denominated British Pound currency. The sample used includes daily 

observations covering the period from January 1999 up to December 2004. The main 

reason that this study focuses in these particular exchange rates is in order to 

investigate the importance of Euro in comparison with other European currencies, in 

terms of informational efficiency. The volatility of exchange rates is a useful �gauge� 

for the flow of information in a specific market. The volatility spillovers will take 

place when some new information regarding the corresponding markets arrives 

something that will eventually lead to a rebalancing in the portfolios investing in those 

markets. The methodology used here is that proposed by Cheung & Ng and depends 

on the cross correlation of the squared standardized innovations of suitably specified 

GARCH models. Through the empirical research it was found that the Euro, Granger 

causes in Variance the British Pound while the reverse relation is not verified in this 

study. Consequently there seems to be a unidirectional pattern in volatility 

transmission. An additional important ascertainment is that the Euro currency traders 

process efficiently the information received from the British Pound exchange rate 

something demonstrated through the absence of volatility transmission from the 

British Pound to Euro.  

Francis In (2007) examines the existence or not of volatility transmission 

across three basic financial markets in which interest rate swaps are traded. These are 
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the U.S., the Japanese and the U.K. markets. He uses daily observations for Swaps of 

three different maturities and for the period between January 1996 and June 2001. The 

researcher points out the necessity of using high frequency data instead of using lower 

frequency weekly data. In regard to the methodology used, a VAR - EGARCH 

specification is chosen with the additional hypothesis of conditional constant 

correlation in order to decrease the number of unknown parameters and make use of a 

more parsimonious representation. According to the author such a parameterization is 

preferable to the alternative methodology proposed by Cheung & Ng, as it makes an 

extensive use of the entire information contained in the variance covariance matrix. 

By using multivariate models it is also possible to investigate the volatility 

transmission mechanism in a more direct way. Through this research an important 

result that can be derived is that the American market has an important effect in the 

two other markets and that the Japanese market influences the British market. 

Bidirectional Causality can be observed between Japan and U.K., while the 

bidirectional relation between U.S. and U.K. is weaker. 

Rodrigues & Rubia (2007) provide the probabilistic confirmation of the 

argument that the non diagnostic checking for volatility transmission can have a 

negative and significant impact on the reliability of the causality in variance tests. For 

their theoretic analysis they make use of a generalized class of non stationary 

volatility  processes in which it is possible to have a very large number of structural 

breaks and not only one as in the case of other studies. They also prove that the 

problem of the distortion of the empirical size of the tests remains in effect even in an 

asymptotic level. The source of this distortion is the fact that in case of structural 

breaks it is impossible to consistently estimate the cross correlation coefficients 

regardless of the sample size used in the empirical study. This weakness exists when 

both series studied are non stationary as in this case the cross covariance function 

estimator cannot stochastically converge to the true covariance function. As we know 

the cross covariance is one of the two components of cross correlation. So the 

problem mentioned above is of course also transferred in the cross correlation. Finally 

with the use of the central limit theorem it is proved that when one of the series used 

in the causality in variance test is not stationary then the Cheung & Ng test statistic 

will not converge to the standard normal distribution but rather to a non standard 

normal distribution. In the even worse case that both series are non stationary then 

both Cheung & Ng and Hong Test functions will diverge to infinity.  
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CHAPTER 3 :  LONG MEMORY PROCESSES 

 
3.1 INTRODUCTION TO FRACTIONAL INTEGRATION 

 

Nature�s predilection towards long range dependence has been well documented 

in hydrology, geophysics and meteorology and to the extent that the ultimate sources 

of uncertainty in economics are also natural phenomena, it is possible that long term 

memory exists in many economic variables. The fact that economic time series may 

exhibit long range dependence has been a hypothesis of many early theories of the 

Trade and Business Cycles. Such theories were motivated by the distinct but non 

periodic cyclical patterns that typified plots of economic aggregates over time. The 

presence of long memory in economic time series can have important implications in 

the field of financial economics. Firstly the portfolio allocation decisions may become 

extremely sensitive to the investment horizon, if stock returns are long range 

dependent. Secondly, the pricing methods of financial securities such as options and 

futures that are based in continuous time martingale stochastic processes must be 

modified since these models are not consistent with the long term memory. Thirdly 

the Capital Asset Pricing Model, testing methodologies may stop being valid because 

the existing statistical inference procedures do not apply in the presence of such a 

strong persistence. For defining a suitable description of the phenomenon that we 

have just mentioned, we can simply say that the presence of long memory means that 

the financial market does not immediately respond to an amount of information 

flowing into it, but reacts gradually over a period.  

From an empirical perspective long memory is related to a high degree of 

persistence in the realized data. It can be observed in the slow rate of decline (often 

defined as a hyperbolic decay) in the autocorrelation functions. This phenomenon was 

noted for the first time in non econometric literature Hurst (1951). The starting point 

of the literature on fractionally integrated processes is the fact that many financial and 

economic time series show evidence of being neither I(0) nor I(1). They demonstrate 

however significant autocorrelation up to very long lags. This feature is typical of 

long memory processes. The order of integration of such a series is most of the times 

denoted as �d�. One key feature of the fractionally integrated processes is that they are 

more flexible than their extreme non stationary (unit root) counterparts. A common 

feature of the former is the very slow adjustment to equilibrium. From a different 
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point of view and when using high frequency data it seems over restrictive to focus 

our attention only on integer values of integration. 

 Long memory processes are studied either in the time domain or in the 

frequency domain. In the time domain long memory is manifested through a 

hyperbolically decaying autocorrelation function. It is important to note at this point 

the importance of using large sample sizes in order for the long memory pattern to be 

observable in the graphs we use. In frequency domain the same information can be 

extracted from the spectrum of the variable under study. Returning at the time domain, 

a covariance stationary time series is said to exhibit long memory if it satisfies the 

following condition:  

( )  as 
n

k n
k nρ

=−
→ ∞ → ∞∑  , where ρ (κ) denotes the autocorrelation coefficient in lag k. 

This means that correlations at long lags are not negligible. In fact such a series is a 

stochastic mixture of a non unit root series with a simultaneous impressive persistence 

feature. For historical consistency we must also briefly refer to the Hurst Exponents, 

which are a different measure of the long memory property of  financial time series. 

Estimated values of this parameter between ½ and 1 are indicative of this kind of 

persistence. 

There exists a considerable number of models that have been designed to 

capture the long memory in time series. Long memory can be observed in the first 

or/and in the second (non observable) moments of a financial variable. In our study 

we are exclusively interested in the volatility  processes, however we simply mention 

the alternative specifications of Fractional White Noise and ARFIMA models used 

extensively to work with the long memory in the first moments. Concerning the 

ARFIMA processes, this class of models contains the fractional white noise as a 

particular case and was introduced by Granger and Joyeux (1980) and Hosking 

(1981). In the above mentioned models the propagation of shocks to the mean occurs 

at a hyperbolic rate of decay when 0 < d < 1 and this is the main difference with the 

invertible and stationary ARMA models in which we observe an exponential rate of 

decay. This behavior differs also, from the infinite memory ARIMA models in which 

a shock persists for an infinite horizon. 
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3.2 MODELING LONG MEMORY IN VOLATILITY  

 
Long memory in volatility can be attributed to various different factors such as 

the contemporaneous aggregation of stable GARCH(1,1) processes and weakly 

dependent information flow processes. It may also be the result of specific intradaily 

patterns in financial market volatility and thus related with some microstructure 

phenomena. More recently, research has shown that structural changes and/or regime 

switches can spuriously induce a long range dependence in the second order moments 

process. In our research we study among others, the consequences of the presence of 

long memory in volatility, in the finite sample properties of the various causality in 

variance Tests. For this reason we use a fractionally integrated GARCH model as our 

Data Generating Process in a Monte Carlo Simulation. That�s why we provide in the 

following lines a detailed description of this model and discuss some relevant 

theoretical aspects of this parameterization. 

 Loosely speaking fractional integration is a more general & flexible way to 

describe the long range dependence than the unit root specification providing 

simultaneously an alternative perspective to examine the unit root hypothesis. The 

traditional GARCH models (see chapter 1) account for volatility persistence but have 

the feature that this persistence decays relatively fast. In practice however volatility 

often exhibits very long temporal dependence. This long run persistence may occur 

due to the aggregation of a large number of heterogeneous autocorrelated news arrival 

processes and constitute an intrinsic feature of the return generating process. From a 

different perspective volatility persistence may be attributed to the persistence in the 

trading volume which is also known to exhibit long memory properties. This 

explanation considers the information arrival process to influence the volatility 

through trading decisions. This means that long memory is transmitted to the 

volatility process and is not an internal feature of the latter.  

It has been demonstrated through Monte Carlo experiments, that when the true 

underlying generating mechanism of the time series data is an FIGARCH process but 

erroneously a conventional GARCH model is used in the estimation procedures, this 

will possibly spuriously lead to the conclusion of the presence of an unrealistic 

extreme memory IGARCH process. This result is of special importance in the case of 

high frequency data because the infinite memory behavior occurs mainly with this 

kind of data. A frequent argument in support of the fractional integrated models is that 
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the distinction between I(0) and I(1) can be too restrictive especially when we use 

high frequency data. There is also a continuously increasing number of studies that 

report the presence of autocorrelation in the squared or absolute returns. From all the 

aforementioned considerations and empirical findings a new class of models was born.  

The new promising member of the Heteroscedastic family of models is called 

the Fractionally Integrated Generalized Autoregressive Conditional Heteroscedasticity 

Model or simply FIGARCH and was developed by Baillie, Bollerslev & Mikkelsen, 

(1996) The appealing feature of this parameterization is that it combines many of the 

features of the fractionally integrated processes for the mean, with the regular time 

varying conditional heteroscedasticity property of the GARCH models. It also has an 

important advantage compared with the ARFIMA models and this is the asymptotic 

consistency of its Maximum Likelihood Estimator. 

But let�s formalize now our discussion. The starting point as in the case of the 

conventional GARCH models is the discrete time real-valued stochastic GARCH 

process{ }tε  with the underlying generating mechanism of the former being t t tzε σ≡  

Two important properties of the zt   standardized innovations process are the following: 

1

1

( ) 0
( ) 1

t t

t t

E z
Var z

−

−

=
=

  For the rest of our discussion the operators 1

1

(.)
(.)

t

t

E
Var

−

−





 will depend on 

the same information set  1t −Ω  . The commonly used GARCH (p,q) model is given 

from the equation 2 2 2( ) ( )t t tL Lσ ω α ε β σ= + +  where 
2

1 2

2
1 2

( ) ...

( ) ...

q
q

q
q

L L L a L

L L L L

α α α

β β β β

≡ + + +

≡ + + +
  

are the Lag Polynomials. The GARCH process can be also written in an infinite order 

ARCH representation as it is shown immediately below: 

[ ]
2 2 2( ) ( )

1 (1) 1 ( ) 1 (1)t t t
L L

L
ω α ωσ ε λ ε
β β β

= + = +
− − −

 

We can alternatively consider the GARCH model as an ARMA(m,p) in the squared 

residuals. For this purpose we must first define the shock to volatility term tv  with 

2 2
t t tv ε σ= − .  So we now have [ ] [ ]21 ( ) ( ) 1 ( )t tL L L vα β ε ω β− − = + −  , with 

  max( , ) m p q≡ . For Stability and second order stationarity all the roots of the 

polynomials 
[ ]
[ ]
1 ( ) ( )

1 ( )

L L

L

α β
β

− − 


− 
 must lie outside the unit circle.  The stationarity in 

this framework means that the effect of the squared past innovations of the current 
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conditional volatility decays with an exponential rate. In the case that the 

autoregressive polynomial [ ]1 ( ) ( )L Lα β− −  contains a unit root we say that the 

GARCH process in integrated in variance. The integrated GARCH model that we 

simply denote as IGARCH is given by the following equation: 

[ ]2( )(1 ) 1 ( )t tL L L vφ ε ω β− = + −  where  [ ]1 ( ) ( )
( )

(1 )
L L

L
L

α β
φ

− −
≡

−
 and is of order m-1. 

The only step needed in order to transfer our discussion to the FIGARCH 

representation is the replacement of the first difference operator with the fractional 

differencing operator. The fractional differencing operator (1 )dL−  has a binomial 

expansion which can be expressed in terms of the hypergeometric function: 

( ) ( ) ( ) ( ) ( )
00 00

1 1

0 0
1 ,1,1; 1d k k

k
k k

L F d L k d k d L Lπ− −

= =
− = − = Γ − Γ + Γ − ≡∑ ∑  

with Γ(.) denoting the Gamma function. So the FIGARCH(p,d,q) process is defined as  

( ) [ ]2( ) 1 1 ( )d
t tL L L vφ ε ω β− = + −   with 0 < d < 1. All the roots of the corresponding 

polynomials lie outside the unit circle. This model has also an alternative 

representation: 

 [ ] 2 21 ( ) 1 ( ) ( )(1 )d
t tL L L Lβ σ ω β φ ε − = + − − −   

Finally, the conditional volatility  of tε  is obtained from the following infinite order 

ARCH representation: 

[ ] [ ] [ ]
2 2 2( )(1 )1 ( )

1 (1) 1 ( ) 1 (1)

d

t t t
L L L

L
ω φ ωσ ε λ ε
β β β

 − = + − = + − − −  
 

The FIGARCH process is not weakly stationary as is the case with the GARCH 

processes because the second moment of tε  is not finite. However both processes are 

strictly stationary for  0 1d≤ ≤  . The persistence of volatility  can be expressed in 

terms of the impulse response coefficients of the optimal forecasts for the conditional 

variance. 
( ) ( )2 2

1t t k t t k
k

t t

E E
v v
ε ε

γ + + −∂ ∂
≡ −

∂ ∂
 . The impulse response coefficients can be 

found if we first modify the equation given for the FIGARCH Model in the equivalent 

form:   ( )
( )

[ ]
( )

2
1 1

1 ( )
1 ( )

1 ( ) 1 ( )
t t td d

L
L v L v

L L L L
βωε ζ γ

φ φ− −

−
− = + ≡ +

− −
   

To assess now the long term impact of shocks in the volatility process we compute the 

limit of the cumulative impulse response weights.  
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[ ]1

00 00
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Cumulative impulse response weight
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∑

  

For 0 1d≤ <  , we will have ( 1,1,1;1) 0F d − =  and so even in the long memory 

FIGARCH model, with 0 < d < 1 the limit of the cumulative impulse response 

weights will tend to zero. This means that eventually any volatility  shock will die out 

in the long term horizon. This conclusion applies also in the case of the simple 

GARCH process. However the corresponding shocks will dissipate much faster in the 

latter. More specifically a certain shock in volatility  will decay at an exponential rate 

in the standard GARCH model and at a hyperbolic rate in the FIGARCH model, 

despite the fact that the cumulative impulse response weights for both 

parameterizations will tend to become zero. For d = 1 the FIGARCH model becomes 

an IGARCH and so this means that any shock will persist forever. Finally the 

Maximum likelihood estimator of the parameters of the FIGARCH(p,d,q) can be 

obtained by the maximization of the log likelihood function given the specific 

realization:  ( ) ( ) ( )
2

2
1 2 2

1

1log ; , ,..., log 2 log
2 2 2

T
t

T t
t t

T TL εθ ε ε ε π σ
σ=

 
= − − −  

 
∑  

An important point that we must note here is that when estimating GARCH 

models, it is needed to use some initial values in order to be able to start the 

recursions for the conditional variance function. Usually the unconditional variance is 

used to define the presample values of the squared innovations that will be used as 

initial values. Unfortunately the long term variance does not exist in the case of 

FIGARCH models. However, through asymptotic analysis it has been shown that 

conditioning on the same as in conventional GARCH, presample values will not 

distort the asymptotic distribution of the estimators. We must also note that because of 

the long memory in the volatility  process as expressed from the slow decay of the 

cumulative impulse response weights, the presample values will affect our process for 

a much longer number of steps in the recursive estimation. That�s why it is necessary 

to set a truncation lag at large number. Usually it is set to 1000. The above 

considerations will be of great importance as will be shown in the next chapter when 

we will use the FIGARCH as the data generating process in our Monte Carlo 

simulation study. In the rest of this chapter we provide a brief literature review. 
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3.3 LITERATURE REVIEW ON LONG MEMORY 

 
Lo (1991) develops a test for long run memory that is robust to short range 

dependence. It is an extension of the range over standard deviation or R/S Statistic for 

which the relevant asymptotic sampling theory is derived via functional central limit 

theory. Lo also presents an interesting distinction between the short range and long 

range statistical dependence using the concepts of mixing conditions. He adopts 

strong mixing as an operational definition of short range dependence. He then 

conducts a Monte Carlo experiment in order to investigate the finite sample size and 

power properties of the test statistic that he has introduced. Finally using empirical 

data his research is focused in the detection of possible long memory in the first 

moments of specific time series. The dataset used in this study consists of monthly 

and daily observations of the CRSP value and equal weighted indexes. The daily data 

are available from July 1962 to December 1987 (6.409 Observations) and the monthly 

data are available from January 1926 to December 1987 (744 observations). 

According to this study, there is no evidence of long range dependence in any of the 

indexes over any sample period or sub period once short range dependence is taken 

into account. These findings mean that there is little support for long term memory in 

U.S. Stock returns.  

Cheung (1993) uses the semi nonparametric Geweke-Porter-Hudak test for the 

detection of long memory in exchange rate data and the use of fractionally integrated 

autoregressive moving average models for the examination of the time series 

dynamics of exchange rates. The time series properties of five nominal dollar spot 

rates (British Pound, Deutsche Mark, Swiss Franc, French Franc and Japanese Yen) 

are examined. The dataset consists of weekly observations of the exchange rates 

mentioned above and spans from January 1974 to December 1989. It is important to 

note that the author mentions the serious weakness of using ARFIMA models in that 

they do not incorporate the conditional heteroscedasticity pattern frequently observed 

in the foreign exchange data. He implicitly refers to the need for the creation of long 

memory models that will incorporate the time varying nature of the conditional 

volatility. The results indicate the presence of long memory in the exchange rates. 

This implies that the empirical evidence of unit roots in exchange rate data is not 

robust to long memory alternatives. Finally the author defines two possible sources of 

long memory in the foreign exchange rates. A first explanation is the Purchasing 
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Power Parity. This means that the exchange rates are tied to the movements of relative 

national prices. As has been observed in other studies, there is evidence of long 

memory in Capital Price Indexes. This characteristic may be transmitted also in the 

exchange rates and gives them the observed long memory property. A second 

explanation is that the Macroeconomic Fundamentals (Money Supply, Output etc.) 

may be fractionally integrated. He denotes also the need for further research in this 

field. 

Baillie, Bollerslev & Mikkelsen (1996) propose a new class of models, the so 

called fractionally integrated generalized autoregressive conditional heteroscedasticity 

processes. The shocks in these processes die out at hyperbolic rate that is determined 

from the value of the long memory/fractional differencing parameter. The Quasi 

Maximum Likelihood Estimator of these models is proven through Monte Carlo to 

have very good finite sample properties and is also argued to be asymptotically 

consistent. The authors apply their proposed model in the estimation of the long 

memory characteristic in the Deutschmark-US dollar exchange rate volatility process. 

Their sample contains daily data for the period starting in March 1979 through 

December 1992 (3.454 Observations). In the empirical research that they conduct, the 

FIGARCH model is compared with the alternative IGARCH specification as well as 

with the standard GARCH model. They conclude that the long run dynamics of the 

series used are better modeled by the fractional differencing parameter. A one sided 

test for d = 1 against d < 1 also rejects the null hypothesis of an IGARCH process. 

The superiority of the long memory specification is also demonstrated from the 

analysis of the cumulative impulse response weights for the influence of a shock 

(innovation) in the forecasts of the conditional variance.  

Baillie (1996) presents a summary of the empirical findings of a vast number of 

research studies in the field of long memory processes. According to the author the 

presence of long memory can be defined from an empirical data-oriented approach in 

terms of the persistence of observed autocorrelations. The extent of the persistence is 

consistent with that of stationary processes but in contrast to them the autocorrelations 

decay far more slowly than the exponential rate associated with the stationary ARMA 

class of models. In his study Baillie also refers to the credibility of the semiparametric 

and parametric estimators proposed in the literature. The main advantage of the 

former is that they focus on the key parameter of interest while allowing for short 

memory effects to be neglected. Unfortunately however, simulation work has 
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generally revealed a disappointing performance of these estimators. In the alternative 

parametric case that makes use of certain specifications, it is argued that the 

identifiability of high-order ARFIMA models often appears problematic as it is shown 

from the available empirical studies. In some cases the estimated value of d appears 

sensitive to the parameterization of the high frequency components of the series and 

in other cases, a unit root is included in the confidence interval of the fractional 

differencing parameter estimate. Finally the author briefly mentions the most common 

applications of long term memory models. Paradigms in the areas of geophysical 

sciences, macroeconomics and asset pricing are discussed. 

Andersen and Bollerslev (1997) investigate the long memory characteristics of 

foreign exchange rates. The volatility now is interpreted as a mixture of numerous 

heterogeneous short run information arrivals. They estimate the degree of long term 

memory in the volatility process of the spot Deutsche Mark, U.S. dollar denominated 

exchange rate, using two frequency domain semi parametric estimators. Their sample 

is consisted of five minute returns over a period of one year amounting to the vast 

number of 74.880 Observations. Analyzing the frequency spectrum, it is found that at 

low intradaily frequencies the spectrum is approximately log-linear, indicating the 

presence of long memory in volatility. By using the log-periodogram GPH estimator 

and the frequency�domain semi parametric estimator of Robinson (1994) they 

estimate the long-memory parameter d.  It is also shown that the corresponding 

fractional differencing operator constructed from the estimated d , is able to filter all 

the long run dependencies in the conditional second moments process. Consequently, 

a low pass filter in the frequency domain eliminates the powerful intradaily pattern of 

volatility and makes it possible to reveal a hyperbolically decaying autocorrelation 

function, a fact indicative of the presence of long memory effects in the exchange 

rates volatility process. It is finally argued that the long memory characteristics of a 

time series constitute an intrinsic feature of the return generating process rather than 

the manifestation of occasional structural shifts. 

Teyssiere (1998) makes use of alternative multivariate long memory models, 

trying to capture the long term dependence and the volatility  dynamics of foreign 

exchange rates. The reason for extending the long memory ARCH models to a 

multivariate framework is according to the author, the fact that some time series 

appear to share a common degree of long memory in their conditional variances. The 

author proposes two main multivariate specifications. The first is the Conditional 



 

MSc in Banking and Financial Management, University of Piraeus, 2008 

- 55 -

Constant Correlation FIGARCH and the second is an unrestricted multivariate long 

memory ARCH model. The drawback of the first parameterization is the 

oversimplifying hypothesis that the conditional covariances are proportional to the 

product of the two corresponding conditional standard deviations. From the other side 

the unrestricted alternative is much more complicated demanding the estimation of a 

large number of parameters. His data set consists of 30 min data for three series of 

foreign exchange returns, USD/DM, USD/GBP and USD/JPY. The total number of 

observations is 12528.  

As a first step the author estimates univariate long memory models in order to 

investigate separately the long memory features in each of the series. The observation 

of a common degree of long memory in the conditional variance of the three exchange 

rates leads to the estimation of a trivariate FIGARCH model. The author also 

mentions the seasonality patterns in the series used and denotes the importance of 

correctly modeling these features before proceeding with the estimation of long 

memory models. From the estimations of alternative multivariate models the author 

concludes that the unrestricted FIGARCH is preferred. The three series demonstrate 

(as previously mentioned in the univariate case) the same degree of long memory. 

Finally it is argued that the FIGARCH model is inadequate to capture the seasonal 

component of volatility and this is exhibited from the significance of the 

autocorrelations of the squared standardized residuals from both FIGARCH models, 

implying a misspecification in the conditional volatility models. A possible solution 

of this problem according to the author is the use of a different time scale in which the 

time will be normalized with the level of market activity. 

Bollerslev & Mikkelsen (1999) study the dynamics of stock market volatility. 

Their research supplements the existing literature regarding the long term dependence 

of stock market volatility by indirectly inferring the degree of fractional integration in 

an aggregate equity market, using a panel dataset of financial options transactions 

prices on the S&P 500 composite index. The dataset used in their analysis is consisted 

of daily closing prices for all the CBOE (Chicago Board of Options Exchange) traded 

S&P 500 long term equity anticipation stocks contracts (leaps) for a 141 week period 

spanning from January 1991 until September 1993. The begin their study with a brief 

description of the theoretical financial options pricing framework demonstrating the 

impact of the conditional volatility  forecasts in the formulation of the theoretical 

options prices. The authors use as a benchmark model through their analysis, the 
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Black and Scholes (1973) option pricing formula that assumes a constant variance and 

a continuous time random walk process for the underlying asset price.  

For the estimation of the theoretical leaps prices the authors use Monte Carlo 

simulation techniques through which they generate a large number of different paths 

for the simulated prices. They calculate the leaps prices with both a daily and a 

weekly sample frequency in order to ensure the robustness of their empirical findings. 

The authors compare the observed leaps prices with their simulated theoretical 

counterparts obtained using alternative specifications for the volatility process such as 

the EGARCH, IEGARCH, FIGARCH, and FIEGARCH parameterizations. The leaps 

valuations lead to the conclusion that the FIEGARCH model tends to produce the 

most accurate prices in both daily and weekly frequencies as demonstrated from the 

low average pricing errors. The above results are in favor of the presence of long 

memory in stock market volatility. 

Baillie, Cecen and Han (2000) investigate whether the FIGARCH long 

memory volatility process can adequately model the time series dynamics of the 

Deutschemark / US dollar spot exchange rate returns in multiple different frequencies. 

Two distinct datasets are used. The first contains low frequency, daily observations 

spanning from March 1979 to December 1998 (4.989 Observations). The second 

sample consists of higher frequency data. More specifically the authors use a huge set 

of 30-minute exchange rates with a sample period from 00:30 GMT January 1, 1996 

through 00:00 GMT, January 1, 1997 (12.576 Observations). The most important 

empirical findings are the almost similar values of the estimated long memory 

volatility parameters across the various frequencies. This fact is indicative of a 

common process underlying the generation mechanism of returns and supportive of 

the fact that long memory is an intrinsic feature of the system and is not caused by 

exogenous shocks or regime switches. The FIGARCH model used by the authors is 

also tested against the standard GARCH specification via the classic Wald tests. 

These tests just confirm the superiority and robustness of the long memory volatility 

model. An observable pattern in the autocorrelation function of the squared and 

absolute returns is the intradaily periodicity. This phenomenon is generally being 

attributed to the opening of the European, Asian and North American markets 

superimposed on each other and it is filtered from the series by using the Flexible 

Fourier Form method. The conclusive remark of this paper is that the FIGARCH 
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models appear to be successful in accounting for the dynamics of the returns series 

studied irrespectively of the frequency of the data used in the estimations. 

Brunetti & Gilbert (2000) use a bivariate FIGARCH framework in order to test 

for fractional cointegration. They provide an analytical presentation of the 

methodology proposed for cointegration testing in a multivariate FIGARCH 

framework along with a detailed discussion of Cointegration theory. There is an 

important point that we must note here. Unlike the Fractional Cointegration tests in 

the first moments processes, when we work with the unobservable skedastic processes 

we cannot presuppose stationarity since the volatility  processes often encountered in 

finance are by nature  stationary. The empirical testing takes place on the NYMEX 

and IPE crude oil markets which are known to be closely related using monthly data 

for the period from June 1988 till March 1999. It is investigated whether the volatility 

processes of these two markets are fractionally integrated, and also whether there is a 

common order of fractional cointegration (e.g. if there is a linear combination of the 

two series that exhibits a lower order of fractional integration).  

A causality in variance test is also conducted using the squared standardized 

residuals obtained from the estimation of the univariate FIGARCH Models. There are 

no signs of any volatility spillovers between the two series. The results of the rest of 

the tests show the high degree of persistence in the volatility processes and a common 

degree of fractional integration. This implies that a linear combination of the two 

processes may be less persistent than the volatilities themselves even though it 

remains fractional. The most important outcome of this study is that the two volatility 

series are indeed fractionally cointegrated with the NYMEX appearing to be the 

dominant market as shown from the significance of the corresponding cross market 

volatility transmission parameters estimated in the bivariate FIGARCH model. 

Szilard and Laszlo (2001) develop a multivariate diagonal FIGARCH model 

that builds upon the hypothesis of a common order of fractional integration. 

According to researcher�s claims this parameterization is the most logical and 

intuitive of the various alternative multivariate extensions and it is the most suitable 

choice for adapting the concept of long memory and fractional differencing to a 

multivariate framework. In order to overcome some serious difficulties occurring 

during the estimation of this model even in this parsimonious representation, the 

fractional differencing operator (1-L) ^d is kept a scalar. This means that a common 

structure on the long memory components is imposed. A theoretical justification of 
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this hypothesis is discussed. It is argued that the market efficiency implies a similar 

long range behavior in the volatility of these series and some indicative empirical 

studies are also mentioned. The QMLE estimator of this parameterization is 

extensively tested through a Monte Carlo simulation. The proposed estimator 

demonstrates a satisfactorily good performance and is robust to distributional 

assumptions.  

In the rest of the paper the researchers use a trivariate specification for jointly 

modeling the daily volatility of the German mark, British pound and Japanese Yen 

against the U.S. dollar. The dataset contains daily spot rates of the aforementioned 

exchange rates and spans from July 1981 through January, 2001. As a first step an 

unrestricted specification of the trivariate diagonal FIGARCH is estimated. In this 

case there are six long memory parameters estimates. Then the alternative restricted 

specification is estimated and contrasted to the former. A likelihood ratio test seems to 

be in favor of the restricted model. Finally it is commented that the estimated value of 

the scalar long memory parameter is very close to estimates of previous empirical 

studies. 

Vilasuso (2002) conducts a comparative investigation of the forecasting 

accuracy of alternative conditional volatility models. Three specifications are tested 

through his research. These are the conventional GARCH, the IGARCH and the 

FIGARCH models. The sample dataset consists of various daily US dollar 

denominated spot exchange rates and more specifically the Canadian dollar, the 

French franc, the German mark, the Italian lira, the Japanese yen and the British 

pound. The sample period extends from March 1979 until December 1997. From an 

initial estimation of the variance models it seems that the FIGARCH captures more 

adequately the volatility dynamics of the exchange rates as can be demonstrated from 

the low values of the Ljung-Box portmanteau statistics for the squared standardized 

residuals. In the next step the author using the previous estimates, evaluates the out-

of-sample forecasts of the models for the period 1 January 1998 to 31 December 1999. 

The volatility forecasts are then compared with the squared daily exchange rate 

returns with the forecasting accuracy being determined from the calculation of the 

mean square error (MSE) and the mean absolute error (MAE). Three forecasting 

horizons are used, a 1-day, a 5-day and a 10-day horizon. For all the criteria the 

FIGARCH model, generates superior out-of-sample forecasts with these results being 

more denounced when longer forecasting horizons are considered.   
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Banerjee & Urga (2005) discuss some of the most important developments in 

the field of modeling the long memory in financial time series. They also explicitly 

refer to the link that exists between long memory and Structural Breaks. A useful 

discrimination between the estimation methods proposed to test for the long range 

dependence is also conducted. The tests can be divided into two classes, �semi 

parametric� and �parametric� estimation methods. Semi parametric methods (like the 

GPH Test) do not require the modeling of a complete set of autocovariances, but are 

interested just in the parameter d. In contrast to this approach, parametric techniques 

involve the complete estimation of models like the FIGARCH or ARFIMA.  The 

drawback with the parametric case is that it is computationally demanding and prone 

to misspecification. From the other side the semi parametric methods are not as 

efficient as their parametric counterparts. The paper concludes with an important 

notification. The estimates of the long memory parameter depend on the number of 

regime switches and where they occur in the sample. Processes with infrequent 

regime switching may generate a long memory effect in the autocorrelation function. 

In such a case fractional models may lead the researchers in spurious results. 

Caglayan and Jiang (2006) propose a new parameterization in order to 

investigate in a multivariate framework the dual long memory properties in the first 

and second moments of inflation and output growth as well the causal relations 

between them. The new class of models is the bivariate Constant Conditional 

Correlation ARFIMA-FIGARCH models. Through this specification it is possible 

among others to study whether the long memory in inflation is due to the output 

process. Their data set is consisted of monthly consumer price index (CPI) and 

industrial production index (IPI) series covering the period from February 1957 until 

May 2005. Proceeding with their work the authors estimate univariate models in order 

to gain a first outlook in regard with the presence or not of dual long memory in the 

series. In the next stage they estimate the bivariate ARFIMA-CCC-FIGARCH model 

assuming a constant correlation coefficient structure. The fractional differencing 

parameters in the mean and the variance of the series obtained from the bivariate 

model are very similar to those obtained from the estimation of the univariate models 

suggesting that both inflation and output growth exhibit long memory in the means 

and conditional variances.  

Morana (2006) analyzes the volatility dynamics of the Deutsche mark-US 

dollar exchange rate. He discusses the importance of accounting for structural breaks 
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and stochastic intradaily patterns in the volatility process. The aims of his research are 

firstly to estimate the FIGARCH model using a large number of observations, 

secondly  to compare the evidence from high frequency data with that from daily data 

and finally to evaluate the robustness of the econometric estimates to various models 

of intraday volatility. The sample data set consists of both daily and high frequency 

observations for the DM / US exchange rate. The low frequency sample spans from 

January 1972 to December 1997 with a sub-sample from 1992 to 1997 being also 

used.  The high frequency sample consists of 30-min data points for the period from 

1992 until 1997 and as a sub-sample the year 1996 is used.  

The most important empirical results reached by the author are the following. In 

the daily frequency the estimates for the long memory parameter are of smaller size 

when the short sample is considered than when the longer sample is used. This result 

may be indicative of the fact that structural changes may induce the long memory in 

the volatility process. When the high frequency sample is considered the estimation 

for the long memory parameter is once more lower for the sub-sample than the 

corresponding estimate for the longer sample. Also when a filter for the intraday 

seasonal features is applied in the raw data, an increase in the fractional differencing 

parameters is observed for both short and long sample of high frequency data. This 

result declares the importance of accounting the intradaily pattern in the time series. 

The conclusive suggestion by this author is that the FIGARCH models are sensitive to 

both the length of the data set and the presence of intradaily repetitive patterns. 

Baillie and Morana (2007) introduce a new long memory volatility model, the 

so called Adaptive FIGARCH that is able to capture both the long memory and 

structural changes in the conditional variance process. More specifically the adaptive 

FIGARCH process is formed from two basic components. A long memory volatility 

process and a deterministic time varying intercept that allows for breaks, cycles and 

changes in drifts. The structural changes are modeled with the use of a flexible 

functional form allowing the intercept to be time varying. The estimation of this new 

model can be done with the usual Quasi Maximum Likelihood method. The authors 

argue that the QMLE is asymptotically normal and consistent, maintaining the 

optimal properties of the estimator used in the case of IGARCH processes. 

 In order to investigate the impact of estimating A-FIGARCH models under 

different data generating processes a Monte Carlo simulation is conducted. They use 

various alternative scenarios with the existence or absence of structural breaks as well 
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as of different values for the fractional differencing parameters. The results of the 

simulations are the following. Under a no structural breaks environment the A-

FIGARCH estimation has approximately the same degree of small sample bias as the 

corresponding estimate of the more conventional FIGARCH model. In the case that 

structural breaks are present however, the degree of bias in the estimates of the long 

memory parameters is smaller for the Adaptive FIGARCH relative to the FIGARCH 

specification for all the three different true values of the long memory parameter. The 

authors also conduct an empirical research estimating the above models for the S&P 

500 returns. Their data set consists of 20863 observations spanning from January 

1928 through February 2007. From their estimations it is found that neglecting the 

presence of structural breaks, results in important biases in the estimated conditional 

volatility processes denoting in this way the usefulness of the proposed variance 

model. 

Krämer and Azamo (2007) study the nature of the excess persistence estimates 

often encountered in empirical research, when standard GARCH(1,1) models are used. 

Their theoretical motivation, deviates from the already discussed long memory in 

volatility that may be an intrinsic (but some times not properly modeled or even 

ignored) feature of a certain financial time series. The source of excess persistence 

according to these authors is not the misspecified use of conventional GARCH 

specifications (instead of their long memory alternatives), but the presence of regime 

switches during the sample period used. The incentive for research in this direction 

was born through the observation that the often strong, estimated persistence in 

financial volatility was not directly materialized in the construction of more accurate 

forecasts in applied working. Instead of that it seems that there exists an upward bias 

in the persistence estimates towards the maximum value of one (e.g. persistence 

measured from the sum of the coefficients in the GARCH parameterization) that is 

more intense in larger sample sizes. More specifically the estimated persistence 

depends mainly on the calendar time span of the sample and not only on the sample 

size. The explanation of this result is the fact that the probability of a regime switch 

(that is a mechanism which enforces the persistence in variance), increases with 

increasing calendar time. The authors also conduct Monte Carlo simulations in order 

to study the effects of structural breaks in the estimated persistence, demonstrating in 

practice the validity of their theoretical suggestions.  
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Kang and Yoon (2007) examine the presence of dual long memory in the return 

and volatility of the Korean Stock market. According to these authors long memory is 

often observed simultaneously in the mean and the variance of returns. They also 

argue that equity returns may exhibit a statistically significant asymmetric 

leptokurtosis. Through their research they make use of both the Gaussian 

distributional assumption and a skewed version of the Student�s t distribution in order 

to be better able to capture any possible asymmetries and/or fat tails in the stock 

market returns distributions. The main focus of these authors is to investigate whether 

a combinatorial parameterization such as the ARFIMA-FIGARCH model, can more 

adequately describe the dynamics of the Korean Stock Market, compared with the 

single ARFIMA or FIGARCH specifications. Their dataset consists of daily closing 

prices of the KOSPI index covering the period from January 1980 to December 2005 

(7290 Obs.) and of the KOSDAQ index spanning from July 1996 through April 2006 

(2539 Obs.) The ARFIMA-FIGARCH model is found to provide the best fitting tool 

for capturing the dual long memory in both Korean Equity Indices confirming the 

introductory suggestions of the two authors. The skewed Student�s t distribution is 

also found to characterize the returns in the Korean Stock Market. 

Chitkushev, Wang et al. (2008) compare the volatility return intervals of the 

S&P 500 index with those generated from two frequently used time series models 

namely the Fractional Brownian Motion and ARMA-FIGARCH specifications. A 

return interval is defined as the time between successive volatilities above a certain 

threshold. In order to study the memory property, the authors analyze among others 

the conditional probability density functions of the intervals with the conditioning set 

containing the preceding interval. Their dataset spans from January 1984 until 

December 1996 and is consisted of 10 min. points for a total of 132.000 observations. 

In their analysis they filter the intraday patterns from the data in order to avoid any 

possible spurious conclusions. It is demonstrated that both in empirical and long 

memory simulated data the short (long) return intervals are more likely to be followed 

by short (long) return intervals. This is clearly a sign of clustering in volatility returns 

intervals. This observable pattern is absent in the case that the real data are randomly 

shuffled. They also study the cluster size probabilities in order to investigate whether 

there exists long memory in the return intervals. For this purpose short memory data 

are generated in order to test if this kind of memory can explain the cluster size 

distributions. It is shown that the cluster size probabilities for both high and low return 
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intervals of the S&P 500 have a different behavior than those of the short memory 

generated data. This suggests the existence of long memory in volatility.  

Gabjin, Seunghwan & Cheoljun (2008) investigate whether there exists a long 

memory property in high frequency data concerning diverse stock market indices and 

foreign exchange rates. In order to investigate the presence of long term memory in 

the volatility of financial time series the authors used 1-min data from two Korean 

Indexes from 1995 to 2002 and 1997 to 2004 respectively. They also used 5-minute 

foreign exchange data for Euro, British Pound, Japanese Yen and other currencies. 

The method for the quantification of the long memory property is the detrended 

fluctuation analysis. For all market data studied, no strong long memory property was 

found in the returns series as exhibited from the fast decay of the autocorrelation 

function and the values of the Hurst Exponents fluctuating around 0.5. In contrast to 

this result significant long term memory was found in the volatility process and this is 

clearly seen in the Power Law decay of the autocorrelation function. The main results 

of this study are that the long memory property of the volatility processes when 

existing can be attributed mainly to the volatility  clustering observed in financial time 

series. This conclusion is reached from the observation that the values of the Hurst 

Exponents are reduced (although not in the extent as in the FIGARCH case) when the 

long memory data are filtered by the standard GARCH Models.  

Bentes, Menezes & Mendes (2008) study stock market volatility and the 

reasons that lie beyond price movements. Volatility clustering and long memory are 

two well documented characteristics related to financial time series. In this paper, a 

new method for detecting the presence of long memory is introduced. This technique 

is based on the concept of entropy. More specifically three different measures are 

presented. The Shannon entropy, the Renyi entropy and the Tsallis entropy all of them 

being used for over a century in the discipline of Physics. These measures can be used 

to explain the tendency of a natural phenomenon to flatten out and gradually 

disappear over time. The authors use daily data from S&P 500, Nasdaq 100 and Stoxx 

50 indexes, constituting a sample spanning over the period of June 2002 till January 

2007. They also compare the empirical evidence obtained from the use of standard 

heteroscedastic models with that from using the entropy measures. The results from 

the estimation of FIGARCH models and the entropy measures lead to the conclusion 

that long memory characterizes the volatility processes.  
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CHAPTER 4 : MONTE CARLO STUDY  

 
4.1 INTRODUCTION 

 
The main purpose of our study is the extensive investigation of the finite sample 

properties of the causality in variance / mean, tests that have been presented in the 

previous sections. We must note that we have not used through our research the 

Multivariate BEKK GARCH based test. The main reason for this omission is that this 

methodology is extremely demanding from a computational perspective and thus it 

would be very difficult to perform an adequate number of replications in order for this 

method to be comparable with the others. Thus we will focus on three other 

techniques, namely the Cheung & Ng, the Hong and the Lagrange Multiplier tests. 

During our research we have conducted a large number of simulation experiments and 

in this way an important volume of artificial data has been accumulated. These data 

are available from the author upon request. Our empirical work can be categorized in 

four discrete Monte Carlo designs. In each of them we make use of three different 

sample sizes. The reason for this sampling variety is that we want to derive empirical 

results that are of practical importance for both the field of macroeconomics (where 

low frequency data are usually used) and the field of finance (where high frequency 

data are more easily available).  

 One common choice through our study (with the exception of the last design) is 

the number of observations that we discard in each replication. This number is set 

equal to 1000 observations. For example for a generation of a 500 observations 

sample we in fact generate 1500 observations but afterwards we use only the last 500. 

This approach was undertaken in order to minimize the simulation bias effects that are 

caused by the arbitrarily chosen initial values (necessary for the recursive simulation 

initiation). The initial value for the conditional volatility process was set equal to the 

unconditional long term variance in the first three designs (in the fourth one it was set 

equal to 1000), while the initial value for the real valued series was set equal to zero. 

The initial value for the GARCH residuals process was estimated using the square 

root of the initial value for the unconditional variance multiplied by a standardized 

normal random number. More details regarding the Data Generating Processes, the 

causality in variance methodologies and the Monte Carlo Designs are available in the 
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Appendix A of our work where we provide the MatLab code that was used through 

our research.  

 

The Monte Carlo experiments that we have conducted can be summarized as follows:  

 

1. Calculation of the Finite Sample Properties of causality in variance tests under 

different distributional assumptions for the underlying residuals Process. 

 

2. Calculation of the Finite Sample Properties of causality in variance tests under 

filtered & unfiltered causality in mean. 

 

3. Calculation of the Finite Sample Properties of causality in mean Tests under the 

presence of volatility Spillovers (with or without GARCH in Mean Effects) & under 

no volatility spillovers.   

 

4. Calculation of the Finite Sample Properties of causality in variance tests under long 

memory in volatility and assuming either a Standard Normal or a Normal Inverse 

Gaussian distribution for the residuals (errors). 

 

For all the designs we have chosen to generate 2000 Replications using the sample 

sizes of 200, 600 & 1000 observations. For brevity reasons however we present the 

results for the 200 and 1000 observations only. In the following lines a brief revisit in 

the various tests is attempted in order the reader to instaneously refer to the various 

formulas without having to go back in the theoretical part of the dissertation. 
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1st Class of Tests: Cheung & Ng Cross Correlation Function based Tests. 
 
1. �Standard� version of the Test. 
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2. �Modified� version of the Test. 
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2nd Class of Tests: Hong Tests with Kernel functions for the lag weights. 
 
1. �Hong� version 
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2. �Modified Hong� version  
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3. �Bidirectional Hong� version 
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Kernel Functions used in the Hong class of tests. 
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3rd Class of Tests: Lagrange Multiplier Test 
 
 
1. We estimate GARCH(1,1) models for εit   and εjt   and then obtain the standardized 

residuals ξit  , the derivatives χit  and the conditional variances jth  

2. We then regress 2 1itξ −  on the terms '
itx , 2

1 1,jt jthε − −  . The latter pair is contained 

inside the '
jtz  variable 

3. The  λLM   test statistic would be obtained by calculating the product T * R2   , where 

T is the sample size and R2  is the coefficient of determination obtained from the 

regression in step II.  

This procedure is followed in order to perform a test for volatility transmission 

from variable j to variable i. A completely analogous procedure we would follow if 

we wanted to test for variance causality in the opposite direction. 
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4.2 MONTE CARLO SIMULATION DESIGN 1 

 
We have calculated the size and power of causality in variance Tests under 

alternative distributional assumptions for the underlying residuals process.   

 

1. NIID (0,1)  

2. Student�s t distribution with eight degrees of freedom 

3. Skewed Student�s t distribution with one degree of positive asymmetry & eight 

degrees of freedom, see Hansen (1994) for details of this distribution. 
4. Skewed Student�s t distribution with one degree of negative asymmetry & eight 

degrees of freedom, see Hansen (1994) for details of this distribution. 
  

In the Appendix D (Design5) we also provide the results obtained using the Normal 

Inverse Gaussian Distribution of Barndorff-Nielsen (1997) that were omitted from 

the main body of our work for brevity reasons. 

 
4.2.1 DATA GENERATING PROCESS 
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In the following tables we provide the Monte Carlo simulation estimations of the 

empirical size and empirical power of the various tests. Details regarding these 

outputs are provided in the upper and lower parts of each table. The numbers beside 

the names of the tests represent the lag lengths (or bandwidths when considering the 

Hong class of tests)  

 

TABLE 1.1         

Empirical Size, Causality in Variance Tests,  N(0,1), Student's t8(0,1), Positively Skewed Student's 
t8, Negatively Skewed Student's t8,  Sample Size: 200 obs.,  Replications: 2000,  Nominal Size: 5% 

         
Cheung & Ng 1 2 5 10 20 30 40 50 

Standard, 
 N(0,1) 4,75 4,60 5,35 5,35 4,75 3,70 2,75 2,00 
Modified 4,90 4,70 5,90 6,60 7,40 7,65 8,25 9,00 
Normal 6,20 5,30 6,15 4,70 6,10 4,85 4,30 3,70 
Bidirectional 5,90 5,50 5,85 5,20 3,85 2,65 1,65 0,95 
Standard,  
t(0,1) 4,10 4,95 6,70 6,85 7,80 7,10 5,70 5,20 
Modified 4,30 5,25 7,35 7,85 10,35 11,20 11,35 12,45 
Normal 6,15 6,10 5,70 5,40 5,80 4,55 4,70 4,75 
Bidirectional 6,45 6,65 8,55 7,95 7,05 5,80 4,45 2,65 
Standard, 
 (+) Sk.t 4,90 6,30 10,35 12,85 14,35 14,50 13,20 12,15 
Modified 4,95 6,60 10,55 13,90 16,45 18,45 19,85 20,45 
Normal 6,35 5,70 6,70 5,95 5,50 5,35 4,55 4,40 
Bidirectional 7,85 9,15 12,40 13,85 15,55 13,60 10,70 7,90 
Standard,  
(-) Sk. t 4,90 7,00 8,60 12,30 14,30 14,70 13,55 12,45 
Modified 4,95 7,15 9,10 12,90 16,50 18,70 20,15 20,75 
Normal 6,55 7,00 5,55 5,65 4,60 5,55 4,75 3,85 
Bidirectional 6,70 9,30 12,15 14,90 15,35 14,20 11,35 8,60 
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Hong 1 2 5 10 20 30 40 50 
Truncated,  
N(0,1) 6,70 6,55 7,30 7,65 8,05 8,25 8,85 9,05 
Bartlett - 6,70 6,60 6,75 7,00 7,15 7,50 7,75 
Daniel - 6,80 6,50 7,20 7,55 7,90 7,65 8,20 
Quadratic 6,65 6,75 6,75 7,05 7,60 7,65 8,10 8,75 
Tukey - 6,70 6,60 7,10 7,20 7,45 7,80 7,45 
Truncated,  
t(0,1) 5,95 6,30 8,60 8,90 11,10 12,05 11,95 12,90 
Bartlett - 5,95 6,50 8,55 8,85 9,15 10,00 10,20 
Daniel - 6,00 6,90 8,65 8,85 9,85 10,55 10,90 
Quadratic 5,95 6,15 7,20 9,00 9,40 10,60 10,95 11,50 
Tukey - 5,95 6,50 8,45 8,85 9,35 10,00 10,60 
Truncated, 
 (+) Sk. t 5,45 7,65 11,65 15,10 17,40 18,80 20,70 20,55 
Bartlett - 5,45 8,50 11,05 13,20 15,45 16,50 17,10 
Daniel - 6,00 8,65 11,15 14,15 16,65 17,15 18,05 
Quadratic 5,45 6,10 9,85 12,10 15,95 17,05 18,00 18,40 
Tukey - 5,45 7,55 10,45 13,75 15,50 16,80 17,30 
Truncated, 
 (-) Sk. t 5,60 8,20 10,15 13,80 17,20 19,50 21,00 21,10 
Bartlett - 5,60 8,00 10,05 13,30 14,80 15,95 17,10 
Daniel - 5,95 8,30 10,40 13,90 16,00 16,90 18,35 
Quadratic 5,70 6,10 9,30 11,55 15,05 16,95 18,45 19,05 
Tukey - 5,60 7,80 9,60 13,10 14,45 16,25 17,35 
         
Modified Hong 1 2 5 10 20 30 40 50 
Truncated, 
 N(0,1) 6,70 6,55 7,35 7,80 8,25 8,40 8,85 9,40 
Bartlett - 6,70 6,60 6,75 7,00 7,15 7,40 7,90 
Daniel - 6,80 6,45 7,20 7,55 7,85 7,75 8,40 
Quadratic 6,65 6,75 6,75 7,10 7,60 7,55 8,40 8,85 
Tukey - 6,70 6,60 6,95 7,20 7,50 7,80 7,70 
Truncated, 
 t(0,1) 5,95 6,30 8,65 8,90 11,20 12,30 12,10 12,95 
Bartlett - 5,95 6,55 8,45 8,85 9,15 10,00 10,45 
Daniel - 6,00 6,90 8,65 8,90 9,90 10,75 10,85 
Quadratic 5,95 6,15 7,30 9,00 9,45 10,65 11,25 11,80 
Tukey - 5,95 6,50 8,50 8,80 9,30 10,40 10,80 
Truncated, 
 (+) Sk. t 5,45 7,65 11,70 15,10 17,10 18,95 20,40 21,05 
Bartlett - 5,45 8,50 11,15 13,35 15,75 16,45 17,50 
Daniel - 6,00 8,70 11,15 14,10 16,70 17,60 18,20 
Quadratic 5,45 6,10 9,90 12,05 16,05 17,25 18,05 18,70 
Tukey - 5,45 7,55 10,55 13,85 15,65 16,75 17,55 
Truncated, 
 (-) Sk. t 5,60 8,20 10,15 13,80 17,60 19,35 20,95 21,20 
Bartlett - 5,60 8,00 10,10 13,50 15,05 16,20 17,25 
Daniel - 5,95 8,30 10,50 14,05 16,15 17,20 18,25 
Quadratic 5,70 6,15 9,30 11,60 15,10 17,15 18,65 19,10 
Tukey - 5,60 7,80 9,60 13,15 14,80 16,45 17,45 
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Bidirect. Hong 1 2 5 10 20 30 40 50 
Truncated,  
N(0,1) 7,25 7,55 7,55 7,60 7,40 7,50 7,80 7,55 
Bartlett - 7,25 7,70 8,00 7,45 7,05 7,25 7,35 
Daniel - 7,25 7,70 7,90 7,40 7,00 7,00 7,40 
Quadratic 7,15 7,30 7,80 7,45 7,25 7,15 7,70 7,75 
Tukey - 7,25 7,70 8,10 7,65 7,35 7,00 7,15 
Truncated,  
t(0,1) 7,35 8,20 10,30 10,65 11,15 11,65 11,95 12,50 
Bartlett - 7,35 8,50 9,60 9,80 10,55 10,45 10,75 
Daniel - 7,35 8,50 9,90 10,25 10,65 10,55 11,15 
Quadratic 7,40 7,45 9,15 10,05 10,65 10,65 11,00 11,20 
Tukey - 7,35 7,90 9,75 10,45 10,45 11,05 10,70 
Truncated,  
(+) Sk. t 7,60 10,30 13,15 16,75 19,05 19,80 20,10 19,45 
Bartlett - 7,60 10,00 13,10 16,00 17,05 16,95 17,00 
Daniel - 7,70 10,45 13,50 16,45 16,45 17,05 17,85 
Quadratic 7,55 7,85 11,40 14,75 16,80 17,25 17,75 17,75 
Tukey - 7,60 9,35 12,75 15,55 16,65 17,35 17,30 
Truncated, 
 (-) Sk. t 7,15 8,70 14,00 17,40 19,65 21,60 20,95 21,30 
Bartlett - 7,15 9,65 12,85 16,35 17,40 18,00 18,85 
Daniel - 7,55 9,90 12,90 16,90 18,10 18,45 19,35 
Quadratic 7,25 7,60 11,25 14,55 17,80 18,55 20,00 20,25 
Tukey - 7,15 9,65 12,45 16,20 17,65 18,05 18,85 
         
Lagrange 
Mult.         
N(0,1) 6,45        
t(0,1) 7,10        
(+) Sk. t 7,35        
(-) Sk.  t 7,50        
         

Notes:  DGP: VAR(1) - GARCH(1,1),    Ho: No Volatility Spillover & H1: Bidirectional Symmetric 
Volatility Spillover in the 1st Lag,   Skewness Parameters: +1 / -1,   The alternative distributional 
assumptions concern the underlying Residuals Process,   The Direction of the Unidirectional Tests is 
from Series 1 to Series 2, The Normal Cheung & Ng, detects Causality in the Specific Lag.  
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TABLE 1.2         

Empirical Size, Causality in Variance Tests,  N(0,1), Student's t8(0,1), Positively Skewed Student's 
t8, Negatively Skewed Student's t8,  Sample Size: 1000 obs.,  Replications: 2000,  Nominal Size: 5% 

         
Cheung & Ng 1 2 5 10 20 30 40 50 

Standard,  
N(0,1) 4,20 5,50 4,70 4,70 4,10 4,05 3,80 3,80 
Modified 4,20 5,55 4,70 4,85 4,45 4,85 4,95 5,15 
Normal 5,25 6,00 4,50 5,50 5,65 5,45 5,35 5,00 
Bidirectional 4,80 4,70 4,35 4,15 4,40 4,20 3,85 3,70 
Standard,  
t(0,1) 5,50 6,30 7,35 8,15 9,10 9,20 8,75 9,10 
Modified 5,55 6,30 7,40 8,35 9,60 9,70 10,10 10,90 
Normal 6,80 6,40 6,65 6,35 5,50 6,50 5,75 5,85 
Bidirectional 6,90 7,20 8,65 9,20 9,75 9,00 8,60 8,55 
Standard,  
(+) Sk. t 4,80 6,40 9,00 11,40 12,55 14,10 14,55 15,00 
Modified 4,80 6,50 9,05 11,50 13,10 14,70 15,90 16,35 
Normal 6,30 5,55 6,45 5,00 5,20 5,55 6,00 6,00 
Bidirectional 6,85 8,60 12,00 13,80 14,15 15,50 16,45 16,20 
Standard,  
(-) Sk. t 4,05 5,60 8,95 10,20 13,10 13,40 14,55 14,05 
Modified 4,10 5,65 8,95 10,50 13,65 13,90 15,50 15,75 
Normal 6,55 5,40 6,30 6,55 5,70 5,90 5,45 5,80 
Bidirectional 6,30 8,40 11,30 13,00 14,65 15,40 15,55 15,15 

 

Hong 1 2 5 10 20 30 40 50 
Truncated,  
N(0,1) 5,85 7,00 6,40 6,05 5,75 5,80 5,95 5,80 
Bartlett - 5,85 6,45 6,55 5,90 6,10 5,85 5,55 
Daniel - 5,65 6,85 6,45 6,20 6,40 5,75 5,90 
Quadratic 5,85 5,75 7,15 6,75 6,10 5,70 6,00 5,90 
Tukey - 5,85 6,20 6,65 6,30 6,00 5,95 5,65 
Truncated,  
t(0,1) 6,70 7,45 8,70 9,55 10,95 10,45 10,95 11,20 
Bartlett - 6,70 8,15 8,55 9,55 10,05 10,15 10,25 
Daniel - 6,75 7,75 9,05 9,40 9,75 10,40 10,40 
Quadratic 6,85 7,00 8,35 9,05 9,70 10,30 10,70 11,05 
Tukey - 6,70 7,70 8,30 8,95 9,75 9,95 10,35 
Truncated,  
(+) Sk. t 5,60 7,30 10,40 12,60 14,10 15,60 16,40 17,05 
Bartlett - 5,60 7,85 10,05 12,05 13,55 14,15 14,85 
Daniel - 5,85 7,90 10,65 12,70 13,80 14,00 15,30 
Quadratic 5,55 5,75 8,80 11,25 13,60 13,95 15,50 16,05 
Tukey - 5,60 7,20 9,90 11,75 13,35 14,10 14,20 
Truncated,  
(-) Sk. t 5,30 6,55 9,85 11,60 14,40 14,80 16,50 16,55 
Bartlett - 5,30 6,95 8,80 11,45 12,60 13,75 14,20 
Daniel - 5,55 6,90 9,20 11,75 13,20 13,80 14,95 
Quadratic 5,30 5,80 8,20 10,80 12,75 14,10 14,95 14,85 
Tukey - 5,30 6,70 8,55 11,45 12,45 13,50 14,15 
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Modified Hong 1 2 5 10 20 30 40 50 
Truncated, 
 N(0,1) 5,85 7,00 6,40 6,05 5,85 5,75 6,00 5,75 
Bartlett - 5,85 6,45 6,55 5,80 6,10 5,90 5,55 
Daniel - 5,65 6,90 6,45 6,20 6,30 5,80 5,85 
Quadratic 5,85 5,75 7,10 6,75 6,10 5,70 5,95 5,85 
Tukey - 5,85 6,20 6,65 6,30 6,00 5,90 5,70 
Truncated, 
 t(0,1) 6,70 7,45 8,70 9,60 10,95 10,40 10,95 11,40 
Bartlett - 6,70 8,15 8,60 9,55 10,00 10,15 10,25 
Daniel - 6,75 7,75 9,05 9,45 9,75 10,40 10,45 
Quadratic 6,85 7,00 8,30 9,05 9,70 10,30 10,65 11,05 
Tukey - 6,70 7,70 8,30 8,95 9,75 9,95 10,35 
Truncated,  
(+) Sk. t 5,60 7,30 10,40 12,65 14,10 15,55 16,40 16,95 
Bartlett - 5,60 7,85 10,05 12,10 13,55 14,10 14,85 
Daniel - 5,85 7,90 10,60 12,80 13,75 14,05 15,40 
Quadratic 5,55 5,75 8,80 11,30 13,55 13,95 15,55 16,15 
Tukey - 5,60 7,20 9,90 11,80 13,35 14,15 14,20 
Truncated,  
(-) Sk. t 5,30 6,55 9,85 11,60 14,45 14,75 16,65 16,65 
Bartlett - 5,30 6,95 8,80 11,45 12,60 13,80 14,20 
Daniel - 5,55 6,95 9,20 11,80 13,20 13,85 14,85 
Quadratic 5,30 5,80 8,20 10,80 12,70 14,15 14,85 14,95 
Tukey - 5,30 6,70 8,55 11,45 12,50 13,50 14,15 
         
Bidirect. Hong 1 2 5 10 20 30 40 50 
Truncated,  
N(0,1) 6,70 6,60 6,60 5,90 6,35 6,05 5,45 6,40 
Bartlett - 6,70 6,50 6,30 5,85 5,25 5,80 6,45 
Daniel - 6,55 6,95 6,25 5,90 5,30 6,00 6,00 
Quadratic 6,45 6,25 7,00 6,10 5,05 6,00 5,80 5,85 
Tukey - 6,70 6,40 6,15 5,85 5,10 5,85 5,90 
Truncated, 
 t(0,1) 7,75 8,35 9,65 10,80 11,20 11,00 11,55 11,30 
Bartlett - 7,75 8,30 9,20 10,60 10,90 11,35 11,40 
Daniel - 7,90 8,25 9,55 11,05 11,25 11,50 11,65 
Quadratic 7,85 7,95 8,85 10,30 11,25 11,50 11,70 11,65 
Tukey - 7,75 8,20 9,35 10,80 11,20 11,20 11,25 
Truncated, 
 (+) Sk. t 5,75 9,80 12,15 14,95 15,80 16,95 18,65 18,75 
Bartlett - 5,75 9,05 11,75 14,55 15,30 15,85 16,60 
Daniel - 6,15 9,65 12,30 15,25 15,85 16,05 17,65 
Quadratic 5,95 6,45 11,10 13,70 15,60 16,25 17,65 18,25 
Tukey - 5,75 8,45 11,35 14,85 15,50 15,75 16,05 
Truncated, 
 (-) Sk. t 5,70 8,45 11,40 13,75 16,85 17,65 17,50 18,30 
Bartlett - 5,70 8,40 11,60 13,10 14,45 15,60 16,20 
Daniel - 5,95 8,80 12,05 13,65 15,15 16,25 16,60 
Quadratic 5,75 6,10 10,35 12,50 14,70 16,25 16,55 16,60 
Tukey - 5,70 8,20 11,15 13,25 14,40 15,60 16,30 
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Table 1.2 (Continued) 

Lagrange 
Mult.         
N(0,1) 4,45        
t(0,1) 6,05        
(+) Sk. T 6,30        
(-) Sk. T 5,65        
         

Notes:  DGP: VAR(1) - GARCH(1,1),    Ho: No Volatility Spillover & H1: Bidirectional Symmetric 
Volatility Spillover in the 1st Lag,   Skewness Parameters: +1 / -1,   The alternative distributional 
assumptions concern the underlying Residuals Process,   The Direction of the Unidirectional Tests is 
from Series 1 to Series 2, The Normal Cheung & Ng, detects Causality in the Specific Lag. 

 

 

 

 

 

TABLE 1.3         
Empirical Power, Causality in Variance Tests,  N(0,1), Student's t8(0,1), Positively Skewed 
Student's t8, Negatively Skewed Student's t8,  Sample Size: 200 obs.,  Replications: 2000,  Nominal 
Size: 5% 
         
Cheung & Ng 1 2 5 10 20 30 40 50 

Standard , 
N(0,1) 22,65 29,30 34,30 32,00 21,25 14,35 10,30 6,90 
Modified 22,80 30,00 35,65 34,35 26,50 21,85 18,00 17,45 
Normal 29,80 25,20 13,75 8,50 4,10 4,00 3,25 3,75 
Bidirectional 29,60 41,05 50,80 45,85 29,70 18,25 10,60 6,15 
Standard, 
 t(0,1) 23,15 32,25 41,35 41,20 32,85 26,45 21,75 16,80 
Modified 23,35 32,75 42,40 43,15 36,90 33,60 31,35 28,15 
Normal 30,40 26,55 14,80 8,20 5,15 4,95 4,65 3,85 
Bidirectional 34,85 49,40 62,85 62,20 47,55 35,30 27,10 18,70 
Standard, 
 (+) Sk. t 20,45 28,60 34,20 35,10 31,10 25,80 23,10 19,60 
Modified 20,65 28,80 34,90 36,60 34,30 30,65 29,35 28,55 
Normal 24,80 20,85 11,00 6,80 4,70 4,65 4,45 3,55 
Bidirectional 29,40 41,85 51,95 49,60 40,20 32,95 25,10 19,20 
Standard,  
(-) Sk. t 20,75 27,20 34,55 34,40 29,50 26,60 22,40 20,05 
Modified 20,85 27,55 35,60 35,20 32,30 31,00 30,30 28,70 
Normal 25,95 19,30 11,00 6,85 5,10 4,65 4,25 3,65 
Bidirectional 30,60 40,20 49,05 49,35 41,25 32,60 24,80 17,70 
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Hong 1 2 5 10 20 30 40 50 
Truncated,  
N(0,1) 26,10 33,85 39,10 37,55 29,30 24,25 20,80 19,85 
Bartlett - 26,10 34,65 39,85 41,55 39,35 37,05 35,35 
Daniel - 26,75 35,50 40,30 41,00 37,10 33,85 31,15 
Quadratic 26,85 28,45 37,90 41,00 38,70 34,30 30,60 28,15 
Tukey - 26,10 33,15 39,10 41,90 39,10 36,05 33,60 
Truncated, 
 t(0,1) 26,55 35,95 45,45 46,50 39,65 36,40 34,30 31,70 
Bartlett - 26,55 39,10 46,50 49,20 47,85 46,70 45,75 
Daniel - 28,35 40,15 47,15 48,65 46,70 43,85 41,80 
Quadratic 27,80 30,00 44,00 48,70 47,90 44,60 41,45 39,70 
Tukey - 26,55 36,90 45,75 49,10 48,20 46,20 43,70 
Truncated, 
 (+) Sk. t 22,40 31,50 37,65 38,55 35,70 32,85 31,20 30,15 
Bartlett - 22,40 34,05 38,85 41,60 40,55 39,75 39,05 
Daniel - 24,65 35,00 39,05 40,95 39,50 38,35 36,90 
Quadratic 23,50 25,35 37,40 40,70 39,85 38,40 36,90 34,90 
Tukey - 22,40 32,65 38,30 41,25 40,25 39,20 37,90 
Truncated,  
(-) Sk. t 23,05 30,20 38,00 37,25 34,30 32,20 32,35 31,05 
Bartlett - 23,05 33,45 39,70 40,40 40,25 39,30 38,70 
Daniel - 24,90 34,00 40,40 39,95 38,25 36,95 36,15 
Quadratic 24,50 25,60 36,35 41,35 39,40 37,70 36,10 34,90 
Tukey - 23,05 31,35 38,80 40,85 39,50 38,05 37,40 
         
Modified Hong 1 2 5 10 20 30 40 50 
Truncated,  
N(0,1) 26,10 33,85 39,10 37,40 28,50 22,95 19,30 18,20 
Bartlett - 26,10 34,65 39,90 41,60 39,20 36,45 34,30 
Daniel - 26,75 35,55 40,25 40,90 36,50 33,20 29,65 
Quadratic 26,90 28,45 37,85 41,10 38,50 33,55 29,80 26,25 
Tukey - 26,10 33,15 39,30 41,95 38,70 35,60 32,85 
Truncated, 
 t(0,1) 26,55 35,95 45,50 46,45 38,60 35,00 32,05 28,85 
Bartlett - 26,55 39,10 46,45 49,30 48,10 46,65 45,00 
Daniel - 28,45 40,25 47,20 48,50 46,35 43,00 40,90 
Quadratic 27,80 30,00 43,95 48,75 47,60 43,60 40,70 38,40 
Tukey - 26,55 36,90 45,85 48,95 48,00 45,65 43,30 
Truncated,  
(+) Sk. t 22,40 31,50 37,60 38,25 35,35 32,00 29,95 28,85 
Bartlett - 22,40 34,00 38,85 41,40 40,30 39,75 38,55 
Daniel - 24,65 34,95 39,20 40,85 39,55 37,70 36,30 
Quadratic 23,50 25,35 37,50 40,75 39,70 38,00 36,20 33,80 
Tukey - 22,40 32,70 38,30 41,10 40,15 38,85 37,40 
Truncated, 
 (-) Sk. t 23,05 30,15 38,00 37,05 33,90 31,70 31,10 29,40 
Bartlett - 23,05 33,50 39,70 40,40 40,25 38,90 38,25 
Daniel - 24,85 34,05 40,35 39,85 37,90 36,40 35,10 
Quadratic 24,50 25,60 36,30 41,40 39,15 37,20 35,30 34,55 
Tukey - 23,05 31,35 38,75 40,90 39,40 37,95 36,95 
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Bidirect. Hong 1 2 5 10 20 30 40 50 
Truncated, 
 N(0,1) 22,85 41,15 55,20 54,05 41,50 33,20 27,65 25,50 
Bartlett - 22,85 43,30 56,05 59,95 56,85 53,10 49,35 
Daniel - 24,65 45,60 57,05 58,80 53,40 48,70 43,45 
Quadratic 23,95 26,40 51,10 59,55 55,85 49,00 42,00 37,55 
Tukey - 22,85 40,15 54,75 59,85 56,65 52,10 48,15 
Truncated,  
t(0,1) 26,55 46,75 66,80 69,15 56,95 49,25 44,90 41,55 
Bartlett - 26,55 50,35 66,15 72,00 70,40 67,20 64,55 
Daniel - 29,50 52,45 68,65 71,75 67,90 63,80 59,10 
Quadratic 28,65 31,40 59,85 71,70 69,45 64,20 58,70 54,80 
Tukey - 26,55 46,70 65,45 72,25 70,05 67,10 63,25 
Truncated,  
(+) Sk. t 20,45 38,45 54,40 54,30 47,90 43,60 40,05 36,60 
Bartlett - 20,45 41,95 55,70 58,75 57,05 55,25 53,15 
Daniel - 23,40 44,45 56,85 57,80 55,25 52,20 49,60 
Quadratic 22,10 26,10 50,60 57,80 56,70 52,60 49,70 46,70 
Tukey - 20,45 38,00 55,55 58,35 57,15 54,95 52,25 
Truncated,  
(-) Sk. t 21,70 39,30 51,60 54,25 48,85 44,05 39,70 37,35 
Bartlett - 21,70 42,30 53,00 56,70 56,40 54,70 52,75 
Daniel - 24,50 43,60 53,85 56,75 55,00 51,60 49,30 
Quadratic 23,25 27,35 48,95 55,95 55,80 52,20 49,20 47,40 
Tukey - 21,70 39,40 52,10 57,05 56,15 54,60 51,85 
         
Lagrange 
Mult.         
N(0,1) 44,70        
t(0,1) 37,70        
(+) Sk. T 34,85        
(-) Sk. T 34,95        
         

Notes:  DGP: VAR(1) - GARCH(1,1),    Ho: No Volatility Spillover & H1: Bidirectional Symmetric 
Volatility Spillover in the 1st Lag,   Skewness Parameters: +1 / -1,   The alternative distributional 
assumptions concern the underlying Residuals Process,   The Direction of the Unidirectional Tests is 
from Series 1 to Series 2, The Normal Cheung & Ng, detects Causality in the Specific Lag. 
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TABLE 1.4         
Empirical Power, Causality in Variance Tests,  N(0,1), Student's t8(0,1), Positively Skewed 
Student's t8, Negatively Skewed Student's t8,  Sample Size: 1000 obs.,  Replications: 2000,  Nominal 
Size: 5% 

         
Cheung & Ng 1 2 5 10 20 30 40 50 

Standard,  
N(0,1) 63,30 82,35 92,10 91,10 82,85 74,90 66,45 59,85 
Modified 63,30 82,45 92,10 91,25 83,75 76,15 68,90 64,20 
Normal 72,95 69,15 32,10 11,00 5,90 4,80 4,40 4,30 
Bidirectional 80,60 95,85 99,80 99,70 98,65 95,60 90,05 84,45 
Standard,  
t(0,1) 60,15 78,10 89,65 90,05 85,20 79,60 74,80 71,55 
Modified 60,30 78,15 89,75 90,10 85,70 80,30 76,45 73,20 
Normal 69,75 61,15 30,80 13,50 8,50 7,20 7,00 6,15 
Bidirectional 78,15 94,00 98,70 98,90 98,40 96,60 94,40 91,70 
Standard,  
(+) Sk. t 48,65 62,65 72,80 70,95 61,95 55,60 51,40 47,25 
Modified 48,65 62,85 73,05 71,20 62,65 56,70 52,80 49,05 
Normal 56,55 44,00 18,80 8,20 4,65 4,45 4,85 5,20 
Bidirectional 65,65 86,40 95,25 94,95 86,50 80,10 73,20 67,80 
Standard, 
 (-) Sk. t 47,35 61,75 71,10 67,60 60,65 54,45 50,75 46,85 
Modified 47,40 61,90 71,35 67,70 61,15 55,50 51,95 48,75 
Normal 55,70 44,50 16,75 8,45 5,35 5,45 6,25 5,40 
Bidirectional 66,15 85,55 93,95 93,05 85,35 78,90 72,85 67,00 
         

Hong 1 2 5 10 20 30 40 50 
Truncated,  
N(0,1) 67,55 85,20 93,75 92,45 86,20 79,25 72,00 66,95 
Bartlett - 67,55 89,05 94,35 94,95 94,50 93,30 91,75 
Daniel - 71,95 90,50 94,65 94,50 92,70 90,60 88,50 
Quadratic 71,00 75,70 93,15 94,95 93,55 91,15 87,80 84,70 
Tukey - 67,55 87,00 94,05 94,90 94,05 92,45 90,55 
Truncated,  
t(0,1) 64,15 81,40 91,40 91,65 87,05 82,05 78,10 75,45 
Bartlett - 64,15 86,50 93,20 93,60 92,95 92,15 90,95 
Daniel - 70,00 88,05 93,25 93,40 92,15 90,30 88,60 
Quadratic 69,20 72,75 90,90 93,35 92,55 90,65 88,10 86,45 
Tukey - 64,15 84,10 92,35 93,45 92,85 91,85 90,20 
Truncated,  
(+) Sk. t 51,60 66,05 76,10 73,30 64,75 59,15 54,85 51,10 
Bartlett - 51,60 71,80 78,30 78,00 76,55 74,70 71,65 
Daniel - 56,10 72,70 78,05 76,55 74,30 70,30 67,85 
Quadratic 55,55 59,80 75,75 78,45 75,55 70,50 67,20 63,50 
Tukey - 51,60 69,25 77,95 77,75 76,15 73,05 70,00 
Truncated,  
(-) Sk. t 50,60 65,60 73,75 70,30 63,05 57,55 53,50 50,90 
Bartlett - 50,60 70,05 76,90 76,65 74,15 72,15 70,50 
Daniel - 54,80 72,00 76,80 74,50 71,85 68,70 66,05 
Quadratic 54,85 59,00 75,30 76,70 72,65 69,15 65,55 62,45 
Tukey - 50,60 67,95 76,35 76,30 73,40 71,15 68,75 
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Modified Hong 1 2 5 10 20 30 40 50 
Truncated, 
 N(0,1) 67,55 85,20 93,75 92,40 85,95 78,90 71,25 66,15 
Bartlett - 67,55 89,05 94,35 94,95 94,40 93,15 91,75 
Daniel - 72,00 90,50 94,60 94,45 92,70 90,55 88,40 
Quadratic 71,00 75,70 93,15 94,95 93,55 91,00 87,70 84,45 
Tukey - 67,55 87,00 94,05 94,95 94,05 92,40 90,30 
Truncated, 
 t(0,1) 64,15 81,35 91,40 91,65 87,05 81,95 77,65 74,65 
Bartlett - 64,15 86,50 93,20 93,55 92,95 92,15 90,95 
Daniel - 70,00 88,05 93,25 93,40 92,10 90,20 88,50 
Quadratic 69,20 72,75 90,90 93,35 92,55 90,60 88,05 86,15 
Tukey - 64,15 84,15 92,45 93,45 92,75 91,90 90,20 
Truncated, 
 (+) Sk. t 51,60 66,10 76,00 73,25 64,60 59,10 54,20 50,30 
Bartlett - 51,60 71,80 78,30 78,00 76,50 74,50 71,60 
Daniel - 56,10 72,70 78,05 76,50 74,20 69,95 67,65 
Quadratic 55,55 59,80 75,75 78,40 75,50 70,40 67,05 63,25 
Tukey - 51,60 69,25 77,90 77,75 76,05 72,70 70,00 
Truncated,  
(-) Sk. t 50,60 65,60 73,75 70,20 62,90 57,25 53,35 50,40 
Bartlett - 50,60 70,05 76,90 76,65 74,10 72,10 70,25 
Daniel - 54,80 72,05 76,80 74,45 71,80 68,55 65,65 
Quadratic 54,85 59,00 75,30 76,60 72,50 69,10 65,25 62,30 
Tukey - 50,60 67,95 76,35 76,30 73,35 71,00 68,60 
         
Bidirect. Hong 1 2 5 10 20 30 40 50 
Truncated,  
N(0,1) 56,75 92,30 99,75 99,90 99,25 97,20 93,50 89,15 
Bartlett - 56,75 96,60 99,85 99,95 99,95 99,85 99,80 
Daniel - 67,50 97,90 99,90 99,95 99,95 99,80 99,45 
Quadratic 64,35 74,20 99,55 99,95 99,95 99,80 99,40 98,90 
Tukey - 56,75 94,10 99,85 99,95 99,95 99,80 99,80 
Truncated, 
 t(0,1) 56,70 90,10 98,75 98,90 98,70 97,05 95,70 94,15 
Bartlett - 56,70 95,35 99,15 99,30 99,25 99,15 99,20 
Daniel - 69,35 96,60 99,40 99,20 99,25 99,15 98,80 
Quadratic 66,85 75,90 98,55 99,40 99,25 99,05 98,80 98,40 
Tukey - 56,70 92,55 99,00 99,30 99,25 99,15 99,10 
Truncated, 
(+)Sk.T 44,05 79,95 96,05 96,05 88,90 82,75 77,35 72,15 
Bartlett - 44,05 88,20 96,45 97,50 96,45 95,35 94,25 
Daniel - 53,40 90,25 97,10 97,30 95,50 93,80 91,25 
Quadratic 52,25 61,45 94,40 97,70 96,40 93,80 90,60 87,55 
Tukey - 44,05 84,45 96,20 97,65 96,60 95,10 93,40 
Truncated, 
 (-) Sk. T 45,30 80,30 94,50 94,35 87,15 81,25 76,80 71,30 
Bartlett - 45,30 88,15 96,45 96,95 95,85 93,80 91,90 
Daniel - 54,30 90,55 96,80 96,20 94,20 91,30 88,55 
Quadratic 53,70 63,05 94,55 97,20 95,45 91,75 88,25 85,70 
Tukey - 45,30 83,75 96,00 96,90 95,65 93,25 91,10 
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Table 1.4 (Continued) 

Lagrange 
Mult.         
N(0,1) 95,00        
t(0,1) 47,10        
(+) Sk. T 71,35        
(-) Sk. T 70,90        
         

Notes:  DGP: VAR(1) - GARCH(1,1),    Ho: No Volatility Spillover & H1: Bidirectional Symmetric 
Volatility Spillover in the 1st Lag,   Skewness Parameters: +1 / -1,   The alternative distributional 
assumptions concern the underlying Residuals Process,   The Direction of the Unidirectional Tests is 
from Series 1 to Series 2, The Normal Cheung & Ng, detects Causality in the Specific Lag. 

 

 

4.2.2 EMPIRICAL RESULTS OF MONTE CARLO DESIGN 1 

 
A) SMALL SAMPLE  

 

1. The presence of excess kurtosis (the case when considering the Student�s t 

distribution) causes an upward distortion in the empirical size of the vast majority of 

tests irrespectively of the kernel used or the direction of the considered. This effect is 

more pronounced from the 5th lag and ownwards. The only test that seems to be robust 

against leptokurtosis in the unconditional distribution of the residuals process is the 

�Normal� version of Cheung & Ng tests. 

 

2.  The Standard and Modified versions of the Cheung & Ng class of tests exhibit a 

different pattern in their empirical size performance. More specifically the first one 

demonstrates a decaying empirical size as the lag length increases. The latter however 

displays an inverse behavior with the type I error probability being an increasing 

function of the lag length. 

 

3. In regard with the Hong class of tests we observe that the Truncated and Quadratic 

kernels are more heavily influenced from excess kurtosis, than the rest of the kernel 

functions used. 

 

4. The presence of positive skewness, also affects the majority of the tests. More 

specifically an inflation in the empirical size of the various methodologies is observed 
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when we consider the Skewed Student�s t distribution in which it must be noted that 

the degrees of freedom parameter is set equal to eight degrees of freedom (the same as 

in the case of the symmetric Student�s t distribution) The impact of skewness can be 

more clearly observable if we compare the empirical sizes of the various tests under 

the presence of symmetric leptokurtosis with those under positively / negatively 

skewed leptokurtosis. The Normal version of the Cheung & Ng tests remains robust to 

this additional deviation from the Gaussian distribution, while the Truncated and 

Quadratic kernels are the most sensitive among the alternative kernels, to the presence 

of asymmetry in the residuals process. The Lagrange Multiplier test seems to be 

weakly influenced from the presence of asymmetry. 

 

5. In the case of negative skewness the effects in the empirical size of the tests are 

more or less the same with the case of positive asymmetry. This similarity may be 

attributed to the fact that all the causality in variance test functions make use of 

squared standardized innovations in which the sign effect is eliminated. Thus it is 

possible that we would observe a different response in alternative directions of 

skewness, if we considered causality in mean tests as in these types of tests we use as 

inputs the standardized residuals instead of their squares 

 

6. In terms of empirical power and considering the NIID (0,1) distribution we have 

the following �rankings�: 

1st Lag:  The Lagrange Multiplier test exhibits the best performance 

10th Lag: The bidirectional Quadratic Hong test exhibits the best performance. 

30th Lag: The bidirectional Bartlett Hong test exhibits the best performance. 

 

Under the Student�s t distribution we have the following �rankings�: 

1st Lag:  Lagrange Multiplier and the Bidirectional Cheung & Ng test. 

10th Lag: The bidirectional Quadratic Hong test exhibits the best performance. 

30th Lag: The bidirectional Bartlett Hong test exhibits the best performance. 

 

Under the Positively / Negatively Skewed Student�s t distribution we have the 

following �rankings�: 

 

1st Lag:  The Lagrange Multiplier test exhibits the best performance. 
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10th Lag: The bidirectional Quadratic Hong test exhibits the best performance. 

30th Lag: The bidirectional Bartlett Hong test exhibits the best performance. 

 

As you may have already  noticed there is a clear superiority of the bidirectional tests 

under all the alternative conditional distributions. The reason for this is that in the data 

generating process and under the alternative hypothesis (when computing the power 

of the tests) we have set a bidirectional volatility structure for the series we create. In 

other words the performance of the tests is investigated under a volatility feedback 

situation. For a more in depth analysis of this argument we have performed an 

additional Monte Carlo experiment, the results of which are placed in the Appendix 

D (Design 6) of the dissertation where we compare the performance of unidirectional 

and bidirectional tests under either unidirectional or bidirectional setups for the 

volatility transmission mechanism. In that point the reader will discover that in the 

case that a unidirectional volatility spillover pattern is considered, the unidirectional 

tests dominate their bidirectional counterparts in terms of empirical power. 

 

7.  The empirical power of the Normal Cheung & Ng test is a negative function of the 

lag length. This is not surprising however as this type of test is the only technique that 

searches for variance causality in a specific lag and not in a group of lags as happens 

with the other methodologies. In our case the volatility spillover takes place in the 

first lag. Thus it is logical that after a few periods it will not be detectable in the 

pattern of the volatility process and thus it will not be discovereable when using the 

aforementioned type of test. 

 

8. Given the small sample size, the excess kurtosis in the underlying residuals process 

has a positive augmenting impact in the empirical power of the Cheung & Ng and 

Hong tests while a negative impact is observed for the Lagrange Multiplier tests. 

 

9.  The presence of skewness (positive or negative) has a negative impact in the power 

of all the tests that we have used. These effects are more powerful in the regime 

between the 10th  and 30th  lags. For the Cheung & Ng test however we observe an 

inversion of the direction of these effects for large lags such as the 50th . For example, 

the asymmetry in the distribution augments the power of the Standard version of the 

Cheung & Ng test when the 50th  lag is considered. 
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10. In the Cheung & Ng class of tests the empirical power attains its maximum value 

somewhere between the 5th  and 10th  lags given of course the fact that the volatility 

spillover takes place in the first lag. 

 

11. In the Hong class of tests and under the NIID (0,1) distribution we observe a slight 

heterogeneity in the behavior of the alternative kernels. More specifically the 

empirical power is maximized in the 5th lag for the Truncated kernel, in the 10th  lag 

for the Quadratic kernel and in the 20th lag for the rest of the kernels. For the 

leptokurtic and asymmetric distributions the situation is almost the same with the 

empirical power being maximized in the region between the 10th and 20th  lags. 

 

12. We also observe that the Hong tests irrespectively of the kernel function used, 

have a tendency to over reject the null hypothesis compared with their more simple 

Cheung & Ng counterparts. This finding is in agreement with that of Hong (2001) 

 
B) LARGE SAMPLE 

 
1. The differentiation in the behavior of the empirical sizes of the Standard and 

Modified versions of the Cheung & Ng tests that was clearly observable in the case of 

the small sample size is now less obvious but still present. 

 

2. The effects of excess kurtosis in the empirical size of the tests appear to be more 

pronounced for the large sample. As previously mentioned we observe an upward 

distortion in the type I error probability of the tests that is intensified when longer lags 

are considered.  

 

3. The presence of positive skewness causes an upward distortion in the empirical size 

of all the tests for lags larger than the 5th  one. The Lagrange Multiplier test seems not 

to be seriously affected from the positive skewness in the distribution of the residuals 

process. 

 

4.  In the case of negative skewness the effects in the empirical size of the various 

causality in variance tests are much about the same with those obtained under positive 
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asymmetry. We observe however a decrease in the empirical size of the Lagrange 

Multiplier test. 

 

5.  We observe a serious negative impact in the empirical power of the Lagrange 

Multiplier test under the presence of excess kurtosis. 

 

6.  In terms of empirical power and considering the NIID (0,1) distribution we have 

the following �rankings�: 

1st Lag:  The Lagrange Multiplier test exhibits the best performance 

10th Lag: The bidirectional Quadratic Hong test exhibits the best performance 

30th Lag: The bidirectional Bartlett and Quadratic Hong test exhibit the best 

performance.  

 

Under the Student�s t distribution we have the following �rankings�: 

1st Lag:  The bidirectional Cheung & Ng test exhibits the best performance 

10th Lag: The bidirectional Quadratic Hong test exhibits the best performance 

30th Lag: The bidirectional Bartlett Hong test exhibits the best performance 

 

Under the Positively / Negatively Skewed Student�s t distribution we have the 

following �rankings�: 

1st Lag:  The Lagrange Multiplier test exhibits the best performance 

10th Lag: The bidirectional Quadratic Hong test exhibits the best performance 

30th Lag: The bidirectional Bartlett Hong test exhibits the best performance 

 

In general a considerable increase in the power of all the tests regardless of the lag or 

the distribution used, is observed when using large sample sizes. This practically 

means that the tests will work better in empirical applications where a large volume of 

data is available. In other words these methodologies are better suited for use in the 

field of finance than in the field of macroeconomics as in the former there is more 

frequently availability of high frequency data. 

 

7. The empirical power of the Normal version of the Cheung & Ng class of tests is 

once more a monotonically decreasing function of the lag length. This technique 

offers us an insight in the memory of the volatility process. We observe that this test 
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has lost a significant portion of its empirical power when lags longer than the 20th  are 

considered. This means that the effects of a volatility spillover that takes place in a 

specific point in time decay and eventually die out after a number of periods. The 

exact time that will be needed in order for the volatility spillover effects to be 

completely wiped out depends on a number of factors such as the intensity of the 

volatility transmission etc. 

 

8. The presence of excess kurtosis has a mixed impact in the empirical power of the 

Hong class of tests. For example in the case of unidirectional Hong tests the peakness 

of the distribution decreases the empirical power of the tests for lags smaller than the 

10th  but increases the empirical power from the 10th lag and afterwards. The same 

effects are true in the case of the Cheung & Ng class of tests. The excess kurtosis has 

a negative impact in the power of the Lagrange Multiplier tests. 

 

9. The presence of skewness (positive or negative) has a negative impact on the tests 

with the exception of the Lagrange Multiplier test for which it seems that asymmetry 

increases its power. 

 

10. In the Cheung & Ng class of tests and for all the distributional assumptions the 

empirical power is maximized in the region between the 5th  and 10th  lags. For the 

Hong tests the observed performance reveals that the empirical power of the tests 

attains its maximum value between the 5th  and 20th  lags, with the exact point 

depending on the kernel used and the distribution that is considered. 

 
11. In the large sample the differences between the Hong and its Modified version are 

so small that it does not matter which of the two, one would choose in order to test for 

volatility Spillovers. 

 

12. The power of all the Causality in Variance tests, as it was naturally expected, 

decreases with the lag length regardless of the underlying distribution. 

 
13. We can also mention the fast decay in the power of the Normal  Cheung & Ng test. 

This must not generate considerations and ambiguities however as we have already 

mentioned that this test is the only one that scans for causality in a specific lag and not 
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up to this lag. Thus it is natural to observe low values for the power of this test when 

considering large lag lengths as the data generating process of our Monte Carlo design 

involves a one lag volatility spillover. The memory of the causality with which we 

enrich the generated series is almost eliminated in lags such as the 30th or 50th and this 

is quantitatively depicted from the low power of the specific test when considering 

these lag lengths. 

 
14. In the case of the large sample an important difference from the case of a small 

sample is observed that denotes the risk of spurious conclusions when studying only a 

specific sample size. In the occasion of a student�s t distribution the impact of excess 

kurtosis on the power of both the Cheung & Ng and the Hong tests is negative. We 

can remind that in the case that a small sample was considered the impact was 

positive. The impact of skewness however remains negative and this ensures the 

validity of the claim that positive asymmetry in the distribution can dampen the 

causality detection capability of the cross correlation based causality in variance tests. 

The same conclusions apply also for the bidirectional version of these tests. 

 
15. An interesting feature that we have observed is that when considering the Hong 

tests the Truncated kernel has a clear advantage over the alternative kernels when we 

consider lags up to the 5th one. It is by far the most powerful in the 2nd lag. This is true 

for both unidirectional and bidirectional  tests. We have also discovered that the 

Tukey and Bartlett kernels are for the first initial lags considerably less powerful than 

their counterparts. In the 10th lag and afterwards however this weakness disappears. 

 

In the following figures we provide the smooth densities of the various causality 

in variance tests that were calculated by an Epanechnikov kernel using the test�s 

realized values for the sample size of 600 obs. The results using this sample size were 

not included in the previous tables, as we wanted to depict the two limit cases of a 

small (200 obs.) and a large sample size (1000 obs.) This sample size however was 

chosen for the construction of the empirical distributions as it represents a mainstream 

situation between the two limits and allows us to briefly and concretely demonstrate 

our empirical results.   In the Appendix B (Monte Carlo Design 1) you can find a 

number of additional figures that will help you to visualize the differences among the 

alternative tests as well as some other aspects of this Design. 
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Figures 1.1 � 1.2  Unidirectional Hong Causality in Variance Tests using the 

Truncated & Quadratic Kernels (Bandwidth: 30), NIID(0,1) Residuals Process and 

two sample sizes. 
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Figures 1.3 � 1.4  Bidirectional Hong Causality in Variance Tests using the Truncated 

& Quadratic Kernels (Bandwidth: 30), NIID(0,1) Residuals Process and two sample 

sizes. 
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Figures 1.5 � 1.7 Cheung & Ng Causality in Variance Tests (30th Lag), NIID(0,1) 

Residuals Process and two sample sizes. 
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Figure 1.8 Lagrange Multiplier Causality in Variance Test (1st Lag), NIID(0,1) 

Residuals Process and two sample sizes. 
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Figures 1.9 � 1.12 Unidirectional & Bidirectional Hong Causality in Variance Tests 

under alternative Hypotheses for the Residuals Processes (Bandwidth: 30) 
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Figures 1.13 � 1.15 Unidirectional & Bidirectional Cheung & Ng Causality in 

Variance Tests under alternative Hypotheses for the Residuals Processes (30th Lag) 
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Figure 1.16 Lagrange Multiplier Causality in Variance Test under Alternative 

Hypotheses for the Residuals Process (1st Lag) 
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4.3 MONTE CARLO SIMULATION DESIGN 2 

  

In this study we perform an estimation of the empirical size of causality in 

variance tests under the alternative states of filtered causality in mean & not filtered 

causality in mean. The filter for removing mean spillovers is a first order VAR Model 

that coincides with the real specification of the conditional mean model of the Data 

Generating Process. The volatility and mean spillovers take place in the first lag. 

 

4.3.1 DATA GENERATING PROCESS 
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In the following tables we provide the empirical results of this Monte Carlo design for  

both 5% and 10% nominal significance levels. More details can be found in the upper 

and lower parts of each table. The numbers beside the names of the tests represent the 

lag lengths (or bandwidths when considering the Hong class of tests)  
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TABLE 2.1         

Empirical Size, Causality in Variance Tests, Filtering & Not Filtering Causality in Mean,  Sample Size: 
200 obs.,  Replications: 2000,  Nominal Size: 5% 

         
Cheung & Ng 1 2 5 10 20 30 40 50 

Standard,  
Filtered CM 4,65 4,40 5,20 5,35 4,55 3,75 2,75 1,75 
Modified 4,80 4,70 5,55 6,15 6,40 7,70 7,80 9,15 
Normal 5,40 6,05 5,80 6,75 5,15 4,35 3,85 4,10 
Bidirectional 4,50 4,55 5,05 5,40 3,95 2,30 1,35 0,55 
Standard, 
 Not Filt. CM 19,10 17,20 13,40 10,50 7,05 5,00 3,15 2,25 
Modified 19,35 17,70 14,20 11,85 9,95 9,25 9,60 9,80 
Normal 26,05 10,45 5,55 5,10 5,80 4,50 3,95 2,95 
Bidirectional 23,85 22,50 18,20 11,70 6,70 4,60 2,65 1,60 
         

Hong 1 2 5 10 20 30 40 50 
Truncated,  
Filtered CM 6,20 7,25 7,60 7,65 7,75 8,75 8,55 9,90 
Bartlett - 6,20 6,65 6,90 7,50 7,60 7,45 7,60 
Daniel - 6,20 6,90 7,10 7,60 7,55 7,85 7,75 
Quadratic 6,10 6,00 7,05 7,05 8,00 7,80 7,80 8,20 
Tukey - 6,20 6,60 6,90 7,60 7,95 7,35 7,75 
Truncated,  
Not Filt. CM 22,10 20,45 17,25 14,05 11,25 10,55 11,05 11,00 
Bartlett - 22,10 21,90 19,85 17,30 15,50 14,45 14,05 
Daniel - 22,20 21,50 19,05 15,35 14,00 12,90 12,10 
Quadratic 22,20 22,20 21,00 17,70 14,70 12,95 12,45 12,05 
Tukey - 22,10 22,30 20,15 16,35 14,55 13,60 12,90 
         

Modified Hong 1 2 5 10 20 30 40 50 
Truncated,  
Filtered CM 6,20 7,30 7,70 7,70 7,80 8,85 8,60 9,75 
Bartlett - 6,20 6,60 6,85 7,60 7,70 7,40 7,55 
Daniel - 6,15 6,95 7,30 7,55 7,55 7,75 7,95 
Quadratic 6,10 6,00 7,10 7,00 7,80 7,75 7,70 8,35 
Tukey - 6,20 6,65 6,90 7,75 7,95 7,55 7,65 
Truncated,  
Not Filt. CM 22,10 20,50 17,15 14,00 10,95 10,40 10,20 10,55 
Bartlett - 22,10 21,90 19,90 17,05 15,35 14,40 13,60 
Daniel - 22,20 21,40 19,00 15,30 13,85 12,75 12,20 
Quadratic 22,20 22,25 21,00 17,65 14,50 12,60 12,40 11,45 
Tukey - 22,10 22,35 20,05 16,45 14,60 13,40 12,55 
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Bidirect. Hong 1 2 5 10 20 30 40 50 
Truncated,  
Filtered CM 6,90 6,65 7,55 6,85 7,10 7,55 7,90 7,60 
Bartlett - 6,90 6,20 7,05 6,95 6,85 7,00 7,20 
Daniel - 6,60 6,10 7,25 6,90 7,05 7,05 7,05 
Quadratic 6,95 6,70 6,15 7,00 7,10 7,05 7,05 7,25 
Tukey - 6,90 6,15 6,95 6,65 6,90 7,15 7,05 
Truncated, 
 Not Filt. CM 19,75 27,30 22,80 16,90 13,30 11,95 11,30 11,05 
Bartlett - 19,75 25,75 25,55 22,20 18,95 17,50 15,95 
Daniel - 19,90 26,30 25,00 19,60 16,95 14,45 13,55 
Quadratic 20,55 21,70 26,35 23,15 17,50 14,65 13,60 12,80 
Tukey - 19,75 25,85 25,30 21,50 18,00 16,05 14,35 
         
Lagrange Mult.         
Filtered CM 6,85        
Not Filt. CM 20,75        
         

Notes:  DGP: VAR(1) - GARCH(1,1),    Ho: No Volatility Spillover & H1: Bidirectional Symmetric 
Volatility Spillover in the 1st Lag,  The Direction of the Unidirectional Tests is from Series 1 to Series 2, 
The Normal Cheung & Ng, detects Causality in the Specific Lag. Mean Spillover in the first Lag, The 
Filter is a VAR(1) Model 

 

 

 
TABLE 2.2         

Empirical Size, Causality in Variance Tests, Filtering & Not Filtering Causality in Mean,  Sample Size: 
1000 obs.,  Replications: 2000,  Nominal Size: 5% 

         
Cheung & Ng 1 2 5 10 20 30 40 50 

Standard,  
Filtered CM 5,00 5,00 4,80 5,25 4,15 4,60 5,30 4,55 
Modified 5,05 5,00 4,95 5,35 4,50 5,30 6,20 6,50 
Normal 5,25 5,45 5,25 5,60 5,50 4,55 5,95 5,15 
Bidirectional 4,65 4,60 4,50 4,45 4,25 4,25 4,40 3,95 
Standard,  
Not Filt. CM 55,40 51,35 38,70 30,15 21,55 17,65 14,70 13,65 
Modified 55,50 51,50 39,10 30,95 22,25 19,35 16,20 15,95 
Normal 65,50 15,75 5,65 5,35 4,85 5,15 5,00 5,25 
Bidirectional 73,35 70,25 57,80 46,25 32,45 23,50 20,10 16,80 
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Hong 1 2 5 10 20 30 40 50 
Truncated,  
Filtered CM 7,00 6,85 6,80 7,20 5,95 6,25 6,80 7,35 
Bartlett - 7,00 6,70 6,60 6,05 6,30 6,30 6,35 
Daniel - 6,65 6,65 6,70 6,45 5,95 6,40 6,25 
Quadratic 6,85 6,90 6,70 6,70 6,35 6,30 6,35 6,25 
Tukey - 7,00 6,70 6,55 6,25 6,35 6,15 6,45 
Truncated,  
Not Filt. CM 60,05 56,00 44,65 35,55 25,75 21,85 18,75 17,70 
Bartlett - 60,05 59,35 55,20 46,70 41,10 37,85 33,85 
Daniel - 59,85 58,90 51,60 41,20 35,60 31,75 28,50 
Quadratic 60,35 60,30 56,70 47,10 37,55 32,15 28,05 24,65 
Tukey - 60,05 59,90 54,05 44,25 38,55 33,90 31,30 
         

Modified Hong 1 2 5 10 20 30 40 50 
Truncated,  
Filtered CM 7,00 6,85 6,85 7,25 5,90 6,30 6,85 7,35 
Bartlett - 7,00 6,70 6,65 6,00 6,35 6,30 6,30 
Daniel - 6,65 6,65 6,75 6,35 6,05 6,40 6,25 
Quadratic 6,85 6,90 6,70 6,65 6,30 6,35 6,25 6,20 
Tukey - 7,00 6,70 6,55 6,25 6,35 6,20 6,45 
Truncated,  
Not Filt. CM 60,05 56,00 44,55 35,45 25,50 21,60 18,50 17,50 
Bartlett - 60,05 59,35 55,15 46,65 41,00 37,45 33,65 
Daniel - 59,85 58,90 51,60 41,05 35,35 31,60 28,30 
Quadratic 60,35 60,30 56,70 47,00 37,45 32,05 27,90 24,35 
Tukey - 60,05 59,90 54,05 44,15 38,45 33,80 30,90 
         

Bidirect. Hong 1 2 5 10 20 30 40 50 
Truncated,  
Filtered CM 6,80 7,15 5,95 5,50 5,45 5,65 6,10 6,40 
Bartlett - 6,80 6,35 6,40 5,15 5,30 5,25 5,50 
Daniel - 6,70 6,30 6,25 5,45 5,15 5,55 5,55 
Quadratic 6,60 6,35 6,60 5,50 5,05 5,40 5,75 5,75 
Tukey - 6,80 6,35 6,30 5,25 5,35 5,40 5,45 
Truncated, 
 Not Filt. CM 56,25 75,15 63,75 51,50 37,65 29,45 25,20 23,30 
Bartlett - 56,25 74,50 71,60 64,70 58,60 53,75 49,40 
Daniel - 56,65 74,65 70,10 59,30 52,60 46,25 41,25 
Quadratic 58,70 62,70 73,75 66,55 54,50 46,65 40,80 36,70 
Tukey - 56,25 73,40 72,10 62,95 55,70 50,45 45,60 
         
Lagrange Mult.         
Filtered CM 5,40        
Not Filt. CM 51,30        
         

Notes:  DGP: VAR(1) - GARCH(1,1),    Ho: No Volatility Spillover & H1: Bidirectional Symmetric 
Volatility Spillover in the 1st Lag,  The Direction of the Unidirectional Tests is from Series 1 to Series 2, 
The Normal Cheung & Ng, detects Causality in the Specific Lag. Mean Spillover in the first Lag, The 
Filter is a VAR(1) Model 
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TABLE 2.3 

Empirical Size, Causality in Variance Tests, Filtering & Not Filtering Causality in Mean,  Sample Size: 
200 obs.,  Replications: 2000,  Nominal Size: 10% 

         
Cheung & Ng 1 2 5 10 20 30 40 50 

Standard,  
Filtered CM 8,90 9,45 9,55 10,50 8,35 7,45 5,60 4,20 
Modified 9,20 9,95 10,15 11,95 11,75 12,75 14,35 15,35 
Normal 9,60 10,20 10,30 11,05 9,05 8,70 7,95 7,55 
Bidirectional 9,10 9,05 10,40 9,00 7,25 5,20 3,55 1,60 
Standard,  
Not Filt. CM 26,45 24,75 20,95 16,85 12,35 9,10 6,50 5,10 
Modified 26,70 25,60 22,10 18,70 16,80 16,05 16,40 16,20 
Normal 35,95 16,00 10,15 9,10 8,75 9,30 7,70 6,25 
Bidirectional 32,50 32,30 26,25 19,30 12,80 8,35 4,75 2,65 
         

Hong 1 2 5 10 20 30 40 50 
Truncated,  
Filtered CM 8,40 10,00 10,70 12,10 12,15 12,50 13,65 15,10 
Bartlett - 8,40 9,40 10,60 10,80 11,45 11,95 12,25 
Daniel - 8,50 9,70 11,20 11,95 12,00 12,35 12,50 
Quadratic 8,35 8,25 10,10 11,20 11,95 12,00 12,35 13,20 
Tukey - 8,40 9,05 10,80 10,85 11,75 12,00 12,10 
Truncated,  
Not Filt. CM 25,45 25,70 22,60 19,05 17,40 16,60 16,50 16,20 
Bartlett - 25,45 26,90 25,55 22,55 21,00 19,85 18,90 
Daniel - 25,50 27,00 24,15 20,35 19,10 18,15 17,40 
Quadratic 25,60 25,85 26,85 22,95 19,75 18,05 17,30 17,25 
Tukey - 25,45 26,90 25,50 21,60 19,70 18,90 18,15 
         

Modified Hong 1 2 5 10 20 30 40 50 
Truncated,  
Filtered CM 8,40 9,95 10,70 12,20 11,80 12,60 13,90 15,00 
Bartlett - 8,40 9,40 10,55 10,85 11,40 12,15 12,35 
Daniel - 8,50 9,70 11,10 11,80 12,10 12,35 13,05 
Quadratic 8,35 8,25 10,15 11,30 12,00 12,15 12,85 13,25 
Tukey - 8,40 9,00 10,80 10,90 11,85 12,10 12,10 
Truncated, 
 Not Filt. CM 25,45 25,70 22,50 19,05 16,95 15,90 16,00 15,75 
Bartlett - 25,45 26,90 25,45 22,30 20,90 19,75 18,65 
Daniel - 25,60 27,10 24,10 20,50 18,80 18,05 17,35 
Quadratic 25,60 25,90 26,85 22,80 19,30 17,85 17,30 17,35 
Tukey - 25,45 26,90 25,40 21,45 19,65 18,45 17,65 
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Bidirect. Hong 1 2 5 10 20 30 40 50 
Truncated,  
Filtered CM 9,50 9,90 11,95 11,80 11,40 12,50 12,45 12,30 
Bartlett - 9,50 9,65 10,65 10,95 10,75 11,00 11,40 
Daniel - 9,75 9,85 11,10 10,95 11,20 11,15 11,75 
Quadratic 9,70 9,65 9,70 11,25 11,15 11,25 11,55 11,55 
Tukey - 9,50 9,85 10,20 11,10 11,30 11,20 11,35 
Truncated, 
 Not Filt. CM 24,45 34,20 29,80 23,35 19,85 18,40 17,75 16,90 
Bartlett - 24,45 31,95 32,15 29,10 26,35 24,00 23,45 
Daniel - 24,70 32,50 31,85 26,85 22,95 21,85 20,25 
Quadratic 24,80 26,30 33,50 30,90 24,80 22,10 20,25 19,50 
Tukey - 24,45 31,65 32,95 28,70 25,70 22,75 22,10 
         
Lagrange Mult.         
Filtered CM 12,80        
Not Filt. CM 28,00        
         

Notes:  DGP: VAR(1) - GARCH(1,1),    Ho: No Volatility Spillover & H1: Bidirectional Symmetric 
Volatility Spillover in the 1st Lag,  The Direction of the Unidirectional Tests is from Series 1 to Series 2, 
The Normal Cheung & Ng, detects Causality in the Specific Lag. Mean Spillover in the first Lag, The 
Filter is a VAR(1) Model 

 

 

 

 
TABLE 2.4         

Empirical Size, Causality in Variance Tests, Filtering & Not Filtering Causality in Mean,  Sample Size: 
1000 obs.,  Replications: 2000,  Nominal Size: 10% 

         
Cheung & Ng 1 2 5 10 20 30 40 50 

Standard,  
Filtered CM 10,00 9,10 10,20 10,65 9,25 9,00 9,25 9,45 
Modified 10,00 9,20 10,25 10,85 9,95 10,35 11,05 11,70 
Normal 9,95 10,40 10,00 10,75 9,70 9,00 10,60 10,00 
Bidirectional 9,60 9,90 9,15 8,80 8,70 8,55 8,35 7,75 
Standard,  
Not Filt. CM 65,50 61,60 50,50 41,95 31,20 26,50 23,00 20,60 
Modified 65,50 61,60 50,95 42,45 32,85 28,15 25,10 24,20 
Normal 77,20 25,00 11,80 10,35 10,10 9,40 9,50 9,10 
Bidirectional 82,25 79,50 68,70 57,10 44,45 35,00 29,60 26,05 
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Hong 1 2 5 10 20 30 40 50 
Truncated,  
Filtered CM 9,35 9,35 10,75 11,40 10,55 10,90 11,40 12,15 
Bartlett - 9,35 10,00 10,20 10,70 10,50 10,35 10,45 
Daniel - 9,15 9,95 10,65 10,75 10,75 11,10 10,85 
Quadratic 9,30 9,35 10,45 10,80 10,35 11,20 10,60 11,05 
Tukey - 9,35 9,40 10,25 10,85 10,55 10,85 10,85 
Truncated,  
Not Filt. CM 64,30 62,00 52,10 43,70 34,25 29,60 26,40 25,10 
Bartlett - 64,30 65,10 60,95 53,45 49,15 45,35 43,20 
Daniel - 64,10 64,50 58,50 49,20 43,70 40,50 37,25 
Quadratic 64,20 64,40 62,60 55,30 45,60 40,75 36,65 34,00 
Tukey - 64,30 65,35 60,15 52,10 46,35 42,60 39,90 
         

Modified Hong 1 2 5 10 20 30 40 50 
Truncated,  
Filtered CM 9,35 9,35 10,75 11,45 10,60 10,85 11,50 12,15 
Bartlett - 9,35 10,00 10,15 10,80 10,50 10,45 10,50 
Daniel - 9,15 9,95 10,60 10,75 10,85 11,10 10,85 
Quadratic 9,30 9,35 10,45 10,80 10,30 11,10 10,70 11,00 
Tukey - 9,35 9,40 10,30 10,85 10,60 10,95 10,90 
Truncated,  
Not Filt. CM 64,30 61,95 52,05 43,50 34,00 28,90 25,95 24,75 
Bartlett - 64,30 65,05 60,85 53,45 49,10 45,30 43,05 
Daniel - 64,10 64,55 58,45 49,20 43,65 40,05 37,00 
Quadratic 64,20 64,40 62,55 55,20 45,45 40,50 36,40 33,85 
Tukey - 64,30 65,35 60,10 51,90 46,40 42,50 39,65 
         

Bidirect. Hong 1 2 5 10 20 30 40 50 
Truncated,  
Filtered CM 9,60 10,60 10,55 9,65 10,15 10,55 10,40 11,50 
Bartlett - 9,60 9,55 9,75 9,85 9,05 9,55 9,80 
Daniel - 9,55 9,55 10,10 9,70 9,30 10,05 10,25 
Quadratic 9,50 9,50 9,90 9,70 8,85 9,60 10,05 10,40 
Tukey - 9,60 9,35 10,10 9,95 8,70 9,50 9,85 
Truncated,  
Not Filt. CM 61,75 81,25 71,15 59,95 48,35 39,65 35,80 34,05 
Bartlett - 61,75 79,50 77,70 71,65 66,10 61,80 58,30 
Daniel - 62,30 80,10 76,85 67,45 60,55 55,60 51,10 
Quadratic 64,50 69,00 80,15 73,70 62,85 55,85 50,45 46,90 
Tukey - 61,75 79,35 78,00 70,20 64,05 58,40 54,85 
          
Lagrange Mult.         
Filtered CM 11,35        
Not Filt. CM 62,15        
         

Notes:  DGP: VAR(1) - GARCH(1,1),    Ho: No Volatility Spillover & H1: Bidirectional Symmetric 
Volatility Spillover in the 1st Lag,  The Direction of the Unidirectional Tests is from Series 1 to Series 2, 
The Normal Cheung & Ng, detects Causality in the Specific Lag. Mean Spillover in the first Lag, The 
Filter is a VAR(1) Model 
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4.3.2 EMPIRICAL RESULTS OF MONTE CARLO DESIGN 2 

 
A) SMALL SAMPLE  

 

1. The most important empirical discovery of this Monte Carlo design is the serious 

upward distortion in the empirical size of the various causality in variance tests that 

can be realized when we do not account for the presence of causal interdependencies 

in the first order moments. This finding is in agreement with that of Pantelidis & 

Pittis (2004). These authors were the first to detect the negative impact of mean 

spillovers in the credibility of causality in variance tests. 

 

2. In regard with the Cheung & Ng class of tests, we observe that the distortion of 

empirical size is maximized in the 1st lag while it persists until the 10th lag. This 

pattern was naturally expected as the mean spillover takes place in the 1st lag and 

continues to influence the series for a number of periods. The Normal version of 

Cheung & Ng tests is also affected from causality in mean but this effect decays more 

rapidly than in the rest of the tests. This happens because this type of test scans for 

causality only in a specific lag. Thus in this case, the causality in mean does not have 

a cumulative effect in the performance of this test as happens with the other 

methodologies. However we must note that when considering the first lag the Normal 

version is more heavily influenced compared with the other versions of the Cheung & 

Ng class of tests. For the 2nd  and 5th  lags the bidirectional version seems more 

sensitive to mean spillovers while for the 10th  lag and afterwards the differences in 

the distorting effects across the alternative versions of the Cheung & Ng class of tests 

are less obvious. 

 

3.  For the Hong tests the situation is slightly different. More specifically we observe 

that the effects of not accounting for mean spillovers are observable even at the 50th  

lag. This characteristic can be simply attributed in the more complex lag weighting 

scheme that is adopted when using this type of tests. We have also found that the most 

robust kernel against causality in mean is the Truncated. From the other side, the 

Bartlett and Tukey are the most heavily influenced kernels. Finally it seems that the 

bidirectional version of the Hong tests suffers more heavily from size distortions 

compared with its unidirectional alternatives.  
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4. The Lagrange Multiplier test suffers from significant oversizing when mean 

spillovers are not accounted for. Thus none of the methodologies tested in this study 

can be regarded as trustful in an environment with causal linkages in the first 

moments. 

 
B) LARGE SAMPLE 

 
1. In the case of a large sample size we clearly observe that the distorting effects of 

not filtering causality in mean are even more pronounced. This means that in 

empirical applications in the field of finance where the researchers frequently use 

thousands of observations, it is very important to account for mean spillovers before 

proceeding with the causality in variance tests. We must also note that the empirical 

worker must also choose a correct specification for the conditional mean model in 

order to efficiently remove any causality in the first moments. In our case the spillover 

in mean takes place in the 1st  lag and we filter this feature using a first order VAR 

model. That�s why causality in mean when filtered does not affect the empirical size 

of the tests. This would not however happen if we used the same VAR specification 

but the mean spillover was located in another lag. 

 

2. We also observe that the bidirectional version of the Cheung & Ng class of tests is 

more negatively affected (increase in the empirical size) than the rest of the Cheung & 

Ng tests used in this study. 

 

3. For the Cheung & Ng class of tests the distorting effects are maximized in the 1st  

lag. For the unidirectional Hong tests, this happens between the 1st and the 2nd  lags 

while for the bidirectional version of Hong tests the distortion is more pronounced in 

the 5th  lag. 

 

4. It is almost certain that the bidirectional version of the Hong class of tests is less 

robust to causality in mean compared with its unidirectional alternatives. This is not 

surprising however, as we have a bidirectional mean spillover structure in the 

generated data. Thus it is natural that this aggregate effect will have a more powerful 

impact on tests that search for volatility spillovers in both directions simultaneously. 



 

MSc in Banking and Financial Management, University of Piraeus, 2008 

- 103 -

In this point we want to note that the reason for not providing outputs with the 

power of the tests under not filtering causality in mean is simply because the 

unfiltered mean spillovers have a positive impact in the power of the tests. This result 

is not however of any importance as it was naturally expected to happen. In the 

following figures we provide the smooth densities of the various causality in variance 

tests that were calculated by an Epanechnikov kernel using the test�s realized values 

for the sample size of 600 obs.  The results using this sample size were not included in 

the previous tables, as we wanted to depict the two limit cases of a small (200 obs.) 

and a large sample size (1000 obs.) This sample size however was chosen for the 

construction of the empirical distributions as it represents a mainstream situation 

between the two limits and allows us to briefly and concretely demonstrate our 

empirical results.  

Previewing these figures we can safely conclude that when the presence of 

causality in mean is not correctly filtered ( e.g. when using univariate ARMA models 

for the conditional mean specifications instead of VAR models ) then a serious 

distortion in the empirical size of the various tests is observed. This means that the 

probability for type I error is increased, meaning that it is more possible to reject the 

null hypothesis of no causality in variance, when this is in fact true. Thus it is clear the 

underlying risk of finding causal interlinkages between series that are in fact 

independent or unrelated in their second moments when we do not account for any 

possible existent interdependence in the first moments. In the Appendix B (Monte 

Carlo Design 2) you will also find a number of additional figures that will help you to 

visualize the differences among the alternative tests as well as some other aspects of 

this Design. 
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Figures 2.1-2.4 Unidirectional & Bidirectional Hong Causality in Variance Tests 

under Filtered / Not Filtered Causality in Mean (Bandwidth: 10) 
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Figures 2.5-2.8 Unidirectional & Bidirectional Cheung & Ng Causality in Variance 

Tests under Filtered / Not Filtered Causality in Mean (10th Lag) 
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In the following two graphs we plot the empirical distributions of the Normal 

Cheung & Ng Test in the 1st and 10th  Lags. As we have already said this version of 

the Cheung & Ng tests, scans for causality only in a specific lag. In the 10th Lag the 

causality in mean is weak and thus the distorting effect in the empirical size of the test 

is not powerful and thus not observable. In the 1st Lag however the mean spillovers 

are strong and we can clearly observe their effects (when not filtered) in the empirical 

distribution of the Normal Cheung & Ng test. 

 

 

• 1st Lag, Causality in Mean is Powerful 
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• 10th Lag, Causality in Mean has disappeared. 
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Figure 2.9 Lagrange Multiplier Causality in Variance Tests under Filtered / Not 

Filtered Causality in Mean (1st Lag) 
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4.4 MONTE CARLO SIMULATION DESIGN 3 

 
In this experiment we have estimated the size and power of causality in mean 

tests under the alternative assumptions of no volatility spillovers, volatility spillovers 

and volatility spillovers with GARCH in Mean effects. The spillovers for both the 

first and second conditional moments are located in the first lag. We must note here 

that the LM test is not used in this experiment as it is designed to detect volatility 

spillovers only. It is also important to denote the versatility of the Cheung & Ng and 

Hong tests in that they can be used in both causality in mean and causality in variance 

applications. More specifically if we want to perform causality in mean tests, then the 

only thing that we have to do is to use the standardized residuals of the ARMA � 

GARCH models instead of their squares.  

 
4.4.1 DATA GENERATING PROCESS 
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In the following tables we provide the most important of our Monte Carlo 

results in regard with the empirical size performance of the alternative causality in 

mean tests. We do not provide output for the power of these tests as this was out of 

our research interests. We have however computed the power of these tests and these 

results are available from the author upon request. The numbers beside the names of 

the tests represent the lag lengths (or bandwidths when considering the Hong class of 

tests)  
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TABLE 3.1         
Empirical Size, Causality in Mean Tests, Presence of  Volatility Spillovers and GARCH in Mean effects/ 
Volatility Spillovers / No Volatility Spillovers,  Sample Size: 200 obs.,  Replications: 2000,  Nominal Size: 
5% 
         

Cheung & Ng 1 2 5 10 20 30 40 50 
Standard,  
No Vol Sp. 4,90 5,05 4,70 4,35 3,50 2,55 1,60 0,85 
Modified 5,10 5,30 5,40 5,15 5,65 5,80 6,40 6,40 
Normal 5,10 4,90 5,35 4,25 4,25 3,60 2,55 3,35 
Bidirectional 5,10 5,15 4,90 4,20 3,30 1,40 0,80 0,55 
Standard,   
Vol Sp. 7,40 7,20 6,50 5,60 4,55 2,10 1,50 0,95 
Modified 7,55 7,40 7,20 7,05 6,95 5,70 5,60 6,10 
Normal 6,65 5,30 4,80 5,55 4,50 3,40 3,30 3,30 
Bidirectional 7,45 7,65 7,85 6,20 3,90 2,10 1,25 0,45 
Standard,  
Vol Sp. & GIM 7,85 7,85 8,30 6,15 4,55 3,05 2,05 1,05 
Modified 8,00 8,45 9,05 7,65 7,05 7,00 6,65 7,05 
Normal 6,90 5,95 4,60 4,30 4,45 3,90 3,35 2,10 
Bidirectional 7,40 7,75 7,95 7,50 4,50 2,75 1,55 0,75 
 
 
 
         

Hong 1 2 5 10 20 30 40 50 
Truncated,   
No Vol Sp. 7,05 6,95 7,50 6,70 7,00 6,75 7,05 7,45 
Bartlett - 7,05 6,95 7,80 6,85 6,60 6,75 7,05 
Daniel - 6,90 7,10 7,45 6,85 6,90 7,25 7,30 
Quadratic 6,95 6,95 7,30 7,05 6,75 7,10 7,20 7,50 
Tukey - 7,05 7,30 7,60 6,70 6,70 6,85 7,15 
Truncated,   
Vol Sp. 9,50 9,60 10,40 9,30 8,35 6,45 6,15 6,55 
Bartlett - 9,50 10,15 10,15 9,80 9,40 8,95 8,35 
Daniel - 9,80 10,00 10,10 9,35 9,25 8,80 7,75 
Quadratic 9,30 9,15 10,20 10,25 9,10 8,70 7,55 7,25 
Tukey - 9,50 9,95 10,25 9,85 9,00 8,75 8,75 
Truncated,  
Vol Sp. & GIM 9,45 10,55 11,15 9,65 8,70 8,10 7,35 7,70 
Bartlett - 9,45 10,35 11,20 10,65 10,45 9,60 8,65 
Daniel - 9,55 10,85 11,45 10,60 9,60 8,90 8,15 
Quadratic 9,50 9,55 11,00 10,90 9,60 8,95 8,10 8,00 
Tukey - 9,45 10,10 11,20 10,85 9,65 9,55 8,85 
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Modified Hong 1 2 5 10 20 30 40 50 
Truncated,  
No Vol Sp. 7,05 7,00 7,55 6,60 7,05 6,55 6,85 6,70 
Bartlett - 7,05 6,95 7,80 6,90 6,70 6,65 7,10 
Daniel - 6,90 7,10 7,45 6,95 6,90 7,25 7,30 
Quadratic 6,95 6,95 7,35 7,00 6,80 7,15 7,45 7,25 
Tukey - 7,05 7,25 7,60 6,75 6,65 6,85 7,25 
Truncated,   
Vol Sp. 9,50 9,60 10,25 9,30 8,25 6,55 6,00 6,60 
Bartlett - 9,50 10,10 10,15 9,80 9,45 8,90 8,45 
Daniel - 9,80 10,00 9,90 9,40 9,10 8,55 7,40 
Quadratic 9,35 9,15 10,05 10,35 9,15 8,80 7,70 7,35 
Tukey - 9,50 9,95 10,20 9,75 9,15 8,80 8,55 
Truncated,  
Vol Sp. & GIM 9,45 10,50 11,15 9,65 8,60 7,85 7,35 7,45 
Bartlett - 9,45 10,35 11,30 10,75 10,20 9,50 8,65 
Daniel - 9,55 10,80 11,35 10,75 9,55 8,65 7,90 
Quadratic 9,50 9,55 11,05 10,70 9,50 8,90 7,80 7,80 
Tukey - 9,45 10,10 11,15 10,85 9,50 9,50 8,90 

 

 

Bidirect. Hong 1 2 5 10 20 30 40 50 
Truncated,  
No Vol Sp. 7,55 7,70 7,60 6,80 7,45 7,40 7,05 7,05 
Bartlett - 7,55 7,80 7,15 7,30 6,95 6,85 7,15 
Daniel - 7,30 7,60 7,70 6,95 6,70 6,65 7,25 
Quadratic 7,40 7,20 7,35 7,05 7,05 6,55 7,25 7,80 
Tukey - 7,55 8,10 7,45 7,25 6,90 6,60 6,75 
Truncated,  
Vol Sp. 10,10 11,20 10,95 11,05 9,00 8,75 7,95 8,30 
Bartlett - 10,10 10,95 12,05 10,95 10,60 10,10 10,05 
Daniel - 10,00 11,45 11,90 11,40 9,85 9,70 9,35 
Quadratic 10,30 10,50 11,85 11,70 10,55 9,95 9,20 9,10 
Tukey - 10,10 10,70 12,30 11,15 10,65 9,85 9,50 
Truncated,  
Vol Sp. & GIM 8,85 11,35 12,00 10,85 9,35 9,05 8,50 8,35 
Bartlett - 8,85 10,45 11,60 11,70 11,40 11,10 10,40 
Daniel - 8,80 10,75 11,35 11,70 10,90 10,35 10,10 
Quadratic 9,35 9,55 11,20 11,75 11,30 10,45 9,95 10,05 
Tukey - 8,85 10,65 11,70 11,55 11,25 10,65 10,40 
         

Notes:  DGP: VAR(1) - GARCH(1,1),    Ho: No Causality in Mean & H1: Bidirectional Symmetric Mean 
Spillover in the 1st Lag,  The Direction of the Unidirectional Tests is from Series 1 to Series 2, The Normal 
Cheung & Ng, detects Causality in the Specific Lag. Volatility Spillover (if existent) in the first Lag. The 
Unconditional Distribution of Residuals is N(0,1). GIM means Garch in Mean effects 
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TABLE 3.2         
Empirical Size, Causality in Mean Tests, Presence of  Volatility Spillovers and GARCH in Mean effects/ 
Volatility Spillovers / No Volatility Spillovers,  Sample Size: 1000 obs.,  Replications: 2000,  Nominal Size: 
5% 
         

Cheung & Ng 1 2 5 10 20 30 40 50 
Standard,  
No Vol Sp. 4,70 4,95 4,65 4,60 4,00 4,75 4,15 3,90 
Modified 4,70 5,05 4,75 4,90 4,65 5,20 5,15 5,40 
Normal 5,20 4,85 4,85 5,10 5,20 4,40 4,65 3,75 
Bidirectional 4,30 4,55 4,35 4,70 4,45 4,30 3,90 3,25 
Standard,  
Vol Sp. 7,00 7,25 7,35 8,30 6,15 5,45 4,75 3,70 
Modified 7,05 7,35 7,55 8,55 6,50 6,60 5,95 5,65 
Normal 6,25 5,85 4,55 5,80 5,15 4,25 4,90 5,10 
Bidirectional 5,75 6,00 8,55 7,95 8,00 6,90 5,70 4,65 
Standard,  
Vol Sp. & GIM 8,55 8,25 8,50 6,80 5,65 5,25 4,80 4,65 
Modified 8,60 8,25 8,50 7,10 6,45 6,25 5,90 6,60 
Normal 8,75 6,80 5,70 5,50 4,60 6,05 6,00 4,45 
Bidirectional 8,75 8,95 8,75 9,15 7,45 6,50 5,95 4,55 
         

Hong 1 2 5 10 20 30 40 50 
Truncated,   
No Vol Sp. 6,20 6,85 7,10 5,75 5,90 5,95 6,00 6,25 
Bartlett - 6,20 6,45 6,60 6,45 6,00 6,35 6,45 
Daniel - 6,05 6,50 6,60 6,15 6,05 6,35 6,25 
Quadratic 6,15 6,10 6,45 6,10 6,30 6,55 6,55 6,75 
Tukey - 6,20 6,75 6,80 6,25 6,30 6,30 6,55 
Truncated, 
 Vol Sp. 8,80 10,10 10,40 10,80 8,15 8,40 7,20 7,10 
Bartlett - 8,80 10,10 10,85 10,15 10,40 10,00 9,30 
Daniel - 9,00 10,30 10,70 10,40 10,20 9,00 8,00 
Quadratic 8,95 8,85 11,30 10,35 10,40 9,10 8,05 7,85 
Tukey - 8,80 9,75 10,95 10,10 10,30 10,10 9,20 
Truncated,  
Vol Sp. & GIM 10,95 10,75 11,15 9,70 8,15 7,40 7,40 7,80 
Bartlett - 10,95 11,75 11,60 11,25 10,60 10,15 9,40 
Daniel - 11,25 11,95 11,30 11,15 9,95 9,30 8,40 
Quadratic 11,25 11,10 11,45 11,45 10,45 9,35 8,55 7,90 
Tukey - 10,95 11,90 11,25 11,15 10,45 9,80 9,20 
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Modified Hong 1 2 5 10 20 30 40 50 
Truncated, 
 No Vol Sp. 6,20 6,85 7,10 5,75 5,85 5,90 5,95 6,30 
Bartlett - 6,20 6,45 6,55 6,45 6,00 6,35 6,45 
Daniel - 6,05 6,50 6,55 6,15 6,15 6,35 6,30 
Quadratic 6,15 6,10 6,45 6,10 6,30 6,55 6,50 6,70 
Tukey - 6,20 6,75 6,80 6,25 6,35 6,15 6,60 
Truncated,  
 Vol Sp. 8,80 10,10 10,40 10,80 8,25 8,45 7,20 7,15 
Bartlett - 8,80 10,05 10,85 10,20 10,35 9,95 9,15 
Daniel - 9,00 10,30 10,75 10,30 10,15 8,90 8,05 
Quadratic 8,95 8,85 11,30 10,35 10,35 9,10 8,10 7,85 
Tukey - 8,80 9,70 10,90 10,10 10,30 10,05 9,10 
Truncated,  
Vol Sp. & GIM 10,95 10,75 11,15 9,65 8,05 7,45 7,45 7,70 
Bartlett - 10,95 11,75 11,60 11,25 10,60 10,15 9,40 
Daniel - 11,25 11,95 11,30 11,10 9,90 9,20 8,35 
Quadratic 11,25 11,10 11,45 11,45 10,40 9,25 8,50 8,00 
Tukey - 10,95 11,85 11,25 11,15 10,45 9,75 9,15 

 

 

Bidirect. Hong 1 2 5 10 20 30 40 50 
Truncated,  
No Vol Sp. 6,50 6,55 5,15 6,50 6,05 5,80 6,20 6,30 
Bartlett - 6,50 6,30 5,90 5,65 5,75 5,80 5,30 
Daniel - 6,25 6,40 6,00 5,95 5,80 5,75 5,35 
Quadratic 6,40 6,35 6,20 5,65 6,15 5,65 5,35 5,70 
Tukey - 6,50 5,95 6,00 6,10 6,00 6,05 5,45 
Truncated,  
Vol Sp. 7,75 8,80 10,90 10,10 9,55 10,25 8,25 7,75 
Bartlett - 7,75 8,60 9,60 11,15 11,00 10,55 10,20 
Daniel - 7,65 8,65 10,55 11,10 10,60 10,45 9,75 
Quadratic 7,65 7,85 9,20 11,35 10,90 10,25 9,70 9,45 
Tukey - 7,75 8,35 9,45 11,10 10,95 10,45 10,05 
Truncated,  
Vol Sp. & GIM 9,50 12,40 11,35 11,75 9,10 8,90 8,70 8,55 
Bartlett - 9,50 11,70 11,95 11,75 11,85 11,10 10,65 
Daniel - 9,95 12,40 12,45 11,80 11,65 10,55 10,20 
Quadratic 9,90 9,90 12,35 12,70 12,15 10,55 10,25 9,80 
Tukey - 9,50 11,20 12,25 11,75 12,10 10,85 10,45 
         

Notes:  DGP: VAR(1) - GARCH(1,1),    Ho: No Causality in Mean & H1: Bidirectional Symmetric Mean 
Spillover in the 1st Lag,  The Direction of the Unidirectional Tests is from Series 1 to Series 2, The Normal 
Cheung & Ng, detects Causality in the Specific Lag. Volatility Spillover (if existent)  in the first Lag. The 
Unconditional Distribution of the Residuals is N(0,1). GIM means Garch in Mean effects 
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4.4.2 EMPIRICAL RESULTS OF MONTE CARLO DESIGN 3 

 
A) SMALL SAMPLE  

 

1.  The Cheung & Ng class of tests exhibit a pattern that is analogous to that observed 

in the case of causality in variance tests. The Standard and Modified versions of this 

class display a significantly different behavior. More specifically the empirical size of 

the first one decreases in a monotonic way with the lag length while the latter 

demonstrates exactly the opposite behavior. It is also impressive that in the 50th lag 

the Standard and Bidirectional tests exhibit a very small empirical size. This result 

however may be biased due to the small size of the sample used.   

 

2. The Hong tests are slightly oversized for the entire regime of lag lengths 

irrespectively of the kernel we use. 

 

3. In the case of volatility spillovers we observe an upward distorting effect in the 

empirical size of the Cheung & Ng class of tests that persists until the 20th lag.  The 

Normal version of the tests seems to be affected only in the 1st  lag as it was expected. 

In regard with the Hong tests the effects of variance causality, in the type I error 

probability of causality in mean tests, are slightly more powerful compared with those 

for the Cheung & Ng tests. The most heavily influenced kernels are the Bartlett and 

Tukey. We also observe that the bidirectional version of Hong tests is less robust 

against volatility spillover effects compared with its unidirectional alternatives. The 

effects of volatility transmission in the empirical size of Hong causality in mean tests 

persist for a long horizon. They seem to be strong even in the 50th  lag. Thus we can 

conclude that the existence of volatility spillovers has an inflationary impact on the 

empirical size of causality in mean tests. However this result is not as powerful as in 

the inverse case where the causality in mean caused a serious distortion in the 

empirical size of causality in variance tests. 

 

4. An interesting pattern is exhibited from the Truncated kernel in the unidirectional 

Hong tests. More specifically until the 20th lag the presence of volatility spillovers 

causes an upward distortion in the empirical size of this test. From the 30th  lag and 

afterwards the presence of these effects appears to push downwards the empirical size 
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of the Truncated kernel based tests. Interestingly this behavior is not exhibited from 

any of the other kernels or in the case of the bidirectional version of the Hong test. 

 

5. When we enrich the generated process with GARCH in Mean effects, then the 

presence of volatility spillovers has a more powerful distorting impact in the empirical 

size of causality in mean tests. This effect is not however as strong as we would 

expect. A more concrete conclusion will be reached when we examine these effects 

for the large sample size. 

 
B) LARGE SAMPLE 

 
1. In the case of the large sample size we observe that the discrepancy in the behavior 

of the empirical size between the Standard and Modified versions of the Cheung & 

Ng class of tests is less intense. 

 

2. Once more an upward distorting impact in the empirical size of the Cheung & Ng 

tests due to volatility spillovers is observed. These effects persist until the 40th  lag. 

This however does not concern the Normal version of the tests that is affected only in 

the 1st  and 2nd lags. We also observe an important upward distortion in the empirical 

size of the Hong class of tests that persists (as in the small sample case) for the entire 

lag length regime. 

 

3. The response of the bidirectional Hong test in the influences of volatility spillovers, 

exhibits a small delay. More specifically the size distorting effects of variance 

causality are more pronounced in larger lag lengths compared with the unidirectional 

Hong tests, while in small lags they are substantially weaker. 

 

4. The GARCH in Mean effects have now a rather mixed impact in the empirical size 

of causality in mean tests. For the Cheung & Ng class of tests we observe that until 

the 5th  lag the presence of GARCH in Mean effects causes an upward distortion in the 

probability for type I error while after that lag these effects are changing direction 

with the GARCH in Mean causing a decrease in the empirical size of these tests. An 

analogous behavior is exhibited from the Bidirectional and Normal Cheung & Ng 

tests with the latter not being influenced after the 10th  lag. 
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5.  For the Hong tests the GARCH in Mean effects do not have a uniform impact for 

all the kernels. The empirical size of the Truncated kernel is upwardly distorted until 

the 5th  lag, while after that lag the distorting effect has a downward direction. For the 

rest of the kernels used is this study the impact of GARCH in Mean effects, is an 

inflation in the empirical size of the tests irrespectively of the lag we considered. 

Finally for the bidirectional version of the Hong tests the distortion in the empirical 

size is more pronounced compared with the unidirectional version of these tests. 

 
 

In the following figures we provide the smooth densities of the various causality 

in mean tests that were calculated by an Epanechnikov kernel using the test�s realized 

values for the sample size of 600 obs. The results using this sample size were not 

included in the previous tables, as we wanted to depict the two limit cases of a small 

(200 obs.) and a large sample size (1000 obs.) This sample size however was chosen 

for the construction of the empirical distributions as it represents a mainstream 

situation between the two limits and allows us to briefly and concretely demonstrate 

our empirical results.   In Appendix B (Monte Carlo Design 3) you can find a number 

of additional figures that will help you to visualize the differences among the 

alternative tests as well as some other aspects of this Design. 
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Figures 3.1-3.4 Unidirectional and Bidirectional Hong Causality in Mean tests under 

Volatility Spillovers / GARCH in Mean Effects (Bandwidth: 5) 
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Figures 3.5-3.8 Unidirectional and Bidirectional Cheung & Ng Causality in Mean 

tests under Volatility Spillovers / GARCH in Mean Effects (5th Lag)  
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• In the following graph we used the �Normal� test in the 1st Lag. 
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• In the following graph we used the �Normal� test in the 5th  Lag. 
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4.5 MONTE CARLO SIMULATION DESIGN 4 

 

In this experiment we perform an investigation of the size and power of 

causality in variance tests under the presence of fractional integration in the volatility 

process. We must note that the initial value for the conditional variance is now set 

equal to 1000 and not equal to the unconditional variance (as we did in the 

conventional GARCH process). The reason is that the FIGARCH process is not 

covariance stationary but instead is strictly stationary. We make use of three 

alternative distributional assumptions for the underlying residuals. In the two of them 

we use the Normal Inverse Gaussian distribution that has been found in the literature 

to frequently characterize the returns of financial variables as  in Andersson (2001), 

Jensen & Lunde (2001), Forsberg and Bollerslev (2002), Kilic (2007) among 

others. The NIG distribution is a special case of the generalized hyperbolic 

distribution, which was introduced to the field of finance by Barndorff Nielsen 

(1997). The attractive features of the NIG distribution include the ability to fit 

leptokurtic and skewed data combined with nice analytical properties, such as being 

closed under convolution and having a closed form density.  

 

4.5.1 DATA GENERATING PROCESS 
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Through a small scale simulation study we have calculated the sample moments of the 

Normal Inverse Gaussian distribution for six alternative pairs of values for the 

parameters a (steepness) and b (assymetry): 
         TABLE 4.1  

 1 2 3 4 5 6 
a 1,00 1,00 1,20 1,20 1,50 1,50 
b 0,00 -0,40 0,4060 -0,4060 0,00 0,40 

mean 0,00 0,00 0,00 0,00 0,00 0,00 
var 1,00 1,14 0,99 0,99 0,82 0,82 

skewness 0,00 -1,33 0,93 -0,95 0,01 0,29 
kurtosis 5,97 9,00 6,69 6,87 4,63 4,78 

 

We have used the parameter values of cases 1 and 3 for our Monte Carlo study 

of the finite sample properties of the causality in variance tests, along with the NIID 

(0,1) hypothesis and the results are provided in the following tables. Note also that in 

the Appendix A you can find the code for calculating the sample and theoretical 

moments of the NIG distribution for alternative parameter values if you want to study 

further the characteristics of this distribution. Finally we must mention that in the 

Data Generating process used in this Monte Carlo Design we discard 7000 

observations in each replication instead of just 1000 as in the previous experiments in 

order to avoid startup problems and any possible distortion in the long memory 

features of the generated series due to the large truncation lag (in the fractional 

differencing operator) that was set equal to 1000. The numbers beside the names of 

the tests represent the lag lengths (or bandwidths when considering the Hong class of 

tests)  
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TABLE 4.2         
Empirical Size, Causality in Variance Tests, Fractionally Integrated Volatility Process, N(0,1), 
NIG(1,0,m,delta), NIGb(1.2,0.4060,m,delta) ,  Sample Size: 200 obs.,  Replications: 2000,  Nominal Size: 
5%, d1 = d2 = 0.4,  
         

Cheung & Ng 1 2 5 10 30 50 80 120 
Standard,  
N(0,1) 5,55 5,30 5,70 5,25 4,25 2,30 1,20 0,10 
Modified 5,75 5,70 6,40 6,20 7,80 9,90 13,20 19,45 
Normal 6,85 5,25 6,00 5,35 4,75 3,75 2,75 0,85 
Bidirectional 5,85 6,00 5,45 6,30 3,35 1,65 0,10 0,00 
Standard, 
 NIG(1,0,m,delta) 4,35 5,80 8,25 10,50 10,05 8,30 4,35 1,30 
Modified 4,65 5,90 8,80 11,10 15,45 17,50 22,45 26,70 
Normal 5,65 6,15 6,75 5,45 5,30 5,40 2,90 1,50 
Bidirectional 7,00 8,00 9,50 11,50 8,35 4,45 0,30 0,00 
Standard, 
NIGb(1.2,0.4060,m,delta)  5,30 6,50 9,10 10,50 11,00 9,65 6,15 2,25 
Modified 5,50 6,70 9,40 11,05 15,50 16,65 22,30 28,60 
Normal 6,70 6,35 5,45 6,00 4,45 4,70 3,60 2,50 
Bidirectional 7,40 9,15 11,45 12,50 10,65 6,35 0,65 0,00 
         

Hong 1 2 5 10 30 50 80 120 
Truncated,  
N(0,1) 7,25 7,70 8,55 7,50 8,65 9,85 12,35 17,50 
Bartlett - 7,25 7,65 7,50 8,05 8,05 8,25 9,35 
Daniel - 7,05 7,75 7,80 7,90 8,05 8,70 10,00 
Quadratic 7,15 7,30 7,55 8,20 7,85 8,40 9,55 12,30 
Tukey - 7,25 7,50 7,30 7,90 7,95 8,35 9,40 
Truncated, 
 NIG(1,0,m,delta) 5,50 6,85 10,35 12,25 16,10 17,70 22,20 25,85 
Bartlett - 5,50 7,35 9,60 12,90 13,95 15,95 17,80 
Daniel - 5,60 7,50 9,80 13,60 15,15 16,90 18,95 
Quadratic 5,75 5,90 8,20 10,90 14,05 15,65 18,30 20,75 
Tukey - 5,50 6,85 9,15 12,95 14,15 15,75 18,30 
Truncated, 
NIGb(1.2,0.4060,m,delta) 6,10 8,00 10,70 12,35 16,25 17,10 22,15 27,20 
Bartlett - 6,10 8,35 10,20 13,15 14,60 16,60 17,55 
Daniel - 6,10 8,70 10,50 13,55 15,55 17,10 18,90 
Quadratic 6,10 6,45 9,00 11,35 14,65 16,70 17,45 20,90 
Tukey - 6,10 8,05 10,10 13,50 15,25 16,65 17,10 
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Modified Hong 1 2 5 10 30 50 80 120 
Truncated,  
N(0,1) 7,25 7,60 8,50 7,60 8,60 10,10 13,45 19,30 
Bartlett - 7,25 7,65 7,50 8,05 8,15 8,40 9,90 
Daniel - 7,00 7,75 7,85 8,15 8,35 9,30 11,90 
Quadratic 7,15 7,30 7,50 8,15 7,85 8,50 9,95 14,50 
Tukey - 7,25 7,50 7,40 7,95 8,00 8,55 9,60 
Truncated,  
NIG(1,0,m,delta) 5,50 6,90 10,30 12,10 16,05 17,90 22,45 26,45 
Bartlett - 5,50 7,35 9,65 13,10 14,30 16,00 18,45 
Daniel - 5,60 7,55 9,85 13,65 15,75 18,50 21,20 
Quadratic 5,75 5,85 8,20 11,05 14,25 15,90 18,75 23,90 
Tukey - 5,50 6,85 9,35 13,05 14,35 16,05 18,25 
Truncated, 
NIGb(1.2,0.4060,m,delta) 6,10 8,00 10,70 12,30 16,25 17,05 22,35 28,40 
Bartlett - 6,10 8,35 10,20 13,05 14,70 16,85 18,70 
Daniel - 6,10 8,65 10,45 14,00 15,65 17,40 21,75 
Quadratic 6,10 6,45 9,05 11,35 15,05 16,75 18,65 23,25 
Tukey - 6,10 8,05 10,10 13,55 15,45 16,75 17,80 
         

Bidirect. Hong 1 2 5 10 30 50 80 120 
Truncated,  
N(0,1) 6,75 7,70 7,50 8,35 7,65 8,50 10,00 8,90 
Bartlett - 6,75 7,15 7,90 8,60 8,35 8,45 8,35 
Daniel - 6,90 7,45 7,65 8,50 8,65 8,45 8,45 
Quadratic 6,55 6,60 7,80 7,85 8,20 8,70 8,10 8,70 
Tukey - 6,75 7,20 7,65 8,75 8,15 8,70 8,15 
Truncated,  
NIG(1,0,m,delta) 7,60 8,75 11,35 13,95 15,90 14,75 16,65 12,25 
Bartlett - 7,60 8,65 10,70 13,50 13,75 13,95 13,70 
Daniel - 7,25 9,05 11,45 13,50 13,90 13,80 13,80 
Quadratic 7,45 7,30 9,65 12,65 13,80 14,25 13,95 13,60 
Tukey - 7,60 8,35 10,70 13,40 13,90 14,25 14,25 
Truncated, 
NIGb(1.2,0.4060,m,delta) 6,70 9,80 12,85 15,05 16,60 17,20 18,15 12,45 
Bartlett - 6,70 9,80 12,20 15,35 15,80 15,90 15,95 
Daniel - 7,00 10,25 12,55 15,35 15,65 15,90 15,50 
Quadratic 6,65 7,00 11,70 13,20 15,90 15,85 16,45 15,25 
Tukey - 6,70 9,35 12,15 14,90 16,05 15,75 16,55 
         
Lagrange Mult.         
N(0,1) 10,15        
NIG(a,0,m,delta) 9,95        
NIGb(a,b,m,delta) 9,00        
         

Notes:  DGP: VAR(1) - FIGARCH(1,d,1),    Ho: No Volatility Spillover & H1: Bidirectional Symmetric 
Volatility Spillover in the 1st Lag,   The alternative distributional assumptions concern the underlying 
Residuals Process,  The Direction of the Unidirectional Tests is from Series 1 to Series 2, The Normal 
Cheung & Ng, detects Causality in the Specific Lag. NIG: Normal Inverse Gaussian Distribution 
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TABLE 4.3         
Empirical Size, Causality in Variance Tests, Fractionally Integrated Volatility Process, N(0,1), 
NIG(1,0,m,delta), NIGb(1.2,0.4060,m,delta) ,  Sample Size: 1000 obs.,  Replications: 2000,  Nominal Size: 
5%, d1 = d2 = 0.4,  
         

Cheung & Ng 1 2 5 10 30 50 80 120 
Standard,  
N(0,1) 4,90 5,05 4,75 4,50 4,70 3,95 2,45 1,75 
Modified 4,90 5,05 4,80 4,65 5,50 5,40 4,75 6,15 
Normal 5,55 5,20 6,30 5,60 4,70 5,75 3,90 4,20 
Bidirectional 5,05 5,70 5,75 5,55 3,95 3,65 3,10 1,70 
Standard, 
 NIG(1,0,m,delta) 4,60 5,35 7,50 9,05 10,10 10,70 9,95 8,65 
Modified 4,65 5,35 7,60 9,20 11,00 12,50 13,30 14,70 
Normal 6,55 5,70 5,00 6,00 5,65 5,50 6,05 5,30 
Bidirectional 6,25 7,90 9,10 9,65 10,20 9,45 8,55 6,35 
Standard, 
NIGb(1.2,0.4060,m,delta) 4,50 5,25 7,90 10,05 12,05 12,80 11,95 10,15 
Modified 4,50 5,40 7,95 10,20 12,95 14,25 15,25 15,45 
Normal 5,80 6,35 5,50 6,40 5,45 6,30 4,90 4,85 
Bidirectional 6,60 7,70 9,50 11,70 13,20 13,40 12,40 9,80 
         

Hong 1 2 5 10 30 50 80 120 
Truncated,  
N(0,1) 6,50 7,25 6,25 5,95 6,45 6,25 5,80 6,90 
Bartlett - 6,50 6,55 6,50 5,85 5,95 6,35 6,60 
Daniel - 6,40 6,70 6,10 5,95 6,00 6,25 6,55 
Quadratic 6,35 6,10 6,30 6,25 6,00 6,10 6,55 6,05 
Tukey - 6,50 6,80 6,30 5,90 5,85 6,05 6,65 
Truncated,  
NIG(1,0,m,delta) 5,65 6,55 9,10 10,60 12,50 13,50 14,25 15,20 
Bartlett - 5,65 6,80 8,30 10,65 11,60 12,65 13,30 
Daniel - 5,55 6,85 8,95 10,95 12,15 12,55 13,20 
Quadratic 5,75 5,70 7,80 9,25 11,60 12,85 13,05 14,40 
Tukey - 5,65 6,35 8,15 10,50 11,75 12,85 13,00 
Truncated, 
NIGb(1.2,0.4060,m,delta) 5,15 7,20 9,30 11,55 14,00 15,35 16,40 16,25 
Bartlett - 5,15 7,25 8,60 12,20 13,40 14,25 15,15 
Daniel - 5,30 7,30 9,05 12,60 13,65 14,60 15,60 
Quadratic 5,05 5,40 8,15 9,60 13,50 14,30 15,40 16,00 
Tukey - 5,15 6,65 8,50 11,75 13,65 14,35 15,30 
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Modified Hong 1 2 5 10 30 50 80 120 
Truncated,  
N(0,1) 6,50 7,25 6,20 5,95 6,45 6,20 5,85 7,00 
Bartlett - 6,50 6,55 6,50 5,85 5,95 6,45 6,60 
Daniel - 6,40 6,65 6,10 5,90 6,15 6,50 6,70 
Quadratic 6,35 6,10 6,30 6,25 6,00 6,15 6,55 6,00 
Tukey - 6,50 6,80 6,30 5,90 5,85 6,05 6,65 
Truncated,  
NIG(1,0,m,delta) 5,65 6,60 9,10 10,60 12,65 13,35 14,05 14,85 
Bartlett - 5,65 6,80 8,35 10,75 11,60 12,70 13,35 
Daniel - 5,55 6,85 8,95 11,00 12,25 12,45 13,20 
Quadratic 5,75 5,70 7,80 9,30 11,55 12,85 13,15 14,55 
Tukey - 5,65 6,35 8,25 10,50 11,75 12,85 13,00 
Truncated, 
NIGb(1.2,0.4060,m,delta) 5,15 7,20 9,30 11,55 13,85 15,50 16,55 16,00 
Bartlett - 5,15 7,25 8,60 12,25 13,35 14,35 15,35 
Daniel - 5,30 7,30 9,10 12,55 13,65 14,80 15,70 
Quadratic 5,05 5,40 8,15 9,65 13,60 14,20 15,35 16,55 
Tukey - 5,15 6,70 8,50 11,80 13,70 14,25 15,20 
         

Bidirect. Hong 1 2 5 10 30 50 80 120 
Truncated, 
 N(0,1) 7,55 7,35 6,80 7,50 5,85 6,40 6,20 7,30 
Bartlett - 7,55 6,80 6,70 6,75 6,50 6,70 6,05 
Daniel - 7,25 6,50 7,10 6,90 7,05 6,20 6,20 
Quadratic 7,45 7,65 7,00 7,25 6,80 6,65 6,30 6,15 
Tukey - 7,55 7,25 6,90 6,70 6,95 6,65 6,20 
Truncated,  
NIG(1,0,m,delta) 6,45 9,10 10,50 10,75 12,30 12,10 13,25 14,45 
Bartlett - 6,45 8,50 10,30 12,10 12,30 12,60 13,00 
Daniel - 6,55 8,95 10,55 11,80 12,70 12,70 12,45 
Quadratic 6,65 6,80 9,65 10,55 12,25 12,60 12,60 13,35 
Tukey - 6,45 8,25 10,10 11,65 12,35 12,60 12,80 
Truncated, 
NIGb(1.2,0.4060,m,delta) 7,00 8,70 10,75 12,60 15,10 17,35 17,70 17,25 
Bartlett - 7,00 8,85 10,30 12,95 14,15 15,10 15,85 
Daniel - 6,80 9,10 10,65 13,60 14,45 15,40 17,10 
Quadratic 7,10 7,20 9,35 11,50 14,30 15,10 16,40 17,20 
Tukey - 7,00 8,60 10,15 13,30 14,15 15,10 16,05 
         
Lagrange Mult.         
N(0,1) 6,70        
NIG(1,0,m,delta) 6,95        
NIGb(1.2,0.4060,m,delta) 6,65        
         

Notes:  DGP: VAR(1) - FIGARCH(1,d,1),    Ho: No Volatility Spillover & H1: Bidirectional Symmetric 
Volatility Spillover in the 1st Lag,   The alternative distributional assumptions concern the underlying 
Residuals Process,  The Direction of the Unidirectional Tests is from Series 1 to Series 2, The Normal 
Cheung & Ng, detects Causality in the Specific Lag. NIG: Normal Inverse Gaussian Distribution 
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TABLE 4.4         
Empirical Power, Causality in Variance Tests, Fractionally Integrated Volatility Process, N(0,1), 
NIG(1,0,m,delta), NIGb(1.2,0.4060,m,delta) ,  Sample Size: 200 obs.,  Replications: 2000,  Nominal Size: 5%, 
d1 = d2 = 0.4,  
         

Cheung & Ng 1 2 5 10 30 50 80 120 
Standard,  
N(0,1) 7,10 9,50 14,70 17,90 18,35 12,55 5,50 1,05 
Modified 7,15 9,75 15,55 21,00 25,60 26,20 24,65 22,50 
Normal 9,10 10,75 12,50 11,45 6,10 4,25 2,60 1,25 
Bidirectional 8,75 9,90 17,40 22,55 21,45 13,65 3,35 0,15 
Standard,  
NIG(1,0,m,delta) 5,25 8,55 13,15 16,70 19,75 15,00 8,20 2,25 
Modified 5,30 8,80 13,65 18,00 26,30 25,50 25,10 26,15 
Normal 7,05 10,20 9,60 8,85 6,00 5,15 2,00 1,70 
Bidirectional 8,55 12,95 18,65 22,80 22,30 14,85 3,30 0,05 
Standard, 
NIGb(1.2,0.4060,m,delta)  4,30 6,85 12,55 18,45 20,05 17,15 10,00 3,15 
Modified 4,30 7,00 13,45 19,60 25,70 25,75 27,65 27,45 
Normal 5,90 8,35 10,25 8,75 6,20 4,20 3,60 1,40 
Bidirectional 7,00 9,20 15,75 23,45 23,40 15,50 3,60 0,05 
         

Hong 1 2 5 10 30 50 80 120 
Truncated,  
N(0,1) 8,40 12,15 18,00 23,25 27,30 27,55 26,30 24,85 
Bartlett - 8,40 11,55 16,05 24,70 27,50 28,95 28,55 
Daniel - 9,00 12,35 16,75 26,05 28,60 29,15 28,50 
Quadratic 8,70 9,00 13,85 18,90 27,00 29,10 28,75 27,25 
Tukey - 8,40 11,05 15,40 24,65 27,30 29,20 28,90 
Truncated, 
 NIG(1,0,m,delta) 6,15 10,30 15,45 19,90 27,25 26,45 26,70 27,35 
Bartlett - 6,15 11,00 14,85 21,85 24,45 26,75 27,85 
Daniel - 6,40 11,80 15,75 23,10 25,65 27,70 27,40 
Quadratic 6,25 7,40 13,00 17,45 24,40 27,50 27,70 28,15 
Tukey - 6,15 10,10 14,50 21,85 24,60 27,50 27,55 
Truncated, 
NIGb(1.2,0.4060,m,delta) 5,05 8,30 15,50 21,70 26,90 27,35 28,90 28,95 
Bartlett - 5,05 8,85 13,40 22,90 25,10 27,65 28,10 
Daniel - 5,95 9,50 14,75 23,80 26,05 28,20 28,15 
Quadratic 5,05 5,70 10,90 17,40 25,00 27,95 28,20 28,60 
Tukey - 5,05 8,55 12,70 22,65 25,40 27,95 28,15 
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Modified Hong 1 2 5 10 30 50 80 120 
Truncated,  
N(0,1) 8,40 12,15 18,05 23,20 26,85 26,80 24,85 22,30 
Bartlett - 8,40 11,55 16,20 24,85 27,60 29,25 28,10 
Daniel - 9,00 12,40 16,85 26,30 28,25 28,50 27,70 
Quadratic 8,70 9,00 13,85 18,90 27,05 29,40 28,55 26,40 
Tukey - 8,40 11,05 15,40 24,65 27,90 29,40 28,75 
Truncated,  
NIG(1,0,m,delta) 6,15 10,30 15,45 20,05 27,10 25,95 25,15 25,95 
Bartlett - 6,15 11,05 14,95 22,15 24,95 27,05 27,55 
Daniel - 6,35 11,80 15,85 23,05 25,75 27,25 27,60 
Quadratic 6,25 7,40 13,00 17,55 24,55 27,50 27,30 28,15 
Tukey - 6,15 10,15 14,60 22,10 24,90 27,50 27,50 
Truncated, 
NIGb(1.2,0.4060,m,delta) 5,05 8,30 15,50 21,65 26,75 26,45 27,75 27,30 
Bartlett - 5,05 8,85 13,55 23,25 25,20 27,75 28,10 
Daniel - 5,95 9,55 14,85 23,95 26,35 28,15 28,20 
Quadratic 5,05 5,70 10,95 17,55 25,25 28,00 28,00 29,30 
Tukey - 5,05 8,55 12,80 22,90 25,45 28,10 28,40 
         

Bidirect. Hong 1 2 5 10 30 50 80 120 
Truncated,  
N(0,1) 9,70 12,60 19,65 27,80 34,85 33,30 29,30 21,25 
Bartlett - 9,70 12,25 18,30 30,85 34,40 35,50 34,60 
Daniel - 10,05 13,25 20,20 32,70 35,50 35,15 33,10 
Quadratic 9,75 10,00 14,50 23,55 34,20 35,70 34,05 30,70 
Tukey - 9,70 11,35 16,75 30,85 34,65 35,90 34,70 
Truncated,  
NIG(1,0,m,delta) 8,80 12,65 20,35 26,00 33,80 32,95 30,40 20,85 
Bartlett - 8,80 12,95 19,30 29,70 32,70 34,15 33,35 
Daniel - 9,15 13,90 21,30 30,60 33,65 34,15 32,70 
Quadratic 9,00 9,40 16,65 23,15 33,05 34,60 33,65 30,30 
Tukey - 8,80 11,95 18,65 29,30 33,45 34,70 33,70 
Truncated, 
NIGb(1.2,0.4060,m,delta) 7,10 9,50 16,40 26,00 32,25 31,75 28,80 20,30 
Bartlett - 7,10 10,25 15,70 26,60 30,10 31,95 31,50 
Daniel - 7,80 11,10 16,55 28,30 31,15 32,00 30,60 
Quadratic 7,05 7,50 12,60 20,10 30,40 32,10 31,85 28,80 
Tukey - 7,10 9,75 15,20 26,90 30,40 32,10 32,05 
         
Lagrange Mult.         
N(0,1) 39,65        
NIG(1,0,m,delta) 27,00        
NIGb(1.2,0.4060,m,delta) 24,30        
         

Notes:  DGP: VAR(1) - FIGARCH(1,d,1),    Ho: No Volatility Spillover & H1: Bidirectional Symmetric 
Volatility Spillover in the 1st Lag,   The alternative distributional assumptions concern the underlying 
Residuals Process,   The Direction of the Unidirectional Tests is from Series 1 to Series 2, The Normal 
Cheung & Ng, detects Causality in the Specific Lag. NIG: Normal Inverse Gaussian Distribution 
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TABLE 4.5         
Empirical Power, Causality in Variance Tests, Fractionally Integrated Volatility Process, N(0,1), 
NIG(1,0,m,delta), NIGb(1.2,0.4060,m,delta) ,  Sample Size: 1000 obs.,  Replications: 2000,  Nominal Size: 5%, 
d1 = d2 = 0.4,  
         

Cheung & Ng 1 2 5 10 30 50 80 120 
Standard, 
 N(0,1) 73,10 91,50 99,60 99,95 100,00 100,00 100,00 100,00 
Modified 73,20 91,60 99,60 99,95 100,00 100,00 100,00 100,00 
Normal 82,00 84,15 84,20 83,10 79,60 75,15 69,65 57,05 
Bidirectional 94,85 98,60 99,95 100,00 100,00 100,00 100,00 100,00 
Standard,  
NIG(1,0,m,delta) 26,10 42,45 68,20 84,05 93,55 94,70 94,95 93,75 
Modified 26,10 42,60 68,30 84,05 93,60 95,15 95,65 95,25 
Normal 34,10 39,05 40,70 39,30 34,45 30,90 26,40 19,75 
Bidirectional 47,65 61,60 82,85 93,75 96,90 97,25 97,70 97,05 
Standard,  
NIGb(1.2,0.4060,m,delta)  21,85 34,50 59,95 77,25 88,75 91,05 90,30 88,65 
Modified 21,85 34,60 60,05 77,60 89,25 91,95 91,25 91,15 
Normal 28,15 34,50 36,90 32,95 30,35 27,15 22,75 17,45 
Bidirectional 39,00 53,05 76,80 89,05 95,00 95,60 94,95 94,40 
         

Hong 1 2 5 10 30 50 80 120 
Truncated,  
N(0,1) 76,70 93,30 99,60 99,95 100,00 100,00 100,00 100,00 
Bartlett - 76,70 97,10 99,80 100,00 100,00 100,00 100,00 
Daniel - 89,05 98,70 99,90 100,00 100,00 100,00 100,00 
Quadratic 83,35 87,30 99,10 99,90 100,00 100,00 100,00 100,00 
Tukey - 76,70 95,35 99,60 100,00 100,00 100,00 100,00 
Truncated,  
NIG(1,0,m,delta) 29,40 45,60 70,90 85,45 94,25 95,25 95,80 95,65 
Bartlett - 29,40 52,50 73,20 91,65 94,10 95,20 95,75 
Daniel - 39,45 61,10 79,95 92,80 94,90 95,35 96,00 
Quadratic 32,30 34,95 63,60 82,30 93,60 95,20 95,70 96,15 
Tukey - 29,40 48,15 70,70 90,75 93,75 95,20 95,55 
Truncated, 
NIGb(1.2,0.4060,m,delta) 24,40 38,80 63,05 80,00 89,90 92,65 91,80 91,70 
Bartlett - 24,40 44,50 65,10 85,35 89,65 92,20 93,15 
Daniel - 31,45 51,45 69,80 88,30 90,95 92,65 93,10 
Quadratic 26,65 28,90 55,65 74,35 89,35 91,95 93,05 93,10 
Tukey - 24,40 40,30 61,35 84,95 89,75 91,90 92,95 
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Modified Hong 1 2 5 10 30 50 80 120 
Truncated,  
N(0,1) 76,70 93,30 99,60 99,95 100,00 100,00 100,00 100,00 
Bartlett - 76,70 97,15 99,80 100,00 100,00 100,00 100,00 
Daniel - 89,05 98,70 99,90 100,00 100,00 100,00 100,00 
Quadratic 83,35 87,30 99,10 99,90 100,00 100,00 100,00 100,00 
Tukey - 76,70 95,35 99,60 100,00 100,00 100,00 100,00 
Truncated,  
NIG(1,0,m,delta) 29,40 45,55 70,90 85,45 94,20 95,25 95,75 95,50 
Bartlett - 29,40 52,60 73,25 91,70 94,20 95,20 95,75 
Daniel - 39,50 61,35 79,95 92,80 94,90 95,40 96,05 
Quadratic 32,30 34,95 63,80 82,30 93,60 95,20 95,75 96,15 
Tukey - 29,40 48,15 70,70 90,80 93,75 95,20 95,60 
Truncated, 
NIGb(1.2,0.4060,m,delta) 24,40 38,80 63,05 79,95 89,90 92,55 91,65 91,25 
Bartlett - 24,40 44,50 65,10 85,45 89,70 92,15 93,05 
Daniel - 31,70 51,50 69,90 88,40 91,00 92,70 93,20 
Quadratic 26,65 28,90 55,70 74,35 89,35 92,10 93,00 93,10 
Tukey - 24,40 40,30 61,40 85,05 89,75 92,00 93,00 
         

Bidirect. Hong 1 2 5 10 30 50 80 120 
Truncated,  
N(0,1) 90,70 97,95 99,95 100,00 100,00 100,00 100,00 100,00 
Bartlett - 90,70 99,30 100,00 100,00 100,00 100,00 100,00 
Daniel - 96,75 99,85 100,00 100,00 100,00 100,00 100,00 
Quadratic 93,65 95,30 99,90 100,00 100,00 100,00 100,00 100,00 
Tukey - 90,70 98,85 99,95 100,00 100,00 100,00 100,00 
Truncated,  
NIG(1,0,m,delta) 41,10 59,30 82,50 93,65 97,20 97,80 98,25 98,00 
Bartlett - 41,10 66,95 84,55 96,25 97,45 97,85 98,40 
Daniel - 52,35 74,45 88,40 96,80 97,80 98,10 98,50 
Quadratic 44,90 49,25 77,05 91,40 97,35 97,90 98,40 98,65 
Tukey - 41,10 62,40 82,10 95,90 97,40 97,85 98,30 
Truncated, 
NIGb(1.2,0.4060,m,delta) 35,50 50,25 75,90 89,40 95,50 96,35 96,45 96,20 
Bartlett - 35,50 59,40 77,85 93,55 95,90 96,85 97,25 
Daniel - 45,60 66,05 82,80 94,65 96,45 97,00 97,20 
Quadratic 38,65 41,55 69,40 86,10 95,55 96,60 97,05 97,20 
Tukey - 35,50 54,70 74,90 93,15 95,75 96,65 97,05 
          
Lagrange Mult.         
N(0,1) 100,00        
NIG(1,0,m,delta) 98,10        
NIGb(1.2,0.4060,m,delta) 96,70        
         

Notes:  DGP: VAR(1) - FIGARCH(1,d,1),    Ho: No Volatility Spillover & H1: Bidirectional Symmetric 
Volatility Spillover in the 1st Lag,   The alternative distributional assumptions concern the underlying 
Residuals Process,  The Direction of the Unidirectional Tests is from Series 1 to Series 2, The Normal Cheung 
& Ng, detects Causality in the Specific Lag. NIG: Normal Inverse Gaussian Distribution 
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4.5.2 EMPIRICAL RESULTS OF MONTE CARLO DESIGN 4 

 
A) SMALL SAMPLE  

 

1. We must firstly note that the NIG (1, 0, m, delta) is a leptokurtic and symmetric 

distribution and is used for the investigation of the effects of excess kurtosis in the 

finite sample properties of the alternative tests when the volatility of the generated 

series is fractionally integrated. The NIG (1.2, 0.4060, m, delta) is a leptokurtic and 

positively skewed distribution and is used for studying the combined effects of 

asymmetry and excess kurtosis in the empirical size and power of the tests. 

 

2.  Under the NIID (0,1) distribution the Standard version of Cheung & Ng tests 

exhibits a decreasing empirical size as the lag length increases. It is impressive that 

the Modified version of these tests exhibits a different behavior compared with the 

Standard version and more specifically it demonstrates an increasing distortion in its 

empirical size with the lag length. The discrepancy in the performance of these tests is 

more clearly observable for large lag lengths. We also observe that in the 120th lag, 

the size of Standard version is almost zero while a significant distortion in the 

empirical size of the Modified test is exhibited. The Normal and Bidirectional 

versions of the test display also a decreasing empirical size as the lag length increases. 

Based on the above observations and comparing with the Table 1.1 values in Monte 

Carlo Design 1 we can conclude that the presence of long memory in the volatility 

process does not have a serious impact in the empirical size of the Cheung & Ng 

causality in variance tests. 

 

3. Under the symmetric and leptokurtic NIG distribution we observe an upward 

distortion in the empirical size of the Cheung & Ng tests that is more pronounced 

between the 10th    and 30th  lags for the Standard and Bidirectional versions while the 

Modified version of the tests exhibits a more persistent distortion that lasts at least 

until the 120th  lag. Finally the Normal version of these tests seems to be robust 

against leptokurtosis. Under the asymmetric and leptokurtic NIG we do not observe 

important differentiations from the symmetric case. The Bidirectional version of the 

Cheung & Ng tests seems to be the most sensitive among the alternative versions to 

the combined presence of excess kurtosis and positive skewness. 
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4.  In regard with the Hong tests and under the NIID (0,1) hypothesis we observe that 

the Truncated kernel is more seriously affected from the presence of long memory 

compared with the rest of the Kernels. This effect is more clearly observable for large 

lag lengths. The general picture however is that fractional integration in the second 

order moments does not have any serious impact in the empirical size of the Hong 

class of tests except from a slight but still negligible upward distortion. 

 

5. This situation changes however when we consider the symmetric and leptokurtic 

NIG distribution. Once more the Truncated kernel is the least robust against excess 

kurtosis. We observe that irrespectively of the kernel used the unidirectional tests 

exhibit an increasing upward distortion in their empirical size as the lag length 

increases. It is impressive however that the effects of excess kurtosis are almost 

invisible before the 5th   lag. This means that a researcher who uses this type of tests, 

for studying causal relations in leptokurtic data will be able to get more robust 

conclusions if he considers only low lags. Thus when working with small samples and 

leptokurtic data that are characterized from fractional integrated volatility our advice 

is to consider small lag lengths for the Hong causality in variance tests. We must also 

note that in the case of the bidirectional version of Hong tests, we also observe an 

upward size distortion due to excess kurtosis, that is more powerful in the region 

between the 50th  and 80th  lag and not in larger lag lengths. This is not surprising 

however as this version searches for causality in both directions simultaneously. 

 

6. In the case of the skewed and leptokurtic NIG distribution we observe a non 

uniform pattern in regard with the empirical size of Hong tests. The unidirectional 

versions of the tests appear to be not seriously influenced from the presence of 

asymmetry in the distribution. In the case of the bidirectional Hong tests, however we 

observe an upward distortion in the empirical size of the tests irrespectively of the 

kernel used. Thus we conclude that the bidirectional Hong test is more sensitive to 

asymmetries in the distribution.  

 

7. In the case of Lagrange Multiplier tests we observe that the presence of long 

memory causes an upward distortion in the empirical size. These tests however appear 

to be robust against leptokurtic and asymmetric distributions. 
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8. In terms of empirical power we can observe that in the case of long memory and 

given the small sample size the majority of the tests display a low empirical power 

irrespectively of the distribution we consider. 

 

9. We must also note that once more the Standard and Modified versions of the 

Cheung & Ng class of tests exhibit a different behavior under all the alternative 

distributional assumptions. For example under the NIID (0,1) distribution the 

empirical power of both versions is maximized around the 30th  lag but afterwards the 

Standard version loses in an exponential rate its empirical power while the Modified 

version maintains its power even at the 120th  lag. This pattern may however be 

spurious and caused by either the small size of the sample we use or / and by the long 

memory in the volatility process. 

 

10. Under the symmetric and leptokurtic NIG distribution we observe a strange 

behavior. The presence of excess kurtosis seems to decrease the empirical power of 

the Standard and Modified versions of the Cheung & Ng tests until the 10th  lag, while 

the opposite is true when larger lags are considered. The picture is less clear in the 

case of the Normal and Bidirectional versions of the Cheung & Ng tests. Under the 

asymmetric and leptokurtic NIG distribution we do not observe any serious 

differentiations in the empirical power of the Cheung & Ng tests. 

 

11. In regard with the Hong tests and under the symmetric and leptokurtic NIG 

distribution we observe that the presence of excess kurtosis leads to a slight decrease 

in the power of the unidirectional tests irrespectively of the kernel used. The 

bidirectional tests appear to be more robust against leptokurtosis. Under the skewed 

NIG hypothesis we do not observe any serious changes in the empirical power of the 

unidirectional tests. We would like however to mention that the presence of skewness 

appears to have a decreasing effect in the empirical power of the tests until the 30th  

lag, while in larger lag lengths we observe an increase in the empirical power of the 

tests due to the asymmetry in the distribution. These effects however may be spurious 

and due to the use of a small sample size. For the bidirectional tests the picture is 

more clear leading us to the conclusion that the presence of asymmetry causes a 

decrease in the empirical power of bidirectional Hong tests.  We must finally note that 
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more robust conclusions will be reached when we also analyze the results for the large 

sample size. 

 

12. The Lagrange Multiplier test exhibits a clearer pattern. More specifically under 

the symmetric and leptokurtic NIG distribution we observe a decrease in its empirical 

power compared with the NIID (0,1) case. If we consider the asymmetric and 

leptokurtic NIG we will observe a slightly larger decrease in the power of the tests 

compared with the symmetric case. Thus we can conclude that when using small 

sample sizes the presence of excess kurtosis can cause a moderate decrease in the 

empirical power of the Lagrange Multiplier tests while the presence of skewness has a 

less powerful negative impact.  

 

13. We can define the following �rankings� for the tests used in this study and for the 

small sample size. 

 

NIID (0,1) distribution:  

1st Lag: The Lagrange Multiplier exhibits the highest empirical power. 

30th Lag: The Truncated bidirectional Hong test is the dominant test. 

120th Lag: The Bartlett bidirectional Hong test is the best choice. 

Symmetric and leptokurtic NIG:  

1st Lag: The Lagrange Multiplier exhibits the highest empirical power. 

30th Lag: The Truncated bidirectional Hong test is the dominant test. 

120th Lag: The Tukey bidirectional test is the best choice. 

Asymmetric and leptokurtic NIG:  

1st Lag: The Lagrange Multiplier exhibits the highest empirical power. 

30th Lag: The Truncated bidirectional Hong test is the dominant test. 

120th Lag: The Tukey bidirectional test is the best choice. 

 
B) LARGE SAMPLE 

 

1. In the case of the NIID (0,1) distribution we do not observe any serious distortions 

in the empirical size of the Cheung & Ng tests. The differentiation in the behavior of 

the Standard and Modified versions across the various lags still exists but it is less 

pronounced compared with the small sample case. Under the symmetric and 
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leptokurtic NIG distribution we observe a clear upward distortion in the empirical size 

of the Cheung & Ng tests with the exception of the Normal test that appears to be 

robust against leptokurtosis. This effect lasts at least until the 120th lag for the 

Standard and Modified versions and until the 80th lag for the bidirectional version of 

the test. Under the asymmetric and leptokurtic distribution we observe a more 

powerful upward distortion in the empirical size of the tests compared with the case 

that only leptokurtosis was present. The least robust version of the Cheung & Ng class 

of tests against skewness is the Bidirectional one and it is more seriously affected in 

the region between the 30th and 80th lags. 

 

2. In regard with the Hong class of tests we must say that under the NIID (0,1) 

hypothesis we do not observe any oversizing under the presence of Long Memory in 

the volatility process. For comparison reasons the reader can refer to the Monte Carlo 

Design 1, Table 1.2 where we provide the empirical sizes of the Hong tests under a 

conventional GARCH process and a NIID (0,1) distribution. He will then possibly 

discover that under long memory in variance, we can even observe a slight decrease in 

the oversizing behavior of the Hong tests compared with the No long memory case. 

Finally we can also note that under the standard normal distribution and a fractionally 

integrated variance process, the bidirectional version of Hong tests appears to be 

slightly more oversized that its unidirectional alternative. 

 

3. Under the symmetric and leptokurtic NIG law, we can observe a clear upward 

distorting effect in the empirical size of both unidirectional and bidirectional Hong 

tests. This effect is more pronounced after the 5th lag. We can also observe that the 

empirical size of Hong tests irrespectively of the kernel used is a positive monotonic 

function of the lag length. Thus we can safely conclude that excess kurtosis affects 

negatively the performance of Hong tests. The least robust kernels against 

leptokurtosis are the Truncated and Quadratic. Finally we observe that bidirectional 

Hong tests appear to be more negatively influenced from excess kurtosis in the region 

between the 1st and 30th lags. 

 

4. Under the asymmetric and leptokurtic NIG hypothesis we observe an even more 

powerful upward impact in the empirical size of Hong tests compared with the 

symmetric NIG case. This empirical finding implies that skewness in the distribution 
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can have a negative impact in the type I error probability of Hong tests. Once more we 

can see that the Truncated and Quadratic kernels are the least robust kernels. Finally 

the bidirectional version of Hong tests appears to be more heavily influenced from 

asymmetries in the distribution compared with its unidirectional counterparts.  

 

5. In regard with the Lagrange Multiplier test we can observe that despite the slight 

upward distortion due to the presence of long memory in the volatility Process,this 

method appears to be robust against leptokurtic and asymmetric data. 

 
6. In terms of power, under the NIID (0,1) distribution the majority of tests exhibit a 

very high performance. This overpower is partially induced by the presence of long 

memory in the volatility process of the generated series. From this empirical 

observation it is obvious that the Cheung & Ng as well as the Hong tests may need to 

be adjusted in order to be better able to detect the true intensity and time pattern of 

volatility transmissions. If these tests are used with real data that are characterized 

with long memory in variance then it is possible that we will find very strong variance 

causalities even if the true volatility linkage is much weaker. One obvious solution to 

this problem is to make use of both GARCH and FIGARCH models in the first step of 

the cross correlation based techniques. Then we should compare the causality in 

variance results obtained from both types of volatility parameterizations in order to be 

able to reach more trustful conclusions. 

 

7. In regard with the Cheung & Ng class of tests and under the symmetric and 

leptokurtic NIG distribution we can clearly observe a decrease in the empirical power 

of all the alternative versions. The negative impact in the empirical power is more 

pronounced in low lags while for large lag lengths the distorting effects gradually 

weaken. In other words the presence of excess kurtosis damages the performance of 

the Cheung & Ng tests and this effect is more powerful when considering the region 

between the 1st and 10th lags. When considering the asymmetric and leptokurtic NIG 

distribution we observe an even more powerful negative impact in the empirical 

power of the tests compared with the symmetric case. This means that the presence of 

skewness has also a negative impact in the performance of the Cheung & Ng tests.  
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8. In regard with the Hong tests we observe that under the symmetric and leptokurtic 

NIG hypothesis, the empirical power of all the different kernels is negatively affected. 

The distorting effects are more powerful for low lags and more specifically between 

the 1st and 10th lags. If we consider the asymmetric NIG distribution we will once 

more observe a downward movement in the empirical power values of the Hong tests 

irrespectively of the kernel used. Finally we would like to note that the most robust 

kernels against leptokurtosis and skewness in terms of power losses are the Truncated 

and Quadratic. 

 

9.  The Lagrange Multiplier tests appear once more to be robust against leptokurtic 

and asymmetric data. This is empirically demonstrated from the minor decrease in the 

power of these tests under both alternative NIG distributions. 

 

10. In general we can conclude that in empirical applications where large samples of 

data (with fractionally integrated variances) are used the presence of excess kurtosis 

can have a relatively strong negative impact in the empirical power of causality in 

variance tests. The presence of skewness has also negative effects in the performance 

of the tests while these effects are not as powerful as in the case of the leptokurtic data.  

 

11. We can define the following �rankings� for the tests used in this study and for the 

small sample size. 

NIID (0,1) distribution:  

1st Lag: The Lagrange Multiplier exhibits the highest empirical power. 

30th Lag: Very good performance from many tests 

120th Lag: Very good performance from many tests. 

Symmetric and leptokurtic NIG distribution:  

1st Lag: The Lagrange Multiplier exhibits the highest empirical power. 

30th Lag: The bidirectional Quadratic Hong test is the dominant test. 

120th Lag: The bidirectional Quadratic Hong test is the best choice. 

Asymmetric and leptokurtic NIG distribution:  

1st Lag: The Lagrange Multiplier exhibits the highest empirical power. 

30th Lag: The bidirectional Quadratic Hong test is the dominant test. 

120th Lag: The bidirectional Bartlett Hong test is the best choice. 
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In the following figures we provide the smooth densities of the various causality 

in variance tests that were calculated by an Epanechnikov kernel using the test�s 

realized values for the sample size of 600 obs. The results using this sample size were 

not included in the previous tables, as we wanted to depict the two limit cases of a 

small (200 obs.) and a large sample size (1000 obs.) This sample size however was 

chosen for the construction of the empirical distributions as it represents a mainstream 

situation between the two limits and allows us to briefly and concretely demonstrate 

our empirical results.   In the Appendix B (Monte Carlo Design 4) you can find a 

number of additional figures that will help you to visualize the differences among the 

alternative tests as well as some other aspects of this Design. 
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Figures 4.1 � 4.4 Unidirectional and Bidirectional Hong Causality in Variance Tests 

under Long Memory in Volatility and alternative assumptions for the Residuals 

Process (Bandwidth: 30) 
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Figures 4.5 � 4.7 Unidirectional and Bidirectional Cheung & Ng Causality in 

Variance Tests under Long Memory in Volatility and alternative assumptions for the 

Residuals Process ( 30th Lag) 
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Figure 4.8 LM Causality in Variance Tests under Long Memory in Volatility and 

alternative assumptions for the Residuals Process (1st Lag) 
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In the following figures we plot the empirical distributions of a number of 

selected causality in variance tests under the presence or absence of long memory in 

the volatility process. More specifically we have constructed these distributions using 

two different Data Generating Processes, a conventional GARCH(1,1) process and an 

FIGARCH(1,d,1) process. As you will notice for the specific lag we have used (30th) 

there are not important differences in the two distributions. This means that the 

existence of fractional integration in the volatility process of the time series used in 

empirical applications will possibly not have a serious impact in the probability for 

type I error in the various tests used. We must also note that for these specific Data 

Generating Processes, a NIID (0,1) distribution was assumed for the underlying 

Residuals process. 

 

 

Figures 4.9 � 4.12 Unidirectional and Bidirectional Hong Causality in Variance Tests 

under GARCH and FIGARCH data generating processes (Bandwidth: 30). 
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Figures 4.13 � 4.15 Unidirectional and Bidirectional Cheung & Ng Causality in 

Variance Tests under GARCH and FIGARCH data generating processes (30th Lag)  
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Figure 4.16 LM Causality in Variance Test under Tests under GARCH and 

FIGARCH data generating processes (1st Lag) 
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Concluding the presentation of the empirical results of our Monte Carlo 

simulations we would like to note that in Appendix C we provide the results of an 

empirical application using real stock market data. The purpose of this application 

was to investigate whether there exists long memory in the volatility process of the 

returns of five important stock market indices. Also in Appendix D we provide the 

results of three additional Monte Carlo experiments. In the first one we study the 

effects of a Normal Inverse Gaussian distribution in the performance of causality in 

variance tests when the Data Generating Process is the conventional VAR � GARCH 

process (No Long Memory). In the second one we perform a comparative study of the 

performance of unidirectional and bidirectional tests under unidirectional and 

bidirectional variance causality structures. Finally in the third design we investigate 

the effects of residual autocorrelation in the finite sample properties of the tests. 
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CONCLUSION 
 

In the first part of this study we have analyzed the concepts of volatility, 

causality in variance and long memory. The empirical findings of a large number of 

studies have also been presented. In this way we have provided a solid theoretical 

foundation that can function as a reference for the rest of this study.  As a next step we 

have conducted a large number of Monte Carlo simulations in order to perform an in 

depth inquiry in the empirical properties of some specific causality tests. Our 

simulation work was organized in four discrete parts. In the first one we have 

investigated whether the different distributional assumptions for the errors could have 

an impact in the causality in variance tests. In the next part we have analyzed the 

effects of neglected causality in mean in the empirical size of causality in variance 

tests. In the third part we have studied the effects of volatility spillovers and GARCH 

in Mean effects in the empirical size of causality in mean tests. In the last part of our 

study we have analyzed the effects of long memory in volatility and of Normal 

Inverse Gaussian distributed errors, in the finite sample properties of causality in 

variance tests. Summarizing our work we can report the following: 

 

 1. The presence of excess kurtosis (under a no long memory framework) causes a 

moderate upward distortion in the empirical size of the vast majority of causality in 

variance tests. The only test that seems to be robust against leptokurtosis is the 

Normal version of the Cheung & Ng class of tests.  

 

2.  The effects of skewness (positive or negative) have also size distorting effects. The 

similarity in the effects of positive and negative asymmetry can be attributed to the 

use of the squares of the standardized residuals in all the tests.  

 

3. The Hong tests irrespectively of the kernel function used, have a tendency to over 

reject the null hypothesis compared with their more simple Cheung & Ng counterparts.  

 

4. The empirical power of all the tests irrespectively of the distribution we consider, 

increases for larger sample sizes. This practically means that causality in variance / 

mean tests will work better for rich data sets that are usually available only in 

empirical applications in finance and not in macroeconomics. 
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5. Another important empirical discovery is the serious upward distortion in the 

empirical size of causality in variance tests when we do not account for the presence 

of causal interdependence in the first order moments and this effect is more 

pronounced in large sample sizes. 

 

6. We have also observed that the presence of volatility spillovers has an inflationary 

but relatively weak impact on the empirical size of causality in mean tests. The impact 

of GARCH in Mean effects in the empirical size of causality in mean tests was not as 

powerful as expected and was more pronounced in small samples. 

 

7. We have observed that the presence of long memory in the volatility process does 

not have a serious impact in the empirical size of causality in variance tests while it 

causes a slight increase in the empirical power of these tests. The latter effect may 

however be spuriously induced from the sample size choice. 

 

8.  We have also discovered that the presence of either excess kurtosis or asymmetry 

in the distribution of errors (as demonstrated from the use of a Normal Inverse 

Gaussian Distribution) and under fractionally integrated volatility processes has a 

negative (upward distorting) impact in the empirical size of the causality in variance 

tests with the leptokurtosis appearing to have a more powerful effect than asymmetry. 

 

9. The presence of asymmetry and excess kurtosis under fractionally integrated 

volatility processes has a negative impact (decrease) in the empirical power of the 

various tests that is more pronounced when considering small lag lengths.  

 

10. The Lagrange Multiplier test appears to be robust against leptokurtic and 

asymmetric data while it is more heavily influenced from the presence of long 

memory in the volatility processes compared with the rest of the tests. 

 

Concluding our study we would like to note that an interesting field for future 

research would be the calculation of the finite sample properties of some more 

sophisticated causality in variance tests such as those that are based on a Multivariate 

GARCH framework. Methodologies that make use of such models are frequently used 

in literature. It would also be particularly useful to modify the parameterization used 
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for the Data Generating Processes to a Multivariate setting for the long memory 

volatility process. This transformation would possibly give a better insight in the 

effects of fractional integration in the size and power of causality in variance tests. 

Finally among our aims is to investigate the empirical properties of the Vector 

Autoregression based Granger (1969) causality in mean test that has constituted the 

cornerstone for the development of the casaulity literature and we also seek to 

examine the performance of this class of tests under the presence of volatility 

spillovers. 
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