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Abstract 

 

 

This paper examines the impact of the return interval on the beta 

estimate known as the “interval effect” which causes securities that are 

thinly traded to give biased OLS beta estimates. The present study covers 

a 5-year period, from January 2002 through to December 2006, using 

three different return intervals: daily, weekly and monthly data for 60 

continuously listed thinly-traded stocks on the main market of the Athens 

Stock Exchange. Results generally support findings from earlier studies 

[(Diacogiannis, Makri - 2008) & (Brailsford, Josev - 1997)] that beta 

estimates rise as the return interval is lengthened, yet the effect is not 

observed for the period chosen given the statistically insignificant 

differences between all different pairs of return intervals for the mean 

estimate. 
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A. Portfolio Analysis and Management 

 

INTRODUCTION TO INVESTMENTS: What we mean by an “investor” 

can range from an individual to a pension fund, a regular company which 

purchases types of equity or financial securities to make a profit or hedge 

itself. Regardless of who the investor is or how simple or complex the 

investment needs are, he or she should develop a policy statement before 

making long-term investment decisions. The structure of this should be 

related to the age, financial status, future plans, risk aversion 

characteristics and needs whether we deal with an individual investor or 

an institutional. To build a framework for this process, we should take into 

consideration the investment’s objectives and constraints. 

 
A.1 Investment objectives: The investment’s objectives are his or her 

investment goals expressed in terms of both risk and return. It’s 

absolutely necessary that we express the goals not only in terms of 

returns but also in terms of investment risks, including the possibility of 

loss, so as to avoid unacceptable high-risk investment strategies. A 

person’s return objective may be stated in terms of an absolute or a 

relative percentage return, but it may also be stated in terms of a general 

goal, such as “capital preservation” ( earning a return on an investment 

that is at least equal to the inflation rate), “capital 

appreciation”(exceeding the inflation rate for a period of time), “current 

income” ( as opposed to capital appreciation) and “total return” ( both 

capital gains & reinvestment of current income).  

 

 
A.2 Investment constraints:  In addition to the investment objective 

that sets limits on risk and return, certain other constraints affect the 

investment plan including liquidity needs, the time horizon of the 

investment, tax factors and certain legal & regulatory constraints. Among 

these constraints, a close relationship exists. For example investors with 

long investment horizons generally require less liquidity and can bear 

greater risk. This is true if we consider that funds will probably not be 
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needed for a long period of time and any losses in the process can be 

offset by potential earnings in the future. 

 

 

A.3 The need for a Policy Statement 

 

A policy statement, although it does not guarantee investment success, is 

a useful tool that guides the investment process. It helps the investor 

decide on the investment goals after learning about the financial market 

expectations and the risks of investments. It will prevent him from making 

inappropriate decisions that will not conform to specific, measurable 

financial goals. Secondly, it creates a standard by which to judge the 

performance of the investment. This last one is compared to guidelines 

specified in the policy statement. 

A typical policy statement process includes 4 steps as presented below: 

1. Policy Statement Introduction in relation to investment needs & 

expectations 

2. Examination of economic, political & social conditions surrounding 

the investment 

3. Construction of the Investment Plan taking into account the above 

2 steps 

4. Feedback: Evaluate investment performance   

 

A.4 The Importance of Asset Allocation 

 

A policy statement as presented briefly above, although it is of great value 

to the overall investment strategy, does not indicate either which specific 

assets to purchase or the relative proportions of the different asset 

classes. This is a process attributed to the Asset Allocation Theory. It is 

actually the process of deciding how to distribute an investor’s wealth 

among different asset classes for investment purposes. As an “asset 

class”, we regard a set of securities with similar characteristics & 

attributes. Asset allocation is not a theory implemented in practice alone. 

Much of this theory is part of the investor’s policy statement and the 4-

step procedure stated above.   
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Having mentioned the importance of developing an investment policy 

statement before implementing an investment plan, we go on to present 

the term of “investment portfolio” and the characteristics that accompany 

it. We must bear in mind though that an investor must consider the 

relationship among the investments to meet the optimum portfolio that 

will meet his or her investment objectives. 

We need to clarify some general assumptions of this theory starting 

with the basic one that an investor wants to maximize the returns from 

the total set of investment for a given level of risk. The total set of 

investment includes all assets & liabilities varying from stocks and 

marketable securities to houses and furniture. The relationship among the 

returns for assets in the portfolio is important and an investor should not 

regard it just as a collection of marketable assets.  

 

A.5 Definition of Risk: In everyday life we use the words “risk” and 

“uncertainty” to mean the exact same things. In this paper and maybe for 

most investors, risk can be seen as the uncertainty of future outcomes. 

Portfolio theory assumes that investors are basically risk-averse, meaning 

that given a choice between two assets with equal rates of return, they 

will select the asset with the lower level of risk and the opposite: Given 2 

assets with the same level of risk, a risk-averse investor will choose the 

one with the higher rate of return. The existence of risk means that the 

payoff the investor acquires in any investment must be described by a set 

of outcomes and each probability of occurrence, called “return 

distribution”. We can describe such a distribution by two measures:  

� a measure of central tendency, called the expected return 

� a measure of risk or dispersion around the mean, called the 

standard deviation 

Investors hold in reality a group or a portfolio of assets and not just a 

single asset, so a great concern arises with the estimation of the above 2 

measures given the attributes of the individual assets. 
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B.  MARKOWITZ PORTFOLIO THEORY  

 

The basic portfolio model was developed by Harry Markowitz (1952, 1959) 

who derived the expected rate of return and a measure of risk for a 

portfolio of assets.  Markowitz showed the meaning of variance to 

measure portfolio risk and used his theory not only to indicate the 

importance of diversifying investments to reduce the total risk of a 

portfolio but also the way to diversify effectively. The Markowitz model is 

based on several assumptions: 

1. Investors consider each investment alternative as being 

represented by a probability distribution of expected returns over 

some holding period. 

2. Investors maximize one-period expected utility and their utility 

curves demonstrate diminishing marginal utility of wealth. 

3. Investors estimate the risk of the portfolio on the basis of the 

variability of expected returns. 

4. Investors base decisions solely on expected return and risk, so 

their utility curves are a function of expected return and variance 

of returns only. 

5. For a given level of risk, investors prefer higher returns to lower 

returns. Similarly, for a given level of expected return, investors 

prefer less risk to more risk. 

 

B.1 EXPECTED RATE OF RETURN  

 

The meaning of the expected value of a random variable is the 

probability-weighted average of the possible outcomes. Knowing that 

when we are talking about portfolio return, we are actually talking about 

a set of securities or assets in general that appear at a certain 

percentage, we can easily interpret portfolio return as a weighted 

average of the returns on the securities in the portfolio with the weights 

being these percentages. Thus, the expected return on a portfolio is a 

weighted average of the expected returns on the securities using exactly 

the same weights. We can measure the expected returns in terms of 
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future returns but, are alternatively calculated using historical data and 

then used as proxies for future returns. 

 

The expected return for an individual investment: 

The expected rate of return for a single risky asset can be calculated as 

follows: 

E(R) = ∑∑∑∑ Pi Ri = P1R1 + P2R2 + ... PnRn 
 

where: 
 
Pi : probability that i will occur 

Ri : asset return if i state occurs 
 

 

 

Properties of Expected Value: 

Let wi be any constant and Ri be a random variable. Then: 

1. The expected value of a constant “c” times a return equals the 

constant times the expected return. 

E(cRi) = c E(Ri) 

2. The expected value of a weighted sum of random variables equals 

the weighted sum of the expected values, using the same weights. 

E(w1R1 + w2R2 + …+ wnRn) = w1E(R1) + …+ wnE(Rn)  

 

Implications of this second statement, helps us derive the expected return 

of a portfolio of assets. A portfolio with n securities is defined by its 

portfolio weights w1, w2, ..., wn which sum to 1. So we can calculate portfolio 

return Rp as  

 

Rp = w1R1 + w2R2 + …+ wnRn 

 

And continue estimating the expected return of a portfolio as: 

 

E(Rp) = E(w1R1 + w2R2 + …+ wnRn) = w1E(R1) + …+ wnE(Rn) 
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B.2 DEFINITION OF VARIANCE: 

Not only is it necessary to have a measure of the average return, it’s also 

meaningful to have some measure of how much the outcomes differ from 

the average. A statistical definition of the variance states that it is the 

expected value (probability-weighted average) of squared deviations from 

the random variable’s expected value. 

 

σ2 (Χ) = Ε{[Χ-Ε(Χ)]2} 

 

The two notations for variance are σ2 (Χ) and Var(X). 

Variance being the sum of squared terms means that we do not expect a 

number lower than zero. If we actually calculate variance to be 0, it 

means that there is no dispersion or risk. The general formula to calculate 

variance is: 

 

σ2 (X) = ∑∑∑∑ P(Xi) [Xi – E(X)]
2 

 

where:         Xi is one of n possible outcomes of the random variable X. 

             P(Xi)  is the probability of state i occurring 

and       E(X) is the expected return.  

Variance is a standard statistical measure of spread and consequently 

risk. Measuring variability involves identifying the possible outcomes and 

assigning probabilities to them.  

Standard deviation is the positive square root of variance. It’s an 

alternative measure of dispersion denoted by σi. 

 

σι = √√√√ σ
2  

 

Standard deviation is easier to interpret than variance, as it is in the same 

units as the random variable. For example if the random variable return is 

expressed in percent, standard deviation of returns is also expressed in 

units of percent, whereas variance of return in units of percent squared. 

Above all, we are interested in calculating portfolio variance of returns as 

a measure of   investment risk. Letting Rp stand for the return on the 

portfolio, portfolio variance is:  
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σ2 (Rp) = Ε{[Rp-Ε(Rp)]
2} 

 

Before we proceed any further with portfolio theory, it’s absolutely 

necessary to introduce two basic concepts in statistics, covariance and 

correlation. 

 

Covariance of Returns: 

 

Given two random variables Ri and Rj, the covariance between Ri and Rj is: 

 

Cov(Ri,Rj) = E{Ri-E(Ri)}{Rj-E(Rj)} 

 

Alternative notations are σ(Ri,Rj) and σij. 

As the above equation states, it is the expected value of the product of 

two deviations: the deviations of the returns on the variable Ri from its 

mean and the deviations of the variable Rj from its mean. Covariance is a 

measure of the degree to which two variables move together relative to 

their individual mean values over time. A positive covariance (“positive 

relationship”) means that the rates of return for two investments in 

general tend to move in the same direction relative to their individual 

means during the same time period whereas a negative covariance 

(“inverse relationship”) means that they tend to move in different 

directions during specified time intervals over time. How great the number 

is depends on the variances of the individual return series, as well as on 

the relationship between the series. Covariance of returns is 0 if returns 

on the assets are unrelated. The reason why covariance is so important in 

our theory is its effect on portfolio variance. The covariance terms capture 

how the co-movements of returns affect portfolio variance. In practice, it 

is a positive number when the good or bad outcomes for each investment 

or asset occur together (product of two large positive or negative numbers 

is positive) and negative if good outcomes are associated with bad of the 

other. Covariance has to do with a major part of modern portfolio theory 

and that is diversification. Holding a portfolio of assets and not just a 

single asset comes with a diversification benefit that is risk-reduction. 
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Above all, a portfolio strategy is designed to reduce exposure to risk by 

combining a variety of investments (stocks, bonds, real estate etc.). Its 

volatility is limited by the fact that not all assets move up and down in 

value at the same time and at the same rate. Diversification reduces both 

upside and downside potential and allows in general for a more consistent 

performance. This benefit increases with decreasing covariance. 

Dividing the covariance between two assets by the product of the 

standard deviation of each asset produces a variable with the same 

properties as the covariance but with a range of -1 to +1. The measure is 

called correlation coefficient and is calculated as: 

 

rij = Cov(Ri,Rj)  / σισj 

 

where: 

rij = correlation coefficient of returns 

σι = standard deviation of Rit 

σj = standard deviation of Rjt 

 

Alternative notations are Corr(Ri,Rj) and pij. 

Correlation is a pure number, meaning one with no unit of measurement. 

In case we have uncorrelated variables (correlation = 0), this indicates an 

absence of any linear (straight-line) relationship between the variables. 

Increasingly strong positive correlation indicates an increasingly strong 

positive linear relationship (up to 1, which indicates a perfect linear 

relationship) whereas increasingly negative correlation indicates an 

increasingly strong negative (inverse) linear relationship (down to -1, 

which indicates a perfect linear inverse relationship).  

 

 

B.3 INTRODUCING STANDARD DEVIATION TO A PORTFOLIO 

 

Earlier in this paper, we showed that the expected rate of return of the 

portfolio was the weighted average of the expected returns for the 

individual assets in the portfolio, with the weights being the percentage of 
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value of the portfolio. MARKOWITZ (1959) derived the general formula to 

calculate the variance of the portfolio as follows: 

 

 

(1)    )cov(
1 1

2

1

2

jij

n

i

n

j

ii
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+= σσ  

 

 

 

where: 

 
 σp = standard deviation of the portfolio 

 wi = the weight of each asset in the portfolio 

 
2

iσ = the variance of rates of return for asset i 

Cov(Ri,Rj) = the covariance between the rates of return for assets i and j, 

where  

 

(2)    Cov(Ri,Rj) = rijσισj 

 

The general formula indicated above shows that the standard deviation of 

a portfolio of assets is a function of the weighted average of the individual 

variances (weights squared) plus the weighted covariances between all 

assets in the portfolio. One of the things we should pay attention to, is the 

fact that the standard deviation for a portfolio of assets reflects not only 

the variances of the individual assets but also the covariances between all 

pairs of individual assets within. So we are not only interested in the risk 

of every asset alone, but also in the way they deal with each other. 

One important aspect of portfolio theory has to do with the import of a 

new security in a portfolio and its properties that consequently change. 

What will happen to the standard deviation and expected rate of return 

when we add one more security to such a portfolio? The answer is derived 

from combining equation (1) and (2) from above. 

Concerning its expected return, the contribution to the portfolio is the 

asset’s own expected return multiplied by its importance (weight) within, 

while concerning its risk, not only do we care about  the asset’s own 

variability but more importantly, the asset’s covariability (correlation) with 
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other assets in the portfolio. In terms of portfolio standard deviation, an 

asset’s contribution to portfolio risk is: 

  

The relative weight of the numerous covariances between the assets 

already in the portfolio is substantially greater than the asset’s unique 

variance, and tends to be even greater as the number of these assets 

grows. This means that the important factor to consider when adding an 

investment to a portfolio is not the new security’s own variance but its 

average covariance with all other investments in the portfolio. So one can 

draw the conclusion that an asset’s own variability (standard deviation) 

can be partitioned into two components: 

 

non- 
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The importance of the distinction between non-diversifiable risk and 

diversifiable risk is that only the non-diversifiable risk of the asset bears 

the investor while holding it. That is why he or she is compensated only 

for the non-diversifiable risk (via higher expected return) that he/she 
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bares and not for the diversifiable risk which can be eliminated via 

diversification.  

 

CALCULATING PORTFOLIO STANDARD DEVIATION 

 

Based on the assumptions of the Markowitz portfolio model, any asset or 

portfolio of assets can be described by two characteristics: the expected 

rate of return and the expected standard deviation of returns. In the 

extreme case where the returns of two assets are perfectly correlated (p 

= 1), the standard deviation for the portfolio is in fact the weighted 

average of the individual standard deviations. 

 

σp = w1 σ(R1) + w2σ(R2) 

 

Both risk and return of the portfolio are simply linear combinations of the 

risk and return of each security meaning that all combinations of two 

securities that are perfectly correlated will lie on a straight line in risk and 

return space. 

 

 

Ε(r1) 

  µp  

E(r2) 

                        σ1     σρ   σ2 Exhibit (1)      

 

where:   E(r1) = expected rate of return for asset 1, or else “µ1” stated 

     E(r2) = expected rate of return for asset 2, or else “µ2” stated 

     σ1 = standard deviation of returns for asset 1 

     σ2 = standard deviation of returns for asset 2 

     µp = portfolio expected rate of return 

     σp = portfolio standard deviation of returns  

 

In this case the important thing is that we get no real benefit from 

combing two assets that are perfectly correlated; they are more like one 

asset because their returns move together (blue straight line shown 
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above). So the benefits of diversification as noted earlier in this paper are 

absent and there’s no risk reduction from purchasing both assets. 

Another situation worth mentioning is the extreme case when the 

correlation between two assets is perfectly negative (p = -1). In this case 

the negative covariance term exactly offsets the individual variance terms, 

leaving an overall portfolio standard deviation of zero. This is called a risk-

free portfolio. One can remark that the returns in a two-asset case show 

no variability. Any returns above and below the mean for each asset are 

completely offset by the return for the other, leaving no variability for the 

overall portfolio. 

 

 

                                                           µ1    

                                                          

                                               µ2          

 

 σ1       σ2 Exhibit (2) 

 

The above scatter-gram indicates the ultimate benefits of diversification 

for the holder of this portfolio. These two assets move perfectly together 

but in exactly opposite directions. Note that these two blue lines that 

touch at the vertical line stated at Exhibit (2) above come from the 

equation: 

2

2211

2 )( σµσµσ −=p  

 

which gives us exactly 2 solutions: one positive and one negative since we 

took the square to obtain an expression for σp. These two straight lines, 

one for each solution of σp, are actually derived if we examined the return 

on the portfolio as a function of the standard deviation. 

The most common situation though of the correlation coefficient taking 

values within  

11 +<<− ijr  but not the extreme ones (-1, +1), leaves us with a portfolio 

risk somewhere in-between (the red and blue line below inside the dashed 

lines with  
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rred > rblue). More specifically, combining assets that are not perfectly 

correlated does not affect the expected return on the portfolio, but it does 

reduce the risk of the portfolio as measured by its standard deviation.   

 

 

 E(r1)  

   

 E(r2) 

 

                                              σ1                  σ2                                

 

Exhibit (3): Two imperfectly correlated risky assets with 11 +<<− ijr  

 

B.4 THE EFFICIENT FRONTIER 

 

“Mean–variance analysis” going back to Markowitz theory (1952), 

states that a marginal investor bases the portfolio decision solely on these 

two properties of the uncertain portfolio return. More specifically, it is 

postulated that a combination of higher means and lower variances is 

favored. Therefore the set of potentially optimal portfolios for the investor 

are those with the maximum rate of return for any given level of risk or 

the minimum risk for every level of return. Such portfolios are termed 

“mean-variance efficient” and the set of all these portfolios are called the 

“efficient frontier”. Every portfolio that lies on the efficient frontier has 

either a higher rate of return for equal risk or lower risk for an equal rate 

of return than some portfolio beneath the frontier (see exhibit below).   

 

       Efficient frontier  

Exhibit (4):  Efficient frontier 

for alternative portfolios 

 Return      

 

 

 

 Risk 

Same risk 

lower return 

Same return 

higher risk 

Efficient 

Portfolio 
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 A distinction between the set of “minimum-variance portfolios”, i.e., 

portfolios that have the smallest possible variance for an expected return 

and mean-variance portfolios as stated earlier must be made. All mean-

variance efficient portfolios are also minimum-variance portfolios, but the 

converse is not true. Thus the efficient frontier is a subset of the 

minimum-variance set.  

We must also note that all of the portfolios on the efficient frontier have 

different return and risk measures, with expected rates of return that 

increase with higher risk. Thus no portfolio on the frontier can dominate 

any other on it but as an investor, you reflect your attitude towards risk 

(“risk-lover”, “risk-averse” etc.) by choosing the target point on the 

frontier. The optimal portfolio for each investor is the one that has the 

greatest utility for him/her. It’s called the efficient portfolio and lies at the 

point of  

 

E(R)                                     Efficient Frontier 

          

       Exhibit (5): The Efficient Frontier 

       tangent to utility curve 

  

 

 σ 

                                                 

 

tangency (point A above) between the efficient frontier and the curve 

shaped “U” with the highest possible utility (as shown). Utility curves 

specify the trade-offs an investor is willing to make between expected 

return and risk. The investor is equally disposed towards any point along 

the same curve but can best achieve one at the point where the curve 

touches the efficient frontier. Although point B shown above is achievable, 

is not the optimal (lies on a lower utility curve) for the investor with these 

risk-tolerance characteristics. 

 

A 

B 
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B.5 INTRODUCTION TO THE ASSET PRICING MODEL OF CAPM 

 

Risk-free asset: Following the development of portfolio theory by 

Markowitz, a model for the valuation of risky assets was introduced-that 

is, the capital asset pricing model (CAPM) independently by Sharpe 

(1964), Lintner (1965) & Mossin (1966). The major factor that allowed 

portfolio theory to develop into capital market theory is the concept of a 

risk-free asset that is an asset with zero variance. We have already 

defined a risky asset as one with uncertain future returns, whose 

uncertainty can measure by the variance or standard deviations of 

expected returns. On the other hand the risk-free asset has an expected 

return which is certain while the standard deviation of its expected return 

is zero. 

σRF = 0 

 

 The covariance and the correlation of the risk-free asset with any risky 

asset or portfolio of assets will always equal zero. Like the expected return 

for a portfolio of two risky assets, the expected rate of return for the 

portfolio including a risk-free asset is the weighted average of the two 

returns.  

E(Rp) = wRFRF+ (1-wRF)E(Ri) 

 

Using the general formula for standard deviation though, we end up to the 

equation: 

σp = (1-wRF)σi 

 

which shows that the standard deviation of the portfolio including the risk-

free asset is the linear proportion of the standard deviation of the risky 

asset or portfolio of assets.  

 

Assumptions of Capital Market Theory 

 

Capital Market Theory extends portfolio theory and develops a model for 

pricing all risky assets. As a theory, it is built on a number of assumptions 
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some of which derive from the already presented Markowitz portfolio 

model: 

1. There are no transaction costs, meaning no costs of buying or 

selling any asset. 

2. Assets are infinitely divisible which means that investors could 

take any position in any investment, regardless of the size of their 

wealth. 

3. There is no personal income tax involved in the theory. 

4. An individual cannot affect the price of a stock by his buying or 

selling action. While no single investor can affect prices by an 

individual action, investors in total determine prices by their 

actions. 

5. Investors are expected to make decisions solely in terms of 

expected values and standard deviations of the returns on their 

portfolios. 

6. The theory assumes an infinite number of short sales allowed. 

7. Investors can borrow or lend any amount of money at the risk-free 

rate of return. 

8. All investors are assumed to be concerned with the mean and 

variance of returns, Markowitz efficient investors who want to 

target points on the efficient frontier depending on his/her risk-

return utility function. 

9. All investors have homogenous expectations with respect to the 

necessary inputs to the portfolio decision. 

10. All investors are assumed to define the relevant period in exactly 

the same manner. 

11. All assets are marketable. 

12. There is no inflation or any change in interest rates. 

 

Although not all these assumptions conform to reality, they are 

simplifications that permit the development of the CAPM, which is useful 

for financial decision making because it quantifies and prices risk. 
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A Description of Equilibrium 

 

Assumption 9 above states that all investors have homogenous (identical) 

beliefs about the expected distributions of returns offered by all assets 

and all perceive the same efficient set. Therefore they will try to hold 

some combination of the risk-free asset, RF, and portfolio M (“market 

portfolio”), in which all assets are held according to their market value 

weights. If Vi is the market value of the ith asset, then the percentage of 

wealth held in each asset (wi) is equal to the ratio of the market value of 

the asset to the market value of all assets. Mathematically, 

 

∑
=

=
N

i

i

i

i

V

V
w

1

 

 

 

Each investor will have a utility-maximizing portfolio that is a combination 

of the risk-free asset and a portfolio of risky assets that is determined by 

the line drawn from the risk-free rate of return tangent to the investor’s 

efficient set of risky assets. The straight line will be the efficient set for all 

investors. This line is called the “capital market line” and represents a 

linear relationship between portfolio risk and return. 

 

“Capital Market Line” (CML) 

E(R) 

 

 

   Rf Efficient frontier 

 

 

      σ          

             Exhibit (6): The Capital Market Line 

 

The slope of the above line (CML) is: [E(RM) - rF]/σΜ 
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Therefore the equation for the capital market line is: 
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+=  

It provides a simple linear relationship between the risk and return for 

efficient portfolio of assets. The term [E(RM) - rF]/σΜ can be thought of as 

the market price of risk for all efficient portfolios. It is the extra return 

that can be gained by increasing the level of risk on an efficient portfolio 

by one unit. The second right-hand side of this equation is simply the 

market price of risk times the amount of risk in a portfolio. The second 

term represents that element of required return that is due to risk. Thus 

the expected return on an efficient portfolio is: 

 

(Expected return) = (Price of time) + (Price of risk) x (Amount of Risk) 

 

Although this equation establishes the return on an efficient portfolio, it 

does not describe equilibrium returns on non-efficient portfolios or on 

individual securities. 

 

 

 

 

The Market Portfolio 

 

The portfolio as noted earlier is one that includes all risky assets such as 

stocks, bonds, real estate, etc. Therefore it is a completely diversified 

portfolio which means that all the risk unique to individual assets included 

is diversified away. Specifically, the unique risk of any single asset is 

offset by the unique variability of all the other assets in the portfolio. This 

unique risk is also called unsystematic risk. This implies that only 

systematic risk remains in the market portfolio. This kind of risk can only 

change over time if and when there are changes in the macroeconomic 

variables that affect the valuation of all risky assets. Examples of such 

variables would be interest rate volatility, corporate earnings variability, 

etc. 
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A Risk Measure for the CML 

 

One of the basic points in the Markowitz portfolio theory as presented 

earlier was the fact that the relevant risk to consider when adding a 

security to a portfolio is its average covariance with all other assets in the 

portfolio. After noting the relevant importance of the market portfolio, one 

can simply derive that the only consideration when adding any individual 

risky asset is its average covariance with all the risky assets in the M 

portfolio, or simply, the asset’s covariance with the market portfolio. This 

covariance is the relevant risk measure for an individual risky asset. 

Furthermore one can describe the rates of return on all individual risky 

assets in relation to the returns for the market portfolio using the 

following linear model: 

  

itMtiiit eRbaR ++=  

 

Where: 

Rit = return for asset i during period t 

ai = constant term for asset i 

bi = slope coefficient for asset i 

RMt = return for the market portfolio during period t 

eit = random error term for asset i during period t 

 

 

Acting by the same way, the variance of returns for a risky asset could be 

described as: Var(Rit) = Var(biRMt) + Var(eit)  

 

The term Var(biRMt) is the variance of return related to the variance of the 

market return, or the systematic risk. On the other hand, the term Var(eit) 

is the residual variance of return for the individual asset that is not related 

to the market portfolio and arises from the unique features of the asset. 
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Therefore:       

 

Var(Rit) = Systematic Variance + Unsystematic Variance 

 

Derivation of the CAPM  

 

The Capital Asset Pricing Model indicates what should be the expected or 

required rates of return on risky assets. This statement helps a rational 

investor value an asset by providing an appropriate discount rate to use in 

a valuation model. Alternatively, one can compare the estimated rate of 

return on a potential investment to the required rate of return implied by 

the CAPM and determine consequently whether the asset is undervalued, 

overvalued or properly valued. In order to do so, the creation of a 

Security Market Line (SML) is introduced to represent the relationship 

between risk and the expected or required rate of return on an asset.  

The slope of the capital market line as presented before is: [E(RM) - RF]/σΜ 

Equating this with the slope of the opportunity set at tangency point M as 

presented above derives the security market line which states that the 

required return on any asset is equal to the risk-free rate of return plus a 

risk-premium.  

 

E(Ri) = RF + βi[Ε(RM) - RF] 

 

The risk premium is the price of risk multiplied by the quantity of risk. The 

price of risk is the slope of the line, the difference between the expected 

rate of return on the market portfolio and the risk-free rate of return. The 

quantity of risk is also called beta (βi). It is the covariance between 

returns on the risky asset and the market portfolio divided by the variance 

of the market portfolio: 
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It is best viewed as a standardized measure of systematic risk and this is 

because it relates the covariance to the variance of the market portfolio. 

The risk-free asset has a beta of zero because its covariance with the 

market portfolio is zero. The market portfolio has a beta of 1 because the 

covariance of the market portfolio with itself is identical to the variance of 
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the market portfolio. Stocks can be characterized as more or less risky 

than the market, according to whether their beta is larger or smaller than 

1. 

             E(Ri) SML 

 

            E(RM) 

 

                Rf 

 

 βM=1                     βi 

 

Exhibit (7): The Security Market Line 

 

The exhibit above shows the security market line which replaces the 

covariance of an asset’s returns with the market portfolio as the risk 

measure with the standardized measure of systematic risk (beta). Thus, 

the expected required rate of return for a risky asset is determined by the 

risk-free asset plus a risk premium for the individual asset. In turn, the 

risk premium is determined by the systematic risk of the asset and the 

market risk premium Ε(RM) - RF. 

 

 

Properties of the CAPM 

 

In equilibrium, every asset must be priced so that its risk-adjusted 

required rate of return falls exactly on the Security Market Line (SML). 

This means that assets that do not lie on the mean-variance efficient set, 

will lie exactly on the SML because not all the variance of the asset’s 

return is of concern to risk-averse investors. As described before, 

investors can always diversify away all risk except the covariance of an 

asset with the market portfolio which is the risk of the economy as a 

whole (undiversifiable). Having mentioned the use of beta to the model, 

one can go further on to express total risk partitioned into two parts as:  

2222

ejj b σσσ += Μ  
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The variance is total risk; it can be partitioned into systematic risk (first 

half on the right hand of equation) and unsystematic risk (other half). 

A second important property of the CAPM is that the measure of risk for 

individual assets is linearly additive when the assets are combined into 

portfolios. Thus, the beta of the portfolio is the weighted average of the 

betas of the individual securities in it: 

βρ = αβx + bβy 

For the above equation the portfolio is assumed to be consisted of 2 

securities X, Y with betas βx & βy proportionally. All that is needed to 

measure the systematic risk of portfolios is the betas of the individual 

assets. 

 

The estimation of beta has drawn attention to many academics and 

researchers in the past and it has been documented that many different 

beta estimates can be obtained for one stock depending on factors such 

as the choice of the market index, the length of the estimation period and 

the sample period. This paper, as stated before, is interested in 

investigating only the impact of the return interval on the beta estimate. A 

brief discussion of previous studies on this impact is presented right 

below. 
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C. “WHY BETA SHIFTS AS THE RETURN INTERVAL CHANGES”  

Financial Analysts Journal (1983) 

Gabriel Hawawini (USA)  

 

In his article, Hawawini (1983) presents a simple model to explain 

why estimates of beta depend upon the length of the return measurement 

interval. The model also predicts the direction and strength of the 

variations in estimated betas. To present this, he uses betas for the 4-

year period of January 1970 to December 1973 estimated on the basis of 

50 monthly returns, 1,009 daily returns and various combinations of 

weekly returns (triweekly, biweekly, weekly) taking as a proxy for market 

returns the S&P 500. Returns are measured as the logarithm of 

investment relatives whereas all betas are statistically significant at 5% 

level of significance. The model estimates beta as follows: 

 

 

 

 

 

 

 

 

where βi(T) is the security’s i estimated beta over return intervals of T–

day length, βi(1) is the security’s i estimated beta over return intervals of 

1-day length, pim-1, pim , pim+1, the intertemporal cross-correlation 

coefficient of  one lag behind (-1), no lag (0) and one lag ahead (+1) 

respectively between the security and the market returns measured over 

1-day interval and pmm-1 the autocorrelation coefficients of one lag behind 

(-1) on the market daily returns. The author names the ratio (pim+1+ pim-

1)/ pim  “q–ratio” of a given security to include the importance of friction in 

the trading process meaning delays (lags) in the response of securities’ 

prices to new information. 

From the above equation, one can draw conclusions on how beta is 

affected by intertemporal cross-correlations as T (in days) varies. More 

specifically, beta will be invariant to the length of return interval in the 

extreme situation when the intertemporal cross-correlations between the 

p + pim +1 im -1
T + (T - 1)

pim
β (Τ) = β (1)

i i
T + 2(T - 1)p
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security and market returns are zero or when the market provides a zero 

correlation with itself. 

Hawawini (1983) in his article goes on further to predict the direction 

and strength of a beta shift. In order to achieve this, he measures how 

βi(T) changes with a small change in variable T (in days). As the 

measurement length interval is shortened, securities with q-ratios larger 

than the market’s will see their betas decrease whereas securities with q-

ratios smaller than the market’s will see their betas increase. The 

decrease will be faster for the first group of securities as the difference 

between the security’s q-ratio and the market’s larger is. Respectively, the 

increase will be faster for securities of the latter situation as the q-ratios 

of those get smaller relative to the market. Not only does the author 

confirm the appliance of q-ratios on the data he presents but he also goes 

on to  present a faster way to tell if beta will shift upward or downward 

regardless of the use of q-ratio. More specifically, he uses the “market 

value of shares outstanding” (“MVSO”) as a proxy for a security’s relative 

market thinness stating that securities with large “MVSO” will have an 

increasing beta when the return interval is shortened whereas those with 

small values will generally have a decreasing beta.   

Finally Hawawini (1983) examines the implications of his results for 

risk-adjusted measures of portfolio performance like the Treynor ratio, the 

estimation of the Security Market Line of Sharpe & Lintner and the market 

performance of securities with biased betas. He concludes that any 

equation or computation incorporating beta will be affected by the length 

of the return interval used and much attention has to be given to the fact 

that securities may appear to be less or more risky than they truly are 

depending on the interval used. 
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“FRICTION IN THE TRADING PROCESS AND THE ESTIMATION OF 

SYSTEMATIC RISK” (Journal of Financial Economics – 1983a) 

K. Cohen, G. Hawawini, S. Maier, R. Schwartz, D. Whitcomb (USA – 

France) 

 

This paper contains theoretical analysis of the bias of the market 

model beta parameter due to friction in the trading process and presents 

several propositions from which consistent beta estimates are obtained 

and the effect of different interval length measurements is derived. After 

indicating some related observations and arguments by former empirical 

studies, Cohen et al (1983) makes a distinction between “observed 

return” and “true return” and uses many leads and lags of the market’s 

return to derive a consistent estimator of true beta as a measure of 

systematic risk. This can be found by the formula: 
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where betas of the security i are obtained by separate regressions using 

the OLS method and serial correlations of market returns are used with a 

lag and lead of n. The paper goes on to examine the case of increasing 

differencing interval over which returns are used and introduces the term 

of “asymptotic estimator”. It is a consistent OLS estimator of the “true” 

beta based on non-overlapping (no lag or lead) boundless measurement 

interval periods (L) which can be defined as: )(lim
*

Li

L

i ββ
∞→

= . 

An important implication stated first by Scholes-Williams (1977) but 

proved here is that the bias presented in such articles is positive for some 

securities and negative for others leaving the overall weighted average 

beta bias zero with the weights being the percentage of each security in 

the market index (∑ =
i

iix 1β ). Lastly, the paper using price-

adjustment delay variables proves that securities with relatively short 
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price-adjustment delays have their betas overestimated by the OLS 

method whereas those with lengthy delays will be underestimated by the 

same method. 

The above proposition series as summarised above are contrasted with 

past related analyses of Scholes-Williams (1977) and Dimson (1979). The 

original work of the first ones measuring the impact of non-synchronous 

trading on beta measurement gives the exact same results as the ones 

presented in this article if one lead and lag of the market’s return is used 

(N=1). This paper regards several assumptions used in their work as 

restricting leading to a loss of valuable information when estimating OLS 

betas. Dimson’s estimator (1979 pg.204) ∑∑
=

−
=

+ ++=
N

n

ni

N

n

niii bbb
11

β  appears 

to be insufficient according to the authors since it’s based on multiple 

regressions to estimate betas, a methodology inconsistent with the 

coefficients presented here. 

In conclusion, the article emphasizes the basic result that OLS 

“observed” beta can be thought of as a consistent estimator of “true” beta 

using small price-adjustment delays as interval length measurement 

increases with no bounds )( ∞a and the magnitude of the bias depends on 

the relative magnitude of these delays. 
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“ESTIMATING BETAS FROM NONSYNCHRONOUS DATA” 

(Journal of Financial Economics - 1977) 

M. Scholes & J. Williams (USA) 

 

After developing early notes by Fama (1965) and Fisher (1966), 

Scholes & Williams (1977) went on to explain an econometric problem in 

the market model due to nonsynchronous trading of securities and build a 

methodology to measure the bias and correct it. The paper starts with the 

realization that given the availability of daily returns of securities traded 

and their use in estimating security returns through the capital asset 

pricing model (CAPM), an econometric problem of errors in variables 

including betas and alphas exists. In particular, most securities trade at 

discrete time intervals with prices observed only at points of actual trades 

and not at all times. CAPM theory on the other hand is based on normally 

distributed returns assumptions (for risky securities and the market index) 

and thus ordinary least squares estimators of both alphas and betas are 

biased and inconsistent when measured this way. More specifically, it is 

shown that variances and covariances of reported returns differ from 

corresponding variances and covariances of true returns. Securities 

trading very infrequently have estimators biased upward for alpha and 

downward for beta while the remaining ones are biased in the opposite 

directions leaving the overall measured alphas and betas equal to true 

alphas and betas. 

The authors, assuming that non-trading periods are distributed 

independently and identically over time, make a distinction using their 

theory between single securities and relatively large portfolios. The 

properties derived contrast sharply each category. For single securities 

measured variances closely approximate true variances whereas for 

portfolios measured variances typically understate the true values and this 

phenomenon is more intense for portfolios with less frequently weighted 

securities. 

In order to verify their theoretical arguments, they used daily returns from 

all stocks listed on the New York (NYSE) and American Stock Exchanges 

(ASE) between January 1963 and December 1975. The calculations 

included 251 days of trade for 13 years with an average of 2,305 
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securities each year. From the above data, five (5) equal-numbered 

portfolios of securities were constructed, selected by the “trading volume” 

of each security, meaning the number of shares of a security traded 

during the year. In case a single security was not traded during a given 

day, no return was included in that portfolio for both that day and the 

subsequent trading day. 

The results of the research were then contrasted with the ordinary least 

square estimators of alpha and beta as calculated by the market model 

theory. The authors proposed a consistent estimator of beta by the 

following equation to correct the bias: 
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where the numerator presents estimates of the parameter derived from 

the simple regression between the observed security return and the 

corresponding market index return with one lag, matching, and one lead 

respectively and the denominator the first-order serial correlation 

coefficient of market returns. 

Low-volume securities portfolio generates larger beta than the 

corresponding least squares estimate whereas as we are moving to higher 

level-volume portfolios this is reversely true. This result holds when the 

value-weighted market portfolio is weighted most with securities traded 

relatively frequently. The above relationship is partly explained by the 

apparent relationship between true betas and trading volume. Thus, larger 

consistent estimates of beta are associated with larger trading volumes. 

Throughout all these results standard errors of betas are statistically more 

significant when examining portfolios trading at lower levels of volume 

and when estimating alphas (they can not be verified through this 

research). 

Finally, the authors summarize the need for this research which 

derives from the use of daily data used at the capital asset pricing model 

of estimating returns, address the problem of infrequent trading by 

securities and consequent bias when calculating ordinary least square 

estimators and therefore specify this bias by constructing consistent 

estimators of true beta and alpha. 
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 “RISK MEASUREMENT WHEN SHARES ARE SUBJECT TO 

INFREQUENT TRADING” (Journal of Financial Economics – 1979) 

E. Dimson (England) 

 

Dimson (1979) introduces his article referring to the infrequent–

trading problem which causes beta estimates to be severely biased. He 

attributes the intervaling effect to the tendency of the mean value of beta 

of the market model to rise as the differencing interval is increased and 

presents a number of past related studies to point the general need for a 

proper solution. He summarizes these studies to 3 major approaches: the 

lagged market returns method supported by authors like Ibbotson (1975) 

& Pogue-Solnik (1974), the trade-to-trade method by Marsh (1979) & 

Schwert (1977) and finally the Scholes-Williams method (1977). After 

setting the weak points of each method, he proposes his own, the 

“Aggregated Coefficients (AC) method”, which is a development of the 

lagged market returns method. 

 It assumes that changes in value of a security are derived from the 

market model where the security and market returns population follow a 

serial and cross-serial independence distribution. This process generates 

observed returns whose covariance with the market, cov(Rit,Rmt), is 

positively related to its trading frequency. Thus, regression based on 

simulation results generates for frequently traded shares upward biased 

estimates and for infrequently traded shares downward biased beta 

estimates. The aggregated coefficients (AC) method is based on the 

following multiple regression of observed returns on lagging, matching 

and leading market returns:                                 
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where Rit is the security return for period t, ai is the time independent 

alpha (constant), Rmt+k is the returns on preceding, contemporaneous & 

leading market returns where L is the number of non-synchronous terms 

(measuring the degree of thinness) used in the regression and uit is the 

error term (variable). 
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A consistent estimate of systematic risk is obtained by aggregating the 

slope coefficient from the regression and is expressed as: 
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Dimson (1979) notices that as L, the number of non-synchronous 

terms is increased taking positive values, the bias of the AC estimator is 

decreased but the method starts to lack efficiency since the beta 

coefficients with leads & lags face estimation error. Therefore, he 

proposes that the maximum number of leads & lags should be 

accompanied by a positive cross-sectional variance of the βi+k. To test the 

AC method empirically, Dimson (1979) tracked down from the London 

Share Price Database monthly returns of companies listed on the London 

Stock Exchange between January 1955 and December 1974. Then he 

formed a sample of 421 companies which appeared throughout all these 

years on that list and took their returns to form 10 deciles according to 

their trading frequency. He first run the simple regression to confirm the 

theoretical bias of beta estimates due to infrequent trading and then went 

on to apply his AC method  using five lags and leads. He noticed that a 

more even distribution of estimated betas was formed in comparison with 

the simple regression with a reduced beta range for all deciles (frequent 

to infrequent).  These results show that the use of lagged and leading 

terms into the market model improves beta estimates but the number of 

these terms varies according to the empirical work of the researcher. At 

least 1 leading term and 4 lagged terms are required according to the 

author to explain a quarter or more of the cross-sectional variance of 

coefficient estimates since the lagged ones are much more statistically 

important than the rest. 

Finally, Dimson (1979) summarizes the empirical results of the AC 

method, distinguishes it from others dealing the infrequent-trading 

problem and suggests its use in situations when the times of the 

transactions are unknown. 
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 “RISK MEASUREMENT WHEN SHARES ARE SUBJECT TO 

INFREQUENT TRADING” (Journal of Financial Economics – 1983) 

D. Fowler & C. H. Rorke (Canada) 

 

 The hereby article (referred to as a “comment” by the authors) is a 

theoretical approach on methods first developed by Scholes & Williams 

(1977) and later by Dimson (1979) to calculate a consistent estimate of 

beta so as to cope with the thin-trading problem. More specifically, it 

shows that Dimson’s estimator is not consistent with that of Scholes & 

Williams and itself not efficient at all. Therefore, a corrected version is 

suggested. 

After examining the theory behind the basic regression models by 

Dimson (1979) and Scholes-Williams (1977), the authors extended the 

latter to calculate a consistent estimate of beta using two period returns 

instead of one as the original theory stated. The Scholes-Williams 

estimator (1977) is still expressed by the same equation but the ordinary 

least square estimators 
101 ,, +−
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two-period estimate. Thus, the extended Scholes-Williams estimator 

(1977) is given by the following equation:  
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which includes a beta estimate with a lead and lag of 2 at the nominator 

and a second order serial correlation coefficient of market returns at the 

denominator. Relating the above extended approach with the multiple 

regression proposed by Dimson (1979), the authors concluded that 

theoretically the latter was inconsistent with the former and therefore 

incorrect. Fowler et al (1980–Journal of Business Administration 12 no 1 

p.77-90) had actually tested the empirical results by Dimson’s estimator 

(1979) on the Toronto Stock Exchange and found out that it was generally 

inferior to Scholes & Williams’(1977) and frequently inferior to the simple 

regression OLS estimates.   
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“ADJUSTING FOR THE INTERVALLING EFFECT BIAS IN BETA” 

(Journal of Banking and Finance – 1985) 

W. Fung, R. Schwartz, D. Whitcomb (USA) 

 

The authors used daily-returns data from the Paris Bourse to test the 

Cohen-Hawawini-Maier-Schwartz-Whitcomb (“CHMSW”) model (1983) of 

the intervalling-effect bias in OLS beta estimates. From a selected sample 

of 52 traded stocks, they used data of 803 daily closing prices and 

corresponding index values (the benchmark used is the “C.A.C index”) to 

follow a 3-pass regression procedure*, similar to the one proposed by the 

“CHMSW” model (1983), to estimate the magnitude of the bias.  

The first pass is actually the market model estimate of security betas, 

with the security and market returns measured as continuously 

compounded returns [ln (Pt/Pt-1)] over each of the 32 differencing 

measurement intervals formed. The results acquired were consistent with 

those of any other past related study: As the interval (measured in days) 

is lengthened, average OLS beta estimate is increased and so does the 

average R2. This is because the C.A.C index is a value weighted market 

index consisting of relatively large stocks and average beta rises as the 

measurement interval is lengthened. 

In the second-pass part, Fung et al (1985) tested  CHMSW’s (1983) 

view that the bias diminishes asymptotically to zero as the differencing 

interval increases, using three alternative functional forms: 

 

� Power function: f(L) = L-n 

� Log function: f(L) = ln (1+L-n) 

� Exponential function: f(L) = exp (-Ln) 

 

where L is the measurement interval length in days and n is the sample 

size. Each of these functions converges to an asymptote but their 

efficiency varies. The first-pass OLS betas are regressed using all three 

above functions but the empirical results are the same for all: significantly 

negative beta estimates for stocks that trade less frequently than the  

Paris index and positive or insignificantly negative beta estimates for 

traded stocks that trade more frequently. 
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Finally at the third-pass part, the authors use the “value of shares 

outstanding”, as an empirical proxy for every security’s price adjustment 

delay. The second-pass slope coefficients, which measure the intervalling-

effect bias, are then regressed on the values of shares outstanding. The 

empirical results show that there is a positive and significant relationship 

between these two parameters. Thus, small security betas decrease and 

large security betas increase as the measurement interval is shortened.   

What is also important for the above theory produced is the choice of 

the sample-efficient adjusted beta. The alternatives comprise the 

estimated adjusted beta (second-pass regression), the inferred asymptotic 

beta & the Scholes-Williams (1977) adjusted beta.  The first two are 

derived by the CHMSW model (1983). Empirical results of all three 

procedures show that the Scholes-Williams (1977) beta is inefficient since 

it’s inconsistent with the asymptotic beta (which is used as a benchmark) 

whereas the other two come relatively close concerning their results. 

Summarizing, the article introduces a 3-pass regression procedure on 

daily data acquired by the Paris Bourse to test the implications of the 

Cohen-Hawawini-Maier-Schwartz-Whitcomb model (1983) and shows that 

the bias diminishes asymptotically to zero as the measurement interval 

increases and uses as a proxy the security’s value of shares outstanding. 
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 “ADJUSTING FOR BETA BIAS: AN ASSESSMENT OF ALTERNATIVE 

TECHNIQUES: A NOTE” (Journal of Finance – 1986) 

T. McInish & R. Wood (USA) 

 

The paper attributes OLS beta bias to 2 sources of bias: thin trading 

& price adjustment delays and tests the effectiveness of previous related 

works by Scholes-Williams (1977), Dimson (1979), Fowler-Rorke-Jog 

(1980, 1981), Cohen, Hawawini, Maier, Schwartz and Whitcomb (1980, 

1983). McInish & Wood (1986) recognize in their work these studies are 

inadequately presented, since they are based on simulated data which 

provide an unmeasured level of true bias. Therefore, they propose a linear 

programming model to develop portfolios with equal risk (betas) to test 

the techniques presented above. 

Their model is based on data for 958 sample firms listed on the 

NYSE, for the period September 1971 to February 1972. Prices were 

adjusted to include dividend existence and capitalization changes. The 

model uses “LTIME”, the average time from last trade to closing time, as a 

proxy for thin-trading measurement. In order to isolate the beta bias, 5 

portfolios are created that maximize the difference in “LTIME” across 

portfolios while holding risk and return determinants approximately equal. 

These risk attributes include: financial leverage (Debt/ Assets ratio), 

Payout ratio (Dividend/ Earnings ratio), Book Value of assets and the 

average stock price of each security. The model is based on 2 

assumptions: 

 

1. according to CAPM, ex post returns are good estimates of ex 

ante returns 

2. portfolios with equal expected returns should have equal betas 

 

According to their theoretical approach, OLS mean beta estimates 

should reveal the true beta bias magnitude for each security, while betas 

proposed by the Scholes-Williams, Dimson, Fowler-Rorke-Jog & CHMSW 

techniques should equal 1 (one) for each portfolio. The empirical results 

showed that the OLS betas were biased as expected, with “thick” traded 

portfolios having betas above 1 while “thin” trading betas below 1 when 
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using daily returns. All alternative techniques reduce the amount of bias 

but the amount of reduction is 29 % in the best case. Furthermore, 

Scholes-Williams (1977) and Dimson’s (1979) methods achieve a greater 

reduction than the CHMSW method (1983). 

Summarizing, McInish & Wood (1986) investigate in this paper the 

extent of beta bias for NYSE stocks and the effectiveness of past proposed 

techniques through a linear programming model but find that each of 

these techniques contributes to beta bias reduction but the extent is 

maximum 29 % compared to the OLS beta estimate. They emphasize the 

need for further theoretical and empirical work on this. 
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“THE RELATION BETWEEN THE RETURN INTERVAL AND BETAS” 

Implications for the Size Effect (Journal of Financial Economics – 

1989) 

P. Handa, S.P Kothari, C. Wasley (USA) 

 

The article examines both theoretically and empirically the behavior 

of beta as a function of the return measurement interval and the 

sensitivity of beta estimation to the size effect. Theory presented prior to 

the article stated that beta changes as the return interval is increased due 

to non-synchronous trading and trading frictions that distinguish true 

betas from observed betas. On the other hand, related research had 

shown that firm size has an incremental explanatory power.   

Concerning the first relation, beta as a measure of systematic risk is 

sensitive to return interval because the covariance of securities returns 

with the market return (the numerator in beta equation) and the market 

return variance (the denominator in beta equation) do not change 

proportionally as the return interval changes. Two implications for the 

above view can be stated: 

 

1. risk & return are positively cross-sectionally related 

irrespective of the interval used 

2. the larger the return interval, the larger the difference 

between betas of high and low risk securities 

 

Furthermore, taking into account the standard errors of measured 

betas when using longer intervals, the authors find that these will be 

greater. To test the above theoretical approach, Handa et al (1989) used 

a sample of all stocks listed on the Center for Research in Security Prices 

monthly tape (NYSE) for the period 1926 – 1982. Then they formed 20 

portfolios according to their market values using equally-weighted buy-

and-hold returns. The portfolios were flexible in a sense that each year 

securities were ranked according to their initial market values (first 

trading day of the year) but any changes were taken into account. Eight 

intervals were used to test the effect of different return interval on beta 

estimates: 1 day, 1 week, 1 month, 2 months, 3 months, 4 months, 6 
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months & 1 year. Over all these intervals, equal weighted sample mean 

returns were used as the market portfolio proxy in the regressions. The 

results confirmed the theoretical analysis summarized before: beta 

estimates are indeed sensitive to return intervals.  

However, the authors attribute this sensitivity to 3 factors: 

 

1. Lack of proportionate change in the numerator of the standard beta 

equation with the denominator. 

2. Larger standard errors of betas estimated using longer interval 

measurements 

3. Measured returns are not serially uncorrelated due to frictions in 

the trading process and infrequent trading 

 

In order to measure the effect of firm size on beta measurement, the 

authors tested monthly versus annual betas. Evidence showed that annual 

betas were better in explaining variation in annual returns on the 

portfolios than monthly returns. 

(R2 = 50 % in the first situation compared to R2 = 37 % in the second) 

Then they tested annual returns versus monthly returns and firm size. The 

results showed that: 

 

� Firm size alone explains return variation beyond monthly betas. 

� The effectiveness of firm size diminishes when annual beta is 

added. 

� Return – variation annual beta has significant incremental 

explanatory power, but firm size and monthly beta don’t. 
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“THE INTERVALLING EFFECT BIAS IN BETA: A NOTE” 

(Journal of Banking and Finance – 1992) 

A. Corhay (Netherlands) 

 

Corhay (1992) wishes to examine the intervalling effect bias in 

estimated betas showing that they tend to converge to their asymptotic 

values depending on the measurement interval used. To test the empirical 

evidence of his approach, he used daily continuously compounded returns 

of 250 sample securities listed on the spot market of the Brussels Stock 

Exchange from January 1977 to December 1985. The whole test-period 

was divided into 3 adjacent periods each comprising of 3 years. For each 

period, he formed 10 value-weighted portfolios and used a finite set of 30 

differencing interval lengths. 

The author based portfolio return measurement on the market model 

to estimate portfolio beta and subsequently used methods proposed by 

Hawawini (1980) and Cohen et al (1983) to examine the speed of 

convergence of betas to their asymptotic value as differencing interval is 

lengthened. 

His results, all in all, tend to confirm the asymptotic behavior of 

security betas as presented in the past by Hawawini (1980) & Cohen et al 

(1983). More specifically, the whole 250-security-sample demonstrates no 

intervalling effect with an average beta approximately closing to one, 

since the sample taken stands for the entire BSE market. But average 

portfolios betas on the other hand, reflect an intervalling effect bias with 

the last one being large for small intervals and decreasing as the interval 

is lengthened. Judging from the F-test statistic values obtained when 

analyzing the variance between the individual betas of the portfolios, 

Corhay (1992) concluded that small market-value firms appear to have on 

average lower beta coefficients than larger firms. Finally values of the 

standard errors of beta estimates reveal that small-firm portfolio betas 

show a greater volatility than that of betas of the large firm portfolios, and 

this volatility tends to increase continuously with the length of the 

differencing interval. 
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 “COMPOUNDING PERIOD LENGTH AND THE MARKET MODEL” 

(Journal of Economics and Business – 1994) 

G. Frankfurter, W. Leung, P. Brockman (USA) 

 

In this paper, Frankfurter et al (1994) investigated the effect of the 

compounding period length for which rates of return are calculated on the 

estimation of alpha and beta parameters of the market model. The 

analytical model presented, points out the functional relationship between 

the alpha – beta estimates and the investment horizon: 

                                    

aic = n*aid + c 

 

where aic & aid are the corresponding a estimates of the market model of 

longer and shorter compounding periods and c is a constant. 

 

βic = βid*c 

 

where βic & βid are the corresponding β estimates of the market model of 

longer and shorter compounding periods and c is a constant.  

To test the model, Frankfurter et al (1994) used daily return data for 

1297 stocks listed on the Center for Research in Security Prices (CRSP) 

NYSE-AMEX daily file for the period: 01/19/1976 to 11/30/1987. The 

model uses the CRSP equal value weighted index adjusting for dividends 

as a proxy for the market index specification. From the above-mentioned 

file, daily, weekly, monthly, quarterly, semiannual & annual compounding 

periods were formed using the market model to draw conclusions on the 

beta – alpha estimates. Results showed that average beta estimates 

differed very little from one period to another, whereas average alpha 

estimates varied at a great degree (maximum 40 times). Nevertheless, 

mean beta values are of the same order of magnitude, regardless of the 

holding period, so any comparison is misleading. Consequently, regression 

results based on differencing compounding periods will significantly differ 

from each other. 
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Above all, the paper supports the view that the methodology used is 

totally dependent on the relative validity and efficiency of the market 

model which acts as a benchmark of comparison for actual returns. If the 

market model, for some reasons, generates biased estimates, then the so 

longed “true” returns are a myth. All in all, the market model should 

reflect the investors’ practices. The objective of each investor should 

therefore specify the proper length of the compounding period. 
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“ESTIMATION OF RISK ON THE BRUSSELS STOCK EXCHANGE: 

METHODOLOGICAL ISSUES AND EMPIRICAL RESULTS” 

(Global Finance Journal – 1997) 

F. Beer (USA) 

 

 

The purpose of the above titled article is to assess models of beta 

estimation by Vasicek (1973), Scholes & Williams (1977) and Dimson 

(1979) and their implied ability to do so in a relatively thin market like the 

Belgian market. In an older study by Hawawini & Michel (1974), it was 

concluded that Belgian stockholders tended to support the thinness of 

their stock market since they hold securities for a long period of time 

avoiding often changing the synthesis of their personal portfolios. As a 

result, 40 % of securities are quoted half of the period. The main 

characteristic of this specific market though is that all securities are traded 

at the same moment every day once a day and that to avoid speculation 

by the few large players, a maximum and a minimum price change limit is 

set.  

The author formed a sample of 181 Belgian securities for the period 

starting January 1974 to December 1986 and grouped them according to 

their market capitalization. Therefore, she formed 10 groups of security 

returns, adjusted for capital changes and computed the beta estimate of 

each one as the mean of its constituent’s betas. Then she went on to 

specify a suitable market index by constructing an equally-weighted index 

containing all the securities in the market. Results were acquired using 

first the OLS method of beta estimation, then the Scholes & Williams 

(1977) method and finally Dimson’s (1979). In comparison with the first 

two, Dimson’s method (1979) provided better results. 

The results confirmed the intervalling effect bias in the Belgian stock 

market all in all and the biased results when using the OLS method to 

estimate it. The model proposed by Scholes & Williams (1977) did not 

decrease the bias, while Dimson’s (1979) only succeeded to a small 

degree. As a result, the paper recommends the use of the OLS method in 

thin markets like the Belgian and points out the need for further 

theoretical and empirical research. 
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“THE IMPACT OF THE RETURN INTERVAL ON THE ESTIMATION OF 

SYSTEMATIC RISK” (Pacific-Basin Finance Journal – 1997) 

T. Brailsford, T. Josev (Australia) 

 

 

The model proposed by Brailsford & Josev (1997) provides a 

prediction of the size and direction of change in the estimation of 

systematic risk as measured by the beta, as a result of different return 

intervals used. This kind of effect is widely known as “interval effect” and 

the authors initiate their study by referring to past articles on this topic 

starting from Blume (1971) to Frankfurter et al (1994). Initial theoretical 

and empirical results supported the view that betas of thinly traded 

securities rise as the return interval is lengthened whereas betas of 

frequently traded securities fall. Moreover mean R2 rises as return interval 

is lengthened with the largest increase observed in thinly traded 

securities. This time though, the authors choose to examine the effect of 

return interval in the Australian Stock Exchange. Their study is based on 

little evidence of markets outside U.S. 

To test their model, they formed 2 extreme portfolios, a sample of 15 

thinly traded stocks and a sample of 15 frequently traded stocks for the 

period covering January 1988 to December 1992. The stocks were ranked 

according to their market capitalization and selected due to their 

continuous listing on the market index over the sample period. For each of 

the firms selected, daily, weekly and monthly prices adjusted for both 

capitalization and dividend effect were derived and a continuously 

compounded return series for each interval was calculated.  

The results indicated a strong presence of zero returns (meaning no 

change in price due to no new added information or no trading) for thinly 

traded firms compared to frequently traded ones. Moreover, the return 

interval effect on beta estimates when using the OLS method was 

confirmed. As the return measurement interval lengthens, the mean beta 

estimates for the thin portfolio rises. However the effect is not the same 

for both portfolios when using daily or weekly interval returns. A 

significant difference in mean beta estimates in this situation exists. Also, 

the standard error of mean beta estimates rise for both portfolios as the 
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return interval is lengthened, a conclusion constituent with that of Handa 

et al (1989) and Frankfurter et al (1994). The same property exists for 

mean R2
 values for both portfolios as well. 

After presenting the method and results of examining the Australian 

Stock Exchange, the authors went on to test the predictive ability of their 

model based on the model proposed by Hawawini (1983). Evidence 

derived, supported the implication of this proxy model and confirmed its 

assumption that the serial cross-correlation coefficients for lead and lag 

orders higher than one are equal to zero. The Hawawini model performs 

quite well in approximating OLS beta estimates when forecasting weekly 

betas using daily returns or monthly betas using weekly returns but not 

sufficiently well when forecasting monthly betas using daily returns. 

Especially such ability is much seen when predicting OLS betas for the 

upper extreme portfolio of frequently traded securities. 
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“ESTIMATING SYSTEMATIC RISK: THE CHOICE OF RETURN 

INTERVAL AND ESTIMATION PERIOD”  

(Journal of Financial and Strategic Decisions – 2000) 

P. Daves, M. Ehrhardt, R. Kunkel (USA) 

 

 

The study addresses the difficult task held by financial managers 

when estimating the systematic risk of a firm or a security. The Capital 

Asset Pricing Model (CAPM) is a useful tool in their hands when estimating 

betas but managers need to specify the proper estimation period and 

return interval for their estimation. Of note though is the fact that such a 

decision implies a trade-off between precision and bias. The more 

lengthened the estimation period, the smaller is the standard error of the 

estimated beta because of including more observations and the more the 

likelihood that the value of such beta will change in time because of 

changes in structural characteristics of the firms exists. 

This study examines four return intervals (daily, weekly, two-weekly 

and monthly returns) and eight estimation periods ranging from 1 year to 

8 years between 1982 and 1989. Security returns are obtained from the 

CRSP NYSE/ AMEX databases and then listed into 4 samples according to 

their return intervals. Thus, using daily returns each firm’s beta is 

estimated 8 times, repeating for weekly, two-weekly and monthly return 

intervals. Test results show that choosing among individual return 

intervals; shorter return intervals are associated with a greater precision 

in beta estimation (smaller Sβ) and consequently financial managers 

should use daily returns if given the choice. 

The author uses the market model to estimate the beta of a firm: 

 

Rit = ai + βiRMt + εit 

 
 

where Rit is the rate of return on stock i in period t, RMt is the market 

return as calculated via the CRSP database, ai is the intercept, bi is the 

security beta and εit is the error term for security i in period t 
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And the standard error of the estimated beta Sβ as follows: 

 

Sβ = 1/(N-1)
0.5

 * (Sε/SM) 

 

where Sε is the standard deviation of the estimated errors, SM is the 

standard deviation of market returns and N denotes the number of 

observations. 

 Concerning the estimation period, results show that increasing it, 

one can obtain a greater precision in estimation period or equivalently a 

decreasing Sβ, but such reduction is 91 % seen during a 3-year estimation 

period. Additionally less than 50 % of the firms examined experience a 

significant shift in beta over the 3-year proposed estimation period. 

 Finally, the author concluded emphasizing the need for a proper 

estimation of the return interval and the estimation period by financial 

managers when estimating beta and proposed a daily return interval and 

a 3-year period to profit best from the implied trade-off between precision 

and bias, based on his empirical results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Estimating Betas in Thinner Markets: The Case of the Athens Stock Exchange 

 47 

“SOME ESTIMATION ISSUES ON BETAS: A PRELIMINARY 

INVESTIGATION ON THE ISTANBUL STOCK EXCHANGE” (2003) 

A. Odabasi (TURKEY)  

 

 

The author of this paper reports on the findings of an investigation on 

the Istanbul Stock Exchange on beta stability and three main factors that 

affect it:  

 

� The estimation period 

� The return interval 

� Diversification 

 

Although little related research has been conducted for emerging markets 

in the past, the author emphasizes the need for further study on the 

grounds of the volatile nature of such markets. 

The study uses a sample of 100 continuously Istanbul Stock 

Exchange (ISE) listed stocks over the period between January 1992 and 

December 1999. The daily returns obtained adjusted for capitalization and 

dividends are calculated as follows: 

 

Rit = (Pit – Pt-1)/ Pt-1   where Pit denotes the stock price in period t. 

 

As a proxy for market performance, a relatively value-weighted index, the 

ISE 100 index is used. Furthermore, beta coefficients βi are calculated via 

the market model. 

Concerning the effect of the return interval on beta estimation, 

empirical results using weekly and monthly returns over annual, 2-year 

and 4-year estimation periods show that the mean beta and the R2
 

increase as the return interval lengthens. The standard error of mean beta 

estimates also increases as the return interval lengthens. 

The effect of the estimation period on beta estimates is measured 

through correlation coefficients over pairs of estimated periods. In the 

case of weekly returns, a 2-year estimation period seems to produce a 

more stable beta based on the highest value of the correlation coefficient, 
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whereas using monthly returns, a 4-year estimation period is better 

according to the empirical results of the study. 

Finally, to examine the effect of diversification on beta estimates, the 

author constructed portfolios of different sizes for different return intervals 

and computed the correlation coefficient between portfolios betas made 

up of exactly the same securities but for consecutive years. Results 

showed that the correlation coefficient increases as the portfolio gets 

larger for every estimation period used. 

Summarizing, the study based on a 100 ISE stock sample wishes to 

examine the effect of the estimation period chosen, the return interval 

used and the diversification on beta estimates and comments on 

differences between the empirical results and finance theory as presented 

in the past. 
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“ESTIMATING BETAS IN THINNER MARKETS: THE CASE OF THE 

ATHENS STOCK EXCHANGE”  

(International Research Journal of Finance and Economics – 2008) 

G. Diacogiannis, P. Makri (GREECE) 

 

 

The paper examines the presence and magnitude of the intervalling 

effect bias in ordinary least squares (OLS) beta estimates for securities 

traded on the Main Market of the Athens Stock Exchange (ATSE) during 

the period 2001 – 2004 and tests the efficiency of certain past related 

models to estimate these betas. The paper wishes to accomplish 3 tasks: 

First, it examines the presence of the intervalling effect bias and its 

relation to the capitalization of the firms. Second, it appraises the relative 

ability of the Hawawini model (1980) to estimate “true” betas and third, it 

estimates betas using models proposed by Scholes & Williams (1977) and 

Cohen et al (1983a) and compares the results with those of the OLS 

method. The importance of studying this specific market is the fact that 

it’s a small emerging one while the specific period of study is one 

reflecting the thin-trading problem since share prices experienced a deep 

decrease during that period. 

The authors made a sample of 187 continuously listed firms on the 

main market of the ATSE during the period starting January 2001 to 

December 2004. The choice of the 4-year period was not without a plan 

since a trade-off between precision and bias is implied. Using a 

lengthened sample period means having greater precision in beta 

estimation since more observations are included but on the other hand 

during that period certain fundamentals of firms may have changed (e.g. 

divisions, recapitalizations). 

The above mentioned sample was then sorted on the basis of market 

capitalization at December 29 2000. The 30 lowest ranked stocks were 

selected to comprise the low-cap portfolio while the 30 highest ranked 

stocks were selected to comprise the high-cap portfolio. Security betas 

were typically estimated via the standard market model (denotes & 

assumptions stated earlier in the theory section): 
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Rit = ai + βiRMt + εit 

 

while the rate of return for each security was continuously compounded 

calculated by: 

 

Rit = ln(Pit + dt) – ln(Pit-1) 

 

where Pit, Pit-1 are the last traded prices for security i in period t & t-1 

correspondingly, adjusted for capital changes and dt is the dividend for 

security i announced during period t. 

For each security in the high-cap portfolio and low-cap portfolio its 

zero returns (attributable to no change in price due to no new information 

or no trading) were calculated as a percentage of its total daily, biweekly 

and monthly return observations. Then for each portfolio and return 

interval, mean percentage of zero returns and standard deviations were 

computed showing that the low-cap portfolio experienced higher 

percentages of zero returns than the high cap portfolio for all three 

intervals and also as the measurement interval is lengthened, this 

percentage was decreasing for both portfolios. Results indicate that 

market capitalization is a good proxy for the frequency of trading. 

The authors went on to examine the return interval effect on beta 

estimates under OLS using two portfolios (high-cap, low-cap) and three 

measurement intervals (daily, biweekly, monthly). Results show that 

mean beta estimates for both the high-cap and low-cap portfolios increase 

as the return interval lengthens, something that contradicts findings from 

Brailsford & Josev (1997) that for the high-cap portfolio, the mean beta 

estimates decline as the return interval lengthens. The difference between 

the beta estimates is significant only for the return interval comparison of 

daily-to-monthly at 1 % level of significance, a finding that indicates the 

intervalling-effect bias in betas when daily returns instead of monthly 

returns are used. 

Similar results are obtained when examining the mean R2 values. 

Both portfolios experience an increase in mean R2 values as the return 

interval lengthens but for the high-cap portfolio, mean R2 from daily or 
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biweekly returns is significantly different at 1 % level of significance from 

that calculated using monthly returns. Therefore, the authors show their 

preference to the use of monthly returns for OLS beta estimation. 

Concerning the ranges of betas (between maximum and minimum values) 

and mean standard error of beta estimates, examination of results show 

that values are increased as the return measurement interval is 

lengthened for both portfolios. 

Another observation shows that for the low-cap portfolio there is only 

a statistical difference in beta estimates when comparing daily-to-monthly 

return intervals, a finding that supports the view that the rate of change in 

beta is greater for the low-cap portfolio and consequently the magnitude 

of the intervalling-effect bias is inversely related to the market 

capitalization of the firms. 

The authors went on to test the Hawawini (1983) model to estimate 

betas for biweekly and monthly return intervals using OLS betas 

estimated from daily returns. Results indicate that the Hawawini (1983) 

model is efficient to estimate security betas for high-cap portfolios when 

using longer return intervals. Concerning its ability to predict the change 

in beta from the change in return interval, the performance is better in the 

case of the low-cap portfolio, since it estimates a decreasing beta when 

using near-term return intervals (daily-biweekly, biweekly-monthly) while 

mixed results are obtained in the case of high-cap portfolios. 

Finally, the authors estimate betas using models proposed by Scholes 

& Williams (1977) with the standard one lead & one lag assumption and 

Cohen et al (1983a) with 2,3,4 leads and lags as opposed to those via the 

OLS method only on daily data. Results show that the above-mentioned 

methods do not decrease the bias of the OLS method and consequently 

the authors conclude that the OLS method may be the best method in the 

case of an infrequently traded market like the ATSE.  
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SUMMARIZING PAST RELATED ARTICLES 

 

 

Financial economists have long been interested in the risk-return 

relation and the use of the Capital Asset Pricing Model (CAPM) as a tool to 

estimate security returns. Nevertheless, a serious econometric problem of 

errors in variables causes “measured” returns to differ from “true” 

returns. Scholes & Williams (1977), based on early notes by Fama 

(1965) and Fisher (1966), tried to explain this type of problem and built a 

methodology to overpass it. They attributed this anomaly to the non-

synchronous trading of securities and found that OLS estimators of both 

alphas and betas are biased. More specifically, securities trading very 

infrequently have beta estimators biased downward and securities trading 

very frequently have beta estimators biased upwards. For the purposes of 

their research, they proposed a consistent estimator of beta with one lag, 

matching and one lead for the simple regression between the observed 

security return and the corresponding market index on data taken from 

the NYSE and ASE for the period 1963 to 1975. Their results showed that 

OLS beta estimates for thin securities are biased downward and for 

securities traded frequently are biased upwards. 

Dimson (1979) referred to the infrequent-trading problem which 

causes beta estimates to be biased and attributed it to the tendency of the 

mean value of beta to rise as the differencing interval is increased. He 

proposed his own method, the Aggregated Coefficients Method which 

generates returns whose covariance with the market is positively related 

to its trading frequency. It is actually a multiple regression of security 

returns on lagging, matching and leading market returns and estimates 

beta according to the degree of thinness of the security or/and the 

market. He used monthly returns of firms on the London Share Price 

Database between 1955 and 1974. Results showed that the use of lagged 

and leading terms into the market model improves beta estimates but the 

number of these terms varies according to the nature of the study. 

Hawawini (1983) presented a simple model to explain why 

estimates of beta depend upon the length of the return measurement 

interval using data from the S&P 500 for the period 1970 to 1973. Results 
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showed that betas are unaffected by the intertemporal cross-correlations 

between the security and market returns over one-day interval when 

these are zero or when the market provides a zero auto-correlation. The 

model also predicts the direction and the strength of the variations in 

estimated betas.   

Cohen et al (1983a) developed a theoretical model to analyze the 

friction in the trading process that causes “observed” returns to vary from 

“true” returns. It uses many leads and lags of the market’s return to 

derive a consistent estimator of beta as opposed to one lead and lag of 

Scholes & Williams model (1977). Furthermore it introduced the term of 

the “asymptotic estimator” as a consistent estimator using small price-

adjustment delays as the interval length measurement lengthens 

boundless and showed that the magnitude of this bias depends on the 

relative magnitude of these delays. Findings of this work show that 

securities with relatively short price-adjustment delays will have their 

betas overestimated by the OLS method whereas those with lengthy 

delays will be underestimated by the same method.  

Fowler & Rorke (1982) examined the theory behind the basic 

regression models of Scholes & Williams (1977) and Dimson (1979) and 

their relative ability to decrease the bias in estimating betas. They 

concluded that Dimson’s estimator is not consistent with that of Scholes & 

Williams (1977) and itself not expected to yield consistent beta estimates. 

Therefore, a corrected version is proposed. 

Fung, Schwartz & Whitcomb (1985) used daily data from the 

Paris Bourse during the period January 1977 – April 1980 to identify and 

correct for the intervalling effect bias in OLS beta estimates. They followed 

a 3-pass regression to test the beta bias via the Cohen-Hawawini-

Schwartz-Whitcomb model (1983) and concluded that average OLS beta 

estimate and average R2 increase as the interval is lengthened. 

Furthermore, they showed that stocks that trade less frequently than the 

Paris index (used as a proxy) experience significantly negative betas and 

those trading more frequently positive or insignificantly negative betas. 

Finally findings showed that there is a significant positive relationship 

between intervalling effect-bias and market value of shares outstanding. 
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McInish & Wood (1986) recognize that OLS beta estimates are 

subject to two sources of bias: thin trading and price adjustment delays. 

They propose a linear programming model to test the ability of past 

studies by Scholes & Williams (1977), Dimson (1979), Fowler-Rorke-Jog 

(1980) and Cohen et al (1983) using data from the NYSE for the period 

September 1971 to February 1972. Findings showed that “thick” traded 

portfolios had betas above 1 while “thin” traded portfolios had betas below 

1 when daily data used. Each of the past related study reduced the 

amount of bias but this was 29 % the maximum. 

Handa, Kothari & Wasley (1989) examined the behavior of beta 

as a function of the return interval and the sensitivity of its estimate to 

the firm’s size. They used a sample of stocks listed on the NYSE for the 

period 1926-1982 and formed 20 portfolios over 8 different return 

intervals. Findings show that portfolio betas change with relevance to the 

return measurement interval possibly because the covariance of securities 

return with the market return and the market return variance do not 

change proportionally as the interval changes. 

Corhay (1992) examined the intervalling effect bias in estimated 

betas using methods proposed by Hawawini (1980) and Cohen et al 

(1983) and showed that betas tend to converge to their asymptotic values 

with a speed that changes relevant to the measurement interval used. He 

used daily returns from a sample of 250 securities listed on the Brussels 

Stock Exchange from 1977 to 1985 and sorted them out in a way that 30 

differencing interval lengths were used to examine 10 value-weighted 

portfolios. Findings show that the intervalling effect bias is quite large for 

small intervals and decreasing as the interval is lengthened leaving the 

whole-sample beta approximately closely to one. Furthermore small 

market-value firms appear to have on average lower beta coefficients 

than larger firms.  

Frankfurter et al (1994) investigated the effect of the 

compounding period length for which rates of return are calculated on the 

estimation of alpha and beta parameters of the market model and used 

daily return data from the CRSP NYSE-AMEX file for the period 1976-1987 

to examine this relationship. Over 6 different compounding periods based 

on the market model, the authors showed that average beta estimates 
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differed very little from one period to another whereas average alpha 

estimates varied at a great degree. Above all, the market model used 

must be based on the proper length of the compounding period to yield 

unbiased results. 

Beer (1997) assessed the relative ability of models proposed by 

Vasicek (1973), Scholes & Williams (1977) and Dimson (1979) to estimate 

betas in a relatively thin market like the Belgian. Using a sample of 181 

securities during 1974-1986, she formed 10 groups according to market 

capitalization and confirmed the intervalling-effect bias in the market. 

Results showed that the above alternative methods did not decrease the 

beta bias effectively and consequently proposed the OLS method as the 

best technique for such a market. 

The model proposed by Brailsford & Josev (1997) provides a 

description of the size and direction of change in beta estimation as a 

result of different return intervals. The authors used daily, weekly and 

monthly returns to examine the intervalling-effect bias in the Australian 

Stock Exchange for the period 1988 to 1992 and therefore formed two 

extreme portfolios: a sample of 15 very thinly traded stocks and a sample 

of 15 very frequently traded stocks. For the first one, mean beta 

estimates rise as the return measurement interval lengthens while for the 

latter falls. Finally, testing the Hawawini model (1983), evidence shows 

that it performs quite well in approximating OLS beta estimates especially 

for the portfolio of frequently traded stocks. 

The choice of the return interval and the estimation period on 

estimating betas was examined by Daves, Ehrhardt & Kunkel (2000). 

In their study based on returns obtained from the CRSP NYSE/AMEX, they 

tested 4 return intervals and 8 estimation periods. Results showed that 

shorter return intervals are associated with a greater precision in beta 

estimation as shown by smaller values of Sβ and therefore daily return 

intervals are proposed. Concerning the estimation period, a 3-year 

estimation period is proposed for the same reasons. 

A recent study on the Istanbul Stock Exchange by Odabasi (2003), 

wishes to examine the effect of the estimation period, the return interval 

and diversification on beta stability. A sample of 100 continuously stocks 

listed on the ISE over the period 1992 to 1999 was used and findings 
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show that mean beta and R2 rise as the return interval lengthens. Also, 

diversification as measured by the correlation coefficient between 

portfolios of different sizes seems to be positively correlated with beta 

stability. 

Diacogiannis and Makri (2008) examined the presence and 

magnitude of the intervalling-effect bias in OLS beta estimates for the 

Athens Stock Exchange during 2001-2004 and its relation to the market 

capitalization of the firms. Therefore, they formed a low-cap and a high-

cap portfolio of 30 stocks each and calculated the zero returns as a 

percentage of daily, weekly and monthly observations. Findings show that 

market capitalization seems to be a good proxy for measuring the 

frequency of trading. Testing the effect of return interval on beta 

estimates under OLS method, the authors used 3 different intervals to 

show that mean beta estimates increase for both portfolios as the interval 

is lengthened,  something that contradicts findings of Brailsford & Josev 

(1997). Testing afterwards the Hawawini model, it appears to perform 

better in the case of the low-cap portfolio when using near-term intervals 

but mixed results are derived in the case of the high-cap portfolio. Finally, 

using models proposed by Scholes & Williams (1977) and Cohen et al 

(1983a), the authors conclude that the OLS method seems to be the 

appropriate method to estimate betas in a relatively thin market like this, 

since the above alternative ones do not decrease beta bias effectively. 

A review with the main points of each study is presented at the table 

below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



AUTHOR(S)/ 

YEAR 
METHODOLOGY DATA RESULTS 

Scholes & 

Williams 

(1977) 

Built a consistent 

estimator of beta 

Daily returns from 

NYSE & ASE 

 (1963-1975) 

OLS beta estimates for thin securities biased 

downward and thick securities upwards. 

Dimson  

(1979) 

Aggregated 

Coefficients Method 

London Share Price 

Database 

 (1955-1974) 

The introduction of lagged and leading terms 

into the market model decreases beta bias. 

Hawawini  

(1983) 

Simple model (only 

one lag & one lead) 

S&P 500  

(1970-1973) 

Security beta estimates change as the return 

measurement interval is lengthened. 

Cohen-Hawawini-

Maier-Schwartz-

Whitcomb 

 (1983) 

Analytical model 

(uses many leads 

and lags of the 

market’s return) 

Theoretical work  

Introduced the term of “asymptotic estimator” 

of true beta and showed that the bias in OLS 

beta is cross-sectionally distributed around zero 

& depends on the magnitude of a security’s 

price adjustment delays. 

Fowler-Rorke 

(1983) 

Used corrected 

versions of Scholes & 

Williams model 

(1977) and Dimson 

model (1979)  

Theoretical work 

Dimson’s model (1979) is not consistent with 

that of Scholes & Williams (1977) and itself not 

efficient at all. A corrective method is proposed 

that yields consistent betas. 

Fung-Schwartz-

Whitcomb 

 (1985) 

3-pass regression 

procedure 

Daily returns from 

the Paris Bourse 

(1977-1980) 

As the interval is lengthened, average OLS beta 

estimate is increased. A positive and significant 

relationship between intervalling effect bias and 

market value of shares outstanding exists. 

McInish-Wood 

(1986) 

Linear programming 

model 

Daily data from the 

NYSE (1971-1972) 

Each past chosen model reduces the amount of 

beta bias but at 29% the maximum. 

Handa-Kothari-

Wasley 

 (1989) 

Examined portfolios 

betas over different 

return intervals 

A sample of all stocks 

listed on CRSP 

monthly tape  

 (1926-1982) 

A security’s beta is sensitive to the return 

interval used to estimate it. 

Corhay 

 (1992) 

Formed 10 value- 

weighted portfolios 

over 30 differencing 

interval lengths 

Daily returns of 250 

firms listed on the 

Brussels Stock 

Exchange 

 (1977-1985) 

The intervalling effect bias is large for small 

intervals and decreasing as the interval is 

lengthened leaving the overall sample beta 

equal to one. 

Frankfurter-

Leung-Brockman 

 (1994) 

Analytical model 

showing the effect of 

investment horizon 

on alphas-betas 

Daily return data for 

1297 stocks listed on 

the CRSP NYSE-AMEX 

daily file (1976-1987) 

Regression results based on differencing 

compounding periods will significantly differ 

from each other. 

Beer  

(1997) 

Assessed  models of 

S&W (1977) &  

Dimson (1979) on 

beta estimation 

A sample of 181 

securities listed on 

the Brussels Stock 

Exchange 

 (1974-1986) 

Alternative methods did not decrease the beta 

bias effectively. The OLS method is proposed to 

measure betas in such a thin market.  

Brailsford-Josev 

(1997) 

Formed 2 extreme 

portfolios  

(very thin-very thick) 

 Australian Stock 

Exchange  

(1988-1992) 

As the return interval is lengthened, mean beta 

of thin portfolio rises while that of the thick one 

falls. 

Daves-Ehrhardt-

Kunkel 

 (2000) 

Examined 4 return 

intervals & 8 

estimation periods 

Security returns from 

the CRSP NYSE/AMEX 

database  

 (1982-1989) 

Greater precision in estimating betas when 

daily returns and a 3-year estimation period 

used. 

Odabasi  

(2003) 

Examined impact of 

estimation period, 

return interval & 

diversification on 

beta stability 

A sample of 100 

Istanbul Stock 

Exchange listed 

stocks 

(1992-1999) 

Mean beta and R2 rise as the return interval is 

lengthened. Diversification and beta stability 

seem to be positively correlated. Estimation 

period varies according to interval used.  

Diacogiannis-

Makri (2008) 

Formed a low-cap & 

a high-cap portfolio 

to estimate the 

intervalling effect 

bias using 3 different 

return intervals 

A sample of 

continuously listed 

firms on the Athens 

Stock Exchange 

 (2001-2004) 

 Mean beta estimates increase for both 

portfolios as the return interval is lengthened. 

The Hawawini model (1977) performs well only 

in the case of the low-cap portfolio for near-

term intervals. OLS method seems to be the 

appropriate for this market. 
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D.  Data and Research Methodology 

 

Empirical results as presented briefly above conclude that different 

beta estimates are generated using different return intervals over the 

sample period. Mean beta estimates and mean R2 values increase as the 

return interval is lengthened. Scholes & Williams (1977) and Dimson 

(1979) demonstrated that because securities are not traded with the same 

regularity, beta estimates for securities trading infrequently are biased 

downward and beta estimates for securities trading very frequently are 

biased upward. The reason stated by most authors is the fact that the 

whole impact of information is not immediately reflected into prices 

because of the so called “price adjustment delays” (Cohen et al – 1980). 

Findings based on different beta estimators showed that this impact is 

reduced as the return interval lengthens because prices of stocks have the 

time to incorporate any additional information. Therefore long return 

intervals could be used when measuring betas as less bias is introduced.  

The present study employs a time-series sample of security returns 

listed on the main market of the Athens Stock Exchange (ATSE). Beta 

estimation becomes more of an issue for an emerging market like this 

since it is characterized by light volume and a relatively thin market 

capitalization compared to the developed and mature markets of Western 

Europe and U.S. Damodaran (2002) argues that in many emerging 

markets, the companies and the market itself experience significant 

changes over short periods of time and thus the implications of such 

studies are of particular importance.  

The sample period covers January 2002 through to December 2006. 

In order to avoid data problems due to listing and delisting of securities, 

the securities have been selected on the basis of their continuous 

presence on the whole sample period.  The choice of this period was not 

without a plan, since the purpose of the paper is to balance between 

precision and bias. More specifically, the paper wishes to avoid changing 

structural and fundamental characteristics of the firms chosen by not 

restricting the period of study but at the same time it wishes to gather as 

much information as possible in order to extract precise results concerning 

the beta estimates. Therefore, a 5-year period of study was selected. Past 



Estimating Betas in Thinner Markets: The Case of the Athens Stock Exchange 

 58 

related studies on similar emerging markets used analogous study periods 

(e.g. Odabasi-2003 for Turkey used 5-year data also). 

 The next step was to rank the firms with continuous presence 

according to their market-capitalization as of December 31 of 2001 and 

choose the 60 ones with the smaller values. We assume that low-

capitalized firms reflect the phenomenon of thin trading at best. From this 

point on, the range of our study is strictly confined to these 60 firms 

which form a so called “low-cap study portfolio” as presented at Tables 1 

& 2 below. 

 

 

Table 1: 

Presentation of the “Low-Cap Study Portfolio” 

NAME Code NAME Code 

EMPORIKOS DESMOS PR EMPO VIS-CONTAINER CR BISK 

IDEAL GROUP PR INTP KORDELLOS CH BROS KOR 

PRAXITELIO HOSPITAL PR KORP MATHIOS MATI 

ANEK LIN.PR 1990 ISS. ANLE KNIT.FAC.MAXIM CM PTDS. MAXI 

J BOUTARIS & SON HLDG 

PR MPOP DUROS DOUR 

BIOSSOL PR BIOP MEVACO METALLURGICAL MEVA 

N LEVENTERIS PR LEBP ZAMPA ZAMP 

VIS-CONTAINER PR BISP MULTIRAMA ATHH 

XYLEMPORIA PR XYLP TECHNICAL PUBS. TECP 

ELVIEMEK 

LD.DEV.LOGIST. PARKS ELBI IMPERIO ARGO GROUP IMP 

TRIA ALPHA PR AAAP MICROLAND MICR 

EMPORIKOS DESMOS CR EMKO EKTER EKT 

TRIA ALPHA CR AAAK N VARVERIS-MODA BAGNO MODA 

SAOS AOY.SHPC.OF 

SMTE. GALI IKONA-IHOS IKO 

ANEK LIN.PR 1996 ISS. ANLO PIPE WORKS CR TZKA 

CHATZIKRANIOTIS MILLS TYRN SFAKIANAKIS CB SFA 

XYLEMPORIA CR XYLK VIVERE ENTERTAINMENT VIVE 

PERSEFS PERS VOGIATZOGLOU SYSTEMS VOSY 

MINERVA KNITWEAR MIN KARMOLEGOS KARA 

N LEVENTERIS CR LEBK YALCO-CONSTANTINOU YALC 

E PAIRIS EPA FIERATEX FIER 



Estimating Betas in Thinner Markets: The Case of the Athens Stock Exchange 

 59 

VARANGIS VAR PLIAS CONSUMER GOODS CB PAPK 

PRAXITELIO HOSPITAL 

CR KORK FG EUROPE BIMK 

FLR MLS C 

SARANTOPOULOS SARA SHEET STEEL XALI 

BIOSSOL CR BIOK DIONIC DION 

PARNASSOS 

ENTERPRISES PARN NAFPAKTOS TEX.INDS. NAYP 

C ROKAS PR ROKP ELTRAK CR ELTK 

LANAKAM CB KASK ELVE ELVE 

ELFICO ELFK PHILIPPOS NAKAS NAKA 

FINTEXPORT FINA MESOHORITIS BROTHERS MESH 

 

 

 

 

Table 2: 

The “Low-Cap Study Portfolio” based on market capitalization as of December 31 

2001 

Code 

Market Cap 
as at 

31/12/2001 
(€ million) 

Code 

Market Cap 
as at 

31/12/2001 
(€ million) 

Code 

Market Cap 
as at 

31/12/2001 
(€ million) 

EMPO 0,07 SARA 17,38 VIVE 27,66 

INTP 1,50 BIOK 18,75 VOSY 27,70 

KORP 1,97 PARN 19,00 KARA 27,96 

ANLE 2,24 ROKP 19,06 YALC 28,38 

MPOP 3,08 KASK 19,38 FIER 28,56 

BIOP 3,13 ELFK 19,76 PAPK 28,88 

LEBP 3,63 FINA 19,85 BIMK 29,04 

BISP 3,89 BISK 20,44 XALI 29,31 

XYLP 4,37 KOR 20,99 DION 29,60 

ELBI 4,95 MATI 21,94 NAYP 29,70 

AAAP 7,94 MAXI 22,37 ELTK 29,78 

EMKO 7,98 DOUR 23,21 ELVE 29,90 

AAAK 11,13 MEVA 23,63 NAKA 30,05 

GALI 12,29 ZAMP 24,81 MESH 30,58 

ANLO 13,52 ATHH 25,65 SFA 27,64 

TYRN 14,53 TECP 25,70 KORK 17,16 

XYLK 15,46 IMP 25,80 TZKA 27,30 

PERS 15,64 MICR 26,55 VAR 17,14 

MIN 15,69 EKT 26,82 EPA 16,63 

LEBK 15,87 MODA 26,96 IKO 27,01 
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Examining the low-cap portfolio serves us to test the intervaling-

effect bias better because such firms reflect the “thin-trading problem”. 

This refers to firms that experience at a great degree zero daily return 

changes due to no new information or zero trading. According to Brailsford 

& Josev (1997) a high percentage of zero returns is suggestive of a thinly-

traded firm. They additionally state that low capitalized firms would have 

a higher percentage of zero returns compared to high capitalized firms. 

Table 3 presented below clearly shows the magnitude of the thinness of 

the stocks chosen with the numbers showing the percentage of zero 

changes in daily returns for all stocks during the 5-year period. On 

average, the “low-cap study portfolio” faces 32.96% (st.dev. 17.86%) 

zero return changes for the study period on a daily basis, a finding similar 

to that of past studies that indicates that these stocks face important non-

trading problems. 

 

Table 3: 

Measuring the thinness of the portfolio using the trading volume as percentage of zero 

daily moves during the 5-year period  

Code 
% of zero daily 

trading  
Code 

% of zero 
daily trading 

Code 
% of zero 
daily trading 

EMPO 69,59% SARA 21,81% VIVE 27,19% 

INTP 88,10% BIOK 41,17% VOSY 23,27% 

KORP 77,34% PARN 22,12% KARA 17,97% 

ANLE 65,28% ROKP 31,72% YALC 22,96% 

MPOP 70,89% KASK 33,64% FIER 19,05% 

BIOP 56,91% ELFK 31,87% PAPK 32,49% 

LEBP 33,33% FINA 23,35% BIMK 24,58% 

BISP 79,42% BISK 28,80% XALI 33,56% 

XYLP 48,31% KOR 16,67% DION 22,12% 

ELBI 71,81% MATI 17,97% NAYP 21,27% 

AAAP 50,15% MAXI 26,73% ELTK 22,04% 

EMKO 30,72% DOUR 14,52% ELVE 18,13% 

AAAK 49,54% MEVA 15,67% NAKA 18,28% 

GALI 26,73% ZAMP 33,33% MESH 30,95% 

ANLO 37,86% ATHH 22,04% KORK 42,70% 

TYRN 20,35% TECP 17,74% SFA 31,34% 

XYLK 31,41% IMP 26,04% MICR 30,18% 

PERS 22,20% EKT 17,97% MODA 26,57% 

MIN 26,27% IKO 32,03% TZKA 23,27% 

LEBK 22,27% EPA 15,98% VAR 20,28% 
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For each security in the sample daily, weekly and monthly prices for 

each of the firms in the sample were extracted from DataStream and 

adjusted for capitalization changes but not for dividends. The weekly stock 

returns are computed using the closing value for the Tuesday of each 

week. The monthly stock returns are computed using the closing value for 

the first working day of each month.  

The study examined continuously compounded return series 

calculating the return on each security as:   Rit = ln(Pit) – ln(Pit-1)  

where ln is the natural logarithm operator, Pit is the last traded price for 

security i in period t and Pit-1 is the last traded price for the same security 

with one lag in the period of study.  

Saniga, McInish & Gouldey (1981) and Roden (1985) have shown 

that the estimation of beta depends among others on the specification of 

the market index. In particular Roll and Ross (1994) emphasize the 

importance of the selection of an efficient market portfolio to improve the 

quality of the results. The present study does not use a published market 

value weighted index (e.g the FTSE Small-CAP 80 Index) as the market 

index, but uses as a proxy the weighted market index composed of the 60 

thinly-traded securities chosen, adjusted for capitalization changes but not 

for dividend payments [similar to study by Corhay (1992)].  Thus the 

Market Index created is mainly a price index, weighted to give greater 

influence to higher capitalized firms.  

Market return series based on daily, weekly and monthly return 

intervals are subsequently calculated by:   

∑

∑
=

60

1

60

1

i

iit

mt

w

wp

R  

where wi is the weight, being the market capitalization of each firm and pit 

stands for the daily, weekly and monthly return series for each of the 60 

securities and are attributed at graphs shown below. 
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 Graph 1: Daily market return series (RM) for 1301 observations  
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 Graph 2: Weekly market return series (RM) for 260 observations  
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Graph 3: Monthly market return series (RM) for 59 observations  
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 Portfolio theory states that security beta is estimated via the 

standard market model with the OLS method:  itmtiiit eRbaR ++=  where: 

Rit is the return on security i in period t 

Rmt is the return on the market index in period t 

ai is the constant term for security i 

bi is the sensitivity of returns of security i to the market index returns 

measured as cov(Ri,RM)/Var(RM). 

eit is the error term which we assume to be normally distributed with zero 

mean, constant variances, zero cov(Rmt,eit) and cov(eit,eit-1). 

The estimates of ai and bi are obtained using an ordinary least square 

regression but as stated before are dependent on the length of the 

measurement interval. 

In our study, we compute the beta of our portfolio as the mean of its 

security betas and the standard deviation accordingly.  
  

 

The results obtained by applying the OLS technique of the security returns 

on the market index are reported on Table 4 below. 

 

Table 4*: 

Summary Statistics of beta estimates and R2 for three different return intervals 

Summary 
Statistics 

Daily Weekly Monthly 

mean betas 0.904173 0.941028 0.992196 

stdev of beta 
estimates 

0.386756 0.387435 0.446598 

mean standard 
error 

0.074692 0.122868 0.202300 

max beta 1.555486 1.676175 2.030074 

min beta 0.055436 -0.168102 -0.032365 

range 1.500050 1.844277 2.062439 

skewness 0.386756 0.388893 0.041528 

kurtosis -0.177122 2.944428 2.774677 

mean Rsq 0.127064 0.215010 0.324590 

 
*OLS betas are estimated over the period 01/01/2002 to 31/12/2006. Daily 

estimates are based on 1301 observations, weekly estimates are based on 260 

observations and monthly estimates are based on 60 observations. 
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Inspection of the Table 4 above shows that the mean beta estimate 

increases as the return interval lengthens. Indeed, the mean beta 

estimate using daily returns rises from 0.904173 to 0.941028 using 

weekly returns (+ 4%) and to 0.992196 ( + 10%) using monthly returns. 

Such a finding seems to support the presence of the intervalling-effect 

bias which is caused by friction in the trading process and is consistent 

with previous evidence from the same market (Diacogiannis, Makri - 

2008) and other markets: (Brailsford, Josev – 1997) for the Australian 

market and Odabasi (2008) for the Turkish market.  

 

Table 5*: 

Testing the difference between mean beta estimates for pairs of returns 

  Daily Weekly Monthly 

Daily   0,036855 0,088023 

   (0,521474) (1,154083) 

Weekly 0,036855  0,051168 

 (0,521474)  (0,67037) 

Monthly 0,088023 0,051168  

 (1,154083) (0,67037)  

 
*The difference between the mean beta estimates is not significant for any pair at 

5 % significance level. Numbers in parentheses show the confidence level at 

which the null hypothesis (equity of mean betas) can be rejected. 

 

Table 5 above proves the lack of the intervaling-effect bias when using 

daily instead of monthly returns or weekly instead of daily returns or any 

other combination. The difference between the mean beta estimates is not 

statistically significant at 5 % significance level for any pair chosen. Such 

a finding seems to contradict evidence from a similar study by 

Diacogiannis & Makri (2008) on the same market but on a different time 

period which supported the presence of the intervalling-effect bias in 

estimated betas when using daily returns instead of monthly returns for a 

low-cap portfolio. Analytical statistical results for all 3 pairs of data 

obtained are presented at Tables 6, 7 & 8 below. 

 

 



Estimating Betas in Thinner Markets: The Case of the Athens Stock Exchange 

 65 

Table 6: 

Test for Equality of Mean Betas between Monthly & Weekly Series 

Method  df Value Probability 

     

t-test  118 0,67037 0,5039 

Anova F-

statistic 
 (1, 118) 0,449397 0,5039 

     

Analysis of 
Variance 

    

     

Source of 

Variation 
 df Sum of Sq. Mean Sq. 

     

Between  1 0,078545 0,078545 

Within  118 20,62381 0,174778 

     

Total  119 20,70236 0,173969 

     

Category 
Statistics 

    

     

Variable Count Mean Std. Dev. 
Std. Err.of 

Mean 

MONTHLY 60 0,992196 0,446598 0,057656 

WEEKLY 60 0,941028 0,387435 0,050018 

All 120 0,966612 0,417096 0,038076 
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Table 7: 

Test for Equality of Means between Daily & Weekly Series 

Method  df Value Probability 

     

t-test  118 0,521474 0,603 

Anova F-

statistic 
 (1, 118) 0,271935 0,603 

     

Analysis of 
Variance 

    

     

Source of 

Variation 
 df Sum of Sq. Mean Sq. 

     

Between  1 0,040748 0,040748 

Within  118 17,68149 0,149843 

     

Total  119 17,72224 0,148926 

     

Category 
Statistics 

    

     

Variable Count Mean Std. Dev. 
Std. Err.of 

Mean 

DAILY 60 0,904173 0,386756 0,04993 

WEEKLY 60 0,941028 0,387435 0,050018 

All 120 0,922601 0,38591 0,035229 
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Table 8: 

Test for Equality of Means between Daily & Monthly Series 

Method  df Value Probability 

     

t-test  118 1,154083 0,2508 

Anova F-

statistic 
 (1, 118) 1,331908 0,2508 

     

Analysis of 
Variance 

    

     

Source of 

Variation 
 df Sum of Sq. Mean Sq. 

     

Between  1 0,232438 0,232438 

Within  118 20,59279 0,174515 

     

Total  119 20,82523 0,175002 

     

Category 
Statistics 

    

     

Variable Count Mean Std. Dev. 
Std. Err.of 

Mean 

DAILY 60 0,904173 0,386756 0,04993 

MONTHLY 60 0,992196 0,446598 0,057656 

All 120 0,948184 0,418332 0,038188 
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The mean R2
 values increase as the return measurement interval 

lengthens, a finding that is consistent with previous studies (Cohen et al - 

1980). The mean R2
 of the portfolio is ranged from 12.70 % (daily 

returns) to 32.45 % (monthly returns). Of importance though is the fact 

that the mean R2 obtained using daily or weekly returns is statistically 

different from that calculated using monthly returns at 5% significance 

level, a finding that supports the presence of the intervaling-effect. More 

specifically, Table 9 below shows that the difference between the mean R2 

using daily returns and the mean R2 using weekly returns is significant at 

5% significance level. The same condition exists if we compare daily with 

monthly returns or monthly with weekly returns at 5% significance level. 

 

 

Table 9: 
Testing the difference between mean R2 values for pairs of returns 

  Daily Weekly Monthly 

Daily  0,087946 0,197526 

  (4,500446) (7,842443) 

Weekly 0,087946  0,10958 

 (4,500446)  (3,992467) 

Monthly 0,197526 0,10958  

  (7,842443) (3,992467)  
 

*The difference between mean R2
 is significant for any pair chosen at 5% 

significance level. Numbers in parentheses show the confidence level at which the 

null hypothesis (equity of mean R2) can be rejected. 

 

 

Analytical statistical results for all 3 pairs of data obtained are presented 

at Tables 10, 11, 12, 13 & 14 below. 
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Table 10: 

Test for Equality of Mean R2 values between Weekly & Monthly Series 

Method  df Value Probability 

     

t-test  118 3,992467 0,0001 

Anova F-

statistic 
 (1, 118) 15,93979 0,0001 

     

Analysis of 
Variance 

    

     

Source of 
Variation 

 df Sum of Sq. Mean Sq. 

     

Between  1 0,360235 0,360235 

Within  118 2,666771 0,0226 

     

Total  119 3,027006 0,025437 

     

Category 
Statistics 

    

     

Variable Count Mean Std. Dev. 
Std. Err.of 
Mean 

WEEKLY 60 0,215010 0,122575 0,015824 

MONTHLY 60 0,324590 0,173709 0,022426 

All 120 0,2698 0,15949 0,014559 
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Table 11: 

Test for Equality of Mean R2 values between Weekly & Daily Series 

Method  df Value Probability 

     

t-test  118 4,500446 0 

Anova F-

statistic 
 (1, 118) 20,25402 0 

     

Analysis of 
Variance 

    

     

Source of 
Variation 

 df Sum of Sq. Mean Sq. 

     

Between  1 0,232037 0,232037 

Within  118 1,351847 0,011456 

     

Total  119 1,583883 0,01331 

     

Category 
Statistics 

    

     

Variable Count Mean Std. Dev. 
Std. Err.of 
Mean 

DAILY 60 0,127064 0,088814 0,011466 

WEEKLY 60 0,215010 0,122575 0,015824 

All 120 0,171037 0,115369 0,010532 
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Table 12: 

Test for Equality of Mean R2 values between Monthly & Daily Series 

Method  df Value Probability 

     

t-test  118 7,842443 0 

Anova F-
statistic 

 (1, 118) 61,50391 0 

     

Analysis of 

Variance 
    

     

Source of 
Variation 

 df Sum of Sq. Mean Sq. 

     

Between  1 1,170503 1,170503 

Within  118 2,245701 0,019031 

     

Total  119 3,416204 0,028708 

     

Category 

Statistics 
    

     

Variable Count Mean Std. Dev. 
Std. Err.of 
Mean 

DAILY 60 0,127064 0,088814 0,011466 

MONTHLY 60 0,324590 0,173709 0,022426 

All 120 0,225827 0,169433 0,015467 
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Table 13: 

Test for Equality of Mean R2 values between all Series 

Method  df Value Probability 

Anova F-

statistic 
 (2, 177) 33.20512 0.0000 

     

Analysis of 
Variance 

    

     

Source of 
Variation 

 df Sum of Sq. Mean Sq. 

     

Between  2 1.175184 0.587592 

Within  177 3.132159 0.017696 

     

Total  179 4.307343 0.024063 

     

Category 
Statistics 

    

     

Variable Count Mean Std. Dev. 
Std. Err.of 
Mean 

RSQ_DAILY 60 0.127064 0.088814 0.011466 

RSQ_MON 60 0.324590 0.173709 0.022426 

RSQ_WEEKLY 60 0.215010 0.122575 0.015824 

All 180 0.222221 0.155124 0.011562 

 

 

Table 14*: 

Correlation Matrix  

Correlation 

Matrix 

 

RSQ_DAILY RSQ_MON RSQ_WEEKLY 

RSQ_DAILY 1.000000 0.089836 0.924288 

RSQ_MON 0.089836 1.000000 0.106417 

RSQ_WEEKLY 0.924288 0.106417 1.000000 

 

*The matrix shown above shows the intensity of the relationship between daily & weekly 

results (0.924288 very close to 1) while the intensity between daily & monthly (0.089836) 

along with weekly and monthly (0.106417) results is of particular weakness.  
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Examining the range of betas at Table 4 above, meaning the 

difference between the maximum and minimum betas, it can be seen that 

it increases as the return interval is lengthened, a finding that is 

consistent with the study of Brailsford and Josev (1997). The range for 

daily data is very close to 1.50 and increases to 1.84 (+22.9%) for the 

weekly data and to 2.06 (+37.5%) for the monthly data. 

 

In addition, the standard error of mean beta estimates rises as the 

return interval is lengthened, consistent with findings from Handa et al 

(1989) and Frankfurter et al (1994). Such a result is not unexpected since 

the number of observations used in the OLS regression decreases as the 

length of the return interval increases from daily to weekly and from 

weekly to monthly, given the fixed sample period of 5 years. 

 

Skewness and Kurtosis are 2 measures of asymmetry and show 

how the series of data are characterized in terms of location and 

variability with the respect to the optimum prices of the normal 

distribution (Skewness=0 & Kurtosis=3). According to Table 4 above, 

monthly data appear to have a value for skewness (0.041528) closer to 

the optimum 0 which CAPM theory when measuring betas assumes 

whereas daily and weekly data skewness is 0.386756 and –0.388893 

respectively. Negative values for skewness show that the data set is 

skewed left whereas positive values show that the data set is skewed 

right. Our values are very close to zero for all 3 sets and can be assumed 

to follow a normal distribution. Weekly data on the other hand seem to 

have a value of kurtosis closer to 3 (2.944428) followed by monthly data 

(2.774677) while the daily data are far lower (-0.177122). A positive 

kurtosis shows a peaked distribution while a negative a flat one.  

 

Summarizing, Tables 4, 5, 9 presented above state clearly that 

mean beta estimates and mean R2 increase as the return measurement 

interval lengthens just like any other past related article finds, but 

differences for means are statistically significant at 5% only between 

mean R2 and not between mean beta pairs. It seems that the intervalling 

effect bias is not supported in the case of our research judging by this 

criterion. The reason seems to be on the one hand the extremely thin 
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trading of this type of stocks (for some stocks over 70% of zero trading in 

the period studied) and on the other hand the delay of the stock prices to 

incorporate any additional information. Such a condition causes cross 

serial correlation in the security returns and autocorrelation in the market 

returns. This has as an effect the estimates of mean betas and variances 

of betas to be downward biased and consequently the values of t-statistics 

to be rather low and biased. Table 5 above confirms the downward bias of 

the t-statistics when measuring the statistical difference between mean 

beta estimates. Similar findings with biased mean betas were also found 

in similarly thin and immature markets like the Belgian, conducted by 

Beer (1997).  

Also because of the presence of autocorrelation in the market 

returns, the variance of the market index seems to be downward biased 

and so is the covariance of the security returns with the market returns. 

Since the market index is equally weighted, extremely thin stocks are not 

so correlated with the market index (since they don’t trade that often) but 

dominate the index causing the correlation of the other stocks to be 

downward biased. This in part explains the low values of mean R2 at Table 

4 above. Concluding, we can say that the presence of certain stocks that 

are regarded as extremely thin in our sample make the results of our 

research biased and consequently defy the presence of the intervalling 

effect bias for this market.     

 

� Adjusted try to estimate betas of thinly traded stocks 

listed in the Athens Stock Exchange for the period 2002-

2006 

 

Given the bias of the results when dealing with the sample of the 60 

stocks chosen according to the market capitalization of 31/12/2001, we 

decided to go on the same procedure but at this time to place stricter 

rules concerning the measure of thinness. Stocks experiencing zero daily 

changes more than 50% of the time during the 5-year period of study are 

excluded from the sample taken, seen as extremely thin and consequently 

as causing biased results. The diagram below gives us a clear view of the 

13 stocks that are regarded as unacceptable by the new rules. 
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Diagram*: Measuring the thinness of each stock in the sample separately 
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* 13 stocks of the sample are rejected as extremely thin for the 2nd try to 

estimate mean betas in the market 

  

 

Table 15*: 

Summary Statistics of beta estimates and R2 for three different return intervals 

2nd TRY Daily Weekly Monthly 

mean betas 0.993894 1.013271 1.032268 

stdev of beta 

estimates 
0.294211 0.307867 0.400219 

mean standard 

error 
0.066189 0.109825 0.187286 

max beta 1.482911 1.623085 1.985838 

min beta 0.449526 0.457692 0.347439 

range 1.033384 1.165394 1.638398 

skewness 0.294211 0.047998 0.356330 

kurtosis 0.001354 1.974421 2.520242 

mean Rsq 0.158389 0.256770 0.353870 

 

*OLS betas are estimated over the period 01/01/2002 to 31/12/2006. Daily 

estimates are based on 1301 observations, weekly estimates are based on 260 

observations and monthly estimates are based on 60 observations. 

 

 



Estimating Betas in Thinner Markets: The Case of the Athens Stock Exchange 

 76 

 

 

Inspection of the Table 15 above confirms the tendency of mean 

betas and mean R2 to rise as the return interval lengthens just as the 1st 

try finds. The mean standard error and the range also rise as the interval 

lengthens for the same reasons as before. What is more important though 

is to estimate the statistical difference between mean beta estimates and 

mean R2 values for every possible pair of interval. Results for the second 

time confirm the absence of the intervalling effect bias when estimating 

mean betas of thin stocks of the Athens Stock Exchange during the period 

2002-2006. More specifically, the difference between mean beta estimates 

is not statistically significant for any pair chosen at 5%, as the Table 16 

states. 

 

Table 16*: 

Testing the difference between mean beta estimates for pairs of returns 

2nd TRY Daily Weekly Monthly 

Daily  0,019377 0,038374 

  (0,311958) (0,529624) 

Weekly 0,019377  0,018997 

 (0,311958)  (0,257920) 

Monthly 0,038374 0,018997  

 (0,529624) (0,257920)  

 
*The difference between the mean beta estimates is not significant for any pair at 

5 % significance level. Numbers in parentheses show the confidence level at 

which the null hypothesis (equity of mean betas) can be rejected. 

 

Analytical statistical results for all 3 pairs of data obtained are presented 

at Tables 17, 18 & 19 below 
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Table 17: 

Test for Equality of Mean Betas between Monthly & Weekly Series 

Method  df Value Probability 

     

t-test  92 0,25792 0,797 

Anova F-

statistic 
 (1, 92) 0,066523 0,797 

     

Analysis of 
Variance 

    

     

Source of 

Variation 
 df Sum of Sq. Mean Sq. 

     

Between  1 0,00848 0,00848 

Within  92 11,72803 0,127479 

     

Total  93 11,73651 0,126199 

     

Category 
Statistics 

    

     

Variable Count Mean Std. Dev. 
Std. Err.of 

Mean 

MONTHLY 47 1,032268 0,400219 0,058378 

WEEKLY 47 1,013271 0,307867 0,044907 

All 94 1,022769 0,355245 0,036641 
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Table 18: 

Test for Equality of Means between Daily & Weekly Series 

Method  df Value Probability 

     

t-test  92 0,311958 0,7558 

Anova F-

statistic 
 (1, 92) 0,097318 0,7558 

     

Analysis of 
Variance 

    

     

Source of 

Variation 
 df Sum of Sq. Mean Sq. 

     

Between  1 0,008824 0,008824 

Within  92 8,341731 0,090671 

     

Total  93 8,350555 0,089791 

     

Category 
Statistics 

    

     

Variable Count Mean Std. Dev. 
Std. Err.of 

Mean 

DAILY 47 0,993894 0,294211 0,042915 

WEEKLY 47 1,013271 0,307867 0,044907 

All 94 1,003582 0,299651 0,030907 
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Table 19: 

Test for Equality of Means between Daily & Monthly Series 

Method  df Value Probability 

     

t-test  92 0,529624 0,5976 

Anova F-

statistic 
 (1, 92) 0,280502 0,5976 

     

Analysis of 
Variance 

    

     

Source of 

Variation 
 df Sum of Sq. Mean Sq. 

     

Between  1 0,034605 0,034605 

Within  92 11,34983 0,123368 

     

Total  93 11,38444 0,122413 

     

Category 
Statistics 

    

     

Variable Count Mean Std. Dev. 
Std. Err.of 

Mean 

DAILY 47 0,993894 0,294211 0,042915 

MONTHLY 47 1,032268 0,400219 0,058378 

All 94 1,013081 0,349876 0,036087 

 

 

On the other hand mean R2 values experience statistically 

significant changes between all possible pairs of intervals for 95% 

statistical level. Such a result is not unexpected given the fact that the 

new market index is weighted and re-calculated according to the 47 

stocks of the new sample that comprise it. Analytical results for the tests 

of equality are presented below. 
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Table 20: 
Testing the difference between mean R2 values for pairs of returns 

2nd TRY Daily Weekly Monthly 

Daily  0,098381   0,195481  

   (4,979920)  (7,497748)  

Weekly 0,098381    0,097100  

 (4,979920)   (3,428195) 

Monthly  0,195481  0,097100   

 (7,497748)  (3,428195)  
 

*The difference between mean R2
 is significant for any pair chosen at 5% 

significance level. Numbers in parentheses show the confidence level at which the 

null hypothesis (equity of mean R2) can be rejected. 

 

Table 21: 

Test for Equality of Mean R2 values between Weekly & Monthly Series 

Method  df Value Probability 

     

t-test  92 3,428195 0,0009 

Anova F-
statistic 

 (1, 92) 11,75252 0,0009 

     

Analysis of 

Variance 
    

     

Source of 
Variation 

 df Sum of Sq. Mean Sq. 

     

Between  1 0,221569 0,221569 

Within  92 1,734468 0,018853 

     

Total  93 1,956037 0,021033 

     

Category 

Statistics 
    

     

Variable Count Mean Std. Dev. 
Std. Err.of 

Mean 

WEEKLY 47 0,35387 0,160173 0,023364 

MONTHLY 47 0,25677 0,109774 0,016012 

All 94 0,30532 0,145026 0,014958 
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Table 22: 

Test for Equality of Mean R2 values between Weekly & Daily Series 

Method  df Value Probability 

     

t-test  92 4,97992 0 

Anova F-
statistic 

 (1, 92) 24,7996 0 

     

Analysis of 

Variance 
    

     

Source of 
Variation 

 df Sum of Sq. Mean Sq. 

     

Between  1 0,227452 0,227452 

Within  92 0,843788 0,009172 

     

Total  93 1,071241 0,011519 

     

Category 
Statistics 

    

     

Variable Count Mean Std. Dev. 
Std. Err.of 
Mean 

DAILY 47 0,158389 0,079327 0,011571 

WEEKLY 47 0,25677 0,109774 0,016012 

All 94 0,207579 0,107325 0,01107 

 

 

 

 

 

 

 

 

 

 

 



Estimating Betas in Thinner Markets: The Case of the Athens Stock Exchange 

 82 

 

 

Table 23: 

Test for Equality of Mean R2 values between Monthly & Daily Series 

Method  df Value Probability 

     

t-test  92 7,497748 0 

Anova F-
statistic 

 (1, 92) 56,21623 0 

     

Analysis of 

Variance 
    

     

Source of 
Variation 

 df Sum of Sq. Mean Sq. 

     

Between  1 0,898005 0,898005 

Within  92 1,469619 0,015974 

     

Total  93 2,367624 0,025458 

     

Category 

Statistics 
    

     

Variable Count Mean Std. Dev. 
Std. Err.of 
Mean 

DAILY 47 0,158389 0,079327 0,011571 

MONTHLY 47 0,35387 0,160173 0,023364 

All 94 0,256129 0,159557 0,016457 
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E.  Summary and Conclusions 

 
The present work investigates the intervalling-effect bias in OLS 

estimated betas for stocks listed on the main market of the Athens Stock 

Exchange for the period January 2002 to December 2006. To achieve this, 

a sample of the 60 most thinly traded stocks at December 31 2001 was 

formed according to market capitalization and named thereafter “low-cap 

study portfolio”. Daily, weekly and monthly data for the above stocks were 

then derived for the 5-year selected period to test the impact of different 

return intervals on the estimation of beta. More specifically, mean beta 

estimates and mean R2 values increase as the return interval lengthens, 

consistent with findings from earlier studies [Cohen et al (1980) & 

Brailsford, Josev (1997)]. Although the change in mean beta as we use 

longer return intervals is not statistically significant at 5% significance 

level, the change in mean R2 values is statistically significant for any pair 

of intervals chosen. Findings seem to contradict those of a previous study 

by Diacogiannis & Makri (2008) on the same market but on a different 

study period which showed that a statistically significant change in mean 

betas exists only for the case of the low-cap portfolio created (between 

daily and monthly returns) and not for the high-cap one.  

Even when we followed the same procedure for a new 47-stock 

sample excluding certain extremely thin stocks (over 50% of zero daily 

changes during the 5-year period), the intervalling effect bias was not 

supported by findings from the differences of mean beta estimates for 

every pair of interval chosen. Therefore judging from the results of this 

research on 60 thinly traded stocks of the Athens Stock Exchange during 

the period 2002-2006, no differences in beta estimates is found when 

using 3 different return intervals (daily, weekly, monthly) and thus one 

may use either interval to estimate the systematic risk of such stocks as 

measured by the beta of the stock.  
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