m

==

UNIVERSITY OF PIRAEUS

DEPARTMENT OF TECHNOLOGY EDUCATION & DIGITAL
SYSTEMS

POST-GRADUATE STUDIES PROGRAM

NETWORK-CENTRIC SYSTEMS MODULE

Trajectory Data Visualization: The VisualHERMES Tool

MSc THESIS

by
IOANNIS S. GKOUTSIDIS
(Rec. No.: ME/0567)

Piraeus, June 2008

Disclaimer

This thesis is submitted as part requirement for the MSc Degree in Network-Centric Systems Module of
Technology Education & Digital Systems Department at University of Piraeus, Greece. It is
substantially the result of my own work except where explicitly indicated in text.

The thesis will be distributed to the internal and external examiners, but thereafter may not be copied
or distributed except with permission from the author.

Author: Ioannis S. Gkoutsidis

Signature:

Date: June 2008

loannis S. Gkoutsidis MSc Thesis

Abstract

Composition of time and space in a unified data framework results into spatio-temporal databases. Spatio-
temporal Database Management Systems (STDBMS) are able to process, manage and analyze spatio-
temporal data. HERMES provides spatio-temporal functionality to Oracle 10g Object-Relational
Database Management System (ORDBMS). It introduces time-varying geometries that change their
position and/or extend in space and time dimension either discretely or continuously, extending PL/SQL,
the data definition and manipulation language of Oracle 10g, with spatio-temporal semantics. Currently,
its main use is for representing moving objects (cars, trucks, people etc.) trajectories:

The problem of geospatial data interoperability has been an issue throughout the Geographic
Information Systems (GIS) industry for a long time. The Open GIS Consortium (OCG) developed an
eXtensible Markup Language based standard, Geography Markup Language (GML) with the intension to
overcome this issue. GML is the standard for transport and storage of geographic information for those
who need spatial and temporal sharing. GML, being a subset of XML, separates- the content from
presentation. Making maps from GML data involves a transformation of GML data into a display format
that can be interpreted by viewer software. Keyhole Markup Language (KML) is an XML-based
formatting standard that can be used to visualize GML data, using projection engines. The transformation
of GML data into KML can be accomplished using an eXtensible Stylesheet Language Transformation
(XSLT) stylesheet together with an XSLT processor. The XSLT stylesheet is an XML-based document
that describes how data in a GML document is transformed into graphic elements in the KML document.
By using different stylesheets, the same GML dataset can be visualized differently. In the same way,
different datasets having a homogenous schema can use the same stylesheet. The possibility to use the
same stylesheet for visualizing different datasets could be very useful in geographic data visualization.

This thesis is focused on two domains;

e In designing and implementing a wrapper for transforming raw HERMES’s data into GML
entities and process specialized GML queries sent to the database and

e Transforming these GML results into KML files for visualization purposes, via third-party
projection engines.

Trajectory Data Visualization: The VisualHERMES Tool i

loannis S. Gkoutsidis MSc Thesis

MepiAnyn

H evomoinom tov Xdpov kat tov Xpovov cg €va gviaio TANICI0 £xEl O AmOPPOLE TN dNLLovpYic Y®PO-
xpovik®v Baoewv dedopévav. Ta Xwopo-Xpovikd Zvotipata Awoyeipiong Bacewv Agdopévev (Spatio-
Temporal Database Management Systems — STDBMS) eivor oe 0éom va enefepyactovv, va
dwyeplotovy Ko va avaAddoovy yopo-ypovikd oedopéva. To HERMES moapéyet . xopo-ypovikég
Aettovpyieg 010 AVTIKEEVO-Xyeclokd Zvotnpo Alayeiptong Bdoewv Aedopévav (Object-Relational
Database Management Systems — ORDBMS) tng Oracle omv £kdoon 10g. Eicdyel ypovikd
petaPaAlopeveg yempuetpiec, ot omoleg ivor oe Béon va akddlovv T B€on N/KoL TO GYNLE TOVG GTO
nedilov Tov Ydpov N/KoL Tov ¥podvov avd Toktd Staotnpata /Ko cvvexds. ‘Etol emekteiver 1o PL/SQL
(Procedural Language/Structured Query Language), v YA®GOO 0ptoHOY KOL-YEPICUOD OEGOUEVOV TNG
Oracle 10g, pe y@po-xpovikég Evvoles. ZTnV TPEYOVOA KOTAGTOOT, N PACIKT TOL Agitovpyia apopd oIV
avamTapAoTAcT TPOYLOV KIVOOUEVOV AVTIKEILEVOV (0TOKIvNTA, opTNYd, dvOp®TOL KAT).

To {Amua g S-AEITOVPYIKOTNTAS TMV YEQYPUPIKOV OedOUEVOYV amotédess. TPOPANUa ot
Bropnyavia tov I'eoypaeikdv Zvomudtov ITIAnpogopidv (Geographic Information Systems - GIS) yw
apketd kapd. To Open GIS Consortium (OGC) avéntuée éva mpodtumo Paciopévo oty XML
(eXtensible Markup Language), to GML (Geography Markup Language) pe oKkomd vo vrepkepdcel to
mpoPAnua ¢ dwa-Asrtovpywodtmras. To GML omotedet mpdTLIO Y1 TN HETOQOPA Kot amobrkevon
YEQYPUPIK®DY TANpoopidv. Ovtag vrooOvoro g XML, dSwywpiler to mepeyodpevo amd v
napovaioon. H dnuovpyia yaptdv and GML dedopévo meplopffdvel TV LETATPOTN TOV dEO0UEVMV
QUTMV GE L0, HOPPT] TOPOVGIOoNG, Kavh va ovaAvbel and to ekdotote Aoylopikd mapovoioong. To
Keyhole Markup Language (KML) oamote)lel éva, Baciopévo emiong oe XML, mpdtumo ontikomoinong
tov GML dedopévav, kavovtag ypnon pnyavav mapovoiocng. H petatponn tov GML dedopévav oe
KML entoyydvetar pe v ypnon &vog XSLT (eXtensible Stylesheet Language Transformations)
GLVOLOL KOVOVeV og cuvepyacio pe évav KotdAinio XSLT enefepyact. To cuvoro avtd tov Kavovev
popeomnoinong amotedel évo XML oapyeilo, to. omoio meptypdeel Tov tpoémo pe tov omoio éva GML
£€YYPOPO LETATPEMETOL O YPOUPIKEG. ovroTNTEG €VTOS evog KML eyypdeov. Xpnoipomoidviog
Sdrapopetikods kavoveg popeonoinong, 1o do GML. obvoro dedopévav dvvator va ontikomondei
Sdwpopetikd. Katd tov id10 tpdmo, drapopetikd cvHvord dedopévav mov potpdlovtar €va opoloyeveg
TPOTLTO, UTOPOVV VO XPTCLOTOCOVV TOVG 1010VG Kavoveg popeomoinong. H dvvatdtnta yprong
KOW®V KOVOVOV HOPQOTONoNG Yo TNV OTTIKOTOINGT] SOPOPETIKOV GUVOL®V dedouévav pmopel vo
amofel 1d10iTEPO XPNGIUN Y10 TV TAPOVGINGT YEDOYPOUPIKDV TAT|POPOPIDV.

H mapovca perétn emkevipdverot o d00 Pactkols GEoVeG:

e Ytov oyedluopd kol TNy VAOTOINon &vOg EVOIAUECOL UNYOVIoMOL (wrapper) Yo TN
LETATPOTN TOV TPOTOYEVAOV GESOUEVAOV, TOV OTOGTELAOVTIOL (OG OTOKPLOT OtO TO GUGTH O
HERMES, oe GML 6povg aAld kot v eneéepyocio edikdv GML gpotnpdtov mpog ™
Baomn ko

e Tn petatpomn) tov GML oamotereopdrov oe KML apygio yio tovg oKomovg 1Tng
OTTIKOTOINGNG, LE TNV XPNOT. LNYAVOV TOPOLGINCTS TPITOV KATACKEVAGTAOV.

Trajectory Data Visualization: The VisualHERMES Tool ii

loannis S. Gkoutsidis MSc Thesis

Acknowledgements

The writing of this thesis has been a long and arduous journey of learning. From the initial to the final
product, this thesis has seen the input from many individuals.

First and foremost, I would like to thank my supervisors, Professor Georgios Vasilakopoulos and
Assistant Professor Yannis Theodoridis, for their continued support, constructive comments and
encouragement. Without their excellent guidance, this work would not have taken the present form. I feel
privileged to have got this opportunity to work with them.

I am grateful to Dr. Nikos Pelekis and Gerasimos Marketos. Their contribution both in my infancy
and technical issues related to my work was invaluable. The patience shown in my endless questions was
proverbial.

I would also like to thank Assistant Professor Emmanuel Stefanakis for his valuable information and
guidelines at the beginning of my work.

Mum and Dad, I could not have come this far without you. You believed in me and gave me the
liberty to choose my life. No words can express how grateful I.am.

Dedicated to my little brother Nikos.

Trajectory Data Visualization: The VisualHERMES Tool iii

loannis S. Gkoutsidis MSc Thesis

Table of Contents

ABSTRACT ...coittiiiittttiistreiisstte et et s s e s e s s s s s s s e sa s s s s s s a s e s e s s s s s e sessasaesessanessassnsessassassanssansesassannanaanns |
FIEPINHWH ...ttt neeee e sanee e e s e e s sane e e e e s e s e s s saan s e e e s e e s s e s anna e e e s sea s snnnsanessnnan Il
ACKNOWLEDGEMENTScoiiiiitiiiiittiiisnteniinntessesntessssasessssasessssssnssssssnsessssansssssssanssessnnssessansessssanssanns i
LAY 1 S0 10 I I O RS v
TABLE OF FIGURES ...ttt see e e ssssen s ssee s s an e s an e s s sas b e san e sn s s snd e e s sadanssonn vii
LIST OF TABLESccooeeeeieettieitttenssntt et sssnn e ssee s s sane s s e s san e s s s s sa s s e s sa s e s s e an b e s sanne sennnnenansnsesansanenns IX
ABBREVIATIONSoeeiiietiinetetnntttnnnete e sssese s sae e s san e s st e s s e sane s sessane e an e e s san e sesaneesessanensnsanne X
R 130 10 11 o I 0 S U RN 1
11 BACKGROUND AND MOTIVATION ...uviiiiiiiieeeteseniee ettt estte et eeaeeeeas e e e b s eaneeeareeearessnreeenneenaneeeaneensnes 1
1.2 PROBLEM DEFINITION ..cciouuieruuersuioruensusosuessnrorsuesssesorsaosesslngSogonsesonses Supins s otnaigthoee s eorsunssserossunssnns 2
13 RESEARCH OBJECTIVES ...uvvienieeetitetee ettt ettt et ettt s as et e et e bnssne e arbeenaneeeaneenareeeaneenane s 4
1.4 IMETHODOLOGY .1cutieutieiieiiieitee ittt ettt et ettt be sk e ba s e s aaesheedha s shs e beeabeea s s e sseebseebs e be e beenbeeatesanas 4
2 MOVING OBJECT DATABASES........cciiiiietiiiiietiinnnnissisentnsssanesissinesssssnsssssssneesessanesssssnnessssansessssanesas 5
21 INTRODUCTION ..viiutieutieireiitesiee st e sttt et et s e st et ba s s b e e fhe e abe e e saeesrs s beebe et e easeeaseebseebs e be e beenbeeanesanas

2.2 MOBILITY SCENARIOS
2.3 CAPABILITIES OF SPATIO-TEMPORAL DATABASES

2.4 EVOLUTION OF SPATIO-TEMPORAL MODELS «...oeuiieiiecuiie e o tine st beniieceareenteeesteeentneesaneeetneesaneesaneeeaneenane s
2.5 SPATIAL CHANGE IN MOVING OBJECT DATABASES.cuv.ieniieies e eiesiuneeene et sine et ereeetne e saneeeneeereeeanee e 9
2.6 TRAJECTORY REPRESENTATION ...coiieiiueiteeniesenitestinnssinsienssionesuiasaeesseesessnesssesssesteesbeebeensesnnesanesseeseenns 10
2.7 SPATIAL DATABASE MANAGEMENT SYSTEMS i.iiviiereesiesive s tiniiesieesieesteenreenesssesteesteebeebeenne s saeesaeene s 11
2.8 SPATIO-TEMPORAL EXTENSIONS .. 0iiisiintiiriisinsiintiente et iins ettt et ettt et et eaesanesae e sbe b s 12
2.8.1 L N 1 3 O 13
2.9 L0000 14
3 THE EXTENSIBLE MARKUP LANGUAGE (XIMIL)ccvceeniiiinenneniiinsnessesisnsssesssssnssessessessssssessessens 15
3.1 L0 T T T L O

3.2 EVOLUTION OF XML
3.3 THE EXTENSIBLE MARKUP LANGUAGE (XML)

3.3.1 XML document structure
3.3.2 [Tl [0 Tlo 110 4 PPN
3.3.3 EIBMENLS .ot ie ittt ettt ettt et e st s e e bt e sate e bt e ssteesateesaseenaseenaneennnes
3.34 COMIMEBNTS..c.iveiieeieieecteeeei ettt ettt ettt ettt ettt ettt et et et et et et et eteteteeesesaeeseseseseseeeeseeseseeseenanaeees
3.3.5 (0L [0 [(=] G =) =T =3 Lol = TS
3.3.6 Processing iNStIrUCTIONSccovveveviieiiieieieiiieiiiiieieieieteteseveseseseveveseveeetessseseesaeaassaseaessaasaaeens
3.4 DOCUMENT TYPE DEFINITION (DTD) c.uutiieeiiieeeeiiieeeeeieeeeetteeeeitte e e estteeeesataeeeeaaaeeesasaaesensaeseennsaeesssaaens
3.5 XIMIL SCHEMA et ittt ettt et e e e ettt et e e e s e aab et e e e e e ee s s bae e e eeeeesaanbbeeeeeeeesannnbaeeeeaeseaannbeeeeeeeaesannnes
3.5.1 R 102] 2] L= Y <=2 e U UUTRE

3.5.2 Attributes

3.5.3 Restrictions and extensions

3.5.4 Complex type
3.6 XIMIL NAMESPACES ...vveeeeueteeesuteeeasstseesassesesasseesasssaeesassseesasseeeasssseesasssssesasssesasssssssanssssesssssessssssessanns
3.7 DOCUMENT OBJECT IMIODEL (DOM) «.viiieiiiee ettt ettt eete ettt e e e et e e e eette e e e ata e e e etbeaeeensaeaeennaaaeesseaaas
3.8 UNICODE SYSTEM iiiiiiiiiiee ettt a e e e e e e
3.9 VIEWING XIVIL DOCUMENTS ...utttutututuuuuuausaausasasasasasanasssasssssssssnsnnssnsnssssnnsannnssnnnsssnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnn
I T 11 T 2 £ SR
3.11 XML BASED MARKUP LANGUAGES ...vveeeeuureeesureesasuteeesassesessnseesasssssessssssssssssesssssssssssnsssssssssesssssssssssens
3,12 CONCLUSION «etteteitteeeeereeesaueeeeesstaeesaseesessnseasasssaeesanssssesanseeeasssseesassssessnsseesannssnssasssnessnssesesnnssnensnsnns

Trajectory Data Visualization: The VisualHERMES Tool iv

loannis S. Gkoutsidis MSc Thesis

4 THE GEOGRAPHY MARKUP LANGUAGE (GIML)eervuiiriuririeeiieeiinrenseensseesessessssessssnessssessssesesses 24

4.1 INTRODUCTION «.iiitteeeteeeeesiitee et e e e s e st e e e s e s nb et e e e e e e saansenee et e s e samnnneeeeesssannnraneeeeesesannrrneeeeesenannren

4.2 BACKGROUND AND EVOLUTION OF GML
4.3 GML FEATURES ...vvvieeeeeeiiiireeeeeeeseinerneeeeeeeeens

4.3.1 Simple features...........

4.3.2 Geometry elements

4.3.3 TUME@ @IEMENTS. ...ttt e ettt e e e e e e et aasaaa s s e s i e e aaeeaiathnraessasanas
4.4 CORE GIMIL SCHEMAS.....cttvtteeeeeeeeeeeeeeeeereseeeseseseseseseeeseresesesssesesesesesesesesesamaassesssesssssasessasssansenesbassaresans
4.5 ENCODING GEOGRAPHIC INFORMATION WITH GIMIL ...t s sk s e e e 29
4.6 GIMIL APPLICATION SCHEMAS ...eeeteieieutttreeesesesesseseeesesseasnsssnseesssasansssseesinssananssssessessannnssiantesessnssnssinses 29
4.7 STRUCTURE OF AN APPLICATION SCHEMA ...uvveetereieiuerueeeesssasonssnrseesssssessassanesssasionsessnsessesessnnssesanessesnnnes 30
4.8 STRUCTURE OF GIMIL DOCUMENTS ..cceeiiititteeteeeeeiiitrneeeesesesnssnnaetessesansssnnefaesansanssnssineeseensnssnneiasennnnnnns 32
4.9 VALIDATION OF GIVIL DOCUMENTS ...vututuuuuuuueunnnnnnnnnnnnnnnnnnnnnnnnninnnnssnnnnnnnnnnnnsnnnsinnsnnnnnsnnssnnnnnnnnnnnnnnnnnnnnn 32
4,10 VIEWING GIVIL DATA ..oiiiiiiiiiieieeeeeeeeeeeeeeesesesesesesesesesesesesesstesssasessssssnssesionmenssseesesiaesonssesbnstoresererererens 33
4.11 CONCLUSION ...uvteerireeresnineeessveeesssseesesssnsessssnessssssaessssagbossatios sTinibpee iTune e fhoveeeesvesssnss Bagbsseeessssessasase 33

5 THE KEYHOLE MARKUP LANGUAGE (KIVIL)ccccevrmmreereiecesiosinneeeesseesisnnsnsseiseiossinnnaienssssssssnnnnessasaas 34

5.1 INTRODUCTION ttieuiutttteeeeeeesuetureeeeeseseussaseeeseseseastsssssssassansnnsanasessansinsssnssesessinssusessesssessasssseessesnnnnnes
5.2 VISUALIZATION OF GEOGRAPHIC DATA
5.3 EVOLUTION OF KIMIL ..cttiiiei ettt ettt sttt e e e e s eatata e 5a e 5 e s aataae e e s e sannntaneaeaseesnnssaneaassssnnses
5.4 KEYHOLE MARKUP LANGUAGE (KIVIL) ...viiieiiieiesii ettt ee e e e ecitee e e e tas s e e eataeeseavaaaesntsaaesnssessenssasesssanans

5.4.1 Creating KIML fil@Sccuueeueieiieeiiee st it et s ettt ste st e sane e s e nneenanes
5.5 KIMIL FEATURES «..veeeevteeeenueeeesiseeeessveesofbansesonnsiln B tag oo son Phne o fananseeesasheseeseseeessnssessassssnsessssasessssensans
5.6 KIML DOCUMENT STRUCTUREuvveeeeuerieeesassasisuneesesiasos ianssnsesssnssassnsesessnssesesssssessssssesssssssessnsseessnsneen
5.7 VIEWING KIMIL DATA ..cceeiie i cittteee e e e cee it iee e s e et et vae e sassaasba s banees s esannsaaaaeeaeeseassssaneeesssessansseneeeseesnnnses

5.7.1 (CeToTo =0 2o T o ¢ DO o S M S i - S T s

5.7.2 (e Yoo | L1, Lo T T e T USSR

5.7.3 Other viewing applications

5.8 KML CRITIQUE
5.9 CONCLUSION

6 THE EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS (XSLT)

6.1 INTRODUCTION w..utiteueiaiueeeiaesuneeeueeehe anneessssbanseesaseesseesaseesseesabeesnseesaseeenseesabeeenseesaseeeseessaeenseesnses
6.2 EXTENSIBLE STYLESHEET LANGUAGE (XSL) 1. iueiiitiiieeiiiee ettt e e eitee e e ette e eeeite e e eeatee e e staeaeeeataeseeanaaeeesnaaeas
6.2.1 XSL Transformation (XSLT) ... e eeeeeeeeeee e et eeetee e ettt e etaa e e e staeeeesaaeesasaaesssnaans
6.2.2 XSL Formatting OBJECES (XSL-FO)ccuuveeeeeeeeeeeeeeeeieeeeeteeeeeaeeeesteeeeeraaeesiasaaessenaans
6.2.3 XML Path Language (XPATRN)ccueeeeeeeieeeeeeesiieeeieesieeeteestteesseaes e eesesesssaeasesssssasaseeen
6.3 TREE AND NODES -1 veesieeeuresnutieibneeseeenseesssesenseessesesseessesesseesasesesseesssesesseessseessseessseeenseesssesenseesnnes
6.4 XS LT STYLESHEET Lot tureeueeesueesuneesureesueeesuseesueeesuseesueeesaseesuseesabeesaseesabaesnseesabeesaseesabaesnseesbaesnneesases
6.5 XSLT STYLESHEET STRUCTURE AND ELEMENTS ..vvveeuveesereesuseessreesseessseesseesssesssessssesssessnsssessessnsssansesnses
6.5.1 Templates.....c.ccooeeiiveiivneneeeeeccnnnns
6.5.2 Matching nodes-......
6.5.3 Selecting nodes........
6.5.4 Named templates
6.5.5 CONEENT Of OULDUL ...ttt e et e et e e ettt e e st e e s sastaaessteaessassasssnsenaaas
6.5.6 (000 T2 1 Lo Yo Ky
6.6 COMBINING STYLESHEETS ¢ utteeuttteuueesuteesseesteessseesbeeesseesseeesseesssessnseessesenseesnsesesssesssesessseesseeessesnsees
6.6.1 IMPOIEING oottt ettt et et et et et et et et et et e teeasatasasasassssaasssasssasasaaaeees
6.6.2 INCIUSTON ...ttt ettt e e e ettt e st e e st e e e sbbeeessassaessaseeeens
6.7 EVIBEDDING STYLESHEETS.1u1euvteeutetesueesesenseeesesenseeesesensessssesensessssesensessnsessnsessnsesessessnsessnsessssesensessses
6.8 CREATING AN XSLT STYLESHEET «..uiiittteeeeeeseiteteteeeeeseainteteeeeesesmnseeeeeeesesannnnaeeeeeesaannnraeeeeessaannnreeeeas
6.9 XSLT PROCESSORSvtteuvteesuteesureesuteesuteesuteesuteesuseessseessseessseesaseesaseesaseesasaesnseesaseesnseesnseesnseesssaesnseesses
6.10 CONCLUSION ..eetuuteeeuteesuteesuteesiteesuteesateesuseesuteesaseesateesaseesabeesaseesabeeanseesabeesaseesabaeaseesasaeenseessaeenseesnses

7 VISUALHERMES WRAPPERcuutrrtiiiiinitnttttinnnenneessnenesessnsssssssesseesssssssssssssssssssssssnnnnnes 51

Trajectory Data Visualization: The VisualHERMES Tool %

loannis S. Gkoutsidis MSc Thesis

7.1 INTRODUCTION ..vteeeiuereeesurteeesuseeessnseeeessuesesssusesssnsseeesaseesssnsssesssssesesssssesesssseessssssessssseessssseesssseees 51
7.2 REQUIREMENTS. .. teeuttteesitteeesittteseureeesurteessabeeeseubeeesauseeeesanseeeesabaeesaassaeesanseeessnbbeeeannseeesannsaeessseeenn 51
7.3 B2 [TP PSPPSR P PP PPRPPPI 53
7.3.1 APPLICAION QICRATEECEUIE ..ottt et e ettt e e e teae e et e annaaaaesneeaaas 53
7.3.2 DGEQA ACCESS LAYEK cveeeveeeeeieieieieieieieieieieseieteseteeeeeeesevesesesarasesesssssssssat Sansesssssssnssnessbassbnnaeens 53
7.3.3 BUSINESS LOGIC LAYEL ..ttt b e a e s 55
7.3.4 PreSeNtAtION LAYENcccueeeieiiiiiiiiiisieeeete ettt v e e e et 56
7.4 APPLICATION MODULES «..vvtteiutteeeaiteeessseeeesauseeesssseeesssssesssssseesssssssesssssessssnssesssasbesonsiansesnssaesanseesnonns 56
7.5 DATA FLOW ..ouviiininisisisisisisisisisisisssioossnes g osos i os s o s s Fonges asiion 58
7.6 DEVELOPMENT ENVIRONMENTttteeeuttteesutteeesteeeessureresaseeeesanseesssnsesienassseesnsestesiuneessnnneeesannsesssnssinnin 59
7.7 ACCESS TO DATA
7.8 IMPLEMENTATION
7.8.1 SYSEEIM JOGON.....coiiaeieieeet ettt e e e ettt 61
7.8.2 QUETY DUIIEING ... e e b et 61
7.8.3 RESUIES CONSEIUCTION ...eceeeeeieeeeee et s san e s b e e i aaaesaaae s abar e essasnaessnsenaens 67
7.9 COMPRESSION FEATURES +veeuuvveeeeereeessueeesesseeessssseeessssesessssessanssesssnssasesinnsansanssesesnssssasanssesesssseessnnsees 70
7.10 PROBLEMS IN IMPLEMENTATION .ccuuttteeeuuteeesurteeenureresasseeesssaessanseresansessasbneesinssassansnntessnsseesssnsenessnnees 72
711 CONCLUSION wetteteitieeeeetttesutteeesureeessuteeesaneteessubeeesansaeessanseeeensbanesansaeessasetanesuseedasbaneeesanseeesnnsenesnnnees 72
8 CASE STUDY ..ccceeenennnnnnnnnennnnnnnnnnnsssssssssssssssssssssssseqssdbossesesasingsssssssssesatingsssssssssssssssssssssssssssssssssssss 73
8.1 INTRODUCTION .ttteeuereeesurteeenuteeesanureeesausteessiuetasenssbessnnseeessnseeessntbnesanssesesasseeessnsseessnnseeessnnseeesaseeens
8.2 DATASET CHARACTERISTICS. .ttt euvreeeeureeessueaiessiuneeesanssnsesiasiassnnseeesssssessnssnsesssseesssssseessssseesssssseessnseeen
8.3 TRAJECTORY QUERY TYPE...cieiiiiieieieieieieieieeeiesesiaeiaesiaseeeiaesaneeianesieneesesasesiensesesasaseseseseseeesesesesesesaneneeees

8.4 SPATIAL INTERSECTION QUERY TYPE
8.5 TEMPORAL INTERSECTION QUERY TYPE

8.6 AVERAGE SPEED QUERY TYPE 4uvuuuuuuusssssssssssiunsanssssnssnssnnssnsoninnessansnnssnssnnsnnnnsnssnnnnnnnnnnnnsnsnssnsnnsnnnnnnnnnnnnnn
8.7 N OTSET QUERY TYPE ..uuuuuuuuuunnunnniinnsnnionnnnnnnnnninnessnnnnsnssnnnsssnssnsnnsnnnnssnnnsnnnsnssnsssnsnssnnnsnnsnnnsnnsnsnnnnnsnnnnnne
8.8 UPLOAD GIMIL QUERY FILE ...t tesirvuusineeeeesinssnssneserssssansaneesessansnnnseseesssssnsnssesesssssssnnnsessssssssnnesesssssssnnnnns
8.9 CONCLUSION ovvvvvereeerererrnees s e e Toneeeeeees Sanhaseessssss it Miasesesssns

O CONCLUSIONSciieeiiiteeiietrnneietrnnsserssnssessansessssnssasinnsssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnnnns 92
9.1 L0 N L] oy e Sy 92

BIBLIOGRAPHYceuiiiieenieiienneiinnsiinsionesssnssssssassesssnssssssnssessssssssssnssssssnssssssnssssssssssssnssssssnssssssnnsssssnnssssanne 94

APPENDIX ..cceiremenrnrenenneniainrencnsoe torTunnesingsses hansesshossersnnssersnnsseronssseronseseronssseronssseronsssesonsssenonsssenonssoene 98
A VISUALHERMES GML SCHEMA DEFINITION FILE 1.uuuvuuuuuuneninnnnnnnnnnnnnnennenns 98
B VISUALHERMES EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS FILE ..uuuueeeeeiiiiiieeeeeeeeriniieneeeees 101
C HERMES TO_CLOB() FUNCTION . t0eeutteeteeeteeeiteesteeesseesteeesseessesasesssesssessnsessssessnssssssessnsessssesans 104
D EKTENHZ TTEPINHWH STHN EAAHNIKH ... eeitieeiieeeeiiee et e ettt e e eeteeeeenneeeesnneesssnneessnneesssnnsesssnneessnnneeens 105

Trajectory Data Visualization: The VisualHERMES Tool Vi

loannis S. Gkoutsidis MSc Thesis

Table of Figures

Figure 1-1: IMOVING OBJECES ...cuveiiiieiiii ettt sat e st e sabe e e bt in e nnr e sneesaneenas 1
Figure 1-2: Raw locations & reconstructed trajeCtoriesccuuiiiieiiiieiieeiee e e e e 1
Figure 1-3: Moving Object Databases architecture (Marketos, et al., 2008)cccoeveeiieiienneeniieiesneesiiens

Figure 1-4: HERMES-based Trajectory Data Warehouse..........ccccceeevcvveeeecveee e,
Figure 1-5: Wrapper extension on HERMES-based Trajectory Data Warehouse.....
Figure 2-1: Spatio-temporal path for ongoing moving objects as a set of paints ...

Figure 2-2: Simplified architecture of spatial databasesccccueveeiiii e e e e

Figure 2-3: Entity-Relationship diagram for Oracle Spatial SDO_GEOMETRY (Kothuri, et al., 2007) 13
Figure 2-4: HERMES system architecture (Pelekis, et al., 2006)..........iceeiieeriieeiireeiiueesrsiereesaeesesesseeeenenens 14
Figure 3-1: Markup langUage CONCEPLS ...cecviiiriieriiieitie ettt ettt ettt s bt se s ek b e s beesbae e smneesneeessneenneees 16
Figure 3-2: Options for displaying XML dOCUMENTSccc.eiiiuiiriiiiaiine ittt beee vt san e e sere e 23
Figure 4-1: GML Abstract Feature Model (OGGC, 2004)c.uueeeeiieeieieieeeeiieiee et e e eectaeeeeestae s esrseeeeesaeeeeasees 26
Figure 4-2: GML Geometry Model (OGC, 2004)ccociiiieeeieieieiiieeeeiieeesesiae e ot aeessaeesesassasassseeessssseseensens 29
Figure 5-1: GOOZIE EAIth Uloeiiiieeeeiee sttt s e e s st e e e easae s sanbae e e sensaaderarsaeeesbeeeestaeesansees 40
Figure 5-2: GOOZIE MAPS Ul ..c..uiiiiiiiiiieiie ettt e e e st e kb e e bt e saneesbeeesmneenneeas 41

Figure 6-1: Axes provided by XPath (Sun Microsystems, 1994)
Figure 7-1: GML query and SQL result...
FIBUIE 7-21 KIVIL FESUIL ...ttt st st ettt e sat e et e e ettt e sabeebe e e sane e bt e e saneesneeesnneeneeas 52
Figure 7-3: VisualHERMES as an alternative interface ...t e et 53
Figure 7-4: ViSUAIHERMES 3-tier arChit@CtUIEeiie it cc ettt e e ste e e e eaae e e etre e e eeatae e e anes 54
Figure 7-5: Business LOgIiC Layer dOUDIE rOle........ et i eiee s et e e et e e e avee e etre e e eata e e e nnes 55
Figure 7-6: Business objects Class diagram... v e i it iut et ittt san e e e naee s 56
Figure 7-7: Business logic layer class diagram ... oo i it i i ettt st sae e 57
Figure 7-8: Data access layer class diagram .ic......cciiiiii ittt 58
Figure 7-9: VisualHERMES data flow diagram ...iciie i i ittt 58
TN ol L0 L DY = I o] o1V T =T USSP 59
Figure 7-11: Disconnected DB access archit@Ctureccciuoiviiiiieec e e 60
Figure 7-12: VisualHERMES query screencco.....

Figure 7-13: VisualHERMES logon screen....................

Figure 7-14: HERMES intersection operation
Figure 7-15: Dataset COMPIreSSION FAtiOS........iiriveiuiiiiuierieeeiniiiiieeeeeseseiireeeeessssibareeeeesessssareeeeesssesssnseeeees
Figure 8-1: Trajectory Web iNterface ... vttt e e e e e rate e e e enees
Figure 8-2: TrajeCtOry SQL QUEIYuuuiuueiieeiureesiasiueeereteeeterereereereeeeeeereee...e.ee...e.e......................—.—...
FIGUre 8-3: TraJeCTONY GIMIL QUEBIY iuiiuiiiiiiieiesiuetineeeeererereterseeeeeereeeeeeeeeeeeeeere.....——.——.—....................—.—...
Figure 8-4: Trajectory reSUITS PAgE .. . it it iiiiieiie e ettt e e e e e e e e e srae e e e e e e s eeabbtaeeeeeeseaasstbeeeeessennnrannes
Figure 8-5: Trajectory GIMIL TESUILScciee ittt e e e e e e et e e e e e s e eaartb e e e e e e sennnnraeeeas
Figure 8-6: Trajectory KIMIL FESUILS.......iiiiuiiiiieeeiieeeesiee e ettt e sttt e e et e e s eaae e e s ateeeesataeessnsaeessnsaeeesnnseeeennsees
Figure 8-7: Trajectory VisUalized KIML datac.cccueeeeiiiiiiiiiee ettt e se e e e s e e e s e e eanee e enanes
Figure 8-8: Spatial Intersection web interface
Figure 8-9: Spatial Intersection SQL query
Figure 8-10: Spatial Intersection GML query...............
Figure 8-11: Spatial Intersection results page
Figure 8-12: Spatial Intersection GML results

Figure 8-13: Spatial INtersection KIMIL r@SUIES.........ueiieieiiiiciiee e cieeeeece e e e e e e eere e e s e e eneaeeeennes

Figure 8-14: Spatial Intersection visualized KIML data.........cccceevciieieiiiii i e 80
Figure 8-15: Temporal Intersection Web interface.........ccoeuver e 80
Figure 8-16: Temporal INtersection SQL QUEIYceeciiiriieiieeeiireeeesieeeeeereeeseteeesssreeessaseeessnseeeessseeessnsees 81
Figure 8-17: Temporal INtersection GIML QUEIYuuiiiiieei ettt ettt e e et e e e e e e eaaare e e e e e s e nnraeees 81
Figure 8-18: Temporal INntersection resultS PAZEcccuveiieiiieicieee et et e e e e anraee s 81
Figure 8-19: Temporal Intersection GIML reSUILS.........uviiiiiiiiiiiiiiiee e e e e e e e aaraee s 82
Figure 8-20: Temporal Intersection KIMIL FeSUILSuviiiiiiiiiiiiiiiee ettt et e e e e 82

Trajectory Data Visualization: The VisualHERMES Tool vii

loannis S. Gkoutsidis MSc Thesis

Figure 8-21:
Figure 8-22:
Figure 8-23:
Figure 8-24:
Figure 8-25:
Figure 8-26:
Figure 8-27:
Figure 8-28:
Figure 8-29:
Figure 8-30:
Figure 8-31:
Figure 8-32:
Figure 8-33:
Figure 8-34:
Figure 8-35:
Figure 8-36:

Temporal Intersection visualized KIML dataccccoveerieiiiieiieniiieieeee e 83
Average Speed Web INTEITACEuii i e e e e are e e 83
AVETagE SPEEU SQL QUETY .oouvviiiiieiiieeiie ettt estte ettt siteebe e s sitesbeesssaessbeeesase s beeesaeesbaesnseesnses 84
AVErage SPEEA GIVIL QUETYvvieeeeiieeecitiee ettt e eeieeeestteeeesttaeeesseaeesssaeeessssesea et baessneeeeansseeeanns 84
AVErage SPEEd rESUITS PAZE ..uvvieeiieeeiiiie e ettt e eere e e st e e e st e e e e ate e e setseee e st bbaseeneaesaenesseastaneeanns 84
AVErage SPEEA GIMIL FESUILS ...eiueiiiiieiiiieiteetet ettt et sbe e sae e b s s 85
AVErage SPEE KIVIL FESUILScoueiiiieiiieeiteeiet ettt ettt e S seee e be e s be et e e 85
Average Speed visualized KIML data.......cocueeieiiiieiiiieiiceiie et e 86
Manual build Of SOL QUETYciiiiiiiieiieee ettt e s e ot e e e nane e san e 86
Uploading @ GIML QUETY filE.....ueiieiiee ettt et e eeae o e s iar e e s eaeaeesenaa s s sansean s 87
COMPIEX SQL QUETY eveeiiieiieeeieeeiteeteeeite st siee st e e satesbaesbas s asbeesas e ebeeesbestbeeesabaedareessseenseeas 88
(00T 3] o1 L=0 QL €1/ | e LU =Y o S S SR S SE 88
GML QUETY file FESUILS PABE. e teiiiieiiie ettt e e e St et e e nneeas 89
ComMPIEX QUETY GIMIL FESUILS ...vvieeiiiiieeeiiee ettt s e et e e e st e ssaeae s s e sbne e e snaa e e aeeeesnaneeeas 89
ComMPIeX QUETY KIVIL FESUIES..c..veiieieitieeiie ettt it et s b e de s Srb e e sadeseat e e sabeesha s e nmneesneeesaneenneeas 90
GML query file visualized KIML datacoooeiiiiiioiiiiiec sttt s st 90

Trajectory Data Visualization: The VisualHERMES Tool viii

loannis S. Gkoutsidis MSc Thesis

List of Tables

Table 4-1: BasiC EOMELIIC PrOPEITIESuuiiiiiiieeeiitteeiitee e rtee e ettt e s ette e e st e e s sabeeeesabeeessaesaess b easennaeeesnanes 28
Table 7-1: Trajectories as busSiNeSSs OBJECEScoouiiiiiiiii et b s 68
Table 7-2: Dataset SizeS COMPATISON ..cc.uiiiiiiiieeeiiite ettt stee e ettt e s sate e e st e e s sbaeeesaseeesakae s ansnseeesasbareesnsisen 71

Trajectory Data Visualization: The VisualHERMES Tool

loannis S. Gkoutsidis

Abbreviations

ADO:
API:
ASP:
BLL:
BO:
CML:
CSS:
DAL:
DB:
DBMS:
DLL:
DM:
DSSL:
DTD:
EPSG:
GIF:
GIS:
GML:
GUI:
HTML:
JPEG:
KML:
MO:
MOD:
MOT:
ODBC:
0OGC:
OGP:
OLE DB:

ORDBMS:

PDA:
PDF:
PGML:
PNG:
SDBMS:
SGML.:
SQL:
sRGB:
SRID:
STDBMS:
SVG:
VML:
W3C:

ActiveX Data Objects

Application Programming Interface
Active Server Pages

Business Logic Layer

Business Object

Chemical Markup Language

Cascading Style Sheets

Data Access Layer

DataBase

DataBase Management System

Dynamic Link Library

Data Mining

Document Style and Semantic Specification Language
Document Type Definition

European Petroleum Survey Group
Graphics Image Format

Geographic Information System
Geography Markup Language

Graphical User Interface

HyperText Markup Language

Joint Photographic Experts Group
Keyhole Markup Language

Moving Object

Moving Object Database

Moving Object Trajectory

Open DataBase Connectivity

Open Geospatial Consortium

Oil and Gas Producers (International Association)
Object Linking and Embedding DataBase
Object-Relational DataBase Management Systems
Personal Digital Assistant

Portable Document Format

Precision Graphics Markup Language
Portable Network Graphics

Spatial DataBase Management System
Standard Generalized Markup Language
Structured Query Language

standard Red Green Blue

Spatial Reference IDentifier
Spatio-Temporal DataBase Management Systems
Scalable Vector Graphics

Vector Markup Language

World Wide Web Consortium

Trajectory Data Visualization: The VisualHERMES Tool

MSc Thesis

loannis S. Gkoutsidis

WebCGM:

WGS:
WML:
XHTML:
XML:
XSL:
XSLT:

Web Compute Graphic Metafile

World Geodetic System

Wireless Markup Language

eXtensible HyperText Markup Language
eXtensible Markup Language

eXtensible Stylesheet Language

eXtensible Stylesheet Language Transformations

Trajectory Data Visualization: The VisualHERMES Tool

MSc Thesis

Xi

loannis S. Gkoutsidis MSc Thesis

1 Introduction

1.1 Background and motivation

Nowadays, mobile users are more than ever before. In addition, advances in modern Database
Management Systems (DBMS) have made it possible to store all kinds of information relating to various
sources of Moving Objects (MO). For example, using Global Positioning Systems (GPS) and mobile-
wireless communications it is possible to store information related to: the geographical position of a
moving object depending on time (Figure 1-1).

Wireless link

Database

Wireless link

Figure 1-1: Moving objects

At a second level, is a combination of such information from the perspective of the moving object,
creating the so-called Moving Object Trajectories (MOT). Of course, the process of producing trajectories
from a range of points depending on time requires custom software, which operates on top of a database
management system and is able to- model the required data structures supporting spatial and temporal
concepts (Figure 1-2).

[

L] n
o ! Trajectory {'
. b & H: |::> Reconstruction |::>
g J Module .‘J

Figure 1-2: Raw locations & reconstructed trajectories

The next stage is to feed the Moving Object Database (MOD) with all the information necessary to
facilitate the various functions of Data Mining (DM) and taking into account the geographical context, as
well as the various geographical levels, enabling export useful conclusions and ultimately knowledge in
this field of research (Figure 1-3).

It is'understandable that, mining knowledge is only one sector, in a wider field of research related to
spatial and temporal information of moving objects. Other fields in this area may include patterns
extraction, visualization of information etc.

A critical point for the operation of a system, which manages both trajectories of moving objects, and
acts as a source of such information to third parties, is the transfer of data. More specifically, the need for
interoperability at the level of migrant data to and from a Spatial Database Management System
(SDBMS) is imperative. Interoperability in this case refers to the possibility of such a system to send data
formatted into a self-described notation, which in turn is identifiable by each party.

Such an approach requires mediation, of custom software, which will aim to convert outbound, from
the database management system, data in a commonly acceptable format such as eXtensible Markup
Language — XML (Bray, et al., 2006). In addition, all incoming data are urged to comply on the basis of a

Trajectory Data Visualization: The VisualHERMES Tool 1

loannis S. Gkoutsidis MSc Thesis

predefined schema, so as to obtain the acceptance by the database management system for further
processing. A competitive advantage arising from the use of XML standard is that because it is all about
spatial data management, a more specific description can be used, which is directly associated with
geographic concepts. This standard is Geography Markup Language — GML (OGC, 2004). With even the
most recent additions to 3.1.1 version of GML, it is possible to model both . spatial and temporal
characteristics, as well as handle moving objects, through their respective extensions.

frajectory data analyst location data producers
i~
< . 7 : '
T Location data (x, y, t)
‘\m I are recorded
e~

Analysis

over

regate j
s || Teiectory reconsiution
performed Data Cube module
(OLAP)

Aggregates are loaded in the
data cube (ETL procedure)

Reconstructed trajectory
data are stored in MOD

Figure 1-3: Moving Object Databases architecture (Marketos, et al., 2008)

The introduction of mechanisms for formatting data (wrapping) certainly is not limited to the use of
XML and GML standards. It is possible to model data on other known and commonly accepted standards,
such as that of Keyhole Markup Language — KML (Google, 2008), which bears several similarities with
that of GML, but also the implementation of custom standards representation, in accordance with their
respective needs.

The use of generally accepted standards based on XML, such as those of GML or KML, outside the
known benefits such as self-description, scalability, easy processing and handling, platform
independence, etc., has some disadvantages, which lie mainly in nature of the spatial and temporal data
and the way they are formatted. As with the XML format of data, it should be noted that GML documents
tend to be large in size, mainly because of the existing extensive hierarchy GML 3 has. This makes data
more difficult and complex to be processed, particularly when it comes to describe large volumes of data.
One solution to this issue could provide some method of compression (i.e. Deflate algorithm (Deutsch,
1996)), having a direct impact as increasing complexity of the system and processing times.

It is conceivable that the use of XML wrappers and/or parsers, who are involved in the process of
exchanging data to and from a database management system, is a fairly good solution to the issue in
interoperability, with the ultimate objective of creating a loosely-coupled system for this purpose.

1.2 Problem definition

HERMES (Pelekis, et al., 2006) is-a flexible computing framework, capable to support the design and
development of spatial and temporal databases. In addition, it provides the necessary infrastructure for
posing queries to a database with moving objects, whose location, shape and size vary over time.

This framework has been developed as an extension, which provides spatial and temporal capabilities to
the Oracle’s. object-relational database management system on version 10g (Oracle Corp., 2003). In
addition, it is designed in such a way that someone can use it either as a purely spatial or purely temporal
system, but its main contribution is to support management of continuously moving objects.

In the current version, HERMES serves as a repository for trajectory data, through which a user comes
to have a trajectory set for a moving object of interest in an object-relational form. In addition, the user
can execute a series of queries to gauge data (using spatio-temporal operators or not) and retrieve the
corresponding results. With its role as a repository of moving object trajectories, HERMES is used as a
main data source in a series of individual applications as well, serving specific purposes, for example data
loading software, data mining software, data visualization software, etc. (Figure 1-4). According to the

Trajectory Data Visualization: The VisualHERMES Tool 2

loannis S. Gkoutsidis MSc Thesis

current system’s implementation, it directly rises a need for formatting the data exchanged between the
repository and its various applications, using a commonly acceptable standard, with the ultimate objective
of creating a more flexible and expandable system.

Data Loading Data Mining Data Visualization
Software Software Software

Trajectory warehouse

HERMES

Movin
trajectory <= =

Object
data cube !

Database

Figure 1-4: HERMES-based Trajectory Data Warehouse

With the main objective of developing a more independent and flexible system, it is necessary to
achieve a higher level of processing both incoming data and outgoing results, with the use of GML
standard. Based on the latest version of this standard (3.1.1), we are not limited in representing statically
geographic concepts, but also moving objects. The proposal builds on the idea of implementing an
additional mechanism, which will be deployed between HERMES and each application (Figure 1-5) and
will be able to:

1. Provide a default GML standard, which will be used by the user for sending spatial and temporal
queries to the database management system; these queries will then be converted into SQL
queries, so that they can be further processed and

2. Receive SQL results before they are sent back to the user and transform them into GML-based
structures, giving thus to the end user a self-described set of results in relation to the query which
performed.

Data Loading
Software

Data Mining Data Visualization
Software Software

GML

Wrapper

SQL

Trajectory warehouse

HERMES
Moving

trajectory < Object

data cube Database

Figure 1-5: Wrapper extension on HERMES-based Trajectory Data Warehouse

Given that the GML standard is able to describe both spatial and non-spatial concepts, it becomes an
ideal solution for creating trajectories of moving objects (using LineStrings in its most basic form), and
also to accompany such data with other non-spatial information, which are necessary for describing each

Trajectory Data Visualization: The VisualHERMES Tool 3

loannis S. Gkoutsidis MSc Thesis

item. Furthermore, the fact that the GML standard is based on XML grammar for data formatting makes
possible the conversion of GML data in any XML-based visualization format, such as Vector Markup
Language - VML (Mathews, et al., 1998), KML etc. This process may be accomplished in either the
server’s domain or the client’s one. In this way, an immediate visualization of results returned from
HERMES is achieved, via third-party projection engines, as Microsoft Virtual Earth (Microsoft Virtual
Earth, 2008), Google Maps (Google Maps, 2008), Google Earth (Google Earth, 2008) etc.

1.3 Research objectives

The main objective of this thesis is to explore how accompanying representation technologies, such as
XML, GML and KML can be integrated into a unified wrapper, which will providle HERMES with this
ability to operate in a more interoperable fashion, while exchanging data. Another goal is to study the use
of GML-based queries meeting a predefined application schema.

Based in the objectives above, the following research questions have to be defined:

e How is GML data structured?

How can GML data be visualized?

How can XSLT be used to transform GML data into KML?

How is GML data converted into KML format?

How all the already mentioned technologies can be implemented in the nature of an interfering
mechanism between a spatio-temporal DBMS as HERMES and an end user?

e How this mechanism can be deployed in a client-server environment, such as the Internet?

1.4 Methodology

This thesis starts with a brief overview about the evolution of spatial databases and the accompanying
temporal extensions of them. Thereafter, relevant literature on XML and XML-based technologies such
as GML, KML and XSLT are reviewed. Finally, the design and implementation of a mechanism, in the
nature of a web application, capable to act as a wrapper between these two worlds is studied. As a proof
of evidence, a case study with real life spatio-temporal data are their capabilities to be represented in
different formats is accomplished.

Chapter 1 of this thesis describes the research background and motivation, problem definition,
research objective and issues, methodology and the thesis outline. In Chapter 2 we review MOD
concepts, their evolution and describe HERMES-MDC extension. Chapter 3 is mainly focused on XML
and related technologies. Geographic data representation in GML is described in Chapter 4. The 5™
chapter provides information on what KML is and how it can be used to visualize GML data. Chapter 6
examines what XSLT is and how to use it in transforming XML-based data (GML) to another
visualization XML-based format (KML). Chapter 7’s goal is to provide information about a prototype’s
design and implementation for transforming raw data into GML and then visualize them, using KML
transformations and projection engines. The material in Chapter 8 builds upon the overall system’s
understanding by covering the prototype’s querying methods and transformation results based upon a real
life dataset. Finally, in Chapter 9 this thesis conclusions and possible future work are presented.

Trajectory Data Visualization: The VisualHERMES Tool 4

loannis S. Gkoutsidis MSc Thesis

2 Moving Object Databases

2.1 Introduction

This chapter examines various moving object databases concepts. Conceptual definitions and evolution
information on spatial and spatio-temporal databases are provided. Finally, a brief description of
HERMES-MDC concludes the chapter.

2.2 Mobility scenarios

Any physical object’s existence brings naturally and automatically with it that, at any point in time, it is
located somewhere. In the dynamic world in which we live, space is a property that varies over time.
Space and time have become such indispensable elements of human beings’ daily life, that we almost
never think about them, and sense them while having difficulty in describing them.

In a rapidly evolving world, mobility is an important factor of people’s.life. The Internet, wireless
networks, positioning technology as well as personal devices such as PDAs and cell phones and their
related services are being advanced and improved day by day. Over the past few years, rapid advances in
miniaturization and personalization of electronic devices have taken place, which consequently have
resulted in major price reductions. Performance improvement of general computing technologies on the
other hand has made it possible to introduce services that previously were even impossible to think of.
The ultimate goal of all these advances is to satisfy the consumers’ rising expectations. This can be
achieved if information can be timely provided in the right place. In the coming years, delivering
appropriate timely (personalized) services based on the position of mobile consumers will become
increasingly important. Provision of such information will benefit the consumers in various ways, for
instance, in better awareness of their surroundings, in identifying potential problems and bottlenecks,
which in turn helps them to more efficiently and accurately plan to tackle them, in better management of
available resources and planning for possibly sharing them for efficiency reasons.

Despite some success in fulfilling consumers’ requirements, there is still a long way to go and new
serious challenges are ahead. One of these challenges is the lack of database support at present. This
stems from the fact that existing databases, which are one of the key elements in making more practical
and accurate information available, are at their best good in handling static situations, while the concept
of mobility brings up a new set-of requirements, dealing with dynamic situations.

The central issue in any mobility scenario is the object whose position continuously changes, i.e., the
moving object. Although the concept of moving object is rather new in the area of spatio-temporal
databases, the variety of applications that may benefit from it is enormous. Urban traffic, especially
commuter traffic, and rush hour analysis; fleet management and car theft protection; monitoring animal
migration; analysis-of shopping behavior (in a mall or city center); patient tracking in a hospital; location-
based services, such as tourist information, localized advertising, emergency services; these are just a few
examples to mention. The potential is simply enormous.

2.3 Capabilities of spatio-temporal databases

In a world facing information explosion, positioning technology is rapidly making its way into the
consumer market, not only through the already ubiquitous cell phone but soon also through small, on-
board devices in many means of transport and in types of portable equipment. It is thus to be expected
that all these devices will start to generate an unprecedented data stream of time-stamped positions for the
agents that carry them. This development does not depend on GPS technology alone: in-house tracking
technology applies various techniques for up-to-date positional awareness, and adaptable antenna arrays
can do accurate positioning on information obtained from calls by cell phones (Cooper, 2003).

Thanks to these advances in positioning technology, which makes data about moving objects easily
available, soon these objects have become one of the focuses of the spatio-temporal database community.
However, in spite of its simple looks, the moving object concept has become a practical challenge in
applications dealing with mobility, Internet technology, and Geographical Information Systems (GIS).

Trajectory Data Visualization: The VisualHERMES Tool 5

loannis S. Gkoutsidis MSc Thesis

Databases have not very well accommodated moving object data in the past, as their design paradigm
was always one of snapshot representation. Their present support for spatial time series is at best
rudimentary. Consequently, database support for moving object representation and computing has
become an active research domain; see for instance (Abdelguerfi, et al., 2002), (Zhu, et al., 2002),
(Guting, et al., 2000), (Saltenis, et al., 2000) and (Agarwal, et al., 2002).

Database management systems (DBMSs) have a potential foundation for moving object applications;
however, they are currently not used for this purpose and at the moment the aforementioned moving
object application domains lack database support. The reason is that moving object databases require a set
of critical functionalities to be integrated, and built on top of existing DBMSs (Wolfson, et al., 1999).

What is needed in current real-world spatio-temporal applications. is -a small, robust, and highly
expressive set of predicates, suitable for implementation based on off-the-shelf DBMS technology. The
query processing schemes for the predicates and the accompanying indexing schemes: should be
supported by the implementation (Vazirgiannis, et al., 2001). Over the years, various issues were
identified as a set of capabilities that should be provided by a DBMS to effectively and efficiently support
mobility and moving objects. Despite their individual nature, these required capabilities-are somehow
related and any improvement or problem in one will affect the rest.

Following is an enumeration of important challenges that current DBMSs are facing, concerning
moving objects:

1. Data modeling and representation

Data modeling aims at defining the data types, operations, and relations between them (Guting,
1994) to support application design. In other words, data modeling is the common name for the
design effort of structuring a database.

This process involves the identification of the kinds of data that will be stored in the
database, as well as the relationship among these data types (ITC Educational Textbook Series,
2001). The requirements of moving object modeling are not fully covered by current data
models. We illustrate this below.

Regarding data modeling, an important question is how to represent a moving object. The
efficiency of indexing and query processing methods is highly affected by the chosen method to
represent the continuous nature of the moving object. Since computer systems cannot easily
represent continuous phenomena, such phenomena must be approximated using finite structures.

The approximation methods should faithfully represent the object movement and provide a
basis for further analysis, especially because an inappropriate technique will increase the
uncertainty. The data model has direct effects on storage space, performance, and access time.
The data model defined for modeling continuously changing locations should be simple, though
expressive, and be easy to implement. The more expressive a model is, the closer to the real
world the application will be; and the more semantics will be captured. However, the more
expressive a data model, the more complex it may be (Tryfona, et al., 1997). Furthermore, since
the moving object field of research is young, there is room for new concepts and techniques.
Therefore, the data model should allow for possible extensions. On the other hand, the possibility
of designing new data models based on already existing ones should be investigated.

In addition, the moving object concept brings a new dimension to the definition of operations
defined in traditional data models. For instance, the traditional definition of distance between
two objects often concerns the Euclidean distance. However, distance in moving object scenario
is-a time dependent function, rather than a constant value. On the other hand, for network-
constrained moving objects the use of plain Euclidean distance is not advisable, since the
underlying network poses extra conditions on maneuverability of objects. This means that either
existing operations should be revised and adapted to accommodate the moving object concept or
new operations should be defined. In addition to the basic spatial and temporal data types and
operations, which are supported by traditional data models, extra spatio-temporal data types and
operations are needed. However, the question is what these extra data types and operations are,
to fully support moving objects. This is an important issue since more powerful data models are
the ones with more complete and expressive data types and operators and have the better strategy
to reach the closure under the defined operations set. Furthermore, there is the issue of
integrating such data types and operators with the DBMS. Data types can be integrated with the
DBMS in three different ways, which from tightest to loosest are as follows: integration of data

Trajectory Data Visualization: The VisualHERMES Tool 6

loannis S. Gkoutsidis MSc Thesis

types into the DBMS kernel, using a database extension, and implementing data types as a layer
on top of DBMS. The choice of integration method is a crucial one.

2. Query processing

Most existing query languages are non-temporal and limited to accessing a single database state
(Deng, et al., 2002). Traditional query languages such as SQL were not designed for querying
time-varying spatial aspects. Processing moving object data requires new sets- of spatial,
temporal, and spatio-temporal operators to be used in query processing. These new operators
should be applicable for any kind of object, i.e., those with free movements as well as movement
constrained objects. Movement of an object is either constrained by other objects or by the
medium via which it is travelling. The question is how to design a query system on top of an
existing query system to deal with the dynamic aspects of moving object data. Furthermore,
moving object applications often have to use different databases to answer queries. This means
that the query processing technique should account for delay, overhead, and inaccuracy
(Wolfson, 2002).

On the other hand, the mobility of objects leads to the invalidity of query answers, simply
because some or all of the spatial and temporal criteria that were true at the time of posing the
query will be violated very frequently. Therefore, the posed query should be reprocessed every
now and then. Therefore, the question of when and how often the query should be re-evaluated
arises.

3. Indexing

Moving object databases often have huge amounts of data. Therefore, examining the location of
each moving object in the database to answer queries results in high performance overhead.
Thus, the location attribute should be indexed.-However, straightforward use of spatial indexing
is not feasible due to the fact that continuous change of the locations implies that the spatial
index has to be continuously updated (Wolfson, et al., 1998). Constant updating of the indices is
not feasible if not impossible due to huge computing resources required (Jensen, et al., 2001).

Therefore, spatio-temporal indexing techniques are required. Previous work on indexing
spatio-temporal data concerns either past or present-and future data. However, most of these
approaches deal with spatial data changing discretely over time (Pfoser, et al., 2003). Therefore,
an important question is how to index the continuously changing moving object data with
sufficed performance and acceptable cost.

4. Uncertainty handling

The locations of moving objects are inherently imprecise (Pfoser, et al., 1999). This inherent
uncertainty has various complications for database modeling, querying and indexing. The more
accurate the record of moving objects, the better query results. However, this in turn may result
in poor query performance. Therefore, a moving object data model must properly represent
moving objects with reasonable degree of precision, which does not harm query performance
(Jensen, 2002). On the other hand, moving object applications may need query-imprecision
support, due to imprecision associated with other notions, (e.g., traffic jam) used in the query
definition (Wolfson, 2002). One of the main research questions in this direction is how to build
up new modeling and spatio-temporal capabilities needed for moving objects to handle the
inherently imprecise data and their related query analysis, considering the fact that lowering
uncertainty is costly.,

5. Data mining and prediction

One important database challenge is to find valuable information hiding in large amounts of data,
such as moving object data. Moving objects often have repeated patterns of movement, which
can be used-for planning and management purposes. The objects’ movement can have
periodically repeated patterns, e.g., animal migration patterns, commuters, shopping patterns, or
sudden patterns. Identifying both these patterns is the key for successful planning in the objects’
environment. On the other hand, this identification can be used for classification of objects and
consequently, providing appropriate services to objects, which share some profiles. However,
due to the multidimensional nature of moving object data and dependency of its data to other
objects as well as the underlying network conditions, if applicable, current data mining methods
used in databases are not suitable for moving objects (Jensen, 2002).

6. Keeping information up-to-date

Trajectory Data Visualization: The VisualHERMES Tool 7

loannis S. Gkoutsidis MSc Thesis

It is often assumed in existing databases that data does not change unless it is explicitly modified
(Wolfson, et al, 1998). However, in mobility scenarios the moving object’s location
continuously changes even if the database is not directly updated. Due to continuously changing
nature of moving object data, keeping such data up-to-date is a must. Continuous update of the
database is impractical since the location is updated very frequently. On the other hand, the
answer of queries may be outdated if data is not properly updated. Furthermore, assuming that
the moving objects themselves are responsible for transmitting location-oriented data updates via
wireless networks, frequent updating would also impose a serious bandwidth overhead (Wolfson,
et al.,, 1999). In addition, strategies are needed to handle possibility that a moving object
becomes disconnected and cannot send updates, which results in incomplete and inaccurate data
set. This will bring the attention to an important issue of how to deal with the trade-off between
the updating overhead and incomplete and inaccurate data set. One also should pay attention to
the fact that too few updates leads to information loss and too frequent updates gives rise to
storage and transmission issues. In short, due to continuously changing nature of moving object
data, keeping such data up-to-date is a must.

7. Efficient storage mechanism

Moving object applications have many objects to monitor, the. monitoring process may be
continuous, and the respective data acquisition rates may be high. Thus, an efficient storage
mechanism is required. On the other hand, since not all the acquired-data may be necessarily
informative, to avoid wasting storage space, some compression mechanisms should be utilized.

8. Visualization

Graphical visualization is a strong power in moving object applications. However, considering
the continuous change of the object data, there is a great concern on how query answer can be
visualized. Another question is what dimension to use for the visualization purpose. Considering
a 3D environment increases the moving object challenges in all aspects. Working in a 3D
environment is not only 3D visualization. Obviously it needs spatio-temporal analysis of the 3D
data types, which are not supported in the existing DBMSs. On the other hand, mobile
consumers want to see their graphic display updated-all the time, with local information.

2.4 Evolution of spatio-temporal models

For quite some time, members of the database community considered spatial databases and temporal
databases to be new trends. Many database scientists identified and solved related problems. Spatial
database research focused on modeling, querying, and integrating geometric and topological information
in databases. Temporal database research concentrated on modeling, querying, and recording the
evolution of facts under different notions of time and, thus, on extending the knowledge stored in
databases about the current and past states of the real world (Erwig, et al., 1997). Despite the many great
results achieved, the satisfaction of database community did not last long. It soon realized that in reality,
space and time are rarely, if at all, independent. Soon, new efforts were directed towards integrating both
concepts in one database. Both the spatial database community and the temporal database community
individually tried to extend their databases to support the missing concept. Integration of space and time
means dealing with time-varying geometries, which soon became the main focus of a new branch of
database, i.e:, the spatio-temporal database. Looking at history of spatio-temporal data models reveals
how this branch of databases has evolved (Pelekis, et al., 2004).

By December 1997, the first attempt to integrate space and time into a relational database was
reported by Tryfona & Hadzilacos. The modeling requirements of spatio-temporal applications at the
logical level of design were discussed and the essential elements of a spatio-temporal application and the
interconnections. among. them were represented. After identifying key features required for handling
spatio-temporal phenomena that are currently lacking in relational data models, they proposed an
extension of the relational data model, called the Spatio-Temporal Relational Model (STRM), providing a
small set of representation constructs (Tryfona, et al., 1997).

In 1999, Wolfson and his colleagues identified a set of functions that are needed to handle moving
objects and consequently they proposed a data model to support such capabilities. In their proposed
prototype, called DOMINO, they aimed at integrating these required functionalities in a layer on top of
existing DBMSs. They introduced a system architecture that consists of three levels. The first level is an
object-relational DBMS, which stores moving object data in a form of a sequence of time-stamped

Trajectory Data Visualization: The VisualHERMES Tool 8

loannis S. Gkoutsidis MSc Thesis

positions. The second level is a GIS that is responsible for storing, querying, and manipulating spatial
objects. The third layer, DOMINO, contains temporal predicates and offers support for inherent
uncertainty of moving object data (Wolfson, et al., 1999). A comprehensive approach to integrate these
supports in a commercial DBMS was also proposed (Wolfson, et al., 1998). Later, the data model was
modified to also support uncertainty of moving object data and deviation between a moving object’s
actual location and its location as stored in the database. In the new data model, which assumed
constrained movements on predefined networks, point objects were either mobile or stationary. If the
object is stationary, its location attribute is an (X, y) coordinate pair. However, if the object is mobile, its
location attribute has six sub-attributes, namely, the pointer to a line object representing the network
segment on which an object is moving, location and time at which the object started its movement, the
direction in which the object travelled, the (presumed constant) speed at which the object travelled, and,
finally, an uncertainty measure, which could have been either constant or a function of time, representing
the threshold of the location deviation. Another contribution of this'work was a probabilistic model and
an algorithm for query processing. In this model the location of a moving object is-a random variable. The
density function of this variable is determined using object location at any point in time-and uncertainty
derived from the database (Wolfson, et al., 1999).

Pelekis et. al. in 2002 presented an integrated and comprehensive design of spatio-temporal data types
in the form of an Oracle Data Cartridge (Oracle Corp., 2003). HERMES Moving Data Cartridge
(HERMES-MDC) (Pelekis, et al., 2006) and (Oracle Corp., 2003), integrates two other data cartridges,
namely the TAU temporal data cartridge and Oracle’s spatial data cartridge. It introduces time-
varying geometries that change their position and/or extent in space and time dimension, either
discretely or continuously. HERMES-MDC extends PL/SQL, the data definition and manipulation
language of Oraclel0g, with spatio-temporal semantics. The current thesis is based on HERMES-MDC
and makes extensible use of it.

2.5 Spatial change in Moving Object Databases

We have seen that many developments in spatio-temporal data models are aimed at supporting the
representation of spatial change over time. Two types of spatial change may be distinguished, namely
discrete change and continuous change. Cadastral applications are well-known examples of the former, in
which discrete changes are relatively easy to keep track of in a database. This can be achieved by
frequently updating the database and recording history (Guting, et al., 2000). However, with continuous
change, it is not feasible to constantly update the database for each such change.

The essence of spatio-temporal data models is to accommodate continuous change over time.
Although this phrase almost immediately brings the terms moving object and movement to mind, it was
only last years that researchers came up with formal definitions of both terms in context of spatial data
handling.

A moving object is an object whose position and/or extent changes over time (Erwig, et al., 1999).
The focus of this work is on moving point objects. Therefore, from now on whenever it is referred to a
moving object, a moving point object is considered, unless it is mentioned otherwise. Any change in
location will be viewed as movement. Simply speaking, movement is a mapping of time into space,
indicating location. at different points in time. The sequence of time-stamped locations visited by a
moving object, form that object’s trajectory. A trajectory is an ordered historic trace of locations of a
moving object that can be depicted (simplified) as a line, however, the temporal characteristics are
important semantic parameter in definition of trajectory. In fact, a trajectory represents the path taken by
an object together with the time instants at which the object was at every position along the path
(Vazirgiannis, et al., 2001).

In contrast to static objects, moving objects are difficult to represent in a database. Currently,
applications dealing with moving objects are being developed in an ad hoc fashion. Despite of all the
work on databases, situations in which the whereabouts of objects are constantly monitored and stored for
future analysis are an important class of problems that present-day database users will find hard to tackle
satisfactorily with their systems. The reason is that special functions needed by such applications are
currently lacking. Therefore, there is an essential set of functions that has to be integrated, and built on
top of existing DBMSs to support moving objects (Wolfson, et al., 1999). Such functions constitute a
wide domain ranging from data models, data structure and operations, indexing methods, query
processing techniques, and visualization methods that can handle continuous change in moving objects

Trajectory Data Visualization: The VisualHERMES Tool 9

loannis S. Gkoutsidis MSc Thesis

and their large amounts of data. Applications dealing with time-varying data can be classified in one of
the following categories (Tryfona, et al., 1997), based on the type of change they accommodate:

e Applications that are concerned with changes of non-spatial characteristics of objects, e.g., land
parcels in a cadastral information system,

e Applications in which the position of objects continuously changes, e.g., cars. moving in-a road
network and

e Applications with objects that integrate changes in the above case as well as changes in their
extent. This case mostly happens in environmental applications, e.g., monitoring water pollution
caused by oil spills.

While the first category deals with rather discrete phenomena, the other categories handle continuous
change. Since our focus is on continuous change of object positions, here a-fundamental issue arises,
namely the medium via which the objects are thought to travel. That medium may or may not impose
restrictions on movement. This results in at least three scenarios of object movement:

e Free movement in 2D or 3D space, e.g., animal migration,
e Restricted movement in 2D or 3D space, e.g., ships along coastlines and
e Restricted movement on 2D or 3D networks, e.g., car movements.

Obviously, there are scenarios, in which movements occur in combination, for instance, movements in
shopping malls. Although these can be seen on the one hand as free movements, since people can freely
move in space in any desired direction and any manner, on the other hand their movements are still
restricted to the corridors and spaces between shelves. Another important observation is that situations in
which objects are stationary are special cases of movement and should not be ignored. Stationary
situations may occur due to physical obstacles- (accidents, traffic), permanent constraints on the
movement (stops at traffic lights), or personal decisions (waiting for someone in a parked car).

2.6 Trajectory Representation

All points, which are traversed by a moving object, make up the trajectory of that object.

From users’ viewpoint, the concept of trajectory is rooted in the evolving position of some object
moving in some space during a given time interval. Thus, trajectory is by definition a spatio-temporal
concept. But while moving may be seen as a characteristic of some objects that differentiates them from
non-moving objects (i.e. buildings, roads etc.), the concept of moving object implies that its movement is
intended to fulfill a meaningful goal that requires moving from one place to another. Moving for
achieving a goal takes a finite amount of time (and covers some distance in space); therefore trajectories
are inherently defined by a time interval.. This time interval is delimited by the instant when the object
starts a movement (called begin) and the instant when the movement terminates (end). Identifying begin
and end within the whole time-frame where the object is moving is an application decision, i.e. a user-
driven specification. So, we can express the following definition, which formally defines a moving point
trajectory in a database perspective.

A trajectory is the-user defined record of the evolution of the position (perceived as a point) of an object
that is moving in space during a given time interval in order to achieve a given goal. (Damiani, et al.,
2007).

trajectory : [begin, end] - space

The definition above settles trajectories as semantic objects. The time space function is defined by the
user and is not necessarily the one provided by the data acquisition mechanism. The latter is the raw data,
whose form usually is as a sequence of (sample point/time) pairs (Figure 2-1). Raw data often needs to
undergo a cleaning process-to correct errors and approximations in data acquisition. In addition, the
application may be interested in only a subset of the cleaned sample points, e.g. skipping points acquired
during the night to only retain daylight movement or replacing a sequence of irrelevant (from the
application perspective) points with a single representative point (e.g. for representing stops as a single
point).

The original sense of the term trajectory denotes the changing position of an object in geographical
space, be it a 3D space (e.g. the trajectory of a plane) or a 2D space (e.g. the trajectory of a rolling ball in
a bowling game). We say a trajectory is spatio-temporal if spatial coordinates are used to express the
position of the traveling object. Most frequently, the moving object is geometrically represented as a point

Trajectory Data Visualization: The VisualHERMES Tool 10

loannis S. Gkoutsidis MSc Thesis

(e.g., a person, an animal, a car, a truck, a plane, a ship, a train). Yet the moving object may have a
surface or volume geometry (e.g. clouds, floods, air pollutions, oil spills, avalanches), in which case both
change in position and change in shape may concur to define the trajectory. In the current thesis we only
consider modeling spatio-temporal trajectories generated by objects represented as points.

A
t

o,

\/

Figure 2-1: Spatio-temporal path for ongoing moving objects as a set of points
A trajectory has two facets:

o The geometric facet: This is the spatio-temporal recording of the position of the moving point. It
is a delimited segment (i.e., a single continuous subset) of the spatio-temporal path covered by
the object’s position during the whole lifespan of the object. From the conceptual modeling
perspective, we can basically rely on the definition given above and represent the geometric facet
as a continuous function from a given time interval into a geographical space (the range of the
function): trajectory: [begin, end] — space.

However, the modeling structure should also include the sample points (and the interpolation
functions) that are used to discretely capture the trajectory function. The geometric facet could
be modeled using the moving point data type.

o The semantic facet: This is the information that conveys the application-oriented meaning of the
trajectory and its related characteristics.

2.7 Spatial Database Management Systems

In various fields, there is a need to manage data related to space. The space of interest can be,
for example, the 2-D abstraction -of (parts of) the earth's surface (i.e., geographic space, the most
prominent example). Other examples are a man-made space (e.g., the layout of a Very Large Scale
Integration - VLSI -‘design), a volume containing a model of the human brain, or another 3-D
space representing the arrangement of chains of protein molecules. At least since the advent of
relational database systems, there have been attempts to manage such data in database systems.
Characteristic - for the technology emerging to address these needs is the capability to deal with
large collections of relatively simple geometric objects, for example, a set of 100,000 polygons. This
is somewhat different from CAD databases (e.g., solid modeling) where geometric entities are composed
hierarchically into complex structures, although the issues are certainly related (Hilton, 2007). A
simplified architecture of current spatial databases is presented in Figure 2-2.

Oracle Spatial is one of the most powerful spatial DBMSs on the market. Oracle series began to
support spatial data in its-option Oracle Spatial since Oracle 8i. Partially compliant with Simple Features
Specification for SQL (Oracle Corp., 2003), Oracle Spatial supports several spatial types specified in
SFS. Oracle Spatial is considered partially compliant with OGC specifications but not completely
compliant because in Oracle Spatial there are no separate data types for point, linestring, polygon, etc.,
but there is uniform data type: SDO_GEOMETRY to represent all spatial data types. Beside spatial data
types, a large number of spatial functions are available in Oracle Spatial as well.

Unlike other spatial DBMSs in which different spatial types represent different geometries, there’s
only one spatial type: SDO_GEOMETRY. Before explaining the geometry types that can be represented
with SDO_GEOMETRY, the Entity Relationship diagram in Figure 2-3 would be helpful to understand
how SDO_GEOMETRY works.

Trajectory Data Visualization: The VisualHERMES Tool 11

loannis S. Gkoutsidis MSc Thesis

Applications

Visnalization

; Spatial DBMS
Spatial database extensions

Object-relational database server ‘

Spatial and non-
spatial data

Figure 2-2: Simplified architecture of spatial databases

Oracle enables users to define new data types (user-defined data types) which are made up of several
attributes. These attributes can be of basic data types such as numbers, varchar2, date, or other existing
user-defined data types. SDO_GEOMETRY is created as a user-defined data type. Several kinds of
geometries can be represented by setting attributes of SDO. GEOMETRY.

Oracle Spatial support a large number of operators and functions for spatial data types. Spatial
operators in Oracle Spatial provide optimum performance because they use the spatial index, which is an
R-tree (Guttman, 1984) organizing MBRs (Minimum Bounding. Rectangles) of geometry shapes, on
spatial columns. Spatial operators must be used in the- WHERE clause of a query. Spatial functions in
Oracle Spatial differ from spatial operators in that they do not require that a spatial index be defined, and
they do not use a spatial index if it is defined. These spatial functions can be used in the WHERE clause
or in a sub-query. Both spatial operators and spatial functions are included in the Spatial PL/SQL
Application Programming Interface (API).

There are several spatial DBMSs on the market, such as Ingres, Informix, PostGIS, and Oracle
Spatial. All of them have spatial data types and spatial functions, but the differences in their spatial
functionalities are significant, which can be revealed from the following comparison. Oracle Spatial is
also included in this comparison as a reference spatial DBMS:

e Informix (IBM, 2008), PostGIS (PostGIS, 2008) and Oracle Spatial (Oracle Corp., 2008) support
OGC specifications (OGC, 2008), whereas Ingres (Ingres, 2008) does not,

e The spatial types can only be 2D in Ingres, but they can be 3D or 4D (with measure values) in
other ones,

e Supported spatial types are different. Oracle Spatial supports most of the data types specified in
Simple- Features: Schema — SFS (OGC, 2008), and unknown geometry types can be stored;
PostGIS supports the same spatial data types as Oracle Spatial, but unknown geometries cannot
be stored; Informix does not have Multi-Geometry type, which is a collection of different basic
geometry types; Ingres does not support anyMulti- types, likeMultiPoint, MultiPolygon, etc. and

e Numbers of spatial functions are different. Oracle Spatial and PostGIS give more useful spatial
functions than Informix and Ingres.

2.8 Spatio-temporal Extensions

The concept for spatial data managing is in many cases solved by current DBMSs via the corresponding
off-the-shelf extensions. The same is not true as far as temporal, and more precisely spatio-temporal, data
are concerned.

Trajectory Data Visualization: The VisualHERMES Tool 12

loannis S. Gkoutsidis MSc Thesis

SDO_SRID

1 n
SDO_GEOMETRY SDO_COORDINATES COORDINATES

% n

SDO_POINT SDO_ELEM_INFO

-
-

SDO_INTERPR
COORDINATES ERATION

Figure 2-3: Entity-Relationship diagram for Oracle Spatial SDO- GEOMETRY (Kothuri, et al.,
2007)

The approach can be integrated into an Oracle ORDBMS using- database extender technology, which
provides a mapping between the API of the index and query structure, and the underlying database tables
and index structures. The need to provide RDBMS support for spatio-temporal data is a natural extension
of the stance taken for purely spatial or purely temporal database support.

2.8.1 HERMES-MDC

In this direction, Pelekis et. al presented HERMES (Pelekis, et al., 2006). HERMES is developed as a
system extension that provides spatio-temporal functionality to Oracle1l0g’s ORDBMS. The system is
designed in a way that it can be used either as a pure temporal or a pure spatial system, but its main
functionality is to support the modeling and querying of continuously moving objects. Such a collection
of data types and their corresponding operations are defined, developed and provided as an Oracle data
cartridge. HERMES Moving Data Cartridge (HERMES-MDC) is the core component of the HERMES
system architecture. HERMES-MDC provides the functionality to construct a set of moving, expanding
and/or shrinking geometries, as well as time-varying base types. Each one of these moving objects is
supplied with a set of methods that facilitate the cartridge user to query and analyze spatio-temporal data.
Embedding this functionality offered by HERMES-MDC in Oracle’s DML (Oracle Corp., 2008), one
obtains an expressive and easy to use query language for moving objects.

In order to implement such a framework in the form of a data cartridge they exploit a set of standard
data types together with the static spatial data types offered by the Spatial option of Oraclel0g (Oracle
Corp., 2008) and the temporal literal types introduced in a temporal data cartridge, called TAU Temporal
Literal Library Data Cartridge (TAU-TLL) (Pelekis, et al., 2006). Based on these temporal and spatial
object data types HERMES-MDC defines a series of moving object data types. The overall HERMES
architecture can be seen in Figure 2-4.

A straightforward utilization scenario for a HERMES-MDC user is to design and construct a
spatiotemporal object-relational database schema and build an application by transacting with this
database. In this case, where the underlying ORDBMS is Oracle10g, in order to specify the database
schema, the database designer writes scripts in the syntax of the Data Definition Language (DDL), which
is the PL/SQL, extended with the spatiotemporal operations previously mentioned.

To build an application on top of such a database for creating objects, querying data and manipulating
information, the application developer writes a source program in Java/C# wherein she can embed

Trajectory Data Visualization: The VisualHERMES Tool 13

loannis S. Gkoutsidis MSc Thesis

PL/SQOL scripts that invoke object constructors and methods from HERMES-MDC. The JDBC pre-
processor integrates the power of the programming language with the database functionality offered by
the extended PL/SQL and together with the ORDBMS Runtime Library generate the application’s
executable. By writing independent stored procedures that take advantage of HERMES functionality and
by compiling them with the PL/SOL Compiler, is another way to build a spatio-temporal application
(Pelekis, et al., 2006).

Application in
Java & PL/SQL

PL/SQL Script

JDBC
Preprocessor

Spatial
Cartridge

Source in Java

PL/SQL

Java Compiler Compiler

ORDBMS
(Oracle 10g)

‘

Application
Binary

Data Exchange

Stored
Executable |
Application Procedures
Binary
ORDBMS
Runtime
Library

System N System .
generated file Q {serifile Q component Library

Figure 2-4: HERMES system architecture (Pelekis, et al., 2006)

2.9 Conclusion

Geographical data glut modern DBMSs every day. It seems, moreover, the importance they have placed
in this field of supporting large vendors in their systems. Nevertheless, spatial, in conjunction with
temporal data is not yet supported directly by current DBMSs. Thus, custom extensions are being
developed, such as the HERMES-MDC.

Trajectory Data Visualization: The VisualHERMES Tool 14

loannis S. Gkoutsidis MSc Thesis

3 The eXtensible Markup Language (XML)

3.1 Introduction

This chapter presents Extensible Markup Language (XML), its advantages and the basics behind it. It also
describes the XML structure, and the relation with Document Type Definition, Schema and Document
Object Model which are common in any XML application.

3.2 Evolution of XML

Structured content in general needs to be represented if it is to be used for machine-based processing.
This means that there must be a formal and machine-readable way of representing document structures.
Basically, a markup language is a text-based way of mixing structural information-(the markup) and
content, and the rules for how this is done are defined by every language, or by a framework which
enables users to define their own structures.

The most prominent languages for defining own structures are presented, which are the Standard
Generalized Markup Language (SGML) and the Extensible Markup Language (XML). Even though these
languages are the most popular ones, there are also some non-markup- approaches to representing
structured documents.

The idea of structural markup (marking up content structures rather than layout information) was first
presented by William W. Tunnicliffe at a conference in 1967. GML extended Tunnicliffe’s general ideas
with a well-defined nesting scheme of document structures, and the idea of document types, which define
the allowed structures for a class of documents.

Interestingly, what later became known and successful as GML was called Text Description Language
first (as an internal name), and this still captures the essence of what markup languages are about:
describing a text’s contents on the structural level, making it possible to have different applications using
these descriptions for application-specific purposes.

Continuing the work on GML and joining forces with Tunnicliffe and Reid, the GML team moved on
to develop the Standard Generalized Markup Language — SGML (International Organization for
Standarization, 1986), which became the most important markup language and an important foundation
for many document processing environments, because it 'was a standard rather than a product. This meant
that using SGML, customers would not be bound to a specific software or vendor, and (at least
theoretically) it would be possible for everybody to implement an SGML system by simply implementing
the ISO standard.

However, even though SGML has had some problems with complexity and interoperability, it was the
single most successful format for structured documents, and big organizations started recognizing the
importance to store their documents in a well-defined and reusable way. For example, the U.S. Army
required contractors to submit their documentation in SGML, which made it reusable and independent
from any specific software or vendor.

When marking up document content, the question is what structural concepts do exist, and how can
they be combined. For example, if there are sections which consist of headings and paragraphs or lists,
would it also be allowed to use paragraphs within a list? These questions are addressed with SGML’s
concept of a Document Type Definition (DTD), a definition of a class of documents which adhere to a
well-defined set of rules. Using this concept, first a DTD is designed, and then instances (i.e., actual
documents) of this DTD can be created, which must adhere to the rules defined in the DTD. Seen this
way, SGML is not a markup language in itself, but a mechanism to define vocabularies for marked up
documents. This is shown in Figure 3-1, which also shows some of the more recent relatives of SGML.

In the beginning of the 90s, markup languages became the driving force of the globalization of the
Internet with the Hypertext Markup Language — HTML (Raggett, et al., 1999), the content language of
the World Wide Web (WWW). In its first versions, HTML was more inspired by SGML than being based
on it formally, but this was changed later and HTML became a document type of SGML, which in SGML
terminology is called an SGML application.

Trajectory Data Visualization: The VisualHERMES Tool 15

loannis S. Gkoutsidis MSc Thesis

HTML may not be perfect from the markup design point of view, but its simplicity makes it easy to
create. HTML’s balance of simplicity and expressive power obviously was a one of the major reasons of
the Web’s success, and even though many HTML creators today do not know anything about markup
languages and their concepts, they use an SGML-based markup language, as shown in Figure 3-1.

oo@
HTML (1990) XHTML (2000) 58§
+‘A Reformulation | $ 95
Hypertext Markup of HTML™ Extensible Hypertext ¥ 2 g
Language Markup Language & o]
§Ze
| | =332
S . 5= 3
: : .
= =
2% 2
<L 5 .
= ‘L &
= =] =
Y 283
4= =
SGML (1986) XML (1998) =50
“SGML on T =3
Standard Generalized ¢ the Web" Extensible Markup P 235
Markup Language Language 5 E Eu

Figure 3-1: Markup language concepts

Even though HTML is well-suited for marking up documents for Web publishing, it is much less
suited for marking up documents for general-purpose document processing. HTML basically is a rather
simple page description language for Web pages, and as such has many limitations, such as missing
support for paginated media, better layout control in general, or more detailed text structures apart from
the simple model of paragraphs and simple lists. In the 90s, the Web grew at an astonishing rate, and
there was a clear demand from content providers to have a better way of representing their content than
just HTML. In particular, the trend towards mobile computing made it clear that contents should be kept
in a device-independent way, and HTML would only be one way of publishing content (other possible
channels being formats for mobile devices, or formats for print-quality publication).

XML supports the main concept of SGML, the Document Type Definition — DTD (Raggett, et al.,
1999) which enables users to define their own classes of documents. However, XML leaves out many of
the features that were thought of as being of only limited use. In fact, even though XML is radically
simplistic in comparison to SGML, from today’s point of view probably some more features would
probably be left out, and a cleaner processing model would be defined.

However, even though XML may not have been the perfect markup language (in fact, it also is a
generic markup language because it is a mechanism for defining vocabularies and not a markup language
in itself), it has had a lot of success. Some of the reasons for this are political (it did not come from one of
the major vendors and as such is free of any operating system or programming language legacy), and
others are technical (the Internet needed a format for exchanging structured information). XML’s success
has been astonishing, and availability of a universally accepted format for exchanging structured
information often- vastly outweighs any minor concerns users might have with some details of the
language.

It is interesting to note that even though XML was designed and thought of as a document structuring
language (in the same way as SGML was intended for documents), the majority of XML users today are
using XML for exchanging data rather than documents. Data in this case is more general than documents,
in the sense that documents are a certain type of data characterized by properties such as instance
variability and semi-structured models, while data can be anything, but in practice often are just well-
defined structures such as tabular material for typical business-to-business applications exchanging
business data such as orders and invoices.

The last building block shown in Figure 3-1 is the Extensible Hypertext Markup Language (XHTML)
(Pemberton, 2002), which has been first defined in 2000 and revised in 2002. Because HTML is based on
SGML, and XML is supposed to be the foundation for all machine-readable data in the future, the W3C

Trajectory Data Visualization: The VisualHERMES Tool 16

loannis S. Gkoutsidis MSc Thesis

decided to create a new version of HTML. This new version is XHTML, and it is important to understand
that XHTML does not add new features to HTML,; it simply defines XHTML as being based on XML, so
that XHTML documents can be processed using normal XML tools. This way, XHTML fits nicely into
the overall picture of structured documents being XML documents, rather than using the older SGML
syntax of HTML, which is much harder to process.
e Paragraphs without Emphasis:
<phtml>
<p>This is the first paragraph.</p>
<p>This is the second paragraph.</p>
</phtml>
e Paragraphs with illegal Emphasis (not proper Markup):
<phtml>
<p>This is the first paragraph.</p>
<p>This is the second paragraph.</p>
</phtml>
e Paragraphs with Tree-like Emphasis:
<phtml>
<p>This is the first paragraph.</p>
<p>This is the second paragraph.</p>
</phtml>

3.3 The eXtensible Markup Language (XML)

The XML 1.0 specification describes XML as a simple dialect (or subset) of SGML with the goal to
enable generic SGML to be served, received, and processed on the Web in the way that is now possible
with HTML. For this reason, XML has been designed for ease of implementation, and for interoperability
with both SGML and HTML.

XML is a markup language, designed to structure, store and send information over the Web. It
provides no predefined tags, as-in the case of HTML, but provides standards so that the user can define
his own tags and document structure. Hence XML is free and extendible. Furthermore, as XML is in plain
text format, it provides a software and hardware independent way of sharing data. It enables data to be
accessed by all kind of reading machines or processors.

Since XML documents are in plain text and structured (encoded) with user defined tags, it does not do
anything without some kind of software. Therefore it has to follow some standards in encoding data to
enable decoding by some other programs. For this XML adheres to the standards specified by the XML
specification. At present, XML Specification 1.0 (Forth Edition) is the W3C’s implementation
recommendation. XML documents must follow standard rules including the syntax for marking up and
the meaning behind the markup. What a valid markup is defined by a Document Type Definition (DTD)
or alternatively by an XML Schema.

3.3.1 XML document structure

There are certain rules that have to be adopted while authoring XML documents and these can be
summarized as follows:

XML documents need a declaration at the top to signal what they are;

Every XML document must have a root element (tag) that encloses the content;

Every start tag must have a closing tag;

Tags must nest cleanly;

Empty tags have a different form to make it clear that these are tags with no closing tags;
All attribute values must be in quotation marks;

Tags are case sensitive and must match.

Trajectory Data Visualization: The VisualHERMES Tool 17

loannis S. Gkoutsidis MSc Thesis

The XML documents must be precise; those not complying with these rules cannot be processed by
the XML parsers embedded in browsers or standalone processors. An XML document that conforms to
these rules specified in XML specification, as determined by an XML parser is classified as well-formed.
An XML Parser is a software program that creates the Document Object Model in the computer memory
(Houldling, 2001).

An XML document mainly consists of two parts; prolog and body. The prolog contains the
declaration, and the body contains the actual marked up document. The content of both parts (whole
document) is composed of declarations, elements, comments, character references, and processing
instruction, all of which are indicated in the document by explicit markup (W3Schools; 2008).

An example XML document is given below:
<?xml version="1.0" encoding="utf-8" standalone="no" ?2>
<!DOCTYPE MScThesis SYSTEM "Document.dtd">
<!-- An XML Example -->
<document>
<title>VisualHERMES:Extending HERMES Interoperability</title>
<pub_date>2008-05-20</pub_date>
<production 1d="80" media="paper"/>
<chapter>
Introduction to XML
<para>Introduction</para>
<para>Evolution of XML</para>
<para>The eXtensible Markup Language (XML)</para>
</chapter>
<chapter>
XML syntax
<para>Elements must have a closing tag</para>
<para>Elements must be properly nest</para>
</chapter>
</document>

3.3.2 Declarations

The first line of an XML document is a declaration which notifies that the document has been marked up
as an XML document. The XML declaration itself is a processing instruction and therefore it begins with
<? and ends with-?>. The version attribute indicates the version of XML specification that the
document complies with and the standalone attribute specifies whether the document has any markup
declarations that are defined in a separate document. Thus, value yes implies no markup declarations in
external documents and no leaves the issue open. The document may or may not access external
documents. The encoding attribute denotes the character encoding system used in the document. The
DOCTYPE declaration (second line in the example) declares the name, type and location of the related
Document Type Definition (DTD).

3.3.3 Elements

Elements are the basic unit of XML content. An element consists of a start tag and end tag, and
everything in between. Anything between a < sign and a > sign is a tag except that is inside a comment or
a CDATA section. Relationships in XML elements are expressed in terms of parents and children. In the
given example document is the root element. Title, pub date, production, and chapter are
child elements of document element and thus it is the parent element. Title, pub date,
production, and chapter are siblings (or sister elements) because they have the same parent.

Trajectory Data Visualization: The VisualHERMES Tool 18

loannis S. Gkoutsidis MSc Thesis

Elements can have different content types such as elements that contains other elements like
document element, mixed that contains both text and other elements as chapter element, simple that
contains only text like para element in the example, or empty that contains no information like
production element. In case of empty elements no closing tag appears.

The name of an element cannot contain space and must not start with a number or. punctuation
character or with the word xm1. XML elements can have attributes in name/value pairs which provide
additional information about elements and the attribute values must always be enclosed in either single or
double quotes.

3.3.4 Comments

The comments are the character data in an XML document that XML processor ignores. The comments
follow the syntax of <!-- content -->. The content of the comment should not have - or --
characters that might confuse XML parser and also a comment should not be placed within a tag and
cannot be nested.

3.3.5 Character references

Character data includes any legal character except < which is reserved for the start of a tag. XML
provides a set of entity references that helps to avoid the ambiguity in specifying character data against
markup. In XML, >, <, &, ” and ’ characters can be substituted by >, &1t, &, ", and
&apos respectively. CDATA blocks in XML provides a convenience measure to include large blocks of
special character data. For example, a internal Cascading Style Sheet can be defined in CDATA block.
11> is not allowed within a CDATA block as it signals the end of a CDATA block.

3.3.6 Processing instructions

A processing instruction is a bit of information meant for the application using the XML document. That
is, they are not really of interest to the XML parser. Instead, the instructions are passed intact, straight to
the application using the parser. The application can then pass this on to another application or interpret
itself. All processing instructions follow the generic format of <?name of application
instruction is for Instructions?> and all processing instructions must be in lowercase.
For example, xm1 declaration is a processing instruction, which name is xm1.

3.4 Document Type Definition (DTD)

In XML the definition of a valid markup is handled by a Document Type Definition — DTD. It is a file (or
several files to be used together) with dtd extension, written in XML’s Declaration Syntax, which
contains a formal description of a particular type of document. DTD sets out what names can be used for
element types, where they may occur, and how they all fit together. For example the DTD of the above
XML document is as follows:

<!ELEMENT Document (Chapter+ | ANY)>
<!ELEMENT Title. (#PCDATA)>
<!ELEMENT Pub date ' (#PCDATA) >
<!ELEMENT “Production (EMPTY) >
<IMATTLIST.Production

id ‘NMTOKEN #REQUIRED

media CDATA #IMPLIED>
<!ELEMENT Chapter (Para+ | #PCDATA)>
<!ELEMENT Para (#PCDATA)>

In DTDs all keywords must be in uppercase, such as ELEMENT, ATTLIST, #REQUIRED etc.
However user defined elements and attributes can be in any case the user chooses, as long as they are
consistent. A DTD can be either included as part of a well-foormed XML document

Trajectory Data Visualization: The VisualHERMES Tool 19

loannis S. Gkoutsidis MSc Thesis

(standalone="yes"”), or it can be referenced from an external source, (standalone="no”). When
external DTD is referenced, the SYSTEM attribute whose value indicates the location of DTD has to be
added to the DOCTYPE declaration. Thus, in order to reference an external DTD, both xml and
DOCTYPE declarations have to be changed. An XML document that conforms to the rules.of a DTD is
called a valid document. A valid document is necessarily well-formed. When XML document is parsed
by a processor, the DTD is being firstly parsed and then read the document to identify where every
element type comes and how each relates to each other. Using a DTD when editing documents preserve
them consistent and valid (W3Schools, 2008).

3.5 XML schema

XML Schemas is a W3C Recommendation for defining the structure, content and semantics of XML
documents. It is an alternative to DTD written in Schema Definition Language, which is an XML
language for describing and constraining the content of XML documents. In general terms, an XML
Schema describes how data is marked up and these files are given with xsd extension. XML Schema
offers many advantages over DTD. One of the greatest advantages is the support for data types. Since
DTDs are designed for use with text, they have no mechanism for defining the content of elements in
terms of data types. Therefore a DTD cannot be used to specify numeric ranges or to define limitations or
checks on the data content. The XML Schema provides a means of specifying element content in terms of
data type, so that document type authors can provide criteria for validating the content of elements as well
as the markup itself. Some other strengths of a Schema are; they are written in XML thus avoids the need
for another processing software; supporting namespaces and extensibility to future additions (W3Schools,
2008).

XML Schema of the above example can be defined as below:
<?xml version="1.0" encoding="utf-8" 2>
<xsd:schema
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.unipi.gr"
xmlns="http://www.unipi.gr"
elementFormDefault="qualified">
<!-- An XML Schema Example -->
<xsd:element name="document" type="docType" />
<xsd:complexType name="docType'" mixed="true">
<xsd:sequence>
<xsd:element name="title™ type="xsd:string" />
<xsd:element name="pub date" type="xsd:date" />
<xsd:emement name="production" type="productionType" />
<xsd:complexType name="productionType">
<xsd:complexContent>
<xsd:restriction base="xsd:integer">
<xsd:attribute name="id" type="xsd:positivelnteger" />
<xsd:minInclusive value="0" />
<xsd:maxInclusive value="1000" />
</xsd:restriction>
</xsd:complexContent>
<xsd:attribute name="media" type="xsd:string" />
</xsd:complexType>
<xsd:element name="chapter" type="chapterType" />
<xsd:complexType name="chapterType" />

<xsd:sequence>

Trajectory Data Visualization: The VisualHERMES Tool 20

loannis S. Gkoutsidis MSc Thesis

<xsd:element name="para" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

The schema element is the root element of every XML Schema where xsd is-the namespace prefix.
The fragment xmlns:xsd="http://www.w3.0rg/2001/XML Schema" indicates that the
elements and data types used in the Schema come from the
"http://www.w3.0rg/2001/XMLSchema" namespace. The targetNamespace attribute
indicates that the elements defined by this schema are from "http://www.unipi.gr" namespace
and xmlns attribute gives the default namespace. The elementFromDefault= "qualified"
fragment indicates that any element used by the XML instance document which will declare in this
schema must be namespace qualified. All namespaces used in the schema must be declared in prolog and
all elements and data types must be defined in the body. An XML Schema document consists of four
basic constructs: declaration of elements, definition of types (simpleTypes and complexTypes), the
possibility to define sub-types by extending or restricting super-types, and use of aliases
(substitutionGroup mechanism).

3.5.1 Simple type

An XML element that contains only text (data in any type) is-a simple type element. It cannot contain any
other elements or attributes. But it can have a default value. or fixed value set. Simple element is defined
by <xsd:element name="name of element" type="data type"
default="default value" (or fixed="fixed value") />

Common data types in XML Schema are string, decimal, integer, boolean, date and time.
The type of a simple element is defined by <xsd:simpleType>.

3.5.2 Attributes

In Schema an attribute is always declared as a simple type and an element with attributes always has a
complex type definition. An attribute is defined by, <xsd:attribute name="attribute name"
type="data type"/>. Attributes also can have a default or a fixed value specified. Even
though all attributes are optional by default, with use attribute it can be explicitly specify whether it is
optional or required.

3.5.3 Restrictions and extensions

Defining a type for XML element or attribute imposes a restriction for the element or attribute content.
With XML Schemas, it is able to add own user restrictions to user XML elements and attributes. In the
example restriction has imposed on. id attribute. The id can have only integer values between 0 and
1000 (including that numbers). Likewise to limit the content of an XML element to a set of accepted
values, the enumeration constraint can be used. All restrictions that can be applied to data types are
given in XML Schema Specification. Moreover types can be defined by extending existing types.

3.5.4 Complex type

An XML element that contains elements, mixed content, empty content or attributes is considered to be a
complex type element. For example, document element is a complex one. Its type has been defined as
docType separately. The child elements of document element are surrounded by the
<xsd:sequence> indicator. Defining complex types separately offers more flexibility, because these
types can be used by other elements too.

Trajectory Data Visualization: The VisualHERMES Tool 21

loannis S. Gkoutsidis MSc Thesis

3.6 XML namespaces

Since XML uses no fixed element names, the same element name could be used in different documents to
describe different types of elements. If such XML documents are added together, there would be an
element name conflict. XML namespaces is a method to avoid these element name conflicts. It solves the
name conflicts using a prefix and the namespace attribute (xm1lns) alone with element name. The
namespace attribute is placed in the start tag of an element and all child elements with the same prefix are
associated with the same namespace. The W3C Namespace specification states that the namespace-itself
should be a Uniform Resource Identifier (URI) which is a string of character that identifies an Internet
Resource. The most common URI is the Uniform Resource Locator (URL) which defines-an Internet
domain address.

3.7 Document Object Model (DOM)

XML standards include specifications of how an XML document should be parsed and represented within
any computer irrespective of type or operating system. This internal representation (tree representation) of
an XML document, which is generated within a computer by an XML parser, is called the Document
Object Model — DOM (Le Hegaret, et al., 2004). DOM allows a single document to be accessed in the
same way by different applications running on different computer platforms through XML tag references.
In a software context, the DOM is a programming API (Application programming Interface) for an XML
document, which defines the logical structure of documents, and the way a document is accessed and
manipulated. It details the characteristic properties of each element of a document, thereby detailing how
these components can be manipulated and, in turn, manipulating the whole document. Therefore with the
DOM, programmers can create and build documents, navigate their structure, and add, modify, or delete
elements and content. As a W3C specification, one important objective for the DOM is to provide a
standard programming interface that can be used in a wide variety of environments and applications. The
DOM can be used with any programming ‘language and- provides precise, language-independent
interfaces.

3.8 Unicode system

In HTML, a document is in one particular language, whether English, Japanese or Arabic. Applications
that cannot read the characters of that language cannot do anything with the document. But XML uses the
Unicode standard, which is a character encoding system that supports intermingling of text in the world’s
major languages. Because of that, applications that read XML can properly deal with any combination of
these character sets. Thus XML will enable exchange of information in different languages. The character
set used in the XML document encoding is specified in xml declaration with encoding attribute. Since
XML is fully internationalized for both European and Asian languages, with all conforming processors
required to support the Unicode character sets in UTF-8, UTF-16 and ISO-8859-1.

3.9 Viewing XML documents

Since XML documents are text based, they can be viewed in any text editor. But they will not view any
hierarchical structure of the document elements. The browsers like Internet Explorer 5.0 (and higher),
Netscape 6 or any other XML editors like XMLSpy can be used to view XML documents. Any error in
an XML document will be reported by those browsers or editors. As mentioned above, since XML
elements - are user defined the browser has no idea how to display the content other than just viewing
whole document as it is. Therefore XML documents are associated with stylesheets which provides GUI
(Graphic User Interface) instruction for a processing application like a web browser. There are different
ways to visualize the content of an XML document using these stylesheets and they are presented in
Figure 3-2. In addition, JavaScript (or VBScript) can be used to import data from an XML document and
display them inside an HTML page. The use of eXtensible Stylesheet Language family — XSL (Adler, et
al., 2001) in XML data visualization will be discussed in the next chapters.

Trajectory Data Visualization: The VisualHERMES Tool 22

loannis S.

Gkoutsidis

MSc Thesis

XSLT Stylesheet

XSLT Processor

HTML/XHTML

Web Browser

A

CSS XML Document XSLT Processor XSL-FO
A
XML-enabled XSL Display XSL-FO
Web Browser Engine XSLT Stylesheef Formatter

Figure 3-2: Options for displaying XML documents

3.10Stylesheets

The stylesheets are the documents that provide information on-data presentation. The international
standard for stylesheet for SGML document is DSSL, the Document Style and Semantic Specification
Language. This provides Schema-like languages for stylesheets and document conversion, and is
implemented in the Jade formatter. Cascading Stylesheet provides a simple syntax for assigning styles to
elements, and has been partly implemented in some HTML browsers. Extensible Stylesheet Language has
been created for use specifically with XML. It uses XML syntax but combines formatting features from
both DSSL and CSS. The stylesheet of an XML document should be declared in the prolog section of the
XML document in the format of <?xml:stylesheet href="location of stylesheet"
type="text/xs1"?> in case of CSS the type="text/css”.

The separation of style from the content allows for the same data to be presented in different ways and
it enables:

e Reuse of fragments of data: the same content should look different in different contexts.

e Multiple output formats: different media (paper, online), different sizes (manuals, reports),
different classes of output devices (workstations, hand held devices)

e Styles tailored to the reader’s preferences (e.g. accessibility): print size, color, simplified layout
for audio readers.

e Standardized styles: corporate stylesheets can be applied to the content at any time.

e Freedom from style issues for content authors: technical writers need not be concerned with
layout issues because the correct style can be applied later.

A stylesheet specifies the presentation of XML content using two basic categories of techniques. One
is an optional transformation of the input document into another structure and the other is a description of
how to present the transformed information.

3.11 XML based markup languages

Due to the flexibility and robustness of XML technology, a number of markup languages have been
developed according to the. XML standards and some of them are: Chemical Markup Language — CML
(Murray-Rust, et al., 1995), a markup language to managing molecular information; Wireless Markup
Language — WML (Engelschall, et al., 2001), used to markup Internet applications for handheld devices
like mobile phones; MathML (Carlisle, et al., 2003), an XML application for describing mathematical
notation and capturing both its structure and content; XSL, a language for expressing stylesheets; GML,
for transport and storage. of geographic information; and KML to project this geographic information
using Google’s Maps/Earth API.

3.12Conclusion

XML is a simplification of SGML. It enables easy implementation, and interoperability with both SGML
and HTML. Any valid XML document must have a DTD or Schema that describes the structure. XML
separates data content from presentation information. Stylesheets provide presentation information for
XML documents and XML elements can be manipulated through the DOM. There are number of markup
languages developed in different domains based on XML standards.

Trajectory Data Visualization: The VisualHERMES Tool 23

loannis S. Gkoutsidis MSc Thesis

4 The Geography Markup Language (GML)

4.1 Introduction

This chapter is focused on Geographic Markup Language, and discusses the use of GML and how it can
be used to model geographic data. It also describes the possibilities of visualizing GML data. Through
that it explains the structure of GML data and how to visualize them.

4.2 Background and evolution of GML

Geographic Information Systems have proved to be an efficient tool for decision making for various
organizations dealing with geographic data. However, implementation of such a system is difficult and
relatively costly. High production cost and importance of geographic data in mapping has increased the
need of data sharing. Furthermore, geographic information is not confined to a specific system or an
application domain. It resides in heterogeneous environments in various application domains and systems.
When geographic data is shared between organizations dealing with different applications, there might be
a heterogeneity problem if the organizations use different GIS platforms, hence, producing different
digital formats of the data. Even if they have identical GIS platforms, and hence use the same database
paradigm, e.g., relational, they might have different conceptual database schema, different data collection
schemes, or different quality parameters (Bishr, 1997). In this scenario, information cannot be shared or
transferred readily. We need to have file conversions and in the latter case, there should be a perfect
mapping between the corresponding database schemas.

In the geographic domain, besides information sharing; there is a need of information integration.
Geographic data describes the geographic features and phenomena on the Earth, and events on the Earth
do not take place in isolation. For example, if an earthquake takes place, many objects like trees, roads,
buildings, agricultural fields, and water bodies might become affected. To perform earthquake analysis,
we need to have an integrated data set, which describes all the features affected.

Today, the Internet is the main platform for data sharing. The development of Internet has demanded
that our technologies be extensible and comprehensible (Lake, 2001). Thus, to share and integrate
geographic data in the Internet environment requires a standard data format, which is interoperable,
extensible and suitable for Internet Technology. OGC, whose mission is to address the lack of
interoperability between systems that process geo-spatial data, has established the XML-based standard,
known as GML: The Geographic Markup Language (GML) is an XML encoding for the transport and
storage of geographic information, including both the spatial and non-spatial properties of geographic
features (Cox, et al., 2004).

GML provides an XML-based encoding of geo-spatial data. It can be viewed as a basic application
framework for handling geographic information in an open and non-proprietary way. Like any XML
encoding, GML represents (geographic) information in the form of text, thus it can be readily intermixed
with a wide variety of data types including text, graphics, audio and more (Lake, 2001). GML documents,
like XML, are both human-readable and machine parsable. So, they are easier to understand and maintain
than proprietary binary formats.

Like XML, GML also separates content of geographic data from its presentation. GML mainly
describes the structure of geographic data without regard to how the data can be presented to a human
reader.. Since GML is based on'the XML standard, it can readily be styled into variety of presentation
formats including vector and raster graphics, text, and sound (Cox, et al., 2004). Graphical output such as
a map is one of the most common presentations of GML.

OGC initially developed GML 1.0 (May 2000), which was based on a combination of XML DTDs
and the Resource Description Framework (RDF). GML 2.0, which replaces GML 1.0, was developed and
adopted in March 2001 by OGC. It is entirely based on XML Schema (Thompson, et al., 2004). Adoption
of XML Schema in GML incorporates support for type inheritance, distributed schema integration, and
namespaces (Lake, 2001). Moreover, it provides a rich set of primitive data types such as string, boolean,
float, as well as construction of user-defined complex data types, data ranges and masks. GML 2.0 is
based on linear geometry, it does support coordinates to be specified in three dimensions, but it does not
provide direct support for three-dimensional geometric constructs.

Trajectory Data Visualization: The VisualHERMES Tool 24

loannis S. Gkoutsidis MSc Thesis

GML 3.1.1 (OGC, 2004) has been extended to represent geo-spatial phenomena in addition to simple
2D linear features, including features with complex, non-linear, 3D geometry, features with 2D topology,
features with temporal properties, dynamic features, coverage and observations. It also provides more
explicit support for properties of features and other objects, of which the value is complex. Moreover, it
represents spatial and temporal reference systems, units of measure and standards information.

4.3 GML features

GML is based on the geographic model developed by the OGC, which describes the world in terms of
geographic entities called features. This geographic model is based on the OGC Abstract Specification, 4
which defines a geographic feature as an abstraction of a real world phenomenon, it is a _geographic
feature if it is associated with a location relative to the Earth (Cox, et al., 2004).

Thus, real world phenomena are represented digitally as a set of features. The state of a feature is
defined by a set of properties, where each property has a name, value and type descriptions. Geographic
features are those features whose properties may be geometry-valued. Properties of a feature may be
simple properties or geometric properties. Properties with simple-types. (e.g., integer, string, float,
boolean) are collectively known as simple properties and the properties that are geometry-valued, are
known as geometric properties.

A feature can have multiple simple properties as well as multiple geometric properties. A feature can
be composed of other features. Such a feature is termed as a feature collection. A feature collection has a
feature type and thus may have its own distinct properties, in addition to the features it contains. A single
feature like a city can be composed of other features like rivers, roads and colleges. So, a city can be
represented as a feature collection in GML where the individual features in the collection represent roads,
rivers and colleges.

4.3.1 Simple features

The GML 3.1.1 specification is concerned with the OGC ‘simple feature’ model. It is the simplified
version of a more general model described by the OGC Abstract Specification. There are two major
simplifications, which lead to the definition of simple features as:

e Features having either simple properties (integer, real string, boolean) or geometric properties
and

e Features whose geometries are assumed to be defined in a two-dimensional SRS, using linear
interpolation between coordinates.

The Abstract Feature Model for simple features is presented in Figure 4-1.

4.3.2 Geometry elements

In accordance with the OGC simple feature model, GML provides geometric elements corresponding to
the following geometry classes:

Point,
LineString,
LinearRing,
Polygon,
MultiPoint,
MultiLineString,
MultiPolygon,
MultiGeometry

In addition there are <coordinates>, <coord>, <pos> and <posList> elements for encoding
coordinates and <Box> element for defining extent.
Each geometry element is used to encode instances of the corresponding geometry class. Thus, a Point

element is used to encode an instance of the Point geometry class, and a Polygon element is used to
encode an instance of the Polygon geometry class and so on.

Trajectory Data Visualization: The VisualHERMES Tool 25

loannis S. Gkoutsidis MSc Thesis

Feature Collection

abstract
Feature Schema Project Schema
Feature Instances
abstract abstract
L Geometry Schema Attribute Schema — Lexical Semantics
Property Name/Value abstract Feature Type Names
Pair Property Names
Property Values
Spatial Reference Feature Type
System
~— Project Semantics
OGIS Geometry 2
Quality
Methods
PropertyName/ Reference
ValueType Pair Contact
[| Feature Collection
Identification
Corners

L—— Use Semantics Where? What?

Intended Use Who? When?

? ?

Symbology How? Why?

Figure 4-1: GML Abstract Feature Model (OGC, 2004)

The coordinates of any Geometry class instance (Point, Polygon) are encoded as a sequence of
<coord> elements, or as a single string contained within a <coordinates> element. Examples of the
use of <coord> and <coordinates> elements to encode coordinate information are shown below.

<Point srsName="http://www.openings.net/gml/srs/epsg.xml#4326">
<coord><X>37.3</X><¥>23.8</Y></coord>
</Point>
<Point srsName=http://www.openings.net/gml/srs/epsg.xml#4326">
<coordinates>37:3,23.8</coordinates>
</Point>
The Box element requires two coordinate tuples to define an extent. So, either a sequence of two
<coord> elements or a <coordinates> element with exactly two coordinate tuples can be used.
Since a Box cannot be contained by other geometry classes, the srsNameattribute must be
provided, which identifies the coordinate system. An example is shown below.
<Box srsName="http://www.openings.net/gml/srs/epsg.xml#4326">
<coord>
<X>0.0</%X>
<Y>0.0</Y>
</coord>
<coord>
XD D D% >
<Y >55 OIS
</coord>
</Box>
Each Point element consists of either a single <coord> element or a <coordinates> element
containing exactly one coordinate tuple. The srsName is optional because a Point element may be
contained within other elements that specify a reference system.
A LineString is a piece-wise linear path defined by a list of coordinates that are assumed to be
connected by straight line segments. At least two coordinate pairs are required to encode an instance of
the LineString class.

Trajectory Data Visualization: The VisualHERMES Tool 26

loannis S. Gkoutsidis MSc Thesis

Furthermore, there is the alternative of using a <posList> pair of tags, so as to define the
coordinates. The main difference between these two declaration types is that, with the later, there is no
need for the comma (,) separation.

<LineString srsName="http://www.openings.net/gml/srs/epsg.xml#4326">
<coordinates>0.0,0.0 10.0,15.0 65.0,75.0</coordinates>

</LineString>

<LineString srsName="http://www.openings.net/gml/srs/epsg.xml#4326">
<posList>0.0 0.0 10.0 15.0 65.0 75.0</poList>

</LineString>

A LinearRing is a closed, piece-wise linear path defined by a list of coordinates that are assumed to be
connected by straight line segments. In order to encode an instance of the LinearRing class, at least four
coordinate pairs are required and the last coordinate pair must coincide with the first coordinate pair so
that it forms a ring. LinearRing is used in construction of Polygons, so the srsName attribute is not
required here.

A Polygon is a connected surface of which the boundary is a set of LinearRings. The boundaries are
characterized as interior and exterior boundaries. A Polygon must have at most one exterior boundary and
zero or more internal boundaries. An example of a Polygon instance is given below.

<Polygon srsName="http://www.openings.net/gml/srs/epsg.xml#4326">
<outerBoundaryIs>
<LinearRing>
<coordinates>0.0,0.0 60.0,0.0-60.0,60.0 0.0,0.0</coordinates>
</LinearRing>
</outerBoundaryIs>
<innerBoundaryIs>
<LinearRing>
<coordinates>10.0,10.0 10.0,30.0 30.0,30.0 10.0,10.0</coordinates>
</LinearRing>
</innerBoundaryIs>
</Polygon>

A MultiPoint is a collection of Points; a MultilLineString is a collection LineStrings; a
MultiPolygon is a collection of Polygons; and a MultiGeometry is a collection of any arbitrary
geometry elements such as Points, LineStrings, Polygons and so on. Each of these collections uses an
appropriate membership property to contain other elements. An example of a MultiLineString
instance is shown below.

<MultiLineString srsName="http://www.openings.net/gml/srs/epsg.xml#4326">
<LineStringMember>
<LineString>
<coordinates>25.5,0.5 55.5,60.0</coordinates>
</LineString>
</LineStringMember>
<LineStringMember>
<Im.neS{ring>
<coordinates>54.0,10.5 72.6,40.5</coordinates>
</LineString>
</LineStringMember>
</MultilLineString>
Thus, GML provides eight geometry elements corresponding to their geometry classes. Among these
eight geometry elements, Point, Box, LineString, LinearRing and Polygon are primitive geometry
elements, and MultiPoint, MultiLineString, MultiPolygon and MultiGeometry are geometry collections.

If a feature has properties that are geometry-valued, then these properties are termed as geometric
properties. Geometry-valued properties describe position and shape of the feature. Since the OGC abstract
specification defines a small set of basic geometries, GML defines a set of geometric property elements to
associate these geometries with features.

There are three levels of naming geometry properties in GML: formal names that denote geometry
properties based on the type of geometry allowed as a property value, descriptive names provide aliases
or synonyms for the formal names, and application specific names chosen by user and defined in

Trajectory Data Visualization: The VisualHERMES Tool 27

loannis S. Gkoutsidis MSc Thesis

application schemas based on GML. The formal and descriptive names for the basic geometric properties
are listed in Table 4-1.

Formal Name Descriptive Name Geometry Type
boundedBy - Box
pointProperty location, position, centerOf Point
lineStringProperty centerLineOf, edgeOf LineString
polygonProperty extentOf, coverage Polygon
geometryProperty - any
multiPointProperty multiLocation, multiPosition, multiCenterOf - MultiPoint
multiLineStringProperty ~ multiCenterLineOf, multiEdgeOf MultiLineString
multiPolygonProperty multiExtentOf, multiCoverage MultiPolygon
multiGeometryProperty - MultiGeometry

Table 4-1: Basic geometric properties

4.3.3 Time elements

Recent advances in GML added the ability for describing a wide variety of features that are time
dependent from the motion of a person or vehicle, to the development of a hurricane and the impact zone
of an earthquake (Lu, et al., 2007). The description of time is handled by the temporal.xsd schema.

One way for representing temporal features in a GML document is by using the <TimePeriod>
complex type. This type consists of two distinct simple types <begin> and <end>. Date and time
information can be added inside these tags, following several prototyping methods (ISO 8601, CalDate,
URI Reference, Decimal value). For the purposes of the current thesis, the ISO 8601 format, has been
chosen, which can be seen in the following example.

<gml:TimePeriod>
<gml:begin>2001/02/09T16:32.53</gml :begin>
<gml:end>2001/02/09T16:33.23</gml:end>
</gml:TimePeriod>

According to ISO 8601 notation, every timestamp has to conform to the following format (Wolf, et

al., 1997):

{Year/Month/DayTHour:Minute.Second}

4.4 Core GML schemas

GML 3.1.1 defines three base schemas for encoding spatial information. These schemas provide the
building blocks for constructing GML application schemas. In other words, the base GML schemas
provide a meta-schema or set of foundation classes, from which an application schema can be
constructed.

The Feature schema defines the general feature-property model which describes both abstract and
concrete elements and types. It supports feature collection (as feature type) and includes common feature
properties such as fid (a feature identifier), name and description. The <include> element in the
Feature schema brings in the definitions and declarations contained in the Geometry schema for use in
defining feature types. The UML model of Abstract Feature schema is shown in Figure 4-1.

The GML Geometry schema includes the detailed geometry components that are type definitions for
abstract geometry elements, concrete (multi) point, line and polygon geometry elements, as well as
complex type definitions- for the underlying geometry types. The Geometry schema targets the gml
namespace. The <import> element in the Geometry schema brings in the definitions and declarations
contained in XLink schema. The UML model of Geometry schema is shown in Figure 4-2.

As W3C states, the XLink allow elements to be inserted into XML documents in order to create and
describe links between resources. It uses XML syntax to create structures that can describe links similar
to the simple unidirectional hyperlinks of HTML, as well as more sophisticated links. The XLink schema
in GML provides the XLink attributes to support linking functionality.

Trajectory Data Visualization: The VisualHERMES Tool 28

loannis S. Gkoutsidis MSc Thesis

Geometry SpatialReferenceSystem
Point Curve Surface GeometryCollection
T T
Polygon \ [‘
1. < _LineString MultiSurface MultiCurve MultiPoint
N O
1 1.
g
Line LinearRing MultiPolygon MultiLineString
O

Figure 4-2: GML Geometry Model (OGC, 2004)

4.5 Encoding geographic information with GML

Using the three base XML schemas described above, it is possible to encode a wide variety of geospatial
information such as; features with or without geometry, geometry, collection of features, and associations
between features. GML 3.1.1 specification explains how these encodings are performed.

A geographic feature in GML is a list of simple and geometric properties. The features are captured as
element names in GML and the feature class definition prescribes the named properties that a particular
feature type should have. GML follows some conventions in encoding these. Type definitions take the
corresponding class name and append the Type suffix. Type names are in mixed case with leading
capital (e.g. A Road feature is coded as <element name="Road" type="RoadType"/>, the
names of geometric properties and attributes-are in mixed case with leading lower case character (e.g.
pointProperty, familyName). The abstract elements’ name is in mixed case with leading
underscore (e.g. Feature, FeatureCollection).

4.6 GML application schemas

The three core XML Schemas (Feature Schema, Geometry Schema and XLink Schema) alone do not
provide a schema suitable for constraining data instances; rather, they provide base types and structures
which may be used by an application schema.

A GML application schema is an XML Schema document constructed with the components provided
by the base GML schemas. It declares the actual feature types and property types of interest for particular
domain, using components from GML in standard ways. Defining an application schema from
components in base GML schemas, benefits from standardized constructs and guaranteed to conform to
the OGC Feature Model.

Any GML application schema must adhere to the schema development rules described in GML 2.0
specification and must not change the name, definition, or data type of mandatory GML elements. But in
application schemas, the abstract type definitions can be freely extended or restricted. Furthermore an
application schema must target a namespace and that must not be gml namespace. And such an
application schema must be made available to anyone receiving data structured according to that schema.

Trajectory Data Visualization: The VisualHERMES Tool 29

loannis S. Gkoutsidis MSc Thesis

4.7 Structure of an application schema

As any other XML document, a GML application schema also consists of header (prolog) and body.

The header starts with a xml declaration which consists version and encoding attributes. The value of
encoding attribute indicates the Unicode character set used in encoding GML.

<?xml version="1.0" encoding="utf-8"?>

The <schema> open tag must contain the namespaces that are used for the schema definition. The
targetNamespace attribute defines the user namespace, and its value is a unique identifier for the
GML namespace. For an example:

<schema

targetNamespace="http://www.unipi.gr/gml"
xmlns:gml="http://www.unipi.gr/gml"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.0rg/1999/xlink"
xmlns="http://www.w3.0rg/2000/10/XMLSchema"
elementFormDefault="qualified"
version="1.0">
<annotation>

<appinfo>Village.xsd v1.0 </appinfo>

<documentation xsl:lang="en">

GML application schema for Topographic data

</documentation>

</annotation>

<!-- import constructs -from the GML Feature & Geometry schemas-->

<import
namespace="http://www.opengis.net/gml"
schemalLocation="feature.xsd" />
</schema>

The <annotation> element provides the information about the application schema and the
<import> element imports other schema definitions that are used in this schema. In this case the GML
feature schema definition (feature.xsd) is imported-and it includes geometry and xlinks schemas.
The schemaLocation attribute describes the location path of the importing schema.

The first <element> inthe application schema defines the root element and becomes the open tag of
the GML file. In schema definition, the root element is a substitutionGroup for the glm:
FeatureCollection and an extension based on gml:AbstractFeatureCollectionType
For example, if the topographic information of a village is modeled in GML, it may consist of road, river,
terrain, building, utility and boundary feature classes. The collection of these feature classes is the root
element and if it is named as VillageModel, it can be defined in the schema as follows.

<element
name="VillageModel"
type="gml:VillageModelType"
substitutionGroup="gml: FeatureCollection" />

<complexType name="VillageModelType">
<complexContent>
<extension base="gml:AbstractFeatureCollectionType">
<sequence>
<element name="dateCreated" type="date" />
</sequence>
</extension>
</complexContent>
</complexType>

There are some properties that are shared by many objects in a schema definition. Such shared
definitions are modeled with group definitions in XML Schema. For example, temporal and metadata
information will be related to every feature in the model. To inherit these properties in all features, a

Trajectory Data Visualization: The VisualHERMES Tool 30

loannis S. Gkoutsidis

complexType can be defined that refers to group definitions and all feature types have to be defined as

extensions of that type.

<group name="TemporalData">
<sequence>
<element name="begindate" type="string" />
<element name="enddate" type="string" />
</sequence>
</group>
<group name="MetaData">
<sequence>
<element name="source type" type="string" />
<element name="source description" type="string" />
<element name="accuracy" type="string" />
<element name="actuality" type="string" />
<element name="code num" type="integer" />

</sequence>
</group>
<complexType name="TopoDataType" abstract="true">
<complexContent>
<extension base="gml:AbstractFeatureType">
<sequence>
<element name="code.id" type="integer" />
<group ref="gml:TemporalData" />
<group ref="gml:MetaData" />
</sequence>
</extension>
</complexContent>
</complexType>

Features are the objects that are visible on the map. In the example below, building is a one feature
type and the collection of building features are represented by BuildingLayer type. All such feature
layers can be defined as ~a TopoDatalayerType which is an extension

gml :AbstractFeatureCollectionType.

<complexType name="TopoDatalayerType">
<complexContent>

<extension base="gml:AbstractFeatureCollectionType"

</complexContent>
</complexType>
<element
name="BuildingLayer"
type="TopoDatalayerType"
substitutionGroup="gml: FeatureCollection" />
<element
name="Building"
type="gml:BuildingType"
substitutionGroup="gml: Feature" />
<complexType name="BuildingType">
<complexContent>
<extention base="gml:TopoDataType">
<seguence>
<element name="type" type="string" />
<element name="function" type="string" />
<element name="height category" type="string" />
<element name="height" type="string" />
<element name="status" type="string" />
<element ref="gml:geometryProperty" />

<element name="heightlevel" type="integer" minOccurs="0"

<element name="name" type="string" minOccurs="0"
</sequence>

Trajectory Data Visualization: The VisualHERMES Tool

MSc Thesis

/>

/>

/>

loannis S. Gkoutsidis MSc Thesis

</extension>
</complexContent>
</complexType>
All other feature layers can also be defined in the same way.

A property of feature can have a predefined number of allowed values. When such a property is
string type, it is possible to make an enumeration type for those properties that lists allowed entries.
The function property of above building feature can be altered as follows:

<element name="function" type="functionType" />
<simpleType name="functionType">
<restriction base="string">
<enumeration value="Municipality" />
<enumeration value="Police office" />
<enumeration value="Post office" />
<enumeration value="Church" />
<enumeration value="Hospital" />
<enumeration value="Station" />
<enumeration value="Storage tank" />
<enumeration value="Other" />
</restriction>
</simpleType>

4.8 Structure of GML documents

Any GML document starts with the standard XML header in which the character encoding and xml
version are mentioned. Then the root element of the GML document is appeared with all namespace
definitions used in the GML document and schema location.-The <gml : boundedBy> element contains
the bounding box of all the features in the GML document. The srsName attribute in the <Box>
element indicates the spatial reference system where coordinates of features are based on. After the
bounding box of all feature collections, each data layer (feature collection) is described alone with related
bounding box elements. A GML document fragment based on the above application schema fragment is
given below.
<?xml version="1.0"+encoding="utf-8" standalone="no"?>
<!--File: Model .gml=->
<gml:VillageModel
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance"
xsi:schemalocation="http://www.unipi.gr/GMLModel.xsd">
<gml:dateCreated>May 2008</gml:dateCreated>
<gml:featureMember>
<gml :boundedBy>
<gml:Box>
<gml:coordinates>
190000,446000 193000,449000
</gml:coordinates>
</gml:Box>
</gml:boundedBy>
</gml: featureMember>
</gml:VillageModel>

4.9 Validation of GML documents

The correctness of a GML document has to be checked through validation. First the document must be
well formed (that is the document should comply with XML syntax). If it is well formed the next step is
to check if the GML document is valid according to its Schema definition. It can be performed with
packages like XMLSpy or custom applications using Java/.NET, implemented for this specific reason.

Trajectory Data Visualization: The VisualHERMES Tool 32

loannis S. Gkoutsidis MSc Thesis

4.10Viewing GML data

According to the principles of XML technology and GML development goals, GML should not contain
presentation data. As a consequence, GML data files do not contain styling information. But there are
ways to add styles to the GML features. One method is, when GML data is imported into GIS or other
CAD application, styles can be added through that software. Another method is developing a viewer that
can read GML data and generate cartographic view. The viewer software needs to have an interactive
module to change the graphical properties of the features. It is also possible to provide a separate
document that contains styling information along with GML data that viewer software can read both and
generates a graphical display. But still this kind of viewers is not commonly-available. There is another
possibility, which is transforming GML into another XML graphic format, KML and using an already
implemented API, the visualization concept is achieved. That is the main focus of this thesis:

4.11Conclusion

GML is an XML based standard for describing geographic data. GML 3.1.1 is the latest specification in
implementation level. GML models Geographic data as feature, and feature collections which are defined
in application schemas using the basic constructs provided core GML schemas.

A GML document that is based on such a schema is a valid XML document that can be processed by
any XML parser. GML provides no information about presentation and therefore data content has to be
converted into another graphical format.

Trajectory Data Visualization: The VisualHERMES Tool 33

loannis S. Gkoutsidis MSc Thesis

5 The Keyhole Markup Language (KML)

5.1 Introduction

Keyhole Markup Language is an XML geospatial data file format for presenting two- and three-
dimensional graphics. It has many advantages over other graphics formats. This chapter describes its
advantages, capabilities and suitability for viewing geographic data. It also examines the various flavors
of users’ applications, which are responsible for visualizing such information.

5.2 Visualization of geographic data

Geographic data provides information of man-made and natural features on earth’s surface such as roads,
hydrology, buildings, land cover, terrain relief, and boundaries etc. In the visualization, process these
features have to be graphically represented. The basic graphic. elements points, lines-and areas can be
used to create the visual designs irrespective of the medium on which it is displayed. Point elements
convey a sense of position and are the most fundamental of these three types. Lines are linear array of
points and exhibits direction as well as position. Area elements exhibit extent, direction, and position and
are two-dimensional array of points (Robinson, et al., 1995).

According to the Bertin’s introduction the shape, size, orientation, color (hue), value (tone) and
texture are the graphic variables that can be used to make one symbol different from another (de By, et
al., 2001).

In order to make the visualization more meaningful, one should identify and analyze the data to be
presented before to symbolize. Text is used in visualization to transfer the information that is not possible
to symbolize.

In this research the target presentation media is a Web browser and therefore the graphical format
used for the visualization must suit the Web as well as the data content (geographic data).

5.3 Evolution of KML

Most of the graphics on the Web consist of images represented as a sequence of colored pixels. GIF
(Graphics Interchange Format), JPEG (Joint Photographic Experts Group) and PNG (Portable Network
Graphics) are examples of bit-mapped graphic formats which are based on this principle. An alternative
approach for sending pixel values down the Web is sending instructions for drawing features like lines or
curves (vectors) and filling these shapes, which offers great advantages over pixel based formats.

By now, a number of vector formats are being used on the Web; e.g. Flash, Precision Graphics
Markup Language (PGML), Web Compute Graphic Metafile (WebCGM) and Portable Document Format
(PDF).

Their implementation through plug-ins and difficulty in integration with the rest of the Web,
prevented them of being used in all the places that natively supported raster graphics could be. Moreover,
no single format was widely and well supported by the tools for creating Web pages, and in general there

was a lack of cross-platform support and of accessibility and well internationalized solutions (Lilley,
2002).

Keyhole Inc., which was acquired by Google Inc. in 2004, developed a new standard format for vector
graphics, KML that matches the needs of content providers and browsers like.

5.4 Keyhole Markup Language (KML)

KML is an XML grammar and file format for modeling and storing geographic features such as points,
lines, images, and polygons for display in Google Earth, Google Maps, and Google Maps for mobile.
Google’s backing of KML makes it an important format for the exchange of geographic information.

Trajectory Data Visualization: The VisualHERMES Tool 34

loannis S. Gkoutsidis MSc Thesis

KML 2.0 specification was issued by Google Inc. in 2006 and as it describes, it allows for three main
types of graphic objects; vector graphic shapes (e.g. paths consisting of straight lines and curves), images
and text.

In KML, graphical objects can be grouped, styled, transformed and composites into previously
rendered objects. Furthermore, the feature set may include nested transformations, clipping paths, alpha
masks, filter effects, template objects and both procedural and declarative animation. KML drawings can
also be dynamic and interactive.

KML is a bridge between design and programming, because unlike traditional methods of creating
graphics, graphics in KML are created through an XML based programming language and consequently
integrates well with other W3C standards such as the DOM. KML is much-like a vector based graphics
program, with the exception of an associated graphical program interface. Instead, vector images are
created through text based commands that are formatted to comply with XML specifications.

KML offers many important advantages over other formats.

e Zoomable: Images can be magnified without sacrificing sharpness, detail of clarity.

o Text stays text: Text in KML images remains editable and searchable. There are no font
limitations and users will always see the image the same way it was created.

e Small file size: On average, KML files are smaller than other Web-graphic formats and are quick
to download.

e Display independence: Images are always crisp on screen and print out at the resolution of the
printer.

e Color control: KML offers a palette of 16 million colors, support for ICC color profiles, sSRGB,
gradients and masking.

e Interactivity and intelligence: Since KML is- XML based it offers high dynamic interactive
graphics far more sophisticated than bitmapped or even Flash images. Moreover KML images
can respond to user actions with highlighting, tool tips, special effects, audio, and animation.

e OGC standard: The KML 2.2 specification has- been- submitted to the Open Geospatial
Consortium to assure its status as an open standard for all geo-browsers. As of November 2007,
the OGC has a new KML 2.2 Standards Working Group. Comments were sought on the
proposed standard until January 4, 2008 and it became an industry standard on April 14, 2008.

e True XML based: Since KML is an XML grammar; it offers all the advantages of XML.
Interoperability, Internationalization (Unicode support), Wide tool support, Easy manipulations
through standard APIs such as DOM API.

e Easy transformation through XML Stylesheet Language Transformation (XSLT).

5.4.1 Creating KML files

KML documents can be hand-coded using any simple text editor or sophisticated XML editors like
TextPad, Vim, or XML-Spy. XML-Spy offers syntax highlighting, elements and attributes completion,
validation of KML content against the KML Schema. This method is feasible only for simple and small
documents.

Another alternative is to use a custom application which will be fed by geographic data and in turn, it will
produce the corresponding files. There are quite a lot applications accomplishing such tasks; to name a
few, Google Earth (Google Earth, 2008), Google My Maps (Google Maps, 2008), Map Builder
(Bidochko, et al., 2005) etc.

A more flexible, robust and advanced method of generating KML is through XSLT stylesheets. As
discussed in the previous chapter, XSLT is designed for XML document transformation. Since KML is
XML based, application of XSLT to generate KML from XML data is straightforward. This research
emphasizes on this approach for visualizing GML data.

5.5 KML features

An application, which wants to exploit the use of cartographic services of Google, must utilize the API
available from the vendor.

The Google Maps API is an interface, which was developed by the Google Company and allows us to
integrate Google maps on our Web pages using JavaScript. Can anyone with the facilities provided to

Trajectory Data Visualization: The VisualHERMES Tool 35

loannis S. Gkoutsidis MSc Thesis

design indicators over maps, or develop even more sophisticated applications. At present, however,
services provided by Google are only available for web pages and cannot be used by another application.
Not based on an open standard such as SOAP/XML, but uses JavaScript as mentioned above. For this
reason, the only way of integrating them are websites.

The advantage of using these services is that they are provided free of charge (at least for web sites
with a maximum number 50000 visits/day). The only thing that is needed to use these services is included
in the Google system to grant a password to the API of Google (API key). But if the services are rendered
free from Google should anyone who uses them not to make them available on the site of payment but
also free to visitors of his website. Below is a brief presentation of the characteristics of the services
provided by Google Maps API:

e GMap class: This is the basic class. An object of class GMap corresponds to a map on the page.
A user can create as many instances of this class as she wants (one for each map on page). When
creating a new snapshot map, we set an item on page which contains the map. The map then uses
size as the size of the item which includes unless we define it differently. The GMap class
provides methods for handling the center of the map and the level of zoom, and methods for
adding or removing various overlays (such as instances of class GMarker and GPolyline). In
addition, it provides methods that give us the possibility to open a “window information” which
contains various information on the map.

e Events: Usage of the event listeners can introduce dynamic elements to our application. An
object of this class provides a number of events (events) and our application’s implementation
can “listen” using static methods such as GEvent .addListener or GEvent.bind. So the
program can, for example displays a message depending on a user’s click on the map.

e The Info Window: Every map has a single “window information”, which displays HTML
content in a window above the map. The information window resembles a “bubble” in a book
comic. It consists of a region with the content of the information which becomes thinner aside
and become as an indicator showing at a-designated point on the map. If anyone has used the
Google Maps or Google Local, then chances are -to have seen a "window information” when
clicked on an icon (marker). Another feature of these windows is that nobody can display more
than one simultaneously in a given map but can move the window and change its contents if this
is desirable.

The basic formula for a window of information is openInfoWindow, which takes an entry
point and an HTML DOM element. The - window information appears in the text given point of
the map and displays the DOM e¢lement in the region comprising. OpenInfoWindowHtml
method is similar, but takes an HTML string as the second argument instead of a DOM element.
Similarly, openInfoWindowXslt gets one point, an XML DOM element and the URL of an
XSLT file. It then applies the XSLT transformation in XML to produce the contents of the
window. This method carries XSLT asynchronously if not already transferred from the browser
user.

Apart from the above, we can also display a window of information from an overlay for
example, an icon (marker). To do that we set a pixel offset between the fixed point and the text
of the window, as a third argument. The GMarker class includes openInfoWindow methods,
which handle the pixel offsets automatically based on the size and shape of the icon, and
therefore there is no need for the developer to worry about calculating offsets to its application.

e Opverlays: The overlays are objects on the map which is “associated” to geographical
coordinates, and so moved when the user moves the map or zoom to do this or when visibility is
changing the way (Google offers several ways to display a map for example satellite visibility,
road map etc). The Google Maps API includes two types of overlays, the markers are icons on
the map and polylines lines that are comprised of a number of points.

o Markers and Icons: The GMarker constructor takes as entering an icon and a point and
produces a small set of events such as the “click” event, which can then be manipulated
in our code. The most difficult part in creating a marker is the definition of the icon.
This is difficult because a large number of different images which compose a simple
icon in the Maps API. Nevertheless, if one wants a global icon can create a GMarker
without defining an icon.

Trajectory Data Visualization: The VisualHERMES Tool 36

loannis S. Gkoutsidis MSc Thesis

Icons are usually kind pins, with a tip that appears in the location specified by
GMarker constructor. Each icon has (at least) one picture on the scene and an image as
a shadow. There are more details about how it should be established icons and can be
found in the documentation of the Google Maps API (Google Maps API, 2004).

o Polylines: GPolyline constructor takes as a table entry points and creates a series of
segments that unite these points in turn given. They can also determine the color,
thickness and brightness of the line. The color should be in hexadecimal form as in
HTML. More details about the polylines can be found in the documentation of the
Google Maps API (Google Maps API, 2004).

e Controls: To use control over the map, such as removal or zoom or any other check, there is a
method addControl. The Maps API has incorporated the following checks we can use the
map:

o GLargeMapControl: A wide range of motion/zoom control used in Google Maps.

o GSmallMapControl: One less motion control/zoom used in Google Local.

o GSmallZoomControl: A small zoom control used in Google Maps to display
instructions guidance.

o GMapTypeControl: Check for enabling the user to change the various types of maps
(for example Map and Satellite).

e XML and RPC: The Google Maps API offers a “factory method” Xml1HttpRequest to create
objects that “work” in recent versions of Internet Explorer, Firefox, and Safari. It is also the
chance to take in parsing an XML document with a static method GXml . parse, which takes as
input a XML string. Please note only that the Google Maps API does not require the use of XML
or XmlHttpRequest to work together based solely on a “net” JavaScript/DHTML API.

5.6 KML document structure

Google Earth/Maps use KML as its external spatial and temporal data format. KML is XML-based and
has a schema. Using KML, organizations can import geospatial data into Google Earth/Maps and, for
instance, overlay it on top of the spatial data provided by Google. A sample KML code is presented. This
code places a tethered placemark in a predetermined location. As seen here, KML has a tag-based
structure, and Google Earth/Maps acts as a browser of KML files.

Besides an ability to situate placemarks, KML has capabilities to manipulate the following 2-
dimensional geometric shapes:

e Points: can be visually represented on the Earth's surface by either icons or labels, or both and
positioned at different altitudes.

e Lines: can be positioned at various altitudes similar to points. The support for polylines is
included.

e Polygons: can be created in Google Earth/Maps, in 2- or 3-D and can be of solid form or with
inner boundaries. As a result, complex 3-D shapes can be rendered at various altitudes.

The appearance of these geometric shapes can be manipulated using the following techniques:
defining coordinates, extruding to make 3-D shapes, and grouping into collections. Defining coordinates
technique is used by entering coordinates and an elevation above the seal level. Extruding works by
positioning an element at the specified position and then using the <extrude> tag. Grouping into
collection is done using <MultiGeometry> tag and is used for organization purposes.

In order to enhance the software package's displaying capabilities, image overlays are also supported.
Using this technique, it is possible, for example, to overlay a 3-D blueprint of a construction site over the
location site where the construction is planned to occur. Image overlays can be divided into two parts:
ground overlays and screen overlays. Ground overlays are images that are static with respect to the
Earth's surface whereas screen overlays are fixed to the computer screen and are independent of the
underlying geography.

Moreover, KML allows one to define one's own schema if the default schema does not satisfy all
needs. The schema requires the following elements:

e Parent element: a base KML schema for inheritance. Uses <parent> tag.

Trajectory Data Visualization: The VisualHERMES Tool 37

loannis S. Gkoutsidis

e Schema name: uses <name> tag.
e Field declarations: define individual elements.

The following example illustrates the concept of defining a new schema.

<Schema>
<name>States</name>
<parent>Placemark</parent>
<SimpleField>
<name>FIPS</name>
<type>wstring</type>
</SimpleField>
<SimpleField>
<name>STATE</name>
<type>wstring</type>
</SimpleField>
</Schema>

MSc Thesis

In this example two fields are declared: FIPS and STATE, both of type wstring (a UNICODE 16-
bit string). The schema itself inherits from Placemark element and is, therefore, capable of working

correctly with all the P1lacemark attributes.

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<Placemark>
<description>

Tethered to the ground by a customizable tail

</description>
<name>Tethethed placemark</name>
<LookAt>

<longitude>-122.0856375356631</longitude>
<latitude>37.42240551227282</latitude>

<range>305.8880792294568</range>
<tilt>46.72425699662645</tilt>
<heading>49.06133439171233</heading>
</LookAt>
<visibility>0</visibility>
<Style>
<FcohStyle>
<Icomn>

<href>root://icons/palette-3.png</href>

</Icon>
</IconStyle>
</Style>
<Point>
<extrude>l</extrude>

<altitudeMode>relativeToGround</altitudeMode>

<coordinates>
-122.08562,37.42244,50
</coordinates>
</Point>
</Placemark>
</kml>

From the sample code above, we can sort out the core elements of which a KML document is

comprised.

The root element of a KML file is km/. This element is required. It follows the xml declaration at the
beginning of the file. The <kml> element may also include the namespace for any external XML

schemas that are referenced within the file.

Trajectory Data Visualization: The VisualHERMES Tool

38

loannis S. Gkoutsidis MSc Thesis

A Placemark is a Feature with associated Geometry. In Google Earth, a Placemark appears as a list
item in the Places panel. A Placemark with a Point has an icon associated with it that marks a point on the
Earth in the viewer.

The description element is user-supplied text that appears in the description balloon. It supports plain
text as well as a subset of HTML formatting elements, including tables.

In a similar manner, the name element is user-defined, text displayed in the viewer as the label for the
object.

The LookAt element defines a virtual camera that is associated with any element derived from Feature.
Its purpose is to position the camera in relation to the object that is being viewed. This element is
comprised of several other sub-elements; some of them are:

e Jongitude: Longitude of the point the camera is looking at. Angular distance in degrees, relative
to the Prime Meridian. Values west of the Meridian range from —180 to 0 degrees. Values east of
the Meridian range from 0 to 180 degrees.

e latitude: Latitude of the point the camera is looking at. Degrees north or south of the Equator (0
degrees). Values range from —90 degrees to 90 degrees.

e range: Distance in meters from the point specified by <longitude>, <latitude>, and
<altitude> to the <LookAt> position.

e tilt: Angle between the direction of the <LookAt> position and the normal to the surface of the
earth. Values range from 0 to 90 degrees. Values for <tilt> cannot be negative. A <tilt>
value of 0 degrees indicates viewing from directly above. A <tilt> value of 90 degrees
indicates viewing along the horizon.

e heading: Direction (azimuth) of the camera, in degrees. Default=0 (true North). Values range
from 0 to 360 degrees.

The visibility element is a boolean value, which specifies whether the feature is drawn in the viewer
when it is initially loaded. In order for a feature to be visible, the <visibility> tag of all its ancestors
must also be set to 1.

Style element defines an addressable style group that can be referenced by StyleMaps and Features.

Styles affect how Geometry is presented in the viewer and how Features appear in the Places panel of the
List view. Its sub-elements are:

e IconStyle: Specifies how icons for point Placemarks are drawn, both in the Places panel and in
the viewer of Google Earth/Maps.

e Jcon: Specifies the icon image

e /ref: An HTTP address or a local file specification used to load an icon.

Point elements represent geographic locations defined by longitude, latitude, and (optional) altitude.
When a Point is contained by a Placemark, the point itself determines the position of the Placemark's
name and icon. When a Point is extruded, it is connected to the ground with a line.

e extrude: Specifies whether to connect the point to the ground with a line.

e altitudeMode: Specifies how altitude components in the <coordinates> element are
interpreted. Possible values are (clampToGround, relativeToGround or absolute).

e coordinates. A single tuple consisting of floating point values for <longitude>,
<latitude>, and <altitude> (in that order). Longitude and latitude values are in degrees,
where

o —180 < longitude <180
o =90 <latitude < 90
o altitude values are in meters above the sea level

As a final note, it has to be mentioned that some of the elements above, have no effect as far as the
visualized data are concerned, in the case of Google Maps viewer. That happens because of the nature of
the two viewers. Google Earth is a desktop application, which at least has more exotic features. Google
Maps on the other hand, is a web application, so it has to be a more light-weight program running over a
stateless web protocol (HTTP), in a simple web browser without any plug-ins that is without some
features experienced in similar desktop applications.

Trajectory Data Visualization: The VisualHERMES Tool 39

loannis S. Gkoutsidis MSc Thesis

5.7 Viewing KML data

Viewing a KML file requires some kind of a custom application. Google, as the main vendor of KML,
offers two different types of applications, which a user can use in order to get her data visualized. Google
Earth is a desktop application which comes with many features. On the other hand, Google Maps is a
Web service, offered by Google, with which a user can use only hers’ JavaScript-enabled web browser to
get the results. As a web application, Maps has less features in regard to its Earth brother.

5.7.1 Google Earth

Formerly known as Earth Viewer, Google Earth was developed by Keyhole, Inc., a company acquired by
Google in 2004. The product was renamed Google Earth in 2005 and is currently available for use on
personal computers running Microsoft Windows 2000, XP, or Vista; Mac OS X 10.3.9 and above; Linux
and FreeBSD. In addition to releasing an updated Keyhole based client, Google also added the imagery
from the Earth database to their web based mapping software (Figure 5-1).

" Google Lah Pro [R5

Fie Foe Yew Tosh 434 Help

 Seaich W | % | g e

=2 a0

FrTe | Fred Busnesses | Drections

Fiy I

-L“",

View: Core -

= Prrmary Databang
o ¥ g Gesprastic Wet
=l rosds
ﬂ‘r.- Dhalsings.
a = | Borders and Lateln
0 Trame
L3 weainer

& Galery

Figure 5-1: Google Earth Ul

The viewer will show houses, the color of cars, and even the shadows of people and street signs. The
degree of resolution available is based somewhat on the points of interest, but most land (except for some
islands) is covered in at least 15 meters of resolution. Las Vegas, Nevada and Cambridge, Massachusetts
include examples of the highest resolution, at 15 cm (6 inches). Google Earth allows users to search for
addresses (for some countries only), enter coordinates, or simply use the mouse to browse to a location.

Google Earth also has digital elevation model (DEM) data collected by NASA’s Shuttle Radar
Topography Mission. This means one can view the Grand Canyon or Mount Everest in three dimensions,
instead of 2D like other map programs/sites. Since 2006, the 3D views of many mountains, including
Mount Everest, have been improved by the use of supplementary DEM data to fill the gaps in SRTM
coverage. In addition, Google has provided a layer allowing one to see 3D buildings for many major cities
in the US and Japan.

Many people using the applications are adding their own data and making them available through
various sources, such as BBS or blogs. Google Earth is able to show all kinds of images overlaid on the
surface of the earth and is also Web Map Service client. Google Earth supports managing three-

Trajectory Data Visualization: The VisualHERMES Tool 40

loannis S. Gkoutsidis MSc Thesis

dimensional geospatial data through KML. It is available in a free version, and in licensed versions for
commercial use.

Google Earth has the capability to show 3D buildings and structures (such as bridges), which consist
of users’ submissions using SketchUp, a 3D modeling program. In prior versions of Google Earth (before
Version 4), 3D buildings were limited to a few cities, and had poorer rendering with no textures.

Many buildings and structures from around the world now have detailed 3D structures; including (but
not limited to): U.S., Canada, India, Japan, United Kingdom, Germany, Pakistan, Amsterdam and
Alexandria. Three-dimensional renderings are available for certain buildings and structures-around the
world via Google’s 3D Warehouse and other websites.

Furthermore, Google Earth offers a time-slice bar, which is a very handy tool when a user has to
visualize moving objects information. With this tool in hand and a corresponding KML file as source, it is
possible to examine an object’s movement in a time range.

5.7.2 Google Maps

Google Maps is a map service that a user views in your web browser. Depending on user’s location, she
can view basic or custom maps and local business information, including business locations, contact
information, and driving directions. She can also view satellite image with or without map data of a
desired location that can be zoomed and panned (Figure 5-2).

GO' 1G] b femap goesgle.com/ |45 | x| Googte 2=
g G| Mawses Soogl | B - o= Bege = 3 Tgoh =
Driopac s Embag Bl Dwdlel Swieposic Gmal Evgoss ogoutsSEgmail.oom | To medsdh uoy | Bedfing | O Asvamaoues wey | Aedidon

dopt o, et Brinciges™ i v

M | Avoldenen avov yaprn | Elpson ceedones Aden obmoi
Amerehbapara Sl | | O Xegng

MNpooappéor o Xdprog Google ong

TROTUATEN ooy

» ANpeoUpyTIOTE METWToG REpTE] JE B
okl o0y Ko pepaTIEite PO pE Toug
pihoug me T iyl g0g) pE sy
wéempa WSBor nupoodiepg »

o NMpooBlart alkgbambparmmedy pipteg me
cpyakein mou SepeoepiBawey amd
b Wdifeng ngiogdngpa &

-

| depmowpyta viou xhpm | 3

u

s googhe.com/support his.d (3 @ Intemet | Probected Mcde On 0% -

Figure 5-2: Google Maps Ul

Google Maps'is a first class solution for displaying the contents of a KML file. The easiest way to do

so is to go to the Google Maps page and enter the URL of the KML file as though it were an address or
other search term. Such a query results in the following URL:
http://maps.google.com?g={kml-url}

For example, feeding the KML for the bookstore map back into Google Maps, we get the following:
http://maps.google.com/maps?g=http:%2F%2Fmaps.google.com%2Fmaps%2 =
Fms$3Ff%3Dg%260m%3D1%$261e%$3DUTF8%26msa%3D0%26output%3Dnl%26msids3'=
D116029721704976049577.0000011345e68993fc0e7

Trajectory Data Visualization: The VisualHERMES Tool 41

loannis S. Gkoutsidis MSc Thesis

Google Maps is an incredibly useful KML renderer. First, someone can test KML files without having
access to Google Earth. Second, a user can let others look at the content of KML files without requiring
them to have Google Earth installed. We should be aware, however, of two caveats in using Google Maps
to render KML:

e Google Maps does not implement KML in total; so don’t expect to replace Google Earth with
Google Maps for working with KML and

e Google Maps caches KML files that a user renders with it. That is, if we are using Google Maps
to test the KML that we are changing, be aware that Google Maps might not be reading the latest
version of our KML file.

5.7.3 Other viewing applications

The acceptance of KML specification for geographic information is so great, which led many other
companies, providing congener services, to adopt it as a secondary option. That is, Microsoft Virtual
Earth and Yahoo! Maps, offers the ability to their users, to view KML files using their services.

Furthermore, a developer can always create a custom web application, so to visualize hers KML
information, using the Google Maps API as a core component.

5.8 KML critique

KML is a powerful XML-type language used to extend the applicability and usefulness of Google
Earth/Maps package. However, its disadvantage stems from the fact that it is based on the rigid schema
that KML documents must conform to in order to work correctly in Google Earth/Maps. In addition, tag
names are ambiguous because of the inherent vagueness of a human language. Therefore, KML is ill-
suited to provide spatial data interoperability on the semantic level. M-Language, on the other hand,
solves the ambiguity problem and is well positioned to offer spatial data interoperability solutions for
disparate data sources.

5.9 Conclusion

KML is a really powerful technology for visualizing both spatial and temporal data in the Web. It is a
perfect tool for publishing geographic data in the form of maps. Its XML nature in conjunction with a
well developed API makes this kind of files really portable and easily to be processed. Finally, usage of
free web or desktop applications for viewing this information completes the overall image.

Trajectory Data Visualization: The VisualHERMES Tool 42

loannis S. Gkoutsidis MSc Thesis

6 The eXtensible Stylesheet Language
Transformations (XSLT)

6.1 Introduction

The main focus of this chapter is examining the ways of visualizing XML data and how Extensible
Stylesheet Transformations (XSLT) contributes in that process. At the same time it explains how XSLT is
used to transform GML data into Keyhole Markup Language (KML).

6.2 EXtensible Stylesheet Language (XSL)

Since XML does not use predefined tags or include formatting information, a generic XML processor that
reads an XML document has no idea what is meant by the document-and the form which is desired to
present it. Therefore, there must be an additional document that provides information on how to present
or otherwise process the XML, and that is XSL.

XSL is a specification being developed within W3C for applying formatting to XML documents in a
standard way. The specification defines that XSL is a language for expressing stylesheets. Stylesheets are
used to describe how the content of a given structured document should be presented; that is how the
source content should be styled, laid out, and paginated onto some presentation medium such as a
window in a Web browser or a hand-held device, or a set-of physical pages in a catalog, report, pamphlet
or book (Joshi, 2007).

The Extensible Stylesheet Language consists of three component languages which are described by
three W3C recommendations. These are XSL Transformation — XSLT (Clark, 1999), XSL Formatting
Objects - XSL-FO (Adler, et al., 2001), and XML Path Language — XPath (Clark, et al., 1999). The XSL
Transformation and XSL Formation Objects can function independently of each other (Adler, et al.,
2001).

6.2.1 XSL Transformation (XSLT)

XSLT is the most important part of the XSL Standards. It provides elements that define rules for how one
XML document is transformed-into another XML, HTML or text document. If the transformed document
is in XML, it may use the markup and DTD of the original document or it may use a completely different
set of elements. XSLT can add new elements into the output file, remove existing elements, rearrange and
sort elements, test and make decisions, and a lot more through appropriate stylesheets.

The transformation can be-performed in three primary ways. First, XML document and associated
stylesheet both can be served to the browser (formatter), which then transforms the document as specified
by the stylesheet. Otherwise a server can apply the XSLT stylesheet to the XML document and send the
transformed document to the user. And the other possibility is, an XSLT processor transforms the original
XML document into. specified format according to the stylesheet before the document is placed on the
server. Here both server and user only deal with the transformed document.

Each of these three approaches uses different software, although they all use the same XML document
and XSLT stylesheet. This thesis emphasizes on the third approach that is more suitable for achieving the
research objectives.

6.2.2 XSL Formatting Objects (XSL-FO)

The XSL-FO is an XML application that describes how pages will look when presented to a reader on
screen or paper. It describes a rendering vocabulary capturing the semantics of formatting information for
paginated presentation. An XSLT stylesheet can be used to transform XML document in semantic
vocabulary into a new XML document that uses the XSL-FO presentational vocabulary (Evjenet, 2007).

Trajectory Data Visualization: The VisualHERMES Tool 43

loannis S. Gkoutsidis MSc Thesis

6.2.3 XML Path Language (XPath)

XPath is a language for referencing specific parts of an XML document, essentially for cases where it is
needed to say exactly which of a document are to be transformed by XSLT. XPath is designed to be used
by both XSLT and XPointer which defines an addressing scheme for individual parts of an XML
document. XPath has an extensible string-based syntax that describes the location path between parts of a
document or documents using common path/file file system syntax.

6.3 Tree and nodes

A tree is a data structure composed of connected nodes beginning with a top node called the root.
Therefore every well-formed XML document is a tree. The root is connected to its child nodes, each of
which is connected to zero or more children of its own, and so forth. The most useful property of a tree is
that each node and its children also form a tree. Thus, a tree is a hierarchical structure of trees in which
each tree is built out of smaller trees. XSLT models an XML document as a tree that contains seven kinds
of nodes: The root, Elements, Text, Attributes, Namespaces, Processing instructions, and Comments. The
DTD and document type declaration are specifically not included in this tree (Evjenet,2007).

6.4 XSLT stylesheet

An XSLT stylesheet is basically a set of rules expressed in Extensible Stylesheet Language for
transforming XML documents. In case of data visualization, the role of XSLT stylesheet is to transform
the XML data content into a presentation format such as HTML/XHTML, KML, XSL-FO, text or any
other structured format. However, traditional stylesheets encode information about the appearance of text
and the layout of content. But in the context of GIS, XML data found in GML has to be presented in a
graphical format like Keyhole Markup Language which is an XML based language for describing 2D
graphics.

6.5 XSLT stylesheet structure and elements

An XSLT stylesheet consists of a set of rules called templates. A template contains a set of template rules
which has two parts; a pattern which is. matched against nodes in the source tree and a template which can
be instantiated to form part of the result tree. This allows a stylesheet to be applicable to a wide class of
documents that have similar source tree structures.

As any other XML documents, an XSLT stylesheet begins with an xml declaration. The next line is
either <xsl:stylesheet> element or <xsl:transform> element which are completely
synonymous defines the start of stylesheet and the root element and declares the document to be an XSLT
stylesheet. This element must have a version attribute to indicate the version of XSLT in which the
stylesheet is based. The XSLT namespace attribute is given by
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform (by convention xs1 prefix is used
to map the XSLT namespace). The elements that occur as a child of an <xs1l:stylesheet> element
are called top level elements. The basic structure of a stylesheet is as follows.

<?xml version="1.0" encoding="utf-8"2>

<Xslistylesheet
version="1.0
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<l-- Templates go here -->

</xsl:istylesheet>

6.5.1 Templates

Template rules defined by <xsl:template> elements are the most important part of an XSLT stylesheet.
Each <xsl:template> element contains rules to apply when a specified node is matched in source
document. These rules describe the contribution that the matched elements make to the output document.

Trajectory Data Visualization: The VisualHERMES Tool 44

loannis S. Gkoutsidis MSc Thesis

The rules may contain both texts that will appear literally in the output document and XSLT instructions
that copy from the input XML document to the result.

Following template works on gml:Point nodes in the input document and extract the content of
coordinates child node. It then creates a new <Point> element in output document with
coordinates’ contents. It uses another template to work on gm1 : Name node.

<xsl:template match="gml:Point">
<xsl:element name="Point">
<xsl:element name="coordinates">
<xsl:value-of select="." />
</xsl:element>
</xsl:element>
<xsl:apply-templates select="gml:name" />
</xsl:template>
The match attribute in <xs1:template> element specifies which node of the input document the
template is instantiated for. It can also be used to define a template for a whole xml document. (i.e.
match="/" defined the whole document). When the XSLT processor reads the input document, the root
is the first node it finds and then the rules match that root node are carried out.

To get beyond the root, <xsl:apply-template> element have to be used. By including this
element, the formatter is instructed to compare each child element of the matched source element against
the templates in the stylesheet, and if a match is found, output the template for the matched node. The
xsl:apply-template is supplied with select attribute to designate the children to be selected.

6.5.2 Matching nodes

The match attribute of the <xs1:template> element supports a complex syntax that allows to express
exactly which nodes are needed and which are not needed to match. The match patterns enable to match
nodes by element name, child elements, descendants, attributes, element id, comments, processing-
instruction, text, and or operator and, as well as by making simple tests on some of these items.

6.5.3 Selecting nodes

The select attribute is used in xsl:apply-templates, xsl:value-of, xsl:for-each,
xsl:copy-of, xsl:variable, xsl:param and xsl:sort to specify exactly which nodes are
operated on. The value of this attribute is an expression written in the XPath language. The XPath
language provides a means of identifying a particular element, group of elements, text fragment, or other
part of an XML document.

The expressions are a superset of the match patterns mentioned above. They are not limited to
specifying the children and descendants of the current node. XPath provides a number of axes that can be
used to select from different parts of the tree relatives to some particular node in the tree called context
node. In XSLT, the context node is normally initialized to the current node that the template matches,
though there are ways to change this. Figure 6-1demonstrates the axes provided by XPath.

6.5.4 Named templates

The <xsl:template> element can have a name attribute by which it can be explicitly invoked, even
when it isn’t applied directly. Such templates are called named templates. Named templates are used to
repeat a template rule inside other template rules and they enable to include data from the place where the
template is applied. The <xsl:call-template> element is used to call a named template and the
value of its name attribute provides the name of the named template.

6.5.5 Content of output

In an XML document transformation, it is often necessary to include new elements, attributes, processing
instructions, comments, etc. in the output document in order to conform to a desired output structure. For
instance, the output of an XSLT stylesheet designed to transform GML content into KML, should comply

Trajectory Data Visualization: The VisualHERMES Tool 45

loannis S. Gkoutsidis MSc Thesis

with KML specifications. This is accomplished with the corresponding xsl elements such as
xsl:element, xsl:attribute, xsl:processing-instruction, xsl:comment, and
xsl:text elements and attribute value templates.

“-.’-. ancestor-or-self

ancestor © RS .

i parent

preceding following
preceding- following-
sibling

........ sibling.....,

descendant

Figure 6-1: Axes provided by XPath (Sun Microsystems, 1994)

Attribute value templates copy data from the input document to attribute values in the output. The
<xsl:element> element inserts an element into the output document. The name of the inserting
element is given by the value of name attribute and the content by the content of the <xsl:element>
element. The <xsl:attribute> element defines an attribute name and value and inserts them to the
elements in output document. Therefore this must appears as a child of either an <xs1l:element> or a
literal element, before any other content in those elements. When the same group of attributes is applied
in many different elements, such as an attribute set can be defined as a top level element with
<xsl:attribute-set> and inserted wherever necessary with <xsl:use-attribute-sets>.
The <xsl:processing-instruction> element places a processing instruction in the output
document. The target of the processing instruction is specified by name attribute and the content of the
output <xsl:processing-instruction> element become the contents of the processing
instruction itself. The <xsl:comment> and <xsl:text> elements insert comments and text
respectively to output document.

6.5.6 Output methods

Most of the XSLT processors support three types of output methods XML, HTML and Text. The XSLT
processor behaves differently depending on which of these output methods stylesheet uses. The output

Trajectory Data Visualization: The VisualHERMES Tool 46

loannis S. Gkoutsidis MSc Thesis

method is defined by the top-level <xsl:output> element and it’s method attribute specifies the
output method which is xm1 by default. It also has a number of attributes that allow changing the prolog,
indenting, and CDATA sections in the output document as well.

The following four attributes in <xs1:output> element format the XML declaration in the output
document in case the output method is xml. The omit-xml-declaration attribute can have the
value yes or no and when the value is yes, no xml declaration is included in the output document. At
present, the default version of the XML declaration is 1.0 and it’s the only value allowed. The version
attribute of <xsl:output> element allows to change the version used in XML declaration accordingly
in the future. The encoding attribute sets the encoding system in output document and its value can be
any encoding name registered with the Internet Assigned Numbers “Authority. The. standalone
attribute can set the standalone attribute and the value yes or no in xml declaration of the output
document.

The XSLT provides no elements for building an internal DTD subset for the output document.
However, it provides two attributes of <xs1:output> element that can be used to-include.a DOCTYPE
declaration that points to an external DTD. These are doctype-system and doctype-public. The
first inserts a SYSTEM identifier for DTD and the second a PUBLIC identifier.

The indent attribute of <xs1 :output> element has two values yes and no. "When the attribute has
the value yes, then the processor is allowed to insert extra white space into the output to make the
document printable and more readable.

The standard XSLT does not allow inserting CDATA selections at arbitrary locations in XML
documents produced by XSL transformations. However it can be specified that the text content of a
particular element in input document to be placed as'a CDATA section in output document by placing the
name of the element whose text content should be wrapped in CDATA delimiters in the cdata-
section-elements attribute of the <xsl:output> element. For example <xsl:output
cdata-section-element="SCRIPT" /> says that the content of the SCRIPT element in input
document should be wrapped in a CDATA section in output document.

The attribute media-type of <xsl:output> element specifies the MIME media type of the output
document. Mostly this will have the value text /xsl, but could be text/html or text/plain for
the HTML or text output methods. This is important to the environment in which the XML document
exists, but not so to the XML document itself.

6.6 Combining stylesheets

XSLT provides two mechanisms to combine stylesheets; an inclusion mechanism that allows stylesheets
to be combined without changing the semantics of the stylesheets being combined and an import
mechanism that allows stylesheets to override each other.

6.6.1 Importing

The <xsl:import> clement is a top level element whose href attribute provides the URI of a
stylesheet to import. All <xsl:import> elements must appear before any other top-level element in
the <xsl:stylesheet> root element. Rules in the imported stylesheet may conflict with rules in the
importing stylesheet. If so, rules in the importing stylesheet take precedence.

6.6.2 Inclusion

The <xs1:include> is a top-level element that copies another stylesheet into the current stylesheet at
the point where it occurs. Its href attribute provides the URI of the stylesheet to include. Unlike in
above case, rules included by <xsl:include> elements have the same precedence in the including
stylesheet.

Trajectory Data Visualization: The VisualHERMES Tool 47

loannis S. Gkoutsidis MSc Thesis

6.7 Embedding stylesheets

An XSLT stylesheet can directly be embedded in the XML document it applies to. In such a case, the
<xsl:stylesheet> element must appear as a child of the XSLT document element, rather than a root
element itself and have an id attribute giving it a unique name. This id attribute would appear as the
value of href attribute in the xml-stylesheet processing instruction following the fragment
identifier separator # in the XML document.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xml" href="#mystyle™?>
<Root Element>
<xsl:stylesheet
version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
id="mystyle">
<xsl:template match="/">

<!-- Template content goes here =->
</xsl:template>
<!-- Other templates go here -->
<!-- Don’t display the style sheet itself or its descendants -->

<xsl:template match="xsl:stylesheet"/>
</xsl:stylesheet>
<!-- Rest of xml data elements go here —-->

</Root Element>

6.8 Creating an XSLT stylesheet

An XSLT stylesheet must be a well-formed XML document and should comply with XSLT specification,
which describes allowed syntax and vocabulary. The content of the stylesheet entirely depends on the
input document structure (Schema) and the required output structure. The following general steps in
XSLT stylesheet creation are based on the assumption that input is a GML document and output target is
KML.

1. XML declaration.
<?xml version="1.0" encoding="utf-8"?>

2. Root element of Stylesheet including version and namespace attributes (including all
namespaces found in input document).

<xsl:styliesheet
version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:gml="http://www.opengis.net/gml"
xmlns msxsl="urn:schemas-microsoft-com:xslt"
xmlns:rext="http://goutsidis.gr/extension"
exclude-result-prefixes="gml msxsl ext"

>

3. . Declaring top-level elements.

<xsl:output
method="xml"
version="1.0"
encoding="utf-8"
indent="yes"
media-type="application/vnd.google-earth.kml+xml"
/>

This stylesheet fragment outputs the following declarations in the output document.

<?xml version="1.0" encoding="utf-8"?>

Trajectory Data Visualization: The VisualHERMES Tool 48

loannis S. Gkoutsidis MSc Thesis

4. Template rule matching the root <gml:featureCollection> element of the input
document. This may include many computations required to determine attribute values for the
root element of the output document and other templates in the stylesheet.

<xsl:template match="/gml:featureCollection">
5. Create Root element and connected attributes in output document.

<xsl:element
name="kml"
namespace="http://earth.google.com/kml/2.2">
An example for the output of this stylesheet fragment is.

<kml xmlns="http://earth.google.com/kml/2.2">
6. Create Top-level elements in output document.
<xsl:element name="Document">
<xsl:element name="Folder">
<xsl:element name="name">
<xsl:text>VisualHermes</xsl:text>
</xsl:element>
<xsl:element name="Style">
<xsl:attribute name="id">
<xsl:text>blueline</xsl:text>
</xsl:attribute>
<xsl:element name="LineStyle'">
<xsl:element name="color">
<xslitext>fff£0000</xsl:text>
</xslietement>
<xsl:ielement name="width">
«xsIutext>3</xsltext>
</xsl:element>
</xsl:element>
</xsl:element>

It creates the following series of elements in the output document.

<Document>
<Folder>
<name>VisualHermes</name>
<Style . id="blueLine">
<LineStyle>
<color>fff£f0000</color>
<width>3</width>
</LineStyle>
</Style>
7. Apply all the available templates, according to the elements, that can be found, that is matching,
to the original document.
<xsl:apply-templates />
For example, the following template is applied if a <gml:Point> element is present in the
GML document.
<xsl:itemplate match="gml:Point">
<xslielement name="Point">
<xsl:element name="coordinates">
<xsl:value-of select="." />
</xsl:element>
</xsl:element>
</xsl:template>

The output of such a template will be as below.

<Point>
<coordinates>
23.86301,37.99958

Trajectory Data Visualization: The VisualHERMES Tool 49

loannis S. Gkoutsidis MSc Thesis

</coordinates>
</Point>

8. Close root element in output document.
</xsl:element>

9. Close Template rule matching root element of the input document.
</xsl:template>

For the current thesis’ needs, there are more templates implemented in the corresponding XSLT
instructions file. Furthermore, a series of custom C# functions had to be implemented, for the
transformations to be accomplished.

6.9 XSLT processors

In order to perform the transformations in an XSLT stylesheet, another software program called XSLT
processor has to be employed, because the source XML document and the stylesheet both are plain text
documents. XSLT processor takes as input an XML document and style sheet to convert the XML
document to whatever XML, HTML or Text format. In the transformation; the processor walks through
the XML document tree, looking at each node in turn, compares it with the pattern of each template rule
in the style sheet. When the processor finds a node that matches a template rule’s pattern, it outputs the
rule’s template. At present, many XSLT processors, which conform to XSLT 1.0 specification, have been
developed, and Instant SAXON (Kay, 2002) and XMLSpy (Altova, 2005) are among them. Among them,
it is possible for a developer to create a custom processor using known development environments such
as Java (Sun Microsystems, 1994), Microsoft .NET Framework (Microsoft Corporation, 2008) etc.

6.10Conclusion

XML content can be presented in many ways. Extensible Stylesheet Language Transformation is the
W3C specification for reformatting XML documents. XSLT stylesheet consisting transformation rules in
templates accomplishes this transformation through an XSLT processor. GML data can be transformed
into KML by this method. The structure of the XSLT stylesheet entirely depends on the structure of input
and output documents.

Trajectory Data Visualization: The VisualHERMES Tool 50

loannis S. Gkoutsidis MSc Thesis

7 VisualHERMES Wrapper

7.1 Introduction

In previous chapters, the XML-based open standards that are used to model geographic information and
transforming them into visualizations were discussed. This chapter covers the implementation phase of
the VisualHERMES wrapper, whose main purpose is to transform relational data (coming. from
HERMES) into GML and vice versa and in a final stage to produce the corresponding KML files via
XSLT rules.

First, the set of requirements is discussed. Following, is a general description of the overall system as
well as a more in depth discussion about the components the system is comprised of. Then the processing
of an XSLT stylesheet through a XSLT processor is described. Finally, the process of GML queries is
adduced, as far as the validation and parsing of them are concerned. Problems and limitations encountered
during the implementation are discussed. In this chapter the basic skeletons of all the available files are
provided. For more information on a real data set and produced files as well, consult the corresponding
Case Study chapter.

7.2 Requirements

The standardization of data exchanged between different parts of the system, is made with the use of
GML standard, given the fact that is geographic information. GML is an XML standard formatting of
data, which allows the transfer and storage of geographic information, including both spatial and time
elements of geographical entities, as well as handling for moving objects. The GML standard is designed
to support the maximum cross-functional available and this is-achieved through the provision of basic
geometric labels (all systems that support GML standard, use the same geometric labels), a common data
model (entities and properties) and a mechanism. for creating and sharing schemes applications
(application schemas); thus enabling the modeling of the semantics of spatial and temporal information.

The interoperability supported by the intermediate level manipulation of data to and from the
trajectory DBMS, is completed around providing a shape (schema), with which both incoming and
outgoing data is required to comply. At the level of development, this translates to distinguish the
operation of the intermediate level in two parts:

1. Data, from which queries are comprised of and which in turn have to be executed from the
DBMS, must:
e Comply with the provided schema (GML Schema),
e Be valid as far as semantics is concerned and
e Be transformed into SQL clauses

so as their execution to be successful and

2. Data, from which the results produced by queries’ execution, are comprised of must:
e Be transformed according to the provided, by the intermediate level, schema

so as a client can apply any further analysis procedures to a dataset, which meets a well known
and commonly accepted format (Figure 7-1).

Finally, for the results’ visualization process and the presentation of them via third-party vendor
engines (such as Google Earth/Maps) to be accomplished, it is essential to apply a valid transformation,
so as the engines mentioned above, to be able to handle the incoming data. In the current thesis, results
have to be transformed using the KML specification. Since both GML and KML data are based on the
more general XML data tagging technology, this transformation can be accomplished via XSLT
transformation rules (Figure 7-2).

Of course, all the operations mentioned above, from a development perspective, can be integrated
under a web application. This application can provide a user with a simple and intuitive working
environment, in which someone can construct and send queries, as well as retrieve the corresponding
GML results and the visualized KML data, via a web browser, like Microsoft Internet Explorer, Mozilla
Firefox etc. In this way, system’s intrinsic operations are encapsulated, making the user capable to use the
system without even being aware of SQL.

Trajectory Data Visualization: The VisualHERMES Tool 51

loannis S. Gkoutsidis MSc Thesis

GML Data

A

Validation GML Transformation

Parsing 4

SQL Builder @@

A

HERMES HERMES

Figure 7-1: GML query and SQL result
As far as the queries’ construction and sending are concerned, there are three possible ways available
to the user:

1. Manually construct a SQL query

2. Automatic query construction through a bunch of selections on the appropriate option fields and

3. GML file upload, which meets the- predefined schema and contains all the appropriate
information.

KML Transformation

A
XSLT

Rules

>
<

GML Transformation

A

A

HERMES

Figure 7-2: KML result
The available results a user is able to receive after a successful query’s execution, using any of the
above methods, are the following:
1. GML results file: User receives a hyperlink, through which she can download the final result, in
her local computer and

Trajectory Data Visualization: The VisualHERMES Tool 52

loannis S. Gkoutsidis MSc Thesis

2. KML results file: User receives a second hyperlink, which navigates her to another web page of
the application. From there, the user can view the final result visualized on a map, using Google
Maps (Google Maps, 2008) and/or Google Earth (Google Earth, 2008).

7.3 Design

The effort of extending HERMES’s interoperability, led to a new tool-application, namely
VisualHERMES. This tool is able to be installed and operate without the need of any modifications to the
current system (Figure 7-3). In other words, VisualHERMES is an alternative interface to the current
system, providing features such as results retrieval based on GML specification. It is able to visualize
these results via Google’s Maps/Earth engines too.

Other software for
accessing geographic data

A J

VisualHERMES

Trajectory warehouse

A

A4

<—

Figure 7-3: VisualHERMES as an alternative interface

7.3.1 Application architecture

VisualHERMES is based on-the 3-tier architecture, for application development, strategy. The selected
approach gives the system great capabilities for future extensions. Furthermore, any changes can be
targeted to a specific layer, leaving the rest of the overall system intact. Another powerful advantage, the
selected approach provides to the system, is that all levels are completely isolated from each other. That
is, any layer can completely be replaced with a new and possible better one, without requiring any further
modifications (Figure 7-4).

Each level’s development,. except the presentation’s one, follows the Dynamic Linked Libraries
(DLL) guidelines of Windows operating systems. This approach provides one more advantage to the
overall system, as.in this way, the presentation layer is loosely-coupled with the other two layers. Thus,
other types of applications can be developed, such as desktop applications, Personal Digital Assistant
device (PDA) applications', Web Services etc., which will be able to provide the same functionality, as
the current wrapper does, although they will target to different platforms or even devices.

7.3.2 Data Access Layer

Data Access Layer (DAL) is responsible for accomplishing all the required operations for connecting the
wrapper to the database and handling the SQL queries and results as well. In this application’s layer, two
important operations take place:

! Consult Open issues (Section 9.1).

Trajectory Data Visualization: The VisualHERMES Tool 53

loannis S. Gkoutsidis MSc Thesis

1. Sending users’ SQL queries to HERMES and
2. Getting the primitive results from HERMES’s responses.

Presentation Layer
(Web Application)

User
(Web browser)

GML/
G'IIL KML

VisualHERMES

Business Logic Layer

XSD Parser Wrapper XSLT

‘ Data
SQL Table

Data Access Layer

Data Provider

HERMES

Figure 7-4: VisualHERMES 3-tier architecture

It is conceivable, that for the current layer to be able to communicate with HERMES system, it has
first to establish the corresponding connection. Such an operation is accomplished by this layer using an
appropriate data provider.

As far as the primitive results are concerned, it has to be mentioned that the wrapper receives moving
object trajectories data from ‘a semantic perspective. These trajectories are composed of two core
components; the geographic coordinates and the time interval during which censure was made.
Furthermore, we have to notice, that since these information are about trajectories the presence of a pair
of points is required. That is; we need a point and the corresponding timestamp for the moving object’s
start and another point and timestamp for the stop. Based on the above, the wrapper gets a response with
data, which meet the following pattern:

(X1, Y1) — (X5, Y,) # TimeStamp; — TimeStamp,

Each response’s result set may contain multiple pairs for each moving object; in this way a stream of
subsequent points and timestamps is constructed.

The SQL queries the wrapper can send to HERMES are typical queries, based on the SQL grammar
specification for building queries. They are able to make use of any spatial and/or temporal operators
available for representing the desired query. Some of these operators are provided by Oracle’s Spatial
package itself and some others by HERMES extension. The wrapper makes simple use of these operators,
without any applying further modifications on them.

Furthermore, DAL is responsible for converting primitive data into structures capable for being
processed by the next layer. In this way, the loosely-coupling between these two layers is achieved. In
other words, the current layer can produce the desired results in any way it wants. The only constraint is
that is always has to end up with the same structures.

Trajectory Data Visualization: The VisualHERMES Tool 54

loannis S. Gkoutsidis MSc Thesis

For the wrapper to be as flexible as possible, DAL does not make use (from the actual code
perspective) of any specific data provider. In contrast, we have used generic code, which is able to adapt
itself to any possible provider. This provider-agnostic pattern makes this layer more adaptive and
interoperable than using any other design practice. The required data provider is declared via an external
configuration file.

7.3.3 Business Logic Layer

The Business Logic Layer (BLL) is in charge of modeling the primitive data, received from DAL, to
business objects, capable to pass through the required transformations, so as to. become proper for the
final results construction. Furthermore, in this layer the GML queries’ transformation into SQL clauses is
accomplished. After that, the transformed SQL query is able to be sent to DAL for its final execution
(Figure 7-5).

Presentation Layer

GML GML/

L KML
Business Logic Layer

T

SQL SQL

v |

Data Access Layer

Figure 7-5: Business Logic Layer double role
For the overall system’s needs, we have implanted two core business objects (in the nature of classes).
If combined together, it is possible to achieve the required trajectories’ representation for our moving
objects. These are the following:
1. Point and
2. Trajectory
Each point has a series of characteristics (attributes) defining it, which are as follows:
1. Geographic coordinates and
2. Timestamp
Consider a single point object with longitude (X) 23.54 and latitude (Y) 37.43 marked at 5:00 pm on
June 15, 2008. This point is represented as:
(23.54, 37.43) # 2008/06/15 17:00:00
In a similar manner, a set of such points is able to represent a moving object’s trajectory with the
following characteristics:
1. Moving object’s ID,
2. Moving object trajectory’s ID and
3. The points set, the trajectory is comprised of.

For example, consider the single point presented above as a starting point of a trajectory and a second
similar point with longitude 23.67 and latitude 37.5 marked at 5:15 pm on June 15, 2008. These two
points comprise a single trajectory object with ID 6 of a moving object with ID of 0420 represented as:

0420, 6, (23.54, 37.43) - (23.67, 37.5) # 2008/06/15 17:00:00 -
2008/06/15 17:15:00

From the above it is conceivable that a trajectory object can be comprised of several starting and
stopping points.

Using the already implemented functions from BLL, it is possible to transform these objects into files,
the contents of which meet the GML and KML specifications.

Trajectory Data Visualization: The VisualHERMES Tool 55

loannis S. Gkoutsidis MSc Thesis

As mentioned above, the layer’s main role is double (Figure 7-5); it formats the results and transforms
GML queries into SQL clauses. For the GML-to-KML transformation’s needs, we have implemented a set
of additional business objects, in the nature of classes as well, making SQL queries’ representation
possible, as well as an intuitive type of query. The implemented classes are:

1. QueryType: The query’s type literal identification (i.e. Trajectory, Spatial, Temporal etc.),
2. TimePoint: Represents a timestamp,
3. TemporalWindow: Represents a time window, comprised of two TimePoints
4. SpatialWindow: Represents a geographic rectangle, composed of two Points; these points
represent the upper-right and lower-left corners respectively and
5. Query: Represents the clauses appearing in a SQL query such as type of query, object’s ID,
trajectory’s 1D, temporal window etc.
A combination of the query’s type along with the additional clauses of it makes the application able to
build the appropriate SQL query, via a set of already implemented functions. The final step involves the
DAL, through which the newly built query is sent to HERMES.

7.3.4 Presentation Layer

As mentioned above, we are able to use different applications, platforms or even devices to access
VisualHERMES wrapper. In this way a user is provided with an integrated working environment, through
which she is able to send queries and receive results as well. For this reason, a web application based on
Microsoft’s ASP.NET (Microsoft ASP.NET, 2008) technology, has been implemented. This interface
provides the user the ability to connect to the available services using a simple web browser (i.e. Internet
Explorer, Mozilla Firefox etc.). No further plug-ins or custom software is required.

7.4 Application modules

Below, we present with the modules which compose each system’s layer. Figure 7-6 depicts the business
objects which /ive in our system.

| Paint # | | Trajectory 2 | QueryType & TimePoint S
Class Class Enum Struct
= Fields = Ficlds MotSet = Fields
. . T tory
@* latitude: string ## mapPath : List<Point> S:;:;Dr} g¢ day:int
=7 longitude: string = objectlD: string Temporal ¥ hour:int
#* timeStamp : DateTime #* trajectorylD: string MultiTemporal & minute:int
® Properties * Properties Spesd ¥ menth :int
® Methods ® Methods Direction @ second:int
\ I, ¢ year:int
4 Properties
H Methods
| Query E
Class i
m . = TemporalWindow ES
SpatialWindow = = Fields Struct

Struct - . .
g¥ firstTimePoint: TemporalWindow
= Fields #* objectlD: string Fields

) &% rectangle: SpatialWindow #? endTimePoint: TimePoint
s# lowerleftCorner: Point #* secondTimePoint : TemporalWindow &% startTimePoint: TimePoint
47 upperightComer: Paint ¥ trajectorylD : string * Properties

4 Properties ¥ varString : string E Methods

H Methods +l Properties

4 Methods

Figure 7-6: Business objects class diagram

As mentioned previously in this chapter, Point entity is the core component for representing our
data. Each Point instance is comprised of a pair of numbers, representing the corresponding latitude and
longitude of this point, along with a t ime stamp, representing the exact time point.

Trajectory Data Visualization: The VisualHERMES Tool 56

loannis S. Gkoutsidis MSc Thesis

A list of several Point instances composes the MapPath element of Trajectory entity. Each
Trajectory instance is accompanied with an ObjectID and a TrajectoryID; these elements’
values are retrieved from the database and are used for providing extra information when a final object’s
trajectory is projected, via Google Maps/Earth.

Two Point instances are used to model the corners’ coordinates of a spatial window. A
SpatialWindow instance is then used as a parameter to a Query instance, representing the upper right
and lower left corners of this rectangle.

The TimePoint entity is used for representing a specific timestamp. It is comprised of several
elements, assisting the representation of Year, Month, Day, Hour, Minute and Second concepts. In
turn, two TimePoint instance are used to model a TemporalWindow, in the nature of a time interval
(start and stop). This TemporalWindow instance is then may be used by a Query instance as a
parameter.

A Query entity is defined, representing the actual query, which is going to be sent to the database,
after the necessary conversions are applied. The respective elements represent the actual query values are
going to be used.

The type of the query is going to be sent is determined by a QueryType instance. It is mainly used
by the BLL.

DAL’s entities (classes) are characterized as dummy. That is, they do not provide any methods for
changing an instance’s state (fields’ values). Any processing of the state is accomplished in BLL.

The Business Logic Layer (BLL), owns a series of entities, presented in Figure 7-7, accommodating
business objects states’ modifications. In other words; in this layer someone can get all the methods,
through which an instance’s state can be changed.

I GML Query |
|)
| File J'
(=) T A T A o . T ; "'gueryMamgu @)
Class | Query | 2l
= 1 Object | S e

Fields I_ _______ J
. % CreateSQLQuery(QueryType queryType, Query query) ! string
* Properties)

= Methods
@ Parsel) : void M

% Parser()

! |
@ Parser(XmiReader xmiDacument)
4% validationError(object sender, ValidationEventArgs) : void L SQL Query JI
[SRIDReader B
[EhcEE N e 1
" rajeciory | T Rew
| = .
' Object | — Fields = Trajectory |
' - Object !
———————— 4 Methods | jec

% GetCSbylDiint id) : ICoordinateSystem

| TrajectoryManager S
Class

"l Fields

| Properties

= Methods
@ CresteGMIDocument(List <Trajectory trajectaries, int inSRID) : string
% CreateKMLDocument{string gmlFile) : string

% TrajectoryManager()
% TrajectoryManager(string query)

Figure 7-7: Business logic layer class diagram

The above is by no means a strict class diagram. Additional entities (surrounded by dashed lines) have
been inserted, so as to provide an insight about which business objects are affected by BLL’s methods.

The Parser entity is used to provide both validation for a GML query file, and values’ extraction.
This composes a Query instance, which is transformed into a SQL query, via the QueryManager

Trajectory Data Visualization: The VisualHERMES Tool 57

loannis S. Gkoutsidis MSc Thesis

entity. When a Trajectory object is instantiated, its coordinate values have to be converted, consulting
the SRIDReader’s functionality.

Finally, using TrajectoryManager’s methods, a Trajectory instance is able to be persistently
stored into a GML/KML file.

The Data Access Layer (DAL), which is presented in Figure 7-8, provides. all the functionality
required for the wrapper to be able to communicate with the database. That is, a DBManager instance. is
able to handle the connection process to the database, a query’s mission and any results’ retrieval via its
Connection, Query and DataTables elements respectively.

=

| DBManager

Class

= Fields

command
cohnecticn
connectionString
dataTables
dbProviderFactory
defaultDataProvider
providerMame

TR %

query
| Properties

£ Methods

AN F.

Figure 7-8: Data access layer class diagram

7.5 Data flow

Following is the corresponding data flow diagram. In this case, a user sends to VisualHERMES a GML

query file and receives her results.
—>(UploadGMLFile ViewResult
ValidateGMLFile CreateKMLFile
CreateGMLFile
ParseGMLFile CreateTrajectories
No results
retrived
CreateSQLQuery —

ExecuteQuery

Invalid GML
document

ANRNaEn

Figure 7-9: VisualHERMES data flow diagram

Trajectory Data Visualization: The VisualHERMES Tool 58

loannis S. Gkoutsidis MSc Thesis

Figure 7-9 depicts a series of steps taking place, when a user poses a query to the system. Starting
from the upper left corner of the figure, a user uploads a GML file, which represents a query. The system
processes the uploaded file to validate it against the predefined schema (consult Appendix A) and if the
file is not valid it returns to the first step, urging the user to correct the file. If the uploaded file is valid,
the system parses it in order to extract the required values. In the next step the just extracted values are
used to construct the appropriate SQL query, which is sent to HERMES system for execution. After
execution is completed, results are returned to VisualHERMES, which is responsible to inform the user.
If no results are returned, the overall process reaches the end. On the contrary; if VisualHERMES has
results for presentation at its disposal, the process of creating the corresponding trajectories initiates; this
process is the transformation of raw data into trajectory business objects. The next step is the construction
of the final GML file. This file is then transformed into a KML file. This transformation is accomplished
via an external formatting rules file (consult Appendix B). When the two final files’ construction is
completed, VisualHERMES informs end-user about the produced results. This is the final step of the
overall procedure.

7.6 Development environment

VisualHERMES wrapper has been developed using Microsoft C# 2.0 programming language via
Microsoft Visual Studio 2008 Integrated Development Environment; in its overall. As a consequence,
Microsoft .NET Framework 2.0 must be installed, for the application to be-able to run on a computer.

7.7 Access to data

Microsoft .NET Framework provides its own data access technology, named ADO.NET. ADO.NET is
comprised of several core components (classes), accommodating .NET applications to connect to
different data sources (usually relational and object-relational DBMSs), execute queries and process
retrieved results.

The corner stone for the wrapper to be able to connect to HERMES is the use of and appropriate data
provider, accomplishing all the intrinsic processes. Thus, VisualHERMES connects to the DBMS, sends
queries and receives the corresponding results (Figure 7-10).

.NET application

Data Provider

HERMES

Figure 7-10: Data providers

.NET Framework provides several data providers, depending on the data source an application needs
to connect to. In VisualHERMES case, the need is to connect to an Oracle DBMS, so the alternatives are
the following:

1. .NET Framework Data Provider for OLE DB,
2. NET Framework Data Provider for ODBC,

3. .NET Framework Data Provider for Oracle and
4. Oracle Data Provider for .NET Framework

From the providers above, the first two are generic approaches, covering a wide variety of DBMSs
(and not only); thus the do not provide optimized functions for the connection process. .NET
Framework’s provider for Oracle is an optimized alternative for our wrapper’s needs and finally, Oracle’s

Trajectory Data Visualization: The VisualHERMES Tool 59

loannis S. Gkoutsidis MSc Thesis

provider is the best approach we have at our disposal. VisualHERMES makes use of the forth option,
Oracle’s data provider.

Data handling occurs in a disconnected nature. That is, the application builds a SQL query, via either
users’ selections or a GML query file, sends it to the DBMS and after receiving the results, it terminates
the connection. From now on, data are locally stored in out application’s domain for further processing in
the nature of a DataTable object, leaving the original data source disengaged (Figure 7-11).

.NET application

Locally stored

DataTable dataset

Data Provider

HERMES

Figure 7-11: Disconnected DB access architecture

7.8 Implementation

To make VisualHERMES wrapper as user-friendly as possible, a web interface (application) has been
implemented, through which a user can build the desired queries. The transformation process includes
both the GML and KML files, which contain the formatted data. All a user must have is a web browsing
application. The prototype has already been tested with Internet Explorer (Microsoft Corp.), Firefox
(Mozilla Foundation) and Safari (Apple). Chances are that this application is compatible with almost any
browser available in the market today, although it has not been tested. As a final note, the client’s
operating system or device does not affect user’s experience (Figure 7-12).

(& VisualHERMES: Query - Windows Internet Explorer EI@
@U‘ - |£ http://localhost:1832/Query + | ‘}| X ‘ | Google Pl -
$¢ 4 | @ VisualHERMES: Query | E] v o v |-2rPage ¥ (£} Tools v

P
VisualHERMES: Query
Spatial Reference IDentifier (SRID); 2100 Query Type: NotSet -
Query: *
Spatial Intersection
Temporal Intersection
Average Speed
Upload Query File
Execute Query
Done @ & Internet | Protected Mode: On T100% ~

Figure 7-12: VisualHERMES query screen

Trajectory Data Visualization: The VisualHERMES Tool 60

loannis S. Gkoutsidis MSc Thesis

7.8.1 System logon

The first time a user accesses wrapper’s web interface, she is presented with the following logon screen
(Figure 7-13):

/& VisualHERMES: Database - Windows Internet Explorer =] = | S

b A& F . : ooqle |
(J\J - |& ntp/fiocalhost1832/DBa | 42| x || Googte o~
i i | @ VisualHERMES: Database | | El ~ = ~ :rPage v i} Tools »

~

Visual HERMES: Database

Choose database: -
OfficiaHERMES
ExperimentaHERMES

E @ Internet | Protected Mode: On L 100% -

Figure 7-13: VisualHERMES logon screen

VisualHERMES is able to connect to several HERMES instances. Thus, via this option panel, a user
is able to select the desired database.

From an administrative perspective, the wrapper retains a configuration file (web . config), which is
placed in application’s root directory. An administrator can edit this XML-based file so as to modify
several aspects of the application, including the available databases. A typical file’s contents can be as the
following:

<?xml version="1.0"7?>
<configuration>
<!-- In this area we define the appropriate connection strings -->
<connectionStrings>
<add name="0OfficialHERMES"
connectionString="{HOST, PORT, SERVICE NAME, USER ID etc.}"
providerName="0Oracle.DataAccess.Client" />
<add name="ExperimentalHERMES"
connectionString="{HOST, PORT, SERVICE NAME, USER ID etc.}"
providerName="System.Data.OracleClient" />
</connectionStrings>

</configuration>
The file above. provides the administrator with a human-readable set of directives. Each <add>
element represents an HERMES’s instance with the corresponding connection information. Thus, an
administrator is able to add as many records she wants and the wrapper’s logon screen will fetch all of
them on a user’s first connection.

7.8.2 Query building

From the application’s query screen, a user can choose the way she is going to build the query. The
alternatives she has at her disposal are as follows:

1. Build the SQL query manually in the Query field,

2. Choose one of the predefined query types in the Query Type field or

3. Upload a GML query file, containing all the required information needed for query’s
construction.

Thus, users have the ability to build their queries using any technique there are more familiar with.
For example, a user does not have to know anything about SQL or GML. She only has to provide the
required values and get the results. A user who is familiar with GML syntax can construct her query file
(using a text editor) without being aware of the various spatio-temporal operators HERMES provides.

Trajectory Data Visualization: The VisualHERMES Tool 61

loannis S. Gkoutsidis MSc Thesis

Finally, a user who has been working with HERMES for some time can construct a query using straight
SQL syntax. This method reveals a more flexible schema is which she is able to override the predefined
query types and get results based on more sophisticated queries.

If the user selects the NotSet query type, she is presented with an empty text area. Therein, she is
able to type any valid SQL query, which is then passed to HERMES via VisualHERMES wrapper. At this
point, it has to be mentioned that there is a specific constraint; that is, the SQL query must request three
specific fields from the database. These fields are the moving object’s ID (OBJECT ID), the moving
object trajectory’s ID (TRAJ _ID) and of course the actual trajectory field (MPOINT), with the remark of
trajectory. Thus, a typical query that could be provided in this area is the following.

SELECT
a.object id,
a.traj id,
a.mpoint.to clob () AS trajectory
FROM
mpoints a
WHERE
a.object id = {Object ID}
AND
a.traj id = {Trajectory ID}
The use of to _clob () function, is discussed later in this chapter.

In the case, a user selects one of the predefined query types, she is provided with several fields that
must be filled, so the system becomes able to get the required information for building the query. Each
option leads to different fields, as described below.

The trajectory query type causes the system to return a specific trajectory, identified by an object ID
and a trajectory ID. Thus, it is required from the user to specify the just mentioned values. The equivalent
SQL query is as follows.

SELECT
a.object id,
a.traj id,
a.mpoint.to clob () AS-trajectory

FROM
mpoints a
WHERE
a.object id = {Object 'ID}
AND
a.trajid.= {Trajectory -ID}

In the case of spatial intersection query type the returned trajectory is restricted inside a given
geometry. The user is required to provide both object’s and trajectory’s IDs, as well as a pair of
coordinates representing the upper right and the lower left corners of a geographic rectangle. Although
HERMES is able to handle any polygonal region, VisualHERMES is restricted to rectangles. The
required Oracle’s Spatial operators are SDO__GEOMETRY and F_INTERSECTION. The equivalent SQL
query is the following,

SELECT
a., ObyRct Tel,
asra] df
a.mpoint.f intersection
(
MDSYS.SDO_GEOMETRY
(
2003,
NULL,
NULL,
MDSYS.SDO ELEM INFO ARRAY
(
1 14
1003,

Trajectory Data Visualization: The VisualHERMES Tool 62

loannis S. Gkoutsidis MSc Thesis

)

MDSYS.SDO_ORDINATE ARRAY

(
{Upper Right Longitude}, {Upper Right Latitude},
{Lower Left Longitude}, {Lower Left Latitude}

)

), 0.001
) .to_clob () AS trajectory
FROM
mpoints a
WHERE
a.object id = {Object ID}
AND

a.traj id = {Trajectory ID}

The £ intersection object method returns either a geometry object that is the topological
intersection (AND operation) of the two associated moving types projected at a. user-defined time
point or a moving object whose mapping at each instant represents a geometry ‘that is the outcome
of this set operation. Invoking £ intersection method for the simplest moving object, as one
would expect, the result of this operation is the projection of itself on the spatial domain at time
instants that intersects with other moving types or static geometries and null at time instants where it is
not on the boundary or the interior of 1inestrings and polygons or it coincides with none of the
points in a collection of them. Figure 7-14 below depicts the instantiation of a moving object modeling
the intersection of a Moving LineString with-a polygon, at three different time points tl, t2, and t3
(Marketos, et al., 2008).

© @)

©) O
O

\J

t te t time
o o o o———o
Intersection Moving LineString Polygon boundaries

Figure 7-14: HERMES intersection operation

The temporal intersection query type, returns a trajectory restricted inside a given time period, which
is specified by a TAU TLL’s D Period Sec object type as a parameter to the at period
HERMES’s operator. Beside object’s and trajectory’s IDs, the user has to provide values for two time
points, representing the corresponding start and stop timestamps. This query type produces the following
SQL code.

SELECT
a . olfre Ct, 5
gL T a5
a:mpoint.at period
(
tau tll.d period _sec
(
tau tll.D Timepoint Sec
(
{Start Timestamp}
)
tau tll.D Timepoint Sec
(
{Stop Timestamp}
)

)
) .to_clob () AS trajectory

Trajectory Data Visualization: The VisualHERMES Tool 63

loannis S. Gkoutsidis MSc Thesis

FROM
mpoints a

WHERE
a.object id={Object ID}
AND

a.traj id={Trajectory ID}

The at period object method is an operation that restricts the moving object to the- temporal
domain. In other words, by using this function the user can delimit the time period that is meaningful
to ask the projection of the moving object to the spatial domain. More specifically, the time
period passed as argument to the method is compared with all D Period Sec objects that
characterize the unit moving objects. If the parameter period does not overlap with the compared
period then the corresponding unit type is omitted. If it overlaps, then the time period that defines a
unit-moving object becomes its intersection with the given period (Pelekis, et al., 2006).

The average speed query type is more general than the ones mentioned above, due to the fact that is
does not require from the user to provide object’s and trajectory’s IDs. Thus, it returns all those
trajectories, for which the corresponding moving objects has an average speed inside the range provided.
So, a user must declare a lower and an upper speed threshold. HERMES’s £ avg speed () function is
used from our wrapper behind the scenes and more specifically avg speed measure. The equivalent query
produced is the following:

SELECT
a.object id,
a.traj_ id,

a.mpoint.to clob () as trajectory
FROM

mpoints a
WHERE

a.mpoint.f avg speed()

BETWEEN

{Lower Bound Speed}
AND
{Upper Bound Speed}

The f avg speed() = measure is calculated by dividing the auxiliary measure
sum_speed () (i.e. The sum of the speeds of each trajectory portion 7P inside a given base cell bc)
with count trajectories (Marketos, et al., 2008):

SUM_SPEED(bc)

COUNT_TRAJECTORIES(bc)

AVG_SPEED(bc) =

Where,
len(TPi)

SUM_SPEED (bc) = —_—
. (be) A lifespan(TPi)
C

TPi €
If a user selects to upload her query via a GML file, she will be presented with a file path field, in
which she must provide an appropriate file’s path as it is represented in her local computer.

This file’s contents must first meet XML’s grammar specification. For an uploaded file to be able to
be parsed by VisualHERMES there is a second validation level against a predefined schema. This schema
defines the accepted tags a file can have. In other words, it acts as a dictionary for the query file’s
contents. The uploaded file can be parsed by the wrapper if and only if it has no spelling mistakes, meets
the XML grammar rules and uses the accepted directives.

As an example, the following listing is a sample query file, which is equivalent to the trajectory query
described previously.

<?xml version="1.0" encoding="utf-8" ?>
<!-- This is a Trajectory Query -->
<query queryType="Trajectory">
<trajectory>
<objectID>{Object ID}</objectID>
<trajectoryID>{Trajectory ID}</trajectoryID>

Trajectory Data Visualization: The VisualHERMES Tool 64

loannis S. Gkoutsidis MSc Thesis

</trajectory>
</query>
In correspondence with the available SQL queries discussed above, the following are the equivalent
GML queries, VisualHERMES is able to process.

A Spatial Intersection query is as follows.

<?xml version="1.0" encoding="utf-8" 2>
<!-- This is a Spatial Intersection Query -->
<query queryType="Spatial">
<trajectory>
<objectID>{0Object ID}</objectID>
<trajectoryID>{Trajectory ID}</trajectoryID>
</trajectory>
<spatial>
<polygon>
<exterior>
<linearRing>
<posList>
{Upper Right Longitude} {Upper Right Latitude}
{Lower Left Longitude} {Lower Left Latitude}
</posList>
</linearRing>
</exterior>
</polygon>
</spatial>
</query>

A Temporal Intersection query is as follows.

<?xml version="1.0" encoding="utf-=8" 2>
<!-- This is a Temporal Intersection Query -->
<query queryType="Temporal">

<trajectory>
<objectID>{0Object ID}</objectID>
<trajectoryID>{Trajectory ID}</trajectoryID>
</trajectory>
<temporal>
<timePeriod>
<begin>{Start Timestamp}</begin>
<end>{Stop Timestamp}</end>
</timePeriod>
</temporal>

</query>
An Average Speed query is as follows.

<?xml version="1.0" encoding="utf-8" ?>

<!-=- This is an. Average Speed Query -->
<query queryType="Speed">
<avgspeed>

<1BoundSpeed>{Lower Bound Speed}</lBoundSpeed>
<uBoundSpeed>{Upper Bound Speed}</uBoundSpeed>
</avgspeed>
</query>
At this point, it has to be mentioned that none of the above uploaded query files is saved permanently
on the server (possibly on a hard disk drive). Any file’s process occurs on the fly, that is while the file’s
contents are on server’s main memory. When the process is finished, the file is disposed.

No matter what query method is selected by a user, it is required from the latter to provide the right
Spatial Reference IDentifier (SRID). This code identifies the coordinate system in which data belong.

Trajectory Data Visualization: The VisualHERMES Tool 65

loannis S. Gkoutsidis MSc Thesis

This declaration is very important, due to that both GML and KML specifications require data being in
the WGS84 (OGP, 2008) reference system (Latitude/Longitude). By specifying the original spatial
reference system, VisualHERMES is able to achieve correct data conversion between these two reference
systems and finally produce the appropriate files with the correct coordinates in them. All declarations
and IDs required by the system are based on codification provided by the OGP Surveying and Positioning
Committee, also known as European Petroleum Survey Group — EPSG (EPSG, 2008).

As mentioned above, an uploaded query file has to meet both XML’s and a predefined GML-based
schema’s specifications. As far as the latter is concerned, below are the constraints introduced are as
follows.

1. The query’s type declaration is mandatory as an attribute, inside the file’s first element
(NotSet, Trajectory, Spatial, Temporal, AverageSpeed),
2. The moving object’s ID must be defined inside <objectID> element,
The moving object trajectory’s ID must be defined inside <trajectoryID> element,
4. If the query is of Spatial type, the spatial window must be provided inside the <posList>
element in the following formation:

W

{Upper Right Longitude}<space>

{Upper Right Latitude}<space>

{Lower Left Longitude}<space>
{Lower Left Latitude}

This is a core element of a complex type, named <polygon>/<exterior>/
<linearRing>/<posList>,

5. Ifthe query is of Temporal type, the temporal window must be defined inside the <begin> and
<end> elements respectively, meeting the following notation:

{Year/Month/DayTHour:Minute.Second}

These are core elements belonging to a complex type <timePeriod>/<begin> and
<timePeriod>/<end>,

6. If the query is of type Speed, the appropriate threshold must be defined inside the
<1BoundSpeed> and <uBoundSpeed> elements respectively, which compose the complex
type <avgspeed>/<1BoundSpeed>and <avgspeed>/<uBoundSpeed> and

As in any SQL query, a user is-able to make use of any combination of the above elements. The
constraints applicable in this case are as follows.

1. The queryType attribute has to be set as NotSet and
2. An additional complex type named complex has to bound the respective complex types.

As an example, a user can create the following GML query file.

<?xml version="1:0"-encoding="utf-8" ?>
<query queryType="NotSet">
<complex>
<temporal>
<timePeriod>
<pbegin>{Start Timestamp}</begin>
<end>{Stop Timestamp}</end>
</timePeriod>
</temporal>
<avgspeed>
<1BoundSpeed>{Lower Bound Speed}</lBoundSpeed>
<uBoundSpeed>{Upper Bound Speed}</uBoundSpeed>
</avgspeed>
</complex>
</query>

This produces the following equivalent SQL query, via the wrapper.

SELECT
a.object id,
a.traj_ id,

Trajectory Data Visualization: The VisualHERMES Tool 66

loannis S. Gkoutsidis MSc Thesis

a.mpoint.at period
(
tau tll.d period sec
(
tau tll.D Timepoint Sec
(
{Start Timestamp}
)
tau tll.D Timepoint Sec
(
{Stop Timestamp}
)
)
) .to_clob () AS trajectory
FROM
mpoints a
WHERE
a.mpoint.f avg speed()
BETWEEN
{Lower Bound Speed}
AND
{Upper Bound Speed}
The GML schema’s for query files full specification listing is provided in Appendix A.

A file meeting these specifications is characterized as valid and is able to be processed by the system.
VisualHERMES is able to build the appropriate SQL query using the already implemented parser, which
is in charge of searching specific data formatting tags. In contrast, if the uploaded file is invalid, the user
gets all the appropriate information about the errors occurred and she is able to re-upload a newer (and
possibly revised) version of the query file.

7.8.3 Results construction

HERMES is able to respond to spatio-temporal queries, for moving objects. After a valid query’s
execution, the system is able to-return the corresponding results to VisualHERMES and to be more
precise, to the wrapper’s DAL. Returned data are based on a predefined format, as follows.

{ (Xll Yl) - (Xz, Yz) # TimeStampl 5 TlmeStamp2 (X3, Y3) - (X4, Y4) #

TimeStamps — TimeStampy..}

It has to be mentioned, that the data formation above is not best suited for the wrapper’s needs; as a
result, the latter has to re-format the results in a more convenient, tabular, structure. Thus, the first
formatting process-of the primitive data has to do with the flattening of them in discrete values, based on
the following pattern:

X; Y; TimeStamp,
X, Y, TimeStamp,
X; Y; TimeStamp;
X4 Y4 TimeStamp,

This flattening- procedure makes use of regular expressions in a programmatic level, giving the
wrapper the ability to search-and consequently match specific character patterns, separating the individual
entities.

After this step, data are transferred to BLL, so more transformations to be applied on them. Thus, we
end up having a set of points and timestamps at our disposal. This transformation is critical, so the system
to be able to insert these data into GML- and KML-based files, via the appropriate intrinsic functions. At
this point, any spatial reference system conversion is applied.

Based on the fact that our business objects, representing the corresponding data retrieved from
HERMES, are ready, the final files can now be created. This process is composed of the following two
discrete steps:

Trajectory Data Visualization: The VisualHERMES Tool 67

loannis S. Gkoutsidis MSc Thesis

1. Create the GML file, where the wrapper traverses all the available trajectory objects and
encapsulates them with the appropriate GML tags and

2. Create the KML file, where the wrapper, based on an external XSLT file, applies all the
transformation rules, provided by the latter, to the original GML data.

Wrapper’s code for the GML file’s creation works independently, without any manual interference;
that is, all the styling rules are hard-coded. Thus, a trajectory dataset, in the nature of business objects,
follows the pattern below.

X Y TimeStamp

479493.6 41992349 2001/02/12 17:45:51
479219.9 4199087 2001/02/12 17:46:21
479219.9 4199087 2001/02/12 17:46:21
479013.4 4199078.6 2001/02/12 17:46:51
479013.4 4199078.6 2001/02/12 17:46:51
478861.3 4199033.7 2001/02/12 17:47:21

Table 7-1: Trajectories as business objects
These data are transformed into a structure similar to the following.
<?xml version="1.0" encoding="utf-8"-standalone="yes"?>

<gml:featureCollection xmlns:gml="http://www.opengis.net/gml">

<gml:featureMember>
<gml :name>
Trajectory ID: {Trajectory. ID} - Object ID: {Object 1ID}
</gml:name>
<gml:description>
Trajectory Segment: {Segment ID}
</gml:description>
<gml:TimePeriod>
<gml:begin>{Start Timestamp}</gml:begin>
<gml:end>{Stop Timestamp}</gml:end>
</gml:TimePeriod>
<gml:LineString>
<gml:posList>
{Start Point Latitude} {Start Point Longitude}
{Stop Point Latitude} {Stop Point Longitude}
</gml:posList>
</gml:LineString>
</gml:featureMember>

</gml:featureCollection>
From the above listing becomes clear that all database’s results are bounded by a
<gml:featureCollection> element and each record is in turn bounded by a
<gml:featureMember> element. Several other elements can be found in such a file, representing
different concepts. These are the following:
e <gml:name> — Represents the objects’ name, including objects’ and trajectories’ IDs,
e <gml:description> — Represents a text description of objects. In this case each
trajectory’s segment ID is provided,

Trajectory Data Visualization: The VisualHERMES Tool 68

loannis S. Gkoutsidis MSc Thesis

e <gml:TimePeriod> — This element corresponds to the pair of timestamps required to
represent a start (<gml:begin>) and a stop (<gml:end>) time point of an object’s movement
and

e <gml:LineString> — A LineString element is composed of a <posList> element,
which represents the respective coordinates of an intelligible trajectory’s start and stop
geographic points.

For the final KML file to be created, another external this time, XML-based file, with the prominent
XSLT name, providing formatting rules, consults the wrapper. Such files are based on corresponding
patterns (templates). In other words, in these files someone finds declarations specifying both the original
and transformed data formats. For the implemented XSLT file’s full listing, consult Appendix B.

Based on the implemented file’s rules, a new KML-based file is created, the contents of which can be
shown below.

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<Document>
<Folder>
<name>VisualHermes</name>
<Style id="blueLine">
<LineStyle>
<color>ffff0000</color>
<width>3</width>
</LineStyle>
</Style>

<Placemark>
<name>
Trajectory ID: {Trajectory ID} - Object ID: {Object ID}
</name>
<description>Trajectory Segment: {Segment ID}</description>
<TimeSpan>
<pbegin>{Start Timestamp}</begin>
<end>{Stop Timestamp}</end>
</TimeSpan>
<styleUrl>#blueline</styleUrl>
<LineString>
<coordinates>
{Start Point Latitude}, {Start Point Longitude},
{Start Point Altitude}
{Stop Point Latitude}, {Stop Point Longitude},
{Stop Point Altitude}
</coordinates>
</LineString>
</Placemark>
</Folder>
</Document>
</kml>

Trajectory Data Visualization: The VisualHERMES Tool 69

loannis S. Gkoutsidis MSc Thesis

As the above file implies, we have an XML-based file, which is composed of a root element <km1>.
Except the root element, several different elements are presented, each of which represents the following:

e <name> - The file’s name as this is presented using a visualization engine (Google
Maps/Earth),

e <Style> - The styling rules of the presented object. On a map, a trajectory object can be
presented using a line object (<LineStyle>). Based on the styling rules above, the line
will have a blue color (<color>) and a width of 3 pixels (<width>),

e <Placemark> - Whilst a trajectory object is represented by a <gml: featureMember>
element according to GML specification, KML makes use of the corresponding
<Placemark> element,

e <name> - Represents the objects’ name, including objects’ and trajectories’ IDs,

e <description> - Represents a text description of objects. In this case each trajectory’s
segment ID is provided,

e <TimeSpan> - A TimeSpan element is the GML’s <gml : timePeriod> equivalent; the
same goes for the respective <begin> and <end> elements,

e <StyleUrl> - In a KML file, many styling rules can be defined. Thus, each of the
represented objects can be styled using a different rule. In this element is defined the rule’s
ID.

e <LineString> - As far as <LineString> and <coordinates> elements are
concerned, they represent the <gml:LineString> and <gml :posList> elements of a
GML file.

Although it is not clear from the listing above, we have to mention that a modification occurs, as far as
timestamps are concerned. To be more precise, the timestamp format changes when it comes to meet
KML specification. Each timestamp in a KML file complies with the following pattern.

{Year}-{Month}-{Date}T{Hour}:{Minute}:{Second}Z

The files produced by the process described above, are the final result files, VisualHERMES sends to
end users. One important issue is that of duplicates in file names. To outflank this issue, a custom naming
algorithm has been implemented. The basic files’ name is Oufput. Using the algorithm above, two
concatenations are applied.

1. A pseudo-random string, representing a statically unique 128-bits integer (Globally Unique
Identifier - GUID), is supplied as a suffix to the original name and
2. A timestamp with seconds’ precision is supplied as a suffix too, to the just renamed file name.
Thus, a typical GML file’s name is based on the following naming pattern.
Output-{GUID}-{Date}-{Time}.gml
According to the above, the KML file has a name as below.
Output-{GUID}-{Date}-{Time}.kml

Finally, the produced by VisualHERMES files, are presented to the end user, as two hyperlinks. The
first of them represents a GML file the user can download to her local computer. As far as the second
(KML) file is concerned, the user is able to get the visualized results, via the same web browser’s
window, using the provided Maps services by Google. Through Google Maps API, a second web page
has been implemented. Its purpose is to project KML results, VisualHERMES created, on real earth’s
maps.

At this point, the end user is provided with several tools. Using them she is able to move selected map
regions, zoom in or zoom out etc. Furthermore, each trajectory’s segment carries additional information
like the segment (movement) ID, its overall ID as provided by HERMES and the moving object’s ID. For
more information about this data, consult the Case Study chapter of this thesis.

7.9 Compression features

One of the largest challenges when dealing with XML-based data is the quick increase of files’ sizes. This
is due to XML’s nature itself. Tagging each piece of information with several keywords can lead to really
large-sized data files, especially if the original dataset is big by its own; this is an often case when dealing

Trajectory Data Visualization: The VisualHERMES Tool 70

loannis S. Gkoutsidis MSc Thesis

with trajectory data. As a proof of concept for the claim above, we present the following table so as to
understand the increase ratios.

Rows Raw (Bytes) GML (Bytes) KML (Bytes)

7.550 669.057 3.464.816 3.021.036
5.771 513.087 2.651.869 2.312.224
901 79.816 413.139 360.293
404 35.044 184.806 161.283
333 29.023 152.180 132.846
44 3.779 19.856 17.514

Table 7-2: Dataset sizes comparison

The first technique a developer has at her disposal is compression. Based on this approach, sizes tend
to be reduced. Especially, in the case of text files (XML is ultimately a text-based grammar), the
reduction ratios that can be achieved are really promising. To get an insight about how compression helps
in our application domain, consult the following chart.

13.972
> 132.846
16.742
4 161.283
36.568
3 360.293 m KMZ (Bytes)
W KML (Bytes
229.399 (Bytes)
2 2.312.224
300.004
! J3.021.036
. . , /
0 1.000.000 2.000.000 3.000.000 4.000.000

Figure 7-15: Dataset compression ratios

Introduction of compression techniques has drawbacks as well. First and most critical is that the
system becomes more complex. Furthermore, produced files tend to be more difficult while handling
them. For example, if a GML file gets compressed, it will require a corresponding decompression
mechanism, to become readable again. This is due to the fact that GML is a generic specification and
many different applications use such files for processing the underlying data, without being aware of
algorithm used to compress the original data file. As a result, handling compressed GML data files is not
always trivial, making them unsuitable for generic and interoperable solutions.

The same is not true as far as KML data files are concerned. This happens because KML is used only
for presenting data and this projection is accomplished by specific visualization engines. Each of them is
aware of the compression mechanism a KML file can use (the Deflate algorithm (Deutsch, 1996)), so it is
possible for a visualization engine to get a compressed KML file (known as KMZ files), decompress it on
the fly and present the appropriate data. After all, almost all of the known projection engines are aware of
KMZ files nowadays.

As far as VisualHERMES is concerned, and from the .NET Framework perspective, it is quite
difficult to implement such functionality. .NET Framework has a built-in mechanism supporting the
deflate compression algorithm, but when it comes to be applied on physical files, rather than in-memory
streams, the appropriate headers are not added into the final result file. This leads to a file, which does not
make itself understood to the outer world (namely, applications, that handle KML files).

Although, this rather odd behavior has been fixed in later versions of .NET Framework, in our case
(VisualHERMES runs on .NET Framework 2.0), we had to make use of a third-party compression library,

Trajectory Data Visualization: The VisualHERMES Tool 71

loannis S. Gkoutsidis MSc Thesis

named DotNet Zip Library 1.3 (DotNet Zip, 2007). DotNet Zip Library is an open-source, fully managed
code, written in C# DLL library, that provides support for reading and writing Zip archive files and
streams, using either Deflate or GZip algorithms. All tests have been made, gave promising results, but
due to the increase of overall system’s complexity, this feature is disabled in the current release (although
it has been fully implemented and tested).

7.10Problems in implementation

During the development process of VisualHERMES, we faced two main problems. The first was about
the spatial reference systems conversion. The other one had to do with HERMES Abstract Data Types —
ADT (Oracle Corp., 2003) and the way .NET Framework data providers handle them.

As far as the conversion algorithm is concerned, the problem has its roots in that HERMES uses
Oracle’s built-in spatial reference system, which is the Cartesian system. This SRS-agnostic handling of
coordinates was a burden for VisualHERMES, due to GML and KML specifications, which demands
from the coordinates to be in the WGS84 (Latitude/Longitude) spatial reference system (OGP, 2008). So
what the wrapper is supposed to do if a dataset is already in the previously mentioned SRS and another
one is in, for example Greek Geodetic Reference System - GGRS87 (OGP, 2008)? How is it going to
handle such different data? The approach chosen was the use of a third-party library, named Proj.Net
(Guidi, 2007). Proj.Net is an open-source, DLL library, written in C# that performs point-to-point
coordinate conversions between geodetic coordinate systems. The spatial reference model used adheres to
the Simple Features specification (OGC, 2008). Using its functionality a .NET Framework application
can accomplish all the required conversions between different geodetic reference systems via EPSG’s
codification.

HERMES uses a set of ADTs to present various custom moving objects’ information. None of the
available data providers can handle such types, because it is not aware of the intrinsic functionality a type
can have.

For VisualHERMES to be able to handle the data retrieved using HERMES, we has to convert the
primitive data into a well known data type, the data provider if aware of, such as varchar2. As a matter
of fact, HERMES already supports such kind of functionality, via the corresponding to string()
function, but using a varchar?2 as the return data type introduces a drawback. Varchar?2 data types
can handle a stream of up to 4000 characters. Any stream containing more characters causes HERMES to
return an error.

To overcome this issue, a new function has been implemented. This new function uses a CLOB (a
variation of the generic BLOB type, targeting in character streams) variable as the return type, capable for
handling enormous character streams (approx. 2 x 10° characters). By integrating to clob () function
with HERMES’s moving point core ADT, we are now able to handle large amounts of data via our
wrapper. Furthermore, due to the fact that this conversion occurs after the dataset is retrieved from the
actual database, there are no drawbacks with SQL queries, some of them do not operate correctly on
CLOB data types. The full to_clob () ’s function source code (in PL/SQL) is provided in Appendix C.

7.11Conclusion

Data can be transformed in any desired format using various techniques and/or technologies. Using a
plain text transformation algorithm we managed to convert raw data into GML structures. GML data can
be transformed into KML files based on XSLT styling rules. Any of these well-known specifications, or
even custom ones, can be validated via XSD files. All the above operations can be accomplished using an
integrated environment, acting as a wrapper for a DBMS.

Trajectory Data Visualization: The VisualHERMES Tool 72

loannis S. Gkoutsidis MSc Thesis

8 Case Study

8.1 Introduction

As a proof of evidence for the prototype system described in the previous chapter, herein we going to
discuss the overall system’s operation using real life trajectory data. We are going to demonstrate all the
available ways of building a query, sending it to HERMES and retrieving the corresponding results both
in GML and KML format. Visualized results are also presented. Each section follows a specific pattern:
Objective, building a query via VisualHERMES’s web interface, SQL equivalent query, GML equivalent
query, getting results in GML and finally getting and visualizing KML results.

8.2 Dataset characteristics

The original dataset comes from (R-tree Portal, 2005) and it represents a fleet of school buses moving in
Athens metropolitan area between years 2000 and 2001. As a consequence, all the available coordinates’
information is in the Greek Geodetic Reference System 87. This reference system has an ID of 2100
according to EPSG’s codification, in contrast to WGS84’s reference system, which has a corresponding
ID of 4326. So VisualHERMES has to get a value of 2100 for the Spatial Reference IDentification —
SRID (OGP, 2008). The destination reference system has to always be 4326, so this declaration is not
required from the end user.

As a final note, the NotSet query type, option is not discussed independently. This is because all the
equivalent SQL queries are fully described as part of the other query types.

8.3 Trajectory query type

The objective is to fetch the trajectory with ID 6, which belongs to a moving object with ID 0420. The
web interface through which the query is constructed is illustrated in Figure 8-1.

& VisualHERMES: Query - Windows Internet Explorer EI@
@U' + [&) ttp//ocalhost:27214/ default.asp - | +,| x ||l Googte 2 -

‘i,:? ke & VisualHERMES: Query E ~ o= - |:JkPage v {{} Tools

VisualHERMES: Query

Spatial Reference IDentifier (SRID): 2100 Query Type: Trajectory -

Object ID: 0420
Trajectory ID: 6

Execute Query

Done Px) @ Internet | Protected Mode: On #100% -

Figure 8-1: Trajectory web interface
The SQL and GML equivalents are illustrated in Figure 8-4 and Figure 8-7 respectively.
SELECT
a.object id,
a.traj id,
a.mpoint.to clob() as trajectory

FROM
mpoints a

WHERE
a.object id = 0420
AND

a.traj id = 6
Figure 8-2: Trajectory SQL query

Trajectory Data Visualization: The VisualHERMES Tool 73

loannis S. Gkoutsidis MSc Thesis

<?xml version="1.0" encoding="utf-8" ?>
<query queryType="Trajectory">
<trajectory>
<objectID>0420</objectID>
<trajectoryID>6</trajectoryID>
</trajectory>
</query>
Figure 8-3: Trajectory GML query
Figure 8-4 illustrates the results page, which links to two files results in GML and KML formats
respectively.

@ VisualHERMES: Query - Windows Internet Explorer EI@
@Q = |g, http://localhost:27214/default.aspx - ‘ “'f| A | | Google 2 -
W &[@mm%wamm] I B - & ~ =) Page ~ i Tools ~

-

VisualHERMES: Query

Spatial Reference IDentifier (SRID): 2100 Query Type: Trajectory -

Object ID: 0420
Trajectory ID: 6

Execute Query

GML File: Download GML file
KML File: View KML file

Done E e Internet | Protected Mode: On H100% -

Figure 8-4: Trajectory results page

The results for the produced GML and KML files are presented in Figure 8-5 and Figure 8-6
respectively.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<gml:featureCollection xmlns:gml="http://www.opengis.net/gml">
<gml:featureMember>
<gml:name>Trajectory ID: 6 - Object ID: 0420</gml:name>
<gml:description>Trajectory Segment: 1</gml:description>
<gml:TimePeriod>
<gml:begin>2001/02/12T17:45.21</gml:begin>
<gml:end>2001/02/12T17:45.51</gml:end>
</gml:TimePeriod>
<gml:LineString>
<gml:posList>
37.94513 23.77097 37.94306 23.76831
</gml:posList>
</gml:LineString>
</gml:featureMember>
<gml:featureMember>

</gml:featureMember>
</gml:featureCollection>
Figure 8-5: Trajectory GML results

Trajectory Data Visualization: The VisualHERMES Tool 74

loannis S. Gkoutsidis MSc Thesis

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<Document>
<Folder>
<name>VisualHermes</name>
<Style id="blueLine">
<LineStyle>
<color>ffff0000</color>
<width>3</width>
</LineStyle>
</Style>
<Placemark>
<name>Trajectory ID: 5 - Object ID: 0420</name>
<description>Trajectory Segment: 1</description>
<TimeSpan>
<begin>2001-02-09T16:48:53%Z</begin>
<end>2001-02-09T16:49:2372</end>
</TimeSpan>
<styleUrl>#bluelLine</styleUrl>
<LineString>
<altitudeMode>relative</altitudeMode>
<coordinates>
23.85472,38.00457,0
23.85752,38.00272,0
</coordinates>
</LineString>
</Placemark>
<Placemark>

</Placemark>
</Folder>
</Document>
</kml>

Figure 8-6: Trajectory KML results
KML results file can be visualized through Google Maps, as Figure 8-7 depicts.

Trajectory Data Visualization: The VisualHERMES Tool 75

loannis S. Gkoutsidis

’_.é VisualHERMES: Google Maps - Windows Internet Explorer
N

\g, http://localhost:27214/ViewKML.aspx?Map=Outpr ~ | "}| A | | Google

28 4 |52+ | @ VisualHERMES: Query | VisualHERMES: Go...

[jfEE=
2 .|

| B - & 'l-_;}’Eage' i Tools »

VisualHERMES: Google Maps

7]
{v]

‘lew B e] x

Do
T

mhﬂ
Ak
Q‘ﬂ

SFOROG Epnvne

AL

HMoUToAn
}

EBVOPXOU Marapion

FIWERED BV

£oogle

SliasrlAnignog Sodosmay
—

©2008 AzBopéva yapm Tele Atlas - Dpo.

A

@’ B @ Internet | Protected Mode: On
Figure 8-7: Trajectory visualized KML data

H100% -

8.4 Spatial Intersection query type

rectangle with the following characteristics.
[]

Upper right corner’s coordinates.
o Longitude (X): 479610.8

Latitude (Y): 4199349.5
Lower left corner’s coordinates.

o Longitude (X): 479356.75
Latitude (Y): 4199160.95

Figure 8-8 illustrates the web interface to build our query.

(0]
[]

o

Trajectory Data Visualization: The VisualHERMES Tool

In this scenario we want to fetch object’s 0420 trajectory with ID 6 and restrict it in a geographic

76

MSc Thesis

loannis S. Gkoutsidis MSc Thesis

’_.é VisualHERMES: Query - Windows Internet Explorer E@
@ u Z ‘g, http://localhost:27214/default.aspx - | ‘}| A | | Google L -]
26 & | @& VisualHERMES: Query [B - &b ~ [Page ~ {G Tools ~

A

VisualHERMES: Query

Spatial Reference IDentifier (SRID): 2100 Query Type: Spatial Intersection -
Object ID: 0420
Trajectary ID: 6

Upper Right Corner
Longitude: 479610.8 Latitude; 4199349.5

Lower Left Corner

Longitude: 479356.75 Latitude: 4199160.95
[€ Intemnet | Protected Mode: On H100% -

Figure 8-8: Spatial Intersection web interface
The query above is translated into a SQL query sent to HERMES. The actual query is depicted in
Figure 8-9.
SELECT
a.object id,
a.traj id,
a.mpoint.f intersection

(
MDSYS.SDO_GEOMETRY
(
2003,
NULL,
NULL,
MDSYS.SDO ELEM INFO ARRAY
(
1,
1003,
3
)
MDSYS. SDO_ORD INATE ARRAY
(
479610.8,4199349.5, 479356.75,4199160.95
)
), 0.001
) .to _clob () AS trajectory
FROM
mpoints a
WHERE
a.object id = 0420
AND

a.traj id = 6
Figure 8-9: Spatial Intersection SQL query
In a similar manner, the GML equivalent, a user can upload is presented in Figure 8-10.

Trajectory Data Visualization: The VisualHERMES Tool 77

loannis S. Gkoutsidis MSc Thesis

<?xml version="1.0" encoding="utf-8" ?>
<query queryType="Spatial">
<trajectory>
<objectID>0420</objectID>
<trajectoryID>6</trajectoryID>

</trajectory>
<spatial>
<polygon>
<exterior>
<linearRing>
<posList>
479610.8 4199349.5 479356.75 4199160.95
</posList>
</linearRing>
</exterior>
</polygon>
</spatial>
</query>

Figure 8-10: Spatial Intersection GML query

Figure 8-11 depicts the corresponding results page. Through this page a user is presented with two
hyperlinks pointing to the two result files (GML and KML).

'_r.é VisualHERMES: Query - Windows Internet Explorer El@
@ U Z ‘g, http://localhost:27214/default.aspx - | ‘}| A | | Google L -]
W [@ VisualHERMES: Query l l B - m = .k Page = (f Toolk ~

A

VisualHERMES: Query

Spatial Reference IDentifier (SRID): 2100 Query Type: Spatial Intersection -
Object ID: 0420
Trajectary ID: 6

Upper Right Corner
Longitude: 479610.8 Latitude; 4199349.5

Lower Left Corner
Longitude: 479356.75 Latitude: 4199160.95

Execute Query

GML File: Download GML file
KML File: View KML file

Done E O Internet | Protected Mode: On H100% -

Figure 8-11: Spatial Intersection results page

Each of the two files produced for the Spatial Intersection query type is illustrated in Figure 8-12 for
the GML file and in Figure 8-13 for the KML one.

Trajectory Data Visualization: The VisualHERMES Tool 78

loannis S. Gkoutsidis MSc Thesis

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<gml:featureCollection xmlns:gml="http://www.opengis.net/gml">
<gml: featureMember>
<gml:name>Trajectory ID: 6 - Object ID: 0420</gml:name>
<gml:description>Trajectory Segment: 1</gml:description>
<gml:TimePeriod>
<gml:begin>2001/02/12T17:45.36</gml:begin>
<gml:end>2001/02/12T17:45.51</gml:end>
</gml:TimePeriod>
<gml:LineString>
<gml:posList>
37.94409 23.76964 37.94306 23.76831
</gml:posList>
</gml:LineString>
</gml:featureMember>
<gml:featureMember>

</gml: featureMember>
</gml:featureCollection>

Figure 8-12: Spatial Intersection GML results

<?xml version="1.0" encoding="utf-8"?2>
<kml xmlns="http://earth.google.com/kml/2.2">
<Document>
<Folder>
<name>VisualHermes</name>
<Style id="blueLine">
<LineStyle>
<color>ffff0000</color>
<width>3</width>
</LineStyle>
</Style>
<Placemark>
<name>Trajectory ID: 6 - Object ID: 0420</name>
<description>Trajectory Segment: 1</description>
<TimeSpan>
<begin>2001-02-12T17:45:36%Z</begin>
<end>2001-02-12T17:45:5172</end>
</TimeSpan>
<styleUrl>#blueline</styleUrl>
<LineString>
<altitudeMode>relative</altitudeMode>
<coordinates>
23.76964,37.94409,0
23.76831,37.94306,0
</coordinates>
</LineString>
</Placemark>
<Placemark>

</Placemark>
</Folder>
</Document>
</kml>

Figure 8-13: Spatial Intersection KML results

Google Maps provides the ability to visualize our KML results file. The visualized results are

projected in Figure 8-14.

Trajectory Data Visualization: The VisualHERMES Tool

79

loannis S. Gkoutsidis

’_.é VisualHERMES: Google Maps - Windows Internet Explorer El@
(L)) - &) hitp/flocalhost27214 ViewkMLaspxiMap=Outpr ~ | 4 | X || Google o -
W |gg|v | & VisuaHERMES: Query |;é VisualHERMES: Go... | | B - = v [k Page v) Tools +
p
VisualHERMES: Google Maps
7 S & ‘ﬁ?\w
A o, o
El o,) Tl
s < g, %, f N
= %o, s, e
£l % %4, & G%’a
H < g S)
& cz% ‘0, o 2
)
% &
R % $ %
& % & e
3 =)
& Y) ot
7 o
s 4
5 @
At N
%
o
u E ! %q% q’”r
2 %
2 Povasoy - %
B = %)
%
vamxlw o)
28
5‘)
A Wyp,,ﬂu; \!@D(‘
Lt oot
=4 s é" aé"
% 3 &
o 7
i
Gg'l‘-}gle % g g E2008 Aszbopiva yapm Tele Atlas - Opoiypione
& [€ Intemnet | Protected Mode: On H100% -

Figure 8-14: Spatial Intersection visualized KML data

8.5 Temporal Intersection query type

MSc Thesis

In this case this objective is to fetch the object’s 0420 trajectory 5 and restrict it into a time interval with

the following characteristics.

2001 at
2001 at 4

e Begin date and time: February 9,
e End date and time: February 9,

4:48:53pm and
:53:53pm

The query builder provided by the web interface is illustrated in Figure 8-15, while its SQL and GML
equivalents are presented in Figure 8-16 and Figure 8-17 respectively.

/& VisuaHERMES: Query - Windows Internet Explorer

== S

@u - |§, http://localhost:27214/default.aspx

T8 | @ VisualHERMES: Query |

v|"':?| A | | Google

o -

| E - @ - [hPage v { Tools ~

VisualHERMES: Query

Spatial Reference IDentifier (SRID): 2100 Query Type: Temporal Intersection -
Object ID: 0420

Trajectory ID: 5

Start Time Paint: 2000 v ;2 ;9 =16 v, 48 . 53 ~

Stop Time Paint: 2000 » ;2 v ;9 - % 16 v 63 » .53 ~

-

Done

[€ Internet | Protected Mode: On

£, 100%

-

Figure 8-15: Temporal Intersection web interface

Trajectory Data Visualization: The VisualHERMES Tool

80

loannis S. Gkoutsidis

SELECT
a.object id,
a.traj_ id,
a.mpoint.at period
(
tau tll.d period sec
(

tau tll.D Timepoint Sec

(

2001,2,9,16,48,53

)y

tau tll.D Timepoint Sec

(

2001,2,9,16,53,53

)
) .to _clob () AS trajectory
FROM
mpoints a
WHERE
a.object id = 0420
AND
a.traj id = 5

Figure 8-16: Temporal Intersection SQL query

<?xml version="1.0" encoding="
<query queryType="Temporal">
<trajectory>

utf-8" 2>

<objectID>0420</objectID>
<trajectoryID>5</trajectoryID>

</trajectory>
<temporal>
<timePeriod>

<begin>2001/02/09T16:48.53</begin>
<end>2001/02/09T16:53.53</end>

</timePeriod>
</temporal>
</query>

Figure 8-17: Temporal Intersection GML query

MSc Thesis

The corresponding links pointing to the produced files are presented though the results page in Figure

8-18.

(& VisualHERMES: Query - Windows Internet Explorer

===

&I\ - &) npnocamostzrzajactaut.asp

“‘T‘AHGUD_:,':‘E

W I (& VisualHERMES: Query

o -

= Bl v & v [=>Page v {} Taoks ~

VisualHERMES: Query

Spatial Reference IDentifier (SRID): 2100

Object ID: 0420

Trajectory ID: 5

Start Time Point: 2000 ~ ;2 - ;9
Stop Time Point: 2000 » ;2 49

GML File: Download GMIL file
KMIL File: Wiew KML file

Query Type: Temporal Intersection

4 16 v 48 v 53 +
v 516 v .53 v, 53

"

Done

[@ € Intemet | Protected Mode: On

#100% -

Figure 8-18: Temporal Intersection results page

Trajectory Data Visualization: The VisualHERMES Tool

81

loannis S. Gkoutsidis MSc Thesis

The actual files constructed are presented in Figure 8-19 (GML results file) and in Figure 8-20 (KML

results file).

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<gml:featureCollection xmlns:gml="http://www.opengis.net/gml">
<gml: featureMember>
<gml:name>Trajectory ID: 5 - Object ID: 0420</gml:name>
<gml:description>Trajectory Segment: 1</gml:description>
<gml:TimePeriod>
<gml:begin>2001/02/09T16:48.53</gml :begin>
<gml:end>2001/02/09T16:49.23</gml:end>
</gml:TimePeriod>
<gml:LineString>
<gml:posList>
38.00457 23.85472 38.00272 23.85752
</gml:posList>
</gml:LineString>
</gml:featureMember>
<gml:featureMember>

</gml: featureMember>
</gml:featureCollection>

Figure 8-19: Temporal Intersection GML results

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<Document>
<Folder>
<name>VisualHermes</name>
<Style id="blueLine">
<LineStyle>
<color>ffff0000</color>
<width>3</width>
</LineStyle>
</Style>
<Placemark>
<name>Trajectory ID: 5 - Object ID: 0420</name>
<description>Trajectory Segment: 1</description>
<TimeSpan>
<pbegin>2001-02-09T16:48:53%</begin>
<end>2001-02-09T16:49:2372</end>
</TimeSpan>
<styleUrl>#blueline</styleUrl>
<LineString>
<altitudeMode>relative</altitudeMode>
<coordinates>
23.85472,38.00457,0
23.85752,38.00272,0
</coordinates>
</LineString>
</Placemark>
<Placemark>

</Placemark>
</Folder>
</Document>
</kml>

Figure 8-20: Temporal Intersection KML results
The visualized version of the produced KML file using Google Maps is presented in Figure 8-21.

Trajectory Data Visualization: The VisualHERMES Tool

82

loannis S. Gkoutsidis MSc Thesis

/€ VisualHERMES: Google Maps - Windows Internet Explorer (=N R
OO = |g, http://localhost:27214,/ ViewkKML.aspx?Map=0Outpr ~ | "f| X | | Google P '|
W [%H & VisualHERMES: Query | & VisualHERMES: Go... l_l + & v [Page { Tools ~

-

VisualHERMES: Google Maps

-
Aul

@ .
|I§ 'I
i

i

il
I
=
z
£
£
8
=2
2
g
iy

i
%

| ' M&{"Co'puu il

Done & [€ Internet | Protected Mode: On H100%

Figure 8-21: Temporal Intersection visualized KML data

8.6 Average Speed query type

In this scenario the goal is to fetch all available moving objects’ trajectories having an average speed
between 30 and 60 Km/h.

The web interface accommodating our query building is depicted in Figure 8-22.

& VisualHERMES: Query - Windows Internet Explorer | = |]
@O ~ | & http//localhost1832/Query | 43 | X || Google o |
v dhe I@vsuatHERME& Query]_\ v = v |2 Page i} Tools »

-

VisualHERMES: Query

Spatial Reference IDentifier (SRID): 2100 Query Type: Average Speed -

Average Speed
Lower Bound: 3,00 Upper Bound: 6,00

Done [€D Internet | Protected Mode: On F100% -

Figure 8-22: Average Speed web interface
The SQL and GML equivalents are presented in Figure 8-23 and Figure 8-24 respectively.

Trajectory Data Visualization: The VisualHERMES Tool 83

loannis S. Gkoutsidis MSc Thesis

SELECT
a.object id,
a.traj_ id,
a.mpoint.to clob() AS trajectory

FROM
mpoints a

WHERE
CAST (a.mpoint.f avg speed() AS number(*,2))
BETWEEN

3.00
AND
6.00

Figure 8-23: Average Speed SQL query

<?xml version="1.0" encoding="utf-8" ?>

<query queryType="Averagespeed">

<avgpeed>
<1BoundSpeed>3.00</1BoundSpeed>
<uBoundSpeed>6.00</uBoundSpeed>
</avgspeed>
</query>

Figure 8-24: Average Speed GML query

The corresponding links are provided to the user via the results page, which is presented in Figure
8-25.

1€ VisualHERMES: Query - Windows Internet Explorer =n Hol=<=)
@ U i |§, http://localhost:1832/Query - | "?| X | | Google P -
w ﬁl@mmmwamw] IE‘WQ'ﬁbwvgmmv

=

VisualHERMES: Query

Spatial Reference IDentifier (SRID): 2100 Query Type: Average Speed -

Average Speed
Lower Bound: 3.00 Upper Bound: 6,00

GMIL File: Download GML file
KML File: Wiew KML file

Done [¢3 €D Internet | Protected Mode: On #100% -

Figure 8-25: Average Speed results page

An excerpt of the results files produced by VisualHERMES is illustrated in Figure 8-26 for the GML
file and in Figure 8-27 for the corresponding KML file.

Trajectory Data Visualization: The VisualHERMES Tool 84

loannis S. Gkoutsidis MSc Thesis

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<gml:featureCollection xmlns:gml="http://www.opengis.net/gml">
<gml: featureMember>
<gml:name>Trajectory ID: 6 - Object ID: 0420</gml:name>
<gml:description>Trajectory Segment: 1</gml:description>
<gml:TimePeriod>
<gml:begin>2001/02/12T17:45.21</gml :begin>
<gml:end>2001/02/12T17:45.51</gml:end>
</gml:TimePeriod>
<gml:LineString>
<gml:posList>
37.94513 23.77097 37.94306 23.76831
</gml:posList>
</gml:LineString>
</gml:featureMember>
<gml:featureMember>

</gml: featureMember>
</gml:featureCollection>
Figure 8-26: Average Speed GML results

<?xml version="1.0" encoding="utf-8"?2>
<kml xmlns="http://earth.google.com/kml/2.2">
<Document>
<Folder>
<name>VisualHermes</name>
<Style id="blueLine">
<LineStyle>
<color>ffff0000</color>
<width>3</width>
</LineStyle>
</Style>
<Placemark>
<name>Trajectory ID: 5 - Object ID: 0420</name>
<description>Trajectory Segment: 1</description>
<TimeSpan>
<begin>2001-02-09T16:48:53%</begin>
<end>2001-02-09T16:49:237</end>
</TimeSpan>
<styleUrl>#bluelLine</styleUrl>
<LineString>
<altitudeMode>relative</altitudeMode>
<coordinates>
23.85472,38.00457,0
23.85752,38.00272,0
</coordinates>
</LineString>
</Placemark>
<Placemark>

</Placemark>
</Folder>
</Document>
</kml>

Figure 8-27: Average Speed KML results
The KML results file can be visualized though Google Maps as illustrated in Figure 8-28.

Trajectory Data Visualization: The VisualHERMES Tool

85

loannis S. Gkoutsidis

#100% ~

MSc Thesis
/& VisualHERMES: Google Maps - Windows Internet Explorer = | 5]
J = &) http://localhost27214/ViewkML.zspx?Map=Outp: + | 43 | X | [Google o -
N
Wk |88 ~ | @ VisualHERMES: Query |{éVisualHERMES: Go... | | B ~ o v [k Page v (i Tools ~
VisualHERMES: Google Maps
2
2 T 5
] i . paig
-1 P
2a %
=] L2
3
2
Lua“’"‘*y. J‘i’
Hhoutohn
!
; EBVORKOU Mo
e -)
s £
-
5
;)
2
£
FIWERED EY g
§01—’S|e E ©2008 Azbopéva xaprn Tele Atlas - DpoypRonc
& [& € Internet | Protected Mode: On
Figure 8-28: Average Speed visualized KML data

8.7 NotSet query type

As mentioned above, this type of query did not described independently. The only notice we have to

make is that any of the previously mentioned SQL queries, as any valid SQL query as well, can be typed
into the corresponding Query web interface’s field and Visual HERMES, is able to process and execute it,
retrieving the appropriate results as shown in Figure 8-29.

@ VisualHERMES: Query - Windows Internet Explorer

@ s~ | €] httpi//localnost27214/default aspx

[E=0{ |5
V|"}|A||Googz'e o -
o e |{éw;ualHERMEs: Query | |] = o v =k Page v i} Tools v
VisualHERMES: Query

Spatial Reference IDentifier (SRID): 2100

Query Type: NotSet
Query:

Execute Query

SELECT a.object_id, a.traj_id, a.mpoint.to clob() as trajectory FROM MPOINTS
WHERE a.object_id = 0420 AND a.traj_id = &

P

-

Figure 8-29: Manual build of SQL query

E 9 Internet | Protected Mode: On

#,100% -

Trajectory Data Visualization: The VisualHERMES Tool

86

loannis S. Gkoutsidis MSc Thesis

8.8 Upload GML query file

According to our schema specification, a user is able to construct more complex queries than the ones
discussed previously. Thus, she is able to build queries specifying temporal, speed and spatial operators,
all in one file.

In this scenario our intention is to fetch all the available trajectories between February 12, 2001 at
5:45:12pm and February 12, 2001 at 5:45:51pm, with average speed between 5 and 6 Km/h, building and
uploading a more complex GML query file, as presented in Figure 8-30.

& VisualHERMES: Query - Windows Intemnet Explorer = e 8
@) [&) nttp:iecalhost13200/Defauit.aspy [42] x | [Googte B
W | 8 VisuslHERMES: Query B = d v Page v ([Tooks »
VisualHERMES: Query
Spatial Reference IDentifier (SRID): 2100 Query Type: Upload Query File -
File: D:\HermesData\Final Quaries\Complex gmi ‘\\ P
r
Execute Query “c - E
() [} « HermesData + Final Queries [44 || search o
ws v BB Mew Folder
Name i Date modified Type o
E Documents __ Complecgmi 26/5/2008 213 pp GML File
p 3 |y Diraction.sql 22/5/2008 5:58 mp Microsoft SQL Se
B Music Direction (numOrients... 22/52008709np GML File
B Pictures __| Direction (vesbOrientat... 22/5/2008 7039w GML File =
Public MultiTemperal.gml 22/5/2008 6:04 mp GML File
5 Becently Changed |2 MultiTemporal.sql 22/5/2008558 mp Microsoft SQL Se
B searches & RawData.sql 133200888y Microsoft SQL Se
B Desktop - Spnfal.gml 22{5.':2‘.'08 G:05mp GHL File
M Computer 'y Spatial.sql 22/5/2008 5:58 mp Microsaft SQL Se
__|Speed.gmi 2275/2008 6:06 mp GML File
_-‘J Speed.sql 22/5/2008 7:10 mp Microsaft SQL 5e
Temogeal.ami 227572008 607 mu GML File s
Folders ~ m =
Flename: Complex.gml - |MFesr) -
[Comce]
Dene & @ Intemet | Protected Mode: On #100% -

Figure 8-30: Uploading a GML query file

The process of uploading a query file is rather intuitive. All a user has to do, is via the corresponding
Browse button, to select the appropriate file, or type the full file’s path into the corresponding File field.
VisualHERMES will validate and parse the uploaded document, as to extract the required information.

The SQL and GML equivalents for the above query are illustrated in Figure 8-31 and Figure 8-32
respectively.

Trajectory Data Visualization: The VisualHERMES Tool 87

loannis S. Gkoutsidis

SELECT
a.object id,
a.traj_ id,
a.mpoint.at period
(
tau tll.d period sec
(
tau tll.D Timepoint Sec
(
2001,02,12,17,45,21
) s
tau tll.D Timepoint Sec
(
2001,02,12,17,45,51
)
)
) .to _clob () AS trajectory
FROM
mpoints a
WHERE
a.mpoint.f avg speed()
BETWEEN
5.00
AND
6.00
Figure 8-31: Complex SQL query

<?xml version="1.0" encoding="utf-8" 2>
<query queryType="NotSet">
<complex>
<temporal>
<timePeriod>
<begin>2001,02,12,17,45,21</begin>
<end>2001,02,12,17,45,51</end>
</timePeriod>
</temporal>
<avgspeed>
<1lBoundSpeed>5.00</1BoundSpeed>
<uBoundSpeed>6.00</uBoundSpeed>
</avgspeed>
</complex>
</query>

Figure 8-32: Complex GML query

MSc Thesis

The user is presented with two separate links pointing to the just created results files, as Figure 8-33

illustrates.

Trajectory Data Visualization: The VisualHERMES Tool

88

loannis S. Gkoutsidis

VisualHERMES: Query

-

Spatial Reference IDentifier (SRID): 2100

Query Type: Upload Query File

File: D:\HermesData\Final Queries\Complex.gml
Execute Query
GML File: Download GML file
KML File: Wiew KML file
Done [€D Internet | Protected Mode: On #100% -

MSc Thesis
'€ VisualHERMES: Query - Windows Internet Explorer =] = |]
@O « | €] http//localhost13200/Defautt; ~ | 42 | x | | Google £ |
S daf I@\.risumHERME& Query]_‘ ~ (= v [:2:Page {} Toolk =

Figure 8-33: GML query file results page

Each of the two files produced for the Spatial Intersection query type is illustrated in Figure 8-34 for

the GML file and in Figure 8-35 for the KML one.

<?xml version="1.0" encoding="utf-8"

standalone="yes"?>

<gml:featureCollection xmlns:gml="http://www.opengis.net/gml">

<gml:featureMember>

<gml:name>Trajectory ID: 6 - Object ID:
<gml:description>Trajectory Segment:
<gml:TimePeriod>
<gml:begin>2001/02/12T17:45.21</gml:begin>
<gml:end>2001/02/12T17:45.51</gml:end>

0420</gml :name>
1</gml:description>

</gml:TimePeriod>
<gml:LineString>

<gml:posList>37.94513 23.77097 37.94306 23.76831</gml:posList>

</gml:LineString>
</gml:featureMember>
</gml:featureCollection>

Figure 8-34: Complex query GML results

Trajectory Data Visualization: The VisualHERMES Tool

89

loannis S. Gkoutsidis

MSc Thesis
<?xml version="1.0" encoding="utf-8"?>

<kml xmlns="http://earth.google.com/kml/2.2">
<Document>

<Folder>

<name>VisualHermes</name>
<Style id="blueLine">
<LineStyle>

<color>ffff0000</color>
<width>3</width>
</LineStyle>
</Style>

<Placemark>

<name>Trajectory ID: 6 - Object ID:
<description>Trajectory Segment:
<TimeSpan>

0420</name>
1</description>

<begin>2001-02-12T17:45:21%Z</begin>
<end>2001-02-12T17:45:5172</end>
</TimeSpan>

<styleUrl>#blueLine</styleUrl>
<LineString>

<altitudeMode>relative</altitudeMode>
<coordinates>
23.77097,37.94513,0
23.76831,37.94306,0
</coordinates>
</LineString>
</Placemark>
</Folder>
</Document>

</kml>
Figure 8-35: Complex query KML results

The user is able to visualize the KML results file via Google Maps, as depicted in Figure 8-36.

‘€ VisualHERMES: Google Maps - Windows Internet Explorer =& ==
_JQ [&] httpy/localhost13200/ViewKMLaspxMap=Outp + | ¢ | X || Googie o -~
o ISE,H@VWE\HERMES: Query | & VisualHERMES: Go...]_} B ~ @& v [Page v {3} Tooks =

m
VisualHERMES: Google Maps
P -
‘ 2 RN 28HC Oxwppiou
EEE s @ oy
o
o
o
a9,
0,
%
%,
%
B, P
RN &)
c
5)
=l o
Al e
0(\0“‘-
e
N\uw\nv.\nu
POMERED BV . « >
GODg'E “‘J‘rvﬂq; ‘,;}00 ©2008 AcboyFva ypr Tele Atlas - Opol yoAone
& @ € Internet | Protected Mode: On H100% ~
Figure 8-36: GML query file visualized KML data

Trajectory Data Visualization: The VisualHERMES Tool

90

loannis S. Gkoutsidis MSc Thesis

8.9 Conclusion

This was a brief demonstration, in the nature of a case study, for VisualHERMES prototype. The original
dataset belongs to R-tree Portal (R-tree Portal, 2005) representing school buses trajectories in Athens. All
the possible querying and resulting methods were discussed, but VisualHERMES is not a closed project.
Many other queries can be modeled in its web interface, setting a larger variety of possible uses to
HERMES.

Trajectory Data Visualization: The VisualHERMES Tool 91

loannis S. Gkoutsidis MSc Thesis

9 Conclusions

GML is an open standard, based on XML technology (Bray, et al., 2006), which describes the spatial and
temporal data transfer and storage in the Internet environment. Latest advances for extending the
standard’s model in version 3 (OGC, 2004) bearing in topologies representation, three-dimensional
geometries, surfaces and moving objects, add new dynamics to the acceptance and adoption of GML by
the community. The success of such acceptance, therefore, has evolved GML in a first class solution to
the problem of exchanging data between heterogeneous user groups.

XML data may be visualized using various methods. To visualize spatial and temporal information,
which are based on XML, in a web browser, requires transforming them into a graphical form, it can
interpret. There are various options, which provide solutions in this specific application domain, each of
which bears its own unique features. In the current research, we selected the KML formatting standard
(Google, 2008), because of the proximity to that of XML and because there are already implemented
engines for results visualization, without requiring the installation of additional software (plug-ins). One
such solution is the Maps service provided by Google Inc. (Google Maps, 2008).

XSLT (Clark, 1999) is a recommendation of W3C, for transforming an XML document to another.
Given that GML is a representation based on XML, the XSLT is able to convert GML documents into
KML. The respective conversion rules are defined within XSLT stylesheets. With the use of stylesheets,
we can obtain additional information from the original GML document, which may be introduced in the
final KML document.

Technically, it is possible to develop software for conversion of GML data in any form of graphic
representation, but the conversion from GML in KML, using XSLT, brings some advantages. It makes
use of XML, a technology on which many functions of the current Internet are based and is also
supported by the largest software vendors. The production process of various representations is relatively
simple because XML allows the separation of content data from presentation data. In addition, where the
GML data make use of a predefined schema, any set of data can be represented on the same stylesheet.

HERMES (Pelekis, et al., 2006) is an extension to the Spatial package of Oracle’s 10g object-
relational database management system. Through this expansion, we are able to manage spatio-temporal
data (trajectories) for moving objects, which alter their position and/or size, periodically or continuously.
In addition, it provides the necessary infrastructure for supporting the queries’ mission for the moving
objects managed, using spatial and temporal operators. Due to the fact that HERMES system, acts as a
data source for moving objects’ trajectories, in third applications, it seemed appropriate to implement a
wrapper, which would be able to format such information in terms of GML, before their mission to the
end user, with the ultimate aim of extending system’s interoperability. Furthermore, a user can receive a
visualized presentation of the results wanted, on electronic maps, using Google Maps services, via a thin
client application, such as a web browser. Therefore, data are formatted in accordance with the KML
standard.

For this thesis’s needs, VisualHERMES prototype has been designed and implemented. Through this
system, a user is able to connect to a web site, from where is able to send queries to HERMES, either by
choosing from a set of predefined formulas, or by sending a GML query file and take the results of that
query, based on GML standard. Finally, she is able to get a visualized (KML-based) version of the results,
projected on an electronic map using Google Maps service. All the above functionality has been
integrated under an intuitive web application.

9.1 Open issues

Although, Visual HERMES acts as a wrapper between HERMES and end users, providing only selection
queries, it is not limited to this functionality. Through the appropriate extensions and modifications in
application’s source code, the prototype will be able to accommodate several query types, such as
insertion queries. Thus, it will be possible for a GML file to be inserted, as far as their underlying values
are concerned, into HERMES, in a more bulk fashion. It has to be noted that during insertion queries
wrapper’s code has to provide all the transactional mechanisms, thus providing a more effective
environment.

An interesting variation of Visual HERMES would be the development of the wrapper for PDAs.
These devices provide the important advantage of increased portability giving thus access to the service

Trajectory Data Visualization: The VisualHERMES Tool 92

loannis S. Gkoutsidis MSc Thesis

of VisualHERMES, literally from any place. Furthermore, the majority of such devices are equipped with
GPS receivers. Given that there will be, sometime in the future, the ability to feed HERMES directly with
data from a GPS, a user will be able to send spatio-temporal data using her device and receive visualized
information via VisualHERMES.

It has to be noted that in many cases the visualized results are not accurate as projected on road maps;
see for example Figure 8-14, Figure 8-21 and Figure 8-36. This awkward behavior is either to errors in
transmitting the exact location of a moving object from the GPS, or imperfections in the road network, as
it appears on the map. The solution to this problem is the on demand use of the so-called Map Matching
algorithms (Brakatsoulas, et al., 2005). These algorithms are able to adjust a trajectory, by changing, the
original data, so that the final result of a visualized trajectory coincides in the current road network that
appears on the map.

Trajectory Data Visualization: The VisualHERMES Tool 93

loannis S. Gkoutsidis MSc Thesis

Bibliography

Abdelguerfi, M., Givaudan, J., Shaw, K., & Ladner, R. (2002). The 2-3TR-tree, a trajectory-oriented
index structure for fully evolving valid-time spatio-temporal dataasets. Proceedings of the 10th
International Symposium on Advances in Geographic Information Systems (ACMGIS '02) (pp. 29-34).
McLean, Virginia, USA: ACM Press.

Adler, S., Berglund, A., Caruso, J., Deach, S., Graham, T., Grosso, P., et al. (2001). Extensible Stylesheet
Language (XSL) Version 1.0. World Wide Web Consortium, Recommendation REC-xs1-20011015.
Agarwal, P. K., Guibas, L. J., Edelsbrunner, H., Erickson, J., Isard, M., Harpeled, S., et al. (2002).
Algorithmic issues in modeling motion. ACM Computing Surveys , 34 (4), 550-572.

Altova. (2005). XMLSpy - XML Editor. Retrieved from
http://www.altova.com/products/xmlspy/xml_editor.html

Bidochko, A., & Firman, O. (2005). Map Builder::Rapid mashup development tool for Google and
Yahoo! Maps. Retrieved from http://www.mapbuilder.net/

Bishr, Y. (1997). Semantic Aspect if Interoperable GIS (PhD Thesis). Wageningen Agricultural
University and ITC.

Brakatsoulas, S., Pfoser, D., Randall, S., & Wenk, C. (2005). On map-matching vehicle tracking data.
Proceedings of the 31st International Conference on Very Large Data Bases (VLDB '05) (pp. 853 - 864).
Trondheim, Norway: ACM Press.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (2006). Extensible Markup
Language (XML) 1.0 (Fourth Edition). World Wide Web Consortium, Recommendation REC-
xml20060816.

Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., Yergeau, F., & Cowan, J. (2006). Extensible
Markup Language (XML) 1.1 (Second Edition). World Wide Web Consortium, Recommendation REC-
xml11-20060816.

Carlisle, D., Ion, P., Miner, R., & Poppelier, N. (2003). Mathematical Markup Language (MathML) 2.0
(Second Edition). World Wide Web Consortium, Recommendation REC-MathML2-20031021.

Clark, J. (1999). XSL Transformations (XSLT) 1.0. World Wide Web Consortium, Recommendation
REC-xslt-19991116.

Clark, J., & DeRose, S. (1999). XML Path Language (XPath) 1.0. World Wide Web Consortium,
Recommendation REC-xpath-19991116.

Cooper, M. (2003, July). Antennas get smart. (283(7)) , 48-55. Scientific American.

Cox, S., Cuthbert, A., Lake, R., & Martell, R. (2004). Geographic Markup Language (GML) 3.1.1. OGC
Recommendation Paper.

Damiani, M. L., de Macebo, J. A., Parent, C., Porto, F., Spaccapietra, S., & Vangenot, C. (2007). A
conceptual view on trajectories. Proceedings of the 26th International Conference on Conceptual
Modeling. Aucklan, New Zeland: Springer.

de By, R. A., & Knippers, R. A. (2001). Principles of Geographic Information Systems (2nd Edition).
Enschede, The Netherlands: The International Institute for Aerospace Survey and Earth Sciences.

Deng, M., & Zhang, F. (2002). Spatial temporal queries and triggers for managing moving objects.
Proceedings of the 6th East-European Conference on Advances in Databases and Information Systems
(ADBIS '02) (pp. 88-97). Bratislava, Slovakia: Springer-Verlag.

DeRose, S., Maler, E., & Orchard, D. (2001). XML Linking Language (XLink) Version 1.0. World Wide
Web Consortium, Recommendation REC-x1ink-20010627.

Deutsch, P. (1996, May). RFC 1951 - DEFLATE Compressed Data Format Specification. Retrieved from
http://www.fags.org/rfcs/rfc1951.html

DotNet Zip. (2007, October). DotNet Zip Library. Retrieved from http://www.codeplex.com/DotNetZip
Engelschall, R. S., & Barbier, D. (2001). Website META Language (WML) http://thewml.org/.
EPSG. (2008). OGP Surveying & Positioning Committee. Retrieved from http://www.epsg.org/

Erwig, M., Guting, R. H., Schneider, M., & Vazirgiannis, M. (1999). Spatio-temporal data types: An
approach to modeling and querying moving objects in databases. Geoinformatica , 3 (3), 269-296.

Trajectory Data Visualization: The VisualHERMES Tool 94

loannis S. Gkoutsidis MSc Thesis

Erwig, M., Schneider, M., & Guting, R. H. (1997). Temporal and spatio-temporal data models and their
expressive power. Chorochronos Research Project.

Evjenet, B. (2007). Professional XML. Indianapolis, Indiana, USA: Wrox Press.
Google Earth. (2008). Google Earth. Retrieved from http://earth.google.com/
Google. (2008). Keyhole Markup Language 2.2. Retrieved from http://code.google.com/apis/kml/

Google Maps API. (2004). Google Maps API Concepts - Google Maps API - Google Code. Retrieved
from http://code.google.com/apis/maps/documentation/index.html

Google Maps. (2008). Google Maps. Retrieved from http://maps.google.com/
Guidi, D. (2007). Proj.Net. Retrieved from http://www.codeplex.com/ProjNET
Guting, R. H. (1994). An introduction to spatial database systems. The VLDB Journal , 3 (4), 357-399.

Guting, R. H., Bohlen, M. H., Erwig, M., Jensen, C. S., Lorentzos, N. A., Schneider, M., et al. (2000). A
foundation of representing and querying moving objects. ACM Transactions on Database Systems , 25
(1), 1-42.

Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching. Proceedings of ACM
SIGMOD Conference on Management of Data.

Harri, S., Mena, E., & Illaramendi, A. (2002). Monitoring Continuous Location Queries Using Mobile
Agents. Proceedings of the 6th East- European Conference on Advances in Database and Information
Systems (ADBIS). Bratislava, Slovakia.

Hilton, B. N. (2007). Emerging Spatial Information Systems and Applications. USA: IDEA Group
Publishing.

Houldling, S. W. (2001). XML - An opportunity for <meaningful> data standards in the geosciences.
Computers and Geosciences , 27, 839-849.

IBM. (2008). IBM - Data server - Informix - online processing. Retrieved from http://www-
306.ibm.com/software/data/informix/

Ingres. (2008). Enterprise Open Source Database Ingres. Retrieved from http://www.ingres.com/

International Organization for Standarization. (1988). SGML Document Interchange Format (SDIF) ISO
9069. Information Processing: SGML Support Facilities.

International Organization for Standarization. (1986). Standard Generalized Markup Language (SGML)
IS0 8879. Text and Office Systems, Information Processing.

ITC Educational Textbook Series. (2001). Principles of Geographic Information Systems: An
Introductory Textbook (Second Edition ed.). (R. A. By, Ed.) ITC.

Jensen, C. S. (2002). Research challenges in location-enabled M-services. Proceedings of the 3rd
International Conference on Mobile Data Management (MDM '02) (pp. 3-7). IEEE Computer Society.

Jensen, C. S., Friis-Christensen, A., Pedersen, T. B., Pfoser, D., Saltenis, S., & Tryfona, N. (2001).
Location-based services - a database perspective. Proceedings of the 8th Scandinavian Research
Conference in Geographical Information Science (ScanGIS '01), (pp. 22-25). As, Norway.

Joshi, B. (2007). Pro .NET 2.0 XML. USA: Apress.
Kay, M. H. (2002). Instant SAXON. Retrieved from http://saxon.sourceforge.net/saxon6.5.2/instant.html

Kothuri, R., Godfrind, A., & Beinat, E. (2007). Pro Oracle Spatial for Oracle Database 11g. New York,
USA: Apress.

Lake, R. (2001). GML - Enable the GeoSpatial Web.
Le Hegaret, P., & Le Hors, A. (2004). Document Object Model Level 3. World Wide Web Consortium.
Lilley, C. (2002). Graphics Activity Statement. World Wide Web Consortium, Activity.

Lu, C. T., Santos Jr., R. F., Spirada, L. N., & Kou, Y. (2007). Advances in GML for Geospatial
Applications. Geoinformatica, 11, 131-157.

Marketos, M., Frentzos, E., Ntoutsi, 1., Pelekis, N., Raffaeta, A., & Theodoridis, Y. (2008). Building real-
world trajectory warehouses. Proceedings of the 7th International ACM SIGMOD Workshop on Data
Engineering for Wireless and Mobile Access (MobiDE '08). Vancouver, Canada.

Mathews, B., Lee, D., Dister, B., Bowler, J., Cooperstein, H., Jindal, A., et al. (1998). VML - the Vector
Markup Language. Retrieved from http://www.w3.0org/TR/1998/NOTE-VML-19980513

Trajectory Data Visualization: The VisualHERMES Tool 95

loannis S. Gkoutsidis MSc Thesis

Microsoft ASP.NET. (2008). Microsoft ASP.NET. Retrieved from http://www.asp.net/

Microsoft Corporation. (2008). .NET Framework Developer Center. Retrieved from
http://msdn.microsoft.com/en-us/netframework/default.aspx

Microsoft Virtual Earth. (2008). Microsoft Virtual Earth: The Integrated Mapping, Imaging, Search and
Location Platform. Retrieved from http://www.microsoft.com/virtualearth/

Mokbel, M., Ghanem, T., & Aref, W. (2003). "Spatio-Temporal Access Methods", Special Issue on
Infrastructure for Research in Spatio-Temporal Query Processing. IEEE Data Engineering Bulletin , 26
(2), 40-49.

Murray-Rust, P., Rzepa, H. S., & Leach, C. (1995). Chemical Markup Language (CML). Imperial
College London.

OGC. (2008). oGC 05-033r9: Simple Features Schema. Retrieved from
http://schemas.opengis.net/gml/3.1.1/base/feature.xsd

OGC. (2004). OpenGIS Geography Markup Language. Retrieved from
http://www.opengeospatial.org/standards/gml

OGC. (2008). OpenGIS Standards and Specifications. Retrieved from
http://www.opengeospatial.org/standards

OGP. (2008). International Association of QOil & Gas Producers. Retrieved from
http://www.epsg.org/Geodetic.html

Oracle Corp. (2003). Oracle © Data Cartridge Developer's Guide 10g Release 1 (10.1). Retrieved from
http://www.oracle.com/pls/db10g/portal.portal demo3?selected=7

Oracle Corp. (2003). Oracle © Spatial User's Guide and Reference 10g Release 1 (10.1). Retrieved from
http://www.oracle.com/pls/db10g/portal.portal demo3?selected=7

Oracle Corp. (2008). Oracle Spatial, Locator, and Location-Based Services. Retrieved from
http://www.oracle.com/technology/products/spatial/index.html

Oracle Corp. (2008). Oracle® Database Documentation Library 10g Release 1 (10.1). Retrieved from
http://otn.oracle.com/pls/db10g/

Pelekis, N., Theodoridis, Y., Vosinakhs, S., & Panayiotopoulos, T. (2006). HERMES - A Framework for
Location-Based Data Management. Proceedings of the 10th International Conference on Extending
Database Technology (EDBT '06). Munich, Germany.

Pelekis, N., Theodoulidis, B., Kopanakis, 1., & Theodoridis, Y. (2004). Literature Review of Spatio-
Temporal Database Models. The Knowledge Engineering Journal , 19 (3), 235-274.

Pemberton, S. (2002). XHTML 1.0: The Extensible HyperText Markup Language (Second Edition).
World Wide Web Consortium, Recommendation REC-xhtml11-20020801.

Pfoser, D., & Jensen, C. S. (1999). Capturing the uncertainty of moving-object representations.
Proceedings of the 6th International Symposium on Advances in Spatial Databases (SSD '99) (pp. 111-
132). Hong Kong, China: Springer-Verlag.

Pfoser, D., & Jensen, C. S. (2003). Indexing of network constrained moving objects. Proceedings of the
11th ACM International Symposium on Advances in Geographic Information Systems Database
(ACMGIS '03) (pp- 25-32). New Orleans, Louisiana USA: ACM Press.

Pfoser, D., Jensen, C., & Theodoridis, Y. (2000). Novel approaches in query processing for moving
objects. Proceedings of Very Large Database (VLDB), (pp. 395-406).

PostGIS. (2008). PostGIS: Home. Retrieved from http://www.postgis.org/

Procopiuc, C. M., Agarwal, P. K., & Har-Peled, S. (2002). STAR-Tree: An Efficient Self-Adjusting
Index for Moving Objects. Proceedings of the Workshop on Alg. Eng. and Experimentation (ALENEX),
(pp. 178-193).

Raggett, D., Le Hors, A., & Jacobs, 1. (1999). Document Type Definition. World Wide Web Consortium,
Recommendation REC-html1401-19991224.

Raggett, D., Le Hors, A., & Jacobs, 1. (1999). HTML 4.01 Specification. World Wide Web Consortium,
Recommendation REC-html401-19991224.

Robinson, A. H., & Morrison, J. L. (1995). Elements of Cartography (6th Edition). USA: John Wiley &
Sons Inc.

Trajectory Data Visualization: The VisualHERMES Tool 96

loannis S. Gkoutsidis MSc Thesis

R-tree Portal. (2005). Spatio-temporal (trajectory) datasets. Retrieved from
http://www.rtreeportal.org/datasets/trajectories/buses.zip

Saltenis, S., & Jansen, C. S. (2002). Indexing of Moving Objects for Location-Based Services.
Proceedings of the International Conference on Data Engineering (ICDE).

Saltenis, S., Jensen, C. S., Leutenegger, S. T., & Lopez, M. A. (2000). Indexing the positions of
continuously moving objects. Proceedings of 2000 ACM SIGMOD International Conference on
Management of Data (SIGMOD '00) (pp. 331-342). Dallas, Texas, USA: ACM Press.

Sun Microsystems. (1994). Developer Resources for Java Technology. Retrieved 2008, from
http://java.sun.com/

Sun Microsystems. (1994). Sun Microsystems. Retrieved 2008

Thompson, H., Beech, D., Maloney, M., & Mendelsohn, N. (2004). XML Schema Part 1: Structures
(Second Edition). World Wide Web Consortium, Recommendation REC-xmlschema-1-20041028.

Tryfona, N., & Hadzilacos, T. (1997). Evaluation of database modeling methods for geographical
information systems. Chorochronos Research Project.

Tryfona, N., & Hadzilacos, T. (1997). Logical data modeling of spatio-temporal applications: Definitions
and a model. Chorochronos Research Project.

Vazirgiannis, M., & Wolfson, O. (2001). A spatiotemporal model and language for moving objects on
road networks. Proceedings of the 7th International Symposium on Advances in Spatial and Temporal
Databases (SSTD '01) (pp. 20-35). Redondo Beach, California, USA: Springer-Verlag.

W3Schools. (2008). DTD Tutorial. Retrieved from http://www.w3schools.com/dtd/default.asp
W3Schools. (2008). Schema Tutorial. Retrieved from http:// www.w3schools.com/schema/default.asp
W3Schools. (2008). XML Tutorial. Retrieved from http://www.w3schools.com/xml/default.asp

Wolf, M., & Wicksteed, C. (1997). Date and Time Formats. World Wide Web Consortium, Note NOTE-
datetime-19980827 .

Wolfson, O. (2002). Moving objects information management: The database challenge. Proceedings of
the 5th Workshop on Next Generation Information Technologies and Systems (NGITS '02) (pp. 75-89).
Caesarea, Israel: Springer-Verlag.

Wolfson, O., Sistla, A. P., Xu, B., Zhou, J., Chamberlain, S., Yesha, Y., et al. (1999). Tracking moving
objects using database technology in DOMINO. In R. Y. Pinter, & S. Tsur (Ed.), Proceedings of the 4th
International Workshop on Next Generation Information Technologies and Systems (NGITS '99). Volume
1649 of Lecture Notes in Computer Science (LNCS), pp. 112-119. Zikhron-Yaakov, Israel: Springer-
Verlag.

Wolfson, O., Sistla, P., Chamberlain, S., & Yesha, Y. (1999). Updating and querying databases that track
mobile units. Distributed and Parallel Databases , 7 (3), 257-387.

Wolfson, O., Sistla, P., Xu, B., Zhou, J., & Chamberlain, S. (1999). DOMINO: Databased fOr MovINg
Objects tracking. Proceedings of 1999 ACM SIGMOD International Conference on Management of Data
(SIGMOD '99) (pp. 547-549). Philadelphia, Pennsylvania, USA: ACM Press.

Wolfson, O., Xu, B., Chamberlain, S., & Jiang, L. (1998). Movings objects databases: Issues and
solutions. Proceedings of the 10th International Conference on Scientific and Statistical Database
Management (SSDBM '98) (pp. 111-122). Capri, Italy: IEEE Computer Society.

Zhu, H., Su, J., & Ibarra, O. H. (2002). Trajectory queries and octagons in moving object databases.
Proceedings of 2002 ACM CIKM International Conference on Information and Knowledge Management
(CIKM '02), (pp. 413-421). McLean, Virginia, USA.

Trajectory Data Visualization: The VisualHERMES Tool 97

loannis S. Gkoutsidis

Appendix

A VisualHERMES GML Schema Definition File

MSc Thesis

GML query files that are being uploaded into VisualHERMES, must meet the following query

definition schema, in order to be processed by the wrapper.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema i1d="QuerySchema" elementFormDefault="qualified"
xmlns="" xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:simpleType name="PosList">
<xs:restriction base="xs:string">
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ObjectID">
<xs:restriction base="xs:string">
<xs:maxLength value="20" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="TrajectoryID">
<xs:restriction base="xs:positiveInteger" />
</xs:simpleType>
<xs:simpleType name="UBoundSpeed">
<xs:restriction base="xs:double">
<xs:minInclusive value="0.0" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="LBoundSpeed">
<xs:restriction base="xs:double">
<xs:minInclusive value="0.0" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="Begin">
<xs:restriction base="xs:string">
<xs:pattern
value="\d{4}/\d{2}/\d{2}T\d{2}:\d{2}.\d{2}" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="End">
<xs:restriction base="xs:string">
<xs:pattern
value="\d{4}/\d{2}/\d{2}T\d{2}:\d{2}.\d{2}" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="QueryType">
<xs:restriction base="xs:string">
<xs:enumeration value="NotSet" />
<xs:enumeration value="Trajectory" />
<xs:enumeration value="Spatial" />
<xs:enumeration value="Temporal" />
<xs:enumeration value="AverageSpeed" />
</xs:restriction>
</xs:simpleType>
<xs:complexType name="LinearRing">
<xs:sequence>
<xs:element name="posList" type="PosList"
</xs:sequence>

Trajectory Data Visualization: The VisualHERMES Tool

/>

98

loannis S. Gkoutsidis MSc Thesis

</xs:complexType>
<xs:complexType name="Exterior">
<xs:sequence>
<xs:element name="linearRing" type="LinearRing"
/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Polygon">
<xs:sequence>
<xs:element name="exterior" type="Exterior" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="TimePeriod">
<xs:sequence>
<xs:element name="begin" type="Begin" />
<xs:element name="end" type="End" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="Query">
<xs:sequence>
<xs:sequence>
<xs:element name="trajectory"
type="Trajectory" minOccurs="0" />
<xs:element name="spatial" type="Spatial"
minOccurs="0" />
<xs:element name="temporal"
type="Temporal"™ minOccurs="0" />
<xs:element name="avgspeed"
type="AverageSpeed" minOccurs="0" />
<xs:element name="complex" minOccurs="0"
/>
</xs:sequence>
</xs:sequence>
<xs:attribute name="queryType" type="QueryType"
use="required" />
</xs:complexType>
<xs:complexType name="Trajectory">
<xs:sequence>
<xs:element name="objectID" type="ObjectID" />
<xs:element name="trajectoryID"
type="TrajectoryID" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="Spatial">
<xs:sequence>
<xs:element name="polygon" type="Polygon" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="Temporal">
<xs:sequence>
<xs:element name="timePeriod" type="TimePeriod"
/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="AverageSpeed">
<xs:sequence>
<xs:element name="1BoundSpeed"
type="LBoundSpeed" />
<xs:element name="uBoundSpeed"

Trajectory Data Visualization: The VisualHERMES Tool 99

loannis S. Gkoutsidis MSc Thesis

type="UBoundSpeed" />
</xs:sequence>
</xs:complexType>
<xs:element name="query" type="Query">
</xs:element>
</xs:schema>

Trajectory Data Visualization: The VisualHERMES Tool 100

loannis S. Gkoutsidis MSc Thesis

B VisualHERMES eXtensible Stylesheet Language
Transformations File

Each GML results file produced by VisualHERMES has to be transformed according to KML
specification, in order to be visualized by Google Earth, Google Maps etc. The transformation
rules are defined in the following file:
<?xml
version="1.0"

encoding="utf-8"
>

<xsl:stylesheet
version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:gml="http://www.opengis.net/gml"
xmlns:msxsl="urn:schemas-microsoft-com:xslt"
xmlns:ext="http://goutsidis.gr/extension"

exclude-result-prefixes="gml msxsl ext"
>

<xsl:output
method="xml"
version="1.0"
encoding="utf-8"
indent="yes"

media-type="application/vnd.google-earth.kml+xml"
/>

<msxsl:script language="C#" implements-prefix="ext">
<! [CDATA [
public string formatPosList (string value)
{
string[] res = value.Split (' '");
return res(1l] + "," + res[0] + ",0 " + res[3] + "," +
res([(2] + ",0";

}

public string formatTimeStamp (string wvalue)
{
string res = value.Replace("/", "-");
return res.Replace(".", ":") + "Z";
}
11>
</msxsl:script>

<xsl:template match="/gml:featureCollection">
<xsl:element name="kml"
namespace="http://earth.google.com/kml/2.2">
<xsl:element name="Document">
<xsl:element name="Folder">
<xsl:element name="name">

<xsl:text>VisualHermes</xsl:text>
</xsl:element>
<xsl:element name="Style">
<xsl:attribute name="id">

Trajectory Data Visualization: The VisualHERMES Tool 101

loannis S. Gkoutsidis MSc Thesis

<xsl:text>blueline</xsl:text>
</xsl:attribute>
<xsl:element name="LineStyle">
<xsl:element
name="color">

<xsl:text>ffff0000</xsl:text>
</xsl:element>
<xsl:element
name="width">

<xsl:text>3</xsl:text>
</xsl:element>
</xsl:element>
</xsl:element>
<xsl:apply-templates />
</xsl:element>
</xsl:element>
</xsl:element>
</xsl:template>

<xsl:template match="gml:featureMember">
<xsl:element name="Placemark'>
<xsl:apply-templates select="gml:name" />
<xsl:apply-templates select="gml:description" />
<xsl:apply-templates select="gml:TimePeriod" />
<xsl:apply-templates select="gml:Point"™ />
<xsl:apply-templates select="gml:LineString" />
<xsl:apply-templates select="gml:Polygon" />
</xsl:element>
</xsl:template>

<xsl:template match="gml:name">
<xsl:element name="name">
<xsl:value-of select="." />
</xsl:element>
</xsl:template>

<xsl:template match="gml:description">
<xsl:element name="description">
<xsl:value-of select="." />
</xsl:element>
</xsl:template>

<xsl:template match="gml:TimePeriod">
<xsl:element name="TimeSpan">
<xsl:element name="begin">
<xsl:value-of
select="ext:formatTimeStamp (gml:begin)" />
</xsl:element>
<xsl:element name="end">
<xsl:value-of
select="ext:formatTimeStamp (gml:end)" />
</xsl:element>
</xsl:element>
</xsl:template>

<xsl:template match="gml:Point">
<xsl:element name="Point">

Trajectory Data Visualization: The VisualHERMES Tool 102

loannis S. Gkoutsidis MSc Thesis

<xsl:element name="coordinates">
<xsl:value-of select="." />
</xsl:element>
</xsl:element>
</xsl:template>

<xsl:template match="gml:LineString">
<xsl:element name="styleUrl">
<xsl:text>#blueline</xsl:text>
</xsl:element>
<xsl:element name="LineString">
<xsl:element name="altitudeMode">
<xsl:text>relative</xsl:text>
</xsl:element>
<xsl:element name="coordinates">
<xsl:value-of
select="ext:formatPosList (gml:posList)" />
</xsl:element>
</xsl:element>
</xsl:template>

<xsl:template match="gml:Polygon">
<xsl:element name="Polygon">
<xsl:element name="tessellate">
<xsl:text>1</xsl:text>
</xsl:element>
<xsl:element name="outerBoundaryIs">
<xsl:element name="LinearRing">
<xsl:element name="coordinates">
<xsl:value-of
select="ext:formatPosList (gml:exterior/gml:LinearRing/gml:coordina
tes)" />
</xsl:element>
</xsl:element>
</xsl:element>
<xsl:element name="innerBoundaryIs">
<xsl:element name="LinearRing">
<xsl:element name="coordinates">
<xsl:value-of
select="ext:formatPosList (gml:interior/gml:LinearRing/gml:coordina
tes)" />
</xsl:element>
</xsl:element>
</xsl:element>
</xsl:element>
</xsl:template>

</xsl:stylesheet>

Trajectory Data Visualization: The VisualHERMES Tool 103

loannis S. Gkoutsidis MSc Thesis

C HERMES TO_CLOB() Function

In order for HERMES to be able to handle large trajectory datasets that can be sent to
VisualHERMES wrapper, a new function has to be implemented and added.

MEMBER FUNCTION to clob
RETURN CLOB IS

i PLS INTEGER;

str CLOB;
BEGIN
FOR 1 IN u tab.FIRST .. u tab.LAST LOOP
str := str |

B G
SUBSTR(TO_CHAR (u_tab (i) .m.xi), 0, 10) ||
SéBSTRL%O_CHAR (u tab(i) .m.yi), 0, 10) ||
SéBgTé(TgLCHAR (u_tab(i) .m.xe), 0, 10) ||
SéBSTRL%O_CHAR (u_tab(i) .m.ye), 0, 10) ||
Té_iHARLL_tab(i).p.b.M_Y) |
Té_CﬁgR(u_tab(i).p.b.M_M) [
Té_C$£R(u_tab(i).p.b.M_D) [
TO:CHAflal(u_tab(i) .p.b.M H) ||
Té_C$£R(u_tab(i).p.b.M_MIN) [
Té_C$£R(u_tab(i).p.b.M_SEC) [
TO CHAR(u_ tab(i).p.e.M Y) ||
Té_CﬁgR(u_tab(i).p.e.M_M) |
Té_C$£R(u_tab(i).p.e.M_D) [
TOZCHA&Lu_tab(i).p.e.M_H) |
Té_C$£R(u_tab(i).p.e.M_MIN) [
Té_C$£R(u_tab(i).p.e.M_SEC);

END LOOP;

return str;
END;

Trajectory Data Visualization: The VisualHERMES Tool 104

loannis S. Gkoutsidis MSc Thesis

D Ekxkteving MNepiAnyn ornv EAAnvIkA
Eicaywyn

Tpéxouoa Karadoraon

211G nuépes pag ot kivnrol ypnoteg sivar mepiocdtepotl and kabe dAAN eopd. Emmpocbeta, ot eEehilelg
670, oVOyYpove. cuotpata dwyeipiong Pacoewv dedopévav (Database Management Systems — DBMS)
€YOUV KOTAGTNOEL €QIKTY TNV amobnkevon kabe idovg mTANpoPopiag, moOv aPopd e dAPOPEG TNYEG
Kwvoopevav aviikeyévov (Moving Objects — MO). T'a mopddetypa, pe ™ Porbew tov (Global
Positioning Systems) GPS cvomudtov mAonynong Kot T@V KNTOV-0cOPHOTOV ETIKOWVAOVIOV gival
duvat 1 amobnkevon mANpogoplidV Tov oyetilovior pe T YEOYPUPKN 0éom evog KvovEVOL
OVTIKEWEVOL o€ cuvaptnom He Tov xpovo (Ewodva 1).

Wireless link

Database

Wireless link

Eikéva 1: Kivoupeva avTiKeipeva

e éva 0e0TePO emimedo, PpioKeTOL 0 GLVIVOCUOC AVTOV TOL £I00VG TNG TANPOPOPING OO TNV CKOTLY
TOV KIVOULEVOL OVTIKEWWEVOD, OMUIOVPYOVTOS TIC ETOVOUOLOMEVEG TPOYLEG KIVOOUEVMY OVTIKEIUEVMV
(Moving Object Trajectories — MOT). BéBata, n dtadikacio mapay®@yng Tpoyidyv amd &vo chHVOAO
onueiov oe cvvdptnon pe tov ypovo (Trajectory Reconstruction), amattel v Vmopén katdAiniov
AoyloKOD, TO omoio Ppicketal oTNV KOPLET TOL GLOTHLOTOG dlaxeipong Paocewv dedopévav Kot
dvvatol v LOVTEAOTIOUOGEL TIG OTATOVIEVEG OOUEG OEGOUEVMV Y10 TNV VTTOOTNPIEN YOPIKDV KOl YPOVIKOV
yopaktpotikdv (Euwova 2).

L]
=
[L)
(&)

L] .
. ! Trajectory {'
' Reconstruction |::>
/ Module “J

Eikova 2: ArAég TOoTT00£01i£G KOl TPOXIEG TTOU SnuIoupyouUvTal

To emdpevo otddo givar n tpopodocia ™G Pdomng dedopévev Kvoduevav aviikelpnévoy (Moving
Object Database — MOD) pe 0leg TiG amapaitnTeg TANPOPOPIES, MOTE VO, KATAGTOVV EQIKTEG 01 d1dPpopeg
Aertovpyieg €£0pvéng dedopévav (Data Mining — DM) kot Aapfdvovtog vedyn To eKAGTOTE YEOYPAPIKO
TA0ic10, OTMG €mionNg Kol To JPopo YemYpopwkd emimeda, Oa emrpéyouvv v egoymyn ypNoH®V
CUUTEPACUATOV KOL TEAIKA YVDONG, Y10 TO GLYKEKPIUEVO Tedio Epevvag (Ewcova 3).

Onwg yiveton BéPora avtiinmd, n e£6pvén yvoong, amotelel Evav POVO TOpEN, £VOG EVPVLTEPOL
mediov €pevvag TOv GYETICETOL HE TIC YWPO-YPOVIKEG TANPOPOPIEG KIVOUUEV®V OVTIKEWWEV®OV. AAAOL

Trajectory Data Visualization: The VisualHERMES Tool 105

loannis S. Gkoutsidis MSc Thesis

Topelg oto gv AOym medio, pmopel vo mephapfdavovy Ty e&ayyn TPOTOAWY, TV ONTIKOTOINGT TNG
TANPoPopiag K.4.

frajectory data analyst location data producers
£
4 J
- —
. [cation data (x, y, t)
\ L are recorded
¥ g \ /

Analysis
£ >
BQE?TEQNE Trajoctory Trajectory
ata is reconstruction
rerformed Data Cube <= module
(OLAP)

Aggregates are loaded in the
cata cube (ETL procedure)

Reconstructed trajectory
data are stored in MOD

Eikova 3: ApxitekTovikn Bdoewv Aedopévwyv Kivoupevwyv Avtikeipévwy (Marketos, et al., 2008)

"Eva kpioio onpeio yo tn Agrtovpyio EvOG GUGTNUATOS, TO 0TTOI0 APEVOS eV dlayelpileTol TpoyLES
KIVOOLEVAOV AVTIKEWWEVDV, AQPETEPOVL OE OTTOTEAEL TNV TIYN TOPOYNG TETOLOV TANPOPOPIDV GE Tpita PéPM,
glvan 1 petapopd twv dedopévav. ITo cuykekpyéva , 1 avaykn g S10-AETovpyIKOTNTAS 08 EMIMEdO
Sdrakvodpevmy dedopévav and kot mpog Eva xwpkd cvotnua dloyeipiong Paocewv dedopévav (Spatial
Database Management Systems — SDBMS), kpivetor emtoktikny. Q¢ da-Aettovpyikdtnta oty
TPOKEWLEVT TEPITTOOT VOEiTaL 1) SuVATOTNTO EVOC TETOOV GLGTNHATOS VO OTOGTEALEL OEGOUEVO, TTOL
VROKEWVTOL GE L0 CVTO-TEPLYPOAPOLLEVT]) GNLLOVGT), 1] OTTOTaL LLE T GEPa TG €lval avayvopioun oand kdde
EVOL0PEPOLLEVO IEPOG.

Mia tétota Tpocéyyion mpobmobitel T pHecoAdPnon, KatdAANAov AOYIoHIKOD, TO 0Tt0io Bar £xEl @G
GTOYO TN LETOTPOTT TV eEgpxOpevmV, amd to chotnua Stoyeipiong Pdoswv dedopévmv, dedouévey o€
L0 KOWAG 0modekTn LopPn OTtmg avth Tov eXtensible Markup Language — XML (Bray, et al., 2006) kot
(Bray, et al., 2006). EmnpdcOeta, ta e10epyOueva d€d0UEVE KOAODVTOL VAL GUUHOPO®VOVTOL BACEL EVOG
TPoKaBOPIGUEVOD GYNILOTOG, £TCL MOTE VO EMITUYXAVETOL 1) OTOS0YH TOLG Ond TO GVOTNLO dtoeiplong
Baoswv dedopévov Yo v mepautépm emefepyocio Tovg. ‘Eva avtayovioTikd TALOVEKTNUO OV
avakdntel omd v ypnion tov XML mpotdmov, eivar to yeyovdg OTL €mEWd) TPOKELTOL YL YOPIKA
dedopéva, pmopet va yiver ypnomn Tov dpeca oyxetilopevon pe avtd mpotdmov meptypapns Geography
Markup Language — GML (OGC, 2004). Mg t1g Mo npoécpateg LoloTo tpochnkeg oty €kdoon 3.1.1
tov GML (Cox, et al.,, 2004), eivar €@kt 1M povielomoinon TG0 YOPIKOV OGO Kol YPOVIKMOV
YOPOKTNPIOTIKDY, KobdG emiong kol 0 YEPIGHOG KIVOOUEVOV OVIIKEWEVOV, UECH TOV OVTIOTOL®V
EMEKTACEMV.

H swoayoyn unyoviopdv yuo t popeomoinon tov dedopévov (wrappers) BéPaia, dev mepropileton
otV xpnon tov XML kot GML npotonwv. Eivar duvaty n poviehomoinon tov dedopévav gite Paoet
GOV YVOOTOV KOl KOWE 0TodekT®V TPotiT®V, énwg avtd tov Keyhole Markup Language — KML
(Google Inc., 2008), 0 omoio @épel apketés opotdTTeg pe owtd tov GML, oAAd Kot m vAomoinom
TPOGAPLOCUEVAOV (custom) TPOTVTI®V OVOTAPAGTOONG, COUPMOVE LE TIG EKAGTOTE OVAYKEC.

H ypfion kowd anodextdv tpotinmv mov Pacilovior oto XML, 6mwg avtd tov GML 11 KML, gktog
TOV YVOOTOV TAEOVEKTNUATOV ONMG OVTO-TEPLYPAPT), EMEKTACOTNTA, €OKOAN emelepyocio Kot
dwaxivnon, aveEaptnoio TAATEOPUAS K.G., £XEL KO OPIOHEVO LELOVEKTILLOTO, TO, OTTOl0L EYKEWVTOL KLPImG
o1 PUOT TOV Y®PO-YPOVIK®V dES0UEVAOV KOl GTOV TPOTO LLE TOV 0010 ALTE LOPPOTOIOVVTAL. AVOPOPIKA
pe v XML poppomoinon twv dedopévav, npénet vo emtonpoviei 6tt ta GML éyypaga teivouy va etvon
peyaio o péyebog, kuplog Adym g ekteEVOVg tepapyiag mov vrdpyet oto GML 3. To yeyovdg avtd
K0o01oTd To &V AOY® dedopéVO MO OVOKOAN Kot TOADTAOKO otV eneéepyocio tovg, 1dtaitepa dtav
TPOKELTAL Y10 TNV TEPLYPAPT HEYAAOV GyKov dedopévmv. Mo Avon oto {Rmnua avtd, Bo propovoe va
dmaoet kdmotla pueBodog ovumicong (.. adydpiBpog Deflate (Deutsch, 1996)), n onoia Opwg £xel g dpeso
avTiKTUTTO TNV AVENGCT TG TOAVTAOKOTITOS TOV GLUGTIILATOG KOL TOV ¥pOvov enesepyaciog.

Soumepoopatikd, yivetar katovontd, 6t n ypnon XML wrappers/parsers, ot 0700l VIEGEPYOVTOL
ot dwdkacio avtodiayng dedopévav amd kol TPog Eva cvOTNU dwyeipiong Pacewv dedopévmv,

Trajectory Data Visualization: The VisualHERMES Tool 106

loannis S. Gkoutsidis MSc Thesis

OmOTEAEL oL OPKETA KOAT ADGT 6T0 (TN GTN S10-AEITOVPYIKOTNTOC, LE ATDTEPO GTOYO TN dNpovpyia
evOc yaiopd aovoedeuévou (loosely-coupled) GLGTAUATOG Y10 TO GLYKEKPIUEVO GKOTO.

AvTIKEigEVO Epyaoiag

To HERMES (Pelekis, et al., 2006) anotelel éva gvéhkto vmoAoyiotikd miaicto (framework), wavo va
vrootnpi&et Tov oxedlacd Kot TV avantuén xwpo-ypovikdv Bdcemv dedopévav. Emmiéov, mapéyet 6N
TNV OTOLTOVUEVT] LTOJOUN YW TNV OTOCTOAN €pOTNUdTtOV e pio Pdon dedopévav pe Kwodueva
avtikeipevo (MOD), t@v omoimv 1) tonobeoia, To oynfua Kot to péyebog pnetafdAlovTal Héca 6Tov ¥povo.

To ovomua HERMES, éyet avantuybel o¢ eméktaon, n onoia mapéyst Ywpo-Ypovikég duVOTOTITES
OTO OVTIKEWEVO-GYESLOKO cvotnua Pdcewv dedopévov g Oracle omv €kdoorm 10g (Oracle Corp.,
2008). EmmAéov, éxel oyedlaotel katd tétoo Tpdmo, doTe vo givatl duvatn 1 ¥pNom Tov Elte ®¢ apymg
YOPWKOV €lTe G YPOVIKOD GUGTHLOTOS, OAAL 1 KOPLOL CLVEIGPOPA TOL EYKEITOL GTNV VIOGTHPLEN NG
Suyeiplong ocvveyMdG KIVOOULEVMV OVTIKELLEV@V.

v tpéyovca ékdoot| tov, to HERMES, Aettovpyel og amobetiplo (repository) dedopévov TpoyLdv,
HEC® TOL OTOIOL O YPNOTNG KOTOANYEL VO €L 0T OLABECT] TOL £Vl GUVOLO TPOYLOV YLl TO KIVOVLEVO
OVTIKEILEVO TTOL TOV EVOLLPEPEL GE L0 AVTIKELEVO-CYECIOKT LopdT. Emmpdcheta, o ypriom¢ pmopet va
EKTEAECEL LI GEPA EPOTNUATOV 0TA SEG0UEVH TOV TPOYLDOV (YPNCLOTOIDVTOS YDPO-YPOVIKOVS TELECTEG
n/kar OxY kot vo AdPet ta avrictorya amotedéopata. Me tov podho Tov, ©C amobetiplo TpOYLDV
Kwovpevav avtikelpnévov, to HERMES, ypnoyonoteitol TtopdAinioa Kot @ wnyn topoxns 6edopévay og
L0 GEPA ETUEPOVS EPAPUOYDV, Ol OTOIES EMTELOVY GUYKEKPUYEVOLG GKOTTOVS, OTMG Y10, TAPAOELY AL
Aoyiopkd poptong dedopévav, eE6puéng yvaong, ontikoroinong tAnpoeopiog k.6. (Ewova 4). Me v
mapovca viomoinon PéPata, dnpovpYEiTal GUEGO M OVAYKN TNG LOPEOTOINGNG TOV OES0UEVOV TTOV
avtoAldocovtol peta&ld Tov anobetnpiov Kol TOV dAPOP®V EQPAPLOYDV, BACEL EVOG KOWE arodeKTOoD
TPOTOTTOV, LE UTMTEPO GTOYO TN dNUIOVPYiC EVOC TTO EVEMKTOV KOl ETEKTAGLOV GUGTHILOTOC,

Data Loading Data Mining Data Visualization
Software Software Software

Trajectory warehouse

HERMES

Movin
trajectory < 8

Object
data cube Database

4

Eikéva 4: To cuotnua HERMES

Me Kk0p1o 6100 TV avamrTuén eVOC To aveAPTNTOL KOl EVEAMKTOV GLUGTIILOTOG, KPIVETOL avayKaio 1
vAomoinom evog avdTePoL EMESOL EmeEepyacing Yio T CNUAVOT] TOGO TOV EIGEPYOUEVOV JESOUEVMV,
000 Kol TOV €EEPYOUEVOV OMOTEAECUATOV, pE TV xpnon tov GML zmpotdmov. Me Bdomn v tedevtaio
€kdoon Tov gv AMdyw mpotvmov (3.1.1), etvon dvvat) 1 avoTapAoTOOT Kot KIVOOUEVOV avTiKEWEVeY. H
nwpdtaon otnpiletar oty 180€a TG LAOTOINONG EVOG EMTALOV UNYOVIGHOD, 0 omoiog Oa mapepPdAieTon
peta&d too HERMES kot tng exdotote epappoyns (Ewkova 5) kon Ba etvon o€ 0éon vaou:

1. Tlopéxer éva mpokaBopiopévo ovvoro GML mpotdnwv, ta omoion Ba pmopoldv va
xpnoonomBodv and Tov YPNHOTN Yo TNV OTOCTOAN Y®PO-YPOVIKAOV EPOTNUATOV TPOG TO

Trajectory Data Visualization: The VisualHERMES Tool 107

loannis S. Gkoutsidis MSc Thesis

ocvotua dloyeipiong Paoswv dedopévav Kot to omtoia Bo petatpémovtat, ev cuveyeia, oe SQL
EPOTANOTA, £TCL OOTE VO gival dSuvarth 1 Tepaltépw enelepyucio TOVG Kot

2. AdPet ta SQL amotedéopata Kol TPV VT ATOGTOAODY THC® GTOV YPNOTN, VO LETATPETOVTOL
oe douég dedopévov Pacet tov GML mpotvmov, divovtag pe tov TpOTO 0vTd, GTOV TEMKO
YPNOTN €V OVTO-TEPLYPOPOLEVO GUVOLO OTOTEAEGUATMV GE OYECN HE TO EPDTNLO TOL
EKTELECE.

Data Mining Data Visualization
Software Software

Data Loading
Software

GML

N

Wrapper

SQL

Trajectory warehouse

HERMES

_ Moving
trajectory <:| Object

data cube Database

Vv

Eikéva 5: ETrékTaon Je TNV gilcaywyn wrapper

Me dedopévo 6tL to GML mpdtumo givan oe BEom va meptypayetl Yopikés Kot pun évvoleg, kabictatol
10aviky Avon t0c0o yio T dnuovpyic TpoYlOY KIVoOUEV®Y avTIKEWEVOVY (1e TV ypnon LineStrings oty
mAéov Paoikn Tovg Hopen), 0G0 Kot Yo TN cLVOdEi TV JESOUEVOV OUTOV Ond GALEG, UM XOPIKES,
TANPOPOpPieC, 0L 0TOiEG OUMG Vo OVAYKAIEG Y0 TNV TTEPLYPOAPN TOL ekdoTOTE avTikEévoy. EmmAéov, to
veyovog o0tt to GML mpoétumo Paciletar oy XML @uhocogio popeomnoinong dedopévav, kabiotd
dvvar t petatponn tov GML dedopévov oe onowdnmote XML popen ontikonoinong, 6mmg Vector
Markup Language — VML (Mathews, et al., 1998), KML k.d., epyacia mov pumopel vo enopiotel gite o
dwakopuotig (server) gite o meddng (client). Me tov Tpdmo 0LTO, EMTLYXAVETOL 1] GLECT) OTTIKOTOINON
TOV OmOTEAECUATOV, oL emoTpépoviol amd to HERMES, eni ydptov, pe yprion pnxovov tpitov
Kotaokevaot®mv, 6nmg Microsoft Virtual Earth (Microsoft Virtual Earth, 2008), Google Maps (Google
Maps, 2008), Google Earth (Google Earth, 2008) «.Ax.

Baogig Aedopévwv KivoUupevwy AVTIKEIHEVWV

H dwyeipion dedopévov mov mopdyovtor amd KWOOUEVO OVTIKEILEVO OOCYOAEL TNV EPELVNTIKN
Kowotnta Tov Xopikov Bacsov Asdopévov (XBA). Epappoyéc eviomiopov (positioning) gpeovifovron
T tedevtaio ypovia otnv ayopd. H kvt thiepovia kol 1o CLGTANATA TOPOKOAOVONOTG EUTOPIKOV
GTOA@V NON YPNOLUOTOLOVY TEYXVOAOYIN TAPAKOAOVONONG KIvovuevmV avTiKeEVoV. TTAEov, 01 GUoKEVES
EVIOMIGHOV £xovv TOAD HiKpd pEyebog Kol Pmopovv vo €yKaTooTafovv og Slopopadv €100V Kvntd
eEomMopd (portable equipment). Oleg avTtéc 01 GLOKELEG TAPAYOLY TOAD HEYOAO OYKO SESOUEV®V,
OmoTEAOVUEVO amd ypovo-onuocuéva otiypoto (time-stamped positions). H dwadikacio avty eyesipet
0époto petddoong (transmission), omoBnkevong (storage), vmoAoywopoV (computation) kot
ontikomoinong (visualization).

Trajectory Data Visualization: The VisualHERMES Tool 108

loannis S. Gkoutsidis MSc Thesis

Xwpo-xpovika dedopiva

Q¢ ywpo-ypovikd dedopéva opilovpe po kKAGon Oedopévev Tov TopAyETOL Omd TN GULCTNUOTIKY
TEPLYPAPT] TOV YDPO-YPOVIKMDV QULVOUEV®V. X®POo-Ypovikd @avolevo eivar €va @oivopevo Katd to
omoio 1 0éomn M/kar N €KTAON €VOG YOPIKOL OVTIKEWEVOL, ToL pmopel va givar onpeio 1 moAvywvo,
petaBdArovtat pe tov xpdvo.

H vrdpyovoa teyvoroyia mapéyet tn duvoaToOTNTO TETOIOV Agttovpyldv. O evtomiopds g BEomg evog
OVTIKEWEVOL pe peydin akpifeta eivat epktdg Le ypnon texvoroyidv GPS (Global Positioning Systems).
H dwoyétevon tov mapayodpevov dedopévov oe kOpPovg eneEepyaciog lvat epiktdg xapn oV avantuén
TOV ACVPLATOV THAETIKOVOVIOV.

H mpoavaeepbeica yeopetpikn Petaforr] otV KOTAGTACT TOV OVIIKEWEVOV UTOPEL va cupPaivel
gite e Tpomo SlokplTd gite e TPOTO GuVEYT. TNV TopoHoa EPYAGi, TO EVOLUPEPOV EMIKEVIPDOVETUL OTN
ocuveyn Kivnomn onpelok®dv aviikeyévov. H kivinon avt tapakoiovbeitar pe d10kpttd tpdmo. Oc@poiyle,
onA., 61t pe kdamowo pvbuo, Oyt amapaitnta otabepd, €va Kivovpevo oviikeipevo (eEomhopévo pe
KatdAANAN te)voloyia 6nmg GPS/General Packet Radio Service — GPRS) amootéliet otiypo avd taxktd
YPOVIKA SLOGTILLOTO.

KivoUpeva avTIKEigeva

O k600G pHog gival cVVOOTIoUEVOG 0o Kivovueveg povades. H kwvnticotnto (mobility) tov povadov
dnpovpyet kivnon (traffic). H xivnon avt dnpovpyei potifa (patterns). H avdlvon kot n katavonon
TV potifov kivnong pmopel vo odnynoel oty efaymyn ONUOVTIKOV ocvurepacudtov. Ouddeg
KIVOOLEVAOV OVTIKEWEVOV UTOpel Vo glval €vag GTOAOG 00 (QOPTNYG OV EKTEAOVV WETOQOPEG GTNV
EMKPATELN P0G XDPOG, meCol 68 eumopikd kévtpa, oTabpods Tpévmv N aepodpduia, KopdTolo Ge super
markets, {da oe Potéomovg K.Am. Olo aLTG T KIVOOUEVO OVTIKEIHEVO TPEMEL, QUOIKE, va glvot
eEOTAMGEVA e KATOL0L GUOKELT EVIOTIGLLOV.

H xivnon tov avtikelpnévov evogyetol vo DTOKEITOL 6E TEPIOPIGLOVS, GTEVE GUVIESEUEVOLG LE TN
@O0 TOV OVIIKEWEVOV TOV TOPUTNPOVVIOL Kol TOV YOPOV, 6ToV omoio kivovvtal. ['o mapdderypa, 1
kivnon evog melob epmodiletar omd KAmolo Lok umodlo. Avtifeta, 1 kivnon evog mhoiov meplopiletot
o€ OaAGOG1EG EKTACELS XOPIC OUWOG TOAAOVG TTepLoptopovg. H kivnon evdg ammvod vrdkettar oe akdun
AMyotepovg meplopioons kok. H kivnon og diktvo €xet peydro evdwapépov. o mapdadetypa, n kivnon
oynuétov oty TOAN YiveTal 6to 0d1Kkd TG diKTVLO.

TPOXI1€£C KIVOUHEVWYV AVTIKEIHEVWV

H «ivnon evog avtikeévov 610 emimedo pmopel vo avomopacTobel e TNV TPOYLL TOL GE TPLGOLAGTUTO
ovomuo a&éveov (Ewbdvo 6), to omoio cvvtibetal omd dbvo ywpikés (X, y) kol pion ypovikn (t)
GUVTETOYUEVT).
Mia tpoytd pmopet va tpoceyyiotel amo pio akolovdio and TAELAdEG TG LOPPNG:
<object id, timestamp, x coordinate, y coordinate>
Omnov:

e object_id: n povadIKY TOVTOTNTO TOV KIVOOLEVOD OVTIKELEVOL

e timestamp: TO YPOVOGNLO, TOV TEPLYPAPEL TNV YPOVIKN GTIYUN], OTIV OTOL0. aVOPEPETAL M)
A0

e x coordinate: n TETUNUEVT KO

ey coordinate: n TeTaypévn

O1 mAe1ddeg avTég etvarl ta oTiypaTa.

A@oD 01 cUVEYNG KOTOYPOPNG TNG TPOYLAS EVal TPUKTIKA 0dVuVaTN, 1| €0peoT TG BEomg avTiKEEVOD
Y. KAmolo, EVOLAUEST YPOVIKY OTYUn Umopel vo mpokvwel pe mapepPfoin. H ypappukn mapepfoin
KPIveTol €MOPKNG YO TIG TEPIOCCOTEPES EQPAPUOYES. EvaAlokTikd, mo moAOTAOKES TEYVIKES, OMMG TO
molvdvopo splines, pumopovv va ypnowyomombodv yioo TV KoAVTEPN ektipnon ¢ 0éong Tov
OVTIKELEVOL GE YPOVIKEG OTLYHES Y10 TIG OTTOTEG OEV VTLAPYEL TANPOPOPiaL.

OeOPOVTOS YPOUUIKT TOPEUPOAT, To YVOOTA onpeia Bewpodvtat dkpa VBVYPAUI®Y TUNHATOY KoL 1
TpoyLd mpooeyyiletor amd pio TeOAAGUEVT] TOAD-YPOLLUT|.

Trajectory Data Visualization: The VisualHERMES Tool 109

loannis S. Gkoutsidis MSc Thesis

[~

-

X
Eikéva 6: AvatrapdoTaon TpoxXIdg KIVOUUEVOU OVTIKEIMEVOU (X, Y, t)

EPpWTNHATA OE€ KIVOUHEVA AVTIKEIMEVA

Ta cvomjpata Swoyeipiong dedopévov mov mapdyovior omd Kvovpeva avTikeipeva oesilovy va
amokpivovtal og ddpopa gpotiuota. Ta epotiuoto 0éong (location-based) agopovv v kHpla
TANPoPopia IOV KaTaypaPEL £va GVGTNHA. AlokpivovTal ot

e Epotmuata xwpo-ypovikod mapabipov: Eeapudletar évo ywpikd Kot éva ypovikd mopddupo
GLYKEKPILEVOD VPOV KOl ETAEYOVTOL TUIOTO, TPOYLDY TOV TO TELVOLV.

e Epotmuota eyydtepov yeitova: Evpeon k-mAnciéotepmv avrikelpévav c€ KAmowo GAAO
avtikeipevo. Ov yeitoveg eivar avtol mov PpéBniav kovid pe Pdaon kamolo HETPIKN TNg
arootaons (Eviheidela, Manhattan k.0.) og avtiotoyo ypovoonpa.

e Epotjuoata kipaxovpevng ondotaons: Opota pe ta epotipata yyvtepov yeitova. H dtapopd
TOVG E€YKEITOL GTO YEYOVOS OTL dev avalnrovvral k avrikeipeva, ahdd 0 KATAAOYOG TOV AOTMV
avtikelévov pe duitagn Pacel g amdoTaoNG.

e Epotmuoata ypovikod tepayiov: avolnmmon 0écemv avTIKEWEVOD Y10 GUYKEKPIUEVO YPOVIKO
mapdOvpo.

A£IKTOS0TNON KIVOUHEVWYV AVTIKEIHEVWV

H ovyypovicuévn emomteior (online) peydAov apifpod kvodpevev oviikelévov 0étel dvokola
TPOPAUATO GYETIKA [LE TNV OMOTEAECUATIKT TPOOTEANGT] THG TANPOPOpiac. Ady®m Tov peYGAOL dyKov
™mg TANpoQopiag, n xPNoN SIoKOL KPIVETOL OVOTOQEVKTY. LUVETMG, 1 ENVONGCT KOTAAANA®V SOUMV
dedopévav deiktmv N evpetnpiov (indexes) gival avaykaio. Ot teyvikég mov &xovv npotadel akolovBodv
Vo kvping tdoeic. H mpd™ €ival ovth OV GUUTEPLPEPETOL GTNV XPOVIKN O1AGTACT MG Hiot oKOUT
dudotaon (time-oblivious). H devtepn, avapépetar og kivntég dopég dedopévov (kinetic data structures)
KO EMYELPEL TNV KATOOKELT €VOG SUVOLLKOD OElKTN OTNV KOPL UVAUN Yo TNV TopakoAovOnon tng
KIVNOTG OMUEWKOV OVTIKEWLEVDV.

H deiktodotnon kvodpevav aviikeévov Paciletol Kupimg o VIAPYOVCES TEXVIKEG Y10 XWPIKA
ovtikeipeva, pe kopiopyo to R-tree (Guttman, 1984). Taporiayéc, 6mwg to Spatio-Temporal R-tree -
STR-tree (Pfoser, et al., 2000), to Trajectory-Bundle tree — TB-tree (Pfoser, et al., 2000), to Time-
Parameterized tree — TPR-tree (Saltenis, et al., 2000), to R*"-tree (Saltenis, et al., 2002) kat T0 STAR-
tree (Procopiuc, et al., 2002), tpoorafodv vo KOADWOLV TNV avemdpkelo Tov R-tree otn deiktodotnon
KIVOOUEVAOV OVTIKEIHLEVAV.

Ap)iTekToVvIKN Kal AsiTtoupyikoTnra BA KivoUpuevwy AVTIKEIHEVWV

Mw BA Kwovpevov AvVTKEWEVOY omoteleiton omd oTATIKY YOPIKN (YEOYPOPIKN) Kol YPOVIKY|
TANPOPOPIa, HEPOG TNG OTOTOG EVILEPDOVETOL OE TPAYHOTIKO XpOvo. H otatikn mAnpogopia mepthappdvet

Trajectory Data Visualization: The VisualHERMES Tool 110

loannis S. Gkoutsidis MSc Thesis

YOPTEC, TANPOPOPIEG OYETIKG LLE TO KIVOVUEVO, OVTIKEIIEVO Ko o)ESL0L Kiviiong (Yo Tapadetypa, To Oynua
v Eekva and) d1evbuvon a Kot Kavel Tapadocels oTig digvbivoeig b, ¢ kot d).
FUIE0 POV O TP aBkpon
Eﬂmff."ﬂm En_.fq'r]."- EYVUFTENON YEITOV
(EMIKLADTTEL, SVTOS Kl) KRR OUHLEVH S DTG TRaT)S

FOOVIRGD TELEIon

E ot poeta
B KIVOTEYD =
il LY ETIEL
EVTIKEIpE VT L 2
Tomodioyika " coipyetm
EPCITI| LTI — daayilel
L TR
= LpoTipete Tpoyias —
— = T
. = BivebiEion anisTo
Epovrijpara -
. . . OV, R OIONT] S
AT TT . .
= npocovotehiopog

- TCQIDT] KRy

Eikéva 7: Katnyopieg epwTNUATWY G& KIVOUHEVA OVTIKEIHEVA

Ot evnuepdoelg Tpoypatikod xpodvov mepthappavovy v tpéyovco Béon Kot GAAN mAnpogopia
TPoEPYOUEVT 0o ooBnTPeG. AvTtd givar évo 10aTd PoVTELD. NV TPA&n, 1 TANpoopio BEong propel
va punv eivar ohokAnpopévn, dniadn pumopel va etvor dwabéotpec povo pepég tpoyés. Emiong, n BA
pmopet va givat Katavepunuévn avti KEVIPOTomuévn.

Télog, N Katavoun Pmopel va eival avapueso oTo 1910 To KIVOOLUEVE OVTIKEIHEVO EKTOC amd TNV E101KT
TePInTOoN, 010V T0 KAHE KIVOOUEVO aVTIKEIEVO amodnkevet T dikn Tov TAnpogopia BEong.

M A1 yevikevon amotehel 1 TANpoeopio. aeOnpmv, N omoia oxetiletan pe v TANpopopia
xpovov Kot Oéong. Mepwd tétown mapadeiypata givol TO EmMIMESO TOV KOVGIL®V, Ol EIKOVEG
neparlovtog, 1 deopevpévn TAnpoeopio and Tovg aentmpeg (Yo mapddetypa, 1 Swbecipuotnta piog
0éomg oto YerToviKO MaPKIVYK) KaOMG Kol évo athynuo o€ 0mOoTAGT, TO 0Toio dNAdveTal and Evov
aleOnTpa aepdoUK®V.

M BA Kwovpevov Avtikelpnévov anobnkedetl kat dtayepiletor) 0€om Kabdg kot GAAN duvopukn
TANPOPOPIO GYETIKN e TAL KIVOOUEVA OVTIKEILEVA. ATO EMAVO TPOG T KAT®, UTOPEL VO TEPLYPAPEL GOV
pio apyITERTOVIKT TPLDV EMTESDV:

1. Muw meptBorn Aoywopikod (software envelop), n omoia dwyepiletal Ta duvapkd ototyeio Tov
GUGTNLLOTOG.
2. 'Eva Xvompa Feoypagiknc [IAnpogopiag (GIS), to onoio mapéyet d1dpopeg Aeitovpyies yia)
dwayeiplon g YE@YPAPIKNG TANPOQOPIaS.
3. "Eva Zdompa Awyeipiong BA, 1o omoilo amobnkevet kot dtayepiletar Ty mAnpogopic.
Emopévag, éxouvpe ypnoponomost éva DBMS kat éva GIS yio va katackevdoovpe pio miateoppo
Yo TV avATTUEN EQOPHOY®OV VINPESIOY TTov givar Paciopéveg ot Béon. H minpogopia Bécemv kot
GALEG TIHEG SUVOIKDY YOPOUKTPIOTIKOV PEOLV O TO KIVOOHEVO OvTIKEILEVO LEYPL eKel OOV PBpiokeTal
1N BA Kwobpevov Aviikeylévov (Yevikd, oe proxies Kot o€ GAAN GTOYEl0 TOV AGVPLATOV HIKTVOV).

NV TponyoOUeEVT TTEPLYPaPT VITOBECaE Pio KEVIPIKT apylteKTOVIKT. Q20T000, dev gival peaAloTikd
va oke@Bovue vav KEVIPIKO proxy, 6mov 1 evolopEpovca TANPOEOpio GTEAVETOL amd OAC TO KIVOOUEVOL
avtikeipevo Kot o onoiog Ba. pmopovoe vo KatakAvcel amd v minpopopic ovt. Me tov tpdmo, e ToV
01010 TO. ACVPUOTE SIKTVLO ATOTEAOVVTAL OO VoL dikTLO oTotXEi®V (proxies), |e Tov B0 TPOTO Kot Ta
oTolyEld OVTE TAPEYOLY GUVOEGILOTITO OTO KIVOOUEVO OVTIKEILEVO TTOV PPicKOVTOL GTNV TEPLOYN TOVG.
TN 1o A0y0 avtod, B propovcape va Bewpnoovpe, 6TL | TPOGEYYION GV EIVOL KATAVEUTLEVT] KOl IKOVN
va dwyeplobel epotpata Bécemv, To omoio. TEPIAOUBAVOVY KIVOOUEVO OVTIKEILEVO KOTOVEUNUEVA
YEQYPAUPIKA.

Trajectory Data Visualization: The VisualHERMES Tool 111

loannis S. Gkoutsidis MSc Thesis

Emopévag, ta epotpate Ba mpénet va amavinBovv pe évov avéntikd tpomo (ovd meptoyn). T
cuvéyeln, 0o TPEMEL TO SOPOPETIKA OMOTEAEGUATA VO GVVELOCHOVY avadPOpIKE, BGTE Vo Anedel éva
tehMkd anotédeopa mov Ba mapovoiacbei oto ypnot. H makd teyvoroyia (Mokbel, et al., 2003) pmopel
va gtvor pio KoAr ETA0YH Yo VO VAOTOGOVLE io TapOHLOLd TPOGEYYIOT).

Ot kwvnroi Tpdxtopeg (mobile agents) Ba petaeépovy TV TANPOoEopia (ETYUEPOVS EPOTNLATO KO TIG
OTOVTINCELS TOVG) GTO 0oTO HEPOG, Oa yepilovral ta mpoPANaTe dlaGVVIESG KOl TIC KABVGTEPTOELG
TOV OIKTVOL Kol Yo, avtod B Tpocapudlovior Kahd 6T SUVOUIKT UGN TOV aGVPUATOV SIKTO®V. Mia
EPEVVNTIKN EPYOCIO TOV YPNOLUOTOIEL TNV TEYVOAOYia ovTh amoteAel 1 avapopd (Harri, et al., 2002). H
KOTOVEUNUEVT TPOGEYYION TOL TEPLYpAPeTal ekel KAlpakdvetal kaAd, katt o omoio givar &éva mOAD
GNUOVTIKO YOPAKTNPLOTIKO GTO SUVOLIKA TEPPAAAOVTO, OTMG TO. ACVPUATO SIKTLO.

E@pappoyés Bacewv Aedopévwv KivVOUNEVWY AVTIKEIHEVWV

Kdmoteg amd 11g epapproyéc mov pmopodv va ovartvyfovv onpldpeves otig teyvoAoyieg Tov Pdoewv
JEJOUEVOV KIVOOUEV@OV OVTIKEWLEVOV gival ol €ENG:

Avoaxdioym yeoypapkav anyov: Evag xpnotng kvntod TAEpd@voy Tapéyel Tn LEAAOVTIKY TpoyLdL
TOV Gg £vav TOPOYO VMNPECIOV KOl TEPYUEVEL TNV OTAVINGY G EPOTNLOTO/EVEPYOTMOCEL; OTWS:
Evnuépwaé ue otav Ppebn 2 yiliouetpa pokpid amé éva cevodoyeio mov Exel diabéoiua dwpdtia pe KOoTog
Ayotepo amo X evpa yia kabe diavoxrépevon. O TAPOYOG VINPESIOV ypnoiponotel pio BA kwvodpevov
AVTIKEWEVODY Yo, vo. amofnkedoet v mAnpoeopio. Béong TV TEAATOV TOV KOlU OTOVIO OTO
EPOTIHLOTO/EVEPYOTOMOELS TOVG.

Metagopéc: Ta To&l, ot TaYVUETAUPOPES, Ol OTOKPICELG O ENEIYOVTA TEPLOTATIKA, TOL LECH LETAPOPES,
0 £€leyyog Kukhooopiag, N dlayeipton oAvcidag TpopnBeldy Kot 1 SOUETUKOMOTIKY OTOTELOVV HEPTKEG
povo eQoploYES. Ze OAEG OUTEC TIG PAPUOYES, T BA Kivobpevov aviikelévoy anobnkevsl Tic TpoyLég
TOV KIVOULEVOV OVTIKEWEVOV KOl AmovTd o€ epoTiuata Onwe: [loio tali avouéverar va Ppebei eyydrepa
o€ uio ovykexpiuévy oevBovon oe 30 Aemtd. ano twpa. I1ote Oo pOaoer to lewpopeio o€ pio. oLYKEKPIUEVH
otdon. [16oes popés katd, T O10pPKELa TOV TPONYOVUEVOD UIVa, TO JEWPOPELD 25 Apynoe TePLoGOTEPO OTO
10 Aemza.

Eumopo ko mwdinon Oéong: XTig eQapUOYES OVTEG, KOLTOVIOL KOl GAAT TANPOQOPio. TOANCE®V,
Boaoiwopévn ot 6éom, mpowbeitar oe pio KNt GLOKELY TOL TPOPAAEL VIOBETIKG TIC €MAOYEG TOV
xpfiom.

"Eleyyog evaéplag kukhopopiog: ZALUEPO Ol TOKTIKEG EUTOPIKEG TTNOEL 0KOAOVBOVV GLYKEKPIYLEVOLG
0epodLadPOLOVG, OAAG Ge TepinTwon piog eAevBepng TTNOMG, LI TUTIKT EVEPYOTOINGT TPOG TOV TVPYO
evaépov eréyyov Ba MTav: Bpeg olo ta {edyn agpomiovawv mov Ppickoviar o€ mopeia cOYKPOLONS 1]
avauéverol vo, fpiokoviol puetold tovg o€ amootaoh HKpoTepy amwo 1 yiiopetpo.

Avvopikn koatavoun €bpovg {dvng oto diktva keAldv: Ot mapoyol VANPECIOV KEMDY UTOPEL va
EVTOMIOOLV TOVG TEAATEG TOLG Kol Vo OALAEOLV dvvapukd TV Katavour tov gvpovg {dVNg o€
SLPOPETIKA KEALEL, Y10 VO IKOVOTOUGOVV THV SLOPOPETIKT] TUKVOTITO TOV TEAATOV TOVG,.

Oracle Spatial

H Oracle Database amotelel éva and to dadedopévo Zvotiuoto Awayeipiong Bdoswv Aegdopéveov
(DBMS). Xty mapovco epoppoyn ypnoyomomdnke n ékdoon Oracle Spatial 10g, | omoio vrootnpilet
xopikég Pdoeig dedopévav, dnradn Pacelg dedopuévay oTig omoieg eival duvarr extmiéov 1 amobnkevon,
E100YMYT, EVNUEPMOT Kol OTOSOTIKOG YEPIOUOS (HE TO YWOPIKA EVPETNPLO) YOPIKDOV SESOUEVOV KoL
omodoTIkn deEaymyn YOPIKoOV erepowoemy o avtd. [TapdAinio eival duvatdg Kot o TaVTOHYPOVOS
YEPLIOUOG U1 YOPIKADV dESOUEVOV.

HERMES-Moving Data Cartridge

To ovomuo HERMES éyet viomomBel ¢ €méKTOON OCULOTNUOTOC, TOL TAPEYEL YWOPO-YPOVIKEG
Aertovpyieg 010 AVTIKEUEVO-Xyeclokd Zvotnpo Alayeipiong Bdaoeswv Aedopévov (Object-Relational
Database Management System — ORDBMS) g Oracle 10g. Eivat oyediocpévo katd 1£1010 TpOTO OOTE
vo pmopel va ypnowomombel ®g €va apydg Yopwd &ite ¥povikd GUOTNHO, OAAL M KOPLO
AELITOVPYIKOTNTA TOV £yKELTon otV LROSTHPIEN TG Movielomoinomng (modeling) kol omdkpiong oe

Trajectory Data Visualization: The VisualHERMES Tool 112

loannis S. Gkoutsidis MSc Thesis

epoTpHaTe (querying) mov a@opodv cuvey®S Kivovpevo avtikeipeva. Mio tétoln cvAloyn tomwv
dedopévav kol tov avtiotoyev pebddmv tovg opilovial, VAOTOOHVIOL KOl TOPEXOVIOL O ETEKTACT
(data cartridge) tg Oracle. To HERMES Moving Data Cartridge (HERMES-MDC) omotelel tov
akpoyoviaio Ao otnv 6An apyitektovikny tov cvotipatoc HERMES. Tlapéyet 6ieg Tic amapaitnteg
Aertovpyieg yuo T dnpovpyia Kivodpevev Kot petafailopevov oe péyedog 1/kat oto medio Tov ypovov,
yveopetpidv. Kobéva amd ta kivovpeva ovtd aviikeipeva eivol epodacpévo pe o opddo pebddwv, ot
0mole mAPEYOVV GTOV YPNGTN TOV GLUGTHLLATOS OAL TO ATOPAITNTA EPYOAELR VIO TV OTOGTOAN Kot Ay
EPOTNUATOV KOL TNV OVIAVGT YOPO-YPOVIKGOV dedopévev. Me v evooUdT®oTn TG AELTOVPYIKOTNTOG
tov HERMES-MDC omv yAdooa yepiopov dedopévav (Data Manipulation Language — DML) g
Oracle, emitvoyydvetar 1 TOPOYN HOG EKPPUCTIKNG (expressive) Kot €0KOANG OTNV YXpNo1n YADOGOG
EPOTNUATOV Y10 KIVOOUEVE, OVTIKEILEVAL.

I'a v vhomoinon evog tétolov Thaisiov (framework) vd ™) popEn eméktaomng, To cvoTNU SabéTel
EKTOC amd £€va oOVOAO PacikdV THTOV SedOpEVOV KOl OTATIKOVS YMPKOVG TOTOVG OES0UEVMV TTOL
amotedovy pépog tov Oracle Spatial. Emmpoceta, dratiBevtor kot ypovikol TOToL S£d0pEvaV G TUNLO
™G avtioTtoyng xpovikng eméktaons, mov ovoudletar TAU-TLL DC (TAU-Temporal Literal Library
Data Cartridge) (Oracle Corp., 2003). Mg Bdon awtovg Tovg ympKoDs Kot ¥poviKoDs TOTOVS de60UEVMY
10 HERMES-MDC opilet évo 6Ovoro tOnwmv S€S0UEVAOV TOL OVATOPIGTOOY KIvovpeva avtikeipeva. H

OPYLITEKTOVIKY] TOV GLUGTHHLOTOS OTOTVTMOVETOL TapoKdte (Ewova 8):

Application in
Java & PL/SQL

JDBC
Preprocessor

Spatial
Cartridge

Source in Java

—

ORDBMS
(Oracle 10g)

PL/SQL

Java Compiler Compiler

‘

Application
Binary

Data Exchange

Stored
Procedures
Binary

Executable
Application

i

ORDBMS
Runtime
Library

,

Eikéva 8: H apxitekTovikn Tou ouoctiiparog HERMES (Pelekis, et al., 2006)

H eXtensible Markup Language (XML)

H eXtensible Markup Language (XML), omotelel éva mAaiclo Yy TovV OpIOGHO YA®GO®OV CNUAVONG
(markup languages). Ze avtifeomn pe v HyperText Markup Language — HTML (Raggett, et al., 1999),
dev vmapyet o KoBoptopévn cLAAOYN amd etikéteg onuavong (markup tags) otnv XML. AvtifBeta, 1
XML pog emtpémel vo opicovpe TIG OIKEG MOG ETIKETEC., OYXEOWICUEVEG e TPOMO TETO0 MOTE VO
KOAVTTOUV TO €100¢ TV TANPOPOPIOY TO 0moio BEAovpe va avarapactioovue. Kédbe yAwoso XML eival
EMKEVIPOUEVN GE €VOL GUYKEKPIUEVO TESTO €QAPUOYDV, OAME OAeg LopdlovTol KO YOpoKTNPIOTIKG

Trajectory Data Visualization: The VisualHERMES Tool 113

loannis S. Gkoutsidis MSc Thesis

&youv Ohec TV O Pacikr] ocvvtaEn Kot enweelovvrol Ty Hrapén evog Koo cuvolov epyoArEinV Yo
mv enelepyooio apyeimv.

O 6pog eXtensible Markup Language dev amodidel pe oo tpomo) onpacio tov 6pov. H XML dgv
glvar o Lovadikn YAMGGo GNUAVGNG, 1) 0Toio, UTopel vo. emekTobel Kot yloo GALEG YPNOELS, OALY KVpimg
amotedel P kown Pdon mave oty omoia pmopovv va. ovartuybovv markup yAdoocec. H XML dev
amoteAel enéktacn g HTML, ovte amotelel évav aviikataoctdrn avtig Kot 1 oroia Qo énpene va
amoteAel éva €idog yYAdooag XML. Adyo dp®g opiopévav cuvtakTiKav dtapopdv, 1 HTML dev aviket
o1o mAaioto g XML.

Yto apyeioo XML, ta dedopéva meprhopfavoviol g cepd KEWEVOD, Ta. omoia mepikAeiovtal omd
onuavoelg kewévou (text markup), ot omoieg meprypdpovv tor dedopéva avtd. H Poaown povada
dedopévav oty XML eivar 1o element. Ot npodiaypoagéc g XML kabopilovv v akpifn covraén
Tov onpdvoewv (markup)' mog ta elements daywpilovrar and etikéteg (tags), Mg elvar Lo ETIKETA
(tag), mow eivor ta omodekTd ovopato Yy T elements, moOv TOTMOOETOOVIOL TO YVOPICHOTO
(attributes) k.a. (Joshi, 2007).

H XML egivon puo meta-markup yhdcoo. Avtd onuaivel 0t o dtabfétetl éva mpokabopiopévo aptOpud
ETIKETOV (tags) kol oviikewévoy (elements), To. 0moio TPEMEL VO, AELTOLPYOLV Yot TOV KoBéva g
KGbe topéa evdwpépovtog ovd maca otiypr. Omoladnmote mpoomdbelo dnpovpyiog evog TETOOV
TPoKaBOPIoUEVOD CUVOAOV ETIKETOV &ival KOTOdKaoUEVN o€ oamotvyio. AvtiBétoc, emupémel Tov
KaBoptopd and TOvg TPOYPULUATICTEG GLTMV TOV ETIKETMV Ol 0T0ieg Tovg eivan amapaitntec. To yplupa
X o710 akpovopio XML avtiotoyei ot AéEn eXtensible (emektdoiun) mov dnAdvel 0Tt 1| YAdooo propei
vo emektobel Kat Vo TPOcaprOGTEL £T61 DGTE VO KOADWEL SIAPOPETIKEG AVAYKEC.

MoAovott 1 XML eivor apketd gu€AKTN GTO OVTIKEILEVA OV EMTPENEL VO, OPLOTOVV, gival apKETA
avotnpn o moAAG dAlo Bépata. TTapéyel éva ovvraxtiko oto. XML apyeia, 1o onoio kabopilel mov
pmopovv va tormofetnBovv ot eTikéteg (tags), Tmg Tpémel va eLeavilovTal, Tol OVOLOTO OVTIKEILEVEOV
EMUTPEMOVTOL, TAOG TO YVOPIGHOTO TPOGKOAADVTOL OTIS ETIKETEG K.0. AVTO TO GUVTOKTIKO gival opKeETH
GUYKEKPILEVO MOTE VO EMTPETEL T dnpovpyia Aoyiopkov aviivong XML (parsers), ot omoiot £xovv TV
dvvarotnta vo dwfalovv onoodmote XML apyeio. Ta apyeio, to omoia 1KovomoodV T0 GUVTAKTIKO
avtd ovopdlovior cwota poppomoinuéve (well-formed). Apyeio Ta omoila dev eivan well-formed, dev
EMTPEMOVTAL, OTTMG EVOL TPOYPULID O YADGo Java mov mepiéyel KAmolo cuvTaKTiKO AGBog.

e éva XML apyeio to markup mepiypdoet t doun tov. ITapéyet tn dvvatdtnra vo TpocdloploTel
mowo. elements oyetiCovtal petod Toug . Xe éva kold oyedwcpévo XML apyeio, meprypdost emiong)
onuactoroyio tov. Mo mapdderypa, to markup pmopei va vmodewvoet 6Tl kamolo element givor pua
nuepopnvia 1 éva TpdcOTO K.0.. Amd TV GAAN TAEVPE dev Tapovotdletar Kapio TANpoPopia Yo TO TMG
epoavietat oto apyeio kot avtd yti 1 XML eivar evvotodoyikn YA®GSo Tov Topovstdlel T dopn Kot
OYL TNV ELOAVIGT TOV EYYPAPOV.

To markup mov enttpénetat va et po cvykekpipuév XML gpappoyn prnopei va tekpnpumbei og éva
oynuo (schema). Awdpopa apyeio propovv va cuykplBovv e to schema kot amd avtd, 6moto ToupLalovv
pe avtd Bewpovvral Eyrvpa (valid), eved 6ca dev taplalovv e To oynua Bewpodvton un-ykopo. (invalid).
H eyxvpomta evog XML apyeiov e€optdror omd to schema, dnA. 1o edv €va apyeio givar £yxvpo 1 Oyt
e&aptarar and to schema pe to omoio cvykpiveratl. Agv givat amapaitnto 6Aa ta apyeio va givat £ykvpa.
INa moAhotg Adyovg apkel va gival cootd poppomompévo (well-formed).

Yrdpyovv moAég YAdooeS Tpocdiopiopol oynuatog (schema languages), pe dlopopetikd eminedo
éxppaonc. H mepiocdtepo 610dedopéves kat Le peyorvteprn vrootipién YA®ooes, sivar 1 Document Type
Definition (DTD) xor 1 XML Schema. Avtég kataypdpovv dia to éykvpa markup kot kabopifovv og
o0 OTUEI0 Kot pe oo TPOTO Umopovv va mepiinedodv ta didpopa elements ce éva &yypagpo (Raggett,
et al., 1999) xon (Thompson, et al., 2004).

XML dévdpa

"Eva XML oapyeio eivon po iepapyikn doun n omoio ovoudleton XML Tree, 1o omoio amnoteAeitonl amd
KOUPovg d10pdpV TOTTWV, 01 0oiot £xovv TomoBetnOel oe pia devOpoeldn Lopen. Agv vrTdpyel cuvaiveon
OTNV OpPOAOYiOL TOV YPNGUYLOTOIEITOL Y10 TV TEPLYPOPN OVTMV TV dEVIPOV Kal Yo T0 AdY0o ovtd otn
GUVEYELD TNG TEPLYPOPNS TV dEVEpmv Ba ypnolpworombei to XPath povtého dedopévov (Clark, et al.,
1999).

Trajectory Data Visualization: The VisualHERMES Tool 114

loannis S. Gkoutsidis MSc Thesis

H Ewoéva 9 mopovstalel éva mapdderypa evog dévopov. Ot koppor (nodes) €yovv oyedaotel mg
KoK ot. O k6uPog o onoiog Ppicketat wo ynid amd 6Aovg ovopdletat pila (root) Tov dévopov. Ot akpég
delyvouv v oyéomn yovéa-maidov petafd tov kopfov, yo mapddetypa o koppfog B etvar moudi tov
KopPov A kat o A givar yovéag tov k6pPov B. To mepieyduevo (content) kabe koppov eivor n akorovdia
Tov KOpPov madov tov. T tov koppo A, 1o mepiexdpevo tov givar | axorovdia koppwv (B, C, D). Ot
KopPot og éva dévopo elvar duvatdv va €xovv Stapopetikd apBud moduwv. Ot koppor diywg madid
ovopdlovtar evuAdla (leaves), oto mapdadetypd pog ot képpot E, F, C kar D givor képpor goida.

Eikéva 9: XML dévdpo

"Eva XML éévtpo eivon dwatetaypévo (ordered), yeyovog mov onpaivet 6Tt 1 dtdtoén tov moididv evog
KopPov givar onpavtikn. Ot adehpoi kopPot (siblings) evog kKopPov eivot to, vITOAoUTe TOLdLE TOL KOUPOL
yovéa. Ot mpdyovor (ancestors) evog KOUPOL amOTEAOVVTOL OO TOV YOVER QLTOV, TOV YOVEQ TOV YOVEQ
KoK, epthapfavopévou g pilag. [Na mapdderypa ot tpdyovor tov k6pPov F givar ot kdppor B kot A. Ot
emiyovol kouPot (decedents) evog kopPov gival To GUVOAO oL amoteAgitat and Ta TodLd TOL, TA TOUdLY
TV TAd1OV Tov Kok. [a mapdderypa ot eniyovol tov kopPov pila eivar 1o GUVOLO OA®V TV KOLB®V TOL
dévTpo, ekTdc amod tov 1610 Tov kOpPo pila. Ot mapamdve évvoieg Tapovstaovtatl oty Ewova 10.

e éva XML Tree ot k6ppot pmopovv va givar Eva oo ta mapakdte €ion (Evjenet, 2007):

e Text nodes: 'Evag koufog keyévov (text node) avtiotolyel oe €va TURUO TNG GUVOAIKNG
TPOYLATIKNG TTANpOQOopiag, 1 omoia avarapictatarl owd 0 XML apyeio. Kdbe text node mepiéyet
HL0L U1 KEVY] GTOL(EW0-0EPpd, 1 omoia mepiéyel v mAnpoopio avtr. Ot text nodes dev Exouvv
KOpPovg madid, yeyovoc mov onuaivel 0tt givar eOAA oto XML dévtpo. Emiong, dvo text nodes
dev umopov vo. ivar adehpoi kOpPot, eKtdc edv Kdmolog GAAog KOuPog mapepuPdiietor petay
TOUC.

e Element nodes: Evag koppog avtikeypévov (element node) opilet pa Aoyikn opadomoinom g
mnpopopiag n omoio avamapictatal omd Tovg aroydovovs. Kabe element node €yet éva dvopa
(name), puo AEEN dNAadN 1 ool TEPLYPAPEL TV OLASOTOING TOV TPAYLATOTOLEITOL. ZUVBmG
ypnowonoteitor o Opog element yw yGPW GLVIOUELONG. AVTIGTOVEG OULVTOUEVCELS
YPNOYOTOLOVVTOL KOl Y10, TOVG GAAOVG KOUPOVG.

e Attribute nodes: 'Evog kopfog 1d16trag (attribute node) oyetiCeton pe évav element node, dni. o
KkopPoc yovéag tov givar mavtote éva avtikeipevo (element). Ot 1816t TG TVLIIKG EVEPYODV MG
eMEENYNON TOL OVOUOTOG TOL OVIIKEWUEVOL, TEPLYpAQOVTOG WHE HeYOAOTEPT, TANPOTNTA,
TEPIGOOTEPEG 1010TNTES TG opadomoinong, v omoio kabopilel o koéuPog aviikeévov. Mia
WotnTa (attribute) sivot éva {e0yog TIH®OV OVOUATOG — TIUNG, OTOL TO Ovopo givar po AEEn, N
omoio TEPLYPAPEL TNV 1SIOTNTO, KO 1] T EIVOL [0 OTOYELO-GELPE 1) OTTO10L TEPLYPAPEL TNV TIUN
g Wwwtog. Kabe avtikeipevo pmopel va €xel 10 moAD pio 1O1OTNTA L CUYKEKPIUEVO OVOLLM,
OALG GUVOMKG TOAAES LE SLOPOPETIKO GVOLLOL.

e Comment nodes: 'Evog k6ppog oyoiiov (comment node) eivar £vag 1dtkog kopfog eOAro (leaf
node), 0 onoiog £yel ®G €TIKETO KAmowo Keipevo. Mmopel va Topopolotel ®g 10 oxOMa GTOV
KOOKa, 0 0moiog givat YpOopUEVOG GE L0 YADCOO TPOYPOULATICLOV.

e Processing instruction nodes: K0 képpog emeEnynong extédeong (processing instruction node)
mepthappdvel éva otodyo (target) ot por i (value). Xpnoipomoteiton yuoo v petofifoon
mAnpoopiag oe ddpopa epyareio emnefepyasiog apyeiov XML. O otdyog (target) eivon pio
AéEM, M omola xaBopiler to epyodeio emefepyaciog oto omoio amevBuvetan M emednynon
ektéheong (processing instruction). Olo to. dAlo epyadeio mpémel va v ayvonoovv. H tiun
(value) meprhoppdvel TNV GYETIKN TANPOPOPia TOL ameLOVVETOL GTO EpYaAEio.

Trajectory Data Visualization: The VisualHERMES Tool 115

loannis S. Gkoutsidis MSc Thesis

e Root nodes: Kabe XML &évtpo Eekwvd amd évo kot povodikd koppo piCoe (root node). Ot
amoyovor (children) tov root node amotehovvton omd omowodNmoTE OPWBUOd comment Kot
processing instruction nodes pali pe éva okpifog element node, o omoiog ovopdletatl root
element. 'Eva cuvnfiopévo AdBog mov yivetar givar 1 obyyvon peta&d tov root node Kot Tov root
element.

" Siblings of C

.. Descendents of A

Eikéva 10: OpoAoyia Twv XML dév3pwv

H amorinmwon Twv apxeiwv XML

"Eva apyeio XML ypdaoetar og apyeio Unicode pe eticéreg markup kot pe dAleg mAnpogopieg, ot omoieg
aVamaPIoTOVY TO, AVTIKEIHEVA, TIC WO10TNTEG KO TOVG GALoVG KOpPovg. Ot kopPot keyévoo (text nodes)
YPAPOVTOL COUE®VO. LE TO KEILEVO OV avomaplotovy. Avtd to keipevo ovoudletar character data. Ot
kopPor avrikepévoo (element nodes) dnAdvovtat amd etikéteg markup. o mopdderypo:

<related ref="42">...</related>

H etkéto <related ref="42"> givar (o eTkéta apyng o€ €va KOUPO OVTIKEWEVOL, VD M
eTkéta </related> givonr n avrtiotoyn etkéta téAovg. To KeiPevo OTO EVOIUESO TMV ETIKETMV
amoterel To TEPLEXOUEVO TOL avTikelévon. Ot 1d1otnteg (attributes) ypdpovtol péca oty eTKETa opyng
TOV OVTIKEWEVOL. ZTNV TEPIMTMOT TOV TOPASEYHOTOG 1 Lovadtkn Wd10TNnTa ovopdletal ref pe Tyun 42.
Méca oty eTtikéta apyng, N OIToén TV 110TTOV dev £YEL YpNoTIKY onpocic. Ot TG TV 1810THTOV
mepucheiovtat amd Y M V. Avrtikeipeva yopig mepeyopevo ovopdfovrol kevd (empty) Kot 0vTd UTopovV
va ovoropactafodyv Pe GOVIOUO TPOTO G <. . v .« . . />.

"Eva XML apyeio katd tov TpOTO OvATOPAGTAGT|G TOV TPEMEL VO EIVOL KOl GOOTO LOPPOTOUEVO
(well-formed). Avtd ovolaotikd onuaivel 6t Tpémel vo. opilel por devdpikn doun, N omoio var etvor
avtioToyn He To gvvoloroykd povtéro. [a va eivar éva XML apyeio cwotd LOpQOTOUEVO Ol ETIKETEG
apyNG Kot TEAOLG TTPEMEL VO TOUPLALOVV KOl VO DITAPYEL COOTH EVOMUATMOGT TOV SLAPOPOV AVTIKELLEVDV.
TNo mopadetypa to mopokdto 6vo Tpnpate Kaduo XML dev eivar cootd popeomomuéva:

Trajectory Data Visualization: The VisualHERMES Tool 116

loannis S. Gkoutsidis MSc Thesis

<something>...</somethingelse> (1)

<something>...<somethingelse>...</something>...</somethingelse> (2)
Y10 mpdTo tpMqpa (1), ot eticéteg apyng Kot téAovg dev Tarptdlovy, evd 6To de0TEPO (2) 01 ETIKETEG deV
EVOOLOTOVOVTOL GOOTA.

H XML «dvet dudaxpion peta&d neldv kot keparaimv yapaxtipov (case sensitive). ' mapaderypa to
TUA O KOO
<related ref="42">...</RelATED>
dev gival 6OGTA LOPPOTOMUEVO O TN GTIYN TIOL OL ETIKETEG 0pyNG KOt TEAOVG EXOUV SLPOpeTIKO €I00G
yopoktipav. Kabe cootd popponompévo apyeio XML mpénet va £xet povo éva koppo pico.
"Eva apyeio XML cvvifog Eexvd pe pie XML dnimon (XML declaration):

<?xml version="1.0" encoding="UTF-8"?>
N omoio, axkoiovbeiton amd tov KOuPo pilo Kot TOvg VIOAOWOVG KOUPovg Tov apyeiov. To Tufua
version dnidvel v ékdoorn g XML mov ypnoylomoteitol kol 6TV TPOKEWEVT TEPITTOOT ivat
1.0. To tuqpa encoding dnidvel pe ol kwduomoinon £xel ypapet To apyeio.
Ta oydAa yphpovtat e TV Hopen:
<l=-= .0 ==>
O eme&nynoelg ektéleong (processing instructions) ypa@ovtol OTMG 6TO TOPUSELYLLO. :
<?xml-stylesheet type="text/xsl" href="mystyle.xsl"?>
omov 10 xml-stylesheet givar 0 otdyog KoL TO0 TUNHO type="text/xsl” href="mystyle.
xs1” amotehel TNV TIN.

Amd) otiyun mov éva apyeio XML eivor amkd €vo apyeio KEWEVOV, OTOI0GONTOTE KEWEVOYPAPOG
umopel va ypnoyomomBei ylo Tnv cuyypaen Tov, o€ avtifeon pe apyeio GAA@V THTOV, TO 0010, ATALTOVY
GUYKEKPILEVOLS KELEVOYPAPOVG Yo TNV eneEepyacio TOVG.

"Evag XML parser givatr éva epyaieio, to omoio £yl T dSuvOTOTNTO TNG SEVOPIKNG AVOTOPAGTOONG
&voc apyeiov XML, and v AeKTIK amekdvIion Tov.

H ypnon g XML devkodvver v ovamntuén Aoyopkod oAAG Ty eméktacn g Oa-
Aertovpywotnrag. Kabe éykvpo XML éyypago mpémer va ovpfodifer pe to DTD i 1o Schema mov
meptypaoet) dopun tov. H XML dwympilet ta dedopévo amd tov Tpdno mapovsioong. Avty v otiyun
VITAPYEL EVOG HEYALOG 0plOpdg markup YAWGGOV oL €00V avartuyBel Y10 GLYKEKPIUEVOLE GKOTTOVG KOl
napdAinia Bacilovtal oto XML mhaicto.

H Geography Markup Language (GML)

H Geography Markup Language — GML (OGC, 2004) amoteiei o XML popeomoinon yio tnv
avamTaPAoTACT OVIOTHTAOV TOV TPUYLATIKOD KOGLOV, OT®G dEvTpa, KTple, Spopovs k.6. Ot ovtotnteg
avamapiotavtol ©¢ yvaopiouote (features) Kol PIopovV vo TEPLYPAYOLV TOGO YEMUETPKEG OGO KOl L)
YEOUETPIKEG WO10TNTEG. [0t TapdderyLa, £va KTPLO PTOPEl v PEPEL YVOPIGLLATO, TO OTTOI0 OVOTAPLOTOVV
™ YeE®YPAPIKN Tomobecio (YEOUETPIKN O10TNTA) OAAG KOl TOV TOTO TOV KTNPIoL ovToV (LN YEMUETPIKN
Wotta). H GML £€yet oxedlootel étol dote va gival duvath 1 vmootpién g K®SIKOToiNoNg Kot Tov
00 OV WB0TATOV, OOV Ol UN YEMUETPIKEG €€ OUTAOV, UTOPOVV VO GLGYETIOTOVV péca amd TNV
gvomoinon (integration) pe dAlo XML oynuota (schemas). IMopokdtm, moapovowdletor 1 GML
avanapdotacn evog kmpiov. H yemypapikn tomobecio avamaplotdral og o YE®UETPIKN 1010TNTA 1
ovoua point, evd 0 TOTOG, 1| KOTACTAGCY, KoOMG emiong Kot GAAEG 1O10TNTEG, avoamapioTAVTOL OG UN
YEOUETPIKEC.
<gml:featureMember>
<topol:build fid="road.2545">
<topol:geom>
<gml:Point
srsName=http://www.opengis.net/gml/srs/epsg.xml#32633

>
<gml:coordinates
xmlns:gml="http://www.opengis.net/gml"

decimal="."
CS:", "
tg=" "

Trajectory Data Visualization: The VisualHERMES Tool 117

http://www.opengis.net/gml/srs/epsg.xml#32633

loannis S. Gkoutsidis MSc Thesis

>
357080,7766653
</gml:coordinates>
</gml:Point>
</topol:geom>
<topol:type>Outhouse</topol:type>
<topol:status>2</topol:status>
<topol:started>10101</topol:started>
<topol:updated>19940210</topol:updated>
</topol:build>
</gml:featureMember>

Aopn

H dopn evog GML egyypapov eivar dwontépmg gvéhkrn. Tevikd, amotelel and pa cepd ond Ioiotntes
Features mov ovomapiotodv OvTOTNTEG TOV TPOYLOTIKOD KOopov. Ot 1810TNTEG OVTEG AmOTEAOVV
amoyovovug evog FeatureCollection, to omoio Aettovpyel og opadomoinon (container) Tmv mapardve. Mo
armd 115 autieg mov mapéyovv ot GML popeonoinon avt v gveléio omotelel o yeyovog 6Tl Kabe
Feature eivor pe t oepd tov FeatureCollection. Me tov 1pdémo awtd, pi ovtotTa pmopesl va
avarapactadel amd cvvabpoicelg GAhov Wt tov. o mapdderypa, éva Tapko pe dEvipa, TPACIveS
TePLOYES, VPO Kot dpopovs. Evd kabepid and avtég Tig ovtotnteg umopet vo avoarapactadel avesaptmra
amd pa 11t Ta, To TapKo duvatal vo oplotel og pe Feature 1) FeatureCollection mov amoteAeiton amnd
o\ To. TopoTave (ta dévipa, Tovg dpopovg kok). Emmiéov, 1 GML vrootmpilel tov opiopd dAlmv
ovoyeTicemv PeTa&d SloPOPETIKOV 1310TNTOV pe TV xpnon ¢ XLink (DeRose, et al., 2001).

YTooTNPI{OHEVES YEWHETPIKES 1810TNTES

To GML mpotumo mapéyel €vo Unyavicpo yuo TV K®SKOTOoINoT TovV amokaAovpevev arnd 1o Open
Geospatial Consortium — OGC (OGC, 2008), amkov wWot)tev (simple features). Me tov 6po amin, to
OGC avoa@épetal og «... WWOTNTEG, TOV OMOIMV T YEMUETPIKA YOPUKTNPIOTIKAE Teplopilovtal o amiés
yYeopetpies, yia Tig omoieg opifovtal cuvieTaypéveg oe dVO /KoL TPELS SUCTAGELG KOL 1) OTEIKOVION LL0G
KapmdAng anotedel Bépa ypappkng mapeppforncy» (Lake, 2001). Me dAda Adyle, ovtd onuaivel Ot 0
GML mpdtumo 61oYevEL KUPIOG OTNV OVOTAPACTACT] YEOUETPIKMDVY WOI0THTOV G€ 600 1] TPELS SlOCTACELS.
AxolovBei o Alota pe Tig amAéc yemUETPIKEG KAAoELS, Onmg avTtég opilovral amd to OGC:

Point

LineString

LinearRing

Polygon

MultiPoint

MultiLineString

MultiPolygon

MultiGeometry

Hopokdtm, Tapovotdalovtal kdmowo Topoadeiypoto, EneEnNymdvTag TIG TE6CEPIG TPAOTEG W010TNTES. Ot
1010t TEG OV PEPOVV TO TIPOOepa Multi, amotehobv amAdg GLALOYES 1310TNT®V, Ol 0moieg amaptilovtal
oo o /Kol TEPLEGOTEPES PACIKES YEOUETPIKES 1OLOTNTEC.

<gml:Point
srsName="http://www.opengis.net/gml/srs/epsg.xml#32633">
<gml:coordinates
xmlns:gml="http://www.opengis.net/gml"

decimal="."
CS:", "
tg=" ">

357080,7766653
</gml:coordinates>
</gml:Point>

Trajectory Data Visualization: The VisualHERMES Tool 118

loannis S. Gkoutsidis MSc Thesis

<gml:LineString>
<gml:coordinates
xmlns:gml="http://www.opengis.net/gml"

decimal="."
cs:", "
ts=" ">

357015,7766698 357127,7766654
357389,7766583 357406,7766595
</gml:coordinates>
</gml:LineString>

<gml:Polygon>
<gml:outerBoundaryIs>
<gml:LinearRing>
<gml:coordinates decimal="." cs="," ts=" ">
80,340 160,340 160,280 80,280 80,340
</gml:coordinates>
</gml:LinearRing>
</gml:outerBoundaryIs>
<gml:innerBoundaryIs>
<gml:LinearRing>
<gml:coordinates decimal="." cs="," ts=" ">
100,330 130,330 130,290 100,330
90,290 130,290 130,290 100,330
</gml:coordinates>
</gml:LinearRing>
<gml:LinearRing>
<gml:coordinates decimal="." cs="," ts=" ">
150,335 150,320 140,335 150,335
</gml:coordinates>
</gml:LinearRing>
</gml:innerBoundaryIs>
</gml:Polygon>

GML 3.0

Me Bdaon v tpitn £kdoon tov GML mpotomov (Cox, et al., 2004), vrdpyel IANpNG cvpPfatodTnta pe v
maAaotepn €kdoon Tov, T 2.1.2. H wopla dwpopd petald tov dVo avtdv £kd0cemv, £YKELTAL GTO
YEYOVOG TNG EMEKTACNG TOV GUVOAOL TOV TOPEYOUEVAOV WOIOTATOV LE TNV VIOSTHPLEN MEPIOCOTEPDV
YEOUETPIOV, OVVOLIKOV 1010TNTOV, TPIGOIACTATOV AVIIKEWEVOY, €5’ oplopod popeomoinor (default
styling) x.4. H mapovca epyacio kaver ypnon tov mpdéceoatov GML 3.1.1 mpotdmov, Adyw 1Tng
VIOGTHPIENG O0TNTOV TOL APOPOVY GE KIVOVUEVD, OVTIKEILEVA, 1010TNTEC dNA., Ol OToleC peTafdAAovy T
Yewypaptkn tovg Béon péoa oto medio Tov ypovov. Kpifnke Aowmdv avaykaio n xpion opoKINpLoTIKOV
(1t xp6Vv0OQ), T omoia Exovv gloaydel oty Tpitn £€KO0CT TOL TPOTHTOL.

<gml:featureCollection xmlns:gml="http://www.opengis.net/gml">
<gml:featureMember>
<gml:TimePeriod>
<gml:begin>2001/02/09T16:32.53</gml :begin>
<gml:end>2001/02/09T16:33.23</gml:end>
</gml:TimePeriod>
<gml:LineString>
<gml:posList>
37.9923843504678 23.7769293591931
37.9934031121064 23.7766176385097
</gml:posList>
</gml:LineString>
</gml:featureMember>
</gml:featureCollection>

Trajectory Data Visualization: The VisualHERMES Tool 119

loannis S. Gkoutsidis MSc Thesis

H Keyhole Markup Language (KML)

H Keyhole Markup Language — KML (Google Inc., 2008) omotelel éva mpdTLUNO OvamapdoTaong
Ye@ypapkmv dedopévav, To onolo Paciletar otnv XML (Bray, et al., 2006) ywo ypagikd dvo 1/kat tpudv
dloThoE®V.

Ta yeoypapucd dedopéva mapéyovv mANPoPopieg Yo SAQOPES OVIOTNTEG MOV VTAPYOLV CTNV
EMEAVELD TNG YNG Kot elvon omotélecpa gite Tov avBpdmvou eite Quokod mapdyovia, OnmMG 0dKA
diktva, Ktpla, oOvopa, oAAd kot motapol, Afuves kAm. Ztn Sadikacio TG OmMTIKOTOINoMG Ot
mpoavopepbeiceg ovtotTEG UTOpPOoVV va avamapactadovv yeoypagikd. e tn dnuovpyio omtikdv
avaTapAcTAcE®Y, aveEAPTNTO Ad TO HECO TAPOLGINOTS, UTOPOVV VA YpNoipononfovy Pacikd ypapikd
otolyeia Omwg onueia (points), ypappés (linestrings) kot moAvywvo (polygons). To ortoyyeio onueiov
QEPOLVV TNV €VVola TNG ToToBECIG Kot amoTELOVY Ta TAEOV PACTKE Ao TG TPEIS OvAOTEP® Katnyopieg. Ta
oTol el YPOUUNG OTOTELOVVTOL amd TAEIA0EC OTOYXEI®V OMUEIOL Kot TOPOLCLAloVY TOCO EVVOleg
katevdovong 6co kot tornobecioc. TéLog, T oTotKElD TOAVYDOVOV OVamTAPIGTOVY EVVOlEg TOV oYeTI{OVTOL
pe éktoon, Kotevbvvon kot Torofecio, amoteloieVo and SVGOAGTOTOVE TIVUKES GTOLXEI®V OTUEIOL.

Me andtepo ©010X0 TV avENON NG YPNOTIKOTNTAS EVOC OMTIKOTOMUEVOL OTOTEAECUATOS, M
avoyvaplon Kot avaAvorn Tov Tpog mapovcioon dedopévev, kpivetoar amopoitntn. H emumiéov
TANPOPOPIO TOL TAPAYETAL KO GUVOSEVEL TO OMOTELEGLOL AVTO, OVOTAPICTATOL VIO TH HOPQT] KEWLEVOD.

Aopn

Ta epyodeio Google Maps (Google Maps, 2008) kot Google Earth (Google Earth, 2008), ypnoyiomotovv
10 KML a¢ e&mtepixd mpdtumo yopo-xpovikdv dedopévav. Me v ypnon tov KML, o ypiiomg pmopet
Vo EL0AYEL YE@YPAPUKA dedOUEVO GE KATOWO Omd To Tapamdve epyoleio Kot va kével vnépbeon twv
dedoLEVOV VTV enGvm oTa dedopéva mov mapéyovtotl and v Google.

[Tépav g duvatodTnTOg EIG0YDYNG amAdV onueiov oe €va yaptn tg Google, to KML, dwbétet
SUvVaTOTNTES YEPIGHOD TOV EENG SVGOACTOTMV YEMUETPIKDOV CYTLATMOV:

e Xnueio — Points: pmopovv va avorapactafody onTikd oty empdvela TG yng &ite ¢ ewovidw
(icons) eite w¢ etkéteg (labels) 1 kot Ta 600 Kot va T0100eTNOOVV GE SLUPOPETIKE VYOUETPA.

e TI'popuéc (Lines): pmopovv va tomofemmBolbv oe Sidpopo vyouetpo Om®C Kot to onpueio.
Yroompiloviar emiong ot mwold-ypouuss, obvbeto dnNA. otoryeio. mwov amoteAoVVTOL OO £va
GUVOAO GTOYEI®V YPOLLUNS.

e TloAdywvo (Polygons): umopodv va dnpiovpyndovv ce 500 H/kol TPES SOOTAGES EXOVTOGC
otofepn popen M @époviag eocwtepikd Opila (inner boundaries). Q¢ €k TOVTOV, UTOPOVV VO
dnpovpynBodv cHvheTa TPIGIACTATO AVTIKEILEVO GE SLAPOPA VYOLETPO.

O YePIoHOG TG EUPAVIONG OVTAOV TOV YEDOUETPIKDY oyNUateVv, pumopel vo mpayuatomom el pe g
e€nc teyvikég: opilovtag ovvtetaypéveg, ompovpymvtag mpoefoyéc (extruding) yia TpiodidoToTo
OYNLOTO KOl OHOSOTOIDVTOS GLAAOYEG oTotyeimv. O OpIoHOG GUVTETAYUEVOV EMITUYYOVETOL WE TN
Miwon Tev avticToly®mv cuvtetaypévov kol to Vyog (elevation) and v empdveto g Bdlaocac. Ot
dnpovpyia wpoekoymv oyetiCetor pe v tomobétnon gvog otoygiov og pio ovykekpyévn 0éon kot
ypNoonmowmdvtag v etkéta <extrude>. H opadomoinon oAOKANPOVETOL HE TNV YPNON NG
<MultiGeometry> €TKETOG KoL YPNOOTOIEITOL Y10 OPYOVOTIKOVS GKOTOVC.

Avapopikd pe v évvolo Tov xpovov, avth avarapiotdral oto KML mpdétumo pe v ypnom g
<TimeSpan> gtkétag, n omoia amoteAel éva cvuvbeto tomo dedopévmv, oe dpovg XML. O gv Adyw
TOmOG, amoteAgital omd dVo amhods THTOVG dedopévev <begin> kot <end>, Ol OTOIOL OVOTOPLETOVV
v évapén Kot T AMEn g kivnong evog avTiKEWEVOL LT T HopeN XpovooTumv (timestamps).

"Eva mhipeg KML oapyeio, T0 omoio avamapiotd to ototyeio mov mpoovapépbnkay, mapovcialetal
mopokdte. Mo cvykekpiévo, TOPAKATO OVATOPIOTATOL 1 KIVoN €VOG OVTIKEIWEVOL HEGO GE Lo
YXPOVIKN TEPi00.

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://earth.google.com/kml/2.2">
<Document>
<Folder>
<name>VisualHermes</name>
<Style id="bluelLine">

Trajectory Data Visualization: The VisualHERMES Tool 120

loannis S. Gkoutsidis MSc Thesis

<LineStyle>
<color>ffff0000</color>
<width>3</width>
</LineStyle>
</Style>
<Placemark>
<name>Trajectory ID: 6 - Object ID: 0420</name>
<description>Trajectory Segment: 1</description>
<TimeSpan>
<begin>2001-02-12T17:45:36%Z</begin>
<end>2001-02-12T17:45:517Z</end>
</TimeSpan>
<styleUrl>#bluelLine</styleUrl>
<LineString>
<altitudeMode>relative</altitudeMode>
<coordinates>
23.76964,37.94409,0
23.76831,37.94306,0
</coordinates>
</LineString>
</Placemark>
</Folder>
</Document>
</kml>
210 gv AOY® apyeio, apov OploTOV TO aPYKE GTorKElo MOTE 0VTO Vo cvuppopeodvetat pe o KML
TpoTLIO dedopévav, dnpovpyeital €va otoyeio mopovsicong pe v ypnion g <Placemark>
etikétac. To otoyelo avtd mepihapfdver éva ovopa (etik€ta <name>), po mePLypoen (eTkéta
<description>), koBdg emiong Kot éva ocOvoko amd etikéteg mov kKobopilovv T Y®PO-YPOVIKA
XOPOKTNPIOTIKA TOV. O1 £TIKETEG OVTES ETvan OL:

e <TimeSpan>: Opilel, péow TV <begin> kol <end> ETIKETMV TO ¥POVOSILA Yl TV EvapEn
Kot T ANén g Kivnong.

e <LineString>: Opilel péow g <coordinates> eTkéTOg TNG CLVIETAYUEVEG YOl TNV
opyM Kot 1o TEAOG TG Kivnomng.

e <styleURL>: Amotelel TNV TOLTOTNTO Y10 TO. XOPAKTNPICTIKG TG TAPOLGINONG TOV €V AOY®
otolyeiov omd T0 gpyodeio omtucomoinong. Ta yopaknplotikd avtd £govv NON opiotel, oTnv
apyn Tov apyelov (etikéta <Style>) Kot aQopovV ToV YPOUATICUS (eTikéto <color>) Kot To
Ty oG ™G Ypapung (etwcéta <width>).

EpyaAgia mapouciaong

I'o v ontikonoinom evog KML apyeiov amatteitar kdmowov gidovg epapuoyn. H Google, mg o kvplog
mapoyog Tov KML, Tpocpépet d00 dtapopeticods TOTOVG EPAPLOYDV, TIG OTOIEG £Vag XPNOTNG UTOPEl va
YPNOYOTOWCEL Yo TNV OmTIKoToinon tev dedopévav mov owbétel. To Google Earth omotelel pia
enupanéClo epappoyn (desktop application) pe nAnfopa Aetrtovpywwv. To Google Maps amoteAei pua
vnpeoio Iotov (Web service), pe v omoia o xpNotng AapPAaver v OnTIKOTOMNGT TMV SESOUEVOV TOL
HECOH oG eQopLoyng TAoNyNong oto Awdiktvo (Web browser). Qg dwa-diktvaxn epappoyn, to Google
Maps, @épetl AMyotepeg duvatotnteg amd to avtiototyo Google Earth.

H eXtensible Stylesheet Language Transformation (XSLT)

H XSLT (Clark, 1999) givar puo cuvaptotokn (functional) YAOGGA TPOYPAUUOTIGLOV, LLE TNV ¥PNON TNG
omoiog kaBopiletar o Tpoémog mov éva XML &yypago petatpémetal Ge Hio SIPOPETIKY HOPPT]. AV Kot
amoterel ovVNBeg PavoLevo, To mapayopevo apyeio dev amarteitol va eivor emiong éva XML €yypagpo.

Trajectory Data Visualization: The VisualHERMES Tool 121

loannis S. Gkoutsidis MSc Thesis

Baoikn pon

Ot kavoveg petatpomng mov Kabopilovv Tov TpOTo LopPoToinomg VO £yyYpAPOL INAMVOVTIOL EVTOS TMV
Kavoveov tpotimov (template rules) kot amonkevovton oe éva stylesheet. Kéfe npotumo (template) pépet
po wWotnta oviietolyiog (match attribute). H b0t avt)y mepthapfaver éva mpodtumo (pattern), to
omoio avtiotolyel otov kOpuPo mnyn (source node) 1 oTovg KOUPOVG OTOL TPOKELTOL VO EQPUPLOCTEL O
Kavovag popeoroinong. To mpdtumo avayvepiletor and pa yAdoso mov ovopdletor XPath (Clark, et al.,
1999). Tho v ektéleon ™G TPAYUOTIKNG WETOTPONNG, €KTOG OTO Mid Opdda KavOvedv mov givot
amonkevpévn oe éva stylesheet kot éva XML €yypago mnyn, 6to omoio Oo epaprootodv ot Kavoveg
avtoi, amotteiton 1 dmapén evog XSLT emefepyactn (XSLT processor). IIpdkertal, kat’ ovcia, yio
GUYKEKPIUEVO AOYIGUIKO, TO 0TOi0 avaADEL TOGO TO £YYPaQO TNyn, OGO KOl TO £YYPOQPO T®V KAVOVAYV,
dnpovpydvtag 000 SLOQOPETIKEG deVOPIKEG dopéc. XLTo O0EvOpo mnyn &v ovveyeio, ekteleitol o
avalitnon kopupwv, ot omoiot TANPOVV Tig TPOHTMOOLCES KATOOV/-OV 0ld TOVG KOVOVEG LOPPOTOINGNG.
Tehwkd, epappolovrar (ektelodvar) ta mpdTuTa Tov PBpickovv aviiotoyio. [lapaxdtw, TapovsidleTol
éva mapdderypa gvog aitepa amhoikod XSLT stylesheet, To omoio ypnoonoteitat yio v enelepyacia
tov GML eyypdoov nov énetot. To amotéAesia TG LETOTPONNG TAPOVSLALETAL GTO TEAOG.

<?xml version="1.0" encoding="utf-8"?>

<!-— Kabopllel 1n éxdoon 1Tng YAOOOXC, T namespaces K.AI. —-->
<xsl:stylesheet

version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:gml="http://www.opengis.net/gml"
xmlns:msxsl="urn:schemas-microsoft-com:xslt"
xmlns:ext="http://goutsidis.gr/extension"
exclude-result-prefixes="gml msxsl ext"

>

<!—-— Kaboplilel 1OV 1TUHO ROl TNV kKwdlLkomolinon Tou mapoayduevou
eyyp&pou——>

<xsl:output

method="xml"

version="1.0"

encoding="utf-8"

indent="yes"

media-type="application/vnd.google-earth.kml+xml"

/>
<!-- Kovdévog mpotUmou pe pla LdLdéTnTta avilololyloag ——>
<xsl:template match="gml:Point">
<xsl:element name="Point"> <!-- To element mou dnuioupyelTal --
>
<xsl:element name="coordinates"> <!-- Néo element oambdbyovog -->
<!-- OplleL otov emefepyaot) va €&ayel TNV OTIOoLlYXelo-0OgLlp& TOU
Tpéxoviogc xoOpPou. KabBhdg o ev Adyw xravoéOvag avIiloTtolxel
oTO0
"gml:Point" element, n tTLuf outh Oa elval 1n OCTOXELO-
oeLp&
tou "gml:Point"™ xdéppou. -->
<xsl:value-of select="." />

</xsl:element>
</xsl:element>
</xsl:template>
</xsl:stylesheet>
To Paocwd stylesheet opiler évav kavova mpotdmov (template rule), o omoiog avtiotoryel oTOV
gml:Point képpo.

<?xml version="1.0" encoding="utf-8"?>

Trajectory Data Visualization: The VisualHERMES Tool 122

loannis S. Gkoutsidis MSc Thesis

<gml:Point>
23.86301,37.99958
</gml:Point>

<?xml version="1.0" encoding="utf-8"?>

<Point>
<coordinates>
23.86301,37.99958
</coordinates>
</Point>

XSLT oToixeia

H XSLT opilet 37 otoyeio (elements), to omoio pmopodv va KoatnyoplomomBodv o€ TPELg
emKalvTTopeveg Kotnyopieg pila (root), eminedo kopveng (top level) kot ototyeior 0dnyidv (instruction
elements). Xg avty Vv evoéTTa Tapovcldotnke poévo 10 xsl:element. H XSLT ypnoiponoteiton
Kuping ywo T dnpovpyia véov XML gyypdowv mov Bacifovtol 611 cuyydvevon Kot Tn Hopeomoinon
€vOc ouvovacpod dAev myov. Kotd mv napayoyn véov gyypdeev, ovyvd mopovctdletal n ovaykn
dnpovpyiog véwv XML elements. ITapd to yeyovog 6t XSLT vrootnpilel T xpnon KUPLOAEKTIKGV
otoleiov amoteréopatog (literal result elements), n yprion tov xsl:element HOG EMTPENEL TOV
KaBopopd Tov ovopatog Tov element Katd v ektédeon (runtime).

XSLT ocuvapTAOEIg

Evd ot Aettovpyieg g XPath emikevipdvovtar o€ kOpPove, kabmg eniong Kot 6Tig Twég avtdv, n XSLT
TapéYEl EMmIPOGHETEG GLUVOPTAOELS VIO TO YEVIKELUEVOLG okomovg. [lapadeiypata tétolwv, Kowd
APNOOTOOVUEV®Y, GUVOPTHCEDV givar ol document() woi current() cvvoptioels. H document()
ocuvaptnon enttpénetl) eoptoon eEntepikdv XML eyypdomv katd) didpkewn g enegepyaciog. H
current() cuUVAPTNOT YPNOLWOTOIEITAL KVPI®G o€ emavaAnmTikés dradikacies (loops), 6mov avomopiotd
Tov TpEyovta emelepyalopevo koppo.

EmumAéov, givar duvatn kot 1 ypfon pitwy GuVapTNoE®V, 01 0Ttoieg dhvavtal va £xovv avamtuydei o
A yAdooo mpoypappaticpod (my C#) kor Bpickovior oto ido N oe eEwtepikd XSLT é&yypagpo. H
yxpNon térolmv cuvaptioe®v PéPata, Tpodmodétel v vrapén katdAiniov XSLT enefepyaotn, 0 omoiog
Oo eivar og Béon va Tig exteléoel. Xty mopovoa epyacio, yiVETOL ¥pNoT TPITOV CUVOPTHCE®DY Yo TN
HLOPPOTOINGT] GUYKEKPLEVOV TILDV EVIOS TOV TOPAYOULEVOV apyEiV.

O VisualHERMES wrapper

AvaAuon anmaITROEWV

H tunonoinon tev dedopévav mov avtaAldccoviol peTafd TV Jpopmv HEPOV TOV GLGOTHLOTOG,
mpoypatomotleitat pe Ty ypnon tov GML mpotomov, pe 3ed0UEVO TO YEYOVOS OTL TPOKELTOL Y10 Stakivion
Ye@YPaPIK®OV TANpopopidv. To GML, amotelel éva XML mpdTumo poppomoinong dedouévav, to omoio
EMTPENEL TN PETAPOPE KO amoONKELON YE®YPAPIKADOV TANPOPOPLOV, TEPAapPdvovtag OG0 ympikd 660
KOl YPOVIKG GTOYEIN TOV YEDYPAPIKAOV OVIOTNTOV, KOOGS ETIONG KOl XEPICUO O10TTOV Y10l KIVOOUEVD
avtikeipevo. To GML zmpotumo €xet oyedwootel €tor dote vo vmootnpilel tn péylot dvvorh da-
AELTOLPYIKOTNTO KOl OVTO EMTVUYYAVETOL HECH TNG TOPOYNS POUCIKAOV YEOUETPIK®OV ETIKETOV (OA TO
cvoTipate Tov vrootpifovv to GML mpdtumo, KAVOLV YP1oT TOV B0V YEMUETPIKAOV ETIKETMV), EVOG
KOOV HOVTEAOL dedOUEVOV (OVTOTNTEG KoL 1010TNTEG) KOl EVOG UNYOVIGHOD Yo TN Onpuovpyio Kot To
Swpotpaocud oyxnubTov geoapuoymv (application schemas), emitpémovtag He TOV TPOTMO OLTO 1N
HOVTEAOTOINGN TNG GNUACIOA0YIOG TOV XWPO-YPOVIKOV TATPOPOPIDV.

H vrootnpifopevn dta-AettovpykdTnta amd To EVOLAUECSO EMITEDO YEPICUOV TV SESOUEVAOV OO KOl
TPOG TO GLOTN O dtoxeiplong g PAong dedopévav TPOYLDY, OLOKANPDVETOL YOP® OO TNV TOPOYN EVOG
oynuotog (schema), pe 10 0moOi0 KOAOUVTOL VO GUUHOPOOVOVTOL TOGO T EIGEPYOUEVE, OGO Kol TO

Trajectory Data Visualization: The VisualHERMES Tool 123

loannis S. Gkoutsidis MSc Thesis

e&epyopeva dedopéva. Xe eminedo avamtuéng, avtd PeTa@PAleTOl 0TO JAYMPIGUO TNG AELTOLPYING TOV
EVOLAEGOL EMTESOV GE dVO PEPN:

1. To dedopéva mov amaptilovv To EpOTALOTO (queries) TOL TPOKELTAL VO EKTEAECTOVV OTO
ovoTUa dtoyeiplong Tpémet vou:

e Svppopedvovtat pe To mapexdpevo tpdtumo (GML Schema),
o Emwvpodvovtol og eninedo onUaGIoA0Ying Kol
e Mertatpénovral oe SQL dpovg
€101 doTe va ekteAesTovV emTuydG (Ewdva 11) ko
2. Ta dedopéva, to. omoio omaptilovy To ATOTEAEGUATO TOV TPOKVITOVV OO TNV EKTEAECT] TMOV
EPOTNUATOV, TPETEL VOL:
e Moppomotovvtat BAcEL TOL TAPEYOLEVOD, OO TO EVOLALEGO EMIMESO, GYNLLOL

€101 AOTE 0 AMOOEKTNG TOVG va gival og BEom va ekTeAETEL TIC OTO1EG EMTAEOV dladikaGieg avaAvoNG

o€ £V0. GLVOLO OEOOUEVMV, TO OO0 VITOKELTOL GE L0 YVMOOTN Kol KOWE 0modekt popeonoinon (Euova
12).

GML Data
GML Transformation
A4 Y
Validation
Parsing
SQL Data
SQL Builder A
T
HERMES
Eikéva 11: ATTooTOAN EPWTANATOG Eikova 12: Aqyn atroteAéoparog

Télog, Yo TV VAOTOINGN TG O0dIKAGING OTTIKOTOINGNG TOV ATOTEAECUATOV KOl TNV TOPOLGIaoN
avT®V e T Pondelo unyovav Tpitev Katackevaot®v, 0mmg Google Maps/Earth, amatteitol) epoppoyn
petaoynuoticpd@v twv GML dedopévaov oe pio poper, 1 omoio kpivetar omodekty oamd TG
npoavopepbeiceg unyovég. Ty Topovceo VAomoinoT, ta amotehéouata Bo TPETEL VO LETOTPATOVY LE
Béaon to KML npotumo. Emedn], 1660 10 GML, 600 kau 10 KML, Bacifovtatl 6to yevikdtepo mpdtumo
popeomnoinong dedopévov XML, n amoitodpevn petatponn pmopei vo mpayportorondel pe v ypnion
XSLT kavovov popeonoinong (Ewdva 13).

Dvoikd, OAeg o1 Tapandve Aettovpyies, and TAEVPAS LAOTOINGONG, EVOTOIOVVTOL KOl OAOKANPMVOVTOL
KATO omd TNV OUTPEAQ OG Sl0-OIKTVOKNG EPAPUOYNG, | OO0l wapéyel 6TOV ¥pNot €va Mt Kol
Katavontd mepPAAAOV epyaciag, vTog Tov omoiov umopel va mpaypatonombel n cvvraén Kot arocToAn
gpomudtev, 1 Myn GML amotedeopdrov kot 1 omtikomoinon KML dedopévav, péca amd pia
EPAPLOYN TEPMYNTH SLASIKTVOV, ATOKPOTTOVTAG TAVTOYPOVE OAES TIG E0MOTEPIKEG SLOBIKAGIEG TOV OAOVG
GUGTNLLATOG.

Avopopikd pe tn obvtadn Kol TNV amocTOA] TOV EMOLVUNTOV EPOTNUATOV TOL YPNOTIN TPOS TO
ovotua, dtvovton Tpelg (3) duvatdtnres:

1. H ovvtaén evog SQL gpaotipatog yeypokivnta,

2. H dnuovpyia evog SQL epotipatog, Pacet emloy®v 7OV TOPEYOVIOL GTOV YPNOTY, HECH
KOTAAANA®V TEdimV EMAOYNG Kot

3. H peragpoptwon (upload) evog XML apyeiov, to omoio vrdkertan o€ Eva mpokabopiopévo oynpo
Kol to omoio mephapPivel To d€dOUEVO. YlOo. TN GLVAPUOAOYNON TOv KaTOAANAov SQL
EPMTNUATOG OO TO GOGTNLLO.

Trajectory Data Visualization: The VisualHERMES Tool 124

loannis S. Gkoutsidis MSc Thesis

KML Transformation

= e

GML Transformation

A

SQL Data

HERMES

Eikéva 13: Anpioupyia KML atmroteAéopatog

Ta anotelécpoto oL prnopel va AGPet Evag xpnoTng LETA TNV EMLTVYT EKTELECT] EVOG EPOTNIOATOC, LE
oladnmote amd TIg Tpoavapepbeices pebddove, eival 600 E0GMV:

1. GML apyeio amotereopdrov: O ypnomg Aappdaver pio vrepovvdeon (hyperlink), péow g
omotiog €yet) duvatdtnta petapoptmong (download) tov Telkod anoTEAEGHATOC, GTOV TOTKO
TOV VTOAOYIOTH Kol

2. KML apyeio amotereopdrov: O ypnomg Aappdaver pio vrepovvdeon (hyperlink), péow g
omoiog avakatevBvuvetal og pa Se0TEPT GEMOA TNG EQAPLLOYNG, GO OTOV, GE GLVOVAGUO LE TNV
vimpecioc Maps g Google, givar og 0éom va Adfel To TEMKO OmOTEAEGLO TOV EPMTHLOTOS TOV,
mapovctlaloevo ato yapTn.

ZXeS1aopog

H npocndéBeio enéktaong g dia-Aeitovpykotntog tov cvotiuatog HERMES, odiynce oty avamtoén
evoc véov gpyaleiov-gpappoyng pe to O6voua VisualHERMES. To ev Adyw epyodeio, pmopel va
gykatactadel Kol vo AEITovpynoel, xwpic va omarteitor Kamnow aAlayny oto vadpyov cvotuo (Ewodva
14). Me dA\ha Aoy, to VisualHERMES, amote)el pio evolhoktikn dlEma@n Tov ypiot UE TO Vadpyov
GUOTNLO, TPOSPEPOVTOS PBEPara duvaTOTNTEG OMMOG ANYT OTOTEAEGUAT®OV HOPQOTOMUEVOV PACEL TOV
GML zpotinov, KobBdg ETioNG Kot OTTIKOTOINONG TOV OTOTEAECUATMOV QLTAOV LLE TNV XPTOT) TOV UNYOVOV
Maps kot Earth g Google.

To cvomua VisualHERMES, Baciletal oty apyltekTtovikn Tpidv enmédmv avamtuéng epoproymy
(3-tier architecture). H emAoyn €yive Kupi®g e YvOUOVA TIG dUVOTOTNTEG ENEKTOOTG OV Bl pmopel va
€xel LEAAOVTIKG TO CUGTNUO KO TODTOYXPOVO, Ol OToleg alAayég Tpémet vo, mpaypatonomBoly, vo gival
TANPOG CTOYXEVOLEVEG O €va 1) TEPLocOTEPa emineda. EmmAéov, éva avToyoOVIOTIKO TAEOVEKTNIO TOV
QEPEL 1 GUYKEKPILEVT] OPYLTEKTOVIKY] €ival OLTO TNG GMOUOVAOOTG TOV EKAGTOTE EMMESOV, WE TPOMO
TETO0, MOTE VO €lval duvath 1 GLVEYION TNG AETovpylog Tng OANG €QAPUOYAG OKOUN Kol oV
avtikataoTodel TANpmg kamoto 1 kamowa and to eninedd g (Ewova 15).

H avémtuén tov ekdotote emmédov, pe e&aipeon avtov TG Topovsiaong, akoAovdel T Aoyikn g
dnuovpyiag dvvapikov Bipriodnkov (DLL) tov Windows. H cuykekpiuévn Tpocéyyion mpocpépet Eva
aKopn mAeovEKTNUA 6T0 OAO GLOTNUO, KOOADGC e TOV TPOTO OVTO EMITVUYYAVETOL 1| OTOGLVOEST] TOV
EMMESOL TAPOVGIOoNG, ONA. TG EPAPUOYNG, LE TNV OToio EPYETAL GE EMAPT O TEAKOG ¥pnotng. 'Etot
Aomov, kobiotator duvoty M avantuén GAA®V TOTOV €QAPUOYDV, 0TS poppoyés Yoo Windows,
epappoyég yio Web, epappoyés yio PDAs, vanpecieg Iotov (Web Services) k.Ax., ot onoieg Oa mapéyovv
OA1] T1] O10-AELITOVPYIKOTNTO TOV TPOGPEPETAL LECH TOV €V AOY® Wrapper Kot TonTtodypova o pmwopovv va
GTOYEVOLV GE SLUPOPETIKEG GUOKEVEG KO TAUTPOPLLES.

Y10 eminedo mpocPacng dedopévov (Data Access Layer — DAL), mpaypatomotodvior Oleg ot
OTOTOVHEVEG SLdKOGIES, Y10 VoL emLTEV)DEL, TOGO 1) GVVOEST Le TN Aot dedopEv@V, OGO Kot O YEPIGLOG

Trajectory Data Visualization: The VisualHERMES Tool 125

loannis S. Gkoutsidis MSc Thesis

TOV EPOTACEOY Kol anokpicenv oe O6povg SQL. To cvykekpylévo emimedo NG €PapUoyng, ivor
EMPOPTIGUEVO LLE HVO CNUAVTIKEG EPYOTIES, 01 0Toleg lvar ot e&Ng:

1. Amoctol) tov SQL epomudtev Tov xpnotn npog to cvotnue HERMES kot

2. Aqym tev TpoToyEVAY dedopévev oo Tig anokpioels Tov cvothuotog HERMES

e ¢ ¢

Uslr 1 Us#r 2 Us#r 3

Other software for
accessing geographic data

A [

VisualHERMES

Trajectory warehouse

v
A

<— D

4

Eikéva 14: To VisualHERMES wg evaAAakTIKA SigTaen

Onwg yivetar Kotovontod, yio vo, givatl oe BEomn 10 v AOY® EMIMESO VO EXIKOVMOVIOEL LE TO GVUOTILLOL
HERMES, 0a npénel mpdta vo £yl eykotootobel n avaloyn cvvdeon, Asttovpyio tnv omoia emiong
enopileTal, KAVOVTaG ¥PNoT TOV EKAGTOTE TAPOXOL OESOUEV@V, LEGH TOV OTMOIOVL EMLTVYYAVETAL KOL 1)
emBopnt odvdeon.

AvoQopikad LE TN ANYN TOV TPOTOYEVOV dedopévav, Do mpénel va onpelmdel, 0Tt oNUacloloyKd o
OTOTEAEGLOTO. TOV OVOUEVEL O Wrapper, €0V Vo KAVOUV HE TPOYLEG KIVOOUEV®V avTIKEWEVOY. Ot
TPOYLEG AVTEG, OmOTELODVTOL ad dVO JOUIKG GLOTOTIKA, TO OTOio £XOVV VO KAVOLV LE TIC YEDYPUPIKEG
GUVTETAYUEVEG TTOV PEPEL TO TPOC TOPOTNPNON AVTIKEIHEVO, Kabmg emiong kat tov ypoévo (Timestamp),
Katd Tov omoio £yel Tpaypotoronbei N Ay TV ekdotote cuvtetayuévoy. Emmiéov, eneidn npdketton
YW AVOTOPAoTAGT TPOYUDV KIVOOLEVOV OVTIKEWWEV@V, YiveTal avTinmtd 0Tt amarteitor 1 dmapln evog
Cevyoug dvo onueimv Yo kabe TopoTpnomn, éva Yo To onpeio Kot Tov ¥povo ekkiviong kot v ylo To
avtioToly o onueio Kot ¥povo TAHoN G TG KIVIIoNG TOV KIVOOLEVOL aVTIKELEVOD. Me Bdon Ta mapamdvo,
0 wrapper, KatoAnyet va €xel otn d1ébeon Tov, Ho amdKpPLoT, TV OTOl0G Te OTOTEAEGLOTO VIOKEWVTOL
oTNV KAT®OL poppomoinon:

(X1, Y1) - (X2, Y2) # TimeStampl - TimeStamp2

duokd, TO AmOTEAECUO TNG EKACTOTE OMOKPIONG OOVATOL VO TEPLEYEL TOAAATALG TETOLES
TAPATNPNCELS Y10 KAOE KIVOUUEVO OVTIKEIIEVO, dNUIOVPYDVTOG He TOV TPOTO ovtd évav oppobd amd
dradoykd onpeio Kot xpoVoOLG.

‘Ocov apopd ta SQL gpotipata mov pmopel va omootodlodV and Tov wrapper kol on 1o eminedo
YEPIOUOL dedopévav, Tpog to cvotnue HERMES, mpdkettat yio tomikd epotipote mov Bacifovtatl oto
SQL mpodTtumo 0OVTOENG EpOTNUATOV Kot dVvVAVTAL Vo KAVOLV XP1oT TOCO YMOPIKAOV OGO Kol YPOVIKOV
TELECTMOV YO TNV OVOTOPAGTACT) TOL £MOVUNTOD EPOTALOTOS. MEPOC TOV TEAECTMOV QVTMOV TOPEXETOL
amd 1o TpUMU Yopkhg vrootipiéng g Oracle (Spatial Oracle) kot éva GAAO pépog omd To VO
HERMES. O wrapper BéBoic, KAvel amAd ypnomn TOV TEAESTOV OVTOV, YOPIC KOTOW ETTAEOV
dwdkacio.

Emunpocbeta, oto emimedo yeipopov dedopévav, €yel avatebel M HETATPOT TOV TPOTOYEVAOV
dedopévov og dopég KatAAANAES Yo TV enefepyacio Tovg and to apuéomg enoduevo eninedo. Me tov
TPOTO AVTO EMITVYYXAVETOL 1] OTOCHVIEST] TOV GUYKEKPUYEVOL EMTESOV OO TO EMOUEVO TOL. Me dAAa
A0y, TO emimedo avTd Pmopel va Topdyetl To XBLUNTO AMOTEAEGLO e OLOVONTOTE TPOTO TOL avaTeDet,
opkel vo KataAnyel mhvtote oTig id1eg Sopég dedopévamv.

To ™ péyrom gvehéio tov wrapper, 10 eninedo xeplopov dedopévav, dev kavel ypron (gvtog Tov
KOOKN) KATO0V GUYKEKPILEVOL TTapdyov dedopévav. Evioutolg, £xet yivel xpromn YEVIKELUEVOL KMSIKA,
0 omoiog &yl ™MV wKavOTNTO Vo TPOGOPHOLETAL GTOV €KAGTOTE Apoyo mov Bo tov avarebel, Yo v

Trajectory Data Visualization: The VisualHERMES Tool 126

loannis S. Gkoutsidis MSc Thesis

oAOKApwoT TG OmolaG epyaciag, EmLTLyyGvovTog 1ot BEATIOTN TPOGOPHOGTIKOTNTO Kol dtapavelo. H
MAwon tov emBuUNTOY TAPOYOL FESOUEVMV, TPAYLOTOTOLEITAL 0T £V E@TEPIKO apyeio puOpicemy.

Presentation Layer
(Web Application)

User ‘
(Web browser)

GML/
KML

VisualHERMES

GML

Business Logic Layer

XSD Parser Wrapper XSLT

‘ Data
QL Table

Data Access Layer

Data Provider

I

HERMES

Eikéva 15: H apxitekTovikn Tou VisualHERMES

To eminedo emyeipnolokng Aoywkng (Business Logic Layer — BLL), sivar vmevBovo yua
LOVTEAOTOINGOT TOV TPOTOYEVAV OeS0UEVOVY, TOL AaUBAveL omd 1o emimedo Yelplopol dedopévmv, Ge
EMLYEPNOLOKA avTiKElpevVa, To omoia eivar g BEon va TepAcoVY OO TIG AMAPAITNTES LETATPOTESG, MDOTE
VO KOTOGTOOV KOTAAANAQ vyl tn Ompovpyloa tov emBopntod amoteAéopatos. IlapdAinia, to
GUYKEKPILEVO EMIMEDO TOL Wrapper, €ival EMQEOPTICUEVO Kot He Tn dadikacio g eneéepyaciog Kot
petatponng t@v GML gpotpdtov ce SQL 6povg kot TV omoGTOA 0VTOV, GTO €MINEdO YEPLGHLOV
dedopévav kat v ek ektéleon Tov epatnuatog (Ewova 16).

Presentation Layer

GML/
Gi’"- KML
Business Logic Layer

| i

sQL sQL

Data Access Layer

Eikéva 16: O 81TT6G pOAOG TOU ETITTESOU ETTIXEIPNOIAKNAG AOYIKAG

Mécw Aowmdv TOV KOTOAANA®V GUVOPTHCE®V 7OV €Yovv avomtuyfel &vidg Tov EMmMESOL
EMLYELPTOLOKNG AOYIKNG, KAOIoTATAL EQPIKTN 1) LETATPOT TOV EMUEPOVS EMYELPNOLOKDV OVTIKELEVOV OF
apyeta, ta mepexdpeva Twv onoiwv coppopeavovtor pe 1o GML ko KML npdtuma.

Onwg mpoovaeéptnke, o pOLOG TOL GUYKEKPIUEVOL EMTEDOV TOL Wrapper, eivatl dttdg Kot apopd
7060 0T LOPPOTOINCT TV anoTeAecudtov, 660 Kot ot petatponn 1@v GML gpotpdtov ce SQL
opovg. ' Tig avdaykeg e SQL petatpomng and GML, evtog Tov cuetiatog el vhomomOetl pa oelpd
oo EMUEPOVG EMLYEPTCLOKA AVTIKEILEVA, EMIGNG VIO TN HOPEN KAGGE®V Kot To omoia givat og BEom va
AVOTOPAGTHCOVY TOVG 0povg evog SQL epmtinotog, Kobmg emiong kot €va doucOnTikd TOTO TOL
EPOTANOTOG 0VTOV. Ot KAAGEL IOV £Y0VV LAOTOMBEL, LTopoHV Vo cuvoytsBodv oTig e&ng:

Trajectory Data Visualization: The VisualHERMES Tool 127

loannis S. Gkoutsidis MSc Thesis

e QueryType: Agktikd Tov TOTOL TOL epTuatog (Trajectory, Spatial, Temporal k.Ax.),

o TimePoint: Avarnapdctacn pioag ypovo-cepayidag (TimeStamp),

e TemporalWindow: Avomopdotacn &vog ypovikod mapabbpov mov amaptiletor amd dvo
TimePoints,

e SpatialWindow: Avomopdotacn &vOc Ye®@ypaekoy TOPOAANAOYPAULOV, TO Omoio
anoaptifetor and dvo Points mov avamapiotodv TIC ETAVO-OEELd KOl KATM-0PIGTEPA YOVIES
TOL Ko

e Query: Avomopdotacn T@V 0pmV Tov dOvavTal Vo epueavilovial oe £va EpOTNUL OTMG
TOTOG EPOTNUATOG, KOSIKOG AVTIKEEVOD, KOSIKOG TPOYLAS, YPOVIKO Tapdfupo KOK.

O ovVdVLAGUOG AOOV TOL TUTOL TOL EPMOTNUATOS, KE TOVG EMUEPOVS OPOLS avToD, BTovv TV
EQAPLOYN, HECH TOV AVIIGTOLY®V CLVAPTNOEMV OV £x0VV VAomomBel, oe BEon va GuvaproLloYNoEL TO
KatdAAnAo SQL epdnpa kot HEcm Tov emmédon Yool dedopévav, Vo OmooTaAEl TPOG TO GVGTNHLA
HERMES 710 extéheon).

e mpornyodevn avapopd, £ywve AOYOS Yo TOVG S1APOPOVS THTOVG EPAPLLOYDV, Ol OTOIEG UTOPOVV VA
Kkavovv ypnon tov VisualHERMES wrapper, étol ®©ote va Topéyetar otov TEAIKO Ypnotn &va
opyavmuévo mepiBaiiov epyacioc, péca and to onoio O pmopel vo extedéost ta emBuounTd EPOTALOTO,
Kabmg emiong kot vo AdPel o avtiotorya amoteAéopata. [o Tov okomd avtd, dnpovpynbnke o
Sdwdiktvaxn epappoyn, Paciopévn oty teyvoroyin ASP.NET 1ng Microsoft (Microsoft ASP.NET,
2008) kot m omoia divel otov ypnotn TN dvvardTNTO HESH Omd Hia epappoyn mepuynong (Internet
Explorer, Mozilla Firefox x.d.), va ocovdebel pe tnv vanpecio kot vo dlekmepaidost v extfount
gpyacia.

YAomoinon

Ta v 660 10 Svvatd gukoAOTEPN KL TTO GLLECT) ETAPN TOV YpNoT®dV e To cvotnua VisualHERMES,
€xel viomomBel o S10-d1IKTLOKNY EQOPLOYY], HECHO TNG Omoiag O YPNOING Umopel vo amooteidel Ta
emBopntd epompata tpog o cvotnuo HERMES kot va AdPet ta avtictoryo amoteAéopata apevog Lev
popeomompéva Bacet tov GML mpotimov oe €va apyeio, APeTEPOL dE OMTIKOTOMUEV UE YPNON TNG
vanpeciag Maps g Google. OAa ta mapamdve BEPata, OAOKANPOVOVTAL Pe TV XPNON LLOG EPOPLOYIS
mepynongs, 6mwg o Internet Explorer, o Mozilla Firefox «.4. (Ewdva 17).

/€ VisualHERMES: Query - Windows Internet Explorer [F=8|pon |
G - [&] mpiniocaost1832/Query [42 | % |[Google o
e | @ VisualHERMES: Query B = & v i Page v {} Tools v

VisualHERMES: Query

Spatial Reference IDentifier (SRID): 2100 Query Type: MNotSet -
MNotSet

Query: * Trajectory
Spatial Intersection

Temporal Intersection
Average Speed
Upload Query File

Done @ @ Internet | Protected Mode: On #100% -

Eikéva 17: VisualHERMES - 006vn dnpioupyiag epwTNHATWV

Angioupyia epWTNHATWYV

Amd v apyik 006vn ™G epappoyns, o xpNotng Umopel vo emAégel tov TpoOmO, He Tov omoio Oa
GUVOPLOAOYNGEL TO TPOG 0TOGTOA epmTNHa. O mBavEg TEpuTTOoELS Etvar o1 €ENG:
1. Xepoxivnm ovyypaor tov SQL epotiunatog oto nedio Query,
2. Emoyn evog and 1oug Tpokafopiopévong TOTOVG EPOTNUATOV Kot
3. Amoctoin evog GML apyeiov, oto omoio Ba vdpyovv popeonompévor katd GML, ot 6pot mov
Ba cupTANPOVOLY TO TEAMKO EpMOTNUA.

Trajectory Data Visualization: The VisualHERMES Tool 128

loannis S. Gkoutsidis MSc Thesis

Yy mepintmon mov o ypnotg entiééel tov NotSet TOm0 ep@TAIATOG, TOPOVCIALETAL Hio TEPLOYN
KeWEVOL, otV omoia pmopel va cuvtdéel éva omolodnmote Eykvpo gpdtnua SQL, kol to omoio ot
ocuvéyeta anootéAdetat 6to cvotnpuo HERMES, péom tov VisualHERMES wrapper. 1o onpeio avtd Oa
mpénel va. onuelodel évog mEPOPICUOG OV VIAPYEL OO TO GUOTNHO, £TCL OCTE v givar dvvarth 1
povtelomoinon OAwv Tov emotpePopuevav dedopévov. O Tepopiopdc ovtds £xet va kKavet pe ta media
TOV OTOTEAECUATOV MOV EMOTPEPOVIOL KOL TO omoio TPémel vo mEPLOUPAVOVY TOV K®OIKO TOL
Kwovpevov avtikepévov (OBJECT ID), tov k@dwd g tpoyids (TRAJ ID) kot 1éhog Tig mpoyLaTikég
Tpoylég mov emotpiépovtal omd o HERMES (MPOINT).

Orav enideyel Kamolog and Tovg TPOKAOOPIGUEVOLS TUTOVG EPOTNULATOV, TAPOVGIALETOL GTOV XPNOTN
po opdda mediwv, ta omoio KoAolOvtor vo cvumAnpmbovv, €tol @cte TO cVGTNUA VO AAPEL TG
ATOPAiTNTEG TIWES Yo T dNpovpyio Tov ep@THATOV. Ot ETA0YEG TOV €xEL O XPNOTNG 0T dtdfeon Tov
gtvo ot
Trajectory
Spatial Intersection
Temporal Intersection
4. Average Speed/Direction

W N =

Yy mepintoon mov o ypnotng emAééel TV amootol Tov gpotnuatog pe ypiion GML apyeiov,
Bpiloketal pmpootd og éva medio, 610 0moio TPEMEL VoL E1GAYEL TN Stadpopn] Kot T0 GVOLO TOL opyEiov
TV, OTMG TOPOVGIALETAL GTOV TOTIKO TOV VITOAOYIOTY).

/& VisualHERMES: Query - Windows Internet Explorer EI@
@\‘_/' - |£,'_; http://localhost:63490/Default.aspx = | “’f| X | |/' Google 2

7. Favorites 9y | (@& VisualHERMES: Query & EmulateIE7 | E] ~ @ ~ |- Page = {0} Tools +

VisualHERMES: Query

Spatial Reference IDentifier (SRID): Query Type: Upload Query File -
File: Browse..
Execute Query

Eikéva 18: VisualHERMES - 006vn amrootoARg GML apxeiou epwtnudtwyv

[Ipdxkertar yio éva apyelo Keévov, Tov 0moiov TO TEPIEYOUEVO TPEMEL VO CUULOPPADOVOVTAL [E TO
XML mpdtomo ovamopdotacng Sed0UEVOVY, £T61 OOTE VO, €ival cLVTOKTIKG 0p00. TTépav avtod duwe, To
TPOG OTOGTOAN apyeio, Oo mPEMEL Vo GUUUOPPOVETAL KOl e Evo, SEVTEPO OYNUA, EVTOG TOL OTOIOVL
kaBopiletar to emrpentd Ae&iloyo mov pmopel va ypnoonombel. To oynpa avtd givar kabopiopévo ek
TOV TPOTEPWOV, KOl HOVO av TO TPOG OmocTOAN oapyeio a&ohoyndel emituydg omd tovg 6V0 aVTOVG
eAéyyovg Ba givar o Béom vo vrootel v 6mota eneéepyacia and to cvotua VisualHERMES.

Angioupyia AITOTEAECHATWYV

Me dedopévo 0Tt Exovv dnpovpynBel Ta KOTAAANAO ETLXEPNCLOKA AVTIKEILEVO VIO TNV TEPLYPOPT TOV
Tpoyldv mov emectpaenoav and to cvotnua HERMES, 1 endpevn dwdwkacio &xst va Kavel pe
dnpovpyia TV TEMK®OV apyxeimv Tov Ba emeTpapovy otov ¥pnotn. H ev Adywm dadikacia, anoteleiton
omd dV0 SLOKPITES VTTO-O1OIKAGTES:

1. Anuwovpyio Tov GML opyeiov, 6mov o wrapper diatpéxet Olo to SlabécIa avTikeipeva
TPOYLDV, TOL £YOVV TP dNUovpyndel, Kot TNV TPOcHNKN G AVTA TOV KATAAANA®V ETIKETMOV
Ko

2. Anuovpyic tov KML apyeiov, 6mov o wrapper, cuppovievdpevog éva eEntepikd apyeio
Kavovov popeomoinong XSLT, petatpénel va mepieydpeva tov GML apyeiov og dpovg KML.
Ta ™ onuovpyio tov GML apyegiov, 0 k®OKOG TOL Wrapper AslTovpyel avtdvoua, Ywpig Kdmolo
emmAéov mopEuPact. Avtifétmg, yio tn dnovpyio tov KML apyeiov, o wrapper, cupfovievdpevog va
eEntepd apyelov petaoynuoticpudv XSLT, petarpénet o apyucd GML €yypaeo oto avtiotoryo KML.
Telkd, ta oapyeio mov dnurovpyei o wrapper VisualHERMES, mopatifevion otov ypnotn mov
OMEGTEIAE TO EPMTNLLA, G dVO VIEPSLVIETELS dladkTvov (Hyperlinks).

Trajectory Data Visualization: The VisualHERMES Tool 129

loannis S. Gkoutsidis

MSc Thesis

/& VisualHERMES: Query - Windows Internet Explorer

= e =S
@U = |§ http://localhost:59043/Default.aspx

o vl

v|$,| x | |)'1 Google
i Fovorites 50 | 4@ VisualHERMES: Query

| | EmulatelE? |] ~ = = = Page = () Tools ~

VisualHERMES: Query

Spatial Reference IDentifier (SRID): 2100 Query Type: Trajectory

Object ID: 0420
Trajectory ID: 6

GML File: Download GMIL file
KML File: View KML file

Eikéva 19: VisualHEMRES - 006vn AQyng atroteAecudTwv

To mpdto €& avtdv, avanapiotd 1o GML apyeio kot T0 omoio 0 ¥pHGTNG UTOPEL VO LETAPOPTAOCEL
(Download) 6tov T0omiK6 TOV VITOAOYIOTH.

Avogopikd pe 1o dgdTEpo apyeio, To omoio avoamapiotd to KML oamotédecpa tov apykod
EPWTNALOTOG, O XPNOTNG LTOPEL EMIONG VOL TO LETOPOPTMOGEL GTO TOTIKO TOV VITOAOYIOTH, KoOmG emiong Kot
vo dgl ta amoteAéopatd tov pe tn Ponbewn g vanpeciog Maps g Google. Méow g dlemapng
TPOYPUUHUOTICHOD EPAPLOYOV TNG VINpeciag Maps, &xet dnpiovpyndei pia devtepn celida 6T0 cHOTNUA,
N omoia £yl MG 6TOYXO VO KAVEL VIEPHEST] TOV AMOTEAEGUATOV OV ExEl ot S1ifecn Tov TO GVGTHHA
VisualHERMES eni tov avtictotywv yaptdv mov topéyoviol and v Google (Euova 20).

'r_,é VisualHERMES: Google Maps - Windows Internet Explorer EI@
@l\‘/n - |§, http://localhost:59043/ViewKML.aspxIV + | "f| X | |)', Google P |

o7 Favorites o | /& VisualHERMES: Google Maps

[EmulatelE7 | (] ~ o= v b Page v () Tools v
-
VisualHERMES: Google Maps
2 =
:% 4 oy
;. e PR
?‘\ e ‘:.}-..
z g
Z S
) 4,
t'g g *’wﬁﬂ‘q
]
e, L
T 3
- &
3
HMouTtroAn
1
% = - E93B00 Moxapioy
¥ £
]
2 ChUpTIGK LY
m
g
) g
Po‘v‘vgﬁzn EY =
% -
("OL 8'6 § Es ©2008 Acbop Eva xaprn Tele Atlas - Dpo yphonc

Eikéva 20: VisualHERMES - 006vn otrtikotroinong KML atroteAeopdTwv

Amd 10 onpeio ovtd, 0 TEMKOG YPNOTNG £xEL OTn O1dbeon Tov Hio Pl epydleinv, Ta omoia
TapEyovTal amd T UNYOvi OTTIKOToiNoNG ¢ vanpeciog Maps, pe m Pondeia tov omoiov pumopel va
Kwvn0ei evtog Tov TopeXOUEVOL XApTT, Vo TpoPel o HeyeBOVOELG 1| GUIKPOVOELS 08 EMAEYUEVES TTEPLOYES

Trajectory Data Visualization: The VisualHERMES Tool 130

loannis S. Gkoutsidis MSc Thesis

KA. EmmAéov, kGbe T TG OTTIKOTOMUEVNG TPOYLAG, PEPEL EMTPOSHETEC TANPOPOPIEC GYETIKA L
oV avEoVTO apBpd TG, TOV KMOIKO NG OTMG anTOg TopEYETAL opykd amd to cvotnue HERMES kot
TELOG TOV KOIKO TOV KIVOUEVOD OVTIKELEVOU.

ZUUTIEPACTHOTO

To GML anotekel éva avorytd mpotumo, Paciopévo oty XML teyvoroyia (Bray, kot cuv., 2006) kot
(Bray, ka1 ovv., 2006), T0 07010 TEPIYPAPEL YOPIKA KoL ¥POVIKH dEG0UEVO YI0L LETAPOPE Kal amobnkevon
010 epIfdriov tov Atadiktoov. Ot e&erifelg mov VPEAV TO TEAEVTAIO YPOVIKO SLACTNUA OE OXECT LE
™V eMEKTAOT TOV TPoTVIOV oty €kdoon 3 (Cox, kot cvv., 2004), Yo ™V AVOTAPEGTACT) TOTOAOYIDV,
TPLOOIAOTATOV YEOUETPIDY, EMLPAVEIDV KOl KIVOOUEVOV OVIIKELEV®V, TPOCEOMGAV L0 VEN SUVOUIKN
otV amodoyn Kot v vwoBETon Tov TpoTvmov amd TV kowdtto. H emtuyio tng amodoyng avtng
Aomov, €xet kataotiost To GML og pa Ao oto mpoAnpe Tov Stopolpacpod Tov dedopévav HeTa&d
ETEPOYEVAOV OUAS®OV XPNOTOV.

Ta XML dedopéva ddvavtar va ontikorombodv pe ddpopeg pebddove. I'a v ontikoroinon ywpo-
YPOVIK®DV TANpoPopL®dV, ot omoieg Pacilovtal oto XML, ce évav web browser, amotteital 1 petatponn
TOVG GE U0 LOPPT] YPAPIKDV, TOV O TEAEVTOIOG VO, UTOPEL VL EPUNVEVGEL. YTTAPYOLV S10QOPEG EMAOYES,
0l 0moieg TOPEYOVY ADGELG OTO GLYKEKPIUEVO OVTIKEIUEVO, Kabepd omd Tig omoieg QEPEL Ta JIKA TG,
LOVOOIKA, YOPOKTNPLOTIKA. TNV apovoa épevva, emeréyn to KML mpodtumo popeomoinong (Google
Inc., 2008), Ady® ™G yerrviaons tov pe avtd tov XML kot enedn vndpyovv 10M VAOTOMUEVEG UNYOVEG
OTTIKOTOINONG TOV MOTEAESUATOV, XOPIG VO amatteital 1) eykatdotaon emmnpdcsbetov Aoyicukov (plug-
ins). Mia tétowa Avon, givar ko 1 vanpecio Maps g etaipiog Google (Google Maps, 2008).

To XSLT (Clark, 1999), aroteAetl pa etonynon tov W3C, yio t petatponn evog XML gyypagov og
éva aAlo. Me dedopévo 6t o GML amoterel o avanapdotacn Baciopévn oto XML, to XSLT eivon og
0¢om va petatpéyer GML €yypaga oe KML éyypaga. Ot empépoug kavdveg petatpomng opilovral eviog
tov XSLT stylesheets. Me v ypfion tov stylesheets avtdv, pmopodv va moapoyBodv emumpdcbeteg
mnpoopiec omd to apykdé GML &yypopo, ot omoieg duvavtot va ewsoyBovv oto tehkd KML éyypago.

Teyvikd, elvor dvvatn M avamtvén Aoywopkod vy) petatponny towv GML dedopévov oe
OTOWONTOTE HOPPT OVOTAPACTACTS YPAPIK®DV, 0ALG 1 petatpony| ond GML o KML, pe ypnon XSLT,
oépel Kamowo mheovektuata. Kaver ypnon mmg XML, pog teyvoloyiog, emi g omoiag Pacilovrot
TOAAEG Aettovpyieg TOv onueptvoy AadIKTOOV Kot VIOSTNPILETOL OO TOVG UEYOAVTEPOVG TTOPOYWYOVG
Aoyopkov. H dadikacio mopaymyns SlepopeTIKOV ovVaTopucTACE®V KPIVETOL OXETIKA OmAn, S10TL TO
XML, emitpénet to daympiopd tv dedopévav mepieyopévon omd ta dedopéva mapovoiaons. Emumiéov,
omv mepintoon 6mov 1o GML dedopéva xpnotomolovy éva mpokaBopiopévo oyfue EQApPUOYNGS,
omolodnmote GUVOLO dedopévov pumopel va avarapactadei pe Bdon to id1o stylesheet.

To cbompa HERMES (Pelekis, et al., 2006), amoteAel (o enéktacn 6to makéto Aoywopikod Spatial
TOV GLOTHLOTOG OLOYEIPIONG AVTIKEIUEVO-CYESIOKMV Pacewv dedopévav g Oracle oty ékdoorn 10g
(Oracle Corp., 2003). Méow v &v AOy® €mMEKTOONG, EMTUYYOVETAL 1 SloXelplon Y®PO-YPOVIKMV
dedopévav (Tpoyldv) Yo Kvodpeve ovTikeipeva, ta onoia petafdiiovv tn B€on 1/kat 1o péyebog tovg,
ava ToKTd Ypovikd dtacthroTe 1 cvvey®s. EmmAéov, mopéyel OAN TNV amoitoOUEV] VTOSOUN Yo TNV
VIOGTHPLEY OTOGTOANG EPMTNUATMOV Yo TAL KIVOOUEVO avTikeipeva mov dwyepiletal, pe tn fonbeta kot
AOPO-YPOVIKOV TEAEGTAOV. AdY® TOV YeyovoTog 0Tt T0 cvotnuo HERMES, amote)el o mnyn dedopévmv
(data source) TPOYLOY KIVOOLEVAOV OVTIKEWWEVOV GE TPITEG EPAPLOYES, KpiOnKe oKOTIUN 1] VAOTTOINGT EVOG
wrapper, o onoiog 0o Ntav og Béon va popeomotel Tig TANpopopieg avtég oe 6povg GML, mpv v
OTOGTOAN TOVG, HE OMADOTEPO OTOYO TNV EMEKTACN NG OlO-AEITOVPYIKOTNTOS TOV GULGTILOTOG.
Emunpdobeta, o ypriomg 6o pmopovoe vo AAPEL piol OTTIKOTOMUEVT] TAPOVGIOGT) TWV ATOTEAECUATOV
mov {Nnoe, eni xaptov, pe tn Ponbeia g vanpeciog Google Maps, kdvovtog ypnon pog thin client
EPAPLOYNG, OT®MG 0 Web browser Tov. Qg ek T0VTOV, TO Se60UEVO LOPPOTOLOVVTOL KOl COUPOVO LE TIG
emrayés tov KML.

Ta tig avdykeg e mapovoog Epguvag, oyedtdoke Kot vAortomOnke 1o cvotuo VisualHERMES.
Méow TOv GLGTAWHATOG OLTOV, 0 ¥PNOTNG eivar og Béom va ouvdebel og o S1adIKTVOKY VAN PECIaL-
tomofecia, and Omov pumopel va amooteilel epowtipate oto ovomue HERMES, cite emidéyovtag Evav
npokafopiopévo tomo, gite amoctérdovtag éva GML éyypapo epotipatog, vo Adfel To anoteléopota
TOV EPOTALOTOG AVTOV, poppomotmuéva katd GML kot tedkd, kavovtag ypion g vanpeciog Google
Maps, 1 omoio. oAokAnpdveral evtdg tov cvotipatog Visual HERMES, va AdBet kot tnv ontikomompévn
€K0YN TOV OMOTEAEGUATOV TOV, 0poD AVTA TPAOTO popeonotnBovv e fdon to KML npdtumo.

Trajectory Data Visualization: The VisualHERMES Tool 131

	Abstract
	Περίληψη
	Acknowledgements
	Table of Contents
	Table of Figures
	List of Tables
	Abbreviations
	Introduction
	Background and motivation
	Problem definition
	Research objectives
	Methodology

	Moving Object Databases
	Introduction
	Mobility scenarios
	Capabilities of spatio-temporal databases
	Evolution of spatio-temporal models
	Spatial change in Moving Object Databases
	Trajectory Representation
	Spatial Database Management Systems
	Spatio-temporal Extensions
	HERMES-MDC

	Conclusion

	The eXtensible Markup Language (XML)
	Introduction
	Evolution of XML
	The eXtensible Markup Language (XML)
	XML document structure
	Declarations
	Elements
	Comments
	Character references
	Processing instructions

	Document Type Definition (DTD)
	XML schema
	Simple type
	Attributes
	Restrictions and extensions
	Complex type

	XML namespaces
	Document Object Model (DOM)
	Unicode system
	Viewing XML documents
	Stylesheets
	XML based markup languages
	Conclusion

	The Geography Markup Language (GML)
	Introduction
	Background and evolution of GML
	GML features
	Simple features
	Geometry elements
	Time elements

	Core GML schemas
	Encoding geographic information with GML
	GML application schemas
	Structure of an application schema
	Structure of GML documents
	Validation of GML documents
	Viewing GML data
	Conclusion

	The Keyhole Markup Language (KML)
	Introduction
	Visualization of geographic data
	Evolution of KML
	Keyhole Markup Language (KML)
	Creating KML files

	KML features
	KML document structure
	Viewing KML data
	Google Earth
	Google Maps
	Other viewing applications

	KML critique
	Conclusion

	The eXtensible Stylesheet Language Transformations (XSLT)
	Introduction
	EXtensible Stylesheet Language (XSL)
	XSL Transformation (XSLT)
	XSL Formatting Objects (XSL-FO)
	XML Path Language (XPath)

	Tree and nodes
	XSLT stylesheet
	XSLT stylesheet structure and elements
	Templates
	Matching nodes
	Selecting nodes
	Named templates
	Content of output
	Output methods

	Combining stylesheets
	Importing
	Inclusion

	Embedding stylesheets
	Creating an XSLT stylesheet
	XSLT processors
	Conclusion

	VisualHERMES Wrapper
	Introduction
	Requirements
	Design
	Application architecture
	Data Access Layer
	Business Logic Layer
	Presentation Layer

	Application modules
	Data flow
	Development environment
	Access to data
	Implementation
	System logon
	Query building
	Results construction

	Compression features
	Problems in implementation
	Conclusion

	Case Study
	Introduction
	Dataset characteristics
	Trajectory query type
	Spatial Intersection query type
	Temporal Intersection query type
	Average Speed query type
	NotSet query type
	Upload GML query file
	Conclusion

	Conclusions
	Open issues

	Bibliography
	Appendix
	VisualHERMES GML Schema Definition File
	VisualHERMES eXtensible Stylesheet Language Transformations File
	HERMES TO_CLOB() Function
	Εκτενής Περίληψη στην Ελληνική
	Εισαγωγή
	Τρέχουσα κατάσταση
	Αντικείμενο εργασίας

	Βάσεις Δεδομένων Κινούμενων Αντικειμένων
	Χωρο-χρονικά δεδομένα
	Κινούμενα αντικείμενα
	Τροχιές κινούμενων αντικειμένων
	Ερωτήματα σε κινούμενα αντικείμενα
	Δεικτοδότηση κινούμενων αντικειμένων
	Αρχιτεκτονική και λειτουργικότητα ΒΔ Κινούμενων Αντικειμένων
	Εφαρμογές Βάσεων Δεδομένων Κινούμενων Αντικειμένων
	Oracle Spatial
	HERMES-Moving Data Cartridge

	Η eXtensible Markup Language (XML)
	XML δένδρα
	Η αποτύπωση των αρχείων XML

	Η Geography Markup Language (GML)
	Δομή
	Υποστηριζόμενες γεωμετρικές ιδιότητες
	GML 3.0

	Η Keyhole Markup Language (KML)
	Δομή
	Εργαλεία παρουσίασης

	Η eXtensible Stylesheet Language Transformation (XSLT)
	Βασική ροή
	XSLT στοιχεία
	XSLT συναρτήσεις

	Ο VisualHERMES wrapper
	Ανάλυση απαιτήσεων
	Σχεδιασμός
	Υλοποίηση
	Δημιουργία ερωτημάτων
	Δημιουργία αποτελεσμάτων

	Συμπεράσματα

