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1. Introduction 

The roots of modern investment theory can be traced back to Markowitz theory 

first developed in 1952. The core idea of his theory was that investors should hold 

mean-variance efficient investment portfolios, which could comprise of assets, such 

as bonds, stocks and cash. However, in the past, Markowitz theory was not widely 

used. Instead, most investment managers focused on uncovering securities with high 

expected returns and theoretical research on investments has concentrated on 

modeling expected returns.  

When the Stock Market Crash of 1987 incurred, Markowitz’s theory gained great 

in popularity, since those following the strategy managed largely to avoid an 

overcommitment to equities immediately before the Crash. After that, professional 

investors are rediscovering the importance of portfolio risk management. The recent 

interest in asset allocation methods, including international diversification, has also 

spurred interest in risk measuring. Another factor is the increased use of sophisticated 

quantitative methods in the investment industry, together with increased computing 

power. In short, there is an increased emphasis on risk control in the investment 

management industry. Correlation matrices of financial returns play a crucial role in 

several branches of modern finance such as investment theory, capital allocation and 

risk management. Furthermore, financial correlation matrices are the key input 

parameters to Markowitz’s classical portfolio optimization problem. 

Great importance to risk control also gives the continuous growth of the hedge 

fund industry. Over the last few years institutional investors and high net worth 

individual investors invest in alternative strategies as hedge funds. The difference can 

be illustrated from a comparison between traditional and alternative investments: from 

January 2000 to December 2003, the MSCI World Index lost on average 5.9% per 

year, while the CSFB-Tremont hedge fund index gained on average 6.8% per year, 

with much lower volatility. Despite some high-profile losses, investors are 

committing more assets to the alternative investment industry. This fact gives great 

importance to measuring of variances and covariances/correlations of hedge fund 

returns, because there may be, if not measured accurately, important impacts in terms 

of asset allocation, pricing and portfolio construction and in risk measurement (VaR, 

CVaR).  

In addition, focusing on forecasting the second moments, rather than expected 
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returns, may be more useful in asset allocation terms for two reasons. Firstly, there are 

several studies which examine the importance of the forecasts of mean returns for 

mean-variance optimization (Michaud (1989), Best and Grauer (1991), Chopra and 

Ziemba (1993), Winston (1993)) and there is a general consensus that expected 

returns are notoriously difficult to predict and that the optimization process is very 

sensitive to differences in expected returns. As Chopra and Ziemba conclude (1993), 

errors in means are approximately ten times as important as errors in variances and 

covariances considered together for a low risk tolerance, and for a higher risk 

tolerance they become twenty-one times. At the same time, there is a common 

impression that variances and covariances of returns are much easier to estimate from 

historical data in order to manage the allocation of the assets in the portfolio, without 

suggesting that, although future covariances are more easily predictable than future 

mean returns, the difficulties should be understated. Like Merton (1980) states, 

variances and covariances of returns can typically be estimated with far greater 

precision than the expected returns. This gives rise to the possibility that the second 

moments pose fewer problems in the context of portfolio optimization through a 

mean-variance analysis and that reduction in volatility may lead to better optimization 

results.  

Second, one could say that, with today’s stock market structure, returns and 

variances are no longer sufficient in order to have a good asset allocation. Stock 

market crises in Europe and USA since the year 2000 and fragility of the international 

stock markets sparked the interest of researchers in understanding and modeling the 

markets’ rising volatilities in order to prevent against crises. Therefore correlations 

between assets need to be determined precisely in order to perform an optimal asset 

allocation. Otherwise, if correlations that increase during periods of high volatility are 

falsely disregarded, the allocation process will be biased and the portfolio will not be 

diversified enough as correlations increase during high volatility episodes, which 

might lead to considerable losses.  

Also, as mentioned before, covariances and correlations of returns play a central 

role in derivatives pricing, optimal portfolio selection, and risk management. These 

applications motivate an extensive literature on volatility modelling. Starting with 

Engle (1982), researchers have fit a variety of autoregressive conditional 

heteroskedasticity (ARCH), generalized ARCH (Bollerslev (1986)), exponential 

ARCH (Nelson (1991)), and stochastic volatility models to asset returns. This 
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literature has centred on evaluating the statistical performance of volatility models and 

in extent, the statistical performance of predicting covariances and correlations of 

assets.  

The remainder of the master thesis is organised as follows: Section 2 gives a first 

impression of our study combined with a review of the previous relative literature. 

Section 3 describes the theoretical background of our study; the different estimators of 

covariances and performance measures. Section 4 presents the data set for our study, 

Section 5 provides the results and the empirical analysis and Section 6 concludes.   
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2. Literature Review  

The subject of our study is to test whether the use of different covariance – 

correlation estimators than the historical covariance matrix that is widely used, would 

help in portfolio optimization through the mean-variance analysis. In other words, if 

an investor would like to use the mean-variance analysis in order to invest in assets 

like stocks or indices, would it be of some help to use more sophisticated estimators 

for the covariance matrix of the returns of his portfolio? The procedure that we follow 

to answer this question is the following. First, we define seven different universes of 

data. Second, for each universe, we use fifteen years of data to estimate the 

parameters of each covariance matrix estimator and next we compute the covariance 

matrix of each estimator. Third, we estimate the mean-variance efficient frontiers of 

the seven universes. The expected returns are estimated by the sample historical 

average, because they are not a subject to our study and although their estimation 

might not be the best, it is sufficient for our purposes. Next, according to the created 

mean-variance efficient frontiers, we define three portfolios for each universe with 

different expected returns: the conservative, the average and the aggressive portfolio. 

We compute the realized returns and the forecasted standard deviations for each 

portfolio of each universe for all the four estimators of covariance matrices and 

finally, we compare the performance according to the estimators used. The metrics of 

performance are the Informational ratio, the Conditional Sharpe Ratio and the 

Certainty Equivalent. Our methodology will be further analyzed in Section 4. 

Previous literature – to our knowledge – does not approach the answer to this 

question the way we did. There are many papers that use and compare different 

covariance or correlation estimators in order to assess risk. Most of them do not use 

asset allocation terms in order to compare the performance of the covariance – 

correlation estimators, but they use other metrics like mean squared errors and 

correlations between forecasted and realized values. The ones that use the mean-

variance framework in order to find out the optimal estimator avoid defining different 

levels of expected returns by using the minimum variance portfolio.  

Here we are going to report shortly some of these which use the mean-variance 

framework. Firstly, Amenc et al (2001) attempt to rehabilitate the importance of 

active asset allocation in the investment process by using implicit factors as an 

estimator of the covariance matrix (like Chan et al (1999)) and then comparing the 
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minimum variance portfolio with value-weighted and equally value-weighted 

portfolios. They review the benefits of traditional and alternative style management 

and provide evidence that optimal strategic and tactical asset allocation strategies are 

likely to significantly enhance the risk-adjusted performance of a multi-style multi-

class portfolio. More specifically, they consider the following two investment 

universes: a portfolio invested only in hedge funds (AI only) and an equity-oriented 

portfolio invested in traditional equity indices and equity-related alternative indices 

(AI/TI). The results of the AI and the AI/TI investment universes are that the ex-post 

volatility of the minimum variance portfolio generated using implicit factor based 

estimation techniques is lower in both universes than the volatility of the other two 

portfolios. This indicates that optimal variance minimization can achieve lower 

portfolio volatility. In addition, differences in mean returns are not statistically 

significant, suggesting that the improvement in terms of risk control does not 

necessarily come at the cost of lower expected returns.  

Second, Fleming et al (2000) examine if standard volatility models have low 

explanatory power by using conditional mean-variance analysis to assess the value of 

volatility timing to short-horizon investors. They consider an investor who uses a 

mean-variance optimization rule to allocate funds across four asset classes: stocks, 

bonds, gold, and cash. The investor's objective is to maximize expected return (or 

minimize volatility) while matching a target volatility (or expected return). They also 

use the minimum variance portfolio and, in order to estimate the conditional 

covariance matrix, they employ a general non-parametric approach developed by 

Foster and Nelson (1996). The estimator is a weighted rolling average of the squares 

and cross-products of past return innovations that nests most ARCH, GARCH and 

stochastic volatility models as special cases. Allowing for daily rebalancing, the 

solution to the portfolio problem is a dynamic trading strategy that specifies the 

optimal asset weights as a function of time, strategy which requires estimates of both 

the conditional expected returns and the conditional covariance matrix. They treat 

expected returns as constant and let the variation in the portfolio weights be driven 

purely by changes in the conditional covariance matrix. They find that the volatility 

timing strategies outperform the unconditionally efficient static portfolios that have 

the same target expected return and volatility. This finding is robust to estimation risk 

and transaction costs.  
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Third, Chan et al (1999) compare the performance of different methods of 

forecasting variances and covariances and then they apply their forecasts in 

portfolio optimization, using the global minimum variance portfolio. The different 

risk models are evaluated on a statistical basis and on a more practical, economic 

basis. The forecasting models were a full historical model, a constant correlation 

model, and factor models ranging from one to ten factors. They find that factor models 

generate a slight improvement in the ability to predict future covariances compared to 

forecasts based on historical covariances. Since the models' covariance forecasts move in 

the same direction as the realized covariances, they help for portfolio risk optimization. 

They find that a few factors (such as the market, size and the book-to-market value of 

equity) capture the general structure of return covariances and that a three-factor 

model is adequate for selecting the minimum variance portfolio.  

Next, Elton et al (2006) investigate the ability of several techniques to forecast 

correlation coefficients between securities. One distinguishing feature of this research 

is that they forecast the average level of correlations separately from pair-wise 

differences from the overall average and find that this two-step approach improves the 

forecast of correlations. In exploring differences in pair-wise correlations from the 

average level of correlations, they examine several alternative methods for forming 

groups and forecasting correlations within and between groups than the two extreme 

methods of grouping: (1) each firm is a group and (2) all firms are in one group. They 

find that grouping firms by either industry or several of the firm characteristics that 

have been shown to be part of the return generating process, improves forecasts 

compared to most suggestions contained in the literature. Finally, preparing forecasts 

based on a simple weighted average of three forecasts namely those obtained by 

grouping into 30 industries and grouping by Size and Beta and historical pair-wise 

correlations, provides forecasts that outperforms all compared forecasting techniques. 

This outperformance is robust whether performance is measured by (1) minimum 

squared forecast error and (2) minimum future variance of portfolios selected. They 

examine the performance by using global minimum variance portfolios.  

Another article is the one of Jagannathan and Ma (2002), which examines the 

ability of alternative estimates of the correlation matrix to produce the minimum 

variance portfolio. The authors show that constraining portfolio weights to be 

nonnegative is equivalent to using the sample covariance matrix after reducing its 

large elements and then form the optimal portfolio without any restrictions on 
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portfolio weights. This shrinkage helps reduce the risk in estimated optimal portfolios 

even when they have negative weights in the population. They also find that once the 

non-negativity constraint is imposed, minimum variance portfolios constructed using 

the sample historical covariance matrix perform as well as those constructed using 

covariance matrices estimated using more sophisticated estimators, like factor models 

and shrinkage estimators. They compare the risk of the minimum variance portfolio 

when imposing upper and lower bounds with the risk when covariance matrix 

estimates are obtained from (1) the sample historical covariance matrix, (2) Sharpe’s 

one-factor model, (3) Ledoit’s (1999) optimal shrinkage estimator, (4) Fama and 

French’s three-factor model and (5) Connor and Korajcyzk’s five-factor model plus a 

three-factor version. They find all models produce about the same risk. Of all models, 

the Ledoit shrinkage procedure works best, but not significantly so. Using weights of 

one-half on the estimates produced by the single index model and one-half on the 

historical pair-wise estimate works as well as Ledoit’s optimal shrinkage estimator. 

Also, another approach of estimating covariances and correlation matrices is 

shrinkage, which is supposed to be an evolution in covariance matrix estimation with 

large dimensions, like Ledoit and Wolf (2002). They have developed a flexible 

method for imposing some structure into a large dimensional estimation problem, 

namely the problem of estimating the covariance matrix of a large number of stock 

returns. The crux of the method is to shrink the unbiased but very variable sample 

covariance matrix towards the biased but less variable single-index model covariance 

matrix and to thereby obtain a more efficient estimator. They also compared the 

performance of the shrinkage method to that of various previously suggested 

estimators for the covariance matrix of stock returns. The previously suggested 

estimators were (1) identity, (2) constant pairwise correlation, (3) generalized inverse 

of the sample covariance matrix, (4) single-index covariance matrix of Sharpe, (5) 

industry factors, (6) principal components, (7) shrinkage towards identity and (8) 

shrinkage towards market. Performance was measured in terms of out-of-sample 

standard deviation of minimum variance stock portfolios, where the estimated 

covariance matrix is the input of the portfolio selection method of Markowitz (1952). 

The proposed method improved upon all the other estimators included in the study.  

Finally, a very useful article was that of Giamouridis and Vrontos (2007). We 

could say that our study is in the same spirit with this article as far as the methodology 

is concerned, because the goals are different. This paper studies the impact of 

 8



modelling time-varying covariances-correlations of hedge fund returns in terms of 

hedge fund portfolio construction and risk measurement. The authors use a variety of 

static and dynamic covariance-correlation prediction models and compare the 

optimized portfolios’ out-of-sample performance. The authors start with the case 

where the hypothetical investor is concerned with the volatility of the portfolio. They 

compare the performance of five different methods of forecasting variances and 

covariances/correlations. The methods are: (1) the sample historical covariance 

matrix, (2) an implicit factor model, (3) an implicit factor GARCH model, (4) a full-

factor multivariate GARCH model and (5) a regime switching dynamic correlations 

model. The different models are evaluated, out-of-sample, in a case study which 

examines the portfolio risk, realized return, risk-adjusted realized return and tail-risk. 

They construct optimal hedge fund portfolios. Two portfolios are constructed: a 

conservative (minimum variance portfolio) and an aggressive (15,5% annual expected 

return). The empirical performance of the covariance prediction models is assessed on 

several grounds. First, the authors examine the realized returns of the constructed 

portfolios. Second, they compare the return per unit of risk (Conditional Sharpe 

Ratio). Next, they set out to incorporate transaction costs and finally they investigate 

the capacity of the different covariance prediction models to assess tail-risk. They find 

that dynamic covariance/correlation models construct portfolios with lower risk and 

higher out-of-sample risk-adjusted realized return. The tail-risk of the constructed 

portfolios is also lower. Using a mean-CVaR (conditional value at risk) framework, 

they show that dynamic covariance-correlation models are also successful in 

constructing portfolios with minimum tail-risk. 

As we can conclude from the literature presented before, most researchers use 

factor models to evaluate risk. In our study, using factor models would be of no use, 

because the portfolios we construct include six assets maximum. This is because we 

use indices and not stocks, where each index contains a large number of stocks. 

Instead, we are using two multivariate GARCH models, which, according to the 

literature, are supposed to outperform the widely used and considered “traditional” 

estimators as the sample historical covariance matrix and the exponential weighted 

moving average. These methods are fully analysed in next section (Section 3).     

 

 

 

 9



3. Methodology 

In Section 3 we present the theory behind our study and fully explain the metrics and 

methods we use to fulfill our study. We start by defining the mean-variance analysis 

introduced by Markowitz (1952, 1959), an analysis which is widely used from 

investors. We next present the covariance matrix estimators which we are going to 

compare and finally we present the measures of performance of our constructed 

mean-variance portfolios.  

 

3.1 Terminology of Mean-Variance Analysis 

The theory of mean-variance analysis first developed by Markowitz (1952, 1959) 

has the following hypotheses: (1) the investors evaluate stocks or portfolios by 

expected return and risk that are connected to portfolios, (2) the investors are risk 

averse and (3) between two portfolios with the same return, an investor would prefer 

the one with the minimum risk and between two portfolios with the same risk, an 

investor would prefer the one with the maximum return.  

The mathematical problem is expressed as follows:  

We consider securities whose returns 1 2' ( , ,..., )nr r r r=  during the forthcoming period 

have expected values 1 2' ( , ,..., )nμ μ μ μ=  and a covariance matrix [ ]ijC σ= . An 

investor is to select a portfolio with weights 1 2' ( , ,..., )nw w w w= . The realized return 

'R r w=  on the portfolio has expected value and variance, respectively: 

 'E wμ=   (1)

  'V w Cw=  (2)

The portfolio is to chosen subject to the following constraints (when we want to 

minimize risk):  
 E k=  (3)
 

1

1
n

i
i

w
=

=∑  (4)

 0, 1,2,...,iw i≥ = n  (5)

The minimum risk is obtained by taking the first derivative of the following quadratic 

equation with respect to  and solving the system: w
 min( ' )w Cw  (6)
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 ' ( ') 2w Vw V V w Vw
w

∂
= + = =

∂
0  (7)

A portfolio is feasible if it satisfies the constraints. An EV combination is feasible 

if it is the and of a feasible portfolio. A feasibleE V EV combination 0 0( , )E V  is 

inefficient if there is another feasible EV combination 1 1( , )E V  such that either  

 1 0 1( )i E E and V V> ≤ 0

0

 (8)

or 1 0 1( )ii V V and E E< ≥  (9)

A feasible EV combination is efficient if it is not inefficient. A feasible portfolio is 

efficient or inefficient in accordance with its EV combination.  

By the above method, we plot the mean-variance frontier for efficient portfolios, 

where its points show the combination of maximum expected return for the minimum 

expected risk.  

To make the above method more clear, we are going to use the simple example of 

a portfolio that consists of two stocks. In this case, the expected return and the risk of 

the portfolio are given by the next equations: 
 

1 1 2 2( )E R w R w R= +  (10)

 2 2 2 2 2
1 1 2 2 1 2 1( ) ( ) ( ) 2 ( , )2R w R w R w w Cov R Rσ σ σ= + + (11)

where the risk of the portfolio can be also estimated by the following equation: 
 2 2 2 2 2

1 1 2 2 1 2 12 1( ) ( ) ( ) 2 ( ) ( )2R w R w R w w R Rσ σ σ ρ σ σ= + +  (12)

Where 12ρ is the correlation between stocks 1 and 2 and 1( ), ( )2R Rσ σ  are standard 

deviations of stocks 1 and 2.  

This is where our study fits. To estimate the risk of the portfolio, one needs to 

estimate either the covariance matrix or the correlation matrix. Without this 

estimation, the mean-variance efficient frontier cannot be computed.  

In the next section, we are going to present the covariance matrix estimators that 

we are going to use and compare, in order to decide which predicts best the 

covariance of the assets that constitute the selected portfolios. 

 

 3.2 Estimation Methods of Covariance – Correlation Matrices 

The main subject of our study is to estimate the covariance – correlation matrices 

of returns of the portfolios constructed, in order to make out if a more sophisticated 

estimator would improve mean-variance analysis. As mentioned before, using factor 

 11



models would be of no use, because the portfolios we construct include six assets 

maximum. Instead, we are using two multivariate GARCH models, which, according 

to the literature, are supposed to outperform the widely used and considered 

“traditional” estimators as the sample historical covariance matrix and the exponential 

weighted moving average. The models that we are going to use are the following.   

 

3.2.1 Historical Covariance Matrix (HCM) Model  

 

The sample covariance matrix from historical data has the structure of the 

following matrix: 

1 1 2 1

2 1 2 2

1 2

( ) ( , ) ( , )
( , ) ( ) ( , )

( , ) ( , ) ( )

K

M O
K

n

n

n n n

V r Cov r r Cov r r
Cov r r V r Cov r r

V

Cov r r Cov r r V r

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M
 

where 

 

1 1

1[ ] ( )( )
1

n n

ij i j
i j

V r
n

σ
= =

= = − −
− ∑∑ r r r  (13)

where n is the sample size and r  is a 1n×  vector of the averages of each return 

vector. This model involves low specification error and high sampling error.  

 The n-period “historic” correlation at time t between two return series is: 
  
 ( , )

( ) ( )
i j

ij
i j

Cov r r
r r

ρ
σ σ

=  (14)

 
 

3.2.2 Exponentially Weighted Moving Average (EWMA) Model  

 

Exponentially weighted moving average (EWMA) model is proposed by JP 

Morgan’s RiskMetrics system. The model’s forecast for tomorrow’s volatility can be 

seen as a weighted average of today’s volatility and today’s squared return. The 

degree of weighing decrease is expressed as a constant smoothing factor λ, a number 

between 0 and 1. The recent returns matter more for tomorrow’s variance than distant 

returns as λ is less than one and therefore gets smaller when the lag gets bigger. In 

other words, the model applies weighting factors which decrease exponentially. The 

weighting for each day decreases exponentially, giving much more importance to 
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recent returns while still not discarding older observations entirely. According to the 

size of λ, we have a big smoothing effect when λ is high and a small smoothing effect 

when λ is low.  

The smoothing factor λ may be expressed as a percentage, so a smoothing factor 

of 10% is equivalent to λ=0.1. In our case, since we use monthly data, according to JP 

Morgan’s RiskMetrics we should have λ = 0.97.  

The volatility and covariance estimation with use of the EWMA model have the 

following formulas (proposed by JP Morgan’s RiskMetrics system): 

 2 2
1 ,( ) ( ) (1 )t i t i i tr rσ λσ λ 2

1r− −= + −  (15)

 
, 1 , 1 , 1( , ) (1 )t i j ij t i t j tCov r r r rλσ λ− − −= + −  (16)

where tij ,σ  the covariance, ,  the variances of assets i, j and , 2
,tiσ 2

,tjσ ,i tr ,j tr  their 

returns. 

The EWMA approach can be used for one-step-ahead forecasting. It has the 

attractive feature that relatively little data need to be stored. At any given time, we 

only need to remember the current estimate of the variance rate and the most recent 

observation of the value of the returns. When we get a new observation of the value of 

the returns, we calculate a new daily percentage change and use the above equation to 

update our estimate of the variance and covariance. The old estimates can then be 

discarded. The disadvantages of the method are that it cannot predict a sudden 

structural break and that that prediction depends on the choice of λ. 

The EWMA correlation formula is: 

 , 1 , 1 , 1
, 2 2 2

, 1 , 1 , 1 , 1

(1 )

[ (1 ) ][ (1 )
ij t i t j t

ij t

i t i t j t j t

R R

R R2 ]

λσ λ
ρ

λσ λ λσ λ
− − −

− − − −

+ −
=

+ − + −
 (17)

 

where, as before, tij ,σ  the covariance, ,  the variances of assets i, j and2
,tiσ 2

,tjσ ,i tR , 

,j tR  their returns.  

 

3.2.3 GARCH Models 

 

We use two GARCH models: (1) the Constant Conditional Correlation (CCC) 

GARCH Model (1990) and (2) the Flexible Multivariate GARCH (FlexM) Model 

(2003).  
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Before presenting the GARCH Models, we are going to refer to the GARCH (1,1) 

model which is used from both methods to estimate the diagonal coefficients of the 

covariance matrix.  

 

3.2.3.1 GARCH (1,1) Model 

 

The GARCH models capture very important features of returns, are flexible and 

accommodate specific aspects of individual assets. These models were firstly 

proposed by Engle (ARCH - 1982) and were extended by Bollerslev (GARCH – 

1986). They offer a statistical theory that establishes the distinction between 

conditional and unconditional volatility. The general idea is to add a second equation 

to the regression model (autoregressive moving average models – ARMA). This 

equation refers to the conditional variance, and the first equation is the so-called 

conditional mean equation. In normal GARCH, we assume that tε  is distributed 

conditionally normally with conditional variance. This leads to a leptokurtic 

distribution. The coefficients  measure the persistence of returns, while the 

coefficients 

ia

iβ  measure the persistence of variance.  

 

GARCH (1,1) is the model most often met in the finance literature and it is 

sufficient for short term variance forecasting. The (normal) GARCH (1,1) model is: 

 t tr μ ε= +  

2(0, )t tNε σ:  
2 2

1 1t tw ar 2
tσ βσ− −= + +  

1α β+ <  

(18)

 

where β (GARCH) coefficient is similar to the λ coefficient in the EWMA model and 

it can be interpreted as a decay rate. Furthermore, high α (ARCH) coefficient means 

that volatility reacts fast to changes in the market and high β coefficient means that 

volatility is “persistent” – the effects of previous shocks decay slowly. The 

coefficients α, β are calculated through maximum likelihood. In addition, the EWMA 

model is a particular case of GARCH (1,1), where ω = 0, 1a λ= −  and β λ= . 
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The multivariate GARCH models that we are going to use are different: CCC is a 

non-linear combination of a univariate GARCH model and FLEXM is a 

generalization of the univariate standard GARCH model. In terms of computational 

feasibility, they are both easy and fast to estimate, using simple optimization functions 

of Matlab.  

 

3.2.3.2 Constant Conditional Correlation (CCC) GARCH Model 

 

The Constant Conditional Correlation GARCH Model was proposed by Bollerslev 

(1990). It is a non-linear combination of univariate GARCH models and a simple 

multivariate conditional heteroskedastic time series model. The model has time 

varying conditional variances and covariances, but constant conditional correlations. 

Thus, the conditional covariances are proportional to the product of the corresponding 

conditional standard deviations. This restriction highly reduces the number of 

unknown parameters and simplifies estimation. Despite all these, the assumption that 

the conditional correlations are constant may seem unrealistic in many empirical 

applications. 

 

As far as conditional correlations is concerned, let rt denote the  time series 

vector of returns with time varying conditional covariance matrix H

1n×

t, i.e.  
 

1( | )t t tr E r I tε−= +  

1( | )t tVar I Htε − =  
(19)

where It-1 is the σ-field generated by all the available information up through time t-1 

and Ht is almost surely positive definite for all t.  

 

Εach conditional variance hiit is modelled by a separate univariate GARCH (1,1) 

model with parameters wii, aii, and βii, respectively: 
 2

, 1 , 1, 1,...,iit i i i t i ii th w a h iε β− −= + + = n  (20)

The CCC model is defined as:  
 ( )t t t ijt iit jjtH D RD h hρ= =  (21)

where 
 ( )1/ 2 1/ 2

11 ,...,t t nntD diag h h=  (22)
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and  
 ( )t ijtR ρ=  (23)

is a symmetric positive definite matrix with 1,iit iρ = ∀ . 

 

As mentioned before, the full conditional covariance matrix Ht is partitioned as 

, where  t tH D CD= t

1

2

0 0

0 0
( )

0 0

t

t
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3.2.3.3 Flexible Multivariate GARCH (FLEXM) GARCH Model 

 

The Flexible Multivariate GARCH (FLEXM) Model was proposed by Ledoit, 

Santa-Clara and Wolf (2003). It is a new approach to estimating time-varying 

covariance matrices in the framework of the diagonal-vech version of the multivariate 

GARCH (1,1) model. In this framework belong the BEKK models, which have a high 

number of unknown parameters, even after imposing several restrictions (e.g. 

diagonal BEKK, scalar BEKK). Consequently, these models are rarely used when the 

number of series is larger than 3 or 4; they are not computationally feasible because 

the parameters interact in a way that is too intricate for optimization algorithms to 

converge. Contrary, the FLEXM model is numerically feasible for large scale 

problems and according to the article of Ledoit et al (2003), outperforms the diagonal 

BEKK GARCH model. This is the reason why we are going to use FLEXM instead of 

another generalization of the univariate standard GARCH model.  

 

As far as conditional correlations is concerned, the most general multivariate 

GARCH-style model commonly considered is defined by  
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(24)

where It-1 denotes the conditioning information set available at time t-1 and ri,t denotes 

the realization of the ith return (i=1,…,n) at time t. The parameter values satisfy 

 and .  , 0 , 1,...,ij ija b i j n≥ ∀ = 0 1,...,iiw i> ∀ =

 

The basic idea of the model proceeds in two steps: firstly to obtain each set of 

coefficient estimates ˆˆ ˆ,ij ij ijw a and β  separately for every (i,j). This can be achieved 

simply by estimating a two-dimensional or one-dimensional GARCH (1,1) model (for 

I ≠ j or i = j respectively) which is computationally feasible using a traditional method 

such as maximum likelihood. We bring together the outputs of these separate 

estimation procedures into matrices 

, 1,..., , 1,..., , 1,...,
ˆ ˆˆ ˆˆ ˆ[ ] , [ ] [ ]ij i j n ij i j n ij i j nW w A a and B β= == = = =

jr

 

However, the above coefficients matrices are generally incompatible with each other, 

in the sense that they yield conditional covariance matrices that are not positive semi-

definite. Therefore, the second step is to transform the estimated parameter matrices 

in such a way that they yield conditional covariance matrix that are guaranteed to be 

positive semi-definite.  

 

Analytically, each conditional variance hiit is modelled by a separate univariate 

GARCH (1,1) model with parameters wii, aii, and βii, respectively. 

The model assumes that the conditional covariance of variables  depends 

on its lagged value and on past realizations of the product only. Also, the first 

equation assumes that the variables have zero conditional mean, which can always be 

justified by taking them to be residuals coming from some regression model. 

 andir

i jr r

The quasi maximum likelihood that is used to get the estimators of the coefficients 

is different for diagonal and non-diagonal coefficients. For diagonal 

coefficients, we estimate a univariate GARCH (1,1) process for every one of the 

variables by quasi maximum likelihood, and we get consistent estimators of 

.  

ˆˆ ˆ, and ij ij ijw a b

ˆˆ ˆ, and ii ii iiw a b
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For off-diagonal coefficients, we get parameter estimates  from 

diagonal coefficients estimation. We can use them to construct conditional variance 

estimates . In the second stage, we use these estimates to specify quasi-likelihood 

functions for the off-diagonal elements.  

ˆˆ ˆ, and ii ii iiw a b

,îi th

 

3.3 Performance Measures 

3.31 Transformed Sharpe Ratio 

This ratio was developed by William Forsyth Sharpe in 1966. Sharpe originally 

called it the "reward-to-variability" ratio in before it began being called the Sharpe 

Ratio by later academics and financial professionals. 

The Sharpe ratio or Sharpe index or Sharpe measure or reward-to-variability ratio 

is a measure of the mean excess return per unit of risk in an investment asset or a 

trading strategy. Since its revision made by the original author in 1994, it is defined 

as:  

 
             

( ) ( )
( )

f f

f

E r r E r r
S

Var r rσ
− −

= =
−

 (25)

where r is the asset return, rf is the return on a benchmark asset, such as the risk free 

rate of return, E[r − r ]f  is the expected value of the excess of the asset return over the 

benchmark return, and σ is the standard deviation of the excess return (Sharpe 1994). 

The Sharpe ratio is used to characterize how well the return of an asset 

compensates the investor for the risk taken. Investors are often advised to pick 

investments with high Sharpe ratios. 

Here we are not using the conventional Sharpe Ratio, but another metric which 

will help us measure the return per unit of risk. This is in the same spirit with Sharpe 

ratio but it does not use the excess return on the nominator; it uses the realized return. 

So it is a metric that gives the realized return per unit of risk. We use this metric 

instead of the traditional measure because we have international portfolios and we 

don’t face the problem of asset allocation as a US investor, for example, in order to 

know which risk free we could use. The metric is defined as: 

 Average Realized Return
StDev of Realized Returns

SR =  (26)

Where average realized return is calculated for each efficient portfolio with specified 
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expected return. We rank the SRs’ from the higher to the lower and prefer the higher 

SR; the higher return per unit of risk.  

We use this metric to make out which estimator of covariance is the best. It is the 

metric that it is more closely to the traditional Sharpe Ratio and it would be easily 

used by an investor. The problem with this metric is that it gives about the same 

results for all estimators and does not give a clear advantage to one of them, although 

there is a slight favor to historical covariance matrix. To overcome this fact, we use 

another, more sophisticated metric, the Conditional Sharpe Ratio. 
 
3.3.2 Conditional Sharpe Ratio (CSR) 

The Conditional Sharpe Ratio is proposed by Giamouridis and Vrontos (2006). It 

is a metric that helps compare the realized return per unit of forecasted risk. 

Giamouridis and Vrontos defined this measure, which is similar in spirit to the Sharpe 

Ratio, by standardizing the realized returns with the risk of the portfolio when it is 

constructed one period before (forecasted standard deviation). It is calculated through: 

 1
1

( )
( )

t
t

t

realized rCSR
Var r

+
+ =  (27)

where  is determined as the minimum variance that equals the expected 

return for that period (time varying risk) computed from the efficient frontier.  

( )t pVar R

In contrast to the Sharpe Ratio we defined before, CSR may be more useful in 

measuring the realized return per unit of risk and making out which estimator is 

optimal compared to the others (which estimator calculates the lower forecasted 

standard deviation), because it uses the forecasted standard deviation in the 

denominator. The portfolio optimization will generally arrive at a different minimum 

variance for each covariance prediction model and expected return; as a result, the 

realized return will not be comparable across models since it will represent portfolios 

bearing different risk. In our study, this metric helps to differentiate the different 

covariance estimators, because the previous metric gives us about the same results.  

 

3.3.1 Certainty Equivalent (CE) 

The concept of expected utility (dating back to Bernoulli – 1738) is used in 

economics to describe the behaviour of an investor choosing between several lotteries 

and alternatives. Its applications include not only portfolio choice, but insurance and 
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game theory as well. A certainty equivalent of a risky outcome is a sure-thing lottery 

which yields the same utility as a random lottery. If the investor is risk-averse the 

outcome of the certainty equivalent will be less than the expected outcome of the 

random lottery. In other words, the certainty equivalent is that amount of wealth such 

that the investor is indifferent between receiving it for sure at the horizon, and having 

his current wealth today and the opportunity to invest it optimally up to the horizon. 

We use this metric as follows: we take the Constant Absolute Risk Aversion 

Utility Function (CARA)  

 ( ) exp( )U R Rγ= − −  (28)

 

where R are the realized returns and γ measures the investor’s constant absolute risk 

aversion. The higher γ, the more risk averse is the investor. We chose a risk aversion 

of γ=10, because we are supposed to be risk averse investor.  

Next, we calculate the Certainty Equivalent by using the equation 

 ( ) [ ( )U CE E U R ]=  (29)

and solving for CE, after having calculated the average price of the utilities of the 

realized returns. After some mathematics, we get that the CE is equal to 

 ln( [ ( )])E U RCE
γ

−
= −  (30)

According to what CE is bigger, it is the best strategy to follow. This is because 

the higher the CE is, the higher the amount of wealth that we receive for sure at the 

horizon. In other words, if we make an investment of 100 index units, the more index 

units we get for sure at the end of the horizon, the more riskless and safer my strategy 

is. So, CE can be a metric of whether different covariance estimators improve asset 

allocation.  
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4. Data 

The data we are going to use in our analysis are indices and risk free rates. They 

range from September 1988 to May 2007 (monthly data – 224 observations). We use 

the following indices: CAC40 (France), DAX30 (Germany), ATHEX (Greece), 

FTSE100 (United Kingdom), DOW JONES and NASDAQ (United States) and risk 

free rates: 3-month FR PIBOR/EURIBOR (France), 3-month BD FIBOR/EURIBOR 

(Germany), 3-month GR Treasury Bill Rate/EURIBOR (Greece) and 3-month US 

Treasury Bill Rate (United States). The sample which is used for the estimation of 

models’ parameters is from September 1988 to September 2003 (181 observations of 

monthly data). The out-of-sample set is from October 2003 to May 2007 (43 

observations of monthly data).  

Let’s say some for the indices and risk free rates used. The CAC40, which takes 

its name from Paris Bourse's early automation system Cotation Assistée en Continu 

(Continuous Assisted Quotation), is a French stock market index. The index 

represents a capitalization-weighted measure of the 40 most significant values among 

the 100 highest market caps on the Paris Bourse. Its base value of 1,000 was set on 31 

December 1987. As of 1 December 2003, the index has become a free float weighted 

index. Interestingly, although CAC40 is composed of French companies, about 45% 

of their shares are owned by foreign investors. German investors share the largest part 

of it at 21%. Japanese, American and British investors are also important owners — 

this percentage is unusually high. The explanation can be in the fact that CAC40 

companies, or multinational, are more international than any other European market. 

Many of these companies conduct business outside of France (63% of the CAC40 

companies' employees are outside of France). 

DAX30 (Deutsche Aktien Xchange 30, former Deutscher Aktien-Index 30) is a 

Blue Chip stock market index consisting of the 30 major German companies trading 

on the Frankfurt Stock Exchange. Prices are taken from the electronic Xetra trading 

system.  

The FTSE 100 Index (pronounced footsie) is a share index of the 100 most highly 

capitalised companies listed on the London Stock Exchange, begun on 3 January 

1984. The index was developed with a base level of 1000 on that date. Component 
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companies must meet a number of requirements set out by the FTSE Group, including 

having a full listing on the London Stock Exchange with a Sterling or Euro dominated 

price on SETS, and meeting certain tests on nationality, free float, and liquidity. 

Trading lasts from 08:00-16:29 (when the closing auction starts), and closing values 

are taken at 16:35 (mainly though the closing Value of the FTSE100 is at 16:36). The 

highest value of the index to date was 6950.6, set on 30 December 1999. The index is 

seen as a barometer of success of the British economy and is the leading share index 

in Europe. It is maintained by the FTSE Group, a now independent company which 

originated as a joint venture between the Financial Times and the London Stock 

Exchange (hence the abbreviation Financial Times Stock Exchange is a bit misleading 

considering it is actually an index company not actually a stock exchange at all). 

According to the FTSE Group's website the FTSE100 companies represent about 80% 

of the UK share market. As of 29 December 2006 the 6 largest constituents of the 

index were BP, Royal Dutch Shell, HSBC Holdings, the Vodafone Group, the Royal 

Bank of Scotland Group and GlaxoSmithKline, which were each valued at more than 

£60 billion. 

The Dow Jones Industrial Average (also called the DJIA, Dow 30, or informally 

the Dow industrials, the Dow Jones or The Dow) is one of several stock market 

indices created by Wall Street Journal editor and Dow Jones & Company co-founder 

Charles Dow. Dow compiled the index as a way to gauge the performance of the 

industrial component of America's stock markets. It is the oldest continuing U.S. 

market index, aside from the Dow Jones Transportation Average, which Dow also 

created. Today, the average consists of 30 of the largest and most widely held public 

companies in the United States. The "industrial" portion of the name is largely 

historical — many of the 30 modern components have little to do with heavy industry. 

To compensate for the effects of stock splits and other adjustments, it is currently a 

scaled average, not the actual average of the prices of its component stocks — the 

sum of the component prices is divided by a divisor, which changes over time, to 

generate the value of the index. 

The NASDAQ (acronym for National Association of Securities Dealers 

Automated Quotations system) is an American stock market. It was founded in 1971 

by the National Association of Securities Dealers (NASD), who divested themselves 

of it in a series of sales in 2000 and 2001. It is owned and operated by The Nasdaq 

Stock Market, Inc., the stock of which was listed on its own stock exchange in 2002. 
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NASDAQ is the largest electronic screen-based equity securities market in the United 

States. With approximately 3,200 companies, it lists more companies and on average 

trades more shares per day than any other U.S. market. 

ATHEX is a share index of the 60 most highly capitalised companies (blue chips) 

listed on the Athens Stock Exchange, begun on 31 December 1980. The index was 

developed with a base level of 100 on that date. Component companies must meet a 

number of requirements, including stock prices denominated in Euros. The index is 

calculated every 30 minutes. Trading lasts from 08:00-16:29 (when the closing 

auction starts), and closing values are taken at 16:35.  

The 3-month Paris Interbank Offered Rate (PIBOR) is an arithmetic average of 

rates given by eight representative bodies calculated after eliminating four extreme 

rates. Monthly data are averages of daily rates. 

The 3-month Frankfurt Interbank Offered Rate (FIBOR) is taken as a reference 

rate for variable rate bonds in Germany. The rate is derived from the method of 

computing interest on the basis of 365/360 days. The rates are non-weighted averages 

calculated from daily rates. 

The United States 3-month Treasury bill rate is the rate of Treasury securities.  

Treasury securities are government bonds issued by the United States Department of 

the Treasury through the Bureau of the Public Debt. They are the debt financing 

instruments of the U.S. Federal government, and are often referred to simply as 

Treasuries. There are four types of treasury securities: Treasury bills, Treasury notes, 

Treasury bonds, and Savings bonds. All of the Treasury securities (besides savings 

bonds) are very liquid and are heavily traded on the secondary market. 

The Greek 3-month Treasury bill rate is the rate of Treasury securities.  Treasury 

securities are government bonds of short maturity, which are sold to the investors in 

value lower than their final nominal value. There are issues of 13, 26 and 52 weeks 

duration.  
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5. Results 

The objective of our study and our contribution to the literature has to do with the 

asset allocation of assets in a portfolio, where covariances – correlations of returns are 

forecasted with different estimators. If not measured accurately, there may be 

important impacts in terms of asset allocation, pricing and portfolio construction and 

selection and in risk measurement (VaR, CVaR) and management.  

In fact, as mentioned before, we prefer on focusing on forecasting the second 

moments, rather than expected returns for two reasons. Firstly, there are several 

studies which examine the importance of the forecasts of mean returns for mean-

variance optimization (Michaud (1989), Best and Grauer (1991), Chopra and Ziemba 

(1993), Winston (1993)) and there is a general consensus that expected returns are 

notoriously difficult to predict and that the optimization process is very sensitive to 

differences in expected returns. As Chopra and Ziemba conclude (1993), errors in 

means are approximately ten times as important as errors in variances and covariances 

considered together for a low risk tolerance, and for a higher risk tolerance they 

become twenty-one times. At the same time, there is a common impression that 

variances and covariances of returns are much easier to estimate from historical data 

in order to manage the allocation of the assets in the portfolio, without suggesting 

that, although future covariances are more easily predictable than future mean returns, 

the difficulties should be understated. Like Merton (1980) states, variances and 

covariances of returns can typically be estimated with far greater precision than the 

expected returns. This gives rise to the possibility that the second moments pose fewer 

problems in the context of portfolio optimization through a mean-variance analysis 

and that reduction in volatility may lead to better optimization results.  

Second, one could say that, with today’s stock market structure, returns and 

volatilities are no longer sufficient in order to have a good asset allocation. Stock 

market crises in Europe and USA since the year 2000 and fragility of the international 

stock markets sparked the interest of researchers in understanding and modeling the 

markets’ rising volatilities in order to prevent against crises. Therefore correlations 

between assets need to be determined precisely in order to perform an optimal asset 

allocation. Otherwise, if correlations that increase during periods of high volatility are 
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falsely disregarded, the allocation process will be biased and the portfolio will not be 

diversified enough as correlations increase during high volatility episodes, which 

might lead to considerable losses.  

Summarizing, our study is important for the literature because it tries to improve 

asset allocation in a portfolio in a way that could be easily used from any investor. 

This is by using different estimators of covariance matrix and trying to figure out 

which is the best estimator (between the estimators we study) that can be used to 

estimate and predict the covariances and the correlations between the assets of the 

portfolio.  

For our problem we define seven universes. These are: 

1. Universe of all risky assets (indices) European and United States’ (CAC40, 

DAX30, ATHEX, FTSE100, DOW JONES, NASDAQ). 

2. Universe of European risky assets – indices (CAC40, DAX30, ATHEX, 

FTSE100). 

3. Universe of United States’ risky assets – indices (DOW JONES, NASDAQ). 

4. Universe of French index and risk free rate (CAC40 & FR 

PIBOR/EURIBOR). 

5. Universe of German index and risk free rate (DAX30 & BD 

FIBOR/EURIBOR).  

6. Universe of Greek index and risk free rate (ATHEX & GR Treasury Bill 

Rate/EURIBOR).  

7. Universe of United States’ indices and risk free rate (DOW JONES, NASDAQ 

& US Treasury Bill Rate). 

Our data set covers 17 years and 5 months period for indices and risk free rates. 

Our data will have monthly rebalancing frequency (monthly data), so the total 

observations that we will have will be 224.  

The objective of this study is to examine which is the best estimator of covariance 

matrices to be used in asset allocation. This is achieved through an investment 

exercise which compares the empirical out-of-sample performance of the different 

methods of forecasting covariance matrix presented in section 3.  

 
 
5.1 Preliminary Analysis of data 
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Firstly, we start with the preliminary analysis of the data. We work on monthly 

data of the indices and the risk free rates mentioned above. The sample in question 

covers the period from September 1988 to May 2007.  

Because we have 3-month risk free rates we must convert them to monthly. We do 

this through the equation  

 1
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 (31)

where the compounding frequencies  equal 1 and m 2m 1 4m =  (3-month risk free rate) 

and (monthly risk free rate). We then get the annualized monthly risk free rate 

and divide by 12 to obtain the monthly risk free rate.  

2 12m =

The Figures 1-2 present the index prices and the risk free rates for our sample.  
 
 

 
Figure 1: Prices of indices CAC40, DAX30, ATHEX, FTSE100, DOW JONES and NASDAQ 
covering the period from September 1988 to May 2007. 
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Figure 2:  Risk free rates of 3-month PIBOR/EURIBOR, 3-month FIBOR/EURIBOR, 3-month GR T-
BILL RATE and 3-month US T-BILL RATE covering the period from September 1988 to May 2007. 
 

Then we calculate the returns from the index prices only, as far as the risk free 

rates are returns by their construction. The returns are calculated from the following 

equation (percentage returns):  

 1

1

t t
t

t

p pR
p

−

−

−
=  (32)

where tp  is the index price at time t. We plot the returns for each portfolio 

constructed, so we finally have seven figures. Figure 3 present the returns of the 

indices.  
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Figure 3:  Returns of indices CAC40, DAX30, ATHEX, FTSE100, DOW JONES and NASDAQ 

covering the period from September 1988 to May 2007. 

 

From the figures of returns (Figure 3) we can result, although there are based on 

monthly data, that the returns tend to be normal. Also we observe that there are 

stretches of time that volatility is relatively high and others that is relatively low, i.e. 

volatility values tend to cluster together in time, with more or less smooth transitions 

from higher to lower volatility and conversely. So, since volatility does not remain 

constant over time, we can result that the monthly estimation of covariance matrices 

will capture better the true values of variances and covariances.  

 

Next, we present in Table 1 the summary statistics of index returns and risk free 

rates from September 1988 to May 2007.  

 
Panel A: Index Returns and Risk Free Rates descriptive statistics 

INDEX Mean StDev Variance IQR Kurtosis Skew Min Max 
 

JB 
 

Pvalue 
            

           

CAC40 0.0080 0.0544 0.0030 0.0749 3.3259 -0.3950 -0.1749 0.1341 6.82 0.0344 

DAX30 0.0084 0.0619 0.0038 0.0686 5.0442 -0.5928 -0.2542 0.2028 52.12 0.001 

ATHEX 0.0173 0.1012 0.0102 0.1012 8.3023 1.5570 -0.2223 0.5063 352.90 0.001 

FTSE100 0.0066 0.0410 0.0017 0.0465 3.7282 -0.1939 -0.1196 0.1443 6.3531 0.0399 

DOW JONES 0.0086 0.0387 0.0015 0.0433 4.2662 -0.6492 -0.1362 0.1029 30.699 0.001 

NASDAQ 0.0109 0.0679 0.0046 0.0731 4.3858 -0.3957 -0.2290 0.2198 23.768 0.0014 

           

Minimum  0.0066 0.0387 0.0015 0.0433 3.3259 -0.6492 -0.2542 0.1029   

Maximum 0.0173 0.1012 0.0102 0.1012 8.3023 1.5570 -0.1196 0.5063   

           

 
RISK FREE 
RATE Mean StDev Variance IQR Kurtosis Skew Min Max 

 
JB 

 
Pvalue 

            

           

PIBOR/EURIBOR 0.0044 0.0024 0.0000 0.0039 2.0380 0.7026 0.0017 0.0100 27.1879 0.001 

FIBOR/EURIBOR 0.0040 0.0020 0.0000 0.0028 2.3434 0.8249 0.0017 0.0082 29.5603 0.001 

GR T-BILL 

RATE/EURIBOR 0.0103 0.0073 0.0001 0.0136 7.1523 1.0823 0.0017 0.0532 

 

205.5728 

 

0.001 

US T-BILL RATE 0.0037 0.0017 0.0000 0.0020 2.5888 0.0448 0.0007 0.0076 1.6604 0.3919 

           

Minimum  0.0037 0.0017 0.0000 0.0020 2.0380 0.0448 0.0007 0.0076   

Maximum 0.0103 0.0073 0.0001 0.0136 7.1523 1.0823 0.0017 0.0532   
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Panel B: Index Returns and Risk Free Rates correlations 
           

INDEX / RISK FREE (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
           

           

(1) CAC40 1.0000          

(2) DAX30 0.8424 1.0000         

(3) ATHEX 0.3786 0.3371 1.0000        

(4) FTSE100 0.7371 0.6897 0.2571 1.0000       

(5) DOW JONES 0.6416 0.6479 0.2381 0.7268 1.0000      

(6) NASDAQ 0.5794 0.6054 0.2481 0.5778 0.6142 1.0000     

(7) PIBOR/EURIBOR -0.0444 -0.0482 0.0203 0.0290 -0.0026 -0.0179 1.0000    

(8) FIBOR/EURIBOR -0.0682 -0.0655 -0.0090 0.0023 -0.0280 -0.0261 0.9627 1.0000   

(9) GR T-BILL   

      RATE/EURIBOR -0.0228 -0.0178 0.0050 0.0317 0.0097 0.0435 0.7571 0.7401 1.0000  

(10) US T-BILL RATE 0.0594 0.0500 0.1142 0.0659 0.0509 -0.0089 0.5133 0.4290 0.4938 1.0000 

           

Table 1: Summary statistics of index returns and risk free rates from September 1988 to May 2007. The 

summary statistics include mean, standard deviation (StDev), variance, interquartile range IQR (75%-

25%), kurtosis, skewness (Skew), Jarque-bera statistic for normality test and its corresponding p-value, 

minimum and maximum values of returns and minimum and maximum values of each statistic among 

the indices and the risk free rates except the Jarque-Bera Statistic (JB) and its p-value (Panel A) and 

correlations between indices and risk free rates (Panel B). 

 

The summary statistics include mean, standard error of mean, median, standard 

deviation, variance, interquartile range (75%-25%), kurtosis, skewness, minimum and 

maximum and minimum and maximum values of each statistic among the indices and 

the risk free rates (Panel A) and correlations (Panel B). Panel B also contains 

correlations that are not needed to calculate, because of the universes that we have 

chosen, but we calculate them in order to have a general idea of the correlation 

between the indices and the risk free rates.  

In Panel A, we observe that the returns of the six indices are different enough. 

CAC40 and DAX30 have about the same average return and volatility, where DAX30 

exhibits a slightly higher average return and volatility. ATHEX has the highest 

average return, but also has the highest volatility, in contrast to NASDAQ that has a 

similar average return but much lower volatility. FTSE100 has the lowest average 

return but not the lowest volatility, which has DOW JONES combined with a much 

higher average return than FTSE100. The risk free rates are not that different, 

excluding the GR T-BILL RATE/EURIBOR, which has the highest average return 

with a big difference from the next average return (0.59%), but also has a very high 
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volatility. The other three risk free rates are almost the same, with PIBOR/EURIBOR 

having the next bigger average return and volatility and US T-BILL RATE the lower 

average return and volatility. Differences in the higher moments are also present. As 

for the skewness, which is the measure of the distributions’ asymmetry of returns, the 

indexes’ returns all have negative values, although for the risk free rates is not the 

same, where they all are positive. As for the kurtosis, which measures the heaviness of 

tails compared to a measure of three for the normal distribution, we find that the 

indices returns exhibit excess kurtosis (larger than 3), therefore their distributions 

have fatter tails than the normal one. Agreeing with the skewness, risk free rates 

exhibit low kurtosis, except the GR t-bill rate. We are starting to wonder if risk free 

rates follow a normal distribution and we perform the Jarque-Bera statistic for 5% 

significance level. The results show that neither index nor risk free rate is normal, 

except possibly US t-bill rate, which has a JB statistic of 1.6604. We can conclude 

that most indices and risk free rates are not symmetric and fat-tailed.  

In Panel B, we observe that in general, indices exhibit high correlation between 

them and very low correlation with risk free rates, which exhibit high correlation 

between them except the US T-BILL RATE which exhibits a medium correlation. An 

exception is ATHEX, which exhibits low correlation with the other indices. 

Our preliminary analysis of the data concludes that our sample can serve our 

purpose, because of the existence of variation and variety in average returns, 

volatilities and correlations that will help us extract the best possible results. In other 

words, we could say that there is a fair amount of heteroskedasticity in the data.  

 

5.2 Results and Performance 

Our methodology is as follows.  

Firstly, we are forming the following seven universes: 

1. Universe of all risky assets (indices) European and United States’ (EU & US) 

(CAC40, DAX30, ATHEX, FTSE100, DOW JONES, NASDAQ). 

2. Universe of European risky assets – indices (EU) (CAC40, DAX30, ATHEX, 

FTSE100). 

3. Universe of United States’ risky assets – indices (US) (DOW JONES, 

NASDAQ). 
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4. Universe of French index and risk free rate (CAC40 & FR 

PIBOR/EURIBOR). 

5. Universe of German index and risk free rate (DAX30 & BD 

FIBOR/EURIBOR).  

6. Universe of Greek index and risk free rate (ATHEX & GR Treasury Bill 

Rate/EURIBOR).  

7. Universe of United States’ indices and risk free rate (DOW JONES, NASDAQ 

& US Treasury Bill Rate).  

 

The universes that we finally have are seven: three with risky assets and four with 

combinations of risky and risk free assets. We suppose that there are no transaction 

costs, because the mean-variance weights that we obtain from the mean-variance 

optimization do not project great differences and the transaction costs would be about 

the same for any universe. Therefore, their calculation does not change significantly 

our results.  

We can treat risk free rates as risky assets and construct the mean-variance 

portfolios, because we have time series of the risk free rates, which exhibit variance 

and covariance with the risky assets (they are small but exist). Because we have 3-

month risk free rates we must convert them to monthly. We do this through the 

equation (31): 
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where the compounding frequencies  equal 1 and m 2m 1 4m =  (3-month risk free rate) 

and (monthly risk free rate). We then get the annualized monthly risk free rate 

and divide by 12 to obtain the monthly risk free rate and form the corresponding 

universe.   

2 12m =

 

The objective of this study is to examine if more sophisticated covariance matrix 

estimators will advance asset allocation. To achieve this, we form an investment 

exercise which compares the empirical out-of-sample performance of mean-variance 

efficient frontiers produced from different covariance matrix estimators for all 

universes. The setup of our experiment is as follows. Beginning at September 2003, 
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we want to forecast the expected return and covariance matrix for each universe. In 

order to forecast the expected return we use as an estimator the average of returns 

until time t:  
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1
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t

t i
i

E R R
t+

=

= ∑  (33)

In order to forecast the covariance matrix of returns, we use the history of data 

covering the period September 1988 to October 2003 (181 return observations for 

each asset) to estimate the parameters of the HCM, EWMA, FLEXM and CCC 

covariance matrices for each universe.  

After calculating expected returns and covariance matrix of returns, we use them 

as inputs to the mean-variance analysis and we plot the mean-variance efficient 

frontier of each universe at time t+1. Allowing for monthly rebalancing, at time t+1 

the estimation period grows by one data point and we repeat the same forecasting 

procedure for time t+2 and so on, until the dataset is exhausted, in order to utilize all 

available information. The parameters of the covariance matrices models are 

computed every month. This exercise produces 43 out-of-sample observations that 

cover the period from November 2003 to May 2007.  

After producing the 43 out-of-sample observations for each universe, we plot the 

“average” mean-variance efficient frontier of each universe. The “average” mean-

variance efficient frontier is an efficient frontier which presents the “average” 

efficient portfolios – the portfolios which correspond to levels of expected return 

which exists throughout the procedure of producing the 43 out-of-sample 

observations.  According to the range of expected returns of each “average” efficient 

frontier, we define 3 portfolios with different expected returns, concerning on the 

results of the mean-variance efficient frontier: (1) a conservative, (2) an average and 

(3) an aggressive portfolio. The returns of the 3 portfolios are monthly. For each 

mean-variance efficient frontier that we form, the range of the expected returns is not 

the same for any universe and any portfolio. This is because of the differences in 

average returns, as we have seen in the preliminary analysis, resulting that we cannot 

take the same three expected returns for all portfolios. So the three different portfolios 

have the following expected returns: 

♦ 1st universe: all risky (EU and US) assets 
1. conservative portfolio with expected return 0.91% 

2. average portfolio with expected return 1.22% 
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3. aggressive portfolio with expected return 1.6% 

♦ 2nd 

 expected return 0.73% 

 

♦ 3rd 

th expected return 0.91% 

 

♦ 4th 

rn 0.5% 

 

♦ 5th 

rn 0.44% 

% 

♦ 6th 

 

 

♦ 7th ATE 

 

The result or all four estimation 

universe: all EU risky assets 

1. conservative portfolio with

2. average portfolio with expected return 1.22% 

3. aggressive portfolio with expected return 1.6%

universe: all US risky assets 

1. conservative portfolio wi

2. average portfolio with expected return 0.97% 

3. aggressive portfolio with expected return 1.03%

universe: CAC40 & FR PIBOR/EURIBOR 

1. conservative portfolio with expected retu

2. average portfolio with expected return 0.56% 

3. aggressive portfolio with expected return 0.63%

universe: DAX30 & BD FIBOR/EURIBOR 

1. conservative portfolio with expected retu

2. average portfolio with expected return 0.5% 

3. aggressive portfolio with expected return 0.63

universe: ATHEX & GR T-BILL RATE/EURIBOR 

1. conservative portfolio with expected return 1.22%

2. average portfolio with expected return 1.41% 

3. aggressive portfolio with expected return 1.6%

universe: DOW JONES, NASDAQ & US T-BILL R

1. conservative portfolio with expected return 0.5% 

2. average portfolio with expected return 0.63% 

3. aggressive portfolio with expected return 1.03%

ing “average” efficient frontiers for each universe f

models of covariance matrices are presented in figure 4. 
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Figure 4: “Average” mean-variance efficient frontiers for all seven universes: (1) all risky assets, (2) 

EU risky assets, (3) US risky assets, (4) CAC40 & PIBOR/EURIBOR, (5) DAX30 & 

FIBOR/EURIBOR, (6) ATHEX & GR T-BILL RATE and (7) DOW JONES, NASDAQ & US T-BILL 

RATE. The “average” mean-variance efficient frontiers of each estimation model of covariance matrix 

are plotted for the 43 out-of-sample observations covering the time period from November 2003 to 

May 2007.  
 

The mean-variance efficient frontiers we produce are consistent with theory. 

When we have only risky assets, we can see that they form a convex figure, when we 

have one risky and one risk free asset they are almost straight lines that exhibit very 

low, almost zero, standard deviation for the lower expected return (compared to 

mean-variance efficient frontiers that are formed from only risky assets) and when we 

have two risky assets and one risk free, we can see that the effect of the risk free asset 

decreases and the mean-variance efficient frontier exhibits convexity for higher risk 

(standard deviation).  

As we can see from the mean-variance efficient frontiers, the method that exhibits 

the lower risk (standard deviation) for the same expected returns must be the Flexible 

Multivariate GARCH Model. Constant Conditional Correlation GARCH Model is the 

next best model, although there are many cases where the two models perform almost 

the same. Exponentially Weighted Moving Average Model comes third and Historical 

Covariance Matrix Model exhibits the higher risk.  

 

We plot the weights of the mean-variance efficient portfolios that were 
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constructed for universes 4, 5 and 6 through the above procedure in order to have a 

general idea of the weights movement. The following plots are presenting the weights 

that we put on the risky asset of universes 4, 5, 6 (CAC40, DAX30, ATHEX). The 

weights for each portfolio are same for any estimation model of covariance matrix 

used for the universes that include a risky asset and a risk free rate, say universes 4, 5 

and 6. The weight that we put on the risk free asset is the remaining weight, since we 

have no short sales constraint.  
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Figure 5: Plot of weights of the mean-variance efficient portfolios that were constructed for universes 

4, 5 and 6 through the above procedure in order to have a general idea of the weights movement. The 

following plots are presenting the weights that we put on the risky asset of every of the above universes 

(CAC40, DAX30, ATHEX). The weight that we put on the risk free asset is the remaining weight, 

since we have no short sales constraint. 

 

After estimating the efficient frontiers, we calculate the realized returns using the 

weights obtained from the mean-variance optimization for the 3 expected returns for 

the three portfolios of each universe, as we presented them before. Using the realized 

returns and the forecasted standard deviations for each portfolio of each universe, we 

calculate the SR, the Conditional Sharpe Ratio and the Certainty Equivalent for each 

portfolio. The results are presented in Table 2.  
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Panel 1: 1st universe  
 
Conservative Portfolio: monthly expected return 0.91% (annualized 10.92%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0126 0.0398 0.5724 0.3168 0.0102 
EWMA 0.0127 0.0352 0.5781 0.3699 0.0103 
CCC 0.0120 0.0314 0.5208 0.3949 0.0093 
FLEXM 0.0116 0.0320 0.5021 0.3718 0.0089 
      
Average Portfolio: monthly expected return 1.22% (annualized 14.64%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0141 0.0558 0.5059 0.2498 0.0102 
EWMA 0.0141 0.0482 0.5076 0.2999 0.0102 
CCC 0.0131 0.0402 0.4476 0.3333 0.0087 
FLEXM 0.0126 0.0406 0.4186 0.3055 0.0080 
      
Aggressive Portfolio: monthly expected return 1.6% (annualized 19.20%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0193 0.0940 0.4990 0.2009 0.0113 
EWMA 0.0193 0.0790 0.4990 0.2456 0.0113 
CCC 0.0193 0.0656 0.4990 0.2997 0.0113 
FLEXM 0.0193 0.0631 0.4990 0.3046 0.0113 
 
 
Panel 2: 2nd universe 
 
Conservative Portfolio: monthly expected return 0.73% (annualized 8.76%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0116 0.0425 0.5510 0.2739 0.0093 
EWMA 0.0116 0.0368 0.5510 0.3233 0.0093 
CCC 0.0117 0.0312 0.5546 0.3830 0.0094 
FLEXM 0.0116 0.0326 0.5502 0.3636 0.0093 
      
Average Portfolio: monthly expected return 1.22% (annualized 14.64%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0166 0.0673 0.5486 0.2451 0.0117 
EWMA 0.0165 0.0575 0.5466 0.2922 0.0116 
CCC 0.0166 0.0478 0.5477 0.3574 0.0117 
FLEXM 0.0166 0.0485 0.5468 0.3434 0.0116 
      
Aggressive Portfolio: monthly expected return 1.6% (annualized 19.20%) 
      
Model Return Risk SR CSR CE 
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HCM 0.0206 0.0985 0.5089 0.2068 0.0117 
EWMA 0.0204 0.0827 0.5046 0.2496 0.0116 
CCC 0.0204 0.0690 0.5060 0.3047 0.0116 
FLEXM 0.0204 0.0663 0.5051 0.3109 0.0116 
 
 
Panel 3: 3rd universe 
 
Conservative Portfolio: monthly expected return 0.91% (annualized 10.92%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0108 0.0451 0.4258 0.2356 0.0076 
EWMA 0.0108 0.0396 0.4258 0.2786 0.0076 
CCC 0.0108 0.0357 0.4258 0.3133 0.0076 
FLEXM 0.0108 0.0355 0.4258 0.3163 0.0076 
      
Average Portfolio: monthly expected return 0.97% (annualized 11.64%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0100 0.0518 0.3565 0.1864 0.0061 
EWMA 0.0100 0.0449 0.3565 0.2237 0.0061 
CCC 0.0100 0.0386 0.3565 0.2596 0.0061 
FLEXM 0.0100 0.0384 0.3565 0.2604 0.0061 
      
Aggressive Portfolio: monthly expected return 1.03% (annualized 12.36%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0093 0.0600 0.2955 0.1453 0.0044 
EWMA 0.0093 0.0514 0.2955 0.1765 0.0044 
CCC 0.0093 0.0426 0.2955 0.2079 0.0044 
FLEXM 0.0093 0.0421 0.2955 0.2087 0.0044 
 
 
 
Panel 4: 4th universe 
 
Conservative Portfolio: monthly expected return 0.5% (annualized 6.00%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0038 0.0074 1.0308 0.5163 0.0038 
EWMA 0.0038 0.0064 1.0308 0.5892 0.0038 
CCC 0.0038 0.0054 1.0308 0.7262 0.0038 
FLEXM 0.0038 0.0059 1.0308 0.6391 0.0038 
      
Average Portfolio: monthly expected return 0.56% (annualized 6.72%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0069 0.0214 0.7262 0.3181 0.0064 
EWMA 0.0069 0.0186 0.7262 0.3783 0.0064 
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CCC 0.0069 0.0167 0.7262 0.4191 0.0064 
FLEXM 0.0069 0.0166 0.7262 0.4235 0.0064 
      
Aggressive Portfolio: monthly expected return 0.63% (annualized 7.56%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0105 0.0381 0.6313 0.2742 0.0091 
EWMA 0.0105 0.0331 0.6313 0.3292 0.0091 
CCC 0.0105 0.0299 0.6313 0.3605 0.0091 
FLEXM 0.0105 0.0297 0.6313 0.3660 0.0091 
 
 
Panel 5: 5th universe 
 
Conservative Portfolio: monthly expected return 0.44% (annualized 5.28%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0035 0.0055 1.1537 0.6323 0.0035 
EWMA 0.0035 0.0050 1.1537 0.6883 0.0035 
CCC 0.0035 0.0039 1.1537 0.9006 0.0035 
FLEXM 0.0035 0.0043 1.1537 0.7922 0.0035 
      
Average Portfolio: monthly expected return 0.5% (annualized 6.00%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0064 0.0185 0.6784 0.3420 0.0059 
EWMA 0.0064 0.0166 0.6784 0.3973 0.0059 
CCC 0.0064 0.0144 0.6784 0.4500 0.0059 
FLEXM 0.0064 0.0145 0.6784 0.4629 0.0059 
      
Aggressive Portfolio: monthly expected return 0.63% (annualized 7.56%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0126 0.0475 0.5254 0.2702 0.0097 
EWMA 0.0126 0.0426 0.5254 0.3193 0.0097 
CCC 0.0126 0.0373 0.5254 0.3538 0.0097 
FLEXM 0.0126 0.0377 0.5254 0.3658 0.0097 
 
 
Panel 6: 6th universe 
 
Conservative Portfolio: monthly expected return 1.22% (annualized 14.64%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0056 0.0199 0.6843 0.2750 0.0053 
EWMA 0.0057 0.0160 0.6839 0.3366 0.0053 
CCC 0.0057 0.0134 0.6839 0.4059 0.0053 
FLEXM 0.0057 0.0143 0.6839 0.3790 0.0053 
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Average Portfolio: monthly expected return 1.41% (annualized 16.92%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0122 0.0546 0.5629 0.2171 0.0098 
EWMA 0.0122 0.0453 0.5629 0.2657 0.0098 
CCC 0.0122 0.0377 0.5629 0.3234 0.0098 
FLEXM 0.0122 0.0356 0.5629 0.3315 0.0098 
      
Aggressive Portfolio: monthly expected return 1.6% (annualized 19.20%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0189 0.0908 0.5232 0.2020 0.0120 
EWMA 0.0189 0.0760 0.5232 0.2477 0.0120 
CCC 0.0189 0.0635 0.5232 0.3008 0.0120 
FLEXM 0.0189 0.0596 0.5232 0.3072 0.0120 
 
 
Panel 7: 7th universe 
 
Conservative Portfolio: monthly expected return 0.5% (annualized 6.00%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0045 0.0106 0.7348 0.4189 0.0043 
EWMA 0.0044 0.0095 0.7221 0.4678 0.0042 
CCC 0.0039 0.0081 0.6261 0.4927 0.0037 
FLEXM 0.0039 0.0078 0.6051 0.4912 0.0037 
      
Average Portfolio: monthly expected return 0.63% (annualized 7.56%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0064 0.0214 0.5265 0.2955 0.0057 
EWMA 0.0063 0.0190 0.5143 0.3378 0.0055 
CCC 0.0053 0.0163 0.4202 0.3219 0.0045 
FLEXM 0.0051 0.0158 0.4010 0.3171 0.0043 
      
Aggressive Portfolio: monthly expected return 1.03% (annualized 12.36%) 
      
Model Return Risk SR CSR CE 
      
HCM 0.0093 0.0600 0.2955 0.1453 0.0044 
EWMA 0.0093 0.0514 0.2955 0.1765 0.0044 
CCC 0.0089 0.0425 0.2777 0.1956 0.0038 
FLEXM 0.0085 0.0414 0.2652 0.1880 0.0034 
      
Table 2: It presents out-of-sample results of the mean-variance portfolio construction method 

calculated for the three different portfolios (conservative, average and aggressive) of all universes. 

These include mean values of realized returns (Return), of portfolio standard deviation (Risk), the 

Sharpe Ratio (SR) as defined in Section 3, Conditional Sharpe Ratio (CSR) and the values of Certainty 
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Equivalent (CE). the data that are presented are monthly. The first row of each table presents the 

monthly expected return and the annualized expected return is presented in brackets.  
 

We next test for the statistical significance of Returns and CSR. The tests we 

perform are two: we test if the differences of the means of each metric are statistically 

significant and we tests if the values of the metrics are statistically significant. More 

specifically, the first test (named hereafter ttest2) performs a t-test of the null 

hypothesis that values of different metrics are independent random samples from 

normal distributions with equal means and unequal and unknown variances (Behrens-

Fisher problem), against the alternative that the means are not equal. The result of the 

test is returned in h. h = 1 indicates a rejection of the null hypothesis at the 5% 

significance level. h = 0 indicates a failure to reject the null hypothesis at the 5% 

significance level. The second test (named hereafter ttest) performs a t-test of the null 

hypothesis that data in the vector x are a random sample from a normal distribution 

with mean 0 and unknown variance, against the alternative that the mean is not 0. The 

result of the test is returned in h. h = 1 indicates a rejection of the null hypothesis at 

the 5% significance level. h = 0 indicates a failure to reject the null hypothesis at the 

5% significance level. The results of the tests for statistical significance are presented 

in Table 3 at the end of the article.  

 

After finishing the estimation process and having found the performance 

measures, let’s comment on results. In terms of realized returns, the model which 

gives the higher realized returns is most of the times the HCM model, with EWMA 

model following. FLEXM and CCC models give about the same realized returns. The 

differences between the means of the realized returns are not statistically significant at 

5% for any case. This fact could be generalized in terms of Sharpe Ratio and 

Certainty Equivalent, but this testing has not be done in order to be absolutely sure for 

the accuracy of the results. The means of the realized returns are almost all 

statistically significant. As we can observe, the differences in average realized returns 

are very small. This is mostly because we have defined certain levels of expected 

return based on the “average” mean-variance efficient frontiers. Since the differences 

between the means are not statistically significant, one could say that there is no 

difference from using the one or the other model in order to estimate covariance 

matrices, since we would get the same return.  

 42



The SR metric and the CE metric could also suggest the same opinion, because its 

results are similar. The HCM model has the higher SR and CE, with EWMA, CCC 

and FLEXM following (the GARCH models give almost same results). Despite these 

facts, the differences between the values of Returns and between the values of SRs are 

very small. On the other hand, we can see that Risk (standard deviation) does not have 

the same values for all models and the differences between the means are statistically 

different. This gives rise to the suspicion that maybe Returns, SR and CE are not the 

suitable metrics for us to result if the use of more sophisticated metrics would advance 

the asset allocation. Returns, SR and CE are traditional metrics which are based to 

realized returns and as mentioned before, realized returns are not statistically different 

for our portfolios. Furthermore, except from mean-variance analysis, they do not use 

at all the more sophisticated estimators to evaluate the performance.  

Therefore, we are going to use a more sophisticated estimator. The CSR 

performance measure gives us a different ranking for the models: FLEXM model is 

higher than the others most of the times and CCC follows. Next ranks EWMA and 

finally HCM model. Of course CSR is only one metric in contrast to the others that 

are three, but the results that we extract are logical: we have about the same average 

realized expected return for all models, but the more sophisticated models estimate 

much smaller risk. This result could have been helpful for an investor which might not 

invest if the risk he measured was very high related to his expected return.  
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6. Conclusion 

The objective of our study and our contribution to the literature has to do with the 

asset allocation of assets in a portfolio, where covariances – correlations of returns are 

forecasted with different estimators. If not measured accurately, there may be 

important impacts in terms of asset allocation, pricing and portfolio construction and 

selection and in risk measurement (VaR, CVaR) and management.  

Summarizing, our study is important for the literature because it tries to improve 

asset allocation in a portfolio in a way that could be easily used from any investor. 

This is by using different estimators of covariance matrix and trying to figure out 

which is the best estimator (between the estimators we study) that can be used to 

estimate and predict the covariances and the correlations between the assets of the 

portfolio.  

To approach the goal of our study, we form an investment exercise which 

compares the empirical out-of-sample performance of mean-variance efficient 

frontiers produced from different covariance matrix estimators for all universes. The 

setup of our experiment is as follows. Beginning at September 2003, we want to 

forecast the expected return and covariance matrix for each universe. In order to 

forecast the expected return we use as an estimator the average of returns until time t. 

In order to forecast the covariance matrix of returns, we use the history of data 

covering the period September 1988 to October 2003 (181 return observations for 

each asset) to estimate the parameters of the HCM, EWMA, FLEXM and CCC 

covariance matrices for each universe.  

For our problem we define seven universes. These are: 

1. Universe of all risky assets (indices) European and United States’ (CAC40, 

DAX30, ATHEX, FTSE100, DOW JONES, NASDAQ). 

2. Universe of European risky assets – indices (CAC40, DAX30, ATHEX, 

FTSE100). 

3. Universe of United States’ risky assets – indices (DOW JONES, NASDAQ). 

4. Universe of French index and risk free rate (CAC40 & FR 

PIBOR/EURIBOR). 

5. Universe of German index and risk free rate (DAX30 & BD 

FIBOR/EURIBOR).  
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6. Universe of Greek index and risk free rate (ATHEX & GR Treasury Bill 

Rate/EURIBOR).  

7. Universe of United States’ indices and risk free rate (DOW JONES, NASDAQ 

& US Treasury Bill Rate). 

After calculating expected returns and covariance matrix of returns, we use them 

as inputs to the mean-variance analysis and we plot the mean-variance efficient 

frontier of each universe at time t+1. Allowing for monthly rebalancing, at time t+1 

the estimation period grows by one data point and we repeat the same forecasting 

procedure for time t+2 and so on, until the dataset is exhausted, in order to utilize all 

available information. The parameters of the covariance matrices models are 

computed every month. This exercise produces 43 out-of-sample observations that 

cover the period from November 2003 to May 2007.  

After producing the 43 out-of-sample observations for each universe, we plot the 

“average” mean-variance efficient frontier of each universe. The “average” mean-

variance efficient frontier is an efficient frontier which presents the “average” 

efficient portfolios – the portfolios which correspond to levels of expected return 

which exists throughout the procedure of producing the 43 out-of-sample 

observations.  According to the range of expected returns of each “average” efficient 

frontier, we define 3 portfolios with different expected returns, concerning on the 

results of the mean-variance efficient frontier: (1) a conservative, (2) an average and 

(3) an aggressive portfolio. The returns of the 3 portfolios are monthly. For each 

mean-variance efficient frontier that we form, the range of the expected returns is not 

the same for any universe and any portfolio. This is because of the differences in 

average returns, as we have seen in the preliminary analysis, resulting that we cannot 

take the same three expected returns for all portfolios. 

After all the analysis, we can conclude that the traditional metrics of performance 

that we use (Returns, SR and Certainty Equivalent) show as the best estimator the 

HCM model. In market terms, the use of more sophisticated estimators makes no 

difference, only in terms of risk. The risk decreases very much when the sophisticated 

estimators insert to the mean-variance analysis, without that fact imposing an 

analogous in magnitude decrease in realized return. This is shown by the Conditional 

Sharpe Ratio metric, which captures the higher return per unit of estimated risk.  

Concluding, the use of more sophisticated estimators has been shown that it can 

improve asset allocation, not in terms of return, but in terms of return per unit of risk.   
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Table 3: In Panel 1 we present the results of ttest and ttest2 for the realized returns of the mean-

variance efficient portfolios of each universe. We perform a t-test of the null hypothesis that values of 

different metrics are independent random samples from normal distributions with equal means and 

unequal and unknown variances (Behrens-Fisher problem), against the alternative that the means are 

not equal. The result of the test is returned in h. h = 1 indicates a rejection of the null hypothesis at the 

5% significance level. h = 0 indicates a failure to reject the null hypothesis at the 5% significance 

level. The second test we perform is a t-test of the null hypothesis that data in the vector x are a random 

sample from a normal distribution with mean 0 and unknown variance, against the alternative that the 

mean is not 0. The result of the test is returned in h. h = 1 indicates a rejection of the null hypothesis at 

the 5% significance level. h = 0 indicates a failure to reject the null hypothesis at the 5% significance 

level. In Panel 2 we present the results of the above tests for the conditional sharpe ratios of the mean-

variance efficient portfolios of each universe. 

 

Panel 1: ttest and ttest2 for Returns 

Ttest 

1st universe     
    
Model    
 10.92% 14.64% 19.20% 
HCM 1 1 1 
EWMA 1 1 1 
CCC 1 1 1 
FLEXM 1 1 1 
    
2nd universe     
    
Model 8.76% 14.64% 19.20% 
    
HCM 1 1 1 
EWMA 1 1 1 
CCC 1 1 1 
FLEXM 1 1 1 
    
3rd universe     
    
Model 10.92% 11.64% 12.36% 
    
HCM 1 1 0 
EWMA 1 1 0 
CCC 1 1 0 
FLEXM 1 1 0 
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4th universe     
    
Model 6.00% 6.72% 7.56% 
    
HCM 1 1 1 
EWMA 1 1 1 
CCC 1 1 1 
FLEXM 1 1 1 
    
5th universe     
    
Model 5.28% 6.00% 7.56% 
    
HCM 1 1 1 
EWMA 1 1 1 
CCC 1 1 1 
FLEXM 1 1 1 
    
6th universe     
    
Model 14.64% 16.92% 19.20% 
    
HCM 1 1 1 
EWMA 1 1 1 
CCC 1 1 1 
FLEXM 1 1 1 
    
7th universe     
    
Model 6.00% 7.56% 12.36% 
    
HCM 1 1 0 
EWMA 1 1 0 
CCC 1 1 0 
FLEXM 1 1 0 
 
 
 
 
 
 
 
Ttest2 
 
 

 
 
   

1st universe                       
             
10.92%     14.64%    19.20%    
             
Model HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM 
             
HCM -    -    -    
EWMA 0 -   0 -   0 -   
CCC 0 0 -  0 0 -  0 0 -  
FLEXM 0 0 0 - 0 0 0 - 0 0 0 - 
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2nd universe                       
             
8.76%     14.64%    19.20%    
             
Model HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM 
             
HCM -    -    -    
EWMA 0 -   0 -   0 -   
CCC 0 0 -  0 0 -  0 0 -  
FLEXM 0 0 0 - 0 0 0 - 0 0 0 - 
             
3rd universe                       
             
10.92%     11.64%    12.36%    
             
Model HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM 
             
HCM -    -    -    
EWMA 0 -   0 -   0 -   
CCC 0 0 -  0 0 -  0 0 -  
FLEXM 0 0 0 - 0 0 0 - 0 0 0 - 
             
4th universe                       
             
6.00%     6.72%    7.56%    
             
Model HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM 
             
HCM -    -    -    
EWMA 0 -   0 -   0 -   
CCC 0 0 -  0 0 -  0 0 -  
FLEXM 0 0 0 - 0 0 0 - 0 0 0 - 
             
5th universe                       
             
5.28%     6.00%    7.56%    
             
Model HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM 
             
HCM -    -    -    
EWMA 0 -   0 -   0 -   
CCC 0 0 -  0 0 -  0 0 -  
FLEXM 0 0 0 - 0 0 0 - 0 0 0 - 
             
6th universe                       
             
14.64%     16.92%    19.20%    
             
Model HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM 
             
HCM -    -    -    
EWMA 0 -   0 -   0 -   
CCC 0 0 -  0 0 -  0 0 -  
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FLEXM 0 0 0 - 0 0 0 - 0 0 0 - 
             
7th universe                       
             
6.00%     7.56%    12.36%    
             
Model HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM 
             
HCM -    -    -    
EWMA 0 -   0 -   0 -   
CCC 0 0 -  0 0 -  0 0 -  
FLEXM 0 0 0 - 0 0 0 - 0 0 0 - 

 

 

 

 

 

 

Panel 2: ttest and ttest2 for CSR 

Ttest 

1st universe     
    
Model    
 10.92% 14.64% 19.20% 
HCM 1 1 1 
EWMA 1 1 1 
CCC 1 1 1 
FLEXM 1 1 1 
    
2nd universe     
    
Model 8.76% 14.64% 19.20% 
    
HCM 1 1 1 
EWMA 1 1 1 
CCC 1 1 1 
FLEXM 1 1 1 
    
3rd universe     
    
Model 10.92% 11.64% 12.36% 
    
HCM 1 1 0 
EWMA 1 1 0 
CCC 1 1 0 
FLEXM 1 1 0 
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4th universe     
    
Model 6.00% 6.72% 7.56% 
    
HCM 1 1 1 
EWMA 1 1 1 
CCC 1 1 1 
FLEXM 1 1 1 
    
5th universe     
    
Model 5.28% 6.00% 7.56% 
    
HCM 1 1 1 
EWMA 1 1 1 
CCC 1 1 1 
FLEXM 1 1 1 
    
6th universe     
    
Model 14.64% 16.92% 19.20% 
    
HCM 1 1 1 
EWMA 1 1 1 
CCC 1 1 1 
FLEXM 1 1 1 
    
7th universe     
    
Model 6.00% 7.56% 12.36% 
    
HCM 1 1 0 
EWMA 1 1 0 
CCC 1 1 0 
FLEXM 1 1 0 

 

 

 

Ttest2 

Panel 1:1st universe                       
             
10.92%     14.64%    19.20%    
             
Model HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM 
             
HCM -    -    -    
EWMA 0 -   0 -   0 -   
CCC 0 0 -  0 0 -  0 0 -  
FLEXM 0 0 0 - 0 0 0 - 0 0 0 - 
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Panel 2:2nd universe                       
             
8.76%     14.64%    19.20%    
             
Model HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM 
             
HCM -    -    -    
EWMA 0 -   0 -   0 -   
CCC 0 0 -  0 0 -  0 0 -  
FLEXM 0 0 0 - 0 0 0 - 0 0 0 - 
             
Panel 3: 3rd universe                       
             
10.92%     11.64%    12.36%    
             
Model HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM 
             
HCM -    -    -    
EWMA 0 -   0 -   0 -   
CCC 0 0 -  0 0 -  0 0 -  
FLEXM 0 0 0 - 0 0 0 - 0 0 0 - 
             
Panel 4: 4th universe                       
             
6.00%     6.72%    7.56%    
             
Model HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM 
             
HCM -    -    -    
EWMA 0 -   0 -   0 -   
CCC 0 0 -  0 0 -  0 0 -  
FLEXM 0 0 0 - 0 0 0 - 0 0 0 - 
             
Panel 5: 5th universe                       
             
5.28%     6.00%    7.56%    
             
Model HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM 
             
HCM -    -    -    
EWMA 0 -   0 -   0 -   
CCC 1 0 -  0 0 -  0 0 -  
FLEXM 0 0 0 - 0 0 0 - 0 0 0 - 
             
Panel 6: 6th universe                       
             
14.64%     16.92%    19.20%    
             
Model HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM 
             
HCM -    -    -    
EWMA 0 -   0 -   0 -   
CCC 0 0 -  0 0 -  0 0 -  
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FLEXM 0 0 0 - 0 0 0 - 0 0 0 - 
             
Panel 7: 7th universe                       
             
6.00%     7.56%    12.36%    
             
Model HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM HCM EWMA CCC FLEXM 
             
HCM -    -    -    
EWMA 0 -   0 -   0 -   
CCC 0 0 -  0 0 -  0 0 -  
FLEXM 0 0 0 - 0 0 0 - 0 0 0 - 
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