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Περίληψη 
Η αυξανόμενη χρήση ενσωματωμένων συστημάτων υπογραμμίζει τη σημασία της ασφάλειας 
υλικού, και συνεπώς της έρευνα στο αντικείμενο των επιθέσεων υλικού. Οι επιθέσεις 
εισαγωγής σφάλματος μέσω της διαταραχής της τάσης της τροφοδοσίας αποτελεί μια 
μεθοδολογία επίθεσης με ποικίλες εφαρμογές. Εν προκειμένω η επίθεση εισαγωγής 
σφάλματος μελετήθηκε σε επιθέσεις ενάντια σε μικροελεγκτή κατά την εκτέλεση του 
κρυπτογραφικού αλγορίθμου AES-128 με στόχο τον υπολογισμό του κρυπτογραφικού 
κλειδιού με την εφαρμογή της Διαφορικής Ανάλυσης Σφάλματος. Τα μοντέλα σφάλματος σε 
επίπεδο bit και επίπεδο byte μελετήθηκαν και υλοποιήθηκαν σε επίπεδο προσομοίωσης με 
τη χρήση MATLAB. Συνακόλουθα, υλοποιήθηκε με τη χρήση του Chipwhisperer nano, η 
εισαγωγή σφάλματος σε ένα μόνο μπάιτ. Τα αποτέλεσμα έδειξαν υψηλά ποσοστά επιτυχίας 
στην ανάκτηση του κρυπτογραφικού κλειδιού. 

Λέξεις Κλειδιά: Κυβερνοασφάλεια, Ασφάλεια Υλικού, Επιθέσεις εισαγωγής σφάλματος, 
Διαφορική Ανάλυση Σφάλματος 
 

 

Abstract 
The increasing use of embedded systems highlights the significance of hardware security, 
leading to research on hardware attacks. Fault injection attacks via voltage glitch represent 
a methodology with diverse applications. In this context, fault injection attacks were studied 
against a microcontroller executing the cryptographic algorithm AES-128, aiming to compute 
the cryptographic key using Differential Fault Analysis. The bit-level and byte-level fault 
models were examined and implemented at the simulation level using MATLAB. 
Subsequently, fault injection was implemented using Chipwhisperer nano attacking a single 
byte during the 8th round of AES. The results demonstrated high success rates in recovering 
the cryptographic key. 

Key Words: Cybersecurity, Hardware Security, Fault injection attacks, Differential Fault 
Analysis, DFA 
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Notation 

⊕ Exclusive OR 

di The ith byte of the plaintext 

ki The ith byte of the key 

S(x) S-Box lookup result of value x  

 

 

 

Glossary 

AES Advanced Encryption Standard 

XOR Exclusive OR 

DFA Differential Fault Analysis 
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1 Introduction 
The rapid spread of embedded devices and the emergence of the Internet of Things (IoT) have 
significantly transformed the technology landscape over the past two decades, bringing about 
new security challenges. A wide range of devices, from smartphones to critical industrial systems, 
are now equipped with microprocessors, network connectivity, and Internet access, enabling 
them to perform diverse tasks such as medical equipment operation, military systems control, 
industrial control units, and smart home automation. 

The increasing prevalence of hardware-based systems has elevated the importance of hardware 
security as a prominent research area. Security requirements and controls vary according to the 
specific application of various hardware components. The definition of cybersecurity by NIST as 
the “Prevention of damage to, protection of, and restoration of computers, electronic 
communications systems, electronic communications services, wire communication, and 
electronic communication, including information contained therein, to ensure its availability, 
integrity, authentication, confidentiality, and nonrepudiation” (NIST Computer Security Resource 
Center 2023) include the safeguard of hardware devices. 

However, an in-depth understanding of hardware security requires distinguishing between and 
software attacks, as well as hardware and software targets. "The Hardware Hacking Handbook" 
defines software as anything consisting of bits and hardware as anything consisting of atoms 
(Woudenberg and O'Flynn 2022). Consequently, a hardware attack uses an attack vector 
consisting of atoms and a software uses an attack vector consisting of bits. Likewise, the targets 
of these attacks can be either a software or hardware component of a given system. 

This thesis aims to explore and evaluate the implementation of Differential Fault Analysis (DFA) 
attacks against a microcontroller executing an AES encryption algorithm, a hardware attack 
against a software target. The experimental setup utilizes ChipWhisperer Nano and MATLAB to 
perform fault injection techniques and analyze the obtained results. The primary objective of this 
research is to discuss the vulnerabilities of hardware systems to differential fault analysis attacks. 

1.1 Hardware Attack Categories 
As the focus of this thesis is hardware attacks, we should delve into the different types of these 
attacks. A fundamental categorization of hardware attacks is based on the physical intrusion 
degree and split into the following three categories (Sakiyama, Sasaki and Li 2015): 

 Invasive attacks: Invasive attacks involve physically opening the Integrated Circuit (IC) 
chip package, granting access to the silicon die through chemical methods. Attackers 
observe signals directly, making intermediate values transparent using special 
instruments. These attacks are potent but require expensive equipment and expertise, 
and the risk of permanent damage to the device is high. 

 Semi-invasive attacks: Semi-invasive attacks also necessitate opening the package but 
do not involve direct contact with internal wires. Attackers alter intermediate values using 
methods like optical lasers, while these attacks reduce the risk of physical damage 
compared to invasive methods. Certain fault injection techniques fall into this class. 

 Noninvasive attacks: These attacks exploit vulnerabilities without physically accessing 
the silicon die, making them less intrusive but still effective in compromising security. 
Attackers need limited contact with IC chip pins. Side-channel analysis and some fault 
injection attacks are classified as noninvasive methods. 

Further categorization is performed according to the direction of the physical information between 
passive and active attacks. In a passive attack scenario, the attacker is restricted to receiving 
data from the physical device and uses the information gathered to perform an attack. Side-
channel attacks is a typical example of passive attacks, as the attacker may observe the power 
consumption of the IC chip to perform calculations for extracting confidential information, like the 
encryption key of a cryptographic algorithm. In active attacks, the attacker disrupts the operations 
of the target device in order to alter an intermediate value. Fault injection attacks fall under this 
category. 
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1.2 Fault Injection Attacks 
The injection of faults into computer systems serves as a common attack vector in both hardware 
and software attacks. Unexpected input values are often inserted to identify vulnerabilities in 
computer software. In the realm of hardware attacks, fault injections involve physical disturbances 
against a target device, potentially leading to the execution of incorrect instructions or the storage 
of faulty values in memory. These disturbances may consist of a rapid variation of voltage, 
temperature, clock frequency, as well as the exposure of the IC chip to optical laser beams or 
electromagnetic fields. The impact of fault injection attacks varies based on the target. A 
successful fault injection attack could bypass security mechanisms, such as secure boot 
processes. When combined with cryptanalysis, it may lead to cryptographic attacks, facilitating 
the recovery of encryption keys. 

Specific fault injection methods are commonly employed due to their precise control over the 
injection process. For instance, rapidly increasing the temperature beyond the maximum 
threshold at which a device can operate might induce errors in application execution; however, 
the impact of this fault cannot be precisely targeted. The precision of a fault injection can be either 
temporal or spatial. Certain attacks can successfully target a specific strategic moment (temporal 
precision) or a certain memory register (spatial precision). Consequently, certain methods are 
predominantly utilized in fault injection attacks, as they offer a satisfactory level of spatial or 
temporal precision. The main reference for the description of these methods is the Hardware 
Hacking Handbook (Woudenberg and O'Flynn 2022). 

The method of Clock Fault Injection is a global attack as a clock glitch can interfere with different 
components of the microcontroller. Despite its global nature, it offers precise control over timing 
and is technically simple as noninvasive attack. This technique involves the insertion of additional 
rising edges into a device’s input clock to disrupt the timing of the timing constraints of the target. 
This is accomplished through the insertion of too-narrow or too-wide clock edges. This method 
relies on the condition that the internal core directly utilizes the external clock signal. An important 
limitation of this attack is that clock glitching is ineffective against devices equipped with internal 
oscillators or a Phase-locked loop (PLL) to generate a new clock from the external clock signal. 

While Clock Fault Injection provides a global impact, other methods offer more localized effects 
but often require sophisticated equipment and might pose risks to the microcontroller as they fall 
into the semi-invasive category. Electromagnetic (EM) Fault Injection, for instance, involves the 
use of a strong electromagnetic pulse to cause a fault. A common technique to induce an 
electromagnetic glitch is to generate a strong electromagnetic pulse, by inducing a changing 
magnetic field through a wire loop. As per Faraday’s law, this changing magnetic field affects the 
wires on a chip, causing voltage spikes. These spikes can temporarily flip signal levels from 1 to 
0 or vice versa. Achieving a successful EM fault injection demands high precision. Further, when 
dealing with Package-on-Package technology, the memory die is stacked over the processor die 
complicating the process. Despite its complexity, EM glitching offers a high level of control over 
specific registers, making it an excellent method for targeted attacks. 

Optical Fault Injection stands out as a technique known for its exceptional spatial and temporal 
precision. This method involves the use of laser beams or other intense light sources to induce 
faults. When exposed to an optical pulse, transistors may switch as semiconductors are sensitive 
to light. However, the complexity of this attack increases significantly with the decapsulation of 
the target IC chip using acid, increasing the complexity of this attack and the overall cost of the 
required equipment. 

Voltage Fault Injection emerges as our method of choice due to its excellent temporal precision 
and practicality when compared to Clock Fault Injection. It also requires significantly less complex 
equipment than EM and Optical Fault Injection methods. This technique involves purposefully 
manipulating a chip's power supply via momentarily underpowering the target device or inserting 
a positive or negative power spike. This manipulation disrupts the normal functioning of the chip 
during critical operations. 

A chip's flip-flops require stable inputs before and after clock edges to capture values accurately. 
By changing the voltage, the chip's signals can change faster, potentially causing hold time 
violations if signals change before the required hold time is met, or setup time violations if signals 
change too close to the next clock edge. 
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In voltage fault injection, the objective is to create extremely brief voltage changes, typically 
ranging from less than a nanosecond up to a few nanoseconds, deep within the chip at the level 
of individual transistors. These changes must be of sufficient duration to influence specific areas 
of the circuitry effectively. It is important to note that these voltage variations occur at the 
transistor's power supply, located deep within the chip. Consequently, they must endure long 
enough to impact the targeted components effectively. Both the power supply and clock networks 
extend across the entire chip, allowing a voltage glitch to potentially affect multiple transistors 
simultaneously. 

Within a chip, the power supply network incorporates decoupling capacitors designed to minimize 
fluctuations caused by a switching power supply and noise from the PCB. While these capacitors 
optimize regular chip functionality, they also influence deliberate voltage fluctuations introduced 
during fault injection experiments. 

Generating voltage glitches employs diverse methods. One approach utilizes a programmable 
signal generator, where the generator's output passes through a voltage buffer before powering 
the target device. Another method involves switching between two power sources: the operating 
voltage and the fault voltage. Lastly, the crowbar method effectively induces voltage variations by 
shorting the chip's supplied operating voltage causing a spike. 

The crowbar method to inject voltage glitches offer limited control over the fault voltage as it 
momentarily shorts the operating supply voltage to 0 V. However, it is the least complex method 
to implement and as it introduces large spikes to the power supply, it is an effective method to 
inject faults. The crowbar method can be implemented using a high-power or a low-power 
MOSFET depending on the target device. This method is the method of choice for our 
implementation because of its effectiveness and low cost. 

1.3 Thesis Objective & Outline 
The objective of this thesis, as stated in its title, is the “Evaluation of the security of embedded 
systems against fault injection attacks”. Towards this direction we have implemented a voltage 
fault injection attack using Chipwhisperer nano. The ChipWhisperer nano has been used as a 
platform to generate crowbar voltage fault injection to attack the target microcontroller which is 
embedded in the device. The targeted firmware is AES-128 encryption and the implemented 
attack was Differential Fault Analysis (DFA). As (O’ Flynn 2016) states “having a practical method 
of injecting faults into an embedded computer is of great importance to both these areas of 
research: understanding the vulnerability of systems to fault injection attacks, and validating 
design of fault-tolerant computing systems”. Our direction towards the implementation of a DFA 
attack demonstrates the practicality and impact of fault injection attacks. 

 DFA can be described as specific type of fault injection technique that focuses on extracting 
secret information, such as cryptographic keys, from targeted hardware systems. To describe this 
implementation and provide the theoretical for this implementation, this thesis is divided in nine 
chapters, as follows. 

 In Chapter 1, titled “Introduction”, hardware attacks, with a specific focus on fault injection 
attacks, are discussed and the objective of this thesis is stated. This chapter also provides 
an overview of the thesis structure, outlining the organization of the subsequent chapters. 

 Chapter 2, titled “The AES Block Cipher Algorithm”, provides an overview of the 
fundamentals of the Advanced Encryption Standard (AES). The purpose of this chapter 
is a theoretical introduction to AES as a prerequisite for the understanding of the attacks. 

 Chapter 3, titled “Differential Fault Analysis”, focuses on a theoretical presentation of 
Differential Fault Analysis and introduces DFA attacks against AES-128 on the bit-level 
and byte-level. 

 Chapter 4, titled “Framework”, introduces the main components of our implementation. 
The focus of this chapter is Chipwhisperer and its use to implement our attack.  

 Chapter 5, titled “Analysis Platform & Simulation”, presents the MATLAB scripts 
developed for the simulation of fault injection against AES-128, as well as the scripts 
developed for the DFA attack itself. 
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 Chapter 6, titled “Experimental DFA”, presents how we orchestrate the different 
components of our implementation to perform a DFA attack using Chipwhisperer and 
MATLAB. 

 Chapter 7, titled "Results”, presents an evaluation of the implemented fault injection 
platform for byte-level Differential Fault Analysis (DFA) attacks on a microprocessor 
executing AES. Key aspects of this chapter include the success rate of the DFA attacks 
and a comparison of time durations between actual and simulated data for both Byte-
level and Bit-level DFA attacks. 

 Chapter 8, titled “Conclusions”, discusses the key findings of this study and future 
directions. 

 Chapter 9, titled “Bibliography”, lists the references for this study. 

In summary, this introductory chapter has outlined the objectives of our thesis, as well as the 
significance of hardware attacks against modern embedded devices. The subsequent chapters 
will delve into deeper into the theoretical foundations, our practical implementation and our 
findings to explore this complex and exciting realm. 
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2 The AES Block Cipher Algorithm 

2.1 Overview 
The Advanced Encryption Standard (AES) is a specification of the Rijndael algorithm using data 
blocks of 128 bits and keys of 128, 192 or 256 bits length (Dworkin 2001). The new federal 
encryption standard was publicly announced in the Federal Information Processing Standards 
Publication 197 on the 26th of November 2001 by the National Institute of Standard and 
Technology (NIST). The Rijndael algorithm, designed by the Belgian mathematicians Vincent 
Rijmen and Joan Daemen, won the competition which was held by NIST from 1997 to 2000. It 
provided the core algorithm for AES which would become the successor of the Data Encryption 
Standard (DES), the prior federal standard from 1979 to 2005 (Aumasson 2018). AES is not only 
a federal encryption standard in the US, but also the de facto modern worldwide encryption 
standard. 

2.2 Block ciphers & encryption 
AES, as its predecessor DES, is a symmetric block cipher. A symmetric block cipher consists of 
an encryption and a decryption algorithm processing data sequence in blocks of a standard size 
which are encrypted and decrypted using the same cryptographic key. As it has been noted 
above, AES comes using three different key sizes. The number of rounds of AES depend on the 
key length. For a 128-bit, 10 rounds are iterated, for 196 bits 12 rounds and for 256 bits 14 rounds. 
However, the focus of this dissertation will be restricted to the AES-128, as NIST called the AES 
flavor using a 128-bit key. 

A brief presentation of what an encryption algorithm (E) could be described, in general terms, as 
a function taking as input a key (K) and a plaintext block (P) producing a ciphertext block (C), 
while the decryption algorithm (D) is the exact inverse procedure as it consists of a function taking 
as input a key (K) and ciphertext block (C) to produce the original plaintext (P). It is important to 
also note that every intermediate value of plaintext (P) during the encryption process is called the 
state (S). These operations are depicted below in the form of block diagrams: 

Encryption

K

C

P
 

Figure 2.1 Block diagram for the encryption process 

 

Decryption

K

P

C
 

Figure 2.2 Block diagram for the de process 

The need for block cipher security is achieved, if an attacker using cryptanalytic attacks is unable 
to determine the plaintext having access to the ciphertext. Likewise, the cryptographic key should 
not be possible to be determined having access to both the ciphertext and the plaintext. As a 
result, a block cipher should be a deterministic permutation which appears random and to achieve 
this goal confusion and diffusion are two key factors for success. Confusion suggests that non-
linear transformations are applied to the input and diffusion that these transformations are equally 
dependent on all bytes of the input. More specifically, in block ciphers these operations are 
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implemented through a combination of operation in round called substitution-permutation 
networks (SPNs). 

2.3 AES & Galois field arithmetic 
Unlike its predecessor, DES, AES is not a Feistel cipher. Rijmen and Daemen chose to use Galois 
field arithmetic for the implementation of their algorithm. A brief introductory remark on Galois 
fields is useful for a deeper understanding of the inner mechanism of the encryption and 
decryption process. 

A Galois field, or finite field, is a finite set of elements where the addition, subtraction, multiplication 
and inversion operations can be applied, and the output of the operation also belongs to the set. 
As we read in (Paar and Pelzl 2010) a field F is a set of elements with the following properties: 

 All elements of F form an additive group with the group “+” and the neutral element 0 
 All elements of F except 0 form a multiplicative group with the group “x” and the neutral 

element 1 
 When the two-group operations are mixed, the distributive law holds 

Given that the number of elements of a field is finite, we have a finite field or Galois field and this 
is the type of fields which are mostly used in cryptography. The number of elements defines the 
order of the field. 

The fundamental theorem of existence of finite fields of order m is that a field with order m exists 
if m is a prime power. This suggests that m can be expressed as: 𝑚 = 𝑝௡  , 𝑛 ∈ 𝑍ା, 𝑝 ∈ 𝑃. The 
prime number p is the characteristic of the field. 

For example, the finite field used for AES is of order 256 and 256 can be expressed as 2଼. 
According to the fundamental theorem for Galois fields, the finite field exists given that 2 is a prime 
number and 8 is positive integer. On the contrary, an example of the case of a nonexistent field 
would be a finite field of order 56. The reason is that 56 factored to prime number would be 
expressed as  2ଷ × 7 -not a power of a prime. 

A special type of finite fields are fields where n is equal to 1 and they are called prime fields. Prime 
field arithmetic provides the basis for computations on Galois Fields. 

These four main operations are defined as following: 

𝐿𝑒𝑡 𝑎, 𝑏 ∈ 𝐺𝐹(𝑝) = {0, 1, … , 𝑝 − 1} 

Addition: 𝑎 + 𝑏 = 𝑐 𝑚𝑜𝑑 𝑝 

Subtraction: 𝑎 − 𝑏 = 𝑑 𝑚𝑜𝑑 𝑝 

Multiplication: 𝑎 ∙ 𝑏 = 𝑒 𝑚𝑜𝑑 𝑝 

The definition of inversion for 𝑎 ∈ 𝐺𝐹(𝑝) is 𝑎ିଵ ∙ 𝑎 = 1. However, its computation is complex and 
can be calculated using the extended Euclidean algorithm. 

The smallest possible prime field is GF(2)={0,1} and it has applications especially in computer 
science and cryptography. The possible operations for GF(2) are provided below as an example. 

Addition:  

0 + 0 = 0 𝑚𝑜𝑑 2 = 0 

1 + 0 = 0 + 1 = 1 𝑚𝑜𝑑 2 = 1 

1 + 1 = 2 𝑚𝑜𝑑 2 = 0 

Subtraction:  

0 − 0 = 0 𝑚𝑜𝑑 2 = 0 

1 − 0 = 1 𝑚𝑜𝑑 2 = 1 

0 − 1 = (−1)𝑚𝑜𝑑 2 = 1 

1 − 1 = 0 𝑚𝑜𝑑 2 = 0 

Multiplication: 

0 ∙ 0 =  0 ∙ 1 = 1 ∙ 0 = 0 𝑚𝑜𝑑 2 = 0 

1 ∙ 1 = 1 𝑚𝑜𝑑 2 = 1 



MSc Thesis Nikolaos Tziris-Georgopoulos 

 

Evaluation of the security of embedded systems against fault injection attacks 14 

 

Inversion: 

1ିଵ ∙ 1 = 1 

It is important to note that the addition and subtraction operations are equal. 

The Galois fields 𝐺𝐹(𝑝௡) where 𝑛 > 0 is called extension field. As mentioned above, AES uses 
the Galois field GF(2଼). The elements of GF(2௠), including GF(2଼), are polynomials. In the special 
case of AES, the polynomial can be expressed as follows: 

𝑎଻ ∙ 𝑥଻ + 𝑎଺ ∙ 𝑥଺ + 𝑎ହ ∙ 𝑥ହ + 𝑎ସ ∙ 𝑥ସ + 𝑎ଷ ∙ 𝑥ଷ + 𝑎ଶ ∙ 𝑥ଶ + 𝑎ଵ ∙ 𝑥 + 𝑎଴ = 𝐴(𝑥) | 𝑎௜ ∈ 𝐺𝐹(2)  

This polynomial representation is suitable for AES as the eight coefficients can be expressed as 
the bit values of one byte. 

For the addition and subtraction operations in GF(2଼), the polynomials are added or subtracted 
like in the case of regular polynomials, where the coefficients are computed in GF(2). Example 
given, if 𝐴(𝑥) = 𝑥ଷ + 𝑥ଶ + 1 and 𝐵(𝑥) = 𝑥ସ + 𝑥ଶ + 1, 𝐴(𝑥) + 𝐵(𝑥) = (0 + 1) ∙ 𝑥ସ + (1 + 0) ∙ 𝑥ଷ +
(1 + 1) ∙ 𝑥ଶ + (1 + 1) = 𝑥ସ + 𝑥ଷ .  

The multiplication is not as simple, involving only regular polynomial multiplication and GF(2) 
operations to calculate the value of coefficients. The evident reason explaining why this is not 
feasible is the fact that the product of two polynomial would not belong to the field. Example given, 
for two polynomials in 𝐺𝐹(2଼): 𝐴(𝑥) = 𝑥଻ + 𝑥 and 𝐵(𝑥) = 𝑥ସ + 𝑥ଶ + 1, their product using regular 
arithmetic would be 𝐴(𝑥) ∙ 𝐵(𝑥) = (𝑥଻ + 𝑥)(𝑥ସ + 𝑥ଶ + 1) = 𝑥ଵଵ + 𝑥ଽ + 𝑥଻ + 𝑥ହ + 𝑥ଷ + 𝑥 . However, 
this polynomial does not belong to 𝐺𝐹(2଼), given that it includes 𝑥ଵଵ and 𝑥ଽ. This “regular” product 
𝐴(𝑥) ∙ 𝐵(𝑥) = 𝐶(𝑥)ᇱ is called prime product which should be reduced modulo a polynomial that 
behaves like a prime. The polynomials used for reduction cannot be factored and are called 
irreducible polynomials. It is important to note that unlike prime fields and their characteristic prime 
number, extensions field may have more than one irreducible polynomial. As a result, in order to 
perform a multiplication in a given context the irreducible multiplication should be specified. The 
definition of multiplication in extension Galois fields is 𝐶(𝑥) = 𝐴(𝑥) ∙ 𝐵(𝑥)𝑚𝑜𝑑𝑃(𝑥).   

In the case of AES, the irreducible polynomial is 𝑃(𝑥) =  𝑥଼ + 𝑥ସ + 𝑥ଷ + 𝑥 + 1. Using the example 
polynomials given above, the product would be: 

 

 𝐶(𝑥) = (𝑥ଵଵ + 𝑥ଽ + 𝑥଻ + 𝑥ହ + 𝑥ଷ + 𝑥)𝑚𝑜𝑑(𝑥଼ + 𝑥ସ + 𝑥ଷ + 𝑥 + 1). 

 

The division of the polynomials is described below in detail in order to extract the remainder. 

 (𝑥ଵଵ + 𝑥ଽ + 𝑥଻ + 𝑥ହ + 𝑥ଷ + 𝑥): (𝑥଼ + 𝑥ସ + 𝑥ଷ + 𝑥 + 1) = 𝑥ଷ + 𝑥 

+(𝑥ଵଵ + 𝑥଻ + 𝑥଺ + 𝑥ସ + 𝑥ଷ) 

__________________________ 

𝑥ଽ + 𝑥଺ + 𝑥ହ + 𝑥ସ + 𝑥 

+(𝑥ଽ + 𝑥ହ + 𝑥ସ + 𝑥ଶ + 𝑥) 

__________________________ 

𝑥଺ + 𝑥ଶ 

→ 𝐶(𝑥) = 𝑥଺ + 𝑥ଶ 

Concerning the inverse 𝐴ିଵ(𝑥) of an element 𝐴(𝑥) ∈ 𝐺𝐹(2௠), it must satisfy the following 
condition 𝐴(𝑥) ∙ 𝐴ିଵ(𝑥) = 1𝑚𝑜𝑑𝑃(𝑥). However, its computation is again a complex procedure 
using the extended Euclidean algorithm and it will not be described here.  

This rather extended note on finite field arithmetic is a prerequisite for the presentation of the 
inner mechanism of AES. 

2.4 AES-128 flow 
The initialization of the encryption process starts with the KeyExpansion function. This function 
creates 10 rounds keys of 16-bytes length for each round of encryption which are calculated as a 
combination of substitutions using the SubBytes function and XOR operations. A significant 
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property of the AES scheduling algorithm is that the initial encryption key, as well as every round 
key, can be recovered from the value of any given round key. 

As it is visually presented in the schematic, AES-128 is consisted of ten rounds of encryption plus 
one initialization round. The initialization round, or round zero, is the shortest one, as only a XOR 
operation is applied between the initial encryption key and the plaintext. The output of the initial 
round, the state of the encryption, is provided to the first round of AES. The first round of AES 
includes four transformations (SubBytes, ShiftRows, MixColumns, AddRoundKey) and it is 
identical for the first nine rounds. It is the final round of AES, the tenth one, that differs. It includes 
only three permutations as the MixColumns permutation is omitted. The main reason for this 
design omitting MixColumns is the achievement of symmetry between the AES encryption and 
decryption algorithms, as the designers of AES supported that no improvement of the resistance 
of the algorithm against attacks would originate from the inclusion of the MixColumns permutation 
at this point (Daemen and Rijmen 2002). Criticism of this argument has been risen (Dunkelman 
and Keller 2010) but this debate exceeds the scope of this thesis. 

The substitutions and permutations of AES are applied to bytes of data, which are treated as 4X4 
matrix -a two-dimensional array of bytes. The SPN structure for AES-128 is illustrated in the 
following schematic.  
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Figure 2.3 AES encryption and decryption algorithm SPN 

2.5 Building blocks of AES 
The SubBytes step consists of the only non-linear transformation applied to the plaintext in AES. 
Unlikely to what happens in the case of DES, the same S-box is applied to all 16 bytes of the 
state on all ten rounds, apart from the initial one. The design criteria for the SubBytes operation 
are non-linearity and algebraic complexity.  
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The S-box may be easily understood as a lookup table of 256 elements given some input 𝐴௜ ∈
𝐺𝐹(2଼): 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝐴௜) = 𝐵௜. The AES S-box is provided in the table below. 

 
 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 63 7C 77 7B F2 6B 6F C5 30 1 67 2B FE D7 AB 76 

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0 

2 B7 FD 93 26 36 3F F7 C
C 

34 A5 E5 F1 71 D8 31 15 

3 4 C7 23 C3 18 96 5 9A 7 12 80 E2 EB 27 B2 75 

4 9 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84 

5 53 D1 0 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF 

6 D0 EF AA FB 43 4D 33 85 45 F9 2 7F 50 3C 9F A8 

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2 

8 C
D 

0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73 

9 60 81 4F D
C 

22 2A 90 88 46 EE B8 14 DE 5E 0B DB 

A E0 32 3A 0A 49 6 24 5C C2 D3 AC 62 91 95 E4 79 

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 8 

C BA 78 25 2E 1C A6 B4 C6 E8 D
D 

74 1F 4B BD 8B 8A 

D 70 3E B5 66 48 3 F6 0E 61 35 57 B9 86 C1 1D 9E 

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF 

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16 

 

To illustrate how the lookup table for the AES S-box functions, an element 𝐴௜ = 𝐹1ଵ଺ = (𝑥, 𝑦) in 
hexadecimal representation could be considered. The first hex digit is x and the second hex digit 
is y. The x and y are the coordinates, representing the row and column respectively, to detect the 
matching value for the S-box transformation of 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝐹1ଵ଺) = 𝐴1ଵ଺. 

However, this representation of the SubBytes transformation as a lookup table of hexadecimal 
values ignores the inner mechanism of the calculation. According to the design criteria the S-box 
used in AES is based on the inversion function in GF(28) and an affine mapping operation, as it 
is illustrated in the following figure. 

GF(28)  InversionAi Bi’ Affine Mapping Bi

 
Figure 2.4 Mathematical description of the AES S-box 

The GF(28) inversion uses the following function 

𝑔 ∶  𝑎 → 𝑏ᇱ = 𝑎ିଵ 

Example given consider an element 𝐴௜ = (0100 0101)ଶ = 𝑥଺ + 𝑥ଶ + 1 

In order to calculate the SubBytes transformation at this point, the first step is to find the inverse 
function of 𝐴௜ using the Extended Euclidean algorithm. 

𝐵௜
ᇱ = 𝐴௜

ିଵ = (110001)ଶ = 𝑥ହ + 𝑥ସ + 1 

𝐴௜ ∙ 𝐵௜
ᇱ = 1𝑚𝑜𝑑𝑃(𝑥)  ↔ (𝑥଺ + 𝑥ଶ + 1) ∙ (𝑥ହ + 𝑥ସ + 1) = 1𝑚𝑜𝑑(𝑥଼ + 𝑥ସ + 𝑥ଷ + 𝑥 + 1) 

Given that the output of the SubBytes is the polynomial 𝐵(𝑥) = 𝑏଻ ∙ 𝑥଻ + 𝑏଺ ∙ 𝑥଺ + 𝑏ହ ∙ 𝑥ହ + 𝑏ସ ∙
𝑥ସ + 𝑏ଷ ∙ 𝑥ଷ + 𝑏ଶ ∙ 𝑥ଶ + 𝑏ଵ ∙ 𝑥 + 𝑏଴ and the output of the inversion is 𝐵(𝑥)ᇱ = 𝑏଻

ᇱ ∙ 𝑥଻ + 𝑏଺
ᇱ ∙ 𝑥଺ + 𝑏ହ

ᇱ ∙
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𝑥ହ + +𝑏ସ
ᇱ ∙ 𝑥ସ + 𝑏ଷ

ᇱ ∙ 𝑥ଷ + 𝑏ଶ
ᇱ ∙ 𝑥ଶ + 𝑏ଵ

ᇱ ∙ 𝑥 + 𝑏଴
ᇱ  , the output of the affine mapping is calculated based 

on the following transformation. 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑏଻

𝑏଺

𝑏ହ

𝑏ସ

𝑏ଷ

𝑏ଶ

𝑏ଵ

𝑏଴⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

×  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑏଻′

𝑏଺′

𝑏ହ′

𝑏ସ′

𝑏ଷ′

𝑏ଶ′

𝑏ଵ′

𝑏଴′⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⊕

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
1
1
0
0
0
1
1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The coefficient of 𝐵(𝑥) are calculated using the regular operations of linear algebra to multiplicate 
matrices and 𝐺𝐹(2) operations for the multiplication addition of coefficients. 

For instance, the calculation of the 𝑏଴ coefficient is as follows: 𝑏଴ = (1 ∙ 𝑏଻
ᇱ + 1 ∙ 𝑏଺

ᇱ + 1 ∙ 𝑏ହ
ᇱ + 1 ∙

𝑏ସ
ᇱ + 0 ∙ 𝑏ଷ

ᇱ + +0 ∙ 𝑏ଶ
ᇱ + 0 ∙ 𝑏ଵ

ᇱ + 1 ∙ 𝑏଴
ᇱ ) ⊕ 0 

The ShiftRows and MixColumns permutations guarantee the diffusion property of AES.  

The understanding of the ShiftRows step demands to represent the state as 4x4 matrix. 

𝐵଴ 𝐵ସ 𝐵଼ 𝐵ଵଶ 

𝐵ଵ 𝐵ହ 𝐵ଽ 𝐵ଵଷ 

𝐵ଶ 𝐵଺ 𝐵ଵ଴ 𝐵ଵସ 

𝐵ଷ 𝐵଻ 𝐵ଵଵ 𝐵ଵହ 

During the ShiftRows permutation the elements of the state matrix are shifted cyclically. The first 
row of the state matrix is not shifted, the second row of the column is shifted one position to the 
left, the third row two positions and the third is shifted three positions. 

𝐵଴ 𝐵ସ 𝐵଼ 𝐵ଵଶ 

𝐵ହ 𝐵ଽ 𝐵ଵଷ 𝐵ଵ 

𝐵ଵ଴ 𝐵ଵସ 𝐵ଶ 𝐵଺ 

𝐵ଵହ 𝐵ଷ 𝐵଻ 𝐵ଵଵ 

 

MixColumns reassures that a minor bit flip in any bit of the data path will have the maximum 
impact affecting the value of all four bytes. 

൦

𝐶଴

𝐶ଵ

𝐶ଶ

𝐶ଷ

൪ = ൦

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

൪ ∙ ൦

𝐵଴

𝐵ହ

𝐵ଵ଴

𝐵ଵହ

൪ 

Given that all 𝐵௜ and 𝐶௜ representations are bytes the  

𝐶଴ = 02 ∙ 𝐵଴ + 03 ∙ 𝐵଴ + 01 ∙ 𝐵ଵ଴ + 01 ∙ 𝐵ଵହ 

The multiplication and addition operations follow the 𝐺𝐹(2଼) operation rules. 

Please note that the hexadecimal values of the MixColumns permutation matrix are hexadecimal 
representations of 𝐺𝐹(2଼) polynomials. 

01 = (0000 0001)ଶ ↔ 1 

02 = (0000 0010)ଶ ↔ 𝑥 

03 = (0000 0011)ଶ ↔ 𝑥 + 1 

2.6 KeyExpansion and Reversing KeyExpansion 
From the last subkey to the initial key 

The DFA attacks described above lead to the successful retrieval of the 10th round encryption key 
for AES-128. However, its importance would be rather limited if it was not possible to retrieve the 
original encryption key through reversing the AES KeyExpansion operation. 
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According to (Dusart, Letourneux and Vivolo 2002) we may denote the jth byte of the nth round 
key as 𝐾௡[𝑗] and as w[i] the output of the KeyExpansion where: 

𝐾௡ = 𝑤[𝑁௞ ∙ 𝑛], 𝑤[𝑁௞ ∙ 𝑛], … , 𝑤[𝑁௞ ∙ 𝑛 + 𝑁௕ − 1] 
Or given that 𝑁௞=4, 𝑁௕=4 and 𝑁௥=10 for AES-128: 

𝐾௡ = 𝑤[4 ∙ 𝑛], 𝑤[4 ∙ 𝑛 + 1], … , 𝑤[4 ∙ 𝑛 + 15] 
Thus, the table w will have 176 elements for AES-128. 

 

For 𝑖 ∈ [0, 𝑁௕ ∗ (𝑁௥ + 1) − 𝑁௞ , 𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 0 𝑚𝑜𝑑 𝑁௞: 

𝑤[𝑖] = 𝑤[𝑖 − 𝑁௞] ⊕ 𝑤[𝑖 − 1] 

↔ 𝑤[𝑖 − 𝑁௞] = 𝑤[𝑖] ⊕ 𝑤[𝑖 − 1] 

 

→ 𝑤[𝑖] = 𝑤[𝑖 + 𝑁௞] ⊕ 𝑤[𝑖 + 𝑁௞ − 1] 

 

For 𝑖 = 0 𝑚𝑜𝑑 𝑁௞: 

𝑤[𝑖] = 𝑤[𝑖 − 𝑁௞] ⊕ 𝑆𝑢𝑏𝑊𝑜𝑟𝑑(𝑅𝑜𝑡𝑊𝑜𝑟𝑑([𝑖 − 1] ⊕ 𝑅𝑐𝑜𝑛[𝑖/𝑁௞] 

↔ 𝑤[𝑖 − 𝑁௞] = 𝑤[𝑖] ⊕ 𝑆𝑢𝑏𝑊𝑜𝑟𝑑(𝑅𝑜𝑡𝑊𝑜𝑟𝑑([𝑖 − 1] ⊕ 𝑅𝑐𝑜𝑛[𝑖/𝑁௞] 

 

→ 𝑤[𝑖] = 𝑤[𝑖 + 𝑁௞] ⊕ 𝑆𝑢𝑏𝑊𝑜𝑟𝑑(𝑅𝑜𝑡𝑊𝑜𝑟𝑑([𝑖 + 𝑁௞ − 1] ⊕ 𝑅𝑐𝑜𝑛[(𝑖 + 𝑁௞)/𝑁௞] 

 

Likewise, for AES-128 specifically: 

 

For 𝑖 ∈ [0, 40), 𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 0 𝑚𝑜𝑑 4: 

 

𝑤[𝑖] = 𝑤[𝑖 + 4] ⊕ 𝑤[𝑖 + 3] 

 

For 𝑖 = 0 𝑚𝑜𝑑 4: 

𝑤[𝑖] = 𝑤[𝑖 + 4] ⊕ 𝑆𝑢𝑏𝑊𝑜𝑟𝑑(𝑅𝑜𝑡𝑊𝑜𝑟𝑑([𝑖 + 3)])) ⊕ 𝑅𝑐𝑜𝑛[(𝑖 + 4)/4] 

 

It is worth noting that RotWord is a permutation of four bytes which are cyclically permuted 
according to the following figure: 

b1 b2 b3 b4 b1b2 b3 b4

 
 

SubWord is the SubBytes substitution applied to each of the four bytes of the word and Rcon is 
the following constant matrix. 

01 00 00 00 

02 00 00 00 

04 00 00 00 

08 00 00 00 

10 00 00 00 

20 00 00 00 
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Which is derived from the following formula: 

 

𝑟𝑐𝑜𝑛௜ = [𝑟𝑐௜   00 00 00] 

Where 𝑟𝑐௜ is defined as: 

𝑟𝑐௜ = ቐ

1 , 𝑖𝑓 𝑖 = 1
2 ∙ 𝑟𝑐௜ିଵ , 𝑖𝑓 𝑖 > 1 𝑎𝑛𝑑 𝑟𝑐௜ିଵ < 80 

2 ∙ 𝑟𝑐௜ିଵ ⊕ 11𝐵 𝑎𝑛𝑑 𝑟𝑐௜ିଵ ≥ 80
 

The numbers above are given in hexadecimal format. 

Consequently, it is possible to derive the elements of the expanded key tables using the last ones 
and reverse the KeyExpansion process. 

40 00 00 00 

80 00 00 00 

1B 00 00 00 

36 00 00 00 
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3 Differential Fault Analysis 

3.1 Introduction to block cipher security and cryptanalysis 
Apart from a brief high-level remark in the previous chapter on block cipher security, a more 
precise definition of block cipher security requires the description of a series of relevant notions. 
More precisely, there are three key security classes according to (Sakiyama, Sasaki and Li 2016): 
Key recover resistance, Plaintext recovery resistance, Indistinguishability. Key recover resistance 
is the ability to resist the recovery of the key value for any given choice of the key value. Plaintext 
recovery resistance is the ability to resist the recovery of the plaintext value for any given key 
value using the cipher text value. Indistinguishability is the property not allowing to distinguish the 
encoding process from a random permutation given any key value, disabling an attacker to 
calculate any valid plaintext-ciphertext pair without the knowledge of the key. As a result, the key 
recovery resistance is the most important security property because if the key is recovered, both 
plaintext recovery resistance and indistinguishability resistance should be also considered 
broken. 

A native design property of block ciphers renders them vulnerable to generic attacks: brute force 
attacks and dictionary attacks. This design property is the use of keys and blocks of fixed size. A 
brute force attack can be defined as the attack through the iteration of all 2ேpossibilities to recover 
the N-byte key. A dictionary attack, or codebook attack, for a block cipher of block size B demands 
the creation of a codebook of size 2஻, a dictionary of all plaintexts and respective ciphertexts. This 
attack can recover the plaintext through the dictionary without having knowledge of the key. 

It is evident that the generic attacks are costly with respect to the required data, time and memory. 
The time requirement for a brute-force attack can be defined as 2ே representing the time required 
to iterate all the possible keys. The data and memory requirement for the generic dictionary attack 
can be defined as 2஻ representing the stored data and processed data required to encode all the 
possible plaintext blocks. 

Attacks which require less time than 2ே or less data (or memory) than 2஻ are shortcut attacks. 
The existence of such attacks consists of a critical security flaw for a block cipher. Differential 
cryptanalysis, impossible differential cryptanalysis and integral cryptanalysis are prominent 
cryptanalytic approaches for the discovery of shortcut attacks. 

It is important to note that the discussed block cipher, AES, is considered safe against 
cryptanalytic attacks up to this day. However, differential cryptanalysis consists of the foundation 
for Differential Fault Analysis (DFA), an attack which can be successfully implemented against 
AES. Detailed description of differential analysis or cryptanalysis in general is out of the scope of 
this work. Nevertheless, it would be enlightening to mention that differential analysis is related to 
cryptanalytic techniques based on the difference of values of ciphertexts. A difference of two 
values is defined as a XOR of these values and is also important in differential fault analysis. 

3.2 Differential Fault Analysis 
Unlike cryptanalysis, fault analysis, as well as side-channel analysis, do not solely assume 
knowledge of the input and output of the cryptographic operation of the block cipher. In addition, 
hardware attacks do not depend on native flaws of the cryptographic algorithm. They depend on 
the hardware implementation which executes the given block cipher cryptographic operation and 
assume either knowledge of intermediate values of the cryptographic operation (side-channel 
analysis) or the possibility of intervention to the output of the operation (fault analysis). 

This thesis focuses on noninvasive fault analysis and more specifically on differential fault 
analysis, as it is stated on the title of the current subject and the introduction. An attacker using 
fault analysis would attempt to disturb the cryptographic operation to inject a fault and calculate 
the encryption key through the comparison of the faultless and faulty values. 

An important parameter concerning DFA is the adopted fault model used for the attack. The fault 
model describes the extent of the affected area by the fault injection. As a result, the fault model 
may fall under one of the following categories: 
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 Single bit or 1-bit fault model: The injected fault is localized to a single bit. This fault model 
is not realistic in practice, but it is of theoretical interest. 

 Single byte or random byte fault model: The injected fault is propagated to multiple bits 
belonging to a single byte. This is a realistic scenario, and it is associated with powerful 
DFA techniques. A subclass of this fault model may also allow the attacker to control the 
position of the byte where the fault is injected to. 

 Multiple byte fault model: The injected fault is spread to multiple bytes -more than one. It 
is assumed that the precision of the fault injection is more restricted. It is the most realistic 
scenario. 

The byte or bytes which have been altered because of the fault injection are also referred as 
active bytes. 

 

3.3 Differential Properties of AES 
Supposing that an input to a given round of AES is X, the output from the S-Box can be expressed 
as 𝑆(𝑋). If a fault is injected before the S-Box, the input can be described as 𝑋 ⊕ 𝜀 and the output 
of S-box as 𝑆(𝑋 ⊕ 𝜀). Consequently, the difference between the faultless and faulty values can 
be expressed by the following equation: 

𝑆(𝑋) ⊕ 𝑆(𝑋 ⊕ 𝜀) = 𝛿 

The association between ε and δ is non-linear as it is illustrated by the equation above. However, 
according to (Nyberg 1993), this equation may have 0, 2 or 4 solutions for 𝑋 given a ε and δ. For 
a given ε, 126 out of 256 values of δ lead to 2 solutions for 𝑋, one value of δ leads to 4 solutions 
and the remaining 129 have no solution for 𝑋. As a result, the average number of solutions per 
equation is 1. This property of AES is crucial for the success of DFA attacks. 

3.4 Single Bit DFA against the Last Round of AES-128  
The most intuitively understandable case as an introduction to Differential Fault Analysis is the 
one of a single bit fault injected to the last round of AES-128. More precisely, let us assume that 
the fault is injected after the AddRoundKey phase of the 9th round causing a bit flip to the input 
value inserted in the 10th round S-Box. The fault is illustrated on Figure 3.1 with the symbol of a 
lightning supposing that the value of one single bit of a single byte of the state has been altered. 
It is important to note that the attacker has knowledge of both the fault-free (C) and faulty 
ciphertext (C*). Given the fact that the MixColumns permutation is omitted in the last of AES, the 
discovery of the byte where the fault has been injected would become obvious through comparing 
C and C*. The initial value of the injected state byte can be represented as 𝑥௜,௝ and the same 
value after the injection as 𝑥௜,௝ ⊕ 𝜀. 

The fault-free ciphertext can be represented as: 

𝐶 = 𝑆𝑅൫𝑆(𝑋)൯ ⊕  𝐾ଵ଴ 

The faulty ciphertext can be represented as: 

𝐶∗ = 𝑆𝑅൫𝑆(𝑋 ⊕ 𝜀)൯ ⊕ 𝐾ଵ଴ 

If the fault was injected to the byte positioned in the ith and jth column the fault will be transferred 
to the ith and 𝑙 th byte of the ciphertext because of the 10 round ShiftRows operation. Let us note 
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that 𝑙 = (𝑗 − 𝑖) 𝑚𝑜𝑑 4, and as a result the fault 
inserted in the first byte of the state is not 
propagated to any other byte in Figure 3.1, because 
i = j = 0 → 𝑙 = 0. 

The following equation describes the difference 
between C and C* for the fault-injected byte -given 
that 𝐾ଵ଴ ⊕ 𝐾ଵ଴ = 0: 

𝐶௜,௟ ⊕ 𝐶௜,௟
∗ = 𝑆൫𝑥௜,௝൯ ⊕ 𝑆൫𝑥௜,௝ ⊕ 𝜀൯ 

Given that the value 𝐶௜,௟ ⊕ 𝐶௜,௟
∗  is known according to 

our assumption and ε corresponds to the position of 
the bit where the fault was injected, 𝑥௜,௝ can 
deduced. The value of ε is considered known and 
even if it is not, there are only eight possible values 
for ε. Besides, it was pointed out in the previous 
section the average number of solutions for the 
equation is one -according to the differential 
properties of AES. Consequently, 𝑥௜,௝ can be 
calculated and the 𝐾௜,௟

ଵ଴, the subkey byte used for the 
AddRoundKey operation of the 10th round, can be 
also easily calculated. 

This attack is not feasible in practice, because it is 
very difficult to restrict a fault to flip a single bit of the 
state, but it is important as a proof of concept from a 
theoretical point of view to introduce more complex 
attacks. 

 

 

 

 

3.5 Single Byte DFA against the 9th round of AES-128 
More realistic scenarios of DFA attacks against AES-128 are based on the single-byte fault model. 
The fault injected is restricted to one or more bit of a single byte of the state matrix. One interesting 
case of such an attack involves the alteration of value of one byte during the penultimate round 
of AES-128, namely the 9th round. 

A successful attack at this case requires the utilization of the differential properties of both the S-
box and the MixColumns operations. The propagation of active bytes during the MixColumns 
consists of an important difference in comparison with the single-bit fault during the last round of 
the AES and explains the higher complexity of the attack. One active byte at the input of 
MixColumns will be propagated to all four bytes of the same column of the matrix state, given the 
4x4 matrix multiplication which takes place during the MixColumns operation. 

Assuming the existence of an active byte at the first byte of the state matrix at the input of the 9th 
round. If the active byte at the input of MixColumns is represented as 𝑓, the difference matching 
the initial active byte will be 2𝑓, 𝑓, 𝑓, 3𝑓 as the initial active byte will be diffused to four rows, 
creating four active bytes. The multipliers 2, 1, 1 and 3 are the values of the first row of the 
MixColumns matrix. However, the 4 bytes difference will be converted during the non-linear 
bijective operation of SubBytes to 𝑓଴, 𝑓ଵ, 𝑓ଷ and 𝑓ସ. Consequently, the four bytes difference will be 
transposed due to the ShiftRows operation. The AddRoundKey operation of the last round will 
only apply an XOR operation between each byte of the state matrix -including the active bytes- 

SubBytes

ShiftRows

AddRoundKey K10

K9
AddRoundKey

 

Figure 3.1 Bit-level DFA 
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and the value of the Round Key. A graphical illustration of the fault propagation is presented on 
Figure 3.2.   

 

The following four equations describe the difference between the fault-free (C) and faulty 
ciphertext (C*). It is important to highlight that the adversary has access to both the faulty and 
fault-free ciphertexts, so the following system of 4 equations contains 5 unknown variables.  

2𝑓 = 𝑆ିଵ൫𝐶଴,଴ ⊕ 𝐾଴,଴
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶଴,଴

∗ ⊕ 𝐾଴,଴
ଵ଴൯ 

𝑓 = 𝑆ିଵ൫𝐶ଵ,ଷ ⊕ 𝐾ଵ,ଷ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଵ,ଷ

∗ ⊕ 𝐾ଵ,ଷ
ଵ଴൯ 

𝑓 = 𝑆ିଵ൫𝐶ଶ,ଶ ⊕ 𝐾ଶ,ଶ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଶ,ଶ

∗ ⊕ 𝐾ଶ,ଶ
ଵ଴൯ 

3𝑓 = 𝑆ିଵ൫𝐶ଷ,ଵ ⊕ 𝐾ଷ,ଵ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଷ,ଵ

∗ ⊕ 𝐾ଷ,ଵ
ଵ଴൯ 

In their book, (Mukhopadhyay and Chakraborty 2014, 215), explain that each of the equations 
above can be expressed generally as 𝐴 = 𝐵 ⊕ 𝐶 . The aforementioned variables belong to the 
GF(2଼) hence could have 2଼ possible values each. According to the differential properties of AES, 
introduced in Chapter 3.3, for every random simultaneous combination of A, B, and C the 

probability that an equation will be satisfied is 
ଵ

ଶఴ, but the total number of possible combinations is 

(2଼)ଷ = 2ଶସ. Subsequently, the total number of combinations satisfying an equation is 

2ଶସ ×
ଵ

ଶఴ=2ଵ଺. 

For a total of M equations consisted of N random byte variables, the probability that these M 

equations will be satisfied by N random byte variables is  ቀ
ଵ

ଶఴቁ
ெ

. The total number of combinations 

can be calculated using the formula: ቀ
ଵ

ଶఴቁ
ெ

∗ (2଼)ே = (2଼)ேିெ. The four equations above contain 

the following five unknown random byte variables: 𝑓, 𝐾଴,଴
ଵ଴ , 𝐾ଵ,ଷ

ଵ଴, 𝐾ଶ,ଶ
ଵ଴ , 𝐾ଷ,ଵ

ଵ଴. Thus, the total number of 
possible solutions is (2଼)ହିସ = 2଼, reducing the total search space to 2଼ combinations. The 
reduction of the search space suggests that out of the total possible hypotheses of the 4 key 
bytes, there are only 2଼ hypotheses satisfying the 4 equations. One fault can significantly reduce 
the search space for the possible four bytes of the key to 2଼ possible encryption keys. Two faults 
can determine the four bytes of the key. The retrieval of all four key quartets shaping the entire 
AES key demands two faults to be injected to the appropriate locations, suggesting a total of 8 
faulty ciphertexts and a fault-free ciphertext.  
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Figure 3.2 Byte-level DFA against 9th round of AES 

For the sake of completeness of the presentation of AES key retrieval, the rest of three possible 
systems of four equations are cited below. 

 

For an active byte in the second row of the state matrix: 

3𝑓 = 𝑆ିଵ൫𝐶଴,ଵ ⊕ 𝐾଴,ଵ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶଴,ଵ

∗ ⊕ 𝐾଴,ଵ
ଵ଴൯ 

2𝑓 = 𝑆ିଵ൫𝐶ଵ,଴ ⊕ 𝐾ଵ,଴
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଵ,଴

∗ ⊕ 𝐾ଵ,଴
ଵ଴൯ 
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𝑓 = 𝑆ିଵ൫𝐶ଶ,ଷ ⊕ 𝐾ଶ,ଷ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଶ,ଷ

∗ ⊕ 𝐾ଶ,ଷ
ଵ଴൯ 

𝑓 = 𝑆ିଵ൫𝐶ଷ,ଶ ⊕ 𝐾ଷ,ଶ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଷ,ଶ

∗ ⊕ 𝐾ଷ,ଶ
ଵ଴൯ 

 

For an active byte in the third row of the state matrix: 

𝑓 = 𝑆ିଵ൫𝐶଴,ଶ ⊕ 𝐾଴,ଶ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶଴,ଶ

∗ ⊕ 𝐾଴,ଶ
ଵ଴൯ 

3𝑓 = 𝑆ିଵ൫𝐶ଵ,ଵ ⊕ 𝐾ଵ,ଵ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଵ,ଵ

∗ ⊕ 𝐾ଵ,ଵ
ଵ଴൯ 

2𝑓 = 𝑆ିଵ൫𝐶ଶ,଴ ⊕ 𝐾ଶ,଴
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଶ,଴

∗ ⊕ 𝐾ଶ,଴
ଵ଴൯ 

𝑓 = 𝑆ିଵ൫𝐶ଷ,ଷ ⊕ 𝐾ଷ,ଷ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଷ,ଷ

∗ ⊕ 𝐾ଷ,ଷ
ଵ଴൯ 

For an active byte in the fourth row of the state matrix: 

𝑓 = 𝑆ିଵ൫𝐶଴,ଷ ⊕ 𝐾଴,ଷ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶଴,ଷ

∗ ⊕ 𝐾଴,ଷ
ଵ଴൯ 

𝑓 = 𝑆ିଵ൫𝐶ଵ,ଵ ⊕ 𝐾ଵ,ଵ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଵ,ଵ

∗ ⊕ 𝐾ଵ,ଵ
ଵ଴൯ 

3𝑓 = 𝑆ିଵ൫𝐶ଶ,ଵ ⊕ 𝐾ଶ,ଵ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଶ,ଵ

∗ ⊕ 𝐾ଶ,ଵ
ଵ଴൯ 

2𝑓 = 𝑆ିଵ൫𝐶ଷ,଴ ⊕ 𝐾ଷ,଴
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଷ,଴

∗ ⊕ 𝐾ଷ,଴
ଵ଴൯ 

 

3.6 Single Byte DFA against the 8th round of AES-128 
In this section, we present a Differential Fault Analysis (DFA) attack against the 8th round of AES-
128. The objective of this attack is to recover the entire 128-bit secret key by exploiting a single-
byte fault injection. This attack assumes that the adversary has control over the plaintext being 
encrypted and targets the same fault model and location as the previous attack. 

The DFA attack against the 8th round of AES-128 takes advantage of the fault propagation 
characteristics observed in the S-Box and the MixColumns operation. By injecting a fault into the 
first column of the state matrix, the adversary can derive differential equations that relate the fault 
values to the key bytes and ciphertext bytes. 

The fault propagation across the last three rounds of AES-128 is illustrated in Figure 3.3. By 
analyzing this fault propagation, we can establish the following set of four equations for the first 
column of the state matrix of the 9th round after the MixColumns operation. 

2𝑓଴ = 𝑆ିଵ൫𝐶଴,଴ ⊕ 𝐾଴,଴
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶଴,଴

∗ ⊕ 𝐾଴,଴
ଵ଴൯ 

𝑓଴ = 𝑆ିଵ൫𝐶ଵ,ଷ ⊕ 𝐾ଵ,ଷ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଵ,ଷ

∗ ⊕ 𝐾ଵ,ଷ
ଵ଴൯ 

𝑓଴ = 𝑆ିଵ൫𝐶ଶ,ଶ ⊕ 𝐾ଶ,ଶ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଶ,ଶ

∗ ⊕ 𝐾ଶ,ଶ
ଵ଴൯ 

3𝑓଴ = 𝑆ିଵ൫𝐶ଷ,ଵ ⊕ 𝐾ଷ,ଵ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଷ,ଵ

∗ ⊕ 𝐾ଷ,ଵ
ଵ଴൯ 

The key search space is significantly reduced due to the differential properties of AES and the 
resulting equations. The variable 𝑓଴ in the equations can take 2଼ possible values. Consequently, 
the overall search space for the quartet of key bytes is also reduced to 2଼ choices. This reduction 
applies independently to all four columns of the state matrix of the 9th round, resulting in a 
combined search space of 2ଷଶ for the entire last round key 𝐾ଵ଴. 

To further narrow down the search space, the relationships between the fault values in the 
aforementioned state matrix are considered. Assuming the fault location is known, additional 
equations are derived that exploit these relationships. These equations allow for the reduction of 
the search space for the 9th round key 𝐾ଽ, which is a precursor to further key recovery. 
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Figure 3.3 Byte-level DFA against 8th round of AES 

The equations relating the fault value in the first column of the state matrix of the 8th round of AES 
following the MixColumns operation to 𝐾ଽ, fault-free output of the 9th round 𝐶ଽ, and faulty output 
of the 9th round 𝐶∗ଽ are the following: 

2𝑓଴ =  𝑆ିଵ ቀ14൫𝐶଴,଴
ଽ ⊕ 𝐾଴,଴

ଽ ൯ ⊕ 11൫𝐶ଵ,଴
ଽ ⊕ 𝐾ଵ,଴

ଽ ൯ ⊕ 13൫𝐶ଶ,଴
ଽ ⊕ 𝐾ଶ,଴

ଽ ൯ ⊕ 9൫𝐶ଷ,଴
ଽ ⊕ 𝐾ଷ,଴

ଽ ൯ቁ

⊕ 𝑆ିଵ ቀ14൫𝐶଴,଴
∗ଽ ⊕ 𝐾଴,଴

ଽ ൯ ⊕ 11൫𝐶ଵ,଴
∗ଽ ⊕ 𝐾ଵ,଴

ଽ ൯ ⊕ 13൫𝐶ଶ,଴
∗ଽ ⊕ 𝐾ଶ,଴

ଽ ൯ ⊕ 9൫𝐶ଷ,଴
∗ଽ ⊕ 𝐾ଷ,଴

ଽ ൯ቁ 
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𝑓଴ =  𝑆ିଵ ቀ9൫𝐶଴,ଷ
ଽ ⊕ 𝐾଴,ଷ

ଽ ൯ ⊕ 14൫𝐶ଵ,ଷ
ଽ ⊕ 𝐾ଵ,ଷ

ଽ ൯ ⊕ 11൫𝐶ଶ,ଷ
ଽ ⊕ 𝐾ଶ,ଷ

ଽ ൯ ⊕ 13൫𝐶ଷ,ଷ
ଽ ⊕ 𝐾ଷ,ଷ

ଽ ൯ቁ

⊕ 𝑆ିଵ ቀ9൫𝐶଴,ଷ
∗ଽ ⊕ 𝐾଴,ଷ

ଽ ൯ ⊕ 14൫𝐶ଵ,ଷ
∗ଽ ⊕ 𝐾ଵ,ଷ

∗ଽ ൯ ⊕ 11൫𝐶ଶ,ଷ
∗ଽ ⊕ 𝐾ଶ,ଷ

ଽ ൯ ⊕ 13൫𝐶ଷ,ଷ
∗ଽ ⊕ 𝐾ଷ,ଷ

ଽ ൯ቁ 

𝑓଴ =  𝑆ିଵ ቀ13൫𝐶଴,ଶ
ଽ ⊕ 𝐾଴,ଶ

ଽ ൯ ⊕ 9൫𝐶ଵ,ଶ
ଽ ⊕ 𝐾ଵ,ଶ

ଽ ൯ ⊕ 14൫𝐶ଶ,ଶ
ଽ ⊕ 𝐾ଶ,ଶ

ଽ ൯ ⊕ 11൫𝐶ଷ,ଶ
ଽ ⊕ 𝐾ଷ,ଶ

ଽ ൯ቁ

⊕ 𝑆ିଵ ቀ13൫𝐶଴,ଶ
∗ଽ ⊕ 𝐾଴,ଶ

ଽ ൯ ⊕ 9൫𝐶ଵ,ଶ
∗ଽ ⊕ 𝐾ଵ,ଶ

ଽ ൯ ⊕ 14൫𝐶ଶ,ଶ
∗ଽ ⊕ 𝐾ଶ,ଶ

ଽ ൯ ⊕ 11൫𝐶ଷ,ଶ
∗ଽ ⊕ 𝐾ଷ,ଶ

ଽ ൯ቁ 

3𝑓଴ =  𝑆ିଵ ቀ13൫𝐶଴,ଵ
ଽ ⊕ 𝐾ଵ,଴

ଽ ൯ ⊕ 9൫𝐶ଵ,ଵ
ଽ ⊕ 𝐾ଵ,ଵ

ଽ ൯ ⊕ 14൫𝐶ଶ,ଵ
ଽ ⊕ 𝐾ଶ,ଵ

ଽ ൯ ⊕ 11൫𝐶ଷ,ଵ
ଽ ⊕ 𝐾ଷ,ଵ

ଽ ൯ቁ

⊕ 𝑆ିଵ ቀ13൫𝐶଴,ଵ
∗ଽ ⊕ 𝐾଴,ଵ

ଽ ൯ ⊕ 9൫𝐶ଵ,ଵ
∗ଽ ⊕ 𝐾ଵ,ଵ

ଽ ൯ ⊕ 14൫𝐶ଶ,ଵ
∗ଽ ⊕ 𝐾ଶ,ଵ

ଽ ൯ ⊕ 11൫𝐶ଷ,ଵ
∗ଽ ⊕ 𝐾ଷ,ଵ

ଽ ൯ቁ 

By applying these equations, the search space for the 9th round key 𝐾ଽ is reduced to 2ଷଶ. For 
each hypothesis of 𝐾ଵ଴ that survives the first phase of the attack, and for a fault-free and faulty 
ciphertext pair (C, 𝐶∗), a unique triplet (𝐾ଽ, 𝐶ଽ, 𝐶∗ଽ) can be obtained. These triplets are then tested 
using the derived system of equations. 

The attack complexity is proportional to the search space for 𝐾ଵ଴, which is 2଼ choices. However, 
the time complexity of the attack remains 2ଷଶ, as all hypotheses of 𝐾ଵ଴ need to be exhaustively 
tested using the equations. In conclusion, the DFA attack against the 8th round of AES-128 allows 
for the recovery of the entire secret key by exploiting a single-byte fault injection. 
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4 Framework 

4.1 The main components of our implementation 
Hardware security research projects often require a significant budget for equipment. However, 
this implementation was accomplished using a low-budget platform designed for educational 
purposes by NewAE Technology, called ChipWhisperer-Nano (CW-Nano). This allowed the 
project to be completed within a budget of approximately 50 euros. 

According to its creators, ChipWhisperer (CW) is an open-source toolchain designed for hardware 
research, with the Nano version being the most affordable option. With its built-in target 
microcontroller and the ability to connect to external targets through its connectors, CW-Nano 
provides an effective platform for conducting side channel analysis and voltage fault injection 
attacks. 

A brief overview of the various layers of ChipWhisperer would provide insights not only into the 
tool itself, but also into the different layers of work involved in this thesis. These layers consist of 
hardware, firmware, and software.  

At the hardware level, CW-Nano is physically divided into two sections: the capture board, 
highlighted in red in the following image, and the target board, highlighted in purple. The target 
board features an STM32F030F4P6 microcontroller, while the capture board houses an 
ATSAM4SD16B microcontroller that supports the USB interface and sampling, along with an 8-
bit 20 MS/s Analog-to-Digital Converter and a crowbar that allows for voltage fault injection. It is 
worth noting that while ChipWhisperer Nano supports performing tests against external targets, 
our implementation was limited to testing against the built-in target. 

 
Figure 4.1 ChipWhisperer Nano 

The main properties of ChipWhisperer-Nano1, as listed in the official documentation, are 
summarized in the following table. 

 

Feature  Notes/Range 

ADC Specs  8-bit 20MS/s 

ADC Clock Source Internally generated, external input 

Analog Input AC-Coupled, fixed gain of ~10dB 

Sample Buffer Size 50 000 samples 

ADC Decimation No 

 
1 https://rtfm.newae.com/Capture/ChipWhisperer-Nano/ [last accessed on 14/1/2023] 
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ADC Offset Adjustment No 

ADC Trigger Rising-edge 

Presampling No 

Phase Adjustment No 

Capture Streaming No 

Clock Generation Range 60MHz, divisible by 1, 2, 4, 8, or 16 

Clock Output Regular only 

 

 

The fault injection specific features of ChipWhisperer-Nano are described below. 

 

Feature Notes/Range 

Voltage Glitching Yes 

Clock Glitching No 

Glitch Outputs Glitch-Only 

Glitch Width Time increments between [0, 2^32) 
increments (Actual glitch width will be affected 
by cabling used for glitch output) 

Glitch Width Increments ~8.3ns 

Glitch Offset Time increments between [0 , 2^32) 
increments, ~200ns jitter 

Glitch Offset Increments ~8.3ns 

Glitch Cycle Offset N/A 

Glitch Cycle Repeat N/A 

Voltage Glitch Type Low-power crowbar 

Voltage Glitch Pulse Current 4A 

Glitch Trigger Rising-Edge 

Glitch Cycle Offset N/A 

Glitch Cycle Repeat N/A 

Voltage Glitch Type Low-power crowbar 

Voltage Glitch Pulse Current 4A 

Glitch Trigger Rising-Edge 

 

As it is presented on the tables above, ChipWhisperer Nano is able to inject a fault with a minimum 
width of 8.3 ns which can increment at integer multiples of this minimum width up to 2ଷଶ. 
Additionally, the glitch can be introduced after a trigger is received in the form of a rising edge. 
The offset from a rising clock edge trigger to a glitch pulse rising edge can also be adjusted and 
increment from a minimum of 8.3 ns up to 2ଷଶ times of this minimum duration. The exact type of 
the supported voltage glitch type is low-power crowbar. However, a restriction concerning 
ChipWhisperer Nano is that it does not support clock fault injections. 

The USB controller for the target device was written in C, while an FPGA written in Verilog enabled 
high-speed power trace captures. The device had its own firmware examples written in C, and a 
custom firmware was developed specifically for this project.  

On the software side, the ChipWhisperer Python API was used for communication with the device. 
A pre-configured Virtual Machine (VM) running Oracle VM VirtualBox as a Type-2 Hypervisor was 
used, with all necessary software pre-installed, including version 5.6.0 of ChipWhisperer. The VM 
used Debian GNU/Linux 9.13 as the operating system, and Jupyter Notebook version 6.4.0 was 
installed. Jupyter Notebook was used as a web application hosted on the VM to write and execute 
Python scripts, which communicated with the device using the ChipWhisperer API. 
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The following diagram illustrates the building blocks of the setup used to implement the fault 
injection attacks, as well as the interconnection among these components. The Host Machine is 
a laptop computer equipped with an AMD Ryzen 9 4900HS Central Processing Unit (CPU) and 
16 GB of RAM. Oracle VM VirtualBox is running on the Host Machine, and as a Type-2 Hypervisor 
abstracts the guest operating system from the host.  

 

Host Machine

Virtual Machine

Chipwhisperer 
Nano

 USB Connection 

Type-2 Hypervisor (VirtualBox)

Web Interface (Jupyter)

Network Access 

 
Figure 4.2 Building blocks of our setup 

The Jupyter Notebook is running as an HTTP service accessible by default on port 8888 of the 
Virtual Machine, which is then forwarded to the localhost of the host machine. The following 
screenshot illustrates the web interface of the Jupyter Notebook, which includes the initial 
interface and a file browser. The file browser allows users to navigate the file system of the Virtual 
Machine and manage the files and folders associated with the Jupyter Notebook. 

 
Figure 4.3 The Jupyter Notebooks Interface – Browsing the Filesystem 

In addition to being able to browse the filesystem of the virtual machine, Jupyter enables users to 
edit text files, run Linux terminal commands, and execute Python scripts dynamically through 
Jupyter notebooks (.ipynb files). The preconfigured ChipWhisperer VM offers a plethora of Jupyter 
notebooks with examples of use cases for different models of its hardware. While Jupyter 
notebooks offer a wide range of features, a detailed presentation of Jupyter Notebook and its 
features is outside the scope of this thesis. 
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4.2 Target: Victim Firmware 
Our attack targets Tiny AES in C2 running in ECB mode on the STM32F030F4P6 microcontroller 
of the CW Nano. The cipher key used is: “2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c” (in 
hexadecimal representation) which is the default key provided by Tiny AES, as well as the cipher 
key presented in the definition of AES-128 by NIST (Dworkin 2001).  

For the communication with the microcontroller the SimpleSerial communication protocol has 
been used. The SimpleSerial is written in C and it is the default communication used by NewAE 
for the demo material provided with ChipWhisperer. 

Moving on to the presentation of our custom firmware, the victim firmware developed for our 
implementation is initialized through setting up the UART protocol for communication, the trigger 
mechanism, and the reset functionality. As soon as the target device is ready, it awaits for an 
input value to its UART. The first input value is awaited to be an integer defining the exact byte at 
which the glitch will be targeted. This value is then passed to the set_encryption_byte() function. 
This function takes as input the byte value where the fault will be inserted and calculates to which 
value of the AES state array it corresponds. This is achieved by calculating the integer quotient 
and remainder when dividing the byte value by 4, since the state array is a 4x4 matrix. 

After receiving the first input value, the second value received is the plain text, which is an array 
of 16 integer bytes. This array is provided to the send_value() function, which initializes the state 
buffer and starts the encryption process by calling AES_ECB_encrypt(). Once the encryption is 
complete, the function sends the contents of the buffer, which now contains the cipher, to the 
receiving end. 

During the encryption process, the AES_ECB_encrypt() function adheres to the standard AES-
128 algorithm with modifications that are specific to our implementation. These modifications 
involve the expansion of the encryption key and the invocation of the Cipher() function to execute 
the 10 rounds of AES. Notably, we have customized the Cipher() function to set an "injection_flag" 
to zero when the "round" variable reaches 8. If, during the SubBytes() permutation, the 
"injection_flag" remains at zero and the byte is the intended target of the fault, the trigger_high() 
function is triggered to generate a rising edge and initiate the fault injection. The specifics of this 
fault injection will be discussed in greater detail in the subsequent section on the CW Python API 
as an integral part of our implementation. 

Once the SubBytes() permutation has been executed during the 8th round of AES, the value of 
the targeted byte in the state matrix is replaced with its corresponding value in the S-box 
substitution. At this point, the trigger_low() function is invoked to generate a signal that indicates 
to ChipWhisperer that the process has concluded. Subsequently, the "injection_flag" is reset to 
1, and the state at the end of the 8th round of AES is transmitted via UART. This enables us to 
determine the nature of the fault injection, whether it is a single-bit, single-byte, or multiple-byte 
fault. The remaining steps of the encryption process continue as usual, and the resulting cipher 
is returned to the sender through the send_value() function, as previously described. 

 
2 https://github.com/kokke/tiny-AES-c (Last accessed on 11/3/2023) 
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4.3 ChipWhisperer API & Jupyter Notebook: The control center 
The ChipWhisperer API and the related Jupyter Notebooks act as a control center for the entire 
process, including the compilation of the firmware, programming of the microcontroller, initiation 
of the encryption process, and control of the glitching process. This process always begins with 
an initialization stage that defines environmental parameters, such as the board in use -being the 
CW Nano, and executes a setup script to ensure proper connection to the USB. The firmware, as 
described in the previous section, is then compiled and programmed onto the flash memory of 
the STM32 target. Additionally, a reboot flush function is defined where the clock frequency and 
the sampling rate of the ADC are defined. This function is used to reset the microcontroller in case 
of errors or timeouts during the encryption and glitching process. A summary of the first steps of 
the initialization of every Jupyter Notebook used throughout this project would be in algorithmic 
format as follows:  

 
Figure 4.5 Initialization algorithm 

The initialization process via Jupyter including the connection of ChipWhisperer and firmware 
compilation is illustrated on the following screenshot. 

1) Define the environmental parameters to specify the CW Nano board. 
2) Connect Chipwhisperer 
3) Compile the firmware. 
4) Program microcontroller 
5) Define the reboot flush function. 

1) Initialization 
2) Receive input A and pass it to the set_encryption_byte() function. 

a. Calculate i_target_byte = A mod 4. 
b. Calculate j_target_byte = A div 4. 

Receive input B and pass it to the send_value() function. 

a. Call AES_ECB_encrypt() to encrypt B. 
b. Call the Cipher() function to perform 10 rounds of AES encryption. 
c. For each round, call the SubBytes() permutation. 
     i. If round=8, set the injection_flag variable to 0. 
     ii. If i=i_target_byte AND j=j_target_byte AND injection_flag=0, call the trigger_high() 
         function to inject a fault. 
d. Send the state of the 8th round of AES to Chipwhisperer through UART. 
e. Set injection_flag to 1. 
(Continue with the encryption process normally for the remaining two rounds of AES) 

3) Return the cipher. 

Figure 4.4 Algorithm description 
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Figure 4.6 The Jupyter Notebooks Interface – Initialization process 

After establishing the hardware connection and initializing the firmware, we move on to describing 
our single fault injection test against AES-128. We first define the encryption parameters, 
including the cipher key and encryption mode (ECB). Next, we generate a random 16-byte hex 
array using the "random" Python library, which serves as the plaintext for encryption. We then 
use the "pycrypto" library to execute the exact same encryption against the plaintext in the Python 
script. This same encryption process will later take place on the microcontroller. By comparing 
the received cipher from the microcontroller with the expected output, any encryption faults 
caused by injected voltage glitches can be identified. 

Once the initialization steps are complete, we proceed with a test run of the fault injection 
procedure. This involves sending the plaintext to the microcontroller, performing a voltage glitch 
on a specific clock cycle during the encryption process, and then retrieving the resulting cipher. 
We repeat this process several times with different glitch settings and compare the obtained 
ciphers with the correct one. If a fault was injected successfully, the received cipher will differ from 
the expected one. This procedure is a basic test that allows us to ensure that our setup is working 
correctly and to identify any potential issues with the fault injection process. It also serves as a 
reference for further analysis of more complex glitching schemes. 

4.3.1 Implementation Details 
The script begins by calling the reboot_flush() function to reset the microcontroller and set the 
clock frequency and the sampling rate of the ADC. The required libraries are then imported, 
including the numpy library for working with arrays, the sys library for accessing system-specific 
parameters and functions, the pycrypto library for executing the encryption, and the matplotlib 
library for visualizing the results. 

The glitching parameters are set using the ChipWhisperer API. The width of the glitch in cycles 
and the offset from the rising edge of the trigger are two key parameters that determine the 

1) Define the encryption key. 
2) Generate random plaintext. 
3) Encrypt plaintext. 

Figure 4.7 Encryption process algorithm 
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duration and timing of the fault injection. After performing multiple tests, appropriate values for 
these parameters were determined. 

The scope.arm() function is called to arm the ChipWhisperer for glitching. The injection byte 
variable is set to a single byte of data which defines the byte of the state where the injection will 
occur and is sent to the microcontroller using the target.simpleserial_write() function. The plaintext 
is also sent to the microcontroller using the same function. 

The simpleserial_read_witherrors() function is used to read the microcontroller's response. The 
state variable receives the microcontroller's 16-byte response, which is the state of the AES 
encryption at the end of the 8th round -after the voltage injection. This variable is important as it 
enables inspecting the impact of the voltage glitch, if it affects a single bit, a single byte or multiple 
bytes of the state. The valid variable receives the cipher from the microcontroller after the 
completion of the encryption.  

If the response is valid, the “val” variable receives the full response from the microcontroller, 
including the 16-byte cipher. If the received cipher matches the expected cipher generated by the 
Python script, the message "Correct" is printed to the console. Otherwise, the message "Fault" is 
printed. 

Finally, the ChipWhisperer captures the trace data using the scope.capture() function, and the 
last trace is retrieved using the scope.get_last_trace() function. The trace is plotted using the 
matplotlib library, and the result is shown in a pop-up window. 

This single fault injection test is an essential component of the overall glitching procedure, as it 
allows us to verify the integrity of the encryption process and identify any faults caused by voltage 
glitches injected during the encryption process. 

In the following test run, the glitch width was set to zero (0) cycles, so there was not any fault 
injection. 

 
Figure 4.8 No Fault Injected 

In the following test run, the glitch width was set to nine (9) cycles, which corresponds to a duration 
of approximately 74.7 nanoseconds (8.3 ns * 9), and the offset was set to 2419 cycles. The width 
of the glitch was so large that caused the encryption process to crash and a reset response was 
received. "The reset caused by the glitch is clearly visible as a flat line starting just before sample 
400 in the acquired trace. The glitch itself should only last around 1.5 samples at a 20 MS/s 
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sampling rate with a time interval between each sample of 50 ns. However, the flat line was found 
to be connected with the reset caused by the glitch. Further analysis was conducted to locate the 
exact timing and location of the glitch within the trace. 

 
Figure 4.9 Large glitch causing a reset 

Figure 4.5 depicts the attempted fault injection with a zoomed-in view before the reset. The Y-
axis represents the current going through the shunt resistor, with a constant increase in current 
from sample 376 to sample 381. 

 
Figure 4.10 Voltage glitch spike (width=9) 

Figure 4.6 presents another fault injection with a glitch width of three (3) cycles and the same 
offset of 2419. The disturbance caused by the fault injection begins at sample 376 and lasts until 
sample 378, indicating that the crowbar is shorter. However, the expected voltage peak of 1.5 
samples for a glitch width of 9 cycles or 0.5 samples for a glitch width of 3 cycles is not observed, 
as the disturbance seems to have a greater amplitude than expected. 
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.  
Figure 4.11 Voltage glitch spike (width=3) 

A current peak of such magnitude is not observed in samples taken without a fault injection. 

Having discussed the methodology for successfully performing a fault injection, we have taken a 
step towards achieving our goal of Differential Fault Analysis and obtaining the encryption key of 
AES. However, our task is not yet complete as we need to engineer a method for obtaining 
multiple fault injections to create a comprehensive framework. Additionally, we need to add a 
module for performing the actual Differential Fault Analysis. In the following chapter, we will focus 
on the use of MATLAB, which will serve as the missing link in this chain by providing us with the 
necessary analysis platform for Differential Fault Analysis. 
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5 Analysis Platform & Simulation 
An analysis platform is essential to experiment on the implementation of Differential Fault Analysis 
techniques described during the previous chapter. Prior to applying these techniques to actual 
data obtained from fault injection attacks on a microcontroller, it is essential to establish a 
simulation platform. In this regard, MATLAB, a versatile programming language and numerical 
computing environment, was employed as a practical tool to facilitate the implementation of 
various aspects related to AES-128 encryption. 

This chapter provides an in-depth exploration of how MATLAB was utilized to realize the following 
objectives: 

1. AES-128 encryption was successfully implemented. The implementation adhered to the 
specifications and guidelines outlined in the AES standard, ensuring the accurate 
transformation of plaintext into ciphertext.  

2. To investigate the impact of fault injection attacks on the AES encryption process, bit-
level and byte-level fault injection simulations were carried out. MATLAB provided a 
flexible environment to simulate and analyze the effects of injecting faults at different 
levels of granularity. 

3. Bit-Level and Byte-Level DFA attacks were developed to recover the encryption key of 
the last round of AES. These attacks aimed to exploit vulnerabilities introduced by fault 
injection, allowing for the retrieval of sensitive information. 

4. The key scheduling algorithm was reverse engineered by analyzing the round keys and 
applying reverse operations to retrieve the initial encryption key. 

Throughout the implementation and simulation processes, MATLAB version R2020b was utilized 
as the preferred software tool. By leveraging its capabilities, the analysis platform provided an 
effective means to explore the security aspects of AES-128 encryption, assess the vulnerability 
to fault injection attacks, and evaluate the effectiveness of DFA techniques. 

Overall, this chapter sheds light on the methodology employed to implement AES-128 encryption, 
simulate fault injection attacks, and execute DFA techniques using MATLAB. The insights gained 
from this analysis platform lay the foundation for the subsequent chapters, which delve deeper 
into the experimental results and insights derived from the application of DFA techniques on real-
world data. 

5.1 Simulation of AES Encryption 
The implementation of an AES encryption is based on two functions: initialization() and encrypt(). 
The first function defines the necessary parameters for the encryption, and the second function 
performs the encryption itself against the provided plaintext. 

The initialization() function does not take any input parameter and returns five variables as output. 
More specifically, the function begins with the initialization of the transformation arrays: sbox, 
inv_sbox, aesmult_table, polymat, inv_polymat, rcon. An important enhancement is the inclusion 
of the aesmult_table, which is a hardcoded matrix used to implement AES multiplications 
efficiently. The aesmult_table is a precomputed lookup table that contains the results of 
multiplication operations for all possible combinations of values from 0 to 255. This table 
eliminates the need for performing multiplication calculations during the encryption process, 
resulting in faster and more efficient execution. The aesmult_gen() function is responsible for 
generating the aesmult_table matrix. It iterates over all possible values of i and j from 0 to 255 
and calls the aesmult() function to calculate the multiplication result of i and j. The calculated result 
is then stored in the corresponding entry of the aesmult_table matrix. 

Likewise, the polynomial matrices polymat and inv_polymat are also included hardcoded in order 
to be used during MixColumns permutation, as well as the rcon matrix used in the KeyExpansion. 
Furthermore, the sbox and inv_sbox matrices are hardcoded lookup tables consisting of 256 
values each. These matrices provide the substitution values required during the encryption and 
decryption processes of the AES S-box operation. Each value corresponds to a specific input, 
facilitating the transformation of plaintext to ciphertext during encryption and vice versa during 
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decryption. Next, the encryption key is defined in hexadecimal format and transformed to decimal 
for further calculations. Finally, within the initialization() function, the key_schedule() function is 
invoked using the input variables key, sbox, and rcon. 

The key_schedule() function is an important component of the AES encryption process, 
responsible for generating the round keys used in each round of the encryption. The function 
takes in the key, sbox, and rcon parameters, and outputs the w array, which contains the 
expanded key. 

The function begins by copying the 16-byte key vector row-wise into the first four rows of the w 
array. Then, it loops over the remaining 40 rows of w to generate the additional round keys. For 
each row i in w, the function first copies the previous row of w into a buffer called temp. If i is a 
multiple of 4 (i.e., the start of a new round), temp is shifted one byte to the left, and the sbox is 
applied to each element of temp. A round constant r is then generated using the rcon array and 
XORed with the first element of temp. Finally, the new w(i,:) row is generated by XORing temp 
with the row i-4 of w. The resulting 44x4 table calculated by the key scheduling function is 
assigned to the w variable based on the defined encryption key. 

Once the initialization() function has completed its execution, the encrypt() function is called to 
perform the encryption on the provided plaintext. The encrypt() function takes the plaintext, w, 
sbox, poly_mat, and aesmult_table as input parameters. The plaintext, which represents a 16-
byte array containing the message or data to be encrypted, is reshaped into a 4x4 state matrix. 
The initial round key, derived from the expanded key, is extracted and applied to the state matrix 
using bitwise XOR. 

Next, a loop is executed for 10 rounds (excluding the final round). Within each iteration, the state 
matrix undergoes the following operations: 

1. Substitution Bytes (S-box): Each element in the state matrix is replaced with its 
corresponding value from the sbox lookup table. 

2. Shift Rows: After applying the Substitution Bytes (S-box) operation to each element in 
the state matrix, the shift_rows() function is then called. This function cyclically shifts the 
last three rows of the state matrix, providing diffusion and increasing the complexity of 
the encryption. The shifted state matrix is passed on to the mix_columns() function. 

3. Mix Columns: The mix_columns() function iterates over each column of the state matrix. 
For each element in a column, the function performs a modulo multiplication operation 
with a constant from the aesmult_table lookup table. The result of each multiplication is 
accumulated, and the final value represents the transformed element in the column. This 
transformation further increases the diffusion and strengthens the encryption algorithm. 

After the 10 rounds are completed, the state matrix undergoes the final round, which includes 
Substitution Bytes and Shift Rows operations, but excludes Mix Columns. The resulting state 
matrix represents the ciphertext. 

Finally, the ciphertext is reshaped into a 1x16 vector and returned as the output of the encrypt() 
function. 

The encrypt() function serves as the core component of the AES encryption process, applying the 
necessary operations and transformations to the plaintext using the round keys generated by the 
key_schedule() function. 

5.2 Simulation of Faulty AES Encryption 
In this chapter, we expand the simulation framework to include fault injection in the AES 
encryption process. Instead of physical perturbations such as voltage or clock jitter, we simulate 
the process programmatically by implementing the faulty AES encryption. This implementation is 
achieved through the introduction of the faulty_encrypt() function, which shares similarities to the 
encrypt() function discussed in the previous chapter but incorporates additional functionality for 
injecting faults into the encryption process. In other words, it can be regarded as a faulty version 
of the encryption function. 

The faulty_encrypt() function takes the plaintext, w, sbox, poly_mat, aesmult_table, 
roundToInject, byteToInject, numberOfBitsToInject, and bitToInject as input parameters. It 
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performs the encryption while selectively injecting faults into the encryption process. The 
roundToInject parameter defines the round of AES where the fault is going to be injected. The 
byteToInject specify the byte of the AES round. If the byteToInject value is 0 or exceeds 16, a 
random byte is selected for fault injection. In addition, the numberOfBitsToInject and bitToInject 
parameters determine the number of bits and the specific bit within the selected byte where the 
fault is injected, respectively. If these parameters are set to 0 or exceed the appropriate limits, 
random values are chosen for fault injection. 

Similar to the encrypt() function, the faulty_encrypt() function begins by reshaping the plaintext 
into a 4x4 state matrix. The initial round key, derived from the expanded key, is applied to the 
state matrix using bitwise XOR. A loop is then executed for 10 rounds (excluding the final round), 
just like in the encrypt() function.  

Within each iteration, if the round matches the provided roundToInject parameter, the fault 
injection is taking place before the SubBytes permutation. Then the encryption process follows 
the same steps performed in the normal encrypt() function. 

Fault injection occurs at a specific round and byte level, as determined by the input parameters. 
The fault injection process involves calculating the row and column of the state matrix where the 
fault is injected based on the byteToInject value. The corresponding element within the state 
matrix is then modified by applying a bitwise XOR operation with the fault injection mask. The 
fault injection mask has an 1 in the position of every bit which should be shifted.  

After the fault injection, the AES encryption algorithm is performed normally until the completion 
of all rounds. The faulty ciphertext is reshaped into a 1x16 vector and returned as the output of 
the faulty_encrypt() function. 

The introduction of fault injection in the encryption process allows us to evaluate the impact of 
injected faults on the integrity and security of the ciphertext. By selectively injecting faults at 
specific rounds and byte levels, we can analyze potential vulnerabilities and assess the resilience 
of AES against fault injection attacks. 

5.3 MATLAB Script for Bit-Level DFA 
In this section, we explore the implementation of Bit-Level Differential Fault Analysis (DFA) on the 
AES encryption algorithm using a MATLAB script. While Bit-Level DFA is challenging to achieve 
in practical scenarios, simulation-based approaches can be used to study its feasibility. 

The MATLAB script begins by executing the initialization(), encrypt(), and faulty_encrypt() 
functions to prepare the encrypted data for the attack. The faulty_encrypt() function is called three 
times with different parameters to generate three distinct faulty ciphertexts. Each faulty ciphertext 
targets a different single bit, as specified in the previous chapter. 

The core of the attack lies in the crack_bitDFA() function, which takes the original ciphertext, the 
three faulty ciphertexts, and the byte position of the injected fault as input. The function employs 
the following equation, which has been discussed thoroughly in section 3.4. 

𝐶௜,௟ ⊕ 𝐶௜,௟
∗ = 𝑆൫𝑥௜,௝൯ ⊕ 𝑆൫𝑥௜,௝ ⊕ 𝜀൯ 

It calculates the XOR difference between the original and faulty ciphertexts to determine the left 
part of the equation for each case. Next, the script iterates through possible positions of the 
injected fault to guess the value of ε, representing the injected error. It also considers the 256 
possible values of the given byte during the 9th round of AES, denoted as 𝑥௜,௝. In each iteration, 
the script calculates the right part of the equation and compares it with the left part obtained 
earlier. If a match is found, a potential solution to the equation is added.  

During this iteration, the script generates multiple possible solutions to the equation, storing them 
in three separate arrays of possible solutions. These arrays represent the sets of potential 
solutions obtained from the comparisons between the left and right parts of the equation for the 
three faulty ciphertexts. 

To identify the correct byte value of 𝑥௜,௝ and eliminate extraneous solutions, the script loops 
through the solutions again. It compares the solutions from the different sets of solutions, 
searching for the common value that satisfies the equation across all arrays. This process ensures 
that the identified solution accurately represents the byte of the encryption key. 
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Unlike the need for two faulty ciphertexts described in theory, using only two ciphertexts led to 
false positives in many situations. The utilization of three faulty ciphertexts is essential to enhance 
the reliability of the analysis. By comparing the solutions obtained from different fault injections, 
the script can eliminate false positives and identify the unique solution that consistently satisfies 
the equation for all faulty ciphertexts. 

It is important to note that the recovery of the entire 16 bytes in an AES encryption necessitates 
the repetition of the procedure 16 times. Given that the recovery of a single byte demands three 
successful bit-level fault injections, the completion of this process would, therefore, require a total 
of 48 successful fault injections. 

The insights gained from this script contribute to a deeper understanding of the security aspects 
and weaknesses of the AES encryption algorithm. By simulating Bit-Level DFA and employing 
various fault injections, the script enables the analysis of potential vulnerabilities and assesses 
the resilience of AES against fault injection attacks. 

5.4 MATLAB Script for Byte-Level DFA 
In this chapter, we present the implementation of Byte-Level Differential Fault Analysis (DFA) on 
the AES-128 encryption algorithm using a MATLAB script. The script is designed to perform fault 
injections and analyze the resulting ciphertexts to recover the secret key used in the encryption 
process. Specifically, the fault injections are performed during the SubBytes operation of the 8th 
round of AES-128. 

The implementation is built upon the theoretical background presented in sections 3.5 and 3.6, 
which outline the practical approach to Differential Fault Analysis. The core of the implementation 
is the crackDFA() function, which takes several inputs, including the ciphertext, and two different 
faulty ciphertexts performed against the same byte (faultyciphertext8a and faultyciphertext8b). 
Additionally, the injectedByte parameter specifies the byte position to target during the fault 
injection. The inverse S-box (inv_s_box) and AES multiplication table (aesmult_table) arrays are 
defined as part of the initialization phase. 

The script utilizes a FaultMap matrix that maps the injected byte positions to their corresponding 
positions in the ciphertext. This mapping ensures accurate alignment of the fault injections with 
the correct bytes in the encryption process following the propagation of the fault during the 
operations of AES following the glitch. 

Through nested loops, the script iterates through possible values of the encryption key bytes (K1, 
K2, K3, and K4) in the range of 0 to 255. It calculates intermediate values (f1, f2, f3, and f4) using 
the find_candidate_keys() function which calculates the following equations: 𝑆ିଵ൫𝐶௫,௬ ⊕ 𝐾௫,௬

ଵ଴ ൯ ⊕

𝑆ିଵ൫𝐶௫,௬
∗ ⊕ 𝐾௫,௬

ଵ଴ ൯ , where 𝐶௫,௬ is the corresponding byte of ciphertext and the 𝐶௫,௬
∗  is the respective 

byte of the faulty ciphertext. 𝐾௫,௬
ଵ଴  is the candidate key examined during the given iteration.  

In other words, the find_candidate_keys() performs: 

 XOR operation between the possible key values and the corresponding ciphertext 
 XOR operation between the possible key values and faulty ciphertext bytes 
 Inverse SubBytes of the result of these operations 
 XOR operation between the result of the inverted SubBytes 

By comparing these intermediate values, the script identifies potential candidate key values that 
satisfy the expected conditions. These conditions should satisfy the equations described in 
sections 3.5 and 3.6. For example, for bytes belonging to the first row of the ciphertext the system 
of equations which should be satisfied is the following: 

2𝑓଴ = 𝑆ିଵ൫𝐶଴,଴ ⊕ 𝐾଴,଴
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶଴,଴

∗ ⊕ 𝐾଴,଴
ଵ଴൯ 

𝑓଴ = 𝑆ିଵ൫𝐶ଵ,ଷ ⊕ 𝐾ଵ,ଷ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଵ,ଷ

∗ ⊕ 𝐾ଵ,ଷ
ଵ଴൯ 

𝑓଴ = 𝑆ିଵ൫𝐶ଶ,ଶ ⊕ 𝐾ଶ,ଶ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଶ,ଶ

∗ ⊕ 𝐾ଶ,ଶ
ଵ଴൯ 

3𝑓଴ = 𝑆ିଵ൫𝐶ଷ,ଵ ⊕ 𝐾ଷ,ଵ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଷ,ଵ

∗ ⊕ 𝐾ଷ,ଵ
ଵ଴൯ 

Satisfaction of the expected conditions are examined progressively to avoid unnecessary 
operations. So if, in the given example, 𝑆ିଵ൫𝐶ଵ,ଷ ⊕ 𝐾ଵ,ଷ

ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଵ,ଷ
∗ ⊕ 𝐾ଵ,ଷ

ଵ଴൯ is equal to 
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𝑆ିଵ൫𝐶ଶ,ଶ ⊕ 𝐾ଶ,ଶ
ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଶ,ଶ

∗ ⊕ 𝐾ଶ,ଶ
ଵ଴൯ , we may assume that it is a possible 𝑓଴. The given value of 

𝑓଴ should be multiplied using the aesmult_table to perform the multiplication in the Galois Field 
and calculate 2𝑓଴. Hence the value of 𝑆ିଵ൫𝐶଴,଴ ⊕ 𝐾଴,଴

ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶଴,଴
∗ ⊕ 𝐾଴,଴

ଵ଴൯ is also calculated using 
the find_candidate_keys() and compared to 2𝑓଴. If they are also equal, we follow the same 
process with 𝑆ିଵ൫𝐶ଷ,ଵ ⊕ 𝐾ଷ,ଵ

ଵ଴൯ ⊕ 𝑆ିଵ൫𝐶ଷ,ଵ
∗ ⊕ 𝐾ଷ,ଵ

ଵ଴൯ which should be equal to 3𝑓଴.  

If all a set of four candidate keys satisfies the condition, they are considered candidate keys. The 
candidate key values are stored in separate arrays (candK1, candK2, candK3, and candK4). 

To determine the correct key bytes, the script performs another loop, repeating the procedure 
described above but using only the sets of candidate keys identified previously and the second 
faulty ciphertext. By comparing these intermediate values across the candidates, the script 
identifies the common values of K1, K2, K3, and K4 that consistently satisfy the expected 
conditions. This process eliminates false positive and produces a single set of solutions.  

The script returns the arrays solutionK1, solutionK2, solutionK3, and solutionK4, which represent 
the solutions for each byte of the encryption key. 

In order to retrieve all sixteen bytes of the 10th round key, the crackDFA() function should be called 
four times. Successful retrieval of the encryption key was possible using simulated data and real 
data from the microcontroller. It should be mentioned that the retrieval works using a total of four 
faulty ciphertexts, 2 pairs byte-level faulty ciphertext where the glitch has targeted the same byte 
of the state. 

The implementation has been successfully tested using both simulated data and real data from a 
microcontroller, demonstrating its practical viability for fault analysis. The approach effectively 
reveals insights into the security aspects and weaknesses of the AES encryption algorithm.  

By implementing Byte-Level DFA and analyzing the resulting data, we gain valuable insights into 
the security aspects and weaknesses of the AES encryption algorithm. The practical 
demonstration of this technique contributes to the field of fault analysis and highlights the 
importance of understanding and addressing potential vulnerabilities in cryptographic systems.  

5.5 Reverse KeyExpansion Algorithm 
In this section, we present a MATLAB script that implements the reverse KeyExpansion process 
for AES-128. The script takes the crackedKey, which represents the 10th round key obtained 
through the DFA attack and uses it to calculate the expanded key used for the encryption and 
consequently the initial encryption key. 

The MATLAB script begins by initializing the necessary variables and constants. More specifically 
the key length Nk is set to 4. It also defines the S-box (sbox) and rcon matrices, which contain 
the S-box permutations table and the round constants used in the KeyExpansion respectively. 

The script then iterates through the key schedule in reverse order, starting from the last round 
key and working backwards. It follows the reverse KeyExpansion equations and formulas to 
derive the previous round keys. 

For each round key, the script performs the following steps: 

 Retrieves the previous round key (tempb) from the current round key. 
 Checks if the current index is a multiple of 4. If it is a multiple of 4, it applies a permutation 

(RotWord) and substitution (SubWord) operation on tempb, like the forward 
KeyExpansion process. It also XORs tempb with the corresponding Rcon value. 

 XORs the current round key with the derived tempb to obtain the previous round key. 

By repeating these steps for all round keys in reverse order, the script reconstructs the original 
expanded key. 

The MATLAB script for reverse KeyExpansion presented in this section complements the DFA 
attack by enabling the retrieval of the full encryption key used in AES-128. This script, along with 
the DFA attack implementation, demonstrates the practicality and effectiveness of the proposed 
technique in recovering the AES encryption key. 



MSc Thesis Nikolaos Tziris-Georgopoulos 

 

Evaluation of the security of embedded systems against fault injection attacks 43 

 

5.6 Simulation of Bit-Level & Byte-Level DFA Attacks 
Having presented the functions to simulate bit-level and byte-level Differential Fault Analysis 
attacks in earlier sections, the execution of these simulated attacks requires minimal explanation.  

A successful bit-level DFA attack using MATLAB is illustrated on Figure 5.1. The encrypt() 
function is used to produce the valid ciphertext. Next, a loop is created iterating the bit-level fault 
injection process three times for each byte. As theory indicates it is important to note that 𝑙 =
(𝑗 − 𝑖) 𝑚𝑜𝑑 4 in order to take into account the ShiftRows and the propagation of the fault during 
the 10th round. However, our implementation of AES in MATLAB has shifted the rows with 
columns. As a result, for each injection byte b is necessary, it is necessary to  calculate the byte 
where the injection has propagated to using the following process: 

 The parameter i is the integral result of the division of b minus 1 by 4. 
 The parameter j is the remainder of the integer division of b minus 1 by 4. 
 The parameter l is the remainder of the integer division of j minus 1 by 4. 
 Finally, the parameter c equals i plus l times 4 plus 1 and represents the position of the 

byte where the fault has propagated to. 

The faulty_encrypt() function is used three times in order to simulate three bit-level fault injections 
in the corresponding byte indicated by the parameter b, shifting the values of three different bits 
of the state. The ciphertexts created by the aforementioned functions are used as input for the 
crack_bitDFA() function, which resolves the respective byte c of the encryption key of the final 
round. 

When the process is completed, a message is displayed on the screen showing which byte of the 
encryption key was acquired and the position of the initial single bit injection which led to its 
retrieval. 

The same process is repeated 16 times until the successful recovery of all 16 bytes of the 
encryption key. As the final round key is successfully identified, the rev_key_schedule() function 
is called to calculate the initial encryption key. In the end, the print_key() function is called to print 
the encryption in hexadecimal format. It is a function which was not explained earlier, but it was 
implemented exactly for this cause taking as input the expanded decimal key as input, transposing 
it, converting the decimal to hexadecimal representation and printing the initial encryption key in 
hexadecimal format. 

 
Figure 5.1 Simulation of a successful bit-level DFA attack 
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Similarly, Figure 5.2 demonstrates a successful DFA attack against AES-128 using a byte-level 
fault injection in a simulated manner. The process is initiated with the use of encrypt() function 
again in order to produce the valid ciphertext. Additionally, the faulty_encrypt() function is called 
four times to inject twice 3 random bits in the 0th and 1st byte of the state of the 8th round. The 
crackDFA() function is called four times using the valid ciphertext and the two faulty ones with 
different parameters in the FaultMap parameter in order to formulate the complete key of the last 
round of AES. The faulty ciphertexts associated with the fault injection against the 1st byte of AES 
are used three times with different settings. 

As in the bit-level process above, the rev_key_schedule() function is called to calculate the initial 
encryption key, and the print_key() function is called to print the encryption in hexadecimal format. 

 

 
Figure 5.2 Simulation of a successful byte-level DFA attack 

As we have showcased a successful DFA attack for the retrieval of the complete encryption key 
using Differential Fault analysis, it is possible to demonstrate the same process using data from 
real fault injection experiments.  
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6 Experimental DFA 
Building upon the foundations established in the preceding chapters, this section will explore the 
experimental implementation of Differential Fault Analysis (DFA) attacks. Commencing from the 
voltage fault injection phase and advancing towards the recovery of the initial AES encryption 
key, this section will provide a comprehensive examination of the DFA attack execution process.  

It is important to note that despite multiple attempts, practical experiments aimed at replicating 
single-bit fault injections were unsuccessful. As a result, this implementation focuses solely on 
the execution of necessary fault injection attacks required for successful byte-level DFA. 

6.1 Fault Injection Campaigns 
In this chapter, we will fully utilize the functions and parameters introduced in Chapter 4.3, 
“ChipWhisperer API & Jupyter Notebook: The control center.” While Chapter 4.3 presented a 
Proof-of-Concept for a single fault injection attack, our objective here is to expand our framework 
to conduct a fault injection campaign, covering a series of fault injection attacks suitable for 
practical applications. 

Having discussed thoroughly the implementation of MATLAB scripts to retrieve the encryption 
using Byte-level DFA attacks, it is evident that in order to retrieve the initial encryption key, more 
than one successful fault injections is needed, and the glitch should be shaped in order to produce 
faults restricted to either a single bit or a single byte of the state array. 

Consequently, to acquire multiple faults we need to run a fault injection campaign. A fault injection 
campaign is a set of fault injections using different parameters concerning the position or duration 
of the glitch (voltage glitch in our experiment) It is essential to retrieve necessary data for the 
evaluation of the security of a certain hardware against fault injection attacks and the successful 
execution of such an attack. 

6.1.1 Implementation Details 
The implementation of such a campaign follows the same preparatory steps described in the 
Chapter 4 for compiling the firmware and programming the microcontroller, as well as the 
initialization of the AES. However, instead of performing a single fault injection, it iterates through 
different parameters. The process is represented graphically using Jupyter and the matplotlib 
library. Moreover, our implementation exports the faulty ciphertexts to MATLAB-compatible files, 
so that we can use them to derive the encryption key using DFA. 

In the initialization phase of the fault injection campaign, the 
chipwhisperer.common.results.glitch module library is imported and an instance of this class 
is created. The repeat and ext_offset parameters are defined within a range of values that will 
be iterated, with a step size of one. Additionally, we specify the bytes that will be targeted with the 
fault injection. The time of initiation of the process is displayed. 

6.1.2 Iterative Fault Injection Process 
A loop is initiated iterating through the defined bytes targeted by the glitch. Within this loop, a 
counter parameter is set to zero, as it counts the number of successful fault injections 
accomplished for the given byte. A second loop is implemented, iterating through the values in 
gc.glitch_values(), which consists of an object containing multiple lists of values for the repeat 
and ext_offset parameters. This second loop is using different parameters to achieve a useful 
fault injection.  

Subsequently, a third for loop begins. This for loop iterates ten times to validate the reliability of 
the process, ensuring that potential variations are accounted for. In this loop the fault injection is 
executed using the defined parameters. The core process has been already described in Chapter 
4.3, so an extensive presentation will be omitted at this point. 

The Chipwhisperer predefined functions handle the fault injection using the defined parameters. 
These functions manage various aspects of the fault injection process, including sending the 
cleartext to the device, receiving the ciphertext and resetting the device in case of a time-out. The 
algorithm identifies if the ciphertext has been corrupted due to the glitch, and if it is unique for the 
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specific targeted byte, the counter parameter is incremented by 1. The faulty ciphertext is then 
added to an array, accompanied by associated data, such as the contents of the state array post-
injection and the injection parameters. These collected data will be exported upon the process's 
completion. 

If the counter parameter now holds the value of 2, indicating that a total of 2 unique faults have 
been successfully collected for a specific byte, the current loop terminates with a break statement, 
given that two faults are necessary at every targeted byte to facilitate the retrieval of the encryption 
key, as previously described in the context of byte-level DFA. Following this, the injection process 
proceeds to target another byte within the AES encryption, specifically, it advances to the next 
target byte. 

Furthermore, if the ciphertext remains uncorrupted and the ciphertext_flag parameter is set to 
True, the ciphertext is stored in a separate array. In addition to the core fault injection process, 
we have implemented actions to visually represent successful and unsuccessful fault injections. 
These graphical representations enhance our ability to identify patterns and anomalies effectively, 
as it is illustrated on Figure 6.1. 

 
Figure 6.1 The results are represented graphically in real-time 

Upon completion of the process when two faulty ciphertexts have been collected for the targeted 
bytes, or when all possible injection parameter combinations have been exhausted, the execution 
concludes. The completion time is then displayed. A sample output illustrating this scenario is 
presented in Figure 6.2, where two faulty ciphertexts have been successfully retrieved for the 
targeted bytes 0, 3, and 5. 



MSc Thesis Nikolaos Tziris-Georgopoulos 

 

Evaluation of the security of embedded systems against fault injection attacks 47 

 

 
Figure 6.2 Sample fault injection process output in Jupyter 

6.1.3 Data Export to MATLAB 
The final step in completing the fault campaign involves exporting data to a .mat file, a MATLAB-
compatible format. The file will be used for further computations and analysis. The exported data 
includes: 

More specifically, the following are exported: 

 The AES encryption key used. 
 The plaintext. 
 The ciphertext. 
 The state array after the SubBytes operation at the 8th round of AES. 
 The six faulty ciphertexts. 
 The faulty state arrays after the SubBytes operation at the 8th round of AES. 
 The offset parameter for each successful injection. 
 The sample rate. 

The exported data will serve as the essential input for the application of the byte-level Differential 
Fault Analysis (DFA) attack, enabling a detailed and systematic analysis of the fault injection 
campaign's results. 
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6.2 Execution of DFA Attack 
The exported file including the data from the AES encryption under the effect of the fault injection 
during the 8th round of the encryption process is imported to MATLAB to our analysis platform, 
MATLAB. 

A significant finding in the exported file was the corruption of multiple bytes during the voltage 
fault injection process targeting the 0th byte of the AES. The following tables depict the 
uncorrupted and corrupted state arrays at the 8th round of AES. It is evident that three bytes have 
been altered due to the insertion of the voltage glitch. The altered bytes were specifically bytes 1, 
2, and 3, with values of 99 in decimal or 63 in hexadecimal. 

 

108 228 15 40 

53 33 134 10 

170 147 131 109 

48 7 98 243 

Figure 6.3 Original state array 

108 99 99 99 

53 33 134 10 

170 147 131 109 

48 7 98 243 

Figure 6.4 Corrupted state array 

Therefore, it is conceivable that overcoming this failure could have been achieved through the 
extraction of an additional faulty ciphertext for the 0th byte of AES, as the failed cases exhibited 
this specific pattern, or re-execute the experiment using a different duration for the glitch on the 
0th byte. 

However, it was possible to perform a byte-level DFA attack successfully against the collected 
data using the faulty ciphertexts from the fault injection against 5th byte of the state array instead 
of the 0th byte refactoring the MATLAB script described in Chapter 5.6 for Byte-Level DFA. 

The algorithm for the successful retrieval of the AES is the following: 

 
The Figure 6.5 illustrates a successful execution of the DFA attack leading to the retrieval of the 
encryption key which was used by our firmware. 

1) Import .mat file from Chipwhisperer. 
2) Perform byte-level DFA attack using the crackDFA() function with the FaultMap parameter 1,2 

and 4 against the faulty ciphertexts from the fault injection targeting the 5th byte of AES. 
3) Perform byte-level DFA attack using the crackDFA() function with the FaultMap parameter 3 

against the faulty ciphertexts from the fault injection targeting the 3rd byte of AES. 
4) Reverse the KeyExpansion and display the retrieved encryption key. 
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Figure 6.5 Successful run of DFA against real fault injection data 
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7 Results 
This thesis has presented a comprehensive framework for conducting fault injections against a 
microprocessor executing AES and performing a byte-level Differential Fault Analysis (DFA) 
attack. In this section, we evaluate the efficiency and reliability of the implemented platform while 
addressing potential weaknesses. Achieving a voltage fault injection campaign at the single-bit 
level proved challenging. However, a more precise targeting is possible through alternative fault 
injection methods, such as optical fault injection. 

7.1 Experiment Setting 
To assess the byte-level DFA attack, we conducted one hundred (100) fault injection campaigns 
targeting the 0th, 3rd, and 5th bytes of the AES encryption process. The fault injections were 
executed randomly, with the ext_offset parameter range between 2400 and 3000 clock cycles 
from the trigger point. Additionally, the repeat parameter was set to 2, resulting in a voltage glitch 
duration of 16.6 nanoseconds (2 x 8.3 ns). These experiment parameters were chosen following 
extensive iterations, deemed optimal for achieving successful fault injections. 

7.1.1 High-Level Algorithm for Experiment 
The implementation of this experiment necessitated a slight modification of the algorithm 
previously described for executing fault injection campaigns. The high-level algorithm can be 
summarized as follows: 

 

7.2 Success Rate 
An essential metric for evaluating the results of our experiments is the success rate. Following 
the completion of the aforementioned experiment, our findings demonstrated a notably high 
success rate, with 86% of the executions resulting in the successful retrieval of the encryption 
key. This achievement is visually represented in the following pie chart presented below as Figure 
7.1.  

 
Figure 7.1 Success rate in Byte-level DFA (ChipWhisperer) 

86%

14%

BYTE-LEVEL DFA ATTACK AGAINST 
CHIPWHISPERER DATA

Success Failure

1) Repeat for 100 times: 
Set a random plaintext. 
Execute a fault injection campaign. 
Export the results. 

2) Perform byte-level DFA attack. 
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This failure could be associated with either the reliability of the algorithm used for the DFA attack 
or the fault injection technique. To answer this question the same experiment was executed for 
random data occurred during a simulated attack from MATLAB using both Byte-level and Bit-level 
DFA attacks. The following pie charts demonstrate the success rate. 

 
Figure 7.2 Success rate in Byte-level DFA (Simulation) 

 
Figure 7.3 Success rate in Bit-level DFA (Simulation) 

Consequently, the existence of failures in both actual hardware generated data and simulated 
data suggest that the fault injection technique used is trustworthy. The slight differentiation of the 
success rate between the simulated and experimental execution of the byte-level DFA, could be 
an indication that certain state bytes may have been corrupted during the voltage fault injection. 
The reason for the existence of failures is that certain ciphertexts lead to multiple candidate keys. 
The repetition of the attack with additional faulty ciphertexts would eliminate supplementary 
candidate keys and lead to the successful retrieval of the encryption key. Further, it is important 
to note that even in cases of failure, the algorithm did not produce any inaccurate encryption keys; 
it simply did not find the correct key. 

97%

3%

BYTE-LEVEL DFA ATTACK USING SIMULATION

Success Failure

88%

12%

BIT-LEVEL DFA ATTACK USING SIMULATION

Success Failure
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7.3 Time Duration 
The time required for the successful execution of a DFA attack is an important metric for the 
evaluation of its consistency and practical feasibility. The plot in Figure 7.4 demonstrates the time 
duration of the fault injection and DFA attack applied while implementing the attack with 
ChipWhisperer. The table of average values is illustrated in Figure 7.5 

 
Figure 7.4 Time duration of the attack using ChipWhisperer 

Parameter Value 

Average Fault Injection Duration 394.9 seconds 

Average DFA Attack Duration 2.38 seconds 

Total Duration Average 397.34 seconds 

Figure 7.5 Average duration per attack phase 

It is important to note that only 4.6% of the values deviate significantly from the average total 
duration of 397.34 seconds, with a difference of more than 129.8 seconds, the standard deviation 
of our values. This observation is visually represented by the standard deviation graph in Figure 
7.6, indicating a relatively minor deviation from the average duration. Furthermore, it is evident 
that the required amount of time for the execution of the DFA attack is insignificant in comparison 
with the time required for the execution of the voltage fault injection. 
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Figure 7.6 Standard deviation of DFA attack total time duration 

Furthermore, it is intriguing to compare the time durations required for executing core DFA 
calculations in three different scenarios: Byte-level DFA on actual data, Byte-level DFA using 
simulated data, and simulated Bit-level DFA. The simulated Byte-level DFA attack takes slightly 
more time than the one using actual data. However, it is important to note that this calculation is 
not precisely accurate as it includes the time for both the actual encryption and fault injection 
simulation. On the other hand, the simulated Bit-level DFA is remarkably fast, with an average 
execution time of 0.1 seconds. 

Parameter Value 

Byte-level DFA duration  (seconds) 2.380 seconds 

Simulated Byte-level DFA duration  (seconds) 3.321 seconds 

Simulated Bit-level DFA duration  (seconds) 0.106 seconds 

Figure 7.7 Average durations of core DFA calculation per scenario 

 

Figure 7.8 DFA attack execution time per scenario  
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8 Conclusions 
In this thesis, we delved into Differential Fault Analysis (DFA) attacks on AES encryption 
implemented using ChipWhisperer and MATLAB. The process of the completion of this thesis, 
although marked by challenges, has provided valuable insights into the complexities and 
strengths of fault injections. 

8.1 Key Findings 
The experiments conducted revealed a success rate of 86% in retrieving encryption keys through 
byte-level DFA attacks. Simulated executions of the byte-level and bit-level DFA attacks led to a 
success rate of 97% and 88% respectively. The cases of failures to retrieve the encryption key 
are associated with the existence of more than one encryption keys. However, even in cases of 
failure, the algorithm did not produce any inaccurate results, such as the retrieval of a wrong 
encryption key. 

Furthermore, an experimental implementation of bit-level DFA using voltage fault injection was 
not practically feasible. 

However, it is important to underline the efficiency of bit-level DFA computations, taking merely 
0.1 seconds. In comparison, byte-level DFA, though slightly more time-intensive at 2.4 seconds, 
demonstrated remarkable efficiency. 

8.2 Countermeasures, Implications and Future Directions 
Various implementations against fault injection and fault analysis exists. As we used an 
educational platform to perform voltage fault injections, voltage glitch detectors and hardening 
techniques are beyond the scope of our thesis. Other techniques, like Spatial, Temporal or Parity 
Redundancy (Patranabis and Mukhopadhyay 2018) introduce countermeasures within the AES 
execution itself which poses challenges against the implementation of countermeasures attacks. 
Spatial and Temporal Redundancy perform duplicate execution of AES calculations in parallel to 
validate the encryption process. Likewise, the Parity Redundancy technique involves the use of 
one or more parity bits for the detection of fault injections. 

These techniques can be bypassed using multiple fault injections in parallel but require very 
precise glitches for optimal results. Such techniques have been efficient even against the most 
sophisticated hardware-level countermeasures as it was demonstrated by ((Saß, Mitev and 
Sadeghi 2023). 

The study of such countermeasures would pose new challenges to our research. Furthermore, 
understanding patterns in injection failures could lead to interesting observation, such as the 
possibly deterministic nature of these events.  

Other future directions could include the study of other fault injection techniques, like optical or 
electromagnetic fault injections. 

8.3 Final Thoughts 
In conclusion, it is essential to acknowledge that this thesis has underlined the realistic nature of 
voltage fault injection and byte-level differential fault analysis attacks against modern 
cryptographic algorithms. While our study may not have led into uncharted territories of 
cybersecurity, it does prove the efficiency of well-established methodologies and presents an 
experimental implementation and framework for fault analysis. In closing, I trust this research 
offers valuable insights into fault injection attacks, benefiting future hardware security studies. 
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