\3.3 NANEMIETHMIO NEIPAIQE

TS
———1 UNIVERSITY OF PIRAEUS

DEPARTMENT OF DIGITAL SYSTEMS
INSTITUTE OF INFORMATICS AND
TELECOMMUNICATIONS

Universuty of Pireaus and National Center for Scientific Research Demokritos
MSc in Artificial Intelligence

Department of Digital Systems and Institute of Informatics and Telecommunications

Postgraduate Thesis

The DeepProbCEP system for Neuro-Symbolic
Complex Event Recognition

Varsou Panagiota
mtn2002

Supervisor:

Nikos Katzouris
PhD, Researcher in NCSR

Athens, January, 2024

Approved by the selection board on February 2024.

Artikis Alexander Paliouras George

Varsou Panagiota
Department Digital Systems and Institute of Informatics and Telecommunications
University of Pireaus and NCSR Demokritos

Copyright © Varsou Panagiota 2024
All rights reserved.

Copying is prohibited, storage and distribution of the present work, wholly or in part, for commer-
cial purposes. Reprint is allowed, storage and distribution for non-profit purposes, educational or
research nature, provided that the source of origin is indicated and to keep this message. Questions
concerning the use of work for profit-making purposes should be addressed to the author. The
views and conclusions contained in this document express the author and should not be interpreted
as representing the official positions of the University of Piracus and NCSR Demokritos.

2y woyin 1ov npeuia, kol ta eAedlepa cofforoxipioxa.

Acknowledgements

Evyopiotd tovg yoveic pov, Tov adepedc 1ov, Tov Avactdon kai Tic ¢ideg pov. Kabog kot dhovg
o6covv pe otptéay kot pe fondncay Katd Ty S1dpKelo 0VTOD TOV HETAMTUYLOKOL ALY Kot KOT
TNV GLYYPOEY| TNG OIMA®UOTIKNG EPYOUCIOG.

Iavovaplog 2024
Bépoov [avayidta

il

IHepiinyn

Avt 1 épevva eEepevvd T GUUPOAT TOV VEVPOVIK®VY SIKTOMV KOl TG CLUPOAIKNG GLAAOYL-
OTIKNG, EMKEVIPOVOVTUS OLAITEPO TNV EPUPLOYN TNG VEVPO-CUUPOAIKNG LEONoNG Kot GLAAOYL-
oTIKNG otV Avayvopion Zovhetov Zopufdvtov (CER). Kevipikd otoryeio avtg g peréng eivan
n e&epedivnomn tov DeepProbLog, evog kKopueaiov vevpo-cupfoiikod mhatsiov. To DeepProbLog
drakpiveton amd v emdEEL0 EVEOUATOOT TNG AOYIKNG EKPPOCTIKOTNTOG LLE TN OTATIOTIKN dOvaun
TOV VELPOVIKOV SIKTOMV KOl TOV TPOYPAULOTIGHOV TfavoTtev. Evd To TAaicio Neuroplex mpo-
oQépel eniong Evay aS10TIETO GLVIVAGUO VEVPOVIKADV SIKTOMV KOl AOYIKOD TPOYPOUUATIGHOD, TO
DeepProbLog emiéyOnke yia) Bertiopévn tov kavotnta vo povielonolel angvbeiog v afe-
Bawotnta kot va pabaivel amotedespatikd and ondvia dedopéva. H dvvaun tov DeepProbLog
Bpioketar oV KavoTTd TOL VO GVAAOYILETAL TAV® G LYNAOD EMUTESOL €Vvoleg KOl GYEGEL
YPNOOTOLDVTAG THOVOTIKO AOYIKO TPOYPUUUOTIGHO, GE GUVOLACUO UE TNV EMAPKELD TOV GTO
YEPIGUO CTAVI®V d€d0UEVAOV LEGM TOAVOTIKOU GUAAOYIGHOV. AVTO TO TAAIGLO EMITPETEL TOV ON)-
AOTIKO 0pIoHd TOADTAOK®V HoTiRmV cvupdvimv, dievkoldvovtag tnv tepimiokn CER puécm tov
GLEGOV LOVTEAOTOTIKOD KOl GLAAOYIGTIKOD €PYUSTNPIOL AV GE SAPOPES OVATAPAUCTACELS
dedopévov. Avtn 1 dwrpipn Tapovotdlel po Aemtopepn a&tordynon tov DeepProbCEP, g
eméxtaong tov DeepProbLog, ce didpopeg epyaciec CER oto chvoro dedopévaov MNIST. Tlept-
AQUBAVEL P10, AETTOUEPT] GLYKPITIKY avaAvom EvovTt LoviEA®V Tov Paciloviotl amoKAEIoTIKA G
VEVPIKEG | GUUPOAKEG TPOCEYYIGELS, EMGTLAIVOVTAG T EYYEVT] TOVG TAEOVEKTNLOTO, KOL TEPLOPL-
opove. H épevva mpoceépet moldtieg mAnpogopieg yia mhoveg peaArloviikég mpoddovg otn CER,
eMKEVTPOUEVEG 6TN Ypion Tov DeepProbCEP. Evé to kpto enikevipo awtg tng épeuvag ivat to
DeepProbCEP Aoy TV 1KavoTiTV ToV 611 povteromoinon g afefordtrag Kot tng pddnong
a6 omavia dedopéva, avoyvopiletar exiong o dvvapkd tov Neuroplex gvtog tov topén CER.
Avt n pedétn cvpPdiderl otov Topéa Oyl povo emiPefaidvovrog v vdcyeon tov DeepProbCEP
¢ mAaiciov yio v CER aAld kot Oétovtog ta Ogpédio yio LeEAAOVTIKEG e£EPEVVIGELC KO TPOO-
d0vg 011 VEVPO-GLUPOAIKT LaBNoT KOl GLAAOYLIGTIKN.

Abstract

This research delves into the intersection of neural networks and symbolic reasoning, particu-
larly focusing on the application of neural-symbolic learning and reasoning in Complex Event
Recognition (CER). Central to this study is the exploration of DeepProbLog, a cutting-edge neural-
symbolic framework. DeepProbLog distinguishes itself by adeptly integrating logical expressive-
ness with the statistical strength of neural networks and probabilistic programming. While the
Neuroplex framework also offers a robust blend of neural networks and logical programming,
DeepProbLog was chosen for its enhanced ability to model uncertainty directly and to learn effi-
ciently from sparse data. The strength of DeepProbLog lies in its ability to reason over high-level
concepts and relationships using probabilistic logic programming, combined with its proficiency
in handling sparse data through probabilistic reasoning. This framework enables the declarative
definition of complex event patterns, facilitating nuanced CER by directly modeling and reasoning
across diverse data representations. This thesis presents a thorough evaluation of DeepProbCEP,
an extension of DeepProbLog, across various CER tasks in MNIST dataset. It includes a detailed
comparative analysis against models rooted exclusively in either neural or symbolic approaches,
highlighting their intrinsic strengths and limitations. The research offers valuable insights into
potential future advancements in CER, focusing on the utilization of DeepProbCEP. While the
primary focus of this research is on DeepProbCEP due to its capabilities in modeling uncertainty
and learning from sparse data, the potential of Neuroplex within the CER domain is also acknowl-
edged. This study contributes to the field by not only substantiating the promise of DeepProbCEP
as a framework for CER but also by setting a foundation for future explorations and advancements
in neural-symbolic learning and reasoning.

Keywords: Neural-Symbolic Learning, Complex Event Recognition, DeepProbLog, DeepProb-
CEP, Neural Networks, Symbolic Inference, Temporal Reasoning, Knowledge Representation,
Deep Learning, MNIST

vii

Contents

Acknowledgements iii
Hepidnyn v
Abstract vii
Contents X
List of Figures xi
List of Tables xiii
1 Introduction 1
1.1 Complex Event Recognition 1
1.1.1 Automata-based Systems 2

1.1.2 Logic-based Systems 4

1.1.3 Tree-based Systems 5

1.1.4 Hybrid Approaches 8

1.2 Neural-Symbolic Learning and Reasoning 10
121 OVerview o e e e e 10

1.2.2 Stateoftheart 13

1.3 Motivation of this Thesis 14

2 Background 15
2.1 Literature Review 15

2.2 Complex event processing v v v v it e e e e 16

2.3 Neuroplex L 18
2.4 DeepProblog e 21
24.1 ProbLog e 21

24.2 DeepProbLogOverview 21

243 DeepProbLoglInference 22

24.4 Learning in DeepProbLog 23

2.4.5 DeepProbCEP: A Neuro-Symbolic Approach for Complex Event Processing 25

3 Extending DeepProbLog Complex Event Processing 29
3.1 Deep Dive into Probabilistic Logic 29
3.1.1 Introduction to Probabilistic Logic 29

3.1.2 Probabilistic Logic vs. Classical Logic 30

3.1.3 Representation of Uncertainty in DeepProbLog 30

3.1.4 Probabilistic Inference Mechanisms 30

3.1.5 Extending Traditional Logic Programming 30

X

X CONTENTS

3.1.6 Probabilistic Logic and Machine Learning 31
3.2 Integration of Neural Networks 32
3.2.1 ReasoningLayer 33
322 PerceptionLayer 33
3.3 Technical Challenges and Solutions 34
4 Experimental Results 35
4.1 Experimental Methodology 35
4.1.1 Objective and Expected Outcomes 36
4.1.2 Stream of MNIST Digits and Complex Event Definitions for DeepProbCEP 37
413 Data.o 41
4.14 LSTM and LSTM-over-CNN Experiment Data 42
42 Results. o 44
4.2.1 Complex Sequence DetectionResults 44
4.2.2 Noisy Sequence DetectionResults 46

4.2.3 Integrating Complex Sequence Detection with LSTM and LSTM-over-
CNNModels 53
5 Conclusion & Future Work 57
5.1 Recapitulation e 57
A Problog Rules 59
A0.1 evet defspl e 59
A.0.2 prob ec cached.pl 61

Bibliographic References 63

List of Figures

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Al A

A

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

Automata Based Systems (Semantic Scholars)
Tree Based Systems (Towards Al)
TeslaLanguage
Schematic Representation of Neural Networks
Kripke Model Example

CEPengine
Neuroplex (Semantic Scholars)
Arithmetic Circuit for Probabilistic Query in DeepProbLog
Learning Pipeline in DeepProbLog

DeepProbCEP Architecture for MNIST Digit Stream Processing
Complex Sequence Detection Performance Plots
Complex Sequence Detection F1
Complex Sequence Detection Accuracy
Noisy Sequence Detection F1 for Digit Classification, Scenario 1.
Noisy Sequence Detection F1 for CE, Scenariol
Noisy Sequence Detection F1 for Digit Classification, Scenario 1.
Noisy Sequence Detection Confusions Matrix for CE, Scenario 1
Noisy Sequence Detection F1 for initiatedAt, Scenario3
Noisy Sequence Detection F1 Score for Digit Classification, Scenario 3

Noisy Sequence Detection Confusions Matrix for CE, Scenario 3
Complex Sequence Detection Accuracy for allmodels
Complex Sequence Detection F1 Score forallmodels

X1

— O 3 W

51

List of Tables

Table 1. Probabilistic Logic vs. Classical Logic

xiii

Chapter 1

Introduction

1.1 Complex Event Recognition

The notion of event processing has been widely recognised as a universal computational paradigm
across diverse domains of application. Events reports provide information on the alterations in
the condition of a system and its surrounding environment. Complex Event Recognition (CER)
pertains to the detection and categorisation of complex events that are composed of simple, de-
rived events meeting specific patterns. This process enables the implementation of responsive and
anticipatory actions [Giatrakos et al., 2020, 19].

Complex Event Recongition pertains to the process of identifying patterns within streams of
event data that are continuously being received from various distributed sources, including those
with geographical diversity. CER plays a crucial role in numerous modern Big Data applica-
tions, where the processing of event streams is necessary to acquire timely insights and execute
responsive and anticipatory actions. Instances of such applications encompass the identification
and prediction of assaults in computer network nodes, human activities depicted in video content,
emerging narratives and patterns on the Social Web, traffic and transportation incidents within
intelligent urban areas, error conditions within intelligent energy grids, breaches of maritime regu-
lations, cardiac arrhythmias, and the propagation of epidemics. Within any application, the utiliza-
tion of Complex Event Processing (CEP) enables the interpretation of real-time data, subsequent
appropriate responses, and the formulation of proactive counter-measures [Alevizos & Artikis,
2021, 2].

Complex event recognition systems rely on a continuous flow of timestamped ”simple, derived
events” (SDEs) as their input in order to identify and acknowledge complex events (CEs). Complex
events (CEs) refer to groupings of simple derived events (SDEs) that conform to specific patterns.
The objective of the CER is to promptly identify significant occurrences inside a real-time context
and promptly react to them. The specification of complex event patterns is performed by the user
within data streams. Numerous Complex event recognition (CER) methods and programming
languages have been put out thus far. All systems share a common objective, however they exhibit
variations in their architectures, data structures, pattern languages, and processing algorithms.

The main categories distinguished in most papers are the following:

* Automata-based Systems
* Logic-based Systems
* Tree-based Systems

* Hybrid approaches

2 1. Introduction

1.1.1 Automata-based Systems

Given that a significant number of CER engines utilize finite automata, namely deterministic (DFA)
or non-deterministic (NFA) ones, it is unsurprising that automata represent a prominent methodol-
ogy for managing uncertainty. Automata are widely utilized as computational models for Complex
Event Recognition (CER) systems [Alevizos et al., 2015, 1]. Typically, these automata are formu-
lated using a language similar to SQL, using supplementary operators to handle the regular aspects
of the pattern. The patterns are converted into an automaton, which is typically non-deterministic.
The automaton is subsequently provided with a sequence of SDEs, and its state is altered depend-
ing on whether the conditions on the outgoing transitions from the present state are fulfilled. The
responsible SDE may be dismissed if deemed irrelevant or stored if deemed significant when a
transition is initiated.

Numerous CER systems offer users a pattern language, which is subsequently transformed
into an automaton through a compilation process. The automaton model is commonly employed
for the purpose of establishing the semantics of a language and/or serving as a framework for
executing pattern recognition tasks. Automata-based Complex Event Recognition (CER) systems
encompass various notable examples, such as Cayuga, SASE, and SASE+. These systems employ
automata for both event detection and event correlation.Additionally, TESLA is another prominent
CER system that utilizes automata specifically for pattern recognition [Artikis et al., 2017, 4].

The SASE is a computational framework utilized to analyze patterns within streams of data. In
this model, each event within the stream represents a specific occurrence of interest, characterized
by a timestamp and additional properties. These input events are consolidated into a unified stream,
arranged in chronological order based on their respective timestamps. A pattern is a systematic
arrangement of events that occur in a sequential manner and fulfill all relevant temporal and other
criteria.

As mentionted by Alevizos et al. (2015)[1], Kawashima et al. (2010) [22] offered a straight-
forward approach to address the issue of uncertainty in automata, building upon the SASE+ event
processing engine. The system constructs a deterministic automaton for each user query, specif-
ically for the purpose of defining a concept in computer engineering. It then identifies patterns
that surpass a predetermined level of confidence by creating a matching tree as fresh SDEs are
received. This process continues until the time window for the query elapses. In order to opti-
mize the process, the branches of the tree that fall below the specified threshold are pruned at an
early stage. It is assumed that the SDEs are independent, resulting in the calculation of probabil-
ity values through multiplication. Additionally, each SDE is associated with a certain occurrence
probability. The assignment of probability values to event properties or searches is not permitted.
The throughput rates can attain many hundreds of events per second.However, it is important to
note that these results are derived from studies involving a single query of moderate complexity.
Specifically, the query involves a sequence operator with equality selection on the attributes and
does not involve any shared variables [Alevizos et al., 2015, 1].

Shen et al. (2008)[46] provide an alternative method that utilizes an NFA-based technique to
integrate uncertainty into a pre-existing CER system. The present study builds upon the SASE+
framework and introduces modifications to accommodate probabilistic SDEs. An SDE is charac-
terized by a collection of options, each accompanied by its corresponding probability of occurrence.
The probabilities associated with all the options in the SDE add up to a value of 1, or less than 1
if the possibility of non-occurrence is taken into account. The probability space is defined over
the set of possible worlds, which are determined by the many mutually exclusive alternatives of
the SDEs. The definitions of CE are represented as NFAs. However, to prevent the need for enu-
merating all potential scenarios, a specialized data structure known as the Active Instance Graph
(AIG) is employed. The Active Instance Graph is a type of Directed Acyclic Graph that estab-
lishes connections between events and their preceding complex events. These events are those

1.1. Complex Event Recognition 3

whose potential existence could potentially result in the identification of the Complex Event (CE).
By traversing the AIG in reverse order, it is possible to get the sequence(s) that meet the CE defi-
nition. Additionally, this structure enables the dynamic filtering of events in the presence of other
constraints, apart from temporal sequence. Each event is ultimately linked to its lineage, which
refers to a function that captures the origin or source of the event. This lineage function is utilized
to calculate the likelihood of the occurrence [Alevizatos et al., 2015, 1].

Another well-known methodology in the field of Big Data processing is FlinkCEP. Flink is
a computational framework designed for the purpose of real-time data processing. Additionally,
FlinkCEP is a specialized library that provides support for Complex Event Processing (CEP) within
the Flink framework. This approach is founded on automata, aligning with the principles of SASE.
FlinkCEP is a robust industrial solution that offers a wide range of capabilities, enhanced flexibility,
and inherent scalability.

Figure 1. Automata Based Systems (Semantic Scholars)

bli].ET = turn A

Oignore 1= —(b[1]. ET = turn A Bignore = ﬁb([z'] id = b[1].id A Bignore := —(c.ET = lowSpeedEnd A
b1lid = a.id) bli]-heading — bli — 1] heading > 90) cid = a.id)
ignore ignore ignore
begin h begin proceed begin
start —(a @ I e > ¢C

Opegin = a.ET = lowSpeedStart | Oegin = c. BT = lowSpeedEnd A

take cid = add A
Obegin = b[1].ET = turn A c.time < a.time 4+ 21600

b[1].id = a.id A
b[1].time < a.time + 21600

Otake 1= b[i]. ET = turn A
bli].id = b[1].id A
bi].heading — bli — 1].heading > 90 A
bli].time < a.time + 21600

Figure 1, shows a finite state machine (FSM), a mathematical model of computation commonly
used to design both computer programs and sequential logic circuits. An FSM is defined by a list
of its states, its initial state, and the conditions for each transition. The states of the FSM are
represented as nodes or circles, and the transitions as arrows that connect these states. The FSM
in the diagram comprises the following components:

1. States: The nodes labeled ’a’, 'b[1]’, and ’c’ represent the discrete states within the sys-
tem. Each state corresponds to a certain configuration of the system’s components or to a
particular step in its process.

2. Transitions: The directed arrows symbolize the transitions from one state to another. These
transitions can be triggered by specific events or conditions, dictating the flow of control
from state to state.

3. Events/Conditions: These are specified within the diagram as labels on the transitions or
within rectangles adjacent to them. For instance, Obegin := a.ET = lowSpeedStart denotes
a condition that must be satisfied for the initial transition to state ’a’ to occur. The use of
’0’ (theta) suggests a convention or a particular syntax used within the scope of the system’s
description.

4. Temporal Conditions: Certain transitions are governed by time constraints, such as b[1].time <

a.time + 21600, indicating the real-time or relative timing aspects integral to the system’s
functionality

4 1. Introduction

5. Start State: The state where the system begins its operation is indicated by an incoming
arrow not connected to any other state. In this case, the start state points to state ’a’.

6. Ignore Conditions: Represented by dashed lines leading to diamond shapes with the label
’ignore’, these transitions are conditions that the system must recognize but not act upon.
This mechanism is typically employed to handle exceptions or specific non-normative be-
haviors.

Figure 1, serves as an abstraction to model the behavior of the system under consideration. It
encapsulates the various operational states of the system, the events that cause a transition from
one state to another, and the conditions under which such transitions are valid or should be ignored.
The temporal aspects included in the diagram suggest that the system’s transitions are also time-
dependent, adding a layer of complexity to the FSM. This FSM is part of a broader system that
likely includes more states and transitions, which are essential for a complete understanding of the
modeled process.

1.1.2 Logic-based Systems

Contemporary organisations necessitate methodologies for the automated conversion of the sub-
stantial quantities of data they amass during their activities into actionable information. The ful-
filment of this criteria can be achieved by the utilisation of event recognition systems, which are
capable of identifying actions or occurrences that hold particular importance inside an organisa-
tion. These systems operate by analysing streams of “low-level” information that are typically
challenging for people to effectively utilise. A plethora of event recognition systems have been
proposed in the academic literature [Artikis et al., 2010, 5]. Recognition systems that utilise a
logic-based representation of event structures have garnered significant interest. These systems
are particularly appealing due to their formal and declarative semantics, as well as their demon-
strated efficiency and scalability. Furthermore, the construction and refinement of event structures
in these systems can be automated using machine learning tools [Artikis et al., 2012, 6].

Logic-based temporal formalism is a significant area of study. Patterns often take the form of
rules, consisting of a head and a body that define the conditions under which a CE can be detected.
The mechanism used to perform inference can vary, with some Prolog-based systems use Selec-
tive Linear Definite (SLD) resolution, while others utilise directed graphs that are formed from the
rules, resembling automata. An instance of Logic-based Systems is exemplified by the Chronicle
Recognition System (CRS). A Chronicle, in the context of computer science, is a computational
entity that consists of a series of events that are connected by temporal constraints. It can be under-
stood as a logical construct, comprising of a body and a head. The CRS patterns are represented in
the form of a graph, where each node corresponds to an event and the edges encode the temporal
constraints. This graph is sometimes referred to as a Temporal Constraint Network (TCN). This
functionality allows CRS to perform pattern consistency checks and optimisations by propagating
constraints throughout the graph or eliminating unnecessary constraints. The utilisation of Col-
ored Petri Nets can potentially provide a semantic framework for the CRS language. The runtime
behaviour of the CRS system bears resemblance to automata-based systems, since it involves the
constant creation and termination of TCN instances based on the fulfilment of their future event
needs.

Lastly, we present RTEC (Event Calculus for Run-Time Reasoning), a CER engine that utilises
Event Calculus and is implemented in the Prolog programming language. The Event Calculus
is a logic programming action language that facilitates reasoning about events and their effects
[Miller & Shanahan, 1999, 36]. RTEC is an implementation of the Event Calculus designed
specifically for event streams. It incorporates a windowing system, as well as caching and index-
ing methods, to enhance the efficiency of reasoning processes. RTEC patterns are often defined

1.1. Complex Event Recognition 5

using rules denoted as “initiatedAt” and “terminatedAt,” which establish the beginning and end
points, respectively, of a complex event (CE). The RTEC algorithm will identify all instances in
which the withinArea function is initiated inside a specified time window. It will next determine
the timepoints at which the function is terminated. Finally, it will calculate the maximum intervals
by pairing the beginning and terminating timepoints. In essence, the concept of Real-Time Event
Calculus (RTEC) posits that composite activities adhere to the principle of inertia, meaning that a
Complex Event/Fluent (CE/fluent) persists unless explicitly terminated. It is important to highlight
that RTEC does not make any assumptions regarding the temporal distance between the initial and
final positions, which may be located in separate time intervals. RTEC provides the full range of
expressive capabilities found in logic programming, enabling it to effectively handle a wide range
of constraints, relational CEs, and background information, among other elements.

Consider the provided RTEC rule:

happensAt(entersArea(Vesselld, Area), T),
typeOf(Area, AreaType).
terminatedAt(withinArea(Vesselld) = | T) «
happensAt(exitsArea(Vesselld, Area), T).

(1.1)

Lastly, we present RTEC (Event Calculus for Run-Time Reasoning), a CER engine that utilises
Event Calculus and is implemented in the Prolog programming language. The Event Calculus
is a logic programming action language that facilitates reasoning about events and their effects
[Miller & Shanahan, 1999, 36]. RTEC is an implementation of the Event Calculus designed
specifically for event streams. It incorporates a windowing system, as well as caching and indexing
methods, to enhance the efficiency of reasoning processes. RTEC patterns are often defined using
rules denoted as "initiatedAt” and “terminated At”, which establish the beginning and end points,
respectively, of a complex event (CE). The RTEC algorithm will identify all instances in which
the withinArea function is initiated inside a specified time window. It will next determine the
timepoints at which the function is terminated. Finally, it will calculate the maximum intervals
by pairing the beginning and terminating timepoints. In essence, the concept of Real-Time Event
Calculus (RTEC) posits that composite activities adhere to the principle of inertia, meaning that a
Complex Event/Fluent (CE/fluent) persists unless explicitly terminated. It is important to highlight
that RTEC does not make any assumptions regarding the temporal distance between the initial and
final positions, which may be located in separate time intervals. RTEC provides the full range of
expressive capabilities found in logic programming, enabling it to effectively handle a wide range
of constraints, relational CEs, and background information, among other elements.

This rule exemplifies the system’s power, defining the withinArea complex event to identify
instances where vessels operate within specific zones. Notably, RTEC’s robustness stems from
its ability to handle a myriad of constraints, integrate relational complex events, and utilize back-
ground knowledge, underlining the rich expressivity of logic programming.

Logic-based systems, with their reliance on rule-based patterns and logical inferences, offer a
dynamic avenue for complex event recognition. As CER continues to evolve, the flexibility and
reasoning capabilities of these systems remain integral to the field.

1.1.3 Tree-based Systems

A further domain of investigation in the field of CER involves the utilisation of trees as a computa-
tional framework, with ZStream serving as the preeminent illustration. From a syntactic perspec-
tive, it is noteworthy to mention that ZStream bears a striking resemblance to SASE, exhibiting
nearly identical syntax in the majority of instances. The ZStream model can be distinguished from

6 1. Introduction

automata-based models by its assumption that complex events (CEs) have a durative nature. A se-
quence operator is considered met in the context of CEs when the end timepoint of one CE is less
than the start timepoint of the subsequent CE in the series. ZStream is able to circumvent seman-
tic ambiguities that arise in the presence of event hierarchies [Mei & Madden, 2009, Mei2009].
Consider the patterns:

Rl :=a;b
R2 :=Rl;c

Here, if R1 acquires the timestamp of its final event, b, this can create ambiguities when R2 is
translated to an automaton. ZStream resolves this by treating the CEs in R1 as durative events,
preserving the integrity of the sequence.

E-Cube is an alternative CER system that employs tree topologies, albeit with a different ap-
proach compared to ZStream. With the exclusion of iteration, E-Cube demonstrates support for
the majority of the standard CER operators in terms of their expressive capabilities. The temporal
model of SDEs is characterised by intervals, rendering them the sole entities that possess instanta-
neous properties. The work offered lacks clarity in its consumption and selection policies, making
them difficult to ascertain without ambiguity. Based on the definition of the sequence operator,
it can be inferred that skip-till-any-match and reuse are the most probable subsequent actions.
One of the key advantages of E-Cube is in its capacity for multi-query optimisations, enabling the
evaluation of numerous patterns while minimising redundant and duplicate computations in cases
when these patterns exhibit structural similarities. This is achieved through the implementation
of an event pattern query hierarchy, which facilitates the sharing of subpatterns and effectively
eliminates repetition.

Additionally, the system is equipped with a cost-driven optimiser that is capable of generating
an ideal plan by prioritising the identification of a plan that maximises the reuse of intermediate
results. The E-Cube also possesses elastic properties, which holds significance. When the occur-
rence of a drift is detected, the system consistently gathers data regarding the stream and is capable
of dynamically adjusting its execution plan in real-time [Liu et al., 2010, 37].

Figure 2 illustrates an expansive decision tree, a fundamental structure employed in computa-
tional decision-making processes. The decision tree is a graphical representation of a multi-step
decision process, where each internal node represents a “test” on an attribute (e.g., whether a coin
flip comes up heads or tails), each branch represents the outcome of the test, and each leaf node
represents a class label (decision taken after computing all attributes). The paths from root to leaf
represent classification rules. In this decision tree:

1. Internal Nodes: These are test nodes that check the value of a certain attribute and branch
accordingly.

2. Leaf Nodes: Terminal nodes that represent the outcome of the decision process. In this tree,
they are likely to be the possible decisions or final classifications made by the algorithm.

3. Branches: Represent the decision rules or criteria that guide the flow from one node to
another.

The decision tree in Figure 2 employs a binary decision-making process, as evidenced by the
two branches that stem from each internal node. Each branch represents a binary decision outcome,
leading to further subdivision or to a final decision at the leaf nodes. The color coding—blue
and orange—could indicate different types of decision nodes or outcomes, possibly representing a
categorization within the decision-making process.

The structure of the tree suggests a thorough analysis of a dataset or scenario, where every
possible outcome has been meticulously mapped. The exhaustive nature of the tree is indicative

1.1. Complex Event Recognition 7

of a system that requires a comprehensive set of decisions, such as complex diagnostic systems,
intricate strategy games, or sophisticated predictive models that take into account numerous vari-
ables.

This decision tree could be a crucial component of a decision support system, where the aim
is to replicate human decision-making and provide automated recommendations or decisions. The
level of detail within the tree highlights the algorithm’s capability to handle a multitude of scenar-
i0s, ensuring robustness and accuracy in its predictive power.

Figure 2. Tree Based Systems (Towards Al)

8 1. Introduction

1.1.4 Hybrid Approaches

Trees play a crucial role in the core operation of Esper, serving as a means for filtering, windowing,
and aggregating data. Esper, however, poses challenges in terms of categorisation due to its utili-
sation of non-deterministic automata in its pattern matching functionality for recognising regular
patterns [Anicic et al., 2010, 3]. This phenomenon is indicative of a broader trend. Several tem-
poral techniques rely on Allen’s interval algebra. The expressive nature of Esper patterns arises
from their utilisation of a combination of trees, automata, and logic. However, the consequences
regarding semantics, soundness, and completeness of these patterns have yet to be determined.

The T-Rex system is a Complex Event Recognition (CER) system that integrates logic-based
rules and automata, utilising TESLA as its event specification language. The T-REX system serves
as an intermediary between automata and logic, as it does not solely rely on logical principles.
T-Rex is a novel CEP middleware that effectively integrates both expressive capabilities and ef-
ficiency. One aspect of this approach involves the utilisation of a language known as TESLA,
which has been specifically designed to facilitate the clear and seamless description of composite
events. In contrast, the proposed approach offers a proficient event detection method that relies on
automata for the interpretation of TESLA rules [Cugola & Margara, 2012, 11].

The patterns, which are expressed in TESLA and exhibit a syntax that can be likened to SASE,
are further transformed into automata and afterwards assessed on an event stream. In contrast, it is
possible to convert TESLA patterns into TRIO formulas. TRIO formulas are expressions in a first-
order logical language that incorporates temporal operators and provides clear semantics based on
metric temporal logic.

Figure 3, illustrates a temporal progression of a system’s states or events through a series of
discrete time steps, labeled from ¢ = 0 to t = 8. Each horizontal layer represents the state of the
system at a specific point in time, denoting the transitions between different states or the occurrence
of events. This diagram serves as an effective visual representation of dynamic behavior in systems
where the sequence and timing of events are of paramount importance.

The elements of the diagram are as follows:

1. Initial State (t = 0): The system begins in state *Aut’, signifying the start of the process.

2. Events and States: The diagram includes a series of nodes marked "E’ and ’B’, which could
indicate different types of events or states the system can be in. These nodes are connected
by arrows suggesting permissible transitions.

3. Time-Dependent Transitions: At each time step, the system experiences transitions, which
are represented by labeled arrows. For example, at # = 1, the transition is labeled *Autl’,
leading to "E1@]1°.

4. Concurrent States: There are instances where the system appears to be in multiple states
at once, such as at = 5, where *Aut2’ and *Aut21’ occur simultaneously.

5. State Evolution: Over time, the system evolves through various states, as indicated by the
change in labeling of the states and events, such as 'E2@4°, ' B1@5’, and "A1@8’.

6. Temporal Annotations: The labels along the transitions, such as "E1@1’ and "E2@4°,
indicate specific events occurring at particular time steps.

7. Timeline: The timeline at the bottom of the diagram provides a linear representation of
time, with events such as ’E1°, ’E2’, ’B1°, ’B2’, and ’A1’ mapped to their corresponding
time steps.

1.1. Complex Event Recognition 9

This diagrammatic representation is particularly useful in understanding the complex behavior
of systems in which operations must adhere to strict timing constraints. Such a visual tool is in-
valuable for the analysis and verification of time-critical processes, such as in real-time computing
systems, automated control systems, or sequence-driven algorithmic procedures.

Figure 3. Tesla Language

oAt (D e(D——®
t=1 Aut, . 1@t :. :@ :@
=4 Aul E1@1 :. :@ :®

£ &
8 I8
OlO
eJl©

t=5
Aup, @ ErEg :@ Bi@s :__. .
t=6 Aul, ® E2@4 :. N :@ :@
E2iE4 B2 @6
Auty (2) ©
1=8 Auy, o E2@4 :® B2@6 :. =@

=

g
B
£
©
2
g
(=)
=
2

-
]
o
F -9
o
&
S
o

m
B
@
B
=

10 1. Introduction

1.2 Neural-Symbolic Learning and Reasoning

1.2.1 Overview

The intricate study of human behavior spans across a multitude of disciplines, integrating insights
from computer science, artificial intelligence (Al), neural computation, cognitive science, philos-
ophy, and psychology. At its core, the premise holds that behavior is not only influenced but also
directed by underlying cognitive processes and mental states. Within this interdisciplinary nexus,
two principal frameworks are employed to model and understand behavior: computational-logic
systems and connectionist models.

Computational-logic systems are analytical tools that facilitate high-level reasoning and com-
plex thought processes. They are grounded in various logics, including classical, non-monotonic,
modal, and temporal logic, each providing a scaffold for structured reasoning and decision-making.
These systems excel at explicit rule-based processing and symbolic representation, which are es-
sential in formal reasoning tasks.

Conversely, connectionist models, or neural networks, capture the lower-level dynamics and
emergent phenomena that characterize cognitive and neural activities. These models are inspired
by the architecture and functionality of the brain, emulating the distributed and parallel processing
of information. They are comprised of interconnected units or *neurons’ that work collectively to
process and pattern information, making them adept at handling tasks such as perception, pattern
recognition, and associative memory.

Neural networks are organized into three distinct types of layers, as shown in Figure 4, each
with a specific role in the data processing pipeline:

» Input Layer: This layer serves as the gateway to the neural network, receiving raw data
inputs and passing them forward. It is the initial contact point for the external environment,
setting the stage for subsequent processing.

» Hidden Layer(s): One or more hidden layers may reside within a neural network. These
layers are the computational workhorses, engaging in intricate data transformations through
mathematical functions. The complexity and depth of a neural network are often attributed
to the number and architecture of its hidden layers.

* Output Layer: This layer culminates the neural processing journey, delivering the net-
work’s final output. It synthesizes the learned representations from the hidden layers into a
coherent prediction or classification, ready to be interpreted in the context of the problem at
hand.

1.2. Neural-Symbolic Learning and Reasoning 11

Figure 4. Schematic Representation of Neural Networks

W 7 T X

‘\;
<
N

Input Layer Hidden Layer Output Layer

The interplay between computational-logic systems and connectionist models is pivotal in
neural-symbolic learning and reasoning. By integrating the symbolic reasoning capabilities of
the former with the adaptive learning abilities of the latter, a more holistic and robust approach to
behavior modeling can be realized. This synergy aims to harness the strengths of both paradigms,
facilitating a deeper understanding of the cognitive underpinnings of behavior and improving the
efficacy of Al systems in complex, real-world tasks.

In the field of cognitive science, artificial intelligence, and psychology, there have been several
computational cognitive models developed to understand processes related to thinking, learning,
and language [Pinker, Nowak, Lee, 2008; Shastri, 2007; Sun, 2009, 200].The applications in
which such systems have demonstrated potential include fault detection, computational biology,
training and assessment in simulators, and software verification [de Penning, d’Avila Garcez,
Lamb, Meyer, 2010]. In addition, there have been significant advancements in the field of com-
puter science that have led to the creation of cognitive computational systems, which integrate
machine learning and automated reasoning techniques [Garcez, Broda, Gabbay, 2002; Garcez,
Lamb, Gabbay, 2009; Valiant, 2000]. An essential aspect of a connectionist computational the-
ory of the mind is its ability to emulate the parallelism and adaptive learning processes observed
in neural networks. These neural networks are widely recognised for their crucial role in ensur-
ing the system’s resilience and overall efficacy in handling common knowledge. According to
[Valiant (2008)], a purely symbolic approach would be inadequate. In contrast, logic has been
generally recognised as a fundamental tool in the representation of cognitive processes and be-
havioural patterns [Kowalski, 2011; Pereira, 2012]. It is commonly referred to as the “calculus of

12 1. Introduction

computer science” by a significant number of scholars. Nonclassical logics often assume a signif-
icant role within this particular environment. Temporal logic has made significant contributions in
both academic and industrial settings [Pnueli, 1977]. Additionally, modal logics have emerged as
awidely used language for the purpose of specifying and analysing knowledge and communication
in multi-agent and distributed systems, among other applications [Fagin, Halpern, Moses, Vardi,
1995]. The investigation of practical reasoning in the field of artificial intelligence has been mostly
focused on non-monotonic formalisms. Intuitionistic logic has been identified as a suitable logi-
cal foundation for various fundamental domains within theoretical computer science, such as type
theory and functional programming [Van Dalen, 2002]. In the realm of semantic web research,
description logics, which bear resemblance to Kripke models (e.g. Figure 5), have proven to be
valuable [Baader, Calvanese, McGuinness, Nardi, Patel-Schneider, 2003].

Figure 5. Kripke Model Example

a,b
ta, by
b
ﬁtav tb y
-
a,b a,b a,b

When developing models that incorporate both learning and reasoning, it is necessary to har-
monise the methodologies employed in many disciplines, particularly statistics and logic. This
enables the utilisation of their respective strengths while circumventing their inherent limitations
and drawbacks. The technique of neuro-symbolic systems aims to facilitate the transfer of con-
cepts and mechanisms from logic-based computation, which is frequently nonclassical in nature,
to the realm of neural computation.

1.2. Neural-Symbolic Learning and Reasoning 13

1.2.2 State of the art

The predominant effort in the field of neural-symbolic learning and reasoning has been directed to-
wards propositional logics. The initial methodologies mostly relied on the connectionist portrayal
of propositional logic, a field of study that has subsequently undergone significant expansion to
encompass additional finite logics [Garcez et al., 2015, 17]. Several primary proposals have been
put forth in the literature to address the issue of propositional fixation in neural networks. One
such proposal, as suggested by Gust, Kiihnberger, and Geibel (2007), involves the utilisation of
variable-free representations of predicate logic using category-theoretic Topos. Another proposal,
presented by Bader, Hitzler, and Holldobler (2008), focuses on predicate Horn logic programs
with function symbols and employs an encoding of logic as vectors of real numbers mediated by
the Cantor set. Additionally, Guillame-Bert, Broda, and d’Avila Garcez proposed a method in
2010 for learning first-order rules based on term encoding, also represented as vectors. These
technologies have demonstrated efficacy in constrained proof-of-concept environments or small-
scale instances, but efforts to attain practical utility have thus far yielded unsatisfactory results.
In order to make progress, it may be necessary to consider logics with intermediate expressive-
ness, such as description logics. Additionally, propositionalization methods, as utilised by ILP
[Franca, Zaverucha, and d’Avila Garcez, 2014, 16], and answer-set programming [Lifschitz,
2002, 28] should be taken into account. Furthermore, modal logics are known to be more expres-
sive than propositional logic and are decidable. The viability of integrating description logics and
rules in the context of neural-symbolic integration has been demonstrated by more recent studies
[Krotzsch et al., 2011, 25].

The issue of variable binding and the manner in which neural networks engage in reasoning
with variables continue to be fundamental aspects of this endeavour. Considerable progress has
been made within the field of neural-symbolic computation in extracting logical expressions from
neural networks that have undergone training [Garcez et al., 2015, 17]. This extracted knowl-
edge is then utilised to initiate learning in subsequent challenges. In recent studies, there has been
compelling evidence indicating that neural networks possess the capability to acquire and com-
prehend complete sequences of events, effectively resembling a form of “mental simulation” of
specific, prolonged activities. Additionally, a highly sophisticated logical framework for action
has been established, such as the fundamental propositional logic of programs (PDL) proposed by
Harel, Kozen, and Tiuryn (2001). This framework effectively represents the truth conditions re-
sulting from different combinations of actions. One potential avenue for further investigation is to
examine the extraction process from a trained network that demonstrates the aforementioned sim-
ulated behaviour. This could involve utilising a PDL expression to succinctly capture a high-level
description of the sequence of operations [Garcez et al., 2015, 17].

According to Feldman (2006) [15], the brain’s composition as a network of neurons that en-
gage in actions, rather than merely representing objects, suggests that action models should assume
a pivotal position. When it comes to the representation of information in the brain, a significant
obstacle is in comprehending the mechanisms by which neuronal activations, which are exten-
sively distributed and lack symbolic attributes, lead to behaviour’s that exhibit symbolism, such
as language and logical reasoning. The recent advancements in functional magnetic resonance
imaging (fMRI) and magnetoencephalography (MEQG) analysis have facilitated the opportunity to
formulate and evaluate these hypotheses. For example, the application of formal concept analysis
enables the identification and description of semantic structures within the brain. Additionally,
the utilisation of conceptual attribute representations [Binder and Desai, 2011, 8] allows for the
modeling of the mapping between semantic concepts and specific regions of the brain. One of the
primary obstacles that lies ahead is comprehending the mechanisms via which semantics are for-
mulated and influenced by contextual factors, such as the arrangement of words inside a sentence
[Garcez et al., 2015, 17].

14 1. Introduction

1.3 Motivation of this Thesis

The quest to merge learning with reasoning stands as a cornerstone challenge in the field of Artifi-
cial Intelligence (Al), specifically demanding a harmonious integration of symbolic inference and
statistical learning methods. Historically, Al research has experienced a dichotomy: one faction
focusing on statistical learning and the other on symbolic reasoning, with few intersections between
the two. Recent advancements in deep learning have reignited interest in this area, particularly in
understanding and enhancing representations at varying levels of abstraction.

Neural-symbolic learning and reasoning, a field of growing relevance for over two decades,
addresses these representational challenges, including critical aspects like the binding problem.
This domain aspires to combine the adaptability and learning efficiency of neural networks with
the structured, rule-based approach of logical reasoning. The application of this hybrid approach is
particularly compelling in Complex Event Recognition (CER), where identifying patterns within
temporal sensor data necessitates both perceptual learning and high-level temporal reasoning.

This thesis is motivated by the objective to critically evaluate neural-symbolic techniques
within the scope of CER. The focus is on the DeepProbCEP framework [Vilamala, 2022, 50], an
extension of DeepProbLog [Manhaeve et al., 2021, 33], renowned for its unique blend of proba-
bilistic logic programming and neural network capabilities. DeepProbCEP stands out for its direct
modeling of uncertainty and efficient learning from sparse data, making it an ideal candidate for
complex event detection and analysis.

While Neuroplex, another neural-symbolic framework, offers intriguing insights, its applica-
tion in CER was studied for comparative understanding rather than direct experimentation. The
primary investigation centered around the utilization of DeepProbCEP, examining its performance
in predictive accuracy and scalability across different CER scenarios in MNIST dataset. This re-
search aims to delineate the capabilities and limitations of neural-symbolic approaches, particularly
highlighting how DeepProbCEP contributes to advancing state-of-the-art in CER.

DeepProbCEP’s integration of probabilistic reasoning with neural networks allows for sophis-
ticated handling of uncertainty and varied data representations, key in CER tasks. This thesis
presents a detailed analysis of DeepProbCEP’s application in identifying complex events from
simple event data, showcasing its potency in bridging the gap between low-level data processing
and high-level reasoning.

The research contributes significantly to the field by showcasing the practical applications and
effectiveness of DeepProbCEP in neural-symbolic learning and reasoning, setting a foundation for
future explorations in this promising domain.

Chapter 2

Background

2.1 Literature Review

Machine learning and deep learning are distinct branches within the science of artificial intelli-
gence. Machine learning enables the development of models with basic perceptual abilities like
classification and prediction. On the other hand, higher-level inferences and information extrac-
tion are accomplished through reasoning using suitable representations and logic-based reasoning
techniques. The integration of neural-based learning and logic-based reasoning has the potential
to facilitate the development of novel systems capable of comprehending their surroundings and
deriving inferences from the provided data [Oikonomakis, 2023, 39].

In their 2021 paper, Manhaave et al. present DeepProbLog, a programming language that com-
bines neural networks and probabilistic logic. This language includes neural predicates to include
deep learning. The researchers demonstrate the adaptability of existing inference and learning
techniques from the underlying probabilistic logic programming language ProbLog to the new
language. The authors provide theoretical and practical evidence that DeepProbLog is capable
of handling both symbolic and sub-symbolic representations and inference, program induction,
probabilistic (logic) programming, and deep learning from instances. This study introduces a
novel framework that combines general-purpose neural networks with expressive probabilistic-
logical modelling and reasoning. This integration effectively utilises the full expressive capa-
bilities and advantages of both approaches, and allows for end-to-end training using examples
[Manhaave et al., 2021, 32].

Furthermore [Oikonomakis, 2023, 39] conducts research on Neural-symbolic computation,
a technique that integrates deep learning and reasoning using the NeurAsp software. First, the
author demonstrates the capabilities of this method and explains how it works internally. He also
shows how it can be integrated with traditional machine learning methods. Finally, he applies this
method to recognise activities in videos involving people, using Complex Event Processing (CEP)
techniques. Therefore, the author aims to emphasise the advantages of NeurAsp by conducting
three experiments that compare it with established deep machine learning approaches. Machine
learning enables the development of models with basic perceptual abilities, such as classification
and prediction. On the other hand, higher-level inferences and information extraction are achieved
by reasoning utilising suitable representations and logic-based methodologies. The integration of
neural-based learning with logic-based reasoning has the potential to facilitate the development of
novel systems capable of comprehending their surroundings and making inferences based on the
provided input.

15

16 2. Background

2.2 Complex event processing

Complex Event Processing (CEP) is a technological method that helps in drawing conclusions from
various events occurring within a stream of information. This concept was highlighted in the works
of [Burgueiio et al., 2018, 45]. CEP enables the creation of complex events from simpler events
generated by input streams. These complex events are automatically identified by the system as
situations of interest.

Typically, an event is characterized by three primary aspects [Cugola et al., 2012, 11]:

1. Form: This refers to the specific attributes or data elements of an event. For instance,
the duration of an activity could be part of an event’s form, as detailed in the research by
[Vilamala, 49] and colleagues.

2. Significance: This aspect highlights what an event represents or indicates. The data encom-
passed in an event’s form often describes the nature of the activity it represents.

3. Relativity: This pertains to how one activity is interconnected with others. Events mirror
these interconnections, exhibiting relationships similar to those of the activities they repre-
sent. The concept of relativity in an event involves the network of relationships it has with
other events, and its form typically includes methods to decode these relationships.

It’s important to recognize that an event is more than just a mere message or a record; while the
form of an event might be in the shape of a message, it also embodies significance and relativity.
Events are linked by three key types of relationships:

» Time: This is a sequential relationship that organizes events chronologically.

» Cause: This is a dependency relationship between different activities. If an event or activity
happens solely because of other events or activities, there exists a causal relationship. For
example, if event B is contingent on event A, then A is the cause of B. If neither event causes
the other, they are considered independent.

» Aggregation: This occurs when event A represents an activity that is the collective outcome
ofaseries of events B1, B2, ..., Bn. Here, A is the cumulative result of all events Bi. In other
words, Bi events are components of A. Aggregation is a form of abstract relationship, often
seen when event A is formulated as a consequence of the occurrence of a series of events
{Bi}. Event A in this scenario is termed a complex event, as it comprises the events that led
to its formation. This type of relationship can also be described as vertical causality.

To comprehend the essence of Complex Event Processing (CEP), it’s crucial to delve into its
three core components, as illustrated in Figure 6:

1. Input Stream: The foundation of CEP lies in the continuous stream of events that serve
as its input. These events represent occurrences or changes within the data source, each
carrying specific attributes and timestamps that paint a vivid picture of the dynamics at play
[Luckham, 2002, 31].

2. Complex Events: The ultimate objective of CEP is to identify complex events, which are
intricate assemblages of multiple simple events. These complex events transcend the bound-
aries of individual events, signifying meaningful occurrences or patterns within the data
stream [EtzionNiblett, 2010, 14].

3. Rules: CEP systems employ rules as the blueprints for detecting complex events. These
rules are carefully crafted to capture the essence of the events we seek to identify. They
are typically defined by domain experts who possess intimate knowledge of the data and its
underlying patterns [Burgueno, 2018, 45].

2.2. Complex event processing 17

Figure 6. CEP engine

Input streams —)[CEP Engine]—> Complex events

Rules

The methods for defining complex events vary, including graphical tools, SQL-like languages,
logic rules, and specialized languages for defining complex events. Regardless of the approach, all
CEP methodologies share common principles in defining complex events based on a combination
of simpler events [CugolaMargara, 2012; Skarlatidis et al., 2015, 47].

Luckham (2002) provides a deeper understanding of an event in CEP. An event is not just a
record but has three key aspects: form (attributes or data components of the event), significance
(the activity the event signifies), and relativity (the event’s relationship with other events). Events
are interrelated through time, cause, and aggregation. Time orders events, cause establishes a de-
pendency relationship, and aggregation refers to the composition of a complex event from simpler
events [31].

CEP primarily focuses on identifying rules for aggregation, making complex activities in a
system understandable. These aggregation rules are part of an event abstraction hierarchy, which
includes levels of activity descriptions and event aggregation rules [EtzionNiblett, 2010, 14].

Cugola and Margara (2012) discuss information flow processing, encompassing Data Stream
Management Systems (DSMS) and CEP systems. CEP views information flows as notifications to
be filtered and aggregated for higher-level understanding, extending the publish-subscribe model
[11].

The applications of CEP extend far beyond the confines of data analysis, reaching into do-
mains such as network monitoring, financial data analysis, IoT management, and log analysis
[Chapnik et al., 2021, ChapnikEtAl2021 ; Yankovitch et al., 2022, 53]. CEP’s capabilities like
real-time processing, event correlation, flexible rule definitions, and scalability make it a powerful
tool for organizations to gain insights and make informed decisions [Gomex et al., 2020, 20].

18 2. Background

2.3 Neuroplex

Deep learning algorithms have achieved significant success in various sensing applications, but
they face difficulties when it comes to sophisticated reasoning tasks using multiple sensors.

This is because deep learning algorithms are typically trained on large amounts of labeled data,
and complex reasoning tasks often require reasoning about multiple sensors and data streams in
real time. Additionally, deep learning algorithms can be difficult to explain, which can make it
difficult to trust their predictions.

Xing et al. (2020)[51] found that although deep learning algorithms have achieved significant
success in various sensing applications, they face difficulties when it comes to sophisticated rea-
soning tasks using multiple sensors. Distinguishing transient complex activities, such as human
activities like walking or running, from a single sensor is relatively easier compared to detecting
more complex events that involve larger spatial and temporal dependencies across multiple sen-
sors. For instance, utilizing a sensor network in a hospital to determine whether a nurse is adhering
to a sanitary protocol while moving between patients poses significant challenges. Training a more
intricate model necessitates a substantial quantity of data, which is impractical given the seldom
occurrence of complex occurrences in nature. In addition, neural networks face difficulties in per-
forming logical analysis of sequential, irregular occurrences that are widely spaced in the spatial
and temporal dimensions.

In their 2020 publication, Xing et al.[51] introduced Neuroplex, a neural-symbolic framework
designed to acquire the ability to engage in intricate reasoning tasks using unprocessed sensory
information, while leveraging human knowledge that has been included at a higher level. Neu-
roplex breaks down the entire complex learning space into distinct levels of explicit perception
and reasoning. This is achieved by utilizing neural networks for low-level perception tasks and
reconstructed neural models for high-level, explainable reasoning.

Neuroplex enables efficient training of perception models by incorporating a neurally rebuilt
reasoning model that has been trained using human knowledge. This is achieved by introducing
a semantic loss using sparse, high-level annotations, resulting in effective end-to-end training.
Through their research and review, it has been demonstrated that Neuroplex had the ability to
learn and accurately identify intricate events, surpassing the capabilities of contemporary neural
network models. Neuroplex not only decreases the need for data annotation by a factor of 100, but
also accelerates the learning process for complicated event recognition by a factor of 4.

Currently, contemporary deep learning methods face challenges when it comes to processing
intricate event reasoning across a dispersed array of sensors. Neuroplex is a cognitive framework
that utilizes neural networks to process raw sensory data and perform intricate reasoning tasks. It
achieves this by incorporating human knowledge at a higher level. Neuroplex divides the learning
process into distinct layers for perception and reasoning, allowing for explicit and explainable
reasoning models [Xing et al., 2020, 51].

Neuroplex enables efficient training of perception models from start to finish by incorporating
a semantic loss. This is achieved by employing sparse, high-level annotations after training the rea-
soning model using human knowledge. The learning area is divided into two distinct components:
perception and thinking. The training process involves the use of deep neural networks to acquire
basic symbolic concepts for the perceptual job. Additionally, it allows for the incorporation of
human knowledge at a higher level of reasoning.

Neuroplex has made significant contributions in the following areas:

» Neuroplex utilizes neural-symbolic techniques, which integrate deep learning perception
with semantic logical models, to facilitate comprehensive learning for the identification of
intricate events from unprocessed sensor data streams.

* Neuroplex utilizes a differential Neurally Reconstructed Logic (NRLogic) model to facilitate

2.3. Neuroplex 19

learning. This model is a neural network that has been taught by a logical machine via
knowledge distillation.

» Neuroplex has the capability to autonomously learn from data that has sparse, high-level,
and intricate event labels. The differentiable NRLogic model allows gradients to be propa-
gated, enabling perception modules to receive feedback from complicated event labels and
be trained accordingly. The training can occur at two different stages: the initialization
stage, when a perception module is untrained, and the fine-tuning stage, when a pre-trained
off-the-shelf model of the perception module needs to be adjusted to a specific environment.

» Neuroplex also induces a reduction in meaning on the intermediate symbolic layer, com-
pelling the perception module to produce a logical symbolic result in order to enhance the
learning efficiency.

The Neuroplex framework underwent evaluation on three complex event datasets, where its per-
formance was compared to that of state-of-the-art neural network models and neural-symbolic
approaches. The results demonstrate that Neuroplex, when guided by injected human knowledge,
is capable of successfully and efficiently learning to recognise complex events that are beyond
the capabilities of other techniques. It not only enhances the speed of training by four times, but
also achieves exceptional performance while using training data that is two orders of magnitude
smaller.

Neuroplex suggests a hybrid neural-symbolic architecture for the purpose of identifying intri-
cate events. The perception module consists of deep learning models designed to recognise basic
events, whereas the reasoning module comprises a sophisticated logical reasoning engine that relies
on human input.

Neuroplex offers both a pathway for making logical deductions based on existing human
knowledge, as well as a pathway for teaching the system using this knowledge to understand com-
plex situations. Neuroplex addresses the problem of making the reasoning module differentiable
while preserving its function, and achieving effective training of the perceptual module using only
high-level complex event annotations [Xing et al., 2020, 51].

Figure 7. Neuroplex (Semantic Scholars)

Inferencing: use Logical machine

Perception

Logical
Machine
Complex

1 Event

Models
NRLogic

I
I
:

Deep Learning E
;
E Models
I

Training: use NeuralLogic

Figure 7 presents a schematic overview of Neuroplex system. It outlines the workflow from
raw data acquisition to the derivation of complex events through the stages of perception and rea-
soning. The system utilizes both deep learning models and logical reasoning to achieve a sophis-
ticated level of data interpretation and decision-making.

20

2. Background

. Raw Data: This is the initial input into the system, representing unprocessed information

collected from various sources.

. Deep Learning Models: Within the perception phase, deep learning models are applied to

the raw data. These models are adept at extracting patterns and features, transforming the
raw data into a structured format suitable for further analysis. They operate as the system’s
initial filter, distilling high-dimensional data into more abstract representations.

. Logical Machine: In the reasoning phase, a logical machine processes the structured data

obtained from the deep learning models. This component is responsible for high-level rea-
soning and decision-making. It applies logical rules and inference mechanisms to the data,
enabling the system to make logical deductions and conclusions.

. NRLogic Models: Atthe intersection of perception and reasoning lies the NRLogic Models,

which stands for Neural-Reasoning Logic Models. These models embody the integration of
neural networks and symbolic logic, allowing the system to utilize the strengths of both
neural computation (for handling ambiguity and learning from data) and symbolic logic (for
structured reasoning and interpretability).

. Complex Event: The outcome of this integrated process is the identification or prediction

of a complex event. This refers to an inferred situation or occurrence that is identified based
on the combination of learned patterns from data and the application of logical reasoning.

. Training and Inferencing: The diagram also denotes two critical stages in the system’s life-

cycle: training and inferencing. During training (labeled *Training: use NeuralLogic’), the
NRLogic Models learn from the data by adjusting the deep learning and logical parameters
to improve prediction and reasoning accuracy. In the inferencing phase (labeled ’Inferenc-
ing: use Logical machine’), the system applies the trained models to new data to deduce
complex events.

The process flow encapsulated in Figure 7 illustrates the synergy between machine learning and
logical reasoning, signifying the essence of neural-symbolic integration. It highlights how raw
data can be transformed into actionable insights by leveraging the complementary capabilities of
deep learning and symbolic logic.

2.4. DeepProbLog 21

2.4 DeepProbLog

2.4.1 ProbLog

Problog is a probabilistic logic programming language, a powerful tool that merges two tradi-
tionally distinct fields: logic programming and probabilistic reasoning. This integration allows
Problog to handle complex models that require both logical rules and uncertainty representation,
making it particularly useful in areas like artificial intelligence (Al) and data science [De Raedst,
Kimmig, & Toivonen, 2007, 13].

Logic programming, a key component of Problog, is based on formal logic. In traditional logic
programming languages like Prolog, programs consist of facts and rules. Facts represent basic
assertions about the world, while rules define relationships between different facts [Kowalski,
1979, 24]. For instance, if you have facts like ”Alice is a parent of Bob” and ”Bob is a parent of
Charlie,” you can define a rule that Alice is a grandparent of Charlie. Logic programming excels
in expressing such relationships and is used extensively in areas where complex relationships need
to be represented, such as database querying and Al [Lloyd, 1987, 30].

What sets Problog apart is its ability to incorporate probabilistic reasoning. In many real-
world scenarios, facts are not always certain. For example, instead of definitively knowing that
”Bob is at home,” we might only know there’s a 70% chance. Probabilistic reasoning deals with
such uncertainties. It allows the representation of incomplete or uncertain information and makes
inferences based on probabilities. This capability is crucial in fields like machine learning, where
uncertainty is a common aspect of data and predictions [Pearl, 1988, 41].

In Problog, each fact can have an associated probability, indicating the likelihood that the fact is
true. The syntax is straightforward: a probability is written in front of a fact or a rule. For example,
0.7::at_home(bob). states that Bob is at home with a probability of 70%. Problog computes the
probabilities of various queries by combining these individual probabilities according to the rules
of probability theory [De Raedt et al., 2007, 13].

2.4.2 DeepProbLog Overview

DeepProbLog is a programming language that combines probabilistic logic and deep learning
through the utilisation of neural predicates. The system is capable of accommodating both sym-
bolic and sub-symbolic representations and inference, program induction, probabilistic (logic)
programming, and deep learning. This framework is the first to integrate general-purpose neu-
ral networks with expressive probabilistic logical modelling and reasoning. It leverages the entire
expressiveness and strengths of both approaches, allowing for end-to-end training.

DeepProbLog enables users to train neural networks within the system using various designs in
a seamless manner. A DeepProbLog program is a ProbLog program augmented with a collection
of instantiated neural Ads (nADs) in the format nn. In this context, ”nn” serves as an abbreviation
for "neural network” while "mq” is used as an identifier for a specific neural network. The neural
network mq will receive the input vector and generate a probability distribution throughout the
domain. NADs function in a manner akin to ads by offering a distribution of probabilities that are
mutually exclusive across a set of atoms. However, in nADs, these probabilities are derived from
the output of a neural network rather than being explicitly specified. The total of the probabilities
throughout the domain O must be equal to 1. In the context of neural networks used for multi-class
classification, it is common practice to employ a softmax layer to convert the real-valued output
scores [Manhaeve et al., 2021, 33].

Once the structure of the neural network and the logic level have been established, Deep-
ProbLog may be employed to deduce the responses to queries. DeepProbLog utilises a process
called inference to convert the logic layer into an arithmetic circuit and extract the necessary prob-
abilities from the neural network.

22 2. Background

Subsequently, this arithmetic circuit can be employed to compute the probability of the ques-
tion being true, relying on the neural network’s output. To train the neural network, the system
initially carries out inference as previously explained. DeepProbLog has the capability to execute
gradient-based learning. The arithmetic circuit employed throughout the inference process is also
utilised for conducting the gradient computations. Given that this arithmetic circuit consists of
addition and multiplication operations, it may be inferred that it is differentiable. DeepProbLog is
capable of calculating the gradient in relation to the probabilistic logic program. Subsequently, this
gradient can be employed to train the neural network through the utilisation of backpropagation
[Manhaeve et al., 2021, 33].

A limitation of DeepProbLog is its exclusive support for precise probabilistic inference. Con-
sequently, if the program expands in size, certain stages in the inference process can become ex-
cessively expensive. The proposed integration is not directly connected to this problem, however,
it can be resolved in the future by expanding DeepProbLog to incorporate approximate inference.

2.4.3 DeepProbLog Inference

Once the structure of the neural network and the logic level have been established, DeepProbLog
may be employed to deduce the responses to our inquiries. DeepProbLog utilises a process called
inference to convert the logic layer into an arithmetic circuit and extract the necessary probabil-
ities from the neural network. Subsequently, this arithmetic circuit can be employed to compute
the probability of the question being true, relying on the neural network’s output. To train the
neural network, the system initially carries out inference as previously explained. DeepProbLog
is capable of conducting learning through gradient-based methods. The arithmetic circuit utilised
throughout the inference process is likewise employed for the purpose of performing the gradient
computations. Given that this arithmetic circuit consists of addition and multiplication operations,
it may be inferred that it is differentiable. DeepProbLog is able to calculate the gradient in relation
to the probabilistic logic program. Subsequently, this gradient can be employed to train the neural
network through the utilisation of backpropagation [Vilamala et al., 2021, 49].

DeepProbLog inference elucidates the utilisation of a model to forecast a specific query. Deep-
ProbLog is a modification of ProbLog inference. The initial stage of ProbLog inference is the
grounding step, where the logic program is grounded in relation to the question at hand. In this
stage, backward reasoning is employed to identify the pertinent ground rules that determine the
truth value of the query. Additionally, it may do other logical simplifications that are unrelated
to the query’s probability. In the second phase, the ground logic program is transformed into a
propositional logic formula that represents the truth value of the query using the truth values of
probabilistic facts. However, performing WMC on this logical formula right away is not efficient
[Manhaeve et al., 2021, 32].

The aggregation of information is the third stage. At this stage, the logic formula is trans-
formed into a format that enables efficient weighted model counting. The current ProbLog system
utilises Sentential Decision Diagrams, which are the most concise and suitable representation cur-
rently available. Polytime model counting can be achieved using SDDs, which are a specific type
of deterministic decomposable negational normal forms (d-DNNFs). However, they do offer poly-
nomial time conjunction, disjunction, and negation operations, and are more succinct than OBDDs.
In the fourth and final stage, the SDD is transformed into an AC. The probabilities of the proba-
bilistic facts or their negations are assigned to the leaves, while the OR nodes are substituted with
addition and the AND nodes with multiplication. The WMC is subsequently calculated by an AC
assessment.

The only requirement for DeepProbLog inference is to convert nADs and neural facts into nor-
mal ADs and probabilistic facts. This process consists of two distinct steps. Obtain ground nADs
and ground neural facts using a symbolic representation of the likelihood during the grounding

2.4. DeepProbLog 23

process. The specific parameters are computed at a distinct stage following the grounding process,
by performing a forward pass on the relevant neural network using the grounded input (Manhaeve
et al., 2021).

2.4.4 Learning in DeepProbLog

An artificial neural network represents a complex mathematical function with high customizabil-
ity, allowing it to be trained to exhibit specific behaviors by adjusting its parameters. During the
training phase, the network learns to discern and distill essential features from the input data rel-
evant to the task at hand. This ability negates the need for manual feature engineering, a staple
of non-neural machine learning techniques, and shifts the focus to architectural engineering. The
field now boasts a plethora of neural network components that can be assembled in various con-
figurations to construct a model tailored for particular applications [Manhaeve, 2021, 33].

Deep neural networks are typically constructed and trained in an end-to-end fashion, where the
only knowledge imparted during training is of the initial input and the final objective. The entire
model, including all its components, undergoes simultaneous training. For instance, in the domain
of handwritten digit recognition, an input instance would be an image of a handwritten digit, and
the target is the actual numeric value it represents [Manhaeve, 2021, 33].

Figure 8. Arithmetic Circuit for Probabilistic Query in DeepProbLog

OR -"9"1-5"5
—___~_
AND T 6651 N\
AND | 0,68 \ AND |57
L =
[—earthquake] [burglary] [hears_alarm(mary)] [earthquake]
1 0.8 | 1 0.1 ! 1 0.5 | 1 0.2 |

(d) The AC for query calls (mary).

Figure 8 illustrates an Arithmetic Circuit (AC) utilized for a probabilistic query in Deep-
ProbLog. The AC is employed not only for probabilistic inference but also for gradient com-
putation. In the depicted AC, the query calls(mary) is evaluated through a series of logical AND
and OR gates, which are inherently differentiable due to their additive and multiplicative nature.
This circuit calculates the probability of Mary receiving a call, given certain conditions such as an
earthquake or a burglary, and the likelihood of her hearing an alarm. Each leaf node represents
a probabilistic fact (e.g., ~earthquake with a probability of 0.8), and the internal nodes combine
these probabilities through logical conjunctions (AND) and disjunctions (OR) to deduce the final
probability of the query.

DeepProbLog leverages gradient-based learning, diverging from the expectation-maximization
approach previously used by Gutmann et al. (2008) [21] for parameter learning in ProbLog. This
shift facilitates the integration of probabilistic logic networks with traditional neural network train-
ing pipelines, enhancing the model’s learning capabilities [Manhaeve, 2021, 33].

24 2. Background

The primary distinction between inference in traditional ProbLog and DeepProbLog is the
evaluation of neural predicates and numerical atoms (nADs). In DeepProbLog, inference also
involves the integration of neural network outputs, which serve as probabilistic facts. Similarly, the
key difference in gradient-based learning between the two systems is the concurrent optimization
of both neural and probabilistic parameters within DeepProbLog.

In the context of DeepProbLog, the probabilistic parameters z in the logic program are ad-
justable via the gradient semiring. This novel approach allows for the computation of the gradi-
ents alongside the probabilistic inferences. The gradients thus obtained are crucial for updating the
model parameters through gradient-based learning algorithms.

Figure 9. Learning Pipeline in DeepProbLog

]
A [(€] |
- -]] g <
I
[]
digit(a,N1) 8.8 :: digit(a,®);
Query digit(b,N2) 8.1 :: digit(a,1);
L Ground -
addition(a,b,1) DeepProblog Program
DeepProbLog Program,
9 t(8.2) :: noisy. rewrite / p,Vp Loss
t(0.2) :: noisy. grounding nn(class;fler,[a],ﬂ);_. compilation
nn(classifier, [X], nn(classifier,[b],0);. p L, VL
.a“ddition(x,v,z)r . addition(a,b,1):- -

T

Figure 9 delineates the learning pipeline in DeepProbLog, which encompasses several stages:

1. Query and DeepProbLog Program: The process begins with a query to the system, for
example, addition(a,b,1), and a DeepProbLog program that contains a mix of probabilistic
facts (e.g., #(0.2) :: noisy.) and neural predicates (e.g., nn(classifier, [X], ...).

2. Grounding: The DeepProbLog program is then grounded. Grounding entails transforming
the program into a format where the variables are replaced with constants. This step results
in a ground program where neural predicates are instantiated with actual data inputs.

3. Rewriting/Compilation: Subsequently, the ground program is rewritten or compiled into
an arithmetic circuit (AC). The AC is a computational graph that represents the probabilistic
logic program in a structure amenable to both probabilistic inference and gradient computa-
tion.

4. Neural Network Integration: The neural network components, such as classifiers, are in-
tegrated with the AC. They process inputs and provide probabilities as outputs, which are
incorporated into the AC as terminal nodes.

5. Loss Calculation: The output of the AC, combined with the neural network predictions,
leads to the calculation of a loss function (denoted as L), which measures the difference
between the predicted and actual values. The gradient of the loss (denoted as ’L’) is then
computed, providing the necessary information for parameter updates.

6. Gradient-Based Learning: Utilizing the computed gradients, the model parameters are
updated using gradient descent or other optimization techniques. This step completes the

2.4. DeepProbLog 25

learning cycle, allowing DeepProbLog to refine both its neural network weights and proba-
bilistic facts for improved performance on subsequent queries.

This learning pipeline exemplifies a unified and differentiable framework where conventional dif-
ferentiation methods are applied to compute gradients, thereby facilitating the optimization of the
combined neural-symbolic model [Manhaeve, 2021, 33].

2.4.5 DeepProbCEP: A Neuro-Symbolic Approach for Complex Event Processing

In the current data-driven era, Complex Event Processing (CEP) has become essential for extract-
ing meaningful insights from high-volume, high-velocity data streams. However, traditional CEP
systems often grapple with the complexity and uncertainty inherent in real-world data streams,
making them less effective for applications requiring high accuracy, robustness, and adaptability.

Conventional CEP systems typically utilize rule-based or statistical methods to identify and
analyze events. While effective in certain scenarios, these methods encounter limitations when
dealing with dynamic, real-world data:

1. Handling of Rare or Infrequent Events: Traditional CEP systems may struggle to detect
rare or infrequent events due to their rarity amidst large volumes of data, leading to signifi-
cant oversight [Etzion et al., 2010, 14].

2. Sensitivity to Noise and Incomplete Data: Real-world data streams are often riddled with
noise and incomplete information, posing a challenge for event detection and potentially
leading to false positives or missed events in traditional CEP systems [Cugola et al., 2012,
11].

3. Adaptability to Changing Patterns: Evolving event patterns due to user behavior, sys-
tem changes, or external factors can impede the performance of conventional CEP systems,
which may not be sufficiently adaptable [Luckham et al., 2002, 31].

To surmount these challenges, DeepProbCEP [Vilamala, 2022, 50] represents a groundbreak-
ing neuro-symbolic approach, integrating the strengths of deep learning with probabilistic logic
programming. This combination significantly enhances the capabilities of CEP systems.

DeepProbCEP employs deep neural networks to effectively extract features and discern pat-
terns from raw data streams. By transforming raw data into a structured representation, it lays
the groundwork for the subsequent reasoning layer. The prowess of deep learning in recogniz-
ing intricate patterns and correlations furnishes DeepProbCEP with a solid base for event detec-
tion. This innovative approach addresses the inherent limitations of traditional CEP methods, en-
abling more accurate and flexible event processing even in complex and uncertain environments
[Yankovitch et al., 2022, 53].

Probabilistic Logic Programming for Event Reasoning

Probabilistic logic programming, a fusion of logic programming and probability theory, is instru-
mental in DeepProbCEP for reasoning with uncertainty. This approach facilitates the definition of
complex event patterns and probabilistic reasoning about their occurrences based on the features
and patterns extracted from data streams [DeRaedt et al., 2015, 12]. By incorporating proba-
bilistic logic, DeepProbCEP quantifies and manages the inherent uncertainty in data, significantly
enhancing its robustness against noisy or incomplete information [Riguzzi et al., 2013, 44].

The architecture of DeepProbCEP is a harmonious integration of deep learning and probabilis-
tic logic programming. It creates a unified representation, merging symbolic reasoning with sub-
symbolic data processing. This dual approach enables DeepProbCEP to interpret both high-level

26 2. Background

abstractions and detailed numerical data, making it exceptionally capable of handling complex
event patterns in diverse real-world scenarios [Manhaeve et al., 2021, 32].

A key advantage of DeepProbCEP over traditional CEP systems is its capacity to learn and
evolve from data. The system continually refines its understanding of event patterns and reason-
ing rules based on incoming data, allowing it to adapt to changing environments and enhance its
performance over time. Such adaptability makes DeepProbCEP particularly effective in dynamic
and evolving settings, where fixed rule-based systems might falter.

Furthermore, DeepProbCEP is adept at operating in adversarial contexts, where the integrity of
event streams might be at risk from manipulation or disruption. Leveraging its probabilistic logic
underpinnings, the system is equipped to recognize and respond to uncertainties and anomalies
effectively. This capability is vital for maintaining security and integrity in critical applications
such as finance, cybersecurity, and infrastructure monitoring, where adversaries may attempt to
exploit vulnerabilities in event processing systems [Etzion et al., 2010, 14].

Applications of DeepProbCEP

DeepProbCEP’s versatility is evident in its broad range of real-world applications:

* Fraud Detection: In financial systems, DeepProbCEP can identify aberrant patterns that
signify fraudulent transactions. By analyzing transaction data, it detects anomalies that
deviate from normal behavior, playing a crucial role in safeguarding financial integrity
[Bolton et al., 2002, 9].

* Network Security: For cybersecurity, DeepProbCEP monitors network traffic to identify
signs of intrusions or cyberattacks. Its capability to process and analyze vast streams of data
in real-time makes it an invaluable tool for defending against sophisticated cyber threats
[Sommer et al., 2010, 48].

* Predictive Maintenance: In industrial settings, DeepProbCEP analyzes sensor data to antic-
ipate equipment failures. This predictive approach enables proactive maintenance strategies,
reducing downtime and maintenance costs significantly [Mobley et al., 2002, 38].

* Log Analysis: DeepProbCEP analyzes log data from complex systems to identify malfunc-
tions, security breaches, or performance issues. Its sophisticated pattern recognition capa-
bilities facilitate swift intervention and corrective actions [Xu et al., 2009, 52].

Additionally, DeepProbCEP is highly effective in human activity detection from video streams.
Its neuro-symbolic framework, which combines feature extraction with logic-based reasoning,
is particularly suited for tasks involving uncertainty and complex pattern recognition [Poppe,
Roland, 2010, 43].

For instance, in monitoring crowd behavior or identifying unusual activities, DeepProbCEP
operates as follows:

1. It extracts features from video streams, such as positions, movements, and appearances of
individuals.

2. Utilizes probabilistic logic programming to define complex event patterns correlating to dif-
ferent human activities, such as walking or running [Liu et al., 2018, 29].

3. Reasons about these features to classify events that match the defined patterns, enabling the
detection of activities like walking, running, jumping, or falling.

2.4. DeepProbLog 27

DeepProbCEP’s handling of uncertainty is a key strength, particularly in scenarios where video
data may be noisy or incomplete. Factors such as shadows, occlusions, or low resolution may
obscure critical visual information. The probabilistic framework of DeepProbCEP allows it to
manage such uncertainties effectively, ensuring accurate detections despite data imperfections
[Piciarelli et al., 2006, 42].

Chapter 3

Extending DeepProbLog Complex
Event Processing

Building upon the foundational principles of DeepProbLog and its initial applications in complex
event processing as discussed in Chapter 2, this chapter delves deeper into the theoretical advance-
ments and novel applications of DeepProbLog, exploring its extended capabilities and innovative
integrations in more complex scenarios.

Initially, we delve deeper into the probabilistic logic underpinnings of DeepProbLog, exam-
ining complex relationships and the nuanced handling of uncertainty, which are pivotal for so-
phisticated event processing. This is followed by an exploration of how DeepProbLog seamlessly
integrates neural networks with probabilistic logic, shedding light on the harmonious interplay
between symbolic reasoning and subsymbolic learning. We then pivot to practical applications,
presenting case studies where DeepProbLog’s advanced capabilities have been leveraged, thereby
illustrating its practical effectiveness and versatility. Finally, the chapter discusses the technical
challenges encountered in advancing DeepProbLog’s capabilities, along with the innovative solu-
tions developed to overcome these obstacles, showcasing the evolving nature of this technology.

3.1 Deep Dive into Probabilistic Logic

3.1.1 Introduction to Probabilistic Logic

Probabilistic logic, a cornerstone in reasoning under uncertainty, merges the clarity of logic with
the dynamic nature of probabilistic reasoning, akin to Bayesian networks. This approach is par-
ticularly effective in scenarios where data is incomplete or ambiguous. In DeepProbLog, this
concept is taken further by integrating it with deep neural networks, enhancing its capability to
discern complex relationships in data. This fusion results in a powerful tool, combining logical
expressiveness and the nuanced understanding of probabilities, crucial for accurately navigating
real-world complexities. Mathematical expressions in this domain, like conditional probabilities
(P(A4|B)) and Bayes’ Theorem (P(A4|B) = P(B|4) = P(A)/P(B)), quantify these uncertainties,
allowing DeepProbLog to effectively leverage both logical and probabilistic information.

29

30 3. Extending DeepProbLog Complex Event Processing

3.1.2 Probabilistic Logic vs. Classical Logic

Probabilistic logic and classical logic are two different logics that have different strengths and
weaknesses.

Classical logic is a formal system that deals with statements that are either true or false. It is
based on the idea that there are two truth values, true and false, and that every statement must have
one of these two truth values. Classical logic is used to reason about deductive arguments, which
are arguments that are valid if and only if the conclusion follows from the premises.

Probabilistic logic is a formal system that deals with statements that have a probability of be-
ing true. It is based on the idea that there are a range of truth values, from 0 (completely false) to
1 (completely true), and that every statement has a probability of being true that lies somewhere
between these two values. Probabilistic logic is used to reason about uncertain situations, where
we do not have complete information about the truth of a statement.

Here is a table summarizing the key differences between probabilistic logic and classical logic:

Feature Probabilistic logic Classical logic
Truth values | Continuous range from 0 (false) to 1 (true) | Two: true and false
Reasoning Inductive reasoning Deductive reasoning
Applications Uncertain situations Deductive arguments

Table 1. Probabilistic Logic vs. Classical Logic

3.1.3 Representation of Uncertainty in DeepProbLog

In DeepProbLog, the representation of uncertainty is a critical component, integrating probabilistic
reasoning with logic programming. It assigns probabilities to logic predicates, enabling the han-
dling of scenarios where data may be incomplete, ambiguous, or noisy. This probabilistic approach
allows DeepProbLog to model real-world complexity more accurately, embracing uncertainty as
an inherent aspect of data and knowledge. By utilizing probabilities, DeepProbLog can make in-
ferences and predictions even when faced with partial information, thus bridging the gap between
deterministic logic and the probabilistic nature of real-world data

3.1.4 Probabilistic Inference Mechanisms

Probabilistic inference mechanisms in DeepProbLog involve mathematical techniques to deduce
the likelihood of certain outcomes based on known probabilities. Using Bayes’ Theorem, P(4|B) =
%, it revises the probability of a hypothesis 4 in light of new evidence B. Further-
more, DeepProbLog employs algorithms for probabilistic inference like belief propagation, where
P(A4) = > 5 P(A|B) x P(B), to combine various probabilistic inputs. This approach allows Deep-
ProbLog to handle complex scenarios where direct observation is not possible, enabling it to infer

hidden or uncertain information from known data.

3.1.5 Extending Traditional Logic Programming

DeepProbLog’s extension of traditional logic programming marks a significant evolution in han-
dling real-world complexities. Traditional logic programming, based on a binary framework of
true or false, often falls short in modeling the uncertain, probabilistic nature of real-life scenarios.
DeepProbLog addresses this by incorporating probabilistic reasoning, allowing for a more flexible,

3.1. Deep Dive into Probabilistic Logic 31

nuanced representation of information. This approach not only retains the structured, rule-based
reasoning of classical logic but also integrates the ability to manage uncertain, incomplete, or am-
biguous data. By doing so, DeepProbLog expands the horizons of logic programming, making it
apt for applications where uncertainty is inherent, such as in decision-making processes, Al rea-
soning systems, and complex data analysis. This integration also paves the way for new research
directions and applications, where the combination of deterministic logic and probabilistic infer-
ence can lead to more robust, adaptable, and intelligent systems. The result is a more dynamic,
versatile logic programming paradigm, better suited to the complexities and uncertainties of the
modern data-driven world.

3.1.6 Probabilistic Logic and Machine Learning

The integration of probabilistic logic with machine learning in DeepProbLog presents a significant
advancement in Al. This combination allows for the incorporation of uncertainty and probabilis-
tic reasoning into machine learning models, enabling them to handle real-world data more effec-
tively. Probabilistic logic provides a framework for representing and reasoning about uncertain
information, which is often encountered in complex datasets. When coupled with machine learn-
ing, particularly deep learning, it enhances the model’s ability to learn from data that is not only
large and complex but also uncertain or incomplete. This synergy leads to more robust, adaptable,
and intelligent systems that are better suited for tasks like pattern recognition, decision making,
and predictive analytics in diverse domains, ranging from natural language processing to robotics.
The fusion of probabilistic logic and machine learning has opened up new avenues for innovation
in artificial intelligence. DeepProbLog, a probabilistic logic programming language, represents a
notable example of this integration. It harnesses the expressiveness of probabilistic logic and the
representational power of deep learning to model complex systems with uncertainty.

32 3. Extending DeepProbLog Complex Event Processing

3.2 Integration of Neural Networks

This section explores the innovative integration of neural networks with probabilistic logic pro-
gramming in DeepProbCEP, showcasing a leading-edge fusion of symbolic and subsymbolic Al
This synergy between different layers of Al is at the core of DeepProbCEP’s approach to com-
plex event processing (CEP), combining the strengths of both neural networks and logic-based
reasoning.

DeepProbCEP approaches the CEP task by dividing it into two complementary levels:

1. Perception Level: Operating at a low level, this layer employs neural networks to classify
raw, non-symbolic data into identifiable simple events. The neural network, pre-configured
with specific classes, extracts symbolic information from the input data, transforming the
raw sensory input into a structured format [Bengio et al., 2013, 7].

2. Reasoning Level: At a higher level, DeepProbCEP uses probabilistic logic programming to
recognize complex events. It processes user-defined rules against the symbolic data derived
from the perception layer, determining the occurrence of complex events [DeRaedt et al.,
2015, 12].

The perception layer acts as the ’eyes’ of DeepProbCEP, efficiently categorizing non-symbolic
data into meaningful segments. This symbolic data is then utilized by the reasoning layer, akin to
the ’brain’ of the system, which applies probabilistic logic programming for deeper analysis and
event identification. This layered approach ensures a seamless transition from data perception to
high-level reasoning.

Distinct from conventional methods that rely on pre-trained neural networks, DeepProbCEP
adopts an end-to-end training approach. This seamless integration within the probabilistic logic
programming framework enables the system to learn directly from data, adapting to the nuances
of specific tasks [Manhaeve et al., 2021, 33].

Advantages of DeepProbCEP’s neuro-symbolic integration include:

1. Knowledge Injection: The inclusion of human expertise through rules enhances the sys-
tem’s interpretive and analytical capabilities, bridging the gap between Al and human rea-
soning [Marcus et al., 2019, 34].

2. Limited Data Training: DeepProbCEP’s efficiency in learning from limited data resources
makes it particularly suitable for scenarios where data availability is a challenge [Lake et al.,
2017, 26].

3. End-to-End Learning: This approach enables the system to evolve and adapt its learn-
ing process to specific task requirements, ensuring a more tailored and effective solution
[Le Cun et al., 2015, 27].

4. Symbolic Information Processing: The use of probabilistic logic programming allows for
sophisticated processing of the symbolic information generated by the perception layer, en-
hancing the system’s reasoning capabilities [Getoor et al., 2007, 18].

DeepProbCEP exemplifies the potential of merging neural networks with symbolic reasoning,
showcasing a formidable approach to tackle complex event processing tasks. Its capacity to han-
dle limited data, integrate human knowledge, and process symbolic information positions it as a
significant tool for diverse CEP applications.

3.2. Integration of Neural Networks 33

3.2.1 Reasoning Layer

DeepProbCEP is built upon DeepProbLog, a probabilistic logic programming framework devel-
oped by Manhaeve et al. [2021, 49]. This integration allows us to define complex events using
ProbLog rules. With ProbLog code, users can specify the conditions that must be met for each
type of complex event to be considered active. This can be accomplished by creating a clause
for each complex event type, where the clause’s truth value determines whether or not the event
has occurred. Consequently, users must define rules that specify when these clauses should be
considered true, triggering the event’s activation.

To effectively define these rules, users need to discern the occurrence of simple events. The
method for assessing the state of simple events depends on their origin. If simple events originate
from symbolic inputs, they can be directly incorporated into the reasoning layer, bypassing the
perception layer. This can be achieved by adding clauses reflecting their values to the ProbLog
code. Conversely, if simple events stem from non-symbolic data, they must undergo perception
layer processing beforehand. This can be facilitated by employing a neural AD, enabling commu-
nication between the perception and reasoning layers. For instance, this can be accomplished by
adding the following line to the ProbLog code:

nn(mnist_net, [X],Y,[0,1,2,3,4,5,6,7,8,9]) :: digit(X, Y).

This line defines a clause named digit(X, Y), which provides the argument X to the neural net-
work mnist_net. This neural network has 10 distinct outputs, which are mapped to digits between
0 and 9 using a list. Once this line is added, the clause digit(X, Y) can be leveraged to consult the
perception layer. For this example, the value of X must be an MNIST image. For each value of
X, and for each possible digit in ¥, the clause is true with a certain probability. This probability is
determined by the output of the neural network in the perception layer using X as an input.

Upon defining simple events in the logic layer, users are tasked with crafting rules that effec-
tively discern the emergence of complex events based on these simple events. Diversified frame-
works can be employed for this purpose. However, for the present discussion, we restrict our
focus to complex events structured as patterns of simple events, where the events must unfold in a
specific sequence within a specified time window. This approach aligns with the prevailing liter-
ature, which primarily employs this type of event definition. To effectively capture these patterns,
DeepProbCEP leverages functionalities from the sequence framework [Vilamala, 2022, 50].

3.2.2 Perception Layer

The perception layer of DeepProbCEP stands as the gateway between the non-symbolic data stream
and the high-level reasoning engine [Vilamala, 2022, 50]. It’s tasked with transforming raw data
into symbolic representations that can be processed by the reasoning module. This conversion
is achieved through a neural network trained specifically to classify non-symbolic inputs into a
pre-defined set of categories. The neural network’s architecture can be tailored using PyTorch
[Paszke et al., 2017, 40], enabling users to customize it to suit the nature of their non-symbolic
data. This adaptability empowers DeepProbCEP to handle a wide range of data types, including
text, images, and numerical values.

However, due to its integration with DeepProbLog, certain limitations apply to the implemen-
tation of the neural network. Firstly, DeepProbLog currently doesn’t support regression-based
outputs, necessitating the use of classification-oriented neural networks. Secondly, the predicted
class probabilities generated by the neural network are converted into an AC (Approximate Cer-
tainty) value, where the score associated with each class signifies its probability. This ensures that
the probabilities for all classes add up to a maximum of 1, typically accomplished by incorporating
a SoftMax layer at the conclusion of the neural network.

34 3. Extending DeepProbLog Complex Event Processing

Once both the reasoning and perception layers are defined, DeepProbLog [Manhaeve et al.,
2021, 33] is utilized to train the perception layer neural network in an end-to-end manner, optimiz-
ing its performance for classifying simple events. After successful training, the perception layer
neural network can be extracted, providing a trained classifier capable of analyzing non-symbolic
data. This can serve as a valuable byproduct, particularly in situations where direct access to train-
ing data for such a classifier is restricted.

3.3 Technical Challenges and Solutions

One of DeepProbCEP’s core challenges lies in reconciling two fundamentally different Al paradigms:
symbolic probabilistic logic and subsymbolic neural networks. While neural networks excel at han-
dling raw, continuous data and providing fluid probability distributions, probabilistic logic thrives
on discrete, categorical representations. Bridging this gap is crucial for DeepProbCEP’s operation,
requiring seamless interaction between these distinct approaches.

The solution revolves around the ingenious SoftMax layer, meticulously designed to translate
the neural network’s continuous output into a format compatible with the logic programming layer.
This layer transforms the network’s output into a probability distribution across pre-defined classes,
carefully mapping each class probability to a corresponding logical term in the probabilistic logic
layer. This strategic integration, a cornerstone of DeepProbCEP’s architecture, achieves several
crucial objectives:

1. Lossless Translation: By converting continuous data into a format understandable by the
logic programming layer, the nuanced, probabilistic insights gleaned from the neural net-
work are not lost but effectively utilized in symbolic reasoning processes.

2. Enhanced Accuracy and Efficiency: The neural network’s ability to extract subtle data
patterns and nuances, now effectively incorporated into the logic programming framework,
empowers DeepProbCEP to process complex events with greater accuracy and efficiency.
This is particularly evident in scenarios involving intricate data patterns and subtle proba-
bilistic shifts, where the system’s enhanced reasoning capability leads to more accurate event
detection and classification.

Beyond merely solving the technical challenge, this integration unlocks significant advantages for
DeepProbCEP:

* Improved Generalizability: DeepProbCEP can learn from both symbolic and non-symbolic
data, leading to improved generalizability across diverse data types and tasks.

* Fine-grained Reasoning: The combined power of neural networks and symbolic logic en-
ables DeepProbCEP to perform fine-grained reasoning, capturing subtle relationships and
nuances within complex data patterns.

» Data-efficient Learning: By leveraging the strengths of both paradigms, DeepProbCEP
can achieve impressive results even with limited training data, a valuable asset in many real-
world applications.

While alternative approaches to bridging the symbolic-subsymbolic gap exist, the SoftMax-
based solution offers a particularly elegant and efficient solution for DeepProbCEP’s unique re-
quirements. This seamless integration not only paves the way for accurate and efficient complex
event processing but also opens doors for exciting future research avenues in hybrid Al, where the
combined strengths of neural networks and symbolic reasoning can unlock even greater potential.

Chapter 4

Experimental Results

4.1 Experimental Methodology

Chapter 4 marks a pivotal transition from the theoretical foundations laid in the preceding chapters
to a rigorous empirical exploration, delving into the practical realm of complex event processing
(CEP). This chapter is dedicated to a comprehensive empirical evaluation of DeepProbCEP and
a simple LSTM model, aimed at bridging the theoretical concepts of CEP with their real-world
applicability. Through a series of meticulously crafted experiments, we endeavor to offer an in-
depth analysis of these models, scrutinizing their performance across a spectrum of conditions and
scenarios.

In an effort to provide a holistic understanding of CEP technologies, our experimental frame-
work has been further enriched by the inclusion of an advanced LSTM-over-CNN model. This hy-
brid model artfully integrates Convolutional Neural Networks (CNNs) for their exceptional image
feature extraction capabilities with the temporal processing prowess of Long Short-Term Memory
(LSTM) networks. Our objective transcends mere performance comparison; it seeks to unravel
the intricacies of each model — the standalone LSTM, the LSTM-over-CNN hybrid, and the so-
phisticated DeepProbCEP — and their efficacy in addressing the multifaceted challenges inherent
in complex event processing tasks. This comprehensive approach promises not only to highlight
the unique strengths and limitations of each model but also to illuminate the path forward in the
evolution of CEP methodologies.

Overview of Experimental Approach

In this chapter, our exploration delves into the empirical realm, predominantly focusing on the
advanced capabilities of DeepProbCEP within the landscape of complex event processing (CEP).
The experimental approach is designed with the intention of comprehensively evaluating Deep-
ProbCEP, a sophisticated model that merges the analytical strengths of neural networks with the
nuanced reasoning of probabilistic logic. These experiments are pivotal in demonstrating Deep-
ProbCEP’s adeptness in interpreting and managing the complexities inherent in dynamic, real-
world data scenarios, marking a significant advancement in the field of CEP.

Central to our experimental approach is the in-depth analysis of DeepProbCEP’s functional-
ities and performance. To provide a robust framework for this analysis, we introduce a baseline
comparison with a Long Short-Term Memory (LSTM) network, renowned for its efficacy in se-
quential data processing. This comparison serves as a crucial benchmark, shedding light on the
evolutionary progress and the enhanced capabilities that DeepProbCEP brings to the domain of
sequence processing.

Further enriching this comparative landscape, we incorporate an LSTM-over-CNN model into
our suite of experiments. This hybrid model, which combines the feature extraction prowess of

35

36 4. Experimental Results

Convolutional Neural Networks (CNNs) with the sequential data handling of LSTMs, serves as an
intermediary touchstone. It allows us to dissect and appreciate the complexity that DeepProbCEP
manages with its unique blend of neural network computation and probabilistic logic. The inclu-
sion of the LSTM-over-CNN model is instrumental in delineating the scope and scale of DeepProb-
CEP’s innovation, particularly in its ability to unravel intricate event patterns that pose challenges
to more conventional neural network models.

Selection of Models

In our experimental journey, three distinct models are subjected to a series of rigorous tests using
the MNIST dataset. Renowned in the machine learning community, this dataset serves as a stan-
dard benchmark, particularly apt for simulating a stream of digit sequences. This provides an ideal
testing ground for evaluating each model’s ability to detect complex sequences and DeepProbCEP
resilience to varying levels of noise. For DeepProbCEP, our experimental setup entails training the
model on these digit streams, with an emphasis on identifying complex events. These events are
defined as consecutive occurrences of the same digit within a dynamic window size. The architec-
ture of DeepProbCEDP, as elaborated in earlier sections, encompasses a data pre-processing layer, a
perception layer named DigitNN, and a probabilistic logic programming layer. This sophisticated
structure is designed to unravel the complexities of sequential data, highlighting DeepProbCEP’s
unique capabilities in handling intricate event patterns under various conditions.

In parallel, the LSTM model provides a contrastive baseline. Utilizing a standard LSTM net-
work architecture, devoid of the probabilistic logic programming component, this model is fine-
tuned with an optimized number of hidden layers and units specifically for processing the MNIST
digit streams. The core objective here is to evaluate the LSTM’s performance in sequence detec-
tion tasks, offering a benchmark to compare against the more advanced DeepProbCEP framework.
This comparison aims to shed light on the additional benefits brought about by the integration of
probabilistic logic within DeepProbCEP. Adding a further dimension to our comparative analysis
is the LSTM-over-CNN model. This hybrid model ingeniously blends the feature extraction capa-
bilities of Convolutional Neural Networks (CNNs) with the temporal sequence processing strength
of LSTM networks. The LSTM-over-CNN model is especially tailored to assess the enhancement
in sequence detection brought about by CNN-derived features. This model aims to bridge the gap
between traditional LSTM processing and the complex event processing of DeepProbCEP, offer-
ing a nuanced perspective on the efficacy of combining convolutional and recurrent neural network
architectures in the realm of CEP. Adding a further dimension to our comparative analysis is the
LSTM-over-CNN model. This hybrid model ingeniously blends the feature extraction capabili-
ties of Convolutional Neural Networks (CNNs) with the temporal sequence processing strength of
LSTM networks. The LSTM-over-CNN model is especially tailored to assess the enhancement in
sequence detection brought about by CNN-derived features. This model aims to bridge the gap be-
tween traditional LSTM processing and the complex event processing of DeepProbCEP, offering
a nuanced perspective on the efficacy of combining convolutional and recurrent neural network
architectures in the realm of CEP.

4.1.1 Objective and Expected Outcomes

The primary aim of these experiments is to empirically validate the theoretical constructs of Deep-
ProbCEP and compare its performance with traditional LSTM and the hybrid LSTM-over-CNN
models. This endeavor focuses on assessing their effectiveness in complex event processing tasks,
particularly in real-world-like scenarios simulated using the MNIST dataset. The objective is to un-
ravel how DeepProbCEP’s integration of neural networks with probabilistic logic enhances event
processing capabilities compared to the other models. We anticipate the study to provide critical
insights into the applicability and strengths of each model in complex event processing. A key

4.1. Experimental Methodology 37

outcome will be showcasing DeepProbCEP’s potential in handling challenging scenarios, thereby
advancing the field of CEP. The comparative analysis is also expected to highlight the unique ad-
vantages and situational suitability of each model, guiding their practical applications. Ultimately,
the findings aim to contribute to the broader understanding of combining different neural network
architectures for sophisticated data analysis and decision-making in dynamic environments.

4.1.2 Stream of MNIST Digits and Complex Event Definitions for DeepProbCEP

DeepProbCEP represents a significant leap in the field of Complex Event Processing (CEP) by
marrying the power of neural networks with the precision of probabilistic logic programming. This
section elucidates the mechanisms by which DeepProbCEP capitalizes on this union to enhance
complex event detection and reasoning.

The experiments, as presented by Marc Roig Vilamala, showcase DeepProbCEP’s prowess
in processing continuous streams of MNIST digits. Complex events are defined as consecutive
occurrences of the same digit within a variable window size, highlighting the flexibility of Deep-
ProbCEP to adapt to different temporal constraints [50].

Figure 10. DeepProbCEP Architecture for MNIST Digit Stream Processing

Current Window

EENHEnRQ

Pre-process Pre-process

00 ... 05

DigitNN

S \

happensAt (ce0, T) :- window (Window) ,
sequence ([0, 0], Window, T).

happensAt (cel, T) :- window (Window),
sequence ([1, 1], Window, T).

happensAt (ce2, T) :- window (Window) ,
sequence ([2, 2], Window, T).

DeepProbCEP

CE Predictions

Figure 10 illustrates the DeepProbCEP architecture for MNIST digit stream processing. The

38 4. Experimental Results

architecture is divided into two main layers:

1. Data Pre-processing: The raw digit images from the MNIST dataset are first normalized
to ensure consistency across the data inputs. This normalization involves adjusting pixel
values to have a mean of 0.5 and a standard deviation of 0.5.

2. Perception Layer: The pre-processed images enter the perception layer, where a neural
network, referred to as DigitNN, classifies each image. DigitNN is a specialized neural
network trained to recognize and classify the ten digits (0-9) based on their visual features
extracted from the MNIST images.

3. Probabilistic Logic Programming Layer: The output from DigitNN, which consists of
probability distributions for digit classifications, feeds into the probabilistic logic program-
ming layer. Here, the DeepProbCEP framework uses rules to determine if complex events—
defined as sequential occurrences of the same digit within a moving window—have taken
place.

4. Complex Event Predictions: The system evaluates the logic programming rules against
the sequence of classified digits to predict complex events. For instance, the rule “happen-
sAt(ce0, T) checks for consecutive occurrences of the digit *0” within a defined window of
time.

Figure 10 showcases the DeepProbCEP’s ability to process and reason about temporal sequences
of data—a fundamental aspect of CEP. By utilizing neural networks for digit classification and
probabilistic logic for temporal pattern detection, DeepProbCEP demonstrates a powerful approach
for identifying patterns that are not readily discernible through traditional methods. This capability
is essential for real-time decision-making processes in various applications, such as fraud detection,
network security, and predictive maintenance.

DeepProbCEP undergoes a rigorous training regimen, aiming to maximize complex event de-
tection within a hundred epochs, incorporating early stopping to mitigate overfitting. Utilizing
the Adam optimizer and a learning rate of 0.001, DeepProbCEP fine-tunes DigitNN’s weights for
optimal performance [Kingma et al., 2014, 23].

Through a series of experiments, DeepProbCEP has demonstrated its superiority over tradi-
tional CEP systems like ProbCEP and ALaSh. Its impressive performance is attributed to its hy-
brid architecture, which leverages neural networks for pattern extraction and probabilistic logic for
rule-based analysis [Bouchard et al., 2015, 10].

The dual capacity of DeepProbCEP to process both symbolic and non-symbolic data, along
with its rule-based reasoning, presents a robust approach for complex event patterns across various
domains. The empirical evidence from the experiments underscores the transformative potential
of hybrid Al systems in revolutionizing CEP for practical, real-world scenarios.

In this study, we embark on a comprehensive evaluation of three distinct experiments, all de-
rived from the DeepProbCEP repository https://github. com/marcRoigVilamala/DeepProbCEP.
These experiments are meticulously designed to test the boundaries and capabilities of the Deep-
ProbCEP framework in processing complex event sequences and operating within noisy environ-
ments.

The first experiment focuses on the detection of complex sequences. This task tests each
model’s ability to discern intricate patterns within continuous data streams, a crucial capability
for practical applications in diverse real-world scenarios.

The second experiment delves into the realm of noisy sequences, challenging the models’
robustness and accuracy under conditions rife with data uncertainty and interference. This experi-
ment is pivotal in understanding how well the DeepProbCEP framework can maintain performance
integrity in less-than-ideal data environments.

https://github.com/marcRoigVilamala/DeepProbCEP

4.1. Experimental Methodology 39

To provide a comprehensive analysis, we also conducted a third experiment involving both
a simple LSTM model and an LSTM-over-CNN model. This additional comparison serves as a
baseline to evaluate the effectiveness of DeepProbCEP against more conventional neural network
approaches. This experiment aims to contextualize the performance of DeepProbCEP in relation
to established models, thereby highlighting its unique strengths and areas for improvement.

Central to our study is the Prolog-based temporal reasoning mechanism, integral to the Deep-
ProbCEP system. This mechanism is designed for sophisticated event processing in dynamic en-
vironments. It is capable of tracking and evaluating the state of various conditions, or ’fluents’,
across different time points, a functionality that is essential for interpreting and understanding the
evolution of sequences over time.

The Prolog code employed in our experiments uses a set of intricately designed rules. These
rules form the backbone of our event processing system, encapsulating the complex interplay be-
tween events and their temporal properties. In the forthcoming discussion, we will dissect the
mechanisms that enable our system to track the initiation, continuation, and alteration of event
states. This exploration will offer an in-depth understanding of the inner workings of our complex
event processing methodology, demonstrating how it adeptly navigates the temporal intricacies of
real-world data sequences.

For detailed insights into the experimental setup, code, and data, interested readers and re-
searchers can access our GitHub repository athttps://github. com/VarsouPenny/DeepProbCEP-master.
This repository provides a comprehensive resource for replicating and building upon our experi-
mental findings.

Below, we provide an overview of these rules along with their functionalities found in event_defs.pl
file for ce0, all rules can be found in Appendix.

Listing 4.1. event defs.pl

initiatedAt(sequence0 = true, T) :—
happensAt(X, T),
digit(X, 0),
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
Tprev >= 0,
happensAt(Xprev, Tprev),
digit(Xprev, 0).

initiatedAt(sequence0 = true, T) :—
happensAt(X, T),
digit(X, 0),
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
previousTimeStamp (Tprev, Timestamps, Tprevprev),
Tprevprev >= 0,
happensAt(Xprev, Tprevprev),
digit (Xprev, 0).

initiatedAt(sequence0 = false, T) :—
happensAt(X, T),
digit(X, 1),
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
Tprev >= 0,

https://github.com/VarsouPenny/DeepProbCEP-master

40 4. Experimental Results

happensAt(Xprev, Tprev),
digit (Xprev, 1).

The first rule asserts that a sequence (sequence0) is initiated (i.e., starts) at time T if a certain
condition is met. Specifically, it checks if an event X happens at time T and is identified as the digit
’0’. Additionally, it looks for a previous timestamp (Tprev) where the same digit *0” occurred. If
both these conditions are satisfied, the rule concludes that sequence0 is initiated at time T.

The second rule states that a sequence (sequence0) is initiated (i.e., considered to start or be
true) at a specific time T if certain conditions are met:

* An event X occurs at time T and is recognized as the digit *0’.
* The timestamps of all events are stored in Timestamps.

* The timestamps immediately preceding T (tTprev) and the one before Tprev (Tprevprev)
are identified.

» Tprevprev must be a valid time (not negative).
» An event Xprev occurred at Tprevpreyv, and it is also recognized as the digit *0’.

In essence, this rule detects whether two consecutive *0’ digits occur within a defined time frame.
The last rule determines that sequence0 is not initiated (i.c., is false) at time T if:

* An event X occurs at time T, identified as the digit *1°.

» The timestamps of all events are listed in Timestamps.

* The timestamp immediately preceding T (Tprev) is identified.

» Tprev must be a valid time (not negative).

* An event Xprev occurred at Tprev, and it is recognized as the digit ’1°.

This rule checks for the presence of two consecutive 1’ digits within a defined time frame and
concludes that sequence0 is false under these conditions.

In summary, these rules are used to detect specific sequences of digits ("0’ or ’1’) in a stream
of events. They are part of a complex event processing system where the occurrence and order of
specific events (digits in this case) are critical in determining the state of a given sequence.

In Problog files we got also prob_ec cached.pl, that helps determines the state of various flu-
ents (conditions or properties) at different timestampts, all rules can be found in Appendix.

Listing 4.2. prob_ec cached.pl
holdsAt (aux = true, 0).

holdsAt(F =V, T) :—
\+ sdFluent(F),
T @ 0,
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
holdsAt (F =V, Tprev),
\+ broken(F =V, Tprev, T).

holdsAt(F =V, T) :—
\+ sdFluent(F),

4.1. Experimental Methodology 41

T @ 0,

allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
initiatedAt(F =V, Tprev).

broken(F = V1, T1, T2):—
allTimeStamps (Timestamps),
previousTimeStamp (T2, Timestamps, T3),
initiatedAt(F = V2, T3),
V1 \= V2.

broken(F =V, T1, T2) :—
allTimeStamps (Timestamps),
previousTimeStamp (T2, Timestamps, T3),
T3 > T1,
broken(F =V, T1, T3).

previousTimeStamp (T, Timestamps, Tprev):— Tprev is T — 1.
nextTimeStamp (T, Timestamps, Tnext):— Tnext is T + 1.

The first holdsAt rule initializes a fluent aux to true at time 0. It’s a base case for recursion or
iterative checks in subsequent rules.

The second holdsAt rule checks if a fluent F holds a value V at time T. It applies to fluents
that are not self-derived (sdFluent). The rule asserts that F =V holds at T if it held at the previous
timestamp (Tprev) and has not been ’broken” (changed or invalidated) between Tprev and T.

The third holdsAt rule determines that a fluent F holds a value V at time T if it was initiated
(began to hold) at Tprev.

The first broken rule defines when a fluent F’s value V1 is considered “broken” (no longer
holds) between times T1 and T2. It occurs if F was initiated with a different value V2 at a time
T3 before T2.

The second broken recursive rule further checks for broken fluents between T1 and T2 by
looking at intermediate timestamps.

Last but not least the timeStamp helpers predicates calculate the previous and next timestamps
relative to a given time T. n summary, this code describes a set of rules for tracking the state of
various fluents over time, determining whether they hold true at different points based on their
initiation and any changes (broken conditions) that occur in between. This logic is crucial for
temporal reasoning in dynamic systems where conditions can change over time.

4.1.3 Data

Data used in this study created by [Vilamala, 2022, 50], based on utilizes a series of structured
symbolic events, denoted as initiatedAt and happensAt, to represent the temporal progression
and occurrence of actions in a sequential manner. The training dataset comprises a rich collection
of initiatedAt predicates, signifying the onset or cessation of various sequences pivotal to the
experiments. For instance, initiatedAt(sequence4 = true, 1) indicates the commencement of the
fourth sequence at the first timestamp, embedding a temporal structure to the data.

A sample from the training data includes:

Listing 4.3. init_train_data.txt
initiatedAt(sequenced4 = true, 1).
initiatedAt(sequence2 = true, 14).

42 4. Experimental Results

initiatedAt(sequence0 = true, 47).
initiatedAt(sequence2 = false, 14).
initiatedAt(sequence2 = true, 23).
initiatedAt(sequence0 = false, 27).

initiatedAt(sequence0 = true, 59991).

For testing, similar initiatedAt predicates are employed, ensuring the evaluation is consistent
with the training phase. The test dataset echoes the training structure but is used to validate the
model’s predictions on unseen data.

The Problog training file captures event occurrences with happensAt predicates, each tied to
specific timestamps, which are crucial for the temporal reasoning tasks the model learns to perform.
For example, happensAt(33273,0) records an event with ID 33273 at the zeroth timestamp. The
Problog test file maintains this format, facilitating the direct application of the trained model to
assess its generalization capabilities.

A sample from the Problog training data includes:

Listing 4.4. in_train_data.txt

happensAt(33273, 0).
happensAt(8310, 1).

happensAt(36168, 2).
happensAt(41016, 3).
happensAt(41817, 4).

happensAt(34263, 59999).
allTimeStamps ([0, 1, 2,..., 59997, 59998, 59999]).

The script used in the experiments created by [Vilamala, 2022, 50], integrating the various
components. It employs the training and testing data, defines the neural predicates through the
network, and iteratively updates the model using gradient descent, as orchestrated by the optimizer.
The script not only executes the training procedure but also systematically evaluates the model’s
performance, leveraging the structured data to yield insights into the model’s predictive accuracy
across different noise levels in the data.

4.1.4 LSTM and LSTM-over-CNN Experiment Data

In parallel with the DeepProbCEP experiments, the LSTM and LSTM-over-CNN models were
subjected to a similar dataset, ensuring consistency in the comparative analysis. This subsection
details the data preparation, preprocessing, and configuration specific to the LSTM and LSTM-
over-CNN experiments.

Dataset Description

Both the LSTM and LSTM-over-CNN models were evaluated using the MNIST digit stream, iden-
tical to the one used for DeepProbCEP. This dataset, comprising 70,000 images of handwritten
digits (0-9), is split into a training set of 60,000 images and a test set of 10,000 images. This
uniformity across experiments ensures a direct and fair comparison of results across all models.

Data Preprocessing

For both experiments, the MNIST images underwent preprocessing to meet the input requirements
of each respective model. In the LSTM experiment, each 28x28 pixel grayscale image was trans-

4.1. Experimental Methodology 43

formed into a 784-dimensional vector. This conversion was essential for the LSTM’s input layer,
which processes one-dimensional sequential data.

Similarly, in the LSTM-over-CNN experiment, the preprocessing was tailored to suit the CNN’s
input specifications. The images were maintained in their original two-dimensional format, suit-
able for feature extraction by the CNN layers before being fed into the LSTM for sequence pro-
cessing.

Normalization was applied in both cases, scaling pixel values from 0 to 255 down to a range
of 0 to 1. This step is crucial for both models as it aids in the learning process by providing a
standardized input format.

Sequence Generation for LSTM

The LSTM model requires sequential data for training, thus sequences of digits were generated
from the MNIST dataset. Each sequence, comprising a series of digits, was designed to challenge
the LSTM in learning both short-term and long-term dependencies within the streams.

In contrast, the LSTM-over-CNN model processed each image in the sequence through the
CNN layers first, extracting salient features. These extracted features were then arranged in se-
quences to be fed into the LSTM component, combining spatial feature recognition with temporal
sequence processing.

Data Splitting

For both models, the dataset was strategically divided into training, validation, and testing sets.
This division allowed for the comprehensive training of the models, fine-tuning of hyperparameters
during the validation phase, and an unbiased evaluation of each model’s performance on the test set.
This approach ensured that both models were assessed on their ability to generalize and perform
on unseen data, providing a robust evaluation of their capabilities.

44 4. Experimental Results

4.2 Results

4.2.1 Complex Sequence Detection Results

In the pursuit of evaluating the performance of the complex sequence detection algorithm, we
conducted a series of iterative experiments. Figure 11 presents a dual-axis graph comparing the
computational time per iteration and the loss per iteration during the training of our complex se-
quence detection model. The left graph, titled *Time per Iteration’, illustrates a linear increase in
computational time as the number of iterations grows. This steady increase suggests a consistent
computational load for each iteration, which could be expected if each iteration processes a fixed
amount of data or performs a constant number of operations.

The right graph, labeled *Loss per Iteration’, shows a significant decrease in loss in the initial
iterations, indicating that the model quickly learned to reduce errors in its predictions. After this
initial rapid improvement, the loss levels off, demonstrating that the model has reached a state of
convergence where further learning is minimal with respect to loss reduction.

The juxtaposition of these two metrics highlights the efficiency of the learning process: while
the time per iteration remains predictable and controlled, the model’s loss decreases notably and
stabilizes, reflecting a successful training phase where the model’s predictive accuracy has likely
reached its peak given the current configuration and dataset.

Figure 11. Complex Sequence Detection Performance Plots

Time per Iteration Loss per Iteration
500 I’

400

Loss

Time {seconds)

200 b

100

0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Iteration Iteration

Evaluation of Model F1 Scores

Figure 12 illustrates the variation in the average "F1 initiatedAt’ score of our complex sequence de-
tection model across 30,000 iterations. The F1 score, a balanced measure of the model’s precision
and recall, is a critical indicator of the model’s accuracy in sequence prediction tasks.

As depicted in the graph, the model’s F1 score experiences fluctuations throughout the iterative
training process. Initially, there is a steep increase in the F1 score, which suggests that the model
rapidly improves its predictive accuracy. Following this ascent, the F1 score displays a series of
peaks and troughs, yet it generally maintains an upward trend, indicating progressive learning and
adaptation by the model.

Notably, the model’s F1 score consistently remains above 0.90, which signifies a high level of
performance. The oscillatory pattern might be attributed to the varying complexity of sequences

4.2. Results 45

the model encounters in different iterations or could reflect the model’s continuous refinement in
response to the intricacies of the data.

In summary, the graph demonstrates the model’s ability to sustain a high F1 score across nu-
merous iterations, underscoring its robustness and effectiveness in detecting complex sequences
within the dataset.

Figure 12. Complex Sequence Detection F1

Average 'F1 initiatedAt’ Scores Over Iterations

098

096

=]
"]
B

Average F1 Score

092

050

0 5000 10000 15000 20000 25000 30000
lterations

Analysis of Model Accuracy Over Iterations

Figure 13 provides an overview of the ’Accuracy initiatedAt’ metric as observed over 30,000 iter-
ations during the training phase of our complex sequence detection model. The metric *Accuracy
initiatedAt’ quantifies the proportion of sequences correctly identified at the outset of each itera-
tion.

The plot showcases a positive trend in accuracy, starting from below 0.85 and reaching heights
just below 0.98, reflecting a substantial improvement in the model’s predictive capabilities as it
processes more data. This upward trend is punctuated by several dips and rises, which may indicate
the model’s encounter with particularly challenging data at certain points, or could signify moments
of re-adjustment and optimization within the learning algorithm.

Despite these fluctuations, the overall trajectory remains upward, indicating that the model is
successfully learning and improving its accuracy over time. The highest peaks on the graph suggest
moments where the model is performing at its best, while the troughs represent opportunities for
further refinement and improvement.

This graph clearly demonstrates the model’s learning progression and its ability to adapt to
the complexity of the sequences it is designed to detect, with a general trend towards increased
accuracy as training progresses.

46 4. Experimental Results

Figure 13. Complex Sequence Detection Accuracy

'Accuracy initiatedAt’ Over Iterations

0.90 A

Accuracy

0.88 4

0.86 4

0.84

0.82

0 5000 10000 15000 20000 25000 30000
Iterations

Conclusion

The results presented in the figures illustrate the performance dynamics of the complex sequence
detection model over the course of the training iterations. The time per iteration graph shows a
consistent linear increase, suggesting that the computational load per iteration is stable and pre-
dictable throughout the training process. This is a positive indication of the model’s scalability and
efficiency.

In terms of model accuracy, the *Accuracy initiatedAt” metric indicates a general upward trend
with some fluctuations, which denotes the model’s adaptive learning capability and its potential
to refine its predictions when exposed to complex sequences. The F1 score, a harmonic mean of
precision and recall, also exhibits an upward trend with some variability, underscoring the model’s
robustness and effectiveness in balancing the precision-recall trade-off.

The initial rapid decrease in loss and subsequent leveling off further confirm the model’s quick
adaptation to the training data, followed by a phase of stability where the model has likely achieved
a near-optimal state given the architecture and data.

In conclusion, the combination of these metrics—time per iteration, loss per iteration, accuracy,
and F1 score—provides a comprehensive picture of the model’s learning behavior. The results
demonstrate that the model not only learns effectively, achieving high levels of accuracy and F1
scores, but also does so with a computational cost that grows linearly with iterations, which is
a desirable trait in practical applications. The slight fluctuations observed across the metrics are
typical in machine learning and represent areas for potential model refinement and exploration of
parameter tuning or data preprocessing techniques to achieve even higher performance.

4.2.2 Noisy Sequence Detection Results

In this section, we explore the results of our second experiment, which focuses on the detection of
sequences within noisy environments—aptly termed *Noisy Sequence Detection’. The presence
of noise in data sequences poses a significant challenge for predictive models, as it can obscure the
underlying patterns that are crucial for accurate sequence detection and prediction.

The goal of this experiment was to assess the resilience and adaptability of our model when
faced with varying levels of noise in the input data. Noise can come in many forms, such as random

4.2. Results 47

errors, irrelevant information, or distortions that are not representative of the true sequence patterns.
A robust model must filter through this noise to reliably identify the sequences of interest.

We introduced controlled noise into our datasets and observed the model’s performance in
terms of accuracy, precision, recall, and F1 score—metrics that are particularly telling of the
model’s capacity to discern signal from noise. Through these measures, we can evaluate the
model’s effectiveness in maintaining high performance despite the degradation of data quality.

The following subsections detail the experimental setup, describe the nature and level of noise
introduced, and present the results in a series of visualizations and tables for two different scenarios,
with different level of noise in each (0%, 20%, 40%, 60%, 80%, 100%).

First Scenario - Noise Introduction through Randomness

The first scenario in our experimental framework delves into the introduction of noise through ran-
domness in the labeled MNIST dataset. This setup is designed to mimic common real-world data
corruption, where errors occur sporadically and without a discernible pattern. This randomness in
noise introduction serves as a fundamental test for the robustness and adaptability of machine learn-
ing algorithms in unpredictable environments. To comprehensively evaluate the impact of noise,
we conduct tests with varying levels of noisy data: 0% (no noise), 20%, 40%, 60%, 80%, and
100%. This range allows us to observe the performance of the models under gradually increasing
noise conditions, providing a nuanced understanding of their noise tolerance.

The primary goal of this approach is twofold: to replicate the types of errors that occur in real-
world data collection, such as human labeling errors or system faults, and to assess the capability
of learning models to discern correct patterns in the presence of partially incorrect or misleading
data. Models that perform effectively under these conditions demonstrate a crucial capacity for
handling real-world datasets where perfect labeling is a rarity as shown in Figure 14.

Figure 14. Noisy Sequence Detection F1 for Digit Classification, Scenario 1

F1 Score by Digit for Different Noise Levels

Noise Levels

=~ Noise 20%

Noise 40%

#— Noise 60%

Noise 80%
Moise 100%

0.99

0.98

0.96

0.95

The analysis of the following six confusion matrices in Figure 15 from our digit classification
experiments provides insightful revelations about the performance of the model under varying
conditions. Each matrix represents a unique instance of the model’s predictions, illuminating how
the model fares in distinguishing between the ten digits (0-9). Across all matrices, a significant
concentration of values along the diagonal indicates a high rate of correct predictions. This suggests

48 4. Experimental Results

that the model, for the most part, is effectively recognizing and classifying the different digits. The
presence of off-diagonal values, although minimal in comparison to the diagonal values, points
to areas where the model can be improved. However, the overall high accuracy rates across the
matrices underscore the robustness of the model in handling digit classification tasks.

First Scenario - Noise Introduction with Memory

In the first scenario of our investigation, we introduce a layer of complexity to the noise model
by incorporating a memory component. This scenario simulates a more realistic setting where the
noise is not completely random but rather dependent on the historical sequence of events, mirroring
real-world situations where the quality of data may deteriorate based on previous occurrences or
context. Unlike the first scenario where noise was randomly distributed, here, the noise introduc-
tion is conditional. The model is challenged to identify the initiated At condition despite the noise
being influenced by past events. This means that the presence of noise in the current prediction is
not independent but is instead correlated with the sequence of labels leading up to that point. Such
a condition tests the model’s ability to leverage its understanding of temporal dynamics, requiring
it not only to learn from the immediate data but also to recall the sequence history to make accurate
predictions.

The results from this scenario are particularly illuminating as they demonstrate the model’s
resilience when faced with noise that has a temporal structure. The confusion matrices from this
scenario, as displayed in the thesis, show that while the overall accuracy may drop compared to a
noise-free environment, the model still captures the essence of the temporal relationships. This is
evidenced by its ability to maintain relatively high F1 scores for certain ’initiatedAt’ conditions,
even as noise levels increase.

We observed that even in the presence of memory-influenced noise, the model displayed re-
silience, as demonstrated by the confusion matrices and F1 scores for the ’digit” and ’initiated At’
conditions see Figure 18 and 19. For instance, with no noise present, the model achieved a high
accuracy of 0.9642 and F1 scores consistently above 0.95. Interestingly, the ’initiatedAt’ condition
retained high F1 scores, such as 0.971 for noise level 0 and impressively reached 1.0 even with
noise present, indicating a strong ability to track sequence initiation despite interference

Figure 15. Noisy Sequence Detection F1 for CE, Scenario 1

F1 Score for initiatedAt Conditions at Different Noise Levels

Noise Levels
—®— Noise 0%%
o

#— Noise 40%%
=& Noise 60%
#= Noise B0%
—®— Noise 100%%

¥ 5l
& < &
& 5
& & &
& &

o S
InitiatedAt Conditions

4.2. Results 49

Figure 16. Noisy Sequence Detection F1 for Digit Classification, Scenario 1

F1 Score by Digit for Different Noise Levels

10

08

06

F1 Scare

04

Noise Levels
—&— Noise 0%
Noise 20%
—&— Noise 40%
—&— Noise 60%
#— Noise 80%
0o —e— Noise 100%

02

0 1 2 3 3 5 B 7 B 3
Digit

As we can see in Figure 20, at lower noise levels (20% and 40%), the model shows a degree of
robustness, with a majority of the predictions still being accurate. However, as the noise level rises
to 80% and above, this robustness diminishes, and the model’s predictions become less reliable.

The performance degradation under noisy conditions has direct implications for real-world
applications. It suggests that the model, while potentially useful in controlled environments, may
require additional safeguards or compensatory measures to ensure reliability in scenarios where
data quality cannot be guaranteed.

50 4. Experimental Results

Confusion Matrix for initiatedAt Noise 20% Confusion Matrix for initiatedAt Noise 40%
o- 0]]]] 0] 0 0 0] 120 o- 0 0 0 0 0 0 0 0]] 0
- 2]]] 0] 0 0 0] - 4 0 100
100
~- 16]]] 0] 0 0 0] -1 0
- 17] o | 48] 0] 0 0 0] m- 1 0 80
80
- B]]] - B 0
z 3
3n- 17 0] 0 - 8 o @
» 6y
5 3
w- 5]]] w- 18 0
-4
~- 10 0] 0 -40 ~- 18 0
w- 8]]] w- 3 0
| -2
a- 9 0 0 0 a- 6 0
g- 3 0] 0 5- % 0 0 0 0 0 1 0 0 o s
\ ' : . , -0 i ' : . \ . i ' i \ i -0
0 1 2 3 a 5 5 7 8 s 0 1 2 3 4 5 & 7 8 3w
Predicted Label Predicted Label
Noise 0,2 Noise 0,4
Confusion Matrix for initiatedAt Noise 80% Confusion Matrix for initiatedAt Noise 100% 120
e- 0 0 0 0 0 0 0 0 0 0 0 o- 0 0 0 0 0 0 0 0 0 0 0
~- 5 [o 0] 0 0 0 0 0] 120 -0 0 0 0 0 0 0 0 0 ' 20
100
~- o [Nsd 0 0 0 0 0 0 0 0 ~- B 0 0 0 0 0 4 0 0 0 b
100
m- 0 0 o e o 0 0 0 0 0] m- 2% 0 0 0 0 0 1 0 0 1 a0
w- B] (]] 0o] 0o 0 0o 1 80 w- 1 0o 0 0 0 0 0 0 0 0 78
Z z
do- 0] 0] 0 0 0 0 0] din- e 0 0 0 0 0 0 0]] 87 - 60
3 -
w- 18 0] 0] o [0 0 0 1 w- 13 0 0 0 0 0 0 0 0 o [
~ 58]]]] 0] 52 0 0 2 ~- 3 0 0 0 0 0 0 0 1 . =
-40
@- 8 0] 0] 0 0 0 0] w- 5 0 0 0 0 0 0 0 0]
-2
a- B 0 0 0 0 0 0 0 0 0 - a- 5 0 0 0 0 0 0 0 0 0
g o 0] 0] 2 0 0 0 0 55 g- 8 0 0 0 0 0 0 0 0]
] ' , . , ' . , . . " -0 f : , . , . i ' f . -0
0 1 2 3 4 5 [8 9 0 1 2 3 4 5 6 7 8 3
Predicted Label Predicted Label
Noise 0,8 Noise 0,1

Figure 17. Noisy Sequence Detection Confusions Matrix for CE, Scenario 1

Second Scenario - Structured Noise with Assignment

The second scenario introduces a structured noise model through a predetermined assignment
mechanism. This experiment simulates a scenario where noise is introduced not at random but
follows a certain pattern or rule that assigns specific noise values to data points based on prede-
fined conditions.

In this set of experiments, we explore the effects of noise that is structured in a way that mim-
ics potential real-world situations where errors or alterations are systematic. By implementing a
predefined assignment of noise, we investigate the resilience of our model to recognize and adapt
to patterns within the noisy data.

The results from the third scenario, which introduced structured noise with assignment, high-
light the model’s robustness and ability to discern patterns despite the presence of noise. As ob-
served in the F1 score plots for both digit recognition and initiatedAt conditions at different noise
levels (Figure 20, 21), there is a clear trend that the model’s performance degrades as noise levels
increase. The model demonstrates high precision and recall at lower noise levels, with a notable
dip in performance as noise approaches 100%, particularly for certain digits and conditions, signi-
fying a threshold beyond which the model’s predictive capabilities are significantly impeded.

4.2. Results

51

Figure 18. Noisy Sequence Detection F1 for initiatedAt, Scenario 3

F1 Score for initiatedAt Conditions at Different Noise Levels

10
08
0.6
15
s
I
04
02 Maise Levels .
- —®— Noise 0%% []
#= Noise 20%%
—®— Noise 40%%
—— Noise 60%% .
—®— Noise B0%%
0.0 4 —® Noise 100%%

Figure 19. Noisy Sequence Detection F1 Score for Digit Classification, Scenario 3

@,,,z & @,qz. & .@\"‘L & @,’m & @\,,‘v,

(-
"%,
(7
“,
e

InitiatedAt Conditions

F1 Score by Digit for Different Noise Levels

10+

0.8 4

F1 Score

044

024

Noise Levels
=& Noise 0%
Noise 20%
—&— Noise 40%
—&— Noise 60% [} .
~&— Noise B0%
—&— Noise 100%

o

[
]
]
s
£}
@
-
@
w

Digit

52 4. Experimental Results

Structured noise presents a unique challenge as it not only obscures the true signal by introduc-
ing random errors but also systematically alters the data based on predefined assignments, which
can mislead the model’s learning process. This experiment sheds light on the model’s limitations
in the face of structured noise and underscores the need for more sophisticated algorithms capable
of handling such complexities. The model’s resilience to noise up to a certain extent indicates the
potential for deploying such systems in real-world applications where data may not be pristine.

The empirical findings suggest that while the model can handle noise to a degree, its perfor-
mance is contingent on the noise level and the nature of the noise introduced. The steep decline
in F1 scores at high noise levels suggests that the model heavily relies on the integrity of the data.
This underlines the importance of data quality and the necessity to develop noise-robust models.

Confusion Matrix for initiated At Noise 20% Confusion Matrix for initiatedAt Noise 40%
o 0 0 0 0 0 o 0 o 0 o 0 o- 0 o o o o 0 o 0 0 0 o
120 120
— 4 - 2 o o o 0 o 0 0 0 o
~- T 100 ~- 26 0 0 0 0 0 0 0 0 0 100
m- B m- 46 0o A 0 0 0 0 0 [] 0
80 &0
« 15 £ 49 o o o 52 4 o 0 0 0 o
3 T
B 3
g w10 g wi 56 12 0 0 0 k| 0 0 0 0 0
5 B =
» 13 w 2 o o o o 0 o 0 0 ﬂ o
~- B a0 ~- 50 0 0 o 3 0 0 3 0 2 0 a0
@- 4 w. 56 % 0 0 o 2 o 0 0 [] 0

g- B gn 41 o o o o o 0 0
. . -0 ; : ; . . . ; ,
7

0 5 5
Predicted Label Predicted Label
Noise 0,2 Noise 0,4
Confusion Matrix for initiatedAt Noise 80% Confusion Matrix for initiatedAt Noise 100%
a- 0 0] 0] 0 0 0 0 0] a- 0 0 0 0 0 0 0 0 0] 0 120

- 0 o o o o 138 o o 0 o o 120 - o o o o 0 o 0 o o 0
100
~- 0 0] 0 o EEEl o 0 0 0] ~- O 0 0 0 0 0 0 0] 0
100
m- 0]]] o 6] 0 0 0] m- 0 0 0 0 0 0 0]] 0
80
«- 0]]]]] 0 0 0] @ -- 0 0 0 0 0 0 0]] 0
T T
2 2
3n- 0]]]]] 0 0 0] Ja- 0 0 0 0 0 0 0]] 0
» u -8
5 —
w- 0]]]]] 0 0 0] w- 0 0 0 0 0 0 0]] 0
- 0]]]]] 0 0 0] -~ 0 0 0 0 0 0 0]] 0 -4
-40
@- 0]]]]] 0 0 0] w- 0 0 0 0 0 0 0]] 0
-2
a- 0 0 0 0 0 0 o 0 o 0 -0 a- 0 o o o 0 o 0 0 0 o
g- 0]]]]] 0 0 0] g- 0 0 0 0 0 0 0]] 0
! ' ' ' ' | | ! ' | -0 ' ' I ' | ' ' ' | ' -0
0 1 2 3) 5 3 7 8 I] 0 1 2 3 5 6 7 8 3 W
Predicted Label Predicted Label
Noise 0,8 Noise 0,1

Figure 20. Noisy Sequence Detection Confusions Matrix for CE, Scenario 3

A closer examination to Figure 23 reveals that the model’s ability to correctly classify initi-
atedAt events is differentially impacted by the structured noise. Certain events show a resilient
classification rate up to moderate noise levels, beyond which the performance drops markedly, as
seen in the confusion matrix for 40% noise. This trend is exacerbated at higher noise levels, such as
80% and 100%, where the confusion matrices exhibit significant misclassifications across several
complex events.

These findings underscore the model’s sensitivity to the systematic distortions introduced by
structured noise, particularly when the noise follows a pattern that mimics potential errors in real-
world data. While the model retains a degree of accuracy in the face of low to moderate noise, the
sharp decline in performance at higher noise levels highlights the limitations of current algorithms

4.2. Results 53

when dealing with structured noise. The confusion matrices also reveal that while some events
maintain a high true positive rate, others are more prone to misclassification, suggesting that the
model’s predictive capabilities are not uniformly affected by noise. This indicates the necessity
for targeted improvements in the model’s architecture to enhance its robustness against structured
noise. Overall, these experiments illustrate the crucial role of data integrity for machine learning
models and pave the way for future research aimed at developing algorithms that can withstand
the intricacies of structured noise.

Future work should focus on enhancing the model’s resistance to noise, perhaps through more
advanced noise filtering techniques or by incorporating mechanisms within the learning algorithm
that can distinguish between true and noisy data. The overall goal remains to build models that
can maintain high accuracy and reliability even when the data is imperfect.

4.2.3 Integrating Complex Sequence Detection with LSTM and LSTM-over-CNN
Models

In the realm of complex event processing (CEP), the accurate and efficient detection of intricate
sequences in data streams is paramount. This subsection delves into an experimental approach
that integrates advanced machine learning techniques - specifically LSTM networks and LSTM-
over-CNN models - to enhance sequence detection capabilities. The primary objective of this
experiment is to rigorously compare the effectiveness of these integrated models against the Deep-
ProbCEP framework, with a keen focus on two critical performance metrics: Accuracy and F1
Score presented at Figure 24 and Figure 25.

Figure 21. Complex Sequence Detection Accuracy for all models

Accuracy per lteration for Different Models

—&— DeepProbCEP
LSTM
= LSTM-owver-CNN

0.9
08
g

3 07 FFTW./I—W'
06

05

0 5000 10000 15000 20000 75000 30000
Iteration

As we can observe in Figure 24 accuracy per iteration graph distinctly illustrates the compar-
ative performance of three different models: DeepProbCEP, LSTM, and LSTM-over-CNN. From
the visual data, it is apparent that:

* DeepProbCEP stands out as the superior model, with accuracy scores consistently above
0.9 throughout the iteration range. This robust performance implies that the model is effec-
tively capturing the underlying patterns within the complex sequence data, leading to reliable
predictions.

54 4. Experimental Results
Figure 22. Complex Sequence Detection F1 Score for all models
F1 Scores for Different Models
10
N W
08
——a
v /./V'_ﬁ W
¥
5o W
0.6
0.5 1 —s— DeepProdCep
LSTM
- LSTM-over-CNN

0 5000 10000 15000 20000 25000 30000
Iteration

* LSTM-over-CNN shows intermediate performance with some variability in its accuracy.
However, it maintains a level of accuracy that, while not matching DeepProbCEP, suggests
a decent understanding of the sequence structure. The convolutional layers may be aiding
in feature extraction which, when combined with LSTM’s sequence processing, delivers
moderate results.

* LSTM, on the other hand, demonstrates the lowest accuracy across all iterations. The trend
line for LSTM indicates a struggle to adapt to the sequential nature of the data adequately.
While there are slight improvements and declines over time, the model’s accuracy remains
significantly lower than that of DeepProbCEP and LSTM-over-CNN, never crossing the
0.7 threshold. This underperformance could be attributed to a number of factors, including
the potential lack of capacity to capture long-term dependencies or the absence of complex
feature extraction mechanisms that are present in DeepProbCEP and LSTM-over-CNN ar-
chitectures.

Also, F1 score is a crucial metric in classification tasks as it balances precision and recall,

providing a holistic view of a model’s performance, especially when the class distribution is im-
balanced. The F1 score plot in Figure 25 for different models over iterations reveals significant
disparities in performance among DeepProbCEP, LSTM, and LSTM-over-CNN models.

* DeepProbCEP consistently achieves the highest F1 scores, often nearing the ideal score of
1. This suggests that DeepProbCEP not only makes accurate predictions but also maintains a
balanced rate of precision and recall, crucial for effective complex sequence detection. The
high F1 scores across iterations underline the robustness of DeepProbCEP in handling both
relevant and irrelevant elements within the sequence data effectively.

* LSTM-over-CNN model demonstrates moderate F1 scores, generally staying within the
0.7 to 0.8 range. This indicates a reasonable trade-off between precision and recall but also
room for improvement. It seems that the LSTM-over-CNN model, while not as effective as
DeepProbCE-P, still manages to capture the sequential dependencies to some extent, possibly
benefiting from the feature extraction capabilities of CNN layers before LSTM processes the
sequences.

4.2. Results 55

» LSTM shows the lowest F1 scores among the three models, with scores fluctuating and at
times dropping below 0.6. This performance indicates a significant challenge in achieving a
balance between precision and recall. The LSTM model’s inability to consistently produce
high F1 scores suggests that it might be failing to capture either the full complexity of the
data sequences or struggling with specific aspects of the sequence that affect precision or
recall.

The comprehensive evaluation of model performance using Accuracy and F1 scores in com-
plex sequence detection tasks has led to several important conclusions. The DeepProbCEP model
has consistently outperformed both LSTM and LSTM-over-CNN models across all iterations, as
evidenced by its superior accuracy and F1 scores. This suggests that the architecture of Deep-
ProbCEP, likely integrating advanced probabilistic reasoning with sequence modeling, is highly
effective for the nuanced task of complex sequence detection.

Chapter 5

Conclusion & Future Work

5.1 Recapitulation

This thesis presented a comprehensive investigation into the integration of neural networks and
symbolic logic for complex event recognition (CER), leveraging the DeepProbCEP framework
[Vilamala, 2022, 50] to address the complexities of uncertainty and sparse data. Through a series
of experiments with varying noise levels, it was convincingly demonstrated that fusing logical
reasoning with deep learning significantly enhances model robustness and interpretability. These
findings underscore the synergistic potential of symbolic reasoning and statistical methods in Al,
paving the way for more versatile and adaptable CER systems.
Key Insights and Contributions:

* Robustness to Uncertainty: The integration of logical reasoning enabled the model to effec-
tively handle noise and uncertainty in input data, leading to improved recognition accuracy
and reduced sensitivity to noise levels.

* Interpretability Enhancement: The incorporation of symbolic reasoning provided a deeper
understanding of the underlying patterns and relationships within the data, enhancing the
interpretability of the model’s decisions.

» Synergy of Neural Networks and Logic: The hybrid approach demonstrated the complemen-
tary strengths of neural networks and symbolic logic, effectively leveraging pattern recog-
nition capabilities of neural networks with the rule-based reasoning of logic programming.

* Generalization to Diverse Scenarios: The framework’s ability to handle uncertainty and spar-
sity across various noise levels and data types suggests its potential for generalization to
diverse real-world CER applications.

Future Directions:

* Scaling for Large-Scale Data: Scaling the proposed methods to handle large, complex datasets
encountered in real-world applications is crucial for practical implementation.

» Expressiveness vs. Efficiency Balance: Striking a balance between the expressive power of
symbolic reasoning and computational efficiency is essential for efficient and scalable CER
systems.

Neuroplex Implementation Challenges

Despite significant efforts, we were unable to successfully implement the Neuroplex algorithm due
to technical limitations. However, the insights gained from the DeepProbCEP experiments provide
a foundation for future exploration of Neuroplex integration.

57

58 5. Conclusion & Future Work

Conclusion

The integration of neural networks and symbolic logic has emerged as a promising direction for
CER, offering enhanced robustness, interpretability, and generalization capabilities. The presented
work demonstrates the effectiveness of this approach and paves the way for further development
of advanced CER systems. Future research efforts should focus on scaling these methods for
large-scale datasets, optimizing the balance between expressiveness and efficiency, and exploring
unsupervised learning techniques for improved data sparsity management.

Appendix A

Problog Rules

A.0.1 evet_defs.pl
nn(mnist_net ,[X],Y,[0,1,2,3,4,5,6,7,8,9]) :: digit(X,Y).

initiatedAt(sequence0 = true, T) :—
happensAt(X, T),
digit(X, 0),
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
Tprev >= 0,
happensAt(Xprev, Tprev),
digit(Xprev, 0).

initiatedAt(sequence0 = true, T) :—
happensAt(X, T),
digit (X, 0),
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
previousTimeStamp (Tprev, Timestamps, Tprevprev),
Tprevprev >= 0,
happensAt(Xprev, Tprevprev),
digit (Xprev, 0).

initiatedAt(sequence0 = false, T) :-—
happensAt(X, T),
digit (X, 1),
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
Tprev >= 0,
happensAt(Xprev, Tprev),
digit (Xprev, 1).

initiatedAt(sequencel = true, T) :—
happensAt(X, T),
digit (X, 2),
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
Tprev >= 0,
happensAt(Xprev, Tprev),
digit (Xprev, 2).

59

60

A. Problog Rules

initiatedAt(sequencel = false, T) :—
happensAt(X, T),
digit (X, 3),
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
Tprev >= 0,
happensAt(Xprev, Tprev),
digit (Xprev, 3).

initiatedAt(sequence2 = true, T) :—
happensAt(X, T),
digit (X, 4),
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
Tprev >= 0,
happensAt(Xprev, Tprev),
digit (Xprev, 4).

initiatedAt (sequence2 = false, T) :—
happensAt(X, T),
digit(X, 5),
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
Tprev >= 0,
happensAt(Xprev, Tprev),
digit(Xprev, 5).

initiatedAt(sequence3 = true, T) :—
happensAt(X, T),
digit (X, 6),
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
Tprev >= 0,
happensAt(Xprev, Tprev),
digit (Xprev, 6).

initiatedAt(sequence3 = false, T) :—
happensAt(X, T),
digit(X, 7),
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
Tprev >= 0,
happensAt(Xprev, Tprev),
digit (Xprev, 7).

initiatedAt(sequenced4 = true, T) :—
happensAt(X, T),
digit(X, 8),
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
Tprev >= 0,
happensAt(Xprev, Tprev),
digit(Xprev, 8).

initiatedAt (sequence4 = false, T) :—
happensAt(X, T),

61

digit(X, 9),

allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
Tprev >= 0,

happensAt(Xprev, Tprev),

digit(Xprev, 9).

sdFluent(aux).

A.0.2 prob_ec_cached.pl
holdsAt_ (aux = true, 0).

holdsAt(F =V, T) :—
\+ sdFluent(F),
T @ 0,
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
holdsAt (F =V, Tprev),
\+ broken(F =V, Tprev, T).

holdsAt(F =V, T) :—
\+ sdFluent(F),
T @ 0,
allTimeStamps (Timestamps),
previousTimeStamp (T, Timestamps, Tprev),
initiatedAt(F =V, Tprev).

%holdsAt(F =V, T):—

% \+ sdFluent(F),

% T @ 0,

% initiatedAt(F =V, Tprev),

% Tprev < T,

% \+ broken(F =V, Tprev, T). % crisp version contains a cut here

broken(F = V1, T1, T2):-
allTimeStamps (Timestamps),
previousTimeStamp (T2, Timestamps, T3),
initiatedAt(F = V2, T3),
V1 \= V2.

broken(F =V, T1, T2) :—
allTimeStamps (Timestamps),
previousTimeStamp (T2, Timestamps, T3),
T3 > T1,
broken(F =V, T1, T3).

previousTimeStamp (T, Timestamps, Tprev):— Tprev is T — 1.
nextTimeStamp (T, Timestamps, Tnext):— Tnext is T + 1.

Bibliographic References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

E. Alevizos et al. “Complex Event Recognition Under Uncertainty.” In: Event Processing,
Forecasting and Decision-Making Journal (2015), pp. 97-103.

E. Alevizos and A. Artikis. Complex Event Recognition and Forecasting.2021. URL: https:
//cer.iit.demokritos.gr/events/cerf2l/.

D. Anicic et al. “A Rule-Based Language for Complex Event Processing and Reasoning.”
In: Web Reasoning and Rule Systems Conference Proceedings. Springer Berlin Heidelberg,
2010, pp. 42-57.

Alexander Artikis, Alessandro Margara, Matias Ugarte, Stijn Vansummeren, and Matthias
Weidlich. “Tutorial: Complex Event Recognition Languages.” In: Proceedings of the 11th
ACM International Conference on Distributed and Event-based Systems. ACM, 2017, pp. 7—
10.

Alexander Artikis, Georgios Paliouras, Francois Portet, and Anastasios Skarlatidis. “Logic-
based Representation, Reasoning and Machine Learning for Event Recognition.” In: Pro-
ceedings of the Fourth ACM International Conference on Distributed Event-Based Systems.
ACM, July 2010, pp. 282-293.

Alexander Artikis, Anastasios Skarlatidis, Frangois Portet, and Georgios Paliouras. “Logic-
Based Event Recognition.” In: The Knowledge Engineering Review 27.4 (2012), pp. 469—
506.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation Learning: A Review
and New Perspectives.” In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 35.8 (2013), pp. 1798-1828.

Jonathan R. Binder and Rutvik H. Desai. “The Neurobiology of Semantic Memory.” In:
Trends in Cognitive Sciences 15.11 (2011), pp. 527-536.

Richard J. Bolton and David J. Hand. “Statistical Fraud Detection: A Review.” In: Statistical
Science 17.3 (2002), pp. 235-255.

Guillaume Bouchard et al. “From NIPS to MLJ: Reviewing Papers for Machine Learning
Conferences and Journals.” In: Machine Learning Journal (2015). Add additional details
such as volume, number, pages, DOI if available.

Gianni Cugola and Alessandro Margara. “Complex Event Processing with T-REX.” In:
Journal of Systems and Software 85.8 (2012), pp. 1709-1728.

Luc De Raedt and Angelika Kimmig. “Probabilistic Logic Programming: A Survey.” In:
ACM Computing Surveys 47.4 (2015), Article 31.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. “Problog: A probabilistic prolog
and its application in link discovery.” In: Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence (IJCAI’07). 2007.

Opher Etzion and Peter Niblett. Event Processing in Action. Manning Publications, 2010.

63

https://cer.iit.demokritos.gr/events/cerf21/
https://cer.iit.demokritos.gr/events/cerf21/

64 Bibliographic References

[15] Jerome A. Feldman. From Molecule to Metaphor: A Neural Theory of Language. Cam-
bridge, Mass.: A Bradford Book, 2006.

[16] Marcio V. Franga, Gerson Zaverucha, and Artur S. d’Avila Garcez. “Fast Relational Learn-
ing Using Bottom Clause Propositionalization with Artificial Neural Networks.” In: Ma-
chine Learning 94 (2014), pp. 81-104.

[17] Artur D’Avila Garcez, Thomas R. Besold, Luc De Raedt, Peter Foldiak, Pascal Hitzler,
Thomas Icard, et al. “Neural-Symbolic Learning and Reasoning: Contributions and Chal-
lenges.” In: 2015 AAAI Spring Symposium Series. Mar. 2015.

[18] Lise Getoor and Ben Taskar, eds. Introduction to Statistical Relational Learning. MIT Press,
2007.

[19] Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and Minos
Garofalakis. “Complex Event Recognition in the Big Data Era: A Survey.” In: The VLDB
Journal 29 (2020), pp. 313-352.

[20] José Roldan Gomez, Juan Boubeta-Puig, and Guadalupe Ortiz. “Integrating complex event
processing and machine learning: An intelligent architecture for detecting loT security at-
tacks.” In: Expert Systems with Applications 149 (July 2020). Corpus ID: 213728291, p. 113251.
DOI: 10.1016/j .eswa.2020.113251. URL: https://doi.org/10.1016/j.eswa.
2020.113251.

[21] Bernd Gutmann, Ingo Thon, and Luc De Raedt. “Learning the Parameters of Probabilistic
Logic Programs from Interpretations.” In: European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases. Springer. 2008, pp. —.

[22] Hiroki Kawashima, Hiroyuki Kitagawa, and Xiang Li. “Complex Event Processing over
Uncertain Data Streams.” In: 2010 International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing. IEEE, 2010, pp. 521-526.

[23] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization.” In: In-
ternational Conference on Learning Representations. Add additional details such as pages,
DOI if available. 2014.

[24] Robert A. Kowalski. Logic for Problem Solving. North-Holland, 1979.

[25] Markus Krotzsch, Frederick Maier, Adila Krisnadhi, and Pascal Hitzler. “A Better Uncle
for OWL: Nominal Schemas for Integrating Rules and Ontologies.” In: Proceedings of the
20th International Conference on World Wide Web. ACM, Mar. 2011, pp. 645-654.

[26] Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman.
“Building Machines That Learn and Think Like People.” In: Behavioral and Brain Sciences
40 (2017), e253.

[27] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning.” In: Nature 521 (2015),
pp. 436444,

[28] Vladimir Lifschitz. “Answer Set Programming and Plan Generation.” In: Artificial Intelli-
gence 138.1-2 (2002), pp. 39-54.

[29] J.Liuetal. “A Survey of Human Action Recognition Based on Visual Data.” In: Journal of
Visual Communication and Image Representation 55 (2018), pp. 340-353.

[30] John W. Lloyd. Foundations of Logic Programming. 2nd ed. Springer-Verlag, 1987.
[31] David C. Luckham. The Power of Events. Addison-Wesley, 2002.

[32] Robin Manhaeve, Sebastijan Dumanci¢, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. “Neural Probabilistic Logic Programming.” In: Advances in Neural Information
Processing Systems. Vol. 31. 2021, pp. 3753-3763.

https://doi.org/10.1016/j.eswa.2020.113251
https://doi.org/10.1016/j.eswa.2020.113251
https://doi.org/10.1016/j.eswa.2020.113251

Bibliographic References 65

[33]

[34]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Robin Manhaeve, Sebastijan Dumanci¢, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. “Neural Probabilistic Logic Programming in DeepProbLog.” In: Artificial Intel-
ligence 298 (2021), p. 103504.

Gary Marcus and Ernest Davis. Rebooting Al: Building Artificial Intelligence We Can Trust.
Pantheon Books, 2019.

Robert Miller and Murray Shanahan. The Event Calculus in Classical Logic - Alternative
Axiomatisations. Tech. rep. Linkoping University Electronic Press, 1999.

Liu Ming, Elke A. Rundensteiner, Kajal T. Greenfield, Chetan Gupta, Song Wang, Ismail
Ari, and Abhay Mehta. “E-Cube: Multi-Dimensional Event Sequence Processing Using
Concept and Pattern Hierarchies.” In: 2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010). IEEE, Mar. 2010, pp. 1097—-1100.

R. Keith Mobley. An Introduction to Predictive Maintenance. Butterworth-Heinemann, 2002.

Alexandros Oikonomakis. “Neuro-symbolic Answer Set Programming for Human Activity
Recognition in Videos.” PhD thesis. University of Piraeus, 2023.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. “Automatic Differen-
tiation in PyTorch.” In: NIPS Workshop. 2017.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann Publishers, 1988.

Claudio Piciarelli and Gian Luca Foresti. “Online Trajectory Clustering for Anomalous
Events Detection.” In: Pattern Recognition Letters 27.15 (2006), pp. 1835-1842.

Ronald Poppe. “A Survey on Vision-Based Human Action Recognition.” In: Image and
Vision Computing 28.6 (2010), pp. 976-990.

Fabrizio Riguzzi and Terrance Swift. “The PITA System: Tabling and Answer Subsumption
for Reasoning under Uncertainty.” In: Theory and Practice of Logic Programming 13.4-5
(2013).

H. Salehi and R. Burguefio. “Emerging artificial intelligence methods in structural engi-
neering.” In: Engineering Structures 171 (Sept. 2018), pp. 170-189. DOI: 10.1016/J.
ENGSTRUCT.2018.05.084.

Zhenyu Shen, Hiroshi Kawashima, and Hiroyuki Kitagawa. ‘“Probabilistic Event Stream
Processing with Lineage.” In: Proceedings of Data Engineering Workshop. 2008, pp. 61—
64.

Anastasios Skarlatidis et al. “Probabilistic Complex Event Recognition: A Survey.” In: ACM
Computing Surveys 48.4 (2015), Article 53.

Robin Sommer and Vern Paxson. “Outside the Closed World: On Using Machine Learning
for Network Intrusion Detection.” In: IEEE Symposium on Security and Privacy. 1EEE.
2010.

M. R. Vilamala, T. Xing, H. Taylor, L. Garcia, M. Srivastava, L. Kaplan, and F. Cerutti.
Using DeepProbLog to perform complex event processing on an audio stream. 2021. eprint:
arXiv:2110.08090.

Marc Roig Vilamala. “Combining Neural Networks with Symbolic Approaches to perform
Complex Event Processing on Non-Symbolic Data.” PhD thesis. Cardiff University, July
2022.

https://doi.org/10.1016/J.ENGSTRUCT.2018.05.084
https://doi.org/10.1016/J.ENGSTRUCT.2018.05.084
arXiv:2110.08090

66 Bibliographic References

[51] T. Xing, L. Garcia, M. R. Vilamala, F. Cerutti, L. Kaplan, A. Preece, and M. Srivastava.
“Neuroplex: learning to detect complex events in sensor networks through knowledge in-
jection.” In: Proceedings of the 18th Conference on Embedded Networked Sensor Systems.
Nov. 2020, pp. 489-502.

[52] Wei Xu and et al. “Detecting Large-Scale System Problems by Mining Console Logs.” In:
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. ACM,
20009.

[53] Maor Yankovitch, Ilya Kolchinsky, and Assaf Schuster. “HYPERSONIC: A Hybrid Paral-
lelization Approach for Scalable Complex Event Processing.” In: Proceedings of the 2022
International Conference on Management of Data. SIGMOD ’22. New York, NY, USA:
ACM, June 2022, pp. 1093-1107. DOI: 10. 1145/3514221.3517829. URL: https://
doi.org/10.1145/3514221.3517829.

https://doi.org/10.1145/3514221.3517829
https://doi.org/10.1145/3514221.3517829
https://doi.org/10.1145/3514221.3517829

	Acknowledgements
	Περίληψη
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Complex Event Recognition
	Automata-based Systems
	Logic-based Systems
	Tree-based Systems
	Hybrid Approaches

	Neural-Symbolic Learning and Reasoning
	Overview
	State of the art

	Motivation of this Thesis

	Background
	Literature Review
	Complex event processing
	Neuroplex
	DeepProbLog
	ProbLog
	DeepProbLog Overview
	DeepProbLog Inference
	Learning in DeepProbLog
	DeepProbCEP: A Neuro-Symbolic Approach for Complex Event Processing

	Extending DeepProbLog Complex Event Processing
	Deep Dive into Probabilistic Logic
	Introduction to Probabilistic Logic
	Probabilistic Logic vs. Classical Logic
	Representation of Uncertainty in DeepProbLog
	Probabilistic Inference Mechanisms
	Extending Traditional Logic Programming
	Probabilistic Logic and Machine Learning

	Integration of Neural Networks
	Reasoning Layer
	Perception Layer

	Technical Challenges and Solutions

	Experimental Results
	Experimental Methodology
	Objective and Expected Outcomes
	Stream of MNIST Digits and Complex Event Definitions for DeepProbCEP
	Data
	LSTM and LSTM-over-CNN Experiment Data

	Results
	Complex Sequence Detection Results
	Noisy Sequence Detection Results
	Integrating Complex Sequence Detection with LSTM and LSTM-over-CNN Models

	Conclusion & Future Work
	Recapitulation

	Problog Rules
	evet_defs.pl
	prob_ec_cached.pl

	Bibliographic References

