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Abstract

Malignant melanoma is the worst type of skin cancer and one of the world's fastest-growing
malignancies. Early detection and identification of melanoma are critical for a high rate of full
cure. Moreover, the importance of patient and dermatologist understanding of early
melanoma signs and symptoms constitute a key factor for gaining useful experience
concerning the disease. Towards these pillars, automated melanoma diagnosing systems that
detect malignant skin lesions at early stages can support dermatologists to obtain objective
guantitative markers, to relieve the excessive load of work and facilitate telemedicine
capabilities. Deep learning-based approaches’ efficiency has soared in recent years, and they
now appear to outperform traditional machine learning methods in classification tasks.

In this master's thesis, Convolutional Neural Networks, handcrafted techniques, and metadata
are used to extract features from a set of 58,457 dermoscopy skin lesion images. The extracted
features from each technique, separately and in combination, are used to train machine
learning classifiers towards the creation of a classifier that returns efficient results in terms of
accuracy while, simultaneously, exploiting much simpler architectures than the state of the
art. A curated ablation study assists in the determination of the base model components for
the creation of the final architecture.

The proposed method was tested in the SIIM-ISIC 2020 melanoma classification, and it
involves the use of a combination of EfficientNet-BO features, GLCM, LBP, color moments
features, and metadata features to improve model performance by 93,97% AUC score.



Acknowledgments

First of all, | would like to thank Prof. Ilias Maglogiannis of the Department of Digital Systems
of the University of Piraeus for supervising and guiding my research. | would also like to
thank Nasos Kalipollitis for the support and help it provided me throughout the duration of
the thesis.

Moreover, | would also like to thank my family who supported me throughout my efforts by
offering me all the necessary means to reach the desired result.

Finally, | would like to thank the University of Piraeus for giving me the opportunity to study
in this master's program which was crucial for my personal and professional development



Contents

FY o1 A= ot AT PPOP U SUS TP POPRROPRT 2
CONEENTS 1.t et ra e s era s 4
I o ST ={ 0 LTSRN 6
[ o) N I o] LT PP U PP PRROPPTOP 8
N [ A o o [N o1 o] o FO OO OO PR PRI 9
1.1 MOTIVATION ettt e 9
1.2 SErUCTUIE OF TRESIS cuveeeitie ettt ettt et s e st e st e e sae e e sabeesbeeesabeeebbeesareesneeesaneeanns 10

2 Background and Related WOrK.........oooiiiii ittt s e s s e e e e 11
PV - 1ol o T g L= T =T oY SRR 11
2.1.0 SUPEIVISEA LBAIMING c.uttiieieitieie ettt ee ettt ettt e e e etre e e e ette e e e ebteeeeebteeeeebtaeeeestaeesesseeeesnsseneesnes 11

2. 1.2 UNSUPEIVISEA LEAIMING weeietiieeieitieeeeeciteeeeectteeeeetteeeeetteeesebeeeeeebeseeesseaeesesseeeseassseessnsesneesnnes 12
2.1.3 SEMI-SUPEIVISEA LEAININEG .vttiiiictieitieitiieeeectieeeesciteeeessiteeesestteeeessbteeeesssteeessssteeeessseeeesssssneessnnes 12
2.1.4 ReiNfOrCEMENT LEAINING tivcvieieiiitiee ettt ettt e e sttt e ettt e e s ettt e e e sbteeeesbtaeeesbtaeessseeeessaseneassnes 12
2.1.5 Classification AlGOrTNMS .. .viiii ettt e e e et e e e e tte e e e e tte e e s ebteeeeebaaeaeeanes 13

B =T ol =Y [ 01 o= SN 16
2.2.1 Convolutional Neural Networks (CNN) ......uveii ettt et e e e evre e e e enreeeeeanes 16
2.2.2 Deep 1earNING fEALUIES ..ccuvieie et e et e e e et e e e e sbee e e e sbeaeeesanes 20

2.3 IMage SEEMENTATION ciiiiiiiiiiiieiee ettt e e e e s st e e e e e s s s saabareeeeessesssabeaaeeeesssnsssnreneeeess 27
Chan-Vesse ACLIVE CONTOULS ....ccueiitieiiiiieiie ettt ettt ettt e bt e sat e st e et e e sbe e sbeesaeesabesabeenbeens 27

NYe] oY=l O o< - | o] oSS 28
KoMBANS .ttt 30
LT 0T PP 30
(0o] (o o F- (ol Y=Y {0 [T 1 - 14 oY o W PRSPPI 31

2.4 Handerafted FEAtUIES.......i ettt ettt sttt be e s ae e st e eneeeneeas 33
Gray-level co-occurrence matrix (GLCM) FEATUIES .......cciccuiieeeeiiieeeetteee ettt e ettt e et e e e aree e e 33
Local Binary Pattern (LBP) FEATUIES .......cccueiiiuieeeiee e ctee et e ectee e etve e steeeetaeesteeeetveesabeeetaeesareeenns 34
(60e] (o T 1Y/ [e] 0 1 1= o1 £ P U S PP PRTR PR 35

2.5 Deep learning for Medical IMages.........ouiiiiiiieiiiie et e e s srae e e e sare e e s snaaeeeeas 37
2.6 Machine Learning in DEIMOSCOPY ... ..uuurriiieiiiiiciiiirieeeeeeeieirtrtreeeeeeesanreseeeeeesesssnseaseessseesssssseneeees 38

LY/ 1= d g YT o o] Lo -V S 41
N N oY To 1Y =To Y/ [=1 d g ToTo [o] (o = 2N RS URP 41
3.2 Image Resize and Data AUEMENTAtION .....ccccviiiiiiiiecccee e e 42
3.3 Hair Removal and CLAHE eqUalization .........cceei oottt eecnre e e e e e 42
R 1o T =S Y =Y o g 1= = f Lo ] o N 43

R I Rt LA U L = o = o1 1o [N 46



T N Yo (ol Vi (=0 [l =T L (U SRR 46

3.5.2 Deep 1earNING fEAtUIES ..ooviiee ittt e s e e st e e s sbae e e s sbeaeeesanes 49
3.5.3 Patients' Metadata FEAtUIeS ........cou i ittt e 50

3.6 IMage ClassifiCatioN .....c..ueiiiciiee e e et e e e e e e e et e e e e s abae e e eeareee e e araeas 50
3.7 PYthon €O ANGIYSIS .uuveeiiiiiiieeciiiee ettt ettt e e e e tte e e et ae e e e e ate e e e s nbaeeeeabaeeeenntaeeeennseeeeennsenas 51

4 EXPeriments @nd RESUILS .....oiiiiiiiiiiiiiie ettt e e et e e e ssate e e s sstaeeessasaeeesanseeeesan 54
L R DT = 11X PO PPN 54
4.1.1 ThE ISIC 2020 ArCRIVE ...viiiiiiiiie ettt ettt ettt e st e st e s st e e e sabae e e ssabaeeesanseeaesnnsreeeens 54
4.1.2 DiSCOVEN the dataset......ccciuiriiriiieiieniesie ettt ettt be s 55
4.1.3 Class DiStrDULION ....coiueiiiiiii ettt sttt b e bt st st e e beens 57

4.2 EValuation MEthOAS .....couiiiiiiieieecee ettt ettt e sb e et e s e e sat e e sbaeesans 58
4.2.1 CONTUSION IMALEIX 1eeuriiiiiieiiie ettt ettt ettt ettt et e e st e e st e e st esbeeesabeessbaeesateesseeesareenn 58
4.2.2 ROC Curve and Area Under CUIVe (AUC)......c.uieiieeeieeciieeecteeecree st eesiteesteeestveesareesvaeesanee s 59

4.3 Base MOAEIS RESUILS .......ooueiiiiiiieie ettt st sttt e s e saee e 59
4.2 Combination of CNN Features and Handcrafted FEatures..........ccooeeeveeieeneenieniienieeneeneeneee 60
4.3 Combination of CNN Features and Handcrafted Features and metadata........cc.ccceceeveeneennene 61
4.4 Comparison with State-of-the-Art apPProaches........cccoccveiiiciiie e 63
4.5 VISUANIZATION ..ttt b e s bt st et e bt bt e s b e e sbe e et e e ateenbeesbeesaeenas 63

5 DISCUSSION 1etiiitiiei ittt ettt e st e st e e s e et e e s eab e e e e s b et e e s e b et e e s ebe e e e s e be e e e s e neeeesenaneesnnee 68
6 CONCIUSION AN FULUIE WOTK c..eiiitieie ettt sttt ettt ettt sbeesbe e st e eaeeeneeas 69

BB IIOBIAPNY ...ei ettt sttt et e st e e s abe e s be e e s abeesbee s raeesbeeenn 70



List of Figures

Figure 1: Basic Artificial NeUral NETWOIK.......cuviii ittt 13
Figure 2: Representation of a neural network (Kataev, et al., 2012) ......ccccccoveevieeeceeenieeeeeesiee e 14
Figure 3: A convolution neural network architecture (Hidaka, 2017).......ccceccvvveeeeiiieeeciieee e, 17
Figure 4: lllustration of Max Pooling and Average Pooling (Yani, 2019) .......ccccceeevvieeeeiiiiee e, 18
Figure 5: V8219 Model archit@CtUrE ...coc.viiiieiiee et e s e e s 21
Figure 6: VGG19 convolutional BIOCKS........ccccviiiiiiiecee ettt 21
Figure 7: First 6 Filters out of 64 Filters in first hidden layer of VGG19 Model.........ccccoevvverriiveeennneen. 22
Figure 8: DenseNet121 model arChit@CtUIE ......coiviviiiiiiiiiie e 23
Figure 9: DenseNet121 architecture in 2 deeper [@VEIS.......ccuueiiecieiecciieee e 23
Figure 10: Number of FLOPs of EfficientNets on ImageNet dataset.......cccccovvvieiiviiieeiiiien e, 25

Figure 11: Model Scaling, (a) is a baseline network example, (b)-(d) are convolutional scaling thet only
increases one dimention of network width, depth or resolution, (e) is the compound scaling method

that uniformly scales all three dimentions with fixed ratio ........ccccceeveiiiiieiiiicc e, 26
Figure 12: EfficientNet-BO model archit@CTUIe .........oooeuiieiccee et 26
Figure 13: EfficientNet size and performance on the ImageNet dataset in comparison with other CNN
] o1 =Tt ] RPN 27
Figure 14: Sobel convolution Kernels, (SODEI) .......uuei i 28
Figure 15: Sobel pseudo-convolution deteCtor.........ciiiiiieiiiiie e 29
Figure 16:: Sobel: An edge is shown by the "jump" in intensity (OPENCV) ..ccccuvveeeciiieiciiieeeceee e, 29
Figure 17: The edge "jump" can be seen more easily if we take the first derivative (actually, here
APPEAIS @S @ MAXIMUIM) 1.vieiiiieiieeeiteeeiteesiteeesteesiteeesseeesseeassseessesarsesessesasssessseessasesssessssesesssessnsesessees 30
Figure 18: U-Net arChit@CIUIE ....cccuuiiieeeee ettt ettt e e et e e e tte e e e e abae e e entee e e e nseeeeennreeas 31
Figure 19: Texture descriptor With GLCM .........ooiiiiiiiiiie et 33
Figure 20: 3x3 window definition and spatial relationship for calculating Haralick texture measures.
............................................................................................................................................................... 34
Figure 21: The LBP feature eXtraction ProCeSS. ... iiieiiiieeeccieeessitee e ssree e s sitee e e s vee e e s sabaee s e saneeas 35
Figure 22: Example of MUILISCAIE LBP........coocuuiiiieeeiee ettt et e e e e ree e e e aree e s e aneeas 35
Figure 23: Proposed arChit@CIUIE ......ccocueiie ettt et e et e e e et e e e e abee e s enbeeeeeenneeas 41
Figure 26: Original lesion(left), True lesion Mask (Fight) .......cccveeiiieiiee e 45
Figure 27: The U-Net architecture for melanoma segmentation .........ccccceeeeciieeeeciiee e, 45
Figure 29: Non melanoma top, melanoma bottom ..........cooviiiiicie i 55
Figure 30: Gender, Anatomy Site and Age distribution of ISIC 2020 dataset ........ccccceevvvveeeviieee e, 56
Figure 31: Scans by Anatom Site in Train Data........cceeeciuiieieciiee ettt e e e e e 56
Figure 32: Malignant Ration per Body part and Per SEX ......ccccueeeiccuieeeiiiiieeciieeeesiee e sree e e evee e e 57
Figure 33: Class distribution of the ISIC dataset........ccccccuiiieeiiiieeciiee et 58

Figure 34: Hair removal using CIE Luv color space and CLAHE equalization: (a) original RGB image, (b)
CIE Luv image, (c) hair mask, (d) CIE Luv image after hair removal, (e) RGB image after hair removal (f)

(O o =T TV T | 1722 4 o] o RS 64
Figure 35: Chan-Vesse Active Contours segmentation process: (a) original RGB image, (b) RGB image
after hair removal, (c) segmented mask, (d) lesion segmentation ...........ccceeeeeciiiieeciiee e 65
Figure 36: Sobel based segmentation process: (a) original RGB image, (b) RGB image after hair
removal, (d) SEEMENTEA I@SION........eiiiiii ettt et e e s re e st e e bre e sbeeesaaeesareeesaeesareean 65
Figure 37: K-means based segmentation process: (a) original RGB image, (b) RGB image after hair
removal, (c) segmented mask, (d) segmented 18SION ........cceeeciiiiiee i 66

Figure 38: Unet based segmentation process: (a) input RGB image, (b) True mask, (c) predicted mask



Figure 39: Color space based segmentation process: (a) original RGB image, (b) HSV color space
segmentation, (c) CIE Lab color space segmentation, (d) YCrCb color space segmentation, (e) CIE Luv

[olo] o] g oF: [l Y=Y 40 s Y=Y oY = f o] o NN USRS 67
Figure 40 : Grey World Transformation on Color spaces: (a) original RGB image, (b) gwRGB, (c)
gwWHSV, (d) gwlLab, (€) gWYCICD, (f) BWLUV...cciiiiiiieeee ettt tre et e s bae e saeeenes 67

Figure 41: Max Color Constancy image transformation in different color spaces: (a) original RGB
image, (b) mxccRGB, (c) mxccHSV, (d) mxcclab, () mxccYCrCb, (f) MXCCLUV) .ccvveeevieeiieeieeceeee 68



List of Tables

Table 1 Data augmMENtation PrOCESS. ....ccuiiiiiciiei e ettt e errte e erree e sre e e e st e e e ssbe e e e sbbeeessnbeeesssseeessnnsenas 42
B Lo1 TSI A o) =Y o a1 -] o L= TSR 43
Table 3 Results of the base CNN models and Random Forest classifier ......c.ccccevvveiieeiniieeeinnciee e, 59
Table 4 Results of the base CNN models and XGBoost classifier.......cccccouveeeiiieeiccieee e, 60
Table 5: Results of the combined CNN and Hardcrafted features and Random Forest classifier....... 60
Table 6 Results of the combined CNN and Handcrafted features and XGBoost classifier.................... 61
Table 7 Results of the combined CNN and Handcrafted and metadata features and Random Forest

Lol b= 1] 1 1= oSSR 61
Table 8 Results of the combined CNN and Handcrafted and metadata features and XGBoost classifier
............................................................................................................................................................... 62



1 Introduction

1.1 Motivation

Skin cancer is regarded by experts as a global health issue, being the most common form of
all cancers. Especially, malignant melanoma, is the deadliest case and it causes the most skin
cancer deaths. (Skin Cancer Facts & Statistics, 2022) From 2006 until 2016 it was noticed an
increase of all type of cancers in both sexes. Melanoma is among the top 3 cancers with the
most significant increase in incidence cases along with thyroid cancer and uterine cancer.
Malignant melanoma has increased by 39%.The rates of melanoma have been rising rapidly
over the past few decades, but this varies due to the shift in population’s age structure, to the
age-specific incidence rates change and to the population growth. (SEER Cancer Stat Facts:
Melanoma of the Skin., 2019). More than 9,500 people are diagnosed with skin cancer in the
United States every day. Every hour, more than two people die because of skin cancer. It is
considered that in 2022 new melanoma diagnoses will decrease by 4.7%. However, the
percentage of melanoma deaths is predicted to grow by 6.5%. Also, approximately 7,650
people are anticipated to die from melanoma where 5,080 are considered to be men and
2,570 women. (Cancer Facts & Figures 2022) In the United States, it is estimated that 197,700
cases of melanoma will be diagnosed in 2022 from which, 97,920 cases will be in situ (non-
invasive), restricted to the epidermis. 99,780 cases will be invasive, passing through the
epidermis into the dermis. From these cases in the period of thirty days of being biopsied
57,180 will be men and 42,600 be women with Stage | melanoma cancer (SEER Cancer Stat
Facts: Melanoma of the Skin., 2019). Patients treated from 30 through 59 days after biopsy
have a 5% higher risk while, patients treated later than 119 days after the biopsy have a higher
risk of 41% to die. In the United States, the average five-year survival percentage of patients
of all melanoma stages is 93%, while people with melanoma diagnosed in early stages is 99%.
If the illness spreads to the lymph nodes, the life expectancy drops to 68%, and to 30% if it
invades to distant organs. (Skin Cancer Facts & Statistics, 2022)

To limit melanoma cancer from expanding and causing irreversible results, early detection and
treatment are of great significance. A broadly used non-invasive technique for skin tumors’
diagnosis is dermoscopy. It has been fully established for diagnosing melanocytic tumors, e.g.,
melanoma, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC) because it allows
clinicians to identify them in the early stages (Dermoscopy of Melanoma and Non-melanoma
Skin Cancers, 2019). However, a dermatologist can achieve a 65% to 75% accuracy rate with
dermoscopy (Nami, Giannini, Burroni, Fimiani, & Rubegni, 2012). As a result, patients are often
exposed to biopsies, which are emotionally and financially draining. A study by Elmore showed
that by collecting 240 different skin biopsies varying from ordinary moles to advanced
melanoma, pathologists disagreed that lesions were not that straightforward, worrying
patients. (ElImore, et al., 2017)

Deep learning combined with traditional machine learning techniques gives new examples of
how to create learning models for complex data. (O’Mahony, et al., 2020)
Automated skin cancer detection is one of the many medical fields that can benefit from this,
because it can solve issues related to the lack of medical staff in health care clinics, and in
isolated areas, supporting telemedicine as well as the problem of misdiagnosis and



recurrences of skin lesions. Using the automated skin lesion detection systems, doctors can
receive an immediate answer by capturing a skin lesion image and submitting it through a
predictive model, allowing them to diagnose melanoma without lab tests or additional fees
even being away from their patients.

In this thesis, a novel approach is proposed that combines deep learning, handcrafted, and
metadata features for melanoma classification. We experimented with various lesion
segmentation techniques, deep learning, handcrafted and metadata feature extraction, and
feature classification. We combined them to form an ablation study of all the possible
combinations in an attempt to find the best result. The combination of deep learning,
handcrafted features, and metadata improves the accuracy of the base models (deep learning
features or learned features) for the binary problem of malignant or benign skin lesion
classification problem. The generated results are comparable with the state-of-the-art
techniques that employ much more complex neural networks.

1.2 Structure of Thesis
This thesis is divided to the following chapters:

Chapter 1: Introduction refers to the subject and underlines the scope and the aim of the
present thesis.

Chapter 2: Background and Related work make a concise introduction to machine learning
and take a more in depth look in deep learning methods and algorithms that are used for
medical image processing. Moreover, it refers to the existing related work, the basic methods,
and the problem of skin lesion classification.

Chapter 3: Methodology analyses in detail the pipeline of the proposed approach.

Chapter 4: Experimental Results contain dataset analysis, the evaluation methods were used,
the results of the proposed methods, the performance improvement and the corresponding
visualizations.

Chapter 5: Discussion about experimental results, the proposed methods and about the
comparison of our method with other research solutions.

Chapter 6: Conclusion and Future Work is a summary of the completed work, and we discuss
about the possible future opportunities.

Bibliography contains the list of sources that this research based on.



2 Background and Related Work

This section presents a concise introduction to machine learning and takes a more in-depth
look at deep learning methods and algorithms used for medical image processing

2.1 Machine Learning

The earliest thinking and essential work in machine learning were done in the middle of the
20th century by Alan M. Turing. (Turing, 1950) Turing published a paper to consider if the
machines could think. Turing proposes the imitation game, a test of machines' ability to
interact with humans. More specifically, if an artificial system can interact with a human in
natural language conversations. Artur Samuel firstly introduced the term machine learning in
1959 and used this term to describe a self-learning program (Samuel Checkers-playing
Program)(Samuel, 1967). Tom M. Mitchell replaced Alan Turing's question and proposed the
guestion if machines can do what we (as thinking entities) can do. He also provided a formal
definition of the algorithms studied in the machine learning field: "A computer program is said
to learn from experience E for some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E." (Mitchell, 1997)

Machine Learning is a part of Artificial Intelligence, and it is the study of algorithms that can
improve the use of data. (Mitchell, 1997) Machine learning algorithms build a training model
using samples of data to make decisions or make predictions in unseen data.

Traditional programming pertains to any self-constructed program which uses data as input,
and the computer program gives the output. During the input step, the program is fed with
data by the programmer, who has to set the logic to produce the desired outcome manually.
So, programmers have to manually set the rules of their programs via calculations and
hardcoding. On the other hand, in machine learning programming, the input data are fed to
an algorithm that produces an output. There is no need to program rules and set directions.
Instead, the algorithms automatically formulate the logic from the data powerfully.

There are the following four subcategories of machine learning: Supervised Learning, Semi-
Supervised Learning, Unsupervised Learning, and Reinforcement Learning.

2.1.1 Supervised Learning

Supervised learning is a subcategory of machine learning and Artificial Intelligence (Al).
Supervised learning datasets contain the independent variables or features (X) and the
dependent variables or target variables or labels (y). The main target is to produce a mapping
function that can predict their outputs with new input data as it is shown in the Equation 1.

y=f&) (1)

The process consists of data samples and an algorithm that learns from the training subset.
The algorithm predicts answers and is corrected by a mechanism, loss function that takes into
consideration the ground truth. Supervised learning can be further split into classification and
regression tasks. In classification problems, the goal is to minimize the error between
predicted discrete values and the correct label or the correct class of the data. If the number
of labels is two, the problem is called a binary classification. When there are more labels the
problem is called multilabel classification problem and when there are more classes, the



problem is called a multiclass classification problem. Standard and widely used classification
algorithms are Support Vector Machine (SVM), Naive Bayes, Logistic Regression, Nearest
Neighbor, Decision Trees, XGBoost, and Neural Networks.

In regression problems, we predict continuous dependent variables from independent
variables. The goal of regression problems is to minimize the error between the predicted and
ground truth (target) values. Some standard regression algorithms are Linear Regression,
Support Vector Regression (SVR), and Lasso Regression.

2.1.2 Unsupervised Learning

In supervised learning, there are only the input data (X), and there are no output variables.
The goal of unsupervised learning is the modeling of data structure or data distribution to take
important information about the data. In contrast to supervised learning, there is no correct
answer to the data. Algorithms are called to discover interesting patterns or structures, or
groups of the unlabeled data. Unsupervised learning algorithms can be further separated into
clustering problems, where algorithms cluster data into several groups by similarity, and
association rules, which are called to discover rules or relationships that perform into data.

Cluster analysis or clustering is the grouping of data samples, where samples of the same
group are more similar than other samples in different groups (clusters). The most common
clustering algorithm is the k-means algorithm, which is a centroid-based algorithm. K-means
uses the squared Euclidian distance as a similarity measure. The goal is to group the data into
K clusters, working iteratively to assign each data point into a group. Other categories of
cluster analysis algorithms are density-based, distribution-based, and hierarchical-based
algorithms.

Association rules algorithms are trying to discover a possible relationship between the data.
The target of the association rules is to associate or predict a relationship of some features
with others. The most famous association rule algorithm is the Apriori.

2.1.3 Semi-Supervised Learning

Semi-supervised learning is a combination of the two previous types. In semi-supervised
learning, a small sample of the data is labeled, and it is used to determine different classes of
the data. Most of the data are unlabeled, and the goal is to find those labeled classes and
discover possible additional ones. Semi-supervised learning takes the advangate of supervised
and unsupervised learning, and in large-scale high-dimensional problems avoids the problem
of collecting a large amount of labeled data. (Zhou & Belkin, 2014)

2.1.4 Reinforcement Learning

Reinforcement learning is a general term for an ensemble of techniques in which a learning
system is trying to learn from its environment. The learning models are named agents, and
these agents are trained by feedback required to learn their behavior. This problem is also
known as a trial-and-error method that starts with totally random trials, and through the
actions and feedback, the model finds a solution for a specific problem. The agent decides the
best move based on its current situation minimizing the risk function.



2.1.5 Classification Algorithms
In the following section, we will present the essential supervised machine learning algorithms:

2.1.5.1 Artificial Neural Networks

An artificial neural network (ANN) is an information processing model inspired by the
biological nervous system of brain. Artificial Neural Networks contain an input layer, one or
more hidden layers, and an output layer. The basic type of an ANN is the feedforward neural
network, which consists of interconnected neurons, and each neuron receives an ensemble
of weighted input. The process follows the summarization of those weighted inputs and,
finally, the output generated using an activation function. Figure 1 presents the structure of
an ANN where features come either as input from a dataset or another output layer. (Dongare,
Kharde, & Kachare, 2008) (Society, 2013).

E‘-L F 4.®ompm

Inputs w3

Activation function

Figure 1: Basic Artificial Neural Network

Figure 1 represents a basic artificial neuron, which contains multiple inputs [X;, X5, X3, ..., X, |-
The neuron input can be calculated as shown in Equations (2) and (3):

y = X1W1 +X2W2+X3W3++mem (2)
m
y=) XW (3)
i

Where m is the number of examples and W are the weights.

The activation function or Transfer function computes the relationship between input and
output and is divided into two categories:

1. The linear function where the output corresponds to the total weighted output. The
linear function does not help with complex data that are usually feed the artificial
neural networks. (Myers, 1989)

2. The non-linear functions are the most of activation functions and it is easier to model
various data. The non-linear activation functions can be typically divided by their range
or curves. The most famous activation functions are Sigmoid, Tanh, Rectified Linear
Unit (ReLU), and Leaky ReLU. (Sibi, 2013) (Sharma, 2017) (Agarap, 2018)

A Neural Network consists of multiple connected neurons by layers. In a neural network, as it
is mentioned above, there are three-layer types, the input layers are the layers that receive



the unweighted input data, the hidden layers and the output layers that receive the output of
hidden layers and produce the neuron's output. Figure 2 show the architecture of a neural
network with an input layer, a hidden layer and an output layer.

Hidden laver

Output layer

Input layer

Figure 2: Representation of a neural network (Kataev, et al., 2012)

The neural network learns iteratively for N training cycles (epochs) in the training stage, and
it uses a loss function to calculate the prediction error after each epoch in an attempt to
minimize it. In other words, the loss function quantifies the difference between the outcome
predicted by the machine learning model and the expected outcome. We receive the
gradients used to update the training weights from the loss function. The simplest loss
function is described in the Equation 5:

loss = |truevalue — predicted value| (5)

Whereas the most used loss function in regression problems is the mean squared error (MSE)
and the mathematical Equation is described in the Equation 6:

E=(y;—y)? (6)
where it is just the squared difference between the expected value (y;) and the predicted

value (¥;). The cost function results from the average of all losses outcomes is described in
Equation 7:

1 A
C = NZIiV=1()’i — $;)* (7)

A Loss functions for classification tasks is the Cross Entropy, which is described by the
Equation 8:

CrossEntropyLoss = —(y;log(9;) + (1 —y;)log(1 —3;)) (8)

where J; is the predicted value and y; is the expected value. Other loss functions for
classification tasks are Categorical Cross Entropy, Hinge Loss, Cosine Similarity. (Chai, 2014)
(Ho, 2019) (Zhang, 2018) (Janocha, 2017) (Xia P. Z., 2015)

2.1.5.2 Random Forest
Decision Tree (DT) is a well-known and influential supervised learning algorithm, which has
affected a large range of machine learning, involving both classification and regression



problems. (Rokach, 2015) The basic structure of a decision tree contains nodes that represent
a feature, links (branches), which represent a rule (decision), and leaf which represents the
outcomes. So, a decision tree is a prediction model that represents decision-making rules,
using input features to predict a target value accurately. In classification decision trees, target
variables are discrete values, and in regression decision trees, target variables are continuous.
There are some metrics that define the cost of each split. Two of them are the Gini impurity
and the Information Gain. The Gini impurity metric is used in Classification and Regression
Tree (CART), and calculates the probability of new, random data being incorrectly classified if
it were given a random class label. In case we have C classes and p; is the probability of picking
a data point with class i, the Gini Impurity is described in Equation 9:

G=) px(1—p) (9)
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The split which produces minimum Gini impurity will be selected.

The Information Gain metric calculates how much entropy we removed. Entropy is defined as
in Equation 10:

E(S) = —1pslogp, — 2p;logp, — - — npylogp, = — X p; logp; (10)

The Information Gain is defined in Equation 11:

IG(T,a) = E(T) — E(T|a) (11)

The parent entropy E(T) minus the children's weighted Entropy for each split according to a
characteristic E(T|a). The feature that maximizes the difference is the one in which the
separation will take place.

Random Forest Classifier contains multiple decision trees as an ensemble. Each decision tree
feeds a class prediction, and the class with the most votes will become the model prediction
class.

2.1.5.4 XGBoost

Extreme Gradient Boosting (XGBoost) is a scalable distributed gradient boosting decision tree
algorithm. XGBoost uses parallel tree boosting which has been proven to provide robustness
for classification and regression problems. (Chen & Guestrin, 2016)

A Gradient Boosting Decision Tree (GBDT) is an ensemble machine learning algorithm
contiguous to Random Forest. Ensemble learning algorithms employ numerous algorithms to
produce a powerful model. Both Random Forest and GBDT are based on decision tree models,
but Random Forest uses a bagging technique where the final prediction is based on the
majority class. On the other hand, the Gradient Boosting algorithm uses several weak models
to improve a single weak model to produce a robust model, to produce a robust model.



Gradient Boosting is an extension of boosting algorithm where the process of producing weak
models is based on Gradient Descent. GBDT is an iterative process to train an ensemble of
decision trees. Each iteration uses the error of residuals of the previous model to fit the next
one. The final prediction model results from a weighted sum of all tree predictions. (Chen &
Guestrin, 2016)

XGBoost is an advanced implementation of Gradient Boosting Decision Trees and some
regularization factors. (Chen & Guestrin, 2016) XGBoost is the most efficient scalable tree
boosting method with applications in different cases such as motion detection, customer
behavior analysis, stock sales prediction, and image recognition.

2.2 Deep learning

Deep learning is a subcategory of machine learning and artificial intelligence. In deep learning
algorithms, there are artificial neural networks with many hidden layers inspired by human
brains’ structure, and they learn using data, weights, and biases. The ‘deep’ refers to the two
or more hidden layers. Deep learning algorithms are applied to computer vision, object
detection, speech recognition, and bioinformatics.

Deep learning techniques are prevalent because of their ability to process unstructured data
as input, such as text or images, extract features automatically, and predict the outputs. An
essential characteristic of Deep Neural Networks (DNN) is the so-called feature hierarchy. Each
hidden level of neurons trains on a specific type of feature, such as the hands, if we use
position and hand-detecting images. The deeper a level is, the more complex the
characteristics on which it is trained are. For example, suppose we want to classify some
animal photos like cats, dogs, and lions. In that case, deep learning algorithms can detect low
level important features, like edges, nodes, then in a higher level it uses those features to
detect eyes, noses, mouths, ears and in the highest level it combines these features to
semantically important representations for making predictions. This situation is called forward
propagation. Moreover, through the back propagation process and gradient descent
algorithm, it calculates the prediction errors to update weights and bias, increasing the
accuracy of predictions.

However, there are more complicated deep learning models with different structures, and
they are specified to solve specific problems. Two of them are the Convolutional Neural
Networks (CNN) and the Recurrent Neural Network (RNN). The first are used primarily on
computer vision and image classification problems. They can extract features and patterns
from images. The second type, which is a sequential model, it is used mainly in speech
recognition, time series analysis, and generally in sequential data points.

2.2.1 Convolutional Neural Networks (CNN)

Convolutional neural networks belong to the category of deep neural networks and were first
used successfully in the 1998 by LeCun. (LeCun, 1998) This type of neural network is
advantageous and is widely used for various functions related to computer vision such as
object detection and image classification. In these cases, convolutional neural networks are
more popular than classical artificial neural networks. A convolutional neural network is
trained by taking images as input and then having three types of layers, convolutional layers,



pooling layers and fully connected layers like the one in the Figure 3, where we want to predict
whether an image belongs to a particular category or not.

e

Input Conv  Pool Conv Pool FC Output

Figure 3: A convolution neural network architecture (Hidaka, 2017)

Each level of CNN usually contains two separate sections. The first is the portion of the feature
map present in each CNN and results from the convolution of the previous level with a
weighted kernel. The input image relates to the weights of the feature map W,. The result
then goes through a non-linear activation function, generating the final output y; as it is
shown in the Equation 12 where f is the non-linear function, the W, are the weights over the
input x .

yi = f(Wie xx) (12)

One of the most popular activation functions is ReLU, which allows the extraction of non-linear
features from the convolutional layers. Mathematically it is expressed in the Equation 13 using
the max() function over the set of 0 and the input x. The ReLU is linear for values greater than
zero, meaning it has a lot of the desirable properties of a linear activation function when
training a neural network using backpropagation. Also, it is a nonlinear function as negative
values are always output as zero.

f(x) = max(x,0) (13)

Pooling layers take the activation layers’ outputs and decrease the dimensionality of the
features by combining related featuresinto a single output. Average pooling is a typical
method where input values from a small image segment are averaged and specified as the
input for the following level. However, a second most used technique, the max pooling, is in
which the maximum value of the input set is fed to the next level. In Figure 4 it is described
precisely the difference between the max pooling and the average pooling technique.
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Figure 4: lllustration of Max Pooling and Average Pooling (Yani, 2019)

Convolutional and pooling layers are stacked several times to enhance feature recognition.
Next, a set of fully connected neurons, called Fully Connected Layers, which are connected to
all feature maps of the previous layer, are accountable for generating high-level inferences.
During this stage, the neurons define the detected features and classify them.

A normalization or loss layer is inserted to calculate the expected and predicted values
difference. Commonly used functions are the softmax, which calculates the success of a class
among all exclusive classes, the sigmoid function, which calculates Kindependent probabilities
K of different classes in a range [0,1], and the Euclidean loss, which is used for the regression
of the actual value labels. The CNN training is like the ANN training and uses the
backpropagation algorithm.

Pre-processing Layers

Before a series of input images are imported to the input layer, multiple preprocessing steps
are needed, including resizing and normalization processes. However, CNNs require much
fewer preprocessing steps than other neural networks. Otherwise, a simple pre-processing
layer is required to eliminate insignificant differences.

Convolutional Layers

A convolutional layer compresses the input by collecting important features from it and
producing feature maps to the different feature detectors. In the first convolutional layer, the
neurons filter simple features such as edges. While each convolutional kernel can extract
features throughout the input layer, the neurons are responsible for different parts of the
input layer to produce the feature maps of the same size as the receptive field. This method
of sharing convolutional weights is derived from Convolutional Neural Networks and refers to
a stack of feature maps. The depth of the stack is determined by the number of neuron types.
Each neuron type shares the same weight and bias vector and generates a stack slice. The
input size, the kernel size, the depth of the map stack, the zero-padding, and the stride are
parameters that determine each convolutional layer.

Activation
The neural networks estimate continuous functions in Euclidean space, using a non-linear
activation function. LeCun introduced a sigmoid function to suppress the output of a pooling



layer. Later, Jarrett et al. proposed Rectified Linear Units (ReLUs) into CNNs to boost their
efficiency. Shortly after, Xavier Glorot et al. underlined that the exceptional efficiency of ReLUs
is due to their complex non-linearity, non-differentiability at zero, and sparse features. Finally,
ReLUs are generally accepted for the activation of convolutional outputs. ReLU is given by the
Equation 14:

F(x) = max(0,x) (14)

Pooling Layers

Pooling includes various operations such as general pooling, overlapping pooling, etc. It
generally acts as a bridge between many convolutional layers. The common pooling methods
in CNNs are max-pooling and average-pooling. CNNs benefit greatly from pooling.
Pooling seeks to reduce overfitting and computations by focusing local data via a pooling
window, hence lowering data dimensionality. In addition, pooling causes invariance in
translation, rotation, and scaling, since a few offsets or scaling no longer make a difference
after pooling.

Classification Layers

The top layer of a network is the classification layer, which gathers the final convolved feature
and outputs a column vector. Each row refers to a class. More technically, the output vector's
components each reflect a probability prediction for each class. While convolutions combined
with pooling map the raw image data into a feature space, the classification layer influences
the projection of the pattern space, providing an obvious exhibition of classification. Most
often, CNNs result in a fully connected layer. The fully connected classification layer is a legacy
of the idea of 'feature extraction and classification' in Artificial Intelligence. Fully connected
inputs are performed to combine and reweight all higher-order features to achieve the spatial
transformation.

Dropout and Batch Normalization

During training, regularization techniques like dropout and batch normalization can be used
to assist the model in adjusting to new, previously unseen samples and preventing overfitting.
(Chang, 2015) (Salakhutdinov, 2014) During the training phase, dropout refers to a
regularization approach that zeros out the activation levels of randomly chosen neurons. Not
depending on prior units, this stops units from co-adapting and drives them to learn more
robust features. Consequently, the network becomes less sensitive to individual factors and
has a more vital ability to generalize. Batch normalization includes removing the batch mean
from each activation and dividing the batch standard deviation. The neural networks' stability
and performance is improving using this method.

Fine Tuning and Transfer Learning

Deep learning can handle a wide range of problems, but it needs a lot of computational power
and data. Compared to other fields, data availability in medical imaging is frequently limited.
Because of the domain's sensitivity, annotation necessitates several expert judgments on the
same data, both costly and time-intensive. Although several deep convolutional neural
network approaches have produced significant results in medical imaging, training deep
models with a small set of labeled data remains challenging. As a result, overfitting, which
appears when a function is strongly fitted to a limited amount of data points, is usually a



concern in training deep models with limited examples due to the big number of parameters.
Many transfer learning-based approaches in medical imaging classification tasks have been
developed to address these constraints.

In transfer learning, a pre-trained model for a task is reused as the starting point for a new
task. Transfer learning aims to transfer information gathered from many labeled data to new
situations. (S. J. Pan and Q. Yang, 2010) People have natural means of transferring knowledge
across tasks by applying it from prior learning experiences to new ones. Many publicly
accessible deep models have been pre-trained on the ImageNet dataset (Deng, 2009),
containing over 1.2 million pictures. They have produced state-of-the-art results in a variety
of medical imaging classification issues. The use of a pre-trained model for feature extraction
is one of the most common transfer learning strategies. The pre-trained network acts as a
feature extractor, feeding a new classifier, the output layer. Fine-tuning is another transfer
learning strategy in which the pre-trained model's weights serve as an initialization scheme
for the new task (Shin, 2016). When we apply fine-tuning in a pre-trained network with a new
dataset, there are several options, like training the entire initialized network or freezing part
of the parameters and training the remainder, generally by updating only the network's final
layers. The usage of pre-trained models is limitless, and several studies have been undertaken
to take advantage of the benefits of transfer learning in medical imaging.

2.2.2 Deep learning features

3.4.1.1VGG19 features

VGG19 is a variant of the VGG model, which includes 19 layers. More in depth, there are 16
convolution layers, 3 fully connected layers, 5 max Pooling layers, and 1 softmax layer. (Shaha,
2018) The input size of the network is fixed, and it receives RGB images of size 224x224, meaning
that it receives a matrix of shape (224,224,3). The pre-processing process deducts the mean
RGB value from each pixel and calculates it over the training set. It utilizes kernels of size 3x3
with a stride size of 1 pixel covering the image as a whole. Also, spatial padding maintains the
spatial resolution of the image. The max-pooling executes a 2x2 pixel windows with side 2.
Moreover, introduces non-linearity to classify the model better and improve computational
time using Rectified linear unit (ReLu). Finally, it implements three fully connected layers. The
first two fully connected layers have size of 4096. The last fully connected layer has size of
1000, and the final layer is a softmax function. The Figure 5 represents the VGG19 architecture
with the convolutional, the max-pooling, the fully connected and the softmax layer.
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Figure 5: Vgg19 model architecture

When loading the model, the final dense layers were excluded. The feature extraction phase
of the model is from the input layer to the last max-pooling layer (designated by 7 x 7 x 512).
After defining the model, we loaded the input resized images of size 224x224. We have access
to all of the model's layers, and each layer has a layer.name property. Each convolutional layer
has two sets of weights. The first is the filters block, and the second is the bias values block.
The layer.get weights() method provides access to them. These weights can be retrieved, and
their form can then be summarized in Figure 6.
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Figure 6: VGG19 convolutional blocks

All convolutional layers make use of 3x3 filters. The depth of a filter in a convolutional neural
network must match the depth of the input for the filter to operate (e.g., the number of
channels). The Figure 7 shows the first six filters from the VGG19 model's first hidden
convolutional layer for the three channels. Each filter is plotted as a new row of subplots, and
each filter channel or depth is plotted as a new column.
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Figure 7: First 6 Filters out of 64 Filters in first hidden layer of VGG19 Model

It can be observed that in certain situations (the first row), the filter is the same across all
channels, whereas, in others, the filters are different (the last row). Small or inhibitory weights
are shown by dark squares, whereas bright squares indicate high weights. Also, the first row
of filters detects a gradient from light in the top left squares to dark squares in the bottom
right.

3.4.1.2 DenseNet 121

DenseNets, or densely connected convolutional networks, enhances the depth of deep
convolutional networks. DenseNets reuse features instead of gaining power from highly deep
designs and they require fewer parameters than regular CNNs since no duplicate feature maps
must be learned. Traditional feedforward neural networks connect the output of the layer to
the next level after applying a combination of functions. Typically, convolution operations or
pooling layers, batch normalization, and an activation function are three components of the
network.

The formula for this is the Equation 15:

X = Hl(x(l—l)) (15)

DenseNets, instead of adding the level output feature maps to the incoming feature maps, it
merges them. Thus, the Equation 16 becomes:

X = Hl([xO'xlﬂxZ' "'ﬂxl—l) (16)

The feature map dimensions remain constant inside a block, but the number of filters varies.
Transition Layers are the layers between them that handle down-sampling using batch
normalization, 1x1 convolution, and 2x2 pooling layers. Because we concatenate feature
maps, the channel dimension grows with each layer. We can generalize for the n-th layer if we
force H | to create k feature maps every time using the Equation 17:

ky=ko+k*(1—1) (17)

The hyperparameter k represents the growth rate. The growth rate handles the amount of
data that will be added by each layer to the network. Each level has prior accessibility to the



feature maps and therefore, to the collective knowledge. The Figure 8 represents the
DenseNet121 model architecture.
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Figure 8: DenseNet121 model architecture

It is worth noting how the initial number of the addition used to generate the feature maps of
each new volume corresponds to the preceding volume's feature maps dimension. This
explains the bypass connection because it indicates that we are adding new information to
the prior volume, which is being reused (concatenate means increasing dimension, not adding
values).

Moving 2 levels deeper the functions inside every block can be observed.
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Figure 9: DenseNet121 architecture in 2 deeper levels

As it is shown in Figure 9, each layer adds 32 new feature maps to the preceding volume. This
is why, after six levels, we get from 64 to 256. Transition Block also functions as a 1x1
convolution with 128 filters. A 2x2 pooling with a stride of 2 was performed, resulting in the
volume and number of feature maps being divided in half. This pattern observation can be
used to generate additional assertions. This behavior of adding 32 times the number of layers
is achieved at the new deeper level representing the first Dense Layer within the first Dense
Block. A 1x1 convolution is applied with 128 filters to reduce the size of the feature maps.
Then, a 3x3 convolution uses the 32 feature maps of growth rate. In addition, to add new
information to the network's existing knowledge, the input volume and the results of the two
processes are merged. (Huang, Liu, van der Maaten, & Weinberger, 2016)



3.4.1.3 EfficientNet

EfficientNet is a scaling CNN architecture that uses a compound coefficient to equivalently
scale its dimensions of depth, width, and resolution. (Tan & Le, 2019) The EfficientNet scaling
approach, unlike standard practice, consistently scales network width, depth, and resolution
with a set of predetermined scaling coefficients. To utilize 2V additional processing resources,
the network depth is expanded by a”, the width by 5", and the image size by y¥. Where, a,
B,y are constant coefficients obtained by a small grid search, the little initial model.
EfficientNet adjusts network width, depth, and resolution consistently and rationally using a
compound coefficient.

Compound Scaling

Convolutional Neural Networks (CNNs) are typically built with a range of capabilities and then
grown-up for higher accuracy as additional resources become available. The modification of 3
main dimensions: depth, width, and resolution, is called scaling a convolutional neural
network. The width is representing the filter number in each convolutional layer, whereas the
depth is representing the number of convolutional layers. Finally, the resolution is just the
supplied image's dimensions.

Scaling up the depth of the network by adding additional convolutional layers helps the
network to acquire complicated features. However, the deeper the network, it is suffering
more from diminishing gradients and it is harder to train. While batch normalization and skip
connections or inter node connections at various levels help solve this problem, true accuracy
benefits from rapid network depth saturation. Increasing the width of the networks, on the
other hand, allows the layers to learn more fine-grained information. However, just like depth
scaling, escalating the width avoids the network to learn complex features, which is leading to
better accuracy. Finally, a higher input resolution gives the network more information about
the picture and helps it extract finer patterns but only yields small accuracy increases.

Scaling up the model in a combination of width, depth, and resolution improves its prediction
ability. This is because as the spatial resolution of an input picture increases, the number of
convolutional layers should rise as well, allowing the receptive field to encompass the full
image with more pixels. Increasing a network's dimensions arbitrarily does not guarantee
better outcomes and balancing all three dimensions is challenging. In reality, to meet resource
limits, the method frequently needs several tries to scale up the dimensions correctly. The
Figure 10 represents the number of FLOPS of EfficientNets on the ImageNet dataset.
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Figure 10: Number of FLOPs of EfficientNets on ImageNet dataset

Scaling network width for different baseline networks means that combining three
dimensions should help network scaling for increased accuracy. This is supported by empirical
data in the figure above, which shows the accuracy of the networks as a function of increasing
width for varied depth and resolution settings. The results show that scaling only one
dimension (width) causes accuracy improvement to stop soon. When this is combined with an
increase in the number of layers (depth) or input resolution, the model's predictive
performance improves.

The idea behind EfficientNet is, to begin with, a high-quality model and scale all three
dimensions uniformly using a compound coefficient according to Equation 18:

depth = a®,width = B?,resolution = y?
s.taxpBixy? =2, (18)
a<l,p<1ly<1

where the values of a, B, y are determined using a grid search technique. The ¢ is a user-
defined parameter that determines the network's increased computational power. The
component that indicates that a * 82 *y? is close to 2 binds them. The Floating Point
Operations Per Second or FLOPS of a convolution process are proportional to d * w? * r, so
that when the network depth is doubled, the FLOPS will double as well. Even yet, doubling
network width or resolution will result in a fourfold increase in FLOPS. The computational
expenses are controlled by CNN's convolutional processes. The FLOPS will rise by (a * 2 x
¥2)? if the network is scaled using the preceding equation. For a new ¢ since a * 2 xy? =~
2, the total FLOPs will increase by 2. Where ¢ regulates the number of available resources
to scale the model, and o,B,y are grid-searched constants that suggest the network’s
dimension distributed resources. (Karki, Kulkarni, & Stranieri, 2021) (Tan & Le, 2019)

The Figure 11 represents how the structure of a model changes by scaling width, depth,
resolution separately and with compound scaling.
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EfficientNet-BO

When ¢ is set to 1 and twice as many resources are available, a, b, c are the results of a tiny
grid search. For f=1, the values @ = 1.2, = 1.1,y = 1.15 of maintaining the a * f2 x y2

2. This is the EfficientNet-BO model. (Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018) Unlike
classical convolution, which utilizes a 2-D depth filter to directly convolve the input in-depth,
depth-wise separable convolution only applies each filter channel to one input channel. It
separates the filter and image into three channels and applies the appropriate filter to each
channel. It then applies a pointwise convolution on the output to combine it. (Ali, Shaikh,
Khan, & Laghari, 2022) The Figure 12 represents the EfficientNet-BO model architecture.

Stage Operator Resolution | #Channels | #Layers
i ﬁ‘z I‘L X W,‘ CA'Z‘ Ai
1 Conv3x3 224 x 224 32 1
2 MBConvl, k3x3 112 . 112 16 1
3 MBConv6, k3x3 112 x 112 24 2
4 MBConv6, k5x5 56 x 56 40 2
5 MBConv6, k3x3 28 x 28 80 3
6 MBConv6, k5x5 14 x 14 112 3
7 MBConv6, k5x5 14 x 14 192 4
8 MBConv6, k3x3 TxT 320 1
9 Convl1xl & Pooling & FC Tx7 1280 1

Figure 12: EfficientNet-BO model architecture

Depthwise convolutions are usually combined with another step called Depthwise Separable
Convolution. This is divided into two sections: 1. filtering (all previous processes) and 2.
combining (combining the three-color channels to generate an arbitrary number of channels).

EfficientNetB1-B7

The EfficientNets B1-B7 was created using the compound scaling approach. A short grid search
was used to identify the a, B, y, by beginning with EfficientNet-B0 as the baseline model and
setting ¢ = 1, assuming twice as many resources are available. When these parameters are
specified, they determine the compound coefficient ¢ that increases to scale the base model



and generate EfficientNet-B1 -B7. The number at the end of the names indicates the value of
the compound coefficient value.

The Figure 13 represents the performance of the EfficientNets in comparison to other CNN
architectures on the ImageNet and CIFAR-100 datasets. The largest EfficientNet model,
EfficientNet B7, achieved state-of-the-art performance. On ImageNet, it achieved an accuracy
of 84.4 percent top-1 and 97.3 percent top-5. Moreover, the EfficientNet model was 8.4 times
smaller and 6.1 times quicker than the previous best model.
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Figure 13: EfficientNet size and performance on the ImageNet dataset in comparison with other CNN architectures

2.3 Image Segmentation
This section describes all segmentation methods and experiments applied to conclude the
proposed segmentation method.

Chan-Vesse Active Contours

The Chan-Vese model is a powerful method, able to produce efficient results where simpler,
less sophisticated segmentation methods fail (threshold or gradient-based methods). (Chan &
Vese, 2001) The Chan-Vese method optimally adapts a two-phase piecewise-constant model
to an image. The segmentation border is indirectly represented by a level set function and
allows segmentation to easily handle topological changes. (Getreuer, 2012) The Chan-Vese
model is based on the Mumford-Shah function to segment and it is widely used in medical
imaging, especially for segmentation of the brain and heart (D. Mumford & J. Shah, 1989)
Chan-Vese model uses an additional term that penalizes the fenced area and an additional
simplification where has only 2 values as it is described in the Equation 19,

cl,where x is inside C,

c2,where x is outside C, (19)

u() = {
where Cis the boundary of a closed set and c1, c2 are the values of u, inside and outside C.

The Chan-Vese technique (Getreuer, 2012) aims to identify the u of this type that best predicts
f.



argy, cminuLength(C) + v(Area(inside(C))

+ Alf |f (x) — c1|?dx +12f |f (x) = c2|?dx + 22 (20)
inside(C) outside(C)

The Chan-Vesse active contour segmentation algorithm is applied to the whole train images
to generate masks for each example to detect the Region of Interest (ROI), using the scikit-
image library (Van der Walt S. S.-I., 2014) with number of iterations equal to 100, threshold
equal to 0,79, and smoothing level equal to 1.

Sobel Operator

The Sobel Operator identifies edges by detecting sudden variations in pixel intensity. A 2-D
spatial gradient measurement on a given picture is executed by the Sobel operator, where it
emphasizes areas that correspond to edges. The Sobel operator generally operates to detect
the estimated absolute gradient magnitude at each point in a given grayscale image. The Sobel
operator contains a pair of 3x3 convolution kernels. As it is shown in Figure 14, the one kernel
is the second rotated by 90°.
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Figure 14: Sobel convolution kernels, (Sobel)

The kernels correspond to edges running vertically and horizontally. The kernels can produce
separate calculations of the gradient component by using an input image in horizontal and
vertical orientation. To identify the absolute gradient magnitude and the gradient's
orientation we can combine them. The gradient magnitude is given by the Equation 21:

|G| = /Gx2+ G,>  (21)

An approximate magnitude is computed by using the Equation 22,

IGl = |Gx| + |Gy| (22)

The angle of orientation of the edge (relative to the pixel grid) is giving rise to the spatial
gradient by the Equation 23:

0 = arctan(Gx/Gy) (23)

In this case, orientation 0 determines that it runs in clockwise direction on the image meaning
that the maximum contrast runs from black to white, while other angles differentiate and run



to the opposite direction. The Figure 15 represents the two elements of the gradient are easily
calculated and added with a single pass over the input image using the pseudo-convolution
operator.
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Figure 15: Sobel pseudo-convolution detector

Using this kernel, the approximate magnitude is given by the Equation 24:

The Figure 16 shows the way the Sobel Operator recognizes edges characterized by sudden
variations in pixel intensity.

t
Figure 16:: Sobel: An edge is shown by the "jump" in intensity (opencv)

When we plot the first derivative of the intensity function, the increase in intensity becomes
much more apparent. The Figure 17 shows that edges can be noticed in locations where the
gradient is higher than a particular threshold value. Furthermore, a quick change in the
derivative will result in a change in pixel intensity.



Figure 17: The edge "jump" can be seen more easily if we take the first derivative (actually, here appears as a maximum)

K-means

The k-means algorithm is an unsupervised learning algorithm employed to create a binary
segmentation of each example. k-means splits data into several k groups (clusters), where k is
the number of clusters with minimum error. The k-means algorithm consists of two separate
phases. The first phase calculates the k centroid, and in the second phase, each point is
assigned to the cluster closest to that data point. There are various ways of calculating the
distance to the nearest centroid. The Euclidean distance is one of the most commonly utilized
approach. When an iteration is done, a new centroid for each data point is computed. The
centroid point of each cluster is the position at which the total of the distances from all of the
objects in that cluster is the shortest. As a result, k-means is an iterative method that
minimizes the sum of the distances between each object and its cluster centroid over all
clusters. (Dhanachandra, Manglem, & Chanu, 2015) The algorithm for k-means clustering
initializes some clusters k and center. Then, taking into account the Equation 25, it calculates
the Euclidean distance d between the center and each pixel of an image.

d=llp(xy)—c)ll (25)

Moving on, it commits all the pixels to the closer center based on distance d. Finally, pixels
have been committed are recalculated to the new position of the center based on the

Equation 26.
1
=7 ) ) pEy) (26)

YECK XEC)

This process is repeated until it meets the allowance or the given error value. K-means has
clustered a flattened vector of each grayscale image in 2 clusters.

U-net

A state-of-the-art way to create a segmentation model is to train a U-net deep neural network
in an appropriate dataset to segment new lesions using the training weights. The UNet
architecture was presented by Ronneberger et al. (Ronneberger, Fischer, & Brox, 2015) for
biomedical image segmentation. Although a typical CNN concentrates to image classification
tasks, we are also interested in localizing specific structures in biological applications. UNet is
committed to resolving this issue. It can localize and recognize boundaries since it performs



classification on each pixel, resulting in the same input and output size. The presented
architecture in Figure 18 has a "U" shape. It has a symmetrical shape and it includes two main
parts. The left or the contracting path, and the right part or expansive path, which is composed
by transposed 2d convolutional layers. (Ronneberger, Fischer, & Brox, 2015)
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Figure 18: U-Net architecture

Contracting Path — Encoder Blocks

The contracting path or encoder operates as the feature extractor of the input image through
the encoder blocks. In each process, there are two convolutional layers. The amount of
channels increases the depth of the image. The red arrow in the Figure 14 represents the max
pooling which reduces the image dimensions from 572x572 to 568x568 in the first block. It
follows a RelLU activation function. This operation is repeated 3 more times to reach the
bottommost, where the image size is 28x28x1024.

Expansive Path — Decoder Blocks

In the expansive path or decoder blocks the picture size increases into its original shape, via
transposed convolution. The expansive path produces a segmentation mask. The decoder uses
a 2x2 transpose convolution which is merged with the correlating skip connection feature map
from the expansive path. Skip connections supply features that are lost because of the
network’s depth. Then, there are two convolutions, each one is followed by a ReLU activation
function. The last convolutional layer delivers the output via 1x1 convolution with sigmoid
activation function, which returns a segmentation mask. UNets can achieve image
segmentation predicting an image mask pixel by pixel. To produce good predictions based on
limited amount of examples, data augmentation is recomended. (Ronneberger, Fischer, &
Brox, 2015)

Color space segmentation

Color space is an abstract mathematical model, where there is a specific description of how
the components are set to be defined. In addition, it describes the manner human color vision
can be modeled. There are various color spaces such as RGB, HSV, Lab, Luv, and YCbCr. RGB
images can be converted to another color space using transformation functions. The RGB color



space is the primary form of image representation, but some applications may find it more
convenient to find other color spaces.

The HSV (Hue, Saturation, Value) color space is related to the RGB color space. Hue is the
primary color humans perceive. Saturation is the quantity of white light together with the hue.
Value is the brightness or the intensity. To simplify, Hue indicates to hue, Saturation to shade,
and value to tone. The angle dimension represents Hue(H), starting with Primary Red at 0°,
moving through Primary Green at 120°, Primary Blue at 240°, and ending with Red at 360°.
The distance from the center axis of the HSV cylinder corresponds to the Saturation (S). A
saturation value moving towards the outer edge means that the color value has reached the
maximum value for the color defined by the hue. The central vertical axis of the HSV color
space is the Value (V). It ranges from black at the bottom with lightness or value of 0 to white
at the top with a lightness or value of 1. (Hema & Kannan, 2019) From the different channels
of HSV we can identify the lesion and background because of their difference in intensity.

The CIE L*a*b color space has a channel for Luminance (Lightness) and two more color
channels the a and the b, the chromaticity layers. The first one, the a* layer represents the fall
of the color along the red-green axis, and respectively the b* layer represents the fall along
the blue-yellow axis. Negative values of a* represent green and positive values represent
magenta; negative values of b* represent blue and positive values represent yellow. It is
significant to mention the property of this color space which gives us the ability to
communicate different colors on different devices (device independent). (Bora, Kumar Gupta,
& Khan, 2008)

CIE Luv color space is designed to be uniform. It combines the L, U, V components which have
the range of [0,100], [-134,220], [-140,122] respectively. The CIE Luv color space ignores the
part about the luminance scale and it uses a logarithmic scale covering a more extensive range
of values. Moreover, it describes colors of white light range in xyz space, which makes it not
to be device independent. (Umbaugh, Moss, & Stoecker, 1992)

The YCbCr color space represents a luminance component (Y) and two chrominance
components (Cb and Cr). The Y component represents the light intensity in this color space.
The intensity of the blue and red components corresponded to the green component is
represented by the Cb and Cr components, respectively. The YCbCr color space mimics human
vision, utilizing the efficiency of the human eye. The light intensity affects the human eye more
than the hue changes. Therefore, the human eyes comprehend more luminance information
rather than other components. The YCbCr color space takes advantage of this property to
reach an efficient representation of images. (Rahmat, Chairunnisa, Gunawan, & Sitompul,
2016)

The color spaces were used as segmentation method taking the advantage of the color
intensity transformation. The target was to transform the color intensity of each example, to
describe better the texture features. Those different color spaces (HSV, L*a*b, Luv, YCrCb)
smooth out low color intensity differences, and instead they focus on high color intensity
changes, which in this case are the skin and the lesions.



2.4 Handcrafted Features

Gray-level co-occurrence matrix (GLCM) Features

The Gray-level co-occurrence matrix (GLCM) is a method in statistical image analysis used to
estimate image properties in the context of second-order statistics. The GLCM examines the
relationship between two neighboring pixels as a second-order texture in an offset. GLCM is
the 2-D matrix of joint probabilities p, ¢ (i, j) between pairs of pixels which are separated by
a distance d in a certain direction 8 defined 14 statistical features from the co-occurrence
matrix of grey levels for texture classification. (Benco & Hudec, 2007) If pairs of highly
correlated pixels exist, the inputs are collected along the diagonal of the GLCM matrix. For
each distance d and direction 6, the computations are taking considerable time. The distance
and the number of alignments is confined to a restricted number of sets. A smaller number of
intensity level can decrease the computational time. The classification of fine textures requires
the use of small values for d while the classification of coarse textures requires the use of large
values for d. Once the matrices are computed, each one must be condensed to a few numbers
to classify the texture. (Wang & He, Texture classification using texture spectrum, 1990) A pair
of pixels includes reference and neighbor pixels. The specific spatial relationship between the
reference and neighbor pixels are defined before the GLCM calculation. For example, we can
specify that the neighbor pixel is 1 pixel to the right of the current pixel, or 3 pixels above it,
or 2 pixels diagonally (one of NE, NW, SE, SW) from the reference pixel. When a spatial relation
is defined, a GLCM of size (range of intensities x range of intensities) is shaped, all initialized
to 0. An 8-bit single-channel image has a GLCM of 256x256. The image is then crossed and
increases the corresponding matrix cell for each intensity pair to the specified spatial
relationship. In the Figure 19 we observe how GLCM calculates the value of GLCM(0,0). It takes
the value 2, because there were two horizontal instances contain the values 0 and 0. Also, the
calculation of GLCM(2,3) is 1 because one there was one horizontal instance which contain
the values 2 and 3.
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Figure 19: Texture descriptor with GLCM

So, GLCMi,j] entries contain the number of times this intensity pair appears in the image with
the defined spatial relationship. The matrix can be symmetric by adding it to its transpose and
normalizing it. Each cell expresses the probability of occurrence of that intensity pair in the
image. Once the GLCM is computed, the texture properties can be defined from the matrix
to represent the textures in the image.

The Energy/Angular Second Moment provides information on image homogeneity; it has low
When the probabilities of the grey level pairs are relatively similar the energy has low values,
and if not it has high values. Energy is computed as in Equation 27:
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The entropy measures the disorder of the GLCM and it is computed as in Equation 28:
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The correlation measures the grey level linear dependence between pixels at the specified
positions. When the values are uniformly distributed in the GLCM, correlation has high values.
The local homogeneity (also called inverse difference moment) is high when the same pairs of
pixels are found (e.g., in the case of a spatial periodicity). It is computed as in Equation 29:
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The Inertia or contrast quantifies local variations present in the image and it is computed as
in Equation 30:
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The Figure 20 shows the pixels 1 and 5 are 0° (horizontal) nearest neighbors to the center
pixel; pixels 2 and 6 are 135° nearest neighbors; pixels 3 and 7 are 90° nearest neighbors, and
pixels 4 and 8 are 45° nearest neighbors to the center pixel.
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Figure 20: 3x3 window definition and spatial relationship for calculating Haralick texture measures.

Local Binary Pattern (LBP) Features

Local Binary Patterns (LBP) are based on the Texture Spectrum model from 1990. (Wang,
Texture Unit, Texture Spectrum, and Texture Analysis, 1990) LBP is an effective texture
method which labels the pixels of an image by thresholding pixels around and retrieving the
result as a binary number as it is described in the Figure 21. (Xia, et al., 2018)
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Figure 21: The LBP feature extraction process

In its simplest form, the LBP feature vector is created in the following way: It divides the
examined window into cells (e.g., 16x16 pixels for each cell). Then, for each pixel in a cell, it
compares it to its 8 neighbor pixels. It follows the pixels along a circle, from left to right or
right to left). The neighbor pixels considered can be changed by varying the circle's radius
around the pixel, and the quantization of the angular space P. If the center pixel's value is
greater than the neighbor's value, it writes "0". Otherwise, it writes "1". This process gives an
8-digit binary number. After all, it calculates the histogram over the cell of the frequency of
each number occurring. This histogram can be seen as a 256-dimensional feature vector. The
histograms are normalized and concatenated with all cells. This gives a feature vector for the
entire window. The feature vectors can be used by machine learning algorithms to classify
images. The Figure 22 describes several circumstances of LBP and shows how the radius and
the quantization value of the angular space affect the circle along the pixels.

Figure 22: Example of multiscale LBP

Given a referenced pixel P (s, t) and its surrounding pixels Pk, the LBP,, (s, t) is calculated by
the Equation 31:

LBP, ,,(s,t) = TRz u(P(s, t) — P (s, 1)) = 2K,

1, >0
pem ={; "2, (31)

Where r is the radius of a circle, and n is the number of surrounding pixels in the circle with
radius r.

Color Moments

Color moments are metrics that may be used to identify images based on their color
characteristics. The computation of these moments yields a color similarity measurement
between images. The assumption behind color moments is that the distribution of color in a
picture can be read as a probability distribution. Several moments describe probability
distributions (e.g., mean and variance) differentiated by normal distributions. As a result, if a
picture's color follows a certain probability distribution, the moments of that distribution can



be used as features to identify that image based on color. Color moments are scaling and
rotation invariant because they describe the total information of each example.

Mean: The average color value for each channel of an image.
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Standard Deviation: The square root of the variance of the distribution of each channel.

N
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Skewness: A measure of the degree of asymmetry in the distribution of each channel.

N
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Kurtosis: Kurtosis is similar to skewness; it provides information about the shape of the color
distribution of each channel. More specifically, kurtosis measures how extreme the tails are
compared to the normal distribution.

Kurt[x] = E l(%)‘}l (35)

Color constancy is a detection mechanism of color independent of the light source and it
comprises low-level statistics-based methods like grey-world (GW), max-RGB, and grey-edge
(GE). (van de Weijer J. , et al., 2007) This task is accomplished by performing two separate
steps: estimating the light source's color in RGB coordinates and transforming the image.
(Barata, Marques, & Celebi, 2014) Two of the most used simple techniques for estimating the
color of the light are the grey-world and max-RGB algorithms. For a color image |, each
component of the illuminant is estimated using the Minkowski norm (Thompson, 1996) as
follows:



(f (e (x))Pdx

1/p
[dx > = kec,c € {R,G,B}, (36)

Where I. represents the ccolor component of an image I. The x = (x, y) is the position of
each pixel, k is a normalization constant that ensures that e = [eg, €5, e5]" has unit length,
using the Euclidean norm. P is the degree of the norm. After estimating e, the next step is to
transform the image I. A simple way to model this transformation is the von Kris diagonal
model. (Feng Xiao*a, 2013)
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where [I¥, 1%, T#]T is the pixel value acquired under an unknown light source, and [I%, IS, I5]T
refers to the pixel value transformation as it would appear under the normal light source,
considered to be the perfect white light. The matrix coefficients {dg, d;, dg} are the mapping
parameters, which are related to the estimated illuminant e as describes the Equation 38:

1
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2.5 Deep learning for Medical Images

Deep learning is able to deal with several problems, but it needs a huge amount of data and
high computational power. In the medical imaging field, data are limited because of sensitivity
issues and difficulties in annotation task (the lack of experts makes the problem expensive and
time consuming). Because deep learning, even if medical imaging data are limited, achieved
very promising results, it captured the researchers’ attention, and until today, it remains a
very challenging task which is developing rapidly. Due to the limited access to the data,
overfitting is usually an error that occurs. To overcome this problem, transfer learning
methods are applied. As it is already mentioned in previous subsection, transfer learning is a
method to transfer knowledge which was gained in a large amount of data and it is ready to
be used in new conditions. For this reason, transfer learning methods are very popular in
medical imaging field such as pre-trained networks as feature extractors, fine-tuning or part
of a pre-trained architecture combined with a new deep learning architecture and the weights
to be frozen or updated during the training of a new model. Another technique that is popular
in medical imaging to prevent overfitting error is data augmentation. (Inoue, 2018) The key
factor of this method is the image generation using an original image to achieve data
oversampling. This occurs by shifting, zooming, rotating, flipping the dataset’s images to
increase its diversity. When we apply data augmentation in medical imaging it is important to



notice the output of the model and whether data augmentation affect the results or not. For
instance, in X-Ray images, heart and aorta are positioned to the right-hand side of the image.
By applying horizontal flip, the image can be mistaken for a rare medical condition named
situs inversus, (mirrored organs syndrome) (Sirazitdinov, Kholiavchenko, Kuleev, & Ibragimov,
2019) In general, a random combination of data augmentation geometrical transformation
does not always affect positively the results. Imbalance class distribution is an another
challenging issue we face in medical imaging where the amount of the available example of
each class differs a lot. The class with most examples is named majority class and the class the
less examples is named minority class. When we train a model on an imbalance dataset, the
model becomes biased to the class with the most examples (majority class). Thus, even if the
model’s accuracy could be high, the model is not able to predict accurately the minority’s class
examples. In medical imaging problems, different metrics are used as evaluation methods to
solve this issue, such as Sensitivity (Recall/True Positive Rate), Specificity (True Negative Rate),
Recall, Precision, F1-Score.

Multiple deep learning research approaches have shown positive results in medical imaging
field using X-Ray, CT, MRI, Histopathology image data. Recent research mentions that the
increase of labeled X-Ray data has grown up the interest to expand more the deep learning
techniques. (Baltruschat, Nickisch, Grass, Knopp, & Saalbach, 2019) Baltruschat et al
investigate several ResNets (ResNet-38-50-121) network architectures where they
experiment in approaches with fine-tuning or without and in the construction of an X-Ray
deep learning architecture dedicated to X-Ray images from scratch. The ResNet-50-large-VP
achieved Sensitivity of 87,8%, Specificity of 85,9% and AUC of 94,35%. (Baltruschat, Nickisch,
Grass, Knopp, & Saalbach, 2019)

Ismael et al. introduced a deep learning approach for brain cancer using MRI scan images
diagnosing 3 brain tumor types, the Meningiomas, the Gliomas, and the Pituitary tumors. In
this approach a ResNet-50 network architecture achieving accuracy of 97%, precision of 98%,
recall or 97%, and F1-Score of 97%. (Ismael, Mohammed, & Hefny, 2020)

An another research using histopathological images and deep learning makes multi-
classification for breast cancer. (Han, et al.,, 2017) This paper introduces the DCNN deep
learning architecture which is dedicated to solve the multi-classification problem of breast
cancer and achieves the best results of average accuracy of 93,2%, in comparison with several
popular CNN architectures such as AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) which
achieved 83% accuracy in the binary classification breast cancer task. (Spanhol, Oliveira,
Petitjean, & Heutte, 2020)

2.6 Machine Learning in Dermoscopy

Dermoscopy is a non-invasive technique of skin imaging and is a critical method of diagnosing
melanoma. The ABCDE rule of dermoscopy or the 7-point checklist was designed for clinicians
to assist them to clarify the differences between benign and malignant skin lesions.
Asymmetry, Border, Color, Diameter and Evolving (ABCDE) are characteristics of skin lesions
that dermatologists examine to diagnose skin lesions. (Beaumont, 2021)



e Asymmetry — Melanoma is often asymmetrical, which means the shape isn’t uniform.
Non-cancerous moles are typically uniform and symmetrical in shape.

e Border—Melanoma often has borders that aren’t well defined or are irregular in shape,
whereas non-cancerous moles usually have smooth, well-defined borders.

e Color — Melanoma lesions are often more than one color or shade. Moles that are
benign are typically one color.

e Diameter — Melanoma growths are normally larger than 6mm in diameter, which is
about the diameter of a standard pencil.

e Evolution — Melanoma will often change characteristics, such as size, shape or color.
Unlike most benign moles, melanoma tends to change over time.

Expert clinicians search for visual features to clarify and to diagnose a skin lesion in most
dermoscopy methods. However, in case of inexperienced clinician, diagnosis remains a very
challenging task. Also, misdiagnosis of a skin lesion is a reason of many skin cancer deaths.
(Urbancek, Fedorcova, Tomkova, & R. Sutka, 2015) Regarding the ABCDE rules include
checking for asymmetric shape, irregular border, unusual coloring (color distribution),
diameter, and the evolution of the fault in units of time, is the most critical rule for diagnosis.
(Abbasi, et al., 2004) (Petra Fedorcova & Roman Sutka, 2015) However, this rule cannot be a
general rule for recognizing malignant skin lesions as there may be cases with an asymmetric
shape, irregular border, or unusual coloration that is a benign skin lesion. At the same time,
there may be an incident with a symmetrical shape, usual coloration, and a standard
malignant border. The melanoma detected in its early stages, which has not spread beyond
the small point of the lesion, is almost always curable. The diagnosing errors occur and the
lack of experienced medical staff underline the need of Computed Aided Diagnosis (CAD)
systems. (M. E. Celebi Y. A., 2017) Due to the great evolution of image capturing devices, the
image quality has improved, attracting the research interest to the automated classification
of dermoscopy images. As a result, machine learning and computer vision techniques are
being used to develop CAD systems that can detect melanoma and assist dermatologists in
early diagnosis to minimize diagnostic errors. As a real-world medical imaging problem,
melanoma classification encounters the problem of imbalanced data, where the ratio of
malignant cases in contrast with benign and dysplastic instances is much lower. Several
approaches try to tackle this problem targeting to data balancing. Over-Sampling and Under-
Sampling are two basic techniques that they try to balance the dataset and they are used to
the melanoma imbalance dataset problem. (Rastgoo, et al., 2016) Some approaches are using a
hybrid method to overcome the imbalance problem applying a random over-sampling method
which is followed by data augmentation. (Sayed, Soliman, & Hassanien, 2021) However, a
different approach tries to oversample the minority class by synthesizing new examples using
the Synthetic Minority Over-sampling Technique (SMOTE) and under-sampling techniques
using the Edited Nearest Neighbors by removing samples close to a decision boundary.
(Bezerra, et al., 2018)

The first approaches of melanoma classification made use of three basic processes. The
preprocessing and skin lesion segmentation, the feature extraction, and the feature
classification. The preprocessing step of the image data refers to image resizing, contrast
enhancement, noise reduction and hair removal. (A.J.Vyavahare & Mahajan, 2013) (Delibasis



& Maglogiannis, 2015) The next step is the segmentation of skin lesions identifying the region
of interest (ROIs) excluding the non-lesion area. The literature for medical image
segmentation covers several techniques which can be implemented individually or in
combination. Some of those methods are active contours, clustering, histogram thresholding,
edge detection. (Bakheet, 2017) (Abhilash, 2021) (Majtner, Yildirim-Yayilgan, & Hardeberg,
2016) The feature extraction process, is the step where features are collected based on
multiple characteristics such as border irregularity (Q. Abbas, 2011) (R. Erol, 2017) asymmetry
(W. Stoecker, 1992), color (S. Seidenari, 2005) (Zornberg, 2014) and texture. (H. lyatomi, 2008)
(M. E. Celebi H. A., 2007) Finally, those features are used as inputs to feed a machine learning
classifier such as support vector machine (Ghalib, 2017), bayesian classifiers (L. Li, 2014),
decision trees (Ghalib, 2017) and k-nearest neighbors (Ghalib, 2017) (L. Li, 2014) (Celebi, 2016)
Riaz et al. (Riaz, Hassan, & Javed, 2014) described a method for classifying dermoscopy
pictures using a mix of texture and color parameters. The texture of their skin is made up of a
variety of Local Binary Patterns (LBP). The authors employed typical HSV histograms to extract
color features.

Deep learning approaches such as deep convolutional neural networks and transfer learning
have shown that they achieve better results. The feature extraction step is automated and
depends on the model's architecture to detect and extract descriptive features to train
properly. (A. Esteva, 2017) (J. Kawahara, 2016) (Shen, 2018) (A. Rezvantalab, 2018) However,
several approaches are trying to combine those Deep learning with traditional machine
leaning approaches to improve the models’ efficiency and accuracy. Mollersen et al.
demonstrated using divergence-based color characteristics in 2015, where the divergence
between the distribution of pixel color values in a lesion picture and the pixel color values of
either a benign or malignant model is used to create these characteristics. (Mgllersen,
Hardeberg, & Godtliebsen, 2015) Moreover, texture-based features such as generalized co-
occurrence matrices, gradient histograms, Local Binary Patterns, and RSurf features have been
used combined with the AlexNet network (Krizhevsky A. I., 2012) to extract features which
used to train a Support Vector Machine. (Majtner, Yildirim-Yayilgan, & Hardeberg, 2016)
Codella et al. (Codella, et al., 2015) use a mix of deep learning, sparse coding, and support
vector machine (SVM) learning techniques for melanoma classification. On a dataset of 2624
clinical instances of melanoma, atypical nevi, and benign lesions, their technique had a
classification accuracy of 93.1%. Also, the research of (Xie, et al., 2017), began by identifying
57 descriptive features, including 50 color and texture characteristics and seven novel lesion
border features. The mentioned features are designed to be insensitive to the imperfection of
the lesions. The Principal Component Analysis (PCA) method (Jolliffe, 2005) was used to
reduce feature dimensionality and improve classification performance by removing less
important or noisy data. A collection of neural networks that operate together to increase net
diversity. The model was created by mixing BP neural networks with fuzzy neural networks.
The exported features were input for Random Forest, KNN, Gentle Adaboost, and SVM
classifiers achieving an accuracy of 94,17%, sensitivity of 95%, and specificity of 93,75%.
Hagerty et al, (Hagerty, et al., 2019) proved that the inclusion of classical handcrafted image
processing features and the Deep learning features (ResNet-50) resulted in a better
performing model, increasing the AUC from 0.83 without the HC features, to 0.94. Regarding



Kaggle's 1SIC2020 challenge leader score, the strategy of a series of different analyses is
beneficial, as the top scores improve this methodology. The best solution earned a ROC-AUC
score of 94.90%, using 18 networks. (Ha, Liu, & Liu, 2020) The EfficientNet-B3 - B7 models,
trained at a different resolution, and the SE-ResNext101 and ResNest101 were used. That
means that networks trained with a range of input sources can produce a diverse collection
of results but also means, making computation both costly and time-intensive.

3 Methodology

This section describes the suggested methodology for solving the problem of melanoma
classification.

3.1 Proposed Methodology
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Figure 23: Proposed architecture

In our approach as is it described in the Figure 23, we combine CNN features with handcrafted
features and metadata features for melanoma classification. It is divided into 8 steps. The
Image Resize and Data Augmentation, the hair removal, the CLAHE equalization, the lesion
segmentation, the handcrafted feature extraction, the CNN feature extraction, the metadata
features, and the features classification.

For pre-processing and handcrafted feature extraction phases, we embraced the recommended
methodologies and the existing code resource available in the GitHub repository "Multi-Color-Space-
Features-for-Dermatoscopy-Classification" (Saha, 2020). Especially, in the initial stages of pre-
processing, the repository guided our approach to apply hair removal and Contrast Limited Adaptive
Histogram Equalization (CLAHE) on our dataset. In the context of image segmentation, we adopted the
color space techniques recommended by Saha. Leveraging the established color space conversions,
we navigated the complexities of dermoscopic images, preserving vital color information while
enhancing luminance contrast. Subsequently, in the feature extraction phase, we integrated Gray-
Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) and color moments techniques into our



feature extraction pipeline. These techniques, enabled us to derive meaningful features from
dermoscopic images, facilitating a more comprehensive analysis.

Keeping all these in mind for the pre-processing and the handcrafted methods, we further investigated
with various lesion segmentation techniques, deep learning (CNNs) and metadata feature extraction
to obtain a feature classification model. It is expected that by combining all these techniques will
achieve higher accuracy of our model.

3.2 Image Resize and Data Augmentation

The first step of our approach is the image resize and data augmentation. We resized the skin
lesion images to 224x224x3 dimensions, which are the input shape of the CNN architectures
that employed. Also, an oversampling strategy is utilized to augment the minority class
(melanoma) by shifting, rotating, zooming and flipping the skin lesion examples to deal with
the imbalanced dataset. Although ISIC spent many years creating this dataset containing tens
of thousands of annotated dermoscopic pictures, it is still considered a small to medium
dataset for training deep architectures with millions of parameters. The data augmentation
approach was utilized to increase the variety and the size of the train set without actually
gathering additional data. Since each model has been built to perform better in different
input-sized images, the whole images are resized according to the default input size of each
model. The default input size for the CNN models we were used is 224x224, and the resize is
implemented based on those dimensions. The resizing task was applied to the training,
validation, and test set. The Table 1 describes the augmentation process after applying
different values for various augmentation circumstances, such as a random rotation between
0 and 45 degrees to the entire train dataset. Also a width and height shift of 0.2, shear and
zoom with a range of 0.2. Finally, the horizontal flip is used for image horizontal flipping.

Table 1 Data augmentation process

Random rotation Between 0-45
Width shift range 0.2

Height shift range 0.2

Shear range 0.2

Zoom range 0.2
Horizontal flip True

3.3 Hair Removal and CLAHE equalization

The next step of the pre-processing techniques is the hair removal and the CLAHE equalization
methods. We explore essential pre-processing techniques, including hair removal and
Contrast Limited Adaptive Histogram Equalization (CLAHE), as mentioned by (Saha, 2020).
These techniques have a significant role in enhancing the quality of dermoscopic images for
subsequent analysis.

For the hair removal task, to address the issue of dark hair occlusions in dermoscopic images,
we first transformed the RGB image channels into the LUV color space using the cv2.cvtColor



OpenCV library (Bradski, 2000). A spherical structuring element (SE) is created using
cv2.getStructuringElement. The radius of this structure is defined by the SE_radius parameter.
A morphological closing is applied to the L channel of LUV image using cv2.morphologyEx in
order to remove the dark regions, i.e. hair. Then the difference between the two,
morphological closing and the L channel image, isolates the presence of the hair, creating a
hair mask. Then, by applying hysteresis threshold, onto the hair mask, we further remove any
remaining noise, and the presence of hair becomes more significant. This technique provides
the intensity levels of hair pixel, and sets a threshold interval below which is assumed any low
intensive pixel is not significant, i.e. not hair. The high and low threshold values were set to
default. Then, this hair mask is subtracted from the L channel of LUV image, producing the
final LUV image without hair. Finally, the CIE Luv image is converted to RGB.

In the next step we applied Contrast Limited Adaptive Histogram Equalization (CLAHE) to
improve the contrast of the final images. CLAHE operates by defining the ClipLimit which sets
the threshold for contrast limiting and tileGridSize which sets the number of tiles in the row
and column. The values we used were the default ones as mentioned by (Saha, 2020).

Table 2 Notation table

Parameters | Description Value
SE_Radius Determines the radius of the spherical | 13
structuring element (SE) used in the
morphological closing operation.
Threshold Controls the threshold value used during | 20
hysteresis thresholding when generating
the binary mask

ClipLimit Sets the threshold for contrast limiting 0,9
tileGridSize | sets the number of tiles in the row and | 1
column.

Then, our approach divided into 2 different pipelines. The first pipeline follows the
handcrafted features extraction, where we experiment with several image segmentation
methods to define the region of interest (lesion) and then to extract features creating a
feature vector. In the second pipeline, we use CNN models to extract a second feature vector.

3.4 Image Segmentation

The image segmentation task is the previous step before we extract handcrafted features. In
this approach, we experimented with various segmentation methods in order to define which
method supports in the most proper way to create segmentation masks and to define the
lesions. It is important to distinguish between the techniques that were specifically used for
lesion segmentation and those that were used for simple filtering and global feature
extraction.



Lesion Segmentation Techniques

The primary goal of lesion segmentation is to accurately identify and isolate the region of the
image that contains the skin lesion. The following techniques were used for lesion
segmentation:

1. K-Means Clustering: K-means clustering was used to partition the pixels in the image
into different clusters based on their intensity values. This technique is effective in
separating the lesion from the surrounding skin.

2. U-Net: U-Net is a deep learning-based approach that was used for semantic
segmentation of the skin lesions. It is particularly effective for biomedical image
segmentation.

3. Chan-Vese Algorithm: The Chan-Vese algorithm is an active contour model used to
detect objects in an image. In this study, it was used to detect the contours of the skin
lesions.

Filtering and Global Feature Extraction Techniques

In addition to lesion segmentation, other techniques were used for simple filtering and global
feature extraction:

1. Sobel Operator: The Sobel operator was used for edge detection. However, it is
important to note that the way the Sobel operator was applied used did not constitute
lesion segmentation. Instead, it was used for filtering and enhancing the edges in the
image.

2. Color Spaces: Different color spaces were explored to analyze the color characteristics
of the images. This was used for global feature extraction rather than segmentation.

The first image segmentation method is the Chan-Vesse active contour segmentation
algorithm. The active contour estimates the pixel energy and it separates the pixels generating
a parametric contour with similar characteristics. The active contour model defines the lesion
segmentation by minimizing the energy function. The energy function minimizes the energy
that acquired by threshold function which defines whether a given lesion is inside or outside
the contour. The active contour is applied to the whole train images to generate masks for
each example to segment the lesions using the scikit-image library (Van der Walt S. S.-1., 2014).
The parameters of the chan-vesse active contour algorithm we set are the number of
iterations equal to 100, threshold equal to 0,79, and smoothing level equal to 1.

The second method we applied is the sobel operator. The sobel operator identifies edges by
detecting sudden variations in pixel intensity. A 2-D spatial gradient measurement on the
lesion images is executed by the sobel operator which emphasizes areas that correspond to
edges. The sobel operator estimates the absolute magnitude at each point of each given
greyscale skin lesion examples. The sobel output of this process in an array of floats which
describes the sobel edge map.

The third image segmentation technique is the k-means. We use the k-means clustering
algorithm to group color pixels with similar color intensive values. We fixed the number of



clusters as 2 in order to split each lesion image into background and foreground based on
similar color intensities. In this way, we create a binary segmentation lesion mask. The
algorithm clusters the values of each pixel into one of the 2 groups based on the sum of
squared distances of samples.

The fourth image segmentation technique was the training of a UNet giving as input skin lesion
examples and their masks to predict in new skin lesion examples their segmentation masks.
The goal is to create automated predictions of lesion segmentation boundaries. The ISIC 2016
challenge contains 900 dermoscopic train images, paired with the expert manual tracing of
the lesion boundaries in the form of a binary mask. Both the training number of examples and
their lesion mask is 900. The test set contains 379 images and 379 masks of the same format
as the training set. (1.S.1.C, 2016) The Figure 24 shows a skin lesion input example and its
ground truth mask.

Input image True mask
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Figure 24: Original lesion(left), True lesion mask (right)

The U-net training pipeline contains the pre-processing step, the training step, and the
evaluation step. The Figure 25 represents the UNet architecture we used to predict lesion
segmentation masks.
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Figure 25: The U-Net architecture for melanoma segmentation



In the pre-processing phase, each example, both original and mask, was normalized by
dividing each pixel by 255. Additionally, data augmentation was implemented using the
random left and right flip in a round of 0.5.

In the training phase we created image batches of with size 16, and these batches were
randomly shuffled. The UNet model has total parameters equal to 6,504,227, trainable
parameters equal to 4,660,323, and non-trainable parameters equal to 1,843,904. The model
was compiled with Adam optimizer, which is a stochastic gradient descent algorithm, that
computes individual adaptive learning rates for different parameters, by estimating the first-
and second-order moments of the gradients. (Kingma & Ba, 2015). Also, the training epochs
are ten and the steps per epoch is equal to 42. The training and evaluation completed with
loss: 0.1679, accuracy: 0.9328, validation loss: 0.2049 and validation accuracy: 0.9260.

The last technique we experimented is the color space. The color spaces were used as a
method for image filtering, taking the advantage of the color intensity transformation,
extracting global features. We transform each lesion training example into color spaces, to
describe better the texture features. Those different color spaces are the HSV, the CIE L*a*b,
the CIE Luv, and the YCrCb, which smooth out low color intensity differences, and instead they
focus on high color intensity changes, which in this case are the skin and the lesions.

3.5 Feature Extraction

The next step is the feature extraction which refers to converting raw data into numerical
features that can be processed while retaining the information in the original dataset. This can
produce better results than applying machine learning directly to the raw data. Feature
extraction performed handcrafted (manually) and automatically using the CNN models.

3.5.1 Handcrafted Features

Handcrafted feature extraction follows the image segmentation task, and it requires to
identify and to describe the features relevant to a particular problem and to implement a
method for extracting those features. Utilizing the insights available by (Saha, 2020), we
implement three handcrafted feature extraction methods, the GLCM, the LBP and the color
moments.

GLCM Features

The GLCM (GLCM) features combine GLCM features using 3 channels of color spaces such as

RGB, HSV, Luv, Lab, and YCrCb. Each image is divided into three color channels to account for

color information, with each channel represented by 256 gray levels. GLCMs (GLCM) are

computed using each of the channels individually by calculating the
Gyp,x € {r,g,b},0 € {0°45°90° 135°}

Gyo,x € {h,5,v},0 € {0°45°90° 135°

Gy x € {l,a,b},0 € {0°,45°,90°, 135°}

Gyo x € {I,u,v},0 € {0° 45°90°,135°}
Gyg,x €{Y,Ch,Cr},0 € {0° 45°90°,135°)

Moreover, it is computed the texture properties of each color channel as bellow:



Contrastyg = (Cyo + Cras + Croo + Cr135)/4
Energyye = (Exo + Exas + Exoo + Ex135)/4
Disimmilarity, g = (Dyo + Dyas + Dy oo + Dy 135)/4
Corelation, g = (Cyg + Cyx 45 + Cx 00 + Cy135)/4
Homogenety, g = (Hyo + Hyas + Hyoo + Hy135)/4
Where x €[{r,g,b},{h,s,v},{l,a,b},{l,u,v},{Y,Cb,Cr}].

For the implementation of GLCM we used the scikit-image python library (Van der Walt S.-I.,
2014) .

In the case of the sobel operator’s images, we have 1 channel in each example. We calculate
the GLCM by computing the texture properties Contrast, Energy, Dissimilarity, Correlation,
Homogeneity for the 1 channel of each training example.

The parameters to produce the greyscale co-occurrence matrix for each channel are:
channel=3, bit_debth=8, distances=1, angles = 0, 45, 90, 135 degrees, levels = 28. We also
selected to compute the following texture properties for each channel from the matrix to
represent the textures in the image:

Contrast.mean(), Dissimilarity.mean(), corellation.mean(), homogeneity.mean()

The features which produced using the segmented lesions by active contours, k-means and
UNet techniques are 4 for each R, G, B channel and the final vector has size of 12 features. The
features which produced using the segmented lesions of sobel operator technique are 4 for
the 1 channel and the final feature vector has size of 4 features. The features which produced
using the segmented lesions of color spaces are 4 for each channel of each color space. We
concatenated the GLCM_RGB, GLCM_HSV, GLCM_LAB, GLCM_YCrCb, GLCM_LUV. The final
vector includes a set of 60 features.

LBP Features

The LBP (CLBP) features combine LBP features using 3 channels of color spaces such as RGB,
HSV, Luv, Lab, and YCrCb. To retrieve color information, each image is divided into three color
channels. To implement LBP, we used the scikit-image python library. (Van der Walt S.-I. ,
2014) For each of the 3 channels, we set the number of circularly symmetric neighbors P = 8,
a radius R = 2. Therefore, we included in the calculations of each window 8*2 number of
points/pixels. Also, we set the method of determining the pattern as 'uniform', which
improved the rotation invariance with uniform patterns and finer quantization of the annular
space, the grayscale, and rotation invariant. We produced 10 features as the bins of the
histogram created. We calculated the LBP for each channel as:

e LBP RGB=1Ibp_R,lbp_ G, lbp_B,

e LBP HSV=lbp H,Ibp_S, lbp_V,

e [BP YCrCb=Ibp_ Y, lbp Cr, Ibp_Cb,
e LBP_ LUV =Ibp_L, Ibp_u, lbp_v,



e LBP_LAB=1lbp_L,Ibp_a, lbp_b,

The features which produced using the segmented lesions by active contours, k-means and
UNet techniques are 10 for each R, G, B channel. The final vector has size 30 features. The
features which produced using the segmented lesions of sobel operator technique are 10 for
the 1 channel and the final feature vector has size of 10. The features which produced using
the segmented lesions of color spaces are 10 for each channel of each color space. We
calculated the LBP_RGB, LBP_HSV, LBP_LAB, LBP_YCrCb, LBP_LUV, and a final vector of 150
features was created.

The GLCM and the LBP features were normalized between 0 and 1 using the Equation 40:

X =
Z="—— (40)

Color Moments

Color moments include both shape and color information. if an image’s color follows a certain
probability distribution, the moments of that distribution can be used as features to identify
that image based on color. As a result, we used color moments to describe probability
distributions such as mean, standard deviation, skewness, kurtosis. We transform the
segmented images which contain 3 channels into different color spaces (RGB, HSV, YCrCb, CIE
Lab, CIE Luv), color constancy, and max color constancy for each color space, to extract color
moments as features. We estimate the light source of an input image as proposed in (van de
Weijer & Gevers, 2005). We constructed a function that uses the correct image function of
Mina Sami (Mina, 2018) , which corrects image colors by performing diagonal transformation
according to the given estimated illumination of the image and the grey edge function, which
depending on its parameters, the estimation is equal to grey-world, max-RGB, general grey-
world, shades-of-grey, or grey-edge algorithm.

To extract the color space color moments, we transform the RGB images into color spaces
(HSV, YCrCb, CIE Lab, CIE Luv). Also we calculate the mean, the standard deviation, the
skewness and the kurtosis of each example for each channel of the RGB, HSV, YCrCb, CIE Lab,
CIE Luv color spaces. The extracted features from the color space color moments contain 60
features which include information about color moments of color spaces.

To transform images into Grey-World, first, it was used the Gaussian filters of scikit-image for
pre-processing of input image setting sigma = 0. Then we set the Minkowski normalization =
1. The function returns the illuminant color estimation for the original RGB image (gwRGB).
We calculate the color moments (mean, standard deviation, skewness, kurtosis) of the grey-
world Color Constancy (gw) of each color space, such as gwRGB, gwHSV, gwYCrCb, gwlLab,
gwlLuv. The extracted features contain 60 features which have information about the color
moments information for each individual color channel of color spaces.

Finally, in the max-RGB Color Constancy we replace every pixel with its strongest RGB channel.
Concentrating on less complicated color constancy based on low-level visual features, such as
max-RGB. Max-RGB is a simple and quick color constancy algorithm that predicts the color of
the light source based on the maximum response of the various color channels. (Land &
McCann, 1971) To transform images into max-RGB, first, we use the Gaussian filters of scikit-



image setting sigma = 0. Then we set the Minkowski normalization = -1. The function returns
the illuminant color estimation for the original RGB image (max-RGB). We calculated the max
Color Constancy of each color space, including max-RGB, max-HSV, max-YCrCb, max-Lab, and
max-Luv. We extracted 60 features which contain information about color moments of
including max-RGB, max-HSV, max-YCrCb, max-Lab, and max-Luv.

The color moment features finally generated a feature vector of size 180 for each example.
The feature vector contains the calculations of each color moment (mean, std, skew, kurt) for
each channel of each color space, grey-level color constancy color space, and max color
constancy color space. There are 45 different channels, 4 color moments, and we receive a
feature vector with a size of 180. The color moment features of 1 channel images, contain the
mean, the standard deviation, the skewness and the kurtosis of this channel. The number of
color moment features is 4 for each lesion example. The color moment features are
normalized between 0 and 1 using the Equation 40.

3.5.2 Deep learning features

The deep learning features is the second feature extraction method of the pipeline for
melanoma classification. Although data augmentation process oversampled the dataset by
shifting, rotating, zooming and flipping, it is still not desirably large for training models with
millions of parameters. To come up with the limited training skin lesion examples the transfer
learning method was applied, using the pre-trained weights on the ImageNet dataset. The
target of this is to use the knowledge which has already been gained about several objects, to
the imported models and to use those weights to allow the model to specialize into skin lesion
problem. We employed three CNN models as feature extractors, the VGG19, the DenseNet121
and the EfficientNet-B0. The models using transfer learning initialized the pre-trained weights
on the ImageNet without fine-tuning the layers.

The VGG19 modelincludes 16 convolutional layers, 5 max-pooling layers and 3 fully connected
layers. The input image shape of the model is 224x224x3 as the shape of the training set is
after image resize process. Moreover, the non-linear ReLU activation function is employed to
improve the computational time and the predictions. Also, we excluded the fully connected
layers and we keep the pre-trained model with an output of size 4096 features, which is the
result of the last pooling layer after the convolutional layers.

The DenseNet121 model requires fewer parameters than regular CNNs and it reuses features
instead of gaining power from highly deep designs. The input size of the model’s architecture
is 224x224x3, the same size of the resized training examples. To extract features from
DenseNet121, we excluded the fully connected layers and we keep the pre-trained model with
an output of size 1024 features, which is the result of the last pooling layer after the
convolutional layers.

The EfficientNet-BO model is the base model of the EfficientNets where ¢ is set to 1 and twice
as many resources are available, a, b, c are the results of a tiny grid search. For f=1, the values
a =12, =11,y = 1.15 of maintaining the a * 2 *y? ~ 2.The input shape of the
model’s architecture is 224x224x3 as the resized training examples. As we did with the VGG19
and the DenseNet121 we excluded the fully connected layers and we keep the pre-trained



model with an output of size 1280 features, which is the result of the last pooling layer after
the convolutional layers.

The Deep Learning feature vectors are used both as base models to train individually the
machine learning classifiers, and in combination with handcrafted features and metadata.

3.5.3 Patients' Metadata Features

The patients’ metadata is the third feature vector we constructed. The metadata contain
information about the diagnosis and site of the lesion, the approximate age and gender of the patient,
and an anonymized patient identification number, which allows lesions from the same patient to be
mapped together. The train metadata was merged creating a feature vector which includes
categorical variables, such as the ‘patient sex’ and ‘anatom site general’. Those variables were
converted into binary vectors. An additional feature that was added is the age which was
normalized into 0-1. The metadata feature vector after the transformations was applied
contains features about patient sex, torso, lower extremities, upper extremities, head/neck,
oral/genital, palms/soles, none, and age.

3.6 Image Classification

We produced three feature vectors using several feature extraction methods: CNN features,
handcrafted features, and metadata features. We use the CNN feature vector as input to train
the Random Forest and the XGBoost machine learning classifiers. Also, we combine the CNN
feature vector with the handcrafted feature vector by concatenating those feature vectors.
The new feature vector is used as input to train the same machine learning classifiers. Finally,
in the last approach, we combine the CNN, the handcrafted and the metadata feature vectors.
We concatenate those feature vectors and the new feature vector is used as input to train the
same machine learning classifiers. The supervised machine learning classifiers detect valuable
correlations between extracted feature data and predict whether or not a new patient's lesion
image is melanoma. We linked each feature vector generated for each lesion to a binary label
indicating whether or not the patient matching this lesion is melanoma. Two classification
algorithms, a Random Forest (RF) and XGBoost, were trained and tested. We selected these
classifiers due to their efficiency and robustness in handling complex data. The number of
melanoma images after the data oversampling is 16.491, and the number of non-melanoma
is 32.542. We split the dataset into train and validation sets where the ratio is 70-30,
respectively. For the code implementation, we used the python Scikit-Learn library.
(Pedregosa, 2011)

To train the Random Forest algorithm we applied Grid Search of Scikit learn library, using
different parameters to the RF algorithm to find the best combination of parameter values.
We tested the following values to the RF classifier:

Number of estimators: [start=100, stop=2000, num=50)]. The number of trees we want to
build before taking the maximum voting or averages of predictions.

Criterion: {"Gini", "Entropy"}, the function to measure the quality of a split. Supported criteria
are "gini" for the Gini impurity and "entropy" for the information gain.



Max features: ['auto’, 'sqrt'] Auto: This will simply take all the features which make sense in
every tree. Here we simply do not put any restrictions on the individual tree. Sqrt: This option
will take the square root of the total number of features in the individual run. For instance, if
the total number of variables is 100, we can only take 10 of them in the individual tree." log2"”
is another similar type of option for max_features.

Max depth: [start=5, stop=100, num=10)], the maximum depth of the tree.

Min samples per leaf: [1, 2, 5, 10]. if we have built a decision tree before, we can appreciate
the importance of minimum sample leaf size. Leaf is the end node of a decision tree. A smaller
leaf makes the model more prone to capturing noise in train data.

Min samples per split: [2, 5, 10, 20], The minimum number of samples required to split an
internal node.

Class Weight: [{‘balanced’}, {0:0.5,1:1}, {0:1, 1:4}, {0:1, 1:5}, {0:1, 1:6}, {0:1, 1:7}]

To train the XGBoost algorithm we applied Grid Search of Scikit learn library, where we are
searching for the best combination of the parameter values of the algorithm.We tested the
following parameter values:

gamma: [0,0.1,0.2,0.4,0.8,1.6,3.2,6.4,12.8,25.6,51.2,102.4, 200], Minimum loss reduction
required to make a further partition on a leaf node of the tree. The larger gamma is, the more
conservative the algorithm will be.

Learning rate': [0.01, 0.03, 0.06, 0.1, 0.15, 0.2, 0.25, 0.300000012, 0.4, 0.5, 0.6, 0.7], Step size
shrinkage used in update to prevents overfitting. After each boosting step, we can directly get
the weights of new features, and eta shrinks the feature weights to make the boosting process
more conservative.

Max depth': [2,3,4,5,6,7,8,9,10,11,12,13,14], Maximum depth of a tree. Increasing this value
will make the model more complex and more likely to overfit.

Number of estimators: [50,80,100,115,130,150, 200, 400, 550, 700, 750, 1000, 1500, 2000]

Reg alpha: [0,0.1,0.2,0.4,0.8,1.6,3.2,6.4,12.8,25.6,51.2,102.4,200], L1 regularization term on
weights. Increasing this value will make model more conservative. Normalised to number of
training examples

Reg lambda: [0,0.1,0.2,0.4,0.8,1,3.2,6.4,12.8,25.6,51.2,102.4,200], L2 regularization term on
weights. Increasing this value will make model more conservative. Normalised to number of
training examples.

3.7 Python Code Analysis

In this section, we describe the methodology used to create feature vectors and perform
classification in the context of lesion analysis. The overall approach consists of three pipelines,
each focusing on different aspects of feature extraction and classification. We provide a
detailed explanation of each pipeline and the corresponding Python code implementation.

Handcrafted Feature Extraction Pipeline



The first pipeline focuses on extracting handcrafted features from various image processing
techniques and color spaces. The goal is to obtain both global features and features specifically
from the lesion region. The following steps were performed:

1.Lesion Segmentation using Active Contours:

- Active contours, specifically the technique of snake-based segmentation, were applied to
segment the lesion region in the images.

- The resulting segmented lesion masks were used as input to extract features.

- Feature extraction techniques such as Gray-Level Co-occurrence Matrix (GLCM), Local
Binary Patterns (LBP), and Color Moments were applied to the lesion region.

2.Lesion Segmentation using UNet:
- The UNet architecture was employed to segment the lesion region in the images.
- The output of the UNet segmentation was used to extract features.

- Similar to the previous step, GLCM, LBP, and Color Moments were computed on the
segmented lesion region.

3.Lesion Segmentation using K-Means:

- K-Means clustering was performed on the image pixels to separate the lesion region from
the background.

- Features were extracted using GLCM, LBP, and Color Moments from the segmented lesion
region obtained from K-Means clustering.

4.lmage Filtering with Sobel and Color Spaces:
- The Sobel operator was applied to the images to obtain edge features.

- Additionally, features were extracted from different color spaces, such as RGB, HSV, and
LAB, to capture color information.

- Global features were extracted from the entire image using GLCM, LBP, and Color
Moments.

The Python code for the handcrafted feature extraction pipeline involves implementing the
respective techniques, such as active contours, UNet, K-Means, Sobel filtering, and color space
conversions. Additionally, libraries for GLCM, LBP, and Color Moments can be utilized for
feature extraction. The code will iterate over the dataset, perform the necessary
segmentation and feature extraction operations, and store the resulting feature vectors.

Convolutional Neural Network (CNN) Feature Extraction Pipeline

The second pipeline focuses on extracting features using pre-trained CNN models. Three
popular CNN architectures, namely VGG 19, DenseNetl121, and EfficientNet-BO, were
employed for feature extraction. The following steps were performed:



1. VGG 19 Feature Extraction:
- The pre-trained VGG 19 model was utilized to extract features from the input images.

- The output of the model, typically the fully connected layers or the global average pooling
layer, was considered as the feature vector.

2.DenseNet121 Feature Extraction:

- The pre-trained DenseNet121 model was employed to extract features from the input
images.

- Similar to the previous step, the output of the model served as the feature vector.
3.EfficientNet-BO Feature Extraction:

- The pre-trained EfficientNet-BO model was used to extract features from the input images.

- Once again, the output of the model was considered as the feature vector.

The Python code for the CNN feature extraction pipeline involves loading the pre-trained
models, preprocessing the input images according to the respective model's requirements,
passing the images through the models, and extracting the features from the desired layers.
The code will iterate over the dataset, extract features using each CNN model, and store the
resulting feature vectors.

Metadata Collection Pipeline

The third pipeline focuses on collecting metadata information associated with the images. This
information can include patient demographics, image acquisition details, and any other
relevant information. The metadata is represented as a feature vector.

The Python code for the metadata collection pipeline involves accessing the metadata
associated with each image, extracting the required information, and converting it into a
feature vector representation.

Classification

The classification step involves combining the extracted feature vectors from the different
pipelines to perform lesion analysis. The following combinations were considered:

1. Base Model with CNN Features:

- The feature vectors extracted solely from the CNN models (VGG 19, DenseNet121,
EfficientNet-B0) were combined.

2. CNN Features with Handcrafted Features from Lesion Segmentation Techniques:

- The feature vectors obtained from the CNN models were combined with the handcrafted
features extracted from the lesion regions segmented using active contours, UNet, and K-
Means.



3. CNN Features with Handcrafted Features from Global Image Analysis:

- The feature vectors obtained from the CNN models were combined with the handcrafted
features extracted from global image analysis techniques using Sobel filtering and different
color spaces.

4. CNN Features with Handcrafted Features from Lesion Segmentation Techniques and
Metadata:

- The feature vectors obtained from the CNN models were combined with the handcrafted
features extracted from the lesion regions segmented using active contours, UNet, and K-
Means.

- Additionally, the metadata feature vector collected from the third pipeline was also
included in the combination.

The Python code for the classification step involves concatenating the feature vectors
obtained from the different pipelines according to the desired combinations. Machine
learning algorithms, such as support vector machines (SVM), random forests, or deep neural
networks, trained on the combined feature vectors for lesion classification.

By implementing the described pipelines and classification combinations in Python, the
complete workflow for lesion analysis can be realized, incorporating both handcrafted and
deep learning-based features for improved classification performance.

4 Experiments and Results

This section contains all of the experiments, tests, and results used in this study. Evaluation
metrics are included for each of the different methods of segmenting, extracting, and training
features. Finally, the various trained model combinations are evaluated and compared.

4.1 Dataset

4.1.1 The ISIC 2020 Archive

The International Skin Imaging Collaboration (ISIC) (ISIC, 2020) collaborates between
academics and industry that aims to make it easier to use digital skin imaging to help reduce
melanoma lesions. Clinical decision support, and automated diagnosis, digital photographs of
skin lesions may be utilized to educate professionals and the general public about melanoma
detection and directly help diagnose melanoma. ISIC seeks to achieve its objectives by
developing and promoting digital skin imaging standards and collaborating with the
dermatological and computer science communities to enhance diagnosis. (Haofu Liao, 2015)
(Li & Shen, 2018) (Rezvantalab, Safigholi, & Karimijeshni, 2018) Currently, a lack of standards
for dermatologic imaging undermines the quality and usefulness of skin lesion imaging.

The ISIC makes publicly accessible new labeled skin images that supplement prior years'
datasets, resulting in a considerable increase in the ISIC archive's total quantity over time,
making it the most significant skin lesion image collection. (Rotemberg, et al., 2021) The ISIC
2020 challenge contain dermoscopy images from the Hospital Clinic de Barcelona, Medical
University of Vienna, Memorial Sloan Kettering Cancer Center, Melanoma Institute Australia,
University of Queensland, and the University of Athens Medical School. Over 2,000 patients



contributed to the ISIC2020 dataset, including 32,542 benign and 584 malignant skin lesions.
Each image's metadata includes the lesion's diagnosis and location, the patient's estimated
age, gender, and an anonymized patient identification number that allows lesions from the
same patient to be mapped together. The benign images are subdivided into the following
types (nevus, seborrheic keratosis, lichenoid keratosis, solar lentigo, lentigo NOS, cafe-au-lait
macule, atypical melanocytic proliferation, and unknown). In contrast, the malignant images
are all diagnosed as melanoma. Notably, there are no basal cell or squamous cell carcinoma
incidences in the dataset, making the problem a binary classification problem of melanoma
detection. There is an ISIC dataset of 10,982 unlabeled photos with their metadata also
provided for assessment purposes. The Figure 26 represents some benign and malignant
examples of ISIC 2020 dataset.

benign
- benign benign

malignant

malignant

malignant

Figure 26: Non melanoma top, melanoma bottom

4.1.2 Discover the dataset

In the ISIC 2020 dataset, 79.2 % of patients had no melanoma, whereas 20.8 % had at least
one, with 16 lesions per patient. Only 584 (1.8 %) of the 33,126 dermoscopic pictures were
histopathologically confirmed melanoma. Each training image has an average of 12.743.090
pixels, ranging from 307.200 to 24.000.000 pixels. The patient's estimated age at the time of
picture collection, gender, general anatomic location of the lesion, patient identification
number (patient ID), benign/malignant type, and specific diagnosis (if one was available) were
all included in the metadata for each image. The age and gender distribution are represented
in the following Figure 27, where it seems that the gender is nearly divided, and most patients
are in the 40-60 age group.
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Figure 27: Gender, Anatomy Site and Age distribution of ISIC 2020 dataset

The Figure 28 shows that in the training set, most lesions are located in the torso (52%), the

lower extremities have fewer (26%), and the upper extremity and head have even fewer (15%
and 6% respectively).

count
lower extremity

26%

Figure 28: Scans by Anatom Site in Train Data

Even though the body parts with the most lesions are the torso, the lower and the upper
extremities, as it is described in Figure 29 the body parts with the most malignant lesions are
located in the head, oral/genital, and upper extremity.
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Figure 29: Malignant Ration per Body part and per sex

Additionally, males have a 62 % dominance in malignant images, while the male-to-female
ratio is 52 to 48%. In addition, the location of the malignant lesion varies according to the
gender of the patient. Although the torso is the most common lesion location in both men and
women, it accounts for almost half of all lesions in men and 39 % in women. Female examples
of the lower extremities are more prevalent than male lesions. Males account for 18%, while
females account for 26% of the set. Finally, Females are more likely than males to have upper
extremities malignant lesions (23% - 17 %).

4.1.3 Class Distribution

The term imbalanced dataset means that one class (named the minority group) contains
significantly fewer samples than the other (named the majority group). Classification results
will be better if the dataset is balanced across classes. In this instance, the classifier will
concentrate on learning majority classes while ignoring minority classes partially or fully.
Because melanoma is such a small minority group (1.76 % or 18:1000), there is a big ratio of
imbalance, which can cause a biased classifier, lowering its ability to predict correct the
melanoma class. The following Figure 30 represents the class distribution of the dataset,
where the unique malignant class is the melanoma class, while the other classes are benign
categories.
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Figure 30: Class distribution of the ISIC dataset

4.2 Evaluation Methods

4.2.1 Confusion Matrix
The confusion matrix is a metric for evaluating the outcomes of classification. We have two
classes, the positive and the negative class:

e True Positive: the number of samples that belong to the positive class and were correctly
classified as positive (TP)

e Number of samples in the negative class that were correctly recognized as negative - True
Negative (TN)

e The number of samples that should have been classified as positive but were incorrectly
classified as negative - False Positives (FP)

e The number of samples that should have been classified as negative but were incorrectly
classified as positive - False Negative (FN)

The classification accuracy is then determined as follows:

TP+TN
TP+TN+ FP +FN

Accuracy =

Precision is the percentage of positive examples that were predicted correctly:

TP

p . . -
recision TP + FP

Sensitivity/Recall is the proportion of actual positive cases which are correctly identified:



TP

Recall = TP+—F1V

Specificity is the proportion of actual negative cases which are correctly identified:

TN

Specificity = m

4.2.2 ROC Curve and Area Under Curve (AUC)

ROC (receiver operating characteristic) A Curve is a common graph for measuring and
evaluating a classifier's performance. Given what we have discussed thus far, if we train a
classifier to identify a dataset with two classes, we can easily measure the output and compare
it to the ground truth to generate the confusion matrix. As a result, we get the original and
anticipated classes for each sample, which populate the TP, TN, FP, and FN values. Then, using
the mathematical types provided above, we can obtain the classification's true positive and
false-positive rates. (M & M.N, 2015) A ROC curve is a two-dimensional graph with the x-axis
representing the true positive rate and the y-axis representing the false positive rate. The
curve is the classifier's result, while the y=x axis is the result of a random classifier that
classifies the dataset with a 50% chance for each class. The greater the distance between the
diagonal axis and the higher the curve, the better the categorization. The 'Area Under Curve'
is the area specified under the curve used to determine the correctness of the categorization
(AUC).

4.3 Base Models Results

We needed a base model to start the comparison and to see if the different experimented techniques
had a positive effect on the model. To study and evaluate the impact of each different approach, we
first trained three base models that will serve as a basis for comparing different techniques. We
extracted features from three pre-trained neural networks, VGG19, Densenet121, and EfficientNetBO,
as inputs into two different classifiers, Radom Forrest (RF), and XGBoost, for this purpose. Based on
the grid search, the Random Forest trained with number of estimators: 2000, criterion: gini, max
features: auto, max depth:20, minimum samples per split:10, class weight={'balanced’}, minimum
samples per leaf:5, random state: 40.

The XGBoost based on the grid search we applied, it was trained with gamma: 0.1, learning
rate: 0.01, max depth: 10, number of estimators: 2000, L1 regularization parameter alpha: 0.1,
L2 regularization parameter lambda: 1. The Table 3 and Table 4 contain the experimental
results of the base models of the Random Forest and the XGBoost classifiers respectively.

Table 3 Results of the base CNN models and Random Forest classifier

Feature Extractor | Accuracy | Precision Recall F1 Specificity AUC
(trained with
random forest)

VGG19 0,8183 0,7954 0,7992 | 0,7972 0,857 0,7991

DenseNet121 0,722 0,6918 0,7006 | 0,6961 0,765 0,8195




EfficientNetBO 0,8314 0,8106 | 0,8342 | 0,8222 0,826 0,8341
Table 4 Results of the base CNN models and XGBoost classifier
Feature Extractor | Accuracy | Precision Recall F1 Specificity AUC
(trained with
XGBoost)

VGG19 0,867 0,8632 0,832 | 0,8471 0,938 0,832
DenseNet121 0,8446 0,8357 0,8067 | 0,8209 0,921 0,8446
EfficientNetBO 0,908 0,9054 0,8854 | 0,8952 0,954 0,908

Although the results indicate that some base feature extraction methods could be a good
candidate for this melanoma classification problem, melanoma classification is a crucial
medical issue, and we want to get the most accurate result is possible. So far, the
EfficientNetBO appears to be the most valuable model, which evaluated in Random Forest
classification results with 83,14% accuracy, 81,06% precision, 83,42% recall, 82,22% F1-score,
82,6% specificity and 83,41% AUC. The XGBoost evaluation results are 90,8% accuracy, 90,54%
precision, 88,54% recall, 89,52% F1-score, 95,4% specificity and 90,8% AUC.

4.2 Combination of CNN Features and Handcrafted Features

Receiving the base model results, we want to observe if the combination of the vectors that
collect the CNN with handcrafted improves the training performance. We introduced a new
vector derived from the concatenation of CNN and handcrafted features, which used as the
input for machine learning classifiers. The Table 5 and Table 6 show these results for Random
Forest and XGBoost classifiers respectively.

Table 5 : Results of the combined CNN and Hardcrafted features and Random Forest classifier

Segmentation | Feature Extractor | Accuracy | Precision | Recall F1 Specificity | AUC
Technique (trained with
Random Forest)

Chan Vese VGG19+HC! 0.824 0.801 0.807 | 0.804 | 0.859 0.807
DenseNet121+HC | 0,635 0,660 0,677 | 0,668 | 0,551 0,672
EfficientNetBO+HC | 0,839 0,818 0,834 | 0,826 | 0,852 0,834
VGG19+HC 0.840 0.819 0.832 | 0.825 | 0.858 0.832

Sobel DenseNet121 +HC | 0,840 0,819 0,832 | 0,825 | 0,858 0,832
EfficientNetBO +HC | 0,793 0,775 0,803 | 0,788 | 0,774 0,803
VGG19 +HC 0,823 0,801 0,803 | 0,802 | 0,865 0,803

K_means DenseNet121 +HC | 0,708 0,704 0,729 | 0,716 | 0,665 0,729
EfficientNetBO+HC | 0,852 0,832 0,855 | 0,843 | 0,846 0,855
VGG19 +HC 0,854 0,834 0,859 | 0,846 | 0,845 0,859

Unet DenseNet121+HC | 0,708 0,704 0,729 | 0,716 | 0,665 0,729
EfficientNetBO+HC | 0,803 0,785 0,813 | 0,793 | 0,784 0,813

1HC: GLCM + LBP + Color Moments




VGG19+HC 0,635 0,660 0,677 | 0,668 | 0,551 0,672
Color Spaces | DenseNet121+HC

0,707 0,694 0,716 | 0,704 | 0,691 0,716
EfficientNetBO+HC | 0,839 0,818 0,834 | 0,826 | 0,852 0,843

Table 6 Results of the combined CNN and Handcrafted features and XGBoost classifier

Segmentation | Feature  Extractor | Accuracy | Precision | Recall | F1 Specificity | AUC

Technique (trained with XG
Boost)

Chan Vese VGG19 + HC 0,928 0,927 0,909 | 0,917 | 0,966 0,909
DenseNet121 + HC | 0,844 0,835 0,806 | 0,82 | 0,921 0,806
EfficientNetBO+HC | 0,924 0,923 0,904 | 0,913 | 0,964 0,904
VGG19 + HC 0,944 0,941 0,933 | 0,937 | 0,967 0,933

Sobel DenseNet121 +HC 0,927 0,920 0,916 | 0,918 | 0,951 0,916
EfficientNetBO+HC | 0,946 0,943 0,934 | 0,938 | 0,97 0,934
VGG19+HC 0,928 0,927 0,909 | 0,917 | 0,966 0,909

K_means DenseNet121+HC 0,844 0,835 0,807 | 0,82 | 0,921 0,807
EfficientNetBO+HC | 0,924 0,923 0,904 | 0,913 | 0,964 0,904
VGG19+HC 0,933 0,934 0,915 | 0,924 | 0,971 0,915

Unet DenseNet121+HC 0,898 0,891 0,879 | 0,894 | 0,938 0,879
EfficientNetBO+HC | 0,945 0,946 0,931 | 0,938 | 0,975 0,931
VGG19+HC 0.947 0.943 0.937 | 0.94 | 0.966 0.937

Color Spaces | DenseNet121+HC | 0,921 0,912 0,910 | 0,911 | 0,944 0,910
EfficientNetBO+HC | 0,937 0,931 0,927 | 0,929 | 0,958 0,927

The above results show that combining handcrafted features with the CNNs feature vectors
helps to improve classification and increases the accuracy of the final models. By comparing
the classification results using the evaluation metrics, we can observe that the comparison of
the EfficientNetBO features with color GLCM, color LBP and color moment features produces
better results. The best evaluation results of Random Forest are 83,9% accuracy, 81,8%
precision, 83,4% recall, 82,6% F1-score, 85,2% specificity and 84,3% AUC. The XGBoost best
evaluation results are 93,7% accuracy, 93,1% precision, 92,7% recall, 92,9% F1-score, 95,8%
specificity and 92,7% AUC.

4.3 Combination of CNN Features and Handcrafted Features and metadata

In the final experiments we add even more features to the classifier in order to see whether
accuracy can be improved even further. We combined three feature vectors, the CNN feature
vector, the handcrafted feature vector, and the metadata feature vector. The Table 7 and
Table 8 show these results for Random Forest and XGBoost classifiers respectively.

Table 7 Results of the combined CNN and Handcrafted and metadata features and Random Forest classifier

Segmentation | Feature Extractor Accuracy | Precision | Recall | F1 Specificity | AUC
Technique




(trained with Random
Forest)
Chan Vese VGG19 + HC+ m? 0,803 0,785 0,813 | 0,798 | 0,784 0,813
DenseNet121+HC+m | 0,707 0,694 0,716 | 0,704 | 0,691 0,716
EfficientNetBO + m 0,846 0,825 0,845 | 0,834 | 0,839 0,849
VGG19+HC+m 0,793 0,775 0,803 | 0,788 | 0,774 0,803
Sobel DenseNet121+HC+m | 0,708 0,704 0,729 | 0,716 | 0,665 0,729
EfficientNetBO+HC+m | 0,854 0,834 0,859 | 0,846 | 0,845 0,859
VGG19+HC+m 0,803 0,785 0,813 | 0,798 | 0,784 0,813
K_means DenseNet121+HC+m | 0,707 0,694 0,716 | 0,704 | 0,691 0,716
EfficientNetBO+HC+m | 0,839 0,818 0,834 | 0,826 | 0,852 0,843
VGG19+HC+m 0,829 0,808 0,811 | 0,809 | 0,867 0,811
Unet DenseNet121+HC+m | 0,692 0,687 0,710 | 0,698 | 0,657 0,710
EfficientNetBO+HC+m | 0,838 0,854 0,867 | 0,86 | 0,884 0,867
VGG19+HC +m 0,842 0,821 0,845 | 0,832 | 0,836 0,845
Color Spaces | DenseNet121+HC+m 0,854 0,834 0,857 | 0,845 | 0,848 0,857
EfficientNetBO+HC+m | 0,861 0,842 0,868 | 0,854 | 0,848 0,868

Table 8 Results of the combined CNN and Handcrafted and metadata features and XGBoost classifier

Segmentation | Feature Extractor | Accuracy | Precision | Recall F1 | Specificity | AUC

(trained with XG

Boost)
Chan Vese VGG19 + HC+ m 0,927 0,926 0,908 | 0,916 0,965 0,908
DenseNet121+HC+m 0,863 0,853 0,833 | 0,842 0,924 0,833
EfficientNetBO + m 0,927 0,927 0,907 | 0,916 0,968 0,907
VGG19+HC+m 0,943 0,940 0,932 | 0,936 0,966 0,932
Sobel DenseNet121+HC+m 0,927 0,921 0,915 | 0,918 0,952 0,915
EfficientNetBO+HC+m 0,947 0,945 0,936 | 0,940 0,971 0,936
VGG19+HC+m 0,927 0,926 0,908 | 0,916 0,965 0,908
K_means DenseNet121+HC+m 0,862 0,852 0,833 | 0,841 0,922 0,833
EfficientNetBO+HC+m 0,928 0,928 0,908 | 0,917 0,968 0,908
VGG19+HC+m 0,939 0,940 0,922 | 0,930 0,974 0,922
Unet DenseNet121+HC+m 0,904 0,899 0,883 | 0,89 0,947 0,883
EfficientNetBO+HC+m 0,942 0,944 0,926 | 0,934 0,975 0,926
VGG19+HC +m 0,946 0,941 0,937 | 0,939 0,965 0,937
Color DenseNet121+HC+m 0,923 0,915 0,911 | 0,913 0,947 0,911
Features

EfficientNetBO+HC+m | 0,949 0,946 | 0,939 | 0,942 0,969 0,939

The above results validate the study's approach of combining CNN, handcrafted, and
metadata features to improve base model accuracy. Combining the EfficientNetBO features,
the GLCM, LBP and Color Moment features, and the metadata features produced the best
results in our study, for both different machine learning classifiers (Random Forest and

1HC: GLCM + LBP + Color Moments > m: Metadata




XGBoost). The results were evaluated, and the Random Forest achieved accuracy 86,17%,
precision 84,22%, recall 86,85%, F1 score 85,4%, specificity 84,8% and AUC 86,85%. The
XGBoost classifier evaluated with accuracy 94,94%, precision 94,6%, recall 93,98%, F1 score
94,28%, Specificity 96,9% and AUC 93,97%.

4.4 Comparison with State-of-the-Art approaches

Because several measurements can be used to evaluate the classification, and different
metrics can verify each study, it is not easy to draw a clear conclusion about which approach
will produce better results. Additionally, the dataset to which each experiment was applied
can significantly impact the outcomes. However, the results we verify in our approach are
among the best for melanoma classification in the studies presented in the Table 9 there is
still room for improvement, especially when it comes to medical issues where even small
improvements in accuracy are important. However, these preliminary findings show that by
combining deep learning features with handcrafted features and metadata features, we can
produce high-performance classifiers for melanoma classification, avoiding the use of
complicated deep neural network architectures with millions of parameters and high costs.

Table 9 Comparison with State-of-the-Art approaches

Dataset Size | Accuracy | Sensitivity | Specificity | AUC
Xie et.al 240 0.9417 0.95 93.75
Tomas Majner 1.279 0.826 0.533 0.898 0.78
Esfahani et.al 6120 0.81 0.81 0.80
Codella et.al 2.150 0.931 0.926
Han et.al 100.000 0.875 0.95
Jason R. Hajerty etal | 2.594 0.94
Kaggle leaderboard | 58.457 0.9404

4.5 Visualization

The visualization contains results about hair removal, CLAHE equalization, chan vesse active
contour segmentation, sobel operator segmentation, k-means segmentation, UNet
segmentation and color space segmentation. It also includes visualizations of Grey World
transformation on color spaces and max color constancy transformation on color spaces. The
Figure 31 shows the steps to remove hair in an image, using CIELuv color space. In the (a)
image we show the original RGB lesion image, in the (b) we show the CIE Luv lesion image,
and in (c), the hair mask in the L channel using the hysteresis thresholding. Then the next step
(d) shows the CIE Luv image after the hair removing and then (e) the returning to the RGB
channels. The last image (f) shows the results of CLAHE equalization, which supports the image
contrast. The Figures 32,33,34,35,36 represent the segmentation results of the implemented
methods. In the Figure 32 we show the segmentation results of the active contours method.
However, in the first row we can observe that the segmentation mask covers regions of the
lesion, which means that we lose information about this part of the lesion. The Figure 33
shows the results of the sobel operator segmentation technique. In the last raw of images, we



show how sensitive to image artifacts is this method, which create some noise to the image.
The Figure 34 shows the segmentation results of the k-means. However, in the second row of
this figure we observe the weakness of this method where the segmentation mask leaves out
along with the lesion a part of the skin which is chromatically close to the lesion. The Figure
35 represents the predicted results of the UNet model, with the segmentation mask and the
lesion segmentation of a skin lesion image. Furthermore, the Figure 36 represents the
segmentation results using the (a) HSV, (b) CIE Luv, (c) YCrCb and the (d) CIE Lab color spaces.
The results show that the color spaces smooth out low color intensity differences, and instead
they focus on high color intensity changes, which in this case are the skin and the lesions. The
Figures 37 and 38 represent the Grey-Word transformation on color spaces and the max-color
constancy transformation on color spaces respectively. More specifically, the Figure 37
contains the (a) original RGB skin lesion image, (b) the grey word RGB, (c) the grey word HSV,
(d) the grey word Lab, (e) the grey word YCrCb, and (f) the grey word Luv transformations. The
Figure 38 includes the (a) original RGB skin lesion image, (b) the max color constancy RGB, (c)
the max color constancy HSV, (d) the max color constancy Lab, (e) the max color constancy
YCrCb, and (f) the max color constancy Luv transformations. Those transformations were used
to extract color moments in the handcrafted feature extraction process.

Figure 31: Hair removal using CIE Luv color space and CLAHE equalization: (a) original RGB image, (b) CIE Luv image, (c) hair
mask, (d) CIE Luv image after hair removal, (e) RGB image after hair removal (f) CLAHE equalization
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Figure 32: Chan-Vesse Active Contours segmentation process: (a) original RGB image, (b) RGB image after hair removal, (c)
segmented mask, (d) lesion segmentation
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Figure 33: Sobel based segmentation process: (a) original RGB image, (b) RGB image after hair removal, (d) segmented
lesion
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Figure 34: K-means based segmentation process: (a) original RGB image, (b) RGB image after hair removal, (c) segmented
mask, (d) segmented lesion

Q) (b) (2

Figure 35: Unet based segmentation process: (a) input RGB image, (b) True mask, (c) predicted mask
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Figure 36: Color space based segmentation process: (a) original RGB image, (b) HSV color space segmentation, (c) CIE Lab
color space segmentation, (d) YCrCb color space segmentation, (e) CIE Luv color space segmentation
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Figure 37 : Grey World Transformation on Color spaces: (a) original RGB image, (b) gwRGB, (c) gwHSV, (d) gwLab, (e)
gwYCrCb, (f) gwLuv



100 200 o

(3) (®) (9 (4) (e) ®

Figure 38: Max Color Constancy image transformation in different color spaces: (a) original RGB image, (b) mxccRGB, (c)
mxccHSV, (d) mxccLab, (e) mxccYCrCb, (f) mxccLuv)

5 Discussion

It is crucial to mention that various state-of-the-art neural networks were used to diagnose
melanoma for this thesis. However, it should be noted that these neural networks contained
pre-trained weights from a different dataset, the Imagenet. This dataset was not created to
identify skin lesions but trains, dogs, airplanes, and much more. Gathering data from skin
lesions to identify benign or malignant skin lesions is a much more complicated process due
to the lack of specific features that make a lesion malignant. This is why dermatologists cannot
diagnose with sufficient accuracy whether a skin lesion is a melanoma or not, achieving 59%
accuracy, a low percentage for such a significant medical issue. (Kittler, Pehamberger, Wolff,
& Binder, 2002) (Marchetti, et al., 2018)

As the discussion progresses, the dataset is our primary source of knowledge. Improved
feature extraction techniques can lead to very high learning and accuracy rates. We used a
small to medium-sized dataset for training a Machine Learning model. Also, we face the class
imbalance of the ratio of 1/60 as the examples of melanoma are only 5106, 60 times less than
non-melanoma. These issues have a direct impact on the results. The data augmentation
method certainly improves final results and up-sampling and down-sampling techniques.
Moreover, the concatenation of feature vectors extracted from Convolutional Neural
Networks (CNN) with handcrafted and metadata has shown that they can significantly
improve base models that contain only features of CNNs.

More specifically, we saw that the features of the Convolutional Neural Networks were
extracted from a pre-trained network, had learned at a level to recognize different categories
and then they called upon to collect data from skin lesions. According to the architecture of
each deep neural network, we conclude that some neural networks are better candidates to
detect specific features achieving better accuracy rates. We used three different CNN
architectures, the VGG19, the DenseNet121, and the EfficientNet-BO and each one formed a



base model. Best accuracy is performed by the EfficientNet-BO, where 1280 features were
extracted, and they became the input for the Random Forest and XGBoost classifiers.

We also observed the best segmentation technique with the color spaces (HSV, Luv, Lab,
YCrCb), and we extracted features from each color channel with color GLCM, color LBP, and
Color Moments. Combining these features with the CNN features proved that they
significantly improved the accuracy of the models. This combination became input to the
XGBoost, improving the performance of the base model and achieving an accuracy of 93.73%,
precision 93,14%, recall 92,71%, Fl-score 92,92%, sensitivity 89,6%, specificity 95,8%, and
AUC92,71%.

The further extension of the feature vectors consists of patient metadata (age, location,
gender). The combination of EfficientNet-BO, color GLCM, color LBP, Color Moments, and
metadata features which fed the XGBoost classifier achieving accuracy levels of 94,94%,
precision 94,6%, recall 93,98%, F1-score 94,98%, sensitivity 91,1%, specificity 96,9% and AUC
93,97%.

6 Conclusion and Future work

The combination of CNN features, handcrafted features, and metadata features as the input
for the XGBoost classifier achieves very high classification performance in detecting
melanoma from dermoscopy images, with the best model to compete for top performance,
achieving the ROC-AUC rating of 94.04 percent.

These results are promising and suggest that approaches based on combining Deep-Learning,
handcrafted, and metadata features have high potential in melanoma recognition, and this
model might be a dermoscopy image-based automated melanoma classification system that
expert dermatologists could use to support their diagnosed decisions. The findings revealed
that using data augmentation to address the problem of class imbalance had a positive effect.
Various CNN models were utilized as base models, including VGG19, DenseNet121, and
EfficientNet-BO, to research if extending the CNN feature vector with handcrafted and
metadata features can increase the performance of the base models. These results are
promising and suggest that approaches based on combining Deep learning, handcrafted, and
metadata features have high potential in melanoma recognition.

In the future, we will concentrate on using the models EfficientNetB1-B7 as feature extractors,
scaling the width, height, and resolution, and using fewer parameters with purpose an even
better accuracy. Also, since the dataset size used in this thesis is medium, we will use different
datasets to test the accuracy of our proposed model. Finally, the lack of proper explainability
of the predictive models still prevents the widespread use of clinical trials. We intend to
explore the development of develop an explainability method to visualize the most indicative
areas of melanoma. In this way, we will link the visual stimulus to the predictive model output
so that the model becomes more transparent and reliable, providing interpretability of the
model prediction in a way that is understandable to dermatologists.
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