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SUMMARY 

The understanding of machine learning concepts and techniques provides us the 

ability to create a virtual tool inventory by which real-life problems can be addressed in an 

automated, cost and time-efficient manner. At the beginning of a self-improving journey, 

a machine learning engineer worries about the performance of the machine learning 

pipeline which is mostly expressed in terms of bias error. The first step of maturation 

involves the acknowledgment of underfitting and overfitting as part of a machine learning 

process that involves only a small dataset, as a representative part of the a-priori 

knowledge, in order to solve a complex and multifactorial problem. Inevitably, a “mature” 

machine learning practitioner needs to grasp the importance of generalization, the 

corresponding variance, and irreducible errors, if he is bound to evolve into a “grown-up” 

machine learning expert. We learn to account for our work by measuring the performance 

of a proposed methodology. It is a strong requirement that evaluation metrics such as 

accuracy, balanced accuracy, precision, recall, and others according to the nature of a 

machine learning task are retained at high values, but there exist equally significant aspects 

that need to be taken into consideration. Discovering the principal and auxiliary causes 

upon which a predictive model decides on one class in favor of another can be a powerful 

source of useful knowledge and, therefore, the light should be shed on the inner 

mechanisms of decision-making. Naturally, the journey of self-improvement is a never-

ending loop, as the realization of acquired knowledge leads to new unanswered questions. 

For this thesis, the maturation of the author with basic machine learning notions has 

evolved into a quest for developing machine learning approaches for image classification 

that, inherently or post-hoc, have the ability to provide meaningful connections between 
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the predicted outcome and the visual patterns that most influenced it. Since traditional 

machine-learning approaches remain in the field as efficient solutions for tasks that are 

covered with little data, the proposed methodologies cover both traditional machine 

learning and deep learning architectures. The scope of the thesis is limited to medical 

imaging and the application of explainable machine-learning approaches for the handling 

of corresponding health-related issues. Medical images are considered one of the richest 

sources of information concerning health data and the basis upon which experts make 

decisions for treatment plans and interventions. Creating explainable automated systems 

that support these decisions can speed up their integration process into everyday clinical 

workflows since experts will be able to understand and trust the generated predictions 

through added transparency and causality. Towards the integration of explainable 

properties in machine learning classification schemes, in this thesis a novel explainability 

scheme is proposed which is based on the Bag of Visual Words paradigm for the 

interpretation of image classification results by means of ensemble explainable classifiers. 

Since Fisher Vectors push the performance of vocabulary-based approaches to higher 

values, the proposed methodology evolves to support the architecture of generative models, 

such as Gaussian Mixture Models. Concerning deep learning techniques, a novel modular 

explainability approach is proposed that exploits the advantages of two well-established 

approaches, Gradient-Based Class Activation Maps, and Superpixels. The results show that 

the combined scheme significantly increases the performance of the original Gradient-

based approach and the modularity allows for implementation with different explainability 

approaches  

 



 1 

INTRODUCTION 

1.1 Scope 

1.1.1 Traditional Machine Learning techniques against deep learning for medical 

images 

Starting from the earlier years of machine learning’s engagement in decision 

support and assistive diagnosis related to the healthcare domain, automated systems for the 

detection and classification of visual patterns have been developed, discussed, and 

improved by the corresponding researchers [1]. Medical images have been utilized as a 

part of the incoming data that train ML algorithms and constitute a special chapter in the 

field of Computer Vision due to their special characteristics in terms of quality, contrast, 

density, and resolution. These features through various modalities of medical images are 

the main reason why dedicated algorithms for knowledge extraction from medical images 

are explored and developed and incorporated into automated systems. In the beginning, 

these systems were based on the traditional machine learning (TML) paradigm that 

separates each process of the whole machine learning (ML) task into discrete modules as 

shown in Figure 1. The described modularity facilitates better management and more 

transparency of the individual processes in order to intervene and thoroughly comprehend 

the inner workings in contrast to the all-in-one process that corresponds to the deep learning 

workflow. The transparency of TML approaches can be exploited for the development of 

explainability schemes to link the outcome to the visual stimuli of the input data. Although 

the ground for providing visual explanations related to the predicted outcome is more 

prosperous when utilizing TML, there are certain shortcomings concerning the ability of 
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the earlier approaches to achieve high-performance results in terms of classification 

 

Figure 1 - Traditional machine learning vs deep learning pipeline for image 

classification tasks. 

accuracy. Furthermore, due to the fact that the need for providing explainable results for 

ML approaches was highlighted after the development and establishment of TML, there 

are not so many works that address the issue of explainability for these approaches. Another 

determining factor for the absence of related work is the diffusion of DL. In the modern 

years, by the exploitation of well-established properties of Convolutional Neural Networks 

(CNNs) for the extraction of useful knowledge from medical images, researchers have 

strived for performance in terms of the relevant metrics of accuracy/balanced accuracy, 

sensitivity, and specificity. Towards this end, CNNs have managed to rival or even 

outperform human experts in various machine learning tasks such as X-Rays or Optical 

coherence tomography images [2]. To achieve this goal, CNNs have evolved into complex 

and deep architectures comprising various layers and structural blocks that have 

transformed them into black boxes. A key step in the proposed methodologies is the 

extraction of features from the images. Handcrafted features are designed with the primary 

purpose of quantifying the visual patterns that experts have identified as important based 
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on their experience. Local instead of global descriptors are considered the best choice for 

the extraction of robust and compact features that are in turn combined with a vocabulary-

based approach for the transformation of multiple low-level vectors into one. On the other 

hand, deep learning requires no prior expert knowledge to quantify useful features (learned) 

in images that can, in turn, be utilized for downstream tasks. When utilized in ML 

workflows, learned features in many cases go beyond human vision and achieve better 

performance in terms of accuracy and repeatability [3] in contrast to handcrafted features. 

The processing of traditional medical imaging materials such as MRIs, X-rays, 

Ultrasounds, Endoscopy, Thermography, Tomography, Microscopy, and Dermoscopy has 

been transformed to each digital version, providing numerous benefits in a variety of tasks 

that were earlier performed manually [4-11]. The abovementioned tasks fall under the 

umbrella of well-known computer vision tasks, namely, image classification [12]- 

generation[13]-registration[14, 15], semantic segmentation[16], and object detection[17]. 

To address these tasks, machine learning techniques with a dedicated emphasis on deep 

learning methodologies have been applied successfully in the field of health informatics as 

an assistive tool for the relief of workload that specialized medical personnel need to carry 

[18] and for educational purposes [19]. The iterative process of continuously evolving the 

concerned algorithms has brought to light more effective implementations that exceed the 

human eye's discriminative capability [20-22] and enhance the objectivity criteria by 

means of visual patterns’ quantification. 

As shown in Figure 2, TML approaches achieve comparable or better results with DL up 

to a certain amount of data samples. It is important to mention the superficial equality 

between TML and DL until the plateau of TML can be confusing for the selection of the 
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learning strategy. When improved performance is the desired outcome, machine learning 

engineers often overlook the consisting “ingredients” of the generalization error and choose 

DL approaches. The generalization error consists of a) bias, b) variance error, and 

irreducible error. However, the common routine of splitting a small population of data 

samples in order to present classification results based on the generated errors hides 

significant pitfalls, such as the neglection of the variance error. Regardless of the amount 

of data samples that should be a determining factor for the selection of ML against DL 

techniques, most of the presented approaches that classify medical images in an attempt to 

provide accurate automated diagnosis apply complex deep convolutional architecture. The 

utilized networks may achieve low bias error but there is always the issue of overfitting if 

the dataset’s distribution is simpler than the predictive model. In such cases, the models  

 

Figure 2 – Performance of deep vs traditional machine learning with respect to 

amount of data utilized for training. 

may focus on existing random noise that favors the reduction of bias error for the specific 

dataset but will drastically increase the variance error when a dataset including different 

random noise appears. Selecting by default a deep convolutional architecture should not be 

considered a “panacea”. The utilization of both learning approaches is thoroughly analyzed 
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in this work for the extraction of useful conclusions concerning the corresponding 

advantages and drawbacks. 

1.1.2 Complexity and Explainability, two contradictory elements. 

The extraction of useful knowledge from medical data started with the application 

of purely statistical methods. Their simplicity and transparent inner workings towards the 

generation of useful conclusions required no further elaboration for the detection of 

connections between stimuli and results. In Figure 3, statistical approaches are drawn in a 

three-dimensional space (complexity, explainability, and performance), assuming a 

position that corresponds to low complexity, low performance, and high explainability 

properties. Apart from the fact that the magnitude of complexity and explainability that can 

be easily deducted from the position in a two-dimensional space, the magnitude of the third 

dimension (performance) is deducted by the size of the ellipsis and the letter’s font. As 

health-related information increased in size and dimensionality, a strong necessity was 

born for the development of machine learning techniques that were able to recognize and 

exploit interesting patterns in multi-dimensional spaces. These techniques derived from the 

statistics utilized many well-established notions from the relevant field and managed to 

develop into more complex algorithmic structures according to the transformation of 

medical data. The complexity added a certain layer of obscurity in the mechanisms of the 

proposed algorithms, but, under no circumstance, did they arrive at the point where deep 

learning techniques, nowadays, are considered black boxes. 

As it can be easily understood, the rise of complexity in health-related data goes hand-by-

hand with the generation of more complex models. This development is inevitable if the 

requirement of capturing the essence of related data distribution is to be met. Machine 
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learning engineers translate what is commonly called “capturing the essence …” as the 

extraction of meaningful features that can, in turn, be utilized for downstream tasks. The 

quality of the extracted features in terms of repeatability, identifiability, and robustness 

results in improved performance of the model, which is the third dimension of the graphical 

representation in Figure 3. While there is a strong and concurring correlation between data 

complexity, predictive models’ complexity, and predictive models’ performance, the 

opposite holds for predictive models’ complexity and explainability. In general, as machine 

learning engineers strive for performance, they are exploiting more complex models to 

capture important features from multidimensional data. This complexity deprives all 

stakeholders of the ability to comprehend the inner mechanisms and discover significant 

reasoning for the decision-making of the predictive model. As a result, explainability has 

been sacrificed in favor of accuracy. Especially, in the field of medical imaging where 

computer-aided diagnosis systems are being utilized for decision-making that can 

significantly influence the quality of life of an individual, it is a strong prerequisite to 

designing them with explainability capabilities in order to enhance trust, transparency, and 

verifiability [23]. For medical experts to embrace Artificial Intelligence (AI) in the 

healthcare domain and integrate it into their daily routine, the generated results should be 

retraceable and reliable. The efforts of researchers are directed toward the discovery of 

methods that can highlight the relationships and interactions between the visual patterns 

included in an input image and the final prediction. ‘Unveiling these connections is of 

crucial importance since humans demand that health-threatening decisions are thoroughly 

justified [24]. This rightful requirement has also been published in the Checklist for 
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Trustworthy Artificial Intelligence [25] as an imperative guideline for autonomous systems 

that are in line with the European approach to AI development.  

The integration of explainability properties in computer-aided diagnosis systems, either by 

design or as a post-hoc capability, will add significant value to the proposed classification 

schemes for the following reasons: 

● Enhancement of the classification results with trustworthiness, transparency, and 

verifiability. 

 

Figure 3 – Graphical representation between Explainability, Complexity and 

Performance notions. The size of letters and ellipses are representative of the 

approaches’ magnitude in the performance axis. The light blue arrows demonstrate 

evolution over time and the green arrows the desired level of explainability. 

• Increase the engagement of relevant medical experts in the whole process since 

they will have the ability to interpret the results. 
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● Improvement of the predictive models’ performance since reasoning for 

erroneous/correct predictions will be retraceable. 

● Discovery of new knowledge through the detection of unknown visual patterns to 

experts yet related to the illness. 

This trend to create predictive models that provide plausible explanations of the generated 

results is highlighted in Figure 1 by the arrows that show Interpretable Traditional Machine 

Learning or Deep Learning techniques. 

1.1.3 Ensemble schemes for improved generalization error and enhanced interpretability 

properties 

The need for improvement concerning the generalization error has been an ever-

ending effort starting from the earlier days of ML. This need has motivated scientists to 

seek and expand their inventory with additional algorithms that can better handle the 

ingredients of generalization error individually or together. ML tasks with medical images 

cannot be absent from this pursuit towards better performance, since the corresponding 

predictive models are responsible for assisting in decision-making in the healthcare setting, 

a role which is strongly related to the management of clinical interventions and treatment 

plans, and to a more general perspective, with quality of life. In general, ensemble methods 

existed before the rise of deep learning and were utilized in machine learning methods with 

the main purpose to increase the performance of the decision-making mechanisms that they 

consist of. Starting from ancient Greece and the foundation of Democracy, the idea of 

ensemble decision-making derives from the human best practice of seeking for opinions of 

different experts before taking high-risk decisions. The experts’ opinion in the domain of 
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machine learning is represented by the prediction of a classifier. In an ensemble classifier, 

the input is analyzed by a set of classifiers, each implementing an algorithmic logic, 

resulting in a set of corresponding predictions that need to be combined in various manners 

in order to reach a final total prediction. Ensemble models have shown remarkable 

performance and the capability of correcting the faulty prediction of each included 

predictive model [26]. Such an example of exploiting the benefits of ensemble classifiers 

in the field of medical imaging can be manifested in [27], where authors employ a new 

weighted voting procedure on a self-supervised scheme towards the improved performance 

of medical X-Ray and computed tomography images’ classification tasks. Apart from the 

advantage of providing a boost to the performance metrics, their simple implementation 

that lies on different architectural combinations provides the advantage of imposing 

explainability modules on top of existing architectures. 

1.2 Research Questions 

Machine learning engineers choose deep convolutional networks for the extraction 

of features from medical images of all kinds of modalities due to their smooth utilization 

without the need for prior knowledge for the task in question, their performance in terms 

of minimum bias error, and the easiness by which one can learn to train a CNN. This 

frivolous choice should not be made easier if significant factors are to be taken into 

consideration concerning the generalization and explainability properties of the designed 

predictive model. Traditional machine learning approaches should be equally considered 

as potential candidates in accordance with the volume of data and complexity of the ML 

task in question. Keeping in mind that all ML approaches offer advantages and are 
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degraded by drawbacks, this research has been structured to address challenges on both 

sides. 

With reference to the volume of data samples, the curation and completion of a labeled 

dataset for an ML task require the involvement and tedious collaboration of an accountable 

number of scientists. There are cases where the generation of a large number of samples is 

hindered, possibly owing to an elaborated management process or the limited availability 

of required resources. Lacking standardization in the generation process can also be a 

reason for which data samples are limited. In such cases, the traditional machine learning 

approaches fit better to the task. On the other hand, the level of complexity is a defining 

characteristic of the task. There is an inherent difficulty in measuring the degree of 

complexity of an ML task, but by executing different trials and accounting for the returned 

evaluation metrics significant feedback can be provided. The analysis and evaluation of the 

TML and DL approach for medical images across the axes of generalization and 

interpretability with reference to the volume of data and complexity of the task is the basis 

of the research questions we attempt to answer. Towards the abovementioned axes, the 

following research questions are stated: 

To what extent can TML techniques efficiently address medical imaging classification 

tasks? If so, are these techniques accompanied by an interpretability scheme that provides 

plausible explanations concerning the visual stimuli that determined the classification 

result? 
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To what extent can explainability techniques for DL approaches be quantitively evaluated? 

Do existing explainability techniques tackle efficiently the explainability requirement for 

medical images? 

Are there explainability schemes for ensemble classifiers that can effortlessly be integrated 

into medical imaging classification models? Are these classifiers improving explainability 

results as well? 

Since explainability relates to designated areas of the medical images, to what extent can 

DL approaches isolate their explainability results to areas that correspond to human 

expertise, or should segmentation algorithms be utilized to narrow down the candidate 

areas? 

1.3 Contribution 

In this thesis, the focus is concentrated on microscopy images such as histopathology whole 

slide and reflectance confocal images. Both modalities are strongly related to different 

cases of cancer and can be utilized for the detection of suspicious patterns in human tissues. 

Utilizing automated machine learning techniques for the prognosis and diagnosis of 

pathogenic conditions is vital for the early detection of malignancies in both cases aiming 

at total healing and avoidance of metastasis [42, 43]. In the case of digital pathology, the 

existence of public datasets for the provision of a priori knowledge is immense, and 

reported results of the deep learning techniques are high [44], but the need for explaining 

the connection between the input and the result is overlooked, yet, compelling.  On the 

other hand, public datasets for RCM images are greatly limited which makes the 

application of DL techniques extremely difficult. The lack of public datasets for RCM 



 12 

images inevitably influences the development of corresponding explainable approaches. 

Especially in the case of predictive models in healthcare information systems where the 

responsibility for high-stake decisions lies heavy, the need for classification schemes that 

are followed by explainable results is highly underlined. “In order to build trust in 

intelligent systems and move towards their meaningful integration into our everyday lives, 

it is clear that we must build ‘transparent’ models that have the ability to explain why they 

predict what they predict” [45]. In order to provide improved results with respect to the 

base classifiers, ensemble classifiers are utilized for the classification tasks when the 

abundance of samples permits so. Apart from the advantage of providing a boost to the 

performance metrics, their simple implementation that lies on different architectural 

combinations provides the advantage of imposing explainability modules on top of existing 

architectures. This integration is made possible, as well, due to the nature of the well-

known Gradient Weighted Class Activation Mapping (Grad-CAM) technique [45] that can 

be applied effortlessly to the last convolutional layer of existing deep learning schemes 

without interfering with the functionality of the predictive model. The combination of an 

ensemble classifier with a Grad-CAM explanation scheme that can highlight the visual 

patterns which are responsible for each class prediction, while providing promising results 

is one of the presented contributions. Furthermore, a standalone application that follows 

the principles of distributed computing is available for online validation and 

experimentation, providing its functionality (classification and explainability) as a web 

service. 

Although the Grad-CAM technique performs well when dealing with discrete objects in 

images of general interest, the case is different for complex medical images. With reference 
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to microscopy images, the assignment of importance to each specific structure at a cellular 

level is an important requirement to address. The depicted visual patterns are combined in 

a complex way and with such density that the existing explainability scheme fails to 

highlight specific structures [46]. There is a need for the provision of explainability results 

that highlight cellular structures of common visual characteristics, a requirement that goes 

beyond the rectangular regions provided by the Grad-CAM. 

In this context, an explainability scheme that combines the well-established properties of 

Grad-CAM, while enhancing them with the localization information of specific structures 

that derive from three different segmentation algorithms is proposed. The results are 

analyzed and measured in terms of the impact of the designated superpixels on the 

classification results. The outcome shows a significant improvement when compared to the 

original Grad-CAM technique in terms of the Area Over Perturbation Curve (AOPC) 

metric and the correspondence between the highlighted regions and the experts’ 

experience. Specifying regions of the image based on common visual characteristics is of 

importance in medical images with dense information. Instead of highlighting rectangular 

regions, the algorithm facilitates the designation of individual structures that are 

responsible for the classification results. The accurate delineation of cellular entities’ 

boundaries can be beneficial to the explanation process since it provides better 

visualizations without hiding the important regions, and it restricts the important region to 

better-defined structures that make sense to the human experience. The proposed technique 

has been verified against skin cancer confocal and breast cancer histopathology images, 

but it can be utilized for the explanation of other medical image modalities. Although Grad-

CAM has been chosen as a benchmark explainability algorithm, since it can be applied to 
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various CNN architectures and is considered efficient in terms of resources and 

implementation, other explainability algorithms can be utilized as backbones for the 

provision of feature importance. 

Since local descriptors have demonstrated their efficiency in capturing identifiable, robust, 

and compact features in images, they are widely utilized in this thesis as the basis for 

feature extraction. The need to transform the generated vectors into a single representation 

for the classification task is addressed by vocabulary-based techniques such as BOVW and 

FV. In the literature, there is an unexpected lack of explainability approaches that can be 

embedded in vocabulary-based classification schemes for the designation of important 

areas that influence the result, mainly due to the fact that the explainability requirement 

showed up after the establishment of such techniques and the adherence of DL approaches. 

To make amends for this absence, a methodology for fast classification and interpretation 

of RCM images is proposed. The proposed methodology consists of the formation of a 

visual vocabulary based on Speeded Up Robust Features (SURF), a plain “vanilla” neural 

network classifier, and their interpretation schemes. The proposed methodology innovation 

lies on two factors: The classification results demonstrate that automated classification of 

RCM can relieve the time-consuming burden from dermatologists and save patients for the 

invasive procedure of biopsy, while the interpretation scheme provides useful insight for 

clinicians concerning the visual patterns mainly responsible for the classification outcome. 

To the best of our knowledge, it is the first time that explainability indicators are produced 

via the BOVW technique for the interpretation of an image classification system. It is also 

the first time that an explainability scheme is being utilized for the interpretation of the 

predictive result concerning confocal images. The explanation of each result is of great 
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importance to computer-aided diagnosis systems since it can produce knowledge about 

domain relationships contained in data [47]. 

DL techniques will take advantage of every pattern found in medical images for the sake 

of improving classification results. However, most of the time the areas that are important 

for decision-making are concentrated on segments of the medical image and not the whole 

of it. Utilizing patterns outside of these segments may lead to unwanted results since there 

are not related to the problem and constitute noise which seriously affects the 

generalization properties of the model in a negative manner. Providing the ground truth for 

segmentation algorithms is a far more arduous task than for classification algorithms since 

it is performed pixel by pixel. The proposal of an unsupervised segmentation approach for 

the segmentation of the different blastocyst segments is proposed as well as part of an 

explainability scheme based on the FV classification approach.  The methodology initially 

segments the blastocyst from the background without the need for human labeling, 

provides visual explanations with a novel approach, and cross-examine the explainability 

results with class activations maps for deep learning techniques to verify the classification 

outcomes. To the best of our knowledge, this is the first time an explainability scheme is 

presented for the FV technique and one of the rare attempts to provide visual explanations 

for the prediction outcome on blastocysts images. To avoid erroneous assessment, it would 

be particularly useful to utilize machine learning methods that attribute quantitative 

indicators to the characteristics of the image to classify the blastocysts in one of the 

corresponding categories. 

Apart from the contributions that address the main research questions herein, steps have 

been taken to propose automated tools for the assistance of human experts in their everyday 
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routine workflow in labs. Specifically, a content-based image retrieval tool that can import 

medical books (histopathology atlases) in pdf format is proposed. Inputs to a content-based 

image retrieval system can be whole slide images, images extracted from digital pathology 

books (literature), and local storage or digital pathology databases. These inputs, digital 

images to their whole, are imported into the system and compared to a query image of 

choice in order to detect the most similar in the literature. This automated process can 

relieve pathologists from the burden of manually searching in different hard copies for the 

detection of patterns that are already known to them. The proposed methodology for fast 

retrieval and classification of such images is based on the creation of visual vocabularies 

from scale invariable texture features and the notion of Bag of Visual Words (BOVW). 

Although BOVW is widely utilized for CBIR, the novelty of this work refers to the fusion 

of different features in the construction of a final vector that can describe ideally the dataset. 

1.4  Thesis Structure and Summary per Chapter 

The thesis is divided into five (5) main sections, as follows: Introduction, Related Work, 

Methodology, Experimental Results, Discussion, and the Conclusion. 

The first part, Introduction, contains a description of the thesis’ scope, the research 

questions with reference to explainability in the field of medical imaging and the proposed 

contributions. First, it refers to the application of traditional machine learning and deep 

learning classification techniques in the field of medical imaging. In the following lines, 

the notions of complexity and explainability are presented as two contradictory factors and 

the scope subsection ends with a detailed presentation of the ensemble architectures’ role 

to improving the generalization of the corresponding base classifiers. The second 
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subsection mentions the research questions that the thesis is dealing with, and the third 

subsection refers to the proposed contribution in presenting novel explainability 

approaches for TML and DL classification schemes. 

The second part, Related Work, contains existing works in the domain of medical imaging, 

where machine learning approaches are analyzed, evaluated, and put to comparison in 

terms of classification performance and explainability properties. The contained 

subsections refer to traditional machine learning and deep learning classification schemes 

that are applied for knowledge extraction from various modalities of medical images and 

further, describe the feature extraction and modelling mechanisms that lead to high-end 

predictive schemes. The related work section explains in short the inner workings of well-

established explainability approaches and superpixel segmentation algorithms, while 

retaining in the end two smaller subsections with reference to ensemble classifiers and 

unsupervised segmentation. 

The third section, Methodology, is divided into three subsections that contain descriptions 

and graphical representations about the proposed explainability approaches for traditional 

machine learning and deep learning classification schemes and the unsupervised 

segmentation of blastocyst images. 

The fourth section, Experimental Results, presents in extensive detail the qualitative and 

quantitative results of the conducted experiments on medical images of different modalities 

such as whole slide, reflectance confocal microscopy and blastocyst images. The generated 

results provide substantial proof of the contributions in this thesis.  
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A discussion section follows the Experiments Results, where the limitations of the 

proposed methodologies are presented and directions for future works are set. 

The thesis ends with the conclusion section, where a summary of the thesis, the research 

questions and the presented contributions are commented. 
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RELATED WORK 

1.5 Machine Learning Applications and Explainability for knowledge extraction 

from medical images 

As a means of knowledge extraction from data, machine learning has been exploited 

for the transformation of visual stimuli in medical images into objective measurable 

quantities that can, in turn, be utilized for various health-related predictive tasks such as 

the classification in grades of diseases, the detection and quantification of suspicious 

structures or the evolution of an illness. Each modality of medical imaging shares a set of 

distinguishable characteristics related to the density of visual information, the low contrast, 

the inherent noise, or obstacles that hinder the detailed review of corresponding specialists, 

the generated artifacts, and the variety in color distributions. This special set-up constitutes 

an operational field of opportunities and challenges for ML algorithms to delve into and 

explore. 

In the field of digital pathology, where the introduction of Whole Slide Scanners 

(WSI) has allowed the digitalization of tissue slides and enabled the era of digital 

pathology, ML applications have shown an unseen bloom owing to the latest advancements 

in the handling of a large amount of data and the diffusion of several expert-curated public 

datasets, as depicted in Table 1. Content-Based Image Retrieval (CBIR) and classification 

in digital pathology images preoccupy several research groups and there are some works 

already reported in the literature. A part of them exploits global features extracted from the 

images, as opposed to other systems that utilize local features, while methodologies using 

both global and local features exist as well. Concerning the extraction of local features, a  
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Table 1 - Digital Pathology Datasets 

Name Url Paper Task 

CAMELYON 16 

https://pan.baidu.com/
s/1UW_HLXXjjw5hU

vBIUYPgbA 

Ehteshami Bejnordi B, Veta M, Johannes 

van Diest P, van Ginneken B, Karssemeijer 

N, Litjens G, van der Laak JAWM, and the 

CAMELYON16 Consortium. Diagnostic 

Assessment of Deep Learning Algorithms 

for Detection of Lymph Node Metastases in 

Women with Breast Cancer. JAMA. 

2017;318(22):21992210. doi:10.1001/jama.

2017.14585 

Lymph node 
metastases detection  

CAMELYON 17 

https://pan.baidu.com/

s/1mIzSewImtEisclPt

THGSyw#list/path=%

2F 

Geert Litjens, Peter Bandi, Babak 
Ehteshami Bejnordi, Oscar Geessink, 
Maschenka Balkenhol, Peter Bult, Altuna 
Halilovic, Meyke Hermsen, Rob van de Loo, 
Rob Vogels, Quirine F Manson, Nikolas 
Stathonikos, Alexi Baidoshvili, Paul van 
Diest, Carla Wauters, Marcory van Dijk, 
Jeroen van der Laak. 1399 H&E-stained 
sentinel lymph node sections of breast 
cancer patients: the CAMELYON 
dataset. GigaScience, giy065, 
DOI: 10.1093/gigascience/giy065 

 

 

Lymph node 
metastases detection 

and disease 
classification 

WARWICK QU  

https://warwick.ac.uk/

fac/sci/dcs/research/tia

/glascontest/download
/ 

K. Sirinukunwattana, J. P. W. Pluim, H. 

Chen, X Qi, P. Heng, Y. Guo, L. Wang, B. J. 

Matuszewski, E. Bruni, U. Sanchez, A. 

Böhm, O. Ronneberger, B. Ben Cheikh, D. 

Racoceanu, P. Kainz, M. Pfeiffer, M. 

Urschler, D. R. J. Snead, N. M. Rajpoot, 

"Gland Segmentation in Colon Histology 

Images: The GlaS Challenge 

Contest" http://arxiv.org/abs/1603.00275 [Pr

eprint] 

 Gland segmentation  

KIMIA 960 

http://kimia.uwaterloo.

ca/kimia_lab_data_Pat
h960.html 

 

Kumar MD, Babaie M, Zhu S, Kalra S, 

Tizhoosh HR. A comparative study of 

CNN, BoVW and LBP for classification of 

histopathological images. ArXiv171001249 

Cs; 2017. 

 

Classification  

BREAKHIS 

https://web.inf.ufpr.br/

vri/databases/breast-
cancer-

histopathological-

database-breakhis/ 

 Spanhol, F., Oliveira, L. S., Petitjean, C., 

Heutte, L., A Dataset for Breast Cancer 

Histopathological Image 

Classification, IEEE Transactions on 

Biomedical Engineering 

(TBME), 63(7):1455-1462, 2016. 

Disease Classification 

MITOS-ATYPIA 

https://mitos-atypia-

14.grand-

challenge.org/Donwlo

ad/ 

Zakariapour, Sooshiant & Jazayeriy, Hamid 

& Ezoji, Mehdi. (2017). Mitosis detection in 

breast cancer histological images based on 

texture features using adaboost. Journal of 

Information Systems and 

Telecommunication. 5. 88-96.  

Mitosis detection, 
nuclear atypia 
classification 

MITOS 2012 

http://ludo17.free.fr/m

itos_2012/download.ht

ml 

Roux L, Racoceanu D, Loménie N, 

Kulikova M, Irshad H, Klossa J, et al. 

Mitosis detec- tion in breast cancer 

histological images An ICPR 2012 contest. J 

Pathol Inform 2013;4:8. 

https://doi.org/10.4103/2153-3539.112693.  

Mitosis detection 

BIO-

SEGMENTATION 

https://bioimage.ucsb.

edu/research/bio-

segmentation 

Gelasca ED, Byun J, Obara B, Manjunath 

BS. Evaluation and benchmark for biolog- 

ical image segmentation. 2008 15th IEEE 

Int. Conf. Image Process; 2008. p. 1816–9. 

https://doi.org/10.1109/ICIP.2008.4712130. 

Disease Classification 

https://pan.baidu.com/s/1UW_HLXXjjw5hUvBIUYPgbA
https://pan.baidu.com/s/1UW_HLXXjjw5hUvBIUYPgbA
https://pan.baidu.com/s/1UW_HLXXjjw5hUvBIUYPgbA
https://jamanetwork.com/journals/jama/article-abstract/2665774
https://jamanetwork.com/journals/jama/article-abstract/2665774
https://pan.baidu.com/s/1mIzSewImtEisclPtTHGSyw#list/path=%2F
https://pan.baidu.com/s/1mIzSewImtEisclPtTHGSyw#list/path=%2F
https://pan.baidu.com/s/1mIzSewImtEisclPtTHGSyw#list/path=%2F
https://pan.baidu.com/s/1mIzSewImtEisclPtTHGSyw#list/path=%2F
https://doi.org/10.1093/gigascience/giy065
https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/download/
https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/download/
https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/download/
https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/download/
http://arxiv.org/abs/1603.00275
http://kimia.uwaterloo.ca/kimia_lab_data_Path960.html
http://kimia.uwaterloo.ca/kimia_lab_data_Path960.html
http://kimia.uwaterloo.ca/kimia_lab_data_Path960.html
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://mitos-atypia-14.grand-challenge.org/Donwload/
https://mitos-atypia-14.grand-challenge.org/Donwload/
https://mitos-atypia-14.grand-challenge.org/Donwload/
https://mitos-atypia-14.grand-challenge.org/Donwload/
http://ludo17.free.fr/mitos_2012/download.html
http://ludo17.free.fr/mitos_2012/download.html
http://ludo17.free.fr/mitos_2012/download.html
https://doi.org/10.4103/2153-3539.112693
https://bioimage.ucsb.edu/research/bio-segmentation
https://bioimage.ucsb.edu/research/bio-segmentation
https://bioimage.ucsb.edu/research/bio-segmentation
https://doi.org/10.1109/ICIP.2008.4712130
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KIMIA PATH24 

http://kimia.uwaterloo.

ca/kimia_lab_data_Pat

h24.html 

Classification and Retrieval of Digital Pathology 

Scans: A New Dataset 

Morteza Babaie, Shivam Kalra, Aditya 

Sriram, Christopher Mitcheltree, Shujin 

Zhu, Amin Khatami, Shahryar 

Rahnamayan, H.R. Tizhoosh. CVMI 

Workshop @ CVPR 2017 

Disease classification 
and retrieval 

TGCA 
https://portal.gdc.canc

er.gov/ 

Weinstein JN, Collisson EA, Mills GB, Shaw 

KRM, Ozenberger BA, Ellrott K, et al. The 

cancer genome atlas pan-cancer analysis 

project. Nat Genet 2013;45:1113–20.  

 

GTex 

https://brd.nci.nih.gov/

brd/image-

search/%20searchhom

e 

The genotype-tissue expression (GTEx) 

project. Nat Genet 2013;45:580–5. https:// 

doi.org/10.1038/ng.2653. 
 

TMAD 
https://tma.im/cgi-

bin/home.pl 

Marinelli RJ, Montgomery K, Liu CL, Shah 

NH, Prapong W, Nitzberg M, et al. The 

Stanford tissue microarray database. 
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and the extraction of Haralick features from gray-level co-occurrence matrices is used to 

measure pleomorphism and heterogeneity. 

Once feature extraction is completed, the task of classifying the images into the 

corresponding classes takes place. To this cause, one useful technique to decrease the 

dimensionality of multiple vectors is the Bag of Visual Words which comes from the field 

of Text Mining/Categorization. Several works that apply this technique have been reported 

in the last years concerning medical images [51]. Results are promising and in many cases, 

some systems outperform Deep Neural Network configurations, where the image is 

digested on its whole, but resized, by a neural network. In configurations of the latter case, 

the processes of feature extraction are entirely handled by the neural network. Going a step 

further, Jegou et al. at [52] propose the Vector Locally Aggregated Descriptors (VLAD) 

for image retrieval and classification that demonstrate better results in comparison to 

BOVW in big datasets.  

As far as histopathology images are concerned, the need to provide feasible semantic and 

visual explanations of the generated results of the predictive model has been addressed in 

some studies [53]. In [54], the LIME methodology is utilized to generate explanations on 

the Patch Camelyon histopathology images [55]. Three different segmentation algorithms 

are compared for the generation of superpixels that are consequently used for the 

perturbation of initial images. By exploiting basic principles from the Grad-CAM and 

Guided Grad-CAM technique the authors in [56] propose an explainability scheme on top 

of a convolutional neural network. The presented work achieves competitive results in 

terms of classification while providing accurate cancerous evidence localization. In a 

different fashion than other schemes, the work in [57] presents a methodology that provides 



 23 

explanations about the predictive result in a human-friendly manner. Along with a semantic 

explanation regarding the confidence of each prediction, visualizations of similar and non-

similar samples of different classes are provided. The assignment of importance to each 

specific structure at a cellular level is an important requirement to address.  

In dermatology, experts utilize digital dermoscopy to review potential malignancies on 

human skin. To verify their diagnosis, a sample from the skin is removed and forwarded to 

the histopathology labs where the nature of the tissue is determined. Histopathology 

remains the golden standard in experts’ routines, but reflectance confocal microscopy is a 

non-invasive technology that can be utilized as an alternative for the diagnosis of skin 

cancer. Since skin cancer preoccupies a large portion of humans on a global scale [30], the 

majority of samples are operated on and sent to the lab in vain (only a few of them are 

malignant). Reflectance confocal microscopy offers the advantage of being able to review 

the sample at a cellular scale in vivo and capture the area of interest in a digital copy. 

However, generated images are of high density and complexity and only a few experts are 

specialized in evaluating the corresponding images. Due to RCM’s recent adaptation in 

skin cancer assessment workflow and the cost of acquiring the respective hardware, 

literature in the dedicated domain of computer vision utilizing RCM images is very poor. 

The sparsity of labeled samples in conjunction with the density of visual patterns depicted 

in RCM images compose a very challenging scenario for Computer Vision (CV) 

researchers. Nowadays, most CV research work is focused on the utilization of Deep 

Convolutional Neural Networks (DCNN). The ability of the latter to absorb and analyze a 

large number of images and to efficiently execute machine learning tasks on them has led 

to the general acceptance of related programming frameworks such as Keras [58], 
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Tensorflow [59], and Deeplearning4j [60]. In [61], a hybrid approach improves the 

accuracy of a Convolutional Neural Network classification scheme owed to a sparsity of 

samples. The classification accuracy (51% with the CNN) is improved by 31% with the 

combination of a CNN and a texton-based unsupervised scheme. With the assistive hand 

of transfer learning, the issue of samples’ sparsity can be tackled, as in [62], where RCM 

images are classified by a pretrained Resnet network. In the same fashion, but for a 

different task, a deep learning approach is utilized in [63] for the automated staining of 

RCM images. On the other hand, traditional machine learning techniques based on 

handcrafted features do not suffer from the need for a large number of image samples. 

While such techniques demonstrate promising results in relevant bioimaging domains [64], 

no proof of research work with the utilization of traditional methods was found in the 

literature. 

An immense sparsity of research work is evident in the field of computer vision regarding 

confocal image classification models and explainability. Although deep convolutional 

networks are utilized in confocal images’ classification tasks and demonstrated effective 

performance results, attempts to explain their predictions are not equally appreciated, since 

the Grad-CAM technique focuses on tiles of the image rather than highlighting specific 

structures at a cellular level. Although the technique performs well when dealing with 

discrete objects in images of general interest, the case is different for complex medical 

images. When referring to all modalities of medical microscopy imaging, the depicted 

visual patterns are combined in a complex way and with such density that the existing 

explainability scheme fails to highlight specific structures [46]. Therefore, there is a need 

for the provision of explainability results that highlight cellular structures of common 
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visual characteristics, a requirement that goes beyond the rectangular regions provided by 

the Grad-CAM. Even if the saliency maps are provided in fine granularity by the 

exploitation of pixel-wise explainability schemes, the need to define a larger area in order 

to measure the impact of meaningful structures in the image is compelling. 

Especially in the field of skin histopathology or confocal images, attempts to interpret the 

predictions of classification algorithms are rare. In [65], the CAM and Grad-CAM 

technique is utilized to interpret results from a multiclass (melanoma / intradermal nevus/ 

compound nevus / junctional nevus) histopathology image classification task employing 

VGG19[66] and ResNet50[67] DCNNs, whereas in [68] a machine learning approach, 

based on the Bag of Words technique, is presented to highlight specific visual words on 

the image by retrieving their influence on the classification outcome. 

Moving from microscopy images to a different modality of medical images that have 

attracted the attention of this research, the advantages of using ML and DL have been 

exploited by researchers in the case of images depicting blastocysts with the main purpose 

of predicting the most suitable candidate for implantation. The results are encouraging, as 

seen in [69] using the Inception - v1 neural network with an Area under Curve (AUC) of 

0.987. This study utilizes a large database of 50,000 images in time-lapse format from the 

Weill Cornell Reproductive Medicine Center. Embryos are classified into three groups, 

good, fair, and poor quality according to a consensus of multiple embryologists. Regarding 

the selection of the appropriate embryo for transfer, in [70], the proposed neural network 

succeeds in predicting the most suitable embryo for transfer with 90% accuracy in 113-

hour post-insemination samples. In [71] a deep learning approach demonstrates an AUC 

of 0.93 in predicting the probability of pregnancy with the fetal heartbeat. The 
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generalization properties of this methodology are verified through images collected from 

eight different laboratories. 

Most of the studies manage to differentiate blastocysts coarsely (good vs bad quality), but 

the critical clinical need of distinguishing blastocysts of similar quality remains 

unsatisfactory. Furthermore, they fail to interpret the internal mechanisms of the utilized 

predictive models, meaning that no explanation is provided concerning the visual patterns 

that influenced the prediction. The association and localization of the visual patterns that 

greatly influence the result of the predictive model are crucial in high-risk predictive 

models, such as those utilized in medical applications. Explainability contributes to the 

discovery of reasoning for erroneous predictions or confounding factors [72]. In addition, 

customers, who intended to invest in such systems, are entitled to explanations that can 

cross-examine their working experience [73], a legitimate right that is manifested in the 

General Data Protection Regulation as well. Among several approaches for the generation 

of visual explanations in medical images, Grad-CAM is utilized broadly since it can be 

applied to various configurations of DL architectures. 

1.6 Local Descriptors for feature extraction from medical images 

1.6.1 Scale Invariant Feature Transform  

 The way humans perceive the surrounding world by means of vision is strongly related 

to the notion of scale. As quoted in [74], “An inherent property of objects in the world is 

that they only exist as meaningful entities over certain ranges of scale. If one aims at 

describing the structure of unknown real-world signals, then a multi-scale representation 

of data is of crucial importance”. Although the human brain has demonstrated a remarkable 
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ability to adapt in different scales in its attempt to recognize patterns and objects, the 

opposite occurs with computer vision. While a human can effortlessly recognize a leaf both 

when he is holding it in his arm and when he is looking at it from afar, computers struggle 

with such tasks. It has been from the beginning of the 21st century that scientists grasped 

the importance of robustness through different scales and occupied themselves with the 

development of feature extraction algorithms that can deliver the desired result. 

A basic means towards the achievement of scale invariance has been the scale-space 

representation by image pyramids. Image pyramids consist of multiple representations of 

the same visual content but in different sizes and scales. The effect of resizing and rescaling 

is generated by the iterative blurring and downsampling of the initial image. Although there 

exist various techniques in the literature for the above-mentioned process, Gaussian 

blurring and bilinear interpolation are the chosen algorithms in the SIFT technique for the 

generation of the scale space representation. Using as an example the histopathology 

image, shown in Figure 4, a scale-space pyramidical representation is created. The SIFT 

algorithm [48] uses this set of generated images for the interest point detection procedure. 

By convolving the second-order derivative of the gaussian distribution (Laplacian of 

Gaussian-LoG) with each image, blobs are detected efficiently at the point of local extrema 

in three scales. Each pixel is compared by its eight neighbor pixels and the 18 pixels from 

the previous and next scales. The pixel with the highest value is selected as a potential key 

point that corresponds to a blob in the image with a certain r radius. It should be noted that 

the detection of key points do not take place on the convolution of images with the second 

other derivative but on a cheaper approximation which is expressed by the Difference of 

Gaussians (DoGs). SIFT algorithm consists of four steps: 
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• Keypoint detection. 

• Keypoint localization. 

• Orientation assignment. 

• Keypoint description. 

 

Figure 4 – Scale space representation of histopathology image. 

If the histopathology image is represented as I (x, y) where x, y are pixel coordinates on 

a grayscale image then the gaussian blurring takes place by Equations (1), (2): 

 𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) (1) 

 
𝐺(𝑥, 𝑦, 𝜎) =  

1

2𝜋𝜎2
𝑒

−(𝑥2+𝑦2)

2𝜎2  
(2) 
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Moving one step further, we can detect blobs between edges and corners by convolving 

the image with the Laplacian of Gaussian, without neglecting an important property 

between convolution and differentiation that allows for conducting calculations according 

to Equation (3). 

 𝑑

𝑑𝑥
(𝑓(𝑥) ∗ 𝑔(𝑥)) =

𝑑

𝑑𝑥
(𝑓(𝑥)) ∗ 𝑔(𝑥) 

(3) 

 Once we have performed calculations according to Equations (1) (2) and (3), we can refer 

to the original SIFT paper to recall that they can be bypassed by simply approximating 

them with the DoGs. Since the DoGs depend on the scale by the inverse 1/σ2, a 

multiplication with σ2 offers scale invariance. As already mentioned, the detected key 

points are potential locations of blobs and poorly localized in subpixels due to the effect of 

the scale-space representation, a Taylor series expansion is utilized to allow for more 

accurate calculation of extrema by applying a threshold of 0.03 and a Hessian matrix is 

exploited to further refine key points by removing certain weak responses and outliers. The 

described operations signal the end of keypoint detection and localization. Once scale 

invariance is accomplished, the next aim is to transform key points into rotation-invariant 

information. This is conducted by finding the dominant orientation in a manner similar to 

the one described in the Histogram of Gradients algorithm [75]. The surrounding area of 

the key point is divided into subregions and the gradients to both xx’ and yy’ axis are 

calculated to provide measures of angle and magnitude. For each key point, a 16x8 vector 

is provided resulting in a robust representation of each key point of 128 values. 16 neighbor 

areas around the key point are described by an 8-bin histogram of gradients. Where two 
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dominant angles are retrieved above the threshold, both are kept as shown in Figure 5, 

where the radius and orientation of each keypoint are shown by a colored circle and line. 

It is important to keep in mind that each image is described by several vectors of 128 values. 

The extracted information is scale and rotation invariant but requires further processing for 

image classification since the ideal representation would be a single vector for each image. 

The same is not valid for other downstream tasks such as image registration, stitching, or 

retrieval where the pipeline can be successfully fulfilled with multiple vectors 

 

Figure 5 - Keypoint localization and orientation assignment by SIFT algorithm in a 

histopathology image. 

1.6.2 Speeded Up Robust Features  

Although the SIFT algorithm has been an important pioneering step for local descriptors 

that achieve scale, rotation, and translation invariance in a time and resource-saving 

manner, the SURF algorithm [76] pushed the limits of efficiency one step further by 
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exploiting integral images and box filters. The combination of these two techniques 

produces results that outperform the previously proposed local descriptors while 

maintaining the desired properties of distinctiveness, quantity, and efficiency concerning 

time. 

SURF algorithm consists of the same steps as SIFT but fulfills each step in a different 

manner. It relies on the advancement of Integral images and the utilization of box filters 

for the detection of interest points in the image. Another novel idea that was introduced in 

the original paper was the utilization of the Hessian-Laplacian detector for the detection of 

interest points. Summing all these newly bred notions leads to a far more efficient 

computation scheme for the key points detection scheme. Taking things from the start, the 

SURF paper utilizes the Hessian-Laplacian operator for the detection of key points' 

location and scale. Although the SIFT algorithm accomplishes a fast computation of the 

Laplacian of Gaussian second derivative by the approximation of the DoGs, SURF excels 

in the time-efficiency perspective by approximating the LoG with box filters (Figure 6). 

By convolving box filters with the image, the algorithm seeks maximum responses. These 

responses are discovered in the zero crossings of the determinant of the Hessian matrix that 

consists of box filters instead of LoGs. The original Hessian matrix assumes the form with 

is shown in Equation (4). 

Another important component of the algorithm is the Integral images that derive from the 

work in [77], otherwise called Summed Area Tables. 
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𝐻 = [

𝐿𝑥𝑥 𝐿𝑥𝑦

𝐿𝑥𝑦 𝐿𝑦𝑦
] ,  𝐻𝑎𝑝𝑝𝑟𝑜𝑥 = [

𝐷𝑥𝑥 𝐷𝑥𝑦

𝐷𝑥𝑦 𝐷𝑦𝑦
] 

(4) 

If we consider a 7x7 matrix with values ranging from 0 to 255, then we can calculate the 

Integral image by creating a new 7x7 matrix, where each value is the sum of values in the 

containing rectangle. To gain a better understanding of how the algorithm works, Figure 7 

provides the original 7x7 image and the derived integral image. By applying this 

conversion, we can calculate the sum of pixels in a rectangle of the original image by 

conducting three operations instead of many more. Assuming that our objective is to 

calculate the sum between values 481, 393, 113, and 136, we can calculate 481-393-113-

136 instead of adding all the containing values. The economy of applying fewer 

 

Figure 6 - Representations of approximations of Gaussian second order partial 

derivatives in y-direction and xy-direction. A) and b) show the original filters 

whereas c) and the approximated by utilizing box filters [76] 

calculations is more evident to larger scale of images. To connect all the dots together, 

since the convolution of box filters with the image requires the calculation of sums between 

rectangular areas of the image, integral images play the role of an important accelerator.  

The application of the SURF algorithm in the histopathology image in Figure 8 results in 

the detection and description of several keypoints as shown in Figure 8. The details of 

comparison between the two algorithms can be witnessed in Table 2. A quick review of 
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the two copies shows that the keypoints for SURF algorithm are more and detect larger 

patterns on the image than the SIFT. The examination of the quantitative results of  

 

Figure 7 – Conversion representation of regular 7x7 grayscale image to integral 

image.  

 

Figure 8 - Keypoint localization and orientation assignment by SURF algorithm in a 

histopathology image. 

the comparison in Table 2 demonstrates the superiority of SURF algorithm in producing 

robust, compact and plenty features from an image with respect to its elder equivalent. It 

has been noticed that, in contrast to what is written in the original paper, the SURF 
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implementation takes longer for an image to accomplish its task by utilizing all known 

python libraries. 

Table 2 - Characteristics of applying SIFT and SURF algorithm on histopathology 

images. 

Algorithm Feature Length Time Allotment Number of keypoints 

SIFT 128 0.08min 716 

SURF 64 0.33min 1665 

1.7 Single vector representations for local descriptors 

Local descriptors were invented to provide a more detailed and robust transformation 

representation of an image with respect to global descriptors. Although when applying 

global descriptors to images, we are facilitated with a single vector per image that can be 

easily fed into a classifier of choice, the case is more complex with the application of local 

descriptors such as SIFT and SURF to images. To proceed with the usual pipeline of 

inserting a single feature vector into a classifier, the need to encode multiple vectors 

detected for each key point of an image into a single one is imperative. Several algorithms 

have been proposed in the literature for the task in question, but the most prominent are 

considered to be BOVW [78], VLAD [52], and Fisher Vectors (FV) [79]. The BOVW is a 

direct derivation of the BOW model that was initially proposed for the encoding of words 

in the Natural Processing Language (NLP) field. In order to encode each image with a 

vector that is identifiable and descriptive, a visual vocabulary is created by exploiting the 

properties of well-known clustering techniques. Kmeans [80] and its offspring (J-Means, 

Kmeans++) is the algorithm of choice for many BOVW implementations due to its simple 

and effective execution. The first step of the methodology consists of the utilization of the 

dataset subset for the extraction of local descriptors and their gathering in a bag for the 
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formation of local descriptors’ clusters. The selection of clusters K is a hyperparameter for 

the BOVW algorithm are depends on the complexity of the task we are attempting to solve. 

The centroid of each cluster represents a visual word of the vocabulary. In the same fashion 

that words are the best fit for the semantics of a certain notion, centroids attempt to capture 

the essence of important patterns in the image. The clustering of several local descriptors 

of the subset results in the formation of a visual vocabulary of K words (Figure 9). The 

 

Figure 9 – Formation of visual vocabulary by extracting local descriptors and 

clustering by Kmeans. Black dots represent visual words of the vocabulary 

(clustering centroids), while colored dots are local descriptors in a 2-dimensional 

space. 

next step is the representation of each image of the dataset by a single vector. The local 

descriptors are extracted from the image and each descriptor is assigned to a visual word 

by means of a distance metric (Euclidean, Mahalanobis). This operation leads to the 

formation of a histogram with k bins where each bin records the count of descriptors 

assigned to each visual word, as demonstrated in Figure 10. Consequently, each sample of 

the dataset can be inserted in a classifier for the corresponding classification task. This 

simplistic approach to producing a dense representation can be referred to as a hard 
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assignment technique since it exclusively assigns each descriptor to a visual word. 

Therefore, it neglects the influence of other visual words on the result. Furthermore, despite 

the fact that the location of each descriptor is known, no spatial information is encoded in 

 

Figure 10 – Representation of histogram formation for each sample of the dataset 

by assigning contained visual descriptors to a specific visual word by means of 

Euclidean distance. 

the next step is the representation of each image of the dataset by a single vector. The local 

representation vector, thus leading to a depreciation of useful knowledge. In order to 

upgrade the amount of useful information that is encoded into a representation from 

multiple descriptors’ vectors, the authors in [52] utilize soft assignment instead of the hard 

assignment scheme that is exploited in the BOVW. Each image in the Vector Locally 

Aggregated Descriptors scheme is described by a vector that is a concatenation of vectors. 

This concatenation refers to the sum of residuals between to visual word of each cluster 

and each descriptor of the image. The improvement of VLAD against the simple BOVW 

technique is related to the integration of the distance information from each centroid. The 

first step of the algorithm refers exactly to the computation of each descriptor’s distance 

from the nearest visual word (residual). The second step is the sum of all residuals for each 
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visual word, while the last one is their concatenation in a vector of kxd values, where k is 

the number of clusters and d is the number of the descriptor’s values. Although VLAD is 

a hard assignment technique, the result of the whole operation is the formation of a kxd 

representation vector that enhances the information encapsulated by the BOVW scheme 

by means of the intra-cluster distance (Figure 11). However, Fisher  

 

Figure 11 – Steps for VLAD implementation.  

Vectors, as they were proposed in [79], present the most elaborate and sophisticated 

technique among the three mentioned herein. Fisher Vectors technique is the only one that 

applies soft assignment as each descriptor is not exclusively assigned to one visual word, 

but it results in a weighted sum of all visual words. The technique is a generalization of 
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BOVW and while the second employs zero-order statistics for the embedding of low to 

high-level information, Fisher Vectors incorporate in the proposed representation higher-

order statistics. The technique is innovative due to the fact that it attempts to model the 

generative process of how the descriptors are created. The generative model, which plays 

the role of a visual vocabulary, is a Gaussian Mixture Model (GMM), where each mean 

parameter represents a visual word. Suppose n low-level descriptors are extracted from an 

image, then each image can be summarized in the following set X= [xr r=1,…n ]. The 

process through which these descriptors are created can be modeled by means of a 

generative model, a Gaussian Mixture Model (GMM). This Gaussian Mixture Model 

consists of k Gaussian distributions and their parameters λ are the following λ = [wi, μi, Σi, 

i=1,…k], where w is the weight, μ the mean vector and Σ the covariance matrix of the 

Gaussian distribution. The probability that a random descriptor xr is generated by the GMM 

in question is described by Equation (5). The algorithm attempts to compute the gradient  

 

𝑝𝑟(𝑥𝑟|𝜆) = ∑ 𝑤𝑖𝑁(𝑥𝑟; 𝜇𝑖

𝑘

𝑖=1

𝛴𝑖) (5) 

vector of each sample with respect to the model’s parameters based on the probability 

density function p(X|λ) which models the generation process of the descriptors. Although 

the probability density function is annotated normally by a small p, in Equation (6) a log 

function is added to the notation due to the easiness of calculations. The logarithm of the 

pdf that models the descriptors’ generative process is equal to the sum of logarithms of the 

probability for each descriptor xr. The gradient vector we are seeking consists of the partial 

derivatives of the L function with respect to wi, μi, and Σi. Once the gradients have been 
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calculated the final vector representation is the one described in Equation (7). It contains 

K(1+2D), where K is the number of gaussian for the GMM and D is the number of values 

in the descriptor.  

 
𝐿(𝑋|𝜆) = 𝑙𝑜𝑔𝑝(𝑋|𝜆) = ∑ 𝑙𝑜𝑔𝑝(𝑥𝑟|𝜆)

𝑛

𝑖=1

 (6) 

 
𝐺(𝑋|𝜆) = {

𝜕𝐿

𝜕𝑤1
… ,

𝜕𝐿

𝜕𝑤𝑘
,

𝜕𝐿

𝜕𝜇1
, … ,

𝜕𝐿

𝜕𝜇𝜅
,

𝜕𝐿

𝜕𝛴1
−1 , … . ,

𝜕𝐿

𝜕𝛴𝜅
−1

} 
(7) 

Fisher Vectors, in comparison to the other representation techniques that are presented 

herein, achieve to encode more information in a single vector for the same number of visual 

words. In Figure 12, a summary of BOVW, VLAD, and Fisher Vector representations is 

presented in an attempt to provide a straightforward explanation of how the visual 

vocabularies are utilized for the encoding of multiple descriptors into one.
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Figure 12 – Summary of representations for Bag of Visual Words, VLAD and 

Fisher Vector techniques [81] 

1.8 Deep learning architectures for image classification 

1.8.1 EfficientNets 

EfficientNets are a group of deep convolutional networks that achieve and surpass 

state-of-the-art accuracy in different classification tasks with up to ten times better 

efficiency, thus the name (smaller and faster). Their main novelty lies in the latest 

achievement of AutoML, and, specifically, in the intelligent and controlled expansion of 

the three dimensions (width, depth, resolution) of a neural network by the utilization of a 

compound coefficient. Throughout years of research, the basic concern has been the growth 

of a neural network’s dimensions in such a way that accuracy is improved with the 

minimum of operations given certain resource constraints. Even when the minimum of 

operations is not a basic goal, increasing the dimensions of a neural network greedily does 

not have the expected results due to the vanishing gradients phenomenon. Efficient Nets 

address this issue by exploring the relation of the increase in each dimension and applying 

a grid search under a fixed resources constraint instead of arbitrarily changing these 

dimensions. The compound scaling method is summarized in the set of Equations (8): 

 

d = αφ 

w = βφ 

r = γφ 

(8) 
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α∙β2∙γ2 ≈ 2 

α≥1, β≥1, γ≥1 

where φ EfficientNets are a group of deep convolutional networks that achieve and surpass 

state-of-the-art accuracy in different classification tasks where φ is a global scaling factor 

that controls how many resources are available and α, β, γ determine how to allocate these 

resources to network depth, width, and resolution respectively. By assigning φ=1 and 

applying grid search, α, β and γ can be determined for a given convolutional architecture 

to achieve better accuracy. Once concluding with the definition of α, β and γ, φ can be 

gradually increased to augment the dimensions of the network towards better accuracy. 

The scaling method applies to any convolutional architecture that consists of a repeated 

pattern of layers. However, the authors of the EfficientNets paper proposed a specific 

architecture where the main building block is the mobile inverted bottleneck convolution 

(MB Conv), shown in its three basic configurations in Figure 13. The base model of the 

EfficientNets group is Efficient Net B0 and its architecture is shown in Table 3, consisting 

mainly of MBConv1 and MBConv6. By utilizing MBConv blocks and increasing the value 

φ, the Efficient Net group reaches its most complicated form B7. In the heart of these 

building blocks two important innovations have found ground to act: the depthwise 

separable convolution[82] that performs the functionality of a normal convolution with 

fewer resources and the squeeze and excitation unit that enables the network to perform 

dynamic channel-wise feature recalibration [83]. Concerning depthwise separable 

convolution, the convolution operation is divided into two parts. First, the convolution is 

conducted depthwise, meaning that the convolution kernel is applied to each channel 
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individually in order to learn channel-dependent features, and second, pointwise, meaning 

that a 1x1 kernel is applied to each point in order to combine the channel-dependent learned 

features. In reference to the squeeze and excitation unit, the unit consists of two parts. 

Starting the squeeze part, global average pooling is applied to each channel leading to the 

formation of a 1x1xC vector (where C are the channels), followed by a fully connected→ 

ReLU→ fully connected→sigmoid block (excitation part). In this manner, each channel is 

enhanced with additional information concerning the other channels and captured in 

between interactions. Finally, the output of the excitation part is multiplied by the original 

input. 

1.8.2 InceptionNet, XceptionNet, ResNet 

The above-mentioned building blocks and architectures are learned lessons through 

months of development and produced experience in the ever-evolving domain of deep 

learning and encapsulate notions that have been partially tested and evaluated in earlier 

deep learning architectures such as ResNet[67], XceptionNet, and InceptionNet[84]. These 

approaches achieved state-of-art results in computer vision tasks because they have 

incorporated these blocks partially. Once combined in a structured manner by means of a 

controlled augmentation mechanism such as in the EfficientNets, the performance is 

further improved. 
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Figure 13- Three main building blocks of Efficient Nets architecture from left to 

right: Mobile Inverted Bottleneck Convolution-1 Block-MBlock1 (left), Mobile 

Inverted Bottleneck Convolution-3 Block-MBlock3 (center), Mobile Inverted 

Bottleneck Convolution-6 Block-MBlock6 (right). 

ResNets are driven by the intuitive need for neural networks to grow deeper in order to 

understand and quantify more complex features and simultaneously compensate for the 

vanishing gradient issue. The authors discovered that, by adding the identity function 

between layers, the network can reach deeper architectures and cope with the vanishing 

gradient issue, since the layers where the gradients diminish rapidly get bypassed. Since its 

publishing, the idea has spread around fast and is being utilized in different deep CNN 

architectures including EfficientNets. 

Rather than investing in deeper architectures, the authors of InceptionNet prioritized the 

importance of creating wider approaches, meaning filters with multiple sizes, and 
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leveraged their options between these two dimensions in order to capture salient patterns 

in the image that appears in different sizes. The initial version V1 was improved in terms 

of accuracy and speed by adding an auxiliary classifier during the training process, 

factorizing convolution operations, and placing them at a wider grid. By further 

improvement of the initial proposal, the InceptionNet is now transformed into its fourth 

version. A combined approach of Resnet and Inception is proposed by the enhancement 

with residual blocks (Inception-ResNet). Moving a step forward, an extreme version of the 

InceptionNet, called XceptionNet managed to achieve even better results, inspired by the 

inverse sequence of operation in the depthwise convolution (firstly proposed in Inception 

Net) and the removal of non-linearity between convolutional layers. 

Table 3 - EfficientNet B0 architecture 

Stage i Operator Fi  Resolution Hi x Wi Channels Ci Layers Li 

1 Conv 3x3  224 x 224 32 1 

2 MBConv1, k3x3  112 x 112 16 1 

3 MBConv6, k3x3  112 x 112 24 2 

4 MBConv6, k5x5  56 x 56 40 2 

5 MBConv6, k3x3  28 x 28  80 3 

6 MBConv6, k5x5  14 x 14 112 3 

7 MBConv6, k5x5  14 x 14  192 4 

8 MBConv6, k3x3  7 x 7 320 1 

9 Conv 1x1, Pooling, FC  7 x 7 1280 1 

1.9 Superpixel segmentation algorithms 

The explainability techniques that will be described in the next section can be also 

divided into two categories, fine-grained and coarse, depending on the detailed 

representation of the generated heatmap. Concerning both techniques, the need to 

determine boundaries between important structures in the image is evident. Human experts 

assign no importance to isolated pixels nor to rectangular regions that cover mixed content 
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in the image. The specific requirement is to assign importance to structures that are 

semantically important for the expert. Superpixel segmentation algorithms can assist in 

better defining these boundaries according to the depicted structures. Superpixels are 

groups of pixels that share common low-level characteristics of the image. The grouping 

is achieved by means of a segmentation algorithm that classifies each pixel as being part 

of a homogenous and compact cluster. The ability of these algorithms to significantly 

reduce the number of primitives in dense and complex images has been well-appreciated 

in several computer vision tasks and plays an important role as submodules of state-of-the-

art computer vision algorithms [85]. An overview of the relevant literature highlights SLIC 

[86], Felzenswalb [87], and Quickshift [88] superpixel algorithms as popular choices. 

Simple Linear Iterative Clustering or SLIC is characterized by the low computational 

resources required to achieve an efficient segmentation result of the original image into 

superpixels. 

 As its name declares, SLIC performs a local clustering of pixels in a 5-dimensional space 

that is composed of three coefficients of the CIELAB color space and the coordinates of 

the pixel. The clustering is based on a distance metric that is specifically designed to 

balance the outweighing between two elements, the pixel distances that refer to spatial 

features against the pixel distances that refer to color features. An advanced version of the 

SLIC superpixel algorithm, namely SLICO, adaptively decides on the compactness 

parameter for each superpixel in order to alleviate the issue of choosing a unique value for 

all superpixels regardless of the content’s texture (SLIC version). 

Felzenswalb superpixel algorithm is another popular choice for creating superpixels by 

uniting regions with common visual characteristics. The algorithm achieves the 
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segmentation based on specific principles of the graph theory. Each image is represented 

as an undirected graph G= (V, E), where pixels correspond to vertices of the graph (V) and 

a non-negative measure of dissimilarity is the weight of each edge (E) between two 

neighbor pixels. The generation of superpixels is equivalent to the partition of set V to 

components so that each component corresponds to a connected component in graph G’ = 

(V, E’) where E’ is a subset of E. The goal is to achieve low dissimilarity measurements 

on edges between pixels of the same component and high elsewhere. A minimum tree-

spanning clustering is exploited for the partitioning of the graph into groups of pixels. The 

decision for partitioning pixels is based on a certain predicate that measures the 

dissimilarity between pixels along the boundaries of two neighbor components relative to 

the dissimilarity of pixels within each component. 

Lastly, the proposed methodology exploits the properties of the Quickshift algorithm for 

the division of images in superpixels. Quickshift is based on the same principles of the 

mean shift clustering algorithm for mode seeking. The algorithm utilizes a kernel for the 

estimation of density in an attempt to discover places in the feature space with higher 

density. The procedure is described as a hill-climbing process to discover the tops of 

highest densities (modes). In Figure 15, the segmentation results of two images that are 

selected from histopathology and confocal image datasets for the three superpixel 

algorithms are depicted. The segmentation results can vary based on selected tuning 

parameters and in the case of the depicted examples the baseline parameters are proposed 

by the relevant python libraries. 

1.10 Explainability approaches 



 47 

Two basic categories of approaches can be found in literature concerning the 

explainability task for image classification through Convolutional Neural Networks, the 

gradient-based and the axiomatic approaches. When utilizing gradient-based approaches 

to distinguish the attribution of visual patterns to the prediction result, the gradients report 

the degree of influence for slight variations on images’ local patterns to the prediction. The 

responses of these methods denote the highly influential parts of the image with a color 

that is representative of a high influence value and vice-versa. On the other hand, axiomatic 

approaches are focused on defining important properties that the algorithm should satisfy 

in order to provide reliable explainability results. These properties are called axioms and 

are formally expressed in such a manner to depict the notion of relevance between the 

stimulus and the result. Consequently, these algorithms are based on measurable indicators 

that satisfy the corresponding axioms. Representative methodologies of the first type are 

Visualizing Gradients[89], SmoothGRAD[90], Deconvolution Networks[91], and Guided 

Backpropagation[45], whereas Layer-wise Relevance Propagation[92] and DeepLIFT[93] 

are typical examples of the second type. Nevertheless, there exists an approach, namely 

Integrated Gradients[94], that, despite their gradient-based role, follows required axioms, 

namely, Sensitivity and Implementation Invariance. Starting from the intuitive need to 

establish a comparable baseline to measure the effect of a visual pattern’s absence on the 

prediction result, the sensitivity axiom is defined as follows: ‘For every input and baseline 

that differ in one feature but have different predictions then the differing feature should be 

given a non-zero attribution’ [94]. On the other hand, the Implementation Invariance axiom 

focuses on the requirement that functionally equivalent predictive models should produce 

identical results concerning the attribution of visual stimuli to the prediction. Within the 
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class of gradient-based methodologies, there is a subclass based on the class activation 

maps. The initial idea [45] was restrictive due to the application limitation on specific 

neural network architecture requirements (the need for global average pooling) but the 

Grad-CAM and Guided Grad-CAM explainability schemes extended it to make it 

applicable to a wider range of architectures. The refined limitation in these improved 

approaches is that the architecture between the feature maps and the softmax layer needs 

to be differentiable. A different taxonomy can be created by dividing techniques into those 

that utilize perturbed versions of the initial inputs to measure the changes and those that do 

not. LIME is a popular technique that can be employed in any machine learning model 

with even fewer restrictions, regardless of the architecture. It is based on the interpretation 

of perturbations of the input data since the variations in the feature values influence the 

predictive result to a different degree[95]. 

Overall, it can be stated that perturbation approaches are the most intuitive[91, 96, 97] since 

they ground their reasoning on the same principles as humans do. To further explain, 

humans attempt to find causal connections by answering the ‘what if’ counterfactual 

question which can be imitated in images by creating perturbations on the original visual 

content. However, there are certain drawbacks such as computational efficiency as the need 

to rerun forward pass for each perturbation cannot be surpassed and the inefficiency to 

define objectively neutral images for perturbations.  

1.10.1 Local Interpretable Model-agnostic Explanations (LIME) 

An interesting model-agnostic explainability technique, called Local Interpretable 

Model-agnostic Explanations (LIME) is proposed in [95]. The main novelty, presented in 
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the paper, is the utilization of a simple interpretable surrogate model in the neighborhood 

of the sample under investigation for the explanations of more complex predictive models. 

The approach can, among others, be categorized in the perturbation-based approaches since 

the image in question is perturbed several times to produce multiple neighbor samples, a 

vital step of the whole procedure. 

The technique starts with the creation of a neighborhood of data samples (perturbed 

images) in the proximity of the image, upon which a prediction demands an explanation. 

Suppose that a complex predictive model generates predictions from medical images. By 

choosing a random image from the dataset, a new dataset is created by applying a 

superpixel algorithm such as Felzenswalb [87], Slic [86], Quickshift [88], or Watershed 

[98]. The superpixels algorithm divides the whole image into smaller regions (superpixels) 

to include pixels of common characteristics. By choosing arbitrarily and alternating the 

content of superpixels, new images are created that can be considered to be located in the 

vicinity of the original image. In order to better capture the process of dataset generation, 

Figures 14 and 15 are provided. In Figure 15, a binary classification task is depicted by 

coloring the spaces of the negative classes purple and the positive class yellow, while the 

original image is represented by a fat red cross. In the original paper, this image is denoted 

as xϵRd. Examples of such images are shown in Figure 14a where a reflectance confocal 

microscopy image with basal cell cancer is depicted and in Figure 14b, where a 

histopathology image including typical fibroadenoma patterns is presented. Around the fat 

red cross in Figure 15, there are several thinner crosses of various sizes that correspond to 

the new images, generated as a result of the superpixel algorithm’s application. The 

outcome of the superpixel and perturbation operation is shown in Figures 14c and d for the 
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confocal and histopathology image respectively. For each original image, random 

 

Figure 14 - Examples of perturbed microscopy images, as neighbor samples for 

LIME explainability approach. (a) Original reflectance confocal microscopy image 

that depicts a basal cell cancer pattern is presented, (b) Original histopathology 

image that depicts a benign fibroadenoma pattern is presented, (c) Perturbed 

confocal image by applying Felzenswalb, Slic, Quickshift and Watershed superpixel 

algorithm. (d) Perturbed histopathology image by applying Felzenswalb, Slic, 

Quickshift and Watershed superpixel algorithm. 

superpixels are selected and colored black or white to provide slight deformations that can 

be quantified in the space as a Euclidean distance from the original image. The choice of 

color for the perturbation remains a research question, but in the paper, the black color is 

suggested as a standard for the MNIST dataset considering the black background with 

reference to the color of numbers. The algorithm requires a binary encoding for each of the 

perturbed images, meaning that a vector of dimension d΄ is created, where d΄ the number 
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of superpixels, and each place in the vector receives a value of 0 or 1, according to the 

absence or presence of the corresponding patch. In this fashion, each perturbed image is 

defined as x΄ϵ [0,1] d΄. The dotted pink line represents a simple linear regression model g 

that is utilized for its explainability properties. Two additional measures are proposed in 

the paper a) the measure of complexity Ω(g) to account for each model’s weakness to 

interpret the generated predictions, and b) the measure of local fidelity, πx(z) to quantify 

the proximity of a newly generated data sample z near x. The whole essence of the LIME 

algorithm is captured in Equation (9), where f is the function, representative of the complex 

predictive model. 

 𝜉(𝑥) =  𝑎𝑟𝑔𝑚𝑖𝑛𝑔𝐿(𝑓, 𝑔, 𝜋𝑥) + 𝛺(𝑔) (9) 

The explanation of sample x is the simple explainable local surrogate model (e.g., a linear 

regression model) that minimizes a loss function (e.g., mean squared error). This error 

represents the difference between the prediction of the original sample and the prediction 

of the generated sample that is weighted by the in-between distance. For the interpretation 

of each sample, a local model is created that is only accurate in the defined neighborhood 

instead of being locally accurate.   
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Figure 15 - Representation of LIME technique 

1.10.2 Integrated gradients 

The Integrated Gradients [94] algorithm is an axiomatic gradient-based approach 

for explainability on deep neural networks. It operates as a post-hoc mechanism on an 

already trained network and poses no additional modification to it. Although it shares many 

common points with the work presented in [99] that is followed [100], such as the use of a 

baseline input, and will be discussed in the following lines, the main difference is the 

introduction of two central axioms upon which the whole functionality and evaluation of 

the proposed methodology are built. As the name suggests, Integrated Gradients (IG) 

follow the paradigm of measuring the gradient of inputs with respect to the output of a 

model on a backward pass, but this calculation is conducted by selecting and cumulating 



 53 

all possible values between the baseline input and the input, resulting in a resource-

demanding procedure. To better comprehend the basis of the idea behind IG and the 

issuance of a baseline input, it would be suggested to think about how people interpret the 

significance of an influencing factor, meaning that they measure the effect in its absence. 

The ‘what if’ counterfactual process is fundamental in the causal analysis domain and a 

natural choice for extracting useful knowledge from image downstream tasks. In the IG 

algorithm, this absence is formally represented by the baseline input. 

Integrated gradients focus on resolving specific issues that other gradient-based 

approaches fail to address. Suppose there is a G(x) function that is representative of the 

predictive models’ functionality. If the input values x are selected in such a way, that their 

G response is constant or nearly constant, the gradient defined as dG(x)/dx will be equal to 

zero or very small resulting in a zero x*dG(x)/dx product, which is a measure of the input 

x’s importance, as it is thoroughly discussed in [99] as well. According to the paper, relying 

simply on the gradients of the model for assigning contribution values to the inputs fails 

because it is incoherent to the Sensitivity axiom. The axiom dictates that “a) for every input 

and baseline that differ in one feature but have different predictions then the differing 

feature should be given a non-zero attribution and b) if the function implemented by the 

deep network does not depend (mathematically) on some variable, then the attribution to 

that variable is always zero”. The second axiom, upon which the algorithm is designed is 

the Implementation Invariance. According to the Implementation Invariance axiom, “Two 

networks are functionally equivalent if their outputs are equal for all inputs, despite having 

very different implementations.” [94]. In accordance with the property presented in [100, 

101], the completeness axiom is also highlighted as an important characteristic of 



 54 

explainability approaches. As such, the IG algorithm satisfies the dictated condition that 

the sum of importance values assigned to inputs is equal to the target output value 

subtracted by the baseline output value. 

Following the formal definition that is presented in the IG paper, we will consider 

an input XϵRn and a baseline input X΄ϵRn. In order to compute the value of the integrated 

gradient for the input X at the pixel or feature i, since we refer to images, Equation (10) is 

utilized. In the Equation, the fraction ϑG(x)/ ϑxi is the gradient of the predictive model’s 

representative function G along the ith pixel or feature of input X with reference to baseline 

input X΄. 

 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠𝑖(𝑥) = (𝑥 − 𝑥′) × ∫
𝜕𝐺(𝑥′ + 𝑎 × (𝑥 − 𝑥′)

𝜕𝑥𝑖
𝑑𝑎

1

𝑎=0

 (10) 

The alpha value is the interpolation constant between 0 and 1 that is used to move from the 

baseline input X΄to the input X respectively. By shifting from the baseline input to input 

we see to discover how the network change decision from assigning zero confidence to a 

specific class at the baseline to reaching its highest value and the pixels that played the 

most important role in the increase. The process of computing the integral is approximated 

by the utilization of the Riemann sum, as described in Equation (11). 

 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠𝑖
𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑(𝑥) = ∑

𝜕𝐺(𝑥′ +
𝑘
𝑚 × (𝑥 − 𝑥′))

𝜕𝑥𝑖

𝑚

𝑘=1

×
1

𝑚
 (11) 
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By spending time understanding IG and DeepLIFT, it is verified that there is a civilized 

competition between to two techniques. While both rely on a baseline input, the first argues 

on its superiority based on the full coverage of the proposed axioms in contrast to 

DeepLIFT fails to satisfy implementation variance due to the use of discrete gradients. The 

latter showcases specific types of predictive models (“AND”/min scenarios) that IG cannot 

respond to efficiently. The use of a baseline input is considered an open research question 

as the straightforward selection of a black image or random noise cannot be deemed a 

neutral input for predictive models. The dependence of the approach on a baseline input 

(the discovery of a neutral input is not a straightforward task) and the computationally 

intensive burden seem to deprive of its value.  

1.10.3 Deep Learning Important Features (DeepLIFT) 

Among the various explainability techniques that are presented herein, DeepLIFT 

[100] authors argue to provide novelty in the form of example-specific explanations that 

are generated by means of a back-propagated manner and based on a reference input or 

more precisely, a difference to reference input. As a method that follows the path of back-

propagation, DeepLIFT offers an efficient process to assign an importance score to each 

specific input for the predicted output, since a single pass is required for the computation 

of all inputs’ importance scores whereas, in the case of the perturbation-based techniques, 

a single pass for each input is needed. Apart from the straightforward advantage of 

computational efficiency, DeepLIFT is coined with the successful handling of special cases 

of predictive models where gradient-based and perturbation-based approaches are deemed 

to fail. Such failure cases are represented in Figures 16a, b. In Figure 16a, a simple model 
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is shown, consisting of two inputs i1, i2 and a function that maps 

 

Figure 16 - Failures cases in gradient-based and perturbation-based approaches for 

explaining predictive models[100]. 

the inputs to y. If we were to select i1 = i2 =1, as input values, then a change of either i1 or 

i2 to 0 would generate zero difference, resulting in the model’s saturation failure. The same 

failure is witnessed for gradient-based approaches when values i1 + i2 are greater than 1. A 

different failure mode can be observed in Figure 16b. For the function that maps x to y by 

thresholding x at value 10, the gradient is 1 for all values of x over 10. A solution would 

be to multiply with the difference of inputs, resulting in a linear increase of the gradient 

with respect to increasing the input value, but in this case, the sudden increase of the 

gradient from 0 to 10 is misleading. In the paper, a third failure case is presented for 

functions of minimum [y=min (i1, i2)], where the predictive model is trying to represent 

“AND” relationships. 

           The basis of DeepLIFT’s contribution is the introduction of difference to reference 

notion. To fully comprehend this notion, a series of terms need to be explained. Starting 

from a target neuron t, a set of input neurons I= [x0, ...xj] from layer X, ti the result of 



 57 

inserting any given input I at layer X and t0 the result of inserting the reference input at 

layer X, Δt, the difference from reference, is equal to ti-t0. At this point, it is clear that the 

“difference to reference” term corresponds to the input neurons, as Δxn, and the target 

neurons, as Δt. Having defined these terms, the next step is to demonstrate that Δt is 

attributed to all Δxj of the input neurons through Equation (12), which is known as the 

summation to delta property.  

 

∑ 𝐶𝑥𝑛𝛥𝑡

𝑗

𝑛=1

= 𝛥𝑡 

(12) 

By assigning contributions relative to a baseline, DeepLIFT manages to alleviate the 

limitations, as discussed in Figures 16a, b and refer to a) the absence of xn neuron 

contribution at the occurrence of 𝜕xn/𝜕t zero gradient and b) the biases from the importance 

attribution due to gradient discontinuities. 

Except for the “reference to difference” term, the need to connect the various layers of a 

predictive model in a backpropagation pass has led to the definition of “multipliers”. The 

multiplier mΔxΔt is defined as the fraction of the contribution of Δx to Δt divided by Δx as 

shown in Equation (13). The formula is a strong reminder of the partial derivative definition 

except for calculating the latter on infinitesimal differences instead of finite ones. 

 
mΔxΔt =  

CΔxΔt

Δx
 

(13) 
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In the same fashion that partial derivatives are subject to the chain rule, multipliers follow 

it as well. Given an intermediate layer R of the predictive model between layer X and the 

output t and a single input n of layer X, the multipliers of involved layers are connected by 

means of Equation (14), the multiplier’s chain rule. The rule is utilized to move backward, 

starting from the output to concluding to the input layers in an attempt to assign 

contributions to each neuron. 

 𝑚𝛥𝑥𝑛𝛥𝑡 = ∑ 𝑚𝛥𝑥𝑛𝛥𝑦𝑟
𝑚𝛥𝑦𝑟𝛥𝑡

𝑟

 (14) 

The DeepLIFT algorithm is designed for applications on both linear on non-linear 

functions. When referring to linear functions, such as convolutional and dense layers a 

simple linear rule for the propagation of contributions is applied to each step. However, 

that is not the case for non-linear functions, such as ReLUs, sigmoids, and tanhs. For non-

linearities, the authors proposed the rescale and reveal cancel rules that can handle some 

or all special cases presented earlier with the respective drawbacks as shown in Table 4. 

Table 4 - Properties of DeepLIFT rules on linear and non-linear functions. 

Rule  Functions Treats Drawbacks 

Linear Linear - 
Does not handle 

non-linearities 

Rescale Non-Linear 
Saturation, 

Thresholding 

Does not handle 

min/AND 

Reveal-

Cancel Non-Linear 

Saturation, 

Thresholding, 

min/AND  

Subject to noise 

It is vital to mention that for the treatment of different failure cases, the DeepLIFT 

algorithm is introducing the notion of negative vs positive contributions. In the Rescale 
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rule Δy+ and Δy-, the positive and negative part of the “difference to reference” output, are 

considered to be proportional to the Δx+ and Δx-, the positive and negative part of the 

“difference to reference” input, whereas, in the reveal-cancel rule, they are calculated as 

an improved approximation of Shapely values. 

The DeepLIFT approach has been proposed to improve the shortcomings of prior 

explainability approaches and to a great extent it achieves the goal. However, its 

dependence on the reference input for the difference to reference scheme requires thorough 

analysis for which little work has been accomplished in the relevant literature. The authors 

provide some feedback on their considerations and experiments with different reference 

inputs for specific datasets (for MNIST[102] dataset all zeros à to measure differences 

against the background), but this is far from a detailed and documented report on factors 

and limitations for the choice of reference inputs.  

1.10.4 Grad-CAM and Guided Backpropagation Grad-CAM 

One way to achieve the goal of extracting localization information of important visual 

patterns for decision-making is the construction of class activation maps [103]. Class 

activation mapping is a method that indicates the discriminative regions of an image that 

influenced the predictive model in reaching its final decision. Initially, the predictive model 

needed to follow a certain architecture for the technique to provide plausible results, 

meaning that the output of the convolutional layers should be directed to a global average 

pooling layer and then directly to the SoftMax activation function. This architecture, as 

discussed earlier, demands retraining of the predictive model and sacrifices complexity 

(added by the insertion of fully connected layers) for explainability. A generalization of 
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this method (Grad-CAM) is proposed in [45]. In the same paper, the combination of Grad-

CAMs with the guided-back propagation technique is proposed to provide fine-grained 

pixel-to-pixel visualizations. This approach fits better with the visual characteristics of 

digital pathology images, where the patterns correspond to small cellular structures as 

opposed to larger structures. By computing the gradients for the score of each class with 

respect to the feature maps from the last convolutional layer and performing global average 

pooling on them the importance weights for each feature map are obtained. In this fashion, 

the architecture of the predictive model remains intact. When utilizing the Grad-CAM 

technique in a single classifier environment the feature maps of the last convolutional 

layers and the gradients for the score of each class with respect to the feature maps are 

necessary to produce a heatmap with the explainability visualizations. As explained in [45], 

the technique can be divided into three steps. The first step refers to the calculation of the 

gradient G (Equation 2), where Yc is the raw output of the CNN before applying softmax 

to turn it into a probability and Ak is the generated feature map activations. c is the class 

indicator for which the heatmap is generated since the technique is class-dependent and k 

reflects the number of utilized convolution filters. An important requirement that needs to 

be addressed for the technique to be valid is that the layers after the final convolutional 

layer up to the softmax should be differentiable (Figure 17). The second step is the 

calculation of alpha values (Equation 3). This operation is performed by applying global 

average pooling on the gradients G. Z parameter registers the number of pixels in the 

feature map. To provide an intuition of the technique, it is important to note that the 

technique utilizes the information of the gradient’s value flowing into the last convolutional 

layer of the network to assign importance values to each neuron for a particular decision 
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of interest. The third step rests on the application of ReLU on the product of each feature 

map with the corresponding alpha value (Equation 4). 

G =  
𝑑𝑌𝑐
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Figure 17 - Architecture of a CNN for the Grad-CAM to be applicable. The number 

of feature maps is set to three for visualization purposes. 

Apart from the calculation of Grad-CAMs, an independent procedure is conducted in 

parallel, namely guided backpropagation. Guided backpropagation is the combination of 

two distinct operations. The first is the backpropagation at ReLU activation functions. This 

backward pass ensures that values being greater than zero during the forward pass in the -

1 filter are passed as is one step backward. The second operation is deconvolution at ReLU. 

Values greater than zero in the current filter are passed as one step backward. To reach the 

final heatmap, the results of guided backpropagation and Grad-CAM are multiplied. In 
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contrast to [104], where the authors presented a weighted patch ensemble method that 

requires the modification of the ensemble classifier for the integration of the explainability 

scheme, the proposed methodology maintains the classification scheme as-is. This is an 

important feature to consider since the alteration of (removal or addition) layers may 

significantly influence the performance of the classifier. Therefore, leaving the neural 

network intact when integrating an explainability scheme is an important advantage. 

Apart from the initial implementation of Grad-CAM, several other modifications have been 

proposed based on the basic principle of calculating gradients: HiResCAM [105] which is 

like Grad-CAM but the activations with the gradients are multiplied in an element-wise 

manner, Grad-CAM++ [106] that uses second order gradients, XGrad-CAM [107] that 

scales the gradients by the normalized activations, AblationCAM [108] that zeros out 

activations and measure how the output changes, EigenCAM [109], LayerCAM [110] and 

so many others. 

1.11 Ensemble classifiers 

The ensemble classifiers notion lies on the founding principles of democracy as it 

was first established in ancient Greece. The Greeks did not need much to realize that the 

best decision is reached only when many opinions (the opinions of people) are heard and 

processed. This simple yet efficient idea has become for modern humans merely an 

intuitive action since on the verge of taking an important decision, they demand the opinion 

of several experts. But if we were to let alone the empirical and intuitive evidence, literature 

in the health informatics domain proves in a placid way that classifiers produce more 

accurate results when they have gathered together and their predictions - opinions are 
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combined in different ways to reach a final result [39-43]. The manner utilized for the 

combination of different base classifiers is one of the basic criteria for characterizing 

ensemble classifiers. The basic classification of ensemble classifiers consists of the 

following three major categories, bagging, boosting, and stacking. The name of the first 

class, Bagging, derives from the words Bootstrap and Aggregation. Bootstrapping is a well-

known sampling process according to which samples are iteratively selected from a 

population with replacement, while aggregation refers to the addition of all partial results 

into an outcome by means of a deterministic function. The method dictates the division of 

the initial dataset into subsets and their utilization for the training of base classifiers. This 

process follows the divide and conquer paradigm as the base classifiers are trained to learn 

simpler tasks and are, in turn, combined to reach a final solution (Figure 18).  In total, 

bagging is based on a parallel and independent learning procedure of base classifiers that 

are in turn combined as dictated by a deterministic averaging process, while boosting 

corresponds to a sequential adaptive learning method that adaptively modifies the 

distribution of the training set based on the performance accuracy of previously trained 

classifiers [42]. Boosting models can be presented as sequential models in contrast to the 

parallel workflow of bagging schemes. In this case, each following base classifier assumes 

the load of decreasing the error of the previous classifier. This can be accomplished by 

assigning larger weights to prior erroneous predictions or utilizing the gradient descent to 

direct the scheme toward lower error (Figure 19). Stacking refers to a parallel learning 

algorithm that results to a training of a meta-model. This meta-model is responsible for the 

combination of base learners’ predictions. Another aspect of categorizing the different 
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types of ensembling methods is related to the input patterns. Utilizing different classifiers, 

 

Figure 18– Basic workflow for bagging predictive models. 

whereas one is trained with the original input and others with modified input versions is 

common practice [43]. Another aspect categorizes ensemble classifiers as those that utilize 

different classifiers to solve the same task and those that break the original task into 

subtasks and employ a different classifier for each decomposed problem [44]. Moving 

further to distinguish ensemble classifiers by means of the manner between base classifiers 

achieves diversity. There exist randomized methods to populate an ensemble classifier with 

other classifiers and metrics-based techniques with a main concern to increase diversity to 

a certain extent that does not harm performance [45, 46]. To remember our basic instincts 

with reference to machine learning and what our goals are, a very important property that  
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our model should have the ability to generalize. Ensemble models are created to enhance 

 

Figure 19 - Basic workflow for boosting predictive models. 

the generalization properties of weaker base models. Bagging models are very effective 

against the variance error while boosting models address the bias error. 

While ensemble models have been widely utilized for knowledge extraction from medical 

images few references address the explainability issue for these schemes. In [111], the 

authors apply a novel stacked ensemble model that utilizes the combination of traditional 

machine learning and deep learning techniques for the extraction of useful features from 

chest X-Rays. Global features such as Histogram of Gradients and GIST along with SIFT 

local features and learned features for pretrained DCNNs are jointly inserted in a Support 

Vector Machine classifier and its results are, in turn, inserted into a linear regression model. 

The evaluation shows improved results in terms of the binary classification task, but no 

interpretation scheme is provided for the generated results. The authors in [112] proposed 
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the EMS-Net for the classification of breast histopathology images by resizing the images 

and creating inputs at different scales for DCNNs to digest. The results are promising as 

expected, however, the lack of explanations concerning the visual stimuli that led to these 

results is evident. By reviewing the relevant literature, several proposed methodologies 

address and improve prior results while neglecting the significance of explainability in 

contrast to the bloom that is witnessed regarding the enhancement of plain deep learning 

models with explainable properties [113]. However, some works focus on the 

implementation of deep learning architectures with explainable results based on class 

activation maps [114, 115] or Integrated Gradients and SmoothGrad [116]. 

1.12 Unsupervised segmentation 

Far from the modality of microscopy images where the region of interest usually 

occupies all given pixels, there are other medical imaging modalities such as dermoscopy 

images or blastocyst images where the region of interest (ROI) is concentrated in only one 

part of the image. The requirement to isolate the pixels in question is an arduous task to 

address, mainly owing to the difficulty of manually labeling ROIs in an attempt to provide 

significant ground truth for the supervised algorithm. A key step in the proposed 

methodologies is the extraction of features from the images. Handcrafted features are 

designed with the primary purpose of quantifying the visual patterns that experts 

(embryologists) have identified as important based on their experience. When utilizing 

handcrafted features based on local descriptors the isolation of ROIs is an effortless task to 

accomplish since it requires no further modification of the image and the localization 

information as part of the local descriptor algorithm. On the other hand, recent 

developments in Artificial Intelligence show that in many cases DL approaches go beyond 
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human vision and achieve better performance in terms of accuracy and repeatability [9]. 

However, in the case of learned features the isolation of features that make part of the ROI 

cannot be accomplished since the engineer cannot intervene with the feature extraction 

mechanism. Therefore, techniques that involve alteration of the original image are 

employed for the masking of the areas that are not to be included in the analysis. Another 

drawback of deep learning techniques is the fact that they cannot digest images greater than 

500x500x3 pixels or else they demand ridiculously large computational power. For that 

reason, original images are often rescaled to smaller ones in order to comply with the size 

requirement. 

In the use case of blastocyst images, image segmentation is deemed necessary as in almost 

every image the ROI is contained in a specific area excluding other surrounding visual 

stimuli. For the segmentation of medical imaging, often is the case where U-Nets are 

involved in the classification of pixels into the background and foreground classes. Their 

application in the relevant field of medical imaging is numerous and is often improved by 

the utilization of conditional random fields (CRFs). One of the papers that are considered 

a breakthrough in terms of achieving a high rate of performance was presented in [117] 

with the proposal of a symmetric encoder-decoder architecture that allows for the passing 

of information between opposing contracting and expanding sides by means of a residual 

connection (Figure 20). The application of equivalent architectures or more elaborate 

variants [67, 118, 119] cannot be the exception to the rule for blastocyst segmentation such 

as in the case of [120]. In [121], a shallower convolutional architecture than the state-of-

the-art is utilized for the segmentation of different blastocyst components by means of a 

labeled dataset. The basic structuring block of the encoder is a sprint convolutional block 
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that utilizes asymmetric kernel convolutions in combination with depth-wise separable 

convolutions to achieve a decrease in the number of utilized learning parameters. Many 

existing DCNN architectures that are utilized in the medical imaging field (although rarely 

found for blastocyst images) tend to explore the technique of conditional random fields for 

the improvement of the generated results. These architectures for image segmentation 

present certain inconsistencies such as isolated areas of a different label in contrast to their 

surroundings. This negative phenomenon can be addressed by the utilization of prior 

knowledge that can be encapsulated in the form of regularization terms that can be learned 

from the dataset. The whole architecture can be trained as an end-to-end deep learning 

model that combines the cost function of the initial classifier (unary potential) with the 

penalty of two adjacent pixels being classified differently (pairwise potential). 

Although the presented results are more than promising, all the above-mentioned 

techniques suffer from the ever-laborious process of manually classifying pixel-by-pixel 

large image datasets. This restriction has led many researchers to search for and 

development of segmentation techniques that require no supervision. 

Most of the studies manage to differentiate blastocysts coarsely (good vs bad 

quality), but the critical clinical need of distinguishing blastocysts of similar quality 

remains unsatisfied. 
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Figure 20 - U-net architecture (example for 32x32 pixels in the lowest resolution). 

Each blue box corresponds to a multi-channel feature map. The number of channels 

is denoted on top of the box. The x-y-size is provided at the lower left edge of the 

box. White boxes represent copied feature maps. The arrows denote the different 

operations [117]. 

Furthermore, they fail to interpret the internal mechanisms of the utilized predictive 

models, meaning that no explanation is provided concerning the visual patterns that 

influenced the prediction. The association and localization of the visual patterns that greatly 

influence the result of the predictive model are crucial in high-risk predictive models, such 

as those utilized in medical applications. Explainability contributes to the discovery of 

reasoning for erroneous predictions or confounding factors [13]. In addition, customers, 

who intended to invest in such systems, are entitled to explanations that can cross-examine 

their working experience [14], a legitimate right that is manifested in the General Data 

Protection Regulation as well. Among several approaches for the generation of visual 
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explanations in medical images, Gradient Weighted Class Activation Mapping (Grad-

CAM) [15] is utilized broadly since it can be applied to various configurations of DL 

architectures. 
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METHODOLOGY 

1.13 Classification Techniques 

1.13.1 Traditional Machine Learning for Medical Image Classification 

In all the proposed techniques the contribution lies in the ability to incorporate 

explainable properties on existing well-defined classification schemes. In the following 

lines, the detailed description of each classification scheme offers a broader view of the 

inner mechanisms of feature extraction and classification processes that are exploited for 

the explainability scheme and are therefore deemed necessary. As far as the traditional 

machine learning approaches are concerned, a selected group of local descriptors is utilized 

alone or in combination for the feature extraction process to provide a repeatable and robust 

quantification of the visual content. The handcrafted features of choice are the following: 

• SURF. Local SURF descriptors are utilized for the generation of multiple vectors 

of 64 values. The utilization of SURF is relieved the burden of unnormalized color, which 

is an unsolved challenge for histopathology images, deriving from different labs, and offers 

significant robustness for scale variations. 

• Haralick features. Histopathology and confocal images are characterized by rich 

information expressed in the form of texture. The grayscale cooccurrence matrix offers a 

compact summary of the texture-based information in medical images by means of 

applying higher-order statistics to it. 

• Color Moments. Since color information is not retrieved by the earlier feature 

extractors color moments are utilized as a means of color quantification as a three-valued 

vector. 
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Global descriptors are applied to the image as a whole and therefore no explainability 

information is gained from them. On the contrary, local descriptors return several interest 

points along with their coordinates and can be utilized for explainability purposes, 

assigning an importance value to its blob of interest which is described not only by its 

coordinates and the SURF descriptor but their scale as well. This scale is indicative of the 

radius of each interest point and can be utilized for visualizing the area of visual stimuli 

that influenced the final result. In total, the application of handcrafted descriptors results in 

the description of medical images with multiple localized vectors deriving from local 

descriptors and a global vector for each global descriptor. 

For classification purposes, the need to create a final representation vector for each image 

is addressed by encoding the multiple local vectors into one and, in turn, fusing this vector 

with the two global ones. The process of transforming multiple vectors into one is managed 

by means of the BOVW and its more advanced alternatives, namely VLAD and Fisher 

Vectors. The contribution of this work is focused on the enhancement of this procedure 

with explainability properties and is based on the idea of extracting useful information from 

the clustering mechanism that is utilized to create the visual vocabulary. The classification 

scheme follows the pipeline of a vocabulary-based vector-embedding mechanism which is 

highly influenced by the number of visual words. This value is the only hyperparameter of 

the system and can be assessed by utilizing techniques such as the Silhouette index[122], 

the Variance Information Criterion[123], or the Bayesian Information Criterion[124], 

providing significant intuition towards the selection of this parameter. The final 

representation vectors for each medical image can be utilized for image retrieval purposes 
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as well by the assignment of a resemblance value according to the distance between image 

vectors. 

An interesting case of the proposed ML pipeline is showcased in the medical imaging 

modality of histopathology by creating visual vocabularies for retrieval and classification 

[31]. A general overview of the proposed system is shown in Figure 21. Whole Slide 

Images, images extracted from digital atlases (literature), and images locally stored or 

digital pathology databases can be imported into the system, which is separated into two 

subsystems, the content-based image retrieval component, and the image classification 

component. These inputs are processed, and the output of this process is either a set of 

images that bear the greatest resemblance to the query image, or a set of images with the 

corresponding malignant/benign labels. 

The method to address the image retrieval and classification problems consist of five (5) 

stages, namely: 

• Image preprocessing. Pre-processing of the images consists of transforming the 

various inputs into the query image-annotated images dataset and it is performed in the 

case of digital atlases and Whole Slide Images with the utilization of PDFBox and 

Openslide [32] libraries accordingly. Consequently, all images are transformed into 

appropriate java objects for their manipulation by the ImageJ library [125]. 

• Image analysis. By means of a fast Hessian Detector, a set of interest points are 

detected in all images (query dataset from database/training-test set). 

• Feature extraction. From each interest point, detected in the previous step, a vector 

with 64 values is extracted which uniquely describes the interest point. Nevertheless, a vast 

variety of features can be utilized locally or globally in order to combine the invariant 
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robust characteristics of the SURF algorithm with advantages provided by other known 

descriptors such as Haralick features and Color Moments. 

• Creation of Visual Vocabulary. Given a collection of r images, an algorithm that 

extracts local features is utilized to create the visual vocabulary (Visual Vocabulary). In 

our case the Speeded Up Robust Features (SURF) algorithm extracts vectors (64 or 128-

valued) where n is the interest points which are automatically detected by using a Fast 

 

Figure 21- Overall system architecture. 

• Hessian Matrix (SURF Descriptor) in each of the r images. Upon completion of the 

feature extraction process from the r images, a collection of r x n 64-value vectors is 

formed. This collection is grouped using a clustering algorithm (here k means is utilized) 

in k groups. The centroid of each group represents the visual word, resulting in the 

formation of a visual vocabulary of k visual words as shown in Figure 22. 
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Image retrieval/Image Classification. Image. Each image is represented by a vector 

computed by the number of occurrences of the image’s interest points to each visual word. 

In order to retrieve the images with a greater resemblance to the query image, a metric is 

utilized (Euclidean or Mahalanobis distance) as depicted in Figure 23. The distance is 

calculated between the vector of the query image and the vectors of all other images 

included in the dataset with the sample images. Sample images with a vector closer to the 

vector of the query image are the retrieved ones. In order to classify a collection of test 

images in c classes, a model is created by exploiting the a priori knowledge provided by a 

training set (Figure 24). In this model, each image is defined by a duple of one characteristic 

vector and a label. The label of each image corresponds to one of the c classes. The model 

is formed using the training set as follows: The training set consists of f images. To each 

of the f images, BOVW is applied with a predefined visual vocabulary of k words, resulting 

in the extraction of a k-value descriptor of the image. In order to classify a collection of 

test images in c classes, a model is created by exploiting the a priori knowledge provided 

by a training set. In this model, each image is defined by a duple of one characteristic vector 

and a label. The label of each image corresponds to one of the c classes. The model is 

formed using the training set as follows: The training set consists of f images. To each of 

the f images, BOVW is applied with a predefined visual vocabulary of k words, resulting 

in the extraction of a k-valued descriptor of the image. The utilized classifiers are the K-

Nearest Neighbor classifier and the Random Forest. 
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Figure 22- Creation of Visual Vocabulary. 

The BOVW measures only the number of correspondences of each interest point to each 

visual (Term Frequency-TF). Thus, it does not consider the significance of each visual 

word in the categorization of each image. In order to measure the significance, Inverse 

Document Frequency (IDF) is calculated, which leads to the enhancement of the provided 

information of each visual word (Equation 18). N is the number of images in the training 

set and Ncon is the number of images in the training containing a specific visual word. The 

TFxIDF product (Equation 19) is the equivalent weight (Wvw) attached to each visual word 

(VW). 

 
𝐼𝐷𝐹𝑣𝑤 = 𝑙𝑜𝑔 (

𝑁

𝑁𝑐𝑜𝑛
) 

(18) 

 𝑊𝑣𝑤 = 𝑇𝐹 × 𝐼𝐷𝐹 (19) 



 77 

In the proposed system Vector Locally Aggregated Descriptors (VLADs) are also utilized. 

Contrary to BOVW, where the final image vector is created by the correspondences of the 

interest points of the image to the visual words, in VLAD the image vector is created by 

the sum of differences between the interest point descriptor and the visual word. 

 

Figure 23 - BOVW Image Retrieval. 

BOVW implementation with the utilization of SURF features leads to results of high 

accuracy. Nevertheless, the final vector can be improved by adding information such as the 

texture Haralick features extracted using gray-level cooccurrence matrices (GLCM). In this 

way, it is possible to exploit the information concerning the texture of the represented 

structures, which takes the form of a vector of 14 statistical characteristics (Angular Second 

Moment, Contrast, Correlation, Sum of Squares, Inverse Difference Moment, Sum 

Average, Sum Variance, Sum Entropy, Difference Variance, Difference Entropy, 

Information Measures of Correlation, Maximal Correlation Coefficient). Since both 
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algorithms, SURF and Haralick are applied to grayscale images, the color information is 

not exploited. To further enrich the generated vector, Color Moments are extracted from 

each image. To calculate Color Moments four low-

 

Figure 24- BOVW Image Classification 

order statistical measures (Mean, Standard Deviation, Skewness, and Kurtosis) are 

extracted globally from each image. The vector representing the image can be further 

improved by adding weights to each visual word in accordance with the term frequency 

definition explained in the field of text categorization. Given a visual vocabulary that 

contains visual words, each interest point of an image is correlated with a visual word. The 

number of interest points correlated to each visual word corresponds to the term frequency.  
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The same ML pipeline is utilized in [68] for the classification of skin cancer confocal 

images in an explainable manner (Figure 25). A minor modification can be witnessed in 

 

Figure 25 - Overall system architecture. Black lines and light purple shapes depict 

the classification task’s workflow, whereas red lines and dark purple shapes depict 

the interpretation task workflow. 

the preprocessing phase where the initial dataset consisting of 136 RCM is augmented by 

the utilization of two transformations to mitigate the issue of the sparsity of samples. 

Although it is often observed that data augmentation takes place by simple alterations of 

the original images (rotation, flip, etc.), the methodology follows a different path by 
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selecting a contrast enhancement and denoising algorithm to reach its goal. The choice is 

based on experiments that demonstrated the improved performance of the classification 

algorithm in images that were initially imposed to contrast enhancement and denoising 

afterward. In order to get the first set of images, Contrast Limited Adaptive Histogram 

Equalization (CLAHE) is performed. CLAHE[126] is an Adaptive Histogram Equalization 

algorithm; therefore, it generates localized image histograms corresponding to each area 

that displays different brightness levels from another, and through them increases the 

intensity value at the points where edges are located. For the generation of the second set 

of images, a Non-Local Means Denoising algorithm [127] is applied to the contrast 

enhanced image. The NL Means Denoising algorithm is utilized to reduce noise through 

non-local means. This algorithm works as a convolutional filter calculating the mean from 

the values of all the pixels in the image (instead of only the adjacent pixels) with added 

weight on each pixel.  

 

Figure 26- Samples of transformed image after augmentation. (a) is the original 

image, (b) the enhanced image and (c) the enhanced-denoised image. 

The data augmentation procedure results in the triplication of the dataset size, which is 

essential for training the neural network in the predictive model. In Figure 26, the initial 
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RCM image shows an Acral Nevus and two synthetic copies produced by the augmentation 

procedure. As a result, the augmented dataset includes 408 images. Another difference is 

the utilized classifier. The binary classification task is performed by a simple vanilla neural 

network consisting of k+14 (input) and 2 (output) neurons. The basic hyperparameters of 

the plain ‘vanilla’ neural network are depicted in Table 5. 

Table 5 - Basic neural network configuration 

Hyperparameters Values 

Activation function Tanh 

Weight initialization Xavier 

Learning Rate 5 for Adam optimizer 

Output layer activation function Softmax 

Output layer loss function  Cosine proximity 

Epochs 10000 

1.13.2 Deep Learning for Medical Image Classification 

The manipulation of handcrafted feature extraction techniques for the 

quantification of visual content is challenging since it requires prior expertise and 

knowledge of the problem in question but offers the ability to the inner mechanisms’ 

transparency, a vital characteristic when explainability capabilities are in discussion. On 

the other hand, the utilization of learned features is relieved from the expertise requirement 

and has demonstrated great efficiency in terms of classification performance while keeping 

the inner workings hidden from their makers. As already mentioned, the aim of this work 

is not directed to the improvement of existing classification schemes and therefore only a 

few descriptive lines will be spent on behalf of such details. Most of the utilized learned 

feature extractors are pretrained well-established DCNNs that exceed in terms of 

classification evaluation metrics. Transfer learning is a prosperous technique that saves 

engineers a lot of time and thinking, since the training of DCNNs on a general classification 
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problem such as the task for ImageNet[128] can be drifted to more specific classification 

tasks by applying fine-tuning on a subgroup of the last convolutional layers without the 

time and resource consuming task of training very deep architectures. Pretrained DCNNs 

digest a large number of medical images and extract a significant number of features as a 

result of a Global Max Pooling operation. These features can, in turn, be inserted in a fully 

connected network classifier or any other kind of ML classifier to provide classification 

predictions. However, rather than exploiting the discriminative power of a single DCNN 

in our proposed methodology we utilize ensembles of DCNNs in an attempt to reduce the 

bias error. 

In [24] an ensemble classifier consisting of three different pretrained implementations of 

the EfficientNets group is employed in a parallel configuration that results in the 

concatenation of three different groups of feature maps. The pretrained models are trained 

by means of the ImageNet dataset [128]. A modification is applied after the global max 

pooling layer of each base feature extractor in order to provide a unified vector to the final 

classifier. This modification assumes the form of a concatenation layer before the classifier 

(Figure 27). The training set is augmented to 3 times the initial size by the utilization of 

three randomized operations, flip, rotation, and zoom. The final concatenated set of 

features is driven into a fully connected layer that acts as a classifier following typical best 

practices of deep CNNs. For the selection of the pretrained models, a preliminary 

examination of the individual performance on the two datasets led to the selection of the 

best-performing models in terms of accuracy. The best individually performing deep CNNs 

are the Inception Net, XceptionNet, and the EfficientNets group. Consequently, an ablation 

study is conducted between these selections in groups of three to determine the best 
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selection. Upon removing a CNN, the influence of this removal is measured in terms of a 

 

Figure 27– Interpretable ensemble network’s architecture 

difference in accuracy. The final selection results in the EfficientNets B2, B3, and B4. 

Although the basic building blocks for the three networks are the same, the required 

diversity in the basic classifiers of the ensemble classifier is achieved by different values 

provided by the compound scaling method. 

The system is developed with two main purposes: 

• Image classification. 

• Interpretability. 
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Two integrated subsystems in the whole architecture interact seamlessly and are 

responsible for the fulfillment of each purpose.  

1.14  Explainability Techniques 

Most of the contribution presented in this thesis is focused on the proposal of novel 

techniques that can provide a straightforward link between the visual patterns in the 

medical image that are responsible for the classification result by utilizing traditional 

machine learning classification schemes. The first contribution starts with the proposal of 

an explainability scheme that is based on the BOVW multiple vector representation 

technique and expanded to the Fisher Vector technique which is a far more compact and 

elaborate approach for squeezing multiple vectors into one. In the following lines, the 

description of the proposed explainability schemes is provided, initially for the BOVW and 

secondly for the Fisher vector technique. Apart from the proposal of a novel approach to 

provide a visual explanation of the visual stimuli that were most influential by means of 

TML, an enhancement of the original Grad-CAM technique is proposed to refine the 

delineation of semantically important patterns in microscopy images in contrast to the gross 

grained visualization of the Grad-CAM approach. This method can be proven beneficial 

even if the explainability approach is performed in a pixel-wise manner since explanations 

that are attributed to sole pixels have no semantic value and therefore a meaningful 

grouping of important pixels is required. 

1.14.1 Traditional Machine Learning for Medical Image Explainability 

With reference to TML, the explainability approach that is based on the BOVW 

scheme is presented as an integrated mechanism of the classification approach presented 
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in [68]. As shown in Figure 25, the interpretation scheme is comprised of two stages, 

namely Visual Pattern Weighted Localization (VPWL), and Visual Word Weight 

Calculation (VWWC). The functionality of the VPWL stage takes place in the modeling 

stage taking advantage of the spatial information including the visual vocabulary due to the 

utilization of the SURF feature local extractor, while the functionality of the VWWC stage 

takes place in the classification stage. Although the Visual Vocabulary Classification 

method is criticized in the literature [129] for its inability to encode localized information, 

the case is contradictory for the interpretation task. The utilization of local descriptors 

(SURF) for the automated detection of visual patterns of interest is proven beneficial since 

it encapsulates the coordinates and scale of the interest point in the descriptors’ vector. The 

coordinate is a token of the interest point’s center and the scale is representative of its 

radius. Given this information, a well understanding of the visual stimulus in question is 

provided and can be utilized for visualization purposes. To get feedback concerning the 

influence of the interest point, the distance of each interest point from the assigned visual 

word (center of the cluster) is obtained when K-Means clustering is performed for the 

creation of the visual vocabulary. This distance (D) is treated by the proposed interpretation 

scheme as a measure of influence (I) of the specific interest point to the final decision. The 

rule is quite simple: The closest the vector of the interest point to the assigned visual word 

is, the bigger the influence becomes. The last 14 elements of the input vector (Haralick 

features) contain no localized information and describe the image globally; thus, they are 

left intact. Since all the necessary information is extracted from the feature extraction and 

visual vocabulary mechanisms the remaining information to connect the stimuli to the 

output concern the explainable classifier. Any kind of base classifier from a Decision Tree 
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or ensemble of Decision Trees such as Random Forest or XGBoost can be utilized to 

provide values of importance between the prediction and the feature inputs as represented 

by visual words. The feature importance mechanism is based on the measure upon which 

the classifier separates the dataset in order to improve its performance. The metric may be 

based on data impurity, Gini impurity is one choice or on the information gain (information 

entropy theory). In the case of base classifiers such as Decision Trees, the response is 

straightforward whereas in ensemble schemes these metrics are combined in the same 

fashion that ensemble classifiers reach a decision (majority voting, weighted sum, etc.). 

The first k inputs of the classifier are the correspondences of the interest points to each 

visual word detected in a query image (part of the Image Representation Vector). Each 

visual word shares a weighted connection with the classification output. The weight (W) 

of each connection adds to the influence of each visual word. Therefore, the final equation 

that demonstrates the influence of each interest point on the prediction outcome is provided 

by Equation (20), where Dip is the Euclidean distance of the vector of the interest point 

from the corresponding centroid and Wvw is the weight of the connection of the visual word 

to the classification outcome. outcome. 

 
𝐼𝑖𝑝 =

𝑊𝑣𝑤

𝐷𝑖𝑝
 

(20) 

The parallel flow of the explainability task extends the idea of weighing visual words to 

the Fisher Vector. The formula presented in Equation (20) for the attribution of an 

importance value Iip to each visual word is transformed into Equation (21): 
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𝐼𝑖𝑝 = 𝑊𝐺𝑀𝑀

𝑊𝑐𝑙

𝐷𝑖𝑝
 

(21) 

The Dip is the Euclidean distance of the interest point’s descriptor from the nearest Gaussian 

Mixture Model mean value, WGMM is the weight of the assigned gaussian distribution in 

the GMM and Wcl is the feature importance derived from the classification process. Local 

descriptors inform us about the coordinates and size of the visual stimuli in concern. The 

GMM paradigm, exploited for modeling the generative process of descriptors, provides the 

details of the distances from each gaussian distribution and the corresponding weights, 

while an ensemble classifier (AdaBoost, XGBoost, Random Forest) provides the 

importance of each feature to the final classification outcome.  

Both techniques result in assigning an importance value to each interest point. These are 

normalized between zero and one and return a color of importance to each interest point. 

Therefore, the user can be informed of the visual stimuli on the image that are influenced 

the classification result. In order to provide a smoother visualization, the values of 

importance decrease as the pixels increase their distance from the center of the interest 

point following a Gaussian distribution.  

1.14.2 Deep Learning for Medical Image Explainability 

Starting with the idea of enabling explainability properties in ensemble schemes, part 

of the thesis’ contribution refers to expanding the application of Grad-CAM to ensemble 

deep CNNs. In the ensemble environment, all the necessary information regarding the 

calculation of the Grad-CAMs exists but needs the addition of a concatenation layer so as 
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to bring together all extracted feature maps. This concatenation layer takes place after the 

last convolutional layer of each base classifier. This minor modification enables the 

integration of the Grad-CAM explanation module into the ensemble classifier.  

Grad-CAM is an explainability scheme that is more than often utilized for the unveiling of 

connections between stimuli and predictions, especially in classification tasks that address 

the determination of the class between distinct objects in an image. However, certain 

categories of medical imaging such as confocal and histopathology images contain rich 

and dense information that differs from the cat vs dog paradigm. To further improve the 

performance of the Grad-CAM technique and the generated visualizations, we propose a 

segmentation-based explainability scheme that focuses on the common visual 

characteristics of each segment in an image to provide enhanced visualizations instead of 

highlighting rectangular regions. This proposed methodology can be applied to ensemble 

schemes as well. While Grad-CAM is utilized as a proof-of-concept paradigm, the 

technique can be applied to any explainability technique that returns importance attribution 

maps. The architecture of the presented methodology and workflow consists of four stages 

which are shown in Figure 28. The explainability pipeline consists of the neural network 

where the Grad-CAM technique is applied, a segmentation algorithm to further improve 

explainability results based on common visual properties of the generated superpixels, and 

a visualization module. As already mentioned, the basic advantage regarding the selected 

approach is that the classification scheme is left intact in comparison to other methods that 

apply to convolutional networks and require some modification to provide explanations. 

These modifications have a certain amount of influence on the performance of the 
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classifier, usually for the worst. Therefore, in Figure 28, any CNN or ensemble of CNNs 

 

Figure 28 – Combined Grad-CAM-Superpixel system’s architecture and workflow 

can be employed for the classification task on the condition that the part of the architecture 

between the last convolutional and the softmax layer is differentiable. The main 

characteristics of the approach are that a) it is class-dependent, as the generated heatmaps 

differ from one class to another and b) belongs to the post-hoc attention approaches since 

the network is first trained to adjust its weights and the explanation scheme is applied 

afterward. Grad-CAM consists of three steps resulting in the outcome of Equation (4). The 

initial image enters the neural network, and a vector is generated with each value of the 

vector corresponding to the probability of this sample belonging to a class. Along with the 

prediction the respective Grad-CAM heatmap (Figure 29c) is generated and blended with 

the initial image. 
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Figure 29 - Sample of the (a) initial skin confocal image depicting a nevus, and (b) 

the generated image by thresholding important regions/pixels as specified at; c) the 

Grad-CAM heatmap/initial image blend and d) the proposed heatmap/initial image 

blend. 

The next step of the proposed methodology is the detection of important regions. This 

process is conducted by creating a mask on the heatmap that includes only regions/pixels 

of high importance (Figure 29b). The mask is generated by transforming the heatmap 

image to the corresponding HSV version and applying a threshold that separates the 

important pixels from the unimportant ones in terms of explainability. The designated 

regions are delineated with green color. In parallel to this process, the initial image is 

segmented into visually uniform regions called superpixels. The utilization of a 

segmentation algorithm intends to narrow down the Grad-CAM importance region to the 

level of cellular structures. The final step of the proposed methodology is called 

visualization fusion and aims to combine the generated visualization (Importance 

region/Grad-CAM and Segmentation) into a more compact one. During this process, the 
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algorithm checks the number of pixels in each superpixel that are considered important. 

For each one of these pixels, the algorithm assigns an importance value as dictated by the 

Grad-CAM algorithm. The average importance is then calculated by summing the 

importance values of all pixels contained in the superpixel divided by the number of pixels 

in the superpixel. In Fig. 27d, the outcome of the proposed technique is shown as the result 

of segmenting the initial image by the Felzenswalb superpixel algorithm. 

Regarding the interpretability task, the concerning modules are attached to the architecture 

of the classification scheme while providing feedback for the localization of important 

visual patterns that influence the outcome of the classifier without interfering with its 

functionality. When utilizing the Grad-CAM technique in single classifier environments 

the feature maps of the last convolutional layers and the gradients for the score of each 

class with respect to the feature maps are necessary to produce a heatmap with the 

interpretability visualizations. In the ensemble environment, all the necessary information 

regarding the calculation of the Grad-CAMs exists but needs the addition of a 

concatenation layer in order to bring together all extracted feature maps. This concatenation 

layer takes place after the last convolutional layer of each base classifier. This minor 

modification enables the integration of the Grad-CAM interpretation module into the 

ensemble classifier. 

An explainability scheme that combines the well-established properties of Grad-CAM, 

while enhancing them with the localization information of specific structures that derive 

from three different segmentation algorithms is introduced herein. The question is the 

following: As already known, there are several variations of CAM algorithms. The 

proposed technique can support the different implementations of the Grad-CAM algorithm 
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since they result in saliency maps. A minor difference is the fact that some of the 

alternatives produce pixel-wise explanations. The utilization of the technique in this 

scenario is prosperous as well because humans have the habit of assigning importance 

values to structures that stand on an area of pixels and therefore the assignment of 

importance to a single pixel makes no sense. Maybe you have to discuss it as future 

research in an effort to generalize your research. However, in this thesis, the specific Grad-

CAM version of the algorithm is utilized as a pilot approach. 

1.15 Unsupervised segmentation 

Far from handling microscopy images, part of the contribution described in this 

thesis refers to the proposal of an unsupervised segmentation algorithm for blastocyst 

images. In the proposed methodology the manual labeling is initially bypassed by forcing 

a superpixel algorithm to return two superpixels, one for the foreground and one for the 

background. All initial images are pre-processed with contrast-limited adaptive histogram 

equalization (CLAHE) [130] to enhance visual patterns’ contrast. Although this method 

provides efficient segmentation results, as experts visually inspect images, there are 

occasions where it fails to work efficiently (Figure 30). In order to avoid these failures, the 

segmentation task is conducted by utilizing only the successful segmentation results as 

masks to train a U-Net. This U-Net is further extended to include Conditional Random 

Fields (CRF) to achieve the final segmentation mask without the need for human 

intervention. To separate the inner cell mass (ICM) from the trophectoderm (TE) region 

we fit an ellipse in the inner part of the segmentation mask, with a 1/5 proportion to the 

mask’s size (Figure 31). This ellipse provides a coarse separation between ICM and TE 

visual patterns. The Felzenswalb superpixel algorithm [87] with extreme values of the scale 
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parameter of 1500 and the minimum size parameter of 3500 is utilized to enforce the 

 

Figure 30 - Examples of applying the superpixel technique on blastocyst images. A. 

Successful segmentation of the blastocyst pixels from the background. B, C. Failure 

to segment the image in blastocyst and background pixels. 

generation of two superpixels. For the U-Net, we employ a simple 4 2d-convolution 

encoding layers, followed by 4 2d-deconvolution decoding layers that are autocorrected by 

 

Figure 31 - A. Initial blastocyst image, with structure outside from the blastocyst 

annotated in red circle. B. Segmentation of the trophectoderm region by applying 

the proposed method. C. Inner cell mass region segmented from the rest of the 

image. 

skip layers from the encoder. The loss function is categorical cross-entropy and the Adam 

optimizer with a learning rate of 0.0001 is utilized. The CRF model is proposed in [131] 

where the pairwise edge potentials on all pairs of pixels in the image are defined by a linear 

combination of Gaussian kernels. 

1.15.1 Classification 
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The proposed methodology for the classification of blastocyst images is divided 

into the following five main steps and one preprocessing step: the contrast enhancement, 

the unsupervised segmentation, the feature extraction, the image-to-vector representation, 

and the classification and explainability process. A separate workflow manages the 

explanation task. The explanation is provided by exploiting the mechanisms of the image 

to vector and classification steps since both provide useful insight concerning the 

connection between the visual stimuli and the predictions. The basic workflow information 

is presented in Figure 32. The modules of the workflow that are generated during the 

training phase, namely the segmentation model, the classification model, and the 

generative model are depicted as yellow polygons, and preprocessing step is colored pink. 

 

Figure 32 - Explainable model workflow for blastocyst images. The models 

generated in the training phase as depicted as yellow polygons. The preprocessing 

step is colored pink. 

The classification tasks are the following: a) Degree of Expansion (DE), which refers to 

morphological findings in the whole blastocyst and the quality of the blastocyst’s 

expansion, b) ICM which refers to the shape and number of cells in the ICM and c) TE, 

that refers to the number and shape of TE cells. The set of initial descriptors is filtered to 
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contain blobs that belong to the blastocyst region. Since two out of the three classification 

tasks refer to the specific regions (ICM or TE) of the blastocyst, we further select interest 

points from the corresponding regions in each task to exclude irrelevant information from 

the machine learning process. Descriptors are selected from the corresponding region to 

form the equivalent Fisher vector that will be utilized as input to the classifier of choice. 

Although various classifiers were benchmarked for the tasks, the best result was achieved 

by an XGBoost classifier. The XGBoost classifier is an efficient ensemble classification 

scheme that bases its success on the exploitation of the gradient boosting technique in 

combination with decision trees. 
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EXPERIMENTAL RESULTS 

1.16 Medical use case scenarios for the proposed methodologies and systems 

In this thesis, the proposed methodologies and systems are evaluated by the 

utilization of images that derive from various medical fields and modalities. Starting from 

the domain of Pathology, the Digital “alter-ego” was meant to solve many problems that 

physicians had faced in the earlier years, mainly associated with the management and 

preservation of tissue samples, the inability of conducting telemedical consultations, and 

the lack of advanced computer-based systems for diagnosis, analysis, and education. The 

documented ability of deep convolutional networks to identify visual patterns beyond the 

human perspective is gaining popularity in the field of digital pathology as well. Driven by 

the rise of digital scanners that produce whole slide images, the assessment of human tissue 

in histopathology images can be conducted by means of a virtual microscope. A whole 

slide image, containing on average 4 GB, can satisfy the needs of data-hungry deep 

convolutional networks and alleviate issues concerning the creation, handling, and 

preservation of glass slides. In this framework, patches, extracted from whole slide images, 

are inserted as inputs in deep convolution networks in a supervised or unsupervised 

manner, exploiting the benefits of the latest developments in the field of deep learning such 

as transfer learning with pretrained models and the unlabeled training via auto-encoders or 

Generative Adversarial Networks (GANs)[28, 29]. Apart from deep learning techniques, 

traditional machine learning algorithms have been utilized in the field of digital pathology 

for content-based image retrieval and classification of histopathology images. While first 

introduced for text classification, the Bag of Words (BoW) technique is utilized in[30, 31] 
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for the description of dense imagery content and its exploitation on designated tasks. 

However, whole slide imaging is introduced to the scientific community with a new breed 

set of challenges that need to be addressed, mainly related to the polymorphism of the data 

formats, the big data management, the standardization of staining, and the transparency 

and explainability of predictions. A vast amount of data is created every second as the 

digital image is produced by a glass slide along with its metadata. Analyzing large images 

in order to recognize patterns and similarities against images found in medical books and 

atlases has been proven tedious and time-consuming task for pathologists. Furthermore, 

the variety of whole slide scanners vendors led to the building of a new “Babel” tower, 

where each Digital Pathology System (DPS) speaks a different language as far as hardware, 

operating systems, formats of digital images, and communicating protocols are 

concerned[32]. 

A special case of histopathology images is the ones that depict glandular structures. Glands 

are considered of great importance due to their fundamental operations of removing, 

altering, or concentrating substances from the blood and then releasing them, using them, 

or eliminating them. The normal function of glands is, often, affected negatively by 

malignant tumors which arise from their epithelium, known as adenocarcinomas. The 

examination of their morphology by appropriate scientists through the microscope has been 

an everyday routine workflow to determine the existence of malignancy, their extent, and 

the following treatment if needed. As already mentioned, a common practice of 

pathologists refers to the comparison of visual patterns detected in the microscope against 

scientific atlases and books. The need for automated and fast literature, database, and 
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storage systems screening and efficient classification of the suspect structures into 

categories of malignancy is more evident than ever. 

The basic purpose of capturing images at very high resolution from biopsies conducted on 

different parts of the human body is to analyze and classify the depicted visual patterns into 

cancer types of malignancies or benign tissues. Skin cancer is one of the deadliest forms 

and can be divided into two main categories: Melanomas and non-Melanomas. Melanomas, 

the most lethal form of skin cancer, refer to the uncontrolled multiplication of melanocytes 

and the creation of malignant tumors either outwards or inwards to the dermis of human 

skin[33]. Non-Melanomas are, in turn, divided into two categories: Basal Cell Carcinomas 

(BCCs) and Squamous Cell Carcinomas. BCCs are the most common form of skin cancer 

corresponding to 80% of Non-Melanoma Skin Cancers and they are related to the abnormal 

growth of basal cells at the top of the epidermis[34]. SCCs, which are the second most 

common form[35], refer to the formation of malignant tumors at the outer layer of the skin 

(squamous cells). A glance at the numbers about skin cancer is indicative of its severe 

impact on human health. In the United States, more than 9,500 people are diagnosed with 

skin cancer every day[36]. 

In dermatology, experts utilize digital dermoscopy to review potential malignancies on 

human skin. To verify their diagnosis, a sample from the skin is removed and forwarded to 

the histopathology labs where the nature of the tissue is determined. Histopathology 

remains the golden standard in experts’ routines, but reflectance confocal microscopy is a 

non-invasive technology that can be utilized as an alternative for the diagnosis of skin 

cancer. Since skin cancer affects a large portion of humans on a global scale, the majority 

of samples are operated on and sent to the lab in vain (only a few of them are malignant). 
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Reflectance confocal microscopy offers the advantage of being able to review the sample 

at a cellular scale in vivo. However, generated images are of high density and complexity 

and only a few experts are specialized in evaluating the corresponding images. In the past 

decade (2009 – 2019), the number of new invasive melanoma cases diagnosed annually 

increased by 54 percent [36, 37]. Nevertheless, early detection through routine screening 

and treatment of skin cancer has been proven to reduce drastically mortality rates[38]. 

Apart from the non-invasive method of dermoscopy for screening which is most of the 

times accompanied by a biopsy, Reflectance Confocal Microscopy (RCM) offers an 

improved alternative due to its capacity to review horizontal sections of human skin at a 

cellular level and in vivo. The main advantage of this technique is the ability of a more 

accurate diagnosis without removing a sample from the patient. However, the evaluation 

of RCM images from experts is a tedious and time-consuming task that depends on human 

acuity. Training new dermatologists into experts that can interpret confocal images is a 

demanding task as well. The automation of this procedure via computer vision and machine 

learning techniques can be beneficial in terms of reproducibility and time efficiency. 

Far from the field of medical images exploited for cancer diagnosis purposes, specialized 

cameras are utilized to capture the shape and morphology of embryo blastocysts for their 

transfer to the candidate mother’s uterus. Infertility significantly affects the life quality of 

people on social and psychological levels and is estimated to expand in the coming years, 

contributing to the reduction of the fertility rate from 2.5 live births in 2019 to 2.2 in 2050 

and 1.9 in 2100 [39]. At the same time, it deprives the fulfillment of the basic instinctive 

desire to have a descendant[40]. In charge of the embryos’ evaluation process and based 

on their experience, embryologists classify images of fifth-day blastocysts, in an attempt 
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to select the most suitable candidate. For the evaluation of these blastocysts, most 

laboratories rely on the system proposed by Gardner and Schoolcraft with some 

modifications added later [41]. According to this system, the characteristics that determine 

the quality of the blastocyst are the degree of blastocyst expansion (rate of expansion), the 

number and shape of cells of the inner cell mass (ICM), and the number and shape of 

trophectoderm cells (TE). 

The evaluation process is time-consuming and arduous, it requires specialized training and 

many years of experience, and relies strongly on the subjectivity of each evaluator in the 

absence of objective criteria. 

1.17 Datasets 

The performance of each predictive algorithm is evaluated for the performance of 

the classification and explainability scheme by utilizing image datasets that are 

representatives of the classes and problem in question. Five labeled datasets are presented 

in the following lines to verify the extent to which each methodology fulfills the designated 

purposes.  

1.17.1 Reflectance confocal microscopy dataset 

The dataset contains RCM images that are provided by the Andreas Syggros 

Hospital of Cutaneous and Venereal Diseases in Athens. The images are captured by a 

Mavig Vivascope 3000 that operates at 830nm, resulting in a depth of 200µm. The dataset 

is composed of 133 benign samples and 127 malignant ones. The benign samples are 

divided into the following types: Seborrheic Keratosis (SK), Solar Lentigo (SL), and Nevus 
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(N). The malignant samples consist of the following types of skin cancer: Spitz, Basal Cell 

Carcinoma (BCC), Actinic Keratosis (AK), Lentigo Maligna-Lentigo Maligna Melanoma 

(LM-MM), and their class distribution is described in Table 6. The fact that the malignant 

samples are composed of Melanoma and non-Melanoma types composes a challenging 

scenario for the classification task. Samples of the dataset are depicted in Figure 33. 

Table 6 - Class Distribution for Reflectance Confocal Microscopy Images in benign 

and malignant subclasses. 

Class Subclasses Number of Samples Total 

Benign 

Benign Keratosis 61 

133 Melanocytic Nevus 68 

Solar Lentigo 4 

Malignant 

Actinic Keratosis 34 

127 
Basal Cell Carcinoma 52 

Lentigo Malignant 

Melanoma 
41 

Total 260  

1.17.2 Breast Cancer Histopathology (BreakHis) dataset 

The dataset, named Break Histological Image Classification (BreakHis), consists 

of 7,909 microscopic, breast tumor tissue images that are collected from 82 patients using 

different magnifying factors [132]. The images are: 

• Divided into 2,480 benign and 5,429 malignant samples. 
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Figure 33 - This is an overview of the RCM dataset. (a) depicts a benign sample is 

depicted falling in the Nevus category, whereas in (b) a basal cell cancer sample is 

presented. (c) shows another malignant sample that belongs in the Actinic keratosis 

category. 

• 3-channel RGB (8 bits in each channel). 

• In PNG format. 

• In four different magnifying factors (40x, 100x, 200x,400x). 

• Contain 700x460 pixels. 

Table 7 - Class distribution of the BreakΗis dataset 

Class Subclasses 
Magnification Factors Total 

40x 100x 200x 400x  

Benign 

Adenosis 114 113 111 106 444 

Fibroadenoma 253 260 264 237 1014 

Tubular Adenoma 109 121 108 115 453 

Phyllodes Tumor 149 150 140 130 569 

Malignant 

Ductal Carcinoma 864 903 896 788 3451 

Lobular Carcinoma 156 170 163 137 626 

Mucinous Carcinoma 205 222 196 169 792 

Papillary Carcinoma 145 142 135 138 560 

Total 1995 2081 2013 1820 7909 

Separation of benign images in the following four distinct histological types is provided 

in the BreakHis dataset: adenosis (A), fibroadenoma (F), phyllodes tumor (PT), and tubular 

adenoma (TA). Four malignant tumor types are provided as well: Ductal carcinoma (DC), 
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lobular carcinoma (LC), mucinous carcinoma (MC), and papillary carcinoma (PC). 

Samples of the BreakHis dataset are shown in Figure 34 and the class distribution of the 

dataset is depicted in Table 7. For the classification task, the datasets are divided into 70-

30% training-test splits.  

1.17.3 Breast Cancer histology (Bach) dataset 

The dataset [133] consists of 500 images that are divided into 80/20 percent split 

for the training and test set. The images are equally divided into four classes, benign, in 

situ, invasive and normal. A Leica DM 2000 LED microscope and a Leica ICC50 HD 

camera are utilized to collect the images that correspond to patients from the Porto and 

Castelo Branco regions (Portugal). The annotation was performed by two medical experts. 

Where there was disagreement between the Normal and Benign classes, images were 

discarded. The remaining doubtful cases were confirmed via immunohistochemical 

analysis. The provided images are in RGB .tiff format and have a size of 2048 × 1536 

pixels and a pixel scale of 0.42 µm × 0.42 µm. In order to ensure an unbiased evaluation 

process, participants were provided with a partial patient-wise distribution of the images 

of the training set, and the test data was collected from a completely different set of patients 

(Figure 35). 
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Figure 34- This is an overview of BreakHis dataset. Each row depicts a specific 

tissue type.: Adenosis is indicated as (a), fibroadenoma as (f), phyllodes tumor as 

(pt), and tubular adenoma as (ta), ductal carcinoma as (dc), lobular carcinoma as 

(lc), mucinous carcinoma as (mc) and papillary carcinoma as (pc). Each number 
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stands for a specific magnification factor: 1 for 40x, 2 for 100x, 3 for 200x and 4 for 

400x (i.e., pc2 image depicts a papillary carcinoma in 100x magnification). 

 

Figure 35 – Samples of the four containing classes of BACH dataset[134]. 

1.17.4 Colorectal cancer histopathology dataset 

The dataset is a set of 100,000 non-overlapping image patches from hematoxylin 

& eosin (H&E) stained histological images of human colorectal cancer (CRC) and normal 

tissue. All images are 224x224 pixels at 0.5 microns per pixel (MPP). Tissue classes are 

Adipose (ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), 

smooth muscle (MUS), normal colon mucosa (NORM), cancer-associated stroma (STR), 

colorectal adenocarcinoma epithelium (TUM) [24]. Samples of the dataset are shown in 

Figure 36 and the class distribution is provided in Table 8. 

Table 8 - Class distribution of the colorectal dataset 

Class Number of samples Percentage (%) 

ADI 10407 10,4 

BACK 10566 10,56 

DEB 11513 11,51 

LYM 11556 11,56 

MUC 8896 8,9 

MUS 13537 13,54 

STR 8763 8,76 

NORM 10446 10,45 

TUM 14316 14,32 
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Figure 36 - This is an overview of colon cancer dataset. Each image depicts a specific 

tissue type.: Adipose is indicated as (ADI), background as (BACK), debris as (DEB), 

and lymphocytes as (LYM), mucus as (MUC), smooth muscle as (MUS), normal 

colon mucosa as (NORM), cancer associated stroma as (STROMA) and colorectal 

adenocarcinoma epithelium as (TUM). 

1.17.5 Warwick-QU dataset 

In order to evaluate the presented methodologies, the Warwick-QU dataset [135] is 

utilized. This dataset was acquired by a team of pathologists at the University Hospital 

Coventry and Warwickshire, UK, and comprises 165 images of .bmp format depicting 

types of colorectal cancer (Figure 37). The dataset derives from 16 H&E (Hematoxylin and 

Eosin) whole slide images that are further divided and graded as malignant or benign 

according to their overall glandular architecture at the time of the division by expert 

pathologists. Images are captured by a Zeiss MIRAX MIDI Whole Slide Scanner in 

resolution 20X (0.62005μm/pixel).  



 107 

 

Figure 37 - Representative images of Warwick dataset. The left image depicts 

malignant glands, whereas the remaining images show benign glands. 

1.17.6 In-vitro fertilization blastocyst image dataset 

The dataset was provided by the REA Fertility and IVF Unit and consists of 1057 day 

3, and 1036 day 5 blastocyst images along with their metadata including significant health-

related information from both genders and demographics. All images correspond to a total 

of 267 patients, are in .bmp format and their dimensions are 1280x1024 at 96 dpi. The 

dataset is labeled by expert embryologists by means of the Gardner and Schoolcraft system. 

The classification tasks are the following: a) Degree of Expansion (DE), which refers to 

morphological findings in the whole blastocyst and the quality of the blastocyst’s 

expansion, b) ICM which refers to the shape and number of cells in the ICM and c) TE, 

that refers to the number and shape of TE cells. The dataset contains 8 labels for the DE 

task, 6 labels for the ICM task, and 6 labels for the TE task, and class distribution is 

described in Table 9. The system is considered a quality standard for the evaluation of 

blastocysts and focuses on the morphological features and condition of the inner cell mass, 

the trophectoderm, and the overall blastocyst. There is an ongoing process that is expected 

to augment the size of the dataset in the forthcoming years, providing the ability to further 
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exploit deeper machine learning architectures for the extraction of useful knowledge. 

Samples of the IVF dataset are presented in Figure 38.  

 

Figure 38 - The upper line of images depicts 3-day blastocyst images, whereas the 

lower line 5-day blastocyst images. 

Table 9 - Class distribution for three classification tasks, Degree of Expansion (DE), 

Inner Cell Mass (ICM) and Trophectoderm (TE) on IVF blastocyst images.  

Class DE 

DAY5 

Number 

of samples 

Percentage Class ICM 

DAY5 

Number of 

samples 

Percentage Class TE 

DAY5 

Number of 

samples 

Percentage 

1 39 3.8%       

2 95 9.2%       

3 161 15.5% A 354 9.7% A 278 26.8 

4 239 23.1% B 124 28.2% B 177 17 

5 41 4.0% C 97 6.4% C 120 11.6 

Blastocyst 68 6.6% Blastocyst 68 34.3% Blastocyst 68 6.6 

Cells 292 28.2% Cells 292 12.0% Cells 292 28.2 

Compaction 101 9.7% Compaction 101 9.3% Compaction 101 9.8 

1.18 Evaluation Metrics 
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The utilized performance metrics for the binary classification tasks are described 

hereafter: 

The accuracy metric is defined as the fraction of the correctly classified instances divided 

by the total number of instances, as shown in Equation (22). 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(22) 

Correctly classified instances are analyzed in true positives (TP) and true negatives (TN), 

where TP are the instances predicted as positive and truly are positives (ground truth) and 

TN are the instances predicted as negative and truly are negative. The total number of 

instances consists of TP, TN, false positive (FP), and false negative (FN) instances. FP are 

the instances that are predicted as positive by the classifier but are negative in reality, 

whereas FN are the instances predicted as negative but are positive. The precision metric 

is defined as the fraction of the true positives divided by the true positives and false 

positives as shown in Equation (23): 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(23) 

The recall (Sensitivity) metric is defined as the fraction of the true positives divided by the 

true positives and false negatives as shown in Equation (24): 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(24) 
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Specificity is another popular metric for the evaluation of classification tasks, defined as 

the fraction of TN divided by the sum of TN and FP (Equation 25), which in this work is 

utilized for the measurement of balanced accuracy. 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (25) 

In cases where the dataset shows imbalanced properties, the metric of balanced accuracy 

is utilized to provide a better insight into the model’s performance. Balanced accuracy is 

defined as the sum of sensitivity and specificity divided by 2 as shown in Equation (26). 

 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 (26) 

The area under Curve (AUC) metric is defined as the area under the receiver operating 

curve. The receiver operating curve is drawn by plotting the true positive rate (TPR) versus 

the false positive rate (FPR) at different classification thresholds. TPR is another word for 

recall whereas FPR is the fraction of the false positives divided by the true negatives and 

false positives as shown in Equation (27): 

 
𝐹𝑃𝑅 =  

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

(27) 

For the multiclass classification tasks, some of the above metrics require minor changes to 

support their role. The recall will be changed into micro averaging leading to a new fraction 

(Equation 28) which is defined as the sum of all true positives through all classes divided 

by the sum of all the TP and FN through all classes. Such a division assigns equal weight 

to each sample. In this fashion the metrics for Precision and Specificity are computed. 
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𝑀𝑖𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑆𝑢𝑚 (𝑇𝑃)

𝑆𝑢𝑚(𝑇𝑃) + 𝑆𝑢𝑚(𝐹𝑁)
 

(28) 

However, the macro averaging metrics are also useful when imbalances in classes are 

evident. The metric is calculated for each class separately and then the arithmetic mean 

returns the macro-averaging value. In other cases, the strict criterion of predicting exactly 

the right class is loosened to provide feedback for the validity of the ground truth by means 

of the top-k accuracy. 

Concerning the evaluation of the explainability technique, the Most Relevant First (MoRF) 

curve is exploited in combination with the Area Over the MoRF Perturbation (AOPC) 

Curve. The first metric is computed by arranging tiles of the input images in a sequence 

starting with the most important tile. The importance of each tile is measured by the 

generated heatmap of the explainability technique that assigns an importance value to each 

tile. Once the sequence is generated, we perform random noise perturbations on the image 

tiles starting from the most important tile and witness the decrease in the predicted 

probability of the dominating class. The intuition is that the more relevant the patch, the 

more it will affect the classification output, so we expect a steeper decrease in the initial 

stages of the perturbation process and a lower slope of the curve from there onward. On 

the other hand, the Area Over the MoRF Curve should increase as we modify larger areas 

of importance of the initial image. The AOPC curve is defined in Equation (29). For the 

multiclass classification tasks, some of the above metrics require minor changes to support 

their role. The recall will be changed into micro averaging leading to a new fraction 

(Equation 28) which is defined as the sum of all true positives through all classes divided 
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by the sum of all the TP and FN through all classes. Such a division assigns equal weight 

to each sample. In this fashion, the metrics for Precision and Specificity are computed.  

 

𝐴𝑂𝑃𝐶 =
1

𝐿 + 1
〈∑ 𝑓(𝑥𝑀𝑜𝑅𝐹

(0)
) − 𝑓(𝑥𝑀𝑜𝑅𝐹

(𝑘)
)

𝐿

𝑘=0

〉𝑝(𝑥) 

(29) 

In Equation (29), the L parameter is the number of tiles, <.>p(x) is the average over all 

images in the dataset, and f(x) is the function that measures the importance of each tile in 

the classification result.  

1.19 Classification Results 

Although the main contribution of this thesis lies in the proposal of explainability 

schemes on top of existing classification techniques, the presentation of the classification 

results herein is indicative of the need to accomplish high-performance numbers in terms 

of both explainability and classification. It is demonstrated that the proposed schemes not 

only achieve high accuracy metrics but can also return useful visual explanations for the 

generated predictions that in some cases are reported to exceed state-of-the-art results. 

1.19.1 Applying visual vocabulary schemes on colorectal cancer histopathology images 

The BOVW measures only the number of correspondences of each interest point to 

each visual word. This is referred to as Term Frequency-TF in the relevant literature. 

Therefore, it treats each visual word equally and does not consider the significance of each 

visual word individually in the categorization of each image. In order to measure the 

specific significance, Inverse Document Frequency (IDF) is calculated, which leads to the 

enhancement of the provided information (Equation 18). N is the number of images in the 

training set and Ncon is the number of images in the training containing a specific visual 
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word. The TF x IDF product (Equation 19) is the equivalent weight (Wvw) attached to each 

visual word (VW). 

 
𝐼𝐷𝐹𝑣𝑤 = 𝑙𝑜𝑔 (

𝑁

𝑁𝑐𝑜𝑛
) 

(27) 

 𝑊𝑣𝑤 = 𝑇𝐹 × 𝐼𝐷𝐹 (28) 

In the proposed system, Vector Locally Aggregated Descriptors (VLADs) are also utilized. 

Contrary to BOVW, where the final image vector is created by the correspondences of the 

interest points of the image to the visual words, in VLAD, the image vector is created by 

the sum of differences between the interest point descriptor and the visual word. 

BOVW implementation with the utilization of SURF features leads to results of 91% 

accuracy. Nevertheless, the final vector can be improved by adding information such as the 

texture Haralick features extracted using GLCM matrices. In this way, it is possible to 

exploit the information concerning the texture of the represented structures, which takes 

the form of a vector containing 14 statistical characteristics (Angular Second Moment, 

Contrast, Correlation, Sum of Squares, Inverse Difference Moment, Sum Average, Sum 

Variance, Sum Entropy, Difference Variance, Difference Entropy, Information Measures 

of Correlation, Maximal Correlation Coefficient). Since both algorithms, SURF and 

Haralick are applied to grayscale images, the color information is not exploited. In order 

to further enrich the generated vector, Color Moments are extracted from each image. In 

order to calculate Color Moments four low-order statistical measures (Mean, Standard 

Deviation, Skewness, and Kurtosis) are extracted globally from each image. The vector 

representing the image can be further improved by adding weights to each visual word in 
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accordance with the term frequency-inverse document frequency definition explained 

earlier. 

By enhancing the BOVW vector (created from multiple SURF descriptors) with Haralick 

features and Color Moments, we achieved very high accuracy in classifying the Warwick 

Dataset into two classes (benign and malignant), comparable to the state of the art in [136], 

which is based on a deep convolutional network. After calculating the average silhouette 

index of consecutive clustering approaches (KMeans, KMeans++, canopy, and farther 

first) and the number of clusters (0-350), the number of 15 visual words and KMeans were 

chosen for the production of visual vocabulary in addition to a Random Forest classifier 

for classification purposes. This configuration yields the best results from a time-efficiency 

perspective. In order to further investigate and improve the results, additional 

implementations are evaluated. The first one incorporates the VLAD technique and creates 

a vector of 960 values from each image, the second one imposes weights on each visual 

word according to the TDIDF methodology and the third extracts local Haralick + Color 

Moments features in the area of interest detected by SURF (in this case a 10x10 pixel area 

is chosen) and integrates them in a VLAD vector. It is deducted through the evaluation 

process that the best performance refers to the BOVW Global Haralick-Color Moments 

Implementation, followed by the BOVW TDIDF variation of the proposed system.  

Table 10 - (A)ccuracy, (S)ensitivity, (P)recision, (SP)ecificity of classification results 

of Warwick dataset in two classes. 

Classifiers 

Implementation scheme 
MLP/ Logistic (for 

VLAD) 
Naïve Bayes Random Forest 



 115 

However, a thorough examination of the metrics shows a good performance of VLAD 

implementation for all utilized classifiers in comparison to the BOVW + Global Haralick 

-Color Moment's implementation where the best results reflect only the deployment of 

Random Forest. The results are presented in Table 10. Additional experimentation resulted 

in adding up all 165 images of the dataset in order to perform 10-fold cross-validation. This 

experiment demonstrated 96.2% accuracy for the implementation of the VLAD vector with 

the utilization of a Logistic classifier. 

1.19.2 Applying the BOVW scheme on RCM images 

Experimentation with the BOVW scheme in practice is conducted with a dataset of 

RCM images as well, provided by the Andreas Syggros Hospital of Cutaneous and 

Venereal Diseases in Athens. The fact that the malignant samples are composed of 

Melanoma and non-Melanoma types composes a challenging scenario for the classification 
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task. The initial dataset is augmented to triple its size creating a new set that includes 408 

RCM images. For the classification task, 10-fold cross-validation is applied to avoid 

overfitting the predictive model. Experiments are conducted with two variations of K-

Means clustering (K-Means Plus-Plus [137] and Canopy [138]), with the exclusion of 

Haralick features and with a different number of K clusters in order to reach the highest 

accuracy level. Silhouette index [122] measures the clustering performance. Concerning 

the classifier, which is a neural network, the epochs for training have been determined by 

the early stopping technique, while tests with different optimizers, activation, and loss 

functions resulted in the configurations depicted in Table 5. The absence of many layers in 

the ANN permits the utilization of a Desktop computer for our experiments with an Intel  

Table 11 - Classification results of BOVW technique on RCM images 

Clustering Method Extracted features Loss Function Test set accuracy 

K-Means SURF Negative Log Likelihood 89.23 

  Cosine Proximity 89.96 

 Haralick Negative Log Likelihood 69.94 

  Cosine Proximity 69.45 

 SURF + Haralick Negative Log Likelihood 89.23 

  Cosine Proximity 89.47 

K-Means ++ SURF Negative Log Likelihood 88.49 

  Cosine Proximity 88.98 

 Haralick Negative Log Likelihood 69.94 

  Cosine Proximity 69.45 

 SURF + Haralick Negative Log Likelihood 89.23 

  Cosine Proximity 89.22 

K-Means Canopy SURF Negative Log Likelihood 89.95 

  Cosine Proximity 91.16 

 Haralick Negative Log Likelihood 69.94 

  Cosine Proximity 69.45 

 SURF + Haralick Negative Log Likelihood 90.2 

  Cosine Proximity 91.17 

Core i5 CPU processor at 1.6HZ and 8GB RAM. The results of accuracy for the test set of 

the described experiment are presented in Table 11. Classification results demonstrate that 

adding Haralick global texture information to the final vector slightly improves the 
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performance of the classifier. The highest accuracy is achieved when utilizing K-means 

canopy clustering and the cosine proximity loss function. To our knowledge, the 

classification results are the highest reported in the literature for a multiclass classification 

task concerning RCM images. 

1.19.3 Applying ensemble schemes of DCNNs on breast and colorectal histopathology 

images 

As we switch to the deep learning domain, a comparison between base and ensemble 

DCNN architectures is provided for the evaluation of the improvement the latter 

introduces. We choose from the pool of the TensorFlow 2.3 API 

(https://www.tensorflow.org/) the following well-established architectures: 

• EfficientNets B0-B7 

• InceptionNet V3 

• ExceptionNet 

• VGG19 

• ResNet152V2 

• Inception-ResNetV2.  

The hyperparameters for the deep convolutional architectures were set after 

experimentation to the values shown in Table 12. 

Table 12 - Hyperparameters settings for the utilized deep CNN architectures. 

Hyperparameters Values 

Epochs 10 

Optimizer Adam 

Learning Rate Custom 
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Regularizer L2 

Batch size 8 

 

To determine which pretrained deep convolutional neural networks are better performing 

in the specific datasets, a preliminary experiment is conducted for each individual 

classifier. To further improve the performance of each classification scheme, experiments 

are conducted with different custom learning rate schedulers that result in the learning rate 

scheduler which is expressed by Equation (29): 

 𝐿𝑟(𝑒𝑝𝑜𝑐ℎ𝑠) = 𝐿𝑟𝑠𝑡𝑎𝑟𝑡 + (𝐿𝑟𝑚𝑎𝑥 − 𝐿𝑟𝑠𝑡𝑎𝑟𝑡) × 𝑘 × 𝑒𝑝𝑜𝑐ℎ (29) 

where Lr defines a function that depends on epochs, Lrmax is set to 0,00005, and Lrstart 

to 0,0001. The difference in accuracy increases by 1.6% in the case of EfficientNet B0 

when utilizing the above learning rate scheduler in contrast to using a plain Adam optimizer 

and k a hyperparameter that is computed by heuristic methods. In Table 13 the 

corresponding results for the binary (benign vs malignant) breast cancer and the multiclass 

colon cancer classification task (adipose vs background vs debris vs lymphocytes vs mucus 

vs smooth muscle vs normal colon mucosa vs cancer-associated stroma vs colorectal 

adenocarcinoma epithelium) are depicted. By forming different groups of three baseline 

classifiers and removing each turn one, two ensemble architectures were formed. Each 

architecture contains the baseline implementation that had the greater impact on 

performance metrics when removed. The two qualified architectures are the EfficientNet 

group consisting of B0, B1, and B2 and the group consisting of B1, B2, and B3. In order 

to evaluate the effect of utilizing ensemble architectures against the baselines, Table 14 
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demonstrates the performance metrics for each configuration. The performance of the 

baseline architecture leaves small space for improvement even when the dataset is split in 

a 60-40% ratio. Even so, the Efficient B0-B2 ensemble method is on par with the colon 

cancer dataset. 

Table 13 - Performance metrics for the breast and colon cancer dataset for baseline 

architectures. 

 Breast Cancer Colon Cancer 

Architecture Accuracy AUC Accuracy AUC 

EfficientNetB0 0.9766 0.9945 0.9946 0.9993 

EfficientNetB1 0.9798 0.9964 0.9898 0.9984 

EfficientNet B2 0.9817 0.9982 0.9920 0.9988 

EfficientNet B3 0.9855 0.9988 0.9897 0.9984 

EfficientNet B4 0.9858 0.9980 0.9910 0.9982 

EfficientNet B5 0.9804 0.9975 0.9924 0.9982 

EfficientNet B6 0.9728 0.9953 0.9894 0.9986 

ExceptionNet 0.9785 0.9942 0.9909 0.9985 

InceptionNetV3 0.8868 0.9430 0.9844 0.9981 

VGG16 0.9320 0.9769 0.9795 0.9969 

ResNet152V2 0.8720 0.9431 0.9564 0.9913 

Table 14 - Performance metrics for the breast and colon cancer dataset for 

ensemble architectures 

 Breast Cancer Colon Cancer 

Architecture Accuracy AUC Accuracy AUC 

EfficientNetB0-2 0.9925 0.9985 0.9946 0.9991 

EfficientNetB1-3 0.9855 0.9984 0.9856 0.9989 

Even when splitting the dataset in 60-40% the ensemble architecture managed a minor 

improvement in some cases. Nevertheless, in the worst-case scenario, the proposed 

ensemble architectures are on par with the baseline implementations. However, the task of 

classification is made more difficult by splitting the dataset 40-60%(training-test) and 30-

70% and bootstrapping the splits 10 times to enhance randomness. In Table 15, the results 

from these two extreme splits are demonstrated. The difference in performance metrics is 

greater as the problem of classification becomes more difficult. 
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Table 15 - Performance metrics for the breast and colon cancer dataset for 

ensemble and plain architectures for 40-60% and 30-70% splits. 

  Breast Cancer Colon Cancer 

Split Architecture Accuracy AUC Accuracy AUC 

40-60% 

EfficientNetB0 0.9789 0.9974 0.9645 0.9874 

EfficientNetB1 0.9778 0.9974 0.9688 0.9899 

EfficientNetB2 0.9824 0.9986 0.9764 0.9906 

EfficientNetB0-2 0.9835 0.9989 0.9822 0.9934 

30-70% 

EfficientNetB0 0.9712 0.9962 0.9618 0.9822 

EfficientNetB1 0.9737 0.9972 0.9666 0.9831 

EfficientNetB2 0.9751 0.9968 0.9703 0.9852 

EfficientNetB0-2 0.9785 0.9979 0.9782 0.9925 

1.19.4 Applying TML and DL classification techniques on blastocyst images 

Both TML and DL classification schemes are utilized to evaluate the proposed 

methodology and verify the performance improvement in terms of accuracy with the 

segmented images. An image dataset from the REA Fertility and IVF Unit is utilized. The 

classification tasks are the following: a) Degree of Expansion (DE), which refers to 

morphological findings in the whole blastocyst and the quality of the blastocyst’s 

expansion, b) ICM which refers to the shape and number of cells in the ICM and c) TE, 

that refers to the number and shape of TE cells. For each classification task, the dataset is 

labeled individually by experienced embryologists and contains 8 labels for the DE task, 6 

labels for the ICM task, and 6 labels for the TE task. It is split into a training and test set 

with a proportion of 66.6 - 33.3% and a three-fold cross-validation scheme is applied. The 

evaluation scenarios include the three classification tasks in the following four cases: a) 

without applying the segmentation b) with the proposed segmentation methodology, c) 

with a pretrained ResNet-101 (RN-101) [67], d) and a pretrained EfficientNet-B1 (EN-B1) 

[139] on the ImageNet. Before passing the images through the networks, they are resized 

according to each model’s default input size and normalized with the mean and standard 
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deviation of the ImageNet dataset. During the training of 20 epochs in total, a cosine 

annealing schedule with three warm-up epochs is utilized. The utilized metrics for the 

classification performance include accuracy, balanced accuracy, and top-2 accuracy. 

Results for all the above-mentioned scenarios are depicted in Table 16. The review of the 

presented results demonstrates that the proposed methodology in some cases presents 

comparable results with the state-of-the-art deep learning configurations. The best results 

are presented in bold. It is worth noticing that top-2 accuracy shows a dramatic increase in 

all cases. 

Table 16 - Classification results. Accuracy is labelled as ac, Balanced Accuracy as 

Bacc and top-2 accuracy as top-2. 

 DE ICM TE 

Method          

 Acc Bacc Top-2Acc Acc Bacc Top-2 Acc Acc Bacc Top-2Acc 

Unsegme
nted ML 

0.55 0.32 0.75 0.60 0.38 0.80 0.54 0.39 0.78 

Proposed 0.57 0.36 0.77 0.62 0.40 0.82 0.62 0.46 0.82 

Rn-101 0.52 0.51 0.76 0.52 0.42 0.79 0.55 0.46 0.79 

EN-B1 0.63 0.52 0.87 0.65 0.59 0.87 0.61 0.57 0.87 

1.20 Explainability Results 

1.20.1 Qualitative evaluation on proposed BOVW explainability method 

Efficient classification results for the related techniques are a strong prerequisite 

for the integration of explainability schemes upon them. Our main interest lies in the 

explanation of the results and their relationships with the visual patterns that led to the 

classification outcome. To this end, in this section, a detailed presentation of the qualitative 

explainability feedback is provided for BOVW explainability methods. Since the 

explainability scheme for the BOVW technique is applied to RCM images, samples of the 
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proposed method on confocal images are illustrated in Figure 39. The influence [Iip-

calculated as shown in Equation (20)] of each interest point is represented by a different 

color starting from the lowest values that appear with dark green to the highest which is 

shown with light red. Influence values are normalized between 0 and 1. The size scale of 

the interest point is indicated by the size of the circle. In Figure 39a the original RCM 

image depicts an actinic keratosis skin cancer (malignant). 2297 interest points are detected 

by the SURF detector from which the 100 painted red in Figure 39b has the greatest impact 

on the classifier. In Figures 39b, and c, 54 interest points are depicted in total with a 

diameter between 100-180 pixels and greater than 180 pixels, respectively. Interest points 

at these scales have little contribution to the result. In Figure 39d the interest point with a 

weak impact (enclosed in a red circle) on the classifier’s result is represented. This interest 

point is assigned to the visual word No.165. Visual word No.165 contributes very little 

(weight of connection to a node that represents malignancy class: 0.0008, the distance 

between the vector representing the interest point and the visual word is measured at 2.08) 

to the decision of the classifier. The visualization results are validated qualitatively by our 

collaborating doctors. In Figure 39a, the explainability module has depicted 100 key points 

with the highest grade. These key points correspond, mostly, to irregular keratinocytes. 

The irregularity is found in the size of cells and in the thickness of honeycomb patterns 

found in the image, which, when they appear massively in an image, are indicative of 

normal skin tissue. By skimming through the visualization results of the explainability 

module, it was made clear that the ‘skin fold’ visual pattern depicted in Figure 40 can be 

rather misleading for the algorithm. In Figure 40 a typical honeycombed pattern is shown 

(indicative of benign tissue), which should not be mistaken for malignancy. However, the 
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algorithm confuses the fold for a different pattern, thus, providing an erroneous prediction. 

This is an obvious advantage of utilizing integrated explainability modules in classification 

algorithms, due to the fact that insight is provided for the error detection and redesign of 

the classification system. 

 

Figure 39 - a. Original Actinic Keratosis Confocal Image, b. Top 100 interest points 

with influence value equal to 1. c. 44 interest points with scale corresponding to 

diameter between 100-180 pixels, d. 10 interest points with scale corresponding to 

diameter greater than 180 pixels(a) is the original image, (b) the enhanced image 

and (c) the enhanced-denoised image. 
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Figure 40 - Erroneous classification of benign representation (NEVUS) due to skin 

fold. 

1.20.2 Qualitative evaluation on proposed Fisher Vector explainability method 

The BOVW technique is a well-established method to reduce the dimensionality of 

multiple vectors into a single representation, but the approach is rather simplistic in the 

way that this reduction preserves useful information. The Fisher Vector technique is far 

more elaborate since it employs higher-order statistics for a soft assignment procedure that 

maintains a significant amount of useful knowledge with reference to the generative 

process of the descriptors. Therefore, it is deemed beneficial to extend the proposed 

explainability scheme to the Fisher Vector paradigm by applying minor modifications. To 

evaluate the results of the proposed methodology in terms of explainability, a qualitative 

analysis of the generated visual explanations is provided. In Figure 41, the upper line 

depicts the most influential patches of the image for different classification tasks in the 
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case of the deep learning scenario with the Grad-CAM technique. After a thorough 

examination of most 

 

Figure 41 - A. Visual explanations of blastocyst images for the EfficientNet B1 

pretrained model are depicted at upper line while for the proposed method at the 

lower line. A and D images refer to ICM task, B and E images to TE task, C and F 

images refer to DE task. 

images in the test set, we conclude that these patches are located both in the inner cell mass 

of the blastocyst and in the trophectoderm region for the ICM classification task. The same 

pattern is observed in the TE classification task as well. Another important observation is 

that in some images where visual patterns are found outside the blastocyst, the Grad-CAM 

erroneously focus its attention on them. All the above discrepancies are excluded from the 

proposed methodology due to the selection of interest points that are in the respective 

regions. For the proposed methodology the visual explanations are provided in the lower 

line of Figure 41. 
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1.20.3 Qualitative evaluation on proposed ensemble explainability method 

Apart from the contribution of TML explainability techniques, an improvement of 

the explainability technique, Grad-CAM is proposed herein. The first part of the 

contribution is focused on the application of this technique on ensemble models, while the 

second part combines the well-established properties of Grad-CAM with superpixels for 

more fine-grained and more efficient visual explanations on microscopy images. 

Regarding the interpretability module of the proposed methodology’s first part, a test bench 

application is developed for visual inspection and verification of interpretability results by 

specialized medical personnel. The web interface (Figure 42) is utilized for the insertion of 

a test histopathology image. The sample is sent to the back end where the best-performing 

ensemble architecture analyzes it to return an accurate classification result along with the 

generation of a heatmap of the original image. The visual patterns of the image that are 

characterized as highly related to the result are painted red, whereas those irrelevant with 

blue. The specialists inspect the highly related visual patterns and assess the results 

according to their prior experience in histopathology image-based diagnosis. The initial 

qualitative results show significant accordance concerning the areas responsible for the 

characterization of results between specialists and the ensemble classifier. The images are 

selected from the test set of BreakHis [132] and Bach's dataset [134] randomly and 

processed by both Grad-Cam and Guided Grad-Cam interpretability techniques. The 

visualization and classification results are analyzed by specialized personnel and 

commented on in terms of their opinion concerning the classification in benign or 

malignant class and the localization of important visual patterns that are responsible for the 

classification result. In Figure 43, a benign adenosis is depicted in x400 magnification. The 
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ensemble classifier classifies the image as probably benign but not being representative 

with high confidence in contrast to the experienced physician that refers to this image as 

not being totally representative of the benign class in terms of morphological  

 

Figure 42 - Overview of the standalone application for the classification and 

interpretation of histopathology images. 

patterns. The red highlighted regions are localized on epithelial tissue, though not 

totally. Humans tend to point their attention to the specific kind of tissue because 

carcinomas are malignant neoplasms of epithelial tissue. On the other hand, nearby stromal 

and epithelial areas are colored yellow as they are in the vicinity of the most important 

regions. Concerning the Guided Grad-Cam algorithm the coloring of respective areas is 

fuzzier. 
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Figure 43 - Application of b) Grad-Cam and c) Guided Grad-Cam interpretability 

techniques on a) a benign adenosis sample from the BreakHis dataset. 

Moving on to the next image presented in Figure 44 which is taken from Bach's dataset and depicts 

an in-situ carcinoma, the depicted patterns are visually representative of the malignant class. The 

classifier correctly predicts the class with high confidence and manages to generalize well on an 

unknown dataset with several variances owing to different production and staining procedures. 

Concerning the Grad-CAM technique, highly important regions colored red correspond to 

epithelial cells, whereas in the Guided Grad-CAM case, the coloring of respective regions is fuzzy. 

Some yellow-painted regions are considered of less importance to the classifier and highlighted 

due to the vicinity to the most important regions and other yellow regions are colored with no 

obvious reason to experienced physicians. In other cases, both algorithms fail to highlight the 

regions which are considered significant by experienced physicians. In Figure 45, drafted from the 

BreakHis dataset, a benign fibroadenoma is depicted. Fibroadenomas are benign tumors of the 

epithelial and stromal tissue. The Grad-CAM algorithm highlights mostly epithelial and stromal 
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regions and ignores epithelial tissue on the lower left part of the image which 

 

Figure 44 - Application of b) Grad-CAM and c) Guided Grad-CAM interpretability 

techniques on a) an in-situ carcinoma sample from the Bachs dataset. 

is also indicative of the disease. Nevertheless, in terms of morphology, the depicted 

patterns are not highly indicative of the disease as physicians state. 

 

Figure 45 - Application of b) Grad-Cam and c) Guided Grad-Cam interpretability 

techniques on a) a benign fibroadenoma sample from the BreakHis dataset. 

A different case which is characteristic of the interpretability algorithm’s deficiency to 

decode significant regions concerning their influence on classification’s result are im-ages 

that depict uniform patterns as Figure 46. 
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Figure 46 - Application of b) Grad-Cam and c) Guided Grad-Cam interpretability 

techniques on a) a malignant ductal carcinoma sample from the BreakHis dataset. 

1.20.4 Quantitative evaluation on proposed DL explainability method 

The second part of the proposed explainability scheme on DL refers to the combination 

of Grad-CAM with superpixels. This is the only explainability scheme that is evaluated 

quantitatively by a corresponding metric that requires no prior knowledge of the imaging 

morphological characteristics. To test the proposed methodology in practice, an application 

was developed for the visual inspection and verification of the generated results, whereas 

the technique presented in [140] is utilized for the assessment of explainability 

performance for the proposed methodology against other counterparts. The utilization of 

the Grad-CAM explainability technique allows for the utilization of different neural 

network classification schemes provided that the condition of differentiability exists. 

Therefore, the proposed technique is applied to various pretrained neural networks and 

segmentation techniques. Two datasets from different modalities of medical imaging are 

examined to verify the efficiency of the proposed methodology. Six well-established 

pretrained neural networks VGG16, VGG19, ResNet50, Resnet101, MobileNet, and 

EfficientNet B0 are utilized for the classification of images in two classes: benign and 

malignant. The networks are pretrained on ImageNet [128] and utilized without any 
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modification as feature extractors. For each network, the metrics of accuracy, precision, 

recall, and Area under Curve (AUC) metrics are reported for the different image datasets. 

Consequently, all six pretrained models were utilized for the explainability pipeline. In the 

search for the most efficient combination for both accuracy and explainability metrics, tests 

are conducted with the segmentation algorithms Felzenswalb, Quickshift, and Slic. The 

MoRF and AOPC metrics are utilized to detect the pipeline with the deepest decrease in 

the MoRF curve and the biggest AOPC area. For this proposed methodology the 

classification results are presented in parallel with the explainability results in an attempt 

to draw useful conclusions about the relationship between classification and explainability 

performance if any exists. The classification results for each of the six pretrained deep 

convolutional network models are shown in Table 17. The results demonstrate the 

superiority of the ResNet101 model concerning the classification of the RCM (accuracy 

score of 0.8667) and BreakHis (accuracy score of 0.9432) images. From Figures 47 to 52, 

a comparison of each segmentation algorithm for a dedicated neural network is shown. In 

Figure 47a, and 47c the graphical representations of AOPC and MORF scores concerning 

the EfficientNet B0 model is presented. The combination of three superpixel segmentation 

algorithms with the original Grad-CAM approach is presented with different color lines 

and the area under the perturbation curve is the area bordered by the color line and the x-

axis. The AOPC value for the best-performing combination in the case of the EfficientNet 

B0 is provided by the Quickshift superpixel algorithm for the RCM dataset (AOPC score 

of 10.8) and the BreakHis dataset as well (AOPC score of 23.5). For a more detailed 

description of the AOPC scores, Table 18 is provided. The best-performing implementation 

is the VGG16+Felzenswalb combination for the RCM dataset (AOPC score of 18.9), while 
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the ResNet101 + Slic implementation takes the first place concerning the BreakHis dataset 

(AOPC score of 23.9). In Figures 53 and 54, the graphical representations of the 

combinations with the best explainability results for each classifier are depicted. It is 

important to mention that when utilizing a segmentation algorithm, the average number of 

superpixels approximates the number of tiles of the heatmap that is generated by the Grad-

CAM technique. The restriction prevents the generation of a bias that larger tiles introduce 

in favor of one methodology against the other. 

Motivated by the work in [24] we applied the presented explainability approaches on 

an ensemble classifier that is composed of an EfficientNetB0, a VGG19, and a ResNet101 

neural network, pretrained on ImageNet. Results of the ensemble classifier performance in 

classification terms for both datasets are shown in Table 19. Concerning the RCM dataset,  

Table 17 - Performance metrics for the classification of RCM and Breast 

histopathology images in two classes by means of various pretrained neural 

networks models (best scores in bold). 

Configuration Accuracy Precision Recall AUC 

 RCM BreakHis RCM BreakHis RCM BreakHis RCM BreakHis 

VGG16 0.7600 0.8581 0.7600 0.8581 0.7600 0.8581 0.8268 0.9362 

VGG19 0.7633 0.8596 0.7333 0.8596 0.7333 0.8596 0.8233 0.9375 

MobileNet 0.7867 0.8915 0.7867 0.8915 0.7867 0.8915 0.8658 0.9624 

ResNet50 0.8533 0.9366 0.8533 0.9366 0.8533 0.9366 0.9240 0.9840 

ResNet101 0.8667 0.9432 0.8667 0.9432 0.8667 0.9432 0.9500 0.9867 

EfficientNet 
B0 

0.7985 0.8982 0.7945 0.8982 0.7945 0.8982 0.8565 0.9631 

the ensemble classifier exceeds the performance of the Resnet101, which is the most 

efficient base classifier, while the ensemble classifier for the BreakHis dataset is by far the 

most efficient classifier. In Figures 55 and 56, the graphical representations of the MoRF 

and AOPC metrics for the ensemble classifier are depicted. 
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Figure 47 - Results of the AOPC values (a) for the EfficientNet pretrained network; 

(b) the MobileNet pretrained network, the MORF values (c) for the EfficientNet 

pretrained network and (d) the MobileNet pretrained network for the Grad-CAM 

(blue color), Grad-CAM + Quickshift (orange color), Grad-CAM + Felzenswalb 

(green color) and Grad-CAM + Slic (red color) implementations utilizing the RCM 

dataset. 
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Figure 48 - Results of the AOPC values (a) for the EfficientNet pretrained network, 

(b) the MobileNet pretrained network, the MORF values (c) for the EfficientNet 

pretrained network and (d) the MobileNet pretrained network for the Grad-CAM 

(blue color), Grad-CAM + Quickshift (orange color), Grad-CAM + Felzenswalb 

(green color) and Grad-CAM + Slic (red color) implementations utilizing the 

BreakHis dataset. 

Table 18 - APOC scores for all combinations of the Grad-CAM + superpixel 

segmentation algorithm for the RCM and BreakHis dataset. 

Configuration Grad-CAM +Felzenswalb +Slic +Quickshift 

 RCM BreakHis RCM BreakHis RCM BreakHis RCM BreakHis 

VGG16 12.4 10.9 18.9 9.9 12.8 11.5 15.9 12 

VGG19 16.2 17.2 15.1 19.8 17 21.5 16.1 23.5 

ResNet50 14.2 19.7 16.5 23.2 15.8 22.9 14.9 23 

ResNet101 11.7 21.2 9.5 20.8 12 23.9 11.2 22.2 

MobileNet  -2.6 15.8 -1.9 15.2 -2.7 14.5 -2.2 17 

EfficientNet B0 10 16.1 9.4 15.9 10.4 16.2 10.8 15.8 
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Figure 49 - Results of the AOPC values (a) for the VGG16 pretrained network, (b) 

the VGG19 pretrained network, the MORF values, (c) for the VGG16 pretrained 

network and (d) the VGG19 pretrained network for the Grad-CAM (blue color), 

Grad-CAM + Quickshift (orange color), Grad-CAM + Felzenswalb (green color) 

and Grad-CAM + Slic (red color) implementations utilizing the RCM dataset.  

Table 19 - Performance metrics for the classification of RCM and Breast 

histopathology images in two classes by means of various pretrained neural 

networks models. 

Configuration Accuracy Precision Recall AUC 

 RCM BreakHis RCM BreakHis RCM BreakHis RCM BreakHis 

Ensemble Network 0.9333 0.9850 0.9333 0.9850 0.9333 0.9850 0.9484 0.9971 



 136 

 

Figure 50 - Results of the AOPC values (a) for the VGG16 pretrained network, (b) 

the VGG19 pretrained network, the MORF values (c) for the VGG16 pretrained 

network and (d) the VGG19 pretrained network for the Grad-CAM (blue color), 

Grad-CAM + Quickshift (orange color), Grad-CAM + Felzenswalb (green color) 

and Grad-CAM + Slic (red color) implementations utilizing the BreakHis dataset. 
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Figure 51 Results of the AOPC values (a) for the ResNet50 pretrained network, (b) 

the ResNet101 pretrained network, the MORF values (c) for the ResNet50 

pretrained network and (d) the ResNet101 pretrained network for the Grad-CAM 

(blue color), Grad-CAM + Quickshift (orange color), Grad-CAM + Felzenswalb 

(green color) and Grad-CAM + Slic (red color) implementations utilizing the RCM 

dataset. 
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Figure 52  - Results of the AOPC values (a) for the ResNet50 pretrained network, 

(b) the ResNet101 pretrained network, the MORF values (c) for the ResNet50 

pretrained network and (d) the ResNet101 pretrained network for the Grad-CAM 

(blue color), Grad-CAM + Quickshift (orange color), Grad-CAM + Felzenswalb 

(green color) and Grad-CAM + Slic (red color) implementations utilizing the 

BreakHis dataset. 
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Figure 53 - Results of the best performing combinations [EfficientNet + Quickshift 

(blue color), MobileNet + Felzenswalb (orange color), Vgg16+Felzenswalb (green 

color), VGG19+Slic (red color), Resnet50+GradCAM (purple color), Resnet101+Slic 

(brown color)] by utilizing (a) the AOPC and (b) the MORF metrics for the RCM 

dataset. 

 

Figure 54  - Results of the best performing combinations [EfficientNet + 

Felzenswalb (blue color), MobileNet + Quickshift (orange color), Vgg16+Slic (green 

color), VGG19+Slic (red color), Resnet50+Felz (purple color), Resnet101+Slic 

(brown color)] by utilizing (a) the AOPC and (b) MORF metrics for the BreakHis 

dataset. 
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Figure 55 - Results of the Grad-CAM (blue color), Grad-CAM + Quickshift (green 

color), Grad-CAM + Felzenswalb (orange color) and Grad-CAM + Slic (red color) 

when applied on an ensemble pretrained convolutional network utilizing (a) the 

AOPC and (b) MORF metrics for the BreakHis dataset. 

 

Figure 56 - Results of the Grad-CAM (blue color), Grad-CAM + Quickshift (green 

color), Grad-CAM + Felzenswalb (orange color) and Grad-CAM + Slic (red color) 

when applied on an ensemble pretrained convolutional network utilizing (a) the 

AOPC and (b) MORF metrics for the RCM dataset. 

1.21 Histopathology image retrieval system in practice 

An application was developed in java programming language utilizing the libraries 

Openslide (www.openslide.org), ImageJ Surf (www.labun.com/imagej-surf), and 

PDFBOX (www.pdfbox.apache.org). The GUI of the application, as depicted in Figure 57, 
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is divided into two panels, the screen panel, and the control panel. Four basics buttons are 

provided on the upper section of the main menu, as follows: 

• Simple Image/WSI. 

• Open Image. 

• Convert PDF to a file. 

• Close App. 

The functionality of each button is briefly described below: 

• Simple Image/WSI. By pressing this button, the type of query image is selected. 

The user can choose between two options: A simple digital image or a whole slide 

image. 

• Open Image. The selected query image is opened in order to be viewed and 

processed (for WSI). 

• Convert PDF to a file. A digital pathology atlas can be selected and converted into 

a folder of digital images. 

• Close App. Self-explained. 

Once a query image is selected, the requested image is visible in the screen panel section, 

as shown in Figure 57. In this case, the query image is a whole slide image produced by a 

Trestle whole slide scanner and its format is single-file pyramidal tiled TIFF (tagged image 

file format). In the control panel additional functionality appears by means of two new 

panels, SURF parameters and properties, and three buttons: compare the image to the 

handbook, compare the image to the folder, and reset points. By using the SURF 

parameters panels the user can specify the parameters of the SURF algorithm for the 

detection and description of interest points. In the properties field, the user can view the 
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meta-data that is stored in 

 

Figure 57 - Main menu of the histopathology image retrieval application. 

a whole slide image in reference to the image attributes. The buttons serve the purpose of 

choosing the dataset of digital images that will be compared to the query image. By 

choosing a dataset of images and query images, the process of image retrieval begins and, 

in the end, the result appears on the screen and the image/s with the most similarities to the 

query image is/are shown.  A series of experiments are conducted by comparing a query 

image with another sample image. The images can be simple (.jpg, .png, .bmp), whole slide 

images, or images extracted from medical atlases in .pdf format. The query image is altered 

by applying different brightness, rotation, and scale transformations. Each time the SURF 

algorithm is applied and a number of matches between the query image and the image 
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dataset are detected. The basic criteria for understanding the level of influence posed by 

the transformations are the number of interest points detected in each transformed image 

(test image) and the number of matches found between the query image and each test 

image. The first set of conducted experiments uses the query image and a set of six 

 

Figure 58 – Graphical representation of matches found between query image and 

test image and interest points found in test image as the brightness changes. 

variations of the query image from the brightest to the darkest one. The results are shown 

in Figure 58. The number of interest points increases as the image gets brighter and 

decreases as the image gets darkened. However, the increase in the number of interest 

points does not necessarily mean an increase in the number of matches between the query 

and test image. The influence of the variations in brightness is slightly stronger when the 

pathology image gets darkened (22% fewer matches) with respect to the brightest image 

(19% fewer matches). The second set of experiments refers to rotation transformations. 

Results are illustrated in Figure 59. 
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Figure 59 – Graphical representation of matches found between query image and 

test image and interest points found in test image as the rotation changes. 

The worst case for the rotation transformations occurs at 120 degrees (37% fewer matches), 

which is more intense that the worst case for brightness transformations. Transformations 

related to the scale up and down of the query image are also tried out to check the effect of 

these transformations on the function of the SURF algorithm. The results are shown in 

Figure 60. As it is projected by the graphical representation (Figure 60) the effect of 

minimizing the query image is devastating more than any other transformation performed 

(97% fewer matches). 

 

Figure 60 – Graphical representation of matches found between query image and 

test image and interest points found in test image as the scale changes. 

Maximizing the image has a smoother impact on the algorithm with a 33% decrease in 

matches. Apart from the experiments performed with reference to the transformations of 
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the query image, tests were conducted with the different values of the following parameters 

octaves, and the hessian threshold explained earlier, is assigned to check the influence of 

these variations. The results for variations of the octaves and the threshold parameter are 

shown in Figures 61 and 62. 

 

Figure 61 – Graphical representation of matches found between query image and 

test image and interest points found in the query image as the octave parameter 

changes. 

 

Figure 62- Graphical representation of matches found between query image and test 

image and interest points found in the query image as the threshold parameter 

changes. 

In Figure 61 it is highlighted that the most matches are provided for four octaves and more, 

whereas in Figure 62 the best results are given for a 0.00009 value of the parameter 

threshold since this value ensures the most matches for the fewer interest points found. 
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One last experiment is conducted on 4 groups of similar images, which depict the effect of 

three different treatments (drug, radiation, drug, and radiation) on cancer cells. The dataset, 

which is comprised of .jpg images, is described in [10]. This experiment proves the 

effectiveness of the SURF algorithm in retrieving the most similar image/s even when the 

examined dataset is comprised of images that bear a great resemblance. Using the 

Table 20 - Confusion matrix of classification of 24 images in four classes (control, 

drug, radiation, drug and radiation) 

 Actual class 

Predicted class Control 
Drug Radiation Drug and 

Radiation 

Control 5 0 0 1 

Drug 0 4 1 1 

Radiation 0 2 3 1 

Drug and 

radiation 
0 

1 1 4 

application, the query image, selected from one of the groups (control, drug, radiation, 

drug, and radiation), is compared to each image of the dataset. Once the image with the 

greater similarity (best image) to the query image has been found, the query image is 

classified in the group of origin of the best image with success 67%, as illustrated in the 

confusion matrix below (Table 20).
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DISCUSSION 

1.22 TML Explainability techniques 

Having discussed the evaluation of the classification schemes in the lines earlier, as 

it is necessary to provide proof of the predictive model’s ability to distinguish and classify 

the visual patterns into corresponding categories, in this part of our work, we focus on the 

visual explanations of the predictive models. The need for classification evaluation is 

inevitable since the visual explanations of a model that has poor performance are useless. 

Starting from the BOVW explainability technique, more samples need to be utilized in 

order to shape a solid opinion about the performance of the classifier and exclude the 

possibility of overfitting despite the promising classification accuracy for the binary 

classification task. Towards this direction, the addition of new RCM images in the training 

procedure is pending. With the extension of the dataset, data demanding deep learning 

techniques will be applied as well. It should be taken into account that the related 

classification scheme may have poor performance if the number of samples is higher. 

However, in ML this is not always the case and, therefore, an additional explainability tool 

in our attempt to understand the decision-making process of a predictive model can only 

be beneficial. The functionality of the interpretation scheme provides a plausible 

explanation concerning the visual patterns that determined the classification result. 

However, future work should be directed toward the determination of weights concerning 

the impact of each influencer (Wvw, Dip) on the final influence indicator. Furthermore, the 

elimination of skin fold patterns in confocal images has been proven to be an important 

factor in more accurate classification results. As described in the case of a confocal image 
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depicting benign patterns in Figure 40, the presence of an artifact can have devastating 

results on the predictive outcome. Having the ability to visualize this trend and avoid it is 

a very important tool in an attempt to improve the predictive algorithm. Furthermore, the 

scheme can provide useful insight into the correspondence between the decision-making 

of the model and human expertise. 

Moving forward to the use case of blastocyst images and the proposal of an 

explainability scheme upon the FV technique, the extended explainability approach 

improves our knowledge of the model’s inner mechanisms. The approach provides fine-

grained visual explanations that are in accordance with the experts’ experience. On the 

other hand, the visual explanations that are provided by the Grad-CAM technique focus on 

patches of the images that constitute a confounding factor. In the ICM classification task, 

highly influential patches are erroneously detected in the TE region and the TE 

classification task important patches are found in the ICM region as well. The decision of 

the neural network is misguided by confounding factors that lead to the assumption that a 

good quality of the inner cell mass region corresponds to a good quality of the 

trophectoderm region and vice versa. Concerning the classification results, the proposed 

technique provides comparable results with many of the deep learning schemes. Regarding 

misclassifications, in most cases, the classifier fails to identify the correct class by 

categorizing it to the nearest next. This points out the need for labeling images by a 

consensus of multiple embryologists. Future work is focused on the quantitative results of 

the unsupervised segmentation and explainability techniques and the discovery of 

generalization properties of the presented methodology by the utilization of datasets 

provided by different laboratories. 
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An important note to keep in mind is the fact that these vocabulary-based predictive 

models are utilized for many different ML applications spanning from NLP and knowledge 

extraction from health data. Therefore, the proposed explainability schemes can be 

effortlessly utilized for explaining the predictive results in various domains. In [141], the 

BOVW explainability scheme is applied to image sequences depicting people with 

psychological disorders. The objective of this work is to put in numbers the degree of 

symptom severity based on the social behavior and cognitive functioning of mental patients 

when conducting a routine conversation with their attending doctor. In the work, the 

technical details of the implementations of a video classification methodology for the 

prediction of schizophrenia symptoms’ severity are described, the BOVW explainability 

approach for the interpretation of video classification results is introduced and initial results 

are presented where it is demonstrated that the proposed automated techniques can classify 

to a certain extend specific indicators for the extent of the mental disease. 

1.23 DL Explainability techniques 

Moving to the field of DL-based explainability approaches, the experimental results 

are produced by the application of the proposed methodology on histopathology and RCM 

datasets. The utilization of different datasets enables the evaluation of the classification 

and interpretation scheme in terms of performance results concerning images belonging to 

the same dataset and images from different datasets (exploring generalization properties), 

and in terms of localization-importance quality. Evaluating the classification accuracy with 

the utilization of images belonging to the same dataset shows that the task is trivial even 

for the plain architectures (not ensemble ones). The EfficientNets series supersedes other 

well-established architectures (VGG, InceptionNet, ResNet, ExceptionNet) and achieve 
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higher performance in both accuracy and AUC metrics for breast and colon datasets even 

when the training-test split is 60-40%. The results leave a small space for improvement in 

the case of applying the ensemble architecture. However, in some cases, such improvement 

occurs. The signs of better performance are more evident when splitting the datasets in a 

40-60% or 30-70% ratio. These extreme setups make it more difficult for the plain 

architectures to perform as well as the ensemble configurations and, therefore, stress the 

fact that the added complexity of ensemble classifiers is useful in further improving 

accuracy. 

Utilizing ensemble architectures in order to achieve better results, hinders the effort 

of interpretability due to the added complexity. However, that is not the case for the Grad-

CAM and Guided Grad-CAM techniques which are seamlessly integrated into the 

network’s architecture. The quality of highlighting and detecting correctly the most 

important regions concerning the final prediction is evaluated by experienced physicians. 

The interpretability module manages to highlight with red color (highly significant) regions 

of the images that are indicative of the presence or absence of the respective pathology in 

most cases concerning images of the same dataset. The red highlighted regions are usually 

epithelial cells, and in the case of malignancies usually are atypical cells with 

hyperchromatic (dark-colored) nuclei, which is in accordance with the common practice of 

the physicians. However, the highlighting is not performed for all similar regions in an 

image which would be desirable, and, in some cases, it is localized in dark-colored artifacts. 

Therefore, the implementation of an artifact removal methodology would further enhance 

the generated results. Yellow-colored regions (less important regions) are generated by the 

interpretability module of the Grad-CAM technique in regions in the vicinity of red-



 151 

highlighted regions. A positive aspect of the method, as shown in Figure 44, as a 

representative sample of cases deriving from Bach's dataset, is the fact that it generalizes 

well on unseen data. An important drawback of the proposed interpretability methodology 

is the failure to highlight important regions when the morphological characteristics of the 

disease are uniform. To a certain extent, it is acceptable since there is no particular region 

that excels to highlight, and the granularity of the proposed methodology is coarse. 

Although the Guided Grad-cam technique was intended to solve the issue of granularity, 

the provided visualizations are fuzzier than the ones presented by Grad-CAM. 

By reviewing the generated results of the proposed explainability scheme with the 

superpixels enhancement module, it is clearly shown that the presented versions of the 

Grad-CAM technique are more efficient than the original version apart from the 

EfficientNet B0 and the ResNet50 models with reference to the BreakHis dataset. In 

general, the segmented tiles demonstrate higher capability in decreasing the confidence of 

the predictive model when compared to the original tiles that are provided by the Grad-

CAM technique. This is made evident by the steeper descent of the MoRF curve and the 

bigger AOPC areas that characterize the enhanced versions in comparison to the plain 

Grad-CAM. Theoretically, the designation of specific structures that share the same visual 

characteristics, thus corresponding to cellular structures would have a stronger effect, a 

belief which is verified in practice by the AOPC values. While all configurations provide 

plausible explainability results meaning that the removal of most relevant regions leads to 

the decrease of the importance function, the MobileNet results for the RCM dataset do not 

follow the same rule. In the respective graphical representation, it is shown that there are 

marginal negative responses instead of positive ones as we would have expected. When 
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comparing the AOPC curves to the classification results, there is no clear pattern that can 

be verified between explainability and accuracy. Although in the case of the BreakHis 

dataset, a close relationship between AOPC values and classification accuracy is registered, 

especially if VGG19 is excluded, the case is not the same for the RCM dataset. In both 

cases, the EfficientNet classifier is affected to the minimum by the enhancement of various 

superpixels approaches, since all results are concentrated in a small area. If we were to 

distinguish a superpixel segmentation scheme that outperforms all plain Grad-CAM 

implementations for each dataset that would be Slic for the RCM dataset and Quickshift 

for the BreakHis dataset. Moreover, the graphical representation (Figure 63) indicates that 

classifiers with the best accuracy are among the best performing in terms of explainability 

results, although there exist low-performing classifiers that show high AOPC values. 

 

Figure 63 - Results of AOPC values with respect to performance of all 

configurations for (a) the RCM dataset and (b) the BreakHis dataset. Plain Grad-

CAM technique is shown with red color (or circle), Grad-CAM + Slic with green 
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color (or triangle), Grad-CAM + Quickshift with blue color (or half ellipse) and 

Grad-CAM + Felzenswalb with orange color (or square). 

Concerning the ensemble scheme, the neural networks with the Felzenswalb segmentation 

algorithm perform better than the other configurations in terms of explainability whereas the plain 

Grad-CAM approach shows a smaller AOPC curve. These results show that the proposed 

technique can be applied with a positive effect on ensemble schemes as well. This is due to the 

properties of the Grad-CAM approach that allows for integration in any CNN with minimum 

restrictions. In Figure 64, examples of the application of the proposed methodology in samples of 

both datasets are provided in comparison to the plain Grad-CAM explainability scheme. By the 

inspection of these samples, it is deduced that the delineation of boundaries with the color of 

importance gives a clearer view of the designated area, the boundaries are finer and specified to 

the cellular structures that are depicted. In general, the Slic superpixel algorithm provides 

boundaries that are closer to the Grad-CAM rectangular paradigm, and can, therefore, be utilized 

when other superpixels fail to detect extreme patterns of cellular structures. On the contrary, 

Felzenswalb and Quickshift algorithms demonstrate better flexibility in creating boundaries far 

from the rectangular shape. In all cases of superpixel algorithms, this flexibility can be adjusted. 

Focusing on the benign fibroadenoma sample, the proposed methodology provides small evidence 

of important regions. The result is in accordance with the human experience that classifies the 

sample as benign due to the absence of abnormal patterns and judging by the depicted uniformity. 

In terms of visualizations results, the delineation of important areas with a color that is 

representative of their importance provides an easier preview and assessment of the generated 
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results for physicians in contrast to the shadowing of a rectangular region (Grad-CAM). Cellular 

 

Figure 64 - Examples of results by utilizing data sets’ images at random. 

structures with common visual characteristics are highlighted in detail and their content 

is not shadowed by a different color. Earlier works that utilize the Grad-CAM technique 
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for the provision of visual explanations on microscopy images fail to receive well-defined 

regions of interest [24, 142]. Towards the delivery of more fine-grained results, the Guided 

Backpropagation [143] or Guided Grad-CAM [45] is utilized in [144, 145]. However, as 

presented [146], only Grad-CAM passes the sanity checks for the corresponding saliency 

maps and therefore can establish a solid base upon which we can build better-defined 

explanations. Moreover, to the best of our knowledge, most of the presented work requires 

the existence of experts for a qualitative evaluation concerning the provided saliency maps. 

The exploitation of the AOPC metric provides a quantitative measure of the performance 

of the explainability technique that requires no prior knowledge. 

It should be taken into consideration that the proposed methodologies have been testified 

only for a few medical imaging datasets and further exploration of their special 

characteristics will certainly verify their validity. The quantitative analysis that took place 

in the case of the combined Grad-CAM superpixel approach needs to be fulfilled for the 

other schemes as well, while the enhancement of generated heatmaps from other 

explainability methods will provide a better understanding of the ways that visual 

explanations should be presented to experts. 
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CONCLUSION 

The thesis deals with the exploration of explainability techniques on existing ML 

approaches for the classification of medical microscopy images and other modalities. The 

main contribution presented herein is the proposal of two new explainability schemes for 

TML classification techniques, namely BOVW and FV, and the improvement of the 

existing Grad-CAM approach with superpixels in order to better refine the provided coarse 

explanations by taking into account common visual characteristics on medical images. 

With reference to the TML approaches, the proposed methodologies can be effortlessly 

applied to classification tasks other than medical images and present a straightforward 

manner toward the transparency and trustworthiness of TML predictive models. The DL-

presented approach is directed to medical imaging since its special properties require the 

formation of a more fine-grained solution that returns semantic feedback. Apart from the 

qualitative analysis of presented visual explanations, the utilization of the AOPC metric 

has proven to provide objective feedback on the explainability scheme’s performance 

without the need for human expertise. In this thesis, the following methodologies with 

reference to the visual explanations of medical images are presented, thoroughly explained, 

and evaluated qualitatively or quantitively: 

• A method for the interpretation of visual patterns in skin cancer confocal images. 

The classification model upon which the interpretation scheme is based forms a visual 

vocabulary from Speeded up Robust Features (SURF) and utilizes a simple shallow 

artificial neural network with fully connected layers. Interpretability of the predictive 

models is an important task since it improves their reliability, accountability, and 
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transparency and provides useful insight into how to evolve the predictive model towards 

better performance. 

• A novel unsupervised segmentation scheme for the separation of trophectoderm 

and inner cell mass area provides a significant boost to the performance of traditional 

machine learning techniques. 

• An explainability technique that is based on the information retrieved by the Fisher 

Vector’s generative model provides the necessary connection between the visual stimuli 

and the predicted results. The classification results of the proposed methodology are 

comparable with state-of-the-art deep learning techniques and are accompanied by 

corresponding visual explanations that reveal the inner workings of each model and 

provide useful insight concerning the predictions’ validity. 

• An explainability scheme is applied to ensemble classifiers while providing 

satisfactory classification results of histopathology breast and colon cancer images in terms 

of accuracy. The results can be interpreted by the hidden layers’ activation of the included 

subnetworks and provide more accurate results than single network implementations. 

Despite the earlier belief related to deep convolutional networks being treated as black 

boxes, important steps for the interpretation of such predictive models have been also 

proposed recently. However, this trend is not fully unveiled for the ensemble models. The 

interpretation of the predictive model takes place inside the model (in-model) in contrast 

to other schemes that utilize secondary models offline to interpret the mechanisms of the 

primary model. The discovery of new correlations between the cause and the result can 

lead to new findings concerning visual patterns that were previously not considered 

important or the opposite. Highlighting important visual patterns in medical images of such 
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density can aid the training of inexperienced personnel. The visual explanations by the 

proposed methodology are straightforward and provide an influence metric for each 

corresponding descriptor. This influence metric is visualized by means of a colormap 

which is indicative of this influence. 

• A segmentation-based explainability scheme that focuses on the common visual 

characteristics of each segment in an image to provide enhanced visualizations instead of 

highlighting rectangular regions is proposed to further improve the performance of the 

Gradient - Weighted Class Activation Mapping technique and the generated visualizations. 

The explainability performance was quantified by applying random noise perturbations on 

microscopy images. The Area over Perturbation Curve is utilized to demonstrate the 

improvement of the proposed methodology when utilizing the Slic superpixel algorithm 

against the Grad-CAM technique by an average of 4% for the confocal dataset and 9% for 

the histopathology dataset. The results show that the generated visualizations are more 

comprehensible to humans than the initial heatmaps and demonstrate improved 

performance against the original Grad-CAM technique. Apart from the fact that the 

improved visualizations provide better explanations of the generated classification results 

adding to its transparency and trustworthiness, the proposed methodology can be utilized 

for the accurate delineation of malignant regions on medical images. Future work will be 

focused on the utilization of more advanced segmentation techniques and the application 

of different explainability approaches. Combining superpixels with conditional random 

fields is reported to improve segmentation results [147] in comparison to the proposed 

superpixels algorithms that occasionally result in over-segmentation. Furthermore, it 

should be mentioned that it improves the explainability performance in most cases and 
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visualizations with respect to the initial Grad-CAM approach and can be easily employed 

for different neural network configurations with the restriction of differentiability. The 

initial hypothesis that a segmentation algorithm can improve the results of the Grad-CAM 

technique is verified and the modularity of the proposed methodology allows for the 

implementation of different classification, explainability, and segmentation schemes. No 

specific combination between classifiers and segmentation approaches stands out as best-

performing, therefore the selection of a particular superpixel algorithm is data dependent. 

Apart from the contribution to the field of explainable artificial intelligence, an 

image retrieval automated tool for the detection of similar histopathology images in 

medical books is presented. The fast and consistent properties of the Speeded-Up Robust 

Features (SURF) algorithm are analyzed in order to search in the content of a digital 

pathology image, and detect and find similarities for content-based image retrieval. An 

important aspect of this work is the diversity of Whole Slide Scanners. The proposed 

methodology that involves the process of the comparison of digital pathology images, 

mostly WSI, with the use of the SURF algorithm was proved robust to various condition 

changes. 
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