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requirements for the MSc degree

Abstract
We have entered an era of misinformation, fake news and impersonation fuelled by Ar-
tificial Intelligence (AI). Visual content have been jeopardized by malicious entities in
an attempt to fool security systems by pretending someone else’s identity. Such entities,
usually seek elevated access to critical infrastructures like online banking, government
administration services and any KYC system. A Biometric’s system task, is to deploy
security checks and measures to verify someones identity and authenticity(liveness).
Given the societal impact of such commodification of impersonation, our research pro-
poses learning-based methods with focus on learning to perform well on a significantly
different target distributions a.k.aDomain Adaptation andDomainGeneralization. In
Deep Learning (DL), model performance depends heavily on the presence of high vari-
ation within training examples and usually, Machine Learning practitioners aim to col-
lect data in such way that will guide model’s ability to generalize. However, even with
enormous amount of data there is no guarantee that a model would perform equally
well to unseen data in the same domain.
In our research, we explore and evaluate different deep and machine learning methods
in an attempt to learn discriminative features that could generalize to several academic
datasets and datasets in-the-wild. We define a classic binary classification problem
which is used as a baseline model. We use Deep Convolutional Neural Networks(CNN)
and two commonly used backbones, Resnet18 and EfficientNetb4. Then, we transform
the task into a multi-task learning with auxiliary fully-connected heads and explore the
impact in generalization and adaptation, and use different deepmetric losses such Cen-
ter Loss and Triplet Loss and Gradients Orthogonality. Finally, we investigate hand-
crafted features such Histogram of Oriented Gradients(HOG) and Local Binary Pat-
terns(LBP) and train classic machine learning classifier (eg. Support Vector Machine).
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1 Introduction

The remarkable success of face recognition systems has triggered the development of
intelligent interactive applications in wide variety of sectors (eg. mobile-payments, air-
port check-in, government authentication services, etc). However, face anti-spoofing
systems (FAS) are vulnerable to presentation attacks (PA) ranging fromprinted-photos,
video-replays, 3D-masks andmost recently byDeep fakes. Therefore, industry and aca-
demic community have been increasingly giving extensive attention for developing and
securing face recognition systems.
Most traditional presentation attack detection (PAD) algorithms are based on hand-
crafted features which require task-related prior knowledge to design. In addition,
liveness-cues basedmethods have been developed to detect headmovements(nodding),
facial expressions(smiling), eye-blinking, gaze tracking and remote physiological sig-
nals. Physiological cues could be used to discriminate against presentation attacks how-
ever, they usually captured from long duration videos which make it inconvenient for
practical deployment. Furthermore, an attacker could easily mimic them in video plays
making them less reliable. Classical hand-crafted descriptors (eg. HOG, SIFT, LBP)
are capable of extracting informative patterns for liveness from various color spaces.
Hand-crafted descriptors have been researcher’s sole focus up until recently, though
with the advancements in deep learning and convolutional neural networks(CNN) they
have been used in a more hybrid manner.
Most researchers formulate FAS as a binary classification problem and supervised by
simple loss function (eg. binary cross entropy). An FAS differs from other face recog-
nition tasks based on its self-evolving nature(eg. recurring attack-vs-defense paradigm
which make it more challenging). For example, a binary computer vision task of Gen-
der classification rely on appearance-based semantic cues while intrinsic features (eg.
material, paper, screen etc) in FAS are content-independent (eg. not related to facial
attributes).

1.1 Motivation

The significant rise of digitization yield to the development of deep learning inmany dif-
ferent aspects. The advancements in face anti-spoofing systems have been exceptional
though, the lack of models’ generalization capabilities and the constant battle between
discrimination and generalization is still an open problem. In addition, deep learning
models explainability and interpretability is low-to-none making it difficult even for a
human eye to correctly distinguish live and spoof images. Various works have been
proposed in the literature with impressive results
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1.2 Contributions

We explore the impact ofmulti task learning with averaging gradients and gradients or-
thogonality methods in domain generalization capabilities of the model. We also train
kNN classifier with various shots of novel class and benchmark the behavior of differ-
ent model configurations. The rest of the paper is organized as follow: In section 2 we
will dive into the challenges a Liveness Detector System faces. In sections 3 and 4 a
brief overview of previous methods as well a description of considered datasets will be
given. In section 5 we will approach the problem using classic computer vision tech-
niques with feature extraction. Sectors 6 presents a modern approach to the problem,
utilizing deep learning while sector 7 shows experimental results.
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2 Liveness Detection

2.1 Background

Biometric liveness detection refers to the use of computer vision technology and ma-
chine learning algorithms to detect the presence genuine/living user, rather than a rep-
resentation (eg. photo, 3D mask, deepfakes). Presentation attack detection (PAD) sys-
tems can utilize active or passive detection methods. Typically, it is associated with
facial recognition, but liveness could also be applied to voice recognition to distinguish
present speakers from audio recordings or palm biometrics such as by detecting blood
flow, and even iris recognition. In this work, we will mainly focus on passive liveness
detection systems where the user is asked to present a single photo to biometric system
for authentication.

Face spoofing attacks on face reconginition systems could be divided into two main
categories. Physical presentation and digital manipulation attacks. Liveness detection
systems main challenges are to ensure physical, digital and semantic integrity. Digital
manipulation attacks could be easily generated by either adding, removing or replicat-
ing objects. Adding an object from a different image(splicing) or from different loca-
tion within the same image(copy-move) are some of manipulation techniques. In ad-
dition, an object could be appeared to be deleted by extending the background to cover
it(inpainting). These manipulation examples where no sophisticated artificial intelli-
gence tools required are often called cheap-fakes. In this section, we will mainly focus
on physical presentation attacks which intend to mislead FAS by presenting faces upon
physical medium in front of image sensors (eg. camera). For the rest of the paper, the
terms Presentation Attack Detection and Face Anti-Spoofing will be used interchange-
ably.

2.2 Types of Presentation Attacks

Effectively, there two types of Presentation Attacks (PAs). First, with the raise of in-
ternet and social media, there is an ever increasing amount of shared photos and/or
videos of people faces. Impostors can easily collect and used them to try fool face au-
thentication system Such attacks are also called impersonation (spoofing) attacks. Sec-
ond, another (less studied) type of Presentation Attacks is called obfuscation attacks,
where a person uses tricks to avoid being recognized by the system (but not necessarily
by impersonating a legitimate user’s identity).
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Common presentation attacks, generally categorized as photo, video replay and 3D
mask attacks (Figure 1). On the other hand obfuscation attacks rely on tricks to hide
the user’s real identity, such as facial makeup, plastic surgery or face region occlusion.
In this work, we focus on spoof (impersonation) attacks, where a malicious user might
impose directly biometric data from a legitimate user or to create presentation attacks
(eg. spoof/fakes) that will be used to mount an attack to face recognition system.

Figure 1: Knowledge map of Face Presentation Attacks

2.3 Liveness detection methods with generic devices

Generally, one can distinguish presentation attack detection systems based on specific
hardware/sensors used in biometric device and RGB only approaches. The former in-
cludes specialized hardware such thermal, infrared sensors to facilitate detection. For
example, 3D sensors can discriminate between legitimate and malicious 2d planar at-
tempt by reconstructing depth-maps. Infrared sensors can easily detect video replays
attacks since electronic devices (eg. monitors, phones) appear to be dark under infrared
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illumination. Thermal sensors can give the temperature distribution of real/live faces.
Specialized hardware detection usually is employed to specific scenarios where access
is restricted (eg. protected premises). The major drawback of such devices is the lack
of broadly availability to general public. This is the main reason our work focuses on
generic devices based on simple RGB images.
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3 OverviewofLivenessDetectionmethodsusingRGB
images

3.1 Taxonomy of Liveness Detection methods

3.2 Liveness cue-based methods

Liveness cue-based methods are the first attempt for detecting spoof faces. They aim
to sense any facial motion of the presented subject such as mouth movement, facial ex-
pression and eye-blinking. Liveness cue-based methods can be categorized as motion-
cue based methods and rPPG-based by detecting blood pressure changes utilizing spe-
cial hardware.

3.2.1 Motion-based methods

Motion based methods, can successfully detect static presentation attacks (eg. printed
photo). However, they are generally vulnerable to video replays that possess liveness
information of the subject such head movements, eye blinking and facial expressions.
That is why the so called Active Liveness Detection was introduced. In such systems,
the user is asked to perform a series of specific head movements such tilting, rotation
and mouth movement in an interactive manner. Active Liveness is capable to detect
video replays but they are intrusive to the end user and thus, to the attacker. Therefore,
motion based methods are structure into intrusive and non-intrusive.

• Non intrusivemethods seek for headmovements cues and/or expression changes
implicitly, without asking the user. Li et al. [36] proposed a methods to tempo-
ral changes due to subconscious head movements based on the energy changes
of Frequency Dynamic Descriptor. These methods also called Passive Liveness
Detection methods.

• Intrusivemethods are usually based on a Challenge-Response mechanism that
requires users to satisfy some requirements. There are based on some predeter-
mined head/face movement (e.g. eyes blinking, head movement in a certain di-
rection, adopting a given facial expression or uttering a certain sequence of word).
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Figure 2: Helicopter view of face presentation attack methods.
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3.3 Texture-based methods

Texture feature-based techniques have been used extensively for face anti-spoofing sys-
tems. They are inherently non-intrusive and able to perceivewith relative high accuracy
photo-based and video-replay attacks. Texture-based methods rely on extracting dis-
criminative features and train a machine learning classifier and usually is formulated
as a binary classification problem. Texture cue-basedmethods could be further divided
into static and dynamic texture-basedmethods. The former extracts spatial or frequen-
tial features from a single image while in contrast, dynamic texture-based methods ex-
plore temporal features extracted from video sequences. The next two sub-sections
present the most prominent approaches from these two types.

3.3.1 Static texture-based methods

Static texture-based classificationmethods, is awidely used technique to design presen-
tation attacks detection systems. It mostly involves the extraction of carefully thought
features and classic machine learning algorithms such SVM. The work on [36] ana-
lyzed the difference of light reflectivity between genuine and printed photos using the
2D Fourier spectra. It has shown that, live faces have much more high frequency com-
ponents than the 2D spectrum of printed photos. This method works best with low res-
olution photos(124x84mm). [21] et al. used a physical model to analyze micro-textures
with Bidirectional Reflectance Distribution Functions (BRDF). An SVM classifier was
trained to discriminate between real and planar presentation attacks (eg. printed pho-
tos, video-replays). Another commonly used method for face-related tasks, is the Lo-
cal Binary Pattern. [22] et al. proposed to apply three different LBPs on a normal-
ized 64x64 image. First LPB is extracted from 8 pixel-cell with 2 pixel-radius, the sec-
ond with 16 pixel-cell and 2 pixel-radius and third with 8 pixel-cell and 1 pixel-radius.
The concatenation formed a 833-bin histogram and fed into a non-linear SVM classi-
fier(RBF). More recently, deep learning-based methods are designed to learn texture
features as opposed to hand-crafted features extraction. [3] et al. in 2014 was the first
work to introduce CNNs for face anti-spoofing detection. They used AlexNet backbone
architecture and replaced the last 1000-classes fully connected layerwith a binary SVM.
Unlikely to recent deep learning models, this approach was not an end-to-end frame-
work though, it shown superiority compared to conventional hand-crafted features ex-
traction methods. Finally, George et al. [4] in 2019 proposed Deep Pixel-wise Binary
Supervision (DeepPixBiS) model based on DenseNet architecture. The work includes
an additional pixel-wise binary cross-entropy loss L2 to binary cross-entropy loss. L2

is based on last feature-map where each pixel is annotated with 0 for live images and 1
from spoof. This way the network was forced to learn patch-wise features. DeepPixBiS
have showed promising performance for both photo and video replay attacks.
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3.3.2 Dynamic texture-based methods

3.4 3D reconstruction cue-based methods

3D geometric cue-based methods for presentation attack detection systems utilize 3D
geometric features. A live face has a 3D structure which is characteristic and distinctive
as opposed to a face projected into a 2D planar (eg. photo, a4). 3D face reconstruction
from a 2D RGB image and estimation of depth map (i.e distance of each pixel from
the camera) are two widely used methods. In the next two sections we will discuss the
approaches based on these two cues.

3.4.1 3D shape-based methods

Wang et al. [1] trained an SVM classifier with input features which were extracted from
the 3D reconstruction of 2D facial landmarks using multiple viewpoints. Those recon-
structed structures are distinctively different between a live image and an image por-
trayed on 2D planar (eg. photo replay). A major drawback of this approach is that it
requiresmultiple images fromdifferent angles (viewpoints) and could not be effectively
trained with a single image. Furthermore, detecting facial landmarks is a challenge on
its own and there are lots of inaccuracies.

3.4.2 Depth map-based methods

The significant progress in the field of computer vision made it possible to get good
depth estimation maps using only RGB images, without the need of specialized hard-
ware (eg 3D sensors). A depthmap holds the estimated distances of each pixel from the
capturing device. Depth maps reconstructed from RGB images are also called Pseudo-
Depthmaps. Atoum et al. [2] paper was the first work to propose discriminationmeth-
ods of live and spoof images(eg. photo replays) based on depth-map. A live/actual face
produces depth maps with varying height values while printed faces result on constant
maps. The work proposed a CNN architecture with 11 fully connected layers to esti-
mate the depth map of an image. Dataset annotation was performed using state of
the art algorithm ([5], [6], [7]) for live images while 2D planar based presentation at-
tacks set to zero. Then an SVM classifier trained with depth maps as input features.
Wang et al. 2018, extended this approach to videos by proposing Face Anti-Spoofing
Temporal-Depth networks (FAS-TD). FAS-TD networks are capable of capturing depth
information and motion within a frame sequence(video). Optical Flow guided Feature
Block (OFFB) and Convolution Gated Recurrent Units (ConvGRU) modules added to a
depth-supervised neural network. FAS-TD can well capture short-term and long-term
motion patterns of real faces and planar PAs. The proposed FAS-TD further improved
the performance of the depth-map based PAD methods using a single frame as [2], [8]
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and achieved state-of-the-art performances. Pseudo-map approach is very effective for
detecting 2D planar presentation attacks though, in recent years more sophisticated
attacks emerged (eg. 3D Masks) thus making them vulnerable to detect.

3.5 Deep learning-based methods

3.5.1 Few-shot learning-based methods

Due to recent advancements in state of the art PADmodels, they have shown promising
results in intra-dataset evaluation on existing publicly available datasets[x]. In prac-
tice, generalization capabilities still remain weak as it is very likely cross-datasets(not
included in training process) to contain unseen or under-represented presentation at-
tacks during training phase. Such scenarios make PAD still a challenging problem. Un-
likely to other computer vision tasks, (eg. face recognition) where collecting a large
number of training examples is relatively an issue easy job, PAD datasets are much
harder to find. Re-captured spoofing artifacts by a biometric system is rarely available
on the internet. Therefore, research groups actively looking for a solution that lever-
ages zero-few show learning to address previously unseen spoof types. Liu et al. [24]
defined this problem as Zero-Shot Face Anti-spoofing(ZSFA).
Arashloo et al. [25] look at this problem from the perspective of anomaly-detection
problem. Real/Live faces represented the positive class and OneClassClassifier SVM
was trained. Similarly, Nikisins et al. [?] used one classGaussianMixtureModel(GMM)
but contrary to [25] use a mixture of 3 available datasets, replay-attack[27], replay-
mobile[27] andMSUMFSD[32]. The previous twomethods, considered only live-class
in one-class-classifier training. Though, spoof types(PA) could also contain valuable
information to previously unseen attacks. The work in [24] proposed a Deep Tree CNN
Network(DTN) where 13 known spoof-types analysed and clustered into 8 semantic
subgroups using unsupervised tree learning. The resulted subgroups are used as 8 leaf
nodes of DTN. Then, Tree Routing Unit (TRU) is learned to direct the known spoof-
types to the appropriate tree leaf based on the features learned by the tree nodes. Con-
volutional Residual Unit (CRU). In each leaf node, a Supervised Feature Learning (SFL)
module is attached and consists of a binary classifier and mask estimator. Unseen at-
tacks can be discriminated based on estimated masked and the output of softmax clas-
sifier.

3.5.2 Domain adaptation-based methods

As mentioned previously, generalization ability is the greatest challenge in the field
nowadays. Pereira et al. [33], intuitively collected and aggregated multiple available
datasets. Then, first strategy was to train a CNN model with the aggregation of data.
Secondly, was to use a score-fusion-based framework, inwhich each datasetwas trained
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separately and the sum of the normalized score of eachmodel was used as the final pre-
diction. However, even with the dataset-soup approach it is impossible to collect data
from every possible device in all possible capture environments(eg. indoor, outdoor,
illumination conditions). In contrast, even if the same semantic presentation attacks
eg. printed-photo,video-replay can differ greatly between source and target domains,
they are all based on the same physical material (eg. A4, screen). Thus, if there exists a
shared feature space between source and targe domains, then domain-adaptation can
be applied.
Shao et al. [34], applied domain adaptation with adversarial learning to address gen-
eralization ability. N discriminators for N specific domains were trained, to help gen-
erator’s feature space to learn generalized features for each domain. Triplet Loss was
used to further discriminate features for both intra-domain and inter-domain (differ-
ent datasets). This approach, achieves better results compared to other methods (eg.
LBP-TOP [35] when increasing the number of source domains.
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4 Existing Liveness Detection datasets

4.1 Face anti-spoofing datasets

Presentation attack detection datasets usually consists of two type of sets and they come
either in videos or photos format. The first set, labelled Live contains documents of au-
thentic faces of genuine users. The second set is labelled as Spoof and contains photos
or videos of presentation attacks (spoof-types) (eg. 3D mask, printed photo, video re-
play).
A biometric system camera in any real-life application is generally the same device as
end-user’s uses to capture either a genuine or an impersonation face.

Figure 3: CelebASpoof dataset exploration.

4.2 Definitions

Face presentation attack detection (anti-spoofing) datasets, usually are structured as
two different kinds of documents (files), in the form of videos or images(photos). The
set of live/genuine faces that contains photos or videos of the genuine users and the set
of presentation attack files (PA), containing photos or videos of printed photos, video
replays, 3D mask, etc.
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4.3 Overview of academic and in-the-wild datasets

In our research, we will mainly be focusing on 5 academic liveness detections datasets
and two custom datasets which collected and annotated by developers in Sensity B.V.
This work focuses on domain generalization thus, we chose CelebASpoof dataset as
source domain. CelebASpoof consists of 625537 images from 10177 subjects where live
images selected from CelebA [28] dataset while the authors collected and annotated
the spoof counter parts. To assess generalization capabilities to target domains we use
4 additional datasets which contain a subset of 10 spoof types of source domain set.
Replay-Attack [29] consists of 1300 video-clips of photos and video attack from 50
clients in different illumination conditions. Similarly, Replay-Mobile [27] consists of
1190 videos and photos from 40 clients. SiW [30] dataset is equipped with live and
spoof videos from 165 subjects. For each subject, there are 8 live and up to 20 spoof
videos, in total 4478 videos. All videos are in 30 fps, about 15 second length, and 1080P
HD resolution. The live videos are collected in four sessions with variations of distance,
pose, illumination and expression. The spoof videos are collected with several attacks
such as printed paper and replay.

Dataset Ethnicity/Gender Spoof types
Subjects
Images
Videos

Replay-Attack
Caucasian 76%
Asian 22%
African 2%

Printed photos
Photo display
Video replay

50/200/1000

Replay-Mobile Unknown Video replay 50/-/1190

SiW
Caucasian 76%
Asian 22%
African 2%

Printed photos
4x video replays

165/1320/3300

Eyeblink8
Female 50%
Male 50%

Live only 4/-/8

CelebASpoof
Female 52%
Male 48%

3DMask
Phone
Pad
PC

Region Mask
Upper Body Mask

Face Mask
A4

Poster
Photo

10177/625537/-

Dev-set-v1 Male 100% Video replay 5/2462/60

Dev-set-v2
Female 65%
Male 35%

Printed photos
Photo display
Video replay

127/124/-

Table 1: High level comparison of existing academic datasets of face anti-spoofing. Last
two rows are collected datasets.
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Finally, we include Eyeblink8 [31] which consists of only 8 videos with persons act-
ing normally in front of the camera. Figures 19 and 20 show examples of face crops and
crop sizes distribution for CelebASpoof, Eyeblink8, Replay-Mobile, Replay-Attack and
SiW datasets. Devs-set-v1 and Devs-set-v2 are custom datasets. V1 consists of photo
and video replays from 4 persons under different illumination conditions(sometimes
extreme cases) with total 2502 frames. V2 is collected from newspapers, magazines
and people from Youtube and contains spoof types such, printed-photo, screen-photo
replay(mobile, tablet, screen). It consists of 128 images. An overview of datasets and
be found on Table 1.

4.4 Major limitations

Given the acquisition challenges for Liveness detection systems mentioned above, the
existing task-related datasets are (relatively to other computer vision problems) still
limited not only in terms of volume, but also in terms of diversity regarding the types
of presentation attacks and 2D planar surface used to project genuine faces, acquisi-
tion devices used to capture real faces, etc. In particular, as of today, there is still no
public large-scale datasets for Presentation Attack Detection in the wild, whereas there
are several for other fields (eg. face recognition). This hampers the development of
PAD systems which are still well below the requirements imposed by most real world
applications. It partly explains why other face related problems have had rapid success.
The biggest challenge lies in generalization ability of trained models. The latter, there
is a consensus among researchers and teams that it could only be achieved with large
diversity datasets, including hand-crafted features learning as well as deep learning ap-
proaches. An ideal dataset is considered a dataset in-the-wild this enormous amount
of diversity.
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5 Liveness Detection using hand-crafted features

5.1 Local Binary Patterns (LBP)

Local Binary Pattern is a type of descriptor used in computer vision. It was proposed
in 1994 by T. Ojala et al. [10] and used in texture classification tasks. It was mainly
designed for gray-scale but it can be also extended to RGB images. The local binary
pattern operator tranforms an image into an array or image of integer labels describing
small-scale (local) textures. Their statistical analysis or the labels directly can be fed as
input features to train a machine learning model. It is assumed that a texture has two
complementary local aspects, a pattern and its strength. The operator works in sliding
windows (blocks) where the middle pixel is used as a threshold to change the value of
neighboring pixels.

Figure 4: LPB thresholding operation

All pixels in each block:

• Thresholded by its center pixel value and then converted to decimal number.

• All transformed neighboring pixels are summed up to obtain a label for the center
pixel.

Formally it is defined as:

LPBR,P =
P−1∑
p=0

s(gp − gc)2
p (1)

where s is:

s(x) =

{
0, x < 0
1, otherwise

(2)
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and gp denotes neighboring pixels in each block with center pixel value of gc. p in
the number of sampling points (eg. p = 0, 1, ...7 for a 3x3 cell size. R is the radius of
operation.

Figure 5: Example of LBP operation.

A local binary pattern is called uniform if its uniformity measure is at most 2. Uni-
formity measure U (pattern is the number of bitwise transitions from 0 to 1 and vice
versa. Most of local patterns in natural images are uniform. Ojala et al. [] noticed
that in facial images, uLBP accounts for 90. of patterns with block size 8 and radius 1
and 85. with block size 8 and radius 2. In addition to LBP, Local Phase Quantization
(LPQ) has been proposed. A common issue in computer vision tasks is the degradation
of image quality cause of blurriness. Blur can be caused by misfocused optics or slight
motion of camera while capturing. LPQ, quantize local phase information of Fourier
transformations. LPB is image rotation invariant while LPQ is also blur invariant.

5.2 Histogram of Oriented Gradients (HOG)

Histogram of Oriented Gradients is a powerful feature descriptor for object detection.
It was proposed in 1986 byMcConnell of Wayland Research Inc. HOG computes pixel-
wise gradients and orientations and stores them in a histogram. The method simplifies
the representation of the image and discards any non crucial information. In other
words, it minimizes the noise. As a pre-processing step, all images are resized to the
same shape and HOG cell size is defined. Usually the cell is either 8x8 or 16x16 de-
pending on input image size. The image then is split into the various cells in vertical
and horizontal directions. For each cell the gradient is calculated in each axis (x,y), gx ,
gy
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5.3 Principal Component Analysis (PCA)

Principal Component Analysis is a classic dimensionality reduction technique which
is used to get deep inside of data in fields of probabilities and statistics. It is able to
uncover lower dimensional patterns of large data of certain statistical distribution and
helps train more robust models. PCA represent the statistical variations in the data
based on hierarchical coordinate system. The directions in the coordinate system cap-
ture the maximum amount of variance in data. The goal is to find the most dominant
combinations of features that describe as much of the data as possible. PCA finds the
best fitting line by maximizing the sum of squared distances from the projected points
to the origin.

5.4 SVM classifier

Support VectorMachines (SVM), is a classification algorithmwhere is it’s goal is to sep-
arate points of two ormultiple classes using a line. Typically, inmulti dimension planes
SVM finds a hyperplanewhere points are separable. SVMs aremaximummargin clas-
sification algorithms and use Hinge loss.

Figure 6: Example of extracted features. First row is the original image, second row
HOG descriptor and rows 3 and 4 LBP and LPQ respectively.

Our first approach to discriminate live and presentation attacks is to extract HOG,
LPB, LPQ features from a subset of source domain train-dataset and feed into an SVM
classifier. We use 5K live images and 500 for each of the 10 spoof types (total 10K)
as training set. For the test set we use 1K and 100 images respectively (total 2K). We
train SVMwith each feature descriptor separately using a linear kernel. In addition, we
concatenate all descriptors and perform dimensionality reduction with PCA preserving
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Figure 7: Receiver Operating Characteristic curves from hand-crafted features.

95% of original variation and train again. We perform hyper-parameter tuning for pa-
rameter C which instructs the optimizer of the trade off of correctly classified training
examples againstmaximization of the decision function’smargin. Each feature descrip-
tor is adjucted to 512 dimensions. LPQ gives the best equal error rate (EER) in single
feature extraction experiment (22.4%) while the best overall EER is achieved with fea-
tures concatenation + PCA (20.5%) Table 2 summarizes the results. It is worth men-
tioning that even a 32GB of ram is insufficient to accommodate large datasets, thus we
restricted learning process in terms of samples. Also, given the inherit limitations of
SVM on hanlding large data, we do not assess the performace of the model in target
domains since there is a considerable gap on test set evaluation of source domain.

Descriptor Threshold EER(%) TPR(%) AUC
HOG 0.42 33.3% 66.7(%) 0.718
LBP 0.39 27.5% 72.5% 0.768
LPQ 0.40 22.4% 77.6% 0.855

Combined + PCA 0.32 20.5% 79.5% 0.87

Table 2: Classification results with hand-crafted features and SVM Linear kernel.

In the next section we will present modern methods for Liveness Detection. Specif-
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ically, we will examine multi-task learning and different loss functions to assess the
generalization capabilities of the models.
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6 Liveness Detection using Deep Learning

6.1 Neural Networks overview

An Artificial Neural Networks (ANN) can be seen as an algorithmic approach to learn-
ing.

Definition: An artificial neuron with weights w1, ...., wn ∈ R, bias b ∈ R and
activation function σ : is defined as the function f : Rn −→ R given by

f(x1, ...xn) = σ
(∑

x
i
wi + bi

)
(3)

Concatenating multiple articial neurons leads to composition of affine linear maps
andactivation functions. CommonNon-linearActivation functions are Sigmoid, ReLU,
Heaviside, tanh. A large collection of hierarchical structured artificial neurons form the
Deep Neural Networks. DNN are function approximation models and based on Uni-
versal Approximation Theorem (Cybenko 1989, Hornik 1991) they can approximate
any continuous function with arbitrary accuracy and complexity.

6.2 Convolutional Neural Networks (CNN) overview

Convolutional neural network (CNN) is a category of deep neural networks which has
found great success in computer vision applications (Krizhevsky et al., 2017). Since the
early works by Fukushima (1988) and LeCun et al. (1989), CNNs are now a cutting edge
area of research within deep learning. Besides the back propagation-based learning ap-
proach, CNNs draw important principles from the field of neuroscience. For example,
the feature maps of a CNN can be associated with the spatial maps of the visual cortex
V1 of the human brain (Goodfellow et al., 2016).

We provide a brief overview of the fundamental components which contribute to-
wards the basic network architecture used for image classification

• Convolutional Layer: This is the crux of a CNN. Every neuron in a convolutional
layer performs a linear convolution operation over the input image x using a con-
volutional 2-dimensional kernel/filter h, i.e. y = x � h. If the input image has
multiple channels, we perform a channel-wise convolution operation.

• Pooling Layer: This layer is added in succession of a convolutional layer and
is used to downsample the size of convolutional feature map outputs. This is
achieved via a sliding window kernel where we apply the pooling operation, most
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Figure 8: Vanilla Convolutional Neural Network (CNN) architecture with convolution,
pooling and fully connected layers. Model predictions are presented after passing fully
connected layer output through a softmax activation function.

commonly MEAN and MAX. This operation is performed to avoid overfitting the
model over the training data.

• Fully Connected Layer: This layer acts as the classifier head of the network archi-
tecture and combines the feature maps from the convolutional and pooling lay-
ers. The 2-dimensional feature maps are converted to 1-dimensional vector and
passed through a fully connected layer to get final output classes.

6.2.1 ResNet-18

Figure 9: Resnet18 Architecture.

6.2.2 EfficientNet-B4

The Efficient-B4 architecture (Figure 8) consists of a two 2D-convolution (conv) layers
with kernel sizes 3×3 and 1×1, respectively, and stride 2×2 and 1×1, respectively. Inputs
are zero-padded before passing through the convolution layers. Both convolution layers
are followed by a Batch Normalization (bn) layer.
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Figure 10: EffNet-B4 Architecture. conv: 2D-Convolution Layer, bn0, bn1: Batch Nor-
malization Layers, MBConv: Mobile Inverted Residual Bottleneck Block, avg pooling:
Adaptive 2D Average Pooling Layer, and fc: Fully Connected Layer.

The first Batch Normalization (bn0) layer is followed by 7 Mobile Inverted Resid-
ual Bottleneck (MBConv) blocks. The MBConv blocks are dependent on the width and
depth coefficients of the B4 variant. The second Batch Normalization (bn1) layer is fol-
lowed by a 2D Adaptive Average Pooling (avg pooling) layer and a Fully Connected (fc)
layer to get the final classification outputs. We define the input dimensions as: batch
size × channels × height × width.

6.2.3 Normalization in Deep Neural Networks

When training deep neural networks, it is a common practice to compute a gradient
descent step over mini-batches of training data. Neural networks trained over mini-
batches result in faster convergence of network weights when compared to neural net-
works trained over the entire training data per gradient descent step. But this approach
also introduces a phenomenon known as internal covariate shift. Internal covariate
shift slows down network training because of the varying data distribution of mini-
batches. This increase in training time is due to smaller learning rates which are re-
quired to reach convergence. The issue has since been tackled by an optimisation trick
proposed by Ioffe and Szegedy (2015) called Batch Normalization. Batch normalization
reduces the internal covariate shift of a deep neural network by normalising the input
tensors before passing it through a layer in the network architecture. This drastically re-
duces training time through faster convergence speed. Since the first CNN architecture
to include batch normalization, GoogLeNet (Szegedy et al., 2015), it is now a integral
component of modern CNN architectures for a myriad of computer vision applications.
Huang et al. (2019) propose a new strategy for normalization called Iterative Normal-
ization which achieves better optimisation and performance over batch normalization
by whitening the feature space of an input tensor via Newton’s iterations. Whitening is
a linear transformation operation which normalises and decorrelates the vector space
of an input data. We discuss this work because it is a crucial component of our research
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in interpretable lip-sync deepfake detection.

6.2.4 Model Interpretability

The purpose of explainable AI differs between different stakeholder groups. For a de-
veloper stakeholder group, consisting of data scientists and AI researchers, model per-
formance metrics are sufficient to understand and, to a certain extent, interpret a deep
neural network’s behaviour. These metrics consist of, but not limited to, model accu-
racy, type I and II errors. The same is not true for other stakeholder groups such as reg-
ulatory bodies, executive members and end users (Barredo Arrieta et al., 2020 [15]). In
the domain of deepfake detection, we can consider two main stakeholder groups - end
users and regulatory bodies. The end user group mainly consist of humans who use
a deepfake detection tool on videos they provide. On the other hand, the regulatory
bodies group consist of humans who are in-charge of setting regulations and policies
regarding the use of AI. We also include the judiciary bodies in this group as they are
responsible to enforce legal actions against any misuse of the deepfake technology. For
both groups, it is important that the deepfake detection tool is capable of convincing
a non-expert human about its predictions and provide sufficient supplementary infor-
mation to justify its decision. Within explainable AI, model interpretability is an area
of research which aims to make neural network models interpretable to all stakeholder
groups. Doshi-Velez and Kim [18] provide a detailed overview of the importance of
model interpretability, which ranges from better understanding of a deep neural net-
work’s behaviour to the ethics of and fairness in its end-user applications. Gilpin et al.
[16] and Mittelstadt et al. [17] distinguish model interpretability into two categories:
inside explanations which describe the internal model behaviour, and outside explana-
tions which provide explanations to justify a neural network model’s decisions. Gilpin
et al. (2018) provide an overview of available model interpretability methods within
the aforementioned model interpretability categories:

• Outside explanations: with linear proxy models and decision trees, summarising
model decisions, and salience mapping input data to final prediction output.

• Inside explanations: with network representations via layer and neuron attribu-
tion; interpretable neural network architectures, consisting of attentionmodels or
disentangled representations, which can generate explanations without needing
an external model interpretability method.

The developer stakeholder group also uses internal explanations to debug their model
training experiments (Adebayo et al. [19]). In the context of model training, debug-
ging is the process of identifying components in a training experiment which negatively
impacts model performance. To this extent, our research aimed to explore influence
functions (Koh and Liang, 2017) for improving our baseline models. But, the work by
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Basu et al. [20] demonstrate that using influence functions to debug deep neural net-
work models is not effective as they are unstable and unreliable with deeper network
architectures. Due to this, our research explores other outside explanation methods to
debug and improve the detectormodel performance. Zeiler and Fergus (2014) [23] pro-
pose the Occlusion algorithm, which is a perturbation-based input attribution method
to visualise region-wise importance of an input image contributing towards the model
prediction output.

Figure 11: Attribution example for live class (first 3 columns) and A4 spoof (last 3
columns).

6.3 Domain Generalization and Adaptation

Deep learning is essential an optimization process which goal is to find amapping func-
tion that matches features x to labels y. We can formulate the optimization problem as:
given the training set withm,x,y we write:

settrain = {(xtrain
i , ytraini )}mi=1 → Qx, y (4)

wherem is the number of samples of the training set. Features and labels coming from
a certain distribution denoted by Qx,y. Qx,y is a join distribution between features and
labels. For the actual training process, we define a loss function and minimize the av-
erage loss error in the training set.

minθ(
1

m

m∑
i=1

L(fθ(x
train
i ), ytraini ) ⇒ θ∗ (5)

where θ∗ are the parameters of the optimum function fθ∗ and L is the loss function.
Similarly, we define the test set as:
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settest = {(xtest
i , ytesti )}ni=1 → Qx, y (6)

where n is the number of test examples. We evaluate over the test set and compute the
test error as:

errortest =
1

n

n∑
i=1

L(fθ∗(x
test
i ), ytesti ) (7)

Finally, the whole goal of the optimization process is to find amapping function that
minimizes the error on test set. It has been shown that even for over-parameterized
models, the gap between train and test errors can be small given a sufficient number of
samples.
The above optimization process makes a key assumption. It defines that both train
and test sets distributions are the same, as it can be seen from equations (4) and (6).
This assumption fails short in almost any real life application as frequently real world
examples are different. In the general case, the training distribution is usually referred
as source domain and denoted with Qx,y while the test distribution as target domain
and denoted with Px,y

Qx,y ̸= Px,y (8)

For the liveness detection problem, it is very common the target domain to differ sig-
nificantly, for example different illumination conditions, wide variety of samples ac-
quisition devices(camera sensors) or large variety of different materials a face might be
displayed on (eg. monitors, phones, papers). All these variables constitute the gap be-
tween domains. Domain generalization and adaptation is still an open problem. In our
work, we focus on ideas of multi-task learning, deep metrics losses and few-shot-knn
techniques to assess the best strategy to train a robust model.

6.4 Liveness Detection as binary classification problem

Deep learning is a subset of Machine Learning (ML). ML is a computer program and is
said to learn from experience E with respect to some tasks T with performance evalua-
tionmetric P, if its performancemeasure can improve with E on T. Binary classification
task is the task of classifying samples of a certain distribution into two classes. In live-
ness detection the goal is to assign live or spoof label for each sample in training set.
In binary classification tasks the objective is to minimize, usually a single loss function
(eg. Binary Cross Entropt BCE or Cross Entropy CE) andmap input features X into two
labels Y. CelebASpoof dataset contains images of 11 classes, where class 0 is the gen-
uine/live label and labels 1-10 correspond to 10 different spoof types. Naturally, live-
ness detection systems mainly concern the binary distinction of labels, as identifying
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accurately the type of potential attack plays second role to accurately predict between
live and spoof class. In this experiment we treat the 10 separate spoof classes as one,
denoted by label 1. Such transformation of the dataset yields to heavily imbalanced dis-
tribution between the two classes. In such cases the model will learn to predict spoof
class as during back propagation step the dominant class in mini-batch will heavily dic-
tate the direction of gradients. In the next section we will address class imbalance.

6.5 Liveness Detection as multi-task problem

Multi-task Learning is an approach to introduce inductive bias contained in parallel
learned tasks’ training signals. Inductive bias transfer, helps improving the general-
ization capabilities of the main learned task as what is learned for each task can be
used to help other tasks. It acts as regularization technique as it learns multiple tasks
simultaneously by exploiting both task-generic and task-specific information. Multi-
task networks typically consist of multiple fully connected heads, each of which has its
own loss function [9]. They share model’s backbone weights but, in essence, they com-
pete for networks’ limited resources. Although auxiliary tasks share weights they can
drastically help learning the original task of the model and improve upon the main bi-
nary task. Multi-task learning have been successfully used in many applications, from
speech recognition, computer vision to natural language processing. The total loss func-
tion comprised from multiple individual losses from each independent task/head.

Figure 12: Hard (left) and Soft (right) parameter sharing for multi-task learning in
deep neural networks.

Typically,multi-task learning is split into two categories. Hard and Soft parameter
sharing.

Hard sharing, all hidden layers are shared from all tasks/heads, a practice that helps
to avoid overfitting. Intuitively, the more tasks the model tries to learn the more it has
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to find a representation capable to capture information for all of them.
Soft sharing, each auxiliary task operates on its own model and parameters. Then,
the distance of parameters among each tasks are regularized using L2 of trace norm.

6.5.1 Magnitude of Gradients

As mentioned above, in MTL the goal is to find the set of parameters θ that optimizes
each task’s objective. Usually, hard-parameter sharing is applied where the same em-
beddings learn generic representations. Obviously, in MTL when tasks are completely
unrelated to each other, the optimization process would not converge into something
useful. In liveness detection problems, the entire set of classes(fine-grained classes)
(eg. 3D mask, replay-attacks, printed photo, etc). transformed into a coarse classes
map that describes the same problem from higher abstraction. For example, a multi-
class problem with a live class and 3 spoof type classes is converted into a binary clas-
sification task and used as additional head in neural network architecture. Thus, the
total loss function is the summation of each individual loss.

Ltotal =
T∑
i=1

wili (9)

where i iterates though task-heads, li is the computed loss of task i and wi its as-
signed contribution/weight to total loss signal. w is a hyper-parameter and typically is
hard to tune. However, the objective landscape in respect to parameters θ for each task
could differ drastically. A certain configuration set for θ, that optimizes one task might
result in higher loss in other task. This results to conflicted gradients as shown in figure
[13]. In such scenarios, practitioners assign weights (α) to each loss signal to control or
prioritize certain task. The final direction of gradient d is given by:

d = α1 ∗ g1 + α2 ∗ g2 (10)

There are few approaches to tackle the problem of conflicted gradients such Multi-
Gradient Descent Algorithm or Conflict-Averse Gradient Descent but in this work we
will investigate orthogonal loss from Guiqing He et al. [13].

6.5.2 Direction of Gradients

In an attempt to improve the classification performance of the multi-task network, we
will use orthogonality loss. If two feature vectors are completely independent, they
carry the most information and can be used as feature selectors. Such vectors are said
to be orthogonal to each other. Guiqing He et al. [13] proposed a novel orthogonal loss
function that could be applied to multi-task networks.

L(x) =
1

N
minf1,f2,....,fk

∑
Tr[fs(x)f

T
g (x)] (11)
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Figure 13: Example of conflicted gradients.

where fg(x) represents the coarse classifier embeddings (features) of N images while
fs(x) represents the fine classifier embeddings for N images. The term fs(x)f

T
g (x) rep-

resents the sum of dots products of fine and coarse classifier features with batch size N.
The mathematical operator Tr represents the trace of a given squared matrix and it is
defined as the summation of the elements in the main diagonal. α is a hyper parameter
and its magnitude controls the influence of orthogonality loss int the entire network
parameters during backpropagation.

6.6 Deep metric learning networks for Liveness Detection

6.6.1 Center loss

A deep neural network performs a classification task by learning to discriminate the
fea- ture space and creating decision boundaries. State of the art deep neural network
models achieve this objective via softmax activation function, which acts as a supervi-
sion signal. Wen et al. (2016) [11] proposed Center Loss to enhance a model’s ability
to accurately discriminate the latent feature space for face recognition task. Center loss
tries to minimize intra-class variations while keeping feature embeddings of different
classes as separable as possible. It acts as an additional supervision signal which dis-
criminates the model’s latent feature space by assigning it class centers, cyi . Formally,
Center Loss can be defined as:

Lc =
1

2

m∑
i=1

||xi − cyi ||22 (12)

where xi denotes input vector with yi as the target class in training dataset.
The formulation describes the intra-class variations of deep features of the entire

training dataset. cyi denotes the yith class center of deep features. As authors described
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in [11] such formulation is inefficient as it requires the entire training set in order to
update the centers.

If we only use the softmax loss as supervision signal, the resulting deeply learned
features would contain large intra-class variations. On the other hand, if we only su-
pervise CNNs by the center loss, the deeply learned features and centers will degrade to
zeros (At this point, the center loss is very small). Simply using either of them could not
achieve discriminative feature learning. So it is necessary to combine them to jointly
supervise the CNNs, as confirmed by our experiments.

6.6.2 Triplet loss

A Triplet Network is closely related to Siamese Networks [14] but instead of pairs, is
comprised of 3 similar feed-forward networks with shared backbones(parameters shar-
ing). In computer vision a triplet network is fed with 3 images and returns L2 distances
of embeddings representation of positive and negative images from the anchor sample.
Formally is denoted as:

L(a, p, n) = max(0, D(a, p)—D(a, n) +margin) (13)

where D(x, y) is the distance between the learned features representation of x and
y. Usually, L2 distance is used as distance metric but alternately cosine similarity can
also be used. The objective of this function is to keep the distance between the anchor
and positive smaller than the distance between the anchor and negative. Triplet loss
function is suitable for problems with high number of classes (eg. Face recognition
systems) but, generally speaking, it is hard to train and sampling techniques need to be
applied. Elad Hoffer and Nir Ailon [12] details 3 inherently strategies.

• Easy triplets: Triplets with 0 loss, d(a, p) +margin < d(a, n).

• Hard triplets: Negative images is closer to anchor thanpositive, d(a, n) < d(a, p).

• Semi-hard triplets: triplets where the negative is not closer to the anchor than
the positive, but which still have positive loss, d(a, p) < d(a, n) < d(a, p)+margin.

In our research, we implemented semi-hard mining and mining as pre-processing
step. Before training, we prepare the data is such way that for each subject we construct
triplets following: livei, positivei, negativei.
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Figure 14: Example of triplet. Anchor, Positive and Negative image.
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7 Experiments

7.1 Methodology

As mentioned in previous chapters, our research explores learning-based methods to
a) detect presentation attacks coming from the same distribution, b) evaluate different
loss functions and assess the performance in multiple target domains(source dataset
bias) and c) generate a new deepfake presentation attack type and detect using few-
shots learning approach. Given the data-driven nature of such learning-basedmethods,
weneed ahigh-quality, high variation liveness detectiondataset. At the timeof our liter-
ature review of the current SOTAdatasets, we identified that therewas no open-sourced
rich (in terms of variations) dataset (eg. in-the-wild), thus we used CelebASpoof[x]
which is a large dataset that covers most of known presentation attacks. In addition,
we collected and annotated two, relatively small, Devs datasets to further assess gener-
alization to more realistic target domains. Lastly, we generate face-swapped counter-
parts from test-set of source domain dataset(CelebASpoof) using SimSwap model [38]
with original weights.

7.1.1 Data pre-processing

For video-datasets, we pre-process all the videos by extracting frames at equal inter-
vals per video and saving metadata information such as frame rate, frame count and
video resolution. The extracted video frames are compiled together to create an image
dataset. We then perform face detection on the extracted frames and to dataset com-
prised by images using the MTCNN model [37] and save the detected face locations.
The video metadata and face locations saved in individual JSON data formats. Figure
[] shows cropped faces of source domain train split CelebASpoof dataset. Face detec-
tor, is sensitive to noise and tends to give a relative high number of false predictions.
Images showing a single person, could have predicted with multiple bounding boxes
thus it becomes difficult to ensure that only face-crops will be fed into the network for
training. We assess theNoise vs Rejection trade-off by searching within a cut-off range
and choose the lower bound(minimum crop size). In cut-off point, bounding box size
expressed in pixels(width x height) which lower than threshold it gets rejected. The goal
is to maximize the number of images with single number of predicted bounding box.

Another pre-preprocessing step is preparing crops to meet the input size of each
architecture. Instead of resizing, we use tiling in order to avoid interpolation that affect
artifacts created during image capturing. Such artifacts like, Moire Pattern in screen-
replay attacks are important cues for better discrimination.

Finally, we create data selector files which split the image dataset into train, vali-
dation and test sets with a split ratio of 0.7 : 0.1 : 0.2. During training, on all images
in mini-batches, we performmultiple on-the-fly data augmentations after resizing step
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Figure 15: Example of false predicted bounding boxes.

Figure 16: Histogram of bounding boxes @ cut-off point 2600 pixels

Figure 17: Histogram of bounding boxes predicted byMTCCN

Figure 18: Cut-off exploration

to increase the robustness and performance of the trained detector model (refer to Ap-
pendix A.1 for more details).
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Figure 19: Example of crop tiling as oposed to resizing.

Figure 20: Top: Tight face crop, scale factor 1.0x. Bottom: scale factor 1.3x.

7.1.2 Illumination Annotation

Having established the importance of multi-task learning and the extra information
smaller tasks could give to help the main binary task, we further update the model by
including an additional fully connected head. The head named Illuminationfc has input
size of 512 dimension and output of 5. It is worth mentioning, that for this training task
on Resnet18 was considered.

For this purpose, we will annotate the entire train set considering only spoof type
labels. The goal is to assign each image sample to one of the 5 illumination classes. The
annotation process is the following:

• Live images(class=0) are annotated also with label 0 on Illuminationfc.

• Spoof images(classes=1− 10) are annotated according to 4 bins.

To extract the illumination information from each image we convert RGB images
into LAB color space. LAB was originally introduced by Richard Hunter. It is similar
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Figure 21: Raw histogram (left) and digitized with 4 bins (right) for spoof type class
only. Sampled 5000 samples per type with total of 50000 images.

to geographic coordinates (longtitude, latitute and altitude) and it is used to space uni-
formly perceived color differences. It comprises from three elements. A) L stands for
illumination, B) a is about red/green values and C) b stands for blue/yellow values.
For our purpose, we are interested only on L term. In order to extract this information,
we perform face detection with MTCCN and convert them to gray-scale. We use PIL-
LOW library and calculate the average illumination for each face. The resulted values
range from 0-255. Figure 13 shows a histogram of illumination for 50000 training im-
ages. It is worth mentioning that the number of bins is essentially a hyper-parameter
and empirically we found that 5 bins give the best results.

7.2 Model Training Experiments

Weselect Resnet18 andEffNet-B4 architectures to train baseline single task liveness de-
tector models. We initialise all models with pre-trained weights on ImageNet dataset.
The default setup of the model training experiments uses the AdamW optimizer with
β1 = 0.9 and β2 = 0.999, learning rate lr = 0.0001 and batch size of 32. We add an
early stopping condition with patience = 5 for all model training experiments. At the
end of the training experiment, we select best model checkpoint based on the valida-
tion loss function output, computed at the end of each validation epoch. We use the
best model checkpoints for evaluating model performance on all testsets (source and
target domain).
To create the training and validation mini-batches, an input image is cropped using its
face location coordinates. Then, it is resized to an image resolution of 224 x 224 for
Resnet18 and 380 × 380 for EffNet-B4 architecture. As the input for all training exper-
iments are cropped faces, all samples with no detected faces are filtered out. Finally, we
get 533,899 image samples for training and 133,477 image samples for validation. After
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resizing the training and validation mini- batches, they are normalised and converted
to tensors. To handle class imbalance, we perform online class weights calculation and
feed them into loss. Furthermore, we convert binary task (Binaryfc) into a multi-task
learning and train multiple models using the same backbones (Resnet18 and EffNet-
B4). In more details, we first add extra fully connected head AttackTypefc, then a third
referred as Illuminationfc in sequential manner. Also, we train with a) center loss on
binary case, b) orthogonal loss on two heads case and c) triplet loss on headlessmodels.
A summary of all experiments is shown in table 3.

Model Task Heads Loss
Resnet18 Binary Task binary Binaryfc 1x cross-entropy

Resnet18 MTL Spoof multi-task
Binaryfc

AttackTypefc
2x cross-entropy

Resnet18 MTL multi-task
Binaryfc

AttackTypefc

Illuminationfc

3x cross-entropy

Resnet18 Center Loss binary Binaryfc cross-entropy + center loss

Resnet18 Orthogonal Loss multi-task
Binaryfc

AttackTypefc
cross-entropy + orthogonal loss

Resnet18 Triplet Loss embeddings headless triplet-loss

EffNet-B4 Binary Task binary Binaryfc 1x cross-entropy

EffNet-B4 MTL Spoof multi-task
Binaryfc

AttackTypefc
2x cross-entropy

Table 3: Overview of training experiments.

7.3 Hardware Specifications

We use a local GPU workstation machine with an 8-core Intel(R) Core(TM) i7-7700K
CPU @ 4.20GHz microprocessor chip, 32 GB RAM and TITAN Xp graphics card with
12GB VRAM. The machine runs on Ubuntu 18.04.5 LTS operating system, CUDA ver-
sion 10.0 and NVIDIA driver version 450.119.03. For all the training experiments, we
create a virtual python == 3.7.4 environment with pytorch == 1.8.0.

7.4 Domain Adaptation and Generalization Results

In this section we will train various model configurations and loss functions (Table 3)
in order to assess single-dataset generalization capabilities. As mentioned above, Cele-
bASpoof is used for training and it comes from a source distribution denoted asQ(x, y).
All various target domains contain presentation attacks whichwere already seen during
training but coming from different distributions. We define 4 evaluationmetrics which
will be used extensively throughout experiments.
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• False Positive Rate: is the probability a given image to incorrectly classified
into spoof/presentation attack class

• Area Under the Curve: is the entire two dimension area under ROC curve.
AUC aggregates the performance across all posible classification thresholds.

• Equal Error Rate: EER is given by the point in classification thresholds space
where both False Negative Rate(FNR) and False Positive Rate(FPR) are equal and
minimized. It is computed from Detection Error Tradeoff (DET) curve.

• Half Total Error Rate: HTER is the average error rate at a given classification
threshold. HTER = FNR+FPR

2

Figure 22: Receiver Operating Characteristic curves for all models in intra-test set-
ting.

We prefix with intra-test all metrics regarding evaluations of test-set of source do-
main and cross-test for evaluations of target domains. Figure 14 and table 4 presents
results of all training experiments of source domain. We see that ResNet18 with Center
loss and Orthogonal loss experiments are very close to binary only model in terms of
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Model EER AUC
Resnet18 Binary Task 0.046 0.992

Resnet18 MTL Spoof 0.032 0.996

Resnet18 MTL 0.013 0.9986

Resnet18 Center Loss 0.041 0.9846

Resnet18 Orthogonal Loss 0.033 0.9958

EffNet-B4 Binary Task 0.014 0.9989

EffNet-B4 MTL Spoof 0.01 0.9995

Table 4: Source domain test-set evaluation metrics, intra-test

EER and AUC though, Resnet18 Multi-Task with 3 heads (binary, spoof type and illu-
mination) achieves the best EER (0.013) and AUC (0.9986). In addition, the config-
uration of ResNet18 with two heads outperforms the classic binary classification task.
Similarly, when we compare intra-test performance of EfficientNetB4 for binary and
multi-task cases, we notice an improved performance in later configuration of the ex-
perimens experiments. For train and validations sets please refer to appendix A.2 and
Figure 18. Aswe have seen in chapter 6.5.1 and equation (9)when the objective function
comprises from multiple loss functions (multi-task learning) then, inevitable we intro-
duce another hyper-parameter wi where i denotes i-th task (head) and it is the strength
of loss signal of to overall gradients. Different weights will result to different total loss.
In our experiments we found that for the Resnet18 and 3 heads configuration (Resnet18
MTL), the best set of loss weights was 1.0 for binary head, 0.5 spoof type head and 0.01
for illumination head. However for Resnet18 2 heads (binary + spoof type) the best set
was 0.5 respectively. For the orthogonal loss trainingwe used balancedweights for each
loss signal. This is up for future exploration. Table 5 shows detailed results of target
domains.

7.4.1 Dataset soup results

A natural question which arises, since all datasets are available during training. What is
the performance of bundling/merging and training all datasets? As expected, Resnet18
MTL gives good results with combined EER of 10%. For more information please refer
to appendixes Figures 22,23,24,24.

44



Figure 23: Receiver Operating Characteristic curves for all models in cross-test set-
ting.
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7.5 Few-shots Learning for DeepFakes

So farwe have seen the impact of different training configurations by introducingmulti-
ple heads into binary task and assess different loss functions. We address the problem
of liveness detection by considering classic spoof types (eg. printed photo, video re-
plays) but with the evolvement of deep neural networks new more sophisticated spoof
attempts arise. An attacker can use synthetic face generation or face-swap to fool a face
recognition system. To this end, we created a synthetic dataset by performing face-swap
using state of themodel SimSwap [38]. SimSwap can realize arbitrary face swapping on
both images and videos with just a single trained model. We used the test split of Cele-
bASpoof dataset and generated 10K face-swapped images based on same gender. We
excluded all images not labelled as adults and used 5K for training and 5K for testing. Is
it worth mentioning that we didn’t use SimSwap directly from the original repository,
but instead, we developed a Deepfake Offensive Toolkit (DOT) which uses SimSwap as
backend. More information of DOT can be found here [39].

Figure 24: Face-swap examples using SimSwap model.

We used all trained models presented in section 7.4, performed forward pass and
stored the embeddings of the last layer before classification.

The extracted features are fed into kNN classifier for training. We performed grid
search to find the best number of neighbors. In order to evaluate the ability of the em-
beddings of eachmodel to adapt to unseen classes, we adapted few-shots learning tech-
niques(FSL). FSL is needed due to rareness of samples which in our context due to new
spoof type attacks. It aims to reduce data gathering process and associated computa-
tional in case of re-training costs. We formulated our experiments is such a way that for
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Figure 25: Error rates for different k-shots.

each model we train 4 different kNN classifiers based on number of the newly available
spoof type/class samples. We start with 5 samples (k-shots) and increase by factor of 10
(5,50,500,5000). We evaluate the different experiments with 3 metrics, FNR, FPR and
HTER. Figure 16. shows that all model-embeddings + kNN, can significantly improve
error rates as the number of samples of the novel class increases. Though, some mod-
els suchResnet18Orthogonal Loss seems to have learntmore discriminative features of
source domain and it fails to adapt as quickly. On the other hand, EfficientNetB4 MTL
and especially Resnet18 MTL are able to reach approx. 10% error rate with relatively
few shots (k=500). Tables 5 and 6 present errors rates for all experiments.
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Model Target Domain AUC EER

Resnet18 Binary Task

Devs-set-v1 0.6071 0.395
Devs-set-v2 0.6881 0.354
Eyeblink8 0.711 0.539
Replay-Attack 0.7977 0.289
Replay-Mobile 0.7298 0.341
SiW 0.9172 0.162

Resnet18 MTL Spoof

Devs-set-v1 0.663 0.387
Devs-set-v2 0.709 0.33
Eyeblink8 0.9677 0.032
Replay-Attack 0.8236 0.266
Replay-Mobile 0.6544 0.399
SiW 0.9244 0.158

Resnet18 MTL

Devs-set-v1 0.73 0.385
Devs-set-v2 0.7462 0.284
Eyeblink8 0.9962 0.004
Replay-Attack 0.8927 0.24
Replay-Mobile 0.7343 0.337
SiW 0.9217 0.157

Resnet18 Center Loss

Devs-set-v1 0.5795 0.483
Devs-set-v2 0.7561 0.292
Eyeblink8 0.9346 0.064
Replay-Attack 0.6363 0.4
Replay-Mobile 0.7852 0.438
Replay-SiW 0.8521 0.24

Resnet18 Orthogonal Loss

Devs-set-v1 0.606 0.413
Devs-set-v2 0.7474 0.276
Eyeblink8 0.9965 0.004
Replay-Attack 0.6839 0.354
Replay-Mobile 0.7852 0.246
SiW 0.8778 0.187

EffNet-B4 Binary Task

Devs-set-v1 0.5768 0.461
Devs-set-v2 0.7378 0.354
Eyeblink8 0.9536 0.046
Replay-Attack 0.9018 0.197
Replay-Mobile 0.5303 0.492
SiW 0.8466 0.233

EffNet-B4 MTL Spoof

Devs-set-v1 0.5602 0.422
Devs-set-v2 0.7359 0.323
Eyeblink8 0.9951 0.005
Replay-Attack 0.9117 0.19
Replay-Mobile 0.5791 0.448
SiW 0.8796 0.196

Table 5: Target domain test-set evaluation metrics, cross-test. Best scores in bold
grouped by model architecture.
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Models k-Shots FNR FPR HTER

EfficientNetb4 Binary

5 0.140 0.341 0.24
50 0.09 0.213 0.153
500 0.06 0.092 0.078
5000 0.03 0.062 0.048

Resnet18 Center Loss

5 1.0 0.0 0.5
50 0.34 0.48 0.41
500 0.29 0.36 0.33
5000 0.17 0.18 0.18

Resnet18 Orthogonal Loss

5 0.02 0.96 0.49
50 0.4 0.43 0.41
500 0.23 0.45 0.34
5000 0.22 0.35 0.29

Resnet18 Triplet Loss

5 0.02 0.96 0.49
50 0.4 0.43 0.41
500 0.23 0.45 0.34
5000 0.22 0.35 0.29

Table 6: Error rates for binary and metric losses k-shot CNN+KNN.

Models k-Shots FNR FPR HTER

Resnet18 Binary

5 0.48 0.35 0.41
50 0.35 0.24 0.30
500 0.16 0.19 0.17
5000 0.11 0.15 0.13

Resnet18 MTL Spoof

5 0.35 0.32 0.34
50 0.27 0.17 0.22
500 0.16 0.06 0.11
5000 0.1 0.04 0.07

Resnet18 MTL

5 0.42 0.26 0.34
50 0.17 0.13 0.15
500 0.09 0.09 0.09
5000 0.06 0.05 0.05

EfficientNetb4 MTL

5 0.7 0.095 0.4
50 0.22 0.0215 0.21
500 0.113 0.136 0.12
5000 0.081 0.069 0.075

Table 7: Error rates for multi-task learning k-shot CNN+KNN.
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8 Conclusion

Theprimary goal of our research is to provide groundwork in domain generalization and
adaptation in Liveness Detection problem. We introduced a third classification head
for custom annotated image illumination labels and trained Resnet18 in a multi-task
configuration. We established a baseline (binary task) performance with EER = 4.6%
and improved toEER = 1.3%with multiple fully connected heads. We have shown the
importance ofmulti-task learning and to how exploit source domain dataset knowledge
map to extract better performance in both intra and cross evaluation results. We have
explored multiple loss functions (eg. triplet loss, center loss, orthogonality loss) in an
attempt to improve up the binary classification task. Furthermore, we introduced a
new synthetic face-swapped dataset with SimSwap [38] and applied few shots learning
with kNN. We concluded in both scenarios (generalization and adaptation) multi-task
learning is superior to other approaches.

8.1 FutureWork

The gained knowledge from our research into liveness detection has been very illumi-
nating, especially in the area of domain generalization and adaptation. We’ve seen the
importance of multi-task learning with average gradients as well as orthogonal gradi-
ents. For the former, would be interested to test other backbones like XCeption, VGG
and vision transformers(ViT). In ourworkwe’ve restricted orthogonality only to 2 heads
and mixing illumination head would be an interesting experiment too. In addition, to
further assess generalization capabilities, as a future work Generative models attract
some attention.

50



References

[1] Tao Wang, Jianwei Yang, Zhen Lei, Shengcai Liao, and Stan Z Li. Face liveness
detection using 3d structure recovered froma single camera. In 2013 international
conference on biometrics (ICB), pages 1–6. IEEE, 2013.

[2] Yousef Atoum, Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Face anti-spoofing
using patch and depth-based cnns. In 2017 IEEE International Joint Conference
on Biometrics (IJCB), pages 319–328, 2017.

[3] Jianwei Yang, Zhen Lei, and Stan Z Li. Learn convolutional neural network for
face anti-spoofing. arXiv preprint arXiv:1408.5601, 2014.

[4] Anjith George and Sébastien Marcel. Deep pixel-wise binary supervision for face
presentation attack detection. In 2019 International Conference on Biometrics
(ICB), pages 1–8. IEEE, 2019.

[5] Amin Jourabloo and Xiaoming Liu (2017). Pose-invariant face alignment via
cnn-based dense 3d model fitting. International Journal of Computer Vision,
124(2):187–203, 2017.

[6] Volker Blanz and Thomas Vetter (2003). Face recognition based on fitting a 3d
morphable model. IEEE Transactions on pattern analysis and machine intelli-
gence 25(9):1063–1074, 2003.

[7] Takashi Matsumoto (1991). Graphics system shadow generation using a depth
buffer 1991. US Patent 5,043,922.

[8] Yaojie Liu, Amin Jourabloo, andX. Liu (2018).Learning deepmodels for face anti-
spoofing: Binary or auxiliary supervision. IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 389–398, 2018.

[9] Ruder, S. (2017) An Overview of Multi-Task Learning in Deep Neural Networks.
arXiv: 1706.05098

[10] Ojala, T., Pietikainen, M. and Maenpaa, T. (2002) Multi Resolution Gray-
Scale and Rotation Invariant Texture Classification with Local Binary Patterns,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 971-987.
http://dx.doi.org/10.1109/TPAMI.2002.1017623

[11] Wen, Y., Zhang, K., Li, Z., Qiao, Y. (2016). A Discriminative Feature Learning
Approach for Deep Face Recognition. In: Leibe, B., Matas, J., Sebe, N., Welling,
M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer
Science(), vol 9911. Springer, Cham.

51



[12] Hoffer, E., Ailon, N. (2015). Deep Metric Learning Using Triplet Network. In:
Feragen, A., Pelillo, M., Loog, M. (eds) Similarity-Based Pattern Recognition.
SIMBAD 2015. Lecture Notes in Computer Science(), vol 9370. Springer, Cham.

[13] G. He, Y. Huo, M. He, H. Zhang and J. Fan (2020)ANovel Orthogonality Loss for
Deep Hierarchical Multi-Task Learning, in IEEE Access, vol. 8, pp. 67735-67744,
2020.

[14] Koch, Gregory, Zemel, Richard and Salakhutdinov, Ruslan. (2015) Siamese Neu-
ral Networks for One-shot Image Recognition. ICML deep learning workshop.

[15] Alejandro Barredo Arrieta, Natalia D�ıaz-Rodr�ıguez, Javier Del Ser, Adrien Ben-
netot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel
Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. Explainable ar-
tificial intelligence (xai): Concepts, taxonomies, opportunities and challenges to-
ward re- sponsible ai. Information Fusion, 58:82–115, 2020.

[16] Leilani H. Gilpin, Cecilia Testart, Nathaniel Fruchter, and Julius Adebayo. Ex-
plaining explanations to society, 2019.

[17] Brent Mittelstadt, Chris Russell, and Sandra Wachter. Explaining explanations
in ai. In Proceedings of the Conference on Fairness, Accountability, and Trans-
parency, FAT* ’19, page 279–288, New York, NY, USA, 2019.

[18] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable
machine learning, 2017.

[19] Julius Adebayo, Michael Muelly, Ilaria Liccardi, and Been Kim. Debugging tests
for model explanations. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume
33, pages 700–712. Curran Associates, Inc., 2020.

[20] Samyadeep Basu, Phillip Pope, and Soheil Feizi. Influence functions in deep
learning are fragile. CoRR, abs/2006.14651, 2020.

[21] Jiamin Bai, Tian-TsongNg, Xinting Gao, and Yun-Qing Shi. Is physics-based live-
ness detection truly possible with a single image? In Proceedings of 2010 IEEE
International Symposium on Circuits and Systems, pages 3425–3428. IEEE, 2010.

[22] Jukka Määttä, Abdenour Hadid, and Matti Pietikäinen. Face spoofing detection
from single images using micro-texture analysis. In Biometrics (IJCB), 2011 in-
ternational joint conference on, pages 1–7. IEEE, 2011.

52



[23] MatthewD. Zeiler and Rob Fergus.Visualizing and understanding convolutional
net- works. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars,
editors, Computer Vision – ECCV 2014, page 818-833

[24] Yaojie Liu, Joel Stehouwer, Amin Jourabloo, and Xiaoming Liu. Deep tree learn-
ing for zero-shot face anti-spoofing. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4680–4689, 2019.

[25] Shervin Rahimzadeh Arashloo, Josef Kittler, andWilliamChristmas.An anomaly
detection approach to face spoofing detection: A new formulation and evaluation
protocol. IEEE Access, 5:13868–13882, 2017.

[26] Olegs Nikisins, Amir Mohammadi, André Anjos, and Sébastien Marcel. On effec-
tiveness of anomaly detection approaches against unseen presentation attacks in
face anti-spoofing. In 2018 International Conference on Biometrics (ICB), pages
75–81. IEEE, 2018.

[27] Artur Costa-Pazo, Sushil Bhattacharjee, Esteban Vazquez-Fernandez, and Se-
bastien Marcel. The replay-mobile face presentation-attack database. In 2016 In-
ternational Conference of the Biometrics Special Interest Group (BIOSIG), pages
1–7. IEEE, 2016.

[28] https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

[29] https://www.idiap.ch/en/dataset/replayattack

[30] http://cvlab.cse.msu.edu/siw-spoof-in-the-wild-database.html

[31] https://www.blinkingmatters.com/research

[32] Di Wen, Hu Han, and Anil K Jain. Face spoof detection with image distortion
analysis. IEEE Transactions on Information Forensics and Security, 10(4):746–
761, 2015.

[33] Tiago de Freitas Pereira, AndréAnjos, JoséMarioDeMartino, and SébastienMar-
cel. Can face antispoofing countermeasures work in a real world scenario? In
2013 international conference on biometrics (ICB), pages 1–8. IEEE, 2013.

[34] R. Shao, X. Lan, J. Li, andP. Yuen.Multi-adversarial discriminative deep domain
generalization for face presentation attack detection. 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 10015–10023, 2019

[35] Tiago de Freitas Pereira and Anjos et al. Lbp-top based countermeasure against
face spoofing attacks. In ACCV, pages 121–132. Springer, 2012.

53



[36] Jiangwei Li, Yunhong Wang, Tieniu Tan, and Anil K Jain. Live face detection
based on the analysis of fourier spectra. In Biometric technology for human iden-
tification, volume 5404, pages 296–303. International Society for Optics and Pho-
tonics, 2004.

[37] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint face detec-
tion and alignment using multitask cascaded convolutional networks. IEEE
Signal Processing Letters, 23(10):1499–1503, 10 2016. ISSN 1558-2361. doi:
10.1109/LSP.2016.2603342.

[38] Renwang Chen, Xuanhong Chen, Bingbing Ni, Yanhao Ge. SimSwap: An Effi-
cient Framework For High Fidelity Face Swapping. Proceedings of the 28th ACM
International Conference on Multimedia. 2020

[39] https://github.com/sensity-ai/dot Deepfake Offensive Toolkit

54



Appendices

Appendix A

.1 Data Augmentation

For all model training experiments, we resize the training and validation samples based
on the network architecture. Thus, we resize samples to 224 × 224 for Resnet18 ar-
chitecture and 380 × 380 for EffNet-B4. We normalise the samples on all RGB colour
channels withmean = [0.485,0.456,0.406] and standard deviation std = [0.229, 0.224,
0.225]. Table A.2 describes the multiple image augmentations with their respective se-
lection probabilities p.

Augmentation p
Horizontal Flip 0.5
Motion Blur 0.2
Gaussian Noise 0.2
Random Brightness Contrast (Brightness Limit = 0.4, Contrast Limit = 0.4) 0.2
Hue Saturation Value (Hue Shift Limit = 5, Saturation Shift Limit = 5) 0.1
Rotate 0.2
Label Smoothing 0.01

Table 8: on-the-fly image augmentations with selection probabilities p for model train-
ing experiments.

.2 Training Process

Allmentionedpreviously, all training experiments are performedon single dataset(CelebASpoof)
which considered the source domain.

.3 Face cropping

.4 Dataset soup
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Figure 26: Augmentations with the following order Original - HorizontalFlip - Mo-
tionBlur - GaussNoise - RandomBrighnessConstrast - HueSaturationValue - Rotate
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Figure 27: Losses and accuracy on train and validation sets.
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Figure 28: Datasets crop examples

Figure 29: Crops distribution for train and test splits for all datasets.
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