

University of Piraeus

School of Information and Communication Technologies

Department of Digital Systems

Postgraduate Program of Studies

MSc Digital Systems Security

Kubernetes Cybersecurity

Supervisor Professor: Christos Xenakis

Name-Surname E-mail Student ID.

 Ioannis Morfonios g.morfonios@gmail.com MTE2116

Piraeus

April 2023

mailto:g.morfonios@gmail.com

Kubernetes Cybersecurity

Ioannis Morfonios i

Acknowledgments

I would like to express my special thanks of gratitude to my Professor Christos

Xenakis mainly for the trust he showed me, the patience he showed during the

implementation of the thesis, as well as the valuable knowledge he imparted to me

through his lectures. In addition, I would like to thank Aristeidis Farao for his guidance

and insightful comments, which made a huge difference towards improving the overall

quality of my thesis. Finally, I would also like to thank my parents and my friend Natalia

Zacharia, who supported me throughout my studies in many ways.

Kubernetes Cybersecurity

Ioannis Morfonios ii

Abstract

Kubernetes is a widely used container orchestration tool that has greatly

benefited the fast-paced development lifecycle. Its ability to manage thousands of

containers and some of its key features, such as container lifecycle management, auto-

healing, and auto-scaling, have made it a top choice for managing demanding

workloads such as large scale web applications. However, just like any other software

tool, Kubernetes has its own set of security weaknesses as well. Many vulnerabilities

that affect its components have surfaced in the past, but a large percentage of successful

security breaches in Kubernetes environments are not actually attributed to security

flaws in the platform itself. As a matter of fact, the most common security threats that

Kubernetes faces are created by misconfigurations. Due to the complexity of

Kubernetes and the inexperience of many administrators, securing a Kubernetes cluster

and its workloads is still a challenge for many companies. In this thesis, we will discuss

the deployment and configuration of a Kubernetes cluster, as well as the subsequent

evaluation of its security posture with the use of the kube-hunter and Kubescape

vulnerability scanning tools. The goal is to evaluate many aspects of the cluster's

security by using several scanning techniques, such as internal and external scanning,

YAML file scanning, inspection of its components for vulnerabilities, and even

estimate the overall security risk. To make the configuration more realistic, real

misconfiguration scenarios will be introduced to the cluster, and some sample

applications will be deployed as well. Afterward, some of the discovered security flaws

will be exploited to demonstrate the amount of damage a malicious actor could cause

to the cluster and its workloads. Finally, to effectively strengthen the cluster, we will

analyze and mitigate any discovered vulnerabilities that are actively exposing it at risk,

while ignoring any false positive warnings.

Kubernetes Cybersecurity

Ioannis Morfonios iii

Περίληψη

Το Kubernetes είναι ένα ευρέως χρησιμοποιούμενο εργαλείο ενορχήστρωσης

container που έχει ωφελήσει πολύ τον γρήγορο κύκλο ζωής ανάπτυξης λογισμικού. Η

ικανότητά του να διαχειρίζεται χιλιάδες container και ορισμένα από τα βασικά

χαρακτηριστικά του, όπως η διαχείριση κύκλου ζωής των container, η αυτόματη

θεραπεία (auto-healing) και η αυτόματη κλιμάκωση (auto-scaling), το έχουν

καταστήσει κορυφαία επιλογή για τη διαχείριση απαιτητικών φόρτων εργασίας, όπως

εφαρμογές web μεγάλης κλίμακας. Ωστόσο, όπως και κάθε άλλο εργαλείο λογισμικού,

το Kubernetes έχει επίσης το δικό του σύνολο αδυναμιών ασφαλείας. Κατά το

παρελθόν έχουν ανακαλυφθεί πολλά τρωτά σημεία που επηρεάζουν τα στοιχεία του,

αλλά ένα μεγάλο ποσοστό των επιτυχημένων παραβιάσεων ασφαλείας σε

περιβάλλοντα Kubernetes δεν αποδίδονται στην πραγματικότητα σε ελαττώματα

ασφαλείας στην ίδια την πλατφόρμα. Στην πραγματικότητα, οι πιο συνηθισμένες

απειλές ασφαλείας που αντιμετωπίζει το Kubernetes δημιουργούνται από εσφαλμένες

διαμορφώσεις στην παραμετροποίηση του. Λόγω της πολυπλοκότητας του Kubernetes

και της απειρίας πολλών διαχειριστών, η προστασία ενός συμπλέγματος Kubernetes

και του φόρτου εργασίας του, εξακολουθεί να αποτελεί πρόκληση για πολλές εταιρείες.

Σε αυτή τη διατριβή, θα προχωρήσουμε στην ανάπτυξη και τη διαμόρφωση ενός

συμπλέγματος Kubernetes, καθώς και στην επακόλουθη αξιολόγηση της ασφάλειας

του με τη χρήση των εργαλείων σάρωσης ευπαθειών kube-hunter και Kubescape. Ο

στόχος είναι να αξιολογηθούν πολλές πτυχές της ασφάλειας του συμπλέγματος

χρησιμοποιώντας διάφορες τεχνικές σάρωσης, όπως εσωτερική και εξωτερική

σάρωση, σάρωση αρχείων YAML, επιθεώρηση των στοιχείων του συμπλέγματος για

τρωτά σημεία, ακόμη και εκτίμηση του συνολικού κινδύνου ασφάλειας. Για να γίνει η

διαμόρφωση πιο ρεαλιστική, θα εισαχθούν πραγματικά σενάρια εσφαλμένης

διαμόρφωσης στο σύμπλεγμα και θα αναπτυχθούν επίσης ορισμένα δείγματα

εφαρμογών. Στη συνέχεια, ορισμένα από τα ελαττώματα ασφαλείας που θα

ανακαλυφθούν, θα αξιοποιηθούν για να αποδειχθεί το μέγεθος της ζημιάς που θα

μπορούσε να προκαλέσει ένας κακόβουλος παράγοντας στο σύμπλεγμα και στον φόρτο

εργασίας του, αξιοποιώντας τα κενά ασφαλείας με τη χρήση κατάλληλων επιθέσεων.

Τέλος, για να ενισχύσουμε αποτελεσματικά την ασφάλεια που παρέχει το σύμπλεγμα,

θα αναλύσουμε και θα μετριάσουμε τυχόν ευπάθειες που ανακαλύφθηκαν που το

Kubernetes Cybersecurity

Ioannis Morfonios iv

εκθέτουν ενεργά σε κίνδυνο, ενώ θα αγνοήσουμε τυχόν ψευδώς θετικές ειδοποιήσεις

(false positives).

Kubernetes Cybersecurity

Ioannis Morfonios v

Table of Contents
1. Introduction .. 1

2. Theoretical Background ... 3

2.1. Virtualization .. 3

2.1.1. Advantages and disadvantages of Virtualization ... 4

2.2. Containerization .. 5

2.2.1. Advantages and disadvantages of Containerization 6

2.3. Container Orchestration .. 8

2.4. Pods ... 8

3. Kubernetes Architecture .. 10

3.1. Master Nodes .. 11

3.1.1. etcd ... 12

3.1.2. API Server (kube-apiserver) .. 13

3.1.3. Scheduler (kube-scheduler) ... 13

3.1.4. Controller Manager (kube-controller-manager) .. 14

3.1.5. Cloud Controller Manager ... 15

3.2. Worker Nodes ... 16

3.2.1. Kubelet ... 16

3.2.2. Container Runtime ... 17

3.2.3. Kube-proxy .. 18

3.3. Extending the functionality of Kubernetes ... 18

3.3.1. Extensions .. 19

3.3.2. Add-ons .. 20

3.3.3. Package Management .. 21

3.4. Objects .. 23

3.4.1. Deployments and ReplicaSets.. 24

3.4.2. DaemonSets ... 25

3.4.3. StatefulSets .. 25

3.4.4. Namespaces.. 25

3.4.5. Services and Ingress ... 26

Kubernetes Cybersecurity

Ioannis Morfonios vi

3.4.6. Volumes ... 27

3.4.7. Secrets and ConfigMaps .. 29

4. Common Misconfiguration Scenarios and Attack Surfaces 30

4.1. Improper Filtering of Ingress and Egress.. 31

4.2. Exposed Insecure Ports on Cluster Nodes .. 31

4.3. Neglecting Logging and Monitoring .. 32

4.4. Running multiple applications in the same namespace 33

4.5. Unauthenticated Access to etcd .. 33

4.6. Improperly Secured Access to API server .. 34

4.7. Privileged Containers .. 35

4.8. Use of the Tiller Server without Authentication ... 36

4.9. Lack or Improper use of Access Control Policies .. 37

4.10. Improper Management of Secrets ... 37

4.11. Kubernetes Vulnerabilities.. 38

4.12. Application Vulnerabilities ... 39

4.13. Vulnerable Container Images ... 40

4.14. Improper Handling of Man in the Middle Attacks ... 40

4.15. Exposed Kubernetes Dashboards .. 41

4.16. Insufficient Validation of Kubernetes Manifests .. 42

5. Cluster Setup and Security Evaluation .. 44

5.1. Vulnerability Detection Tools... 44

5.2. Kubernetes Cluster Setup .. 45

5.2.1. Cluster provisioning ... 46

5.2.2. Application Deployment and Introduction of Misconfigurations 48

5.3. Security Scan with Kubescape .. 50

5.3.1. YAML File Scan .. 51

5.3.2. Host Scan ... 52

5.4. Security Scan with kube-hunter .. 53

5.4.1. Remote Scan .. 54

5.4.2. Internal Scan (run inside a pod) ... 55

6. Exploitation of cluster vulnerabilities .. 57

Kubernetes Cybersecurity

Ioannis Morfonios vii

6.1. Enumeration .. 57

6.2. Exploiting Exposed Dashboards ... 58

6.3. Denial of Service Attack ... 60

6.4. Compromised Privileged Pod ... 61

7. Kubernetes Security Hardening ... 66

7.1. Isolation of Deployments and Configuration of Resource Limits 67

7.2. Pod Security Enhancement ... 69

7.3. Configuration of Probes .. 70

7.4. Resource Labeling .. 71

7.5. Cluster Node Security Hardening ... 72

7.6. Enforcement of Network Policies ... 74

7.7. Enforcement of the Least Privilege Principle with RBAC 76

7.8. Secure Sensitive Interfaces ... 78

7.9. Limitation of Information Disclosure ... 79

8. Security Hardening Evaluation .. 81

9. Conclusion ... 92

List of Appendices ... 93

Appendix 1: Vagrant Configuration (Vagrantfile) .. 93

Appendix 2: Kubernetes Master Nodes Setup Script (master.sh)............................ 94

Appendix 3: Kubernetes Worker Nodes Setup Script (worker.sh) 98

Appendix 4: Load balancer Setup Script (loadbalancer.sh) 100

References .. 103

Kubernetes Cybersecurity

Ioannis Morfonios viii

Table of Figures
Figure 2.1: Traditional vs Virtual Architecture [2] .. 3

Figure 2.2: Virtualization vs Containerization [8] ... 6

Figure 3.1: Kubernetes cluster architecture [15] .. 10

Figure 3.2: etcd cluster inside a highly available Kubernetes cluster [20] 12

Figure 3.3: Kubernetes pod scheduling procedure [25] ... 14

Figure 3.4: Basic form of a PodSpec (pod manifest) ... 17

Figure 3.5: Kubernetes extension patterns interaction with the cluster 20

Figure 3.6: Helm workflow overview [43] .. 22

Figure 3.7: Overview of Kubernetes objects and their associations [46] 23

Figure 3.8: Basic configuration of a Deployment (left) and a ReplicaSet (right) 24

Figure 3.9: Ingress traffic routing [55] .. 27

Figure 3.10: Associations of storage objects in Kubernetes [59] 29

Figure 4.1: Percentage of incidents related to containers or Kubernetes [62] 30

Figure 4.2: Control plane communications .. 32

Figure 4.3: Data plane communications .. 32

Figure 4.4: Helm architecture up to version 2 [73] .. 36

Figure 4.5: Credential retrieval process from Azure Key Vault [77] 38

Figure 4.6: Proposed checks for enhanced CI/CD pipeline security 39

Figure 5.1: Kubernetes cluster network diagram ... 46

Figure 5.2: Status of cluster nodes ... 47

Figure 5.3: Status of calico and metrics-server pods ... 48

Figure 5.4: Status of metrics-server service ... 48

Figure 5.5: Deployed application pods .. 49

Figure 5.6: Deployed application services ... 49

Figure 5.7: Kubernetes Dashboard configuration file.. 50

Figure 5.8: YAML file scan with Kubescape .. 51

Figure 5.9: Verbose scan of the privileged NGINX pod ... 52

Figure 5.10: Host scan with Kubescape ... 53

Figure 5.11: Detection of running services with kube-hunter 54

Figure 5.12: Vulnerability detection with kube-hunter's remote scanning mode 55

Figure 5.13: kube-hunter pod status... 55

Figure 5.14: Detected vulnerabilities after internal scan with kube-hunter 56

Figure 6.1: Enumeration with Nmap ... 57

Kubernetes Cybersecurity

Ioannis Morfonios ix

Figure 6.2: Kubernetes Dashboard authentication page .. 58

Figure 6.3: Secret manipulation through the Kubernetes Dashboard 59

Figure 6.4: DDOS attack with the Slowloris tool .. 60

Figure 6.5: Application unavailability during the DDOS attack 61

Figure 6.6: List disk partitions from the privileged container 62

Figure 6.7: List authorized actions with kubectl .. 62

Figure 6.8: Compromised worker node /etc/passwd file ... 63

Figure 6.9: Compromised worker node /etc/shadow file ... 63

Figure 6.10: kubelet private key .. 64

Figure 6.11: kubelet TLS certificate .. 64

Figure 7.1: Specification of namespace and resource limits.. 68

Figure 7.2: Options of the securityContext object field ... 69

Figure 7.3: Overview of probe operations [90] ... 70

Figure 7.4: Sample configuration of a Liveness and a Readiness Probe 71

Figure 7.5: Probe requests on a NGINX container .. 71

Figure 7.6: Specification of labels for a deployment object .. 72

Figure 7.7: List of loaded AppArmor profiles ... 73

Figure 7.8: AppArmor profile enforcing on a container .. 73

Figure 7.9: Overview of network security policies function [94] 74

Figure 7.10: Deny all network traffic policy ... 75

Figure 7.11: Allow ingress traffic to frontend’s TCP port 80 75

Figure 7.12: Allow frontend originated traffic to database’s TCP port 3306 76

Figure 7.13: Network security policies of the wordpress namespace 76

Figure 7.14: Service account specification .. 77

Figure 7.15: Specification of a Role and a RoleBinding ... 77

Figure 7.16: Roles and RoleBindings of the nginx namespace 78

Figure 7.17: View-only Role for the Kubernetes Dashboard 79

Figure 7.18: kubelet configuration file after disabling log collection 80

Figure 8.1: Re-evaluation of YAML file security with Kubescape (Initial scan depicted

in Figure 5.8, Page 52) ... 81

Figure 8.2: Re-evaluation of host security with Kubescape (Initial scan depicted in

Figure 5.10, Page 54) ... 82

Kubernetes Cybersecurity

Ioannis Morfonios x

Table of Tables
Table 5.1: Resource allocation per cluster node type .. 45

Table 6.1: Mapping of exposed ports to deployed applications 58

Table 7.1: Mapping of discovered vulnerabilities to enforced countermeasures 67

Table 8.1: Mitigation status of the Kubescape security findings 90

Table 8.2: Mitigation status of the kube-hunter security findings 91

Kubernetes Cybersecurity

Ioannis Morfonios 1

1. Introduction

During the last twenty years, the ever increasing need for computing resources

has led thousands of enterprises to search for alternative ways to manage their

workloads. The first major transformation was caused by virtualization, a technology

that allows multiple operating systems to share the same underlying hardware and at

the same time optimize operational costs and increase the security, speed and backup

capabilities of their virtualized systems. The logical grouping of resources that

virtualization allowed for, facilitated the simpler and more effective creation and

expansion of infrastructure, both features that the modern cloud computing platforms

heavily depend on.

The second important technological breakthrough that was developed as a

solution for the modern fast-paced software lifecycle, are the containerization and

container orchestration technologies. Containers are small software packages that

consist of application code, dependencies and a minimal version of the operating

system’s user space. Their small size allows for increased portability, efficiency and

consistency that greatly benefit development, but since containers do not offer complete

isolation from external resources like virtualization does, several security concerns are

raised. Container orchestration software such as Kubernetes, enables the easier

management of large numbers of deployed containers and enforces security policies for

all cluster resources. To isolate management functions from workloads, Kubernetes

splits its functionality into two planes, the control plane and the data plane. Like every

other software, Kubernetes has its own security weaknesses as well and since it operates

as an intermediate layer between the application and the underlying host, its security

posture greatly affects its workloads.

The goal of this thesis is to assess the current security state of Kubernetes, by

first discovering already known vulnerabilities that arise either from misconfigurations

or from security weaknesses of Kubernetes components. Afterwards, a detailed guide

will be provided for the provisioning of a Kubernetes cluster that by default consists of

three nodes (one master node and two worker nodes) and some of the discovered

misconfigurations will be applied to the cluster. To make the scenario more realistic for

the next steps, a couple of sample applications will be provided as well, alongside with

guidance on deploying them to the cluster. Subsequently, a vulnerability assessment

will be conducted with the use of the Kubescape and kube-hunter security scanning

Kubernetes Cybersecurity

Ioannis Morfonios 2

tools and some of the discovered weaknesses will be exploited by performing security

attacks against the cluster. Finally, for every discovered security weakness that affects

the Kubernetes cluster, a variety of countermeasures will be created with the purpose

of reducing the imposed security risk as much as possible without breaking the

functionality of the cluster’s workloads.

Kubernetes Cybersecurity

Ioannis Morfonios 3

2. Theoretical Background

This section aims to provide some background on the concepts of virtualization

and containerization, as well as the advantages that these technologies offer compared

to bare-metal deployments. Kubernetes being a container orchestration tool, relies

heavily on containers and therefore terms related to these technologies will be repeated

multiple times throughout this thesis.

2.1. Virtualization

Virtualization first appeared in the 1960s, where for the first time an attempt

was made from IBM to divide a mainframe computer’s system resources across

different applications. It is the concept of creating a virtual system that replicates the

functionality of a physical one. This system could be almost any component that is part

of a modern information technology (IT) infrastructure, from servers and storage

devices, to networking appliances and even operating systems [1].

The basic idea behind virtualization is the creation of an abstraction layer

between the actual hardware and the virtualized systems that run on top of it. This

abstraction layer is responsible for creating, managing, and allocating the virtualized

hardware (storage, networking, CPU’s, RAM, etc.) that the VM’s (Virtual Machines)

rely on to operate. To achieve this, special software implementations called hypervisors

are utilized. There are two types of hypervisors, the Type-1 Hypervisors which are also

known as bare-metal hypervisors and Type-2 Hypervisors or hosted hypervisors. The

main difference between them, is that bare-metal hypervisors run directly on the Host’s

physical hardware, in contrast with hosted hypervisors that run as a process on an

operating system as depicted in Figure 2.1. Type-1 hypervisors offer superior

performance compared to Type-2 hypervisors and are by far the most common choice

in production environments.

Figure 2.1: Traditional vs Virtual Architecture [2]

Kubernetes Cybersecurity

Ioannis Morfonios 4

2.1.1. Advantages and disadvantages of Virtualization

Virtualization offers several advantages over traditional architectures and

enables opportunities that would not be possible without it. One such example are

modern data centers, which would never be able to offer the current service quality and

reliability without virtualization. The advantages that virtualization offer, can be

observed below [3] [4]:

• Faster provisioning and scaling of resources: Resource provisioning is

crucial in the modern world. Virtualized environments offer the ability to build

and expand infrastructure quicker and thus the ability to keep up with the

constant application growth.

• Space management and cost reduction: Provisioning of multiple servers, no

longer requires setting up the corresponding number of physical machines. In

fact, a single host with enough resources, could run all these servers and

preserve a lot of space and assets (racks, cables, network devices, etc.).

Additionally, the utilization of less equipment to achieve the same result, offers

better power consumption, confines the cost, and reduces e-waste significantly.

• Improved backup and disaster recovery procedures: Virtualization enables

the ability to copy the whole operating system along with its files and services

on a single file. This file can be easily backed up and restored much faster than

setting up a new or troubleshooting a physical server.

• Vendor agnostic solutions: One of the main issues of the past, were the vendor

specific protocols and protocols that made it almost impossible to integrate with

other solutions. Virtualization pushes Vendors towards using open standards

and technologies.

• Testing and staging environments: Provisioning of testing and staging

environments is fast and easy with virtualization. Software development can

also benefit greatly, by providing adequate resources for testing.

• Enhanced security: Virtual machines have the same security risks as physical

systems, but virtualized environments offer greater monitoring capabilities.

This implies that monitoring object associations, security policies, network and

hardware changes is more efficient than managing multiple physical hosts.

Beyond the advantages offered by virtualization, its implementation also comes with

some disadvantages, such as [3]:

Kubernetes Cybersecurity

Ioannis Morfonios 5

• Cost of implementation: In order to convert a traditional infrastructure to a

virtualized one, there is a significant cost that companies are required to pay.

More expensive and powerful equipment is required in order to efficiently run

a large number of virtualized servers. There is also a steep learning curve for

the administrators of these systems, so an additional cost for proper training and

familiarization with this technology should be considered.

• Security patching: Applying security fixes to the virtualized systems or the

underlying hosts requires consideration and planning. Incompatibilities

between the current and the updated software might cause downtime or delay

the application of security patches.

• Multiple services rely on a single host: Since a lot of virtualized servers rely

on a single host to operate, a system failure on a host system could potentially

disrupt the functionality of the services that run on its guest systems.

2.2. Containerization

Containerization as a concept appeared in 2008, a year after the Linux kernel

introduced a new feature called c-groups or control groups. Control groups were

designed to provide a way to limit, isolate and account for the resource usage for a

group of processes. This specific Linux kernel feature paved the way for almost all the

current container technologies that we encounter on cloud, on-premises, and hybrid

environments today.

Containers could be described as the evolution of virtualization in computing

resource management. The main difference between virtualization and containers is

that instead of running a complete operating system and applications on top of it,

containers utilize only the user mode section of an operating system and make low level

system calls to the host operating system’s kernel via the Container Manager.

Additionally, containers contain just the required services, libraries, frameworks, and

dependencies to run the application code and nothing else. This practice makes

containers reliable for transferring between different systems and platforms and faster

to deploy since all the application’s dependencies are already bundled in a single

lightweight package. A visual representation of the virtualization and containerization

technologies and their components can be seen in Figure 2.2 [5] [6] [7].

Kubernetes Cybersecurity

Ioannis Morfonios 6

Figure 2.2: Virtualization vs Containerization [8]

Security-wise containers do not provide the complete isolation capabilities of

virtual machines, due to their dependency on the host operating system kernel.

However, this does not mean that environments that utilize them are not secure. The

isolation of applications in containerized environments, prevent the spreading of

malicious code outside of the container and protects the host system and other

containers from infection. In addition, replacing an affected container with a healthy

one is a quick procedure with minimal risk, due to the ephemeral nature of containers.

2.2.1. Advantages and disadvantages of Containerization

When compared to virtual or physical systems, containers offer various

advantages. Those benefits concern a wide variety of people from developers that will

develop the applications, to IT engineers that will deploy the actual infrastructure. The

advantages of containerization are the following [5] [7]:

• Deployment speed and scalability: Deploying containers is much faster than

deploying virtual machines or physical systems. The lightweight nature of

containers allows for quicker startup times and better resource utilization. These

elements allow for easier and faster scalability.

• Portability: Containers can be easily and reliably migrated between different

systems and architectures without the need to manually perform changes on the

applications or images.

• Security: Containers isolate the application code and all its dependencies in a

single package and expose only the required services to the outside world by

default.

Kubernetes Cybersecurity

Ioannis Morfonios 7

• Fault tolerance: Failure of a container does not affect other containers or the

host system. Replacement of affected containers with healthy ones is fast, easy

and in many cases can be performed without manual intervention (self-healing).

• Ease of management: Managing containers is faster and in many cases can be

fully automated with the use of container orchestration platforms.

• Improved software delivery: Software development can be greatly benefited

by providing developers an easy way to write code without the need to

constantly manage application dependencies. Additionally, the software

delivery process can in many cases be automated by embracing the concepts of

continuous integration / continuous delivery.

• Testing and staging environments: Containerization offers an easy and quick

way to provision testing and staging environments alongside production

environments. Software quality can also be improved by providing to

developers adequate resources for testing purposes.

Even though containers offer a lot of benefits, there are also some considerations that

need attention before utilizing them in production systems. These considerations are

[7]:

• Security: Containers have a potentially greater security risk than conventional

virtual machines since they are not completely isolated from the host’s

operating system. Due to their architecture, containers require multi-level

security in order to be adequately protected, which means that the chosen

container registry, the container runtime, the host operating system and the

containerized application all need to be properly secured.

• Storage: Containers are ephemeral, which means that in case they get destroyed

and recreated their data will be permanently lost. For this reason, it is necessary

to provide a persistent storage solution to the deployed containers to prevent

data loss.

• Monitoring: Observability in containerized environments requires planning

and adds overhead to the deployed resources. This occurs due to the additional

monitoring containers that need to be deployed as sidecars, alongside the actual

application containers.

Kubernetes Cybersecurity

Ioannis Morfonios 8

2.3. Container Orchestration

The previous sections laid out the basics of containerization, its main

characteristics, advantages, and the possibilities that it offers. The vast superiority of

this technology in terms of speed and resource usage, caused its widespread adoption

by millions of organizations worldwide. However, the increase in popularity caused the

number of containers that organizations managed to grow exponentially, to the point

that a simple change could take days to be deployed. The concept of container

orchestration came around to solve this problem and provide a more reliable way to

perform or even automate a variety of operations such as [9] [10]:

• Container provisioning, configuration, and scheduling

• Container scaling, removal, and replication

• Performing health and availability checks

• Resource management and allocation between nodes and containers

• Management of networking operations between containers such as routing, load

balancing, and service discovery

• Storage management

• Management of security interactions between the containers and the cluster with

the outside world

As of August 2022, the most common container orchestration tool is Kubernetes which

will be further analyzed in the following chapter. Besides Kubernetes, there are other

orchestration tools available such as Docker Swarm, OpenShift which is based on

Kubernetes, HashiCorp Nomad and many more. It is worth mentioning that most of the

popular container orchestration tools are open source software with communities that

actively contribute to the projects. This has greatly benefited standardization, to the

point where any of these tools can be used in multiple platforms and even support many

container runtimes from different vendors out of the box [11].

2.4. Pods

Pods are the smallest unit of work and the most basic deployable object in

Kubernetes. They are high-level abstraction groups of one or more containers, with

shared network and storage resources. The way pods run containers is governed by their

specification. By default, inter-process communication between two different pods is

not allowed, but containers in the same pod can communicate through localhost. To

Kubernetes Cybersecurity

Ioannis Morfonios 9

avoid address conflict issues, Kubernetes assigns a unique IP address to each pod. This

IP address is not static and is altered every time a pod is destroyed and re-created.

Normally, the monitoring and management of the pods is performed by the Kubernetes

API server, but pods can also be directly configured and managed by the kubelet utility.

Those are called static pods and they are always bound to the kubelet component on a

specific cluster node [40] [41] [42].

Kubernetes Cybersecurity

Ioannis Morfonios 10

3. Kubernetes Architecture

Kubernetes is a free and open-source container orchestration platform that is

currently hosted by the Cloud Native Computing Foundation. Its name originates from

the Greek word «Κυβερνήτης», which means helmsman or pilot. It is based on a

container management system named Borg, which was developed as an internal project

by Google. Kubernetes was released in 2014 and up to this day, it is by far the most

popular tool of its kind. The main purpose of Kubernetes is to ease the management of

containerized workloads, but it has many more capabilities that can actively contribute

towards automation, application scaling and generic application operations in

containerized environments across multiple clusters [12] [13].

 Kubernetes is based on a client-server architecture which separates its

functionality into two different planes, the control plane and the data plane. The control

plane is responsible for the management operations of the cluster such as resource

allocation, scheduling, state management and much more. The data place hosts the

containers that serve the actual applications and services. These planes are designed to

operate on different servers and thus Kubernetes deployments are normally a cluster

that consists of multiple master and worker nodes. Each node, depending on its role, is

utilizing a specific set of internal components or extensions to operate. Master nodes

depend on control plane Kubernetes components while worker nodes depend on data

plane components. The communication of these components relies on the Kubernetes

API server, a control plane component that serves the Kubernetes API that acts as both

an internal and external interface to the cluster. An overview of the Kubernetes

architecture can be observed in Figure 3.1 [12] [13] [14].

Figure 3.1: Kubernetes cluster architecture [15]

Kubernetes Cybersecurity

Ioannis Morfonios 11

 Additionally, to manage the state of the cluster, Kubernetes uses persistent

entities that are called objects. Objects can be created, deleted, or edited with the use of

YAML files. Once an object is created, Kubernetes always tries to retain its state

unmodified by monitoring multiple aspects relative to the object, such as the resources

that are available to this object, on which worker node it is running and the security

policies that are applied to it. More information about objects, the available object

types, and their properties, will be presented in chapter 3.4 [16].

3.1. Master Nodes

Master nodes in Kubernetes clusters run the control plane and therefore are

responsible for controlling the cluster. They act as the primary point of contact for

administrators and perform global decisions for the cluster, such as:

• manage objects (Deployments, ReplicaSets, etc.) and the cluster’s state

• accepting and handling user requests

• detecting and taking actions when cluster events are generated

• schedule and distribute load across the available worker nodes

• provide authentication for both clients and Kubernetes components

• manage networking and storage for the whole cluster

• perform health checks

All Kubernetes clusters require at least one master node to operate and three or more

master nodes in production environments, to provide redundancy and high availability.

The main control plane components that run on these nodes are:

• etcd

• API server

• Scheduler

• Controller Manager

• Cloud Controller Manager (used on cloud deployments)

The above components can run independently on different servers, but for simplicity

running them on a single server is usually preferred. In the sections below, the

functionality of the four main control plane components will be further analyzed [13]

[17].

Kubernetes Cybersecurity

Ioannis Morfonios 12

3.1.1. etcd

etcd is a critical control plane component of Kubernetes. CoreOS's etcd project

is an open-source, lightweight, distributed key-value datastore that may be configured

to run over several nodes. Its main purpose is to provide distributed systems or clusters

features such as common configuration, service discovery, and scheduler coordination.

It also supports the setup of overlay networking for containers, allows the delivery of

safer automated upgrades, and coordinates tasks being scheduled to nodes. As

Kubernetes' core datastore, etcd stores and replicates all Kubernetes cluster state data.

Kubernetes monitors these data and reconfigures itself when the cluster's state changes.

Changes are then pushed back to etcd from the corresponding controller, always

through the Kubernetes API server. By spreading its configuration and state data across

several nodes, Kubernetes can maintain more consistent uptime and stay operational

even in the face of individual node failure. To properly plan and execute services, etcd

is configured in a way that prioritizes consistency over availability in case an

unexpected network partition occurs. Due to the distributed nature of etcd, cluster

configuration is frequently difficult, therefore modifications should be done with

caution, especially in production environments. An overview of the etcd architecture in

Kubernetes can be observed in Figure 3.2 [17] [18] [19].

Figure 3.2: etcd cluster inside a highly available Kubernetes cluster [20]

Kubernetes Cybersecurity

Ioannis Morfonios 13

3.1.2. API Server (kube-apiserver)

The Kubernetes API server is the core control plane component of Kubernetes.

It is a web server that exposes the Kubernetes API and allows both internal (cluster

nodes and their components) and external sources (clients) to interact with each other.

It handles RESTful HTTP calls for multiple purposes such as the Kubernetes cluster’s

administration, the coordination of the cluster and its components, component log

streaming, internal control loop handling, and the creation, deletion, or modification of

objects. Kubernetes returns JSON serialized objects by default, but protocol buffers are

also supported to achieve better performance in large scale scenarios. Additionally, it

supports varying degrees of support and stability, by providing a plethora of API

variants at different paths and discovery endpoints. Since the API server is stateless, it

cannot retain information or the status of the cluster’s objects. This is an important

issue, because Kubernetes should be able to know the transient state of its managed

objects to be able to recognize if they already exist and validate modifications before

applying them to these objects. To achieve this, the Kubernetes API server stores its

state in a distributed storage component called etcd. All the occurring modifications in

state cause the API server to modify objects directly on the etcd datastore. As a matter

of fact, the Kubernetes API server should be the only component that has direct access

to etcd, and all the other components should communicate with it only via the API

server. As a best practice, in production environments that high availability is a

necessary precondition, at least three separate Kubernetes API server instances should

exist for each cluster, to avoid issues during the leader master node election procedure

in Leader Election Architectures [21] [22] [23].

3.1.3. Scheduler (kube-scheduler)

The kube-scheduler is an extendable control plane component that ensures that

newly created workloads are distributed across the worker nodes of a Kubernetes

cluster. Its main role is to monitor for pods that have not been scheduled yet, examine

the operational requirements of each workload, and select the most suitable worker

node for that pod. On top of that, the scheduler constantly monitors the resource

capacity of each worker node, to ensure that workloads do not exceed the available

resources. To determine which node is more suited, the scheduler uses a two-step

procedure. The first step is filtering, where it determines if there are any nodes that have

Kubernetes Cybersecurity

Ioannis Morfonios 14

enough available resources to host the new pods. In case there are no worker nodes with

enough resources, the new pod is not scheduled right away and is added to a queue for

scheduling when enough resources are freed up. In case there are available worker

nodes and more than one node have enough free resources, the scheduler moves to the

second step of the worker node choosing procedure, which is scoring. The Kubernetes

scheduler ranks each node by assigning a score and chooses the higher ranking node as

the most suitable among the available nodes to host the new pod. The filtering and

scoring algorithms can be finetuned by configuring scheduling policies or scheduling

profiles. Furthermore, apart from kube-scheduler Kubernetes supports third party

schedulers as well and even provides documentation on creating custom schedulers. An

overview of the Kubernetes pod scheduling procedure is depicted in Figure 3.3 [13]

[24] [25].

Figure 3.3: Kubernetes pod scheduling procedure [25]

3.1.4. Controller Manager (kube-controller-manager)

The Kubernetes controller manager is a control plane component with the

purpose of managing the cluster’s controller processes. A controller is a control loop

that monitors the cluster’s state through the API server and performs the required

modifications to drive the cluster’s current state towards the desired state, by creating,

deleting, or modifying its managed objects. There are multiple types of controllers, with

the most common ones being the below:

• Replication controller: Monitors the number of defined replicas per pod

Kubernetes Cybersecurity

Ioannis Morfonios 15

• Job controller: Monitors for Job objects and creates pods

• Node controller: Monitors the status and availability of the nodes

• Endpoint controller: Binds services and pods

• Service account and service token controllers: Creates accounts and API

tokens for new namespaces

In general, the state of Kubernetes clusters is constantly changing, so the cluster never

actually reaches a stable state. If control loops are handled correctly by controllers and

the random faults that might occur are automatically repaired, the cluster can operate

normally and perform changes even though the desired state is never actually stable.

The controller manager identifies the cluster's current state by reading it from the etcd

datastore and every state modification it performs is written back to etcd through the

API server [17] [26].

3.1.5. Cloud Controller Manager

Another Kubernetes control plane component with comparable responsibilities

to the kube-controller-manager is the cloud-controller-manager. The primary

distinction between the two, is that the cloud controller manager provides the necessary

functionality that allows Kubernetes clusters to connect with cloud provider API’s. It

also imposes a logical separation between the internal components of the cluster and

those that interface with the cloud platform. This decoupling of the Kubernetes cluster

from the underlying cloud architecture, enables cloud providers to release new features

without interfering with the functioning of Kubernetes clusters that operate on top of it

or necessitating modifications to accommodate these capabilities. In addition, the cloud

controller manager manages unique controllers for each cloud provider. Some of the

controllers that may have cloud-related dependencies include [17] [27]:

• Node controller: Monitors the cloud platform for missing nodes and determines

if those nodes have been deleted or are unavailable

• Route controller: Creates the required network routes in the underlying

infrastructure

• Service controller: Creates, deletes, or modifies the cloud provider’s load

balancer services

Kubernetes Cybersecurity

Ioannis Morfonios 16

3.2. Worker Nodes

Worker nodes form the data plane of Kubernetes. These nodes are managed by

the control plane nodes and are responsible for running the actual containerized

workloads of the cluster. Worker nodes contain three main data plane components. The

first component is the kubelet, an agent that allows the control plane to manage the

nodes through the API server. The second component is the container runtime which

runs and controls the containers. The third and final component is kube-proxy, which

enables connectivity between the Kubernetes nodes by managing networking. The

following sections contain more information about each component and its functions.

Since worker nodes do not perform control actions on their own, a Kubernetes

cluster should always contain at least one master node. Worker nodes are usually

managed through the control plane, but self-management for certain tasks is possible

as well. Additionally, for a worker node to become part of a Kubernetes cluster, it needs

to be registered either by itself (through kubelet) to the cluster or manually by creating

a node object and deploying it to the cluster [13] [28].

3.2.1. Kubelet

As already mentioned, worker nodes in Kubernetes clusters rely heavily on

master nodes to perform control related actions. For that reason, an extra component is

required that interfaces with the control plane and allows it to interact with the data

plane components. kubelet is a data plane component that acts as an agent. It runs on

all the worker nodes of a Kubernetes cluster and ensures that containers are healthy and

are running as expected on all the node’s pods. It can also conduct control plane-

directed activities such as launching, halting, and updating application containers.

When kubelet detects a pod that is not in the desired state, it redeploys it on the same

worker node as instructed by the corresponding controller. To inspect the containers’

state and health, kubelet uses a set of information called PodSpec, a YAML or JSON

file that describes pods and their containers. Every time a new pod is scheduled, the

API server forwards PodSpecs to kubelet, to inform it about the details of the new or

modified pods. Once the kubelet is informed about the changes, it provides instructions

to the container runtime, which will apply the requested modifications to the containers.

The desired pod state for the kubelet, is the state described in the last PodSpec it

Kubernetes Cybersecurity

Ioannis Morfonios 17

received from the API server about that specific pod. The most basic form of a simple

PodSpec or pod manifest can be observed in the following figure [17] [29] [30].

Figure 3.4: Basic form of a PodSpec (pod manifest)

3.2.2. Container Runtime

The container runtime is another data plane component that is responsible for

running and managing containers and containerized applications that run inside pods.

At its most basic form, each unit of work on the cluster is expressed as one or more

containers that need to be deployed. The component on each worker node that

eventually executes the containers described in the workloads given to the cluster, is

the container runtime.

The most prevalent container runtime as of August 2022 is the Docker Engine,

however Kubernetes also supports alternative runtimes such as CRI-O, containerd, rkt,

runc, and other implementations that support the Kubernetes Container Runtime

Environment (CRI). The Kubernetes CRI is a plugin interface that enables the kubelet

component to utilize a wide variety of container runtimes, without the need to recompile

the cluster components each time the container runtime in use is changed. It consists of

a list of specifications, the protobuf API and container runtime libraries, which allow

communication with each node's kubelet component. Without the Kubernetes CRI, for

a container runtime to integrate with the kubelet, its developers would require having a

thorough understanding of the kubelet’s architecture to contribute to the component’s

code [17] [31] [32].

https://protobuf.dev/#what-are-protocol-buffers

Kubernetes Cybersecurity

Ioannis Morfonios 18

3.2.3. Kube-proxy

The Kubernetes network proxy is the third and final required data plane

component. Like kubelet and the container runtime, kube-proxy runs on all the worker

nodes of the cluster. It is a minimal network proxy service and a simple load balancer.

Its functions are based on the concept of services, a Kubernetes object that will be

further analyzed in a later chapter. kube-proxy’s main role is to manage networking on

the worker nodes and more specifically to create network rules that allow internally or

externally initiated network sessions to reach the pods. It is also responsible for the

routing of the network traffic to the correct container, based on the destination IP

address and port number of the requests. To perform network filtering and traffic

forwarding kube-proxy utilizes the operating system’s packet filtering layer (e.g.,

iptables), however it can also forward the network traffic by itself in case there is not

one available. Currently, kube-proxy supports forwarding and load balancing (uses the

round robin algorithm by default) for the TCP, UDP and SCTP layer four protocols.

Finally, the Kubernetes network proxy aims to provide reliable and secure networking

by exposing only the defined services of each pod, thereby enforcing a positive security

model on the cluster [13] [17] [33].

3.3. Extending the functionality of Kubernetes

As already mentioned, Kubernetes at the time of writing is by far the most

popular container orchestration tool since almost half of the organizations that use

containers rely on Kubernetes (managed or not) for container orchestration [34]. It is

also open-source, extensible and very well documented, which has led to the

establishment of a big and active community that is contributing code to either the main

Kubernetes project or to third party tools, add-on components and even develop

extensions for the main components of Kubernetes. Many of these projects are today

an important part of Kubernetes, even in large production environments that manage

thousands of containers. In the below sections, the main characteristics of Kubernetes

component extensions, add-on components and package management will be further

analyzed.

Kubernetes Cybersecurity

Ioannis Morfonios 19

3.3.1. Extensions

Extensions are aimed towards cluster administrators and are a way of properly

customizing Kubernetes clusters to operate in any work environment. The purpose of

extensions may vary, but the most popular use cases are to either provide support for

the underlying infrastructure and hardware (e.g., deploying Kubernetes clusters on a

cloud provider that Kubernetes does not officially support yet), or enable automation

by creating client programs. The two main extension categories are the API extensions

and the infrastructure extensions. API extensions are related to the following set of

control based actions [35] [36]:

• Authentication and authorization

• Admission control

• Access to the Kubernetes API

• Definition of custom types and resources

• Combining custom resource API with automation (Operator pattern)

Infrastructure extensions aim to provide support for specific hardware types and

network fabrics by using:

• Network plugins

• Storage plugins

• Device plugins

• Scheduler plugins

There are three extension patterns that indicate how a Kubernetes cluster

interacts with an extension. The first one is the controller pattern, in which Kubernetes

reads an object’s «spec» field, performs the described operations, and then updates the

object’s «status» field. The second pattern is the webhook pattern, where Kubernetes

acts as a client and performs requests to a remote service. The third and final extension

pattern is the binary plugin pattern, in which Kubernetes executes binary extensions

that are used by the kubelet or kubectl. A simplified overview of the mentioned

extension patterns can be observed in Figure 3.5 [35] [36].

Kubernetes Cybersecurity

Ioannis Morfonios 20

Figure 3.5: Kubernetes extension patterns interaction with the cluster

In addition, Kubernetes defines seven extension points that indicate the main entry

points that Kubernetes provides for the execution of extensions. Each extension point

defines a scope that exposes certain parts of the cluster to the extensions that comes

with each own set of advantages and disadvantages. The mentioned extension points

are the following [35] [36]:

• kubectl: kubectl extensions extend the functionality of the kubectl binary.

These extensions affect only the local user’s environment.

• API server: Authentication, authorization, and request handling related

extensions.

• API server resources (pods, nodes, etc.): Creation of custom Kubernetes

resources that extend the functionality of the stock resources.

• Scheduler: Resource scheduling related extensions.

• Controllers: Definitions of custom controllers that are used with custom

resources.

• Network: Plugins that extend the networking capabilities of pods.

• Storage: Plugins that add support for new storage types.

3.3.2. Add-ons

In general, setting up a Kubernetes cluster and deploying applications to it is

not a difficult task. However, like every piece of software Kubernetes has some

deficiencies. Due to the extensible nature of Kubernetes, these deficiencies are usually

handled by third party plugins, called add-ons. Kubernetes add-ons are plugins

designed to extend the functionality of Kubernetes’ main components. There are many

Kubernetes Cybersecurity

Ioannis Morfonios 21

plugins available, which in terms of functionality can be organized into the following

categories:

• Networking and Network Policy (e.g., Calico, Flannel)

• Service Discovery (e.g., CoreDNS)

• Service Mesh (e.g., Istio)

• Resource Scheduling and Resizing (e.g., Descheduler)

• Security (e.g., Falco)

• Visualization and Management (e.g., Kubernetes Dashboard)

• Storage (e.g., Portworx)

• Package Management and Deployment (e.g., Helm)

• Infrastructure (e.g., KubeVirt)

• Monitoring and Logging (e.g., Kubernetes Prometheus, Elasticsearch)

Addition or deletion of add-ons is usually easy, but there are also add-ons that require

a configuration and specific settings to run properly. To handle the added plugins, an

additional component called addon-operator is utilized to make the installation and

management of add-ons easier. Finally, add-ons should be used with caution, especially

in production environments. Even though add-ons integrate well with the existing

Kubernetes components, many of these plugins are not compatible with other add-ons.

This can lead to unexpected behavior and traffic disruption, so cluster administrators

should always be aware of the components they use and how they cooperate with each

other. In addition, since add-ons are individually developed from the main Kubernetes

project, their installation might introduce new attack vectors to the cluster in case these

add-ons contain security vulnerabilities [17] [37] [38] [39] [40] .

3.3.3. Package Management

In many cases, large and complex application deployments in Kubernetes

require planning, creation of declarative YAML configuration files and provisioning of

Kubernetes objects (e.g., pods, services, etc.). To make these steps easier Kubernetes

has its own package manager, which allows cluster administrators and developers to

package and deploy complex applications to Kubernetes clusters. The name of this

package manager is Helm. Helm is maintained by its own community and is a graduated

project of the Cloud Native Computing Foundation (CNCF). Its main capabilities are

the following:

Kubernetes Cybersecurity

Ioannis Morfonios 22

• Install and upgrade applications

• Resolve application dependencies

• Setup of Kubernetes deployments

• Download software packages from remote repositories

In addition, the Helm package manager makes use of three main components. The first

component is the Helm command line utility, which acts as a client that end users can

utilize to interact with Helm. The second component is Helm’s own packaging format

called «charts», which consist of configuration files in YAML format and templates

that are later translated into Kubernetes manifest files and deployed via the Kubernetes

API server. The third and final component is a server called «tiller». Tiller runs on the

Kubernetes cluster and its main purpose is to listen for commands. It is responsible for

installing, removing, and upgrading charts by interacting directly with the Kubernetes

API server [41] [42].

An important characteristic of Helm that rapidly increased its popularity, is that

charts can be shared by the developers that created them and re-used by other cluster

administrators. By using charts, application deployments can be sped up significantly

even for simple applications and make operations teams capable of handling the

increasing rate of software releases more reliably and efficiently. Helm even provides

a chart repository with various open-source prepackaged charts, which can be freely

downloaded and deployed by everyone. An overview of a typical application

deployment in Kubernetes with the use of Helm charts can be observed in the following

figure [42].

Figure 3.6: Helm workflow overview [43]

https://www.cncf.io/reports/helm-project-journey-report/

Kubernetes Cybersecurity

Ioannis Morfonios 23

3.4. Objects

To provide compute and storage resources to its hosted applications, Kubernetes

heavily relies on the concept of abstraction. Abstraction comes in the form of workload

objects, which are persistent entities that reflect the status of a Kubernetes cluster. By

abstracting away infrastructure from high level applications and services, Kubernetes

makes applications more portable, flexible and fault tolerant. Kubernetes objects depict

the desired state of the cluster and once an object is created, Kubernetes tries to ensure

that it exists, and its configuration does not change unless an authorized administrator

specifically requests it. The current and desired state of objects are specified by the

«status» and «spec» object fields respectively, which are present in the configuration

files of most of the workload objects. The most prevalent way to create or modify

Kubernetes objects is by using the kubectl utility. Before deploying new objects to the

cluster, administrators need to describe objects in YAML format. The YAML files are

later passed to the API server, get validated and then deployed to the cluster if no errors

were found. Finally, objects can describe which containerized applications are currently

in use, the available resources for each application and the policies that govern how

these software applications operate. A complete overview of the most popular

Kubernetes objects and the associations between them is depicted in Figure 3.7. In the

following sections, the eleven most common workload objects will be analyzed [16]

[44] [45].

Figure 3.7: Overview of Kubernetes objects and their associations [46]

Kubernetes Cybersecurity

Ioannis Morfonios 24

3.4.1. Deployments and ReplicaSets

Deployment objects are the most popular way of provisioning applications to

Kubernetes. By using configuration files in YAML format, Deployments can create,

update, or delete pods by providing declarative updates and creating a new desired state

for the Kubernetes cluster. Deployment controllers will later change the current state of

the cluster to the desired state. Deployments can also utilize a lower level object called

ReplicaSets, to create and manage additional identical pods for scalability purposes.

The main aim of ReplicaSets is to ensure that a set of replicated pods is always running

at any moment. By utilizing ReplicaSets, Kubernetes can support self-healing.

Replication controllers continuously monitor the status and health of the containerized

applications and create new pods if necessary to maintain the availability of the defined

number of replicated pods. ReplicaSets can be used directly to provision applications

but is recommended to use Deployments instead. In contrast with ReplicaSets,

Deployments can provide automatic updates to the pods without the need to make

changes to the cluster’s managed pods, like scaling up and then scaling down specific

pods to accommodate the incoming requests while manually updating the rest of the

pods. The following figures present a basic configuration of the Deployment and

ReplicaSet objects [45] [47] [48] [49].

Figure 3.8: Basic configuration of a Deployment (left) and a ReplicaSet (right)

Kubernetes Cybersecurity

Ioannis Morfonios 25

3.4.2. DaemonSets

DaemonSets make sure that every worker node that is part of a Kubernetes

cluster runs a specified pod at any given time. If a new worker node is added to the

cluster, that pod will be added to that node as well and in case a node is removed from

the cluster, the pod is garbage collected. In general, DaemonSets could be useful when

running storage, log collection or monitoring daemons on every worker node is required

[45] [47] [50].

3.4.3. StatefulSets

An important factor that every administrator should consider before deploying

applications to Kubernetes, is if those applications are stateful or not. In general,

handling applications that require affinity or persistence is harder, especially when it

comes to scaling. To deal with this issue Kubernetes provides another workload object,

called StatefulSets. In terms of functionality StatefulSets are connate to Deployments.

The main difference between them, is that StatefulSets are meant to be used for the

deployment of stateful applications (e.g., databases). More specifically, pods that are

provisioned with the use of StatefulSets are provided with a sticky and predictable

(consist of the pod name and the governing service domain) identity (e.g., db-01, db-

02, etc.) that is persistent across any re-scheduling and have predetermined DNS names

that are not modifiable. In addition, stateful pods are separated into master and worker

pods. The master pod is used for reading and writing operations and the worker nodes

are used for data replication and read operations. Incoming requests are load balanced

across all the pods for read operations, but changes happen only to the master pod and

then replicated to the worker nodes. It is also important to mention that every pod that

is deployed with StatefulSets has its own storage [45] [47] [51].

3.4.4. Namespaces

Kubernetes namespaces are logical constructs that separate cluster resources

into non-overlapping groups that provide segregation between multiple users.

Resources that do not belong to a particular namespace are global or cluster wide. By

using namespaces Kubernetes provides the ability to avoid naming conflicts between

resources, to isolate the resources between different teams and share global services

Kubernetes Cybersecurity

Ioannis Morfonios 26

between namespaces to minimize resource utilization. By default, Kubernetes comes

with the following four pre-existing namespaces:

• default: The default namespace for all user created objects that are not created

with a declared namespace

• kube-node-lease: Each cluster node has an associated lease object in this

namespace that determines its availability by sending heartbeats

• kube-public: Contains publicly available data

• kube-system: Contains Kubernetes system related processes

It is worth noting that all cluster resources are stored to the etcd. Kubernetes uses the

API server to accept or drop access requests from users to specific resources, based on

the defined RBAC (Role Based Access Control) policy. This means that all access

control policies in Kubernetes clusters are applied by the API server and by gaining

access to etcd, a user could potentially access resources from every cluster namespace

[45] [52].

3.4.5. Services and Ingress

Kubernetes services are logical abstractions for groups of deployed pods on a

Kubernetes cluster. Services establish both internal and external connectivity to the

cluster. Internal connectivity is provided by assigning IP addresses and DNS names to

the pods, and thus enabling communication between nodes, pods, and external users.

To enable external connectivity, services act as proxies that handle incoming traffic and

load balance it between the available pods that are associated with the service. The

association between pods and their service is done by using label selectors. Service

discovery can happen by either defying environmental variables or through DNS.

Furthermore, the life cycles of services and pods are not connected, so every time a pod

dies and a new one takes its place the service IP address remains the same. Kubernetes

provides the following types of services [45] [53]:

• ClusterIP: The default service type. It creates a basic service that listens to the

specified ports and load balances traffic between the available pod groups that

are associated with it.

• LoadBalancer: The LoadBalancer type makes the service externally accessible

through the cloud provider’s load balancer.

Kubernetes Cybersecurity

Ioannis Morfonios 27

• NodePort: This service type creates a service that is accessible through a

defined port on each worker node in the cluster.

• ExternalName: The ExternalName service type acts as a proxy that forwards

traffic to a destination that exists outside the cluster.

Even though it is possible to make the cluster services publicly available by

exposing services to the internet, services provide little to no management options for

application layer related operations. Some of these operations might be the definition

of routing rules that forward traffic to certain pod groups when a specific application

path is accessed (which is common in microservices architectures), the protection of

the application by defining a TLS certificate and private key, the definition of a

hostname that makes the application more user friendly and more. All this can be

achieved by utilizing the Ingress object. Ingress is responsible for managing external

access to the cluster’s services. It is implemented with the use of an Ingress controller

that evaluates the incoming traffic and acts as an entry point to the cluster. There are

many available choices that can act as an Ingress controller, with the most popular being

the NGINX web server. An overview of traffic handling by the Kubernetes Ingress is

depicted in figure 3.9 [45] [54].

Figure 3.9: Ingress traffic routing [55]

3.4.6. Volumes

Kubernetes does not provide persistent storage out of the box. The default disk

files that containers use to store data are bound to the pod’s lifecycle. This means that

every time a pod is restarted, all its stored data are lost. To prevent this, Kubernetes

clusters should utilize storage that is not dependent on the status of the pods. In addition,

this storage should be available to every worker node of the cluster. These requirements

can be fulfilled with the use of Persistent Volumes (PV), a cluster resource that acts as

Kubernetes Cybersecurity

Ioannis Morfonios 28

a representation of a storage volume and abstracts the physical storage device that is

mounted to the Kubernetes cluster. Like other Kubernetes resources, PV’s can be

created with the use of YAML files that specify information such as the storage

capacity, the required access type (read, write), mount options, and more. To allow

applications to claim the PV’s, another Kubernetes object needs to be used that is called

Persistent Volume Claim (PVC). More specifically, PVC’s define a set of requirements

(e.g., storage size, access type, etc.) that will be requested from a PV. If those

requirements are valid and can be fulfilled, the pod that references the PVC and all its

containers will gain access to the PV’s storage. In contrast with PV’s, PVC’s are not

globally available inside the cluster and should always exist in the same namespace

with the pods that reference it. By abstracting storage with PV’s and PVC’s, Kubernetes

provides increased flexibility and portability for its deployed applications, but this

model has a major flaw. Each time a new application that requires persistent storage is

deployed, a new PV should be created as well to accommodate its storage requirements.

In large Kubernetes environments that hundreds of applications are deployed in a daily

basis, this task can become time consuming and hard to manage. To deal with this issue,

Kubernetes adds yet another level of abstraction to the storage claim flow, by providing

the Storage Class (SC) object. With the use of SC’s, each time a PVC attempts to claim

a PV, SC’s dynamically provision PV’s. Like PV’s and PVC’s, SC’s are also created

via YAML files that define information such as the storage backend (provisioner field)

and parameters like the filesystem type and the supported data transfer rate. Kubernetes

supports many types of persistent volumes through plugins. Some of the most common

and well known types are the following [45] [56] [57] [58]:

• local storage devices that are mounted directly on the cluster worker nodes

• iSCSI storage

• Network File System (NFS) shares

• CephFS volumes

• Fibre Channel (FC) storage

• Cloud provider storage solutions such as AWS Elastic Block Store (EBS),

Azure Disks and Shares Google Cloud Engine Persistent Disks

An overview of the Kubernetes storage objects and the associations between them can

be observed in Figure 3.10.

Kubernetes Cybersecurity

Ioannis Morfonios 29

Figure 3.10: Associations of storage objects in Kubernetes [59]

3.4.7. Secrets and ConfigMaps

To efficiently manage stored configuration data for use between multiple

objects, Kubernetes provides the Config Map (CM) and Secret objects. CM’s are used

for storing an application’s non-confidential configuration data in key-value pairs.

Secrets are preferred when the stored data are confidential (e.g., passwords, keys, etc.).

Both objects can be independently created from the pods that utilize them and can be

used in four different ways, as arguments or environmental variables inside a container,

as a read-only file that an application can fetch and parse, or by executing code inside

a pod that interacts with the Kubernetes API server to get data from the CM or Secret

objects. The main benefit of these objects is the decoupling of environment related

configuration data from the application’s code, which leads to improved portability

between different environments. Moreover, modification of data is easier when

performed on a single object and then automatically applied to all its related objects.

Pods can fetch the new stored values directly after data changes to ConfigMaps or

Secrets are deployed to the cluster. Finally, since these objects are not designed to store

large amounts of data, the maximum size of stored data is limited to one megabyte. In

case the data to be stored exceed this limit, it is also possible to utilize a separate

datastore such as a database [60] [61].

Kubernetes Cybersecurity

Ioannis Morfonios 30

4. Common Misconfiguration Scenarios and Attack Surfaces

Undoubtedly, containerization has benefited the software lifecycle a lot in the

last decade by improving scalability, fault-tolerance, elasticity and of course portability,

in both testing and production environments. One aspect of software that the

containerization technology did not improve though, is security. By constantly

deploying new expendable containers, organizations gradually lost the ability to

efficiently manage these containers and keep up with their applications’ exponentially

increasing security requirements. As already mentioned in the previous chapters,

container orchestration tools like Kubernetes were developed to cope with these issues

by retaining all the benefits of containerization. Even though Kubernetes offers many

advantages, it remains a large and complex container orchestration system. It provides

a large variety of configurable objects, which can be utilized across multiple

environments and support various use cases and workloads. In many cases, the

management of a Kubernetes cluster can be quite challenging even for experienced

administrators and the lack of sufficient security skills further increases the risk of

drifting away from good security practices.

It is apparent that a significant portion of Kubernetes related security incidents

result from misconfigurations. In 2021 and 2022, RedHat conducted research to

identify the most common security issues in Kubernetes environments. According to

RedHat, 93% of the IT and security research participants experienced a security

incident that was related to containers or Kubernetes during the past 12 months. Most

of these incidents were caused by misconfigurations, while the second most common

factor were vulnerabilities that were discovered in Kubernetes. The result of the

conducted research can be observed in the following figure [62].

Figure 4.1: Percentage of incidents related to containers or Kubernetes [62]

Kubernetes Cybersecurity

Ioannis Morfonios 31

Analyzing all the possible misconfiguration scenarios in the Kubernetes system

is challenging, mainly due to the large number of objects and the varying degrees of

customization each object supports. For that reason, in the following sections the most

common misconfiguration scenarios and attack surfaces in Kubernetes clusters will be

analyzed. The attack surfaces and misconfigurations discovered are based on academic

publications and publicly accessible articles on the internet, as well as my personal

experience with Kubernetes.

4.1. Improper Filtering of Ingress and Egress

In many occasions Kubernetes clusters forward network traffic to external

locations to complete certain workflows. The ExternalName service type that resembles

a proxy server in functionality is a typical example of this behavior. The obvious way

to protect the data that leave the cluster, is to use cryptography to establish secure

communications with the remote services, but most administrators omit to properly

secure the cluster’s endpoints as well. A common issue in Kubernetes, is that in many

cases the cluster’s ingress and egress interfaces that are associated with external

services are not properly secured with network access policies. To establish a strict and

secure network policy, both incoming and outgoing traffic should be filtered. In

addition, the ingress controller should be combined with either an external load balancer

or a WAF (Web Application Firewall) appliance that can apply application layer

security policies against the inbound network traffic [63].

4.2. Exposed Insecure Ports on Cluster Nodes

The security and integrity of the physical or virtual servers that host the

Kubernetes components is vital for the cluster to operate congruously, yet in many cases

the security of the hosts is overlooked. A compromised cluster node could enable an

attacker to perform a variety of operations such as lateral movement between the cluster

nodes and privilege escalation. Both the master and worker nodes should be isolated as

much as possible at both the system level by utilizing process isolating technologies

such as SELinux or AppArmor and the network level with the use of iptables. Proper

usage of permissions is also important for an adequately hardened server. In large

deployment scenarios where firewalls might intervene to the communication between

the cluster nodes, a positive security model should be preferred that only allows specific

Kubernetes Cybersecurity

Ioannis Morfonios 32

communications on certain destination ports that are necessary for the cluster and its

hosted services to operate. The following tables provide a list of all the network

communications that might occur in a typical Kubernetes deployment [64].

Figure 4.2: Control plane communications

Figure 4.3: Data plane communications

4.3. Neglecting Logging and Monitoring

Logging is an essential service of every modern IT infrastructure. Logs provide

useful information about many aspects of a system’s operation, such as its overall health

and its security posture. When it comes to logging Kubernetes tends to be quite verbal

since it provides logging not only for its core components and services, but also for the

containers on each pod and the applications that the containers host. The increased log

verbosity can benefit Kubernetes management by providing more insight about the

cluster events. A bad practice that has been adopted by many administrators is to

monitor the system logs only for troubleshooting purposes and only in cases the

cluster’s functionality is affected. As a result, administrators often fail to act in time in

the event of a security incident and allow bad actors to attack and in many cases even

infiltrate the affected system before they take actions to mitigate the threat. To

efficiently mitigate potential security attacks, logging and monitoring should be an

Kubernetes Cybersecurity

Ioannis Morfonios 33

essential part of a cluster’s maintenance. Logs and metrics should be inspected on a

regular basis. Log analytics and SIEM systems can also be utilized to streamline and

automate the log inspection and analysis procedure. To further increase security and

awareness of the involved administrators, alerts and custom actions should be

configured to allow for improved security incident response times and provide quick

mitigation actions [65].

4.4. Running multiple applications in the same namespace

Another frequent mistake that many Kubernetes clusters are susceptible to, is

the use of the default namespace. The main purpose of Kubernetes namespaces is to

logically separate application objects that operate on the same cluster. In a way,

namespaces create virtual clusters that run on top of the physical cluster by abstracting

the underlying cluster resources. The utilization of separate namespaces is often

overlooked because they are considered optional. By default, every new object that is

created is always assigned to the default namespace, unless another namespace was

defined to the object’s manifest file or passed as a parameter to the kubectl utility during

the object’s creation. This could lead to serious security repercussions in case a bad

actor manages to compromise an application that is not separated from the other hosted

applications. Another issue that this configuration irregularity might induce, is the

accidental deletion of shared objects. This scenario is common when multiple teams

manage applications on the same cluster without logically separating the environment

in which their applications reside. Lastly, Kubernetes provides the ability to set up

resource quotas that limit the amount of compute (e.g., CPU, memory), storage and

objects a namespace (and its associated objects) can use. This feature is another

advantage that the separation of applications with namespaces offer if configured

correctly. By using quotas administrators can ensure that in the event of Distributed

Denial of Service (DDOS) attacks, the cluster will not experience cluster-wide

unavailability and the attack surface will be limited to a specific set of resources [65]

[66] [67].

4.5. Unauthenticated Access to etcd

The state of a Kubernetes cluster is stored inside a distributed key-value

datastore that is called etcd and since Kubernetes cannot manage its state by itself, its

Kubernetes Cybersecurity

Ioannis Morfonios 34

functionality is highly dependent on this datastore. The cluster’s state contains every

possible object and resource has been configured up to that point, which includes

objects, services, and of course secrets. If bad actors bypass the security mechanisms

of the cluster and obtain access to etcd, they can perform a variety of actions such as

disrupting the functionality of the cluster, stealing the cluster’s stored secrets and

escalate their privileges without any restriction since all policies in Kubernetes are

enforced by the API server. To properly secure etcd and its stored data from being

exposed to malicious users, the following security measures should always be enforced

[68] [69] [70]:

• Run etcd on dedicated servers and use firewalls to filter communications:

To eliminate the possibility of malicious users acquiring access to etcd in case

a master node’s security is compromised, a good practice is to install and run

etcd on separate servers. In addition, the communication between etcd and the

Kubernetes API server should be intercepted by firewalls that allow

communications only between specific source and destination IP addresses and

ports.

• Encrypt secrets: The Kubernetes API server can encrypt a defined set of secrets

by including them in an Encryption Configuration object. This security measure

is frequently overlooked, mainly because it is disabled by default. As a best

practice, the cluster’s secrets should always be secured with either built-in or

other well-known encryption methods.

• Use TLS certificates to authenticate requests: To further secure

communications between the Kubernetes API and etcd servers, TLS certificates

should be used to enable mutual authentication between the two servers. etcd

natively supports authentication for both client-to-server and server-to-server

(peer) communications.

4.6. Improperly Secured Access to API server

The Kubernetes API server is the core component of Kubernetes and the main

link between all the other Kubernetes components. It is also the main point of

interaction between the cluster components and resources with users. It is crucial that

access to the Kubernetes API is achieved only by legitimate users and components and

always over secure communications. To properly secure the API, a robust

Kubernetes Cybersecurity

Ioannis Morfonios 35

authentication method should be implemented such as TLS certificate based

authentication. A drawback of certificates is that the private key should be adequately

secured as well. For large environments generating multiple user certificates and

securely storing large numbers of private keys might be challenging, but authentication

with the use of TLS certificates is a good way to secure communications between

Kubernetes components (TLS bootstrapping can be used automate the generation of

certificates when a new worker node joins the cluster). A good alternative for managing

user access is to perform authentication and authorization via third party providers by

utilizing well known industry standards like the OAuth 2.0 and OpenID Connect

protocols. These protocols can also support integration with existing user directories

and the implementation of MFA (Multi-Factor Authentication) as an additional security

measure to establish a more robust authentication scheme. Finally, to limit the amount

of incoming authentication requests that the API server processes, rate limiting should

be applied by the ingress controller [70].

4.7. Privileged Containers

A common practice when specific services or plugins require access to certain

host capabilities, is to allow containers inside pods to run in privileged mode instead of

creating an account that has only the required level of permissions. This mode grants

containers the CAP_SYS_ADMIN permission level, which allows it to run with almost

the same privileges as the host’s local processes do. To make it even worse, developers

often prefer to use the root account to solve all the application level errors that might

occur by insufficient permissions while their application attempts to access certain

resources. This means that privileged containers are no longer limited by the operating

system’s security and isolation features (e.g., Linux cgroups) and can further escalate

their permissions. Supposing that malicious users manage to acquire access to a

privileged container, they become capable of exploiting the host and performing a

variety of actions such as packet sniffing and lateral movement between the cluster’s

nodes. Privileged mode is controlled by the «privileged» or

«windowsOptions.hostProcess» flags for Linux or Windows operating systems

respectively and can be found inside the security context of a pod’s spec. Both flags are

disabled by default and their value needs to be explicitly set to «true» to enable

Kubernetes Cybersecurity

Ioannis Morfonios 36

privileged mode. This feature is marked as deprecated as of version 1.21 and it will be

completely removed from Kubernetes in version 1.25 [71] [63] [67].

4.8. Use of the Tiller Server without Authentication

The Tiller server is a core component of the Helm package manager. As

mentioned, the main benefit of Helm is its ability to bundle together sets of files that

describe related Kubernetes resources. These bundles are called charts and can describe

any existing Kubernetes resource. To create the requested resources, Helm

communicates with Tiller over the gRPC RPC (Remote Procedure Call) framework and

instructs it to create the resources. There are two major concerns in a typical Helm

installation. The first one is the fact that Tiller resides inside the kube-system

namespace as a Deployment while being able to create, delete, and modify any type of

Kubernetes resource. The second and most important concern is that Tiller does not

require any form of authentication by default. In case malicious users manage to access

the Tiller server’s exposed gRPC port, they can create, delete, or modify any cluster

resource without any restriction. To resolve this security issue, the Tiller server was

completely removed in Helm version 3.0.0 and as a result newer versions of Helm

consist of a single binary. Kubernetes administrators who still use older versions of

Helm should mitigate this security issue by enabling a secure authentication method

such as TLS certificate-based authentication on Tiller’s exposed port [72]. An overview

of the functionality of Helm up to version 2 can be observed in Figure 4.4.

Figure 4.4: Helm architecture up to version 2 [73]

Kubernetes Cybersecurity

Ioannis Morfonios 37

4.9. Lack or Improper use of Access Control Policies

Yet another habitual mistake that often exists in Kubernetes clusters, is the lack

or misconfiguration of access control policies. The main purpose of access control is to

ensure that users and cluster objects can communicate with only a limited set of

resources, which are necessary to operate as expected. Furthermore, the practice of

filtering non-essential communications can significantly reduce the attack surface in

case malicious users manage to exploit a set of cluster resources or user accounts [63].

Kubernetes provides two ways of restricting access to resources. The first is by

using network policies that apply directly to applications. By default, pods can reach

all the resources inside the namespace they belong to. With the use of network policies,

the connectivity between pods and other cluster resources can be limited to the

minimum number of resources a pod needs to operate properly. The second way of

controlling access to resources is by using RBAC (Role Based Access Control)

authorization. RBAC applies to users and dictates which cluster resources users have

permissions to interact with and what types of actions they can perform to these

resources. Applying access control in many cases may seem like a trivial task and

perhaps this is the main reason it is regularly overlooked. In fact, the creation of a robust

access control policy requires a lot of planning to ensure that both security and usability

are satisfied [74] [75].

4.10. Improper Management of Secrets

Managing encryption is one of the most challenging tasks in the modern IT and

software development world. To help developers manage the confidential data of

applications such as passwords and tokens, Kubernetes provides a way to centrally store

and manage these data with the use of secret objects. Even though secrets are more

secure than storing confidential information in the application’s code, they still do not

provide sufficient security. By default, Kubernetes does not encrypt the secrets. A build

in feature of the Kubernetes API server is the ability to encrypt secrets that are stored

in etcd with the use of the EncryptionConfiguration object. EncryptionConfiguration is

a struct that accepts as input a secret encoded in base64 format and stores its encrypted

value in etcd. The keys that are used to encrypt the secrets are generated locally and

then stored in the EncryptionConfiguration object’s YAML file. This security

mechanism is weak since malicious users can easily fetch the content of these YAML

Kubernetes Cybersecurity

Ioannis Morfonios 38

files, retrieve the keys and decrypt the secrets. If they manage to acquire access to the

Kubernetes cluster and other security mechanisms, the enforced access controls are not

utilized. To deal with this issue, external solutions that provide better security such as

HashiCorp Vault or Azure Key Vault (as depicted in Figure 4.5) should be utilized.

These solutions provide superior security during the authentication of applications that

request access to the vault’s secrets, by utilizing concepts such as managed identities

and service principals. with the use of service accounts. In addition, these datastores do

not store secrets in persistent locations and usually require more than one operator to

access the plaintext value of the data, therefore providing more robust security [61]

[76].

Figure 4.5: Credential retrieval process from Azure Key Vault [77]

4.11. Kubernetes Vulnerabilities

Kubernetes, like any other software, occasionally experiences vulnerabilities

that threaten its components and hosted applications. In general, the Cloud Native

Computing Foundation and the open source community behind Kubernetes are doing a

great job at keeping it safe and ensuring that transition between software releases is

easy and unproblematic. In addition, the constant support that Google and The Linux

Foundation provide to the project by either contributing code or organizing bug hunting

campaigns, further increase the project’s security posture. This results in the appearance

of fewer vulnerabilities that require malicious users to meet several prerequisites to

exploit them. To ensure that Kubernetes environments are adequately protected from

Kubernetes Cybersecurity

Ioannis Morfonios 39

threats, Kubernetes components should always be kept up to date by installing the

required software updates, following the changelogs and community guidelines

regarding the Kubernetes system’s maintenance, and applying best practices by

avoiding insecure features or deprecated functionality.

4.12. Application Vulnerabilities

Even though Kubernetes offers a lot of customizability options that can increase the

overall security that its hosted applications provide (e.g., secret management,

application and resource isolation, access control, etc.), it cannot fully protect

vulnerable applications. Applications should be treated as a standalone entity when it

comes to security and be designed to provide adequate protection without relying on

the underlying infrastructure. The following are some of the best practices that

application developers must conform to, to increase the overall protection that their

applications provide [78] [79]:

• Applications and their dependencies should be kept up to date

• The use of deprecated or insecure dependencies should be limited as much as

possible

• Developers should follow the latest security advisories

• Adequate security testing should be part of every CI/CD (Continuous

Integration/Continuous Delivery) pipeline. A list of proposed checks is depicted

in Figure 4.6.

Figure 4.6: Proposed checks for enhanced CI/CD pipeline security

Kubernetes Cybersecurity

Ioannis Morfonios 40

4.13. Vulnerable Container Images

Publicly available image repositories are utilized daily by thousands of

developers and infrastructure engineers to build and deploy new code, or even provision

new infrastructure with the use of containers. Many organizations use their own images

that reside in private repositories, but even those are often based on public container

images as well. A major security concern when using public repositories, is that

everyone has access to upload images that might be deliberately or unintentionally

vulnerable to security attacks. Building vulnerable containers is quick and simple even

for inexperienced attackers, since there are numerous open-source tools that can

generate a variety of scenarios. The compromised images could be vulnerable in many

ways like containing publicly known vulnerabilities, old and deprecated package

dependencies and libraries, or even backdoors that download and execute malicious

payloads after the images are deployed. Bad actors could take advantage of these

vulnerabilities and attempt to escape the containers and compromise the underlying

host.

To detect and avoid insecure images, developers and administrators should

always scan the images they intend to use before deploying them. Tools like dockerscan

perform thorough security analysis of the images by providing information about the

image’s security posture and detecting misconfigurations and bad practices. In addition,

to ensure that images are safe to use, security teams could deploy the images in isolated

environments and further inspect their behavior. Lastly, running containers in

Kubernetes are immutable by default, so in the event of a security incident the

container’s code and configuration file will not be altered [80] [81].

4.14. Improper Handling of Man in the Middle Attacks

To enable network connectivity between the pods that reside in the same worker

node, Kubernetes uses a network bridge that is called cbr0. This network bridge acts

like a data link layer (L2) device, which processes the incoming ARP (Address

Resolution Protocol) ethernet frames and forwards them to the other pods that are

connected to it, by resolving their MAC (Media Access Control) addresses. By default,

Kubernetes does not provide any protection against ARP spoofing attacks (e.g.,

dynamic ARP inspection). By launching an ARP spoofing attack inside the cluster,

malicious users can send fake gratuitous ARP requests to the cbr0 bridge or to other

Kubernetes Cybersecurity

Ioannis Morfonios 41

pods and impersonate the next hop device, by advertising its MAC address. This

practice forces the pods and the cbr0 bridge to forward traffic to the attacker’s pod,

which acts as a router in between and perform a variety of actions such as packet

sniffing or traffic disruption. The Calico network add-on provides effective protections

against L2 attacks by isolating the pods in their own L2 network segment and by

enabling network layer (L3) communication between them [82].

Another security issue that Kubernetes faces, is the default permission level that

it assigns to its pods. More specifically, the CAP_NET_ADMIN and CAP_NET_RAW

privilege sets are assigned to the pods, unless configured otherwise. These permission

levels provide pods with enough privileges to create new network interfaces inside

containers and craft IP packets that can be used to perform IP spoofing attacks.

Attackers could use IP spoofing attacks to alter the source IP of the pods’ outgoing

packets, to either hide their identity or impersonate another host inside the network.

Calico provides protection against L3 attacks as well, by enabling packet processing by

the host kernel for all the pods’ outbound traffic. To detect if the source IP address of

the packets is real, the host’s kernel uses a built-in feature that is called reverse path

filtering [82].

 By combining the above scenarios, bad actors could potentially invoke DNS

spoofing attacks to the cluster. Kubernetes utilizes one or more pods that are acting as

the cluster’s DNS servers. All incoming DNS requests will pass through the cbr0 bridge

and then will be forwarded to the DNS server pod. In case attackers manage to take

over a pod that runs on the same worker node as the DNS server pod, they could

potentially perform ARP spoofing attacks to force the cbr0 bridge to forward the

incoming DNS requests to the compromised pod instead of the real DNS server pod.

This could lead to a total compromise of the service’s internal DNS services, since the

malicious users would be able to manipulate the DNS resolution process that the

cluster’s services rely on. Since Calico protects the cluster from both L2 and L3 attacks,

application level attack scenarios like DNS spoofing are also mitigated [82].

4.15. Exposed Kubernetes Dashboards

The Kubernetes Dashboard is an add-on component that provides a web based

user interface for the Kubernetes cluster. By default, Dashboard is not included in

Kubernetes and needs to be deployed separately. It can be utilized in many ways such

Kubernetes Cybersecurity

Ioannis Morfonios 42

as creating, deleting or modifying resources, monitoring the cluster and its applications

status and health, performing log inspection and even managing user accounts and their

permissions. All the above tasks that are normally done through the cli with the use of

kubectl, can be visualized and performed by any user, regardless their expertise. A

common mistake that many Kubernetes administrators make is to expose the

Dashboard’s IP and port to non-management networks or potentially to the entire

internet by changing its deployment type from «ClusterIP» to «NodePort». In addition,

since its service account does not have enough permissions to access and manipulate

all the Kubernetes cluster’s resources by default, administrators end up granting

additional permissions to the Dashboard’s service. A well-known cyber-attack that took

advantage of this misconfiguration is the Tesla’s crypto mining incident. Malicious

actors managed to compromise one of Tesla’s Kubernetes clusters through a publicly

exposed Kubernetes Dashboard that was not password protected and exploited the

cluster’s computing resources for cryptocurrency mining operations. [83] [84].

At the time of writing, the Kubernetes Dashboard only supports authentication

by either using the service account’s associated token, or by passing the kubeconfig file

for multiple cluster management scenarios. Both ways of authentication require access

to information that is stored inside the cluster which means that access to the Dashboard

is sufficiently secured, but in case those credentials leak to malicious users, there are

no additional authentication mechanisms (e.g., Multi-Factor Authentication) that could

prevent their advancement. To adequately secure the Dashboard, the following

measures should be considered:

• The principle of least privilege should be embraced, which implies that only the

necessary permissions should be granted to the Dashboard’s service

• The Dashboard should be exposed only in management networks and access to

it should be allowed only from specific source IP addresses

4.16. Insufficient Validation of Kubernetes Manifests

The most common way of deploying new objects in Kubernetes, is by using

YAML formatted files that are called manifests. Kubernetes manifests are declarative

and describe the aspects of the new objects or services. The Kubernetes API server

always validates manifests by inspecting their syntax and the configuration they contain

before creating new objects. In most cases, the API server is not able to recognize long

Kubernetes Cybersecurity

Ioannis Morfonios 43

term issues that might occur by the correlation of certain features or even bad code. An

example of such configuration is the use of CronJobs. CronJobs are scheduled tasks

that can be configured to execute programs or scripts. Kubernetes can validate the

configuration of a CronJob object, but it cannot validate the script’s content. There have

been numerous reports about such misconfigurations that led to unavailability, memory

pressure, increased CPU usage and uneven load distribution inside the cluster. It is

possible that such misconfigurations can be exploited by bad actors, by targeting certain

public endpoints with specially crafted requests. To limit such events, manifest files

should always be validated by both humans and automated tests [85].

Kubernetes Cybersecurity

Ioannis Morfonios 44

5. Cluster Setup and Security Evaluation

This chapter is dedicated to the deployment and configuration of a Kubernetes

cluster, as well as the subsequent evaluation of its security posture with the use of the

kube-hunter and Kubescape vulnerability scanning tools. The goal is to evaluate many

aspects of the cluster’s security by using several scanning techniques such as internal

and external scanning, YAML file scanning, inspection of the cluster’s components for

vulnerabilities, and even estimate the security risk by performing risk analysis. To make

the cluster configuration more realistic, misconfiguration scenarios that have been

observed in real production environments will be introduced to the cluster and some

sample applications will be deployed as well.

5.1. Vulnerability Detection Tools

Since the popularity of containerization and orchestration technologies has

grown at a rapid pace over the past decade, it stands to reason that a large portion of the

cyber-attacks occurring today target containerized environments. As mentioned in

chapter 4, most of the vulnerabilities that lead to security breaches in Kubernetes

environments hail from misconfigurations. These misconfigurations are not attributed

only to lack of experience and technical expertise, but also to the complex architecture

of Kubernetes and the large scaling capabilities it provides.

Many companies and foundations have created well documented guides and

lists of best practices to combat this phenomenon, with the most well-known being the

OWASP (Open Web Application Security Project) foundation’s top ten list. Even

though these lists often present a good and comprehensive way to secure Kubernetes

clusters, it is difficult for humans to adequately inspect large configuration files without

making mistakes or missing important details. For this reason, the use of automated

vulnerability scanners is often imperative to discover component vulnerabilities and

common misconfigurations fast and reliably. Some of the most well-known Kubernetes

vulnerability scanners in the industry are:

• kubesec: Analysis of security risks for Kubernetes resources

• kube-bench: Automated security testing against predefined tests included in the

CIS benchmark

• kube-hunter: Security vulnerability scanning and configuration auditing

• Kubiscan: RBAC policy scanning

Kubernetes Cybersecurity

Ioannis Morfonios 45

• kubeaudit: Configuration auditing

• Kubescape: Security vulnerability scanning for the cluster’s components and

deployed images, configuration auditing, compliance check and risk analysis

All the above security scanners are free and open-source tools that can be utilized by

everyone. This enables organizations to perform more frequent and in depth scanning

of their infrastructure. Open-source software is also more trustworthy because the tool’s

source code is publicly available and agile since it can be modified according to each

organization’s needs. In the below sections, the kube-hunter and Kubescape tools will

be further analyzed.

5.2. Kubernetes Cluster Setup

A main aspect of this project is the creation of an easily replicable Kubernetes

lab environment that can be easily created and utilized even by novice users. In total,

there are only two dependencies to setup and run the Kubernetes lab environment, the

first one is the VirtualBox Type-2 hypervisor and the second one is an infrastructure as

code tool called Vagrant. The Vagrant tool was used to provision and setup the virtual

machines, in combination with bash scripts that automate the installation and

configuration of the Kubernetes components. One of the benefits of infrastructure as

code, is that it provides a lot of flexibility when it comes to infrastructure provisioning

and configuration. In other words, the number of Kubernetes nodes and their

configuration can be easily altered by appropriately modifying the provided

Vagrantfile. The Vagrant configuration along with the bash scripts it uses can be

observed in Appendices 1, 2 and 3. The current setup provisions three virtual machines,

two of which act as worker nodes (worker-1, worker-2) and one as a master node

(master-1). The following table describes the configured resource allocation for the

cluster’s master and worker nodes.

Node Type CPU’s RAM Storage size Interfaces

Master 2 2.5 GB 40 GB

2

Worker 1 1.5 GB 40 GB

2

Table 5.1: Resource allocation per cluster node type

Kubernetes Cybersecurity

Ioannis Morfonios 46

The operating system of choice for all the virtual machines is a minimal image of

Ubuntu Linux and more specifically the 22.04 long term support version. The selected

Kubernetes version is 1.24 and its installation and setup are performed with the use of

the kubeadm tool. On top of that, the selected container runtime is CRI-O, which is an

implementation of the Kubernetes native CRI (Container Runtime Interface) that

utilizes the OCI (Open Container Initiative). The following figure represents a high

level network diagram of the provisioned Kubernetes cluster in VirtualBox.

Figure 5.1: Kubernetes cluster network diagram

5.2.1. Cluster provisioning

As already mentioned, VirtualBox and Vagrant should be installed to

successfully use the setup files. To run the setup, navigate to the path that the

Vagrantfile is stored and run the following command:

vagrant up

Vagrant will go through the installation and configuration procedure of the virtual

machines and return control to the console window after the execution of the scripts

complete. After the installation is finished three new virtual machines will have been

created (master-1, worker-1, worker-2). Vagrant automatically configures access to the

virtual machines with the use of TLS certificates and generates a private key for each

system (stored inside the «.vagrant\machines\<vm_name>\virtualbox» directory). To

connect to the master node, use the following command:

vagrant ssh master-1

Kubernetes Cybersecurity

Ioannis Morfonios 47

The first step to ensure that the cluster has been setup correctly is to check the nodes

status with the kubectl utility:

kubectl get nodes

All the nodes should be listed, and their stated status should be «Ready» as shown in

the figure below. In some cases, some additional time is needed for the TLS

bootstrapping procedure to complete.

Figure 5.2: Status of cluster nodes

At this point the setup procedure is complete and the base Kubernetes cluster is

operating as expected. To finalize the installation, some optional add-on components

will be installed. The first component is the metrics-server add-on, which aggregates

the cluster’s resource usage data and makes it available via other add-ons such as the

Kubernetes Dashboard. The second add-on is the Kubernetes Dashboard, which

provides easier visibility and management of the cluster’s resources. The third and final

component is calico, which provides an IPIP (IP in IP tunnelling) overlay and enhances

the overall security and performance of the cluster’s internal network communications.

The mentioned add-ons (except for calico which has been pre-installed during the

cluster’s provisioning) can be installed with the use of the following commands:

kubectl apply -f /vagrant/configs/YAML/cluster_addons/metrics-server.yaml

kubectl apply -f /vagrant/configs/YAML/cluster_addons/dashboard.yaml

kubectl apply -f /vagrant/configs/YAML/cluster_addons/dashboard_account.yaml

Since the Kubernetes Dashboard supports authentication only via a bearer token, the

service account admin-user and a cluster role binding were created as well. The access

token can be generated with the below command:

kubectl -n kubernetes-dashboard create token admin-user

Finally, to check if the rest of the add-ons were installed correctly and their pods are

running normally, we can fetch the cluster’s pods that reside in the kube-system

namespace along with their respective services with the following commands:

kubectl get pods -n kube-system

kubectl get services -n kube-system

Kubernetes Cybersecurity

Ioannis Morfonios 48

To be considered healthy, the calico and metrics-server pods’ status should be listed as

«Running» and the metrics-server add-ons’ service should be enabled as well to expose

the application.

Figure 5.3: Status of calico and metrics-server pods

Figure 5.4: Status of metrics-server service

5.2.2. Application Deployment and Introduction of Misconfigurations

Now that the Kubernetes cluster is configured and its functionality has been

validated, we can proceed with the deployment of applications. The creation of

deployments is not necessary for this project, but since many security issues in

Kubernetes clusters stem from bad design choices and insecure deployments, the

introduction of workloads will allow us to get more realistic results during the security

scanning of the cluster in the following chapters. In total, we will deploy three

applications. The first application consists of a simple wordpress website and a MySQL

database. To enable data persistence, both pods utilize PVC’s that store data locally on

the worker nodes’ filesystem. The second application is a minimal web page written in

Golang, that stores data to a Redis cluster. The Redis cluster consists of a master and a

replica pod. The third and final application is an instance of the Damn Vulnerable Web

App (DVWA) project. To create the deployments, the below commands can be used:

kubectl create -k /vagrant/configs/YAML/apps/wordpress/

kubectl create -k /vagrant/configs/YAML/apps/guestbook/

kubectl create -k /vagrant/configs/YAML/apps/dvwa/

Kubernetes Cybersecurity

Ioannis Morfonios 49

To introduce some vulnerabilities to the cluster, an additional deployment

(privileged-nginx) was created. This deployment is a plain NGINX web server that runs

on a privileged container and will act as the first intentionally introduced security

vulnerability of the cluster. Το create this deployment as well, we can use the following

command:

kubectl create -f /vagrant/configs/YAML/apps/nginx.yaml

The above commands will deploy all the relevant objects for each application in the

correct order. To ensure that all the pods and their respective services were created

successfully, we can use the following commands:

kubectl get pods

kubectl get services

Figure 5.5: Deployed application pods

Figure 5.6: Deployed application services

From the above figures, it is apparent that all applications reside in the default

namespace, which introduces an additional security misconfiguration to the cluster

since their objects are not properly isolated. On top of that, no resource limits have been

specified to any of the deployed pods, so in the event of a denial of service attack it is

probable that cluster-wide unavailability could occur due to resource exhaustion.

The last deliberate vulnerability that we will introduce to the cluster, is the

exposure of the Kubernetes Dashboard by changing its service type from ClusterIP to

Kubernetes Cybersecurity

Ioannis Morfonios 50

NodePort. To achieve this, we can open the Kubernetes Dashboard’s configuration file

with the following command and modify it as shown in Figure 5.7.

kubectl edit service kubernetes-dashboard -n kubernetes-dashboard

Figure 5.7: Kubernetes Dashboard configuration file

Finally, there are many aspects of the cluster that have not been properly secured

yet. This is expected since kubeadm handles only the creation of a Kubernetes cluster

by setting up its components. The actual configuration of the cluster and the

management of its workloads are under the responsibility of the cluster’s administrator.

In chapters 5.3 and 5.4, we will attempt to discover every possible vulnerability that

might impose risks to the security of the cluster.

5.3. Security Scan with Kubescape

Kubescape is an open-source vulnerability scanning tool developed by ARMO.

It is designed to offer a thorough view of a Kubernetes cluster’s security posture in both

on-premises and multi-cloud environments, by providing features such as image

security scanning, RBAC visualization for improved management of role assignments,

risk analysis and compliance inspection against the NSA-CISA, MITRE ATT&CK,

DevOpsBest and ArmoBest security frameworks [86].

Kubernetes Cybersecurity

Ioannis Morfonios 51

In total, we will perform two types of scanning with Kubescape. The first one

is YAML file scanning, which is useful for discovering misconfigurations before even

deploying applications to the Kubernetes cluster. The second type is host scanning,

which will perform a full scan against every discovered element including YAML files,

running objects in all namespaces, API server configuration, running images and even

the security settings of the worker nodes. Both scans will be run internally, meaning we

will execute the tool directly on the master node of the cluster.

5.3.1. YAML File Scan

The first scan we will perform with Kubescape concerns the scanning of the

Kubernetes manifest files which were used to deploy the applications to the cluster. To

initiate the YAML file scan, we can use the following command:

kubescape scan /vagrant/configs/YAML/apps/

The results of the YAML files scan can be observed in Figure 5.8. Altogether,

Kubescape discovered 16 failed controls, 3 of which were labeled as High severity.

Figure 5.8: YAML file scan with Kubescape

To get a more detailed view of the failed checks for each deployment, we can rerun the

scan with the --verbose flag. This flag will increase the verbosity level of the output

and even provide suggestions to mitigate the security risk. The following figure depicts

the failed controls for the privileged NGINX pod we intentionally introduced into the

cluster, along with informative links and recommended security changes.

Kubernetes Cybersecurity

Ioannis Morfonios 52

Figure 5.9: Verbose scan of the privileged NGINX pod

5.3.2. Host Scan

The second and final scan we will perform with Kubescape, conducts a full

security check of the Kubernetes cluster that includes not only the cluster’s

deployments, but also its system components and their configuration. To initiate the

host scan, we can use the following command:

kubescape scan --enable-host-scan

The results of the host scan are depicted in Figure 5.10. In total, Kubescape discovered

40 failed security controls, 1 of which was labeled as Critical severity and 6 were

labeled as High (3 High severity controls were skipped). By monitoring the results, it

is apparent that many of the violated controls concern excessive amounts of privileges

for certain built-in service accounts. Many service accounts are able to modify and

delete data or even the configuration of other objects. Since certain accounts are

responsible for performing management operations, these permission levels are usually

required to ensure the proper functionality of the cluster’s internal procedures. In these

cases, we will treat the failed control as false positives. A more detailed overview of all

failed security controls along with security risk mitigation procedures will be provided

in chapter 7.

Kubernetes Cybersecurity

Ioannis Morfonios 53

Figure 5.10: Host scan with Kubescape

Ιt is worth noting that host scanning tends to be time consuming, since the

number of scanned objects increased from 5 (during the YAML file scan) to 120. In

large environments with thousands of deployed pods, the expected execution time of

the scan will be significantly longer. In these occasions, a more targeted scan should be

performed, by specifying certain frameworks and namespaces. Finally, Kubescape has

built-in support for reporting in many formats, such as PDF files, JSON, XML and

prometheus metrics. To generate a report and save the results in a PDF file for example,

we need to provide the following flags --format pdf --output results.pdf as input to the

kubescape utility during the scan initialization.

5.4. Security Scan with kube-hunter

The second security scanning tool we will use to discover vulnerabilities in the

Kubernetes cluster is kube-hunter. It is an open-source tool developed by Aqua, with

the aim of finding security gaps and improving hardening of Kubernetes environments.

In total, kube-hunter runs 23 passive and 13 active tests. By default, only the passive

tests are executed against the targeted cluster since the active ones might induce

changes to the cluster’s state. Currently, there are four ways to install and run kube-

hunter, which allow for either internal or external scanning. The first method is to install

Kubernetes Cybersecurity

Ioannis Morfonios 54

it with the use of Python’s pip package installer. The second method is to install the

latest binary directly from the project’s official GitHub repository. The third one is to

deploy a pod on the cluster that contains the kube-hunter utilities. The fourth and final

choice is to use kube-hunter through a Docker container, which is running either on a

remote computer or on one of the cluster’s nodes. To acquire enough information about

the cluster’s security posture we will conduct two scans in total, an external scan from

a remote computer and an internal scan by deploying a kube-hunter pod [87].

5.4.1. Remote Scan

We will start using the kube-hunter tool by performing a scan from a remote

computer. This will allow us to carry out the same level of enumeration as a malicious

actor and draw similar conclusions about the cluster’s perimeter security. To start using

kube-hunter, we can run the following command:

kube-hunter

The first option we need to specify is the scanning type we want to use. Since we already

know the IP addresses of the cluster’s nodes, we can use the «Remote scanning» option.

The kube-hunter tool will then run the passive tests against the specified nodes and

detect their running services and vulnerabilities.

Figure 5.11: Detection of running services with kube-hunter

Kubernetes Cybersecurity

Ioannis Morfonios 55

In total, kube-hunter detected one vulnerability that is relevant to information disclosure

from an unsecured API server endpoint. This vulnerability does not provide a direct

attack interface to malicious actors but allows them to fetch useful information about

the cluster, such as the version of Kubernetes components. By searching Aqua’s

website for the ID that kube-hunter provided, we can get more information about this

vulnerability along with remediation suggestions.

Figure 5.12: Vulnerability detection with kube-hunter's remote scanning mode

5.4.2. Internal Scan (run inside a pod)

After examining the cluster’s security from a remote computer, we can proceed

with testing its internal security posture as well. For the internal scan we have the option

to run kube-hunter inside a pod, which will allow us to simulate the amount of

information a malicious container could discover and the actions a bad actor could

perform by compromising this container. To run the job that will create the kube-hunter

pod, we can use the following command:

kubectl create -f /vagrant/configs/YAML/kube-hunter-job.yaml

Since the created pod is running as a job object, once the scan procedure is finished, the

pod will stop running and its status will be listed as «Completed». With the command

below, we can fetch information about the pods that reside in the default namespace

and check the kube-hunter pod status.

kubectl get pods

Figure 5.13: kube-hunter pod status

Kubernetes Cybersecurity

Ioannis Morfonios 56

Finally, to check the results of the scan we need to get the pod’s logs by using the

kubectl utility (the pod’s name is generated randomly):

kubectl logs kube-hunter-rw94w

This time, kube-hunter discovered three additional vulnerabilities that concern insecure

access to the API server and unrestricted access to the pod’s secrets and service account.

Once again, by searching for the provided ID’s on Aqua’s website, we can get more

information and suggestions on mitigating the identified vulnerabilities.

Figure 5.14: Detected vulnerabilities after internal scan with kube-hunter

Kubernetes Cybersecurity

Ioannis Morfonios 57

6. Exploitation of cluster vulnerabilities

This chapter concerns the exploitation of vulnerabilities we discovered with the

use of kube-hunter and Kubescape tools. The goal is to present realistic attack and

misconfiguration scenarios that are encountered in real Kubernetes environments. In

total, we will perform three attacks against the Kubernetes cluster. During the first

attack, we will demonstrate the dangers of exposing the Kubernetes Dashboard and

what actions a malicious user could perform by acquiring access to it. The second

vulnerability we will exploit is the absence of isolation and resource limits in cluster

deployments. To expose the dangers that stem from this misconfiguration, we will

perform a denial of service attack against one of the deployed applications and monitor

how the other applications and the cluster’s functionality are affected. Finally, during

the third attack we will simulate how a bad actor can affect the cluster’s operation, by

attacking the cluster from inside a privileged pod. Finally, during the third scenario, we

will simulate how a bad actor can affect the operation of a Kubernetes cluster by

performing attacks and enumeration through a privileged pod.

6.1. Enumeration

Before proceeding with the attacks, we will perform enumeration from a remote

host to discover open ports and if possible, the types of applications these ports expose.

The results of this scan will be used in conjunction with the information we acquired

with the use of the kube-hunter and Kubescape tools. Since we have not provisioned an

Ingress Controller, we will perform a direct scan on the master node’s IP address with

the Nmap tool. By default, Kubernetes reserves ports between 30000 and 32767 for use

by NodePort services, so to speed up the enumeration procedure, we will only scan this

port range. To initiate the Nmap scan, the following command was used:

sudo nmap 192.168.56.11 -sS -SV -p30000-32767 -e eth2

Figure 6.1: Enumeration with Nmap

Kubernetes Cybersecurity

Ioannis Morfonios 58

Overall, we discovered five exposed applications, one of which is the Kubernetes

Dashboard. All applications are accessible from the VirtualBox host-only network, we

can easily map each port to its respective application. Α complete mapping between

open ports and applications is represented in Table 6.1.

Port Application

30246

Kubernetes Dashboard

31276

Wordpress

31612

Privileged NGINX Pod

32250

Damn Vulnerable Web App

32619

Go Application

Table 6.1: Mapping of exposed ports to deployed applications

6.2. Exploiting Exposed Dashboards

The first attack we will perform is a demonstration of the actions malicious users

can perform once they acquire access to the Kubernetes Dashboard. By default, the

Kubernetes Dashboard is accessible only by running a proxy service on the master

node. In our case the Dashboard’s service is constantly exposed, so it is safe to assume

that its type has been modified from ClusterIP to NodePort. By browsing to the

Dashboard’s webpage, we notice that we are only able to authenticate by providing

either a bearer token (valid for 24 hours by default) or the clusters’ kubeconfig file

(valid for as long as kubeconfig is not altered).

Figure 6.2: Kubernetes Dashboard authentication page

Kubernetes Cybersecurity

Ioannis Morfonios 59

Both methods require existing access to the cluster to fetch the requested information,

but in case the token or the kubeconfig file leak, attackers can access the Dashboard

without any restriction for a considerable amount of time since security mechanisms

such as MFA are not supported. There are many techniques that can be used to steal

these credentials, with the most popular being phishing or a combination of Man In The

Middle and SSL downgrade attacks with the use of publicly available tools (e.g.,

arpspoof, sslstrip).

Once attackers acquire access to the Dashboard, their actions are limited only

by the permission level of its service account. By browsing the Kubernetes Dashboard’s

options, it is apparent that the service account has administrative permissions, since all

objects are accessible and can be modified. In addition, the binding between the

Dashboard and its service account is created with a ClusterRoleBinding object, which

goes beyond the scope of namespaces (Dashboard’s service account reside inside the

kubernetes-dashboard namespace) and assigns the defined roles and permissions across

the cluster. To demonstrate this behavior, we can navigate to the secrets objects under

the default partition. Since we have cluster-wide administrative permissions, we can

freely access, modify or even delete the existing secrets, even though they reside in a

different namespace. Other possible actions are the modification of objects with the

intention to create downtime, exportation of the cluster’s configuration and secrets, or

even the creation of malicious pods and deployment that provide backdoor access to

the Kubernetes cluster.

Figure 6.3: Secret manipulation through the Kubernetes Dashboard

Kubernetes Cybersecurity

Ioannis Morfonios 60

6.3. Denial of Service Attack

The second scenario we will demonstrate is how the current setup behaves

against Denial of Service attacks. Kubernetes provides the ability to set resource usage

limits for its deployments, but those limitations are not set by default. To understand

the effect of this misconfiguration, we will target a specific application and monitor

how the attack affects the rest of the deployed applications.

There are many free and open-source DDOS tools available on the Internet that

are suitable for this attack. Α popular and easy to use choice that was favored for this

particular attack, is the Slowloris tool. To download Slowloris and commence the

attack, we can use the following commands:

git clone https://github.com/gkbrk/slowloris.git

python3 slowloris/slowloris.py 192.168.56.11 -p 32250 -s 1000 -v

Figure 6.4: DDOS attack with the Slowloris tool

In a short period of time, the application that listens on port 32250 will become

unavailable from the overwhelming number of requests. Browsing through the other

hosted applications, their performance appears to have been significantly affected by

the DDOS attack. Furthermore, problems also appear in the internal operations of the

cluster, as the operation of the system components is based on the same resources used

by the cluster’s objects. Since all the cluster nodes run on a single machine, the available

system resources are very limited compared to a production Kubernetes environment.

This in turn makes attacks based on resource depletion much more impactful. As long

as resources are available, Kubernetes should be able to handle DDOS attacks by using

scaling. Because the available system resources are always finite regardless of the

Kubernetes Cybersecurity

Ioannis Morfonios 61

environment, the establishment of resource limitations is in most cases the preferred

way to deal with this type of attacks.

Figure 6.5: Application unavailability during the DDOS attack

6.4. Compromised Privileged Pod

In the third and final attack, we will demonstrate what actions a malicious user

can perform after gaining access to a privileged pod. For this scenario, we will assume

that the attacker has already acquired access to the pod and is actively searching for

ways to extract information that could undermine the host system’s security or escape

the container. To login to the privileged pod, we can use the following command:

kubectl exec --stdin --tty privileged-nginx-77c5cdccb8-qsgwf -- /bin/bash

The first thing we notice is that we logged into the container with the root user account.

We can start gathering information by checking the available utilities inside the /bin

directory. Since we are connected to a minimal image, the available tools are limited

compared to a complete Linux installation. One of the available tools is fdisk, which

can be used to access and manipulate the disk and its partitions. Normally using fdisk

requires elevated privileges, but since we are already connected with the root account,

we should be able to list information about the disk’s partitions with the following

command:

fdisk -l

In Figure 6.6, we notice that the host’s /dev/sda1 partition is accessible through the

container. Since we have enough permissions to access the host disk, we can also mount

the /dev/sda1 partition as a data volume as follows:

mkdir /mnt/hostdisk

mount /dev/sda1 /mnt/hostdisk/

Kubernetes Cybersecurity

Ioannis Morfonios 62

Figure 6.6: List disk partitions from the privileged container

By mounting the partition inside the container, we gain access to the host’s data,

configuration and utilities without any restrictions. For example, we can access the

kubectl utility to retrieve information about the actions we can perform on the host

machine as follows:

/mnt/hostdisk/bin/kubectl auth can-i --list

Figure 6.7: List authorized actions with kubectl

In our case, we do not have enough permissions to create, delete or modify any of the

cluster’s objects through the container, so we can only gather information by

performing enumeration on specific cluster endpoints. Another possible action is to

gather information by accessing the host’s data and configuration files. Perhaps the

most critical data files of every Linux system are the /etc/passwd and /etc/shadow files,

which contain information about the system’s accounts such as usernames, groups and

precomputed hashes of the users’ passwords. Another good target are the kubelet’s TLS

certificate and private key, which could potentially allow us to impersonate the host

Kubernetes Cybersecurity

Ioannis Morfonios 63

system’s identity, perform data exfiltration or even decrypt the communication between

the current worker node and the cluster’s master nodes. To retrieve the content of these

files, we can use the following commands:

cat /mnt/hostdisk/etc/passwd

Figure 6.8: Compromised worker node /etc/passwd file

cat /mnt/hostdisk/etc/shadow

Figure 6.9: Compromised worker node /etc/shadow file

Kubernetes Cybersecurity

Ioannis Morfonios 64

cat /mnt/hostdisk/var/lib/kubelet/pki/kubelet.key

Figure 6.10: kubelet private key

cat /mnt/hostdisk/var/lib/kubelet/pki/kubelet.crt

Figure 6.11: kubelet TLS certificate

Kubernetes Cybersecurity

Ioannis Morfonios 65

Finally, one last thing we can check is whether we have enough permissions to

create or modify files on the mounted partition. Τhe environment we use allows this

kind of interaction between the container and the host, therefore we have the ability to

perform a wide range of actions such as modifying configuration files, download and

run malicious scripts, establishing backdoors on the host and more. Since the container

is running in privileged mode, the attacks that can be executed from inside the

containerized environment are many and unpredictable. The only way of protecting the

cluster and its workloads against compromised privileged pods, is to monitor and

immediately remove the affected pods.

Kubernetes Cybersecurity

Ioannis Morfonios 66

7. Kubernetes Security Hardening

This chapter aims to provide guidance on addressing the security vulnerabilities

of the Kubernetes cluster, which were discovered and exploited in chapters 5 and 6,

respectively. To effectively strengthen the cluster’s security, we will analyze and

mitigate any discovered vulnerabilities that are actively exposing the cluster at risk,

while ignoring any false positive warnings and failed scan tests. To better understand

the implemented mitigations, all security fixes will be applied on the existing base

configuration of the cluster, as well as the deployed applications. The suggested

security recommendations are based on the actual recommendations provided by the

kube-hunter and Kubescape tools, the Kubernetes documentation that is actively

maintained by Cloud Native Computing Foundation and my own technical experience.

The following table, contains a complete mapping of the discovered security

vulnerabilities (Figures 5.10 and 5.11) that each of the proposed countermeasures

resolves:

Countermeasures Discovered Vulnerabilities

Isolation of Deployments and

Configuration of Resource Limits

(Kubescape)

1. Data Destruction

2. Resources CPU limit and request

3. Resources memory limit and

request

4. Pods in default namespace

Pod Security Enhancement

(Kubescape)

1. Data Destruction

2. List Kubernetes secrets

3. Privileged container

4. Writable hostPath mount

5. Allow privilege escalation

6. HostNetwork Access

7. Non-root containers

8. Portforwarding privileges

Configuration of Probes

(Kubescape)

1. Configured liveness probe

2. Configured readiness probe

Resource Labeling

(Kubescape)

1. K8s common labels usage

2. Label usage for resources

Cluster Node Security Hardening

(Kubescape)

1. Data Destruction

2. Writable hostPath mount

3. HostNetwork access

4. Linux Hardening

Enforcement of Network Policies (Kubescape)

Kubernetes Cybersecurity

Ioannis Morfonios 67

1. Ingress and Egress blocked

2. Network mapping

Enforcement of the Least Privilege

Principle with RBAC

(Kubescape)

1. Data Destruction

2. Cluster-admin binding

3. List Kubernetes secrets

4. Writable hostPath mount

5. Access container service account

6. Allow privilege escalation

7. Automatic mapping of service

account

8. HostNetwork access

9. Mount service principal

10. Namespace without service

accounts

11. Non-root containers

12. Portforwarding privileges

13. Immutable container filesystem

(kube-hunter)

1. Access to API using service

account token (KHV005)

2. Access to pod’s secrets

3. Read access to pod’s service

account token (KHV050)

Secure Sensitive Interfaces

(Kubescape)

1. Exposed sensitive interfaces

2. Access Kubernetes Dashboard

Limitation of Information Disclosure

(Kubescape)

1. Audit logs enabled

(kube-hunter)

1. Exposed sensitive interface

(KHV002)

Table 7.1: Mapping of discovered vulnerabilities to enforced countermeasures

7.1. Isolation of Deployments and Configuration of Resource Limits

Two of the simplest and at the same time most overlooked configuration options

in Kubernetes, is the proper isolation of the deployed objects with the use of

namespaces and the definition of resource limits. The use of namespaces provides an

additional barrier between the deployed objects and restricts users from performing

malicious actions, such as enumeration and lateral movement between the cluster’s

workloads. Resource limits on the other hand, limit the amount of system resources that

Kubernetes Cybersecurity

Ioannis Morfonios 68

are available to each deployed container and provides protection against attacks that

aim to exhaust cluster resources.

 To define namespaces for the supported objects (e.g., deployments, services,

secrets, PVC’s, ConfigMaps), first we need to edit the Kubernetes manifest files and

specify the desired namespace under the metadata object field. Afterwards, we need to

create the defined namespaces (either from the command line or via a Kubernetes

manifest file) and redeploy our apps (a secure version of the manifest files is present

inside the secured_apps directory):

kubectl delete -k /vagrant/configs/YAML/apps/<application name>

kubectl create -k /vagrant/configs/YAML/secured_apps/<application name>

 Afterward, we can proceed with the specification of resource limits for every

container we need to deploy. The controls we can create concern the usage of CPU,

memory or the size of the requested pages. An additional experimental control that was

added in version 1.25, concerns the limitation of available ephemeral storage for each

container. In addition, for each one of the controls we can specify either soft limits with

«requests» or hard limits with «limits». The difference between them, is that the limits

defined in «requests» can possibly exceed the specified limit if the container has enough

resources available while «limits» define the maximum amount of resources that a

container is allowed to use.

Figure 7.1: Specification of namespace and resource limits

Kubernetes Cybersecurity

Ioannis Morfonios 69

7.2. Pod Security Enhancement

As we observed in chapter 6, the introduction of privileged pods inside a

Kubernetes cluster can prove to be very dangerous due to the elevated permissions of

the root user. These set of permissions allow malicious users not only to manipulate the

components of a compromised container, but its neighbor components as well. To

prevent this behavior, Kubernetes provides several options that can be defined inside

the securityContext object field of a container. A comprehensive list of the

securityContext object’s most important security options, is depicted in the following

figure [88]:

Figure 7.2: Options of the securityContext object field

The «privileged» option accepts a Boolean value and specifies whether the

container is allowed to have privileged access. As a best practice, this field should

always remain disabled and only a limited set of required permissions should be

allowed to the container [88].

The «allowPrivilegeEscalation» option indicates that the user that inside the

container can perform privilege escalation to be able to take advantage of additional

allowed capabilities that have been provided to the container [88].

In case a container is not required to perform additional modifications to its

filesystem after its creation, we can enable the «readOnlyFilesystem» option. By doing

so, the internal components of the container or even malicious users will not be able to

perform write operations to its filesystem, which means that the container becomes

Kubernetes Cybersecurity

Ioannis Morfonios 70

more secure and resilient against attacks that threaten its integrity. This option should

be used with caution and if write access by the container’s internal processes is required,

it should always be disabled to avoid functionality issues [88].

 To control the user that will be used inside the container, we can use the

«runAsUser» option. Additionally, we can explicitly disallow the use of the root user

account, by enabling the «runAsNonRoot» option [88].

 Finally, Kubernetes provides the ability to specify the available capabilities that

the created containers will be able to use. The supported list of capabilities is relevant

only to the Linux operating system. As a matter of fact, all the available options inside

the capabilities list, are an exact match of the capabilities list that the Linux kernel

utilizes for permission checking [88] [89].

7.3. Configuration of Probes

Probs are minimal requests that are targeted against the exposed port and

application of a container. Their purpose is to gather information about the container’s

or application’s health and inform the cluster about changes in their status. By using

probs, we can create more resilient environments and take advantage of features such

as high availability and automatic failovers, by routing traffic to available resources.

Figure 7.3: Overview of probe operations [90]

At the time of writing, Kubernetes supports three types of probes, Liveness, Readiness

and Startup probes. As their name suggests, each one of them aims at a specific time

window of the application’s lifecycle. To test the availability of the targeted resource,

probs can perform a variety of tests such as http requests on certain endpoints, parsing

Kubernetes Cybersecurity

Ioannis Morfonios 71

of response attributes (e.g., HTTP headers) and TCP, UDP, gRPC connectivity checks

on specific network ports. The following figure, depicts the configuration of a

Readiness and a Liveness probe [91]:

Figure 7.4: Sample configuration of a Liveness and a Readiness Probe

To monitor if the probs are working correctly, we can check the logs of the container.

In the following figure, we can observe that the Liveness probe performs HTTP

requests on a NGINX container every five seconds, as specified in the above

configuration.

Figure 7.5: Probe requests on a NGINX container

7.4. Resource Labeling

A configuration option that does not directly affect the security of a Kubernetes

cluster is resource labeling. The use of labels is necessary in some circumstances for

creating correlations between objects, such as deployments and services for example.

Furthermore, labels can also be used to improve the manageability of Kubernetes

resources, by providing additional identification and querying capabilities to the

cluster’s administrators. We can specify labels inside the metadata and

Kubernetes Cybersecurity

Ioannis Morfonios 72

spec.template.metadate object fields. Additionally, to perform mapping between

resources, we can use the spec.selector.matchLabels object field.

Figure 7.6: Specification of labels for a deployment object

7.5. Cluster Node Security Hardening

Another aspect that needs attention security wise, is the level of protection the

cluster’s nodes provide. Kubernetes offers security enhancement options for both

Windows and Linux operating systems, so we can apply those options to our deployed

containers as well. Since we chose to run Ubuntu Linux on the cluster’s nodes, we can

utilize the AppArmor kernel security module which is preinstalled on our distribution

and enforces some AppArmor profiles by default. This security mechanism works in a

static way, which means that it enforces a set of user defined rules that either allow or

deny certain capabilities. For that reason, it is important to make AppArmor profiles as

restrictive as possible, to provide adequate protection to the hosted workloads. To

secure the deployed containers, we need to load one of the available AppArmor profiles

of the host into the container [92] [93].

Before we start securing our resources, we need to select an AppArmor profile

that fits our needs. There are multiple publicly available profiles on the Internet,

Kubernetes Cybersecurity

Ioannis Morfonios 73

optimized for specific combinations of operating systems, applications and services,

but we can create custom profiles as well. In our case, a new generic profile was created

that limits the access of applications to system files, directories and services

significantly. To load this profile on the Linux kernel and check its status, we can use

the following commands:

sudo apparmor_parser -r /vagrant/configs/apparmor_generic

sudo apparmor_status

Figure 7.7: List of loaded AppArmor profiles

Since we cannot predict on which of the available worker nodes a newly created pod

will be scheduled, it is important to load the AppArmor profile on all worker nodes.

Afterwards, we can proceed with the modification of the manifest files. At the time of

writing, this feature is still considered a beta release, so to implement it we need to pass

the AppArmor profile to the supported resource as an annotation instead of specifying

it inside the securityContext object field. In Kubernetes, annotations are specified inside

the metadata object field, as depicted in Figure 7.8.

Figure 7.8: AppArmor profile enforcing on a container

Kubernetes Cybersecurity

Ioannis Morfonios 74

7.6. Enforcement of Network Policies

By default, the deployed workloads in Kubernetes clusters can interact with

each other without any restriction. Τhis feature is useful for testing environments where

we simply want to assess the correct operation of software applications, but the lack of

isolation between the resources is not suitable for use in production. Namespaces

provide an additional protection layer between irrelevant resources, but they do not

enforce any restrictions to the communication of resources that reside inside the same

namespace. This entails that malicious users can interact with an application in

unintended ways (e.g., access the backend directly), since network traffic is not filtered

inside the namespace. To address this issue, Kubernetes provides a mechanism called

Network Policies. The specified policies are similar in function to ACL’s (Access

Control Lists). By using Network Policies, we can control the traffic flows inside a

namespace, by creating allow or deny rules. An example of their operation can be

observed in Figure 7.9, where an external user’s interaction with an application is

depicted. In this scenario, we need to allow users to access the frontend of the

application, while blocking any requests made directly to the database servers. In

addition, we can specify that only the frontend part of the application can connect to

the backend and vice versa. A graphical representation of this scenario is depicted in

Figure 7.9.

Figure 7.9: Overview of network security policies function [94]

 A Network Policy consists of two main elements, the podSelector and the

policyTypes. The podSelector specifies the pods we want the policy to apply to with

the use of labels. On the other hand, policyTypes describe the network traffic we want

to control by using attributes such as traffic direction (e.g., ingress, egress), IP

addresses, network ports and labels. To reproduce the configuration shown in figure

7.9, we need to create three policies in total. We will follow the practices outlined in

Kubernetes Cybersecurity

Ioannis Morfonios 75

the positive security model, so the first policy we will create rejects all inbound and

outbound traffic within the namespace and acts as the default option for any traffic that

does not match any of the other rules.

Figure 7.10: Deny all network traffic policy

The second policy is an allow rule that matches all incoming requests to the frontend

pod’s TCP port 80. All other requests to the frontend pod will be blocked.

Figure 7.11: Allow ingress traffic to frontend’s TCP port 80

The third and final policy, allows all traffic initiated from the frontend pod to reach the

database pod’s TCP port 3306. Once again, every other request that does not match this

criterion, will be blocked by the default deny policy.

Kubernetes Cybersecurity

Ioannis Morfonios 76

Figure 7.12: Allow frontend originated traffic to database’s TCP port 3306

Finally, to ensure that all referenced Network Policies have been successfully applied

to the desired namespace and that their selectors map to the correct resources, we can

list the policies by using the following command:

kubectl get networkpolicies.v1.networking.k8s.io -n wordpress

Figure 7.13: Network security policies of the wordpress namespace

7.7. Enforcement of the Least Privilege Principle with RBAC

By monitoring the results of the cluster’s security scan, it is easy to see that most

of the warnings are relevant to improper assignment of permissions. To enforce cluster-

wide authorization and restrict access to the cluster’s resources, Kubernetes utilizes

Role-Based Access Control by using the rbac.authorization.k8s.io API group. There are

two role types in Kubernetes, Roles and ClusterRoles. The only difference between

them, is that Roles are a namespaced permission set while ClusterRoles can be used in

all namespaces. In addition, there are two available binding types, RoleBindings and

ClusterRoleBindings. RoleBindings, just like Roles, can be used only inside the

namespace in which they were created, while ClusterRoleBindings provide cluster-

Kubernetes Cybersecurity

Ioannis Morfonios 77

wide access. Finally, Kubernetes supports two account types, user accounts and service

accounts. As their names suggest, user accounts are meant to be used by humans, while

service accounts are utilized by applications to authenticate against the API server [75].

Since we have not created any user accounts, the main issue we need to address

is the excessive privileges the default service accounts assign to their associated pods.

To override the default service accounts, we need to create new service accounts for

every namespace of the cluster. Something that we need to be aware of, is that

Kubernetes mounts the service account token to its associated pods by default. To

prevent malicious users from accessing API credentials in case a pod is compromised,

a good practice is to disable this feature completely.

Figure 7.14: Service account specification

Afterwards, we need to create a custom role and bind it to the service account. In our

case, we will create a custom Role that only allows read access to pods. To bind the

Role only to the namespace’s service account, we will use a RoleBinding.

Figure 7.15: Specification of a Role and a RoleBinding

To assign the service account to a pod, we need to provide its name as a value to the

«serviceAccountName» flag, inside the pod’s spec object field. To validate that the

Kubernetes Cybersecurity

Ioannis Morfonios 78

Role and the RoleBinding have been created successfully, we can list them by using

the following commands:

kubectl get roles -n nginx

kubectl get rolebindings -n nginx

Figure 7.16: Roles and RoleBindings of the nginx namespace

It is worth noting that Kubernetes RBAC authorization is very flexible and

provides a lot of verbs that can dictate access to a large set of resources for fine-grained

access control. As a best practice, specific combinations of resources and verbs should

be avoided (e.g., [pods/exec create], [events delete], etc.), especially when assigned to

pods. The default service accounts that are assigned to pods if no custom service

accounts are specified, are not restrictive enough to prevent malicious actions in case a

pod is compromised. To enhance the security posture of Kubernetes clusters and their

workloads, the use of RBAC is mandatory.

7.8. Secure Sensitive Interfaces

An obvious yet very common security misconfiguration is the exposure of

graphical user interfaces over unsecured networks, such as unrestricted local area

networks or even the Internet. Some of these interfaces are Kubeflow, Weave Scope

and of course the Kubernetes Dashboard. Many sensitive interfaces do not provide

adequate authentication since they were not designed to be exposed outside the

management network, which creates additional security risk for the cluster.

 To secure the Kubernetes Dashboard, we need to modify its service type from

NodePort to ClusterIP. This configuration change will make the Dashboard accessible

only by running an on demand proxy server with the use of the kubectl utility, thus

making connectivity to the Dashboard more controlled and predictable. As an additive

protection measure, we can limit the permissions of the Dashboard’s service account,

to allow only specific operations. A common configuration option is to allow read-only

access to a limited set of cluster resources, as depicted in the following figure:

Kubernetes Cybersecurity

Ioannis Morfonios 79

Figure 7.17: View-only Role for the Kubernetes Dashboard

7.9. Limitation of Information Disclosure

A good security practice that applies not only to Kubernetes but to every kind

of technology used in modern IT infrastructures, is to protect the identity of the systems

from being exposed publicly. By default, the kubelet service allows the API server to

fetch information such as the cluster’s running version or node metrics. This

information can easily be accessed through the exposed «/metrics» and «/version»

endpoints. Generally, Kubernetes provides adequate security, but like every other

software, from time to time new vulnerabilities come to light. By allowing access to

cluster related information, bad actors could potentially discover vulnerabilities that

might affect the specific version the cluster’s nodes are running and take advantage of

them.

 To prevent malicious users from accessing this type of information, we can

disable the debugging and log collection features of the kubelet service, by setting the

«enable-debugging-handlers» flag to false. By default, this flag will not be present

inside the kubelet’s configuration file, so we need to add it as follows:

Kubernetes Cybersecurity

Ioannis Morfonios 80

Figure 7.18: kubelet configuration file after disabling log collection

After modifying the configuration file, we need to restart the kubelet service to load the

new configuration. To perform the restart operation and then monitor the service’s

status, we can use the following commands:

sudo systemctl restart kubelet

sudo systemctl status kubelet

Kubernetes Cybersecurity

Ioannis Morfonios 81

8. Security Hardening Evaluation

In the previous chapter, we applied security optimizations to many aspects of

Kubernetes, such as the cluster’s components, the deployed applications, the user and

service accounts and even to the underlying Linux hosts. To determine if the applied

security measures are enough, in this chapter we will re-evaluate the cluster’s security

and calculate the total security risk once again by performing three new vulnerability

scans with Kubescape and kube-hunter.

 The first security scan we will perform is a YAML file scan that will help us

determine if the applications we created provide an adequate level of security. To

initiate the scan, we can use the following command:

kubescape scan /vagrant/configs/YAML/secured_apps/ --verbose

Figure 8.1: Re-evaluation of YAML file security with Kubescape (Initial scan depicted in

Figure 5.8, Page 52)

Kubernetes Cybersecurity

Ioannis Morfonios 82

By comparing the results with those of the previous vulnerability scan, we notice that

we managed to resolve all the vulnerabilities we discovered before securing the

resources and reduced the total security risk from 43.03% to 0%.

 The second scan we will run makes use of the Kubescape tool once again and

aims to discover the underlying host’s security vulnerabilities. To commence the

security scan, the following command can be used:

kubescape scan --enable-host-scan

Figure 8.2: Re-evaluation of host security with Kubescape (Initial scan depicted in Figure

5.10, Page 54)

By monitoring the results, it is apparent that many of the security vulnerabilities persist.

The reason behind this is that even though we restricted access throughout the cluster

and enforced the least privilege principle as much as possible, many of the system’s

resources (kube-system namespace) require elevated access to perform administrative

actions such as traffic manipulation and resource management. Limiting the access

scope and privileges of these resources is not possible without breaking the cluster’s

functionality, so we will treat the suggestions that are related to kube-system resources

as acceptable risk. In total, even though we could not eliminate the security risk

completely, we managed to reduce it from 27.28% to 18.81%.

Kubernetes Cybersecurity

Ioannis Morfonios 83

For the third and final security scan, we will perform an internal scan by running

the kube-hunter tool from a deployed pod. To start the scan and fetch the logging output

of the pod, the following commands can be used (the pod’s name is generated

randomly):

kubectl create -f /vagrant/configs/YAML/kube-hunter-job.yaml

kubectl logs kube-hunter-ftkbx

The discovered security issues from the first scan were related to information disclosure

since the «/version» endpoint of the API server was exposed and access to host

credentials, pod secrets and service account tokens was possible from neighboring

pods. All these issues were resolved in chapter 7, by disabling the debugging headers

in the kubelet’s configuration and by introducing separate service accounts for each

deployed resource. In addition, all related resources are now deployed in separate

namespaces and the automatic mounting of service account tokens to pods has been

disabled for all cluster resources.

 A complete overview of all the security controls that have been executed against

the Kubernetes cluster (by both the kube-hunter and Kubescape tools), their

contribution to the final risk score after the introduction of security measures and their

mitigation status, can be observed in Tables 8.2 and 8.3.

Control Name Severity
Risk Score

(Before)

Risk Score

(After)
Comments

Control Plane

Hardening
Critical 0% 0% Not Applicable

Disable

anonymous

access to Kubelet

service

Critical 0% 0% Not Applicable

Enforce Kubelet

client TLS

authentication

Critical 0% 0% Not Applicable

Data Destruction Critical 25% 0%

Mitigated by the

enforcement of the

security measures

defined in chapters

7.1, 7.2, 7.5, 7.6

Cluster-admin

binding
High 3% 3%

cluster-admin

binding is required

by kubeconfig, so

no action was taken

Applications

credentials in
High 0% 0% Not Applicable

Kubernetes Cybersecurity

Ioannis Morfonios 84

configuration

files

CVE-2021-

25742-nginx-

ingress-snippet-

annotation-

vulnerability

High 0% 0% Not Applicable

CVE-2022-

23468-

containerd-fs-

escape

High 0% 0% Not Applicable

Host PIO/IPC

privileges
High 0% 0% Not Applicable

Insecure

capabilities
High 0% 0% Not Applicable

List Kubernetes

secrets
High 16% 16%

kube-system pods

require access to list

secrets, so no action

was taken

Privileged

container
High 14% 12%

User defined

privileged

containers were

removed. kube-

system pods require

privileged access

RBAC enabled High 0% 0% Not Applicable

Resource limits High 0% 71%

Works in a reverse

fashion. Resource

limits were

introduced for all

user defined

workloads

Resources CPU

limit and request
High 100% 71%

Resource limits

were set to all user

defined workloads

Resources

memory limit and

request

High 90% 58%

Resource limits

were set to all user

defined workloads

Workloads with

Critical

vulnerabilities

exposed to

external traffic

High 0% 0% Not Applicable

Workloads with

RCE

vulnerabilities

exposed to

external traffic

High 0% 0% Not Applicable

Kubernetes Cybersecurity

Ioannis Morfonios 85

Writable hostPath

mount
High 19% 23%

To store database

data, two folders

were exposed on

the worker nodes to

permit access from

certain pods

Access container

service account
Medium 100% 98%

New service

accounts were

created for each

deployed resource

(excluding kube-

system) that follow

the principle of

least privilege

Allow privilege

escalation
Medium 80% 47%

Privilege escalation

was forbidden for

all user defined

workloads

Allowed hostPath Medium 19% 23%

To store database

data, two folders

were exposed on

the worker nodes to

permit access from

certain pods

Automatic

mapping of

service account

Medium 100% 0%

Mitigated

Automatic service

account mapping

was disabled for all

workloads

CVE-2021-25741

- Using symlink

for arbitrary host

file system access

Medium 0% 0% Not Applicable

CVE-2022-0185-

linux-kernel-

container-escape

Medium 0% 0% Not Applicable

CVE-2022-0492-

cgroups-

container-escape

Medium 58% 53%

Vulnerability was

addressed by

enforcing an

AppArmor profile

on containers and

by disabling the

CAP_SYS_ADMIN

capability. The

same actions cannot

be performed on

kube-system pods

CVE-2022-

24348-

argocddirtraversal

Medium 0% 0% Not Applicable

Kubernetes Cybersecurity

Ioannis Morfonios 86

Cluster internal

networking
Medium 100% 80%

Network traffic for

all containers was

filtered by the

enforcement of

network policies

with Calico. kube-

system resources

remained

unchanged

Configured

liveness probe
Medium 47% 0%

Mitigated

Configured probs

for all workloads

Container

hostPath
Medium 0% 0% Not Applicable

Containers

mounting Docker

socket

Medium 0% 0% Not Applicable

CoreDNS

poisoning
Medium 5% 0%

Mitigated

Network traffic for

all containers was

filtered by the

enforcement of

network policies

with Calico. kube-

system resources

remained

unchanged

Data Destruction Medium 0% 0% Not Applicable

Delete

Kubernetes

events

Medium 5% 5%

Only kube-system

pods can delete

system events, so

no action was taken

Exec into

container
Medium 3% 3%

Only kube-system

pods can open a

shell into other

containers, so no

action was taken

Exposed

dashboard
Medium 0% 0% Not Applicable

Exposed sensitive

interfaces
Medium 100% 100%

Accepted Risk

The control is

triggered by the

exposure of the

Kubernetes

Dashboard

Forbidden

Container

Registries

Medium 19% 6%

Docker repository

was added to kube-

hunter’s trusted list.

Certain repositories

(like the aquasec

Kubernetes Cybersecurity

Ioannis Morfonios 87

repo that kube-

hunter uses) were

kept untrusted

HostNetwork

access
Medium 28% 35%

Access allowed to

specific containers

for data storing

functions

HostPath mount Medium 24% 29%

To store database

data, two folders

were exposed on

the worker nodes to

permit access from

certain pods

Images form

allowed registry
Medium 42% 29%

Docker repository

was added to kube-

hunter’s trusted list.

Certain repositories

(like the aquasec

that kube-hunter

uses) were kept

untrusted

Ingress and

Egress blocked
Medium 100% 73%

Network traffic for

all containers was

filtered by the

enforcement of

network policies

with Calico. kube-

system resources

remained

unchanged

Linux hardening Medium 61% 52%

A generic

AppArmor profile

was enforced on all

user defined

containers

Malicious

admission

controller

(mutating)

Medium 0% 0% Not Applicable

Mount service

principal
Medium 24% 29%

Additional

resources were

introduced to the

cluster that required

a service principal

to be mounted on

the container. New

service principals

were created as

well, that follow the

Kubernetes Cybersecurity

Ioannis Morfonios 88

principle of least

privilege

Namespace

without service

accounts

Medium 8% 12%

New namespaces

were created and

not all required a

service account

Network

Mapping
Medium 100% 80%

Network traffic for

all containers was

filtered by the

enforcement of

network policies

with Calico. kube-

system resources

remained

unchanged

No Impersonation Medium 3% 3%

Impersonation of

privileged groups is

only permitted by

the cluster-admin

role which is

assigned to specific

kube-system pods,

so no action was

taken

Non-root

containers
Medium 91% 88%

The one and only

user defined

privileged container

was removed.

Changes to the

kube-system

containers cannot

be made without

breaking

functionality

Portforwarding

privileges
Medium 3% 3%

Certain kube-

system pods require

port-forwarding

capabilities, so no

action was taken

Sudo in container

entrypoint
Medium 0% 0% Not Applicable

Workloads with

excessive amount

of vulnerabilities

Medium 0% 0% Not Applicable

Access

Kubernetes

dashboard

Low 1% 1%

Accepted Risk

The control is

triggered by the

exposure of the

Kubernetes

Dashboard

Kubernetes Cybersecurity

Ioannis Morfonios 89

Audit logs

enabled
Low 100% 100%

Audit logs are

useful for

monitoring and

reporting, so this

control was

intentionally

ignored

CVE-2022-3172-

aggregated-API-

server-redirect

Low 0% 100%

False Positive

Vulnerability fixed

in v1.24.5

Configured

readiness probe
Low 71% 35%

Readiness probes

were used for all

user defined

workloads. kube-

system pods

remained

unchanged

Image pull policy

on latest tag
Low 0% 0% Not Applicable

Immutable

container

filesystem

Low 75% 0%

A read-only root

filesystem was

enforced for

specific containers

K8s common

labels usage
Low 100% 94%

Labels were used

for all user defined

workloads. kube-

system pods

remained

unchanged

Kubernetes

CronJob
Low 0% 0% Not Applicable

Label usage for

resources
Low 53% 48%

Labels were used

for all user defined

workloads. kube-

system pods

remained

unchanged

Malicious

admission

controller

(validating)

Low 0% 0% Not Applicable

Naked PODs Low 0% 0% Not Applicable

PSP enabled Low 100% 100%

False Positive

Pod Security

Policies are

deprecated and

scheduled for

removal in v1.25.

Current cluster

version is v1.24, but

Kubernetes Cybersecurity

Ioannis Morfonios 90

PSPs are not

utilized by any

resources

Pods in default

namespace
Low 42% 0%

Mitigated

All relevant

resources were

grouped together

inside their own

namespaces

Resource policies Low 100% 0%

Mitigated

Policies were

defined for all user

defined workloads

Secret/ETCD

encryption

enabled

Low 100% 0%

False Positive

Encryption of

secrets was already

enabled, so no

action was taken

SSH server

running inside

container

Low 0% 0% Not Applicable

Table 8.1: Mitigation status of the Kubescape security findings

Control Name Severity Comments

KHV005 - Access to

Kubernetes API
High

Mitigated

New service accounts

have been created for

every namespace, which

follow the principle of

least privilege. kube-

system resources

remained unchanged

Access container service

account
Medium

Mitigated

New service accounts

have been created for

every namespace, which

follow the principle of

least privilege. kube-

system resources

remained unchanged

KHV050 - Read access to

Pod service account token
Medium

Mitigated

New service accounts

have been created for

every namespace, which

follow the principle of

least privilege. kube-

system resources

remained unchanged

Kubernetes Cybersecurity

Ioannis Morfonios 91

KHV002 - Kubernetes

version disclosure
Low

Mitigated

The enable-debugging-

handlers flag has been

disabled
Table 8.2: Mitigation status of the kube-hunter security findings

Kubernetes Cybersecurity

Ioannis Morfonios 92

9. Conclusion

As the popularity and usage of Kubernetes continually increases, it is expected

that more and more security gaps will be discovered over time. After conducting

research to discover the most common vulnerabilities that threaten Kubernetes, it is

apparent that a large percentage of them stem from critical security misconfigurations

and not from platform specific security weaknesses. The main reasons that further

burden this situation are the complexity of Kubernetes and the inexperience of many

administrators. Furthermore, to examine how a real Kubernetes environment copes with

some of the discovered misconfiguration scenarios, we deployed and configured a

Kubernetes cluster and subsequently evaluated its security posture with the use of the

kube-hunter and Kubescape vulnerability scanning tools. The goal was to evaluate

many aspects of the cluster's security by using several scanning techniques, such as

internal and external scanning, YAML file scanning, inspection of its components for

vulnerabilities, and even estimate the overall security risk. To demonstrate how

impactful some of the intentionally created misconfigurations are, specially crafted

attacks were launched against the cluster, and as expected, the additional layers of

abstraction that Kubernetes adds in-between the deployed applications and the

underlying hardware, exposed even adequately protected applications at risk. Finally,

to decrease the attack surface of the cluster, a list of countermeasures was enforced to

protect both the cluster’s computing resources and its workloads. To discover the best

Kubernetes security practices, a qualitative examination of online resources such as

blog postings, academic publications, and published documentation was conducted.

The generated list of security countermeasures includes the enforcement of network

policies and the principle of least privilege with role-based access control, separation

of cluster resources, hardening of the underlying hosts, limitation of information

disclosure, protection of sensitive interfaces, resource labeling and usage limitation of

the cluster’s computing resources.

Kubernetes Cybersecurity

Ioannis Morfonios 93

List of Appendices

Appendix 1: Vagrant Configuration (Vagrantfile)

MASTER_NODES = 1

WORKER_NODES = 2

BASE_IP = "192.168.56."

MASTER_IP_START = 10

NODE_IP_START = 20

LB_IP_START = 30

IFNAME = "enp0s8"

KUBERNETES_VERSION = "1.24.0-00"

OS_VERSION = "xUbuntu_22.04"

CRIO_VERSION = "1.24"

POD_CIDR = "192.168.0.0/16"

Vagrant.configure("2") do |config|

 config.vm.box = "ubuntu/jammy64"

 config.vm.box_check_update = true

 if MASTER_NODES > 1

 # Provision HAPproxy loadbalancer

 config.vm.define "loadbalancer" do |node|

 node.vm.provider "virtualbox" do |vb|

 vb.name = "loadbalancer"

 vb.memory = 512

 vb.cpus = 1

 end

 node.vm.hostname = "loadbalancer"

 node.vm.network :private_network, ip: BASE_IP + "#{LB_IP_START}"

 node.vm.network "forwarded_port", guest: 22, host: 45030

 node.vm.provision "loadbalancer", :type => "shell", :path =>

"scripts/loadbalancer.sh" do |s|

 s.args = [IFNAME]

 end

 end

 end

 # Provision Master Nodes

 (1..MASTER_NODES).each do |i|

 config.vm.define "master-#{i}" do |node|

 node.vm.provider "virtualbox" do |vb|

 vb.name = "master-#{i}"

 vb.memory = 2560

 vb.cpus = 2

 end

Kubernetes Cybersecurity

Ioannis Morfonios 94

 node.vm.hostname = "master-#{i}"

 node.vm.network :private_network, ip: BASE_IP +

"#{MASTER_IP_START + i}"

 node.vm.network "forwarded_port", guest: 22, host: "#{45010 + i}"

 node.vm.provision "master", :type => "shell", :path =>

"scripts/master.sh" do |s|

 s.args = [IFNAME, KUBERNETES_VERSION, OS_VERSION, CRIO_VERSION,

POD_CIDR, MASTER_NODES]

 end

 end

 end

 # Provision Worker Nodes

 (1..WORKER_NODES).each do |i|

 config.vm.define "worker-#{i}" do |node|

 node.vm.provider "virtualbox" do |vb|

 vb.name = "worker-#{i}"

 vb.memory = 1560

 vb.cpus = 1

 end

 node.vm.hostname = "worker-#{i}"

 node.vm.network :private_network, ip: BASE_IP + "#{NODE_IP_START

+ i}"

 node.vm.network "forwarded_port", guest: 22, host: "#{45020 + i}"

 node.vm.provision "worker", :type => "shell", :path =>

"scripts/worker.sh" do |s|

 s.args = [IFNAME, KUBERNETES_VERSION, OS_VERSION, CRIO_VERSION]

 end

 end

 end

end

Appendix 2: Kubernetes Master Nodes Setup Script (master.sh)

#!/bin/bash

set -euxo pipefail

IFNAME=$1

ADDRESS="$(ip -4 addr show $IFNAME | grep "inet" | head -1 |awk '{print

$2}' | cut -d/ -f1)"

KUBERNETES_VERSION=$2

OS_VERSION=$3

CRIO_VERSION=$4

HOSTNAME=$(hostname -s)

POD_CIDR=$5

MASTER_NODES=$6

Kubernetes Cybersecurity

Ioannis Morfonios 95

echo "Update hosts and DNS file entries"

sed -e "s/^.*${HOSTNAME}.*/${ADDRESS} ${HOSTNAME} ${HOSTNAME}.local/" -

i /etc/hosts

sed -e '/^.*ubuntu-focal.*/d' -i /etc/hosts

cat >> /etc/hosts <<EOF

192.168.5.11 master-1

192.168.5.12 master-2

192.168.5.13 master-3

192.168.5.21 worker-1

192.168.5.22 worker-2

192.168.5.23 worker-3

192.168.5.30 loadbalancer

EOF

sed -i -e 's/#DNS=/DNS=8.8.8.8/' /etc/systemd/resolved.conf

service systemd-resolved restart

echo "Disable swap"

sudo swapoff -a

(crontab -l 2>/dev/null; echo "@reboot /sbin/swapoff -a") | crontab -

|| true

sudo apt-get update -y

echo "Load kernel modules and set up required sysctl parameters"

cat <<EOF | sudo tee /etc/modules-load.d/crio.conf

overlay

br_netfilter

EOF

sudo modprobe overlay

sudo modprobe br_netfilter

cat <<EOF | sudo tee /etc/sysctl.d/99-kubernetes-cri.conf

net.bridge.bridge-nf-call-iptables = 1

net.ipv4.ip_forward = 1

net.bridge.bridge-nf-call-ip6tables = 1

EOF

sudo sysctl --system

echo "Install required packages"

sudo apt update -y

sudo apt-get install -y apt-transport-https ca-certificates curl jq

gnupg2 software-properties-common

echo "Install CRI-O Runtime"

cat <<EOF | sudo tee

/etc/apt/sources.list.d/devel:kubic:libcontainers:stable.list

Kubernetes Cybersecurity

Ioannis Morfonios 96

deb

https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:

/stable/$OS_VERSION/ /

EOF

cat <<EOF | sudo tee

/etc/apt/sources.list.d/devel:kubic:libcontainers:stable:cri-

o:$CRIO_VERSION.list

deb

http://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/

stable:/cri-o:/$CRIO_VERSION/$OS_VERSION/ /

EOF

curl -L

https://download.opensuse.org/repositories/devel:kubic:libcontainers:st

able:cri-o:$CRIO_VERSION/$OS_VERSION/Release.key | sudo apt-key --

keyring /etc/apt/trusted.gpg.d/libcontainers.gpg add -

curl -L

https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:

/stable/$OS_VERSION/Release.key | sudo apt-key --keyring

/etc/apt/trusted.gpg.d/libcontainers.gpg add -

sudo apt-get update -y

sudo apt-get install cri-o cri-o-runc -y

sudo systemctl daemon-reload

sudo systemctl enable crio --now

echo "Install Kubernetes"

sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-keyring.gpg

https://packages.cloud.google.com/apt/doc/apt-key.gpg

echo "deb [signed-by=/usr/share/keyrings/kubernetes-archive-

keyring.gpg] https://apt.kubernetes.io/ kubernetes-xenial main" | sudo

tee /etc/apt/sources.list.d/kubernetes.list

sudo apt-get update -y

sudo apt-get install -y kubelet="$KUBERNETES_VERSION"

kubectl="$KUBERNETES_VERSION" kubeadm="$KUBERNETES_VERSION"

cat > /etc/default/kubelet << EOF

KUBELET_EXTRA_ARGS="--node-ip=$ADDRESS,--enable-debugging-

handlers=false"

EOF

echo "Pull required images"

sudo kubeadm config images pull

config_path="/vagrant/configs"

if ["$HOSTNAME" == "master-1"]; then

 echo "Initialize Kubernetes Cluster"

Kubernetes Cybersecurity

Ioannis Morfonios 97

 if [$MASTER_NODES == 1]; then

 sudo kubeadm init --apiserver-advertise-address=$ADDRESS --

apiserver-cert-extra-sans=$ADDRESS --pod-network-cidr=$POD_CIDR --node-

name "$HOSTNAME" --ignore-preflight-errors Swap

 else

 sudo kubeadm init --control-plane-endpoint "192.168.56.30:6443" --

upload-certs --apiserver-advertise-address=$ADDRESS --pod-network-

cidr=$POD_CIDR

 fi

 if [-d $config_path]; then

 rm -f $config_path/config

 rm -f $config_path/join.sh

 rm -f $config_path/control-join.sh

 else

 mkdir -p $config_path

 fi

 cp -i /etc/kubernetes/admin.conf /vagrant/configs/config

 touch $config_path/join.sh $config_path/control-join.sh

 chmod +x $config_path/join.sh $config_path/control-join.sh

 kubeadm token create --print-join-command > /vagrant/configs/join.sh

 cert_key=$(sudo kubeadm init phase upload-certs --upload-certs | grep

-v '^\[upload-certs]')

 token=$(cat /vagrant/configs/join.sh)

 cat > $config_path/control-join.sh << EOF

 $token --control-plane --certificate-key $cert_key --apiserver-

advertise-address=\$1

EOF

else

 /bin/bash /vagrant/configs/control-join.sh $ADDRESS -v

fi

sudo -i -u vagrant bash << EOF

whoami

mkdir -p /home/vagrant/.kube

sudo cp -i /vagrant/configs/config /home/vagrant/.kube/

sudo chown 1000:1000 /home/vagrant/.kube/config

export KUBECONFIG=/home/vagrant/.kube/config

EOF

if ["$HOSTNAME" == "master-1"]; then

 sudo -i -u vagrant bash << EOF

 whoami

 kubectl apply -f /vagrant/configs/YAML/cluster_addons/calico.yaml

EOF

Kubernetes Cybersecurity

Ioannis Morfonios 98

fi

echo "Done!"

Appendix 3: Kubernetes Worker Nodes Setup Script (worker.sh)

#!/bin/bash

set -euxo pipefail

IFNAME=$1

ADDRESS="$(ip -4 addr show $IFNAME | grep "inet" | head -1 |awk '{print

$2}' | cut -d/ -f1)"

KUBERNETES_VERSION=$2

OS_VERSION=$3

CRIO_VERSION=$4

echo "Update hosts and DNS file entries"

sed -e "s/^.*${HOSTNAME}.*/${ADDRESS} ${HOSTNAME} ${HOSTNAME}.local/" -

i /etc/hosts

sed -e '/^.*ubuntu-focal.*/d' -i /etc/hosts

cat >> /etc/hosts <<EOF

192.168.5.11 master-1

192.168.5.12 master-2

192.168.5.13 master-3

192.168.5.21 worker-1

192.168.5.22 worker-2

192.168.5.23 worker-3

192.168.5.30 loadbalancer

EOF

sed -i -e 's/#DNS=/DNS=8.8.8.8/' /etc/systemd/resolved.conf

service systemd-resolved restart

echo "Disable swap"

sudo swapoff -a

(crontab -l 2>/dev/null; echo "@reboot /sbin/swapoff -a") | crontab -

|| true

sudo apt-get update -y

echo "Load kernel modules and set up required sysctl parameters"

cat <<EOF | sudo tee /etc/modules-load.d/crio.conf

overlay

br_netfilter

EOF

sudo modprobe overlay

sudo modprobe br_netfilter

Kubernetes Cybersecurity

Ioannis Morfonios 99

cat <<EOF | sudo tee /etc/sysctl.d/99-kubernetes-cri.conf

net.bridge.bridge-nf-call-iptables = 1

net.ipv4.ip_forward = 1

net.bridge.bridge-nf-call-ip6tables = 1

EOF

sudo sysctl --system

echo "Install required packages"

sudo apt update -y

sudo apt-get install -y apt-transport-https ca-certificates curl jq

gnupg2 software-properties-common

echo "Install CRI-O Runtime"

cat <<EOF | sudo tee

/etc/apt/sources.list.d/devel:kubic:libcontainers:stable.list

deb

https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:

/stable/$OS_VERSION/ /

EOF

cat <<EOF | sudo tee

/etc/apt/sources.list.d/devel:kubic:libcontainers:stable:cri-

o:$CRIO_VERSION.list

deb

http://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/

stable:/cri-o:/$CRIO_VERSION/$OS_VERSION/ /

EOF

curl -L

https://download.opensuse.org/repositories/devel:kubic:libcontainers:st

able:cri-o:$CRIO_VERSION/$OS_VERSION/Release.key | sudo apt-key --

keyring /etc/apt/trusted.gpg.d/libcontainers.gpg add -

curl -L

https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:

/stable/$OS_VERSION/Release.key | sudo apt-key --keyring

/etc/apt/trusted.gpg.d/libcontainers.gpg add -

sudo apt-get update -y

sudo apt-get install cri-o cri-o-runc -y

sudo systemctl daemon-reload

sudo systemctl enable crio --now

echo "Install Kubernetes"

sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-keyring.gpg

https://packages.cloud.google.com/apt/doc/apt-key.gpg

echo "deb [signed-by=/usr/share/keyrings/kubernetes-archive-

keyring.gpg] https://apt.kubernetes.io/ kubernetes-xenial main" | sudo

tee /etc/apt/sources.list.d/kubernetes.list

Kubernetes Cybersecurity

Ioannis Morfonios 100

sudo apt-get update -y

sudo apt-get install -y kubelet="$KUBERNETES_VERSION"

kubectl="$KUBERNETES_VERSION" kubeadm="$KUBERNETES_VERSION"

cat > /etc/default/kubelet << EOF

KUBELET_EXTRA_ARGS="--node-ip=$ADDRESS,--enable-debugging-

handlers=false"

EOF

echo "Join node to Kubernetes cluster"

/bin/bash /vagrant/configs/join.sh -v

sudo -i -u vagrant bash << EOF

whoami

mkdir -p /home/vagrant/.kube

sudo cp -i /vagrant/configs/config /home/vagrant/.kube/

sudo chown 1000:1000 /home/vagrant/.kube/config

NODENAME=$(hostname -s)

kubectl label node $(hostname -s) node-role.kubernetes.io/worker=worker

EOF

sudo mkdir /mnt/db-data

sudo mkdir /mnt/www-data

echo "Done!"

Appendix 4: Load balancer Setup Script (loadbalancer.sh)

#!/bin/bash

set -euxo pipefail

IFNAME=$1

ADDRESS="$(ip -4 addr show $IFNAME | grep "inet" | head -1 |awk '{print

$2}' | cut -d/ -f1)"

echo "Update hosts and DNS file entries"

sed -e "s/^.*${HOSTNAME}.*/${ADDRESS} ${HOSTNAME} ${HOSTNAME}.local/" -

i /etc/hosts

sed -e '/^.*ubuntu-focal.*/d' -i /etc/hosts

cat >> /etc/hosts <<EOF

192.168.5.11 master-1

192.168.5.12 master-2

192.168.5.13 master-3

192.168.5.21 worker-1

192.168.5.22 worker-2

Kubernetes Cybersecurity

Ioannis Morfonios 101

192.168.5.23 worker-3

192.168.5.30 loadbalancer

EOF

sed -i -e 's/#DNS=/DNS=8.8.8.8/' /etc/systemd/resolved.conf

service systemd-resolved restart

echo "Install and configure haproxy"

apt-get update

apt-get install -y haproxy

grep -q -F 'net.ipv4.ip_nonlocal_bind=1' /etc/sysctl.conf || echo

'net.ipv4.ip_nonlocal_bind=1' >> /etc/sysctl.conf

sudo sysctl --system

cat >/etc/haproxy/haproxy.cfg <<EOF

global

 log /dev/log local0

 log /dev/log local1 notice

 chroot /var/lib/haproxy

 stats socket /run/haproxy/admin.sock mode 660 level admin

 stats timeout 30s

 user haproxy

 group haproxy

 daemon

 # Default SSL material locations

 ca-base /etc/ssl/certs

 crt-base /etc/ssl/private

 # Default ciphers to use on SSL-enabled listening sockets.

 ssl-default-bind-ciphers

ECDH+AESGCM:DH+AESGCM:ECDH+AES256:DH+AES256:ECDH+AES128:DH+AES:ECDH+3DE

S:DH+3DES:RSA+AESGCM:RSA+AES:RSA+3DES:!aNULL:!MD5:!DSS

 ssl-default-bind-options no-sslv3

defaults

 log global

 mode tcp

 option tcplog

 option dontlognull

 timeout connect 5000

 timeout client 50000

 timeout server 50000

 errorfile 400 /etc/haproxy/errors/400.http

 errorfile 403 /etc/haproxy/errors/403.http

 errorfile 408 /etc/haproxy/errors/408.http

 errorfile 500 /etc/haproxy/errors/500.http

 errorfile 502 /etc/haproxy/errors/502.http

 errorfile 503 /etc/haproxy/errors/503.http

Kubernetes Cybersecurity

Ioannis Morfonios 102

 errorfile 504 /etc/haproxy/errors/504.http

frontend k8s

 bind 192.168.56.30:6443

 default_backend k8s_backend

backend k8s_backend

 balance roundrobin

 mode tcp

 server master-1 192.168.56.11:6443 check inter 1000

 server master-2 192.168.56.12:6443 check inter 1000

 server master-3 192.168.56.13:6443 check inter 1000

EOF

systemctl restart haproxy

Kubernetes Cybersecurity

Ioannis Morfonios 103

References

[1] C. D. Graziano, "A performance analysis of Xen and KVM hypervisors for

hosting the Xen Worlds Project," Iowa State University, Ames, Iowa, 2011.

[2] M. Tyson, "Disadvantages of virtualization in cloud computing," Medium, 2 11

2022. [Online]. Available:

https://medium.com/@mike_tyson_cloud/disadvantages-of-virtualization-in-

cloud-computing-1bdb73725072. [Accessed 5 2 2023].

[3] K. Brush and B. Kirsch, "virtualization," 1 October 2021. [Online]. Available:

https://www.techtarget.com/searchitoperations/definition/virtualization.

[Accessed 1 August 2022].

[4] A. Abgaryan, "10 Benefits of Virtualization: Guide to Advance Your Business,"

15 February 2022. [Online]. Available: https://itmagic.pro/blog/10-benefits-of-

virtualization-guide-to-advance-your-business. [Accessed 1 August 2022].

[5] IBM, "Containerization," IBM, 23 June 2021. [Online]. Available:

https://www.ibm.com/cloud/learn/containerization. [Accessed 1 August 2022].

[6] RedHat, "What is containerization?," RedHat, 8 April 2021. [Online]. Available:

https://www.redhat.com/en/topics/cloud-native-apps/what-is-containerization.

[Accessed 1 August 2022].

[7] Veritas, "What is Containerization?," Veritas, 28 March 2021. [Online].

Available: https://www.veritas.com/information-center/containerization.

[Accessed 1 August 2022].

[8] K. Dwivedi, "Containerization vs Virtualization," Medium, 7 8 2018. [Online].

Available: https://medium.com/@krishankdwivedi/containerization-and-

virtualization-7ac59b788268. [Accessed 5 2 2023].

[9] RedHat, "What is container orchestration?," RedHat, 10 May 2022. [Online].

Available: https://www.redhat.com/en/topics/containers/what-is-container-

orchestration. [Accessed 2 August 2022].

Kubernetes Cybersecurity

Ioannis Morfonios 104

[10] Avi Networks, "Container Orchestration Definition," Avi Networks, 3 December

2021. [Online]. Available: https://avinetworks.com/glossary/container-

orchestration/. [Accessed 2 August 2022].

[11] T. Nolle, "TechTarget," 24 January 2018. [Online]. Available:

https://www.techtarget.com/searchitoperations/tip/Container-orchestration-

tools-ease-distributed-system-complexity. [Accessed 2 August 2022].

[12] Cloud Native Computing Foundation (CNCF), "What is Kubernetes?," Cloud

Native Computing Foundation (CNCF), 4 April 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/. [Accessed 3

August 2022].

[13] J. Ellingwood, "An Introduction to Kubernetes," DigitalOcean, 3 May 2018.

[Online]. Available: https://www.digitalocean.com/community/tutorials/an-

introduction-to-kubernetes. [Accessed 3 Agust 2022].

[14] Wikipedia, "Kubernetes," Wikipedia, 5 August 2022. [Online]. Available:

https://en.wikipedia.org/wiki/Kubernetes. [Accessed 6 August 2022].

[15] A. Patel, "Kubernetes - Architecture Overview," Medium, 12 8 2021. [Online].

Available: https://medium.com/devops-mojo/kubernetes-architecture-overview-

introduction-to-k8s-architecture-and-understanding-k8s-cluster-components-

90e11eb34ccd. [Accessed 5 2 2023].

[16] Cloud Native Computing Foundation (CNCF), "Understanding Kubernetes

Objects," Cloud Native Computing Foundation (CNCF), 18 June 2022. [Online].

Available: https://kubernetes.io/docs/concepts/overview/working-with-

objects/kubernetes-objects/. [Accessed 5 August 2022].

[17] Cloud Native Computing Foundation (CNCF), "Kubernetes Components," Cloud

Native Computing Foundation (CNCF), 30 April 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/overview/components/. [Accessed 3 Agust

2022].

Kubernetes Cybersecurity

Ioannis Morfonios 105

[18] RedHat, "What is etcd?," RedHat, 8 January 2019. [Online]. Available:

https://www.redhat.com/en/topics/containers/what-is-etcd. [Accessed 7 August

2022].

[19] IBM, "etcd," IBM, 18 December 2019. [Online]. Available:

https://www.ibm.com/cloud/learn/etcd. [Accessed 7 August 2022].

[20] S. Nangare, "A Guide to Kubernetes etcd," Superuser, 6 12 2019. [Online].

Available: https://superuser.openstack.org/articles/a-guide-to-kubernetes-etcd-

all-you-need-to-know-to-set-up-etcd-clusters/. [Accessed 5 2 2023].

[21] Cloud Native Computing Foundation (CNCF), "The Kubernetes API," Cloud

Native Computing Foundation (CNCF), 10 June 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/overview/kubernetes-api/. [Accessed 4

August 2022].

[22] kuberty, "What is Kubernetes API Server?," kuberty, 8 July 2022. [Online].

Available: https://kuberty.io/blog/what-is-kubernetes-api-server/. [Accessed 5

August 2022].

[23] A. Chandra, "Leader Election Architecture — Kubernetes," Medium, 23 April

2021. [Online]. Available: https://medium.com/hybrid-cloud-hobbyist/leader-

election-architecture-kubernetes-32600da81e3c. [Accessed 5 August 2022].

[24] Cloud Native Computing Foundation (CNCF), "Kubernetes Scheduler," Cloud

Native Computing Foundation (CNCF), 10 May 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/.

[Accessed 5 August 2022].

[25] devopsbeast, "Kubernetes Scheduling Simplified," devopsbeast, 23 September

2021. [Online]. Available: https://www.devopsbeast.com/kubernetes-scheduling-

simplified/. [Accessed 5 August 2022].

[26] Cloud Native Computing Foundation (CNCF), "Controllers," Cloud Native

Computing Foundation (CNCF), 14 June 2021. [Online]. Available:

Kubernetes Cybersecurity

Ioannis Morfonios 106

https://kubernetes.io/docs/concepts/architecture/controller/. [Accessed 5 August

2022].

[27] Cloud Native Computing Foundation (CNCF), "Cloud Controller Manager,"

Cloud Native Computing Foundation (CNCF), 19 January 2022. [Online].

Available: https://kubernetes.io/docs/concepts/architecture/cloud-controller/.

[Accessed 6 August 2022].

[28] Cloud Native Computing Foundation (CNCF), "Nodes," Cloud Native

Computing Foundation (CNCF), 18 June 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/architecture/nodes/. [Accessed 6 August

2022].

[29] K. Marhubi, "What even is a kubelet?," 27 August 2015. [Online]. Available:

https://kamalmarhubi.com/blog/2015/08/27/what-even-is-a-kubelet/. [Accessed

7 August 2022].

[30] Cloud Native Computing Foundation (CNCF), "kubelet," Cloud Native

Computing Foundation (CNCF), 5 August 2022. [Online]. Available:

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/.

[Accessed 7 August 2022].

[31] Cloud Native Computing Foundation (CNCF), "Container Runtimes," Cloud

Native Computing Foundation (CNCF), 21 July 2022. [Online]. Available:

https://kubernetes.io/docs/setup/production-environment/container-runtimes/.

[Accessed 7 August 2022].

[32] Cloud Native Computing Foundation (CNCF), "CRI: the Container Runtime

Interface | Kubernetes GitHub Repository," Cloud Native Computing Foundation

(CNCF), 1 October 2020. [Online]. Available:

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-

node/container-runtime-interface.md. [Accessed 7 August 2022].

[33] Cloud Native Computing Foundation (CNCF), "kube-proxy," Cloud Native

Computing Foundation (CNCF), 8 June 2022. [Online]. Available:

Kubernetes Cybersecurity

Ioannis Morfonios 107

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/.

[Accessed 8 August 2022].

[34] Datadog, "9 Insights on real world container use," Datadog, 1 11 2022. [Online].

Available: https://www.datadoghq.com/container-

report/?utm_source=organic&utm_medium=display&utm_campaign=dg-

organic-websites-ww-corpsite-announcement-report-container2022. [Accessed

21 1 2023].

[35] Cloud Native Computing Foundation (CNCF), "Extending Kubernetes," Cloud

Native Computing Foundation (CNCF), 18 June 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/extend-kubernetes/. [Accessed 8 August

2022].

[36] Cloud Native Computing Foundation (CNCF), "Extending the Kubernetes API,"

Cloud Native Computing Foundation (CNCF), 8 July 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/_print/.

[Accessed 8 August 2022].

[37] Cloud Native Computing Foundation (CNCF), "Installing Addons," Cloud Native

Computing Foundation (CNCF), 10 June 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/cluster-administration/addons/. [Accessed 8

August 2022].

[38] D. Tucakov, "15 Kubernetes Tools For Deployment, Monitoring, Security, &

More," Phoinixnap, 17 February 2020. [Online]. Available:

https://phoenixnap.com/blog/kubernetes-tools. [Accessed 8 August 2022].

[39] A. Komljen, "Kubernetes Add-ons for more Efficient Computing," Akomljen, 30

September 2018. [Online]. Available: https://akomljen.com/kubernetes-add-ons-

for-more-efficient-computing/. [Accessed 8 August 2022].

[40] I. Mikheykin, "Announcing addon-operator to simplify managing additional

components in K8s clusters," Medium, 14 June 2019. [Online]. Available:

https://medium.com/flant-com/kubernetes-addon-operator-89f7bae4f3f9.

[Accessed 8 August 2022].

Kubernetes Cybersecurity

Ioannis Morfonios 108

[41] Helm Authors, "Helm Architecture," Helm Community, 6 March 2022. [Online].

Available: https://helm.sh/docs/topics/architecture/. [Accessed 10 August 2022].

[42] B. Boucheron, "An Introduction to Helm, the Package Manager for Kubernetes,"

Digital Ocean, 6 August 2018. [Online]. Available:

https://www.digitalocean.com/community/tutorials/an-introduction-to-helm-the-

package-manager-for-kubernetes. [Accessed 10 August 2022].

[43] L. Beranek, "Deploy helm charts using Terraform module," Medium, 6 7 2021.

[Online]. Available: https://xbery.medium.com/deploy-helm-charts-using-

terraform-module-63684efbd221. [Accessed 5 2 2023].

[44] S. Koltovich and O. Chunikhin, "Why Kubernetes Works for Infrastructure

Abstraction," The New Stack, 12 November 2019. [Online]. Available:

https://thenewstack.io/why-kubernetes-works-for-infrastructure-abstraction/.

[Accessed 11 August 2022].

[45] A. Patel, "Kubernetes — Objects (Resources/Kinds) Overview," Medium, 23

February 2021. [Online]. Available: https://medium.com/devops-

mojo/kubernetes-objects-resources-overview-introduction-understanding-

kubernetes-objects-24d7b47bb018. [Accessed 11 August 2022].

[46] J. Glad, "Kubernetes Resources," Jayendra's Cloud Certification Blog, 6 12 2021.

[Online]. Available: https://jayendrapatil.com/tag/configmaps/. [Accessed 5 2

2023].

[47] htown-tech, "Kubernetes & Its 8 Types of Objects," htown-tech, 21 June 2021.

[Online]. Available: https://www.htown-tech.com/blogs/kubernetes-its-8-types-

of-objects. [Accessed 13 August 2022].

[48] Cloud Native Computing Foundation (CNCF), "ReplicaSet," Cloud Native

Computing Foundation (CNCF), 18 June 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/. [Accessed

13 August 2022].

[49] Cloud Native Computing Foundation (CNCF), "Deployments," Cloud Native

Computing Foundation (CNCF), 21 July 2022. [Online]. Available:

Kubernetes Cybersecurity

Ioannis Morfonios 109

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/.

[Accessed 13 August 2022].

[50] Cloud Native Computing Foundation (CNCF), "DaemonSet," Cloud Native

Computing Foundation (CNCF), 21 April 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/.

[Accessed 14 August 2022].

[51] Cloud Native Computing Foundation (CNCF), "StatefulSets," Cloud Native

Computing Foundation (CNCF), 18 June 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/. [Accessed

14 August 2022].

[52] Cloud Native Computing Foundation (CNCF), "Namespaces," Cloud Native

Computing Foundation (CNCF), 26 January 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/overview/working-with-

objects/namespaces/. [Accessed 14 August 2022].

[53] Cloud Native Computing Foundation (CNCF), "Service," Cloud Native

Computing Foundation (CNCF), 17 August 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/services-networking/service/. [Accessed 15

August 2022].

[54] Cloud Native Computing Foundation (CNCF), "Ingress," Cloud Native

Computing Foundation (CNCF), 26 March 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/services-networking/ingress/. [Accessed 15

August 2022].

[55] Armosec, "Kubernetes Ingress," Armosec, 17 1 2022. [Online]. Available:

https://www.armosec.io/glossary/kubernetes-ingress/. [Accessed 5 2 2023].

[56] Cloud Native Computing Foundation (CNCF), "Volumes," Cloud Native

Computing Foundation (CNCF), 9 August 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/storage/volumes/. [Accessed 16 August

2022].

Kubernetes Cybersecurity

Ioannis Morfonios 110

[57] Cloud Native Computing Foundation (CNCF), "Persistent Volumes," Cloud

Native Computing Foundation (CNCF), 16 July 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/storage/persistent-volumes/. [Accessed 16

August 2022].

[58] Cloud Native Computing Foundation (CNCF), "Storage Classes," Cloud Native

Computing Foundation (CNCF), 5 August 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/storage/storage-classes/. [Accessed 17

August 2022].

[59] A. Patel, "Kubernetes — Storage Overview — PV, PVC and Storage Class,"

Medium, 13 9 2021. [Online]. Available: https://medium.com/devops-

mojo/kubernetes-storage-options-overview-persistent-volumes-pv-claims-pvc-

and-storageclass-sc-k8s-storage-df71ca0fccc3. [Accessed 5 2 2023].

[60] Cloud Native Computing Foundation (CNCF), "ConfigMaps," Cloud Native

Computing Foundation (CNCF), 4 May 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/configuration/configmap/. [Accessed 17

August 2022].

[61] Cloud Native Computing Foundation (CNCF), "Secrets," Cloud Native

Computing Foundation (CNCF), 15 August 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/configuration/secret/. [Accessed 17 August

2022].

[62] RedHat, "Kubernetes adoption, security, and market trends report 2022," RedHat,

18 May 2022. [Online]. Available:

https://www.redhat.com/en/resources/kubernetes-adoption-security-market-

trends-overview. [Accessed 19 August 2022].

[63] D. . K. Taft, "ARMO: Misconfiguration Is Number 1 Kubernetes Security Risk,"

TheNewStack, 17 June 2022. [Online]. Available: https://thenewstack.io/armo-

misconfiguration-is-number-1-kubernetes-security-risk/. [Accessed 19 August

2022].

Kubernetes Cybersecurity

Ioannis Morfonios 111

[64] Cloud Native Computing Foundation (CNCF), "Ports and Protocols," Cloud

Native Computing Foundation (CNCF), 9 May 2022. [Online]. Available:

https://kubernetes.io/docs/reference/ports-and-protocols/. [Accessed 20 August

2022].

[65] S. I. Shamim, F. A. Bhuiyan and A. Rahman, "XI Commandments of Kubernetes

Security: A Systematization of Knowledge Related to Kubernetes Security

Practices," 27 June 2020. [Online]. Available:

https://arxiv.org/pdf/2006.15275.pdf. [Accessed 21 August 2022].

[66] Cloud Native Computing Foundation (CNCF), "Resource Quotas," Cloud Native

Computing Foundation (CNCF), 10 June 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/policy/resource-quotas/. [Accessed 23

August 2022].

[67] T. Smith, "5 common Kubernetes misconfigs and how to fix them," Bridgecrew,

14 October 2021. [Online]. Available: https://bridgecrew.io/blog/5-common-

kubernetes-misconfigs-and-how-to-fix-them/. [Accessed 23 August 2022].

[68] Cloud Native Computing Foundation (CNCF), "Encrypting Secret Data at Rest,"

Cloud Native Computing Foundation (CNCF), 14 July 2022. [Online]. Available:

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/. [Accessed 24

August 2022].

[69] etcd Community, "Security Model," etcd Community, 9 April 2022. [Online].

Available: https://etcd.io/docs/v3.2/op-guide/security/. [Accessed 26 August

2022].

[70] aqua, "Kubernetes Security Best Practices: 10 Steps to Securing K8s," aqua, 19

May 2022. [Online]. Available: https://www.aquasec.com/cloud-native-

academy/kubernetes-in-production/kubernetes-security-best-practices-10-steps-

to-securing-k8s/. [Accessed 26 August 2022].

[71] Cloud Native Computing Foundation (CNCF), "Pods," Cloud Native Computing

Foundation (CNCF), 10 May 2022. [Online]. Available:

Kubernetes Cybersecurity

Ioannis Morfonios 112

https://kubernetes.io/docs/concepts/workloads/pods/. [Accessed 12 August

2022].

[72] A. Lees, "Exploring the Security of Helm," Bitnami, 3 December 2017. [Online].

Available: https://docs.bitnami.com/tutorials/exploring-helm-security. [Accessed

27 August 2022].

[73] H. Du, "Kubernetes Helm 101," Medium, 30 10 2019. [Online]. Available:

https://medium.com/dwarves-foundation/kubernetes-helm-101-78f70eeb0d1.

[Accessed 5 2 2023].

[74] Cloud Native Computing Foundation (CNCF), "Network Policies," Cloud Native

Computing Foundation (CNCF), 9 August 2022. [Online]. Available:

https://kubernetes.io/docs/concepts/services-networking/network-policies/.

[Accessed 27 August 2022].

[75] Cloud Native Computing Foundation (CNCF), "Using RBAC Authorization,"

Cloud Native Computing Foundation (CNCF), 13 August 2022. [Online].

Available: https://kubernetes.io/docs/reference/access-authn-authz/rbac/.

[Accessed 27 August 2022].

[76] Ö. Akin, "Managing Kubernetes Secrets with the External Secrets Operator,"

InfoQ, 2 August 2022. [Online]. Available: https://www.infoq.com/articles/k8s-

external-secrets-operator/. [Accessed 29 August 2022].

[77] Microsoft, "Best practices for pod security in Azure Kubernetes Service (AKS),"

Microsoft, 28 10 2022. [Online]. Available: https://learn.microsoft.com/en-

us/azure/aks/developer-best-practices-pod-security. [Accessed 5 2 2023].

[78] A. Volochnev, "Reducing Security Vulnerabilities in Kubernetes," The New

Stack, 9 August 2022. [Online]. Available: https://thenewstack.io/reducing-

security-vulnerabilities-in-kubernetes/. [Accessed 29 August 2022].

[79] M. Rao, "Building your DevSecOps pipeline: 5 essential activities," Synopsis, 6

July 2017. [Online]. Available: https://www.synopsys.com/blogs/software-

security/devsecops-pipeline-checklist/. [Accessed 30 August 2022].

Kubernetes Cybersecurity

Ioannis Morfonios 113

[80] snyk, "Kubernetes Security: Common Issues and Best Practices," snyk, 5

February 2022. [Online]. Available: https://snyk.io/learn/kubernetes-security/.

[Accessed 30 August 2022].

[81] Docker, "Vulnerability scanning for Docker local images," Docker, 26 August

2022. [Online]. Available: https://docs.docker.com/engine/scan/. [Accessed 31

August 2022].

[82] D. Sagi, "DNS Spoofing on Kubernetes Clusters," Aquasec, 29 August 2019.

[Online]. Available: https://blog.aquasec.com/dns-spoofing-kubernetes-clusters.

[Accessed 31 August 2022].

[83] J. Beda, "On Securing the Kubernetes Dashboard," Medium, 28 February 2018.

[Online]. Available: https://blog.heptio.com/on-securing-the-kubernetes-

dashboard-16b09b1b7aca. [Accessed 1 September 2022].

[84] G. Duan, "Cryptojacking and Crypto Mining – Tesla, Kubernetes, and Jenkins

Exploits," Neuvector, 22 2 2018. [Online]. Available:

https://blog.neuvector.com/article/cryptojacking-crypto-mining-tesla-

kubernetes-jenkins-exploits. [Accessed 27 1 2023].

[85] E. Zilberman, "The Top Kubernetes Configuration Mistakes to Avoid," Datree,

17 February 2021. [Online]. Available:

https://www.datree.io/resources/kubernetes-configuration-mistakes. [Accessed 3

September 2022].

[86] B. Hirschberg, "Kubescape: A Kubernetes open-source platfrom providing a

multi-cloud Kubernetes single pane of glass," ARMO, 7 July 2022. [Online].

Available: https://www.armosec.io/blog/kubescape-the-first-tool-for-running-

nsa-and-cisa-kubernetes-hardening-tests/. [Accessed 7 September 2022].

[87] AQUA, "kube-hunter," AQUA, 18 November 2020. [Online]. Available:

https://kube-hunter.aquasec.com/. [Accessed 9 September 2022].

[88] GoLinuxCloud, "Kubernetes SecurityContext Explained with Examples,"

GoLinuxCloud, 22 September 2022. [Online]. Available:

https://www.golinuxcloud.com/kubernetes-securitycontext-

Kubernetes Cybersecurity

Ioannis Morfonios 114

examples/#Using_allowPrivilegeEscalation_with_Kubernetes_SecurityContext.

[Accessed 10 September 2022].

[89] M. Kerrisk, "capabilities(7) — Linux manual page," man7.org, 27 August 2021.

[Online]. Available: https://man7.org/linux/man-pages/man7/capabilities.7.html.

[Accessed 14 September 2022].

[90] N. Darshan, "Kubernetes Health Check with Readiness Probe and

LivenessProbe," K21 Academy, 3 7 2021. [Online]. Available:

https://k21academy.com/docker-kubernetes/kubernetes-readiness-and-

livenessprobe/. [Accessed 5 2 2023].

[91] Cloud Native Computing Foundation (CNCF), "Configure Liveness, Readiness

and Startup Probes," Cloud Native Computing Foundation (CNCF), 9 August

2022. [Online]. Available: https://kubernetes.io/docs/tasks/configure-pod-

container/configure-liveness-readiness-startup-probes/. [Accessed 15 September

2022].

[92] Cloud Native Computing Foundation (CNCF), "Restrict a Container's Access to

Resources with AppArmor," Cloud Native Computing Foundation (CNCF), 5

May 2022. [Online]. Available:

https://kubernetes.io/docs/tutorials/security/apparmor/. [Accessed 17 September

2022].

[93] Canonical, "AppArmor," Canonical, 16 March 2022. [Online]. Available:

https://ubuntu.com/server/docs/security-apparmor. [Accessed 17 September

2022].

[94] A. A. Balkan, "Securing Kubernetes Cluster Networking," 8 8 2017. [Online].

Available: https://ahmet.im/blog/kubernetes-network-policy/. [Accessed 5 2

2023].

