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Abstract 

Urban sound quality is a topic that affects the life and well-being of all living 
creatures, including us humans. Noise pollution in cities is becoming more and more 
present, resulting in low sound quality levels.  

This research project aims to make this phenomenon more visible using artificial 
intelligence tools and provide insights into how humans' perceptions is functioning 
under a specific set of sounds. For this purpose, data were collected using a smartphone 
application and annotated using the perceived sound quality of the user in different 
locations. 

Furthermore, experiments were conducted using audio analysis and neural networks 
to create a model that can classify the sound quality based on the perceived qualities and 
provide results and insights based on the user’s location. 

Lastly, as a final result, an end-to-end process has been made, which could 
potentially be used every day in different locations, gathering sounds and classifying the 
quality, aiming to track the change of the quality also in the course of time. 
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1 Introduction 

In recent years, there has been a rise in the amount of focus on the topic of urban sound 

quality. This is mostly attributable to the influence that a city's acoustic environment may 

have on the health and quality of life of its residents. Research has shown that exposure 

to high levels of noise pollution is associated with a variety of health diseases, such as an 

increased risk of cardiovascular syndrome, disturbed sleep, and stress. Noise pollution 

has a negative effect on the economy too, in a number of ways, such as  the lowering 

property prices and reducing worker productivity. Therefore, it is crucial to precisely 

analyze and monitor the sound quality of urban environments to identify places in which 

interventions may be necessary, in order to lower noise levels and enhance the general 

livability of cities. 

The assessment of sound quality in urban areas has traditionally been implemented 

using manual methods, such as the deployment of stationary sound level meters at defined 

places. More recently, however, automated systems have been developed to perform this 

task. The manual techniques are time consuming and require human labor and could not 

even offer a complete picture of the acoustic environment at a large scale. These practices 

depend on the discretion and experience of the people who are collecting the data, where 

manual procedures can also be prone to mistakes and subjectivity. This is because the 

judgment and expertise of the people who are doing the gathering, affect the total result. 

Nowadays, there has been an increasing interest in utilizing more advanced 

techniques, such as machine learning and deep learning, to analyze and discover patterns 

in urban sound data. Specifically, this interest has been fueled by the rise of the big data 

era. These techniques provide a method of analysis that is both thorough and efficient, 

and have the potential to considerably increase our capacity to evaluate and monitor the 

sound quality of urban environments. Algorithms that learn from data gathered and 

annotated, can evaluate vast volumes of data in a short amount of time and with high 

levels of precision. They can also recognize patterns and trends that people may have 

difficulty recognizing. This leads to urban sound quality assessments that are more 
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accurate, providing a viewpoint on the acoustic environment that is more impartial and 

neutral. 

This dissertation examines the application of machine learning algorithms for the 

detection of urban sound quality, and the final goal is to come up with recommendations 

for future research. In order to accomplish this goal, machine learning models are 

developed, which are capable of classifying urban noises according to the acoustic features 

of such sounds. A dataset consisting of urban sound recordings that were gathered from a 

number of different sites is used, in order to evaluate the effectiveness of these models. 

Through this study machine learning models are developed, that are capable of accurately 

and reliably recognizing urban sound quality and identifying factors that contribute to 

variations in sound quality.  

In addition to the benefits of urban sound quality assessment and management, the 

application of machine learning for the recognition of urban sound has the potential to 

further our understanding of the relationship between the acoustic environment and other 

aspects of urban life. For instance, the machine learning models that have been trained on 

urban sound data are able to recognize patterns that are correlated with other factors such 

as the type of land use, the level of traffic, or the presence of certain types of businesses or 

facilities. This might also be used as a basis for the creation of interventions that are more 

focused and successful in the fight against noise pollution and the improvement of urban 

sound quality. 

Furthermore, the use of machine learning for the recognition of urban sounds may 

potentially have uses outside of the field of urban sound quality. For instance, machine 

learning models that have been trained on urban sound data may be able to recognize 

noises that are characteristic of particular kinds of occurrences or activities, such as 

building construction, car accidents, or public meetings. This has the potential to be useful 

in a variety of contexts, such as in the areas of public safety, transportation planning, and 

social media analysis. 

The necessity of adequately representing the acoustic properties of urban sounds is 

one of the primary obstacles that must be overcome when applying machine learning to 

the task of urban sound detection. In order to do this, it is necessary to implement specific 

audio processing methods, such as spectrum analysis and feature extraction, in order to 
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extract the information that is valuable to the investigation. To increase the accuracy and 

dependability of the models, this process may also entail the creation of bespoke machine-

learning algorithms or the use of sophisticated machine-learning techniques, such as deep 

learning or transfer learning. 

The selection and preparation of the dataset utilized to train and assess the machine 

learning models, is an additional significant part of this project. The dataset accurately 

reflects the variety and complexity of the urban sound environment, and it contains a 

sizable number of examples of a wide variety of sounds. The level of quality and resolution 

of the sound recordings is analyzed during the development, in addition to any potential 

sources of interference or noise that might have an impact on the precision of the models. 

It is crucial to address the practical and operational features of these models and the 

technical problems involved in developing machine learning models for urban sound 

quality detection. Additionally, the development of user-friendly interfaces and 

visualization tools is essential and is implemented, to enable the understanding and 

analysis of the results, in addition to the integration of the models with other technologies 

and systems. 

In general, the application of machine learning in recognizing urban sound quality 

provides a rich and difficult research challenge that has the potential to make important 

contributions to the domains of urban sound quality and machine learning. It is important 

to evaluate the technological hurdles involved in constructing accurate and efficient 

machine learning models because the successful development of machine learning models 

for urban sound detection will considerably increase our capacity to evaluate and regulate 

the urban sound environment, as well as improve the health and quality of life of people 

who live in cities. 



 

-7- 

2 Background 

Due to the accessibility of inexpensive resources like computing power and data during 

the past ten years, artificial intelligence (AI) and machine learning have become nearly 

universally employed. As a result, AI was able to perform (super)humanly and be 

developed at a fast pace. In general, most people define AI as “creating machines that are 

intelligent”. The main drawback of this statement is that it fails to define AI and explain 

what constitutes an intelligent machine. Although there are many different approaches to 

the interdisciplinary science of AI, advances in machine learning and deep learning are a 

paradigm in almost every area of the tech industry. 

Although we have heard about sound pollution in our world, only in recent times has 

AI been used to provide deeper analysis and insights to suppress this phenomenon and 

identify the root cause of its existence. The definition of sound is when air molecules 

collide with one another as a result of an object's vibration, sound is produced. These air 

molecules oscillate, which induces small pressure differences within them that function 

as sound waves. These waves, which are additionally referred to as mechanical waves, 

move through a medium while transmitting energy from one place to another. In a deeper 

analysis, this is the exact reason why sound cannot travel into the vacuum of space, there 

is simply no medium for it to do so. The period of a wave is the length of time it takes to 

complete one cycle. The opposite of period is frequency, which is measured in cycles per 

second and expressed in Hz. The frequency increases and decreases depending on how 

long it takes a cycle to complete. A wave with peaks that are visually closer to one another 

would have a greater frequency than a wave with peaks that are farther apart. 

2.1 Human Perception of Sound 

Regarding human interaction with sound, the pitch of a sound is frequently used to 

reflect how we perceive frequency. While we use the term "pitch" to describe sounds, 

frequency refers to the numerical representation of the rate of cyclical repetition of a 

waveform. The pitch of a sound increases with frequency, conversely, a sound's pitch 

decreases with frequency. The human auditory system is sensitive to sound frequencies 
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ranging from 20 Hz to 20,000 Hz, or roughly 10 octaves, which humans hear along the 

pitch dimension. The basilar membrane traverses the length of the cochlea and vibrates 

in response to noises that reach the cochlea via the eardrum and middle ear bones' 

motions. The basilar membrane's operation can be likened to that of a prism in that a 

typical sound's range of frequencies is scattered to different areas inside the cochlea along 

the basilar membrane (Figure 1). Every place along the basilar membrane reacts best to a 

certain frequency, which is referred to as the best frequency or characteristic frequency 

(CF). In this approach, the frequency content of a sound is encoded in a frequency-to-

place map over the length of the basilar membrane, enabling tonotopic organization with 

a gradient from the variety of frequencies humans can perceive, from the apex to the base 

of the cochlea. This arrangement is maintained from the cochlea to the primary auditory 

cortex through the inner hair cells and the auditory nerve, as well as the brainstem and 

midbrain. It is a fundamental organizing concept for both brain coding and perception. 

 

 

 

Figure 1: Human Acoustic System 
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2.2 Audio Definition and Representation 

All audio is, by definition, an analog signal. Analog signals are a continuous graph of 

sound amplitude versus time with infinite values at each infinitesimal unit of time. Storing 

a raw analog signal would be nearly impossible because it would necessitate infinite 

storage. Instead, we use a series of operations to extract values from an analog signal at 

regular intervals. This enables us to store the signals in a digital format while collecting 

enough data to reproduce a sound in a fraction of the memory. Analog to Digital 

Conversion (ADC) is a process that uses sampling and quantization to collect a finite set 

of values for any given analog signal. 

Sampling is the process of extracting values at fixed, equidistant time intervals rather 

than collecting every value in the continuous analog signal. The most common audio 

sampling rate is 44.1 kHz, which corresponds to 44,100 values per second of sound. This 

sampling rate allows us to extract all data values within the human hearing range in the 

most optimal way. 

Unlike sampling, which extracts values at fixed time intervals along the horizontal axis, 

quantization divides values on a waveform's vertical axis into a range of fixed equidistant 

values. Quantization rounds the exact value at a given time interval to the nearest 

quantized value when selecting a value at a given time interval. The resolution, or the 

number of quantized values, is measured in bits. A standard CD has a bit depth, or 

resolution, of 16 bits, which translates to 65,500 quantized values. The greater the 

dynamic range when converting an analog signal to a digital signal, the greater the bit 

depth during quantization. 

When a microphone picks up sound, its internal diaphragm oscillates, creating an 

analog signal that is transmitted to a sound card. The newly created digital signal is sent 

to the computer for processing by this sound card's ADC. 

To manipulate the audio data in Python, the file is transformed into a NumPy array 

when it is loaded. The amplitude at each timestep of audio is represented in memory as a 

time series of integers. For instance, a one-second audio clip would include 16800 

numbers if the sampling rate was 16800. The data only includes the amplitude numbers 

and not the time values because the measurements are made at specific intervals of time. 
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We can determine the time instant at which each measurement of an amplitude number 

was taken by using the sample rate. 

Furthermore, to analyze the sound and process it using AI, we need to generate Mel 

Spectrograms. This approach is the most optimal in audio processing for classification. 

The theoretical part behind the creation of a Mel Spectrogram is described in detail in the 

following chapter. 

2.3 Mel Spectrogram 

A single-frequency sound wave makes up an audio signal. When we take samples of 

the signal over time, we only record the resulting amplitudes. The Fourier transform is a 

mathematical formula that allows us to decompose a signal into its frequencies as well as 

the amplitude of each frequency. In other words, it converts the signal from time to 

frequency. The result is referred to as a spectrum. This is possible because each signal can 

be decomposed into a series of sine and cosine waves that sum to the original signal. This 

is known as Fourier's theorem, which is a remarkable theorem and is widely used in many 

sciences. The fast Fourier transform (FFT) is an algorithm that computes the Fourier 

transform quickly and is commonly used in signal processing. The fast Fourier transform 

is a powerful tool for analyzing the frequency content of a signal, but in the case of music 

and speech, the frequency content of the signal varies over time. These signals are referred 

to as non-periodic signals. Although, we require a method to represent the spectrum of 

these signals as it changes over time. Thus, we compute several spectrums by performing 

FFT on several windows of the signal known as the short-time Fourier transform. 

 

Figure 2: Fast Fourier Transformation 
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The spectrogram is obtained by performing the FFT on overlapping windowed 

segments of the signal. A spectrogram can be thought of as a collection of FFTs stacked on 

top of each other. It is a method of visually representing the loudness, or amplitude, of a 

signal as it varies over time at different frequencies. When computing the spectrogram, 

some additional details are taking place behind the scenes. The color dimension is 

converted to decibels, and the y-axis is converted to a log scale (representing the log scale 

of the amplitude). This is due to the fact that humans can only perceive a narrow and 

limited range of frequencies and amplitudes. In Figure 2 we can see the visual 

representation of FFT. 

In the current research, Mel Spectrograms were used in the sound analysis, because 

humans do not perceive frequencies on a linear scale, according to studies. We detect 

variations in lower-frequency regions better than in higher frequencies. For instance, we 

could easily distinguish the difference between 500 and 1000 Hz, but not between 10,000 

and 10,500 Hz, despite the fact that the distance between both pairs is the same. Stevens, 

Volkmann, and Newmann recommended a pitch unit in 1937 that sounded equally distant 

to the listener. The mel scale is used to describe this. To convert frequencies to the mel 

scale, we use arithmetic and logical operations. In conclusion, a mel spectrogram is a 

spectrogram where the frequencies are converted to the mel scale and uses the Decibel 

Scale instead of Amplitude to indicate colors. 

2.4 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a type of neural network specifically 

designed for working with data that has a grid-like structure, such as an image. CNNs are 

particularly effective for image recognition tasks and have been successful in a wide range 

of applications, including object classification, object detection, and image segmentation. 

The basic structure of a CNN consists of an input layer, an output layer, and one or 

more hidden layers in between. The input layer of a CNN is typically a multi-channel 

image, where each channel represents a different feature of the input data (e.g. red, green, 

and blue channels for an RGB image). The output layer is a vector of class probabilities, 

representing the predicted class label for the input data. 
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The hidden layers of a CNN are made of multiple units called "neurons," which are 

connected to each other through a series of "weights" and "biases." Each neuron receives 

input from a number of other neurons from the previous layer and then applies a 

mathematical operation (such as a dot product or a nonlinear activation function) to the 

inputs in order to produce an output. Activation functions are used to introduce 

nonlinearity into the model, which is important for learning more complex relationships 

in the data. Commonly used activation functions include the sigmoid function, the tanh 

function, and the ReLU (Rectified Linear Unit) function. The output of each neuron is 

then passed on to the next layer, where it becomes the input for the neurons in that layer. 

One key feature of CNNs is the use of "convolutional layers," which are designed to 

automatically learn a set of filters that can be applied to the input data in order to extract 

useful features. These filters are typically small (e.g., 3x3 or 5x5 pixels), and are applied to 

the input data by sliding them across the input grid, applying the dot product between the 

weights of the filter and the values of the input pixels at each location. This process is 

called "convolution," and it allows the CNN to learn features that are invariant to 

translations, rotations, and other geometric transformations of the input data. 

Another important feature of CNNs is the use of "pooling layers," which are used to 

reduce the size of the input data by down-sampling it. This is typically done by applying a 

max or average pooling operation over a small region of the input data, which effectively 

reduces the resolution of the input while retaining the most important features. Pooling 

layers are useful because they allow the CNN to be more robust to small variations in the 

input data (e.g. due to translation or rotation), and also help to reduce the number of 

parameters in the model, which can improve generalization performance. 

To use a CNN to analyze a spectrogram, the first step is to convert the audio signal into 

a spectrogram representation. This operation involves applying the Fourier transform to 

a windowed segment of the signal and then displaying the resulting complex spectrum as 

a function of time. The resulting spectrogram can then be passed to the CNN as an input 

tensor, with the x-axis representing time and the y-axis representing frequency. 

The CNN can then apply convolutional filters to the spectrogram in order to extract 

features that are relevant for a given task (e.g., identifying the presence of certain pitches 

or timbres). CNNs require substantially less pre-processing than other classification 
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techniques. While approaches used in the past generate filters that are manual-

engineered, CNNs can learn these filters/characteristics via training. Through the use of 

appropriate filters by applying a mathematical approach (multiplication, division) to the 

original array table with the convolution table, a CNN may successfully capture the Spatial 

and Temporal correlations in a picture. Due to the dimensionality reduction and the 

reusability of weights, the architecture performs superior fitting to the picture dataset.  

The CNN’s function is to compress the pictures into a format that is easier to process 

while retaining elements that are important for generating a prediction. This is critical for 

designing an architecture that is not just effective at learning features but also scalable to 

large datasets. CNNs do not have to be confined to a single Convolutional Layer. In most 

cases, the first ConvLayer is in charge of collecting Low-Level information such as edges, 

color, gradient direction, and so on. With further layers, the architecture adjusts to the 

High-Level characteristics as well, giving us a network that understands the photos in the 

dataset almost as we would. 

2.5 Transfer Learning 

Transfer learning is a machine learning technique in which a model trained on one 

task is re-used or fine-tuned for a second, related task. The idea is to leverage the 

knowledge and features learned from the first task to improve the performance of the 

second task. In transfer learning, a pre-trained model is used as a starting point and then 

further trained on the new data for the target task. This can be useful when there is a lack 

of labeled data or computational resources for training a model from scratch on the target 

task. Transfer learning can be applied in a variety of situations, such as natural language 

processing, computer vision, and speech recognition. It can also be applied at different 

levels, such as at the level of individual neurons or layers, or at the level of the entire 

model. 

One common type of model used in transfer learning for image classification tasks is a 

convolutional neural network (CNN). The convolutional layers of a CNN typically consist 

of a set of filters, which are learned during training and applied to the input image to 

extract features. The filters are applied at different locations and scales as the input image 
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is processed through the convolutional layers, allowing the CNN to learn a hierarchy of 

features at different levels of abstraction. 

The fully connected layers of a CNN take the output of the convolutional layers and use 

it to make a prediction about the class of the input image. These layers are called "fully 

connected" because each neuron in a fully connected layer is connected to every neuron 

in the previous layer. The fully connected layers use the features learned by the 

convolutional layers to make a final prediction about the class of the input image. 

To fine-tune a pre-trained CNN for a target task, it is common to unfreeze a few of the 

final layers of the network and retrain them using the new data for the target task. This 

allows the model to learn task-specific features that are relevant to the target task, while 

still leveraging the lower-level features learned from the pre-trained model. This can be 

done by using a smaller learning rate for the pre-trained layers, which helps to preserve 

the knowledge learned during the initial training phase. It is also common to add 

additional layers to the CNN for the target task, which can help the model learn more task-

specific features. During the fine-tuning process, it is important to choose an appropriate 

loss function and optimization algorithm for the target task, as well as to carefully select 

the hyperparameters of the model. 

In other words, transfer learning leverages past assignment expertise to improve 

prediction about a new task. During transfer learning, the information of a previously 

trained machine learning model is transferred to a separate but closely related task. If 

there is a trained basic classifier to predict if a picture contains a specific object, you might 

utilize the model's training experience to identify additional items. Neural networks in 

computer vision often seek to identify edges in the first layer, shapes in the middle layer, 

and task-specific properties in the latter layers. Transfer learning is used in the early and 

central layers, but the subsequent layers are just retrained. Transfer learning may build 

an effective machine learning model with relatively minimal training data since the model 

has previously been pre-trained.  

Lastly, training time is reduced because constructing a deep neural network from the 

beginning of a challenging task might take days or even weeks. When there is not a 

sufficient amount of annotated data to train our model and a pre-trained model has been 

trained on similar data and tasks, the best practice is to use the transfer learning model. 
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Someone could simply restore it and retrain certain layers to focus on the specific case. 

Transfer learning, on the other hand, works only if the features learned in the first task 

are universal, in the sense that they may be applied to another activity. In addition, the 

model's input must be the same size as when it was originally trained, which in the specific 

case the size of spectrograms is the same for both the pre-trained and final model. 
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3  Urban Sound Quality and Data 

Cities are vibrant and dynamic environments that are frequently accompanied by 

levels of unwanted noise, which may add to feelings of discomfort or displeasure in many 

metropolitan regions.  The lack of noise and the presence of pleasant sounds can both 

contribute to feelings of tranquility, relaxation, and “quietness”. This sensation may be 

encountered in a variety of urban settings, for instance at home, at a park, or on the plaza. 

However, due to fast and ongoing urbanization, the spatial variance between desired and 

undesired noises is reducing and may even disappear in some regions. As a result, the 

features of metropolitan regions where individuals might temporarily retreat from urban 

stresses like noise may alter or become scarcer. 

3.1 Urban Sound Quality 

Urban Sound Quality is based on human perception. Apart from perception, there are 

some general rules applied like the correlation between the volume of sound with the 

quality. That being said, humans often classify a sound as a “bad” quality based on how 

loud this sound is. In the current research, there will be a detailed analysis of how different 

the perception of individuals is and how this is being portrayed in the data gathering 

process. 

In urban areas, there is a variety of sounds, consisting of nature-generated sounds to 

human-generated sounds. The nature-generated sounds may vary from physical 

phenomena, like heavy rain, thunderstorms, and airwaves which cause turbulences of 

human-made objects and constructions, to animal-generated sounds. The human-made 

sounds vary a lot more, from having sounds of speech, which in crowded areas can be 

uncomfortable, to machinery and automotive sounds. For this purpose, in order to classify 

a sound, there has been created a scale from 1 to 5 (and from 1 to 3). In class 1 we label the 

quality of sound that is unbearable for the user collecting the data and in class 5 as the 

optimal sound quality. As mentioned, there is a deviation from what we perceive as an 

optimal sound and also how this scale is applied to sounds from different individuals. A 
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lot of people living in urban areas may have become familiar with sound pollution, 

therefore the classification differs in comparison with someone living in a quieter area. 

3.2 Urban Sound Data 

3.2.1 Data Gathering 

For the research of Urban Sound Quality, data was gathered using a mobile 

application, developed for this purpose. Users in Athens, Greece and Prague, Czech 

Republic used this application to record a ten-second sound every time and annotate it 

based on the perceived sound quality. The sounds were gathered in urban areas and at 

various times of the day. The collection was performed by walking on the streets, in areas 

with a lack of vehicles, in crowded areas, and in less populated areas in order to gather 

diverse sounds of either human or nature generated. In Figure 3 we can observe the 

distribution and the annotated value of the sound in Athens, Greece whereas in Figure 4 

we can see the same information for Prague, Czech Republic. 

 

Figure 3: Distribution of sounds in Athens, Greece 
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Figure 4: Distribution of sounds in Prague, Czech Republic 

3.2.2 Data Annotation 

While gathering the data, the user had to annotate the data based on the perceived 

sound quality on a scale from 1 being unbearable sound, to 5 being optimal sound quality. 

This was based purely on perception and the only information provided to the users were 

the aforementioned instructions. Furthermore, the annotation was done right after the 

recording of the sound, where the user has also the ability to listen to the recording in case 

of an issue in the process. A common question from the users was that the record is 10 

seconds and if in a minor part of the record, there was an unbearable sound and the rest 

was silence, how would someone classify it? The instruction given in that case is that 

anything included in the sound is to be reflected in the annotation, meaning that in the 

case of something being recorded that pollutes the optimal sound, must be appropriately 

annotated. In some cases, due to the high sensitivity of the new smartphones’ 

microphones, steps can be heard in the recordings. This could not be perceived during the 

process of recording but could be heard during listening to the recording before sending. 

In this case, the user’s annotation was not affected due to purely depicting the perceived 

soundscape quality. Additional sounds can also be heard because in most of the cases the 
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recordings were done while the users were walking, resulting in clothes and breathing 

sounds apart from steps. The same disciplines apply in these scenarios. 

3.2.3 Data Analysis 

While gathering data, the piece of information gathered from the user is the Device 

Identification Number, the Timestamp of the recording in DateTime format, the raw file 

of the sound record, the longitude and latitude of the user, and the annotated value from 

the dropdown menu. The data gathered in total per Device ID can be seen in Figure 5. 

 

Figure 5: Total Recordings per Device ID 

 

The total number of recordings is 1.080 also having additional 29 recordings from the first 

version of the application which did not include the Device ID. The average perceived 

quality per Device ID can be seen in Figure 6. 

 

Figure 6: Average Perceived Sound Quality per Device ID 
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Additionally, the distribution of the perceived soundscape quality in the data can be seen 

in Figure 7, including the records without Device ID. 

 

Figure 7: Distribution of Perceived Qualities 

 

The time of day the data was collected also varies, and the distribution can be seen in 

Figure 8. This variation leads to a wider spectrum of data. 

 

Figure 8: Distribution of Number of Sounds in Time of Day 

 

Average quality can also be investigated in relation to the dimension of time. In Figure 9 

we can observe when were the optimal timeslots of higher perceived quality in all of the 
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samples. The time duration analysis would also provide the correlation between time and 

quality, as long as the sounds were gathered in the same place, which in our case were not. 

 

Figure 9: Average Perceived Sound Quality in Time of Day 

 

Gathering data in two different countries is also another dimension worth 

investigating, where further analysis can provide insights into the differences between the 

two countries. Starting with information in Figure 9, split by country in Figure 10 and 

Figure 11. 

 

Figure 10: Average Perceived Sound Quality in Time of Day in Athens, Greece 
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Figure 11: Average Perceived Sound Quality in Time of Day in Prague, Czech Republic 

Lastly, in Figures 12 and 13 we have the analysis of the information in Figure 7, the 

distribution of the perceived soundscape quality per country. 

 

Figure 12: Distribution of Perceived Qualities in Athens, Greece 

 

Figure 13: Distribution of Perceived Qualities in Prague, Czech Republic 
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3.2.4 Data Availability 

The recordings gathered using the mobile application can be found in the following 

repository: https://github.com/magcil/soundscape-quality/ 

The data in the repository are split into train (80%) and test (20%) and the distribution 

per class is the following: 

● train: 
o class 1: 86 
o class 2: 220 
o class 3: 294 
o class 4: 200 
o class 5: 53 

● test: 
o class 1: 22 

o class 2: 55 

o class 3: 74 

o class 4: 51 

o class 5: 14 

In the data directory, there is also a file “database.csv” where additional information 

can be found for each recording. The format of the name of each file is: 

channel_class_deviceid_longitude_latitude_timestamp. 

 

 

 

 

 

 

 

 

 

 

https://github.com/magcil/soundscape-quality/
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4 Infrastructure 

For the purpose of the current research, a mobile application was developed which 

functioned as a data-gathering tool, assisting in the accuracy of the data by relying only 

on custom-developed code allowing to modify every detail for faster and more concrete 

results. The mobile application was developed using React Native and Node JS. The 

operating software of the host device can either be android or IOS. The functionality 

developed is to record a ten-second sound, annotate it using a label filter from 1-5, as the 

number of the classes, and send this information alongside longitude, latitude, and 

DateTime to a database for saving.  

As with all applications, a back-end was developed too, in order to handle the 

communication between the mobile application and the database. The backend is entirely 

developed in Python using Flask as a Webserver. Using Rest API technology, all the POST 

requests are received and handled by flattening and inserting the data into the database. 

For this purpose, a PostgreSQL database is also deployed. 

Additionally, a visualization tool was also developed using the same back-end, 

enabling it to fetch the data from the database and visualize it in a map visual using google 

services. The visualization tool was created using React Native and Node JS too. The back-

end again using Rest APIs technology, handles the GET requests and serves the data to 

the application by fetching them from the database. 
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4.1 Mobile Application – Frontend 

The Frontend of the application is the user interface (UI) developed to allow users to 

send sounds. The main goal was to be fast and efficient and allow the users to send 

multiple sounds in a short period of time. For this purpose, the interaction between user 

and application was limited to the least button-pressing possible. The main interface is 

depicted in Figure 14, showing the UI as soon as the user initiates the application on their 

mobile phone. 

  

            Figure 14: Main User Interface                         Figure 15: Help Button Instructions 
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The initiation of the recording can be achieved as soon as the user presses the blue 

button above “Record”. The process of recording starts and finishes automatically after 

ten seconds pass constructing a .wav file in the temporary memory of the phone. Before 

recording, the user may use the help button, which reveals a pop-up message showing the 

instructions for recording, and the logic followed is clarified in order to avoid mismatches 

in sounds and great deviations. Having a deviation between users is expected due to the 

different perceptions each one of us has.  

The help message instructions are: 

1. Press the blue button one time to start recording. 

2. Record a 10 second sound of your urban territory. 

3. Add a grade of 1-5 with 1 being unbearable sound quality and 5 being very good 

sound quality (optional). 

4. Press play if you wish to hear your record. Record again in case of false record. 

5. Press send (in case of server change, kindly change the server first and then send). 

This message also reveals the functionality of the application. Continuing in the 

functionality, as soon as the user presses the record button, the UI changes, giving a new 

UI which can be seen in Figure 16. A bar is loading indicating the seconds elapsed while 

recording. There is a temporary functionality also here, converting the recording button 

to the stop button. While the stop button is pressed, the recording stops, and the whole 

record is deleted. This allows the users to initiate a new recording. After the elapse of ten 

seconds, the UI changes once more, revealing a new set of options with the label 

“Perceived Soundscape Quality” which is the way for the users to annotate the sound they 

have just recorded.  

The selection for annotation can be done using a pop-up list appearing with labels 

“Optional” and numbers from 1 to 5. This pop-up list can be seen in Figure 19. As a next 

step for the user is to hit the send button and wait for the icon of send button to reappear 

(Figure 19). After each send, a pop-up message also appears, to notify the user that the 

recording has been sent successfully (Figure 20). In case of an issue, after pressing the 

send button (Figure 19), a pop-up message appears (Figure 21) to inform the user to 

contact the administrator. This mostly happens when the user is not connected to the 

internet or the server hosting the backend is not online.  
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                 Figure 16: Recording in Progress                                      Figure 17: Recording Finished 
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           Figure 18: Selection List                                             Figure 19: Sending the Record 
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                Figure 20: Recording Successfully Sent            Figure 21: Recording not Sent Successfully 

  

From the technical side, what happens inside the application is the construction of a 

10-second .wav file stored temporarily. Additionally, when the user presses send, the 

location in longitude and latitude are also fetched alongside the DateTime timestamp. All 

this information is then formatted as JSON to be sent to the BackEnd of the application 

in the Webserver using REST APIs. Also, with the abovementioned JSON, the raw sound 

file in a .wav format is also sent to be handled from the WebServer. Lastly, the “change 

server” field is used in cases where the default server of the application is down, allowing 
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the user to modify the recipient of the API POST information, or in cases where the default 

server in the production server and the user want to send some recordings to a test server. 

This modification changes the server in the root code for the existing device and version 

of the application, being reset in case of reinstalling or updating. 

4.2 Mobile Application – Backend 

The mobile application sends the JSON file alongside the raw .wav file using APIs to 

the WebServer as mentioned in the previous chapter. The WebServer uses Flask as 

architecture and is deployed using Nginx and gunicorn, and accepts both GET and POST 

requests. The main processes done in the WebServer are two: the first is to handle the 

POST requests coming from the mobile application and the second is to handle the GET 

requests coming from the visualization part. 

During the development of the WebServer, a database must be established and 

deployed as a migration to the process, in order for the WebServer to send the desired 

information directly to the database. For this purpose, a PostgreSQL database is used to 

receive the information and insert it into a table dedicated to the WebServer. For the 

migration between Flask and PostgreSQL was used the alembic library, which based on 

the arguments given, is produced the object to be included and called from the Flask in 

every insert of a new record.  

After developing the part of the database and migrating to the WebServer, the process 

which will handle the contents of the requests was created using a decorator to set the 

URL which the WebServer will be available. In this process, the first action is to handle 

the raw file and save it in a static directory renaming the file as follows: 

“quality_deviceID_longitude_latitude_timestamp.wav”. The JSON data is flattened and 

converted to string values. These string values are then sent using the object created from 

the migration, which is called using the string values. When calling the database objects, 

an INSERT statement is taking place to insert the new record into the database. The 

columns of the table in the database have the following format: 

1. index 

2. name (Device ID) 

3. sound_filename 
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4. data (the whole recording in base64 encoding for backup purposes) 

5. latitude 

6. longitude 

7. sound_path (the path of the raw file where it was saved) 

8. quality (annotation from the user) 

9. predicted (field to be populated from the model which will be used) 

The first process of handling the incoming data from the mobile applications ends with 

appending the new record of the abovementioned information to the database and storing 

the raw .wav file in a directory. For the purpose of visualization, we have the second 

decorator in the code, which leads to another URL for visualization purposes. The actions 

taken in this process are to fetch the data from the database and expose them using REST 

APIs. This results in responding to a GET request with all the data of the database coming 

from the website deployed. The website will be analyzed in the following section.   

In order to deploy the WebServer, the domain “urbansoundsystem.ml” was purchased 

and re-routed using Route53 service from Amazon Web Services which was then included 

in sites-available in Nginx. For the deployment in production and to a physical server, 

instructions from Digital Ocean were followed. 

Lastly, the whole infrastructure is developed in a way to have already embedded a 

client to call for deploying a PyTorch pre-trained model directly in the process. 

4.3 Data Visualization 

In the pipeline of the process of data gathering, visualization was also created, in order 

to monitor the progress of the sound recordings gathered and all the metadata stored in 

the database. For this purpose, a visualization was developed using React Native and Node 

JS to use the python backend to fetch and visualize data. 

Having the back-end exposing the data existing in the database using APIs, the React 

Map is using GET requests to fetch the data from the database where data is exposed using 

an object created in a migration process. 

After fetching the data, using Google API we are able to visualize the map of Google 

Maps and add pins for the location of each sound sent, based on the coordinates (Figure 

22). 
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Figure 22: Example of Location Pins in Athens, Greece 

 Each location pin represents the quality annotated by the user. The interactive part 

of the visualization is a filter pane created in the top left corner and has the interface seen 

in Figure 23. 

 

 

Figure 23: Filter Pane in React Map 

  

By pressing the map icon in the bottom right corner of the filter pane, all information 

fetched from the database is shown, alongside all the information for color classification 
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and specific date filter applied information. By filtering January to August in the year 2022 

in the pop-up map (Figure 24), followed by clicking the map icon we have the information 

shown in Figure 25. 

 

Figure 24: Date Filter Pop-Up 

 

 

Figure 25: Details Button Result in Filtering 
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 The metrics observed are from and to date period filtered, the number of records 

in the database for this result/filtering, the unique users (Device IDs) in this 

result/filtering, the numbers of total records in the database, and the total numbers of 

unique users in the database. 

 The color classification for the annotated value of every sound sent is represented 

with the icons in Figures 26-31. 

 

               

                Figure 26: Icon for Grade 0      Figure 27: Icon for Grade 1       Figure 28: Icon for Grade 2 

 

             

                  Figure 29: Icon for Grade 3    Figure 30: Icon for Grade 4     Figure 31: Icon for Grade 5 

 

 Lastly, in the filter pane, there is also the option to switch between Actual and 

Predicted values, switching, in reality, to the column from the database we fetch the 

quality of the recordings. As mentioned before, there is the annotated value sent from the 

user and also another column “predicted” which will be populated from the PyTorch 

model. 
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4.4 Data Preparation - Backend 

The data manipulation, after data has been gathered and stored in the remote server 

in the PostgreSQL database, is performed from an additional python script, created to 

fetch the data in a local directory, populating the directory with .wav files and creating the 

datasets for training and testing. This script also converts the data to mono channel (using 

pyffmpeg) and filters out any test files, comparing the name of the recordings with the 

records in the database.  

Lastly, after every run of this script, a full backup is taking place, storing a .csv file with 

a database backup and all the raw files of the server stored locally in a specific directory. 
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5 Experiments 

The experimentation of finding the optimal classification model is done in order to 

find optimal hyperparameters for the specific research and deploy the model in the end-

to-end process, automating the training and prediction. 

The experiments that took place are to train a model to classify the soundscape quality 

of a recording sent from users as accurately as possible. The main library used in these 

experiments is the deep_audio_features developed by Mr. Theodoros Giannakopoulos. 

The library uses PyTorch as the main deep learning library and the customization and 

hyperparameter tuning were implemented using the library’s model as a baseline. The 

main Neural Network model used is a Convolutional Neural Network which after 

experimentations and tuning was changed to fit the data gathered. 

As training inputs for the models were used the audio .wav recordings were gathered 

from the mobile application and prepared from the data backend script. The inputs for the 

models are mono-channel sound recordings in .wav format. The library’s steps for the 

training process are to define the classes, x_train, y_train, x_test, and y_test and continue 

to generate a spectrogram for each sound and convert it to a Mel spectrogram using the 

librosa library. 

In signal processing this approach is one of the most used, converting sound to an 

image representation, leading to a very, fast preprocess and also efficient feature 

extraction method. The preprocess implemented for feature extraction is the same in all 

the conducted experiments, generating for every sound file a Mel spectrogram with 

dimension 128x51 pixels. 
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5.1 Datasets 

The data gathered from the developed backend were split and investigated using 

different approaches, to analyze better biases, optimizations, and best practices. The fact 

of rich in-context data gathered having all information regarding time, location, and 

device id help in analyzing the data from different perspectives. 

The data was split into the following datasets: 

● Dataset 1: A five-class dataset containing all data gathered from the mobile 

application, from all users, performing only a basic cleanup in test records. The 

data is split into train 80% and test 20%. 

● Dataset 2: A five-class dataset consisting only of two IDs having validated that this 

data is correctly gathered and annotated. The first ID’s records are located in 

Athens, Greece and the second ID’s in Prague, Czech Republic. The data is split into 

two directories, country-oriented (cz, gr). 

● Dataset 3: A three-class dataset containing all data gathered from the mobile 

application, from all users, performing only a basic cleanup in test records. Classes 

one and two are merged into class one, class three remained class three, four and 

five merged into class three. The data is split into train 80% and test 20%. 

● Dataset 4: A three-class dataset consisting only of two IDs having validated that 

this data is correctly gathered and annotated. The first ID’s records are located in 

Athens, Greece and the second ID’s in Prague, Czech Republic. The data is split into 

two directories, country-oriented (cz, gr). Classes one and two are merged into class 

one, class three remained class three, four and five merged into class three. 

● Dataset 5: The UrbanSound8K dataset was used for the transfer learning process. 

The original dataset consists of ten classes. In the current research, classes were 

merged to have a five-class dataset and a three-class dataset.  

5.2 CNN Models 

The main library used in the experiments is deep_audio_features created by Mr. 

Theodoros Giannakopoulos. Using this library, various PyTorch CNN models were 

created, to investigate the best-fitting ones. 
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After many experiments, three model architectures were used in the validation and 

experimentation process.  

5.2.1 Models Architecture 

First model architecture: 

Category Value 

Activation Function Leaky Relu 

Batch Normalization Yes 

CNN Layers 4 

First Linear Layer Activation Function Leaky Relu 

First Linear Layer Dimensions Output Dimensions, 1024 

First Linear Layer Dropout 0.75 

Kernel Size 5x5 (2-Dimensions) 

Linear Layers 3 

Max Pool 2 Dimensions, Kernel Size = 2 

Padding 2 

Second Linear Layer Activation Function Leaky Relu 

Second Linear Layer Dimensions 1024, 256 

Second Linear Layer Dropout 0.5 

Stride 1 

Third Linear Layer Activation Function Leaky Relu 

Third Linear Layer Dimensions 256, Output Dimensions 

 

Second model architecture: 

Category Value 

Activation Function Leaky Relu 

Batch Normalization Yes 

CNN Layers 2 

First Linear Layer Activation Function Leaky Relu 

First Linear Layer Dimensions Output Dimensions, 1024 
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First Linear Layer Dropout 0.75 

Kernel Size 5x5 (2-Dimensions) 

Linear Layers 2 

Max Pool 2 Dimensions, Kernel Size = 2 

Padding 2 

Second Linear Layer Activation Function Leaky Relu 

Second Linear Layer Dimensions 1024, Output Dimensions 

Second Linear Layer Dropout 0.5 

Stride 1 

 

Third model architecture: 

Category Value 

Activation Function Leaky Relu 

Batch Normalization Yes 

CNN Layers 3 

First Linear Layer Activation Function Leaky Relu 

First Linear Layer Dimensions Output Dimensions, 2048 

Kernel Size 5x5 (2-Dimensions) 

Linear Layers 2 

Max Pool 2 Dimensions, Kernel Size = 2 

Padding 2 

Second Linear Layer Activation Function Leaky Relu 

Second Linear Layer Dimensions 2048, Output Dimensions 

Second Linear Layer Dropout 0.5 

Stride 1 
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6 Results 

The results are the outputs of the experimentation of the abovementioned models and 

datasets. The main metric used for evaluating the fit of the models is macro average f1 

score in validation. 

6.1 Results of Experimentation 

6.1.1 Model 1 

Experiment 

Number 

Datasets Validation Macro 

Average f1 Score 

Prior Class 

Naïve Classifier 

1 Dataset 1 0.35 0.31 

2 Dataset 2- Train with Athens validation 

with Prague 

0.19 0.19 

3 Dataset 2- Train with Prague validation 

with Athens 

0.25 0.21 

4 Dataset 3 0.50 0.18 

5 Dataset 4- Train with Athens validation 

with Prague 

0.39 0.32 

6 Dataset 4- Train with Prague validation 

with Athens 

0.44 0.30 

 

6.1.2 Model 2 

Experiment 

Number 

Datasets Validation Macro 

Average f1 Score 

Prior Class 

Naïve Classifier 

7 Dataset 1 0.38 0.31 

8 Dataset 2- Train with Athens validation 

with Prague 

0.21 0.19 

9 Dataset 2- Train with Prague validation 

with Athens 

0.26 0.21 

10 Dataset 3 0.51 0.18 
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11 Dataset 4- Train with Athens validation 

with Prague 

0.40 0.32 

12 Dataset 4- Train with Prague validation 

with Athens 

0.38 0.30 

6.1.3 Model 3 

Experiment 

Number 

Datasets Validation Macro 

Average f1 Score 

Prior Class 

Naïve Classifier 

13 Dataset 1 0.33 0.31 

14 Dataset 2- Train with Athens validation 

with Prague 

0.20 0.19 

15 Dataset 2- Train with Prague validation 

with Athens 

0.22 0.21 

16 Dataset 3 0.52 0.18 

17 Dataset 4- Train with Athens validation 

with Prague 

0.42 0.32 

18 Dataset 4- Train with Prague validation 

with Athens 

0.37 0.30 

 

6.2 Transfer Learning 

Due to low macro average f1 scores in the validation, in order to achieve better scores 

and due to the fact of a small data sample and human error in recording, transfer learning 

was implemented using dataset 5 (UrbanSound8K). For this series of experiments, 

model2 was selected. 

The results per model after implementing transfer learning and then training only the 

last layer, are the following: 

Experiment 

Number 

Datasets Validation Macro 

Average f1 Score 

Prior Class 

Naïve Classifier 

19 Dataset 1 0.42 – 0.47 (max) 0.31 

20 Dataset 2- Train with Athens validation 

with Prague 

0.19 0.19 

21 Dataset 2- Train with Prague validation 

with Athens 

0.24 0.21 
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22 Dataset 3 0.50 0.18 

23 Dataset 4- Train with Athens validation 

with Prague 

0.36 0.32 

24 Dataset 4- Train with Prague validation 

with Athens 

0.36 0.30 

 

 

In experiment number 19, the maximum value of 47% was achieved by tuning the number 

of nodes in the linear layers. 

6.3 Further Analysis 

Diving deeper into the data, there were some additional logics implemented for 

training and validation. These logics are time-independent while user-independent and 

user-dependent training, in order to avoid using audio from the same timeframe. This 

leads to training with specific days/times and testing with the remaining days/times. For 

this series of experiments, the best-fitting model was selected (model2) and after 

implementing also transfer learning. 

The results are the following: 

Experiment 

Number 

Datasets Validation Macro 

Average f1 Score 

Prior Class 

Naïve Classifier 

25 Dataset 2 - Train with Athens validation 

with Prague - User Dependent 

0.25 0.19 

26 Dataset 2 - Train with Prague validation 

with Athens - User Dependent 

0.28 0.21 

27 Dataset 4 - Train with Athens validation 

with Prague - User Dependent 

0.42 0.32 

28 Dataset 4- Train with Prague validation 

with Athens - User Dependent 

0.48 0.30 

29 Dataset 1 - User Independent 0.40 0.31 

30 Dataset 3 - User Independent 0.38 0.18 
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6.4 Results Interpretation 

The results from the models after the initial training, using the audio samples gathered 

via the mobile application, appear to have low scores due to the fact that the dataset used 

is diverse, including a lot of bias, and relies purely on the annotation of the perception of 

different human beings. It is also observed that after applying transfer learning, the 

accuracy of the prediction rises, leading to the result that the volume of data gathered is 

not sufficient to train a neural network-based model to be accurate enough. Further 

investigation using more data and additional data preprocess methods, such as filtering 

out specific sounds or adjusting the microphone sensitivity, is needed, in order to identify 

more precisely the reasons for low scoring. 

Lastly, considering the scenario of applying the above research in a real-world case by 

having no limitations in gathering samples from a distinct city, in order to use them as 

training inputs in a model and by having user independency, the maximum macro average 

f1 score that can be achieved in a 5-class case is 0.47. This result occurred by training 

model2 with transfer learning, meaning that the volume of data needed to be trained on 

is high. The architecture consists of 2 CNN layers and 2 linear layers, with a dropout of 

0.75 in the first linear layer and 0.5 in the second. Additionally, the stride is set to 1 and 

the padding to 2. The number of nodes in the linear layers is 1024 per layer. In the 3-class 

case, the maximum macro average f1 score was achieved by model3 and is 0.52. The data 

trained was the data gathered from the mobile application and there was no better score 

achieved by applying transfer learning. The architecture consists of 3 CNN layers and 2 

linear layers, with a dropout of 0.5 in the second linear layer. Additionally, the stride is set 

to 1 and the padding to 2. The number of nodes in the linear layers is 2048 per layer. 
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7 Conclusion 

In the current dissertation, a mobile application was created in order to gather 10-

second audio samples and, by using a custom back-end, store the data in a database/server 

aiming to be used as training inputs in a deep learning algorithm that would classify the 

audio quality, based on the annotated value which relies on the perception of the user. 

Furthermore, additional scripts were created, supporting the functionality of this process 

as a pipeline, allowing to automate and making it integration-available for additional uses.  

A future implementation would be to apply the infrastructure created in static areas in 

an urban territory using small, energy-efficient devices (for example raspberry pies) and 

apply temporal analysis, tracking the changes of various factors such as the type of land 

use, the level of traffic, the presence of certain types of businesses or facilities, public 

safety, transportation planning, the construction rate and the variety of animal species 

presence. 

The goal is to assess and manage the urban sound environment, as well as enhance the 

health and standard of living of city dwellers and spot any changes that can have a negative 

impact. 

We can improve the quality of our environment by utilizing the AI ecosystem. 
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