

University of Piraeus

School of Information and Communication Technologies

Department of Digital Systems

Postgraduate Program of Studies

MSc Digital Systems Security

An automated assessment of smart contract vulnerabilities in the

Ethereum blockchain using open-source tools

Supervisor Professor: Christos Xenakis

Name-Surname E-mail Student ID.

Vasilis Magkoutis bmagoutis@gmail.com Vasilis Magkoutis

Piraeus

15/01/2023

i

Abstract

Blockchain technology is gradually taking place in the technology spectrum and the

academic community. From the various uses of the blockchain, one of the most

successful and interesting ones is the Ethereum Virtual Machine. In this case,

blockchain can enable smart contracts (in essence, programming code) to run on the

network autonomously. This particular technology arrived fast, and multiple developers

are already coding these smart contracts. However, various vulnerabilities in their code

and developer practices surfaced with the broader acceptance of smart contracts.

Gradually tools to identify these vulnerabilities became available, and the community

focused more on the security of the smart contracts. But what about the result? How

many vulnerable contracts exist on the network, are there contracts with different

vulnerabilities, and are the vulnerable contracts deployed on the network decreasing?

The above constitute some of the questions we will try to answer.

ii

Acknowledgments

I want to thank my supervisor Prof. Xenakis Ch., for his consistent support and

guidance during the running of this thesis. Furthermore, I thank Bolgouras V., a Ph.D.

student at the University of Piraeus, for his research insights and positive feedback.

Finally, I would like to thank my wife Margarita, who supported and understood my

effort to finish this thesis despite being pregnant with our daughter.

iii

Table of Content
Acknowledgments ... ii

Introduction ... 1

Blockchain .. 1

Blockchain Architecture .. 2

Categories of blockchains .. 3

Bitcoin ... 3

Consensus Algorithms ... 4

Smart Contracts ... 5

Advantages of Smart Contracts .. 6

Smart Contracts and Data Management ... 7

Smart Contracts and Auditing .. 7

Vulnerabilities in Smart Contracts ... 8

Background and Related work ... 12

Vulnerability Assessment toolkits .. 12

Vulnerability assessment methods ... 12

Static Analysis ... 12

Dynamic Analysis ... 12

Formal Verification ... 13

Oyente ... 13

Osiris ... 13

Methodology and Definitions .. 15

Definitions... 15

ABI ... 16

Account ... 16

Address ... 16

Block ... 16

Contract ... 16

EVM ... 17

EVM Code .. 17

EVM Assembly ... 17

iv

Gas .. 17

Solidity .. 17

Transaction .. 17

Transaction Receipt ... 18

Wei .. 18

Methodology ... 18

Obtain the blockchain block information from the network. 19

Scan the blocks for possible contract creation transactions. 21

Obtain transaction receipts for possible contract creation transactions. 23

Identify non-valid contracts, find verified contracts and their ABI 24

Construct solidity code .. 26

Identify tools to be used for vulnerability assessment. 26

Integrate the tools into a virtual machine. ... 30

Create an API to handle submitted vulnerability assessment requests 32

Extract useful results.. 32

Discussion and Results .. 33

Results Per Tool .. 34

Results Per Vulnerability ... 37

Vulnerable Contracts per Year ... 41

Conclusion .. 44

References ... 45

Table of Figures .. 48

Appendix A ... 49

Appendix B ... 50

1

Introduction

Constant breakthroughs in science and technology dominate modern history. One of

the most important turning points in the development of technology was the invention

of the computer by Alan Turing. Following it was the invention of the World Wide

Web by Tim Berners-Lee, which signaled the dawn of the information era. Information

technology is advancing at an increasing pace to meet society's needs. One of the latest

technological breakthroughs was the creation of bitcoin in 2008 by Satoshi Nakamoto

[1], thus leading to the invention of blockchain technology. Blockchain technology is

used in bitcoin to solve the ever-present problem of transferring value between two

individuals or entities. The invention of the blockchain made possible concepts and

applications that nobody had imagined before or were impossible to achieve with the

existing technologies. One such application that was made possible was the Smart

Contracts, which was introduced by Vitalik Buterin in 2014 [3]. According to Vitalik,

smart contracts are "systems which automatically move digital assets according to

arbitrary pre-specified rules."

Blockchain

Blockchain technology is the foundation of bitcoin and other cryptocurrencies.

Blockchain can be considered a public ledger that stores all the transactions on the

network in a list of blocks. This public ledger grows with each new block of transactions

added [4]. For securing this ledger, asymmetric cryptography gets used coupled with

decentralized consensus algorithms. Some basic traits of blockchain are persistence,

decentralization, audibility, and anonymity.

Blockchain allows transactions to be processed and finished without any third party,

thus making it ideal to be used in various financial applications like digital assets, online

payments, remittances, and more [4]. Blockchain also gets used in many other

applications, such as smart contracts, public services, reputation systems, and the

internet of things. Blockchain as a technology is immutable, implying that transactions

cannot get altered once they are finalized. Thus, blockchain can provide reliability and

integrity that can be especially attractive to certain business sectors. One of the most

2

important blockchain applications is smart contracts, which can be automatically

executed by the miners when deployed on the network [3][4].

One of the biggest challenges that blockchain technology faces are the scalability

problem. In bitcoin, for example, the size of a block is 1 MB, and a block gets mined

every 10 minutes; thus, bitcoin provides a throughput of roughly seven transactions per

second. However, this throughput cannot sustain high-frequency trading and other

applications. Various technologies have emerged to solve this issue by providing larger

space per block and faster block times, but this can lead to a vast space required to store

the blockchain data, thus impacting decentralization as fewer users will be able to hold

it [5].

Blockchain Architecture

As stated previously, a blockchain is a list of blocks that register transactions and is

considered a public ledger. Each new block in the ledger has a unique hash. In its

header, the block includes the hash of the previous block. One block can have only one

previous block. In the ledger, the first block is called the genesis block and has no

previous (parent) block [7].

Blocks consist of two parts the header and the body. Block header includes various

information such as [4][7]:

• Block version - used to identify the specific set of rules that users must use to

validate the block

• Merkle tree root hash – this is a hash of the sum of the transactions that are

included in this block

• Timestamp – Usually the Unix timestamp which is the number of seconds

elapsed since January 1st of 1970

• nBits – max size for a valid block hash

• Nonce – this is a 4-byte value used in the hash calculation, and it increases with

each hash

• Previous or parent block – this is the 256bit hash of the previous block

A block counter and the transactions are included in the block body part. The number

of transactions in each block can vary based on the block size and the size of each

transaction [6].

3

Digital signatures based on asymmetric cryptography are used in the blockchain due to

the untrusted operational environment. As a result, each user uses a pair of private and

public keys. The private key is confidential and should be stored securely and safely

[4]. Users use this private to sign transactions propagated throughout the network. This

process is separated into two phases. In the first phase, the user builds, sings, and

submits a transaction to the network. In the next phase, all the other participants in the

network can validate that this user can initiate this transaction by verifying the digital

signature on the transaction. Finally, the user that has successfully solved the mining

problem can add a new block to the blockchain that will include this transaction [4].

Categories of blockchains

Blockchains are commonly separated into three categories: public, private, and

consortium blockchains [4][8]. The blocks, transactions, pending transactions, and

other records in a public blockchain should be made public and accessible to every

interested party. Also, anyone can be part of the consensus mechanism. In contrast to

the public blockchain, in consortium blockchain, everything is public, but in the

consensus mechanism, only a few pre-select nodes participate. Lastly, private

blockchains are designed to be used in organizations, and only nodes specified by the

organization participate. Also, the visibility of all records is subject to control and

restrictions based on the organization's needs [8].

Bitcoin

The modern digital money ecosystem uses various underline technologies and

concepts. Bitcoin is a collection of such technologies and concepts[2]. The users can

communicate with one another by using the bitcoin protocol. This communication

occurs mostly through the internet, but other networks can substitute it. The big

advantages of bitcoin technology are that it is easily accessible, available on multiple

devices, has various implementations, and is open source. Bitcoin leverages digital

signatures to create a digital currency that users can use like normal currency. They can

buy and sell products or send money to other users. Because bitcoin is fast, secure, and

widely available, it can be considered the ideal form of money for the digital online

world [2].

Bitcoin has no physical form and is an intangible asset in contrast to a normal currency

that has a physical form and is a tangible asset. The resulting bitcoins in the bitcoin

network result from transactions that transfer value from one user to another or, more

4

precisely, one address to another. The user is in the custody of a key that proves

ownership of an address in the bitcoin network. By owning the address, the user also

owns the transactions to and from this address. Thus the resulting value from these

transactions [2].

One of the biggest features of bitcoin is that it is a peer-to-peer system and is fully

decentralized, thus removing the need for a centralized point of control or failure. The

above feature enables the protocol users to transact with another without needing a third

party [1][2]. New bitcoins get created with a process that is called mining. Every user

participating in the network can mine new bitcoins. In this process, users can use their

computer's processing power to solve a difficult mathematical problem. After solving

the problem, that user can validate the pending transactions in the network, which

awards the new bitcoins. The mining operation imitates the currency-issuance behavior

of central banks in normal currencies [2].

The mining algorithm that gets solved by the users (miners) exits in the bitcoin network,

and its difficulty is adjusted by the network so that no matter how much computing

power gets used, the approximate needed time to solve the problem will be 10 minutes.

The bitcoin network also has preset functionality that halves the mining rewards every

four years. As a result, the maximum number of bitcoins that will ever be available is

21 million coins [1] [2]. The above mechanism means that bitcoin is a deflationary

asset, meaning that no extra bitcoins will be created (printed) other than the expected

issuance rate [2].

Consensus Algorithms

One of the biggest problems in the blockchain is reaching a consensus in a network of

untrusted nodes. This problem is similar to the Byzantine Generals (BG) problem [9].

In this problem, a group of generals that commands part of the army meets a city. Then

some generals prefer to attack, while others retreat. The problem is that to succeed in

the attack, all the generals must attack together. This problem illustrates the difficulty

of reaching a consensus in a decentralized untrusted environment. Because of the

decentralized nature of the blockchain, there is no central node, but the ledger in the

various nodes should be consistent. Various consensus protocols ensure consistency.

Proof of work (PoW) and Proof of Stake (PoS) are the most used algorithms in

cryptocurrency to achieve node consensus.

5

Proof of Work (PoW)

Proof of work is the consensus algorithm used by the bitcoin network [1]. In this

algorithm, for one node to append a new block on the blockchain that will hold the new

transactions submitted to the network, the node will have to calculate the hash of the

packet header. Nevertheless, that is not enough by itself. The node will need to change

a nonce value in the header and recalculate the hash until it meets a certain criterion of

size. More specifically, the hash size will need to be smaller than a certain value, then

the node propagates the package through the network, and after the other nodes validate

it, they add it to their blockchain [1].

Proof of Stake (PoS)

Proof of stake is trying to fix one of the biggest problems of the proof of work algorithm,

which is its massive energy consumption. In PoS algorithms, the users that want to add

a new block to the chain need to prove that they already own several coins. This

algorithm is based on the assumption that users with more coins are less likely to attack

the network [4]. However, this comes with a big disadvantage: the rich users get richer;

thus, various PoS implementations try to limit the staking amount or randomly

determine the node to add the new block. Because PoS energy consumption is almost

zero compared to the PoW algorithm, many networks started with PoW and then

transitioned to PoS. Such an example is the Ethereum network which started by using

Ethash [10], a PoW consensus algorithm, and is planning to move to a PoS algorithm

named Casper [11].

Smart Contracts

Nick Szabo introduced the smart contracts concept in 1996 as "computerized

transaction protocols that execute terms of a contract" [12]. Along with technological

progress and especially the invention of blockchain technology, this concept has

evolved to include more variations and implementations. As a result, smart contracts,

together with blockchain technology, have, in recent years, been a major focus of the

academic community. Through this focus, the mentioned technologies have been

applied to multiple fields [13].

 Smart contracts are a set of promises agreed upon between parties to formalize a

relationship, as mentioned in [13]. Smart contracts can be thought of as the building

blocks of blockchain applications. Their usage is to facilitate communication in the

network, like the other blockchain rules. Smart contracts have rules and conditions

6

written in a programming language, and blockchain enables the automatic execution of

these rules and conditions. Upon meeting the conditions in a smart contract, the

blockchain automatically executes the rules preset by the smart contract [13].

Essentially smart contracts are transactions stored in blockchain; thus, by leveraging

blockchain technology, no third party is needed to enforce their rules and conditions, in

contrast with traditional contracts that need a third party to guarantee their fulfillment.

Thus, smart contracts can be envisioned as the natural evolution of the blockchain as a

transaction protocol to the blockchain as a multi-purpose tool. Smart contracts are not

contracts in a legal sense but are parts of software that can enhance blockchain

functionality [13].

Advantages of Smart Contracts

According to [13], the main advantages of smart contracts are:

• Reducing risks: Through the public nature, immutability, traceability,

audibility, and integrity offered by the blockchain, malicious actions such as

fraud are almost eliminated.

• Cutting down administration and service costs – Due to blockchain not needing

a third party to enforce a contract as it will happen automatically, the

administrative fees required for the meditation of a third party are thus

eliminated.

• Improving the efficiency of business processes – As mentioned above,

removing the need for a third party can also speed up the financial settlement

process as it will take place in a peer-to-peer fashion.

• Speed and real-time updates – Smart contracts use rules programmed in a

programming language and automatically executed by a computer participating

in the network, thus significantly speeding up processes that otherwise would

be manually done.

• Accuracy – As mentioned above, the programmed rules speed up the process

and help remove manual errors.

• Lower execution risk – This happens because the execution takes place

automatically in the network. So, risks like manipulation, nonperformance, and

errors are greatly reduced.

7

• Fewer intermediaries – Smart contracts remove the need to rely on third parties

to provide trust services.

• Lower cost – As stated previously, smart contracts remove the need for third

parties and significantly reduce the human factor, thus effectively reducing the

cost.

• New business or operational models – This is an inevitable outcome as the

innovations provided by smart contracts can enable various business sectors,

such as peer-to-peer renewable energy trading, automated access, vehicles,

storage facilities, and more.

Smart Contracts and Data Management

One of online security and data privacy's biggest concerns is data management.

Currently used cloud-based solutions, the data are stored and analyzed on centralized

servers. Thus, concerns have arisen regarding trust in cloud provider security, loss of

control once data are put to an external place, and lack of transparency in the handling

processes [14]. However, with their peer-to-peer ability to securely transfer data

between untrusted parties, smart contracts and blockchain technology can mitigate or

eliminate such concerns. Furthermore, due to blockchain's immutable nature, it can

provide data provenance.

Furthermore, data access can also be securely implemented due to all parties' consensus.

Finally, data availability can also be extremely high due to the peer-to-peer nature. As

a result, traditional DoS (Denial of Services) attacks are often harder to pull off against

distributed systems than centralized ones [14].

Smart Contracts and Auditing

Another aspect of security that is a concern in smart contracts is a security auditing and

risk assessment. As organizations start to use smart contracts, there should also be a

process for external auditors to examine the contract's code (terms) and make an

objective conclusion about the contract's compliance with the guidelines [15].

Unfortunately, such a process is not currently available because about 77% of smart

contracts do not have their source code available, and only the byte code is available.

Due to these circumstances, many solutions have been proposed, such as reverse

engineering tools, semi-automated translation systems, and programming languages

that do not need compilation or the definition of programming languages that make the

execution code human-readable [15].

8

Another problem derived from the organization's use of smart contracts is the new risk

that comes with it and the need for both internal and external auditors to be able to

monitor these. Such risks can be [15]:

• Data integrity may not be guaranteed in the blockchain.

• Unauthorized transactions might be submitted to the blockchain

• Unauthorized smart contracts may be created

• Outdated or vulnerable smart contracts may still be active

Another aspect of smart contracts is that they might be used for external auditing

organizations. Because they can execute automated audit processes, thus providing

real-time reporting. This smart contract use can be considered an evolution to

continuous auditing [16].

Vulnerabilities in Smart Contracts

Vulnerabilities in smart contracts can be found in various aspects of the blockchain

ecosystem. Those aspects include the programming language of smart contracts

(Solidity). In addition, for Ethereum and other Ethereum-based networks,

vulnerabilities can be found in the Ethereum Virtual Machine (EVM) and, lastly, in the

underlying blockchain of the smart contracts.

We can then identify the following vulnerabilities based on the above distinct categories

in smart contracts.

• Solidity

o Call to the unknown: Primitives used in Solidity to transfer Ether or to

call functions, under some circumstances, may call the fallback

functions of the callee or the recipient, depending on the case. [17]

o Exception disorders/mishandling: These disorders mainly happen when

some exception is thrown. Exceptions are common in Solidity when the

gas runs out, the call stack limit is reached, or the throw is called.

Vulnerabilities can surface depending on how the contracts call each

other and handle the exceptions.[17][18]

o Gasless send: Sending Ether to other contracts can lead to an out-of-gas

exception. Because the callee has a bound amount of gas units that only

allow it to execute a small number of instructions.[17]

9

o Type casts: The compiler used in Solidity can detect most of the type

errors. Direct calls to other smart contracts are also using types.

However, the compiler will only check if the interface declared the

method, not the actual variables or smart contracts passed to it.[17]

o Reentrancy: It is a common mistake in smart contracts to assume that a

non-recursive function cannot be reentered before its termination. This

wrong assumption is reached because of the atomicity and sequentially

of transactions. Thus, the reentry of functions before they finish

execution can lead to serious vulnerabilities, like the one that was

exploited in the "DAO ATTACK." This attack led to a significant loss

of Ether. [17][18]

o Keeping secrets or Default visibility: This is one of the biggest issues of

publicly available blockchains. Solidity fields can be public, meaning

other users or smart contracts can access them, or be private. Even in the

case of private fields, users need to send appropriate values to miners,

which will then be included in transactions on the blockchain. Thus,

making it public, technics have been created to keep certain fields secret

for a time to address this vulnerability. One of those techniques is timed

commitments. [17][18]

o Arithmetic issues: The integer type in Solidity has an upper and lower

bound. So, if an integer increases above the upper bound, it is wrapped.

In some early solidity versions, this behavior was not flagging any error,

thus allowing for easier exploitation.[18]

o Delegate to insecure contracts: The Delegate call is a very dangerous

function as it enables the smart contract to reuse the code of the

referenced contract and execute it in its context. The vulnerabilities of

the reused code will be present or, even worse, in the case of untrusted

content, unpredictable changes can occur, including but not limited to

even changing the contract owner. [18]

o Self-destruct: This operation is a way to remove the smart contract for

future blocks. It will still be present in the history of the blockchain. This

function can lead to an attack vector as it is forcibly moving the

remaining balance of the smart contract to a new address. Also, any

10

funds transferred to the address of the self-destructed contract will be

permanently lost.[18]

o Tx origin: It is a global variable that stores the address of the original

caller of the transaction. If this variable is used for identification or

authorization in a smart contract, it can allow an attacker to run code as

the contract owner. [18]

o External contract referencing: Smart contracts inevitably will need to

reuse code present on other smart contracts. During the audit, it may

seem secure, but if a wrong address is passed during deployment, it can

lead to serious deprecations. Hard-coded external addresses may be used

to avoid this situation. [18]

• EVM

o Immutable bugs: This is one of the most impactful vulnerability

categories. Smart contracts deployed on the network cannot change due

to the immutable nature of the blockchain. If the smart contract performs

the expected functionality, then users can trust its execution which is

guaranteed by the network. The problem appears when a bug is

discovered in the smart contract, as there is no direct way to patch that

bug. So, the contract developers need to foresee such circumstances and

create termination or update mechanisms in the contract

implementation. [17]

o Ether lost in transfer: This vulnerability is caused due to funds sent to an

address that is not recoverable in any way. Also, most of the possible

address combinations in the network do not belong to anyone, meaning

they are orphan addresses, so funds sent to them are forever lost. In order

to avoid this problem, developers need to take manual action in verifying

the coerciveness of the address provided. [17]

o Stack size limit: Every time the contract calls a new function or any

external one, the call stack associated with the transaction increases by

one frame. The call stack is bound to 1024 frames, and after passing this

limit, an exception is thrown. This vulnerability can be combined with

other vulnerabilities like "exception disorder."[17]

o Short address/parameter issues: Parameters of smart contract functions

are encoded during passing. The length of each parameter when encoded

11

is 32 bytes. However, because of padding added from the EVM, if the

first parameter of a function is 30 bytes long, it can overflow, causing

alteration of the second parameter. Which may result in severe

damage.[18]

o Freezing Ether: Smart contracts are usually designed to be able to

receive and send Ether. Nevertheless, if no withdrawal functionality is

planned, the Ether sent to the specific smart contract will freeze as it will

not be withdrawable.[18]

• Blockchain

o Unpredictable state or Transaction order dependence: This is related to

the state of the blockchain. By observing the state at any given moment,

it is not guaranteed that if a user sends a transaction, this transaction will

be executed using the same state as the observed one when sending the

transaction. [17][18]

o Generating randomness: One of the characteristics of the EVM is that

execution of code in it is a deterministic process. All miners verifying a

transaction are expected to get the same result minus malicious actors,

which causes a big impact when contracts need to use random numbers

(non-deterministic). One approach to address this is to use pseudo-

random numbers. In this case, the initialization string is unique for each

miner. One common choice for this seed is the timestamp or hash of a

block that will appear in the blockchain. Since, during the run time, each

miner has the same view of the blockchain, then the seed will be the

same for everyone. Now timestamp or hash of the future block is

determined by the transactions and the order of these transactions. Thus

a malicious miner can temper this order in the block he is about to add

to create a bias in the outcome of the pseudo-random generator.[17][18]

o Time constraints: Most smart contract applications that want to

determine which actions are acceptable in the current state use time

constraints. One of the common time constraints to be used by smart

contracts is the block timestamp. In this case, if a miner has some stake

in a contract, he can slightly manipulate the timestamp of the contract

he is about to mine to benefit from it. [17][18]

12

Background and Related work

Vulnerability Assessment toolkits

We briefly introduce the various vulnerability assessment tools that will be used in the

scope of his research.

Vulnerability assessment methods

Three vulnerability assessment methods apply to smart contracts; these methods' usage

depends on the expected outcome and depth of the vulnerability assessment. Namely,

these methods are Static Analysis, Dynamic Analysis, and Formal Verification.[18]

Static Analysis

Static analysis has been used in Software Security since the early 2000s. The principle

behind this method is that a tool scans a software program's source or compiled code,

trying to match certain rules or known vulnerability footprints. Although the static

analysis approach can identify possible vulnerabilities, it is a method that cannot be

fully relied upon. This method is mostly used to assist in identifying vulnerabilities

prior to releasing software.[19]

In Smart contract vulnerability assessments, static analysis is used to identify known

vulnerabilities in bytecode and solidity source code. Slither is a tool to uses static

analysis in a multilayered way in order to detect vulnerabilities, even in code

optimizations, that some other tools might miss. [20] Vandal is another tool that

leverages static analysis to detect vulnerabilities in smart contracts. Vandal uses a

decompiler in its analysis chain to recompile bytecode to a higher-level representation

to surface logic relations.[21]

Static analysis is an important vulnerability assessment method and the most widely

used one.

Dynamic Analysis

Dynamic analysis is different from static analysis in that it analyzes the code while the

code is executing (run-time). This method does not analyze the code base but the code

executed. Such an approach makes Dynamic Analysis impervious to obfuscation and

13

dead code injection attempts and also highly minimizes the effect of self-modifying

code on the assessment process.[22]

In smart contract vulnerability assessment, the Dynamic Analysis performed by the

various tools uses symbolic analysis on the bytecode. Then, using a custom EVM

implementation, the smart contract is symbolically executed using a predefined depth.

This symbolic execution continues to search all possible execution paths until a

vulnerability is found or the possible execution paths are exhausted. Lastly, the results

of the symbolic analysis are validated using the concrete validation process.[23]

MAIAN is a tool that uses dynamic analysis to find vulnerabilities in Ethereum smart

contracts.[24]

Formal Verification

The formal verification method principle is the use of mathematics to prove the

correctness of various properties of a program. These properties include functional

correctness, run-time safety, and others.[23] Various tools use this method to perform

vulnerability assessments on smart contracts. Oyente is a tool that leverages Formal

Verification to formalize the semantics of Ethereum smart contracts [25] and performs

vulnerability assessment.[26]

Oyente

Oyente is one of the first vulnerability assessment toolkits on smart contracts that

surfaced. By using symbolic execution and formal verification, Oyente can detect

various known vulnerabilities directly from the bytecode without having access to

higher-level representation [25]. Oyente identified security bugs, including Transaction

Ordering Dependance, Timestamp difference, Mishandled Exceptions, and Reentrance

Vulnerability [25]. When Oyente was released, it was executed on the first 19,366 smart

contracts finding almost half of them (8,833) vulnerable.[25]

Osiris

Osiris is a tool that combines symbolic execution and taint analysis which is an

approach of formal verification to detect integer vulnerabilities in Ethereum smart

contracts [27]. Osiris can detect multiple integer bugs, such as Arithmetic bugs,

Truncation bugs, and Signedness bugs. Osiris can take as input both bytecode and

source code, then using symbolic analysis, it generates a Control Flow Graph and

executes the different paths. Then the results are passed on to taint analysis process.[27]

14

Osiris was evaluated against other toolkits, such as Mithril[28] and Zeus[29]. It was

found to identify truncation and signedness bugs that the other tools could not.

15

Methodology and Definitions

For this research, we will download the entire Ethereum blockchain in order to be able

to process that locally. To download the blockchain, we will need to fetch and store the

information of each block in the blockchain. Due to the large number of requests needed

to download all the blocks using public infrastructure, which is rate limited, we will not

cut; thus, we used a privately hosted solution. Part of the block information is the

transactions included in the specific block. Each transaction consists of information like

from_address, to_address, and input. In order to identify smart contracts, we will need

to scan all Ethereum blockchain transactions and search for a transaction to the "null"

address. After finding these transactions, we will need to verify if they are contract-

creation transactions and find the address of the newly created contract. To achieve this

result, we are fetching the transaction receipt. The information there includes if a

contract was created and the address of the newly created contract.

In the next stage, since we already have gathered all the contracts, including the

bytecode, which is present in the transaction's input field, we will use the Etherscan

service to collect information on which contracts are verified and which are not. We

will fetch ABI information and source solidity code for the verified contracts.

Finally, we are performing a vulnerability assessment in each of the smart contracts

found in the previous step. Due to time constraints in the scope of this research, we will

use only the bytecode of each smart contract. To perform the vulnerability assessment,

we used four open-source tools, and the results of each tool for each contract were

collected. First, a virtual machine with docker technology was used to install these

tools. Next, each tool was installed there using their docket releases. Finally, a web

server was set up inside the virtual machine to create an API to allow external requests

to submit smart contract bytecode. Then the submitted code would be passed to the

various tools, and the results would be collected and returned. This final process is the

most time-consuming one, so four virtual machines were used over three months to

analyze for vulnerabilities in all the found contracts.

Definitions

In this chapter, we will define the various terms used going forward.

16

ABI

Application Binary Interface or ABI is the translation matcher between high-level

language function names and arguments into binary code incorporated in the bytecode.

The corresponding ABI file is needed to retrieve the initial solidity source code from

the bytecode.

Account

Accounts are like wallets; it is where the Ether coins are stored. Accounts and account

balances are stored on a table and are part of the EVM state. In Ethereum, there are two

types of accounts. [10]

• External Accounts: Accounts outside the scope of EVM are controlled by the

owner of their public and private keys. It is assumed that persons are the owners

of these accounts.

• Contract Accounts: These accounts belong to smart contracts deployed on the

EVM and are controlled by those contracts.

Address

The address is a 160-bit string that is used to identify accounts. Both externally owned

and contract accounts have addresses.[10]

Block

A block is the building unit of the blockchain. Blocks are used in Ethereum to store

transactions submitted by external accounts and a reference to the previous block. In

the context of this research, we are using the following properties of each block [10]:

• Hash: Consists of a 256-bit Keccak hash of the entire block header.

• ParentHash: The hash of the parent (previous) block.

• Timestamp: The Unix timestamp of the block creation date.

• Number: Incremental value of the total number of previous blocks. Genesis

block has the number zero.

• Transactions: Array containing the transactions submitted to the block.

Contract

An informal term can mean code run in the EVM and is associated with an account or

an address associated with a contract account.

17

EVM

Ethereum Virtual Machine (EVM) is a simple virtual machine that forms the key part

of the execution layer responsible for running the EVM code associated with a contract

account.

EVM Code

It is the bytecode representation of Solidity code that can be natively executed in the

Ethereum Virtual Machine.[10]

EVM Assembly

Human readable representation of EVM code.[10]

Gas

In order to use the Ethereum network to make any transaction, a computation cost is

needed. Gas is that cost and is exclusively paid in Ether and represented in Wei.[10]

Solidity

The high-level language is currently used to write code that is then compiled into

bytecode. The whole Ethereum community supports Solidity.[17]

Transaction

The transaction is a single instruction cryptographically signed by an external to the

Ethereum network scope account. The sender of a transaction cannot be a smart

contract. A transaction can transfer the Ethereum balance between two accounts or

include a message input. When a transaction is included in a block and executed, a

transaction receipt is created. In the context of this research, we are using the following

properties of transactions [10]:

• BlockHash: Hash of the block in which the transaction was included.

• BlockNumber: Number of the block in which the transaction was included

• Hash: Consists of a 256-bit Keccak hash of the transaction

• Gas: Total amount of gas spent to execute the transaction message and all other

contract messages resulting from it.

• GasPrice: The price paid in Wei per gas unit for the cost resulting from the

transaction execution.

• Nonce: Incremental value equal to the number of transactions submitted by the

sender.

18

• From: The address of the sender who submitted the transaction.

• To: The destination account of the transaction.

• Input: Instruction message submitted with the transaction. For contract-

generating transactions, bytecode is present in this field.

• TransactionIndex: Index of the transaction in the block it was included.

• Value: Number of Wei transferred to the transaction recipient.

Transaction Receipt

Transaction receipt consists of the state alteration that resulted after the transaction

execution. It includes the status of the transaction, success or failure. It also includes

contract-related information if the transaction created a new smart contract. In the

context of this research, we are using the following properties of transactions receipts

[10]:

• BlockHash: Hash of the block in which the receipt transaction was included.

• BlockNumber: Number of the block in which the transaction of the receipt was

included

• TransactionHash: The hash of the transaction of the receipt.

• GasUsed: Total amount of gas spent to execute the transaction message and all

other contract messages resulting from it.

• From: The address of the sender who submitted the transaction.

• To: The destination account of the transaction.

• TransactionIndex: Index of the transaction in the block it was included

• ContractAddress: The address of the smart contract that was interacted with by

the transaction. The newly created contract address for a contract generation

transaction.

• Status: After the Byzantium fork transaction receipt provides a status of false

when failed and true in success.

Wei

Wei represents the smallest possible division of Ether. One Wei equals 10−18Ether.

Methodology

This chapter will analyze the steps taken and the difficulties encountered in this research

process. Below, figures 1 and 2 give a graphical representation of the implemented

19

process. There were multiple steps involved in achieving the goal of this thesis. In

particular, they are:

1. Obtaining the blockchain block information from the network.

2. Scan the blocks for possible contract creation transactions.

3. Obtain transaction receipts for possible contract creation transactions.

4. Identify non-valid contracts, and find verified contracts and their ABI.

5. Identify tools to be used for vulnerability assessment.

6. Integrate the tools into a virtual machine.

7. Create an API to handle submitted vulnerability assessment requests.

8. Extract useful results

Figure 1: High-level Overview

Figure 2: Internal Process Flow

Obtain the blockchain block information from the network.

The first step was to obtain the blocks of the blockchain and store them locally for

offline processing. For this purpose, an Ethereum network full node is needed to query

and obtain blocks. However, since the public infrastructure is being throttled and thus

20

is not usable, we used a private Ethereum full node hosted service. There is, of course,

the option to host an Ethereum node, but it has high technical, computational, and

storage requirements. Also, due to the huge size of the blockchain, requiring more than

one Terabyte of storage, compression was used to store the blocks into files locally.

With compression, the total amount of storage occupied was approximately 360

Gigabytes.

The obtained blocks were stored locally in files containing JSON objects with the

following structure:

{

 "blocknumber": { blockinformation },

 ...

}

Figure 3: Local Block Information Storage Structure

21

An example of block information is presented below:

Most of the information inside a block was analyzed previously. This research's helpful

and important information is the number, timestamp, and transactions array.

Scan the blocks for possible contract creation transactions.

Having obtained the blockchain blocks, we can identify possible contract-creation

transactions. The most important characteristic of a contract creation transaction is that

the destination of the transactions is the "null" address. That does not mean that all

transactions with destination the "null" address are contract-creating transactions, that

whoever will be the focus in future steps. For this step, we scan the entire blockchain

and look for a transaction to the "null" address. Then we store them locally for future

{

 "difficulty": "2856555416664183",

 "extraData": "0x7575706f6f6c2e636e2d32",

 "gasLimit": 12451224,

 "gasUsed": 12338462,

 "hash":

"0x411e667e75045da1b4a33460b224d8bccc5198450eeecfc574a7ea3673cfd5c9",

 "logsBloom":

"0x1637e9e14977025a49f289228c311ee26c610c418cd640f08c49a8586046d9c1845090

875056a1805605c586521a4d03cb34950e8f0204907b61c447512416eb138019f48847c48

77a27a16f1d805e6d0218bfa62764f2e444cae7eda86019109a20564602019042030d8fe2

a88e1a4c0230fb43042a0451a8dd26933f802804693ad0c34b3a40405d5102a3a8ab4ed80

e54e8cb61608d3b97c03cceb1774c9193d32ca061e5a94e46a6f3b09a04993e239c30cfd9

82e040c06fd9a0ae83e0d4e1a406320c3a2574ca126625a8429cccfe58d24fadca399142e

ae076d7ea6400fc112da0101b10349a2ca6510dc4028237a50230c1b1c27444a00025a826

101c",

 "miner": "0xD224cA0c819e8E97ba0136B3b95ceFf503B79f53",

 "mixHash":

"0xe857efaf34a5735576fd3bee5a16782c1d46ce0ab05b633b8475b3fd8a1726a1",

 "nonce": "0x7d1b59406c7c4404",

 "number": 10782001,

 "parentHash":

"0x045dea6d898dab54669fba32a0f2fba6f0af7b5313021eae7936cd4096d4d806",

 "receiptsRoot":

"0x07e12194f697c7c7d1c95fef898b2495669a09fd80836e5dbba5e41b2b0927d3",

 "sha3Uncles":

"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347",

 "size": 49129,

 "stateRoot":

"0x80e8a3ef72c708e77f3da0e056bd2226285a0938f02bd55f99ee240716492f89",

 "timestamp": 1599052321,

 "totalDifficulty": "17165177682045200186539",

 "transactions": [],

 "transactionsRoot":

"0x39eff5a9aacbead9061fb75faeb5b6ba66769889d8a89cee5af6935f2123d069",

 "uncles": []

}

Figure 4: Block Information

22

processing. For transactions, we have not used compression as the storage required was

not in the scale of the blockchain. Also, compression inherently adds overhead to

computations and data processing.

 In the above JSON formatted text, we can see the information contained in a contract-

creating transaction. The most notable fields are the "input," which contains the

bytecode of the newly created contract. Next, the "to" field sets the recipient of the

transactions, which in this case is the "null," and finally, the "hash," which will be used

to fetch the transaction receipt. Other important fields that we will be keeping for this

research include "blockNumber," "from," "gas," "gasPrice," "nonce,"

"transactionIndex," "value," "type," "v," "r," "s."

{

 "blockHash":

"0xaebf48d354504e006ce6344c213712d3b7f72218a61200c9364a793108f124b8",

 "blockNumber": 1000050,

 "from": "0x7FA200646216300e3dEc61925aEf2bCb5cb08904",

 "gas": 1000000,

 "gasPrice": "50000000000",

 "hash":

"0xa8b3733cb556f942c8ce9b2fca536e8d364c4535fe7dc0b95151cdd7eaf3a313",

 "input":

"0x6060604052600261010860005055604051610156380380610156833981016040528

05160805160a051919092019190808383815160019081018155600090600160a060020

a0332169060029060038390559183525061010260205260408220555b8251811015610

0eb57828181518110156100025790602001906020020151600160a060020a031660026

0005082600201610100811015610002579090016000508190555080600201610102600

0506000858481518110156100025790602001906020020151600160a060020a0316815

260200190815260200160002060005081905550600101610060565b816000600050819

05550505050806101056000508190555061010f62015180420490565b6101075550505

0506031806101256000396000f3003660008037602060003660003473273930d21e01e

e25e4c219b63259d214872220a261235a5a03f21560015760206000f30000000000000

000600000000000000000000

00

0000000000000000052b7d2dcc80cd2e40000000000000000000000000000000000000

0000000000000000000000000000000010000000000000000000000007fa2006462163

00e3dec61925aef2bcb5cb08904",

 "nonce": 4,

 "to": null,

 "transactionIndex": 0,

 "value": "0",

 "type": 0,

 "v": "0x1b",

 "r":

"0x987332e524aa75db80c7f7f56c80af842d181037f7c3b30d438fe9ed42bb50d4",

 "s":

"0x3af456bbf67bea65d72324f3d817469a16aadf6bcb27fd783f6d66c4e2b2277c"

}

Figure 5: Example of contract creation Transaction

23

Another important thing to notice is the starting bytes of the bytecode "0x6060604052".

These starting bytes make the free memory pointer initialization and are how every

solidity program starts. This sequence corresponds to the following EVM instructions

"PUSH 0x60", "PUSH 0x40", and "MSTORE." In solidity version v0.4.22 and later,

this initialization sequence changes to "0x6080604052". This sequence is important to

help us identify valid solidity code and, thus, valid smart contracts.

Obtain transaction receipts for possible contract creation transactions.

The next step will combine the information received from the previous steps into a new

data structure. The new data structure will be used and populated in the following step.

In this step, we are fetching transaction receipts from the network. As stated before, the

transaction receipt contains important information, including the resulting contract

address and the transaction result (success or failure). All information from the block,

transaction, and transaction receipt can be considered important metadata of contract

creation. Thus we store all this information in the following form:

{

 "contractAddress": { contractMetadata },

 ...

}

{

 "transactionHash":

"0xa8b3733cb556f942c8ce9b2fca536e8d364c4535fe7dc0b95151cdd7eaf3a313",

 "blockHash":

"0xaebf48d354504e006ce6344c213712d3b7f72218a61200c9364a793108f124b8",

 "blockNumber": 1000050,

 "logs": [],

 "contractAddress": "0xD90E6f0674B2DF67f0ef171C6b963B183424E32f",

 "effectiveGasPrice": 50000000000,

 "cumulativeGasUsed": 205847,

 "from": "0x7fa200646216300e3dec61925aef2bcb5cb08904",

 "gasUsed": 205847,

 "logsBloom":

"0x00

000

000

000

000

000

000",

 "status": true,

 "transactionIndex": 0,

 "type": "0x0"

}

Figure 6: Local Contract Information Storage Structure

Figure 7: Transaction Receipt Information

24

In the JSON text of figure 7, we can see an example of a transaction receipt regarding

the transaction in the previous step. We can identify that the newly created contract

address is "0xD90E6f0674B2DF67f0ef171C6b963B183424E32f" and that the status is

true, which signifies that the transaction execution and, thus, the creation of the contract

has succeeded. Other important information that will be kept from the transaction

receipt and will get used later include "transactionHash," "blockNumber,"

"effectiveGasPrice," "cumulativeGasUsed," "from," "gasUsed," "transactionIndex,"

"type." The values overwrite similar fields to the transaction in the transaction receipt.

Figure 8 below is an example of the result stored object after this step.

Identify non-valid contracts, find verified contracts and their ABI

After fetching the initial data from the blockchain, we will not be fetching additional

ones as we already have everything we need. Therefore, this section will scrap all the

imported contracts to obtain meaningful statistics. The statistics will include the total

found contract count, the total successfully created contracts and the number of

contracts for some specific solidity versions.

{

 "0xD90E6f0674B2DF67f0ef171C6b963B183424E32f": {

 "blockNumber": 1000050,

 "contractAddress": "0xD90E6f0674B2DF67f0ef171C6b963B183424E32f",

 "cumulativeGasUsed": 205847,

 "effectiveGasPrice": 50000000000,

 "from": "0x7fa200646216300e3dec61925aef2bcb5cb08904",

 "gasUsed": 205847,

 "transactionHash":

"0xa8b3733cb556f942c8ce9b2fca536e8d364c4535fe7dc0b95151cdd7eaf3a313",

 "transactionIndex": 0,

 "type": "0x0",

 "status": true,

 "gas": 1000000,

 "gasPrice": "50000000000",

 "input": "0x6060604052...",

 "nonce": 4,

 "value": "0",

 "v": "0x1b",

 "r":

"0x987332e524aa75db80c7f7f56c80af842d181037f7c3b30d438fe9ed42bb50d4",

 "s":

"0x3af456bbf67bea65d72324f3d817469a16aadf6bcb27fd783f6d66c4e2b2277c",

 }

}

Figure 8: Combined Contract Information from a block, a transaction, and a receipt.

25

Before diving into the specific statistics, we would like to explain a bit about the initial

part of the input of a contract. By observing, someone will notice that the vast majority

of smart contract code starts with either "0x6060604052" or "0x6080604052" this

sequence of bytes (or opcodes, if you will,) initiates the memory pointer. This process

is the initialization of every solidity program. Nevertheless, we notice that there are two

variations in it. According to solidity compiler documentation, "0x60" was the address

to the free memory pointer for solidity versions up to 0.4.21 [30]. After v0.4.22 and up

to the latest version (0.8.17 at the time of writing), the free pointer initialization points

to "0x80". This change allowed for more system-owned memory size before the

program-owned memory started [31]. In figure 9, there is a representation of the

bytecode prologue in opcode:

The main point of this step is to find which smart contracts have verified their source

code by uploading their Solidity ABI file on Etherscan. For this purpose, we will query

every smart contract found in the previous steps through the Etherscan API to find any

uploaded ABI file. If the ABI file is submitted, then the smart contract is verified, and

we store the ABI file contents locally. Through the contents of the ABI file, we can

later reconstruct the initial solidity source code of the smart contract. After scanning all

smart contracts, we found 4,602,424 smart contract creation transactions, 3,877,891 of

which were successful*.

Metric Value

Total Identified Smart Contract Creation

Tx

4,602,424

Total Successful Smart Contract

Creation Txs*

3,877,891

Verified Smart Contracts 708,937

Duplicate contracts created 0

Prior to Solidity v0.4.21, smart contracts 2,635,913 (129,557 verified)

After Solidity v0.4.22 smart contracts 1,717,743 (409,696 verified)

Other smart contracts 248,768 (169,684 verified)

00: 6080 PUSH1 0x80

02: 6040 PUSH1 0x40

04: 52 MSTORE

Figure 9: Opcodes in bytecode prologue

26

*Smart contract transactions

before the Byzantium hard fork [32] do not include the status field in their receipts.

This field was introduced with EIP-658. [33]

Since we have considered the difference in the initialization code, we will now present

the initial statistics on the smart contracts retrieved from the blockchain.

For solidity v0.4.22, we found 1,717,743 smart contracts, of which 409,696 are verified

on Etherscan. However, due to the high computational requirements for vulnerability

assessment, we will review only this category of smart contracts in this research. The

other categories will be the target of future work.

 For solidity v0.4.21 and before, we found 2,635,913 smart contracts, of which 129,557

are verified on Etherscan. Also, we found 248,768 smart contracts that do not comply

with the standard solidity initialization code, and further examination of their origin is

needed. As mentioned before, these categories of smart contracts will be the subject of

future work.

Construct solidity code

Identify tools to be used for vulnerability assessment.

It is time to start planning for the vulnerability assessment process. In this process, we

will use open-source smart contract vulnerability assessment tools to identify

vulnerabilities in most smart contracts found in the previous steps.

For the process's simplicity and the assessment's uniformity, we searched for tools that

can provide results with only Ethereum bytecode input. Another prerequisite was that

these tools have docker implementations. Finally, we tried to cover various

vulnerabilities with the selection of tools and different tools to spot different

vulnerabilities, as the purpose of this research is not to evaluate the various tools. Below

we are going to present these tools and sample results.

Oyente

As mentioned previously, Oyente is a tool developed to help in the pre-deployment

mitigation of vulnerabilities. It uses symbolic execution by representing the symbolic

input values as symbolic expressions. Using symbolic execution, Oyente can statically

reason the program path by path. This approach is less expensive computationally than

dynamic execution, which would require a simulation of the execution

environment.[34] The vulnerabilities discovered by this tool and used in our research

Figure 10: Results after scanning the blockchain for contracts

27

are "callstack," "reentrancy," "time_dependency," "integer_overflow,"

"integer_underflow," and lastly, "money_concurrency." We chose this tool as it is one

of the most commonly used and recognized. Figure 11 is an example result for Oynete

that was collected during our research.[26]

Osiris

Like with Oyente, we have already mentioned Osiris before. This tool is expanding

upon Oyente's detection abilities. Osiris combines three components to analyze the

smart contract bytecode for vulnerabilities: Symbolic Analysis, Taint Analysis, and

Integer Error Detection. [27] The vulnerabilities discovered by this tool and used in our

research are "callstack," "reentrancy," "modulo," "division," "signedness,"

"underflow," "time_dependency," "overflow," "money_concurrency" and lastly

"truncation." We chose this tool as it is one of the most commonly used tools and

provides a wide range of detection abilities. Figure 12 shows an example result for

Osiris that was collected during our research.

"oyente": {

 "vulnerabilities": {

 "callstack": false,

 "reentrancy": true,

 "time_dependency": false,

 "integer_overflow": [],

 "integer_underflow": [],

 "money_concurrency": true

 },

 "evm_code_coverage": "95.8"

 },

Figure 11: Example of Oyente results

28

Mythril

Mythril is a security analysis tool used to detect vulnerabilities in EVM bytecode. It

detects vulnerabilities in Ethereum and other EVM-compatible blockchains. It uses

symbolic execution, SMT solving, and taint analysis to detect security

vulnerabilities.[28] Mythril provides information for the found vulnerabilities,

including description, detection function, severity, and others. We decided to use this

tool because it leverages SMT solving, a technique not used by the previous tools.

Figure 13 is an example result for Mythril that was collected during our research.

"osiris": {

 "execution_paths": "50",

 "callstack": false,

 "reentrancy": true,

 "modulo": false,

 "division": false,

 "execution_time": "20.5002510548",

 "signedness": false,

 "evm_code_coverage": "58.0",

 "underflow": "\nOpcode: SUB\nInput: [Iv, Ia_store_6]\nOutput: [Iv

+\n11579208923731619542357098500868790785326998466564056403945758400791

3129639935*\nIa_store_6]",

 "time_dependency": false,

 "assertion_failure": false,

 "timeout": true,

 "overflow": "\nOpcode: MUL\nInput: [32, Id_12]\nOutput:

[32*Id_12]\nOpcode: ADD\nInput: [128, 32 + 32*Id_12]\nOutput: [160 +

32*Id_12]\nOpcode: ADD\nInput: [32, 196 + 32*Id_12]\nOutput: [228 +

32*Id_12]\nOpcode: ADD\nInput: [32, 228 + 32*Id_12]\nOutput: [260 +

32*Id_12]\nOpcode: ADD\nInput: [10000000000000000, Ia_store_6]\nOutput:

[10000000000000000 + Ia_store_6]\nOpcode: MUL\nInput: [32,

Id_12]\nOutput: [32*Id_12]\nOpcode: ADD\nInput: [32, 164 +

32*Id_12]\nOutput: [196 + 32*Id_12]\nOpcode: ADD\nInput: [32,

32*Id_12]\nOutput: [32 + 32*Id_12]",

 "money_concurrency": true,

 "truncation": false

 },

Figure 12: Example of Osiris results

29

MAIAN

MAIAN is another tool that uses symbolic analysis to extract execution traces from

smart contracts. MAIAN can check for prodigal contracts, suicidal contracts, and

greedy contracts. Prodigal is the contract that can leak Ether, given a certain execution

path. Suicidal are contracts that can be killed following a certain execution path. Lastly,

greedy contracts can accept Ether but have no way to send it out. We chose this tool as

it provides information for vulnerabilities not covered by the other previously used

tools. Figure 14 shows an example result for MAIAN that was collected during our

research.

"mythril": {

 "error": null,

 "issues": [

 {

 "address": 0,

 "contract": "MAIN",

 "description": "An assertion violation was triggered.\nIt is

possible to trigger an assertion violation. Note that Solidity assert()

statements should only be used to check invariants. Review the

transaction trace generated for this issue

and either make sure your program logic is correct, or use require()

instead of assert() if your goal is to constrain user inputs or enforce

preconditions. Remember to validate inputs from both callers (for

instance, via passed arguments) and callees (for instance, via return

values).",

 "function": "fallback",

 "max_gas_used": 0,

 "min_gas_used": 0,

 "severity": "Medium",

 "sourceMap": 0,

 "swc-id": "110",

 "title": "Exception State"

 }

],

 "success": true

 },

Figure 13: Mythril results example

30

Integrate the tools into a virtual machine.

 As mentioned previously, we preferred tools with docker versions to allow for a

uniform and easy integration. So, after selecting the tools, we are now installing them

"maian": {

 "suicidal": Check if contract is SUICIDAL

 [] Contract address: 0xaFFECAFEAFfECaFEaFFecAfEAFfecAfEAffEcaFE

 [] Contract bytecode: 6080604052600436106100d057600000000...

 [] Bytecode length: 10418

 [] Blockchain contract: False

 [] Debug: False

 [-] The code does not contain SUICIDE instructions, hence it is not

vulnerable

 "prodigal": Check if contract is PRODIGAL

 [] Contract address: 0xaFFECAFEAFfECaFEaFFecAfEAFfecAfEAffEcaFE

 [] Contract bytecode: 6080604052600436106100d0576000357c0100000...

 [] Bytecode length: 10418

 [] Blockchain contract: False

 [] Debug: False

 [] Search with call depth: 1: 1111111

 [] Search with call depth: 2

1122222221222222212222222122222221222222212222222

 [] Search with call depth: 3:

11222333333323333333233333332333333323333333122223333333233333332333333

323333333122222333333323333333233333331222222333333

 [+] No prodigal vulnerability found,

 "greedy": 'Check if contract is GREEDY

 [] Contract address: 0xaFFECAFEAFfECaFEaFFecAfEAFfecAfEAffEcaFE

 [] Contract bytecode: 6080604052600436106100d0576000357c01000...

 [] Bytecode length: 10418

 [] Debug: False

 [-] Contract can receive Ether

 [-] No lock vulnerability found because the contract cannot receive

Ether’

 }

 }

Figure 14: Maian results example

31

on a virtual machine that will allow us to create a common API to call the tools and

retrieve the results. Debian 5.10 was used as the operating system of the virtual

machine. Steps to prepare a virtual machine for the installation of the tools and the API

creation:

• Install Docker for Debian

• Install PHP. (Version 7.4.30 was used)

• In php.ini, we removed the "disabled_functions" to allow the "shell_exec"

method.

• Added www-data in sudoers with the privilege to execute all commands without

a password.

Although the above steps compromise the security of the virtual machine, it is necessary

to allow for a unified integration and remote execution through the API.

Following the virtual machine's preparation, we will download and run the following

docker images. We will also configure the instances to run persistently through restarts

of the virtual machine:

• luongnguyen/oyente

• christoftorres/Osiris

• smartbugs/maian

• mythril/myth

For each of these images, the command sequence executed was:

1. sudo docker pull luongnguyen/oyente

2. sudo docker run -dit --restart always --name oyente luongnguyen/oyente

3. sudo docker start oyente

Figure 15: Running containers of Vulnerability Assessment Tools

In figure 15, we can see the running containers. We notice that Mythril is not on the

list. That is because mithril will get started from the beginning every time a smart

contract is submitted for evaluation and will terminate after the evaluation is finished.

32

Create an API to handle submitted vulnerability assessment requests

Now that the docker containers are inside the virtual machine, we will create a simple

API implementation in PHP. The purpose is to evaluate the submitted bytecode as

requested by the API call and tools and return the results in JSON format. Because most

tools do not include remote capabilities, we write the bytecode in a file inside the docker

containers, perform the assessment, and retrieve the result. The sample code from the

implementation for Oyente is below the complete code for the API resides in Appendix

A.

One of the main characteristics of the API implementation is that the call to the endpoint

can control which of the tools present on the platform will perform the vulnerability

assessment. Also, through the call to the API, we can specify if the submitted code is

bytecode or solidity code.

Having reached this point, everything else is automated, and we are waiting for the

process to finish. The vulnerability assessment process is the lengthiest one. It is

estimated that for the approximately ~1.7 million contracts targeted in this research, it

took three months. The setup was a desktop PC with Intel core I7 6700K, 32 GBs of

Ram, and SSD storage. Six clones of the vulnerability assessment VM were running on

the computer, and the application was load-balancing between them to fetch the results.

Extract useful results

Finally, the last step after collecting the vulnerability assessment results for all the

targeted smart contracts is processing them. We will process these results and produce

useful metrics and statistics to understand the current security state for on-chain

contracts.

Below we are presenting some questions we will try to answer by processing the

collected results.

// Write bytecode.

shell_exec("sudo docker container exec oyente bash -c \"echo {$bytecode} > /oyente/oyente/contract.sol\"");

// Execute Assessment.

shell_exec("sudo docker container exec oyente bash -c \"python /oyente/oyente/oyente.py -s

/oyente/oyente/contract.sol -j -t 5000\"");

// Retrieve result.

$output = shell_exec("sudo docker container exec oyente bash -c \"cat /oyente/oyente/contract.sol.json\"");

Figure 16: Vulnerability assessment API Oyente handle

33

1. The number of vulnerabilities detected and contracts vulnerable to each

one of them.

2. The number of total vulnerable contracts detected, with additional info

for contracts with more than one vulnerability.

3. The number of vulnerable contracts detected per tool. Also, additional

info for vulnerable contracts detected by multiple tools.

4. How many verified smart contracts are vulnerable?

5. Smart contracts with at least one critical vulnerability detected.

Discussion and Results

Since we have already analyzed the step we have taken to lead us here, we will present

and elaborate on the results collected from the vulnerability assessment process. Based

on the scope of smart contracts we focused on in this research, we have identified and

evaluated a total of 1.587.700 smart contracts, of which 1.574.790 have succeeded in

being created. Of this total amount, 356.554 smart contracts have been verified in the

Etherscan platform, and 344.496 verified smart contracts succeeded and were created.

Therefore, only the successfully created smart contracts will be considered and

considered in the results.

Figure 17: Total Succeeded Smart Contract Creation Transactions

12910

1574790

Total

Failed Succeded

34

Figure 18: Verified Succeeded Smart Contract Creation Transactions

Results Per Tool

Following the initial count, we will present the vulnerabilities found per tool. Oyente

can identify six vulnerabilities. Oyente found 125598 contracts with call stack

vulnerability for the assessed smart contracts, 70355 of which had verified contract

code. Identified contracts with reentrancy vulnerability were 146, with 36 having

verified code, and 4573 contracts had Time Dependency vulnerability, of which 4570

had verified code. Finally, the money concurrency vulnerability had 800 smart

contracts, of which 456 were verified. Oyente did not identify any integer overflow or

underflow vulnerability for the assessed contracts.

12058

344496

Verified

Failed Succeded

35

Figure 19: Oyente Found Vulnerabilities

Next, we are going to present results for the Osiris tool. For callstack vulnerability,

131596 smart contracts were found vulnerable, and 74119 were verified. For reentrancy

vulnerability, 226569 smart contracts were found vulnerable, 580 of which are verified.

Two smart contracts were found vulnerable for modulo vulnerability, 0 of which are

verified. Six smart contracts were found vulnerable for division vulnerability, 2 of

which are verified. 1287 smart contracts were found vulnerable for signedness

vulnerability, and 899 were verified. For integer underflow vulnerability, 2591 smart

contracts were found vulnerable, 1795 of which are verified. Four smart contracts were

found vulnerable to Time Dependency vulnerability, 3 of which are verified. 0 smart

contracts were found vulnerable to Assertion Failure vulnerability, and 0 were verified.

For Integer Overflow vulnerability, 30066 smart contracts were found vulnerable,

11589 of which are verified. 713 smart contracts were found vulnerable to Money

Concurrency vulnerability, and 228 were verified. Finally, 16831 smart contracts were

found vulnerable to Truncation vulnerability, 11401 of which are verified.

Callstack Reentrancy
Time

Dependency
Money

Concurrency
Integer

Overflow
Integer

Underflow

Vulnerable 125598 146 4573 800 0 0

Verified 70355 36 4570 456 0 0

0

20000

40000

60000

80000

100000

120000

140000

Oyente Found Valnerabilities

Vulnerable Verified

36

Figure 20: Osiris Found Vulnerabilities

Next, we are going to present results for the Maian tool. For suicidal vulnerability, 946

smart contracts were found vulnerable, and 120 were verified. For prodigal

vulnerability, 175335 smart contracts were found vulnerable, 83156 of which are

verified. Finally, a greedy vulnerability was found in 31737 smart contracts, 7517 of

which are verified.

Figure 21: Maian Found Vulnerabilities

Lastly, we will present the results for the Mythril tool. 193187 smart contracts were

found vulnerable for reentrancy vulnerability, and 991 were verified. For integer

0 50000 100000 150000 200000 250000

Callstack

Modulo

Signedness

Time Dependency

Overflow

Truncation

Callstac
k

Reentra
ncy

Modulo Division
Signedn

ess
Underfl

ow

Time
Depend

ency

Assertio
n

Failure

Overflo
w

Money
Concurr

ency

Truncat
ion

Verified 74119 580 0 2 899 1795 3 0 11589 228 11401

Vulnerable 131596 226569 2 6 1287 2591 4 0 30066 713 16831

Osiris Found Valnerabilities

Verified Vulnerable

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Suicidal

Prodigal

Greedy

Suicidal Prodigal Greedy

Verified 120 83156 7517

Vulnerable 946 175335 31737

Maian Found Valnerabilities

Verified Vulnerable

37

overflow vulnerability, 12603 smart contracts were found vulnerable, and 4542 were

verified. 10288 smart contracts were found vulnerable to time dependency

vulnerability, and 5470 were verified. 5824 smart contracts were found vulnerable for

assertion failure vulnerability, 1909 of which are verified. 3797 smart contracts were

found vulnerable for dos vulnerability, 80 of which are verified. 2783 smart contracts

were found vulnerable to insufficient randomness vulnerability, and 2343 were verified.

1655 smart contracts were found vulnerable for the Tx origin vulnerability, and 546

were verified. 729 smart contracts were found vulnerable to unchecked return

vulnerability, and 52 were verified. For suicidal vulnerability, 479 smart contracts were

found vulnerable, 147 of which are verified. For prodigal vulnerability, 80 smart

contracts were found vulnerable, 18 of which are verified. For untrusted delegatecall

vulnerability, 22 smart contracts were found vulnerable, 7 of which are verified.

Finally, four smart contracts were found vulnerable to the "writing to arbitrary storage"

vulnerability, 1 of which is verified.

Figure 22: Mythril Found Vulnerabilities

Results Per Vulnerability

Following the initial per tool results, we will present the total number of smart contracts

vulnerable for each detected vulnerability and how many were verified.

1. 369391 smart contracts were found vulnerable to reentrancy vulnerability, and

1225 were verified.

0 50000 100000 150000 200000 250000

Reentrancy

Time Dependency

Dos

Tx Origin

Suicidal

Untrusted Delegatecall

Reentr
ancy

Integer
Overflo

w

Time
Depen
dency

Asserti
on

Failure
Dos

Insuffic
ient

Rando
mness

Tx
Origin

Unchec
ked

Return
Suicidal

Prodiga
l

Untrust
ed

Delegat
ecall

Write
Arbitra

ry
Storage

Verified 991 4542 5470 1909 80 2343 546 52 147 18 7 1

Total 193187 12603 10288 5824 3797 2783 1655 729 479 80 22 4

Mythril Found Valnerabilities

Verified Total

38

2. For prodigal vulnerability, 175414 smart contracts were found vulnerable, and

83174 were verified.

3. For callstack vulnerability, 131626 smart contracts were found vulnerable, and

74134 were verified.

4. 36304 smart contracts were found vulnerable to integer overflow vulnerability,

and 13690 were verified.

5. For greedy vulnerability, 31737 smart contracts were found vulnerable, and

7517 were verified.

6. 16831 smart contracts were found vulnerable to truncation vulnerability, and

11401 were verified.

7. 10586 smart contracts were found vulnerable to time dependency vulnerability,

and 7746 were verified.

8. 4380 smart contracts were found vulnerable to assertion failure vulnerability,

and 1549 were verified.

9. 3130 smart contracts were found vulnerable for dos vulnerability, 69 of which

are verified.

10. For integer underflow vulnerability, 2591 smart contracts were found

vulnerable, 1795 of which are verified.

11. 1507 smart contracts were found vulnerable for insufficient randomness

vulnerability, and 1201 were verified.

12. For suicidal vulnerability, 1372 smart contracts were found vulnerable, 231 of

which are verified.

13. 1287 smart contracts were found vulnerable for signedness vulnerability, and

899 were verified.

14. 979 smart contracts were found vulnerable to money concurrency vulnerability,

and 477 were verified.

15. 543 smart contracts were found vulnerable for unchecked return vulnerability,

51 of which are verified.

16. 444 smart contracts were found vulnerable for Tx origin vulnerability, and 194

were verified.

17. For untrusted delegatecall vulnerability, 21 smart contracts were found

vulnerable, and six were verified.

18. Six smart contracts were found vulnerable for division vulnerability, 2 of which

are verified.

39

19. For write-to arbitrary storage vulnerability, three smart contracts were found

vulnerable, 1 of which is verified.

20. Two smart contracts were found vulnerable for modulo vulnerability, 0 of which

are verified.

Figure 23 is a graphical representation of the top 5 vulnerabilities identified overall.

Figure 23: Top 5 Vulnerabilities Detected

Figure 24 is a graphical representation of the top 5 vulnerabilities identified for verified

contracts.

Figure 24: Top 5 Vulnerabilities detected for verified contracts

369391

175414

131626

36304
31737

34315

Total

Reentrancy Prodigal Callstack Integer Overflow Greedy Other

83173

74134

13690

11401

7746
15186

Verified

Prodigal Callstack Integer Overflow Truncation Time Dependency Other

40

An important statistic is how many contracts have one vulnerability, two or more

vulnerabilities.

1. A total of 683950 smart contracts have one vulnerability, of which 160796 are

verified.

2. A total of 40487 smart contracts have two vulnerabilities, of which 19403 are

verified.

3. A total of 4118 smart contracts have three vulnerabilities, of which 1826 are

verified.

4. A total of 305 smart contracts have four vulnerabilities, of which 52 are verified.

5. A total of 35 smart contracts have five vulnerabilities, of which six are verified.

6. Nineteen smart contracts have six vulnerabilities, of which two are verified.

In figure 25, we can see the statistical data for the total contracts in a pie chart.

Figure 25: Number of Vulnerabilities found per contract

In Figure 26, we can see the statistical data for the verified contracts in a pie chart.

683950

40487

4118

305
35194477

Total

1 Vulnerability 2 vulnerabilities 3 vulnerabilities

4 vulnerabilities 5 vulnerabilities 6 vulnerabilities

41

Figure 26: Number of Vulnerabilities found per Verified Contract

Vulnerable Contracts per Year

One of the most interesting pieces of information extracted from the results is the

number of new vulnerable smart contracts created each year. For this reason, we will

present the new vulnerable contracts created yearly since 2018, which was the first

release of the solidity v0.4.22 compiler. For 2022, a total of 171492 smart contracts

were created, 84686 of the created smart contracts have their code verified, and 101708

were found to have at least one vulnerability. For 2021, a total of 337478 smart

contracts were created, 85562 of the created smart contracts have their code verified,

and 136140 were found to have at least one vulnerability. For 2020, a total of 445707

smart contracts were created, 74028 of the created smart contracts have their code

verified, and 153850 were found to have at least one vulnerability. For the year 2019,

a total of 564329 smart contracts were created, 92904 of the created smart contracts

have their code verified, and 170249 were found to have at least one vulnerability. For

the year 2018, a total of 198737 smart contracts were created, 72516 of the created

smart contracts have their code verified, and 61247 were found to have at least one

vulnerability.

160796

19403

1826

52

6

2

60

Verified

1 Vulnerability 2 vulnerabilities 3 vulnerabilities

4 vulnerabilities 5 vulnerabilities 6 vulnerabilities

42

Figure 27: Number of new / verified / vulnerable contracts per year

Another interesting metric to look at per year is the factor between vulnerable contracts

and total created contracts. Also, another metric is the factor of the verified contracts

and total created contracts.

Figure 28: Percentage of vulnerable to new contracts per year

From figure 28 statistics, we can see that the percentage of vulnerable smart contracts

vs. total smart contracts created is increasing year after year. Which might result from

less importance on security, naïve developer practices, or other reasons.

0 100000 200000 300000 400000 500000 600000

Year 2022

Year 2021

Year 2020

Year 2019

Year 2018

Year 2022 Year 2021 Year 2020 Year 2019 Year 2018

Vulnerable 101708 136140 153850 170249 61247

Verified 84686 85562 74028 92904 72516

Total New 171492 337478 445707 564329 198737

Totals for smart contracts per year.

Vulnerable Verified Total New

59.30772281

40.34040737

34.51819244

30.16839468

30.81811641

0 10 20 30 40 50 60 70

Year 2022

Year 2021

Year 2020

Year 2019

Year 2018

Vulnerable / Total

%

43

Figure 29: Percentage of verified new contracts per year

In figure 29 statistics, we can see that the percentage of verified smart contracts vs. total

smart contracts created is increasing year after year. Which can be interpreted as a trend

for more developers and projects going open source.

49.38189537

25.35335637

16.60911765

16.46273716

36.4884244

0 10 20 30 40 50 60

Year 2022

Year 2021

Year 2020

Year 2019

Year 2018

Verified / Total

%

44

Conclusion

As seen in the previous chapters, security in Ethereum smart contracts is an ongoing

pursuit with a small reach. Although some vulnerabilities were discovered some years

ago, we can still see smart contracts containing them being deployed on the network.

Because blockchain technology and the cryptocurrency industry are nascent, there is

not as much attention and awareness of security and vulnerabilities. There is also a rush

to develop new ideas and get products out faster. All the factors mentioned above help

can explain the results presented in this research. There should be more focus on

security. At least there should be an effort to avoid already known vulnerabilities and

all solidity developers to become more aware of security best practices. We suggest

communities create repositories containing vulnerable contracts and vulnerability

assessment tools to check a smart contract on the go. These tools will help both users

and investors. We also suggest that Layer 1 networks provide a stacking-like

mechanism for smart contract creators and users, where it will be possible for a user to

get reimbursed in case of fraud, which will dissuade vulnerable code from being reused

again and again.

Finally, we will continue the research to expand to all smart contracts on the Ethereum

network. Other research targets include assessing other EVM-compatible blockchains

and creating an online free and up-to-date vulnerability assessment toolkit.

45

References

[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008. Available

online: https://bitcoin.org/bitcoin.pdf. (Accessed April 1st, 2022).

[2] Antonopoulos A.M. Mastering Bitcoin: Unlocking Digital Cryptocurrencies

O'Reilly Media, Inc. (2014)

[3] V. Buterin, "A next-generation smart contract and decentralized application

platform," white paper, 2014. Available online:

https://github.com/ethereum/wiki/wiki/White-Paper (Accessed April 2nd, 2022).

[4] Zheng, Zibin & Xie, Shaoan & Dai, Hong-Ning & Chen, Xiangping & Wang,

Huaimin. (2017). An Overview of Blockchain Technology: Architecture, Consensus,

and Future Trends. 10.1109/BigDataCongress.2017.85.

[5] I. Eyal and E. G. Sirer, "Majority is not enough: Bitcoin mining is vulnerable," in

Proceedings of International Conference on Financial Cryptography and Data Security,

Berlin, Heidelberg, 2014, pp. 436–454.

[6] NRI, "Survey on blockchain technologies and related services," Tech. Rep., 2015.

[Online]. Available: https://www.meti.go.jp/english/press/2016/pdf/0531_01f.pdf

[7] D. Lee Kuo Chuen, Ed., Handbook of Digital Currency, 1st ed. Elsevier, 2015.

[Online]. Available: http://EconPapers.repec.org/RePEc:eee:monogr:9780128021170

[8] V. Buterin, "On public and private blockchains," 2015. [Online]. Available:

https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/

[9] L. Lamport, R. Shostak, and M. Pease, "The byzantine generals problem," ACM

Transactions on Programming Languages and Systems (TOPLAS), vol. 4, no. 3, pp.

382–401, 1982.

[10] G. Wood, "Ethereum: A secure decentralised generalised transaction ledger"

Ethereum Project Yellow Paper, 2014.

[11] V. Zamfir, "Introducing Casper the friendly ghost," Ethereum Blog URL:

https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost, 2015.

[12] Szabo, N. (1996). Smart contracts: building blocks for digital markets. EXTROPY:

The Journal of Transhumanist Thought, 16, 18, p-2

[13] Jani, Shailak. (2020). Smart Contracts: Building Blocks for Digital

Transformation. 10.13140/RG.2.2.33316.83847.

http://econpapers.repec.org/RePEc:eee:monogr:9780128021170
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/

46

[14] Khan, S.N., Loukil, F., Ghedira-Guegan, C. et al. Blockchain smart contracts:

Applications, challenges, and future trends. Peer-to-Peer Netw. Appl. 14, 2901–2925

(2021). https://doi.org/10.1007/s12083-021-01127-0

[15] Andrés, Javier & Lorca, Pedro. (2021). On the impact of smart contracts on

auditing. The International Journal of Digital Accounting Research. 21. 155-181.

10.4192/1577-8517-v21_6.

[16] Rozario, A. M., & Thomas, C. (2019). Reengineering the audit with blockchain

and smart contracts. Journal of Emerging Technologies in Accounting, 16(1), 21-35.

https://doi.org/10.2308/jeta-52432

[17] Atzei, Nicola & Bartoletti, Massimo & Cimoli, Tiziana. (2017). A Survey of

Attacks on Ethereum Smart Contracts (SoK). 164-186. 10.1007/978-3-662-54455-6_8.

[18] Zhou H, Milani Fard A, Makanju A. The State of Ethereum Smart Contracts

Security: Vulnerabilities, Countermeasures, and Tool Support. Journal of

Cybersecurity and Privacy. 2022; 2(2):358-378. https://doi.org/10.3390/jcp2020019

[19] Chess, B., & McGraw, G. (2004). Static analysis for security. IEEE security &

privacy, 2(6), 76-79.

[20] J. Feist, G. Grieco, and A. Groce, "Slither: A Static Analysis Framework for Smart

Contracts," 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in

Software Engineering for Blockchain (WETSEB), 2019, pp. 8-15, DOI:

10.1109/WETSEB.2019.00008.

[21] Brent, L., Jurisevic, A., Kong, M., Liu, E.; Gauthier, F., Gramoli, V., Holz, R.,

Scholz, B. Vandal: A scalable security analysis framework for smart contracts. arXiv

2018, arXiv:1809.03981.

[22] Bayer, U., Moser, A., Kruegel, C., & Kirda, E. (2006). Dynamic analysis of

malicious code. Journal in Computer Virology, 2(1), 67-77.

[23] Praitheeshan, P., Pan, L., Yu, J., Liu, J., & Doss, R. (2019). Security analysis

methods on Ethereum smart contract vulnerabilities: a survey. arXiv preprint

arXiv:1908.08605.

[24] MAIAN: an automatic tool for finding trace vulnerabilities in Ethereum smart

contracts, https://github.com/MAIAN-tool/MAIAN

[25] Luu, L., Chu, D. H., Olickel, H., Saxena, P., & Hobor, A. (2016, October). Making

smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC conference on

computer and communications security (pp. 254-269).

[26] Melon Project, Oyente, 2016, https://github.com/melonproject/oyente.

https://doi.org/10.1007/s12083-021-01127-0
https://doi.org/10.3390/jcp2020019
https://github.com/MAIAN-tool/MAIAN
https://github.com/melonproject/oyente

47

[27] Torres, C. F., Schütte, J., & State, R. (2018, December). Osiris: Hunting for integer

bugs in Ethereum smart contracts. In Proceedings of the 34th Annual Computer

Security Applications Conference (pp. 664-676).

[28] ConsenSys, Mythril, 2017, https://github.com/ConsenSys/mythril-classic.

[29] Goel, S., Dhawan, M., Sharma, S., & Kalra, S. ZEUS: Analyzing Safety of Smart

Contracts.

[30] Solidity version 0.4.21 documentation. Online at:

https://docs.soliditylang.org/en/v0.4.21/miscellaneous.html. Retrieved November

28th, 2022.

[31] Solidity version 0.4.22 documentation. Online at:

https://docs.soliditylang.org/en/v0.4.22/miscellaneous.html. Retrieved November

28th, 2022.

[32] Ethereum Byzantium hardfork details. Online at:

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-609.md. Retrieved November

28th, 2022.

[33] Ethereum EIP-658 details. Online at:

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-658.md. Retrieved November

28th, 2022.

[34] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security (CCS '16). Association for

Computing Machinery, New York, NY, USA, 254–269.

https://doi.org/10.1145/2976749.2978309

[35] Nikolić, Ivica & Kolluri, Aashish & Sergey, Ilya & Saxena, Prateek & Hobor,

Aquinas. (2018). Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. 653-

663. 10.1145/3274694.3274743.

https://docs.soliditylang.org/en/v0.4.21/miscellaneous.html
https://doi.org/10.1145/2976749.2978309

48

Table of Figures

Figure 1: High-level Overview .. 19

Figure 2: Internal Process Flow ... 19

Figure 3: Local Block Information Storage Structure ... 20

Figure 4: Block Information .. 21

Figure 5: Example of contract creation Transaction ... 22

Figure 6: Local Contract Information Storage Structure ... 23

Figure 7: Transaction Receipt Information... 23

Figure 8: Combined Contract Information from a block, a transaction, and a receipt.

 .. 24

Figure 9: Opcodes in bytecode prologue .. 25

Figure 10: Results after scanning the blockchain for contracts 26

Figure 11: Example of Oyente results .. 27

Figure 12: Example of Osiris results .. 28

Figure 13: Mythril results example .. 29

Figure 14: Maian results example .. 30

Figure 15: Running containers of Vulnerability Assessment Tools 31

Figure 16: Vulnerability assessment API Oyente handle .. 32

Figure 17: Total Succeeded Smart Contract Creation Transactions 33

Figure 18: Verified Succeeded Smart Contract Creation Transactions 34

Figure 19: Oyente Found Vulnerabilities ... 35

Figure 20: Osiris Found Vulnerabilities ... 36

Figure 21: Maian Found Vulnerabilities .. 36

Figure 22: Mythril Found Vulnerabilities .. 37

Figure 23: Top 5 Vulnerabilities Detected ... 39

Figure 24: Top 5 Vulnerabilities detected for verified contracts 39

Figure 25: Number of Vulnerabilities found per contract ... 40

Figure 26: Number of Vulnerabilities found per Verified Contract 41

Figure 27: Number of new / verified / vulnerable contracts per year 42

Figure 28: Percentage of vulnerable to new contracts per year 42

Figure 29: Percentage of verified new contracts per year ... 43

file:///H:/My%20Drive/9-Smart_Contracts/Διπλωματικη_Μαγκουτης_Βασιλης_ΜΤΕ2018_corrected.docx%23_Toc124716168
file:///H:/My%20Drive/9-Smart_Contracts/Διπλωματικη_Μαγκουτης_Βασιλης_ΜΤΕ2018_corrected.docx%23_Toc124716169
file:///H:/My%20Drive/9-Smart_Contracts/Διπλωματικη_Μαγκουτης_Βασιλης_ΜΤΕ2018_corrected.docx%23_Toc124716170
file:///H:/My%20Drive/9-Smart_Contracts/Διπλωματικη_Μαγκουτης_Βασιλης_ΜΤΕ2018_corrected.docx%23_Toc124716171
file:///H:/My%20Drive/9-Smart_Contracts/Διπλωματικη_Μαγκουτης_Βασιλης_ΜΤΕ2018_corrected.docx%23_Toc124716172
file:///H:/My%20Drive/9-Smart_Contracts/Διπλωματικη_Μαγκουτης_Βασιλης_ΜΤΕ2018_corrected.docx%23_Toc124716173
file:///H:/My%20Drive/9-Smart_Contracts/Διπλωματικη_Μαγκουτης_Βασιλης_ΜΤΕ2018_corrected.docx%23_Toc124716173
file:///H:/My%20Drive/9-Smart_Contracts/Διπλωματικη_Μαγκουτης_Βασιλης_ΜΤΕ2018_corrected.docx%23_Toc124716174
file:///H:/My%20Drive/9-Smart_Contracts/Διπλωματικη_Μαγκουτης_Βασιλης_ΜΤΕ2018_corrected.docx%23_Toc124716176
file:///H:/My%20Drive/9-Smart_Contracts/Διπλωματικη_Μαγκουτης_Βασιλης_ΜΤΕ2018_corrected.docx%23_Toc124716177
file:///H:/My%20Drive/9-Smart_Contracts/Διπλωματικη_Μαγκουτης_Βασιλης_ΜΤΕ2018_corrected.docx%23_Toc124716178
file:///H:/My%20Drive/9-Smart_Contracts/Διπλωματικη_Μαγκουτης_Βασιλης_ΜΤΕ2018_corrected.docx%23_Toc124716179
file:///H:/My%20Drive/9-Smart_Contracts/Διπλωματικη_Μαγκουτης_Βασιλης_ΜΤΕ2018_corrected.docx%23_Toc124716181

49

Appendix A

Below is the complete code for the API on the virtual machine hosting the various

vulnerability assessment tools.

<?php

$result = array();

if ($_SERVER['REQUEST_METHOD'] === 'POST') {

 $bytecode = $_POST['code'];

 $verified = $_POST['verified'];

 $all = false;

 if (!empty($_POST["all"]) && $_POST["all"] === 'true') {

 $all = true;

 }

 $oyente = false;

 if (!empty($_POST["oyente"]) && $_POST["oyente"] === 'true') {

 $oyente = true;

 }

 $osiris = false;

 if (!empty($_POST["osiris"]) && $_POST["osiris"] === 'true') {

 $osiris = true;

 }

 $mythril = false;

 if (!empty($_POST["mythril"]) && $_POST["mythril"] === 'true') {

 $mythril = true;

 }

 $maian = false;

 if (!empty($_POST["maian"]) && $_POST["maian"] === 'true') {

 $maian = true;

 }

 if ($all === true || $oyente === true) {

 $output = shell_exec("sudo docker container exec oyente bash -c \"echo {$bytecode} >

/oyente/oyente/contract.sol\"");

 if ($verified == 'true') {

 $output = shell_exec("sudo docker container exec oyente bash -c \"python /oyente/oyente/oyente.py -s

/oyente/oyente/contract.sol -j -t 5000\"");

 } else {

 $output = shell_exec("sudo docker container exec oyente bash -c \"python /oyente/oyente/oyente.py -s

/oyente/oyente/contract.sol -b -j -t 5000\"");

 }

 $output = shell_exec("sudo docker container exec oyente bash -c \"cat

/oyente/oyente/contract.sol.json\"");

 shell_exec("sudo docker container exec oyente bash -c \"rm /oyente/oyente/contract.sol\"");

 shell_exec("sudo docker container exec oyente bash -c \"rm /oyente/oyente/contract.sol.json\"");

 $result['oyente'] = json_decode($output);

 }

 if ($all === true || $osiris === true) {

 $output = shell_exec("sudo docker container exec osiris bash -c \"echo {$bytecode} >

/root/osiris/contract.sol\"");

 if ($verified == 'true') {

 $output = shell_exec("sudo docker container exec osiris bash -c \"python /root/osiris/osiris.py -s

/root/osiris/contract.sol -j -glt 20\"");

 } else {

 $output = shell_exec("sudo docker container exec osiris bash -c \"python /root/osiris/osiris.py -s

/root/osiris/contract.sol -b -j -glt 20\"");

 }

 $output = shell_exec("sudo docker container exec osiris bash -c \"cat

/root/osiris/contract.json.evm.disasm\"");

 shell_exec("sudo docker container exec osiris bash -c \"rm /root/osiris/contract.*\"");

 $result['osiris'] = json_decode($output);

 }

 if ($all === true || $mythril === true) {

 $output = shell_exec("sudo docker run mythril/myth analyze -c '{$bytecode}' -o json --max-depth 10 --

parallel-solving --execution-timeout 15");

 $result['mythril'] = json_decode($output);

 }

 if ($all === true || $maian === true) {

 $result['maian'] = array();

 $output = shell_exec("sudo docker container exec maian bash -c \"echo {$bytecode} >

/MAIAN/tool/contract.sol\"");

 $result['maian']['suicidal'] = shell_exec("sudo docker container exec maian bash -c \"python3

/MAIAN/tool/maian.py -b /MAIAN/tool/contract.sol -c 0\"");

 $result['maian']['prodigal'] = shell_exec("sudo docker container exec maian bash -c \"python3

/MAIAN/tool/maian.py -b /MAIAN/tool/contract.sol -c 1\"");

 $result['maian']['greedy'] = shell_exec("sudo docker container exec maian bash -c \"python3

/MAIAN/tool/maian.py -b /MAIAN/tool/contract.sol -c 2\"");

 shell_exec("sudo docker container exec maian bash -c \"rm /MAIAN/tool/contract.sol\"");

 }

 echo json_encode($result);

} else {

 echo "No Post Request";

}

?>

50

Appendix B

Below there are various links to the GitHub repository of the project code, found smart

contracts and vulnerability assessment results, and final statistic results.

GitHub:

https://github.com/stultusmundi/scat

Raw Results:

https://drive.google.com/drive/folders/1-

CXmS0H_5GTEfE10olYexLfL90B9Iizv?usp=sharing

Vulnerability Assessment VM:

https://drive.google.com/drive/folders/1-

CXmS0H_5GTEfE10olYexLfL90B9Iizv?usp=sharing

Final computed statistics:

https://drive.google.com/drive/folders/1-

CXmS0H_5GTEfE10olYexLfL90B9Iizv?usp=sharing

Articles Mentioned:

https://drive.google.com/drive/folders/1-

CXmS0H_5GTEfE10olYexLfL90B9Iizv?usp=sharing

https://github.com/stultusmundi/scat
https://drive.google.com/drive/folders/1-CXmS0H_5GTEfE10olYexLfL90B9Iizv?usp=sharing
https://drive.google.com/drive/folders/1-CXmS0H_5GTEfE10olYexLfL90B9Iizv?usp=sharing
https://drive.google.com/drive/folders/1-CXmS0H_5GTEfE10olYexLfL90B9Iizv?usp=sharing
https://drive.google.com/drive/folders/1-CXmS0H_5GTEfE10olYexLfL90B9Iizv?usp=sharing
https://drive.google.com/drive/folders/1-CXmS0H_5GTEfE10olYexLfL90B9Iizv?usp=sharing
https://drive.google.com/drive/folders/1-CXmS0H_5GTEfE10olYexLfL90B9Iizv?usp=sharing
https://drive.google.com/drive/folders/1-CXmS0H_5GTEfE10olYexLfL90B9Iizv?usp=sharing
https://drive.google.com/drive/folders/1-CXmS0H_5GTEfE10olYexLfL90B9Iizv?usp=sharing

