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Νικόλαος Στεργιούλας  

 
Καθηγητής 

 

 
Angelos Pikrakis  

 
Assistant Professor  
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Abstract  

Using interferometric gravitational wave detectors, we can now observe the dark side of the 
universe. Already, nearly 90 binary black hole systems have been detected. To measure the 
source parameters of a detected system, one needs to perform matched filtering, using a large 
number of templates (of order hundreds of thousand). In such parameter estimation 
calculations it is also useful to know the optimal signal-to-noise ratio of an individual model 
waveform. In this thesis, we train an artificial neural network on a random sample of one million 
theoretical waveforms of binary black hole systems with random spins and achieve an accuracy 
of 97% in predicting the signal-to-noise ratio. The neural network evaluates the results orders 
of magnitude faster than the original calculation. We show the results of the optimization of 
different hyperparameters with a grid search and with selective searches. Finally, we show that 
the logarithm of the accuracy is linearly related to the logarithm of the number of points in the 
dataset. This allows us to predict that a dataset size of about 7 million data points will be 
required to achieve an accuracy of 99% in predicting the signal-to-noise ratio with the neural 
network that we constructed.  

 

 

 

Περίληψη 

Χρησιμοποιώντας συμβολομετρικούς ανιχνευτές βαρυτικών κυμάτων, μπορούμε τώρα να 
παρατηρήσουμε τη σκοτεινή πλευρά του σύμπαντος. Ήδη, έχουν εντοπιστεί σχεδόν 90 διπλά 
συστήματα μελανών οπών. Για να μετρηθούν οι παράμετροι της ενός συστήματος που 
ανιχνεύθηκε, πρέπει να γίνει σύγκριση των δεδομένων με πρότυπες κυματομορφές, 
χρησιμοποιώντας έναν μεγάλο αριθμό προτύπων (τάξης εκατοντάδων χιλιάδων). Σε τέτοιους 
υπολογισμούς εκτίμησης παραμέτρων είναι επίσης χρήσιμο να γνωρίζουμε τον βέλτιστο λόγο 
σήματος προς θόρυβο ενός μεμονωμένου μοντέλου κυματομορφής. Σε αυτή τη διπλωματική, 
εκπαιδεύουμε ένα τεχνητό νευρωνικό δίκτυο σε ένα τυχαίο δείγμα ενός εκατομμυρίου 
θεωρητικών κυματομορφών διπλών συστημάτων μελανών οπών με τυχαίες περιστροφές και 
επιτυγχάνουμε ακρίβεια 97% στην πρόβλεψη του λόγου σήματος προς θόρυβο. Το νευρωνικό 
δίκτυο υπολογίζει τα αποτελέσματα τάξεις μεγέθους ταχύτερα από τον αρχικό υπολογισμό. 
Δείχνουμε τα αποτελέσματα της βελτιστοποίησης διαφορετικών υπερπαραμέτρων με 
αναζήτηση πλέγματος και με επιλεκτικές αναζητήσεις. Τέλος, δείχνουμε ότι ο λογάριθμος της 
ακρίβειας σχετίζεται γραμμικά με τον λογάριθμο του αριθμού των σημείων στο σύνολο 
δεδομένων. Αυτό μας επιτρέπει να προβλέψουμε ότι θα απαιτηθούν περίπου 7 εκατομμύρια 
δεδομένα για την επίτευξη ακρίβειας 99% στην πρόβλεψη του λόγου σήματος προς θόρυβο με 
το νευρωνικό δίκτυο που κατασκευάσαμε. 
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Chapter 1

Introduction

The objective of the project was to build a neural network that predicts the signal to noise
ratio (SNR) of gravitational wave sources. This SNR calculation is based on 11 di↵erent
parameters that describe the physical characteristics of the gravitational wave sources. To
train the neural network, 1 million data points were used. The training process resulted in a
network that achieved su�cient accuracy for the intended applications. The neural network
was implemented using Tensorflow, and the data generation was carried out using the PyCBC
gravitational wave libraries, which can be called from a python code.

A black hole is a region of spacetime exhibiting such strong gravitational e↵ects that
nothing—not even particles and electromagnetic radiation such as light—can escape from
inside it. The theory of general relativity predicts that a su�ciently compact mass can
deform spacetime to form a black hole.

The mathematical representation of a black hole is described by the Schwarzschild metric,
which is a solution to Einstein’s field equations of general relativity. The metric is given by

3B2 = �
✓
1 �

2⌧"

A22

◆
3C2 +

✓
1 �

2⌧"

A22

◆�1
3A2 + A23⌦2 (1.1)

where ⌧ is the gravitational constant, " is the mass of the black hole, 2 is the speed of light,
C is time, A is radial distance, and 3⌦2 is the solid angle element. The value A = 2⌧"/22 is
known as the Schwarzschild radius, and it represents the boundary inside of which nothing
can escape the black hole’s gravitational pull.

Figure 1.1 is an artist’s representation of a binary black hole system radiating graviational
waves. A binary black hole system refers to two black holes that orbit each other and are
gravitationally bound. These systems are important sources of gravitational waves, which are
ripples in the fabric of spacetime. Binary black holes are formed when two massive stars in a
binary system collapse into black holes and continue to orbit each other [6].

The data used in this thesis is simulated set of the optimal signal-to-noise ratio (SNR) of
gravitational waves received by the LIGO interferometers from coalescing binary black holes.
The SNR is a measure of the strength of a gravitational wave signal relative to the background
noise in the detectors. Each data point depends on the following 11 parameters:

• "2 (Chirp Mass): This is a combination of the two individual masses that determines
the rate of evolution the gravitational wave chirp signal.

• @ (mass ratio): This parameter represents the ratio of the masses of the two black holes.
• 8=2 (inclination): The angle between the binary black hole’s angular momentum and the

line of sight.

7
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Figure 1.1: Artist’s impression of a binary black holes producing gravitational waves that
travel outwards and carry energy and angular momentum away from the system [50].

• A0 (right ascension): The right ascension is the angular distance of an object in the sky
from the observer’s meridian.

• 342 (declination): The declination is the latitude-like coordinate that gives the object’s
position relative to the celestial equator.

• spin1 mag (magnitude of spin 1): The magnitude of the first black hole’s spin.
• spin1 polar (polar angle of spin 1): The polar angle of the first black hole’s spin.
• spin1 azimuthal (azimuthal angle of spin 1): The azimuthal angle of the first black

hole’s spin.
• spin2 mag (magnitude of spin 2): The magnitude of the second black hole’s spin.
• spin2 polar (polar angle of spin 2): The polar angle of the second black hole’s spin.
• spin2 azimuthal (azimuthal angle of spin 2): The azimuthal angle of the second black

hole’s spin.
The Signal-to-noise ratio (SNR) is a key parameter used in gravitational wave detection

to quantify the strength of the signal and determine whether it can be distinguished from
the background noise of the detectors. A higher SNR indicates a stronger signal, making it
easier to detect and to distinguish from the noise. A lower SNR, on the other hand, implies
a weaker signal that may be more di�cult to detect. It is essential to have a high SNR for
accurate measurement of the properties of the gravitational wave source and to ensure that
the detection is significant and not due to random noise fluctuations [4].

The Chirp Mass ("2) is an important parameter in the analysis of gravitational waves. It
is a combination of the two individual masses of a binary black hole system and determines
the rate at which the frequency of the gravitational wave signal increases over time. This
increase in frequency, known as chirping, is a characteristic of the merging of two black holes.
The Chirp Mass is calculated as the product of the total mass of the system and the reduced
mass ratio, which is the ratio of the smaller black hole’s mass to the total mass.The Chirp
Mass is a crucial parameter for determining the characteristics of the binary black hole system
and for accurately estimating the source parameters of the gravitational wave signal. It plays
a central role in gravitational wave data analysis and can be used to infer the masses and
spins of the black holes, as well as the distance to the source [6, 2].

The parameter @ or mass ratio represents the ratio of the masses of the two black holes in
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a binary black hole system. Mass ratio is defined as the ratio of the mass of the heavier black
hole to the mass of the lighter black hole. The mass ratio plays a crucial role in determining
the character of the gravitational wave signal emitted by a binary black hole system. It a↵ects
the shape and frequency evolution of the gravitational wave signal and can provide important
information about the formation and evolution of binary black holes [24].

The inclination (8=2) is a geometrical quantity that describes the angle between the binary
black hole’s angular momentum vector and the line of sight from the observer. It is defined as
the angle between the normal to the orbital plane of the binary black hole system and the line
of sight. The inclination provides valuable information about the orientation of the binary
black hole system and helps constrain the binary black hole parameters. The inclination can
impact the gravitational wave signal as it is observed and a↵ects the amplitude and phase of
the waveform. Accurately determining the inclination is crucial in accurately estimating the
parameters of the binary black hole system [5, 3].

In astronomical observations, Right Ascension (A0) is a coordinate that specifies the lo-
cation of an object in the sky, similar to longitude on the Earth’s surface. It is defined as
the angular distance of the object from the observer’s meridian, which is a great circle per-
pendicular to the observer’s horizon and passes through the north and south celestial poles.
RA is usually measured in units of time, with one hour of RA equivalent to 15 degrees of
angular distance. It is used, along with declination, to specify the position of celestial objects,
including stars, galaxies, and black holes. In the context of binary black hole systems, RA is
used to determine the location of the source in the sky, which is important for observing and
detecting gravitational waves emitted by the system [39].

In astronomical terms, the declination (342) is the angular distance of an object in the
sky from the celestial equator, which is similar to latitude on the Earth’s surface. The
declination is usually measured in degrees, with positive values representing objects located
in the northern celestial hemisphere and negative values indicating objects in the southern
celestial hemisphere. It is one of the two coordinates, along with right ascension, used to
specify the position of an object in the sky. Declination and right ascension together form a
celestial coordinate system, which helps astronomers to locate and track celestial objects [49].

The magnitude of the spin of a black hole refers to the strength of its rotational movement.
In a binary black hole system, the first black hole’s spin magnitude is represented by the
parameter spin1 mag or spin2 mag. This information can be used to better understand the
properties of the black hole and the binary system as a whole [66].

The polar angle of spin ( spin1 polar or spin2 polar) is a measure of the orientation of
the first black hole’s spin vector in three-dimensional space. It represents the angle between
the spin vector and a reference direction, typically chosen to be the normal to the plane of
the binary orbit. In other words, it describes how ”tilted” the spin vector is relative to the
binary orbit. This parameter is important for understanding the dynamics of binary black
hole systems and can help to constrain the formation and evolution history of these systems.

Azimuthal angle of spin (spin1 azimuthal or spin2 azimuthal) refers to the angle be-
tween the projection of the first black hole’s(or the second black hole’s) spin vector on the
orbital plane and the line connecting the centers of the two black holes in the binary system.
This angle provides information about the direction of the spin in the orbital plane. The exact
definition and calculation of this parameter in the context of binary black hole systems can
be found in studies and articles focused on the modeling and characterization of gravitational
wave signals from binary black holes.
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Chapter 2

Gravitational Waves

Astronomy has undergone a great revolution, driven by advances in observing capabilities
across the electromagnetic spectrum. Within a few years, the first direct detection of gravita-
tional waves has opened up a new window into the universe. The gravitational wave spectrum
is completely distinct from, and complementary to, the electromagnetic spectrum. Gravita-
tional waves are emitted by the cumulative mass and momentum of entire systems, so they
have long wavelengths and convey direct information about large-scale regions. Given that
most of the mass-energy of the universe carries no charge, gravitational waves provide us with
our first opportunity to observe directly a major part of the cosmos. Numerous astronomical
systems, such as neutron star binaries and cataclysmic variables, are currently better under-
stood owing to the contribution of gravitational radiation theory. Similar to how light and
radio waves propagate electromagnetic field oscillations, gravitational waves do the same for
the gravitational field. Gravitational waves are produced by accelerating masses as opposed
to electrically charged particles, which produce light and radio waves. As the understanding
of relativistic events increases, gravitational will likely plays an increasingly important role
as a theoretical tool for simulating relativistic astrophysical phenomena [62].

2.1 Gravitational Wave Detectors

The interferometric gravitational-wave detectors with long baselines that were envisioned sev-
eral decades ago, Laser Interferometer Gravitational-Wave Observatory (LIGO) [1], GEO600
[48], VIRGO [11], have have achieved detections are reaching the required sensitivity levels.
Gravitational wave antennas are essentially omnidirectional – in contrast to pointed astro-
nomical antennas and telescopes, their nearly all-sky sensitivity is a key distinction. Antenna
patterns typically have a response better than 50% of its average over 75% of the sky. In
the next decade, the ability of space-based detectors, such as the planned LISA detector [16],
to survey the entire universe for black hole coalescences at milliHertz frequencies will extend
gravitational wave astronomy into the cosmological arena. Gravitational wave detectors are
more like microphones for sound than conventional telescopes. In a real sense, gravitational
wave detectors will listen to the sounds of a restless universe. Gravitational wave detections
are allowing us to directly test general relativity in the strongly nonlinear regime. The lower
the detector noise, the greater the range of the detectors. A single antenna cannot be used to
determine the source’s direction. To triangulate the source in the sky by comparing the times
of the signal arrival at di↵erent detectors in a network, one typically has to observe simulta-
neously with three or more detectors. The gravitational wave signal arriving at a detector,

11
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Figure 2.1: Depiction of the orbits of a binary system with masses <0 and <1 , showing how
the inclination angle and unit vectors perpendicular to and along the line of sight. Figure
from [42].

depends on a number of parameters, such as a set of vectors that describe the detector’s
geometry, the orbit’s inclination angle, and the polarization angle.

In Figure 2.1, we see an illustration of the orbits of a binary system with masses <0 and
<1 , illustrating how the angle of inclination \8 and unit vectors perpendicular to and along
the line of sight are defined. The unit vector =̂ is parallel to the system’s orbital angular
momentum and perpendicular to the plane of the orbit. The gravitational wave unit vector
:̂ directs toward the observation site from the center of mass of the binary systems. 4̂2 lies in
the (=̂, :̂) plane and 4̂1 is perpendicular to that plane [62].

Figure 2.2 displays the various factors that a↵ect the measured signal of a binary black
holes merger [63]. The diagram consists of three distinct coordinate systems, represented
by three di↵erently colored planes. The white plane belongs to the source and is parallel to
the orbital plane. The yellow frame represents the preferred reference frame for gravitational
waves (GW), where the G3-axis aligns with the propagation direction of the GW. The deformed
ellipsoid on the plane indicates the motion of a ring of test masses in this frame. The green
plane shows the detector frame, where the G- and ~-axes align with the detector arms and I
points away from the center of the earth (depicted as a gray sphere). The angles depicted in
the diagram represent the associated transformations. The distance between the detector and
the source is represented by the dashed gray line labeled A . The figure does not include the
time of coalescence C0, the coalescence phase �0, or the angular momentum Æ!. The diagram
is not drawn to scale and serves only to illustrate the significance of the various parameters
involved in the BBH merger measurement.

2.2 Gravitational Wave Polarizations

Due to the equivalence principle, it is impossible to detect gravitational waves using a single
isolated particle because they fall freely in all gravitational fields. A second-rank, symmet-
ric trace-free tensor serves as the gravitational radiation representation in general relativity.
This tensor contains 10 independent components in both a general coordinate system and any
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Figure 2.2: A diagram illustrating the parameters that a↵ect the measured signal of a binary
black holes merger. The three di↵erent coordinate systems used to calculate the GW e↵ect
are related to the three di↵erently colored planes. Figure from [63].

gauge (coordinate choice). But according to Einstein’s theory, gravitational radiation only
has two distinct states of polarization: the plus polarization (⌘+ ) and the cross-polarization
(⌘⇥). The result of the waves is that a circular ring is tidally deformed into an elliptical ring,
Fig. 2.3. The fundamental idea guiding the design of gravitational wave antennas is the tidal
deformation brought on by passing gravitational waves.

In the transverse-traceless (TT) gauge, the gravitational wave tensor can be expressed as:

h = ⌘+e+ + ⌘⇥e⇥, (2.1)

where e+ and e⇥ are tensors describing the two polarizations and ⌘+ and ⌘⇥ are the corre-
sponding amplitudes. If a rotation by an angle k is applied, the new amplitudes become

⌘0+ = cos 2k⌘+ + sin 2k⌘⇥, (2.2)

⌘0⇥ = � sin 2k⌘+ + cos 2k⌘⇥. (2.3)

This demonstrates the quadrupolar character of the polarizations. Moreover, a rotation by
c/4 changes one polarization into the other [62].

2.3 Gravitational Waves Frequency

Electromagnetic waves produced by astronomical sources have frequencies that start at 107 Hz
and continue on upward for close to twenty orders of magnitude. Gravitational waves from
anticipated astrophysical sources will likely have detectable frequencies at most 104 Hz and
and ought to continue lower from there by approximately twenty orders of magnitude [67].

In the case of signals from isolated neutron stars (which have not yet been detected), one
can arrive at accurate predictions of the frequencies, even if a pulsar’s spin may modulate it
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Figure 2.3: The e↵ect of plus-polarized and cross-polarized gravitational waves travelling
along the z direction, on a circular ring of matter in the (x, y)-plane [52].

strongly. In the case of oscillating neutron stars, the dominant frequency will correspond to
the self-gravitating body’s inherent frequency, which is approximately

l0 =
p
c⌧d̄, (2.4)

or
50 = l0/2c =

p
⌧d̄/4c, (2.5)

where d̄ is the mean density of mass-energy in the source. The radius R and mass M of the
source define the mean density and, thus, the frequency. The dominant frequency that is
characteristic of the radiation that is emitted by a compact object with mass M and radius
R is thus

50 =
1

4c

✓
3"

'3

◆1/2
. (2.6)

2.4 Gravitational Waves from Gravitational Collapse
and spinning neutron stars

The gravitational core collapse of a highly evolved star or the collapse of an accreting white
dwarf produces neutron stars and black holes. Depending on the geometry of the collapse,
gravitational waves may transport away some of the binding energy and angular momentum
if the collapse is nonspherical (brought on by a large spin). The GW emission mechanism
after bounce is similar in the two cases, although slower rotation will have an impact on the
likelihood that rotational instabilities will arise.

The method for calculating the rate of a normal supernova may also be used to calculate the
rate of a massive star collapse: multiplying the star formation rate by the percentage of stars
larger than 20 "�. The bottom limit for black hole formation (theory and observations), the
initial mass function, and the star formation rate are the uncertainties in such a computation.
Fryer and Kalogera [32] estimated that 10–40% of massive stars above 10 "�, which are likely
to create luminous core-collapse supernovae and contribute to the reported supernova rate,
form black holes. Their winds and initial mass function determine this answer. As winds
remove less mass from stars, more stars can form black holes at higher redshifts [33].
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Some gravitational wave sources behave like the centrifuge, but on a larger scale. A neutron
star with radius ', mass ", and a deformation of its otherwise axially symmetric shape,
spins with frequency 5 . Although it will be a mass distribution resulting in an asymmetrical
quadrupole tensor, we idealize this as a ”bump” of mass m on its surface. The bump’s moment
of inertia is<'2, and it is usually parameterized by the fractional imbalance it generates in the
tensor. In the near future, it is expected that even signals that are less than the amplitude
dictated by the Crab spindown rate will be visible, and these signals may originate from
a wider range of neutron stars, especially low-mass X-ray binary systems (LMXBs). They
ought to be spinning up because the neutron stars inside them are gaining mass and angular
momentum [62].

2.5 Sensitivity of Gravitational Wave Detectors

Interferometric detectors and resonant mass detectors are the two main categories of gravi-
tational wave detectors. In Interferometric detectors, gravitational waves interact with two
kilometer-scale arms, their distance being monitored by laser beams. In resonant mass detec-
tors, a heavy body receives energy from the gravitational wave, and the resulting oscillations
are then detected. Current ground-based interferometers in use are the two LIGO detec-
tors [1] in the US, the Virgo detector [11] in Italy, the GEO600 detector [48] in Germany
and the Kagra detector [14] in Japan. A million-kilometer-scale laser interferometer will also
be launched into space with the ESA-NASA LISA mission [16], to observe milliHertz grav-
itational waves. Furthermore, radio astronomers have also been keeping an eye on faraway
pulsars’ radio beams for signs of gravity waves for a long time; improved radio technology is
making this a potent and promising way to search for stochastic backgrounds and individual
sources. Additionally, gravitational waves from the early cosmos may have left their mark on
the polarization of the cosmic microwave background at extremely low frequencies.

Joseph Weber [69] constructed two circular aluminum bar detectors and tried to find linked
disturbances that might have been induced by a passing impulsive gravitational wave. These
detectors were the first type of detector created in the laboratory to detect gravitational
waves. Many more bar detectors of equivalent or higher sensitivity were built as a result of
his reported detections, but they never corroborated his assertions [62].

The era of gravitational wave detectors was finally initiated in 2015 with the first source
GW150914 and in the first three observing runs (O1-O3) of the LIGO-Virgo-Kagra Collab-
oration a number of O(90) confident gravitational wave (GW) detections were found in the
data, which included mostly binary black holes (BBH), but also a few binary neutron stars
(BNS) and neutron star black hole systems (NSBH) [7, 8, 9].

2.6 Principles of Resonant Mass Detector Operation

A basic ”bar” detector is made of an aluminum cylinder with a length of ✓ ⇠ 3 m, a rather
small resonance frequency between 5 ⇠ 500 Hz and 1.5kHz and a mass " ⇠ 1000 kg. A
brief blast of gravitational waves with strain amplitute ⌘ ⇠ 10�21 will cause an amplitude of
vibration in the bar

X✓6F ⇠ ⌘✓ ⇠ 10�21 m. (2.7)

Three main noise sources must be overcome to measure this [62].
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First is thermal noise – the original Weber bar functioned at ambient temperature, but
later the ultra-cryogenic Nautilus [17] and Auriga [46] detectors operated at a temperature
of )=100 mK. At this temperature, the vibration’s root mean square (RMS) amplitude is

⌦
X✓2

↵1/2
C⌘ =

✓
:)

4c2"5 2

◆1/2
. (2.8)

This exceeds the gravitational wave amplitude predicted by astrophysical sources by a signif-
icant margin.

Second is the sensor noise, the mechanical energy of the bar is transformed into electrical
energy via a transducer, and an amplifier amplifies the electrical signal to record it. Since
both thermal impulses and gravitational wave forces are mechanical forces, the ratio of their
produced vibrations would be the same at all frequencies for a given applied impulsive force.
If vibration sensing could be done precisely, the detector would be broadband. However,
sensing is not perfect, since small amplitudes are di�cult to measure due to noise introduced
by amplifiers.

Lastly the third main source of noise is quantum noise. A bar’s zero-point vibrations at 1
kHz in frequency are

⌦
X✓2

↵1/2
C⌘:1 ms =

✓
:)

4c2"5 2&

◆1/2
⇠ 6 ⇥ 10�21 m. (2.9)

Because of this, as detectors go over their thermal limits, they must also overcome the quantum
barrier to detect a signal at 10�21. There is a chance that one could surpass the quantum
limit. The limit above is only imposed by the uncertainty principle when a measurement
aims to ascertain the phonon number, which is the equivalent of the excitation energy of
the bar. However, the phonon number is only relevant insofar as it can be used to estimate
the gravitational wave’s initial amplitude. By reducing their uncertainty at the expense of
larger errors in its conjugate observable, it is feasible to construct alternative observables
that likewise respond to gravitational waves and can be measured with greater accuracy [20].
Squeezing is currently a well-established technique in quantum optics and it is relevant for
interferometric detectors, but it is not yet apparent if it will be practical for bar detectors. As
was evident in the 1970s, bar detectors have a tough time reaching the sensitivity of 10�21.
For a similar objective, a spherical prototype known as MiniGRAIL[38] was developed [62].

2.7 Principles of Interferometric Detectors

The di↵erence between the lengths of two perpendicular (or nearly perpendicular) arms is
measured by interferometers using laser light. An interferometer is a natural tool to measure
gravitational waves because the arm lengths typically react di↵erently to a given gravita-
tional wave. However, other detectors also make use of electromagnetic radiation, such as
solar system spacecraft and even pulsar timing. The stability of the clock continues to be a
limiting factor for the sensitivity of such a one-path device as a gravitational wave detector.
Interferometers are now the most sensitive beam detectors because they e↵ectively transform
one arm into a ”clock” or at the very least a time reference against which fluctuations in the
other arm are measured. Naturally, the interferometer won’t detect a gravitational wave if
both arms are impacted in the same way. But only in very unique geometries does this oc-
cur. A straightforward interferometer calculates the di↵erence between the round-trip travel
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Figure 2.4: An interferometric detector’s antenna pattern (left panel), with the arms aligned
with the two axes in the x-y plane. The distance to a point on the antenna pattern facing
that direction determines the response for waves arriving from that direction [52].

time variations in the two arms for the majority of wave arrival directions and polarizations.
Although the measured signal for the triangular space array LISA is a more complicated, the
idea that the time reference for one arm is a mixture of the others is still upheld [62].

2.8 Ground-Based Interferometer

The LIGO detectors [56], two of which have arm lengths of 4 km, are the largest detectors
currently in operation. One detector cannot simultaneously measure the two separate po-
larizations of a gravitational wave; instead, it responds to a linear combination of the two,
which depends on the detector’s geometry and the direction of the source. The responses
of three widely spaced detectors, along with two independent discrepancies in arrival times
between them, are, in theory, su�cient to completely reconstruct the source location and
gravitational wave polarization if the wave only lasts for a brief period. The motion of the
detector will cause a long-lived wave to shift where it is in the antenna pattern and modulate
its frequency; these e↵ects are, in theory, enough to pinpoint the source’s location and the
wave’s polarization.

In Figure 2.4 the antenna pattern of an interferometric detector is shown, with the arms
aligned with the two axes in the x-y plane. The distance to a point on the antenna pattern
facing that direction determines the response � for waves arriving from that direction. Over
40% of the sky, the response outperforms the RMS value, suggesting that gravitational wave
detectors are largely omnidirectional. Contrarily, just a small portion of the sky is covered
by the majority of traditional telescopes (radio, infrared, optical, etc.) [62].

2.9 Problems with Ground-Based Interferometers

The majority of interferometers achieve this duration of light retention in the arms by creating
Fabry-Perot cavities, or optical cavities, with low-transmissivity mirrors. A measurement
must contend with the following noise sources:

Ground vibration. Mechanical vibrations from the outside must be kept out. These
are an issue for bar detectors as well, but they are more problematic for interferometers
because interferometers bounce light back and forth between the mirrors, which causes more



18 CHAPTER 2. GRAVITATIONAL WAVES

vibrational noise with each reflection. These systems, however, can be extremely advanced; for
instance, the GEO600 [26] detector contains a three-stage pendulum in addition to additional
vibration isolation parts [54]. The most ambitious multi-stage isolation mechanism has been
constructed for the Virgo detector [34] [62].

Thermal noise. Mirror and pendulum vibrations can hide gravitational waves. Light
bouncing between mirrors increases this, like vibrational noise. Interferometers measure fre-
quencies, unlike bars, distance from the resonance frequency, where thermal vibration is
greatest. Current detectors measure above 15 Hz because pendulum suspensions have ther-
mal noise at a few Hertz. Mirror internal vibrations at several kHz limit the observation
band. Ensuring that both forms of oscillations have very high Q confines most of the vi-
bration energy to a tiny bandwidth around the resonant frequency, resulting in very small
vibration amplitudes at measurement frequencies. Most current interferometers work at room
temperature. Thermal disturbances go beyond vibration. Interferometers have transmissive
beam splitters and mirrors. Transmission absorbs some light power, raising the mirror’s tem-
perature and index of refraction. Time-dependent thermal fluctuations (thermo-refractive
noise) can generate random lensing fluctuations at measurement frequencies, destroying the
system’s optical characteristics. These factors limit detector laser power. Heating e↵ects in
multiple-layer mirror coatings can cause other issues.

Shot noise. Light recycling reduces this problem. A power-recycling mirror allows light
wasted by a laser to be reflected into the arms of the laser, allowing power to build up in
the arms. The first interferometers worked with laser powers of 5 – 10 W, but later upgrades
used ten or more times this input power.

Quantum e↵ects. Quantum noises like shot noise have conjugate noises. As laser
power is increased to reduce shot noise, position sensing accuracy improves, but the Heisen-
berg uncertainty principle (momentum imparted to the mirror by the measurement) causes
a disturbance that can hide a gravitational wave. Light squeezing is an important technique
currently applied to reduced this noise.

Gravity gradient noise. The local gravitational field changes on the measurement
timescale. Gravitational wave detectors also detect local tidal forces. Seismic waves cause
gravitational field changes, and air pressure changes air density. The spectrum declines rapidly
with frequency.

2.10 Optimal signal-to-noise ratio

Data analysis for gravitational wave observation is very di↵erent from astronomical data
analysis for several reasons:

• Gravitational wave antennas are omni-directional and respond better than 50% of the
root mean square over 75% of the sky. Thus, data analysis systems must do all-sky source
searches.

• Broadband interferometers encompass three to four frequency orders. This helps us
track sources with quickly changing frequencies, but it requires searching a large range of
frequencies.

• According to Einstein, gravitational radiation has two polarizations. Measuring polariza-
tion is important because there are other theories of gravity with more than two polarization
states and even dipolar and scalar waves [71]. It also has astrophysical implications, such as
resolving the mass-inclination degeneracy of binary systems observed electromagnetically. A
network of detectors can measure polarization, but analysis techniques for various antenna
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data must be devised. This should improve coincidence analysis and event recognition e�-
ciency.

• Most astrophysical gravitational waves are detected coherently by tracing the radiation’s
phase rather than energy, unlike electromagnetic radiation from astronomical sources. The
coherent superposition of several wave cycles from a source creates the SNR. The signal
structure and phase evolution provide more physics information than the amplitude. Tracking
a signal’s phase requires searching not only for individual sources but also throughout a
large region of each source’s parameter space, which puts a lot of strain on the theoretical
understanding of waveforms and data analysis gear.

• Finally, gravitational wave detection requires calculation. Gravitational wave antennas
collect data at many megabytes per second for years. Signal data makes up 1% of this data,
whereas housekeeping data monitors detector operation. The huge parameter space above
requires signal data to be filtered multiple times for di↵erent searches, which imposes heavy
demands on computing power and algorithms.

Since the mid-1980s, wideband detector data analysis has advanced [64] [65]. Annual
Gravitational Wave Data Analysis Workshops disseminate current thinking and challenges.
These methods were originally tested with interferometers [51] and bars [15]. Although the
theory is well understood [43], data analysis methodologies depend on computer resources,
data volumes, astrophysical understanding, and source modeling and are constantly revised.

The data analysis method known as matched filtering e↵ectively looks for a signal of known
shape hidden in noisy data. The method entails comparing a waveform, often referred to as
a template or filter, to the output of a detector. In the presence of noise =(C) and a signal
⌘(C), the goal is to identify an ”optimal” template @(C) that results in the best SNR feasible
on average. For more information, an interested reader might study any classic textbook on
signal analysis, such as Helstrom [41].

We will refer to the detector output as G (C), which is considered to be made up of a
meaningful gravitational wave signal ⌘(C) and background noise =(C). A quantity’s Fourier
transform, indicated by the symbol G̃ (5 ), is defined as

G̃ (5 ) =
π
1

�1

G (C)42c8 5 C dC . (2.10)

The detector output G (C) is a realization of noise =(C), i.e., G (C) = =(C) when no signal is
present. In the presence of a signal ⌘(C) with an arrival time C0, G (C) takes the form

G (C) = ⌘ (C � C0) + =(C), (2.11)

and the correlation 2 of a template @(C) with the detector output is defined as

2 (g) ⌘

π
1

�1

G (C)@(C + g)dC . (2.12)

We will proceed to find the ideal filter @(C) that, in the presence of a signal ⌘(C), optimizes
the correlation 2 (g). We begin by writing the correlation integral in the Fourier domain. To
do this, let us first substitute the G̃ (5 ) and @̃(5 ) values for the G (C) and @(C) values in the
preceding integral. We have

2 (g) =
π
1

�1

G̃ (5 )@̃⇤(5 )4�2c8 5 gd5 , (2.13)

where @̃⇤(5 ) denotes the complex conjugate of @̃(5 ).
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In the same way that = is a random process, so is 2. Additionally, since correlation is a
linear process, it follows the same probability distribution function as =. In particular, if =
has a Gaussian random process with zero mean, then 2 likewise has a Gaussian distribution
function, though its mean and variance will typically be di↵erent from =. The mean value of
2, denoted by ( ⌘ 2̄, is the correlation of the template @ with the signal h, since the mean
value of = is zero:

( ⌘ 2̄ (g) =
π
1

�1

⌘̃(5 )@̃⇤(5 )4�2c8 5 (g�C0)d5 . (2.14)

The variance of 2, denoted # 2
⌘ (2 � 2̄)2 is

# 2 = (2 � 2̄)2 =
π
1

�1

(⌘ (5 ) |@̃(5 ) |
2 d5 . (2.15)

One then defines the SNR:= d through

d2 ⌘ (2/# 2. (2.16)

The last three equations above naturally lead to the concept of the waveforms’ scalar product.
Given two functions, 0(C) and 1 (C), their scalar product h0,1i is defined as [29, 30, 21, 25]

h0,1i ⌘ 2

π
1

0

d5

(⌘ (5 )

h
0̃(5 )1̃⇤(5 ) + 0̃⇤(5 )1̃ (5 )

i
. (2.17)

Also, we know that (⌘ (5 ) � 0 consequently, the scalar product is real and positive definite.
Note that the Fourier transform of a real function ⌘(C) obeys ⌘̃(�5 ) = ⌘̃⇤(5 ).

Using the scalar product mentioned above, the SNR can be expressed as follows:

d2 =

⌦
⌘42c8 5 (g�C0), (⌘@

↵
p
h(⌘@, (⌘@i

. (2.18)

It is evident from this that the template @ that obtains the maximum value of d is simply

@̃(5 ) = W
⌘̃(5 )482c 5 (g�C0)

(⌘ (5 )
, (2.19)

where W is an arbitrary constant.
From the above equation, we know that the SNR is maximized when g is equal to C0 and

we also know that the noise power spectral density (PSD) (⌘ (5 ), weighs down the ideal filter,
which is not just a copy of the signal. Finally, one obtains the optimal SNR as

dopt = h⌘,⌘i1/2 = 2

"π
1

0
d5

|⌘̃(5 ) |2

(⌘ (5 )

#1/2
. (2.20)



Chapter 3

Artificial Neural Networks

3.1 Utilizing Artificial Neural Networks

Because of the large number of parameters that determine the emission of GW transients, the
outcome of a parameter estimation search will heavily depend on the capability of the anal-
ysis to di↵erentiate between GWs and glitches created by non-stationary and non-Gaussian
noise tails. This di�culty will most likely continue to exist for burst signals even in the era
of advanced detectors, even though it will be reduced by innovations in noise attenuation.
Additionally, just like in the previous analyses, it will be particularly pronounced for poorly
modeled searches. It is therefore a shared objective to lessen glitches’ e↵ect on GW search
results. According to the information provided, the GW detection community has made
multiple e↵orts to individuate the most distinctive characteristics of the signals about the
glitches. Several of them are concerned with the implementation of various Machine Learning
strategies. Recognition, regression, planning, prediction, and classification are machine learn-
ing algorithms’ main tasks. These informatics structures rely heavily on learning by example.
This introduces algorithms that are not fully determined, allowing for the consideration of
relations not yet established [55].

3.1.1 Boosted Decision Trees

A boosted decision tree (BDT) is a collection of decision trees from the same training set
with di↵erent weights, whose final judgment on an event is determined by the output with
the most votes. Like Support Vector Machines (SVM), this algorithm distinguishes signal
from noise. but the strategy is di↵erent. These devices have numerous nodes that consider
one variable and apply the best value cut. The root node identifies the most di↵erent features
from the two categories based on the whole training set. The algorithm separates events using
a discriminant threshold. Each new subset gets a discriminant node after this training sample
split. Next, a variable is chosen based on training set characteristics and a cut is applied.
The technique is repeated until one of two conditions is met: a too-small subset for adding
nodes or maximum/minimum signal purity.

Multiple decision trees are created from the same training set to better classify occurrences
into two classes. This is done through boosting or bagging.

Boosting. Training events that are incorrectly classified receive heavier weights. In this
way, the performance is enhanced by the many applications of this boosting procedure that
create a forest of various tree sets.

21
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Figure 3.1: Biological Neuron versus Artificial Neural Network [70].

Bagging. The past performances are not taken into account when creating a decision
tree forest. Based on a stochastic resampling (bootstrap) of the given training set, the set of
decision trees is defined. A single decision tree is constructed using each of the new subsets.
Event classification is the main function of this type of analysis. Some algorithms are testing
BDTs to improve signal glitches discrimination.

3.1.2 Artificial Neural Networks (ANNs)

ANNs are algorithms based on brain function, this approach’s generalism lets these informatic
tools conduct regression, classification, pattern recognition, and more. The most common GW
detection applications try to distinguish signal from noise. This challenge is usually solved
by identifying glitches and classifying them ([10] [57] [12]). In this way, glitch identification
is improved over typical deterministic studies. These studies also demonstrate that applying
these models does not reduce signal detection and that glitches can be partially classified by
noise origin [55].

3.1.3 Comparing Biological to Artificial Neural Networks

Neurons join each other in the biological brain network. Dendrites send inputs from other
neurons to the cell nucleus, the soma. The soma calculates a weighted sum of dendrite electri-
cal impulses. The amount of information transported relies on numerous factors: input signal
strength, dragged link importance, weights, and most importantly, the neuron’s activation
threshold. Soma data analysis determines passive and active behavior. The soma does not
generate impulses but produces spikes when inputs reach a certain weighted sum. The axon
sends the output result to the synapses connecting di↵erent nerve cells. Electrical impulses
release neurotransmitters, which carry information from the presynaptic neuron’s axon to its
dendrites. Post-synaptic processes link the chemical substance to electrical impulses. Ar-
tificial neural networks are informatic algorithms. Neurons calculate the weighted total of
inputs using an activation function. These systems are fascinating because they can learn
by example. Changing synaptic weights optimizes learning. Network topology and neuron
characterization define an artificial neural network ready to evaluate incoming signals.

In Figure 3.1 we can see how similar is the biological neuron to the artificial neuron.
For classification and prediction tasks, artificial neural networks (ANNs) are an excellent
replacement for traditional multivariate statistical methods. Software-based artificial neural
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networks (ANNs) mimic biological neural networks in that they are built of the same basic
processing units—neurons—that are connected to the outside world and/or to other neurons.
The multilayer perceptron (MLP), one of the most popular network topologies, has three
or more layers of neurons: input neurons, which take in and process discrete or continuous
inputs from the data set; output neurons, which give the result back; and one or more hidden
neuron layers. Synapses connect the artificial neurons, which behave like biological neurons
in that they take a (weighted) input from the outside world or other neurons, and then use
a transfer or activation function to process the total of the inputs and either send it to other
neurons or produce outcomes [61].

The network structure is primarily influenced by the strength of the synapses (weights),
the type of connections, and the number of neurons in the network, among neurons. The
feedforward and recursive neural networks are two di↵erent types of networks that can be
distinguished based on the directions in which data propagates. While in the latter situation,
the architecture is characterized by the presence of certain feedback connections between the
neurons, which consequently need to be dynamic, the structure in the former can be repre-
sented by an oriented graph. The basic goal of these algorithms is to identify an informatic
structure that can accurately understand the incoming data using a series of samples termed a
training set. The ability of these devices to generalize learning to samples outside the training
set is a crucial quality to assess. The learning processes train the neural networks by changing
the connection weights, simulating the natural process that alters the synapsis thickness over
time, and weakening or strengthening the connections between neurons. The first category
is Unsupervised learning, when the output neurons from the training set are not available or
are not denied, and supervised learning, where the network parameters are defined by using
clustering techniques on the input training sample. The second category is supervised learn-
ing where an algorithm that minimizes the error (or cost) function on the training set is used
to determine the weights while accounting for the network’s desired output.

There can be di↵erent choices for the cost functions and two examples are shown
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where ~ is the output of the ANN, the label ? refers to the training set made up of % samples,
C is the target vector, or the vector that the network should produce, and F and G are the
input vectors’ respective weights in the network. The acquisition or use of the training set
over time is another di↵erence between the learning procedures [40] [55].

3.1.4 Perceptron and Multilayer Perceptron

The digital equivalent of a biological neuron is a perceptron. The following provides examples
of a perceptron’s key characteristics; in particular, we concentrate on its capacity to linearly
classify the data by solving, under a set of predetermined criteria, a linear inequality system.
Neurons are the basic computational units that make up a neural network. In 1943, McCulloch
and Pitts [31] suggested one of the most basic structures for this algorithm, which was further
refined by Rosemblatt [59]. The neuron elaborates a vector of input values in this model
by multiplying them by weights, computing the weighted total, and then comparing it to a
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Figure 3.2: Some activation functions that are commonly in use [43].

threshold value to yield the scalar response. If the sum is higher than the threshold, the
neuron outputs 1, otherwise, it outputs 0.

Formally, the neuron operation can be defined as follows. The following equation gives
the neuron output ~ for an input vector G 2 R=, a corresponding weight vector F 2 R=, and a
threshold \ :

~ (G) = 6
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⌘ 6

⇣
F)G � \

⌘
, (3.2)

where 6 is the activation function of the neuron, and in this particular instance, it can be
characterized by the sign function:

6(C) ⌘ sgn(C) =

(
1, if C � 0

�1, if C < 0
. (3.3)

In a space with just two dimensions, the sign-evaluation of a weighted sum is determined by
an inequality that is constrained by the implicit equation of a straight line

=’
8=0

F8G8 � \ = F1G1 +F2G2 � \ > 0. (3.4)

Figure 3.2 shows some of the most used activation factions. Many are are variations of
RELU (Rectified Linear Unit).
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The following are the limitations of a Perceptron model. First is that the output of a
perceptron can only be a binary number (0 or 1) due to the hard-edge transfer function.
Second is that it can only be used to classify the linearly separable sets of input vectors. If
the input vectors are non-linear, it is not easy to classify them correctly [55].

Multilayer perceptrons are used in a subset of ANNs. The neurons in these devices are
arranged in layers of structures. Here, we emphasize feedforward networks made up of trained
layers using supervised learning techniques and static neurons. We are interested in function
approximation; in this field, approximation theory governs ANN performance. The choice of
the function class used for the approximation job, which typically depends on the weights in a
non-linear fashion, and the consideration of a discrete series of data in the structure definition
are two characteristics that define ANNs. These characteristics make the usage of ANNs very
beneficial, such as their capacity to build a relationship between the input-output values that
have not yet been discovered, but they also present some issues and areas that require further
development. Starting with the discretization of the data, there are an infinite number of
functions that can accurately understand the input-output pairs of the training set. The
potential for noise in the data, which may a↵ect them and the resulting network parameters,
is another problem related to them. The characterization of the approximation degree about
the input number, the ANN structure, and other approximation aspects are the final issues
that come up. However, a conclusion appears to be obvious: multilayer perceptrons are
universal approximators, and an ANN with a finite number of hidden layers can approximate
any limited function with arbitrary precision. The solution to the learning problem is to
identify the optimal method for describing the training data and to develop an algorithm
capable of identifying the fundamental characteristics of the inputs. As a result, a delicate
balance must be struck between the ability to generalize and the proper interpretation of
training data: too simple models do not capture coarse linkages between inputs and outputs,
while too complicated models can be confined to the proper development of the single training
set [55].

3.1.5 Multilayer Perceptron Structure

A perceptron is a useful tool for doing classical separation of a subset of events that may
be separated linearly. The perception’s applicability is severely constrained by this subsets
conjecture; for instance, it cannot carry out the XOR logic operation. A collection of functions
that specify how to change the data in a space where they are now linearly separable can
be introduced to alleviate this issue. This strategy was initially put forth by Rosenblatt,
however, it has several drawbacks because the functions that can be employed are limited.
The perceptron limits have encouraged the development of new tools targeted at solving more
challenging problems, such as the multilayer perceptron, which is created by starting with a
set of nonlinearly separable perceptrons and dividing them into ordered structures.

A collection of neurons arranged into di↵erent classes and referred to as layers define the
architecture of multilayer perceptrons:

• Input layer: Any calculation is done because the input layer is made up of = nodes
connected to = inputs and has a transfer function of 1. This class’s objective is to weigh each
input and amount di↵erently for the subsequent layer’s perceptions.

• Hidden layers: The analysis of the data begins with the hidden layers. They are made
up of computational units arranged in several succeeding layers. The goal of the neurons in
the hidden layers is the development of the output-input couples so that di↵erent relationships
between the inputs and their functions may be discovered and tested.



26 CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

Figure 3.3: Multilayer perceptron [13].

• Output layer: The output layer is the neuron class that returns the outputs of the
network. They use the weighted sums of the outputs from the last hidden layer to make the
final output calculations.

Figure 3.3 shows the architecture of a multilayer perceptron with 2 hidden layers.
This particular type of neural network exhibits a specific type of synapse: the connections

only occur between neurons in two successive layers. Information goes in a single path and
relationships between neurons from the same class are not taken into account (no feedback
connections). The calculation unit 9 from the layer ; = 1, ..., ! can be used to identify the
connection and the neuron or node 8 of the previous layer. To determine !, we have taken
into account a subclass of ! � 2 layers that only contains the hidden and output neurons. A
characteristic of these neurons is their activation function 6(;)9 : R 7! R used to evaluate the
inputs’ weighted sum. As a result, the computations are as follows:

0(1)9 =
=’
8=0

F (1)
98 G8, I (1)9 = 6(1)9

⇣
0(1)9

⌘
, F90 = \ 9 , G0 = �1, ; = 1, (3.5)
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F (;)
98 I

(;�1)
8 , I (;)9 = 6(1)9

⇣
0(;)9

⌘
, F90 = \ 9 , I (;�1)0 = �1, ; > 1, (3.6)

where we have introduced the number of neurons in the ; layer #; . Typically, algorithms of
this type have di↵erentiable activation functions with sinusoidal shapes, like logistic function
and hyperbolic tangent. Whatever the case, di↵erent neurons can have di↵erent activation
functions (typically, the output layer can have a di↵erent activation function compared to the
hidden layers). Some additional definitions for the notation used above are:
• number of neurons in the hidden layer: #
• threshold of the hidden neuron 9 : \ 9
• weights between the inputs and the first hidden layer: F8 9
• weights between the hidden layer and the output: E 9

The output is produced by the equation below when an activation function, linear for the
output neuron and 6 for the hidden perceptrons, is considered
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A neural network with a single hidden layer approximates continuous functions on compact
sets of R= over a wide range of activation functions, particularly for non-polynomial continuous
functions on R [53]. Formally this result states that: given a function 5 (G) 2 C (R=), a
compact ⌦ 2 R= and a Y > 0 we can build a multilayer perceptron with a single hidden layer,
characterized by a continuous nonpolynomial activation function, which satisfies

max
G2⌦

|5 (G) � ~ (G) | < Y . (3.8)

The theory approximation for MLPs with more than one hidden layer is not well known,
making it di�cult to assess the benefits and drawbacks that this structure o↵ers in comparison
to the MLPs with just one hidden layer. The degree of approximation is indeed constrained
to a lower bound for architectures with a single hidden layer and depends on the number of
neurons employed. In practice, neural networks with multiple hidden layers have proven to
be very e↵ective.

The design of an MLP with = inputs and  outputs, ! + 1 layers and # (;)
(; = 1, . . . !)

calculation units for each layer, as well as the learning method a↵ect the MLP’s capacity
for data interpretation. Both are crucial for the accurate assessment of the weight vectors;
specifically, the former establishes the quantities of these parameters, F;

8 9 , while the latter
addresses the algorithm’s capacity to arrive at ideal values. The size of the training set, or
the number of instances used to calculate the weights, must also be considered while selecting
these parameters:

) =
��
G?, C?

�
, G? 2 R=, C? 2 R , ? = 1, . . . %

 
. (3.9)

The approach used to determine the weight vectors aims to find the minimum of the error
function, also known as the objective function. In our situation, this entails solving an
optimization problems:

min
F2R=

⇢ (F) =
%’
?=1

⇢? (F) =
%’
?=1

1

2

��~? � C?��2 . (3.10)

Some theories have been established to define the architecture to determine the bare mini-
mum of events required for the accurate definition of the weights. They are frequently limited
to specific instances, and di↵erent strategies are used in actual practice. The fundamental
principle underlying these methods is to train the algorithm after evaluating the architecture
using various sets of events. Test structures with an increasing or decreasing number of per-
ceptrons are used to determine the number of neurons for each layer. When testing structures
with only one hidden layer, this approach is reasonable to use, but when testing structures
with multiple hidden layers, this procedure is computationally expensive and time-consuming.

3.1.6 Back Propagation

By providing the network with input-output pairs, it can learn how to classify inputs cor-
rectly. The synapses are initially uniformly distributed but randomly weighted and they are
updated throughout training to minimize the objective function. Various tactics can be used
to achieve the optimum configuration. These methods, also known as learning strategies,
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Figure 3.4: The image displays information propagation when backpropagation is applied and
the examined j-neuron is a part of the output layer [55].

typically include at least the first derivative of the error function concerning the weights. The
back-propagation (BP) algorithm is frequently used to compute derivatives. There are two
distinct versions available:

• Mini-batch BP The weights are changed after taking into account a certain number
of training examples.

• Stochastic BP the weights are adjusted for every example in the training.
We are thinking about an MLP with a ! layer, where the input vector is G 2 R= and the

output vector is ~ 2 R . We denote the vectors I to make the notation simpler.

I (0)8 = G8, 8 = 1, . . .= I (!)8 = ~8, 8 = 1, . . . . (3.11)

The derivative rules for composite functions are used in the back-propagation process

m⇢?
mF8 9

=
m⇢?
m09

m0 9
mF 98

. (3.12)

Denoting X 9 =
m⇢?
m0 9

it is calculated with two distinct instances in mind:

• the 9-neuron belongs to the output layer

X 9 ⌘
m⇢?
m09

= 6
�
09

�0 m⇢?
m~9

, (3.13)

where ~9 = 6
�
09

�
.

• The 9-neuron is a part of a hidden layer

X 9 ⌘
m⇢?
m09

=
’
:

m⇢?
m0:

m0:
m09

, (3.14)

where m0:/m09 = 6
�
09

�0F: 9 .
Backpropagation is the name given to the calculation of this second term because of the

utility of neuron output. Therefore:
m⇢?
mF 98

= X 9I8 . (3.15)

As a result, using backpropagation, we can determine the gradient by adding the gradients
of all the training examples. Therefore, the computing cost of evaluating the whole gradient
is $ (% ⇥, ), where % are the total number of events in the training set and , is the total
number of weights. The direction of the search can be changed to speed up convergence. This
is accomplished by adding a new term to the weight-iterative formula proportional to the
di↵erence between the weight values of the previous two updates. The momentum method is
the name of the strategy used to hasten the accomplishment of the error function minimum.
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Figure 3.5: The propagation of information when backpropagation is applied and the exam-
ined 9-neuron is a member of a hidden layer [55].

3.1.7 Gradient methods

Various tactics have been used to carry out the training process. Some of them demand
monotonicity in the evaluation of the error function about each weight update. However,
they frequently have computational drawbacks, leading to the recent introduction of a novel
method. It is based on an iterative procedure that permits a temporary increase in the
error function while still guaranteeing the same global convergence quality. Various, potential
advancements of this approach are available.

Let’s begin with the first class of suggested learning methods: gradient techniques. The
subsequent iterative process for updating the weight results in one of the simplest versions:

F:+1 = F:
� [:r⇢

⇣
F:

⌘
. (3.16)

Each iteration in this case is identified by the index : and relates to an epoch. Convergence is
guaranteed if the learning rate is assumed to remain constant during the iteration [: = [, 8:,
subject to certain restrictions on the error function. Regardless, the procedure for determining
the parameters required for the estimation might be di�cult, so a di↵erent technique is
typically used. It has to do with choosing a learning rate whose value is determined by the
iteration index :. The di↵erent methods use the values provided by [: to e↵ectively move
and reduce the objective function.

The fundamental goal of these methods is to minimize the error function by moving in the
opposite direction as the gradient, however as previously stated, overall performance greatly
depends on the learning rate. The algorithm can overcome some of its challenges with this
parameter’s help when given the right values. For instance, it can be helpful to escape from
local minima. The Robbins-Monro stochastic minimization, which is based on the gradient
study, is the easiest learning technique used with the ROOT toolkit (TMVA) [67]. It is an
stochastic approach in a modified form, and the following provides the updating rule:

�F:
8 9 = �[

✓
m⇢?
mF8 9

+ X

◆
+ n�F:�1

8 9 . (3.17)

Therefore, the gradient is used to search for the error function minimum, but an additional
element is added for at-spot elimination. Additionally, the technique takes into account
the first history of the progression of weight using the term �F:�1

8 9 . We can see that three
parameters must be determined to apply this algorithm. ROOT, however, suggests several
acceptable values for these parameters.
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3.1.8 Optimizers

Optimizers play a crucial role in the training of machine learning models. The goal of an
optimizer is to find the best set of parameters for the model that minimizes the loss function.
This is achieved by updating the parameters based on the gradients of the loss function with
respect to the model parameters. In other words, the optimizer is responsible for adjusting
the parameters in such a way that the model’s prediction error is reduced. The loss function
is a measure of how well the model fits the training data, and the gradients of the loss function
represent the direction of the steepest increase in the loss. The optimizer takes the gradients
into account and updates the parameters accordingly, e↵ectively ”stepping” towards a lower
loss. This process is repeated multiple times until the optimizer converges to a minimum
in the loss landscape. There are various optimization algorithms available, including first-
order methods and second-order methods. First-order methods, such as gradient descent,
update the parameters based on the gradient of the loss with respect to the parameters.
Second-order methods, such as Newton’s method, take into account the curvature of the
loss surface and update the parameters accordingly. In general, first-order methods are more
computationally e�cient and well-suited for large-scale problems, while second-order methods
are more accurate but more computationally expensive. There are also hybrid methods that
combine the strengths of first-order and second-order methods. It is important to note that
the optimization process is an iterative one, and the choice of optimizer can greatly a↵ect the
convergence speed and the final solution. In practice, researchers often try several di↵erent
optimizers and choose the one that works best for their specific problem. In conclusion,
optimizers are an essential component of machine learning and play a crucial role in the
training of models. The choice of optimizer can greatly impact the performance of a model and
researchers should carefully consider the strengths and weaknesses of di↵erent optimization
algorithms when selecting an optimizer [36] [19]. Some examples of optimizers are:

• ADAM. Adaptive Moment Estimation was introduced by Kingma and Ba in 2014.
Adam is a first-order gradient-based optimization method that works by iteratively updating
the parameters based on the gradient of the loss function. The key idea behind Adam is to use
moving averages of the gradients and squared gradients to dynamically adjust the learning
rate for each parameter. This helps to reduce oscillations and speed up convergence, which
are common problems in gradient-based optimization.

The update rule for Adam is given by:

<C = V1 ·<C�1 + (1 � V1) · r\ � (\ ),

EC = V2 · EC�1 + (1 � V2) · r\ � (\ )
2,

<̂C =
<C

1 � VC1
,

ÊC =
EC

1 � VC2
,

\C = \C�1 � U ·
<̂C
p
ÊC + n

.

Here, <C and EC are the moving averages of the gradients and squared gradients, respectively;
<̂C and ÊC are the biased estimates of the moving averages; \C is the updated parameter; V1
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and V2 are the decay rates for the moving averages; U is the learning rate; and n is a small
constant to prevent division by zero.

The key advantage of Adam is its ability to adjust the learning rate for each parameter dy-
namically. This helps to ensure that the model is making progress towards a minimum of the
loss function, even if the gradients are not consistently pointing in the same direction. This
is particularly important for complex models, where the loss function can have many local
minima. However, it is important to note that Adam requires tuning of two hyperparameters:
the learning rate and the decay rates for the moving averages (V1 and V2). These hyperpa-
rameters need to be set carefully to ensure that the model is able to converge e�ciently. In
practice, the default values of V1 = 0.9 and V2 = 0.999 work well for most applications.

In conclusion, Adam is a powerful optimization algorithm that has become a popular choice
for training machine learning models. Its combination of moving averages of the gradients
and squared gradients, along with a dynamic adjustment of the learning rate, provides a
framework for making e�cient updates to the parameters of the model [45].

• NAdam. NAdam, which stands for Nesterov-Accelerated Adaptive Moment Estima-
tion, is a variant of the Adam optimization algorithm that incorporates ideas from Nesterov’s
Accelerated Gradient (NAG) method. The main idea behind NAdam is to incorporate the
NAG approach into the Adam optimization algorithm, which can further improve the con-
vergence speed of the model.

The NAdam update rule is given by:

<C = V1 ·<C�1 + (1 � V1) · r\ � (\ ),

EC = V2 · EC�1 + (1 � V2) · r\ � (\ )
2,

<̂C =
<C

1 � VC1
,

ÊC =
EC

1 � VC2
,

\C = \C�1 + V1 · (<̂C �<C � 1) + (1 � V1) · r\ � (\ ),

\C+1 = \C � U ·
<̂C
p
ÊC + n

.

Here, <C and EC are the moving averages of the gradients and squared gradients, respec-
tively; <̂C and ÊC are the biased estimates of the moving averages; \C and \C+1 are the updated
parameters; V1 and V2 are the decay rates for the moving averages; U is the learning rate; and
n is a small constant to prevent division by zero.

The main di↵erence between NAdam and Adam is that NAdam incorporates the idea of
NAG into the update rule, which helps to prevent oscillations and speed up convergence. This
is achieved by computing the gradient at a point in the future, and then using that gradient
in the update rule. This helps to ensure that the model is moving in the direction of the
minimum of the loss function, even if the gradient is not pointing directly at the minimum.
Like Adam, NAdam requires tuning of the hyperparameters, including the learning rate and
the decay rates for the moving averages. In practice, NAdam can provide faster convergence
and better results compared to Adam, especially for complex models with many local minima
in the loss function.
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In conclusion, NAdam is a powerful optimization algorithm that builds on the ideas of
Adam and NAG to provide a more e�cient and e↵ective method for updating the parameters
of a machine learning model [60].

• RMSProp. Root Mean Square Propagation (RMSProp) is an optimization algorithm
that is widely used in deep learning. It is a variation of gradient descent that uses moving
averages to normalize the gradient updates, making the optimization process more stable and
e�cient. The RMSProp update rule is given by:

BC = V · BC�1 + (1 � V) · r\ � (\ )
2,

\C+1 = \C �
U

p
BC + n

· r\ � (\ ).

Here, BC is the moving average of the squared gradients; \C and \C+1 are the updated parameters;
V is the decay rate for the moving average; U is the learning rate; and n is a small constant
to prevent division by zero.

The main idea behind RMSProp is to normalize the gradient updates by dividing the
gradient by the root mean square of the past squared gradients. This helps to prevent the
optimization process from being dominated by the largest gradients, which can cause the
model to oscillate and converge slowly. The decay rate V controls how much weight is given
to the previous squared gradients, with a lower value of V giving more weight to the most recent
gradients. In practice, RMSProp is a robust optimization algorithm that has been found to
work well for deep learning models, especially for models with large numbers of parameters
and highly non-linear functions. It is often used in combination with other optimization
algorithms, such as Momentum or Adam, to further improve the stability and convergence
speed of the optimization process.

In conclusion, RMSProp is a widely used optimization algorithm that provides a powerful
and e�cient method for updating the parameters of a machine learning model. It is particu-
larly useful for deep learning models with large numbers of parameters, where it can provide
faster convergence and better results compared to standard gradient descent [68].

• Adamax. Adamax is an optimization algorithm for deep learning models that is based
on the Adam optimization algorithm. Adamax is a variant of the Adam optimizer that uses
a di↵erent formula for computing adaptive learning rates for each parameter.

The Adamax optimization algorithm updates the parameters of the model based on the
gradients of the loss function with respect to the parameters. Like other variants of Adam,
Adamax uses a moving average of the historical gradients to compute the adaptive learning
rates. However, unlike Adam, Adamax uses the infinity norm of the gradients, rather than
their squared !2 norm, to control the learning rate. This means that the learning rate for
each parameter is scaled based on the maximum gradient magnitude, rather than the average
gradient magnitude. In mathematical terms, the Adamax optimization algorithm can be
expressed as follows. Let FC be the parameters of the model at time step C , 6C the gradient of
the loss function with respect to the parameters at time step C ,<C and EC the moving averages
of the gradients and their squares, respectively, V1 the decay rate for the first moment, V2 the
decay rate for the second moment, and n a small positive constant. Then, at each time step
C , the parameters are updated as follows:

<C = V1 ·<C�1 + (1 � V1) · 6C ,
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EC = max(V2 · EC�1, |6C |),

FC = FC�1 � U ·
<C

EC + n
.

Here, U is the learning rate, which can be set by the user or determined through a hyperpa-
rameter optimization process.

The Adamax optimization algorithm has been shown to perform well in a variety of deep
learning tasks, including image classification, natural language processing, and reinforcement
learning. Adamax is particularly well suited to tasks where the gradients can have very large
magnitudes, as it is able to handle these large gradients e↵ectively by scaling the learning
rate accordingly [45].

• AMSGrad. Adaptive Moment Estimation Gradient (AMSGrad) is a variant of the
Adam optimization algorithm, which is widely used in deep learning and machine learning.
AMSGrad was introduced in 2018 by Reddi et al. in a paper entitled ”On the Convergence
of Adam and Beyond”.

AMSGrad modifies the update rule of the Adam algorithm to improve its convergence
properties, particularly in the case of non-convex optimization problems. In Adam, the learn-
ing rates are dynamically adjusted based on the exponential moving averages of the first and
second moments of the gradients, which are used to approximate the mean and variance of
the gradients. In AMSGrad, a maximum learning rate is introduced, which is used to clip
the learning rates, ensuring that they do not become too large. Mathematically, AMSGrad
can be described as follows: Let<C and EC denote the exponential moving averages of the first
and second moments of the gradients, respectively. The parameters of the model are updated
as follows:

<C  V1<C�1 + (1 � V1)6C ,

EC  max(V2EC�1, |6C |),

\C+1 = \C �
U

p
EC + n

<C ,

where 6C is the gradient of the loss function with respect to the parameters at time step C , U is
the learning rate, V1 and V2 are the decay rates for the moving averages, n is a small positive
constant used to prevent division by zero, and \C denotes the parameters at time step C .

AMSGrad has been shown to be e↵ective in a range of optimization problems, particularly
in the case of deep learning models with large numbers of parameters. It has been used in
a number of state-of-the-art models, and has been found to be particularly e↵ective in tasks
such as image classification, natural language processing, and reinforcement learning [58].

• Adagrad. Adagrad (Adaptive Gradient Algorithm) is a popular optimization algorithm
that was introduced by John Duchi et al. in 2011. Adagrad adapts the learning rate to
the parameters, performing larger updates for infrequent and smaller updates for frequent
parameters.

The core idea behind Adagrad is to maintain a per-parameter learning rate that is up-
dated over time based on the historical gradient information. The learning rate is adjusted
dynamically such that larger updates are performed for infrequent parameters, and smaller
updates are performed for frequent parameters. Mathematically, Adagrad can be described
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as follows: Let 6C be the gradient of the loss function concerning the parameters at time step
C , and let ⌧C be the sum of squares of the gradients accumulated so far:

⌧C  ⌧C�1 + 6
2
C ,

\C+1 = \C �
U

p
⌧C + n

6C ,

where U is the initial learning rate, n is a small positive constant used to prevent division by
zero, and \C denotes the parameters at time step C .

Adagrad has been widely used in a variety of optimization problems, including linear
regression, logistic regression, and neural networks. However, one of its main limitations is
that the learning rate is constantly shrinking over time, making it di�cult to escape from
poor local minima. This issue can be addressed by using a larger initial learning rate or by
gradually reducing the learning rate over time [28].

• Adadelta. Adadelta is an optimization algorithm that was introduced by Matthew
Zeiler in 2012. It is an extension of Adagrad that addresses the issue of monotonically de-
creasing learning rates by introducing the concept of an accumulated moving average.

Like Adagrad, Adadelta uses per-parameter learning rates that are updated based on
historical gradient information. However, instead of summing the squares of the gradients,
Adadelta computes a moving average of the squared gradient updates. This moving average
is used to determine the per-parameter learning rates, which are then used to update the
parameters. Mathematically, Adadelta can be described as follows: Let 6C be the gradient
of the loss function concerning the parameters at time step C , and let ⇢ [62]C be the moving
average of the squared gradients:

⇢ [62]C = d⇢ [62]C � 1 + (1 � d)62C ,

�\C = �

p
⇢ [�\2]C�1 + np
⇢ [62]C + n

6C ,

\C+1 = \C + �\C ,

where d is a decay rate, n is a small positive constant used to prevent division by zero, and
\C denotes the parameters at time step C .

Adadelta is a robust optimization algorithm that is well-suited for problems with noisy
gradients or changing distributions. It has been shown to perform well on a variety of tasks,
including training deep neural networks [72].
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Reference Model

This study utilizes a dataset with 1 million records pertaining to the Signal-to-Noise Ratio
(SNR) of a population of binary black hole mergers. The black holes have random spins
and they have masses between 7"� and 50"�. They are randomly placed in terms of sky
localization, spin orientation and inclination the binary plane.The distance is fixed to 1 Mpc
(megaparsec). Since the SNR is inversely proportional to distance, our results can easily be
scaled to any other distance of the source.

First, the target variable and predictor variables are separated, with the target variable
”SNR” and the predictors being a list of 11 features. The values of these variables are then
stored in X and y. After standardizing the data, it is then split into a training set and a
test set, with 70% of the data being used for training and the remaining 30% for testing.
We implement an artificial neural network (ANN) using the Keras library in python. The
number of neurons in each layer of the network is initially set to 250. The network has
initially 7 hidden layers and one output layer, all of which use the dense connection type.
The activation function for each hidden layer is PReLU (parametric rectified linear unit) with
a constant alpha initializer of 0.25. The model is then compiled with the ’mean squared error’
loss function and the Nadam optimizer. The model is trained on the training data initially
for 400 epochs with a batch size of 1000.

The Mean Absolute Percentage Error (MAPE) is a widely used metric for evaluating the
accuracy of a model’s predictions. It measures the average absolute percentage di↵erence
between the predicted values and the actual values. MAPE is a useful tool in the evaluation
of a model’s performance because it provides a measure of the magnitude of the prediction
errors in percentage terms and is defined as:

"�%⇢ =
100

=

=’
8=1

|02CD0;8 � ?A4382C438 |

|02CD0;8 |
,

where = is the number of data points 02CD0;8 is the actual value of the i-th data point and
?A4382C438 is the corresponding predicted value of the i-th data point It is important to note
that MAPE is undefined for actual values equal to zero. This can cause issues when working
with datasets that contain zeros. In such cases, alternative error metrics should be con-
sidered. In conclusion, the MAPE provides a useful measure of the accuracy of a model’s
predictions and can be helpful in comparing models or identifying high-error predictions. Its
interpretation as a percentage error makes it an intuitive and easily understandable metric.

We also define

�22DA02~ = 100 �"�%⇢ .
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Figure 4.1: Loss functions in terms of epochs for a machine learning model during training
and validation. The blue line represents the training loss and the orange line represents the
validation loss.

For the above setting, we obtain "�%⇢ = 3.96 and 022DA02~ = 96.04%.
In Figure 4.1 we display the change in the loss of a machine learning model over the course

of its training. The blue line represents the loss on the training data, and the orange line
represents the loss on validation data. The x-axis represents the number of epochs (iterations
over the entire training data), and the y-axis represents the value of the loss. The loss is
a measure of how well the model is fitting the training data, with a lower loss indicating a
better fit. We observe how the loss decreases over the first few epochs, and then it may level
out or continue to decrease gradually.

Figure 4.2 shows a histogram of the errors (true value minus predicted value) for the test
data set. A few outliers are at errors up to ±6, but the majority are confined to less than ±2.
This information can be useful in further refining and improving the model.

Figure 4.3 shows a histogram of the actual SNR values (blue) and the predicted SNR val-
ues (orange). By comparing the two histograms, one can assess the accuracy of the model’s
predictions and identify any di↵erences between the two distributions. For example, if the
model’s predictions closely match the original testing data, the two histograms should be
similar in shape and distribution. On the other hand, if the model’s predictions are signif-
icantly di↵erent from the original testing data, the two histograms will likely be noticeably
di↵erent. In this example, we observe a very good qualitative and quantitative agreement
between actual and predicted distributions.

Finally, Figure 4.4 shows a scatter plot that compares the predicted Signal-to-Noise Ratio
(SNR) values versus the actural SNR values for the test dataset. Each point on the plot
represents a single prediction made by the model. The plot provides a visual representation
of the accuracy of the model’s predictions. We notice that there is a compact distribution of
predicted values along the diagonal line, which corresponds to the actual values.
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Figure 4.2: Histogram of the errors (true value minus predicted value) for the test data set.
A few outliers are at errors up to ±6, but the majority are confined to less than ±2.

Figure 4.3: Histogram of the actual SNR values (blue) and the predicted SNR values (orange).
We observe a very good qualitative and quantitative agreement.
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Figure 4.4: Scatter plot comparing the predicted Signal-to-Noise Ratio (SNR) values versus
the actural SNR values for the test dataset. Each point on the plot represents a single
prediction made by the model. The plot provides a visual representation of the accuracy of
the model’s predictions.
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Hyperparameter Optimization

Hyperparameters are variables in a machine learning model that are set before training and
influence the model’s behavior and performance. They determine the configuration of the
model and are often critical in achieving optimal performance. Common examples of hy-
perparameters include learning rate, batch size, and a number of epochs. The selection of
appropriate values for hyperparameters is crucial for training an e↵ective machine learning
model. In this section, we will be focusing on the optimization of two important hyper-
parameters, batch size and the number of epochs, through a method known as grid search
[22].

• Batch size: Batch size is an important hyperparameter in the training of a machine
learning model. The batch size determines the number of samples that will be processed by
the model at once, before the weights are updated. In general, a big batch size means that
the model will process more samples at once, which can lead to faster training times. On
the other hand, a small batch size can lead to a more stable training process, as the model
is updated more frequently. There is a trade-o↵ between big and small batch sizes, as a big
batch size can lead to a faster convergence, but can also result in a suboptimal solution. On
the other hand, a small batch size can lead to a slower convergence, but can result in a more
accurate solution. In the field of deep learning, it has been shown that using a small batch
size can result in better generalization performance. However, this is not always the case, as
the optimal batch size depends on the specific problem and model being used. In conclusion,
the choice of batch size is highly dependent on the specific problem and the model being used,
and finding the optimal batch size requires experimentation and analysis [44].

• Epochs: In machine learning, an epoch is a single iteration through the entire training
dataset. During each epoch, the model updates its parameters based on the gradient of
the loss function calculated on the training data. Having a small number of epochs during
training means that the model has seen the training data fewer times and thus has not had
enough time to fully learn the relationships between the input features and output target. As
a result, the model may not fit the training data well and is more likely to underfit the data.
On the other hand, having a large number of epochs can lead to overfitting, where the model
has memorized the training data and learned to fit it too well. As a result, the model may
perform well on the training data but poorly on new, unseen data because it has learned to
fit the noise and random fluctuations in the training data instead of the underlying patterns.
Therefore, finding the right number of epochs for training is a trade-o↵ between underfitting
and overfitting, and the optimal number of epochs depends on the specific problem and dataset
[37, 23].

• Number of Neurons: The number of neurons in a neural network is an important
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hyperparameter that determines the complexity and capacity of the model. Having a small
number of neurons in a neural network model can result in underfitting, as the model may
not have enough capacity to learn the complex relationships between the input and output
variables. This can lead to poor accuracy on the training and test data. On the other hand,
having a large number of neurons can lead to overfitting, where the model memorizes the
training data but performs poorly on new, unseen data. It is important to strike a balance
between having too few and too many neurons in a neural network model [36].

• Number of Layers: Having a small number of layers in a neural network model can
result in underfitting the data, as the model may not have enough capacity to capture the
complexity of the problem. On the other hand, having a large number of layers can lead
to overfitting, where the model becomes too specialized to the training data and doesn’t
generalize well to new data [36].

• Activation Functions: The best choice of activation function depends on the problem
at hand and the type of model being used. Sigmoid and tanh are popular activation functions
that work well for binary classification problems, but they can lead to vanishing gradients
and slow training times for deep networks. ReLU (Rectified Linear Unit) is a commonly used
activation function that has shown to work well for many deep learning problems. It has the
advantage of having a non-saturating and linear response for positive inputs, which speeds up
training and reduces the risk of vanishing gradients. Leaky ReLU is a variant of ReLU that
helps address the issue of the ”dying ReLU” problem, where the activation function becomes
zero for negative inputs and the gradient vanishes. By allowing a small negative slope for
negative inputs, leaky ReLU helps improve the performance of the model. In general, ReLU
and its variants are a good choice for many problems, but it’s important to experiment with
di↵erent activation functions and choose the one that works best for the problem at hand [36]
[35].

• Optimizer: When selecting an optimizer for training a machine learning model, it is
important to consider both the strengths and weaknesses of each optimizer. The choice of
optimizer can have a significant impact on the performance of the model.

Strengths:
SGD (Stochastic Gradient Descent) is a simple and widely used optimizer. It is compu-

tationally e�cient and can handle large datasets. Adagrad and Adadelta adapt the learning
rate for each weight based on the historical gradient information, allowing for more e�cient
optimization. RMSProp is similar to Adadelta but also incorporates moving averages, lead-
ing to a more stable convergence. Adam (Adaptive Moment Estimation) is a combination of
RMSProp and momentum and has been shown to perform well in many applications. Nadam
helps the optimization process move more e�ciently towards the minimum, resulting in faster
convergence. Nadam has the adaptive learning rate property of the Adam algorithm, which
means it can adjust the learning rate based on the historical gradient information, helping to
avoid oscillations and improve convergence.

Weaknesses:
SGD can have slow convergence and may get stuck in local minima. Adagrad and Adadelta

may have a diminishing learning rate, leading to slow convergence. RMSProp and Adam
may require careful tuning of hyperparameters such as learning rate and decay rate. Some
optimizers such as Adam can be sensitive to the choice of learning rate and may require tuning.
Nadam can be computationally expensive and can slow down the optimization process. The
e↵ectiveness of Nadam may depend on the choice of the hyperparameters, such as the learning
rate and the decay rates, which can be di�cult to tune.

It is recommended to experiment with di↵erent optimizers and evaluate their performance
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on the specific task and dataset to determine the best optimizer [36] [27].

5.1 Optimizing Model Performance through Grid Search
of Batch Size and Epoch Hyperparameters

In the field of machine learning, the performance of a model is highly dependent on the
hyperparameters used during training. Grid search is a technique used to systematically
search for the optimal combination of hyperparameters in a given range to achieve the best
performance of a model. We will describe the process of conducting a grid search for the best
batch size and epoch in the context of training a machine learning model.

Table 5.1: Table of trials during the grid search.
Trial Batch Size Epochs Accuracy
1 500 200 96.57
2 500 400 96.76
3 500 800 96.98
4 1000 200 96.62
5 1000 400 96.58
6 1000 800 96.63
7 1500 200 96.42
8 1500 400 96.41
9 1500 800 96.33
10 2000 200 96.31
11 2000 400 96.46
12 2000 800 96.33

Table 5.1 table shows the results of 12 trials, where each trial has di↵erent batch size and
a number of epochs. The trial number is listed in the first column, batch size in the second,
number of epochs in the third, and accuracy in the fourth. The data in the table provides
insight into the e↵ect of changing batch size and a number of epochs on the accuracy of a
machine learning model.The best accuracy is achieved when the batch size is 500 and the
epoch is 800.

Figure 5.1 shows the accuracy in terms of the combination of Batch Size and Number of
Epochs used for training the model. The highest accuracy is achieved for a batch size of 500
using 800 epochs. It’s worth noting that other combinations may still produce acceptable
results, but for optimal performance, the 500-800 combination seems to be the best choice
for those combinations that were tried. Additionally, further optimization may yield even
better results, so it’s important to consider the trade-o↵ between computational resources
and accuracy when determining the optimal combination of batch size and a number of
epochs.

5.2 Selective Search for Optimal Number of Neurons

Random search is an alternative approach to hyperparameter optimization in machine learn-
ing models. Instead of exhaustively searching over a predefined grid of hyperparameters, as
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Figure 5.1: Accuracy in terms of the combination of Batch Size and Number of Epochs used
for training the model. The highest accuracy is achieved for a batch size of 500 using 800
epochs.

in grid search, random search randomly samples hyperparameters from a probability distri-
bution for a specified number of iterations. The idea behind random search is to explore
the hyperparameter space more e�ciently than grid search by focusing on high-performing
regions and avoiding low-performing regions. Random search has been shown to perform
similarly or even better than grid search in terms of finding the optimal hyperparameters in
various applications [18] [47].

Here, instead of a random search, we will do a selective search by varying specific hy-
perparameters, fixing the batch size and epochs to the best found in the grid search for the
reference model, i.e. 500 and 800, respectively and starting from the values of the reference
model for the remaining hyperparameters.

Table 5.2 shows the accuracy of the machine-learning model when varying the number of
neurons in the model. The highest accuracy was achieved when each hidden layer had 350
neurons. A corresponding plot is shown in Fig. 5.2.

5.3 Comparison of Optimization Algorithms for Improved
Model Accuracy

In this subsection, we focus on finding the best optimizer for our model. Optimization is
a crucial part of deep learning, as it helps the model to converge to a minimum of the loss
function and achieve high accuracy. An optimizer helps to update the weights of the model
in a direction that minimizes the loss function. Therefore, finding the right optimizer can
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Table 5.2: Accuracy for di↵erent Number of Neurons per hidden layer. The highest accuracy
is achieved for 350 neurons.

Number of neurons Accuracy
50 95.11
100 95.78
150 95.98
200 95.88
250 96.43
300 96.47
350 96.70
400 96.60
450 96.53
500 96.66

greatly a↵ect the performance of our model. In this subsection, we will perform experiments
to compare the performance of di↵erent optimizers and determine the optimizer that yields
the best results for our specific task. Other hyperparameters are fixed at 350 neurons per
hidden layer, a batch size of 500 and 800 epochs.

Table 5.3: Accuracy achieved for di↵erence choices of the Optimizer.
Optimizer Accuracy
rmsprop 84.90
Nadam 96.61
Adam 96.49

Adamax 96.00
Adagrad 88.69
Adadelta 86.70

Table 5.3 shows the accuracy of a machine learning model when trained using di↵erent
optimization algorithms. It follows that the Nadam and Adam optimizers have the highest
accuracy with values of 96.61 and 96.49 respectively. These optimizers are variants of the
popular Adam optimizer, which is known for its fast convergence and good performance. On
the other hand, the rmsprop optimizer has a relatively lower accuracy with a value of 84.90.
The Adagrad and Adadelta optimizers have intermediate accuracy values of 88.69 and 86.70
respectively. It’s important to note that the accuracy values shown in this table are specific
to the data and architecture used for the model. The optimal optimization algorithm for a
given problem may depend on the specifics of the data and the architecture. A corresponding
plot is shown in Figure 5.3.

5.4 Evaluating the E↵ect of Number of Layers on Model
Performance

The purpose of this subsection is to identify the optimal number of layers in this neural
network. To achieve this goal, various neural network architectures were tested and their
performance was evaluated for accuracy. The experiments were carried out with a range of
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Figure 5.2: Accuracy as a function of the Number of Neurons per hidden layer. The highest
accuracy is achieved for 350 neurons.

Figure 5.3: Bar graph showing the achieved accuracy for di↵erent choices of the optimizer
(see text for details).
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layer sizes, from 6 to 14, to determine the best number of layers for the network. The results
of these experiments are presented in this subsection, and the optimal number of layers is
determined based on the highest accuracy achieved.

Table 5.4: Accuracy as a function of the Number of Hidden Layers.
Number of hidden layers Accuracy

6 96.61
8 96.66
10 96.96
12 91.98
14 91.98
16 84.03

Table 5.4 shows the achieved accuracy as function of the number of hidden layers, ranging
from 6 to 16. The highest accuracy is achieved with 10 hidden layers with a value of 96.96%.
For a larger number of hidden layers, we observe that the accuracy degrages significantly. The
results suggest that there is an optimal number of hidden layers that can be used to achieve
the best performance in this model.

5.5 Impact of Number of Data Points on Accuracy

In machine learning, having a larger dataset normally leads to better accuracy due to the
model having more information to learn from. To investigate the impact of the number of
data data points on accuracy, we experimented with four di↵erent datasets: 125k, 250k, 500k,
and 1m.

Table 5.5: Accuracy for di↵erent number of data points.
Number of Data Points Accuracy

125k 89.95
250k 93.55
500k 95.54
1M 96.96

In Table 5.5 we see that after training a model on each dataset, we found that the accuracy
increased as the number of data points increased. The 125k dataset achieved an accuracy of
89.95%, while the 250k dataset achieved an accuracy of 93.55%. The 500k dataset achieved
an accuracy of 95.54%, and the 1M dataset achieved the highest accuracy of all with 96.96%.
A corresponding plot is shown in Figure 5.4, showing a nonlinear relation between the number
of data points and the accuracy. It suggests that increasing the amount of training data can
be an e↵ective method for improving the accuracy of machine learning models. However,
it’s worth noting that having a larger dataset will also increase the time and computational
resources required for training, so the trade-o↵ between accuracy and resource consumption
should be carefully considered when deciding on the size of the dataset.
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Figure 5.4: The Accuracy has a nonlinear relationship to the number of data points.

5.6 Extrapolation of Required Sample Size for Desired
Accuracy

In order to achieve accurate results in machine learning models, it is important to have
su�cient data. However, collecting, storing, and processing large amounts of data can be
computationally expensive and time-consuming. Therefore, it is necessary to determine the
minimum amount of data required to achieve a certain level of accuracy in a given machine
learning task. Here, we will extrapolate from the results presented in the previous sections,
in order to estimate the required number of data points to achieve an accuracy of 99%.

Figure 5.5 reveals a linear relationship between log("�%⇢) and log(022DA02~), allowing us
to perform an extrapolation (via the least-squares method) to smaller desired values of MAPE
than those achieved so far. The extrapolation shows that a dataset size of approximately 7
million data points will be required to reduce MAPE to 1% (equivaltently, to increase the
accuracy to 99%).
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Figure 5.5: Log-log plot of MAPE vs. the number of points (size) of the dataset. A line is
formed and its extrapolation shows that about 7 million data points are required to achieve
a MAPE of 1% (equivalently, an accuracy of 99%).
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Chapter 6

Discussion

Since 2015 we can now observe the dark side of the universe using interferometric gravitational
wave detectors and nearly 90 binary black hole systems have already been detected. A
large number of templates (of order hundreds of thousand) are needed to measure the source
parameters of a detected system with perform matched filtering. In such parameter estimation
calculations it is also useful to know the optimal signal-to-noise ratio of an individual model
waveform. In this thesis, we trained an artificial neural network on a random sample of one
million theoretical waveforms of binary black hole systems with random spins to predict the
signal-to-noise ratio. We performed optimization of di↵erent hyperparameters with a grid
search and also selectively searched for the accuracy of other parameter choices.

Our best model achieved an accuracy of 97% in predicting the signal-to-noise ratio, having
the advantage of evaluating the results orders of magnitude faster (on a GPU) than the original
calculation. By using di↵erent sizes of the dataset, we found that the logarithm of the accuracy
is linearly related to the logarithm of the number of points in the dataset. This allowed us
to predict that a dataset size of about 7 million data points will be required to achieve an
accuracy of 99% in predicting the SNR with the neural network that we constructed.

Apart from increasing the datasize, one could also try other architectures that could
potentially lead to higher accuracy. For example, ResNets allow for a larger number of layers
in a deep neural network and it would be worth investigating whether they can lead to an
increase in accuracy.

As part of this thesis, the Python code available at the following link:
GitHub repository

49
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[19] Léon Bottou. From machine learning to machine reasoning: An essay. Machine learning,
94:133–149, 2014.

[20] Carlton M Caves, Kip S Thorne, Ronald WP Drever, Vernon D Sandberg, and Mark
Zimmermann. On the measurement of a weak classical force coupled to a quantum-
mechanical oscillator. i. issues of principle. Reviews of Modern Physics, 52(2):341, 1980.

[21] David F Cherno↵ and Lee Samuel Finn. Gravitational radiation, inspiraling binaries,
and cosmology. arXiv preprint gr-qc/9304020, 1993.

[22] F Chollet and JJ Allaire. Deep learning with r. greenwich, ct, 2018.

[23] Francois Chollet. Deep Learning with Python. Manning Publications, 2015.

[24] LIGO Scientific Collaboration. Mass ratio and the character of gravitational wave signals.
The Astrophysical Journal, 826(2):L13, 2016.

[25] Curt Cutler and Eanna E Flanagan. Gravitational waves from merging compact binaries:
How accurately can one extract the binary’s parameters from the inspiral waveform?
Physical Review D, 49(6):2658, 1994.



BIBLIOGRAPHY 53

[26] Karsten Danzmann, Harald Lück, Albrecht Rüdiger, Roland Schilling, M Schrempel,
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