

Medical Heart Image Analysis With Machine

Learning Techniques And Deep Learning

Neural Networks

by

Periklis Bouzanis

Submitted

in partial fulfilment of the requirements for the degree of

Master of Artificial Intelligence

at the

UNIVERSITY OF PIRAEUS

July 2022

University of Piraeus, NCSR “Demokritos”. All rights reserved.

Author……………………………….....…Periklis Bouzanis

II-MSc “Artificial Intelligence”

Month 07, 2022

Certified by Michalis Filippakis, Associate Professor

 Thesis Supervisor

Certified by Ilias Maglogiannis, Professor

 Member of Examination Committee

 Certified by Maria Halkidi, Associate Professor

Member of Examination Committee

Medical Heart Image Analysis With Machine Learning

Techniques And Deep Learning Neural Networks

By

Periklis Bouzanis

Submitted to the II-MSc “Artificial Intelligence” on July 2022, in partial fulfillment of the
requirements for the MSc degree

Abstract

Human heart is considered one of the most import organs of the human body, since its
job is to provide the body with blood [23]. One of the methods that clinicians utilize, to
examine the heart and its internal structure condition, is the TransThoracic
Echocardiogram (TTE), which is the most used, agile, and cost-effective cardiac imaging
modality. Machine Learning techniques and Deep learning neural networks,
implemented in TTE images, can deliver highly accurate and automated interpretation of
heart’s clinical condition, which can greatly assist cardiologists in their evaluation of
heart’s abnormality or not [1][2].
In the current master thesis, a deep learning algorithm will be examined in various
dataset resolutions and a comparison of its performance on the task of classification of
the enlargement of the left atrium of the human heart, with the use of TTE images from
patients of a Greek Hospital, will be studied. The basic algorithm is a combination of a
Unet and a Convolutional Neural Network (CNN). Unet will segment the A4C TTE
images over the cardiac Left atria (LA) and CNN will classify the segmented images for
normal or abnormal size of the LA. Addittionaly a Semi-supervised GAN will be trained
and evaluated in classifying the cardiac LA as normal or abnormal.

Thesis Supervisor: Mr Michalis Filippakis
Title: Associate Professor

 -i-

Acknowledgments

I would like to thank Associate Professor Michalis Filippakis of the Dept. of

Digital Systems of University of Piraeus for supervising my research and

providing the guidance needed for completing this thesis. Also, I would like to

thank all the teaching faculty of this Master in AI from University of Piraeus and

the NCSR “Demokritos”, as well as clinical Cardiologist Mr. Anastasios

Papaspyropoulos for the knowledge i acquired under his guidance, over the

subjects of the human heart and the echocardiograms. Last, but not least, I

would like to thank my family and friends for their patience and support.

 -3-

Table of Contents

TABLE OF CONTENTS ..3

LIST OF FIGURES.. 6

LIST OF TABLES .. 11

ABBREVIATIONS ... 13

1 INTRODUCTION ... 14

1.1 BRIEF DESCRIPTION ... 14

1.2 CHAPTERS DESCRIPTION .. 15

2 MACHINE LEARNING ... 17

2.1 SUPERVISED LEARNING .. 17

2.1.1 Classification Problems .. 19

2.2 UNSUPERVISED LEARNING ... 20

2.3 SEMI-SUPERVISED LEARNING ... 21

2.4 ARTIFICIAL NEURAL NETWORKS .. 22

2.4.1 Perceptron algorithm... 23

2.4.2 Training process.. 24

3 CONVOLUTIONAL NEURAL NETWORKS (CNN) 27

3.1 CONVOLUTIONAL LAYER ... 27

3.2 ACTIVATION FUNCTIONS ... 32

3.3 POOLING LAYER ... 35

3.4 BATCH NORMALIZATION .. 37

3.5 REGULARIZATION .. 39

3.5.1 Dropout .. 39

3.5.2 L2 Regularization ... 40

4 SEGMENTATION WITH UNET .. 43

4.1 SEMANTIC SEGMENTATION .. 43

- 4 -

4.2 U-NET ARCHITECTURE .. 46

5 GENERATIVE ADVERSARIAL NETWORK (GAN)............................. 49

5.1 BASIC GAN .. 49

5.2 SEMI-SUPERVISED LEARNING WITH GAN .. 51

6 HUMAN HEART AND TTE.. 53

6.1 HEART ANATOMY .. 53

6.2 CARDIAC LEFT ATRIAL (LA) ENLARGEMENT .. 55

6.3 2D TRANSTHORACIC ECHOCARDIOGRAPHY ... 56

6.3.1 Basic theory .. 56

6.4 2D TTE STANDARD TOMOGRAPHIC VIEWS.. 58

6.4.1 Left Atria check with TTE ... 59

7 EXPERIMENTS ... 63

7.1 DATASET .. 63

7.1.1 Dataset statistics ... 64

7.2 DATASET PREPARATION ... 64

7.3 METHODS .. 67

7.4 RESULTS .. 72

7.4.1 Unet ... 73

7.4.2 CNN Results ... 78

7.4.3 Unet - CNN Pipeline Results ... 80

7.4.4 SGAN .. 82

7.5 CONCLUSION .. 83

REFERENCES ... 84

APPENDIX .. 86

1.1 IMPORT LIBRARIES CODE .. 86

1.2 DATASET CREATION CODE .. 87

1.3 UNET CODE .. 100

1.3.1 Code for Training the Unet Models .. 100

1.3.2 Code for Evaluating Unet the Models ... 114

1.4 CNN CODE .. 127

1.4.1 Code For Training CNN Models .. 127

 -5-

1.4.2 Code for Evaluating CNN Models .. 142

1.5 CNN-UNET PIPELINE EVALUATION CODE ... 154

1.6 GAN CODE ... 164

1.6.1 Code for Train GAN .. 164

1.6.1 Code for Evaluating GAN’s supervised Discriminator 174

1.7 DATASET STATISTICS ... 181

- 6 -

List of Figures

Figure 2.1, Supervised Learning Flow (source: [1])

Figure 2.2, Unsupervised Learning Flow, (source :[3])

Figure 2.3, clustering people according to theit height and weight (source :[4])

Figure 2.4, Semi-Supervised Learning Flow (source :[3])

Figure 2.5, single perceptron, ANN with one hidden layer, MLP network with

two hidden layers and one output

Figure 2.6, (a) perceptron algorithm output for three features as input, using a

differentiable activation function h(.)

Figure 2.7, Cost function minimization through training of MLP with a dataset

of two target classes

Figure 3.1, Basic CNN architecture (source:

www.medium.com/techiepedia/binary-image-classifier-cnn-using-tensorflow-

a3f5d6746697)

Figure 3.2, a convolutional layer may have more than one feature maps (source:

www.towardsdatascience.com/applied-deep-learning-part-4-convolutional-

neural-networks-584bc134c1e2)

Figure 3.3, Image represented as a matrix (source [9])

Figure 3.4, Image in grayscale mode with three vertical lines of different color.

Figure 3.5, Application of convolution with the receptive field in a local area of

the input image, results in the representative pixel of the local area, in the

hidden layer of the CNN (source [9]).

Figure 3.6, Sliding the receptive field over the whole input image, results in the

creation of the feature map of the input image in the hidden layer of CNN

(source [9]).

Figure 3.7, Implementation of convolution on a 9 x 9 input image with a 3 x 3

filter/receptive field, which results to the 1st hidden layer’s 7 x 7 feature map.

http://www.medium.com/techiepedia/binary-image-classifier-cnn-using-tensorflow-a3f5d6746697
http://www.medium.com/techiepedia/binary-image-classifier-cnn-using-tensorflow-a3f5d6746697
http://www.towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
http://www.towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

 -7-

Figure 3.8, Implementation of convolution on a 9 x 9 input image with a 3 x 3

filter/receptive field and a stride of 2, which results to the 1st hidden layer’s 4 x

4 feature map.

Figure 3.9, Implementation of convolution on a 9 x 9 input image with a 3 x 3

filter/receptive field , padding of 1 and a stride of 1, which results to the 1st

hidden layer’s 9 x 9 feature map.

Figure 3.10, ReLU activation function curve (source [8])

Figure 3.11, Sigmoid activation function curve (source [8])

Figure 3.12, Softmax activation function curve (source [8])

Figure 3.13, Implementation of Max pooling 2 x 2 with stride 1 on a 7 x 7 feature

map, which results to the convolution layer output of size 6 x 6.

Figure 3.14, Implementation of average pooling 3 x 3 with stride 1 on a 7 x 7

feature map, which results to the convolution layer output of size 5 x 5.

Figure 3.15, (a) Fully connected layers, (b) After implementing Dropout with 0,5

random probability, which zeroes the values corresponding to the connections

of the randomly chosen neurons (source: [9])

Figure 3.16, Network with a p dropout probability during training and the

participation of dropped out weights with a factor of p, during testing.(source

:[9])

Figure 4.1, Semantic segmentation on a TTE cardiac image: (a) Apical 4

chamber (A4C) view, (b) Precise Semantic segmentation mask over the cardiac

Left atria, (c) Loosen semantic segmentation mask of the same area.

Figure 4.2, Semantic segmentation on an image with objects of different classes

(source:www.researchgate.net/figure/Example-of-2D-semantic-segmentation-

Top-input-image-Bottom-prediction_fig3_326875064)

Figure 4.3, Semantic segmentation with different architectures. Output image is

a representation of the masks of the different objects from the initial scene

(source: www.researchgate.net/figure/Semantic-segmentation-CNN-

architectures_fig2_321124704)

Figure 4.4, A characteristic U-net architecture (source: [18])

Figure 5.1, GAN basic semantic (https: // www.itrelease.com / 2020/

06/advantages-and-disadvantages-of-generative-adversarial-networks-gan/)

http://www.researchgate.net/figure/Example-of-2D-semantic-segmentation-Top-input-image-Bottom-prediction_fig3_326875064
http://www.researchgate.net/figure/Example-of-2D-semantic-segmentation-Top-input-image-Bottom-prediction_fig3_326875064
http://www.itrelease.com/

- 8 -

Figure 5.2, GAN goal is, through training, the samples distribution pg produced

by the Generator (green solid line) to resample with the data distribution

samples pdata (black dotted line) ((a) through (d)), while Discriminator

discovers the distribution (blue dotted line) that discriminates fake from real

samples (source [19])

Figure 6.1, Heart’s anatomy (source: www.texasheart.org/heart-health/heart-

information-center/topics/heart-anatomy/)

Figure 6.2, Diagram of an ultrasound wave with its properties. (source [24])

Figure 6.3, Interaction between ultrasound wave and body tissue. In cardiac

tissues reflection is the useful interaction that is used in 2d TTE (source [24])

Figure 6.4, 2D TTE standard tomographic views on the diastolic phase: (a)

PLAX , (b) PSAX , (c) A4C , (d) A2C , (e) Apical long-axis , (f) S4C, (g)

Suprasternal (source [25])

Figure 6.5, Biplane Method of disk summation technique (source [27])

Figure 7.1, A4C view images. Left images are the echo machine’s caption during

the diastolic phase. Right images are the cardiologist’s assessment with the

marked left cardiac atrial.

Figure 7.2, Top images: produced from the TTE software. Bottom images:

cropped in 4:3 aspect ratio and downsized to 800 x 600 resolution

Figure 7.3, Annotation of the areas to produce the corresponding masks with the

VIA software: (a) Extended mask, (b) Original mask from cardiologist

assessment image

Figure 7.4, The final masks (middle images) and their filtering over the original

image (right images)(a) Extended mask, (b) Original mask

Figure 7.5, Implemented U-Net architecture (source:[2])

Figure 7.6, Implemented CNN architecture (source:[2])

Figure 7.7, Unet - CNN pipeline for the extended masking models

Figure 7.8, Unet - CNN pipeline for the precise masking models

Figure 7.9, Generator of the Semi-supervised GAN (source:[2])

Figure 7.10, Discriminator of the Semi-supervised GAN (source:[2])

http://www.texasheart.org/heart-health/heart-information-center/topics/heart-anatomy/
http://www.texasheart.org/heart-health/heart-information-center/topics/heart-anatomy/

 -9-

Figure 7.11, Segmentation results of 160 x 120 test set images from Unet with no

data augmentation (extended masking)

Figure 7.12, Segmentation results of 160 x 120 test set images from Unet with

data augmentation (extended masking)

Figure 7.13, Unet’s per pixel normalized matrices with DA of test set images

(extended masking): (a) 240 x 320, (b) 120 160

Figure 7.14, Segmentation results of 120 x 160 test set images from Unet without

data augmentation (precise masking)

Figure 7.15, Segmentation results of 120 x 160 test set images from Unet with

data augmentation (precise masking)

Figure 7.16, Unet’s per pixel normalized matrices with DA of test set images

(extended masking): (a) 240 x 320, (b) 120 160

Figure 7.17, CNN’s normalized matrices with DA of test set images (extended

masking): (a) 240 x 320, (b) 120 160

Figure 7.18, CNN’s normalized matrices with DA of test set images (precise

masking): (a) 240 x 320, (b) 120 160

Figure 7.19, Segmentation results of 120 x 160 test set images from Unet with

data augmentation (extended masking 120 x 160)

Figure 7.20, Unet-CNN pipeline’s normalized matrices on test set : (a) extended

masking (120 x 160), (b) precise masking (120 x 160)

- 10 -

 -11-

List of Tables

Table 6.1, Dataset Statistics

Table 6.2, U-Net Extending Masking Results

Table 6.3, U-Net Precise Masking Results

Table 6.3, CNN Extending Masking Results

Table 6.4, CNN Precise Masking Results

Table 6.5, Unet - CNN Pipeline models

- 12 -

 -13-

Abbreviations

ANN = Artificial Neural Network

CNN = Convolutional Neural Network

DA = Data Augmentation

DL = Deep Learning

DNN = Deep Neural Network

LA = Left atria

ML = Machine Learning

MLP = Multiple Layer Perceptron

TTE = Transthoracic Echocardiogram

- 14 -

1 Introduction

1.1 Brief Description

Human heart is considered one of the most import organs of the human body,

since its job is to provide the body with blood [23]. One of the methods that

clinicians utilize, to examine the heart and its internal structure condition, is the

TransThoracic Echocardiogram (TTE), which is the most used, agile, and cost-

effective cardiac imaging modality. A TTE consists of videos, images and

doppler measurements from different cross-sections of heart [24]. Machine

Learning (ML) techniques and Deep learning (DL) neural networks (DNN),

implemented in TTE images, can deliver highly accurate and automated

interpretation of heart’s clinical condition, which can greatly assist cardiologists

in their evaluation of heart’s abnormality or not [1][2].

In the current master thesis, a deep learning algorithms will be examined with

various and a comparison of their implementation and performance on the task

of classification of the enlargement of the Left Atrial(LA) of the human heart,

with the use of Apical 4 champer (A4C) TTE images from patients of a Greek

Hospital, will be studied. In particular, a U-Net will be trained on the

aforementioned images in the task of image segmentation over heart’s LA area

and its output will be fed as an input to a Convolution Neural Network (CNN),

which will be trained to classify the heart’s LA size as normal or pathological.

The two networks will be trained on two resolutions of the image inputs, the 120

x 160 and the 240 x 320. Additionally, we are going to use two kinds of image

masking. An extended masking over the LA’a area and the precise one, over

cardiologist’s assessment area, while the networks will be trained with no data

augmentation (DA) and with data augmentation (DA) techniques , in order to

evaluate their contribution on small sized medical datasets.

Addittionaly a Semi-supervised GAN will be trained and evaluated in classifying

the cardiac LA as normal or abnormal with the use of an unamsked image

dataset of A4c images.

 -15-

1.2 Chapters Description

In Chapter 2, the basic terms of the Machine Learning are described, which are

common for the Deep Learning. According to this, we analyze the terms of

supervised , unsupervised and semi-supervised learning. For the supervised

learning, the subcategory of classification problems is presented, since our case

of categorizing the cardiac left atrial size as abnormal or normal, belongs to this

category. Additionally, a description of Artificial Neural Networks (ANN) is

given and the perceptron algorithm is analyzed thoroughly, along with the

training process of an ANN, which includes the processes of forward feeding -

calculation of predictions – backpropagation and ANN’s weight updates

through the gradient descent technique.

In Chapter 3, the basic architecture of a CNN is analyzed, such as the

convolutional and pooling layers, the sigmoid and softmax activation function.

Also, various techniques are presented to improve a CNN’s performance. For

this, Batch normalization and the regularization tools of dropout and L2

regularization are discussed.

In Chapter 4, we deal with the concept of the image segmentation. We describe

the basics of image segmentation and present the Jaccard Index and power

Jaccard loss as a suitable metric and a loss function respectively, for the

segmentation tasks. Afterwards, we analyze the U-net as a CNN, which has been

developed mainly for segmentation and precise localization on biomedical

images.

In Chapter 5, we describe the concept of the Generative Adveraial Network

(GAN), its basic theory for training and producing real like images from an

image distribution. Then we describe a specialized use of the GAN in semi-

supervised learning task, where its Discriminator part can be trained,

additionaly and as a classifier.

In Chapter 6, we make a description of the human heart anatomy and its basic

functions. We give the theory on which the TTE relies on, present the basic view

images a cardiologist can produce with the TTE and the internal heart’s

structure that can be examined with each view. Finally we present the state of

the LA enlargement and how it is traced through the TTE and its normal values.

- 16 -

In chapter 7, we present our experiment results over the classification task of

LA size as normal or abnormal. We present the dataset that was used, its

population statistics and its preparation for each of our models. Afterwards, we

describe our U-net implementation for the segmentation of the LA on A4C view

images of TTE and our CNN and Seimi-supervised GAN implementation for the

classification. Finally, we analyze the results of training the above Deep

Networks over our dataset.

 -17-

2 Machine Learning

Machine Learning (ML) is a process that a computer system applies in order to

solve a given problem, according to previous examples of the same domain,

taking into account the probabilistic distribution of these examples. A definition

of the Machine Learning is given by T. Mitchell (1997) [3]: “A computer

program is said to learn from experience E with respect to some class of tasks T

and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E”. This definition reveals the basic features of a

machine learning algorithm [3]:

- The class of tasks (T): the exact problem the algorithm must become

capable of solving.

- The measure of performance (P): The evaluation metric of the

algorithm’s capability of accomplishing the tasks.

- The source of experience (E): the task’s domain previous cases

(training examples), which the algorithm uses to produce a cased

based reasoning process.

The ML algorithms are divided into three major categories, with respect to the

use or not of the examples category labels/continuous values/similarities,

during algorithm’s training process:

- Supervised

- Unsupervised

- Semi – supervised

2.1 Supervised Learning

In supervised learning the source of the experience is provided as a matrix Xm,n

along with a label vector Ym . Matrix Xm,n stores the m examples of the

examined case, where a row belongs to a single example, while each of the n

columns stores the value of a specific feature of this example. Vector Y

associates each example with a category/class or a continuous value (ground

truth), with respect to the problem that the machine learning algorithm is

- 18 -

intended to solve. Domain’s experts of the examining problem have assigned the

ground truth. Transferring this to the current problem of the cardiac LA

enlargement classification, each row of the sample matrix X describes a TTE

image, while columns encapsulates a 2D matrix, whose elements correspond to

the image's pixels values (example’s features). An element in vector Y associates

the normal or the abnormal size of the cardiac LA of the respected image in the

matrix X.

During the algorithm’s training procedure, the algorithm computes an output

for each example. According to the supervised learning paradigm, the main

goal of the algorithm is to optimize its parameters, in order to minimize the

difference between the assigned target output of vector Y (the ground truth) and

its computed output [3], thus minimizing the misclassification or the error

between the target and the computed continuous value. The final evaluation of

the ML algorithm is accomplished by implementing it in a test set with

examples from the same distribution as the training set, that have not been used

in the training set, and measuring test set’s error predictions. The prepose of

the, unseen before, test examples, is to make the algorithm capable to generalize

beyond the training set.

In order to achieve this, a supervised learning algorithm follows a procedure of

standard steps (Fig. 2.1):

- Forward propagation, where algorithm computes an output for the

training examples of Χ

- Gradient Descent, where the error between the target and the computed

outputs, is calculated.

- Backpropagation, where the algorithm’s parameters are updated

according to their partial derivatives from the gradient descent.

 -19-

Figure 2.2, Supervised Learning Flow

2.1.1 Classification Problems

One of the main implementations of the supervised learning is on classification

problems. In the classification problems, the algorithm’s goal is to discover a

mapping from an input example x ∈ X to an output y ∈ Y = {1, …, C}, where C

denotes the number of classes of the specific problem. If C = 2, then the problem

is called a binary classification problem and the most common output labelling

is Y = {0, 1}, where “0” means the negative meaning of a characteristic for the

example x, while “1” denotes the positive characteristic for the example x (e.g.,

“0” for abnormal size of cardiac LA and “1” for the normal size, “0” for a spam

email and “1” for a non-spam etc.). If C > 2, then the problem is called

multiclass classification problem, where an example is assigned with a specific

class label (e.g. types of iris flowers: setosa, versicolor and virginica).

Additionally, the classification problem, where an example can belong in more

than one class (a man can be tall and overweighted), is called a multi-label

classification problem.

 The formalization of a classification problem is made by a function

approximation. The supervised learning algorithm must discover, with its

training, a function f, which maps each example x with an output class y. The

algorithm, in order to compute an output 𝑦̂ for a specific example x, uses a

probabilistic activation function 𝑓. This function, for a binary classification

problem, is usually the sigmoid function, which outputs values between 0 and 1.

If 𝑓(𝑥) ≥ 0.5 then the computed output 𝑦̂ is classified to the class “1”, otherwise

it belongs to class “0”. If the examined problem is a multiclass problem, then the

most usually function 𝑓 is the softmax function, which output, for an example x,

- 20 -

is the probabilities the example to belong to each class. Then the computed

output 𝑦̂ is classified to the class with the highest probability.

2.2 Unsupervised Learning

Unsupervised learning is the ML paradigm, where the algorithm is provided

only with input examples x ∈ X and have no knowledge about which class or

what continuous value these examples belong to or are assigned with, according

to their features θ, since no ground truth output Y is provided or is ad hoc

known. Algorithm’s goal is to discover common structures (namely clusters)

that characterize the examples and assign its example to one of these structures

(clusters), taking into account their features (Fig. 2.2, 2.3). This procedure leads

in achieving the optimization of the cluster prototypes, from the similarity of

their respective examples. In this learning paradigm, if k is the number of

chosen clusters, we are interesting in inferring the cluster, in which an example

x belongs to, by computing the unconditional density estimation p(k|X), where

the task is to build models of the form p =(xi|θ) [3][4].

An implementation of unsupervised learning is in e-commerce, where

users/clients are assigned to a specific behavior cluster, according to their

purchasing and web surfing habits, so as a more focused advertising strategy to

be applied to each group, in respect to each groups discovered characteristics.

Figure 2.2, Unsupervised Learning Flow

 -21-

(a) (b)

Figure 2.3, (a) Unlabeled data of height and weight of
people, (b) Clustering of people into K = 2 clusters
according to similarities in their height and weight

2.3 Semi-Supervised Learning

Semi-Supervised learning is a mixture/combination of supervised and

unsupervised learning. In this mML paradigm, examples x ∈ X with their

ground truth Y are provided, along with examples x΄ ∈ X΄ without ground truth

in an effort to overperform a relative supervised algorithm (Fig. 2.4). Semi-

supervised learning tries to solve the problem of the expensive and difficult to

find labeled data x from some domains, with the use of the unlabeled data x΄,

which are available in large amount, easy to obtain and cheaper as they do not

need annotation from an expert.

In order to achieve this, the algorithm uses an unsupervised part to categorize

the unlabeled data into clusters by discovering their common structures. The

number of clusters are defined by the number of classes of labeled data. Thus,

the unlabeled data are eventually categorized according to those clusters and

they added to the labeled data. Then, the supervised learning part of the

algorithm uses an increased training dataset by using both labeled and clustered

(previously unlabeled) data in its training process, thus achieving a better

generalization over the examined problem [3][5].

- 22 -

Figure 2.4, Semi-Supervised Learning Flow

2.4 Artificial Neural Networks

Artificial Neural Networks (ANN) were developed by Frank Rosenblatt in

1960’s. An ANN is a computational system, which goal is to discover

mathematical representations of information processing by mimicking the

human brain’s neurons operations, thus recognizing the deeper relationships of

the features of a set of data [6]. The main part of the ANN is the perceptron (or

neuron), which receives a sample’s features as input and calculates an output.

The combination of multiple perceptrons in a layer, builds an ANN, while

multiple layers of perceptrons consist a Multiple Layer Perceptron (MLP)

network (Fig. 2.5).

Figure 2.5, (a) single perceptron, (b) an
Artificial Neural Network (ANN) with one hidden
layer, (c) a Multiple Layer Perceptron (MLP)
network with two hidden layers and one output

 -23-

2.4.1 Perceptron algorithm

A Neuron uses the perceptron algorithm to compute the output, which will lead

to a sample’s predicted value/class. The perceptron receives as an input, the D

features of a sample, it takes the sum of products between each feature xi and a

respective coefficient wi (weight) and finally adds a bias coefficient b of the

neuron to calculate its output z:

𝑧 = 𝑏 + ∑ 𝑤𝑖𝑥𝑖
𝐷
𝑖=1 (1)

The weights are used to evaluate the magnitude of each feature’s contribution to

the output z. Because output z is a linear function over the features x and

coefficients w and may take high values, which can cause computational issues,

the output z of the neuron is transformed with the use of a nonlinear,

differentiable activation function h(.). The application of an activation function

to neuron’s output z returns the final output of a neuron (Fig. 2.6):

𝛼 = ℎ(𝑧) = ℎ(𝑏 + ∑ 𝑤𝑖𝑥𝑖
𝐷
𝑖=1) (2)

Activation function must have some properties in order to be helpful in the

perceptron’s algorithm. It must be zero centered and differentiable, so as to add

the non-linearity to the perceptron’s algorithm. Non-linearity is an import

aspect of an ANN, as it permits ANN to approximate any function to describe a

dataset.

If we combine multiple neurons to construct an ANN with one hidden layer (like

this in Fig. 2.7(b)) of M neurons, then for each hidden new neuron j , the

equations (1) and (2) are becoming:

𝑧𝑗
(1)

 = 𝑏𝑗0
(1)

+ ∑ 𝑤𝑗𝑖
(1)

 𝑥𝑖
𝐷
𝑖=1 (3)

𝑎𝑗
(1)

= ℎ(𝑧𝑗
(1)

) = ℎ(𝑏𝑗0
(1)

+ ∑ 𝑤𝑗𝑖
(1)

 𝑥𝑖
𝐷
𝑖=1) (4)

- 24 -

The (1) on the equations denotes the number of layer’s depth in the network.

Then, on the output layer of the ANN, with K output neurons, since each output

neuron receives as input the outputs of the hidden layer, for the kth output

neuron (k =1,…,K), the equations will give [4]:

𝑧𝑘
(2)

 = 𝑏𝑘0
(2)

+ ∑ 𝑤𝑘𝑗
(2)

𝛼𝑗
(1)𝑀

𝑗=1 (5)

𝛼𝑘
(2)

= ℎ(𝑧𝑘
(2)

) = ℎ(𝑏𝑘0
(2)

+ ∑ 𝑤𝑘𝑗
(2)

𝛼𝑗
(1)𝑀

𝑗=1) (6)

Eventually the equations (5) and (6) can be used for any MLP of L layers total

depth. So, on any layer l (l=1,…,L), a neuron n of this layer, with N outputs

from the previous layer (l-1), the equations will give:

𝑧𝑛
(𝑙)

 = 𝑏𝑛0
(𝑙)

+ ∑ 𝑤𝑛𝑝
(𝑙)

𝛼𝑝
(𝑙−1)𝑁

𝑝=1 (7)

𝛼𝑛
(𝑙)

= ℎ(𝑧𝑛
(𝑙)

) = ℎ(𝑏𝑛0
(𝑙)

+ ∑ 𝑤𝑛𝑝
(𝑙)

𝛼𝑝
(𝑙−1)𝑁

𝑝=1) (8)

Figure 2.6, (a) perceptron algorithm output

for three features as input, using a differentiable

activation function h (∙)

2.4.2 Training process

The goal of applying a training process in an MLP network is to enforce the

network to seek and find this function that describes better a dataset of a certain

distribution and generalizes well over the same data. This task is accomplished

by learning the values of MLP’s weights and biases that describe this function

 -25-

and enforce a cost function between the calculated outputs and the ground truth

to find a total minimum (Fig. 2.7). The training process is implemented through

a repeated steps (epochs) of two successive subprocesses, the Feed forward

process and the Backpropagation process, using the Gradient descent technique.

Figure 2.7, Cost function minimization
through training of MLP with a dataset
of two target classes.

Before training, network’s weights and biases are usually initialized randomly

with values from a chosen probabilistic distribution. During the Feed forward

process the network is feed with a training dataset (input) X = {x1, x2,…,xN} of N

independent sample vectors x from the same distribution. On each hidden layer,

for each neuron, activations and the outputs of activation function are

calculated according to the equations (7) and (8). The outputs of the last layer’s

activation functions of the MLP are the network’s predictions 𝑦̂ over the training

samples xi. The algorithm in order to determine its efficiency, calculates the

averaged, over all samples N, Cost function J, with the use of the Loss function

L:

𝐽(𝑊) =
1

2𝑁
∑ 𝐿(𝑦𝑖̂, 𝑦𝑖) =

1

2𝑁
∑ 𝐿(ℎ(𝑥𝑖; 𝑊), 𝑦𝑖) 𝑁

𝑖=1
𝑁
𝑖=1 (9)

where W corresponds to the weight vector of the last layer l, of the MLP.

The feedforward process is complete with the computation of the Gradients of

the weights through the calculation of the first class derivatives of the Cost

function over the weights W:

- 26 -

𝑑𝐽(𝑊(𝑙)) =
𝜗𝐽(𝑊(𝑙))

𝜗𝑊(𝑙) =
1

2𝑁
∑

𝜗(𝐿(ℎ(𝑥𝑖; 𝑊(𝑙)),𝑦𝑖))

𝜗𝑊(𝑙) 𝑁
𝑖=1 (10)

Backpropagation process begins with the use of the Gradient Descent technique

with which the weights of the last layer are updating their values by subtracting

from them their respective previous derivatives multiplied by a learning rate η:

𝑊(𝑙) = 𝑊(𝑙) − 𝜂
𝜗𝐽(𝑊(𝑙))

𝜗𝑊(𝑙)
 (11)

Then, the calculation of the weights on every layer of the MPP is accomplished

through the application of the chain rule of calculus, in order to backpropagate

the weight update from output to input:

𝑑𝐽(𝑊(𝑙−1)) =
𝜗𝐽(𝑊(𝑙))

𝜗𝑦̂
 ∙

𝜗𝐽(𝑦̂)

𝜗𝑊(𝑙−1) =
𝜗𝐽(𝑊(𝑙))

𝜗𝑦̂
 ∙

𝜗𝑦̂

𝜗𝑎(𝑙−1) ∙
𝜗𝑎(𝑙−1)

𝜗𝑊(𝑙−1) (12)

The above process of feedforward – predictions 𝑦̂ – cost calculation –

backpropagation for the derivatives - weight update through gradient descent,

when it is applied one time to the whole dataset, corresponds to one epoch of

the MLP’s training. The goal of the training is achieved, when through many

epochs, the MLP finds the parameter values (weights) that minimize the cost

function.

 -27-

3 Convolutional Neural
Networks (CNN)

Convolutional neural networks (CNNs), are α type of artificial neural networks

(ANN), which are used in deep learning and are implemented in processing

input data that has a known form of single or multiple dimension array. The

main domains of CNN’s application are the processing of images, video, audio,

and speech, where the data can be represented in matrix like form. The main

parts of the CNNs are the convolution layer, which is responsible for the

implementation of the convolution operation and encompasses the input’s

produced features, the pooling layer, which function is to encapsulate the most

important and interesting parts of a convolutional layer and the fully connected

layer(s), which is responsible for inferring the function that describes best the

features of the input. A typical full CNN consists of repeated sequences of the

couple convolution – pooling layer and may have as last layer one or more fully

connected layers (Fig. 3.1).

Figure 3.1, Basic CNN architecture

3.1 Convolutional Layer

The main part of a CNN is the convolution layer. As its name indicates, it applies

a mathematical, convolution like, linear operation, to the output of the previous

layer of the CNN, which replaces the matrix multiplication process. The

convolution linear operation is implemented through a local receptive field or

linear filter. The results of the convolution operation are then fed to a non-linear

activation function σ. This leads to the convolutional layer’s unit output, which

- 28 -

is referred to as feature map. A single convolutional layer consists of more than

one feature maps (Fig. 3.2). Each feature map describes specific characteristics

of the previous layer’s output, which are closely correlated to a specific filter that

led to the exact feature map [7]. During the training of a CNN, one of the goals is

to learn those receptive fields (linear filters), which lead to a better

representation of the input, that is, to compute the filters, which discover better

the different features of the input data.

Figure 3.2, a convolutional layer may
have more than one feature maps

The operation of convolution is described as the inner product between every

local area of the input matrix, of size equal to a receptive field (linear filter).

Using as example, an input image as a matrix of size 28 x 28, where each cell

represents an image’s pixel value, usually between 0 and 255 in RGB

representable mode in grayscale mode (Fig. 3.3). Each group of neighboring

pixels in this image can encapsulate different kind of image’s features, while a

specific group of neighboring pixels can encompass a specific image feature,

which may appear in different areas in the image, although the values in the

pixels may different (Fig. 3.4).

Figure 3.3: Image
represented as a matrix

 -29-

Figure 3.4, Image in grayscale mode with three
vertical lines of different color. The same vertical line
feature is appearing in different areas of the image,
while their respective pixel values are different, since
their color is different.

The convolution is implemented by applying the receptive field to a local area of

the image, where a linear transformation is taking place between the values of

the receptive field and the pixel values of this area. This transformation leads to

an output weighted sum, which describes the image’s local area. In order to

accomplish the convolution function, the center value of the receptive field is

placed on the input image’s pixel of interest. Thus, the receptive field will

overlap the neighboring pixels of the input image’s pixel of interest. Then, the

values of the output are calculated by multiplying each receptive field’s value by

the corresponding input image pixel values and summing the multiplication

results. The sum result of applying the receptive field to every local area of the

input by sliding it over the whole image, is the corresponding feature map (Fig.

3.5, 3.6), which constitutes the first hidden layer of the CNN.

Figure 3.5, Application of convolution with the receptive field
in a local rea of the input image, results in the representative
pixel of the local area, in the hidden layer of the CNN

- 30 -

Figure 3.6, Sliding the receptive field over the whole input
image, results in the creation of the feature map of the input
image in the hidden layer of CNN

If the input is a matrix Xm,n and the local receptive field (filter) is of size f x f,

then the value z of each hidden neuron on i,j position of the feature map is [9]:

 𝑧𝑖,𝑗 = 𝑏 + ∑ ∑ 𝑤𝑙,𝑚 ∙ 𝑎𝑖+𝑙,𝑗+𝑚
𝑓
𝑚=0

𝑓
𝑙=0 (13)

where b is the shared bias value across all the hidden neurons of the filter, wl.m is

an f x f array representation of the filter, which implements the filter’s shared

weights to be calculated throw the backpropagation process and 𝑎𝑖+𝑙,𝑗+𝑚 is the

input’s pixel value when the filter is projected to the input image (Fig. 3.7).

Figure 3.7, Implementation of convolution on a 9 x 9 input
image with a 3 x 3 filter/receptive field, which results to the 1st
hidden layer’s 7 x 7 feature map.

 -31-

The result of implementation of the convolution process in an input image is the

1st hidden layer’s feature map, which neurons share the same weights and bias.

This enables the feature map to detect a specific same feature throw out the

input image. If we apply more than one filter on the same hidden layer, then

from each filter, a different feature map will be produced, enabling the detection

of different features of the input image. Feature of an image can be a vertical or

horizontal line, a curved line, or any other type of shape.

The size of the feature map is depended from two factors, during the

convolution process, apart from the size of the input image and the applied

filters at each hidden layer of the CNN. The first one is the stride, which

corresponds to the horizontal and vertical step of the filter projection over the

input image (or the previous layer’s extracted feature map). Choosing a different

stride of value 1, allows CNN to search different kinds of features and at the

same time to reduce the computational effort, since the resulted feature map

becomes smaller (Fig. 3.8). The second factor is padding, which is a technic of

adding extra pixels with zero values around the input image’s margin (or the

previous layer’s extracted feature map). Padding, allows the CNN to give more

attention to the border pixels of the input at each CNN layer, while at the same

time reduces the degradation of the size of the resulted feature map and thus

enables it to lose less information (Fig.3.9).

Figure 3.8, Implementation of convolution on a 9 x 9 input

image with a 3 x 3 filter/receptive field and a stride of 2, which

results to the 1st hidden layer’s 4 x 4 feature map.

- 32 -

Figure 3.9, Implementation of convolution on a 9 x 9 input

image with a 3 x 3 filter/receptive field, padding of 1 and a

stride of 1, which results to the 1st hidden layer’s 9 x 9 feature

map.

If we denote as Ml the size of the feature map of the l th layer of a CNN, f the

filter size, p the padding and s the stride, then the Ml size of the feature map is

calculated from the equation [9]:

𝑀𝑙 =
𝑀𝑙−1 + 2𝑝 − 𝑓

𝑠
 + 1 (14)

3.2 Activation Functions

An application of an activation function follows the output of a convolutional

layer. The output of the convolutional layer is the product of a linear

transformation, as it is demonstrated in equation (3). This linearity, during the

error backpropagation process, for the update of the weights, the applied

differentiation will cause the zeroing of the weights of the model and the model

will not be capable of improving itself during its training process. The

 -33-

introduction of a nonlinear activation function, prevents this behavior and

transforms the model from a linear to a non linear one, allowing it to learn more

complex decision functions, apart from the linearly separable ones. The output

after the application of the activation function for the neuron of equation (3) is:

𝛼𝑖,𝑗 = 𝜎(𝑧𝑖,𝑗) = 𝜎(𝑏 + ∑ ∑ 𝑤𝑙,𝑚 ∙ 𝑎𝑖+𝑙,𝑗+𝑚
𝑓
𝑚=0

𝑓
𝑙=0) (15)

The most used activation function for the inner layers of a CNN is the Rectifier

Linear Unit (RelU). RelU returns the convolutional layer’s output if is a positive

value, otherwise it returns zero (Fig. 3.10):

𝑅𝑒𝑙𝑈(𝑧) = {
𝑧 , 𝑧 > 0
0, 𝑧 ≤ 0

 (16)

RelU’s linear behavior for positive inputs, allows the model to be trained easier

and achieve better performance. Its possible large positive outcomes, prevents

the derivatives of inner layers to vanish during the error backpropagation

process. The gradient
𝜗𝑧

𝜗𝑥
 =

𝜗𝑧

𝜗𝑦

𝜗𝑦

𝜃𝑥
 , although it will have smaller magnitude than

𝜗𝑧

𝜗𝑦
 , it will allow the derivatives to be propagate in deeper hidden layers of a CNN

model, than the sigmoid function [8].

Figure 3.10, RelU activation function curve

- 34 -

Sigmoid activation function is mainly used on the last layer of a CNN, after the

fully connected layers, when the CNN must learn to solve a binary classification

problem. For a given input z, sigmoid outcome y = σ(z) takes values in the space

(0,1) (Fig. 3.11):

sigmoid(𝑧) =
1

1 + 𝑒−𝑧
 (17)

If the sigmoid outcome of the CNN for a sample of the dataset is under o.5 then

the sample is categorized in the class 0 (absence of a characteristic), otherwise

in class 1. The fact that sigmoid function returns values in the space (0,1),

prevents it from be used on the hidden layers of a CNN. The gradient
𝜗𝑧

𝜗𝑥
 =

𝜗𝑧

𝜗𝑦

𝜗𝑦

𝜃𝑥
 will have much smaller magnitude than

𝜗𝑧

𝜗𝑦
 and in deeper CNN layers will

eventually vanish, making the gradient-based learning practical impossible.

Figure 3.11, Sigmoid activation function curve

Another, widely used, activation function is the softmax. It is used on the last

layer of a CNN model, when the CNN must learn to solve a multiclass problem.

It calculates, from the output logits of the last fully connected layer, the

probability distribution of a sample, over predicted output classes C (Fig. 3.12).

It is known as the normalized exponential and is calculated by the equation

[10]:

 -35-

𝑓(𝑥) = 𝑃(𝑦 = 𝑐|𝑥 ∈ 𝑋) =
𝑒−𝑤𝑇𝑥

∑ 𝑒−𝑊𝑇𝑋𝐶
𝑐=1

 (18)

 𝑦̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐=1
𝐶 𝑓(𝑥) (19)

For the sample i, the computed output 𝑦̂ is classified to the class with the

highest probability.

Figure 3.12, Softmax activation function curve

(source [8])

3.3 Pooling Layer

The third main part of a CNN layer is the pooling layer. It is applied after the

activation function, direct on the current layer’s feature map. Its goal is to

replace the values at each certain location of a feature map with a summary

statistic of the nearby values, reducing at the same time the size of the feature

map by a factor promotional to the pooling layer’s size.

Thus, pooling operation allows the CNN’s representation to become less

invariant to small alterations of the input [7], meaning that if small changes take

place to the pixel’s values of the input image (or to the values of a feature map

for inner layers of a CNN), the values of the respective pooling layer outputs will

mostly remain unchanged. This helps each convolution layer and the total CNN

to learn a function that is invariant to small input’s translations and

consequently to be able to generalize better. Additionally, the reduction of the

feature map’s size improves the computational efficiency, since the next

convolutional layer will have to apply less computational effort over the

- 36 -

diminished input [7]. Moreover, the pooling operation does not make use of any

share weights and so is not participating in the backpropagation process, during

the training process, reducing the use of memory usage and thus reducing more

the computational effort of the CNN’s algorithm.

The most common pooling operations on CNNs are the Max pooling and the

Average pooling. Max pooling is applied when from each certain location of the

feature map with size equal to pooling’s size, we keep the maximum value,

which becomes the representative value for this location. During the

application of the Average pooling, the represented value of its location on the

feature map is the average value of the location’s corresponding values (Fig.

3.13, 3.14).

Figure 3.13, Implementation of Max pooling 2 x 2 with stride 1
on a 7 x 7 feature map, which results to the convolution layer
output of size 6 x 6.

Figure 3.14, Implementation of average pooling 3 x 3 with
stride 1 on a 7 x 7 feature map, which results to the convolution
layer output of size 5 x 5.

 -37-

3.4 Batch Normalization

During the training process of a CNN, the output of each convolutional block

changes, as its trainable parameters (weights, biases) change as well. These

changes affect the distribution of each next layer’s inputs, causing each next

layer to experience internal covariance shift. Covariance shift leads to a more

complicated training process of the CNN, requiring smaller learning rates,

adequate parameter initialization and more epochs for the filters to learn a

function that generalizes well. This effect is amplified on the deeper layers of

the CNN and eventually the rate of convergence to a proper function will

decrease significantly [12].

The internal covariance shift of a CNN can be reduced with the implementation

of the Batch Normalization process to the input vectors of each convolutional

block. Batch Normalization is applied to a layer’s input, when each value of the

input is replaced by a value belonging to a distribution of the total input’s values

with zero center and unit variance. This new value is calculated on two steps.

Initially, the mean value of a layer’s d-dimensional (d batches) input x = (x(1) …

x(d)) with each dimension’s size of m examples, is subtracted by each 𝑥𝑖 value of

the input and then the result is divided by the squared variance of the input

values:

𝑥̂𝑖
(𝑘)

 =
𝑥𝑖

(𝑘)
 − 𝑚𝑒𝑎𝑛(𝑥(𝑘))

√𝑉𝑎𝑟(𝑥(𝑘))2 + 𝜀
 , (20)

𝑚𝑒𝑎𝑛(𝑥(𝑘)) =
1

𝑚
∑ 𝑥̂𝑖

(𝑘)𝑚
𝑖=1 ,

𝑉𝑎𝑟(𝑥(𝑘)) = √ 1

𝑚
∑ (𝑥̂𝑖

(𝑘)
 − 𝑚𝑒𝑎𝑛(𝑥̂𝑖

(𝑘)
))

2
𝑚
𝑖=1 ,

ε: arbitrarily small constant for numerical stability

- 38 -

Afterwards, the final input value 𝑦(𝑘) to a layer is calculated with the use of the

two parameters 𝛾(𝑘) and 𝛽(𝑘), for each activation 𝑥(𝑘) :

𝑦𝑖
(𝑘)

 = 𝛾(𝑘) 𝑥𝑖
(𝑘)

 + 𝛽(𝑘) (21)

The second equation ensures that the representation of a layer does not change

after its input’s normalization process and adds two extra parameters to be

learned, along with the existing model’s parameters. The original layer’s input

can be obtained by setting 𝛾(𝑘) = 𝑉𝑎𝑟(𝑥(𝑘)) and 𝛽(𝑘) = 𝑚𝑒𝑎𝑛(𝑥(𝑘)) .

The Batch normalization transformation is a differentiable transformation.

Therefore, it can be used in the backpropagation process, in order to back

propagate the gradient of the loss function l and to calculate its trainable extra

parameters γ and β [12]:

𝜗𝑙

𝜗𝑥̂𝑖
 =

𝜗𝑙

𝜗𝑦̂𝑖
∙ 𝛾 (22),

𝜗𝑙

𝜗𝑉𝑎𝑟(𝑥(𝑘))2
 = ∑

𝜗𝑙

𝜗𝑥̂𝑖
 ∙ (𝑚

𝑖=1 𝑥𝑖
(𝑘)

 − 𝑚𝑒𝑎𝑛(𝑥(𝑘)) ∙

 ∙
−1

2
(𝑉𝑎𝑟(𝑥(𝑘))2 + 𝜀)−3 2⁄ (23)

𝜗𝑙

𝑚𝑒𝑎𝑛(𝑥(𝑘))
 = ∑

𝜗𝑙

𝜗𝑥̂𝑖
 ∙

1

√𝑉𝑎𝑟(𝑥(𝑘))2 + 𝜀

𝑚
𝑖=1 (24)

𝜗𝑙

𝜗𝑥𝑖
 =

𝜗𝑙

𝜗𝑥̂𝑖
∙

1

√𝑉𝑎𝑟(𝑥(𝑘))2 + 𝜀
 +

𝜗𝑙

𝜗𝑉𝑎𝑟(𝑥(𝑘))2
 ∙

∙
2(𝑥𝑖

(𝑘)
 − 𝑚𝑒𝑎𝑛(𝑥(𝑘))

𝑚
 +

𝜗𝑙

𝑚𝑒𝑎𝑛(𝑥(𝑘))
∙

𝜗𝑙

𝜗𝑦𝑖
 (25)

 -39-

The benefits of the Batch normalization application to a CNN are the ability to

use higher training rates, reduced need for Dropout regularization and the lower

number of training steps needed for model’s convergence.

3.5 Regularization

Regularization is a general term in ML and DL fields and is the implementation

of various techniques that prevent from learning complex models and avoid

overfitting phenomenon. These techniques can be applied to various stages of a

CNN’s training process, which allow for better results in CNN’s generalization.

3.5.1 Dropout

Dropout is a regularization technique that is mainly used after the Fully

connected layers of a CNN, and less after its pooling layers. Its goal is to create

image noise augmentation, allowing the CNN to search a greater area of possible

models. Dropout is implemented by randomly zeroing some of the input values

of a layer (Fig. 3.15) with a probability p of a Bernoulli distribution. Actually, on

each mini-batch, It excludes some neurons and their respective incoming and

outgoing connections from the network’s layers it is applied, during the training

process. This procedure has as a result a smaller network with the same number

of layers but with less neurons [13][14].

Figure 3.15, (a) Fully connected layers, (b) After
implementing Dropout with 0,5 random probability,
which zeroes the values corresponding to the
connections of the randomly chosen neurons

- 40 -

Thus, dropout technique allows the exploration of a bigger number of different

smaller (over the neurons/units total number) networks. These smaller

networks, at test time, are combined in one network with smaller weights,

where the weights from excluded connections participate with a factor of p (Fig.

3.16) [13][14].

Figure 3.16, Network with a p dropout
probability during training and the
participation of dropped out weights with a
factor of p, during testing

3.5.2 L2 Regularization

L2 regularization [8][9] is a technique that is implemented at the cost function

of the output of a CNN layer. It applies a weight decay by diminishing the layer’s

weights and preventing their excessive growth. In order to accomplish this task,

it adds to the cost function Jo of the training set of size n, the sum of squared

weights w, multiplied by a regularization parameter lamda (λ):

𝐽 = 𝐽𝑜 +
𝜆

2𝑛
∑ 𝑤2

𝑤 (26)

If the equation (16) is used in the backpropagation process, taking the partial

derivatives, and applying the learning rule with a learning rate α, the new

weights can be calculated:

𝜗𝐽

𝜗𝑤
 =

𝜗𝐽0

𝜗𝑤
 +

𝜆

𝑛
𝑤 (27)

 𝑤 = 𝑤 − 𝛼
𝜗𝐽

𝜗𝑤
= 𝑤 − 𝛼

𝜗𝐽0

𝜗𝑤
 − 𝛼

𝜆

𝑛
𝑤 =

 -41-

= (1 − 𝛼
𝜆

𝑛
) 𝑤 − 𝛼

𝜗𝐽0

𝜗𝑤
 (28)

The last equation reviles the fact that the larger a weight is, the more it is

penalized and it is led towards zero without becoming ever zero. Lamda

regularization parameter determines the excess of the regularization application

and it takes positive values. If λ = 0, then no L2 regularization is applied. If λ is

too large, then the weight decay will increase significantly and the model will

lead to underfitting. Choosing the right value of λ will determine the efficiency

of the L2 regularization. Eventually L2 regularization helps the network to

generalize better and reduces its overfitting over the training set.

- 42 -

 -43-

4 Segmentation with Unet

Segmentation and object detection are two tasks of computer vision, which goal

is to find and precisely allocate the presence of different objects in an image, by

trying to discover the exact boundaries of these objects in the image. Since DL

CNNs are used to extract import features of an image, they have been also used

for the specific feature recognition and allocation of different objects in images.

Unet belongs to this family of the CNNs and has been initially developed for

Biomedical Image Segmentation [17] .

4.1 Semantic segmentation

Semantic segmentation in computer vision and machine learning is the task that

classifies each pixel of an image and assigns it to a certain semantic label of a

category. It recognizes the existence of an object category inside the image and

separates the object area of this category from the background, by precisely

delineate the contours of this area with a different color [16] (Fig. 4.1).

Since semantic segmentation categorizes each pixel to a specific class, it is a

classification supervised problem and the different classes that are used, define

its design decisions. It can be a binary classification problem when the task is

the separation of an object from its background like the segmentation of skin

signs from the rest of the skin for skin cancer detection or the separation of the

Left atria on a cardiac TTE image for helping its better enlargement assessment.

Multi class segmentation can also be implemented, separating the different

classes in an image, as scene understanding in self-driving car (Fig. 4.2). The

number of classes affects the choice of the last activation function of a CNN.

Usually, sigmoid function is used for binary semantic segmentation and softmax

for multiclass segmentation.

- 44 -

(a) (b) (c)

Figure 4.1, Semantic segmentation on a TTE cardiac image using Unet:

(a) Apical 4 chamber (A4C) view, (b) Precise Semantic segmentation mask

over the cardiac LA, (c) Loosen semantic segmentation mask of the same

area.

Figure 4.2, Semantic segmentation on an image with objects of

different classes (a) objects on a table

One characteristic design of CNNs, that implement the sematic segmentation

task is their final layers. Pixel by pixel classification on the original image input,

in order to separate the desired objects by background (and from each other for

different class objects), dictates an alteration on CNN’s architecture. The final

fully connected layers are replaced by convolutional layers and the last layer is

also a convolutional one, where its output feature map corresponds to an image

representing the same scene as the input image (Fig. 4.3). Main difference of

the output image, is that the output represents the masks of the areas of objects

of different classes that separates them form the rest background of the scene.

 -45-

Figure 4.3, Semantic segmentation with different architectures.

Output image is a representation of the masks of the different objects

from the initial scene

Performance evaluation of a semantic segmentation system is an import part, as

it is for every machine and deep learning problem. If for L number of classes, we

denote by Cij the number of pixels with ground truth class i and predicted class

j, 𝑷𝑗 = ∑ 𝑪𝑖𝑗𝑖 the total number of pixels which were predicted in class j and

𝑮𝑗 = ∑ 𝑪𝑖𝑗
𝐿
𝑖=1 the total number of pixels labelled with class i , the following

metrics can be measured [16]:

a) Overall Pixel (OP) accuracy: OP =
∑ 𝑪𝑖𝑖

𝐿
𝑖=1

∑ 𝑮𝑖
𝐿
𝑖=1

b) Per-Class (PC) accuracy: PC =
1

𝐿
 ∑

𝑪𝑖𝑖

𝑮𝑖

𝐿
𝑖=1

c) Jaccard Index (JI), or mean Intersection over Union: JI =

1

𝐿
 ∑

𝑪𝑖𝑖

𝑮𝑖 + 𝑷𝑖 − 𝑪𝑖𝑖

𝐿
𝑖=1 (29)

Jaccard Index calculates the average of the intersection over the union of the

labelled segments. Thus, it is considered a standard metric for performance

evaluation of a semantic segmentation system, as it evaluates the false alarms

and the missed values per class, at the same time [15][16].

On the contrary, Overall Pixel accuracy is not a good evaluation metric, since its

measure of the proportion of the correctly labelled pixels, in image inputs with

- 46 -

very imbalanced classes (e.g., Fig. 4.1), limits its objective results. Such inputs

are usually those with a large background class, which may occupy over 70-75%

of the total number of pixels. The Per-Class accuracy calculates the proportion

of correctly labelled pixels for each class separately and then averages over the

classes. In that case, false alarms are included in the background class. Thus,

this metric can compensate and become capable of use in semantic

segmentation problems where there is a small or no background class [16] (e.g.,

Fig. 4.2).

Another important aspect in a segmentation system is the choice of its loss

function. Common loss functions for semantic segmentation is Focal loss, cross-

entropy and Jaccard loss. Nevertheless, the latter losses, as is stated in Duque-

Arias D. et al (2021) [17], were found not to perform well in some architectures,

like Unet and SegNet. In the same paper, it has been proposed and tested a

generalization of the Jaccard loss, the Power Jaccard Loss, which is able to

penalize wrong predicted labels by increasing the weight of wrong predictions

during training, thus improving the performance [17]:

𝐽𝑝(𝑦, 𝑦̂, 𝑝) = 1 −
𝑦 ∙𝑦̂ + 𝜀

(𝑦𝑝 + 𝑦̂𝑝 − 𝑦 ∙𝑦̂) + 𝜀
 (30)

Where p is the factor that determines the degree of penalization of the wrong

predicted labels and constant ε prevents the zero division. For p = 1, Power

Jaccard Loss is becoming the Jaccard Loss. For binary segmentation problems,

where distinction between background and a subject is the goal, a suitable value

for the power p has been tested to be the 1.75 [17].

4.2 U-net Architecture

U-net is a specific architecture of a fully CNN (Fig. 4.4), which has been

developed mainly for segmentation and precise localization on biomedical

images. Data augmentation on small annotated datasets, is a characteristic

strategy of this CNN, achieving efficient and fast results. The last property

makes U-net a good tool for image segmentation, since the access to such kind

of annotated biomedical images is very restricted, due mainly to personal data

 -47-

restriction laws. It consists of two parts, the contracting path and a symmetric

expanding path [18].

Figure 4.4, A characteristic U-net architecture

The contracting path is responsible for feature extraction of the images. It

consists of blocks with two unpadded convolutional layers of size 3 x 3, at each

block. The number of channels for each convolutional layer of a specific block is

half the number of the respective layers of the next block. The output of each

convolutional layer is fed to a ReLU activation function. After each block, a max

pooling layer of size 2 x 2 and stride 2 is applied to reduce output size of the

block to half.

The expanding path is responsible for upscaling the output of the contacting

path to the size of the original initial input. It consists of blocks of the same

number with the contracting path, where each block is initialized with an up-

sampling transpose convolution of size 2 x 2 and stride 2, which halves the

channels of the previous block and doubles the size of the previous feature map.

The upscaled output is concatenated with the respective output feature map of

the contracting path. Each block is completed with two successive convolutional

layers of size 3 x 3 with the same number of channels, followed by a ReLU

activation function . The final layer of the U-Net is a one channel convolutional

- 48 -

layer of size 1 x 1, which outputs a segmentation map of size equal to the size of

the initial input image. On the final segmentation map, a sigmoid function

classifies each pixel to one of the two classes - background pixel or pixel

belonging to the segmented sector. All the weights in the network are initialized

from a Gaussian distribution with a standard deviation of square root(2/N),

with N denoting the number of input units in the weight tensor [18].

Dropout and Data augmentation are two methods that are usually implemented

in the U-net with a small training dataset, in order to boost its training process

and avoid overfitting [18]. Dropout is used after the contracting path preventing

the overfitting of the CNN, while data augmentation can make use of shifting,

rotation, gray variations, and various other deformations, increasing the

number of the available images, from the existing ones.

 -49-

5 Generative Adversarial
Network (GAN)

5.1 Basic GAN

Gan is a combination of two neural networks and belongs to the generative

models (Fig. 5.1). The designation of the two networks is Generator G and

Discriminator D. The goal of the GAN is, through its training, to make the

Generator capable to produce fake data, as real as possible, from a Gaussian

data probability input and the Discriminator to distinguish the real data from

Generator’s fake data [19].

Figure 5.1, GAN basic semantic GAN

In order to accomplish this task, during the training process, the two networks

of the GAN are engaged into a mini-max, two-player game, where the Generator

tries to produce fake, real like data, so as to deceive the Discriminator to classify

them as real, while Discriminator tries to distinguish real data, coming from the

data distribution, from the fake ones, coming from the Generator [19]. This

game is described by the value function V(G,D) with equation [19]:

𝑚𝑖𝑛𝐺 𝑚𝑎𝑥𝐷 𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))] (31)

The Generator of a GAN can be any neural network of multilayer preceptrons or

upscaling convolution layers (if data are images), which takes a noisy input z

- 50 -

from a Gaussian distribution pz, transforms it through the network with

parameters wg, and outputs a fake data distribution pg from its last layer. If G is

the differentiable function that describes the Generator transformation, then

the G(z,wg) is the mapping from the noisy distribution pz(z) to the data fake

distribution pg. The goal of the Generator is to find the right G(z,wg), so as its

output distribution pg to resample with the original data distribution (pg = pdata)

(Fig. 5.2). At this point the Generator produces fake images real enough to

deceive the Discriminator to classify the fake image as real [19].

The Discriminator D can also be any neural network of multilayer preceptrons

or convolution layers (if data are images), that can work as a classifier. In the

classical form of the GAN, Discriminator maps its input to a scalar, which

defines if the input belongs to the real data distribution pdata or to the

Generator’s fake data distribution pg. In order to accomplish this task, during

the training process, the Discriminator, with parameters wd , tries to discover a

function D(x, wd), which will maximize its output probability logD(x) (the input

x to belong to the real data distribution pdata). At the same time Generator tries

to achieve its goal by maximizing the probability logD(G(z)), thus the

Discriminator to classify the fake data G(z) as real by assigning a big probability

to it.

Figure 5.2, GAN goal is, through training, the samples distribution pg
produced by the Generator (green solid line) to resample with the data
distribution samples pdata (black dotted line) ((a) through (d)), while
Discriminator discovers the distribution (blue dotted line) that
discriminates fake from real samples.

The basic algorithm that is implemented for a GAN, as it is described in
Goodfellow I. J. et al (2014) [19] is the following:

 -51-

GAN ALGORITHM:

for number of training iterations do:

for k steps do:

- Take a minibatch of m noise samples {z(1), z(2),… ,z(m)} from noise
prior pg(z)

- Take a minibatch of m samples {x(1), x(2),… ,x(m)} from data
distribution pdata(x)

- Train and update the discriminator by ascending its stochastic
gradient:

 ∇𝜃𝑑
1

𝑚
∑ [𝑙𝑜𝑔 𝐷(𝑥𝑖) + 𝑙𝑜𝑔 (1 − 𝐷 (𝐺(𝑧(𝑖))))]𝑚

𝑖=1

 end for

- Take a minibatch of m noise samples {z(1), z(2),… ,z(m)} from noise
prior pg(z)

- Train and update the generator by descending its stochastic gradient:

 ∇𝜃𝑑
1

𝑚
∑ 𝑙𝑜𝑔 (1 − 𝐷 (𝐺(𝑧(𝑖))))𝑚

𝑖=1

end for

In the above algorithm the number discriminator’s training steps k is a

hyperparameter and its smallest possible value is 1. The goal of the algorithm in

the discriminator’s inner loop is to guide the discriminator to converge to a

global optimum, which is 𝐷∗(𝑥) =
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎(𝑥)+𝑝𝑔
 for a fixed generator G. On the

contrary, algorithm’s outer loop goal is to train the generator so as to achieve

the global minimum, where pg = pdata and the discriminator can distinguish the

real data from fake, thus D(x) =
1

2
 [19].

5.2 Semi-Supervised Learning with GAN

Discriminator in a GAN, as a CNN it can be also used as a classifier. The

intuition on this, is that, if we replace the sigmoid activation function at the last

fully connected layer with the softmax activation, then we can train the

Discriminator to distinguish an input data, not only between fake or real class

but also in N additional classes, where the input may be classified [20]. Thus we

can implement the semi-supervised learning with a GAN, while the Generator’s

task remains to try to output data close to the real data distribution.

- 52 -

In order to implement the semi-supervised training, the Discriminator keeps its

main feature extraction structure as CNN except its last classiffication layer. For

the classifying part, apart from fake or real classification, an activation function

(sigmoid for binary classification, softmax for multiclass classification) is

applied on the last layer, creating the supervised part of the Discriminator. Then

the Discriminator is fitted with real data distribution pdata and their real

respective labels and is trained to classify a data x into one of real classes N. It’s

goal on this step is to minimize it loss function Lsupervised (the negative log

probability of the label, given that the data is real).

On a second step, after the Discriminator’s feature layers, a sigmoid activation

function is implemented to classify the input data as fake or real. For this part,

firstly the unsupervised Discriminator is fitted with data from the real

distribution pdata, labeled as real data and afterwards with data z from

Generator’s output distribution pg, labeled as fake data. At this stage the

Discriminator tries to maximize its loss function Lunsupervised, by maximizing

probability D(x) and minimizing probability D(G(z)). The task of the Generator

steal remains to produce as real as possible data. Finally the total loss function

that Discriminator tries to minimize, during the semi-supervised training

is[20]:

 𝐿 = 𝐿𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 + 𝐿𝑢𝑛𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 =

= −𝐸𝑥,𝑦~𝑝𝑑𝑎𝑡𝑎
(𝑥,𝑦)[𝑙𝑜𝑔 𝐷(𝑥, 𝑦)] − 𝐸𝑥,𝑦~𝑝𝑑𝑎𝑡𝑎

(𝑥)[𝑙𝑜𝑔 𝐷(𝑥)]

− 𝐸𝑥~𝑝𝑔
(𝑧)[1 − 𝑙𝑜𝑔 𝐷(G(z))]

Using semi-supervised GAN is very useful when we have limited labeled data,

but large dataset of unlabeled data from the same distribution, which are, for

sure, belongs to one of the distributions classes, but we do not know in which

exactly. We this technique the Descriminator can be trained in the bigger

unlabeled dataset to discover the specialized features of the whole data

distribution, helping its with the small labelled dataset training task as a

classifier.

 -53-

6 Human Heart and TTE

Heart is the main organ of human’s circulatory system. It works as a pump of

the blood, which delivers oxygen and nutrients to the rest of the body’s organs,

for their proper and continuous function. Several malfunctions of the heart,

such as its left atrial enlargement, can result in serious complications on a

human’s health [21]. Transthoracic echocardiography (TTE) is one of the most

used and affordable methods to check and assess a heart's functional and

structural integrity.

6.1 Heart anatomy

Heart is situated in the middle of the chest, between the two lungs, behind the

sternum and slightly to its left side. It consists of four (4) main chambers, the

left and right atria, and the left and right ventricles (Fig. 6.1). Atria is located to

the upper part of the heart, while ventricles to the lower part. Each atrium

communicates with the respective ventricle on the same side, through a valve.

The left atrium is connected with the left ventricle through the mitral valve,

while the right atrium communicates with the right ventricle through the

tricuspid valve. Heart uses two additional valves for its external communication,

the aortic and the pulmonary valve. The aortic valve is utilized by the left

ventricle and is situated in its upper left part, providing access to the aorta, the

main artery of the body. The pulmonary valve is utilized by the right ventricle

and is located in its upper right section and allows communication with the

pulmonary artery [21].

Heart’s function is control by an internal electrical conduction system [21]. This

system is managed by the human brain through the human neural system. It

controls the rhythm and pace of the heartbeat. This heart’s electrical system

consists of the following [21]:

• Sinoatrial (SA) node: Controls the signal that regulates heartbeat.

• Atrioventricular (AV) node: it is responsible for signal communication

between the upper chambers of the heart (right and left atria) and the

lower champers (right and left ventricles) .

- 54 -

• Left bundle branch: supply the left ventricle with electrical signal

• Right bundle branch: supply the left ventricle with electrical signal

Figure 6.1, Hearts anatomy. Blue areas are
responsible for sending the blood to the lungs for
oxygen enrichment, while the red ones receive the
oxygen enriched blood and send it to the rest of the
body

Heart’s function consists of two phases: the diastolic and the systolic phase.

These two phases are controlled and triggered through electrical signals that are

sent to the heart from the brain through the neural system and result in the

cardiac cycle, which is a repeated sequence of alternating contractions and

relaxation of the atria and the ventricles [21].

During the diastolic phase, heart fills with blood and its internal parts are

conducting the following actions [21]:

● Left and right atria are expanded. Oxygen enriched blood is entered to

the left atrium from the lungs through the pulmonary veins and oxygen

poor blood is entered to the right atrium through the superior and

 -55-

inferior vena cava. During the atria fulfillment, the mitral and the

tricuspid valve are remaining closed.

● At some point, when the pressure in each atrium becomes greater than

the pressure of the same side ventricle, the respective valve opens and

allows a rapid flow of the blood from the atria to the ventricle.

● At a second stage of ventricles diastole phase, blood flows in the

ventricles passively, due to pressure difference between the atria and

ventricle cavities.

● The third stage of the ventricles diastole phase occurs during atria’s

contraction due to action potential from the sinoatrial node (SAN), where

the remaining blood is actively pushed from the atria to the ventricles.

During the systolic phase, heart pumps the blood and its internal parts are

conducting the following actions [21]:

● Left and right atria are forced to contract, when an electric signal is

applied to the atria myocardium. This contraction increases the atria

pressures and sends any remaining blood in the atria to the respective

ventricle.

● Ventricle’s systolic phase occurs during their contraction. After the signal

on the atria myocardium is depolarized, it is applied, with a small delay,

to the ventricles, forcing them to be contracted.

● During the ventricle’s contraction, the pressure exceeds that of the atria,

causing the mitral and the tricuspid valve to close.

● This contraction forces the aortic and the pulmonary valve to open. Then

oxygen enriched blood is supplied from the left ventricle to the rest of the

body, through the aortic valve and the aorta and from the right ventricle

blood is sent to the lungs through the pulmonary artery for oxygen

enrichment.

6.2 Cardiac Left Atrial (LA) Enlargement

LA enlargement is an anatomic variation to the size of the left atria and is a

result of increased left atrial pressure for a significant period. Left atrial size has

prognostic implications, and studies reveal that it can independently predict the

development of clinically significant cardiovascular diseases and heart failure.

- 56 -

LA enlargement occurs when usually another dysfunction is present in the

human heart [21]. LA’s function is affected proportional to the severity of the

Mitral’s valve stenosis. In this case LA enlargement is developed and its ability

to empty the blood to the LV is reduced. Mild to moderate LA enlargement

occurs due to a progressive Mistral valve stenosis and severe LA enlargement is

present in asymptomatic and symptomatic severe Mistral valve stenosis [21].

Mitral valve regurgitation leads also to LA enlargement, from a mild degree for

the progressive Mitral regurgitation to a severe degree for asymptomatic and

symptomatic Mitral regurgitation [21]. LV’s malfunction during the diastolic

and systolic phase can lead to LA enlargement. Moreover, LA fibrillation,

hypertension can also cause the increase of the LA’s size [21]. Nevertheless, an

enlarged LA does not always mean a deviation from normal stage. Athletes and

especially long-distance runners may develop an enlarged LA, without been a

heart’s malfunction [24]. The existence of LA enlargement dictates for further

heart’s abnormalities check [21].

According to Kou S. et al (2014) [31] the size of the LA cavity is irrelevant to the

gender and the age of the individual. It is rather related to the individual’s

height and weight. Difference between males and females exists only because, in

general, males are higher and heavier. In a male and a female with the same

height and weight, the size of a normal LA cavity will not different greatly.

6.3 2D Transthoracic Echocardiography

6.3.1 Basic theory

The 2D TTE machines use the properties of the ultrasound waves, in order to

display the tissue and the internal structure of the heart. Ultrasound waves are

sound waves, thus mechanical vibrations, that cause the compression and

decompression of a physical matter, through which are propagated. The main

metrics of a soundwave are (Fig. 6.2) [22]:

● Frequency (f): the number of waves per second, measured in hertz (Hz)

(1 Hz = 1/sec).

● Velocity of propagation v: the speed the wave is propagated through the

body, measured in meters per sec (m/sec).

 -57-

● Wavelength λ: the distance between two successive peaks, measured in

millimeters (mm)

● Amplitude: height of the sound wavelength, measured in decibels (dB).

Figure 6.2, Diagram of an ultrasound wave with
its properties. (source [20])

Ultrasound waves used in 2D TTE are in frequencies between 2.5 MHz and 3.5

Mhz, while their velocity in myocardium, valves, blood vessels, and blood is

relatively constant at 1540 m/s [22]. The range of the amplitude used in 2D TTE

is between 1 and 120dB. Additionally, the choice of the frequency determines

directly the depth of the tissue the wave can reach. The higher the frequency is,

the shorter is the depth of the tissue that can be displayed [22].

In 2D TTE the basic characteristic of the ultrasound waves, among others, is the

reflection from the internal tissues (Fig. 6.3) [22]. Reflection occurs when the

wave meets tissue boundaries and interfaces. The amount of reflection that a

TTE machine receives, depends on two parameters, as it concerns the cardiac

tissues: Difference in the tissue density and the angle of the arriving wave.

When the tissue boundary’s depth is larger than the arrived ultrasound

wavelength, then this boundary acts as a mirror and returns the wave back to

the machine as an echo]. In echocardiograms, in order to have an optimal

display of the cardiac tissue, the angle of the arriving ultrasound wave over the

examining tissue must be ninety degrees (90o) [22]. This perpendicular angle

ensures that the received reflected wave will retain the energy of the initial one.

- 58 -

Figure 6.3, Interaction between ultrasound
wave and body tissue. In cardiac tissues
reflection is the useful interaction that is used in
2d TTE

6.4 2D TTE Standard Tomographic Views

Each view of the 2D TTE is described by the place of the machine’s ultrasound

head (acoustic window) on the thoracic area around the heart and the image

plane over the heart’s anatomy. According to this, a cardiologist may produce

the following views, during a 2D TTE examination [22] (Fig. 6.4):

• Parasternal long axis (PLAX):

This view gives access to the aortic and mitral valves, both ventricles, the

left atrium, the aorta, and the coronary sinus.

• Parasternal short axis (PSAX):

This view gives access to the aortic valve, the mitral valve level, the

pulmonic valve, both ventricles and atria and the interatrial septum.

• Apical four-chamber (A4C):

This view gives access to the mitral and tricuspid valves, to both

ventricles and atria, the coronary sinus (posterior angulation from A4C)

and to the aortic valve (anteriorly angulated A4C).

• Apical five-chamber (A5C):

This view gives access to

 -59-

• Apical two-chamber (A2C):

This view gives access to the left ventricle and atrium and to the aorta

(Modified A2C).

• Apical long axis:

This view gives access to the aortic and the mitral valves and to the left

ventricle and atrium.

• Subcostal four-chamber (S4C):

This view gives access to the tricuspid valve, to both ventricles and atria

and to the interatrial septum

• Suprasternal view:

This view gives access to the aorta.

 (a) (b) (c) (d)

 (e) (f) (g)

Figure 6.4, 2D TTE standard tomographic views on the diastolic
phase: (a) PLAX, (b) PSAX, (c) A4C, (d) A2C, (e) Apical long-axis,
(f) S4C, (g) Suprasternal

6.4.1 Left Atria check with TTE

The assessment of the heart's left atria is accomplished through the A4C (Fig.

6.4(c)) and A2C (Fig. 6.4(d)) views combination of a 2D TTE. As stated in

Galderisi M. et al (2017) [21] the proposed assessment metric for the LA is the

- 60 -

Biplane Volume of the left atria indexed by Body Surface Area (BSA). According

to Lang M.R. et al (2015) [24] assessment of the left atria may be accomplished

only by a single-plane view (A4C), if the acquisition of the two views cannot be

obtained. The latest measurement assumes that the left atrial cavity is always a

cylinder shape on the short axis plane, which is not true. The difference between

the indexed volumes of the A4C and A2C is 1 to 2 mL/m2 smaller in A4C view

[24].

LA volume can be calculated using the disk summation technique (Fig. 6.5) by

adding the volume of a stack of cylinders of height h and area calculated by

orthogonal minor and major transverse axes (D1 and D2) assuming an oval

shape [24]:

π

4h
∑ D1D2 (29)

Figure 6.5, Biplane Method of disk
summation technique (source [26])

BSA is a coefficient that is calculated by using the body height and weight of a

person. It is used in clinical studies and is an indicator of fat-free mass. The

most commonly used formulas for the BSA calculation are, the Du Bois formula

[25] (weight W):

 BSA = 0.007184 x W0.425 x H0.725

and the Mosteller formula [24], which is simpler:

BSA =
√𝑊 ∙ 𝐻

60

 -61-

where the BSA unit is in m2, weight (W) in Kg and height (H) in cm.

As it has been already mentioned, the size of the LA cavity is irrelevant to the

gender and the age of the person and is related only to the body size [27]. Thus,

the calculation of the Volume indexed by BSA allows establishing common

limits for the two genders and preventing the need for gender specific limits due

to general body size differences (according to Kou S. et al (2014) [27] mean BSA

value for males is 1,94m2 and for females 1.64m2). Following this, the upper

normal limit for 2D echocardiographic indexed LA volume is 34 mL/m2 for both

genders [23].

- 62 -

 -63-

7 Experiments

In order to evaluate the capability of Deep Learning networks to assess the left

cardiac atria enlargement, two methods have been deployed. The first one is a a

U-net for the segmentation task over the LA area on A4C TTe images, and the

second is a CNN for the classification of the LA size as normal or abnormal. A

UNET – CNN pipeline of the two deep learning networks will be also

evaluated.

7.1 Dataset

The dataset, that was used for the training and the evaluation of the networks,

consists of 1151 A4C view images of TTE, taken with a Philips echo machine.

Images were collected anonymously from a Greek Hospital, including only the

statistical data of height, weight, year of birth and gender for a patient. For each

A4C image, its respective assessment from an ECC certified cardiologist was

applied. The assessment included the same A4C image with the left cardiac

atrial area marked, the measured atria’s volume and the cardiologist’s

assessment for the left cardiac atria’s enlargement degree (Figure 7.1).

Figure 7.1, A4C view images. Left images are the echo machine’s
caption during the diastolic phase. Right images are the
cardiologist’s assessment with the marked left cardiac atrial.

- 64 -

7.1.1 Dataset statistics

The statistical data of the dataset include the gender , the date of birth for some

of the samples, the height, the weight ,the volume and the assessment of their

LA size. According to these, the 686 images belong to males and 464 to females

of minimum age of 18 years old and maximum of 100 years. The average height

and weight of the whole population is 170,1 cm and 74.9 Kg respectively. The

LA’s size has been assessed as normal for the 50,5 % of the population and

49,5% as abnormal.

The male population’s age range is from 18 to 100 years old. The average male

height and weight is 172,8 cm and 80.2 Kg respectively, while their LA size

assessment is normal for the 49,7% and abnormal for the rest 50,3% . The

female population’s age range is 22 to 99 years old. Female average height is

166,2 cm, while the average weight is 67 Kg. The assessment of the female LA

size revealed a 51,5% of normal size and the 48,5% of abnormal. Table 7.1

incorporates the above statistical information.

Table 7.1, Dataset Statistics.

7.2 Dataset Preparation

Before the implementation of the two deep learning methods, the dataset had to

be prepared adequately. The images, both the original A4C and their respective

assessments, had to be of 4:3 aspect ratio. Since, some of them were

manipulated from a different assessment software, during the TTE, their aspect

ratio was not the required one. In order to transform them in the desired aspect

Population Age

Range

Average

Height

(cm)

Average

Weight

(Kg)

Average

Volume
Over

BSA

(kg/mm2)

Normal

Cardiac

Atria
size

Abnormal

Cardiac Atria

size

Male
686

(59.86%)
18 - 100 172.8 80.2 36.3

341

(49.7 %)

345

(50.3 %)

Female
464

(40.3%)
22 - 99 166.2 67 35.5

239

(51.5 %)

255

(48.5 %)

Total

1151 18– 100 170.1 74.9 36
581

(50.5%)

570

(49.5 %)

 -65-

ratio, we used the Microsoft Photo software of the Windows 10 OS to crop the

desired area of the images (Figure 7.2). The resolutions of the dataset were the

768 x 1024 or the downscaled 600 X 800 for the cropped ones.

Figure 7.2, Top images: produced from the TTE software.

Bottom images: cropped in 4:3 aspect ratio and downsized to

600 x 800 resolution

Our implementation on the pipeline U-Net – CNN, requires the existence of the

mask for each image, over the left cardiac atria region. Each mask was used as

the label of the respective image during the U-Net training and evaluation, and

as a mean to filter the initial image, so as only the left cardiac atria region to be

provided as an input to the CNN, or only the mask, for its classification as

normal or abnormal. The production of the masks was accomplished with the

use of the VGG Image Annotator (VIA), which is a standalone manual image

annotation software [30]. VIA is based on HTML, Javascript and CSS and runs

in a web browser.

Initially, for each A4C image, with the use of VIA (Figure 7.3), we produced the

annotation area of two different kinds of masks. One mask includes an extended

area around the left cardiac atria area and was used to isolate the area that will

be fed to the CNN’s input. The other kind of mask follows the annotated area of

the left cardiac atria made by the cardiologist, on the assessment image. On the

latter, the input image to the CNN will be directly the mask. The annotated

masking areas were saved as json files.

- 66 -

(a) (b)

Figure 7.3, Annotation the areas to pro of duce the corresponding masks with

the VIA software: (a) Extended mask, (b) original mask from cardiologist

assessment image

The annotation of the masking areas followed the creation of the respective

masks of images. For this task, an internal script of VIA software, written in

Python programming language, was used. This script was fed with the

locations of the original image and the respective json file with the right

masking annotations, and produced the desired masks of the same size with

the original images, at the coordinates of the left cardiac atria (Figure 7.4).

(a)

(b)

Figure 7.4, The final masks (middle images) and their filtering

over the original image (right images)(a) Extended mask, (b)

Original mask

 -67-

The CNN, for its training and evaluation, will use two different datasets. The

one will make use of the extended masked images as input image. These masked

images are produced inside the code of our implementation. The other will use

the original mask as input. The reason for the latter decision, as it is

demonstrated in Figure 7-4, is that the masked images of the original masks

have very little information for the CNN to manipulate. So, CNN’s capability to

discover the right patterns of the LA, in order to classify it efficiently, is reduced.

Thus, we made the decision to use the original mask, hopping CNN will discover

and simulate the least squares formula for the atria’s volume measurement and

to accomplish an efficient classification.

Additionally, to the input images of the CNN, for both datasets, we collected the

aforementioned statistical data for all images in a csv file, in order to calculate

the label of the atria as normal or abnormal. Then programmatically, for each

image, we use the height and weight of its sample to calculate the BSA

coefficient according to Mosteller’s formula. Next, we calculate the Volume over

BSA number (Indexed Volume) for each image. If the Volume over BSA is under

34 [25], then the image’s atria is labeled as normal, otherwise it is abnormal.

Finally, for all the above models, the dataset of 1151 images is splited in a

training set of 575 images, a validation set of 288 images and a test set of 288

images.

7.3 Methods

For the prepose of our experiment, our Unet and CNN and GAN have been

implemented with the Tensorflow API and the code has been built to run o. The

networks have been trained and evaluated on the following scenarios, as it

concerns the kind of masks that were used, the image resolution and the use of

augmentation techniques over the image datasets:

1. Unet:

a. Extended mask dataset: The resolutions of 240 x 320 and 120 x

160 for image-mask dataset were used and for each resolution, a

dataset without image augmentation and one with image

augmentation.

- 68 -

b. Original mask dataset: The resolutions of 240 x 320 and 120 x

160 for image-mask dataset were used and for each resolution we

used a dataset without image augmentation and with image

augmentation

2. CNN:

a. Extended mask dataset: The resolutions of 240 x 320 and 120 x

160 for masked image dataset were used and for each resolution,

a dataset without image augmentation and one with image

augmentation

b. Original mask dataset: The resolutions of 240 x 320 and 120 x

160 for the original masks dataset were used and for each

resolution we used a dataset without image augmentation and

with image augmentation

3. GAN:

For GAN we used the resolution of 130 x 130 as Generators output

and Discriminators input. The input images were the A4C images

without any masking.

The segmentation task of the A4C images was accomplished with the use of a

modified Unet of Madani A. et al (2018) [2] (Fig. 7.5).

Figure 7.5, Implemented Unet architecture

 -69-

The applied modifications were the addition of a rescaling layer for the images

in the range of (0,1), an augmented layer for random contrast and the use of

same padding to all the convolutional layers, in order the output mask

resolution to resemble with the input’s resolution. Dropout regularization has

been applied after the downscale part of the U-Net. In addition, the extra

applied image augmentation included random rotation, width and height shifts,

shear, zoom and brightness alterations. In order to maximize the use of the

graphic card, batch size of 8 was used with the resolutions 240 x 320 and 16

with the resolutions of 120 x 160. The max training epochs of the U-Nets were

300 with a patience of 50 epochs and initial learning rate of 0.0001. The chosen

loss function for the Unet was the Power Jaccard Loss with the power p of 1.75

[17] and the Jaccard index [16] as its metric. The model was evaluated with the

test Jaccard index and F1 score over the pixels amount. For All tests a GTX 1050

GPU with 4GB ram was used.

The basic CNN architecture is the one used in Madani A. et al (2018) [2]

(Figure 7.6). All the convolutional layers used kernels of size (3,3), ReLU as

activation function, and same padding. For the resolution 240 X 320, the first

two convolutional layers used a (7,7) kernel. Alterations from the above

architecture have been implemented, such as the replacement of the Average

pooling layers with Max pooling layers after each convolutional layer of kernel

size (2,2), Dropout of 0.4 after the flatten layer and the fully connected layers

and the standard weight initialization for the fully connected layers. The

training epochs were 1000 with a patience of 50 for models with no data

augmentation and 2500 for models with data augmentation, while the initial

learning rate was of 0.0002. Binary cross entropy was used as the loss function

and binary accuracy as the metric of the model. Model was evaluated with the

test accuracy, F1 score and AUC-ROC score.

- 70 -

Figure 7.6, Implemented CNN architecture

Finally, a Unet-CNN pipeline will be evaluated over the test set. From each

category of extended and precise masking will be used the CNN with the best

performance according the F1 score and AUC-ROC score. For the selected CNN,

the respective Unet will be used to produce the predicted masks. In the case of

the extended masking, the predicted masks will be used over the test set images

to produce the masked-image test set, which will be fed to its CNN for the

classification task (Fig. 7.7). The predicted masks from the precise masking

Unet will be fed directly to the respective CNN (Fig. 7-8).

All our models used the dataset with splits of 50% for training , 25% for

validation and 25% for testing. We use the same seed for the splits in order to

ensure that all models will use the same unseen test set for their evaluation.

Thus, training set consists of 575 images and validation and test sets of 288

images each.

Figure 7.7, Unet - CNN pipeline for the extended masking models

 -71-

Figure 7.8, Unet - CNN pipeline for the precise masking models

The semi-supervised task was implemented with a modified SGAN of Madani

A. et al (2018) [2]. In our architecture the Generator (Fig. 7.9) receives as an

input a Gaussian noise layer of size 1 x 1x 100, which gets passed through eight

(8) conv-transpose block layers, and outputs images of size 130 × 130. Each of

the first seven conv-transpose block consists convolutional transpose upscaling

layer followed by a batch normalization layer. The upscaling layers use a (3,3)

kernel with stride 2 and ReLU as activation function. The last upscaling layer

uses the tanh as activation function.

Figure 7.9, Generator of the Semi-supervised GAN

SGAN’s Discriminator consists of four convolutional blocks followed by a max

pooling layer of size (2,2) and stride 2, and a flatten layer and a fully connected

layer with LeakyReLU activation function. Each convolutional block consists of

three convolutional layers of kernel size (3,3) followed by batch normalization

layer and a LeakyReLU activation function. The first two conolotional layers use

a stride of 1, while the third ones of stride 2. After each convolutional block and

fully connencted layer a dropout layer of 0.5 is applied (Fig 7.10).

- 72 -

Figure 7.10, Discriminator of the Semi-supervised GAN

For the supervised and unsupervised part of the discriminator we used binary

crossentropy as the loss function and on their respective output layer the

sigmoid function. For the GAN we used a mean square error loss between the

second last layer of the discriminator for our fake image and for an unlabeled

image. For the SGAN training, in one iteration, we supply first a minibatch of 32

images and labels to the supervisd part of the Discriminator, then a same sized

minibatch of real images with their labels of ones to the unsupervised part of the

Discriminator, following a same sized minibatch of fake images with their

labels of zeros, also to the unsupervised part of the Discriminator. The iterasion

is completed with the Generator training, while the Discriminator stays

untrainable. The dataset of 1151 unmasked images was splitted in three parts.

207 images were used for the supervised training of the Discriminator, 828

images as the unlabeled dataset and 116 images as Test set for the evaluation of

the superivised Discriminator on the classifying the cardic LA as normal or

abnormal,

7.4 Results

The results of the training and evaluating the U-net and the CNN models in the

task of the segmentation of an A4C image of a TTE over the LA area and the

classification of the LA’s size as abnormal or normal reveal the significance of

 -73-

the use of the data augmentation techniques in small datasets, such as those

with medical data.

7.4.1 Unet

The results of the Unet model over the different image size inputs per masking

type, showed the importance of the data augmentation techniques during Unet’s

training, which is one of U-net’s main characteristics according to Ronneberger

et al (2015) [18]. On all cases, data augmentation helped model to achieve better

results on the segmentation task (Tables 7.2, 7.3). Models without data

augmentation have high variance and are overfitting to the training data, failing

to generalize well. On the contrary, producing and providing the model with

more abstract data through data augmentation, allow the models to examine a

wider set of data distributions around the original distribution of the initial

training set, resulting in more generalized models, which are capable to predict

much better the previously unseen test set.

A physical examination of the produced masks on the test set, for this model,

without data augmentation and with data augmentation, reveals that model

without data augmentation, in many cases, failed in detecting the exact position

of the LA in the image, even if the size of the mask was close to the ground truth

(Fig. 7.11).

Figure 7.11, Segmentation results of 120 x 160 test set
images from Unet with no data augmentation (extended
masking)

- 74 -

On the other hand, the models with data augmentation were able to detect the

area of the LA and to draw it with the proper mask (Fig. 7.12). Any deviation of

the latter from the ground truth, was just a bigger mask around the crucial area

of the LA.

Figure 7.12, Segmentation results of 120 x 160 test set
images from Unet with data augmentation (extended
masking)

For the extended masking segmentation task, the model that was trained with

dataset of 120 x 160 image size achieved better results, with 91% F1 score on

masking pixels and 83.9 % Jaccard Index score over the test set predictions.

Moreover, the per pixel normalized confusion matrices of the two resolution

models, show also the better performance of the model with 120 x 160

resolution (Fig. 7.13). The difference is significant on the pixels that represent

the mask (class 1), where the model with 120 x 60 achieves a 94% recall and

87% precision score, while that with 240 x 320 achieves an 89% recall and 91%

precision score.

 -75-

(a) (b)

Figure 7.13, Unet’s per pixel normalized matrices with

DA of test set images (extended masking): (a) 240 x 320,

(b) 120 160 (0:abnormal , 1:normal)

Table 7.2, Unet Extending Masking Results

For the precise masking segmentation task, A physical examination of the

produced masks on the test set, for the model, without data augmentation (Fig.

7.14) and with data augmentation (Fig. 7.15), revels the same behavior with

extended masking model, where the model with data augmentation managed to

detect the area of the LA and to draw it with the proper mask. Additionally, the

model without data augmentation, in many cases, failed to discover the exact

shape of the ground truth mask.

Extended Masking

 240 x 320 120 x 160

Plain

Data

Data

Augmentation

Plain

Data

Data

Augmentation

Training
Jaccard
Index

94.4 % 84.9 % 85.7 % 87.4 %

Validation
Jaccard
Index

82.9 % 82.9 % 83.1 % 83.6 %

Test
Jaccard
Index
Predictions

40.5 % 81.9 % 40.4 % 83.9 $

F1 score
Masking
Pixels

57.0 % 89.0 % 57.0 % 94.0 %

- 76 -

Figure 7.14, Segmentation results of 120 x 160 test set images
from Unet without data augmentation (precise masking)

Figure 7.15, Segmentation results of 120 x 160 test set images

from Unet with data augmentation (precise masking)

 -77-

The model that was trained with dataset of 120 x 1620 image size, achieved also

slightly better results, with 88% F1 score on masking pixels and 81.32% Jaccard

Index score over the test set predictions.

The per pixel normalized confusion matrices of the two resolution models, show

also the better performance of the model with 120 x 160 resolution (Fig. 7.16).

The difference is not very significant on the pixels that represent the mask (class

1), where the model with 120 x a60 achieves a 95% recall and 82% precision

score, while that with 240 x 320 achieves an 90% recall and 85% precision

score.

 (a) (b)

Figure 7.16, Unet’s per pixel normalized matrices with

DA of test set images (precise masking): (a) 240 x 320,

(b) 120 x 160(0:abnormal , 1:normal)

Table 7.3, Unet Precise Masking Results

Precise Masking

 240 x 320 120 x 160

Plain

Data

Data

Augmentation

Plain

Data

Data

Augmentation

Training
Jaccard
Index

81.5 % 83.2 % 85.2 % 83.0 .0%

Validation
Jaccard
Index

78.0 % 78.35 % 80.9 % 80.1 %

Test
Jaccard
Index
Predictions

30.0 % 78.32 % 29.9 % 81.3 %

F1 score
Masking
Pixels

45.0 % 87.0 % 45.0 % 88.0 %

- 78 -

7.4.2 CNN Results

The results of the CNN models over the different image size inputs per masking

type, showed again the importance of the data augmentation techniques during

CNN’s training. On all cases, data augmentation helped model to achieve better

results on the classification task (Tables 7.3, 7.4). However, the results are still

not satisfactory, since even the models with data augmentation have low

metrics. One reason is may be the low resolution for our task. As it is observed

in the results, for the data augmented models a comparison between the two

resolutions reveals that the 240 x 320 resolution gives better results. The

overfitting is less, while F1 and AUC_ROC scores are bigger.

For the extended masking classification task, the model that was trained with

dataset of 240 x 320 image size achieved close results with that of 120 x 160

resolution, with 75% and 74% F1 score for the abnormal and the normal class

respectively, 74% accuracy over the test set predictions and an 74% AUC-ROC

score (Table 7.3). The normalized confusion matrices of the two resolution

models, show also the almost similar performance of the model with 120 x 160

resolution on both classes, achieving better result for the normal LA class (Fig.

7.17). The model of 24o x 340 achieves a 77% and 71% recall score for the

abnormal and the normal class respectively, while that of 120 x 160 achieves an

78% and 64% recall score for the abnormal and the normal class respectively.

 (a) (b)

Figure 7.17, CNN’s normalized matrices with DA of test

set images (extended masking): (a) 240 x 320, (b) 120

160 (0:abnormal , 1:normal)

 -79-

Table 7.3, CNN Extending Masked Images Results

For the precise masks classification task, the model that was trained with

dataset of 120 x 160 mask size achieved also close results with that of 240 x 320

resolution, with 75% and 63% F1 score for the abnormal and the normal class

respectively, 70% accuracy over the test set predictions and an 70% AUC-ROC

score (Table 7.4). The normalized confusion matrices reveals also the balance

on the performance for the models on both classes (Fig. 7.18). The model of 12o

x 160 achieves a 89% and 51% recall score for the abnormal and the normal

class respectively, while that of 240 x 320 achieves an 84% and 53% recall score

for the abnormal and the normal class respectively.

 (a) (b)

Figure 7.18, CNN’s normalized matrices with DA of test

set images (precise masking): (a) 240 x 320, (b) 120 160

(0:abnormal , 1:normal)

Extended Masking

 240 x 320 120 x 160

Plain

Data

Data

Augmentation

Plain

Data

Data

Augmentation

Training

Accuracy
100 % 77.9 % 100 % 75.2 %

Validation
Accuracy

71,7 % 73.1 % 69.1 % 72.9 %

Test

accuracy
48.0 % 74.0 % 49.0 % 71.0 %

F1 score

abnormal

normal

50.0 %

45.0 %

75.0 %

74.0 %

52.0 %

45.0 %

73.0 %

69.0 %

AUC-ROC 48.0 % 74.0 % 49.0 % 71.0%

- 80 -

Table 7.4, CNN Precise Masks Results

7.4.3 Unet - CNN Pipeline Results

In the case of the extended masking models, the CNN with the best results is the

240 x 320 model, which will be combined with the respective 240 x 320

resolution Unet model. The implementation of this pipeline reveals a slightly

reduce performance of the CNN model. The cause for this is the Unet model,

which in some cases failed to predict the masks well (Fig. 7.18). In Figure 7.19

the four images reveal the importance of the quality sampling during the TTE

procedure for implementing LA segmentation. The Unet failed to discover the

LA on the A4c image. Nevertheless, extended masking pipeline classification

reached an F1 score of 72 % and 74 % for the abnormal and normal class

respectively, with 73 % AUC-ROC score and 73% accuracy on test set, reducing

CNN’s score only by one unit. Its normalized matrix is presented in Figure

7.20(a).

Precise Masking

 240 x 320 120 x 160

Plain

Data

Data

Augmentation

Plain

Data

Data

Augmentation

Training
Accuracy

100 % 73.7 % 100 % 73.7 %

Validation
Accuracy

69.9 % 77.6 % 71.7 % 79.4 %

Test
accuracy

49.0 % 69.0 % 50.0 % 70 %

F1 score
abnormal
normal

53.0 %

45.0 %

73.0 %

63.0 %

52.0 %

48.0 %

75 %

63 $

AUC-ROC 49.0 % 69.0 % 50.0 % 70.0 %

 -81-

Figure 7.19, Segmentation results of 240 x 320 test set
images from Unet with data augmentation (extended
masking 240 x 320)

In the case of the precise masking models, the CNN with the best results is the

120 x 1600 model, which will is combined with the respective 120 x 160

resolution Unet model, which performance is also the best in its category. The

implementation of this pipeline reveals a significant downperformed CNN

model. The cause for this, is the Unet’s performance and the nature of CNN’s

training set. Although the precise masking CNN achieved closed scores in

classification among all models, it was trained with the ground truth masks.

Unet, while its results are very close with the relative extended masking model

in its category, can not produce precise enough masks for the CNN. The precise

masking pipeline reached an F1 score of 0 % and 67 % for the abnormal and

normal class respectively, with 50 % AUC-ROC score and 51% accuracy on test

set. Its normalized matrix is presented in Figure 7.20 (b). Table 7.5 shows the

results of the Unet-CNN pipeline classification models.

- 82 -

(a) (b)

Figure 7.20, Unet-CNN pipeline’s normalized matrices

on test set : (a) extended masking 240 x 320), (b) precise

masking (160 x 120) (0:abnormal , 1:normal)

Table 7.5, Unet - CNN Pipeline models

7.4.4 SGAN

The results of training the SGAN are not promising for the current task. The

Discriminator failed to be trained in the task of the classification of the cardiac

LA as normal or abnormal, while Generator is not capable to produce the A4C

images of a TTE. The main reason for this fail is the small unlabeld dataset that

was used. This small sized dataset has not supply the Discriminator with enough

diverged images, in order to generalize on the data, and the Discriminator was

overfiited on these data. The overfiiting of the Discriminator led into collapsed

gradiends, which resulted in the Generator’s failure to learn the inner patterns

of the data for producing the desired realistic images.

Unet - CNN Pipeline

Extended Masking

(240 x 320)

Precise Masking

(240 x 320)

Test
accuracy

73.0 % 53.0 %

F1 score
abnormal
normal

72.0 %

74.0 %

0 %

67.0 %

AUC-ROC 73.0 % 50.0 %

 -83-

7.5 Conclusion

Unet with data segmentation and the extended masks performed well even with

a small dataset, with the image resolution of 120 x 160 to outperform the 240

x320. It succeeded to discover the LA in the A4C images of TTE. On the other

hand, CNN achieved a relative low performance in classifying the LA size as

abnormal or normal for both kind of datasets of extended masked images and

masks as input. This is due to the small size of the dataset, which was 1151

images (528 for traing). Nevertheless, CNN performance was improving as the

dataset become bigger, which shows that the model could discover the right

patterns in the images. Our experiments showed clearly that the pipeline Unet-

CNN with the extended masks images manages to give way better results than

the precise masks. The reason was the need for a very precise prediction of the

precise masks from the Unet, which could not be achieved efficiently with the

current size of the dataset. SGAN, due to the small sized dataset, did not

succeeded in classification task and in producing real A4C images. Mainly the

unlabeled real A4C images were very few and unsupervised Discriminator could

not discover the inner patterns of the images, which would help its supervised

part.

Experiments with larger datasets, with images from different machine vendors,

are expecting to give improved and more efficient results, especially for the

classification tasks.

- 84 -

References

[1] Madani, A. et al, Fast and accurate view classification of echocardiograms

using deep learning, npj Digital Medicine 1:6, 2018

[2] Madani, A. et al, Deep echocardiography: data-efficient supervised and

semi-supervised deep learning towards automated diagnosis of cardiac disease,

npj Digital Medicine 1:59, (2018)

[3] Jo, T., Machine Learning Foundations Supervised, Unsupervised, and

Advanced Learning, Springer, 2021

[4] Murphy, P. K., Machine Learning: A Probabilistic Perspective, The MIT

Press, (2012)

[5] Zhu, X., Goldberg, A.B., Introduction to Semi-supervised Learning

(Synthesis Lectures on Artificial Intelligence and Machine Learning), Morgan &

Claypool, (2009)

[6] Bishop, C.M., Pattern Recognition and Machine Learning, Springer, 2011

[7] LeCun, Y., Bengio, Y., Hinton, G., Deep learning, Nature, (2015)

[8] Goodfellow, I., Bengio, Y., A.Courville, Deep Learning,

www.deeplearningbook.org, (2016)

[9] Nielsen, M., Neural Networks and Deep Learning [Internet].

Neuralnetworksanddeeplearning.com. 2020 [cited 16 February 2020]. Available

from: http://neuralnetworksanddeeplearning.com/

[10] Wu, J. , Introduction to Convolutional Neural Networks, Nanjing

University, China, (2017)

[11] Bishop, C. M., Pattern Recognition and Machine Learning, Springer, 2011

[12] Ioffe, S., Szegedy, Cr, .Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift, Google , (2015)

[13] Srivastava, N. et al, Dropout: A Simple Way to Prevent Neural Networks

from Overfitting, University of Toronto, (2014)

[14] Hinton , G.E. et al, Improving neural networks by preventing co-adaptation

of feature detectors, University of Toronto, (2012)

[15] Thoma, M., A Survey of Semantic Segmentation, arXiv:1602.06541v, (2016)

http://neuralnetworksanddeeplearning.com/

 -85-

[16] Csurka, G., Larlus, D., Perronnin, F., What is a good evaluation measure for

semantic segmentation, Xerox Research Centre Europe, (2013)

[17] Duque-Arias, D.et al, On Power Jaccard Losses for Semantic Segmentation,

SCITEPRESS, (2021)

[18] Ronneberger, O., Fischer, Ph., Thomas, B.T., U-Net: Convolutional

Networks for Biomedical Image Segmentation, University of Freiburg, (2015)

[19] Goodfellow I. J. et al, Generative Adversarial Nets, University of Montreal,
(2014)

[20] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,Radford, A., and
Chen, X. Improved Techniques for Training GANs. ArXiv e-prints(2016)

[21] Libby, P. et al, Braunwald's Heart Disease: A Textbook of Cardiovascular

Medicine12th edition, (2021)

[22] Otto MD, C. M. , Textbook of Clinical Echocardiography 6th edition,

Elsevier, (2018)

[23] Galderisi, M. et al , Standardization of adult transthoracic

echocardiography reporting in agreement with recent chamber quantification,

diastolic function, and heart valve disease recommendations: an expert

consensus document of the European Association of Cardiovascular Imaging,

the European Society of Cardiology, (2017).

[24] Lang, M.R. et al, Recommendations for Cardiac Chamber Quantification by

Echocardiography in Adults: An Update from the American Society of

Echocardiography and the European Association of Cardiovascular Imaging,

European Heart Journal – Cardiovascular Imaging, (2015)

[25] Du Bois, D., Du Bois EF , A formula to estimate the approximate surface

area if height and weight be known, Archives of Internal Medicine, (1916)

[26] Mosteller, RD., Simplified calculation of body-surface area, N Engl J Med,

(1987)

[27] Kou, S. et al, Echocardiographic reference ranges for normal cardiac

chamber size: results from the NORRE study, European Heart Journal –

Cardiovascular Imaging, (2014)

[28] Dutta, Abhishek, Zisserman, Andrew, The VGG Image Annotator (VIA),

arXiv:1904.10699, (2019)

- 86 -

Appendix

1.1 Import Libraries Code

import cv2

import numpy as np

import pandas as pd

import math

import scipy

import matplotlib.pyplot as plt

import os

import pathlib

import shutil

import tempfile

from math import ceil

import PIL

import PIL.Image as Image

import random

import sklearn as skl

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report, confusion_matrix,

f1_score,roc_curve, auc, roc_auc_score, ConfusionMatrixDisplay

from sklearn.preprocessing import LabelBinarizer

import tensorflow as tf

import tensorflow.keras

from tensorflow.keras import models, metrics,layers, regularizers, utils,

preprocessing

 -87-

from keras.models import Model, Sequential

from keras.preprocessing.image import ImageDataGenerator

from keras import backend as Kb

from keras.backend import int_shape

%matplotlib inline

random.seed = 42

Use of GPU

physical_devices = tf.config.list_physical_devices('GPU')

tf.config.experimental.set_memory_growth(physical_devices[0], True)

1.2 Dataset Creation Code

#Retrieve Data - Calculate BSA

def upload_data(bsa_file, columns=[]):

 return pd.read_csv(bsa_file , sep=';', header=0, usecols= columns)

[columns]

def create_bsa_data_dict(bsa_dataframe):

 bsa_dataframe.set_index('image')

 bsa_data_dict = bsa_dataframe.to_dict('index')

 bsa_data_diction = {}

 for i in bsa_data_dict:

 bsa_data_diction[str(bsa_data_dict[i]['image'])]= {'height':

 bsa_data_dict[i]['height'],

 'weight': bsa_data_dict[i]['weight'],

 'long_axis': bsa_data_dict[i]['long_axis'],

- 88 -

 'area': bsa_data_dict[i]['area'],

 'volume': bsa_data_dict[i]['volume'],

 'birth': bsa_data_dict[i]['birth'],

 'gender': bsa_data_dict[i]['gender'],

 'bsa_coef': math.sqrt(

 (bsa_data_dict[i]['height']) *

 bsa_data_dict[i]['weight'])/60}

 return bsa_data_diction

bsa (body-surface-area) coeffiecent per (Mosteller's formula)

def bsa_calculation(bsa_data_diction):

 bsa_coef_dict = {}

 for image in bsa_data_diction.keys():

 bsa_coef_dict[image] = math.sqrt((bsa_data_diction[image]['height']) *

 bsa_data_diction[image]['weight'])/60

 return bsa_coef_dict

#Create images, masked_images and labels for UNET-CNN

def sort_list_asc(image_list):

 sorted_list = []

 for image_name in list:

 image_name= os.path.splitext(image_name)[0]

 sorted_list.append(int(image_name))

 return sorted(sorted_list)

For UNET

def create_image_mask_label_sets (image_directory, bsa_data_dict,

 img_width, img_height):

 image_mask = []

 -89-

 image_mask_dataset= []

 image_dataset = []

 mask_dataset = []

 label_dataset = {}

 volume_over_bsa = {}

 images = os.listdir(image_directory)

 images = sort_list_asc(images)

 for image_name in images:

 mask = cv2.imread(mask_directory + '/' + str(image_name) + '.jpg',

 cv2.IMREAD_UNCHANGED)

 mask = cv2.resize(mask, (img_width, img_height), interpolation =

 cv2.INTER_NEAREST)

 mask_dataset.append(np.expand_dims(mask,2))

 image = cv2.imread(image_directory + '/' + str(image_name) + '.jpg',

 cv2.IMREAD_UNCHANGED)

 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 image = cv2.resize(image, (img_width, img_height), interpolation =

 cv2.INTER_NEAREST)

 image_dataset.append(np.expand_dims(image,2))

 image_mask_dataset.append(np.expand_dims([image,mask],3))

 volume_over_bsa= round (float (bsa_data_dict [

 str(image_name)]['volume']) /

 bsa_data_dict[str(image_name)]['bsa_coef'],3)

 bsa_data_dict[str(image_name)]['volume_over_bsa']=

 volume_over_bsa

- 90 -

 if volume_over_bsa >= 34:

 label_dataset[str(image_name)]= 'abnormal'

 else:

 label_dataset[str(image_name)] = 'normal'

 image_mask_dataset= np.asarray(image_mask_dataset, dtype=np.float32)

 image_dataset = np.asarray(image_dataset, dtype=np.float32)

 mask_dataset = np.asarray(mask_dataset, dtype=np.float32)

 return image_dataset, mask_dataset, image_mask_dataset, label_dataset

For CNN

def create_masked_image(images, masks):

 masked_image_dataset = []

 for i in range(len(images)):

 image = cv2.bitwise_and(images[i], images[i], mask= masks[i])

 masked_image_dataset.append(np.expand_dims(image,2))

 return np.asarray(masked_image_dataset)

def create_image_mask_label_sets (image_directory, bsa_data_dict,

 img_width, img_height):

 image_dataset = []

 mask_dataset = []

 label_dataset = {}

 volume_over_bsa = {}

 images = os.listdir(image_directory)

 images = sort_list_asc(images)

 for image_name in images:

 -91-

 mask = cv2.imread(mask_directory + '/' + str(image_name) + '.jpg',

 cv2.IMREAD_UNCHANGED)

 mask = cv2.resize(mask, (img_width, img_height), interpolation =

 cv2.INTER_NEAREST)

 mask_dataset.append(np.expand_dims(mask,2))

 image = cv2.imread(image_directory + '/' + str(image_name) + '.jpg',

 cv2.IMREAD_UNCHANGED)

 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 image = cv2.resize(image, (img_width, img_height), interpolation =

 cv2.INTER_NEAREST)

 image_dataset.append(np.expand_dims(image,2))

 volume_over_bsa= round (float (bsa_data_dict [

 str(image_name)]['volume']) /

 bsa_data_dict[str(image_name)]['bsa_coef'],3)

 bsa_data_dict[str(image_name)]['volume_over_bsa']=

 volume_over_bsa

 if volume_over_bsa >= 34:

 label_dataset[str(image_name)]= 'abnormal'

 else:

 label_dataset[str(image_name)] = 'normal'

 image_masked_dataset= create_masked_image(image_dataset,

 mask_dataset)

 image_dataset = np.asarray(image_dataset, dtype=np.float32)

 mask_dataset = np.asarray(mask_dataset, dtype=np.float32)

- 92 -

 return image_dataset, image_masked_dataset, mask_dataset,

 label_dataset, bsa_data_dict

For GAN

def create_image_mask_label_sets (image_directory, bsa_data_dict,

 img_width, img_height):

 image_mask = []

 image_dataset = []

 label_dataset = {}

 volume_over_bsa = {}

 images = os.listdir(image_directory)

 images = sort_list_asc(images)

 for image_name in images:

 image = cv2.imread(image_directory + '/' + str(image_name) + '.jpg',

 cv2.IMREAD_UNCHANGED)

 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 image = cv2.resize(image, (img_width, img_height), interpolation =

 cv2.INTER_NEAREST)

 image_dataset.append(np.expand_dims(image,2))

 volume_over_bsa= round (float (bsa_data_dict [

 str(image_name)]['volume']) /

 bsa_data_dict[str(image_name)]['bsa_coef'],3)

 bsa_data_dict[str(image_name)]['volume_over_bsa']=

 volume_over_bsa

 if volume_over_bsa >= 34:

 -93-

 label_dataset[str(image_name)]= 'abnormal'

 else:

 label_dataset[str(image_name)] = 'normal'

 image_dataset = np.asarray(image_dataset, dtype=np.float32)

 return image_dataset, label_dataset, bsa_data_dict

#Train, Validation,Test Set

def labels_one_hot_encode(labels):

 le = LabelBinarizer()

 labels = le.fit_transform(labels)

 labels = utils.to_categorical(labels, 2)

 return labels, le.classes_

#Training, Validation, Test sets for Unet-CNN Models

#rescaling images, masks to 0,1

def rescaling_images(x_train, mask_train, x_val, mask_val, x_test,

mask_test):

 x_train = x_train * 1./255

 mask_train = mask_train * 1./255

 x_val = x_val * 1./255

 mask_val = mask_val * 1./255

 x_test = x_test * 1./255

 mask_test = mask_test * 1./255

 return x_train, mask_train, x_val, mask_val, x_test, mask_test

def CNN_sets_split(samples, labels, seed, split_1=0.5, split_2=0.5):

 X_train, X_val, y_train, y_val = train_test_split(samples, labels, test_size =

 split_1, random_state=seed, shuffle=True, stratify=labels)

 X_val, X_test, y_val, y_test = train_test_split(X_val, y_val, test_size =

- 94 -

 split_2, random_state=seed, shuffle=True, stratify=y_val)

 return X_train, y_train, X_val, y_val, X_test, y_test

For UNET

def separate_images_masks(data_array):

 images=[]

 masks=[]

 for image in data_array:

 images.append(image[0])

 masks.append(image[1])

 images = np.asarray(images, dtype=np.float32)

 masks = np.asarray(masks, dtype=np.float32)

 return images, masks

def datasets_UNET(image_directory, mask_directory, bsa_directory,

img_width, img_height, seed=42):

 bsa_data = upload_data(bsa_directory,

 ['image','height','weight','long_axis','area','volume','birth','gender'])

 bsa_data_dict = create_bsa_data_dict(bsa_data)

 image_dataset, mask_dataset, image_mask_dataset, label_dataset =

 create_image_mask_label_sets(image_directory,

 mask_directory, bsa_data_dict, img_width, img_height)

 labels = np.asarray(list(label_dataset.values()))

 lables_one_hot, classes = labels_one_hot_encode(labels)

 X_train, _, X_val, _, X_test, _ = CNN_sets_split(image_mask_dataset,

 -95-

 lables_one_hot, seed)

 X_train_UNET, mask_train_UNET = separate_images_masks(X_train)

 X_val_UNET, mask_val_UNET = separate_images_masks(X_val)

 X_test_UNET, mask_test_UNET = separate_images_masks(X_test)

 _, mask_train_UNET, _, mask_val_UNET, _, mask_test_UNET =

 rescaling_images(X_train_UNET, mask_train_UNET,

 X_val_UNET, mask_val_UNET,

 X_test_UNET, mask_test_UNET)

 return image_dataset, mask_dataset, X_train_UNET, mask_train_UNET,

 X_val_UNET, mask_val_UNET, X_test_UNET, mask_test_UNET

For CNN

def datasets_CNN_extended(image_directory, mask_directory, bsa_data_dict,

img_width, img_height, seed=42):

 image_dataset, image_masked_dataset, mask_dataset, label_dataset,

 bsa_data_dict = create_image_mask_label_sets(image_directory,

 mask_directory, bsa_data_dict, img_width, img_height)

 labels = np.asarray(list(label_dataset.values()))

 lables_one_hot, classes, label_binarizer = labels_one_hot_encode(labels)

 X_train, y_train, X_val, y_val, X_test, y_test=

 CNN_sets_split(image_masked_dataset, lables_one_hot, seed)

 return image_dataset, image_masked_dataset, mask_dataset,

 label_dataset, bsa_data_dict, classes, label_binarizer, X_train,

 y_train, X_val, y_val, X_test, y_test

- 96 -

def datasets_CNN_original(image_directory, mask_directory, bsa_data_dict,

img_width, img_height, seed=42):

 image_dataset, image_masked_dataset, mask_dataset, label_dataset,

 bsa_data_dict = create_image_mask_label_sets(image_directory,

 mask_directory, bsa_data_dict, img_width, img_height)

 labels = np.asarray(list(label_dataset.values()))

 lables_one_hot, classes, label_binarizer = labels_one_hot_encode(labels)

 X_train, y_train, X_val, y_val, X_test, y_test =

 CNN_sets_split(mask_dataset, lables_one_hot, seed)

 return image_dataset, image_masked_dataset, mask_dataset,

 label_dataset, bsa_data_dict, classes, label_binarizer, X_train,

 y_train, X_val, y_val, X_test, y_test

#Training, supervised, Unsupervised, Test sets for GAN Model

#rescaling images, masks to -1,1

def rescaling_images(x_train, mask_train, x_val, mask_val, x_test,

mask_test):

 x_train = (x_train – 127.5) * 1/127.5

 x_sup = (x_sup – 127.5) * 1/127.5

 x_unsup = (x_unsup – 127.5) * 1/127.5

 x_test = x_test – 127.5) * 1/127.5

 return x_train, mask_train, x_val, mask_val, x_test, mask_test

def GAN_sets_split(samples, labels, seed, split_1=0.1, split_2=0.7):

 X_train, X_test, y_train, y_test = train_test_split(samples, labels, test_size =

 split_1, random_state=seed, shuffle=True, stratify=labels)

 -97-

 X_sup, X_unsup, y_sup, y_unsup = train_test_split(X_train, y_train,

 test_size = split_2, random_state=seed, shuffle=True,

 stratify=y_train)

 return X_train, y_train, X_sup, y_sup, X_unsup, y_unsup, X_test, y_test

def datasets_GAN(image_directory, bsa_data_dict, img_width, img_height,

seed=42):

 image_dataset, label_dataset, bsa_data_dict=

 create_image_mask_label_sets(image_directory,

 bsa_data_dict, img_width, img_height)

 labels = np.asarray(list(label_dataset.values()))

 lables_one_hot, classes, label_binarizer = labels_one_hot_encode(labels)

 X_train, y_train, X_sup, y_sup, X_unsup, y_unsup, X_test, y_test =

 GAN_sets_split(image_dataset, lables_one_hot, seed)

 X_train, X_sup, X_unsup , X_test = rescaling_images(X_train, X_sup,

 X_unsup ,

X_test)

 return image_dataset, X_train, y_train, X_sup, y_sup, X_unsup, y_unsup,

 X_test, y_test, label_dataset, bsa_data_dict, classes, label_binarizer

def generate_real_images(images, labels, batch):

 ix = randint(0, images.shape[0], batch)

 X, labels = images[ix], labels[ix]

 y = ones((batch, 1))

- 98 -

 y, _, _= labels_one_hot_encode(y)

 return [X, labels], y

def generate_noise_points(gen_input, batch):

 z_input = randn(gen_input * batch)

 z_input = z_input.reshape(batch, 1, 1, gen_input)

 return z_input

def generate_fake_images(generator, gen_input, batch):

 z_input = generate_noise_points(gen_input, batch)

 fake_images = generator.predict(z_input)

 y = zeros((batch, 1))

 y, _, _= labels_one_hot_encode(y)

 return fake_images, y

FOR GAN

def GAN_sets_split(samples, labels, seed, split_1=0.1, split_2=0.8):

 X_train, X_test, y_train, y_test = train_test_split(samples, labels, test_size =

 split_1, random_state=seed, shuffle=True, stratify=labels)

 X_sup, X_unsup, y_sup, y_unsup = train_test_split(X_train, y_train,

 test_size = split_2, random_state=seed, shuffle=True, stratify=y_train)

 return X_train, y_train, X_sup, y_sup, X_unsup, y_unsup, X_test, y_test

def datasets_GAN(image_directory, bsa_data_dict, img_width, img_height,

seed=42):

 image_dataset, label_dataset, bsa_data_dict =

 create_image_mask_label_sets(image_directory,

 bsa_data_dict, img_width, img_height)

 labels = np.asarray(list(label_dataset.values()))

 -99-

 lables_one_hot, classes, label_binarizer = labels_one_hot_encode(labels)

 X_train, y_train, X_sup, y_sup, X_unsup, y_unsup, X_test, y_test =

 GAN_sets_split(image_dataset, lables_one_hot, seed)

 X_train, X_sup, X_unsup , X_test = rescaling_images(X_train, X_sup,

 X_unsup , X_test)

 return image_dataset, X_train, y_train, X_sup, y_sup, X_unsup, y_unsup,

 X_test, y_test, label_dataset, bsa_data_dict, classes, label_binarizer

def generate_real_images(images, labels, batch):

 ix = randint(0, images.shape[0], batch)

 X, labels = images[ix], labels[ix]

 y = ones((batch, 1))

 y, _, _= labels_one_hot_encode(y)

 return [X, labels], y

def generate_noise_points(gen_input, batch):

 z_input = randn(gen_input * batch)

 z_input = z_input.reshape(batch, 1, 1, gen_input)

 return z_input

def generate_fake_images(generator, gen_input, batch):

 z_input = generate_noise_points(gen_input, batch)

 fake_images = generator.predict(z_input)

 y = zeros((batch, 1))

 y, _, _= labels_one_hot_encode(y)

 return fake_images, y

- 100 -

1.3 Unet Code

1.3.1 Code for Training the Unet Models

#Dataset Creation Functions Load

%run Datasets_Creation.ipynb

#Plot – Print Datasets Functions

def plot_images(image_set, mask_set, lines=6):

 image_indexs = []

 plt.figure(figsize=(15, 15))

 for i in range(lines):

 plt.figure(figsize=(15, 15))

 image = random.randint(0, len(image_set))

 ax = plt.subplot(121)

 plt.imshow(image_set[image,:,:,0])

 ax = plt.subplot(122)

 plt.imshow(mask_set[image,:,:,0])

 plt.axis("off")

def print_size_shapes(images, masks, images_name, masks_mame):

 # Dataset

 print(f'{images_name} Dataset size : {len(images)}')

 print(f'{images_name} shape: {images.shape}')

 print(f'Single {images_name} shape: {images[1].shape}')

 print(f'{masks_mame} shape: {masks.shape}')

 print(f'Single {masks_mame} shape: {masks[1].shape}')

def print_sets_size_shapes(dataset, images_name, masks_name):

 images, masks = tuple(zip(*dataset))

 -101-

 images = np.asarray(images)

 masks = np.asarray(masks)

 # Dataset

 print(f'{images_name} Dataset size : {len(images) * len(images[1])}')

 print(f'{images_name} shape: {images.shape[0]}')

 print(f'Batched {images_name} shape: {images[0].shape}')

 print(f'Single {images_name} shape: {images[0][0].shape}')

 print(f'{masks_name} Dataset size : {len(masks) * len(masks[1])}')

 print(f'{masks_name} shape: {masks.shape[0]}')

 print(f'Batched {masks_name} shape: {masks[0].shape}')

 print(f'Single {masks_name} shape: {masks[0][0].shape}')

#Create dataset for the model- Without Augmentation

Creating tensors data.Datasets of Train, Validation, Test sets

def to_tensors(x_train, mask_train, x_val, mask_val, x_test, mask_test):

 train_ds = tf.data.Dataset.from_tensor_slices((x_train, mask_train))

 val_ds = tf.data.Dataset.from_tensor_slices((x_val, mask_val))

 test_ds = tf.data.Dataset.from_tensor_slices((x_test, mask_test))

 return train_ds,val_ds,test_ds

Configure Datasets for performance: cache, shuffle, prefetech

def configure_for_performance(ds, seed, buffer_size= 1000, batch_size=1):

 ds = ds.cache()

 ds = ds.shuffle(buffer_size= buffer_size, seed=seed)

- 102 -

 ds = ds.batch(batch_size)

 ds = ds.prefetch(buffer_size= tf.data.AUTOTUNE)

 return ds

def create_performance_dataset(X_train, mask_train, X_val, mask_val,

X_test, mask_test, seed, batch_size=1):

 train_ds, val_ds, test_ds = to_tensors(X_train, mask_train, X_val,

mask_val, X_test, mask_test)

 train_ds = configure_for_performance(train_ds, seed, batch_size =

batch_size)

 val_ds = configure_for_performance(val_ds,seed, batch_size= batch_size)

 test_ds = configure_for_performance(test_ds,seed, batch_size= batch_size)

 return train_ds, val_ds, test_ds

Dataset augmentation layers

data_augmentation_layers = [

 layers.RandomContrast(0.5),]

data_augmentation = tf.keras.Sequential(

 data_augmentation_layers)

#CREATE AUGMENDED SETS FUNCTIONS

def train_validation_augmentation(x_train, mask_train, x_val, mask_val,

seed=42, batch_size=1):

 image_data_gen_args = dict(rotation_range = 5,

 width_shift_range = 0.2,

 height_shift_range = 0.2,

 shear_range = 0.2,

 zoom_range = 0.2,

 -103-

 brightness_range = (0.4, 0.8),

 fill_mode= 'nearest')

 mask_data_gen_args = dict(rotation_range = 5,

 width_shift_range = 0.2,

 height_shift_range = 0.2,

 shear_range = 0.2,

 zoom_range = 0.2,

 brightness_range = (0.4, 0.8),

 fill_mode= 'nearest',

 preprocessing_function = lambda x: np.where(x>0, 1, 0).

 astype(x.dtype))

 # Train images and masks generators

 # Train images

 image_data_generator = ImageDataGenerator(**image_data_gen_args)

 image_data_generator.fit(x_train, augment = True, seed = seed)

 train_image_generator = image_data_generator.flow(x_train, seed = seed,

 shuffle=True,

 batch_size=batch_size)

 # Train masks

 mask_data_generator = ImageDataGenerator(**mask_data_gen_args)

 mask_data_generator.fit(mask_train, augment = True, seed = seed)

 train_mask_generator = mask_data_generator.flow(mask_train, seed =

 seed,shuffle=True, batch_size=batch_size)

- 104 -

 # Validation images and masks generators

 # Validation images

 valid_image_gen = ImageDataGenerator(**image_data_gen_args)

 valid_image_gen.fit(x_val, augment = True, seed = seed)

 valid_img_generator = valid_image_gen.flow(x_val, seed = seed,

 shuffle=True,

 batch_size=batch_size)

 # Validation masks

 valid_mask_gen = ImageDataGenerator(**mask_data_gen_args)

 valid_mask_gen.fit(mask_val, augment = True, seed = seed)

 valid_mask_generator = valid_mask_gen.flow(mask_val, seed = seed,

 shuffle=True,

 batch_size=batch_size)

 return train_image_generator, train_mask_generator,

valid_img_generator, valid_mask_generator

def image_mask_generator_set(image_generator, mask_generator):

 return zip(image_generator, mask_generator)

def plot_Gerarator_Images(img_gen, mask_gen):

 for i in range(0,8):

 x = img_gen.next()

 y = mask_gen.next()

 image = x[i]

 mask = y[i]

 plt.subplot(1,2,1)

 plt.imshow(image[:,:,0])

 plt.subplot(1,2,2)

 plt.imshow(mask[:,:,0])

 plt.show()

 -105-

#Model's functions

#Model construction

def build_U_net_model(input_shape, start_neurons= 64):

 input_layer = tf.keras.Input(shape=input_shape)

 # Image augmentation block

 input_layer = data_augmentation(input_layer)

 input_resc = layers.Rescaling(scale=1./255)(input_layer)

 conv1 = layers.Conv2D(start_neurons * 1, (3, 3), activation="relu",

padding="same", kernel_initializer='he_normal')(input_resc)

 conv1 = layers.Conv2D(start_neurons * 1, (3, 3), activation="relu",

padding="same", kernel_initializer='he_normal')(conv1)

 pool1 = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(conv1)

 conv2 = layers.Conv2D(start_neurons * 2, (3, 3), activation="relu",

padding="same",kernel_initializer='he_normal')(pool1)

 conv2 = layers.Conv2D(start_neurons * 2, (3, 3), activation="relu",

padding="same",kernel_initializer='he_normal')(conv2)

 pool2 = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(conv2)

 conv3 = layers.Conv2D(start_neurons * 4, (3, 3), activation="relu",

padding="same",kernel_initializer='he_normal')(pool2)

 conv3 = layers.Conv2D(start_neurons * 4, (3, 3), activation="relu",

padding="same",kernel_initializer='he_normal')(conv3)

 pool3 = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(conv3)

 drop = layers.Dropout(0.5)(pool3)

- 106 -

 # Middle

 convm = layers.Conv2D(start_neurons * 8, (3, 3), activation="relu",

padding="same",kernel_initializer='he_normal')(drop)

 convm = layers.Conv2D(start_neurons * 8, (3, 3), activation="relu",

padding="same",kernel_initializer='he_normal')(convm)

 deconv3 = layers.Conv2DTranspose(start_neurons * 4, (2, 2), strides=2,

padding="same")(convm)

 uconv3 = layers.concatenate([deconv3, conv3])

 uconv3 = layers.Conv2D(start_neurons * 4, (3, 3), activation="relu",

padding="same",kernel_initializer='he_normal')(uconv3)

 uconv3 = layers.Conv2D(start_neurons * 4, (3, 3), activation="relu",

padding="same",kernel_initializer='he_normal')(uconv3)

 deconv2 = layers.Conv2DTranspose(start_neurons * 2, (2, 2), strides=2,

padding="same")(uconv3)

 uconv2 = layers.concatenate([deconv2, conv2])

 uconv2 = layers.Conv2D(start_neurons * 2, (3, 3), activation="relu",

padding="same",kernel_initializer='he_normal')(uconv2)

 uconv2 = layers.Conv2D(start_neurons * 2, (3, 3), activation="relu",

padding="same",kernel_initializer='he_normal')(uconv2)

 deconv1 = layers.Conv2DTranspose(start_neurons , (2, 2), strides=2,

padding="same")(uconv2)

 uconv1 = layers.concatenate([deconv1, conv1])

 uconv1 = layers.Conv2D(start_neurons * 1, (3, 3), activation="relu",

padding="same", kernel_initializer='he_normal')(uconv1)

 -107-

 uconv1 = layers.Conv2D(start_neurons * 1, (3, 3), activation="relu",

padding="same", kernel_initializer='he_normal')(uconv1)

 output_layer = layers.Conv2D(1, (1,1), activation="sigmoid")(uconv1)

 return tf.keras.Model(input_layer,output_layer)

Learning Rate optimezer setup

def learning_scheduler(initial_rate):

 return tf.keras.optimizers.schedules.InverseTimeDecay(

 initial_rate,

 decay_steps=STEPS_PER_EPOCH*25,

 decay_rate=1.0,

 staircase=False)

def get_optimizer(initial_rate):

 return tf.keras.optimizers.Adam(learning_scheduler(initial_rate))

plot learning rate degradation

def plot_learning_schedule(initial_rate, batch_size):

 step = np.linspace(0,25000)

 lr_schedule = learning_scheduler(initial_rate)

 lr = lr_schedule(step)

 plt.figure(figsize = (8,6))

 plt.plot(step/STEPS_PER_EPOCH, lr)

 plt.title(f'Initial Learnig rate : {initial_rate} with Batch size: {batch_size}

Decay Ratio', fontsize=15)

 plt.ylim([0,max(plt.ylim())])

 plt.xlabel('Epoch')

 _ = plt.ylabel('Learning Rate')

- 108 -

callbacks logs for each model

def get_callbacks(name, patience, monitor):

 return [

 tf.keras.callbacks.EarlyStopping(

 monitor= monitor,

 verbose=2,

 patience= patience,

 restore_best_weights= True),

 tf.keras.callbacks.TensorBoard(logdir/name),

]

def checkpointer(model_name):

 return tf.keras.callbacks.ModelCheckpoint(model_name, verbose=1,

save_best_only=True)

#Model Setup

def jaccard_index(masks_true, masks_predicted):

 masks_true_flatten = Kb.flatten(masks_true)

 masks_predicted_flatten = Kb.flatten(masks_predicted)

 intersection = Kb.sum(masks_true_flatten * masks_predicted_flatten)

 # Addittion of 10 for avoiding divide with zero

 return (intersection + 10.0) / (Kb.sum(masks_true_flatten) +

Kb.sum(masks_predicted_flatten) - intersection + 10.0)

def jaccard_loss(y_true, y_pred, p_value=1.75, smooth = 10):

 y_true_f = Kb.flatten(y_true)

 y_pred_f = Kb.flatten(y_pred)

 intersection = Kb.sum(y_true_f * y_pred_f)

 term_true = Kb.sum(Kb.pow(y_true_f, p_value))

 term_pred = Kb.sum(Kb.pow(y_pred_f, p_value))

 union = term_true + term_pred - intersection

 -109-

 return 1 - ((intersection + smooth) / (union + smooth))

def models_compiler(model, optimizer, loss=jaccard_loss, metrics=

[jaccard_index]):

 return model.compile(optimizer=optimizer, loss=loss, metrics= metrics)

#Model fit Without Augmentation

def u_net_compile_fit(model, name, train_ds, val_ds, optimizer=None,

learning_rate=0.0001, max_epochs=50, patience=5,

monitor='val_loss', class_weights=None, batch_size=1):

 if optimizer is None:

 optimizer = get_optimizer(learning_rate)

 models_compiler(model= model, optimizer= optimizer)

 model.summary()

 history = model.fit(

 train_ds,

 steps_per_epoch = STEPS_PER_EPOCH,

 epochs = max_epochs,

 validation_data = val_ds,

 class_weight = class_weights,

 callbacks = get_callbacks(name, patience, monitor),

 verbose=1,)

 return history

#Model fit With Augmentation

- 110 -

def u_net_compile_fit_AUGM(model, name, train_generator, val_generator,

train_length, validation_length, optimizer=None,

learning_rate=0.00001, max_epochs=50, patience=5,

monitor='val_loss', class_weights=None, batch_size=1):

 if optimizer is None:

 optimizer = get_optimizer(learning_rate)

 models_compiler(model= model, optimizer= optimizer)

 model.summary()

 history = model.fit(

 train_generator,

 steps_per_epoch = STEPS_PER_EPOCH,

 epochs = max_epochs,

 validation_data = val_generator,

 validation_steps = validation_length,

 class_weight = class_weights,

 callbacks = get_callbacks(name, patience, monitor),

 verbose=1,)

 return history

Model's Graphs

Plotting Net Loss cs Val_Loss and Acuuracy vs Val_Accuracy

def plot_model_graphs(model_name, type_histories):

 loss_unet = type_histories[model_name].history['loss']

 val_loss_unet = type_histories[model_name].history['val_loss']

 epochs = range(1, len(loss_unet) + 1)

 jaccard_matric_unet = type_histories[model_name].history['jaccard_index']

 -111-

 val_jaccard_matric_unet =

type_histories[model_name].history['val_jaccard_index']

 plt.figure(figsize=(40,40))

 ax = plt.subplot(2, 2, 1)

 plt.plot(epochs, loss_unet, 'b', label='Training loss')

 plt.plot(epochs, val_loss_unet, 'r', label='Validation loss')

 plt.title(model_name + ' Training and Validation loss', fontsize=30)

 plt.xlabel('Epochs', fontsize=30)

 plt.ylabel(' Loss', fontsize=30)

 plt.legend(loc='upper right', fontsize=20)

 ax = plt.subplot(2, 2, 2)

 plt.plot(epochs, jaccard_matric_unet, 'b', label='Training Jacard Coefficient

metric')

 plt.plot(epochs, val_jaccard_matric_unet, 'r', label='Validation Jacard

Coefficient metric')

 plt.title(model_name + ' Training and Validation Jacard Coefficient metric',

fontsize=30)

 plt.xlabel('Epochs', fontsize=30)

 plt.ylabel('Jacard Coefficient', fontsize=30)

 plt.legend(loc='lower right', fontsize=20)

 plt.show()

#RUN MODELS

#Extended Masks Paradigm (240 x 340)

Constants

IMG_WIDTH= 320

IMG_HEIGHT = 240

- 112 -

CHANNELS = 1

START_CONVS = 64

BATCH_SIZE = 6 # 8 for augmented sets

SEED = 42

Insert Data

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented'

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info'

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv'

upload - create datasets

Images, Masks, X_train, mask_train, X_val, mask_val, X_test, mask_test=

datasets_UNET(image_directory, mask_directory, bsa_directory,

IMG_WIDTH, IMG_HEIGHT, seed=42)

Create Dataset for the model- Without Augmentation

train_set, val_set, test_set = create_performance_dataset(X_train,

mask_train, X_val, mask_val, X_test, mask_test, SEED,

batch_size=BATCH_SIZE)

Shapes of uploaded original images, masks sets (without augmentation)

print_size_shapes(Images, Masks, 'Images', 'Masks')

print_sets_size_shapes(train_set, 'Training', 'Training Masks')

print_sets_size_shapes(val_set, 'Validation', 'Validation Masks')

print_sets_size_shapes(test_set, 'Test', 'Test Masks')

Dataset Augmented with Image Generator

image_generator, mask_generator, valid_img_generator,

valid_mask_generator = train_validation_augmentation(X_train,

 -113-

mask_train, X_val, mask_val, seed=SEED,

batch_size=BATCH_SIZE)

train_Generator = image_mask_generator_set(image_generator,

mask_generator)

validation_Generator = image_mask_generator_set(valid_img_generator,

valid_mask_generator)

Shapes of uploaded original images, masks sets for augmented sets with

Image Generator

print_size_shapes(Images, Masks, 'Images', 'Masks')

print_size_shapes(X_train, mask_train, 'X_train', 'Masks_train')

print_size_shapes(X_val, mask_val, 'X_val', 'Masks_val')

print_size_shapes(X_test, mask_test, 'X_test', 'Masks_test')

Plot original image, mask pairs

plot_images(Images, Masks, lines=6)

Plot Generator Images

plot_Gerarator_Images(image_generator, mask_generator)

Set Learning Rate

STEPS_PER_EPOCH = len(train_set)

for augmented sets

#STEPS_PER_EPOCH = len(X_train)//BATCH_SIZE

LEARNING_RATE = 0.0001

plot_learning_schedule(LEARNING_RATE, BATCH_SIZE)

RUN MODEL Extended masks 240x320

Create new model

image_size = (IMG_HEIGHT , IMG_WIDTH)

- 114 -

unet = build_U_net_model(input_shape= image_size + (CHANNELS,),

start_neurons= START_CONVS)

Run model without augmentation Datasets

type_histories['unet_extended_batch8_bigDim']= u_net_compile_fit(unet,

'unet_extended_batch8_bigDim', train_set,

val_set,learning_rate=LEARNING_RATE,max_epochs=300, patience=50,

batch_size=BATCH_SIZE)

Run model with Augmented Sets

type_histories['unet_extended_batch8_bigDim_AUGM']=

u_net_compile_fit_AUGM(unet, 'unet_extended_batch8_bigDim_AUGM',

train_Generator, validation_Generator,len(X_train), len(X_val),

learning_rate=LEARNING_RATE,max_epochs=300, patience=50,

batch_size=BATCH_SIZE)

Save and Plot models

unet.save('saved_U_net_models/unet_extended_batch8_bigDim')

unet.save('saved_U_net_models/unet_extended_batch8_bigDim_AUGM')

plot_model_graphs("unet_extended_batch8_bigDim", type_histories)

plot_model_graphs("unet_extended_batch8_bigDim_AUGM", type_histories)

1.3.2 Code for Evaluating Unet the Models

#Dataset Creation Functions Load

%run Datasets_Creation.ipynb

Plot Datasets Functions

Sanity check plots

def plot_images(image_set, mask_set, lines=6):

 image_indexs = []

 plt.figure(figsize=(15, 15))

 for i in range(lines):

 -115-

 plt.figure(figsize=(15, 15))

 image = random.randint(0, len(image_set))

 ax = plt.subplot(121)

 plt.imshow(image_set[image,:,:,0])

 ax = plt.subplot(122)

 plt.imshow(mask_set[image,:,:,0])

 plt.axis("off")

Print dimensions

def print_size_shapes(images, masks, images_name, masks_mame):

 # Dataset

 print(f'{images_name} Dataset size : {len(images)}')

 print(f'{images_name} shape: {images.shape}')

 print(f'Single {images_name} shape: {images[1].shape}')

 print(f'{masks_mame} shape: {masks.shape}')

 print(f'Single {masks_mame} shape: {masks[1].shape}')

def print_sets_size_shapes(dataset, images_name, masks_name):

 images, masks = tuple(zip(*dataset))

 images = np.asarray(images)

 masks = np.asarray(masks)

 # Dataset

 print(f'{images_name} Dataset size : {len(images) * len(images[1])}')

 print(f'{images_name} shape: {images.shape[0]}')

 print(f'Batched {images_name} shape: {images[0].shape}')

 print(f'Single {images_name} shape: {images[0][0].shape}')

 print(f'{masks_name} Dataset size : {len(masks) * len(masks[1])}')

- 116 -

 print(f'{masks_name} shape: {masks.shape[0]}')

 print(f'Batched {masks_name} shape: {masks[0].shape}')

 print(f'Single {masks_name} shape: {masks[0][0].shape}')

Create dataset for the model- Without Augmentation

Creating tensors data.Datasets of Train, Validation, Test sets

def to_tensors(x_train, mask_train, x_val, mask_val, x_test, mask_test):

 train_ds = tf.data.Dataset.from_tensor_slices((x_train, mask_train))

 val_ds = tf.data.Dataset.from_tensor_slices((x_val, mask_val))

 test_ds = tf.data.Dataset.from_tensor_slices((x_test, mask_test))

 return train_ds,val_ds,test_ds

Configure Datasets for performance: cache, shuffle, prefetech

def configure_for_performance(ds, seed, buffer_size= 1000, batch_size=1):

 ds = ds.cache()

 ds = ds.shuffle(buffer_size= buffer_size, seed=seed)

 ds = ds.bataach(batch_size)

 ds = ds.prefetch(buffer_size= tf.data.AUTOTUNE)

 return ds

def create_performance_dataset(X_train, mask_train, X_val, mask_val,

X_test, mask_test, seed, batch_size=1):

 train_ds, val_ds, test_ds = to_tensors(X_train, mask_train, X_val,

mask_val, X_test, mask_test)

 train_ds = configure_for_performance(train_ds,seed, batch_size=

batch_size)

 val_ds = configure_for_performance(val_ds,seed, batch_size= batch_size)

 -117-

 test_ds = configure_for_performance(test_ds,seed, batch_size= batch_size)

 return train_ds, val_ds, test_ds

CREATE SETS FOR AUGMENDED MODELSdef def

def train_validation_augmentation(x_test, mask_test, seed=42, batch_size=1):

 # Test images and masks generators

 # Test images

 test_image_gen = ImageDataGenerator()

 test_image_gen.fit(x_test, augment = True, seed = seed)

 test_img_generator = test_image_gen.flow(x_test, seed = seed,

 shuffle=True, batch_size=batch_size)

 # Test masks

 test_mask_gen = ImageDataGenerator()

 test_mask_gen.fit(mask_test, augment = True, seed = seed)

 test_mask_generator = test_mask_gen.flow(mask_test, seed = seed,

 shuffle=True, batch_size=batch_size)

 return test_img_generator, test_mask_generator

def image_mask_generator_set(image_generator, mask_generator):

 return zip(image_generator, mask_generator)

Model Setup

Jaccard-Coefficient (Intersection Over Union) metric for semantic

segmentation

def jaccard_index(masks_true, masks_predicted):

 masks_true_flatten = Kb.flatten(masks_true)

 masks_predicted_flatten = Kb.flatten(masks_predicted)

 intersection = Kb.sum(masks_true_flatten * masks_predicted_flatten)

- 118 -

 return (intersection + 10.0) / (Kb.sum(masks_true_flatten) +

 Kb.sum(masks_predicted_flatten) - intersection + 10.0)

def jaccard_loss(y_true, y_pred, p_value=1.75,smooth = 10):

 y_true_f = Kb.flatten(y_true)

 y_pred_f = Kb.flatten(y_pred)

 intersection = Kb.sum(y_true_f * y_pred_f)

 term_true = Kb.sum(Kb.pow(y_true_f, p_value))

 term_pred = Kb.sum(Kb.pow(y_pred_f, p_value))

 union = term_true + term_pred - intersection

 return 1 - ((intersection + smooth) / (union + smooth))

 # Evaluation of the model Functions

 # Take trained Unet model

def get_unet_model(model_name):

 return models.load_model(model_name,

custom_objects={"jaccard_loss":jaccard_loss,"jaccard_index":jaccard_index

})

Evaluate Unet on unknown Test set

without augmentation

def print_unet_test_evaluation(unet_model, unet_model_name, test_set,

verbose=2):

 _, acc = unet_model.evaluate(test_set, verbose = verbose)

 print(f"Evaluation Jaccard Index of {unet_model_name} U-net model is:

{acc*100.0} % ")

with augmentation

def print_unet_test_evaluation_AUGM(unet_model, unet_model_name,

X_test,mask_test, batch_size, verbose=2):

 -119-

 _, acc = unet_model.evaluate(X_test,mask_test, batch_size=batch_size,

verbose = verbose)

 print(f"Evaluation Jaccard Index of {unet_model_name} U-net model is:

{acc*100.0} % ")

#Predict Jaccard coefficient (IOU) Test set with Unet

without augmentation

def calc_predictions(unet_model,test_ds, threshold=0.5):

 masks_predictions = unet_model.predict(test_ds)

 masks_pred_thresholed = masks_predictions > threshold

 return masks_pred_thresholed

with augmentation

def calc_predictions_AUGM(unet_model,X_test, batch_size, threshold=0.5):

 masks_predictions = unet_model.predict(X_test, batch_size=batch_size)

 masks_pred_thresholed = masks_predictions > threshold

 return masks_pred_thresholed

def test_jaccard_index(unet_model, masks_test, model_masks_predicted):

 intersection = np.logical_and(masks_test, model_masks_predicted)

 union = np.logical_or(masks_test, model_masks_predicted)

 jaccard_index_score = np.sum(intersection)/np.sum(union)

 return jaccard_index_score

def print_unet_jaccard_score(model_name, jaccard_index_score):

 print(f"Jaccard Index Score (IOU) of unet model {model_name} is:

{jaccard_index_score}")

Check predicted masks vs true masks of images in Test set

- 120 -

 def create_masked_image(image, mask):

 return cv2.bitwise_and(image, image, mask= mask)

def unbatch_set(dataset):

 unbatached_dataset = []

 for batch in dataset:

 for image in batch:

 unbatached_dataset.append(image)

 return np.asarray(unbatached_dataset)

def test_image_sunnity_check(unet_model, test_ds,

model_masks_predicted):

 test_images, test_masks = tuple(zip(*test_ds))

 test_images = np.asarray(test_images)

 test_masks = np.asarray(test_masks)

 test_images = unbatch_set(test_images)

 test_masks = unbatch_set(test_masks)

 for i in range(test_images.shape[0]):

 test_img = test_images[i]

 ground_truth = test_masks[i]

 test_img_input=np.expand_dims(test_img, 0)

 prediction_mask = model_masks_predicted[i].astype(np.uint8)

 predicted_masked_image = create_masked_image(test_img,

 prediction_mask)

 print (f'Test Image : {i+1}')

 plt.figure(figsize=(16, 12))

 plt.subplot(241)

 plt.title('Testing Image')

 -121-

 plt.imshow(test_img)

 plt.subplot(242)

 plt.title('Testing Label')

 plt.imshow(ground_truth)

 plt.subplot(243)

 plt.title('Prediction on test image')

 plt.imshow(prediction_mask)

 plt.subplot(244)

 plt.title('Image with prediction mask')

 plt.imshow(predicted_masked_image)

 plt.show()

def test_image_sunnity_check_AUGM (unet_model, X_test,mask_test,

model_masks_predicted):

 for i in range(X_test.shape[0]):

 test_img = X_test[i]

 ground_truth = mask_test[i]

 test_img_input=np.expand_dims(test_img, 0)

 prediction_mask = model_masks_predicted[i].astype(np.uint8)

 predicted_masked_image = create_masked_image(test_img,

 prediction_mask)

 print (f'Test Image : {i+1}')

 plt.figure(figsize=(16, 12))

 plt.subplot(241)

 plt.title('Testing Image')

 plt.imshow(test_img)

 plt.subplot(242)

 plt.title('Testing Label')

 plt.imshow(ground_truth)

- 122 -

 plt.subplot(243)

 plt.title('Prediction on test image')

 plt.imshow(prediction_mask)

 plt.subplot(244)

 plt.title('Image with prediction mask')

 plt.imshow(predicted_masked_image)

 plt.show()

confusion_matrix without augmnetation

def plot_confusion_matrix(unet_model, model_name, mask_test,

model_masks_predicted):

 mask_test = mask_test == 1

 mask_test = mask_test.flatten()

 mask_test_predictions = model_masks_predicted.flatten()

 cm = confusion_matrix(mask_test, mask_test_predictions, normalize='true')

 display_cm = ConfusionMatrixDisplay(confusion_matrix=cm,

display_labels=['0','1'])

 display_cm.plot(cmap=plt.cm.Blues)

 plt.title(f'Confusion Matrix on {model_name} Test set \n')

 plt.show()

confusion_matrix with augmnetation

def plot_confusion_matrix_AUGM(unet_model, model_name, mask_test,

model_masks_predicted):

 -123-

 mask_test = mask_test == 1

 mask_test = mask_test.flatten()

 mask_test_predictions = model_masks_predicted.flatten()

 cm = confusion_matrix(mask_test, mask_test_predictions, normalize='true')

 display_cm = ConfusionMatrixDisplay(confusion_matrix=cm,

 display_labels=['0','1'])

 display_cm.plot(cmap=plt.cm.Blues)

 plt.title(f'Confusion Matrix on {model_name} Test set \n')

 plt.show()

Display Models metrics without augmnetation

def display_model_metrics(unet_model, model_name, mask_test,

model_masks_predicted):

 mask_test = mask_test == 1

 mask_test = mask_test.flatten()

 mask_test_predictions = model_masks_predicted.flatten()

 report = classification_report(mask_test, mask_test_predictions)

 print(f'Model\'s {model_name} metrics:\n {report}')

Display Models metrics with augmnetation

def display_model_metrics_AUGM(unet_model, model_name, mask_test,

model_masks_predicted):

- 124 -

 mask_test = mask_test == 1

 mask_test = mask_test.flatten()

 mask_test_predictions = model_masks_predicted.flatten()

 report = classification_report(mask_test, mask_test_predictions)

 print(f'Model\'s {model_name} metrics:\n {report}')

RUN EVALUATE MODELS (extended masks paradigm)

Constants

IMG_WIDTH= 320

IMG_HEIGHT = 240

CHANNELS = 1

START_CONVS = 64

BATCH_SIZE = 6 # 8 for augmented

SEED = 42

Insert Data

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented'

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info'

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv'

Images, Masks, X_train, mask_train, X_val, mask_val, X_test, mask_test=

datasets_UNET(image_directory, mask_directory, bsa_directory,

IMG_WIDTH, IMG_HEIGHT, seed=42)

Dataset for the model- without Augmentation

 -125-

train_set, val_set, test_set = create_performance_dataset(X_train,

mask_train, X_val, mask_val, X_test, mask_test, SEED,

batch_size=BATCH_SIZE)

Shapes of uploaded original images, masks sets

print_size_shapes(Images, Masks, 'Images', 'Masks')

print_sets_size_shapes(train_set, 'Training', 'Training Masks')

print_sets_size_shapes(val_set, 'Validation', 'Validation Masks')

print_sets_size_shapes(test_set, 'Test', 'Test Masks')

Dataset Augmented with Image Generator

print_size_shapes(Images, Masks, 'Images', 'Masks')

print_size_shapes(X_train, mask_train, 'X_train', 'Masks_train')

print_size_shapes(X_val, mask_val, 'X_val', 'Masks_val')

print_size_shapes(X_test, mask_test, 'X_test', 'Masks_test')

Plot original image, mask pairs

plot_images(X_test, mask_test, lines=6)

EVALUATE MODEL Extended masks 240x320 without

Augmentation

unet_extended_batch8_bigDim =

get_unet_model('saved_U_net_models/unet_extended_batch8_bigDim')

print_unet_test_evaluation(unet_extended_batch8_bigDim,

'unet_extended_batch8_bigDim', test_set)

- 126 -

unet_extended_batch8_bigDim_masks_predicted =

calc_predictions(unet_extended_batch8_bigDim, test_set) # threshold to

0.5

unet_extended_batch8_bigDim_prediction_score =

test_jaccard_index(unet_extended_batch8_bigDim, mask_test,

unet_extended_batch8_bigDim_masks_predicted)

print_unet_jaccard_score('unet_extended_batch8_bigDim',

unet_extended_batch8_bigDim_prediction_score)

test_image_sunnity_check(unet_extended_batch8_bigDim, test_set,

unet_extended_batch8_bigDim_masks_predicted)

plot_confusion_matrix(unet_extended_batch8_bigDim,'unet_extended_batch

8_bigDim', mask_test, unet_extended_batch8_bigDim_masks_predicted)

display_model_metrics(unet_extended_batch8_bigDim,'unet_extended_batch

8_bigDim', mask_test, unet_extended_batch8_bigDim_masks_predicted)

EVALUATE AUGMENTED MODEL Extended masks 240x320 with

Augmentation

unet_extended_batch8_bigDim_AUGM =

get_unet_model('saved_U_net_models/unet_extended_batch8_bigDim_A

UGM')

print_unet_test_evaluation_AUGM(unet_extended_batch8_bigDim_AUGM,

'unet_extended_batch8_bigDim_AUGM', X_test, mask_test, BATCH_SIZE)

Predictions for Image Generator Augmented Model

 -127-

unet_extended_batch8_bigDim_masks_predicted_AUGM =

calc_predictions_AUGM(unet_extended_batch8_bigDim_AUGM,X_test,

BATCH_SIZE)

unet_extended_batch8_bigDim_prediction_score_AUGM =

test_jaccard_index(unet_extended_batch8_bigDim_AUGM, mask_test,

unet_extended_batch8_bigDim_masks_predicted_AUGM)

print_unet_jaccard_score('unet_extended_batch8_bigDim_AUGM',

unet_extended_batch8_bigDim_prediction_score_AUGM)

test_image_sunnity_check_AUGM(unet_extended_batch8_bigDim_AUGM,

X_test, mask_test,

unet_extended_batch8_bigDim_masks_predicted_AUGM)

plot_confusion_matrix_AUGM(unet_extended_batch8_bigDim_AUGM,'unet

_extended_batch8_bigDim_AUGM', mask_test,

unet_extended_batch8_bigDim_masks_predicted_AUGM)

display_model_metrics_AUGM(unet_extended_batch8_bigDim_AUGM,'unet

_extended_batch8_bigDim_AUGM', mask_test,

unet_extended_batch8_bigDim_masks_predicted_AUGM)

1.4 CNN Code

1.4.1 Code For Training CNN Models

Dataset Creation Functions Import

%run Datasets_Creation.ipynb

Plot Functions

def plot_images(images,masks, masked_images, labels, lines=20):

 for i in range(100,120):

 image = random.randint(0, images.shape[0])

- 128 -

 print(list(labels.keys())[image])

 plt.figure(figsize=(16, 12))

 plt.subplot(131)

 plt.title(f'Original Image - {list(labels.values())[image]}')

 plt.imshow(images[image])

 plt.subplot(132)

 plt.title('Mask')

 plt.imshow(masks[image])

 plt.subplot(133)

 plt.title('Masked image')

 plt.imshow(masked_images[image])

 plt.show()

Print dimensions

def print_size_shapes(images, masks, masked_images, labels, images_name,

masks_name, masked_images_name, labels_name):

 # Dataset

 print(f'{images_name} Dataset size : {len(images)}')

 print(f'{images_name} shape: {images.shape}')

 print(f'Single {images_name} shape: {images[1].shape}')

 print(f'{masks_name} shape: {masks.shape}')

 print(f'Single {masks_name} shape: {masks[1].shape}')

 print(f'{masked_images_name} shape: {masked_images.shape}')

 print(f'Single {masked_images_name} shape: {masked_images[1].shape}')

 print(f'{labels_name} shape: {np.asarray(list(labels.values

Train, Validation,Test Set

def print_sets_size_shapes(X_train, y_train, X_val, y_val, X_test, y_test):

 # Train dataset

 -129-

 print(f'Training Dataset size : {len(X_train)}')

 print(X_train.shape)

 print(X_train[1].shape)

 print(y_train.shape)

 # Validation Dataset

 print(f'Validation Dataset size : {len(X_val)}')

 print(X_val.shape)

 print(X_val[1].shape)

 print(y_val.shape)

 # Test Dataset

 print(f'Test Dataset size : {len(X_test)}')

 print(X_test.shape)

 print(X_test[1].shape)

 print(y_test.shape)

Create dataset for the model without Data Augmentation

Creating tensors data.Datasets of Train, Validation, Test sets

def to_tensors(x_train, y_train, x_val, y_val, x_test, y_test):

 train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train))

 val_ds = tf.data.Dataset.from_tensor_slices((x_val, y_val))

 test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test))

 return train_ds,val_ds,test_ds

cache, shuffle, prefetch

Configure Datasets for performance: cache, shuffle, prefetch

def configure_for_performance(ds, seed, buffer_size= 1000, batch_size=1):

- 130 -

 ds = ds.cache()

 ds = ds.shuffle(buffer_size= buffer_size, seed=seed)

 ds = ds.batch(batch_size)

 ds = ds.prefetch(buffer_size= tf.data.AUTOTUNE)

 return ds

def create_performance_dataset(X_train, y_train, X_val, y_val, X_test, y_test,

seed=42, batch_size=1):

 train_ds, val_ds, test_ds = to_tensors(X_train, y_train, X_val, y_val,

X_test, y_test)

 train_ds= configure_for_performance(train_ds,seed, batch_size=

 batch_size)

 val_ds = configure_for_performance(val_ds,seed, batch_size= batch_size)

 test_ds = configure_for_performance(test_ds,seed, batch_size= batch_size)

 return train_ds, val_ds, test_ds, X_test, y_test

def create_performance_dataset(X_train, y_train, X_val, y_val, X_test, y_test,

seed=42, batch_size=1):

 train_ds, val_ds, test_ds = to_tensors(X_train, y_train, X_val, y_val,

X_test,

 y_test)

 train_ds = configure_for_performance(train_ds,seed, batch_size=

 batch_size)

 val_ds = configure_for_performance(val_ds,seed, batch_size= batch_size)

 test_ds = configure_for_performance(test_ds,seed, batch_size= batch_size)

 -131-

 return train_ds, val_ds, test_ds, X_test, y_test

Augmentations for Tensor set

Dataset augmentation layers

data_augmentation_layers = [

 layers.RandomContrast(0.5),]

data_augmentation = tf.keras.Sequential(

 data_augmentation_layers)

CREATE AUGMENDED SETS FUNCTIONS

def train_validation_augmentation(x_train, y_train, x_val, y_val, seed=42,

batch_size=1):

 image_data_gen_args = dict(rotation_range = 10,

 width_shift_range = 0.1,

 height_shift_range = 0.1,

 shear_range = 0.1,

 zoom_range = 0.2,

 brightness_range = (0.2, 0.9),

 fill_mode= 'nearest')

 # Train images

 image_data_generator = ImageDataGenerator(**image_data_gen_args)

 image_data_generator.fit(x_train, augment = True, seed = seed)

 train_image_generator = image_data_generator.flow(x_train, y_train,

 seed = seed,

 shuffle=True,

 batch_size=batch_size)

 # Validation images

 valid_image_gen = ImageDataGenerator(**image_data_gen_args)

- 132 -

 valid_image_gen.fit(x_val, augment = True, seed = seed)

 valid_img_generator = valid_image_gen.flow(x_val, y_val,

 seed = seed,

 shuffle=True,

 batch_size=batch_size)

 return train_image_generator, valid_img_generator

def plot_Gerarator_Images(img_gen):

 for i in range(0,8):

 x = img_gen.next()

 image = x[i]

 plt.imshow(image[:,:,0])

 plt.show()

Model's functions

Model construction

def build_CNN_model(input_shape, start_neurons= 16, firstTwo_kernels =

(7,7)):

 input_layer = tf.keras.Input(shape=input_shape)

 # Image augmentation block

 input_layer = data_augmentation(input_layer)

 input_resc = layers.Rescaling(scale=1./255)(input_layer)

 conv1a = layers.Conv2D(start_neurons * 1, firstTwo_kernels,

 padding="same", activation="relu")(input_resc)

 batch1a = layers.BatchNormalization()(conv1a)

 -133-

 conv1b = layers.Conv2D(start_neurons * 1, firstTwo_kernels,

padding="same"

 , activation="relu")(batch1a)

 batch1b = layers.BatchNormalization()(conv1b)

 pool1 = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(batch1b)

 conv2a = layers.Conv2D(start_neurons * 2, (3, 3), padding="same",

 activation="relu")(pool1)

 batch2a = layers.BatchNormalization()(conv2a)

 conv2b = layers.Conv2D(start_neurons * 2, (3, 3), padding="same",

 activation="relu")(batch2a)

 batch2b = layers.BatchNormalization()(conv2b)

 pool2 = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(batch2b)

 conv3a = layers.Conv2D(start_neurons * 4, (3, 3), padding="same",

activation="relu")(pool2)

 batch3a = layers.BatchNormalization()(conv3a)

 conv3b = layers.Conv2D(start_neurons * 4, (3, 3), padding="same",

 activation="relu")(batch3a)

 batch3b = layers.BatchNormalization()(conv3b)

 pool3 = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(batch3b)

 conv4a = layers.Conv2D(start_neurons * 8, (3, 3), padding="same",

 activation="relu")(pool3)

 batch4a = layers.BatchNormalization()(conv4a)

 conv4b = layers.Conv2D(start_neurons * 8, (3, 3), padding="same",

 activation="relu")(batch4a)

 batch4b = layers.BatchNormalization()(conv4b)

 pool4 = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(batch4b)

- 134 -

 flatten = layers.Flatten()(pool4)

 drop_f = layers.Dropout(0.4)(flatten)

 full_con1 = layers.Dense(start_neurons * 64, activation='relu',

 kernel_regularizer=regularizers.l2(0.05))(drop_f)

 drop_1 = layers.Dropout(0.4)(full_con1)

 full_con2 = layers.Dense(start_neurons * 32, activation='relu',

 kernel_regularizer=regularizers.l2(0.05))(drop_1)

 drop_2 = layers.Dropout(0.4)(full_con2)

 output_layer = layers.Dense(2, activation='sigmoid')(drop_2)

 return tf.keras.Model(input_layer,output_layer)

Set Learning rate scheduler

Learning Rate optimezer setup

def learning_scheduler(initial_rate):

 return tf.keras.optimizers.schedules.InverseTimeDecay(

 initial_rate,

 decay_steps=STEPS_PER_EPOCH*5,

 decay_rate=1,

 staircase=False)

def get_optimizer(initial_rate):

 return tf.keras.optimizers.Adam(learning_scheduler(initial_rate))

 -135-

plot learning rate degradation

def plot_learning_schedule(initial_rate):

 step = np.linspace(0,2500)

 lr_schedule = learning_scheduler(initial_rate)

 lr = lr_schedule(step)

 plt.figure(figsize = (8,6))

 plt.plot(step/STEPS_PER_EPOCH, lr)

 plt.ylim([0,max(plt.ylim())])

 plt.xlabel('Epoch')

 _ = plt.ylabel('Learning Rate')

Callbacks - Earling Stoping

callbacks logs for each model

def get_callbacks(name, patience, monitor):

 return [

 tf.keras.callbacks.EarlyStopping(

 monitor= monitor,

 verbose=2,

 patience= patience,

 restore_best_weights= True),

 tf.keras.callbacks.TensorBoard(logdir/name),

]

def checkpointer(model_name):

 return tf.keras.callbacks.ModelCheckpoint(model_name, verbose=1,

 save_best_only=True)

Model Setup

Compiler

def models_compiler(model, optimizer,

- 136 -

loss=tf.keras.losses.BinaryCrossentropy(from_logits=False), metrics=

[tf.keras.metrics.BinaryAccuracy()]):

 return model.compile(optimizer=optimizer, loss=loss, metrics= metrics)

Model fit

without augmentation

def CNN_compile_fit(model, name, train_ds, val_ds, optimizer=None,

learning_rate=0.02, max_epochs=200, patience=5, monitor='val_loss',

class_weights=None, batch_size=1):

 if optimizer is None:

 optimizer = get_optimizer(learning_rate)

 models_compiler(model= model, optimizer= optimizer)

 model.summary()

 history = model.fit(

 train_ds,

 steps_per_epoch = STEPS_PER_EPOCH,

 epochs = max_epochs,

 validation_data = val_ds,

 class_weight = class_weights,

 callbacks = get_callbacks(name, patience, monitor),

 verbose=1,)

 return history

with augmentation

def CNN_compile_fit_AUGM(model, name, train_generator, val_generator,

train_length, validation_length, optimizer=None, learning_rate=0.02,

 -137-

max_epochs=200, patience=5, monitor='val_loss', class_weights=None,

batch_size=1):

 if optimizer is None:

 optimizer = get_optimizer(learning_rate)

 models_compiler(model= model, optimizer= optimizer)

 model.summary()

 history = model.fit(

 train_generator,

 steps_per_epoch = STEPS_PER_EPOCH,

 epochs = max_epochs,

 validation_data = val_generator,

 #validation_steps = train_length,

 class_weight = class_weights,

 callbacks = get_callbacks(name, patience, monitor),

 verbose=1,)

 return history

Model's Graphs

Plotting Net Loss cs Val_Loss and Acuuracy vs Val_Accuracy

def plot_model_graphs(model_name, type_histories):

 loss_CNN = type_histories[model_name].history['loss']

 val_loss_CNN = type_histories[model_name].history['val_loss']

 epochs = range(1, len(loss_CNN) + 1)

 binary_accuracy_metric_CNN =

- 138 -

 type_histories[model_name].history['binary_accuracy']

 val_binary_accuracy_CNN =

 type_histories[model_name].history['val_binary_accuracy']

 plt.figure(figsize=(40,40))

 ax = plt.subplot(2, 2, 1)

 plt.plot(epochs, loss_CNN, 'b', label='Training loss')

 plt.plot(epochs, val_loss_CNN, 'r', label='Validation loss')

 plt.title(model_name + ' Training and Validation Loss', fontsize=30)

 plt.xlabel('Epochs', fontsize=30)

 plt.ylabel(' Loss', fontsize=30)

 plt.legend(loc='lower right', fontsize=20)

 ax = plt.subplot(2, 2, 2)

 plt.plot(epochs, binary_accuracy_metric_CNN, 'b', label='Training Binary

 Accuracy metric')

 plt.plot(epochs, val_binary_accuracy_CNN, 'r', label='Validation Binary

 Accuracy metric')

 plt.title(model_name + ' Training and Validation Binary Accuracy metric',

 fontsize=30)

 plt.xlabel('Epochs', fontsize=30)

 plt.ylabel('Binary Accuracy', fontsize=30)

 plt.legend(loc='lower right', fontsize=20)

 plt.show()

Create Logs for the different nets

 -139-

logdir = pathlib.Path(tempfile.mkdtemp())/"tensorboard_logs"

shutil.rmtree(logdir, ignore_errors=True)

#initialize model history dictionary

type_histories = {}

RUN MODELS (extended mask paradigm 240 x 320)

Insert Data

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented'

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info'

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv'

Dataset BSA calculation

BSA SETUP

bsa_data = upload_data(bsa_directory,

['image','height','weight','long_axis','area','volume','birth','gender'])

bsa_data.head()

bsa_data.tail()

Body Mass Area (BSA) calculation per image

bsa_data_dict = create_bsa_data_dict(bsa_data)

bsa_data_dict

BSA calculation

bsa_coef_dict = bsa_calculation(bsa_data_dict)

bsa_coef_dict

Image Size 240 x 320

Constants

- 140 -

IMG_WIDTH= 320

IMG_HEIGHT = 240

CHANNELS = 1

START_CONVS = 16

BATCH_SIZE = 32

SEED = 42

Upload images and masks - Create masked images dataset, calculate labels

image_dataset, image_masked_dataset, mask_dataset, label_dataset,

bsa_data_dict, classes, _, X_train, y_train, X_val, y_val, X_test, y_test =

datasets_CNN_extended(image_directory, mask_directory, bsa_data_dict,

IMG_WIDTH, IMG_HEIGHT)

Shapes of uploaded original images, masks sets, labels

print_size_shapes(image_dataset, mask_dataset, image_masked_dataset,

label_dataset, 'Original Images', 'Masks', 'Masked Images', 'Labels')

Print images, masks,masked-images and respective labels

print_sets_size_shapes(X_train, y_train, X_val, y_val, X_test, y_test)

Data Inspection

bsa_data_dict

label_dataset

plot_images(image_dataset, mask_dataset, image_masked_dataset,

label_dataset, lines=10)

classes

Dataset for the model- Without Augmentation

 -141-

train_set, val_set, test_set, test_images, test_true_labels =

create_performance_dataset(X_train, y_train, X_val, y_val, X_test,

y_test,seed=SEED, batch_size=BATCH_SIZE)

Shapes of uploaded original images sets

shape of train and label batch

for image_batch, labels_batch in train_set:

 print('Train batch size:', image_batch.shape)

 print('Training Labels batch size:', labels_batch.shape)

 break

for image_batch, labels_batch in val_set:

 print('Validation batch size:', image_batch.shape)

 print('Validation Labels batch size:', labels_batch.shape)

 break

for image_batch, labels_batch in test_set:

 print('Test batch size:', image_batch.shape)

 print('Test Labels batch size:', labels_batch.shape)

 break

train_Generator, validation_Generator =

train_validation_augmentation(X_train, y_train, X_val, y_val, seed=SEED,

batch_size=BATCH_SIZE)

Set Learning Rate

LEARNING_RATE = 0.0002

STEPS_PER_EPOCH = len(train_set)

choose with augmented dataset

STEPS_PER_EPOCH = len(X_train)//BATCH_SIZE

plot_learning_schedule(LEARNING_RATE)

RUN MODEL Extended masks 240 x 320

- 142 -

image_size = (IMG_HEIGHT , IMG_WIDTH)

cnn = build_CNN_model(input_shape= image_size + (CHANNELS,),

start_neurons= START_CONVS, firstTwo_kernels = (7,7))

Run model with Datasets without augmentation

type_histories['cnn_extended_batch32_bigDim']= CNN_compile_fit(cnn,

'cnn_extended_batch32_bigDim', train_set,

val_set,learning_rate = LEARNING_RATE, max_epochs=1000, patience=50,

batch_size=BATCH_SIZE)

Run model with Augmented Sets

type_histories['cnn_extended_batch32_bigDim_AUGM']=

CNN_compile_fit_AUGM(cnn, 'cnn_extended_batch32_bigDim_AUGM',

train_Generator, validation_Generator, len(X_train), len(X_val),

learning_rate=LEARNING_RATE,max_epochs=2500, patience=50,

batch_size=BATCH_SIZE)

Save model

cnn.save('saved_CNN_models/cnn_extended_batch32_bigDim')

cnn.save('saved_CNN_models/cnn_extended_batch32_bigDim_AUGM')

Plot model

plot_model_graphs("cnn_extended_batch32_smallDim", type_histories)

plot_model_graphs("cnn_extended_batch32_smallDim_AUGM",

type_histories)

1.4.2 Code for Evaluating CNN Models

Dataset Creation Function Import

%run Datasets_Creation.ipynb

 -143-

Plot Functions

def plot_images(images,masks, masked_images, labels, lines=20):

 for i in range(100,120):

 image = random.randint(0, images.shape[0])

 print(list(labels.keys())[image])

 plt.figure(figsize=(16, 12))

 plt.subplot(131)

 plt.title(f'Original Image - {list(labels.values())[image]}')

 plt.imshow(images[image])

 plt.subplot(132)

 plt.title('Mask')

 plt.imshow(masks[image])

 plt.subplot(133)

 plt.title('Masked image')

 plt.imshow(masked_images[image])

 plt.show()

Print dimensions

def print_size_shapes(images, masks, masked_images, labels, images_name,

masks_name, masked_images_name, labels_name):

 # Dataset

 print(f'{images_name} Dataset size : {len(images)}')

 print(f'{images_name} shape: {images.shape}')

 print(f'Single {images_name} shape: {images[1].shape}')

 print(f'{masks_name} shape: {masks.shape}')

 print(f'Single {masks_name} shape: {masks[1].shape}')

 print(f'{masked_images_name} shape: {masked_images.shape}')

 print(f'Single {masked_images_name} shape: {masked_images[1].shape}')

- 144 -

 print(f'{labels_name} shape: {np.asarray(list(labels.values())).shape}')

Train, Validation,Test Set

def print_sets_size_shapes(X_train, y_train, X_val, y_val, X_test, y_test):

 # Train dataset

 print(f'Training Dataset size : {len(X_train)}')

 print(X_train.shape)

 print(X_train[1].shape)

 # Validation Dataset

 print(f'Validation Dataset size : {len(X_val)}')

 print(X_val.shape)

 print(X_val[1].shape)

 # Test Dataset

 print(f'Test Dataset size : {len(X_test)}')

 print(X_test.shape)

 print(X_test[1].shape)

Create dataset for the model- Without Augmentation

Creating tensors data.Datasets of Train, Validation, Test sets

def to_tensors(x_train, y_train, x_val, y_val, x_test, y_test):

 train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train))

 val_ds = tf.data.Dataset.from_tensor_slices((x_val, y_val))

 test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test))

 return train_ds,val_ds,test_ds

cache, shuffle, prefetch

def configure_for_performance(ds, seed, buffer_size= 1000, batch_size=1):

 -145-

 ds = ds.cache()

 ds = ds.shuffle(buffer_size= buffer_size, seed=seed)

 ds = ds.batch(batch_size)

 ds = ds.prefetch(buffer_size= tf.data.AUTOTUNE)

 return ds

def create_performance_dataset(X_train, y_train, X_val, y_val, X_test,

y_test, seed=42, batch_size=1):

 train_ds, val_ds, test_ds = to_tensors(X_train, y_train, X_val, y_val,

X_test,

 y_test)

 train_ds = configure_for_performance(train_ds,seed, batch_size=

batch_size)

 val_ds = configure_for_performance(val_ds,seed, batch_size= batch_size)

 test_ds = configure_for_performance(test_ds,seed, batch_size= batch_size)

 return train_ds, val_ds, test_ds, X_test, y_test

CREATE SETS FOR AUGMENDED MODELS

def train_validation_augmentation(x_train, y_train, x_val, y_val, seed=42,

batch_size=1):

 image_data_gen_args = dict(rotation_range = 10,

 width_shift_range = 0.1,

 height_shift_range = 0.1,

 shear_range = 0.1,

 zoom_range = 0.2,

 brightness_range = (0.2, 0.9),

 fill_mode= 'nearest')

- 146 -

 # Train images

 image_data_generator = ImageDataGenerator(**image_data_gen_args)

 image_data_generator.fit(x_train, augment = True, seed = seed)

 train_image_generator = image_data_generator.flow(x_train, y_train,

 seed = seed,

 shuffle=True,

 batch_size=batch_size)

 # Validation images

 valid_image_gen = ImageDataGenerator(**image_data_gen_args)

 valid_image_gen.fit(x_val, augment = True, seed = seed)

 valid_img_generator = valid_image_gen.flow(x_val, y_val,

 seed = seed,

 shuffle=True,

 batch_size=batch_size)

 return train_image_generator, valid_img_generator

EVALUATION FUNCTIONS

Take trained CNN_model mode

def get_CNN_model(CNN_model_name):

 return models.load_model(CNN_model_name)

Evaluate CNN_model on unknown Test set

without augmentation

def print_CNN_test_evaluation(CNN_model_name, CNN_model, test_set,

verbose=2):

 _, acc = CNN_model.evaluate(test_set, verbose = verbose)

 print(f"Binary Accuracy evaluation of {CNN_model_name} CNN model is:

 {acc*100.0} % ")

 -147-

with augmentation

def print_CNN_test_evaluation_AUGM(CNN_model_name, CNN_model,

X_test,y_test, batch_size, verbose=2):

 _, acc = CNN_model.evaluate(X_test,y_test, batch_size=batch_size, verbose

 = verbose)

 print(f"Binary Accuracy evaluation of {CNN_model_name} CNN model is:

 {acc*100.0} % ")

Calculate Predictions

def labels_to_strings(label):

 if label == 0:

 return 'abnormal'

 else:

 return 'normal'

def labels_to_binary(label):

 if label == 'abnormal':

 return 0

 else:

 return 1

without augmentation

def calc_predictions(CNN_model,test_ds, binarizer):

 pred = CNN_model.predict(test_ds)

 predictions = binarizer.inverse_transform(pred)

 return np.asarray(predictions)

with augmentation

def calc_predictions_AUGM(CNN_model,X_test, batch_size, binarizer):

- 148 -

 pred = CNN_model.predict(X_test, batch_size=batch_size)

 predictions = binarizer.inverse_transform(pred)

 return np.asarray(predictions)

Check predicted vs true labels of images in Test set

def unbatch_set(dataset):

 unbatached_dataset = []

 for batch in dataset:

 for image in batch:

 unbatached_dataset.append(image)

 return np.asarray(unbatached_dataset)

def test_image_sunnity_check(test_images, test_true_labels, predictions,

binarizer, lines=9):

 test_labels = np.asarray(binarizer.inverse_transform(test_true_labels))

 predicted_labels = predictions

 plt.figure(figsize=(15, 15))

 for i in range(15):

 ax = plt.subplot(4, 4, i + 1)

 plt.imshow(test_images[i])

 plt.title(f'True: {test_labels[i]}\nPredicted: {predicted_labels[i]}')

 plt.axis("off")

def plot_confusion_matrix(model_name, test_true_labels, predictions,

binarizer):

 true_labels = np.asarray(binarizer.inverse_transform(test_true_labels))

 cm = confusion_matrix(true_labels, predictions, normalize='true')

 print(f"Confusion matrix:\n {cm}")

 display_cm = ConfusionMatrixDisplay(confusion_matrix=cm)

 -149-

 display_cm.plot(cmap=plt.cm.Blues)

 plt.title(f'Confusion Matrix on {model_name} Test set \n')

 plt.show()

Display Models metrics

def display_model_metrics(model_name, test_true_labels, predictions,

binarizer):

 true_labels = np.asarray(binarizer.inverse_transform(test_true_labels))

 report = classification_report(true_labels, predictions, zero_division=0)

 print(f'Model\'s {model_name} metrics:\n {report}')

Plot Auc-Roc curves

def plot_auc_roc(model_name, test_true_labels, predictions, binarizer,

class_names=['abnormal','normal'], average="macro", zero_division=0):

 true_labels = np.asarray(binarizer.inverse_transform(test_true_labels))

 true_labels = np.asarray(list(map(labels_to_binary, true_labels)))

 predictions = np.asarray(list(map(labels_to_binary, predictions)))

 false_positive, true_positive, threshold = roc_curve(true_labels, predictions)

 auc_score = auc(false_positive, true_positive)

 plt.figure(figsize=(10, 10))

 plt.style.use('seaborn')

 plt.plot(false_positive, true_positive, linestyle='--',color='darkorange',

label=f"ROC curve (area = {'{:.2f}'.format(auc_score)})")

 plt.plot(false_positive, false_positive, linestyle='--', color='blue')

 plt.title('ROC curve for ' + model_name, fontsize=20)

 plt.xlim([0, 1])

- 150 -

 plt.ylim([0, 1])

 plt.xlabel('False Positive Rate', fontsize=20)

 plt.ylabel('True Positive Rate', fontsize=20)

 plt.legend(loc='lower right', fontsize=15)

 plt.show()

EVALUATION OF THE MONDELS (Extended masks paradigm)

Insert Data

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented'

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info'

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv'

Dataset BSA calculation

BSA SETUP

bsa_data = upload_data(bsa_directory,

['image','height','weight','long_axis','area','volume','birth','gender'])

bsa_data.head()

bsa_data.tail()

Body Mass Area (BSA) calculation per image

bsa_data_dict = create_bsa_data_dict(bsa_data)

bsa_data_dict

BSA calculation

bsa_coef_dict = bsa_calculation(bsa_data_dict)

bsa_coef_dict

Image Size 240 x 320

 -151-

Constants

IMG_WIDTH= 320

IMG_HEIGHT = 240

CHANNELS = 1

START_CONVS = 16

BATCH_SIZE = 32

SEED = 42

Upload images and masks - Create masked images dataset, calculate labels

image_dataset, image_masked_dataset, mask_dataset, label_dataset,

bsa_data_dict, classes, _, X_train, y_train, X_val, y_val, X_test, y_test =

datasets_CNN_extended(image_directory, mask_directory, bsa_data_dict,

IMG_WIDTH, IMG_HEIGHT)

Shapes of uploaded original images, masks sets, labels

print_size_shapes(image_dataset, mask_dataset, image_masked_dataset,

label_dataset, 'Original Images', 'Masks', 'Masked Images', 'Labels')

Print images, masks,masked-images and respective labels

print_sets_size_shapes(X_train, y_train, X_val, y_val, X_test, y_test)

Data Inspection

bsa_data_dict

label_dataset

plot_images(image_dataset, mask_dataset, image_masked_dataset,

label_dataset, lines=10)

classes

Dataset for the model- Without Augmentation

- 152 -

train_set, val_set, test_set, test_images, test_true_labels =

create_performance_dataset(X_train, y_train, X_val, y_val, X_test,

y_test,seed=SEED, batch_size=BATCH_SIZE)

Shapes of uploaded original images sets

shape of train and label batch

for image_batch, labels_batch in train_set:

 print('Train batch size:', image_batch.shape)

 print('Training Labels batch size:', labels_batch.shape)

 break

for image_batch, labels_batch in val_set:

 print('Validation batch size:', image_batch.shape)

 print('Validation Labels batch size:', labels_batch.shape)

 break

for image_batch, labels_batch in test_set:

 print('Test batch size:', image_batch.shape)

 print('Test Labels batch size:', labels_batch.shape)

 break

train_Generator, validation_Generator =

train_validation_augmentation(X_train, y_train, X_val, y_val, seed=SEED,

batch_size=BATCH_SIZE)

Evaluate MODEL Extended masks 240x320 - Without

Augmentation

cnn_extended_batch32_bigDim = get_CNN_model

('saved_CNN_models/cnn_extended_batch32_bigDim')

print_CNN_test_evaluation("cnn_extended_batch32_bigDim",

cnn_extended_batch32_bigDim, test_set)

 -153-

cnn_extended_batch32_bigDim_predictions =

calc_predictions(cnn_extended_batch32_bigDim, test_set, label_binarizer)

cnn_extended_batch32_bigDim_predictions

test_image_sunnity_check(test_images, test_true_labels,

cnn_extended_batch32_bigDim_predictions, label_binarizer)

confusion matrix

plot_confusion_matrix('cnn_extended_batch32_bigDim',test_true_labels,

cnn_extended_batch32_bigDim_predictions, label_binarizer)

display_model_metrics('cnn_extended_batch32_bigDim',test_true_labels,

cnn_extended_batch32_bigDim_predictions,label_binarizer)

plot_auc_roc('CNN Extended Maks 320x240',test_true_labels,

cnn_extended_batch32_bigDim_predictions,label_binarizer)

EVALUATE AUGMENTED MODEL Extended masks 240x320

cnn_extended_batch32_bigDim_AUGM = get_CNN_model

('saved_CNN_models/cnn_extended_batch32_bigDim_AUGM')

print_CNN_test_evaluation_AUGM("cnn_extended_batch32_bigDim_AUGM

", cnn_extended_batch32_bigDim_AUGM, X_test, y_test, BATCH_SIZE)

cnn_extended_batch32_bigDim_AUGM_predictions =

calc_predictions_AUGM(cnn_extended_batch32_bigDim_AUGM, X_test,

BATCH_SIZE, label_binarizer)

cnn_extended_batch32_bigDim_AUGM_predictions

- 154 -

test_image_sunnity_check(X_test, y_test,

cnn_extended_batch32_bigDim_AUGM_predictions, label_binarizer)

plot_confusion_matrix('cnn_extended_batch32_bigDim_AUGM',y_test,

cnn_extended_batch32_bigDim_AUGM_predictions, label_binarizer)

display_model_metrics('cnn_extended_batch32_bigDim_AUGM',y_test,

cnn_extended_batch32_bigDim_AUGM_predictions,label_binarizer)

plot_auc_roc('CNN Augmented Extended Masks 240x320',y_test,

cnn_extended_batch32_bigDim_AUGM_predictions,label_binarizer)

1.5 CNN-UNET Pipeline Evaluation Code

Dataset Creation Functions Import

%run Datasets_Creation.ipynb

Plot Functions

def plot_images_UNET(image_set, mask_set, lines=6):

 image_indexs = []

 plt.figure(figsize=(15, 15))

 for i in range(lines):

 plt.figure(figsize=(15, 15))

 image = random.randint(0, len(image_set))

 ax = plt.subplot(121)

 plt.imshow(image_set[image,:,:,0])

 ax = plt.subplot(122)

 plt.imshow(mask_set[image,:,:,0])

 plt.axis("off")

def plot_images_CNN(images,masks, masked_images, labels):

 -155-

 for image in range(len(images)):

 print(labels[image])

 plt.figure(figsize=(16, 12))

 plt.subplot(131)

 plt.title(f'Original Image - {labels[image]}')

 plt.imshow(images[image])

 plt.subplot(132)

 plt.title('Mask')

 plt.imshow(masks[image])

 plt.subplot(133)

 plt.title('Masked image')

 plt.imshow(masked_images[image])

 plt.show()

def plot_images_CNN_original_masks(images,masks, masked_images,

labels):

 for image in range(len(images)):

 print(labels[image])

 plt.figure(figsize=(16, 12))

 plt.subplot(131)

 plt.title(f'Original Image - {labels[image]}')

 plt.imshow(images[image])

 plt.subplot(132)

 plt.title('Mask')

 plt.imshow(masks[image])

 plt.subplot(133)

 plt.title('Predicted Mask')

 plt.imshow(masked_images[image])

- 156 -

 plt.show()

Print dimensions

def print_size_shapes(images, masks, masked_images, labels, images_name,

masks_name, masked_images_name, labels_name):

 # Dataset

 print(f'{images_name} Dataset size : {len(images)}')

 print(f'{images_name} shape: {images.shape}')

 print(f'Single {images_name} shape: {images[1].shape}')

 print(f'{masks_name} shape: {masks.shape}')

 print(f'Single {masks_name} shape: {masks[1].shape}')

 print(f'{masked_images_name} shape: {masked_images.shape}')

 print(f'Single {masked_images_name} shape: {masked_images[1].shape}')

 print(f'{labels_name} shape: {np.asarray(list(labels.values())).shape}')

Train, Validation,Test Set

def print_sets_size_shapes(X_train, y_train, X_val, y_val, X_test, y_test):

 # Train dataset

 print(f'Training Dataset size : {len(X_train)}')

 print(X_train.shape)

 print(X_train[1].shape)

 # Validation Dataset

 print(f'Validation Dataset size : {len(X_val)}')

 print(X_val.shape)

 print(X_val[1].shape)

 # Test Dataset

 -157-

 print(f'Test Dataset size : {len(X_test)}')

 print(X_test.shape)

 print(X_test[1].shape)

EVALUATION FUNCTIONS

UNET metric and Loss

def jaccard_index(masks_true, masks_predicted):

 masks_true_flatten = Kb.flatten(masks_true)

 masks_predicted_flatten = Kb.flatten(masks_predicted)

 intersection = Kb.sum(masks_true_flatten * masks_predicted_flatten)

 return (intersection + 10.0) / (Kb.sum(masks_true_flatten) +

Kb.sum(masks_predicted_flatten) - intersection + 10.0)

def jaccard_loss(y_true, y_pred, p_value=1.75,smooth = 10):

 y_true_f = Kb.flatten(y_true)

 y_pred_f = Kb.flatten(y_pred)

 intersection = Kb.sum(y_true_f * y_pred_f)

 term_true = Kb.sum(Kb.pow(y_true_f, p_value))

 term_pred = Kb.sum(Kb.pow(y_pred_f, p_value))

 union = term_true + term_pred - intersection

 return 1 - ((intersection + smooth) / (union + smooth))

Take UNET and CNN_model model

def get_unet_model(model_name):

 return models.load_model(model_name,

custom_objects={"jaccard_loss":jaccard_loss,"jaccard_index":jaccard_index})

def get_CNN_model(CNN_model_name):

 return models.load_model(CNN_model_name)

- 158 -

UNET predictions

def calc_unet_predictions_AUGM(unet_model,X_test, batch_size,

threshold=0.5):

 masks_predictions = unet_model.predict(X_test, batch_size=batch_size)

 masks_pred_thresholed = masks_predictions > threshold

 return masks_pred_thresholed.astype(np.uint8)

def create_masked_images(images, masks):

 masked_image_dataset = []

 for i in range(len(images)):

 image = cv2.bitwise_and(images[i], images[i], mask= masks[i])

 masked_image_dataset.append(np.expand_dims(image,2))

 return np.asarray(masked_image_dataset).astype(np.uint8)

def create_masked_image(test_images, mask_predictions):

 return cv2.bitwise_and(test_images, mask_predictions, mask= mask)

def test_image_sunnity_check_UNET(X_test,mask_test,

model_masks_predicted):

 for i in range(X_test.shape[0]):

 test_img = X_test[i]

 ground_truth = mask_test[i]

 test_img_input=np.expand_dims(test_img, 0)

 prediction_mask = model_masks_predicted[i].astype(np.uint8)

 predicted_masked_image = create_masked_image(test_img,

 prediction_mask)

 -159-

 print (f'Test Image : {i+1}')

 plt.figure(figsize=(16, 12))

 plt.subplot(241)

 plt.title('Testing Image')

 plt.imshow(test_img)

 plt.subplot(242)

 plt.title('Testing Label')

 plt.imshow(ground_truth)

 plt.subplot(243)

 plt.title('Prediction on test image')

 plt.imshow(prediction_mask)

 plt.subplot(244)

 plt.title('Image with prediction mask')

 plt.imshow(predicted_masked_image)

 plt.show()

 # Evaluate CNN_model on unknown Test set

def print_CNN_test_evaluation_AUGM(CNN_model_name, CNN_model,

X_test,y_test, batch_size, verbose=2):

 _, acc = CNN_model.evaluate(X_test,y_test, batch_size=batch_size, verbose

 = verbose)

 print(f"Binary Accuracy evaluation of {CNN_model_name} CNN model is:

{acc*100.0} % ")

Calculate CNN Predictions

def calc_predictions_AUGM(CNN_model,X_test, batch_size, binarizer):

 pred = CNN_model.predict(X_test, batch_size=batch_size)

 predictions = binarizer.inverse_transform(pred)

 return np.asarray(predictions)

- 160 -

Check predicted vs true labels of images in Test set

def test_image_sunnity_check_CNN(test_images, test_true_labels,

predictions, binarizer, lines=9):

 test_labels = np.asarray(binarizer.inverse_transform(test_true_labels))

 predicted_labels = predictions

 plt.figure(figsize=(15, 15))

 for i in range(15):

 ax = plt.subplot(4, 4, i + 1)

 plt.imshow(test_images[i])

 plt.title(f'True: {test_labels[i]}\nPredicted: {predicted_labels[i]}')

 plt.axis("off")

def plot_confusion_matrix(model_name, test_true_labels, predictions,

binarizer):

 true_labels = np.asarray(binarizer.inverse_transform(test_true_labels))

 cm = confusion_matrix(true_labels, predictions, normalize='true')

 print(f"Confusion matrix:\n {cm}")

 display_cm = ConfusionMatrixDisplay(confusion_matrix=cm)

 display_cm.plot(cmap=plt.cm.Blues)

 plt.title(f'Confusion Matrix on {model_name} Test set \n')

 plt.show()

Display Models metrics

def display_model_metrics(model_name, test_true_labels, predictions,

binarizer):

 true_labels = np.asarray(binarizer.inverse_transform(test_true_labels))

 -161-

 report = classification_report(true_labels, predictions, zero_division=0)

 print(f'Model\'s {model_name} metrics:\n {report}')

def labels_to_binary(label):

 if label == 'abnormal':

 return 0

 else:

 return 1

Plot Auc-Roc curves

def plot_auc_roc(model_name, test_true_labels, predictions, binarizer,

class_names=['abnormal','normal'], average="macro", zero_division=0):

 true_labels = np.asarray(binarizer.inverse_transform(test_true_labels))

 true_labels = np.asarray(list(map(labels_to_binary, true_labels)))

 predictions = np.asarray(list(map(labels_to_binary, predictions)))

 false_positive, true_positive, threshold = roc_curve(true_labels, predictions)

 auc_score = auc(false_positive, true_positive)

 plt.figure(figsize=(10, 10))

 plt.style.use('seaborn')

 plt.plot(false_positive, true_positive, linestyle='--',color='darkorange',

label=f"ROC curve (area = {'{:.2f}'.format(auc_score)})")

 plt.plot(false_positive, false_positive, linestyle='--', color='blue')

 plt.title('ROC curve for ' + model_name, fontsize=20)

 plt.xlim([0, 1])

 plt.ylim([0, 1])

 plt.xlabel('False Positive Rate', fontsize=20)

 plt.ylabel('True Positive Rate', fontsize=20)

- 162 -

 plt.legend(loc='lower right', fontsize=15)

 plt.show()

EVALUATION OF THE MONDELS PIPELINE

#(Extended Masks Paradigm 120 x 160 with augmentation)

Insert Data

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented'

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info'

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv'

Upload images and masks - Create masked images dataset, calculate labels

image_dataset, mask_dataset,image_masked_dataset, X_train, mask_train,

y_train, X_val, mask_val, y_val, X_test, mask_test, y_test, label_dataset,

bsa_data_dict, classes, label_binarizer =

datasets_UNET(image_directory, mask_directory,bsa_directory,

IMG_WIDTH, IMG_HEIGHT)

Shapes of uploaded original images, masks sets, labels

print_size_shapes(image_dataset, mask_dataset, image_masked_dataset,

label_dataset, 'Original Images', 'Masks', 'Masked Images', 'Labels')

Print images, masks,masked-images and respective labels

print_sets_size_shapes(X_train, y_train, X_val, y_val, X_test, y_test)

Data Inspection

bsa_data_dict

label_dataset

Plot images, masks,masked-images and respective labels

 -163-

plot_images_UNET(image_dataset, mask_dataset, lines=6)

classes

EVALUATE Unet - CNN Pipeline

unet_model = get_unet_model

('models/unet_extended_batch8_bigDim_AUGM')

Predictions for Image Generator Augmented Model

unet_masks_predictions = calc_unet_predictions_AUGM(unet_model,X_test,

BATCH_SIZE)

test_masked_images = create_masked_images(X_test,

unet_masks_predictions)

plot_images_CNN(X_test, unet_masks_predictions, test_masked_images,

y_test)

Cnn evaluation with predicted masked images

BATCH_SIZE = 32

cnn_model = get_CNN_model

('models/cnn_extended_batch32_bigDim_AUGM')

print_CNN_test_evaluation_AUGM("cnn_extended_batch32_smallDim_AUG

M", cnn_model, test_masked_images, y_test, BATCH_SIZE)

cnn_model_predictions = calc_predictions_AUGM(cnn_model,

test_masked_images, BATCH_SIZE, label_binarizer)

cnn_model_predictions

- 164 -

test_image_sunnity_check_CNN(test_masked_images, y_test,

cnn_model_predictions, label_binarizer)

plot_confusion_matrix('cnn_extended_batch32_smallDim_AUGM',y_test,

cnn_model_predictions, label_binarizer)

display_model_metrics('cnn_extended_batch32_smallDim_AUGM',y_test,

cnn_model_predictions,label_binarizer)

plot_auc_roc('Unet-CNN Augmented Extended Masks 240x320',y_test,

cnn_model_predictions,label_binarizer)

1.6 GAN CODE

1.6.1 Code for Train GAN

Dataset Creation Functions import

%run Datasets_Creation.ipyn

Plot Datasets Functions

def plot_images(images, labels, lines=10):

 for i in range(lines):

 image = random.randint(0, images.shape[0])

 plt.figure(figsize=(16, 12))

 plt.title(f'Original Image - {list(labels.values())[image]}')

 plt.imshow(images[image])

 plt.show()

Print dimensions

def print_size_shapes(images, labels, images_name,labels_name):

 -165-

 # Dataset

 print(f'{images_name} Dataset size : {len(images)}')

 print(f'{images_name} shape: {images.shape}')

 print(f'Single {images_name} shape: {images[1].shape}')

 print(f'{labels_name} shape: {np.asarray(list(labels.values())).shape}')

def print_sets_size_shapes(X_sup, y_sup, X_unsup, y_unsup, X_test, y_test):

 # supervised dataset

 print(f'Supervised Dataset size : {len(X_sup)}')

 print(X_sup.shape)

 print(y_sup.shape)

 # unsupervised dataset

 print(f'Unsupervised Dataset size : {len(X_unsup)}')

 print(X_unsup.shape)

 print(y_unsup.shape)

 # Test Dataset

 print(f'Test Dataset size : {len(X_test)}')

 print(X_test.shape)

 print(y_test.shape)

Model's functions

Model construction

def build_generator(noise_shape=(1,1,100), input_shape=(110,110,1) ,

start_neurons= 16, n_classes=2):

 noise_input = tf.keras.Input(noise_shape)

 deconv1 = layers.Conv2DTranspose(start_neurons * 64, (3, 3), strides=2,

 activation='relu')(noise_input)

- 166 -

 batch1 = layers.BatchNormalization()(deconv1)

 deconv2 = layers.Conv2DTranspose(start_neurons * 32, (3, 3), strides=2,

activation='relu')(batch1)

 batch2 = layers.BatchNormalization()(deconv2)

 deconv3 = layers.Conv2DTranspose(start_neurons * 16, (3, 3), strides=2,

activation='relu')(batch2)

 batch3 = layers.BatchNormalization()(deconv3)

 deconv4 = layers.Conv2DTranspose(start_neurons * 8, (3, 3), strides=2,

activation='relu')(batch3)

 batch4 = layers.BatchNormalization()(deconv4)

 deconv5 = layers.Conv2DTranspose(start_neurons * 4, (3, 3), strides=2,

activation='relu')(batch4)

 batch5 = layers.BatchNormalization()(deconv5)

 deconv6 = layers.Conv2DTranspose(start_neurons * 4, (3, 3), strides=2,

activation='relu')(batch5)

 batch6 = layers.BatchNormalization()(deconv5)

 deconv7 = layers.Conv2DTranspose(start_neurons * 4, (3, 3), strides=2,

activation='relu')(batch6)

 batch7 = layers.BatchNormalization()(deconv7)

 fake_img = layers.Conv2DTranspose(1, (4, 4), activation='tanh')(batch7)

 model = tf.keras.Model(noise_input,fake_img)

 return model

 -167-

def build_discriminator(input_shape , start_neurons= 16, n_clasess=2):

 input_layer = tf.keras.Input(shape=input_shape)

 conv_1a = layers.Conv2D(start_neurons * 4, (3, 3),strides=1)(input_layer) #,

 batch_1a = layers.BatchNormalization()(conv_1a)

 activ_1a = layers.LeakyReLU()(batch_1a)

 conv_1b = layers.Conv2D(start_neurons * 4, (3, 3),strides=1)(activ_1a) #,

 batch_1b = layers.BatchNormalization()(conv_1b)

 activ_1b = layers.LeakyReLU()(batch_1b)

 conv_1c = layers.Conv2D(start_neurons * 4, (3, 3),strides=2)(activ_1b) #,

 batch_1c = layers.BatchNormalization()(conv_1c)

 activ_1c = layers.LeakyReLU()(batch_1c)

 drop_1 = layers.Dropout(0.4)(activ_1c)

 conv_2a = layers.Conv2D(start_neurons * 8, (3, 3),strides=1)(drop_1) #,

 batch_2a = layers.BatchNormalization()(conv_2a)

 activ_2a = layers.LeakyReLU()(batch_2a)

 conv_2b = layers.Conv2D(start_neurons * 8, (3, 3),strides=1)(activ_2a) #,

 batch_2b = layers.BatchNormalization()(conv_2b)

 activ_2b = layers.LeakyReLU()(batch_2b)

 conv_2c = layers.Conv2D(start_neurons * 8, (3, 3),strides=2)(activ_2b) #,

 batch_2c = layers.BatchNormalization()(conv_2c)

 activ_2c = layers.LeakyReLU()(batch_2c)

 drop_2 = layers.Dropout(0.4)(activ_2c)

 conv_3a = layers.Conv2D(start_neurons * 16, (3, 3),strides=1)(drop_2) #,

- 168 -

 batch_3a = layers.BatchNormalization()(conv_3a)

 activ_3a = layers.LeakyReLU()(batch_3a)

 conv_3b = layers.Conv2D(start_neurons * 16, (3, 3),strides=1)(activ_3a) #,

 batch_3b = layers.BatchNormalization()(conv_3b)

 activ_3b = layers.LeakyReLU()(batch_3b)

 conv_3c = layers.Conv2D(start_neurons * 16, (3, 3),strides=2)(activ_3b) #,

 batch_3c = layers.BatchNormalization()(conv_3c)

 activ_3c = layers.LeakyReLU()(batch_3c)

 drop_3 = layers.Dropout(0.4)(activ_3c)

 conv_4a = layers.Conv2D(start_neurons * 32, (3, 3),strides=1)(drop_3) #,

 batch_4a = layers.BatchNormalization()(conv_4a)

 activ_4a = layers.LeakyReLU()(batch_4a)

 conv_4b = layers.Conv2D(start_neurons * 32, (3, 3),strides=1)(activ_4a) #,

 batch_4b = layers.BatchNormalization()(conv_4b)

 activ_4b = layers.LeakyReLU()(batch_4b)

 conv_4c = layers.Conv2D(start_neurons * 32, (3, 3),strides=2)(activ_4b) #,

 batch_4c = layers.BatchNormalization()(conv_4c)

 activ_4c = layers.LeakyReLU()(batch_4c)

 drop_4 = layers.Dropout(0.4)(activ_4c)

 pool = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(drop_4)

 flatten = layers.Flatten()(pool)

 drop_f = layers.Dropout(0.5)(flatten)

 full_con = layers.Dense(start_neurons * 64)(drop_f)

 activ_full = layers.LeakyReLU()(full_con)

 output_layer = layers.Dense(n_clasess)(activ_full)

 model = tf.keras.Model(input_layer, output_layer)

 -169-

 return model

def supervised_discriminator(disc_model):

 model = Sequential()

 model.add(disc_model)

 model.add(layers.Activation('sigmoid'))

 opt = tf.keras.optimizers.Adam(learning_rate=0.0003)

 model.compile(loss='binary_crossentropy', optimizer = opt,

 metrics=[tf.keras.metrics.BinaryAccuracy()])

 return model

def unsupervised_discriminator(disc_model):

 model = Sequential()

 model.add(disc_model)

 model.add(layers.Activation('sigmoid'))

 #model.add(layers.Lambda(norm_activation))

 opt = tf.keras.optimizers.Adam(learning_rate=0.0003)

 model.compile(loss='binary_crossentropy', optimizer = opt,

 metrics=[tf.keras.metrics.BinaryAccuracy()])

 return model

def compined_gan(generator, unsupervided_disciminator):

 unsupervided_disciminator.trainable = False

 # get image output from the generator model

 gen_output = generator.output

 # generator image output and corresponding inputlabelare inputs to the

 discriminator

- 170 -

 gan_output = unsupervided_disciminator(gen_output)

 model = tf.keras.Model(generator.input, gan_output)

 opt = tf.keras.optimizers.Adam(learning_rate=0.0003)

 model.compile(loss=tf.keras.losses.MeanSquaredError(), optimizer = opt,

 metrics=[tf.keras.metrics.BinaryAccuracy()])

 return model

def check_performance(step, gen_model, sup_disc, unsup_disc, gen_input,

images,labels, epoch, batch=32):

 X,_ = generate_fake_images(gen_model, gen_input,batch)

 X = (X + 1) / 2.0

 for i in range(20):

 plt.subplot(5, 5, i + 1)

 plt.axis("off")

 plt.imshow(X[i, :, :, 0], cmap = 'gray_r')

 filename1 = 'gan_images/generated_plot_'+ str(epoch) + '.png'

 plt.savefig(filename1)

 #Χ_real, y_real= images, labels

 _, acc = sup_disc.evaluate(images,labels, verbose=0)

 print('Discriminator accuracy: %.3f%%' % (acc * 100))

 filename2 = 'saved_GAN_models/gen_model_'+ str(epoch)

 gen_model.save(filename2)

 -171-

 filename3= 'saved_Sup_Discriminator_models/sup_disc_'+ str(epoch)

 sup_disc.save(filename3)

 filename4= 'saved_unSup_Discriminator_models/unsup_disc_'+ str(epoch)

 unsup_disc.save(filename4)

 print(f'> Saved: {filename1} , {filename2}, {filename3}, {filename4} ')

def train_gan(generator, unsup_disc, sup_disc, gan_model, X_train, y_train,

X_sup, y_sup, X_unsup, y_unsup, X_test,y_test, sup_length, gen_input= 100,

epochs=50, n_batch=32, seed=42, start=0):

 batch_per_epoch = int(sup_length / n_batch)

 n_steps = batch_per_epoch * epochs

 half_batch = int(n_batch / 2)

 print(f'n_epochs={epochs}, n_batch={n_batch}, 1/2={half_batch},

b/e={batch_per_epoch}, steps={n_steps}')

 for i in range(n_steps):

 [X_sup_real, y_sup_real], _ = generate_real_images(X_sup, y_sup,

 half_batch)

 sup_loss, sup_acc = sup_disc.train_on_batch(X_sup_real, y_sup_real)

 [X_unsup_real, _], y_unsup_real = generate_real_images(X_train,

 y_train, half_batch)

 d_loss_real = unsup_disc.train_on_batch(X_unsup_real, y_unsup_real)

- 172 -

 X_fake, y_fake = generate_fake_images(generator, gen_input, half_batch)

 d_loss_fake = unsup_disc.train_on_batch(X_fake, y_fake)

 X_gan, y_gan = generate_noise_points(gen_input, n_batch),

 ones((n_batch, 1))

 gan_loss = gan_model.train_on_batch(X_gan, y_gan)

 print(f'> {i+1}, c[{sup_loss}, {sup_acc*100}], D[{d_loss_real},

 {d_loss_fake}], G[{gan_loss}]')

 if (i+1) % (batch_per_epoch * 50) == 0:

 epoch = int((i+1) / (batch_per_epoch))

 check_performance(i, generator, sup_disc, unsup_disc, gen_input,

 X_train, y_train, epoch + start, n_batch)

def get_trained_models(sup_disc_model, unsup_disc_model, gen_model):

 return models.load_model(sup_disc_model) ,

 models.load_model(unsup_disc_model),

 models.load_model(gen_model)

RUN MODEL

Constants

IMG_WIDTH= 130

IMG_HEIGHT = 130

CHANNELS = 1

START_CONVS = 16

BATCH_SIZE = 32

SEED = 42

GEN_INPUT = 100

 -173-

Insert Data

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented'

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info'

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv'

Dataset BSA calculation

bsa_data = upload_data(bsa_directory,

['image','height','weight','long_axis','area','volume','birth','gender'])

bsa_data.tail()

bsa_data_dict = create_bsa_data_dict(bsa_data)

BSA calculation

bsa_coef_dict = bsa_calculation(bsa_data_dict)

Upload images - Create supervised, unsupervised datasets, calculate labels

image_dataset, X_train, y_train, X_sup, y_sup, X_unsup, y_unsup, X_test,

y_test, label_dataset, bsa_data_dict, classes, label_binarizer=

datasets_GAN(image_directory, bsa_data_dict, IMG_WIDTH, IMG_HEIGHT)

Shapes of uploaded original images, masks sets, labels

print_size_shapes(image_dataset, label_dataset, 'Original Images', 'Labels')

print_sets_size_shapes(X_sup, y_sup, X_unsup, y_unsup, X_test, y_test)

Plot images and respective ladels

plot_images(image_dataset, label_dataset, lines=10)

- 174 -

Create Models

image_size = (IMG_HEIGHT , IMG_WIDTH)

discriminator = build_discriminator(input_shape= image_size +

(CHANNELS,))

sup_disc = supervised_discriminator(discriminator)

unsup_disc = unsupervised_discriminator(discriminator)

generator = build_generator()

gan_model = compined_gan(generator, unsup_disc)

total_images = X_sup.shape[0]

print(f'Total supervised images : {total_images}')

discriminator.summary()

sup_disc.summary()

generator.summary()

Train

train_gan(generator, unsup_disc, sup_disc, gan_model, X_train, y_train,

X_sup, y_sup, X_unsup,y_unsup, X_test, y_test, total_images, gen_input=

GEN_INPUT, epochs=300, n_batch=BATCH_SIZE)

1.6.1 Code for Evaluating GAN’s supervised Discriminator

Dataset Creation Functions Import

%run Datasets_Creation.ipynb

 -175-

def labels_to_binary(label):

 if label == 'abnormal':

 return 0

 else:

 return 1

Plot Datasets Function

def plot_images(images, labels, lines=10):

 #plt.figure(figsize=(15, 15))

 for i in range(lines):

 image = random.randint(0, images.shape[0])

 plt.figure(figsize=(16, 12))

 plt.title(f'Original Image - {list(labels.values())[image]}')

 plt.imshow(images[image])

 plt.show()

Print dimensions

def print_size_shapes(images, labels, images_name,labels_name):

 # Dataset

 print(f'{images_name} Dataset size : {len(images)}')

 print(f'{images_name} shape: {images.shape}')

 print(f'Single {images_name} shape: {images[1].shape}')

 print(f'{labels_name} shape: {np.asarray(list(labels.values())).shape}')

def print_sets_size_shapes(X_sup, y_sup, X_unsup, y_unsup, X_test, y_test):

 # supervised dataset

 print(f'Training Dataset size : {len(X_sup)}')

 print(X_sup.shape)

- 176 -

 print(y_sup.shape)

 # unsupervised dataset

 print(f'Training Dataset size : {len(X_unsup)}')

 print(X_unsup.shape)

 print(y_unsup.shape)

 # Test Dataset

 print(f'Test Dataset size : {len(X_test)}')

 print(X_test.shape)

 print(y_test.shape)

Supervised Discriminator Evaluation Functions

Take Supervised Discriminatorl model

def get_sup_Discr_model(sup_Discr_model):

 return models.load_model(sup_Discr_model)

Evaluate CNN_model on unknown Test set

def print_sup_Discr_test_evaluation(sup_Discr_model_name,

sup_Discr_model, X_test,y_test, batch_size, verbose=2):

 _, acc = sup_Discr_model.evaluate(X_test,y_test, batch_size=batch_size,

 verbose = verbose)

 print(f"Binary Accuracy evaluation of {sup_Discr_model_name} Supervised

 Discriminator model is: {acc*100.0} % ")

Calculate Predictions

def calc_predictionsM(sup_Discr_model,X_test, batch_size, binarizer):

 pred = sup_Discr_model.predict(X_test, batch_size=batch_size)

 -177-

 predictions = binarizer.inverse_transform(pred)

 return np.asarray(predictions)

Check predicted vs true labels of images in Test set

def supervised_discriminator(disc_model):

 model = Sequential()

 model.add(disc_model)

 model.add(layers.Activation('softmax'))

 opt = tf.keras.optimizers.Adam(learning_rate=0.0003)

 model.compile(loss='categorical_crossentropy', optimizer = opt,

 metrics=[tf.keras.metrics.BinaryAccuracy()])

 return model

def test_image_sunnity_check(test_images, test_true_labels, predictions,

binarizer, lines=9):

 test_labels = np.asarray(binarizer.inverse_transform(test_true_labels))

 predicted_labels = predictions

 plt.figure(figsize=(15, 15))

 for i in range(15):

 ax = plt.subplot(4, 4, i + 1)

 plt.imshow(test_images[i])

 plt.title(f'True: {test_labels[i]}\nPredicted: {predicted_labels[i]}')

 plt.axis("off")

- 178 -

def plot_confusion_matrix(model_name, test_true_labels, predictions,

binarizer):

 true_labels = np.asarray(binarizer.inverse_transform(test_true_labels))

 cm = confusion_matrix(true_labels, predictions, labels=binarizer.classes_,

normalize='true')

 print(f"Confusion matrix:\n {cm}")

 display_cm = ConfusionMatrixDisplay(confusion_matrix=cm)

 display_cm.plot(cmap=plt.cm.Blues)

 plt.title(f'Confusion Matrix on {model_name} Test set \n')

 plt.show()

Display Models metrics

def display_model_metrics(model_name, test_true_labels, predictions,

binarizer):

 true_labels = np.asarray(binarizer.inverse_transform(test_true_labels))

 report = classification_report(true_labels, predictions, zero_division=0)

 print(f'Model\'s {model_name} metrics:\n {report}')

Plot Auc-Roc curves

def plot_auc_roc(model_name, test_true_labels, predictions, binarizer,

class_names=['abnormal','normal'], average="macro", zero_division=0):

 true_labels = np.asarray(binarizer.inverse_transform(test_true_labels))

 true_labels = np.asarray(list(map(labels_to_binary, true_labels)))

 predictions = np.asarray(list(map(labels_to_binary, predictions)))

 false_positive, true_positive, threshold = roc_curve(true_labels, predictions)

 -179-

 auc_score = auc(false_positive, true_positive)

 plt.figure(figsize=(10, 10))

 plt.style.use('seaborn')

 plt.plot(false_positive, true_positive, linestyle='--',color='darkorange',

 label=f"ROC curve (area = {'{:.2f}'.format(auc_score)})")

 plt.plot(false_positive, false_positive, linestyle='--', color='blue')

 plt.title('ROC curve for ' + model_name, fontsize=20)

 plt.xlim([0, 1])

 plt.ylim([0, 1])

 plt.xlabel('False Positive Rate', fontsize=20)

 plt.ylabel('True Positive Rate', fontsize=20)

 plt.legend(loc='lower right', fontsize=15)

 plt.show()

#RUN EVALUATION

 # Constants

IMG_WIDTH= 130

IMG_HEIGHT = 130

CHANNELS = 1

START_CONVS = 16

BATCH_SIZE = 40

SEED = 42

GEN_INPUT = 100

Insert Data

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented'

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info'

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv'

- 180 -

Dataset BSA calculation

bsa_data = upload_data(bsa_directory,

['image','height','weight','long_axis','area','volume','birth','gender'])

bsa_data.head()

bsa_data.tail()

bsa_data_dict = create_bsa_data_dict(bsa_data)

bsa_data_dict

BSA calculation

bsa_coef_dict = bsa_calculation(bsa_data_dict)

bsa_coef_dict

Upload images - Create images datasets, calculate labels

image_dataset, X_train, y_train, X_sup, y_sup, X_unsup, y_unsup, X_test,

y_test, label_dataset, bsa_data_dict, classes, label_binarizer =

datasets_GAN(image_directory, bsa_data_dict, IMG_WIDTH, IMG_HEIGHT)

Shapes of uploaded original images, masks sets, labels

print_size_shapes(image_dataset, label_dataset, 'Original Images', 'Labels')

print_sets_size_shapes(X_sup, y_sup, X_train, y_train, X_test, y_test)

Plot images and respective ladels

plot_images(image_dataset, label_dataset, lines=10)

EVALUATE Supervised Discriminator MODEL

 -181-

sup_discr_model =

get_sup_Discr_model('saved_Sup_Discriminator_models/sup_disc_300')

print_sup_Discr_test_evaluation("sup_disc_300", sup_discr_model, X_test,

y_test, BATCH_SIZE)

sup_discr_predictions = calc_predictionsM(sup_discr_model, X_test,

 BATCH_SIZE, label_binarizer)

sup_discr_predictions

plot_confusion_matrix('sup_disc_300',y_test, sup_discr_predictions,

 label_binarizer)

display_model_metrics('sup_disc_300',y_test, sup_discr_predictions,

 label_binarizer)

plot_auc_roc('sup_disc_300',y_test, sup_discr_predictions, label_binarizer)

1.7 DATASET STATISTICS

Dataset Creation

create bsa_data

def upload_data(bsa_file, columns=[]):

 df = pd.read_csv(bsa_file , sep=';', header=0, usecols= columns)[columns]

 df['gender'].replace('m','Male', inplace=True)

 df['gender'].replace('f','Female' , inplace=True)

 return df

- 182 -

def create_bsa_data_dict(dataframe):

 dataframe.set_index('image')

 data_dict = dataframe.to_dict('index')

 data_diction = {}

 for i in data_dict:

 data_diction[str(data_dict[i]['image'])]= {'Height': data_dict[i]['height'],

 'Weight': data_dict[i]['weight'],

 'Long_Axis': data_dict[i]['long_axis'],

 'Area': data_dict[i]['area'],

 'Volume': data_dict[i]['volume'],

 'Birth': data_dict[i]['birth'],

 'Gender': data_dict[i]['gender'],

 'BSA_coef': math.sqrt((data_dict[i]['height']) *

 data_dict[i]['weight'])/60}

 return data_diction

calculate Body Mass Area(BSA) coefficient

bsa (body-surface-area) coeffiecent per (Mosteller's formula)

def bsa_calculation(data_diction):

 bsa_coef_dict = {}

 for image in data_diction.keys():

 bsa_coef_dict[image] = math.sqrt((data_diction[image]['Height']) *

 data_diction[image]['Weight'])/60

 return bsa_coef_dict

Crete masked_images and normal, ubnormal labels

Apply Original Masks to Image

def create_masked_image(images, masks):

 masked_image_dataset = []

 -183-

 for i in range(len(images)):

 image = cv2.bitwise_and(images[i], images[i], mask= masks[i])

 masked_image_dataset.append(np.expand_dims(image,2))

 return np.asarray(masked_image_dataset)

def sort_list_asc(image_list):

 sorted_list = []

 for image_name in image_list:

 image_name= os.path.splitext(image_name)[0]

 sorted_list.append(int(image_name))

 return sorted(sorted_list)

def create_image_mask_label_sets(image_directory, mask_directory,

bsa_data_dict, img_width, img_height):

 image_dataset = []

 mask_dataset = []

 label_dataset = {}

 volume_over_bsa = {}

 images = os.listdir(image_directory)

 images = sort_list_asc(images)

 for image_name in images:

 mask = cv2.imread(mask_directory + '/' + str(image_name) + '.jpg',

 cv2.IMREAD_UNCHANGED)

 mask = cv2.resize(mask, (img_width, img_height), interpolation =

 cv2.INTER_NEAREST)

 mask_dataset.append(np.expand_dims(mask,2))

 image = cv2.imread(image_directory + '/' + str(image_name) + '.jpg',

- 184 -

 cv2.IMREAD_UNCHANGED)

 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 image = cv2.resize(image, (img_width, img_height), interpolation =

 cv2.INTER_NEAREST)

 image_dataset.append(np.expand_dims(image,2))

 volume_over_bsa =

 round(float(bsa_data_dict[str(image_name)]['Volume'])

 / bsa_data_dict[str(image_name)]['BSA_coef'],3)

 bsa_data_dict[str(image_name)]['Volume_Over_BSA'] =

 volume_over_bsa

 if volume_over_bsa >= 34:

 bsa_data_dict[str(image_name)]['Label'] = 'abnormal'

 label_dataset[str(image_name)] = 'abnormal'

 else:

 bsa_data_dict[str(image_name)]['Label'] = 'normal'

 label_dataset[str(image_name)] = 'normal'

 image_masked_dataset= create_masked_image(image_dataset,

 mask_dataset)

 image_dataset = np.asarray(image_dataset, dtype=np.float32)

 mask_dataset = np.asarray(mask_dataset, dtype=np.float32)

 return image_dataset, image_masked_dataset, mask_dataset,

 label_dataset, bsa_data_dict

def print_size_shapes(images, masks, masked_images, labels, images_name,

masks_name, masked_images_name, labels_name):

 # Dataset

 -185-

 print(f'{images_name} Dataset size : {len(images)}')

 print(f'{images_name} shape: {images.shape}')

 print(f'Single {images_name} shape: {images[1].shape}')

 print(f'{masks_name} shape: {masks.shape}')

 print(f'Single {masks_name} shape: {masks[1].shape}')

 print(f'{masked_images_name} shape: {masked_images.shape}')

 print(f'Single {masked_images_name} shape: {masked_images[1].shape}')

 print(f'{labels_name} shape: {np.asarray(list(labels.values())).shape}')

def plot_images(images,masks, masked_images, labels, lines=20):

 for i in range(lines):

 image = random.randint(0, images.shape[0])

 plt.figure(figsize=(16, 12))

 plt.subplot(131)

 plt.title(f'Original Image - {list(labels.values())[image]}')

 plt.imshow(images[image])

 plt.subplot(132)

 plt.title('Mask')

 plt.imshow(masks[image])

 plt.subplot(133)

 plt.title('Masked image')

 plt.imshow(masked_images[image])

 plt.show()

DISPLAY STATISTICS

Insert Data

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented'

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info'

- 186 -

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv

Dataset BSA calculation

BSA SETUP

dataframe = upload_data(bsa_directory,

['image','height','weight','long_axis','area','volume','birth','gender'])

dataframe.head()

dataframe.tail()

Body Mass Area (BSA) calculation per image

data_dict = create_bsa_data_dict(dataframe)

data_dict['57']

BSA calculation

bsa_coef_dict = bsa_calculation(data_dict)

bsa_coef_dict['57']

Load Images-Masks

Constants

IMG_WIDTH= 320

IMG_HEIGHT = 240

image_dataset, image_masked_dataset, mask_dataset, label_dataset,

data_dictionary= create_image_mask_label_sets(image_directory,

mask_directory, data_dict, IMG_WIDTH, IMG_HEIGHT)

data_dictionary['100']

 -187-

Shapes of uploaded original images, masks sets, labels

print_size_shapes(image_dataset, mask_dataset, image_masked_dataset,

label_dataset, 'Original Images', 'Masks', 'Masked Images', 'Labels')

Plot images, masks,masked-images and respective ladels

plot_images(image_dataset, mask_dataset, image_masked_dataset,

label_dataset, lines=10)

Labels

labels = np.asarray(list(label_dataset.values()))

labels

Statisitics Pressentation

Population Gender

dataframe['Volume_Over_BSA'] = [data_dictionary[i]['Volume_Over_BSA']

for i in data_dictionary.keys()]

dataframe['Label'] = [data_dictionary[i]['Label'] for i in

data_dictionary.keys()]

gender_plot =

dataframe['gender'].value_counts().plot(kind='pie',autopct='%1.1f%%',

figsize=(8,8), fontsize=15, colors=['lightblue','pink'])

gender_plot.set_title('Populatation Gender Distribution', size=20)

Population Age Range

current_yeara = datetime.today().year

younger = current_year - dataframe['birth'].max()

younger

- 188 -

oldest = current_year - dataframe['birth'].min()

oldest

Average Height, Weight and Volume Over BSA

dataframe['height'].mean()

dataframe['weight'].mean()

dataframe['Volume_Over_BSA'].mean()

Dataset Balance

print(Counter(labels))

labels_count_dict = dict(Counter(labels))

labels_count_dict

labels_classes = list(labels_count_dict.keys())

labels_classes_counts = list(labels_count_dict.values())

plt.figure(figsize = (8,8))

plt.pie(labels_classes_counts, labels=labels_classes, autopct='%1.1f%%',

textprops={"fontsize":15}, colors=['red', 'lightgreen'])

plt.title('Cardiac Left Atria Enlargement \nClassification Distribution\n',

size=20)

plt.axis('equal')

plt.show()

 -189-

Dataset balance per Gender

dataframe['Volume_Over_BSA'] = [data_dictionary[i]['Volume_Over_BSA']

for i in data_dictionary.keys()]

dataframe['Label'] = [data_dictionary[i]['Label'] for i in data_dictionary.keys()]

dataframe

Atria enlargment on male gender

male_data = dataframe[dataframe['gender'] == 'Male']

male_data

younger_male = current_year - male_data['birth'].max()

younger_male

older_male = current_year - male_data['birth'].min()

older_male

male_data['height'].mean()

male_data['weight'].mean()

male_data['Volume_Over_BSA'].mean()

dict(Counter(male_data['Label']))

labels_classes = list(dict(Counter(male_data['Label'])).keys())

labels_classes_counts = list(dict(Counter(male_data['Label'])).values())

- 190 -

plt.figure(figsize = (8,8))

plt.pie(labels_classes_counts, labels=labels_classes, autopct='%1.1f%%',

textprops={"fontsize":15}, colors=['red', 'lightgreen'])

plt.title('Cardiac Left Atria Enlargement\nClassification Distribution \nof Male

Population\n', size=20)

plt.axis('equal')

plt.show()

Atria enlargment on female gender

female_data = dataframe[dataframe['gender'] == 'Female']

female_data

younger_female = current_year - female_data['birth'].max()

younger_female

older_female = current_year - female_data['birth'].min()

older_female

female_data['height'].mean()

female_data['weight'].mean()

female_data['Volume_Over_BSA'].mean()

dict(Counter(female_data['Label']))

labels_classes = list(dict(Counter(female_data['Label'])).keys())

labels_classes_counts = list(dict(Counter(female_data['Label'])).values())

plt.figure(figsize = (8,8))

 -191-

plt.pie(labels_classes_counts, labels=labels_classes, autopct='%1.1f%%',

textprops={"fontsize":15}, colors=['red', 'lightgreen'])

plt.title('Cardiac Left Atria Enlargement\nClassification Distribution\n of

Female Population\n', size=20)

plt.axis('equal')

plt.show()

