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Abstract 

Human heart is considered one of the most import organs of the human body, since its 
job is to provide the body with blood [23]. One of the methods that clinicians utilize, to 
examine the heart and its internal structure condition, is the TransThoracic 
Echocardiogram (TTE), which is the most used, agile, and cost-effective cardiac imaging 
modality. Machine Learning techniques and Deep learning neural networks, 
implemented in TTE images, can deliver highly accurate and automated interpretation of 
heart’s clinical condition, which can greatly assist cardiologists in their evaluation of 
heart’s abnormality or not [1][2].     
In the current master thesis, a deep learning algorithm will be examined in various 
dataset resolutions and a comparison of its performance on the task of classification of 
the enlargement of the left atrium of the human heart, with the use of TTE images from 
patients of a Greek Hospital, will be studied. The basic algorithm is a combination of a 
Unet and a Convolutional Neural Network (CNN). Unet will segment the A4C TTE 
images over the cardiac Left atria (LA) and CNN will classify the segmented images for 
normal or abnormal size of the LA. Addittionaly a Semi-supervised GAN will be trained 
and evaluated in classifying the cardiac LA as normal or abnormal. 
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1 Introduction 

1.1 Brief Description 

Human heart is considered one of the most import organs of the human body, 

since its job is to provide the body with blood [23]. One of the methods that 

clinicians utilize, to examine the heart and its internal structure condition, is the 

TransThoracic Echocardiogram (TTE), which is the most used, agile, and cost-

effective cardiac imaging modality. A TTE consists of videos, images and 

doppler measurements from different cross-sections of heart [24]. Machine 

Learning (ML) techniques and Deep learning (DL) neural networks (DNN), 

implemented in TTE images, can deliver highly accurate and automated 

interpretation of heart’s clinical condition, which can greatly assist cardiologists 

in their evaluation of heart’s abnormality or not [1][2].     

In the current master thesis, a deep learning algorithms will be examined with 

various and a comparison of their implementation and performance on the task 

of classification of the enlargement of the Left Atrial(LA) of the human heart, 

with the use of Apical 4 champer (A4C) TTE images from patients of a Greek 

Hospital, will be studied. In particular, a U-Net will be trained on the 

aforementioned images in the task of image segmentation over heart’s LA area 

and its output will be fed as an input to a Convolution Neural Network (CNN), 

which will be trained to classify the heart’s LA size as normal or pathological.  

The two networks will be trained on two resolutions of the image inputs, the 120 

x 160 and the 240 x 320. Additionally, we are going to use two kinds of image 

masking. An extended masking over the LA’a area and the precise one, over 

cardiologist’s assessment area, while the networks will be trained with no data 

augmentation (DA) and with data augmentation (DA) techniques , in order to 

evaluate their contribution on small sized medical datasets.  

Addittionaly a Semi-supervised GAN will be trained and evaluated in classifying 

the cardiac LA as normal or abnormal with the use of an unamsked image 

dataset of A4c images. 
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1.2 Chapters Description 

In Chapter 2, the basic terms of the Machine Learning are described, which are 

common for the Deep Learning. According to this, we analyze the terms of 

supervised , unsupervised and semi-supervised learning. For the supervised 

learning, the subcategory of  classification problems is presented, since our case 

of categorizing the cardiac left atrial size as abnormal or normal, belongs to this 

category. Additionally, a description of Artificial Neural Networks (ANN) is 

given and the perceptron algorithm is analyzed thoroughly, along with the 

training process of an ANN, which includes the processes of forward feeding - 

calculation of predictions – backpropagation and ANN’s weight updates 

through the gradient descent technique. 

In Chapter 3, the basic architecture of a CNN is analyzed, such as the 

convolutional and pooling layers, the sigmoid and softmax activation function. 

Also, various techniques are presented to improve a CNN’s performance. For 

this, Batch normalization and the regularization tools of dropout and L2 

regularization are discussed. 

In Chapter 4, we deal with the concept of the image segmentation. We describe 

the basics of image segmentation and present the Jaccard Index and power 

Jaccard loss as a suitable metric and a loss function respectively, for the 

segmentation tasks. Afterwards, we analyze the U-net as a CNN, which has been 

developed mainly for segmentation and precise localization on biomedical 

images. 

In Chapter 5, we describe the concept of the Generative Adveraial Network 

(GAN), its basic theory for training and producing real like images from an 

image distribution. Then we describe a specialized use of the GAN in semi-

supervised learning task, where its Discriminator part can be trained, 

additionaly and as a classifier.  

In Chapter 6, we make a description of the human heart anatomy and its basic 

functions. We give the theory on which the TTE relies on, present the basic view 

images a cardiologist can produce with the TTE and the internal heart’s 

structure that can be examined with each view. Finally we present the state of 

the LA enlargement and  how it is traced through the TTE and its normal values. 
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In chapter 7, we present our experiment results over the classification task of 

LA size as normal or abnormal. We present the dataset that was used, its 

population statistics and its preparation for each of our models. Afterwards, we 

describe our U-net implementation for the segmentation of the LA on A4C view 

images of TTE and our CNN and Seimi-supervised GAN implementation for the 

classification. Finally, we analyze the results of training the above Deep 

Networks over our dataset.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  -17- 

 

2  Machine Learning 

Machine Learning (ML) is a process that a computer system applies in order to 

solve a given problem, according to previous examples of the same domain, 

taking into account the probabilistic distribution of these examples. A definition 

of the Machine Learning is given by T. Mitchell (1997) [3]: “A computer 

program is said to learn from experience E with respect to some class of tasks T 

and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E”. This definition reveals the basic features of a 

machine learning algorithm [3]: 

- The class of tasks (T): the exact problem the algorithm must become 

capable of solving. 

- The measure of performance (P): The evaluation metric of the 

algorithm’s capability of accomplishing the tasks. 

- The source of experience (E): the task’s domain previous cases 

(training examples), which the algorithm uses to produce a cased 

based reasoning process. 

The ML algorithms are divided into three major categories, with respect to the 

use or not of the examples category labels/continuous values/similarities, 

during algorithm’s training process: 

- Supervised  

- Unsupervised 

- Semi – supervised 

2.1 Supervised Learning  

In supervised learning the source of the experience is provided as a matrix Xm,n 

along with a label vector Ym .  Matrix Xm,n stores the m examples of the 

examined case, where a row belongs to a single example, while each of the n 

columns stores the value of a specific feature of this example. Vector Y 

associates each example with a category/class or a continuous value (ground 

truth), with respect to the problem that the machine learning algorithm is 
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intended to solve. Domain’s experts of the examining problem have assigned the 

ground truth. Transferring this to the current problem of the cardiac LA 

enlargement classification, each row of the sample matrix X describes a TTE 

image, while columns encapsulates a 2D matrix, whose elements correspond to 

the image's pixels values (example’s features). An element in vector Y associates 

the normal or the abnormal size of the cardiac LA of the respected image in the 

matrix X.  

During the algorithm’s training procedure, the algorithm computes an output 

for each example.   According to the supervised learning paradigm, the main 

goal of the algorithm is to optimize its parameters, in order to minimize the 

difference between the assigned target output of vector Y (the ground truth) and 

its computed output [3], thus minimizing the misclassification or the error 

between the target and the computed continuous value. The final evaluation of 

the ML algorithm is accomplished by implementing it in a test set with 

examples from the same distribution as the training set, that have not been used 

in the training set, and measuring test set’s error predictions. The prepose of 

the, unseen before, test examples, is to make the algorithm capable to generalize 

beyond the training set. 

In order to achieve this, a supervised learning algorithm follows a procedure of 

standard steps (Fig. 2.1): 

- Forward propagation, where algorithm computes an output for the 

training examples of  Χ   

- Gradient Descent, where the error between the target and the computed 

outputs, is calculated. 

- Backpropagation, where the algorithm’s parameters are updated 

according to their partial derivatives from the gradient descent. 
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Figure 2.2, Supervised Learning Flow  

2.1.1  Classification Problems  

One of the main implementations of the supervised learning is on classification 

problems. In the classification problems, the algorithm’s goal is to discover a 

mapping from an input example x ∈ X to an output y ∈ Y = {1, …, C}, where C 

denotes the number of classes of the specific problem. If C = 2, then the problem 

is called a binary classification problem and the most common output labelling 

is Y = {0, 1}, where “0” means the negative meaning of a characteristic for the 

example x, while “1” denotes the positive characteristic for the example x (e.g., 

“0” for abnormal size of cardiac LA and “1” for the normal size, “0” for a spam 

email and “1” for a non-spam etc.). If C > 2, then the problem is called 

multiclass classification problem, where an example is assigned with a specific 

class label (e.g. types of iris flowers: setosa, versicolor and virginica). 

Additionally, the classification problem, where an example can belong in more 

than one class (a man can be tall and overweighted), is called a multi-label 

classification problem.  

 The formalization of a classification problem is made by a function 

approximation. The supervised learning algorithm must discover, with its 

training, a function f, which maps each example x with an output class y. The 

algorithm, in order to compute an output �̂�  for a specific example x, uses a 

probabilistic activation function 𝑓. This function, for a binary classification 

problem, is usually the sigmoid function, which outputs values between 0 and 1. 

If  𝑓(𝑥)  ≥ 0.5 then the computed output �̂� is classified to the class “1”, otherwise 

it belongs to class “0”. If the examined problem is a multiclass problem, then the 

most usually function 𝑓 is the softmax function, which output, for an example x, 



- 20 - 

 

is the probabilities the example to belong to each class. Then the computed 

output �̂� is classified to the class with the highest probability.          

2.2  Unsupervised Learning 

Unsupervised learning is the ML paradigm, where the algorithm is provided 

only with input examples x ∈ X and have no knowledge about which class or 

what continuous value these examples belong to or are assigned with, according 

to their features θ, since no ground truth output Y is provided or is ad hoc 

known. Algorithm’s goal is to discover common structures (namely clusters) 

that characterize the examples and assign its example to one of these structures 

(clusters), taking into account their features (Fig. 2.2, 2.3). This procedure leads 

in achieving the optimization of the cluster prototypes, from the similarity of 

their respective examples. In this learning paradigm, if k is the number of 

chosen clusters, we are interesting in inferring the cluster, in which an example 

x belongs to, by computing the unconditional density estimation p(k|X), where 

the task is to build models of the form p =(xi|θ) [3][4]. 

An implementation of unsupervised learning is in e-commerce, where 

users/clients are assigned to a specific behavior cluster, according to their 

purchasing and web surfing habits, so as a more focused advertising strategy to 

be applied to each group, in respect to each groups discovered characteristics. 

 

 

Figure 2.2, Unsupervised Learning Flow 
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(a)                                                                                (b) 

Figure 2.3, (a) Unlabeled data of height and weight of 
people, (b) Clustering of people into K = 2 clusters 
according to similarities in their height and weight  

2.3  Semi-Supervised Learning 

Semi-Supervised learning is a mixture/combination of supervised and 

unsupervised learning. In this mML paradigm, examples x ∈ X with their 

ground truth Y are provided, along with examples x΄ ∈ X΄ without ground truth 

in an effort to overperform a relative supervised algorithm (Fig. 2.4). Semi-

supervised learning tries to solve the problem of the expensive and difficult to 

find labeled data x from some domains, with the use of the unlabeled data x΄, 

which are available in large amount, easy to obtain and cheaper as they do not 

need annotation from an expert.  

In order to achieve this, the algorithm uses an unsupervised part to categorize 

the unlabeled data into clusters by discovering their common structures. The 

number of clusters are defined by the number of classes of labeled data. Thus, 

the unlabeled data are eventually categorized according to those clusters and 

they added to the labeled data. Then, the supervised learning part of the 

algorithm uses an increased training dataset by using both labeled and clustered 

(previously unlabeled) data in its training process, thus achieving a better 

generalization over the examined problem [3][5]. 
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Figure 2.4, Semi-Supervised Learning Flow  

2.4  Artificial Neural Networks 

Artificial Neural Networks (ANN) were developed by Frank Rosenblatt in 

1960’s. An ANN is a computational system, which goal is to discover 

mathematical representations of information processing by mimicking the 

human brain’s neurons operations, thus recognizing the deeper relationships of 

the features of a set of data [6]. The main part of the ANN is the perceptron (or 

neuron), which receives a sample’s features as input and calculates an output. 

The combination of multiple perceptrons in a layer, builds an ANN, while 

multiple layers of perceptrons consist a Multiple Layer Perceptron (MLP) 

network (Fig. 2.5).   

 

Figure 2.5, (a) single perceptron, (b) an 
Artificial Neural Network (ANN) with one hidden 
layer, (c) a Multiple Layer Perceptron (MLP) 
network with two hidden layers and one output  
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2.4.1 Perceptron algorithm  

A Neuron uses the perceptron algorithm to compute the output, which will lead 

to a sample’s predicted value/class.  The perceptron receives as an input, the D 

features of a sample, it takes the sum of products between each feature xi and a 

respective coefficient wi (weight) and finally adds a bias coefficient b of the 

neuron to calculate its output z: 

 

𝑧 = 𝑏 + ∑ 𝑤𝑖𝑥𝑖
𝐷
𝑖=1                                           (1) 

 

The weights are used to evaluate the magnitude of each feature’s contribution to 

the output z. Because output z is a linear function over the features x and 

coefficients w and may take high values, which can cause computational issues, 

the output z of the neuron is transformed with the use of a nonlinear, 

differentiable activation function h(.). The application of an activation function 

to neuron’s output z returns the final output of a neuron (Fig. 2.6):   

 

𝛼 = ℎ(𝑧)  = ℎ(𝑏 + ∑ 𝑤𝑖𝑥𝑖
𝐷
𝑖=1 )                        (2) 

 

Activation function must have some properties in order to be helpful in the 

perceptron’s algorithm. It must be zero centered and differentiable, so as to add 

the non-linearity to the perceptron’s algorithm. Non-linearity is an import 

aspect of an ANN, as it permits ANN to approximate any function to describe a 

dataset. 

If we combine multiple neurons to construct an ANN with one hidden layer (like 

this in Fig. 2.7(b) ) of M neurons, then for each hidden new neuron j , the 

equations (1) and (2) are becoming: 

 

𝑧𝑗
(1)

 = 𝑏𝑗0
(1)

+ ∑ 𝑤𝑗𝑖
(1)

 𝑥𝑖
𝐷
𝑖=1                                (3) 

𝑎𝑗
(1)

= ℎ(𝑧𝑗
(1)

)  = ℎ(𝑏𝑗0
(1)

+ ∑ 𝑤𝑗𝑖
(1)

 𝑥𝑖
𝐷
𝑖=1 )       (4) 
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The (1) on the equations denotes the number of layer’s depth in the network. 

Then, on the output layer of the ANN, with K output neurons, since each output 

neuron receives as input the outputs of the hidden layer, for the kth output 

neuron ( k =1,…,K), the equations will give [4]: 

 

𝑧𝑘
(2)

 = 𝑏𝑘0
(2)

+ ∑ 𝑤𝑘𝑗
(2)

𝛼𝑗
(1)𝑀

𝑗=1                              (5) 

𝛼𝑘
(2)

= ℎ(𝑧𝑘
(2)

)  = ℎ(𝑏𝑘0
(2)

+ ∑ 𝑤𝑘𝑗
(2)

𝛼𝑗
(1)𝑀

𝑗=1 )     (6) 

 

Eventually the equations (5) and (6) can be used for any MLP of L layers total 

depth. So, on any layer l  ( l=1,…,L), a neuron n of this layer, with N outputs 

from the previous layer (l-1), the equations will give: 

 

𝑧𝑛
(𝑙)

 = 𝑏𝑛0
(𝑙)

+ ∑ 𝑤𝑛𝑝
(𝑙)

𝛼𝑝
(𝑙−1)𝑁

𝑝=1                           (7) 

 

𝛼𝑛
(𝑙)

= ℎ(𝑧𝑛
(𝑙)

)  = ℎ(𝑏𝑛0
(𝑙)

+ ∑ 𝑤𝑛𝑝
(𝑙)

𝛼𝑝
(𝑙−1)𝑁

𝑝=1 )   (8) 

 

 

Figure 2.6, (a) perceptron algorithm output 

for three features as input, using a differentiable 

activation function h (∙) 

 

2.4.2 Training process 

The goal of applying a training process in an MLP network is to enforce the 

network to seek and find this function that describes better a dataset of a certain 

distribution and generalizes well over the same data. This task is accomplished 

by learning the values of MLP’s weights and biases that describe this function 
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and enforce a cost function between the calculated outputs and the ground truth 

to find a total minimum (Fig. 2.7). The training process is implemented through 

a repeated steps (epochs) of two successive subprocesses, the Feed forward 

process and the Backpropagation process, using the Gradient descent technique. 

 

 

Figure 2.7, Cost function minimization 
through training of MLP with a dataset 
of  two target classes. 

 

Before training, network’s weights and biases are usually initialized randomly 

with values from a chosen probabilistic distribution. During the Feed forward 

process the network is feed with a training dataset (input) X = {x1, x2,…,xN} of N 

independent sample vectors x from the same distribution. On each hidden layer, 

for each neuron, activations and the outputs of activation function are 

calculated according to the equations (7) and (8).  The outputs of the last layer’s 

activation functions of the MLP are the network’s predictions �̂� over the training 

samples xi. The algorithm in order to determine its efficiency, calculates the 

averaged, over all samples N, Cost function J, with the use of the Loss function 

L: 

𝐽(𝑊) =  
1

2𝑁
∑ 𝐿(𝑦�̂�, 𝑦𝑖)  =  

1

2𝑁
∑ 𝐿(ℎ(𝑥𝑖;  𝑊), 𝑦𝑖)  𝑁

𝑖=1
𝑁
𝑖=1      (9) 

 

where W corresponds to the weight vector of the last layer l, of the MLP.  

The feedforward process is complete with the computation of the Gradients of 

the weights through the calculation of the first class derivatives of the Cost 

function over the weights W: 
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𝑑𝐽(𝑊(𝑙))  =  
𝜗𝐽(𝑊(𝑙))

𝜗𝑊(𝑙)  =  
1

2𝑁
∑

𝜗(𝐿(ℎ(𝑥𝑖; 𝑊(𝑙)),𝑦𝑖))

𝜗𝑊(𝑙)   𝑁
𝑖=1       (10) 

 

Backpropagation process begins with the use of the Gradient Descent technique 

with which the weights of the last layer are updating their values by subtracting 

from them their respective previous derivatives multiplied by a learning rate η: 

 

𝑊(𝑙)  =  𝑊(𝑙)  − 𝜂
𝜗𝐽(𝑊(𝑙))

𝜗𝑊(𝑙)
                                           (11) 

 

Then, the calculation of the weights on every layer of the MPP is accomplished 

through the application of the chain rule of calculus, in order to backpropagate 

the weight update from output to input: 

 

𝑑𝐽(𝑊(𝑙−1))  =  
𝜗𝐽(𝑊(𝑙))

𝜗�̂�
 ∙  

𝜗𝐽(�̂�)

𝜗𝑊(𝑙−1)  =  
𝜗𝐽(𝑊(𝑙))

𝜗�̂�
 ∙  

𝜗�̂�

𝜗𝑎(𝑙−1)  ∙  
𝜗𝑎(𝑙−1)

𝜗𝑊(𝑙−1)    (12) 

 

The above process of feedforward – predictions �̂� – cost calculation – 

backpropagation for the derivatives - weight update through gradient descent, 

when it is applied one time to the whole dataset, corresponds to one epoch of 

the MLP’s training. The goal of the training is achieved, when through many 

epochs, the MLP finds the parameter values (weights) that minimize the cost 

function.         
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3 Convolutional Neural 
Networks (CNN) 

Convolutional neural networks (CNNs), are α type of artificial neural networks 

(ANN), which are used in deep learning and are implemented in processing 

input data that has a known form of single or multiple dimension array.  The 

main domains of CNN’s application are the processing of images, video, audio, 

and speech, where the data can be represented in matrix like form. The main 

parts of the CNNs are the convolution layer, which is responsible for the 

implementation of the convolution operation and encompasses the input’s 

produced features, the pooling layer, which function is to encapsulate the most 

important and interesting parts of a convolutional layer and the fully connected 

layer(s), which is responsible for inferring the function that describes best the 

features of the input. A typical full CNN consists of repeated sequences of the 

couple convolution – pooling layer and may have as last layer one or more fully 

connected layers (Fig. 3.1). 

 

Figure 3.1, Basic CNN architecture 

3.1 Convolutional Layer 

The main part of a CNN is the convolution layer. As its name indicates, it applies 

a mathematical, convolution like, linear operation, to the output of the previous 

layer of the CNN, which replaces the matrix multiplication process. The 

convolution linear operation is implemented through a local receptive field or 

linear filter. The results of the convolution operation are then fed to a non-linear 

activation function σ. This leads to the convolutional layer’s unit output, which 
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is referred to as feature map. A single convolutional layer consists of more than 

one feature maps (Fig. 3.2). Each feature map describes specific characteristics 

of the previous layer’s output, which are closely correlated to a specific filter that 

led to the exact feature map [7]. During the training of a CNN, one of the goals is 

to learn those receptive fields (linear filters), which lead to a better 

representation of the input, that is, to compute the filters, which discover better 

the different features of the input data.  

 

 

Figure 3.2, a convolutional layer may 
have more than one feature maps  

 

The operation of convolution is described as the inner product between every 

local area of the input matrix, of size equal to a receptive field (linear filter). 

Using as example, an input image as a matrix of size 28 x 28, where each cell 

represents an image’s pixel value, usually between 0 and 255 in RGB 

representable mode in grayscale mode (Fig. 3.3). Each group of neighboring 

pixels in this image can encapsulate different kind of image’s features, while a 

specific group of neighboring pixels can encompass a specific image feature, 

which may appear in different areas in the image, although the values in the 

pixels may different (Fig. 3.4).  

 

Figure 3.3: Image 
represented as a matrix  
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Figure 3.4, Image in grayscale mode with three 
vertical lines of different color. The same vertical line 
feature is appearing in different areas of the image, 
while their respective pixel values are different, since 
their color is different.                                                                                                            

The convolution is implemented by applying the receptive field to a local area of 

the image, where a linear transformation is taking place between the values of 

the receptive field and the pixel values of this area. This transformation leads to 

an output weighted sum, which describes the image’s local area. In order to 

accomplish the convolution function, the center value of the receptive field is 

placed on the input image’s pixel of interest. Thus, the receptive field will 

overlap the neighboring pixels of the input image’s pixel of interest. Then, the 

values of the output are calculated by multiplying each receptive field’s value by 

the corresponding input image pixel values and summing the multiplication 

results. The sum result of applying the receptive field to every local area of the 

input by sliding it over the whole image, is the corresponding feature map (Fig. 

3.5, 3.6), which constitutes the first hidden layer of the CNN.  

 

Figure 3.5, Application of convolution with the receptive field 
in a local rea of the input image, results in the representative 
pixel of the local area, in the hidden layer of the CNN 
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Figure 3.6, Sliding the receptive field over the whole input 
image, results in the creation of the feature map of the input 
image in the hidden layer of CNN  

 

If the input is a matrix Xm,n  and the local receptive field (filter) is of size f x f, 

then the value z of each hidden neuron on i,j position of the feature map is [9]: 

 

  𝑧𝑖,𝑗 =  𝑏 + ∑ ∑ 𝑤𝑙,𝑚  ∙  𝑎𝑖+𝑙,𝑗+𝑚
𝑓
𝑚=0

𝑓
𝑙=0      (13) 

 

where b is the shared bias value across all the hidden neurons of the filter, wl.m is 

an f x f array representation of the filter, which implements the filter’s shared 

weights to be calculated throw the backpropagation process and 𝑎𝑖+𝑙,𝑗+𝑚  is the 

input’s pixel value when the filter is projected to the input image (Fig. 3.7). 

 

Figure 3.7, Implementation of convolution on a 9 x 9 input 
image with a 3 x 3 filter/receptive field, which results to the 1st 
hidden layer’s 7 x 7 feature map. 
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The result of implementation of the convolution process in an input image is the 

1st hidden layer’s feature map, which neurons share the same weights and bias. 

This enables the feature map to detect a specific same feature throw out the 

input image. If we apply more than one filter on the same hidden layer, then 

from each filter, a different feature map will be produced, enabling the detection 

of different features of the input image. Feature of an image can be a vertical or 

horizontal line, a curved line, or any other type of shape. 

The size of the feature map is depended from two factors, during the 

convolution process, apart from the size of the input image and the applied 

filters at each hidden layer of the CNN. The first one is the stride, which 

corresponds to the horizontal and vertical step of the filter projection over the 

input image (or the previous layer’s extracted feature map). Choosing a different 

stride of value 1, allows CNN to search different kinds of features and at the 

same time to reduce the computational effort, since the resulted feature map 

becomes smaller (Fig. 3.8). The second factor is padding, which is a technic of 

adding extra pixels with zero values around the input image’s margin (or the 

previous layer’s extracted feature map). Padding, allows the CNN to give more 

attention to the border pixels of the input at each CNN layer, while at the same 

time reduces the degradation of the size of the resulted feature map and thus 

enables it to lose less information (Fig.3.9).   

 

 

Figure 3.8, Implementation of convolution on a 9 x 9 input 

image with a 3 x 3 filter/receptive field and a stride of 2, which 

results to the 1st hidden layer’s 4 x 4 feature map. 
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Figure 3.9, Implementation of convolution on a 9 x 9 input 

image with a 3 x 3 filter/receptive field, padding of 1 and a 

stride of 1, which results to the 1st hidden layer’s 9 x 9 feature 

map. 

 

If we denote as Ml the size of the feature map of the l th layer of a CNN, f the 

filter size, p the padding and s the stride, then the Ml size of the feature map is 

calculated from the equation [9]: 

 

𝑀𝑙  =  
𝑀𝑙−1 + 2𝑝 − 𝑓

𝑠
 +  1                                      (14) 

3.2  Activation Functions  

An application of an activation function follows the output of a convolutional 

layer. The output of the convolutional layer is the product of a linear 

transformation, as it is demonstrated in equation (3). This linearity, during the 

error backpropagation process, for the update of the weights, the applied 

differentiation will cause the zeroing of the weights of the model and the model 

will not be capable of improving itself during its training process. The 
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introduction of a nonlinear activation function, prevents this behavior and 

transforms the model from a linear to a non linear one, allowing it to learn more 

complex decision functions, apart from the linearly separable ones. The output 

after the application of the activation function for the neuron of equation (3) is: 

 

𝛼𝑖,𝑗  =  𝜎(𝑧𝑖,𝑗)  =  𝜎(𝑏 + ∑ ∑ 𝑤𝑙,𝑚  ∙  𝑎𝑖+𝑙,𝑗+𝑚
𝑓
𝑚=0

𝑓
𝑙=0 )   (15) 

 

The most used activation function for the inner layers of a CNN is the Rectifier 

Linear Unit (RelU). RelU returns the convolutional layer’s output if is a positive 

value, otherwise it returns zero (Fig. 3.10): 

 

𝑅𝑒𝑙𝑈(𝑧)  =  {
𝑧 , 𝑧 >  0
0, 𝑧 ≤  0

                                                      (16) 

 

RelU’s linear behavior for positive inputs, allows the model to be trained easier 

and achieve better performance. Its possible large positive outcomes, prevents 

the derivatives of inner layers to vanish during the error backpropagation 

process. The gradient  
𝜗𝑧

𝜗𝑥
 =  

𝜗𝑧

𝜗𝑦

𝜗𝑦

𝜃𝑥
 , although it will have smaller magnitude than  

𝜗𝑧

𝜗𝑦
 , it will allow the derivatives to be propagate in deeper hidden layers of a CNN 

model, than the sigmoid function [8].   

 

 

Figure 3.10, RelU activation function curve  
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Sigmoid activation function is mainly used on the last layer of a CNN, after the 

fully connected layers, when the CNN must learn to solve a binary classification 

problem. For a given input z, sigmoid outcome y = σ(z) takes values in the space 

(0,1) (Fig. 3.11): 

 

sigmoid(𝑧)  =  
1

1 + 𝑒−𝑧
        (17) 

 

If the sigmoid outcome of the CNN for a sample of the dataset is under o.5 then 

the sample is categorized in the class 0 (absence of a characteristic), otherwise 

in class 1. The fact that sigmoid function returns values in the space (0,1), 

prevents it from be used on the hidden layers of a CNN. The gradient  
𝜗𝑧

𝜗𝑥
 =

 
𝜗𝑧

𝜗𝑦

𝜗𝑦

𝜃𝑥
  will have much smaller magnitude than  

𝜗𝑧

𝜗𝑦
  and in deeper CNN layers will 

eventually vanish, making the gradient-based learning practical impossible. 

 

 

Figure 3.11, Sigmoid activation function curve  

 

Another, widely used, activation function is the softmax. It is used on the last 

layer of a CNN model, when the CNN must learn to solve a multiclass problem. 

It calculates, from the output logits of the last fully connected layer, the 

probability distribution of a sample, over predicted output classes C (Fig. 3.12). 

It is known as the normalized exponential and is calculated by the equation 

[10]: 
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𝑓(𝑥) = 𝑃(𝑦 = 𝑐|𝑥 ∈ 𝑋) =
𝑒−𝑤𝑇𝑥

∑ 𝑒−𝑊𝑇𝑋𝐶
𝑐=1

   (18) 

 

           �̂�  =  𝑎𝑟𝑔𝑚𝑎𝑥𝑐=1
𝐶 𝑓(𝑥)                  (19)   

 

For the sample i, the computed output �̂� is classified to the class with the 

highest probability. 

 

Figure 3.12, Softmax activation function curve 

(source [8]) 

3.3  Pooling Layer 

The third main part of a CNN layer is the pooling layer. It is applied after the 

activation function, direct on the current layer’s feature map. Its goal is to 

replace the values at each certain location of a feature map with a summary 

statistic of the nearby values, reducing at the same time the size of the feature 

map by a factor promotional to the pooling layer’s size.  

Thus, pooling operation allows the CNN’s representation to become less 

invariant to small alterations of the input [7], meaning that if small changes take 

place to the pixel’s values of the input image (or to the values of a feature map 

for inner layers of a CNN), the values of the respective pooling layer outputs will 

mostly remain unchanged. This helps each convolution layer and the total CNN 

to learn a function that is invariant to small input’s translations and 

consequently to be able to generalize better. Additionally, the reduction of the 

feature map’s size improves the computational efficiency, since the next 

convolutional layer will have to apply less computational effort over the 
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diminished input [7]. Moreover, the pooling operation does not make use of any 

share weights and so is not participating in the backpropagation process, during 

the training process, reducing the use of memory usage and thus reducing more 

the computational effort of the CNN’s algorithm. 

The most common pooling operations on CNNs are the Max pooling and the 

Average pooling. Max pooling is applied when from each certain location of the 

feature map with size equal to pooling’s size, we keep the maximum value, 

which becomes the representative value for this location.  During the 

application of the Average pooling, the represented value of its location on the 

feature map is the average value of the location’s corresponding values (Fig. 

3.13, 3.14).  

 

 

Figure 3.13, Implementation of Max pooling 2 x 2 with stride 1 
on a 7 x 7 feature map, which results to the convolution layer 
output of size 6 x 6. 

 

 

Figure 3.14, Implementation of average pooling 3 x 3 with 
stride 1 on a 7 x 7 feature map, which results to the convolution 
layer output of size 5 x 5. 
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3.4  Batch Normalization 

During the training process of a CNN, the output of each convolutional block 

changes, as its trainable parameters (weights, biases) change as well. These 

changes affect the distribution of each next layer’s inputs, causing each next 

layer to experience internal covariance shift. Covariance shift leads to a more 

complicated training process of the CNN, requiring smaller learning rates, 

adequate parameter initialization and more epochs for the filters to learn a 

function that generalizes well.  This effect is amplified on the deeper layers of 

the CNN and eventually the rate of convergence to a proper function will 

decrease significantly [12]. 

The internal covariance shift of a CNN can be reduced with the implementation 

of the Batch Normalization process to the input vectors of each convolutional 

block. Batch Normalization is applied to a layer’s input, when each value of the 

input is replaced by a value belonging to a distribution of the total input’s values 

with zero center and unit variance. This new value is calculated on two steps. 

Initially, the mean value of a layer’s d-dimensional (d batches) input x = (x(1) … 

x(d))  with each  dimension’s size of m examples, is subtracted by each 𝑥𝑖 value of 

the input and then the result is divided by  the squared variance of the input 

values: 

�̂�𝑖
(𝑘)

 =  
𝑥𝑖

(𝑘)
 − 𝑚𝑒𝑎𝑛(𝑥(𝑘))

√𝑉𝑎𝑟(𝑥(𝑘))2 + 𝜀 
   ,            (20) 

 

𝑚𝑒𝑎𝑛(𝑥(𝑘))  =  
1

𝑚
∑ �̂�𝑖

(𝑘)𝑚
𝑖=1  , 

                 

𝑉𝑎𝑟(𝑥(𝑘))  =  √ 1

𝑚
∑ (�̂�𝑖

(𝑘)
 − 𝑚𝑒𝑎𝑛(�̂�𝑖

(𝑘)
))

2
𝑚
𝑖=1  , 

                           

ε:  arbitrarily small constant for numerical stability  
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Afterwards, the final input value 𝑦(𝑘) to a layer is calculated with the use of the 

two parameters 𝛾(𝑘)  and 𝛽(𝑘), for each activation 𝑥(𝑘) : 

 

𝑦𝑖
(𝑘)

 = 𝛾(𝑘) 𝑥𝑖
(𝑘)

 + 𝛽(𝑘)      (21) 

 

The second equation ensures that the representation of a layer does not change 

after its input’s normalization process and adds two extra parameters to be 

learned, along with the existing model’s parameters. The original layer’s input 

can be obtained by setting  𝛾(𝑘)   =  𝑉𝑎𝑟(𝑥(𝑘))  and  𝛽(𝑘) = 𝑚𝑒𝑎𝑛(𝑥(𝑘)) .  

The Batch normalization transformation is a differentiable transformation. 

Therefore, it can be used in the backpropagation process, in order to back 

propagate the gradient of the loss function l and to calculate its trainable extra 

parameters γ and β [12]: 

 

    
𝜗𝑙

𝜗�̂�𝑖
 =  

𝜗𝑙

𝜗�̂�𝑖
∙  𝛾                                                       (22), 

                      
𝜗𝑙

𝜗𝑉𝑎𝑟(𝑥(𝑘))2
  =   ∑

𝜗𝑙

𝜗�̂�𝑖
 ∙  (𝑚

𝑖=1 𝑥𝑖
(𝑘)

 −  𝑚𝑒𝑎𝑛(𝑥(𝑘))  ∙                                                                                                                 

                ∙  
−1

2
(𝑉𝑎𝑟(𝑥(𝑘))2  +  𝜀)−3 2⁄                   (23) 

 

      
𝜗𝑙

𝑚𝑒𝑎𝑛(𝑥(𝑘)) 
 = ∑

𝜗𝑙

𝜗�̂�𝑖
 ∙  

1

√𝑉𝑎𝑟(𝑥(𝑘))2 + 𝜀

𝑚
𝑖=1                  (24) 

 

 

 

𝜗𝑙

𝜗𝑥𝑖
 =  

𝜗𝑙

𝜗�̂�𝑖
∙  

1

√𝑉𝑎𝑟(𝑥(𝑘))2  +  𝜀
 + 

𝜗𝑙

𝜗𝑉𝑎𝑟(𝑥(𝑘))2
 ∙ 

∙  
2(𝑥𝑖

(𝑘)
 − 𝑚𝑒𝑎𝑛(𝑥(𝑘))

𝑚
 +

𝜗𝑙

𝑚𝑒𝑎𝑛(𝑥(𝑘)) 
∙

𝜗𝑙

𝜗𝑦𝑖
                       (25) 
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The benefits of the Batch normalization application to a CNN are the ability to 

use higher training rates, reduced need for Dropout regularization and the lower 

number of training steps needed for model’s convergence. 

3.5  Regularization 

Regularization is a general term in ML and DL fields and is the implementation 

of various techniques that prevent from learning complex models and avoid 

overfitting phenomenon. These techniques can be applied to various stages of a 

CNN’s training process, which allow for better results in CNN’s generalization.  

3.5.1 Dropout 

Dropout is a regularization technique that is mainly used after the Fully 

connected layers of a CNN, and less after its pooling layers. Its goal is to create 

image noise augmentation, allowing the CNN to search a greater area of possible 

models. Dropout is implemented by randomly zeroing some of the input values 

of a layer (Fig. 3.15) with a probability p of a Bernoulli distribution. Actually, on 

each mini-batch, It excludes some neurons and their respective incoming and 

outgoing connections from the network’s layers it is applied, during the training 

process. This procedure has as a result a smaller network with the same number 

of layers but with less neurons [13][14].  

 

 

Figure 3.15, (a) Fully connected layers, (b) After 
implementing Dropout with 0,5 random probability, 
which zeroes the values corresponding to the 
connections of the randomly chosen neurons  
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Thus, dropout technique allows the exploration of a bigger number of different 

smaller (over the neurons/units total number) networks. These smaller 

networks, at test time, are combined in one network with smaller weights, 

where the weights from excluded connections participate with a factor of p (Fig. 

3.16) [13][14]. 

 

 

Figure 3.16, Network with a p dropout 
probability during training and the 
participation of dropped out weights with a 
factor of p, during testing  

 

3.5.2  L2 Regularization  

L2 regularization [8][9] is a technique that is implemented at the cost function 

of the output of a CNN layer. It applies a weight decay by diminishing the layer’s 

weights and preventing their excessive growth. In order to accomplish this task, 

it adds to the cost function Jo of the training set of size n, the sum of squared 

weights w, multiplied by a regularization parameter lamda (λ): 

 

𝐽 =  𝐽𝑜  +  
𝜆

2𝑛
∑ 𝑤2

𝑤              (26) 

 

If the equation (16) is used in the backpropagation process, taking the partial 

derivatives, and applying the learning rule with a learning rate α, the new 

weights can be calculated: 

 

𝜗𝐽

𝜗𝑤
 =  

𝜗𝐽0

𝜗𝑤
 +  

𝜆

𝑛
𝑤                                                    (27) 

    𝑤 = 𝑤 −  𝛼
𝜗𝐽

𝜗𝑤
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𝜗𝐽0

𝜗𝑤
 −  𝛼

𝜆

𝑛
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=  (1 −  𝛼
𝜆

𝑛
) 𝑤 −  𝛼

𝜗𝐽0

𝜗𝑤
                                   (28) 

 

The last equation reviles the fact that the larger a weight is, the more it is 

penalized and it is led towards zero without becoming ever zero. Lamda 

regularization parameter determines the excess of the regularization application 

and it takes positive values. If λ = 0, then no L2 regularization is applied. If λ is 

too large, then the weight decay will increase significantly and the model will 

lead to underfitting. Choosing the right value of λ will determine the efficiency 

of the L2 regularization. Eventually L2 regularization helps the network to 

generalize better and reduces its overfitting over the training set. 
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4 Segmentation with Unet 

Segmentation and object detection are two tasks of computer vision, which goal 

is to find and precisely allocate the presence of different objects in an image, by 

trying to discover the exact boundaries of these objects in the image. Since DL 

CNNs are used to extract import features of an image, they have been also used 

for the specific feature recognition and allocation of different objects in images. 

Unet belongs to this family of the CNNs and has been initially developed for  

Biomedical Image Segmentation [17] .   

4.1  Semantic segmentation 

Semantic segmentation in computer vision and machine learning is the task that 

classifies each pixel of an image and assigns it to a certain semantic label of a 

category. It recognizes the existence of an object category inside the image and 

separates the object area of this category from the background, by precisely 

delineate the contours of this area with a different color [16] (Fig. 4.1).  

Since semantic segmentation categorizes each pixel to a specific class, it is a 

classification supervised problem and the different classes that are used, define 

its design decisions. It can be a binary classification problem when the task is 

the separation of an object from its background like the segmentation of skin 

signs from the rest of the skin for skin cancer detection or the separation of the 

Left atria on a cardiac TTE image for helping its better enlargement assessment. 

Multi class segmentation can also be implemented, separating the different 

classes in an image, as scene understanding in self-driving car (Fig. 4.2). The 

number of classes affects the choice of the last activation function of a CNN. 

Usually, sigmoid function is used for binary semantic segmentation and softmax 

for multiclass segmentation. 
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(a)                                              (b)                                           (c) 

Figure 4.1, Semantic segmentation on a TTE cardiac image using Unet: 

(a) Apical 4 chamber (A4C) view, (b) Precise Semantic segmentation mask  

over the cardiac LA, (c) Loosen semantic segmentation mask of the same 

area.   

 

 

Figure 4.2, Semantic segmentation on an image with objects of 

different classes (a) objects on a table  

 

One characteristic design of CNNs, that implement the sematic segmentation 

task is their final layers. Pixel by pixel classification on the original image input, 

in order to separate the desired objects by background (and from each other for 

different class objects), dictates an alteration on CNN’s architecture. The final 

fully connected layers are replaced by convolutional layers and the last layer is 

also a convolutional one, where its output feature map corresponds to an image 

representing the same scene as the input image (Fig. 4.3). Main difference of 

the output image, is that the output represents the masks of the areas of objects 

of different classes that separates them form the rest background of the scene.   

 

 

      



  -45- 

 

 

Figure 4.3, Semantic segmentation with different architectures. 

Output image is a representation of the masks of the different objects 

from the initial scene  

 

Performance evaluation of a semantic segmentation system is an import part, as 

it is for every machine and deep learning problem. If for L number of classes, we 

denote by Cij the number of pixels with ground truth class i and predicted class 

j, 𝑷𝑗  =  ∑ 𝑪𝑖𝑗𝑖  the total number of pixels which were predicted in class j and  

𝑮𝑗  =  ∑ 𝑪𝑖𝑗
𝐿
𝑖=1  the total number of pixels labelled with class i , the following 

metrics can be measured [16]: 

a) Overall Pixel (OP) accuracy: OP = 
∑ 𝑪𝑖𝑖

𝐿
𝑖=1

∑ 𝑮𝑖
𝐿
𝑖=1

 

b) Per-Class (PC) accuracy: PC = 
1

𝐿
 ∑

𝑪𝑖𝑖

𝑮𝑖

𝐿
𝑖=1  

c) Jaccard Index (JI), or mean Intersection over Union: JI = 

1

𝐿
 ∑

𝑪𝑖𝑖

𝑮𝑖 + 𝑷𝑖 − 𝑪𝑖𝑖  

𝐿
𝑖=1                               (29) 

 

Jaccard Index calculates the average of the intersection over the union of the 

labelled segments. Thus, it is considered a standard metric for performance 

evaluation of a semantic segmentation system, as it evaluates the false alarms 

and the missed values per class, at the same time [15][16].  

On the contrary, Overall Pixel accuracy is not a good evaluation metric, since its 

measure of the proportion of the correctly labelled pixels, in image inputs with 
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very imbalanced classes (e.g., Fig. 4.1), limits its objective results. Such inputs 

are usually those with a large background class, which may occupy over 70-75% 

of the total number of pixels. The Per-Class accuracy calculates the proportion 

of correctly labelled pixels for each class separately and then averages over the 

classes. In that case, false alarms are included in the background class. Thus, 

this metric can compensate and become capable of use in semantic 

segmentation problems where there is a small or no background class [16] (e.g., 

Fig. 4.2). 

Another important aspect in a segmentation system is the choice of its loss 

function. Common loss functions for semantic segmentation is Focal loss, cross-

entropy and Jaccard loss. Nevertheless, the latter losses, as is stated in Duque-

Arias D. et al (2021) [17], were found not to perform well in some architectures, 

like Unet and SegNet.  In the same paper, it has been proposed and tested a 

generalization of the Jaccard loss, the Power Jaccard Loss, which is able to 

penalize wrong predicted labels by increasing the weight of wrong predictions 

during training, thus improving the performance [17]: 

 

𝐽𝑝(𝑦, �̂�, 𝑝)  =  1 − 
𝑦 ∙�̂� + 𝜀

(𝑦𝑝 + �̂�𝑝 − 𝑦 ∙�̂�) + 𝜀
   (30) 

 

Where p is the factor that determines the degree of penalization of the wrong 

predicted labels and constant ε prevents the zero division. For p = 1, Power 

Jaccard Loss is becoming the Jaccard Loss. For binary segmentation problems, 

where distinction between background and a subject is the goal, a suitable value 

for the power p has been tested to be the 1.75 [17].  

4.2  U-net Architecture 

U-net is a specific architecture of a fully CNN (Fig. 4.4), which has been 

developed mainly for segmentation and precise localization on biomedical 

images.  Data augmentation on small annotated datasets, is a characteristic 

strategy of this CNN, achieving efficient and fast results.  The last property 

makes U-net a good tool for image segmentation, since the access to such kind 

of annotated biomedical images is very restricted, due mainly to personal data 
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restriction laws. It consists of two parts, the contracting path and a symmetric 

expanding path [18]. 

 

 

 

Figure 4.4,  A characteristic U-net architecture  

 

The contracting path is responsible for feature extraction of the images. It 

consists of blocks with two unpadded convolutional layers of size 3 x 3, at each 

block. The number of channels for each convolutional layer of a specific block is 

half the number of the respective layers of the next block. The output of each 

convolutional layer is fed to a ReLU activation function. After each block, a max 

pooling layer of size 2 x 2 and stride 2 is applied to reduce output size of the 

block to half.  

The expanding path is responsible for upscaling the output of the contacting 

path to the size of the original initial input. It consists of blocks of the same 

number with the contracting path, where each block is initialized with an up-

sampling transpose convolution of size 2 x 2 and stride 2, which halves the 

channels of the previous block and doubles the size of the previous feature map. 

The upscaled output is concatenated with the respective output feature map of 

the contracting path. Each block is completed with two successive convolutional 

layers of size 3 x 3 with the same number of channels, followed by a ReLU 

activation function . The final layer of the U-Net is a one channel convolutional 
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layer of size 1 x 1, which outputs a segmentation map of size equal to the size of 

the initial input image. On the final segmentation map, a sigmoid function 

classifies each pixel to one of the two classes - background pixel or pixel 

belonging to the segmented sector. All the weights in the network are initialized 

from a Gaussian distribution with a standard deviation of square root(2/N), 

with N denoting the number of input units in the weight tensor [18]. 

Dropout and Data augmentation are two methods that are usually implemented 

in the U-net with a small training dataset, in order to boost its training process 

and avoid overfitting [18]. Dropout is used after the contracting path preventing 

the overfitting of the CNN, while data augmentation can make use of shifting, 

rotation, gray variations, and various other deformations, increasing the 

number of the available images, from the existing ones. 
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5  Generative Adversarial 
Network (GAN) 

5.1 Basic GAN 

Gan is a combination of two neural networks and belongs to the generative 

models (Fig. 5.1). The designation of the two networks is Generator G and 

Discriminator D. The goal of the GAN is, through its training, to make the 

Generator capable to produce fake data, as real as possible, from a Gaussian 

data probability input and the Discriminator to distinguish the real data from 

Generator’s fake data [19]. 

 

 

Figure 5.1, GAN basic semantic GAN 

 

In order to accomplish this task, during the training process, the two networks 

of the GAN are engaged into a mini-max, two-player game, where the Generator 

tries to produce fake, real like data, so as to deceive the Discriminator to classify 

them as real, while Discriminator tries to distinguish real data, coming from the 

data distribution, from the fake ones, coming from the Generator [19]. This 

game is described by the value function V(G,D) with equation [19]: 

 

𝑚𝑖𝑛𝐺  𝑚𝑎𝑥𝐷 𝑉(𝐺, 𝐷) =  𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 𝐷(𝑥) ]  + 𝐸𝑧~𝑝𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))) ]  (31) 

 

The Generator of a GAN can be any neural network of multilayer preceptrons or 

upscaling convolution layers (if data are images), which takes a noisy input z 
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from a Gaussian distribution pz, transforms it through the network with 

parameters wg, and outputs a fake data distribution pg from its last layer. If G is 

the differentiable function that describes the Generator transformation, then 

the G(z,wg) is the mapping from the noisy distribution pz(z)  to the data fake 

distribution pg. The goal of the Generator is to find the right G(z,wg), so as its 

output distribution pg to resample with the original data distribution (pg = pdata) 

(Fig. 5.2). At this point the Generator produces fake images real enough to 

deceive the Discriminator to classify the fake image as real [19].  

The Discriminator D can also be any neural network of multilayer preceptrons 

or convolution layers (if data are images), that can work as a classifier. In the 

classical form of the GAN, Discriminator maps its input to a scalar, which 

defines if the input belongs to the real data distribution pdata or to the 

Generator’s fake data distribution pg. In order to accomplish this task, during 

the training process, the Discriminator, with parameters wd , tries to discover a 

function D(x, wd), which will maximize its output probability logD(x) ( the input 

x to belong to the real data distribution pdata ). At the same  time Generator tries 

to achieve its goal by maximizing the probability logD(G(z)), thus the 

Discriminator to classify the fake data G(z) as real by assigning a big probability 

to it.  

 

 

Figure 5.2, GAN goal is, through training, the samples distribution pg 
produced by the Generator (green solid  line) to resample with the data 
distribution samples pdata (black dotted line) ( (a) through (d) ), while 
Discriminator discovers the distribution (blue dotted line)  that 
discriminates fake from real samples. 

 

The basic algorithm that is implemented for a GAN, as it is described in 
Goodfellow I. J. et al (2014) [19] is the following: 
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GAN ALGORITHM: 

for  number of training iterations do: 

for k steps do: 

- Take a minibatch of m noise samples {z(1), z(2),… ,z(m)} from noise 
prior pg(z)  

- Take a minibatch of m samples {x(1), x(2),… ,x(m)} from data 
distribution pdata(x)  

- Train and update the discriminator by ascending its stochastic 
gradient: 
 

 ∇𝜃𝑑 
1

𝑚
∑ [𝑙𝑜𝑔 𝐷(𝑥𝑖)  + 𝑙𝑜𝑔 (1 − 𝐷 (𝐺(𝑧(𝑖)))) ]𝑚

𝑖=1  

 end for 

- Take a minibatch of m noise samples {z(1), z(2),… ,z(m)} from noise 
prior pg(z)  

- Train and update the generator by descending its stochastic gradient: 
 

 

 ∇𝜃𝑑 
1

𝑚
∑ 𝑙𝑜𝑔 (1 − 𝐷 (𝐺(𝑧(𝑖))))𝑚

𝑖=1  

end for 
 
In the above algorithm the number discriminator’s training steps k is a 

hyperparameter and its smallest possible value is 1. The goal of the algorithm in 

the discriminator’s inner loop is to guide the discriminator to converge to a 

global optimum, which is 𝐷∗(𝑥) =  
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎(𝑥)+𝑝𝑔
 for a fixed generator G. On the 

contrary, algorithm’s outer loop goal is to train the generator so as to achieve 

the global minimum, where pg = pdata and the discriminator can distinguish the 

real data from fake, thus D(x) = 
1

2
 [19].   

5.2  Semi-Supervised Learning with GAN 

Discriminator in a GAN, as a CNN it can be also used as a classifier. The 

intuition on this, is that, if we replace the sigmoid activation function at the last 

fully connected layer with the softmax activation, then we can train the 

Discriminator to distinguish an input data,  not only between fake or real class 

but also in N additional classes, where the input may be classified [20]. Thus we 

can implement the semi-supervised learning with a GAN, while the Generator’s 

task remains to try to output data close to the real data distribution. 
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In order to implement the semi-supervised training, the Discriminator keeps its 

main feature extraction structure as CNN except its last classiffication layer. For 

the classifying part, apart from fake or real classification, an activation function 

(sigmoid for binary classification, softmax for multiclass classification) is 

applied on the last layer, creating the supervised part of the Discriminator. Then 

the Discriminator is fitted with real data distribution pdata and their real 

respective labels and is trained to classify a data x into one of real classes N. It’s 

goal on this step is to minimize it loss function Lsupervised (the negative log 

probability of the label, given that the data is real).  

On a second step, after the Discriminator’s feature layers, a sigmoid activation 

function is implemented to classify the input data as fake or real. For this part, 

firstly the unsupervised Discriminator is fitted with data from the real 

distribution pdata, labeled as real data and afterwards with data z from 

Generator’s output distribution pg, labeled as fake data. At this stage the 

Discriminator tries to maximize its loss function Lunsupervised, by maximizing 

probability D(x) and minimizing probability D(G(z)). The task of the Generator 

steal remains to produce as real as possible data. Finally the total loss function 

that Discriminator tries to minimize, during the semi-supervised training 

is[20]: 

                           𝐿 = 𝐿𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 +  𝐿𝑢𝑛𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 = 

=  −𝐸𝑥,𝑦~𝑝𝑑𝑎𝑡𝑎
(𝑥,𝑦)[𝑙𝑜𝑔 𝐷(𝑥, 𝑦) ] −   𝐸𝑥,𝑦~𝑝𝑑𝑎𝑡𝑎

(𝑥)[𝑙𝑜𝑔 𝐷(𝑥) ]

−  𝐸𝑥~𝑝𝑔
(𝑧)[1 −  𝑙𝑜𝑔 𝐷(G(z)) ] 

 

Using semi-supervised GAN is very useful when we have limited labeled data, 

but large dataset of unlabeled data from the same distribution, which are, for 

sure, belongs to one of the distributions classes, but we do not know in which 

exactly. We this technique the Descriminator can be trained in the bigger 

unlabeled dataset to discover the specialized features of the whole data 

distribution, helping its with the small labelled dataset training task as a 

classifier.  
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6 Human Heart and TTE  

Heart is the main organ of human’s circulatory system. It works as a pump of 

the blood, which delivers oxygen and nutrients to the rest of the body’s organs, 

for their proper and continuous function. Several malfunctions of the heart, 

such as its left atrial enlargement, can result in serious complications on a 

human’s health [21].  Transthoracic echocardiography (TTE) is one of the most 

used and affordable methods to check and assess a heart's functional and 

structural integrity.    

6.1 Heart anatomy 

Heart is situated in the middle of the chest, between the two lungs, behind the 

sternum and slightly to its left side. It consists of four (4) main chambers, the 

left and right atria, and the left and right ventricles (Fig. 6.1). Atria is located to 

the upper part of the heart, while ventricles to the lower part. Each atrium 

communicates with the respective ventricle on the same side, through a valve. 

The left atrium is connected with the left ventricle through the mitral valve, 

while the right atrium communicates with the right ventricle through the 

tricuspid valve. Heart uses two additional valves for its external communication, 

the aortic and the pulmonary valve. The aortic valve is utilized by the left 

ventricle and is situated in its upper left part, providing access to the aorta, the 

main artery of the body. The pulmonary valve is utilized by the right ventricle 

and is located in its upper right section and allows communication with the 

pulmonary artery [21].   

Heart’s function is control by an internal electrical conduction system [21]. This 

system is managed by the human brain through the human neural system. It 

controls the rhythm and pace of the heartbeat. This heart’s electrical system 

consists of the following [21]: 

• Sinoatrial (SA) node: Controls the signal that regulates heartbeat.  

• Atrioventricular (AV) node: it is responsible for signal communication 

between the upper chambers of the heart (right and left atria) and the 

lower champers (right and left ventricles) .  
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• Left bundle branch: supply the left ventricle with electrical signal 

• Right bundle branch: supply the left ventricle with electrical signal 

 

 

Figure 6.1, Hearts anatomy. Blue areas are 
responsible for sending the blood to the lungs for 
oxygen enrichment, while the red ones receive the 
oxygen enriched blood and send it to the rest of the 
body  

 

Heart’s function consists of two phases: the diastolic and the systolic phase. 

These two phases are controlled and triggered through electrical signals that are 

sent to the heart from the brain through the neural system and result in the 

cardiac cycle, which is a repeated sequence of alternating contractions and 

relaxation of the atria and the ventricles [21]. 

During the diastolic phase, heart fills with blood and its internal parts are 

conducting the following actions [21]: 

● Left and right atria are expanded. Oxygen enriched blood is entered to 

the left atrium from the lungs through the pulmonary veins and oxygen 

poor blood is entered to the right atrium through the superior and 
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inferior vena cava. During the atria fulfillment, the mitral and the 

tricuspid valve are remaining closed. 

● At some point, when the pressure in each atrium becomes greater than 

the pressure of the same side ventricle, the respective valve opens and 

allows a rapid flow of the blood from the atria to the ventricle. 

● At a second stage of ventricles diastole phase, blood flows in the 

ventricles passively, due to pressure difference between the atria and 

ventricle cavities. 

● The third stage of the ventricles diastole phase occurs during atria’s 

contraction due to action potential from the sinoatrial node (SAN), where 

the remaining blood is actively pushed from the atria to the ventricles.   

During the systolic phase, heart pumps the blood and its internal parts are 

conducting the following actions [21]: 

● Left and right atria are forced to contract, when an electric signal is 

applied to the atria myocardium. This contraction increases the atria 

pressures and sends any remaining blood in the atria to the respective 

ventricle. 

● Ventricle’s systolic phase occurs during their contraction. After the signal 

on the atria myocardium is depolarized, it is applied, with a small delay, 

to the ventricles, forcing them to be contracted.  

● During the ventricle’s contraction, the pressure exceeds that of the atria, 

causing the mitral and the tricuspid valve to close. 

● This contraction forces the aortic and the pulmonary valve to open. Then 

oxygen enriched blood is supplied from the left ventricle to the rest of the 

body, through the aortic valve and the aorta and from the right ventricle 

blood is sent to the lungs through the pulmonary artery for oxygen 

enrichment. 

6.2  Cardiac Left Atrial (LA) Enlargement 

LA enlargement is an anatomic variation to the size of the left atria and is a 

result of increased left atrial pressure for a significant period. Left atrial size has 

prognostic implications, and studies reveal that it can independently predict the 

development of clinically significant cardiovascular diseases and heart failure. 
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LA enlargement occurs when usually another dysfunction is present in the 

human heart [21]. LA’s function is affected proportional to the severity of the 

Mitral’s valve stenosis. In this case LA enlargement is developed and its ability 

to empty the blood to the LV is reduced. Mild to moderate LA enlargement 

occurs due to a progressive Mistral valve stenosis and severe LA enlargement is 

present in asymptomatic and symptomatic severe Mistral valve stenosis [21]. 

Mitral valve regurgitation leads also to LA enlargement, from a mild degree for 

the progressive Mitral regurgitation to a severe degree for asymptomatic and 

symptomatic Mitral regurgitation [21]. LV’s malfunction during the diastolic 

and systolic phase can lead to LA enlargement. Moreover, LA fibrillation, 

hypertension can also cause the increase of the LA’s size [21]. Nevertheless, an 

enlarged LA does not always mean a deviation from normal stage. Athletes and 

especially long-distance runners may develop an enlarged LA, without been a 

heart’s malfunction [24]. The existence of LA enlargement dictates for further 

heart’s abnormalities check [21].  

According to Kou S. et al (2014) [31] the size of the LA cavity is irrelevant to the 

gender and the age of the individual. It is rather related to the individual’s 

height and weight. Difference between males and females exists only because, in 

general, males are higher and heavier. In a male and a female with the same 

height and weight, the size of a normal LA cavity will not different greatly. 

6.3  2D Transthoracic Echocardiography 

6.3.1  Basic theory 

The 2D TTE machines use the properties of the ultrasound waves, in order to 

display the tissue and the internal structure of the heart. Ultrasound waves are 

sound waves, thus mechanical vibrations, that cause the compression and 

decompression of a physical matter, through which are propagated. The main 

metrics of a soundwave are (Fig. 6.2) [22]: 

● Frequency (f): the number of waves per second, measured in hertz (Hz)      

( 1 Hz = 1/sec). 

● Velocity of propagation v:  the speed the wave is propagated through the 

body, measured in meters per sec (m/sec). 
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● Wavelength λ: the distance between two successive peaks, measured in 

millimeters (mm) 

● Amplitude: height of the sound wavelength, measured in decibels (dB). 

 

 

Figure 6.2, Diagram of an ultrasound wave with 
its properties. (source [20]) 

 

Ultrasound waves used in 2D TTE are in frequencies between 2.5 MHz and 3.5 

Mhz, while their velocity in myocardium, valves, blood vessels, and blood is 

relatively constant at 1540 m/s [22]. The range of the amplitude used in 2D TTE 

is between 1 and 120dB. Additionally, the choice of the frequency determines 

directly the depth of the tissue the wave can reach. The higher the frequency is, 

the shorter is the depth of the tissue that can be displayed [22].  

In 2D TTE the basic characteristic of the ultrasound waves, among others, is the 

reflection from the internal tissues (Fig. 6.3) [22]. Reflection occurs when the 

wave meets tissue boundaries and interfaces. The amount of reflection that a 

TTE machine receives, depends on two parameters, as it concerns the cardiac 

tissues: Difference in the tissue density and the angle of the arriving wave. 

When the tissue boundary’s depth is larger than the arrived ultrasound 

wavelength, then this boundary acts as a mirror and returns the wave back to 

the machine as an echo]. In echocardiograms, in order to have an optimal 

display of the cardiac tissue, the angle of the arriving ultrasound wave over the 

examining tissue must be ninety degrees (90o) [22]. This perpendicular angle 

ensures that the received reflected wave will retain the energy of the initial one. 
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Figure 6.3, Interaction between ultrasound 
wave and body tissue. In cardiac tissues 
reflection is the useful interaction  that is used in 
2d TTE  

 

6.4  2D TTE Standard Tomographic Views 

Each view of the 2D TTE is described by the place of the machine’s ultrasound 

head (acoustic window) on the thoracic area around the heart and the image 

plane over the heart’s anatomy. According to this, a cardiologist may produce 

the following views, during a 2D TTE examination [22] (Fig. 6.4):    

• Parasternal long axis (PLAX): 

This view gives access to the aortic and mitral valves, both ventricles, the 

left atrium, the aorta, and the coronary sinus.  

• Parasternal short axis (PSAX): 

This view gives access to the aortic valve, the mitral valve level, the 

pulmonic valve, both ventricles and atria and the interatrial septum. 

• Apical four-chamber (A4C): 

This view gives access to the mitral and tricuspid valves, to both 

ventricles and atria, the coronary sinus (posterior angulation from A4C) 

and to the aortic valve (anteriorly angulated A4C).  

• Apical five-chamber (A5C): 

This view gives access to 
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• Apical two-chamber (A2C): 

This view gives access to the left ventricle and atrium and to the aorta 

(Modified A2C). 

• Apical long axis: 

This view gives access to the aortic and the mitral valves and to the left 

ventricle and atrium.   

• Subcostal four-chamber (S4C): 

This view gives access to the tricuspid valve, to both ventricles and atria 

and to the interatrial septum  

• Suprasternal view: 

This view gives access to the aorta. 

 

    

                        (a)                             (b)                          (c)                            (d) 

   

    (e)                                     (f)                                  (g) 

Figure 6.4, 2D TTE standard tomographic views on the diastolic 
phase: (a) PLAX, (b) PSAX, (c) A4C, (d) A2C, (e) Apical long-axis, 
(f) S4C, (g) Suprasternal  

 

6.4.1  Left Atria check with TTE 

The assessment of the heart's left atria is accomplished through the A4C (Fig. 

6.4(c)) and A2C (Fig. 6.4(d)) views combination of a 2D TTE. As stated in 

Galderisi M. et al (2017) [21] the proposed assessment metric for the LA is the 
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Biplane Volume of the left atria indexed by Body Surface Area (BSA). According 

to Lang M.R. et al (2015) [24] assessment of the left atria may be accomplished 

only by a single-plane view (A4C), if the acquisition of the two views cannot be 

obtained. The latest measurement assumes that the left atrial cavity is always a 

cylinder shape on the short axis plane, which is not true. The difference between 

the indexed volumes of the A4C and A2C is 1 to 2 mL/m2 smaller in A4C view 

[24]. 

LA volume can be calculated using the disk summation technique (Fig. 6.5) by 

adding the volume of a stack of cylinders of height h and area calculated by 

orthogonal minor and major transverse axes (D1 and D2) assuming an oval 

shape [24]: 

π

4h
∑ D1D2    (29) 

 

 

Figure 6.5, Biplane Method of disk 
summation technique (source [26]) 

 

BSA is a coefficient that is calculated by using the body height and weight of a 

person. It is used in clinical studies and is an indicator of fat-free mass.  The 

most commonly used formulas for the BSA calculation are, the Du Bois formula 

[25] (weight W):   

 BSA = 0.007184 x W0.425 x H0.725   

and the Mosteller formula [24], which is simpler: 

BSA = 
√𝑊 ∙ 𝐻

60
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where the BSA unit is in m2, weight (W) in Kg and height (H) in cm. 

As it has been already mentioned, the size of the LA cavity is irrelevant to the 

gender and the age of the person and is related only to the body size [27]. Thus, 

the calculation of the Volume indexed by BSA allows establishing common 

limits for the two genders and preventing the need for gender specific limits due 

to general body size differences (according to Kou S. et al (2014) [27] mean BSA 

value for males is 1,94m2 and for females 1.64m2). Following this, the upper 

normal limit for 2D echocardiographic indexed LA volume is 34 mL/m2 for both 

genders [23].      
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7  Experiments 

In order to evaluate the capability of Deep Learning networks to assess the left 

cardiac atria enlargement, two methods have been deployed. The first one is a a 

U-net for the segmentation task over the LA area on A4C TTe images, and the 

second is a CNN for the classification of the LA size as normal or abnormal. A 

UNET – CNN pipeline of the two deep learning networks  will  be also 

evaluated. 

7.1  Dataset 

The dataset, that was used for the training and the evaluation of the networks, 

consists of 1151 A4C view images of TTE, taken with a Philips echo machine. 

Images were collected anonymously from a Greek Hospital, including only the 

statistical data of height, weight, year of birth and gender for a patient. For each 

A4C image, its respective assessment from an ECC certified cardiologist was 

applied. The assessment included the same A4C image with the left cardiac 

atrial area marked, the measured atria’s volume and the cardiologist’s 

assessment for the left cardiac atria’s enlargement degree (Figure 7.1).  

 

    

   

Figure 7.1, A4C view images. Left images are the echo machine’s 
caption during the diastolic phase. Right images are the 
cardiologist’s assessment with the marked left cardiac atrial.   
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7.1.1 Dataset statistics 

The statistical data of the dataset include the gender , the date of birth for some 

of the samples, the height, the weight ,the volume and the assessment of their 

LA size. According to these, the 686 images belong to males and 464 to females 

of minimum age of 18 years old and maximum of 100 years. The average height 

and weight of the whole population is 170,1 cm and 74.9 Kg respectively. The 

LA’s size has been assessed as normal for the 50,5 % of the population and 

49,5% as abnormal. 

The male population’s age range is from 18 to 100 years old. The average male 

height and weight is 172,8  cm and 80.2 Kg respectively, while their LA size 

assessment is normal for the 49,7% and abnormal for the rest 50,3% . The 

female population’s age range is 22 to 99 years old. Female average height is 

166,2 cm, while the average weight is 67 Kg. The assessment of the female LA 

size revealed a 51,5% of normal size and the 48,5% of abnormal. Table 7.1 

incorporates the above statistical information. 

Table 7.1, Dataset Statistics. 

 

7.2  Dataset Preparation 

Before the implementation of the two deep learning methods, the dataset had to 

be prepared adequately. The images, both the original A4C and their respective 

assessments, had to be of 4:3 aspect ratio. Since, some of them were 

manipulated from a different assessment software, during the TTE, their aspect 

ratio was not the required one. In order to transform them in the desired aspect 

  

Population Age 

Range 

Average 

Height 

(cm) 

Average 

Weight 

(Kg) 

Average 

Volume 
Over  

BSA 

(kg/mm2) 

Normal 

Cardiac 

Atria 
size 

Abnormal 

Cardiac Atria  

size 

Male 
686 

(59.86%) 
18 - 100 172.8 80.2 36.3 

341 

(49.7 %) 

345 

(50.3 %) 

Female  
464 

(40.3%) 
22 - 99 166.2 67 35.5 

239 

(51.5 %) 

255 

(48.5 %) 

  

Total 

  

1151 18– 100 170.1 74.9 36 
581 

(50.5%) 

570 

(49.5 %) 
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ratio, we used the Microsoft Photo software of the Windows 10 OS to crop the 

desired area of the images (Figure 7.2). The resolutions of the dataset were the 

768 x 1024 or the downscaled 600 X 800 for the cropped ones.   

 

   

   

Figure 7.2, Top images: produced from the TTE software. 

Bottom images: cropped in 4:3 aspect ratio and downsized to  

600 x  800 resolution 

 

Our implementation on the pipeline U-Net – CNN, requires the existence of the 

mask for each image, over the left cardiac atria region. Each mask was used as 

the label of the respective image during the U-Net training and evaluation, and 

as a mean to filter the initial image, so as only the left cardiac atria region to be 

provided as an input to the CNN, or only the mask, for its classification as 

normal or abnormal.  The production of the masks was accomplished with the 

use of the VGG Image Annotator (VIA), which is a standalone manual image 

annotation software [30]. VIA is based on HTML, Javascript and CSS and runs 

in a web browser. 

Initially, for each A4C image, with the use of VIA (Figure 7.3), we produced the 

annotation area of two different kinds of masks. One mask includes an extended 

area around the left cardiac atria area and was used to isolate the area that will 

be fed to the CNN’s input. The other kind of mask follows the annotated area of 

the left cardiac atria made by the cardiologist, on the assessment image. On the 

latter, the input image to the CNN will be directly the mask. The annotated 

masking areas were saved as json files.  
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(a) (b) 

Figure 7.3, Annotation the areas to pro of duce the corresponding masks with 

the VIA software: (a) Extended mask, (b) original mask from cardiologist 

assessment image 

 

The annotation of the masking areas followed the creation of the respective 

masks of images. For this task, an internal script of VIA software, written in 

Python programming language, was used. This script was fed with the 

locations of the original image and the respective json file with the right 

masking annotations, and produced the desired masks of the same size with 

the original images, at the coordinates of the left cardiac atria (Figure 7.4). 

 

 

(a) 

 

(b) 

Figure 7.4, The final masks (middle images) and their filtering 

over the original image (right images )(a) Extended mask, (b) 

Original mask  
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The CNN, for its training and evaluation, will use two different datasets. The 

one will make use of the extended masked images as input image. These masked 

images are produced inside the code of our implementation. The other will use 

the original mask as input. The reason for the latter decision, as it is 

demonstrated in Figure 7-4, is that the masked images of the original masks 

have very little information for the CNN to manipulate. So,  CNN’s capability to 

discover the right patterns of the LA, in order to classify it efficiently, is reduced. 

Thus, we made the decision to use the original mask, hopping CNN will discover 

and simulate the least squares formula for the atria’s volume measurement and 

to accomplish an efficient classification. 

Additionally, to the input images of the CNN, for both datasets, we collected the 

aforementioned statistical data for all images in a csv file, in order to calculate 

the label of the atria as normal or abnormal. Then programmatically, for each 

image, we use the height and weight of its sample to calculate the BSA 

coefficient according to Mosteller’s formula. Next, we calculate the Volume over 

BSA number (Indexed Volume) for each image. If the Volume over BSA is under 

34 [25], then the image’s atria is labeled as normal, otherwise it is abnormal. 

Finally, for all the above models, the dataset of 1151 images is splited in a 

training set of 575 images, a validation set of 288 images and a test set of 288 

images. 

7.3  Methods 

For the prepose of our experiment, our Unet and CNN and GAN have been 

implemented with the Tensorflow API and the code has been built to run o. The 

networks have been trained and evaluated on the following scenarios, as it 

concerns the kind of masks that were used, the image resolution and the use of 

augmentation techniques over the image datasets: 

1. Unet: 

a. Extended mask dataset: The resolutions of 240 x 320 and 120 x 

160 for image-mask dataset were used and for each resolution, a 

dataset without image augmentation and one with image 

augmentation. 
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b. Original mask dataset: The resolutions of 240 x 320 and 120 x 

160  for image-mask dataset were used and for each resolution we 

used a dataset without image augmentation and with image 

augmentation 

2. CNN: 

a. Extended mask dataset: The resolutions of 240 x 320 and 120 x 

160 for masked image dataset were used and for each resolution, 

a dataset without image augmentation and one with image 

augmentation 

b. Original mask dataset: The resolutions of 240  x 320 and 120 x 

160  for the original masks dataset were used and for each 

resolution we used a dataset without image augmentation and 

with image augmentation 

3. GAN: 

For GAN we used the resolution of 130 x 130 as Generators output 

and Discriminators input. The input images were the A4C images 

without any masking. 

The segmentation task of the A4C images was accomplished with the use of a 

modified Unet of Madani A. et al (2018) [2] (Fig. 7.5).  

 

 

Figure 7.5, Implemented Unet architecture 
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The applied modifications were the addition of a rescaling layer for the images 

in the range of (0,1), an augmented layer for random contrast and the use of 

same padding to all the convolutional layers, in order the output mask 

resolution to resemble with the input’s resolution. Dropout regularization has 

been applied after the downscale part of the U-Net. In addition, the extra 

applied image augmentation included random rotation, width and height shifts, 

shear, zoom and brightness alterations. In order to maximize the use of the 

graphic card, batch size of 8 was used with the resolutions 240 x 320 and 16 

with the resolutions of 120 x 160. The max training epochs of the U-Nets were 

300 with a patience of 50 epochs and initial learning rate of 0.0001. The chosen 

loss function for the Unet was the Power Jaccard Loss with the power p of 1.75 

[17] and the Jaccard index [16] as its metric. The model was evaluated with the 

test Jaccard index and F1 score over the pixels amount. For All tests a GTX 1050 

GPU with 4GB ram was used.  

The basic CNN architecture is the one used in Madani A. et al  (2018) [2] 

(Figure 7.6). All the convolutional layers used kernels of size (3,3), ReLU as 

activation function, and same padding. For the resolution 240 X 320, the first 

two convolutional layers used a (7,7) kernel. Alterations from the above 

architecture have been implemented, such as the replacement of the Average 

pooling layers with Max pooling layers after each convolutional layer of kernel 

size (2,2), Dropout of 0.4 after the flatten layer and the fully connected layers 

and the standard weight initialization for the fully connected layers. The 

training epochs were 1000 with a patience of 50 for models with no data 

augmentation and 2500 for models with data augmentation, while the initial 

learning rate was of 0.0002. Binary cross entropy was used as the loss function 

and binary accuracy as the metric of the model. Model was evaluated with the 

test accuracy, F1 score and AUC-ROC score. 
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Figure 7.6, Implemented CNN architecture 

Finally, a Unet-CNN pipeline will be evaluated over the test set. From each 

category of extended and precise masking will be used the CNN with the best 

performance according the F1 score and AUC-ROC score.  For the selected CNN, 

the respective Unet will be used to produce the predicted masks. In the case of 

the extended masking, the predicted masks will be used over the test set images 

to produce the masked-image test set, which will be fed to its CNN for the 

classification task (Fig. 7.7). The predicted masks from the precise masking 

Unet will be fed directly to the respective CNN (Fig. 7-8). 

All our models used the dataset with splits of 50% for training , 25% for 

validation and 25% for testing. We use the same seed for the splits in order to 

ensure that all models will use the same unseen test set for their evaluation. 

Thus, training set consists of 575 images and validation and test sets of 288 

images each. 

 

 

Figure 7.7, Unet -  CNN pipeline for the extended masking models 
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Figure 7.8, Unet - CNN pipeline for the precise masking models 

 

The semi-supervised task was implemented with  a modified SGAN of Madani 

A. et al (2018) [2]. In our architecture the Generator (Fig. 7.9) receives as an 

input a Gaussian noise layer of size 1 x 1x 100, which gets passed through eight 

(8) conv-transpose block layers, and outputs images of size 130 × 130. Each of 

the first seven conv-transpose block consists convolutional transpose upscaling 

layer followed by a batch normalization layer. The upscaling layers use a (3,3) 

kernel with stride 2 and ReLU as activation function. The last upscaling layer 

uses the tanh as activation function. 

 

 

Figure 7.9, Generator of the Semi-supervised GAN 

 

SGAN’s Discriminator  consists of four convolutional blocks followed by a max 

pooling layer of size (2,2) and stride 2, and a flatten layer and a fully connected 

layer with LeakyReLU activation function. Each convolutional block consists of 

three convolutional layers of kernel size (3,3) followed by batch normalization 

layer and a LeakyReLU activation function. The first two conolotional layers use 

a stride of 1, while the third ones of stride 2. After each convolutional block and 

fully connencted layer a dropout layer of 0.5 is applied (Fig 7.10).  
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Figure 7.10, Discriminator of the Semi-supervised GAN 

 

For the supervised and unsupervised part of the discriminator we used binary 

crossentropy as the loss function and on their respective output layer the 

sigmoid function.  For the GAN we used a mean square error loss between the 

second last layer of the discriminator for our fake image and for an unlabeled 

image. For the SGAN training, in one iteration, we supply first a minibatch of 32 

images and labels to the supervisd part of the Discriminator, then a same sized 

minibatch of real images with their labels of ones to the unsupervised part of the 

Discriminator, following a same sized minibatch  of fake images with their 

labels of zeros, also to the unsupervised part of the Discriminator. The iterasion 

is completed with the Generator training, while the Discriminator stays 

untrainable. The dataset of 1151 unmasked images was splitted in three parts.  

207 images were used for the supervised training of the Discriminator, 828 

images as the unlabeled dataset and  116 images as Test set for the evaluation of 

the superivised Discriminator on the classifying the cardic LA as normal or 

abnormal, 

7.4  Results 

The results of the training and evaluating the U-net and the CNN models in the 

task of the segmentation of an A4C image of a TTE over the LA area and the 

classification of the LA’s size as abnormal or normal reveal the significance of 
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the use of the data augmentation techniques in small datasets, such as those 

with medical data.    

7.4.1 Unet  

The results of the Unet model over the different image size inputs per masking 

type, showed the importance of the data augmentation techniques during Unet’s 

training, which is one of U-net’s main characteristics according to Ronneberger 

et al (2015) [18]. On all cases, data augmentation helped model to achieve better 

results on the segmentation task (Tables 7.2, 7.3). Models without data 

augmentation have high variance and are overfitting to the training data, failing 

to generalize well. On the contrary, producing and providing the model with 

more abstract data through data augmentation, allow the models to examine a 

wider set of data distributions around the original distribution of the initial 

training set, resulting in more generalized models, which are capable to predict 

much better the previously unseen test set.    

A physical examination of the produced masks on the test set, for this model, 

without data augmentation and with data augmentation, reveals that model 

without data augmentation, in many cases,  failed in detecting the exact position 

of the LA in the image, even if the size of the mask was close to the ground truth 

(Fig. 7.11).  

 

 

 

 

Figure 7.11, Segmentation results of 120 x 160 test set 
images from Unet with no data augmentation (extended 
masking)   
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On the other hand, the models with data augmentation were able to detect the 

area of the LA and to draw it with the proper mask (Fig. 7.12). Any deviation of 

the latter from the ground truth, was just a bigger mask around the crucial area 

of the LA. 

 

 

 

 

 

Figure 7.12, Segmentation results of 120 x 160 test set 
images from Unet with data augmentation (extended 
masking) 

 

For the extended masking segmentation task, the model that was trained with 

dataset of 120 x 160 image size achieved better results, with 91% F1 score on 

masking pixels and 83.9 % Jaccard Index score over the test set predictions. 

Moreover, the per pixel normalized confusion matrices of the two resolution 

models, show also the better performance of the model with 120 x 160 

resolution (Fig. 7.13). The difference is significant on the pixels that represent 

the mask (class 1), where the model with 120 x 60 achieves a 94% recall and 

87% precision score, while that with 240 x 320 achieves an 89% recall and 91% 

precision score.  
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(a)                                                                         (b) 

Figure 7.13, Unet’s per pixel normalized matrices with 

DA of test set images (extended masking): (a) 240 x 320, 

(b) 120 160 (0:abnormal , 1:normal) 

 

 

 

Table 7.2, Unet Extending Masking Results 

 

 

 

 

 

 

 

 

 

 

For the precise masking segmentation task, A physical examination of the 

produced masks on the test set, for the model, without data augmentation (Fig. 

7.14) and with data augmentation (Fig. 7.15), revels the same behavior with 

extended masking model, where the model with data augmentation managed to 

detect the area of the LA and to draw it with the proper mask. Additionally, the 

model without data augmentation, in many cases, failed to discover the exact 

shape of the ground truth mask.  

 

 

Extended Masking 

 240 x 320 120 x 160 

 
Plain 

Data 

Data 

Augmentation 

Plain 

Data 

Data 

Augmentation 

Training 
Jaccard 
Index 

94.4 % 84.9 % 85.7 % 87.4 % 

Validation 
Jaccard 
Index 

82.9 % 82.9 % 83.1 % 83.6 % 

Test  
Jaccard 
Index 
Predictions 

40.5 % 81.9 % 40.4 % 83.9 $ 

F1 score 
Masking 
Pixels 

57.0 % 89.0 % 57.0 % 94.0 % 
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Figure 7.14, Segmentation results of 120 x 160 test set images 
from Unet without data augmentation (precise masking) 

 

 

 

 

Figure 7.15, Segmentation results of 120 x 160 test set images 

from Unet with data augmentation (precise masking) 
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The model that was trained with dataset of 120 x 1620 image size, achieved also 

slightly better results, with 88% F1 score on masking pixels and 81.32% Jaccard 

Index score over the test set predictions. 

The per pixel normalized confusion matrices of the two resolution models, show 

also the better performance of the model with 120 x 160 resolution (Fig. 7.16). 

The difference is not very significant on the pixels that represent the mask (class 

1), where the model with 120 x a60 achieves a 95% recall and 82% precision 

score, while that with 240 x 320 achieves an 90% recall and 85% precision 

score. 

 

 

                                                           (a)                                                           (b) 

Figure 7.16, Unet’s per pixel normalized matrices with 

DA of test set images (precise masking): (a) 240 x 320, 

(b) 120 x 160(0:abnormal , 1:normal) 

 

Table 7.3, Unet Precise Masking Results 

 

 

 

 

 

 

 

 

 

 

 

Precise Masking 

 240 x 320 120 x 160 

 
Plain 

Data 

Data 

Augmentation 

Plain 

Data 

Data 

Augmentation 

Training 
Jaccard 
Index 

81.5 % 83.2 % 85.2 % 83.0 .0% 

Validation 
Jaccard 
Index 

78.0 % 78.35 % 80.9 % 80.1 % 

Test 
Jaccard 
Index 
Predictions 

30.0 %  78.32 % 29.9 % 81.3 % 

F1 score 
Masking 
Pixels 

45.0 % 87.0 % 45.0 % 88.0 % 
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7.4.2  CNN Results 

The results of the CNN models over the different image size inputs per masking 

type, showed again the importance of the data augmentation techniques during 

CNN’s training. On all cases, data augmentation helped model to achieve better 

results on the classification task (Tables 7.3, 7.4). However, the results are still 

not satisfactory, since even the models with data augmentation have low 

metrics. One reason is may be the low resolution for our task. As it is observed 

in the results, for the data augmented models a comparison between the two 

resolutions reveals that the 240 x 320 resolution gives better results. The 

overfitting is less, while F1 and AUC_ROC scores are bigger. 

For the extended masking classification task, the model that was trained with 

dataset of 240 x 320 image size achieved close results with that of 120 x 160 

resolution, with 75% and 74% F1 score for the abnormal and the normal class 

respectively, 74% accuracy over the test set predictions and an 74% AUC-ROC 

score (Table 7.3). The normalized confusion matrices of the two resolution 

models, show also the almost similar performance of the model with 120 x 160 

resolution on both classes, achieving better result for the normal LA class (Fig. 

7.17). The model of 24o x 340 achieves a 77% and 71% recall score for the 

abnormal and the normal class respectively, while that of 120 x 160 achieves an 

78% and 64% recall score for the abnormal and the normal class respectively. 

 

   

                                                           (a)                                                               (b) 

Figure 7.17, CNN’s normalized matrices with DA of test 

set images (extended masking): (a) 240 x 320, (b) 120 

160 (0:abnormal , 1:normal) 
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Table 7.3, CNN Extending Masked Images Results 

 

 

For the precise masks classification task, the model that was trained with 

dataset of 120 x 160 mask size achieved also close results with that of 240 x 320 

resolution, with 75% and 63% F1 score for the abnormal and the normal class 

respectively, 70% accuracy over the test set predictions and an 70% AUC-ROC 

score (Table 7.4). The normalized confusion matrices reveals also the balance 

on the performance for the models on both classes (Fig. 7.18). The model of 12o 

x 160 achieves a 89% and 51% recall score for the abnormal and the normal 

class respectively, while that of 240 x 320 achieves an 84% and 53% recall score 

for the abnormal and the normal class respectively. 

 

   

                                                           (a)                                                           (b) 

Figure 7.18, CNN’s normalized matrices with DA of test 

set images (precise masking): (a) 240 x 320, (b) 120 160 

(0:abnormal , 1:normal) 

Extended Masking 

 240 x 320 120 x 160 

 
Plain 

Data 

Data 

Augmentation 

Plain 

Data 

Data 

Augmentation 

Training  

Accuracy 
100 % 77.9 % 100  % 75.2 % 

Validation 
Accuracy 

71,7 % 73.1 % 69.1 % 72.9 % 

Test 

accuracy 
48.0 % 74.0 % 49.0 % 71.0 % 

F1 score 

abnormal 

normal 

50.0 % 

45.0 % 

75.0 % 

74.0 % 

52.0 % 

45.0 % 

73.0 % 

69.0 % 

AUC-ROC 48.0 % 74.0 % 49.0 % 71.0% 
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Table 7.4, CNN Precise Masks Results 

 

 

 

 

 

 

 

 

 

 

 

 

7.4.3 Unet - CNN Pipeline Results 

In the case of the extended masking models, the CNN with the best results is the 

240 x 320 model, which will be combined with the respective 240 x 320 

resolution Unet model. The implementation of this pipeline reveals a slightly 

reduce  performance of the CNN model. The cause for this is the Unet model, 

which in some cases failed to predict the masks well (Fig. 7.18). In Figure 7.19 

the four images reveal the importance of the quality sampling during the TTE 

procedure for implementing LA segmentation. The Unet failed to discover the 

LA on the A4c image. Nevertheless, extended masking pipeline classification 

reached  an F1 score of 72 % and 74 % for the abnormal and normal class 

respectively, with 73 % AUC-ROC score and 73% accuracy on test set, reducing 

CNN’s score only by one unit. Its normalized matrix is presented in Figure 

7.20(a). 

 

Precise Masking 

 240 x 320 120 x 160 

 
Plain 

Data 

Data 

Augmentation 

Plain 

Data 

Data 

Augmentation 

Training 
Accuracy 

100 % 73.7 % 100 % 73.7 % 

Validation 
Accuracy 

69.9 % 77.6 % 71.7 % 79.4 % 

Test 
accuracy 

49.0 % 69.0 % 50.0 % 70 % 

F1 score 
abnormal 
normal 

53.0 % 

45.0 % 

73.0 % 

63.0 % 

52.0 % 

48.0 % 

75 % 

63 $ 

AUC-ROC 49.0 % 69.0 % 50.0 % 70.0 % 
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Figure 7.19, Segmentation results of 240 x 320 test set 
images from Unet with data augmentation (extended 
masking 240 x 320) 

  

In the case of the precise masking models, the CNN with the best results is the 

120 x 1600 model, which will is combined with the respective 120 x 160 

resolution Unet model, which performance is also the best in its category. The 

implementation of this pipeline reveals a significant downperformed CNN 

model. The cause for this, is the Unet’s performance and the nature of CNN’s 

training set. Although the precise masking CNN achieved closed scores in 

classification among all models, it was trained with the ground truth masks. 

Unet, while its results are very close with the relative extended masking model 

in its category, can not produce precise enough masks for the CNN. The precise 

masking pipeline reached an F1 score of 0 % and 67 % for the abnormal and 

normal class respectively, with 50 % AUC-ROC score and 51% accuracy on test 

set. Its normalized matrix is presented in Figure 7.20 (b). Table 7.5 shows the 

results of the Unet-CNN pipeline classification models. 
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(a) (b) 

Figure 7.20, Unet-CNN pipeline’s normalized matrices 

on test set : (a) extended masking 240 x 320), (b) precise 

masking (160 x 120) (0:abnormal , 1:normal) 

 

Table 7.5, Unet - CNN Pipeline models 

 

 

 

 

 

 

 

 

7.4.4 SGAN 

The results of training the SGAN are not promising for the current task. The 

Discriminator failed to be trained in the task of the classification of the cardiac 

LA as normal or abnormal, while Generator is not capable to produce the A4C 

images of a TTE. The main reason for this fail is the small unlabeld dataset that 

was used. This small sized dataset has not supply the Discriminator with enough 

diverged images, in order to generalize on the data, and the Discriminator was 

overfiited on these data. The overfiiting of the Discriminator led into collapsed 

gradiends, which  resulted in the Generator’s failure to learn the inner patterns 

of the data for producing the desired realistic images. 

 

Unet - CNN Pipeline 

 
Extended Masking        

(240 x 320) 

Precise Masking 

(240 x 320) 

Test 
accuracy 

73.0 % 53.0 % 

F1 score 
abnormal 
normal 

72.0 % 

74.0 % 

0 % 

67.0 % 

AUC-ROC 73.0 % 50.0 % 
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7.5  Conclusion 

Unet with data segmentation and the extended masks performed well even with 

a small dataset, with the image resolution of 120 x 160 to outperform the 240 

x320. It succeeded to discover the LA in the A4C images of TTE. On the other 

hand, CNN achieved a relative low performance in classifying the LA size as 

abnormal or normal for both kind of datasets of extended masked images and 

masks as input. This is due to the small size of the dataset, which was 1151 

images (528 for traing). Nevertheless, CNN performance was improving as the 

dataset become bigger, which shows that the model could discover the right 

patterns in the images. Our experiments showed clearly that the pipeline Unet-

CNN with the extended masks images manages to give way better results than 

the precise masks. The reason was the need for a very precise prediction of the 

precise masks from the Unet, which could not be achieved efficiently with the 

current size of the dataset. SGAN, due to the small sized dataset, did not 

succeeded in classification task and in producing real A4C images. Mainly the 

unlabeled real A4C images were very few and unsupervised Discriminator could 

not discover the inner patterns of the images, which would help its supervised 

part. 

Experiments with larger datasets, with images from different machine vendors, 

are expecting to give improved and more efficient results, especially for the 

classification tasks. 
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Appendix 

1.1 Import Libraries Code 

import cv2 

import numpy as np 

import pandas as pd 

import math 

import scipy 

import matplotlib.pyplot as plt 

 

import os 

import pathlib 

import shutil 

import tempfile 

from math import ceil 

import PIL 

import PIL.Image as Image 

import random 

 

import sklearn as skl 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report, confusion_matrix, 

f1_score,roc_curve, auc, roc_auc_score, ConfusionMatrixDisplay   

from sklearn.preprocessing import LabelBinarizer 

 

import tensorflow as tf 

import tensorflow.keras 

from tensorflow.keras import models, metrics,layers, regularizers, utils, 

preprocessing 
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from keras.models import Model, Sequential 

from keras.preprocessing.image import ImageDataGenerator 

from keras import backend as Kb 

from keras.backend import int_shape 

 

%matplotlib inline 

 

random.seed  = 42 

 

# Use of GPU 

physical_devices = tf.config.list_physical_devices('GPU') 

tf.config.experimental.set_memory_growth(physical_devices[0], True) 

 

1.2 Dataset Creation Code 

 

#Retrieve Data - Calculate BSA 

def upload_data(bsa_file, columns=[]): 

    return pd.read_csv(bsa_file , sep=';', header=0, usecols=  columns) 

[columns] 

 

def create_bsa_data_dict(bsa_dataframe): 

    bsa_dataframe.set_index('image') 

    bsa_data_dict = bsa_dataframe.to_dict('index') 

    bsa_data_diction = {} 

    for i in bsa_data_dict: 

        bsa_data_diction[str(bsa_data_dict[i]['image'])]= {'height':  

                                                 bsa_data_dict[i]['height'], 

                                                      'weight': bsa_data_dict[i]['weight'], 

                                                      'long_axis': bsa_data_dict[i]['long_axis'], 



- 88 - 

 

                                                      'area': bsa_data_dict[i]['area'], 

                                                      'volume': bsa_data_dict[i]['volume'], 

                                                      'birth': bsa_data_dict[i]['birth'], 

                                                      'gender': bsa_data_dict[i]['gender'], 

                                                      'bsa_coef': math.sqrt(  

                                                     (bsa_data_dict[i]['height']) *  

                                                                  bsa_data_dict[i]['weight'] )/60}                                                            

    return bsa_data_diction 

 

# bsa (body-surface-area) coeffiecent per (Mosteller's formula) 

def bsa_calculation(bsa_data_diction): 

    bsa_coef_dict = {} 

    for image in bsa_data_diction.keys():         

        bsa_coef_dict[image] = math.sqrt( (bsa_data_diction[image]['height']) *  

                                                                    bsa_data_diction[image]['weight'] )/60          

    return bsa_coef_dict 

 

#Create images, masked_images and  labels for UNET-CNN 

def sort_list_asc(image_list): 

    sorted_list = [] 

    for image_name in list: 

        image_name= os.path.splitext(image_name)[0] 

        sorted_list.append(int(image_name))     

    return sorted(sorted_list)   

 

For UNET 

def create_image_mask_label_sets ( image_directory, bsa_data_dict,  

                                                                     img_width, img_height ): 

    image_mask = [] 
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    image_mask_dataset= [] 

    image_dataset = [] 

    mask_dataset = [] 

    label_dataset = {} 

    volume_over_bsa = {} 

            

    images = os.listdir(image_directory) 

    images = sort_list_asc(images) 

    for image_name in images: 

         

        mask = cv2.imread(mask_directory + '/' +  str(image_name) + '.jpg',  

                                            cv2.IMREAD_UNCHANGED) 

        mask = cv2.resize(mask, (img_width, img_height), interpolation =  

                                           cv2.INTER_NEAREST) 

        mask_dataset.append(np.expand_dims(mask,2)) 

        

        image = cv2.imread(image_directory + '/' + str(image_name) + '.jpg',  

                                              cv2.IMREAD_UNCHANGED) 

        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

        image = cv2.resize(image, (img_width, img_height), interpolation =  

                                             cv2.INTER_NEAREST) 

        image_dataset.append(np.expand_dims(image,2))  

         

        image_mask_dataset.append(np.expand_dims([image,mask],3))         

        volume_over_bsa= round   ( float ( bsa_data_dict [  

                                                       str(image_name)]['volume']) /    

                                                       bsa_data_dict[str(image_name)]['bsa_coef'],3) 

       bsa_data_dict[str(image_name)]['volume_over_bsa']=  

                                                                                                         volume_over_bsa  
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        if volume_over_bsa >= 34: 

            label_dataset[str(image_name)]= 'abnormal'             

        else: 

            label_dataset[str(image_name)] = 'normal'       

           

    image_mask_dataset= np.asarray(image_mask_dataset, dtype=np.float32) 

    image_dataset = np.asarray(image_dataset, dtype=np.float32) 

    mask_dataset =  np.asarray(mask_dataset, dtype=np.float32)         

    return image_dataset, mask_dataset, image_mask_dataset, label_dataset 

 

For CNN 

def create_masked_image(images, masks): 

    masked_image_dataset = [] 

    for i in range(len(images)): 

        image = cv2.bitwise_and(images[i], images[i], mask= masks[i]) 

        masked_image_dataset.append(np.expand_dims(image,2)) 

    return np.asarray(masked_image_dataset) 

 

def create_image_mask_label_sets ( image_directory, bsa_data_dict,  

                                                                     img_width, img_height ): 

    image_dataset = [] 

    mask_dataset = [] 

    label_dataset = {} 

    volume_over_bsa = {} 

            

    images = os.listdir(image_directory) 

    images = sort_list_asc(images) 

    for image_name in images: 
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        mask = cv2.imread(mask_directory + '/' +  str(image_name) + '.jpg',  

                                            cv2.IMREAD_UNCHANGED) 

        mask = cv2.resize(mask, (img_width, img_height), interpolation =  

                                           cv2.INTER_NEAREST) 

        mask_dataset.append(np.expand_dims(mask,2)) 

        

        image = cv2.imread(image_directory + '/' + str(image_name) + '.jpg',  

                                              cv2.IMREAD_UNCHANGED) 

        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

        image = cv2.resize(image, (img_width, img_height), interpolation =  

                                             cv2.INTER_NEAREST) 

        image_dataset.append(np.expand_dims(image,2))  

                      

        volume_over_bsa= round   ( float ( bsa_data_dict [  

                                                       str(image_name)]['volume']) /    

                                                       bsa_data_dict[str(image_name)]['bsa_coef'],3) 

       bsa_data_dict[str(image_name)]['volume_over_bsa']=  

                                                                                                         volume_over_bsa  

        

        if volume_over_bsa >= 34: 

            label_dataset[str(image_name)]= 'abnormal'             

        else: 

            label_dataset[str(image_name)] = 'normal'       

           

    image_masked_dataset=  create_masked_image(image_dataset,   

                                                     mask_dataset) 

    image_dataset = np.asarray(image_dataset, dtype=np.float32) 

    mask_dataset =  np.asarray(mask_dataset, dtype=np.float32)     
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    return image_dataset, image_masked_dataset, mask_dataset,  

                  label_dataset, bsa_data_dict 

 

For GAN 

def create_image_mask_label_sets ( image_directory, bsa_data_dict,  

                                                                     img_width, img_height ): 

    image_mask = [] 

    image_dataset = [] 

    label_dataset = {} 

    volume_over_bsa = {} 

            

    images = os.listdir(image_directory) 

    images = sort_list_asc(images) 

    for image_name in images:       

        image = cv2.imread(image_directory + '/' + str(image_name) + '.jpg',  

                                              cv2.IMREAD_UNCHANGED) 

        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

        image = cv2.resize(image, (img_width, img_height), interpolation =  

                                             cv2.INTER_NEAREST) 

        image_dataset.append(np.expand_dims(image,2))  

         

         

        volume_over_bsa= round   ( float ( bsa_data_dict [  

                                                       str(image_name)]['volume']) /    

                                                       bsa_data_dict[str(image_name)]['bsa_coef'],3) 

       bsa_data_dict[str(image_name)]['volume_over_bsa']=  

                                                                                                         volume_over_bsa  

        

        if volume_over_bsa >= 34: 
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            label_dataset[str(image_name)]= 'abnormal'             

        else: 

            label_dataset[str(image_name)] = 'normal'       

    

    image_dataset = np.asarray(image_dataset, dtype=np.float32)    

    return image_dataset, label_dataset, bsa_data_dict 

 

#Train, Validation,Test Set 

def labels_one_hot_encode(labels): 

    le = LabelBinarizer() 

    labels = le.fit_transform(labels) 

    labels = utils.to_categorical(labels, 2) 

    return labels, le.classes_ 

 

#Training, Validation, Test sets for Unet-CNN Models 

#rescaling images, masks to 0,1 

def rescaling_images(x_train, mask_train, x_val, mask_val, x_test, 

mask_test): 

    x_train = x_train * 1./255 

    mask_train = mask_train * 1./255 

    x_val = x_val * 1./255 

    mask_val =  mask_val * 1./255 

    x_test = x_test * 1./255 

    mask_test = mask_test * 1./255     

    return x_train, mask_train, x_val, mask_val, x_test, mask_test 

 

def CNN_sets_split(samples, labels, seed, split_1=0.5, split_2=0.5): 

    X_train, X_val, y_train, y_val = train_test_split(samples, labels, test_size =  

                                     split_1, random_state=seed, shuffle=True, stratify=labels)     

    X_val, X_test, y_val, y_test = train_test_split(X_val, y_val, test_size =  
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                                      split_2, random_state=seed, shuffle=True, stratify=y_val)     

    return X_train, y_train, X_val, y_val, X_test, y_test 

 

For UNET 

def separate_images_masks(data_array): 

    images=[] 

    masks=[] 

    for image in data_array: 

        images.append(image[0]) 

        masks.append(image[1]) 

         

    images = np.asarray(images, dtype=np.float32) 

    masks = np.asarray(masks, dtype=np.float32) 

    return images, masks 

 

def datasets_UNET(image_directory, mask_directory, bsa_directory, 

img_width, img_height, seed=42): 

        

    bsa_data = upload_data(bsa_directory,  

                       ['image','height','weight','long_axis','area','volume','birth','gender']) 

    bsa_data_dict = create_bsa_data_dict(bsa_data)      

    image_dataset, mask_dataset, image_mask_dataset, label_dataset =  

                                                     create_image_mask_label_sets(image_directory,  

                                         mask_directory, bsa_data_dict, img_width, img_height) 

     

    labels = np.asarray(list(label_dataset.values())) 

     

    lables_one_hot, classes = labels_one_hot_encode(labels) 

     

    X_train, _, X_val, _, X_test, _ = CNN_sets_split(image_mask_dataset,  
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                                                                                                          lables_one_hot, seed) 

         

    X_train_UNET, mask_train_UNET = separate_images_masks(X_train)  

    X_val_UNET, mask_val_UNET = separate_images_masks(X_val)  

    X_test_UNET, mask_test_UNET = separate_images_masks(X_test) 

     

    _, mask_train_UNET, _, mask_val_UNET, _, mask_test_UNET =  

         rescaling_images(X_train_UNET, mask_train_UNET,  

                                                                                   X_val_UNET, mask_val_UNET,  

                                                                                   X_test_UNET, mask_test_UNET)      

    return image_dataset, mask_dataset, X_train_UNET, mask_train_UNET,  

                    X_val_UNET, mask_val_UNET, X_test_UNET, mask_test_UNET 

 

For CNN 

def datasets_CNN_extended(image_directory, mask_directory, bsa_data_dict, 

img_width, img_height, seed=42): 

         

    image_dataset, image_masked_dataset, mask_dataset, label_dataset,  

                        bsa_data_dict = create_image_mask_label_sets(image_directory,  

                                          mask_directory, bsa_data_dict, img_width, img_height) 

     

    labels = np.asarray(list(label_dataset.values())) 

     

    lables_one_hot, classes, label_binarizer = labels_one_hot_encode(labels) 

    X_train, y_train, X_val, y_val, X_test, y_test=  

                            CNN_sets_split(image_masked_dataset, lables_one_hot, seed)     

    return image_dataset, image_masked_dataset, mask_dataset,  

                   label_dataset, bsa_data_dict, classes, label_binarizer, X_train,  

                    y_train, X_val, y_val, X_test, y_test 
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def datasets_CNN_original(image_directory, mask_directory, bsa_data_dict, 

img_width, img_height, seed=42): 

         

    image_dataset, image_masked_dataset, mask_dataset, label_dataset,    

                        bsa_data_dict = create_image_mask_label_sets(image_directory,  

                                          mask_directory, bsa_data_dict, img_width, img_height) 

     

    labels = np.asarray(list(label_dataset.values())) 

     

    lables_one_hot, classes, label_binarizer = labels_one_hot_encode(labels) 

     

    X_train, y_train, X_val, y_val, X_test, y_test =  

                                           CNN_sets_split(mask_dataset, lables_one_hot, seed)     

    return image_dataset, image_masked_dataset, mask_dataset,  

                  label_dataset, bsa_data_dict, classes, label_binarizer, X_train,  

                  y_train, X_val, y_val, X_test, y_test 

 

#Training, supervised, Unsupervised, Test sets for GAN Model 

#rescaling images, masks to -1,1 

def rescaling_images(x_train, mask_train, x_val, mask_val, x_test, 

mask_test): 

    x_train = (x_train – 127.5) * 1/127.5 

    x_sup = ( x_sup – 127.5) * 1/127.5 

    x_unsup = ( x_unsup – 127.5) * 1/127.5 

    x_test = x_test – 127.5) * 1/127.5     

    return x_train, mask_train, x_val, mask_val, x_test, mask_test 

 

def GAN_sets_split(samples, labels, seed, split_1=0.1, split_2=0.7): 

    X_train, X_test, y_train, y_test = train_test_split(samples, labels, test_size =  

                                       split_1, random_state=seed, shuffle=True, stratify=labels)     
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    X_sup, X_unsup, y_sup, y_unsup = train_test_split(X_train, y_train,  

                test_size = split_2, random_state=seed, shuffle=True,  

                                     stratify=y_train)     

    return X_train, y_train, X_sup, y_sup, X_unsup, y_unsup, X_test, y_test 

 

def datasets_GAN(image_directory, bsa_data_dict, img_width, img_height, 

seed=42): 

               

    image_dataset, label_dataset, bsa_data_dict=  

                                                     create_image_mask_label_sets(image_directory,  

                                                                         bsa_data_dict, img_width, img_height) 

     

    labels = np.asarray(list(label_dataset.values())) 

     

    lables_one_hot, classes, label_binarizer = labels_one_hot_encode(labels) 

     

    X_train, y_train, X_sup, y_sup, X_unsup, y_unsup, X_test, y_test =  

                                             GAN_sets_split(image_dataset, lables_one_hot, seed)       

     

    X_train, X_sup, X_unsup , X_test = rescaling_images(X_train, X_sup,  

                                                                                                                 X_unsup , 

X_test)  

     

    return image_dataset, X_train, y_train, X_sup, y_sup, X_unsup, y_unsup,  

                    X_test, y_test, label_dataset, bsa_data_dict, classes, label_binarizer 

 

def generate_real_images(images, labels, batch): 

    ix = randint(0, images.shape[0], batch) 

    X, labels = images[ix], labels[ix] 

    y = ones((batch, 1)) 



- 98 - 

 

    y, _, _= labels_one_hot_encode(y) 

    return [X, labels], y 

 

def  generate_noise_points(gen_input, batch): 

    z_input = randn(gen_input * batch)  

    z_input = z_input.reshape(batch, 1, 1, gen_input) 

    return z_input 

 

def generate_fake_images(generator, gen_input, batch): 

    z_input = generate_noise_points(gen_input, batch)     

    fake_images = generator.predict(z_input) 

    y = zeros((batch, 1)) 

    y, _, _= labels_one_hot_encode(y) 

    return fake_images, y 

     

FOR GAN 

def GAN_sets_split(samples, labels, seed, split_1=0.1, split_2=0.8): 

    X_train, X_test, y_train, y_test = train_test_split(samples, labels, test_size =  

                                     split_1, random_state=seed, shuffle=True, stratify=labels)     

    X_sup, X_unsup, y_sup, y_unsup = train_test_split(X_train, y_train,   

             test_size = split_2, random_state=seed, shuffle=True, stratify=y_train)    

    return X_train, y_train, X_sup, y_sup, X_unsup, y_unsup, X_test, y_test 

 

def datasets_GAN(image_directory, bsa_data_dict, img_width, img_height, 

seed=42):               

    image_dataset, label_dataset, bsa_data_dict =  

                           create_image_mask_label_sets(image_directory,  

                                              bsa_data_dict, img_width, img_height)     

    labels = np.asarray(list(label_dataset.values())) 
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    lables_one_hot, classes, label_binarizer = labels_one_hot_encode(labels) 

     

    X_train, y_train, X_sup, y_sup, X_unsup, y_unsup, X_test, y_test =  

                                     GAN_sets_split(image_dataset, lables_one_hot, seed)       

     

    X_train, X_sup, X_unsup , X_test = rescaling_images(X_train, X_sup,  

                                                                                                           X_unsup , X_test)  

     

    return image_dataset, X_train, y_train, X_sup, y_sup, X_unsup, y_unsup,  

                    X_test, y_test, label_dataset, bsa_data_dict, classes, label_binarizer 

 

def generate_real_images(images, labels, batch): 

    ix = randint(0, images.shape[0], batch) 

    X, labels = images[ix], labels[ix] 

    y = ones((batch, 1)) 

    y, _, _= labels_one_hot_encode(y) 

    return [X, labels], y 

 

def  generate_noise_points(gen_input, batch): 

    z_input = randn(gen_input * batch)  

    z_input = z_input.reshape(batch, 1, 1, gen_input) 

    return z_input 

 

def generate_fake_images(generator, gen_input, batch): 

    z_input = generate_noise_points(gen_input, batch)     

    fake_images = generator.predict(z_input) 

    y = zeros((batch, 1)) 

    y, _, _= labels_one_hot_encode(y) 

    return fake_images, y    
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1.3 Unet Code 

1.3.1 Code for Training the Unet Models 

#Dataset Creation Functions Load 

%run Datasets_Creation.ipynb 

 

#Plot – Print Datasets Functions 

def plot_images(image_set, mask_set, lines=6): 

    image_indexs = [] 

     

    plt.figure(figsize=(15, 15)) 

    for i in range(lines):  

        plt.figure(figsize=(15, 15)) 

        image = random.randint(0, len(image_set)) 

        ax = plt.subplot(121) 

        plt.imshow(image_set[image,:,:,0]) 

        ax = plt.subplot(122) 

        plt.imshow(mask_set[image,:,:,0]) 

        plt.axis("off") 

 

def print_size_shapes(images, masks, images_name, masks_mame): 

    # Dataset 

    print(f'{images_name} Dataset size : {len(images)}') 

    print(f'{images_name} shape: {images.shape}') 

    print(f'Single {images_name} shape: {images[1].shape}') 

    print(f'{masks_mame} shape: {masks.shape}') 

    print(f'Single {masks_mame} shape: {masks[1].shape}') 

 

def print_sets_size_shapes(dataset, images_name, masks_name): 

    images, masks = tuple(zip(*dataset)) 
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    images = np.asarray(images) 

    masks = np.asarray(masks) 

    

    # Dataset 

    print(f'{images_name} Dataset size : {len(images) * len(images[1])}') 

    print(f'{images_name} shape: {images.shape[0]}') 

    print(f'Batched {images_name} shape: {images[0].shape}') 

    print(f'Single {images_name} shape: {images[0][0].shape}') 

     

    print(f'{masks_name} Dataset size : {len(masks) * len(masks[1])}') 

    print(f'{masks_name} shape: {masks.shape[0]}') 

    print(f'Batched {masks_name} shape: {masks[0].shape}') 

    print(f'Single {masks_name} shape: {masks[0][0].shape}') 

         

 

 

#Create dataset for the model- Without Augmentation 

# Creating tensors data.Datasets of Train, Validation, Test sets 

def to_tensors(x_train, mask_train, x_val, mask_val, x_test, mask_test): 

        

    train_ds = tf.data.Dataset.from_tensor_slices( (x_train, mask_train) ) 

    val_ds = tf.data.Dataset.from_tensor_slices( (x_val, mask_val) ) 

    test_ds = tf.data.Dataset.from_tensor_slices( (x_test, mask_test) )     

    return train_ds,val_ds,test_ds    

 

# Configure Datasets for performance: cache, shuffle, prefetech  

def configure_for_performance(ds, seed, buffer_size= 1000, batch_size=1):       

    ds = ds.cache() 

    ds = ds.shuffle(buffer_size= buffer_size, seed=seed) 
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    ds = ds.batch(batch_size) 

    ds = ds.prefetch(buffer_size= tf.data.AUTOTUNE) 

    return ds 

 

def create_performance_dataset(X_train, mask_train, X_val, mask_val, 

X_test, mask_test, seed, batch_size=1):      

         

    train_ds, val_ds, test_ds  = to_tensors(X_train, mask_train, X_val, 

mask_val, X_test, mask_test) 

 

    train_ds = configure_for_performance(train_ds, seed, batch_size = 

batch_size) 

    val_ds = configure_for_performance(val_ds,seed, batch_size= batch_size) 

    test_ds = configure_for_performance(test_ds,seed, batch_size= batch_size) 

    return train_ds, val_ds, test_ds 

 

# Dataset augmentation layers  

data_augmentation_layers = [ 

        layers.RandomContrast(0.5), ] 

data_augmentation = tf.keras.Sequential( 

    data_augmentation_layers) 

 

#CREATE AUGMENDED SETS FUNCTIONS 

def train_validation_augmentation(x_train, mask_train, x_val, mask_val, 

seed=42, batch_size=1):        

    image_data_gen_args = dict(rotation_range = 5, 

                               width_shift_range = 0.2, 

                               height_shift_range = 0.2, 

                               shear_range = 0.2, 

                               zoom_range = 0.2, 
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                               brightness_range = (0.4, 0.8), 

                               fill_mode= 'nearest') 

 

    mask_data_gen_args = dict(rotation_range = 5, 

                              width_shift_range = 0.2, 

                              height_shift_range = 0.2, 

                              shear_range = 0.2, 

                              zoom_range = 0.2, 

                              brightness_range = (0.4, 0.8), 

                              fill_mode= 'nearest',  

                              preprocessing_function = lambda x: np.where(x>0, 1, 0). 

                                                        astype(x.dtype))     

 

    # Train images and masks generators 

    # Train images 

    image_data_generator = ImageDataGenerator(**image_data_gen_args) 

    image_data_generator.fit(x_train, augment = True, seed = seed) 

 

    train_image_generator = image_data_generator.flow(x_train, seed = seed, 

                                                shuffle=True, 

                                                batch_size=batch_size) 

 

    # Train masks 

    mask_data_generator = ImageDataGenerator(**mask_data_gen_args) 

    mask_data_generator.fit(mask_train, augment = True, seed = seed) 

 

    train_mask_generator = mask_data_generator.flow(mask_train, seed =  

                                                  seed,shuffle=True,  batch_size=batch_size)  
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    # Validation images and masks generators 

    # Validation images  

    valid_image_gen = ImageDataGenerator(**image_data_gen_args) 

    valid_image_gen.fit(x_val, augment = True, seed = seed ) 

    valid_img_generator = valid_image_gen.flow(x_val, seed = seed, 

                                                    shuffle=True, 

                                                    batch_size=batch_size) 

    # Validation masks 

    valid_mask_gen = ImageDataGenerator(**mask_data_gen_args) 

    valid_mask_gen.fit(mask_val, augment = True, seed = seed) 

    valid_mask_generator = valid_mask_gen.flow(mask_val, seed = seed, 

                                                    shuffle=True, 

                                                batch_size=batch_size)   

    return  train_image_generator, train_mask_generator, 

valid_img_generator,  valid_mask_generator 

 

def image_mask_generator_set(image_generator, mask_generator): 

    return zip(image_generator, mask_generator) 

 

def plot_Gerarator_Images(img_gen, mask_gen): 

    for i in range(0,8): 

        x = img_gen.next() 

        y = mask_gen.next() 

        image = x[i] 

        mask = y[i] 

        plt.subplot(1,2,1) 

        plt.imshow(image[:,:,0]) 

        plt.subplot(1,2,2) 

        plt.imshow(mask[:,:,0]) 

        plt.show() 
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#Model's functions 

#Model construction 

def build_U_net_model(input_shape, start_neurons= 64):    

    input_layer = tf.keras.Input(shape=input_shape)     

    # Image augmentation block 

    input_layer = data_augmentation(input_layer)     

    input_resc = layers.Rescaling(scale=1./255)(input_layer)  

     

    conv1 = layers.Conv2D(start_neurons * 1, (3, 3), activation="relu", 

padding="same", kernel_initializer='he_normal')(input_resc) 

    conv1 = layers.Conv2D(start_neurons * 1, (3, 3), activation="relu", 

padding="same", kernel_initializer='he_normal')(conv1)     

    pool1 = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(conv1) 

     

    conv2 = layers.Conv2D(start_neurons * 2, (3, 3), activation="relu", 

padding="same",kernel_initializer='he_normal')(pool1) 

    conv2 = layers.Conv2D(start_neurons * 2, (3, 3), activation="relu", 

padding="same",kernel_initializer='he_normal')(conv2) 

    pool2 = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(conv2) 

 

    conv3 = layers.Conv2D(start_neurons * 4, (3, 3), activation="relu", 

padding="same",kernel_initializer='he_normal')(pool2) 

    conv3 = layers.Conv2D(start_neurons * 4, (3, 3), activation="relu", 

padding="same",kernel_initializer='he_normal')(conv3) 

    pool3 = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(conv3)  

    drop = layers.Dropout(0.5)(pool3) 
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    # Middle 

    convm = layers.Conv2D(start_neurons * 8, (3, 3), activation="relu", 

padding="same",kernel_initializer='he_normal')(drop) 

    convm = layers.Conv2D(start_neurons * 8, (3, 3), activation="relu", 

padding="same",kernel_initializer='he_normal')(convm) 

            

    deconv3 = layers.Conv2DTranspose(start_neurons * 4, (2, 2), strides=2, 

padding="same")(convm) 

    uconv3 = layers.concatenate([deconv3, conv3]) 

     

    uconv3 = layers.Conv2D(start_neurons * 4, (3, 3), activation="relu", 

padding="same",kernel_initializer='he_normal')(uconv3) 

    uconv3 = layers.Conv2D(start_neurons * 4, (3, 3), activation="relu", 

padding="same",kernel_initializer='he_normal')(uconv3) 

 

    deconv2 = layers.Conv2DTranspose(start_neurons * 2, (2, 2), strides=2, 

padding="same")(uconv3) 

    uconv2 = layers.concatenate([deconv2, conv2]) 

     

    uconv2 = layers.Conv2D(start_neurons * 2, (3, 3), activation="relu", 

padding="same",kernel_initializer='he_normal')(uconv2) 

    uconv2 = layers.Conv2D(start_neurons * 2, (3, 3), activation="relu", 

padding="same",kernel_initializer='he_normal')(uconv2) 

 

    deconv1 = layers.Conv2DTranspose(start_neurons , (2, 2), strides=2, 

padding="same")(uconv2) 

    uconv1 = layers.concatenate([deconv1, conv1]) 

     

    uconv1 = layers.Conv2D(start_neurons * 1, (3, 3), activation="relu", 

padding="same", kernel_initializer='he_normal')(uconv1) 
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    uconv1 = layers.Conv2D(start_neurons * 1, (3, 3), activation="relu", 

padding="same", kernel_initializer='he_normal')(uconv1)     

    output_layer = layers.Conv2D(1, (1,1), activation="sigmoid")(uconv1) 

     

    return tf.keras.Model(input_layer,output_layer) 

 

# Learning Rate optimezer setup  

def learning_scheduler(initial_rate): 

    return  tf.keras.optimizers.schedules.InverseTimeDecay( 

              initial_rate, 

              decay_steps=STEPS_PER_EPOCH*25,  

              decay_rate=1.0, 

              staircase=False) 

 

def get_optimizer(initial_rate): 

    return tf.keras.optimizers.Adam(learning_scheduler(initial_rate)) 

 

# plot learning rate degradation 

def plot_learning_schedule(initial_rate, batch_size): 

    step = np.linspace(0,25000) 

    lr_schedule = learning_scheduler(initial_rate) 

    lr = lr_schedule(step) 

    plt.figure(figsize = (8,6)) 

    plt.plot(step/STEPS_PER_EPOCH, lr) 

    plt.title(f'Initial Learnig rate : {initial_rate} with Batch size: {batch_size} 

Decay Ratio', fontsize=15) 

    plt.ylim([0,max(plt.ylim())]) 

    plt.xlabel('Epoch') 

    _ = plt.ylabel('Learning Rate') 

 



- 108 - 

 

# callbacks logs for each model 

def get_callbacks(name, patience, monitor): 

    return [ 

        tf.keras.callbacks.EarlyStopping( 

            monitor= monitor,  

            verbose=2, 

            patience= patience, 

            restore_best_weights= True),         

        tf.keras.callbacks.TensorBoard(logdir/name), 

    ] 

def checkpointer(model_name): 

    return tf.keras.callbacks.ModelCheckpoint(model_name, verbose=1, 

save_best_only=True) 

#Model Setup 

def jaccard_index(masks_true, masks_predicted): 

    masks_true_flatten = Kb.flatten(masks_true) 

    masks_predicted_flatten = Kb.flatten(masks_predicted) 

    intersection = Kb.sum(masks_true_flatten * masks_predicted_flatten) 

   # Addittion of 10 for avoiding divide with zero 

    return (intersection + 10.0) / (Kb.sum(masks_true_flatten) + 

Kb.sum(masks_predicted_flatten) - intersection + 10.0) 

 

def jaccard_loss(y_true, y_pred, p_value=1.75, smooth = 10):     

    y_true_f = Kb.flatten(y_true) 

    y_pred_f = Kb.flatten(y_pred) 

 

    intersection = Kb.sum(y_true_f * y_pred_f) 

    term_true = Kb.sum(Kb.pow(y_true_f, p_value)) 

    term_pred = Kb.sum(Kb.pow(y_pred_f, p_value)) 

    union = term_true + term_pred - intersection 
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    return 1 - ((intersection + smooth) / (union + smooth))   

 

 

def models_compiler(model, optimizer, loss=jaccard_loss, metrics= 

[jaccard_index]): 

    return model.compile(optimizer=optimizer, loss=loss, metrics= metrics)    

 

#Model fit Without Augmentation 

def u_net_compile_fit(model, name, train_ds, val_ds, optimizer=None, 

learning_rate=0.0001, max_epochs=50, patience=5, 

monitor='val_loss', class_weights=None, batch_size=1): 

    if optimizer is None: 

        optimizer = get_optimizer(learning_rate) 

         

    models_compiler(model= model, optimizer= optimizer) 

         

    model.summary() 

     

    history = model.fit( 

        train_ds, 

        steps_per_epoch = STEPS_PER_EPOCH, 

        epochs = max_epochs, 

        validation_data = val_ds, 

        class_weight = class_weights, 

        callbacks = get_callbacks(name, patience, monitor), 

        verbose=1,) 

    return history 

 

#Model fit With Augmentation 
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def u_net_compile_fit_AUGM(model, name, train_generator, val_generator, 

train_length, validation_length, optimizer=None, 

learning_rate=0.00001, max_epochs=50, patience=5, 

monitor='val_loss', class_weights=None, batch_size=1): 

    if optimizer is None: 

        optimizer = get_optimizer(learning_rate) 

         

    models_compiler(model= model, optimizer= optimizer)         

    model.summary()     

    history = model.fit( 

        train_generator, 

        steps_per_epoch = STEPS_PER_EPOCH,         

        epochs = max_epochs, 

        validation_data = val_generator, 

        validation_steps = validation_length, 

        class_weight = class_weights, 

        callbacks = get_callbacks(name, patience, monitor), 

        verbose=1,) 

    return history 

 

# Model's Graphs 

# Plotting Net Loss cs Val_Loss and Acuuracy vs Val_Accuracy 

def plot_model_graphs(model_name, type_histories): 

     

    loss_unet = type_histories[model_name].history['loss'] 

    val_loss_unet = type_histories[model_name].history['val_loss'] 

     

    epochs = range(1, len(loss_unet) + 1)     

         

    jaccard_matric_unet = type_histories[model_name].history['jaccard_index'] 
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    val_jaccard_matric_unet =  

type_histories[model_name].history['val_jaccard_index'] 

     

    plt.figure(figsize=(40,40))     

         

    ax = plt.subplot(2, 2,  1) 

    plt.plot(epochs, loss_unet, 'b', label='Training loss') 

    plt.plot(epochs, val_loss_unet, 'r', label='Validation loss') 

    plt.title(model_name + ' Training and Validation loss', fontsize=30) 

    plt.xlabel('Epochs', fontsize=30) 

    plt.ylabel(' Loss', fontsize=30) 

    plt.legend(loc='upper right', fontsize=20) 

        

    ax = plt.subplot(2, 2,  2) 

    plt.plot(epochs, jaccard_matric_unet, 'b', label='Training Jacard Coefficient 

metric') 

    plt.plot(epochs, val_jaccard_matric_unet, 'r', label='Validation Jacard 

Coefficient metric') 

    plt.title(model_name + ' Training and Validation Jacard Coefficient metric', 

fontsize=30) 

    plt.xlabel('Epochs', fontsize=30) 

    plt.ylabel('Jacard Coefficient', fontsize=30) 

    plt.legend(loc='lower right', fontsize=20)     

    plt.show() 

 

#RUN MODELS 

#Extended Masks Paradigm ( 240 x 340) 

# Constants 

IMG_WIDTH= 320 

IMG_HEIGHT = 240 
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CHANNELS = 1 

START_CONVS = 64 

BATCH_SIZE = 6 # 8 for augmented sets 

SEED = 42 

 

# Insert Data 

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented' 

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info' 

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv' 

 

# upload - create datasets 

Images, Masks, X_train, mask_train, X_val, mask_val, X_test, mask_test= 

datasets_UNET(image_directory, mask_directory, bsa_directory, 

IMG_WIDTH, IMG_HEIGHT, seed=42) 

# Create Dataset for the model- Without Augmentation 

train_set, val_set, test_set = create_performance_dataset(X_train, 

mask_train, X_val, mask_val, X_test, mask_test, SEED, 

batch_size=BATCH_SIZE) 

 

 

# Shapes of uploaded original images, masks sets (without augmentation) 

print_size_shapes(Images, Masks, 'Images', 'Masks') 

print_sets_size_shapes(train_set, 'Training', 'Training Masks') 

print_sets_size_shapes(val_set, 'Validation', 'Validation Masks') 

print_sets_size_shapes(test_set, 'Test', 'Test Masks') 

 

# Dataset Augmented with Image Generator 

image_generator, mask_generator, valid_img_generator, 

valid_mask_generator = train_validation_augmentation(X_train, 
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mask_train, X_val, mask_val, seed=SEED, 

batch_size=BATCH_SIZE) 

 

train_Generator = image_mask_generator_set(image_generator, 

mask_generator) 

validation_Generator = image_mask_generator_set(valid_img_generator, 

valid_mask_generator) 

 

# Shapes of uploaded original images, masks sets for augmented sets with 

Image Generator 

print_size_shapes(Images, Masks, 'Images', 'Masks') 

print_size_shapes(X_train, mask_train, 'X_train', 'Masks_train') 

print_size_shapes(X_val, mask_val, 'X_val', 'Masks_val') 

print_size_shapes(X_test, mask_test, 'X_test', 'Masks_test') 

 

# Plot original image, mask pairs 

plot_images(Images, Masks, lines=6) 

# Plot Generator Images 

plot_Gerarator_Images(image_generator, mask_generator) 

# Set Learning Rate 

STEPS_PER_EPOCH = len(train_set) 

# for augmented sets 

#STEPS_PER_EPOCH = len(X_train)//BATCH_SIZE 

LEARNING_RATE = 0.0001 

plot_learning_schedule(LEARNING_RATE, BATCH_SIZE) 

 

# RUN MODEL Extended masks 240x320 

# Create new model 

image_size = (IMG_HEIGHT , IMG_WIDTH) 
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unet = build_U_net_model(input_shape= image_size + (CHANNELS,), 

start_neurons= START_CONVS) 

# Run model without augmentation Datasets 

type_histories['unet_extended_batch8_bigDim']= u_net_compile_fit(unet, 

'unet_extended_batch8_bigDim', train_set, 

val_set,learning_rate=LEARNING_RATE,max_epochs=300, patience=50, 

batch_size=BATCH_SIZE) 

# Run model with Augmented Sets 

type_histories['unet_extended_batch8_bigDim_AUGM']= 

u_net_compile_fit_AUGM(unet, 'unet_extended_batch8_bigDim_AUGM', 

train_Generator, validation_Generator,len(X_train), len(X_val), 

learning_rate=LEARNING_RATE,max_epochs=300, patience=50, 

batch_size=BATCH_SIZE) 

 

# Save and Plot models 

unet.save('saved_U_net_models/unet_extended_batch8_bigDim') 

unet.save('saved_U_net_models/unet_extended_batch8_bigDim_AUGM') 

plot_model_graphs("unet_extended_batch8_bigDim", type_histories) 

plot_model_graphs("unet_extended_batch8_bigDim_AUGM", type_histories) 

1.3.2 Code for Evaluating Unet the Models 

#Dataset Creation Functions Load 

%run Datasets_Creation.ipynb 

 

# Plot Datasets Functions 

# Sanity check plots 

def plot_images(image_set, mask_set, lines=6): 

    image_indexs = [] 

     

    plt.figure(figsize=(15, 15)) 

    for i in range(lines):  
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        plt.figure(figsize=(15, 15)) 

        image = random.randint(0, len(image_set)) 

        ax = plt.subplot(121) 

        plt.imshow(image_set[image,:,:,0]) 

        ax = plt.subplot(122) 

        plt.imshow(mask_set[image,:,:,0]) 

        plt.axis("off") 

      

# Print dimensions 

def print_size_shapes(images, masks, images_name, masks_mame): 

    # Dataset 

    print(f'{images_name} Dataset size : {len(images)}') 

    print(f'{images_name} shape: {images.shape}') 

    print(f'Single {images_name} shape: {images[1].shape}') 

    print(f'{masks_mame} shape: {masks.shape}') 

    print(f'Single {masks_mame} shape: {masks[1].shape}') 

 

def print_sets_size_shapes(dataset, images_name, masks_name): 

    images, masks = tuple(zip(*dataset)) 

    images = np.asarray(images) 

    masks = np.asarray(masks) 

    

    # Dataset 

    print(f'{images_name} Dataset size : {len(images) * len(images[1])}') 

    print(f'{images_name} shape: {images.shape[0]}') 

    print(f'Batched {images_name} shape: {images[0].shape}') 

    print(f'Single {images_name} shape: {images[0][0].shape}') 

     

    print(f'{masks_name} Dataset size : {len(masks) * len(masks[1])}') 
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    print(f'{masks_name} shape: {masks.shape[0]}') 

    print(f'Batched {masks_name} shape: {masks[0].shape}') 

    print(f'Single {masks_name} shape: {masks[0][0].shape}') 

 

 

# Create dataset for the model- Without Augmentation 

# Creating tensors data.Datasets of Train, Validation, Test sets 

def  to_tensors(x_train, mask_train, x_val, mask_val, x_test, mask_test):         

    train_ds = tf.data.Dataset.from_tensor_slices( (x_train, mask_train) ) 

    val_ds = tf.data.Dataset.from_tensor_slices( (x_val, mask_val) ) 

    test_ds = tf.data.Dataset.from_tensor_slices( (x_test, mask_test) )     

    return train_ds,val_ds,test_ds 

 

# Configure Datasets for performance: cache, shuffle, prefetech  

def configure_for_performance(ds, seed, buffer_size= 1000, batch_size=1): 

    ds = ds.cache() 

    ds = ds.shuffle(buffer_size= buffer_size, seed=seed) 

    ds = ds.bataach(batch_size) 

    ds = ds.prefetch(buffer_size= tf.data.AUTOTUNE) 

    return ds 

 

def create_performance_dataset(X_train, mask_train, X_val, mask_val, 

X_test, mask_test, seed, batch_size=1):      

         

    train_ds, val_ds, test_ds  = to_tensors(X_train, mask_train, X_val, 

mask_val, X_test, mask_test) 

 

    train_ds = configure_for_performance(train_ds,seed, batch_size= 

batch_size) 

    val_ds = configure_for_performance(val_ds,seed, batch_size= batch_size) 
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    test_ds = configure_for_performance(test_ds,seed, batch_size= batch_size)     

    return train_ds, val_ds, test_ds 

 

# CREATE  SETS FOR AUGMENDED MODELSdef  def  

def train_validation_augmentation(x_test, mask_test, seed=42, batch_size=1):    

         

    # Test images and masks generators 

    # Test images  

    test_image_gen = ImageDataGenerator() 

    test_image_gen.fit(x_test, augment = True, seed = seed ) 

    test_img_generator = test_image_gen.flow(x_test, seed = seed, 

                                                    shuffle=True, batch_size=batch_size) 

    # Test masks 

    test_mask_gen = ImageDataGenerator() 

    test_mask_gen.fit(mask_test, augment = True, seed = seed) 

    test_mask_generator = test_mask_gen.flow(mask_test, seed = seed, 

                                                    shuffle=True, batch_size=batch_size)     

    return test_img_generator, test_mask_generator 

 

def image_mask_generator_set(image_generator, mask_generator): 

    return zip(image_generator, mask_generator) 

 

# Model Setup 

# Jaccard-Coefficient (Intersection Over Union) metric for semantic 

segmentation 

def jaccard_index(masks_true, masks_predicted): 

    masks_true_flatten = Kb.flatten(masks_true) 

    masks_predicted_flatten = Kb.flatten(masks_predicted) 

    intersection = Kb.sum(masks_true_flatten * masks_predicted_flatten) 
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    return (intersection + 10.0) / (Kb.sum(masks_true_flatten) +   

                   Kb.sum(masks_predicted_flatten) - intersection + 10.0) 

 

def jaccard_loss(y_true, y_pred, p_value=1.75,smooth = 10):     

    y_true_f = Kb.flatten(y_true) 

    y_pred_f = Kb.flatten(y_pred) 

    intersection = Kb.sum(y_true_f * y_pred_f) 

    term_true = Kb.sum(Kb.pow(y_true_f, p_value)) 

    term_pred = Kb.sum(Kb.pow(y_pred_f, p_value)) 

    union = term_true + term_pred - intersection 

      

    return 1 - ((intersection + smooth) / (union + smooth))   

 # Evaluation of the model Functions  

 # Take trained Unet model 

def get_unet_model(model_name): 

    return models.load_model(model_name, 

custom_objects={"jaccard_loss":jaccard_loss,"jaccard_index":jaccard_index

}) 

 

# Evaluate Unet on unknown Test set 

# without augmentation 

def print_unet_test_evaluation(unet_model, unet_model_name, test_set, 

verbose=2): 

    _, acc = unet_model.evaluate(test_set, verbose = verbose) 

    print(f"Evaluation Jaccard Index of {unet_model_name} U-net model is: 

{acc*100.0} %  ") 

 

# with augmentation 

def print_unet_test_evaluation_AUGM(unet_model, unet_model_name, 

X_test,mask_test, batch_size, verbose=2): 
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    _, acc = unet_model.evaluate(X_test,mask_test, batch_size=batch_size, 

verbose = verbose) 

    print(f"Evaluation Jaccard Index of {unet_model_name} U-net model is: 

{acc*100.0} %  ") 

 

#Predict Jaccard coefficient (IOU) Test set with Unet 

# without augmentation 

def calc_predictions(unet_model,test_ds, threshold=0.5):         

    masks_predictions = unet_model.predict(test_ds)     

    masks_pred_thresholed = masks_predictions > threshold 

     

    return masks_pred_thresholed 

# with augmentation 

def calc_predictions_AUGM(unet_model,X_test, batch_size, threshold=0.5): 

    masks_predictions = unet_model.predict(X_test, batch_size=batch_size) 

    masks_pred_thresholed = masks_predictions > threshold 

     

    return masks_pred_thresholed 

 

def test_jaccard_index(unet_model, masks_test, model_masks_predicted): 

   intersection = np.logical_and(masks_test, model_masks_predicted) 

    union = np.logical_or(masks_test, model_masks_predicted) 

    jaccard_index_score = np.sum(intersection)/np.sum(union) 

    return jaccard_index_score   

 

def print_unet_jaccard_score(model_name, jaccard_index_score): 

     print(f"Jaccard Index Score (IOU) of unet model {model_name} is: 

{jaccard_index_score}") 

 

# Check predicted masks vs true masks of images in Test set 
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 def create_masked_image(image, mask): 

    return cv2.bitwise_and(image, image, mask= mask) 

 

def unbatch_set(dataset): 

    unbatached_dataset = [] 

     

    for batch in dataset: 

        for image in batch: 

            unbatached_dataset.append(image)     

    return np.asarray(unbatached_dataset)       

 

def test_image_sunnity_check(unet_model, test_ds, 

model_masks_predicted): 

    test_images, test_masks = tuple(zip(*test_ds)) 

    test_images = np.asarray(test_images) 

    test_masks = np.asarray(test_masks) 

    test_images = unbatch_set(test_images) 

    test_masks = unbatch_set(test_masks) 

         

    for i in range(test_images.shape[0]): 

        test_img = test_images[i]         

        ground_truth = test_masks[i]         

        test_img_input=np.expand_dims(test_img, 0)         

        prediction_mask = model_masks_predicted[i].astype(np.uint8) 

        predicted_masked_image = create_masked_image(test_img,     

        prediction_mask)         

        print (f'Test Image : {i+1}') 

        plt.figure(figsize=(16, 12)) 

        plt.subplot(241) 

        plt.title('Testing Image') 
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        plt.imshow(test_img) 

        plt.subplot(242) 

        plt.title('Testing Label') 

        plt.imshow(ground_truth) 

        plt.subplot(243) 

        plt.title('Prediction on test image') 

        plt.imshow(prediction_mask) 

        plt.subplot(244) 

        plt.title('Image with prediction mask') 

        plt.imshow(predicted_masked_image)                    

        plt.show() 

def test_image_sunnity_check_AUGM (unet_model, X_test,mask_test, 

model_masks_predicted): 

    for i in range(X_test.shape[0]): 

        test_img = X_test[i]         

        ground_truth = mask_test[i]         

        test_img_input=np.expand_dims(test_img, 0)         

        prediction_mask = model_masks_predicted[i].astype(np.uint8) 

         

        predicted_masked_image = create_masked_image(test_img,  

        prediction_mask) 

         

        print (f'Test Image : {i+1}') 

        plt.figure(figsize=(16, 12)) 

        plt.subplot(241) 

        plt.title('Testing Image') 

        plt.imshow(test_img) 

        plt.subplot(242) 

        plt.title('Testing Label') 

        plt.imshow(ground_truth) 
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        plt.subplot(243) 

        plt.title('Prediction on test image') 

        plt.imshow(prediction_mask) 

        plt.subplot(244) 

        plt.title('Image with prediction mask') 

        plt.imshow(predicted_masked_image)                    

        plt.show()   

       

# confusion_matrix without augmnetation                

def plot_confusion_matrix(unet_model, model_name, mask_test, 

model_masks_predicted): 

     

    mask_test = mask_test == 1 

    mask_test = mask_test.flatten()     

     

    mask_test_predictions = model_masks_predicted.flatten() 

         

    cm = confusion_matrix(mask_test, mask_test_predictions, normalize='true') 

     

    display_cm = ConfusionMatrixDisplay(confusion_matrix=cm, 

display_labels=['0','1']) 

         

    display_cm.plot(cmap=plt.cm.Blues) 

    plt.title(f'Confusion Matrix on {model_name} Test set \n') 

    plt.show() 

 

# confusion_matrix with augmnetation 

def plot_confusion_matrix_AUGM(unet_model, model_name, mask_test, 

model_masks_predicted): 
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    mask_test = mask_test == 1 

    mask_test = mask_test.flatten()     

     

    mask_test_predictions = model_masks_predicted.flatten() 

         

    cm = confusion_matrix(mask_test, mask_test_predictions, normalize='true') 

     

    display_cm = ConfusionMatrixDisplay(confusion_matrix=cm, 

    display_labels=['0','1']) 

         

    display_cm.plot(cmap=plt.cm.Blues) 

    plt.title(f'Confusion Matrix on {model_name} Test set \n') 

    plt.show() 

 

# Display Models metrics without augmnetation 

def display_model_metrics(unet_model, model_name, mask_test, 

model_masks_predicted): 

       

    mask_test = mask_test == 1 

    mask_test = mask_test.flatten() 

     

    mask_test_predictions = model_masks_predicted.flatten() 

     

     

    report = classification_report(mask_test, mask_test_predictions ) 

    print(f'Model\'s {model_name} metrics:\n {report}') 

 

# Display Models metrics with augmnetation  

def display_model_metrics_AUGM(unet_model, model_name, mask_test, 

model_masks_predicted): 
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    mask_test = mask_test == 1 

    mask_test = mask_test.flatten() 

     

    mask_test_predictions = model_masks_predicted.flatten() 

     

     

    report = classification_report(mask_test, mask_test_predictions ) 

    print(f'Model\'s {model_name} metrics:\n {report}') 

 

 

# RUN EVALUATE MODELS (extended masks paradigm) 

# Constants 

IMG_WIDTH= 320 

IMG_HEIGHT = 240 

CHANNELS = 1 

START_CONVS = 64 

BATCH_SIZE = 6 # 8 for augmented 

SEED = 42 

 

# Insert Data 

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented' 

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info' 

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv' 

 

Images, Masks, X_train, mask_train, X_val, mask_val, X_test, mask_test= 

datasets_UNET(image_directory, mask_directory, bsa_directory, 

IMG_WIDTH, IMG_HEIGHT, seed=42) 

 

# Dataset for the model- without Augmentation 
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train_set, val_set, test_set = create_performance_dataset(X_train, 

mask_train, X_val, mask_val, X_test, mask_test, SEED, 

batch_size=BATCH_SIZE) 

 

# Shapes of uploaded original images, masks sets 

print_size_shapes(Images, Masks, 'Images', 'Masks') 

print_sets_size_shapes(train_set, 'Training', 'Training Masks') 

print_sets_size_shapes(val_set, 'Validation', 'Validation Masks') 

print_sets_size_shapes(test_set, 'Test', 'Test Masks') 

 

 

# Dataset Augmented with Image Generator 

print_size_shapes(Images, Masks, 'Images', 'Masks') 

print_size_shapes(X_train, mask_train, 'X_train', 'Masks_train') 

print_size_shapes(X_val, mask_val, 'X_val', 'Masks_val') 

print_size_shapes(X_test, mask_test, 'X_test', 'Masks_test') 

 

# Plot original image, mask pairs 

plot_images(X_test, mask_test, lines=6) 

 

# EVALUATE MODEL Extended masks 240x320 without 

Augmentation 

unet_extended_batch8_bigDim = 

get_unet_model('saved_U_net_models/unet_extended_batch8_bigDim') 

 

print_unet_test_evaluation(unet_extended_batch8_bigDim, 

'unet_extended_batch8_bigDim', test_set) 
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unet_extended_batch8_bigDim_masks_predicted = 

calc_predictions(unet_extended_batch8_bigDim, test_set) # threshold to 

0.5 

 

unet_extended_batch8_bigDim_prediction_score = 

test_jaccard_index(unet_extended_batch8_bigDim, mask_test, 

unet_extended_batch8_bigDim_masks_predicted) 

 

print_unet_jaccard_score('unet_extended_batch8_bigDim', 

unet_extended_batch8_bigDim_prediction_score) 

 

test_image_sunnity_check(unet_extended_batch8_bigDim, test_set, 

unet_extended_batch8_bigDim_masks_predicted) 

 

plot_confusion_matrix(unet_extended_batch8_bigDim,'unet_extended_batch

8_bigDim', mask_test, unet_extended_batch8_bigDim_masks_predicted) 

 

display_model_metrics(unet_extended_batch8_bigDim,'unet_extended_batch

8_bigDim', mask_test, unet_extended_batch8_bigDim_masks_predicted) 

 

# EVALUATE AUGMENTED MODEL Extended masks 240x320 with 

Augmentation 

unet_extended_batch8_bigDim_AUGM = 

get_unet_model('saved_U_net_models/unet_extended_batch8_bigDim_A

UGM') 

 

print_unet_test_evaluation_AUGM(unet_extended_batch8_bigDim_AUGM, 

'unet_extended_batch8_bigDim_AUGM', X_test, mask_test, BATCH_SIZE) 

 

# Predictions for Image Generator Augmented Model 
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unet_extended_batch8_bigDim_masks_predicted_AUGM = 

calc_predictions_AUGM(unet_extended_batch8_bigDim_AUGM,X_test, 

BATCH_SIZE) 

 

unet_extended_batch8_bigDim_prediction_score_AUGM = 

test_jaccard_index(unet_extended_batch8_bigDim_AUGM, mask_test, 

unet_extended_batch8_bigDim_masks_predicted_AUGM) 

 

print_unet_jaccard_score('unet_extended_batch8_bigDim_AUGM', 

unet_extended_batch8_bigDim_prediction_score_AUGM) 

 

test_image_sunnity_check_AUGM(unet_extended_batch8_bigDim_AUGM, 

X_test, mask_test, 

unet_extended_batch8_bigDim_masks_predicted_AUGM) 

plot_confusion_matrix_AUGM(unet_extended_batch8_bigDim_AUGM,'unet

_extended_batch8_bigDim_AUGM', mask_test, 

unet_extended_batch8_bigDim_masks_predicted_AUGM) 

 

display_model_metrics_AUGM(unet_extended_batch8_bigDim_AUGM,'unet

_extended_batch8_bigDim_AUGM', mask_test, 

unet_extended_batch8_bigDim_masks_predicted_AUGM) 

1.4 CNN Code 

1.4.1 Code  For Training CNN Models  

# Dataset Creation Functions Import 

%run Datasets_Creation.ipynb 

 

# Plot Functions 

def plot_images(images,masks, masked_images, labels, lines=20): 

    for i in range(100,120): 

        image = random.randint(0, images.shape[0]) 
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        print(list(labels.keys())[image]) 

                 

        plt.figure(figsize=(16, 12)) 

        plt.subplot(131) 

        plt.title(f'Original Image - {list(labels.values())[image]}') 

        plt.imshow(images[image]) 

        plt.subplot(132) 

        plt.title('Mask') 

        plt.imshow(masks[image]) 

        plt.subplot(133) 

        plt.title('Masked image') 

        plt.imshow(masked_images[image])                    

        plt.show() 

 

# Print dimensions 

def print_size_shapes(images, masks, masked_images, labels, images_name, 

masks_name, masked_images_name, labels_name ): 

    # Dataset 

    print(f'{images_name} Dataset size : {len(images)}') 

    print(f'{images_name} shape: {images.shape}') 

    print(f'Single {images_name} shape: {images[1].shape}') 

    print(f'{masks_name} shape: {masks.shape}') 

    print(f'Single {masks_name} shape: {masks[1].shape}') 

    print(f'{masked_images_name} shape: {masked_images.shape}') 

    print(f'Single {masked_images_name} shape: {masked_images[1].shape}') 

    print(f'{labels_name} shape: {np.asarray(list(labels.values 

 

#  Train, Validation,Test Set 

def print_sets_size_shapes(X_train, y_train, X_val, y_val, X_test, y_test): 

    # Train dataset 
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    print(f'Training Dataset size : {len(X_train)}') 

    print(X_train.shape) 

    print(X_train[1].shape) 

    print(y_train.shape) 

     

    # Validation Dataset 

    print(f'Validation Dataset size : {len(X_val)}') 

    print(X_val.shape) 

    print(X_val[1].shape) 

    print(y_val.shape) 

     

    # Test Dataset 

    print(f'Test Dataset size : {len(X_test)}') 

    print(X_test.shape) 

    print(X_test[1].shape) 

    print(y_test.shape) 

 

# Create dataset for the model without Data Augmentation 

# Creating tensors data.Datasets of Train, Validation, Test sets 

def to_tensors(x_train, y_train, x_val, y_val, x_test, y_test): 

           

    train_ds = tf.data.Dataset.from_tensor_slices( (x_train, y_train) ) 

    val_ds = tf.data.Dataset.from_tensor_slices( (x_val, y_val) ) 

    test_ds = tf.data.Dataset.from_tensor_slices( (x_test, y_test) )     

    return train_ds,val_ds,test_ds 

 

# cache, shuffle, prefetch 

# Configure Datasets for performance: cache, shuffle, prefetch  

def configure_for_performance(ds, seed, buffer_size= 1000, batch_size=1): 
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    ds = ds.cache() 

    ds = ds.shuffle(buffer_size= buffer_size, seed=seed) 

    ds = ds.batch(batch_size) 

    ds = ds.prefetch(buffer_size= tf.data.AUTOTUNE) 

    return ds 

 

def create_performance_dataset(X_train, y_train, X_val, y_val, X_test, y_test, 

seed=42, batch_size=1): 

           

    train_ds, val_ds, test_ds  = to_tensors(X_train, y_train, X_val, y_val, 

X_test, y_test) 

 

    train_ds= configure_for_performance(train_ds,seed, batch_size=  

         batch_size) 

    val_ds = configure_for_performance(val_ds,seed, batch_size= batch_size) 

    test_ds = configure_for_performance(test_ds,seed, batch_size= batch_size)     

    return train_ds, val_ds, test_ds, X_test, y_test 

 

def create_performance_dataset(X_train, y_train, X_val, y_val, X_test, y_test, 

seed=42, batch_size=1): 

           

    train_ds, val_ds, test_ds  = to_tensors(X_train, y_train, X_val, y_val, 

X_test,  

      y_test) 

 

    train_ds = configure_for_performance(train_ds,seed, batch_size=  

     batch_size) 

    val_ds = configure_for_performance(val_ds,seed, batch_size= batch_size) 

    test_ds = configure_for_performance(test_ds,seed, batch_size= batch_size) 
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    return train_ds, val_ds, test_ds, X_test, y_test 

 

# Augmentations for Tensor set 

# Dataset augmentation layers 

data_augmentation_layers = [ 

        layers.RandomContrast(0.5), ] 

data_augmentation = tf.keras.Sequential( 

    data_augmentation_layers) 

 

# CREATE AUGMENDED SETS FUNCTIONS 

def train_validation_augmentation(x_train, y_train, x_val, y_val, seed=42, 

batch_size=1):        

    image_data_gen_args = dict(rotation_range = 10, 

                               width_shift_range = 0.1, 

                               height_shift_range = 0.1, 

                               shear_range = 0.1, 

                               zoom_range = 0.2, 

                               brightness_range = (0.2, 0.9), 

                               fill_mode= 'nearest')             

    # Train images 

    image_data_generator = ImageDataGenerator(**image_data_gen_args) 

    image_data_generator.fit(x_train, augment = True, seed = seed) 

 

    train_image_generator = image_data_generator.flow(x_train, y_train, 

                                                      seed = seed, 

                                                      shuffle=True, 

                                                      batch_size=batch_size)             

    # Validation images  

    valid_image_gen = ImageDataGenerator(**image_data_gen_args) 
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    valid_image_gen.fit(x_val, augment = True, seed = seed ) 

    valid_img_generator = valid_image_gen.flow(x_val, y_val, 

                                               seed = seed, 

                                               shuffle=True, 

                                               batch_size=batch_size)     

    return train_image_generator, valid_img_generator 

 

def plot_Gerarator_Images(img_gen): 

    for i in range(0,8): 

        x = img_gen.next()         

        image = x[i]         

        plt.imshow(image[:,:,0]) 

        plt.show() 

 

# Model's functions 

# Model construction 

def build_CNN_model(input_shape, start_neurons= 16, firstTwo_kernels = 

(7,7)): 

    

    input_layer = tf.keras.Input(shape=input_shape) 

     

    # Image augmentation block 

    input_layer = data_augmentation(input_layer) 

     

    input_resc = layers.Rescaling(scale=1./255)(input_layer)  

     

    conv1a = layers.Conv2D(start_neurons * 1, firstTwo_kernels,  

                                       padding="same", activation="relu")(input_resc)  

    batch1a = layers.BatchNormalization()(conv1a) 
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    conv1b = layers.Conv2D(start_neurons * 1, firstTwo_kernels, 

padding="same"  

                                                                                            , activation="relu")(batch1a) 

    batch1b = layers.BatchNormalization()(conv1b) 

    pool1 = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(batch1b) 

     

    conv2a = layers.Conv2D(start_neurons * 2, (3, 3), padding="same",   

                                                                                                activation="relu")(pool1) 

    batch2a = layers.BatchNormalization()(conv2a) 

 

    conv2b = layers.Conv2D(start_neurons * 2, (3, 3), padding="same",  

                                                                                   activation="relu")(batch2a)  

    batch2b = layers.BatchNormalization()(conv2b) 

    pool2 = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(batch2b) 

 

    conv3a = layers.Conv2D(start_neurons * 4, (3, 3), padding="same",  

activation="relu")(pool2) 

    batch3a = layers.BatchNormalization()(conv3a) 

    conv3b = layers.Conv2D(start_neurons * 4, (3, 3), padding="same",  

                                                                                     activation="relu")(batch3a) 

    batch3b = layers.BatchNormalization()(conv3b) 

    pool3 = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(batch3b) 

     

    conv4a = layers.Conv2D(start_neurons * 8, (3, 3), padding="same",  

                                                                                          activation="relu")(pool3)  

    batch4a = layers.BatchNormalization()(conv4a) 

    conv4b = layers.Conv2D(start_neurons * 8, (3, 3), padding="same",  

                                                                                     activation="relu")(batch4a) 

    batch4b = layers.BatchNormalization()(conv4b) 

    pool4 = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(batch4b) 
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    flatten = layers.Flatten()(pool4) 

     

    drop_f = layers.Dropout(0.4)(flatten)    

     

    full_con1 = layers.Dense(start_neurons * 64, activation='relu',  

                                            kernel_regularizer=regularizers.l2(0.05))(drop_f)  

    drop_1 = layers.Dropout(0.4)(full_con1) 

     

    full_con2 = layers.Dense(start_neurons * 32, activation='relu',  

                                             kernel_regularizer=regularizers.l2(0.05))(drop_1)  

    drop_2 = layers.Dropout(0.4)(full_con2)         

             

    output_layer = layers.Dense(2, activation='sigmoid')(drop_2)  

     

    return tf.keras.Model(input_layer,output_layer) 

 

# Set Learning rate scheduler 

# Learning Rate optimezer setup  

def learning_scheduler(initial_rate): 

    return  tf.keras.optimizers.schedules.InverseTimeDecay( 

              initial_rate, 

              decay_steps=STEPS_PER_EPOCH*5, 

              decay_rate=1, 

              staircase=False) 

 

def get_optimizer(initial_rate): 

    return tf.keras.optimizers.Adam(learning_scheduler(initial_rate)) 
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# plot learning rate degradation 

def plot_learning_schedule(initial_rate): 

    step = np.linspace(0,2500) 

    lr_schedule = learning_scheduler(initial_rate) 

    lr = lr_schedule(step) 

    plt.figure(figsize = (8,6)) 

    plt.plot(step/STEPS_PER_EPOCH, lr) 

    plt.ylim([0,max(plt.ylim())]) 

    plt.xlabel('Epoch') 

    _ = plt.ylabel('Learning Rate') 

 

# Callbacks - Earling Stoping 

# callbacks logs for each model 

def get_callbacks(name, patience, monitor): 

    return [ 

        tf.keras.callbacks.EarlyStopping( 

            monitor= monitor,  

            verbose=2, 

            patience= patience, 

            restore_best_weights= True),         

        tf.keras.callbacks.TensorBoard(logdir/name), 

    ] 

def checkpointer(model_name): 

    return tf.keras.callbacks.ModelCheckpoint(model_name, verbose=1,  

                                                                                           save_best_only=True) 

 

# Model Setup 

# Compiler 

def models_compiler(model, optimizer,  
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loss=tf.keras.losses.BinaryCrossentropy(from_logits=False), metrics=  

[tf.keras.metrics.BinaryAccuracy()]): 

    return model.compile(optimizer=optimizer, loss=loss, metrics= metrics) 

 

# Model fit 

# without augmentation 

def CNN_compile_fit(model, name, train_ds, val_ds, optimizer=None, 

learning_rate=0.02, max_epochs=200, patience=5, monitor='val_loss', 

class_weights=None, batch_size=1): 

    if optimizer is None: 

        optimizer = get_optimizer(learning_rate) 

         

    models_compiler(model= model, optimizer= optimizer) 

         

    model.summary() 

     

    history = model.fit( 

        train_ds, 

        steps_per_epoch = STEPS_PER_EPOCH, 

        epochs = max_epochs, 

        validation_data = val_ds, 

        class_weight = class_weights, 

        callbacks = get_callbacks(name, patience, monitor), 

        verbose=1,) 

    return history 

 

# with augmentation 

def CNN_compile_fit_AUGM(model, name, train_generator, val_generator, 

train_length, validation_length, optimizer=None, learning_rate=0.02, 
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max_epochs=200, patience=5, monitor='val_loss', class_weights=None, 

batch_size=1): 

    if optimizer is None: 

        optimizer = get_optimizer(learning_rate) 

         

    models_compiler(model= model, optimizer= optimizer) 

         

    model.summary() 

     

    history = model.fit( 

        train_generator, 

        steps_per_epoch = STEPS_PER_EPOCH,         

        epochs = max_epochs, 

        validation_data = val_generator, 

        #validation_steps = train_length, 

        class_weight = class_weights, 

        callbacks = get_callbacks(name, patience, monitor), 

        verbose=1,) 

    return history 

 

# Model's Graphs 

# Plotting Net Loss cs Val_Loss and Acuuracy vs Val_Accuracy 

def plot_model_graphs(model_name, type_histories): 

     

    loss_CNN = type_histories[model_name].history['loss'] 

    val_loss_CNN = type_histories[model_name].history['val_loss'] 

     

    epochs = range(1, len(loss_CNN) + 1)     

         

    binary_accuracy_metric_CNN =  
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                                       type_histories[model_name].history['binary_accuracy'] 

    val_binary_accuracy_CNN =   

                                 type_histories[model_name].history['val_binary_accuracy'] 

     

    plt.figure(figsize=(40,40))     

         

    ax = plt.subplot(2, 2,  1) 

    plt.plot(epochs, loss_CNN, 'b', label='Training loss') 

    plt.plot(epochs, val_loss_CNN, 'r', label='Validation loss') 

    plt.title(model_name + ' Training and Validation Loss', fontsize=30) 

    plt.xlabel('Epochs', fontsize=30) 

    plt.ylabel(' Loss', fontsize=30) 

    plt.legend(loc='lower right', fontsize=20) 

 

        

    ax = plt.subplot(2, 2,  2) 

    plt.plot(epochs, binary_accuracy_metric_CNN, 'b', label='Training Binary  

                                                     Accuracy metric') 

    plt.plot(epochs, val_binary_accuracy_CNN, 'r', label='Validation Binary  

          Accuracy metric') 

    plt.title(model_name + ' Training and Validation Binary Accuracy metric',  

           fontsize=30) 

    plt.xlabel('Epochs', fontsize=30) 

    plt.ylabel('Binary Accuracy', fontsize=30) 

    plt.legend(loc='lower right', fontsize=20) 

     

    plt.show() 

 

# Create Logs for the different nets 
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logdir = pathlib.Path(tempfile.mkdtemp())/"tensorboard_logs" 

shutil.rmtree(logdir, ignore_errors=True) 

 

#initialize model history dictionary 

type_histories = {} 

 

# RUN MODELS (extended mask paradigm 240 x 320) 

# Insert Data 

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented' 

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info' 

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv' 

 

# Dataset BSA calculation 

# BSA SETUP 

bsa_data = upload_data(bsa_directory,  

['image','height','weight','long_axis','area','volume','birth','gender']) 

 

bsa_data.head() 

bsa_data.tail() 

 

# Body Mass Area (BSA) calculation per image 

bsa_data_dict = create_bsa_data_dict(bsa_data) 

bsa_data_dict 

# BSA calculation 

bsa_coef_dict = bsa_calculation(bsa_data_dict) 

bsa_coef_dict 

 

# Image Size 240 x 320 

# Constants 
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IMG_WIDTH= 320 

IMG_HEIGHT = 240 

CHANNELS = 1 

START_CONVS = 16 

BATCH_SIZE = 32 

SEED = 42 

 

# Upload images and masks - Create masked images dataset, calculate labels 

image_dataset, image_masked_dataset, mask_dataset, label_dataset, 

bsa_data_dict, classes, _, X_train, y_train, X_val, y_val, X_test, y_test = 

datasets_CNN_extended(image_directory, mask_directory, bsa_data_dict, 

IMG_WIDTH, IMG_HEIGHT) 

 

# Shapes of uploaded original images, masks sets, labels 

print_size_shapes(image_dataset, mask_dataset, image_masked_dataset, 

label_dataset, 'Original Images', 'Masks', 'Masked Images', 'Labels' ) 

 

# Print images, masks,masked-images and respective labels 

print_sets_size_shapes(X_train, y_train, X_val, y_val, X_test, y_test) 

 

# Data Inspection 

bsa_data_dict 

label_dataset 

plot_images(image_dataset, mask_dataset, image_masked_dataset, 

label_dataset, lines=10) 

classes 

 

# Dataset for the model- Without Augmentation 
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train_set, val_set, test_set, test_images, test_true_labels = 

create_performance_dataset(X_train, y_train, X_val, y_val, X_test, 

y_test,seed=SEED, batch_size=BATCH_SIZE) 

 

# Shapes of uploaded original images sets 

# shape of train and label batch 

for image_batch, labels_batch in train_set: 

    print('Train batch size:', image_batch.shape) 

    print('Training Labels batch size:', labels_batch.shape) 

    break 

for image_batch, labels_batch in val_set: 

    print('Validation batch size:', image_batch.shape) 

    print('Validation Labels batch size:', labels_batch.shape) 

    break 

for image_batch, labels_batch in test_set: 

    print('Test batch size:', image_batch.shape) 

    print('Test Labels batch size:', labels_batch.shape) 

    break     

train_Generator, validation_Generator =  

train_validation_augmentation(X_train, y_train, X_val, y_val, seed=SEED, 

batch_size=BATCH_SIZE) 

 

# Set Learning Rate 

LEARNING_RATE = 0.0002 

STEPS_PER_EPOCH = len(train_set) 

# choose with augmented dataset 

STEPS_PER_EPOCH = len(X_train)//BATCH_SIZE  

plot_learning_schedule(LEARNING_RATE) 

 

# RUN MODEL Extended masks 240 x 320 
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image_size = (IMG_HEIGHT , IMG_WIDTH) 

cnn = build_CNN_model(input_shape= image_size + (CHANNELS,),  

start_neurons= START_CONVS, firstTwo_kernels = (7,7)) 

 

# Run model with Datasets without augmentation 

type_histories['cnn_extended_batch32_bigDim']= CNN_compile_fit(cnn,  

'cnn_extended_batch32_bigDim', train_set,  

val_set,learning_rate = LEARNING_RATE, max_epochs=1000, patience=50, 

batch_size=BATCH_SIZE) 

 

# Run model with Augmented Sets 

type_histories['cnn_extended_batch32_bigDim_AUGM']=  

CNN_compile_fit_AUGM( cnn, 'cnn_extended_batch32_bigDim_AUGM',  

train_Generator, validation_Generator, len(X_train), len(X_val),  

learning_rate=LEARNING_RATE,max_epochs=2500, patience=50,  

batch_size=BATCH_SIZE) 

 

# Save model 

cnn.save('saved_CNN_models/cnn_extended_batch32_bigDim') 

cnn.save('saved_CNN_models/cnn_extended_batch32_bigDim_AUGM') 

 

#  Plot model 

plot_model_graphs("cnn_extended_batch32_smallDim", type_histories) 

plot_model_graphs("cnn_extended_batch32_smallDim_AUGM", 

type_histories) 

1.4.2 Code for Evaluating CNN Models 

# Dataset Creation Function Import 

%run Datasets_Creation.ipynb 
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# Plot Functions 

def plot_images(images,masks, masked_images, labels, lines=20): 

             

    for i in range(100,120): 

        image = random.randint(0, images.shape[0]) 

        print(list(labels.keys())[image]) 

                 

        plt.figure(figsize=(16, 12)) 

        plt.subplot(131) 

        plt.title(f'Original Image - {list(labels.values())[image]}') 

        plt.imshow(images[image]) 

        plt.subplot(132) 

        plt.title('Mask') 

        plt.imshow(masks[image]) 

        plt.subplot(133) 

        plt.title('Masked image') 

        plt.imshow(masked_images[image])                    

        plt.show() 

 

# Print dimensions 

def print_size_shapes(images, masks, masked_images, labels, images_name, 

masks_name, masked_images_name, labels_name ): 

    # Dataset 

    print(f'{images_name} Dataset size : {len(images)}') 

    print(f'{images_name} shape: {images.shape}') 

    print(f'Single {images_name} shape: {images[1].shape}') 

    print(f'{masks_name} shape: {masks.shape}') 

    print(f'Single {masks_name} shape: {masks[1].shape}') 

    print(f'{masked_images_name} shape: {masked_images.shape}') 

    print(f'Single {masked_images_name} shape: {masked_images[1].shape}') 
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    print(f'{labels_name} shape: {np.asarray(list(labels.values())).shape}') 

 

#  Train, Validation,Test Set 

def print_sets_size_shapes(X_train, y_train, X_val, y_val, X_test, y_test): 

    # Train dataset 

    print(f'Training Dataset size : {len(X_train)}') 

    print(X_train.shape) 

    print(X_train[1].shape) 

        

    # Validation Dataset 

    print(f'Validation Dataset size : {len(X_val)}') 

    print(X_val.shape) 

    print(X_val[1].shape) 

         

    # Test Dataset 

    print(f'Test Dataset size : {len(X_test)}') 

    print(X_test.shape) 

    print(X_test[1].shape) 

 

# Create dataset for the model- Without Augmentation 

# Creating tensors data.Datasets of Train, Validation, Test sets 

def to_tensors(x_train, y_train, x_val, y_val, x_test, y_test):     

    train_ds = tf.data.Dataset.from_tensor_slices( (x_train, y_train) ) 

    val_ds = tf.data.Dataset.from_tensor_slices( (x_val, y_val) ) 

    test_ds = tf.data.Dataset.from_tensor_slices( (x_test, y_test) )     

    return train_ds,val_ds,test_ds 

 

# cache, shuffle, prefetch 

def configure_for_performance(ds, seed, buffer_size= 1000, batch_size=1): 
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     ds = ds.cache() 

    ds = ds.shuffle(buffer_size= buffer_size, seed=seed) 

    ds = ds.batch(batch_size) 

    ds = ds.prefetch(buffer_size= tf.data.AUTOTUNE) 

    return ds 

 

def create_performance_dataset(X_train, y_train, X_val, y_val, X_test, 

y_test, seed=42, batch_size=1): 

           

    train_ds, val_ds, test_ds  = to_tensors(X_train, y_train, X_val, y_val, 

X_test,                                   

  y_test) 

 

 

    train_ds = configure_for_performance(train_ds,seed, batch_size=  

batch_size) 

    val_ds = configure_for_performance(val_ds,seed, batch_size= batch_size) 

    test_ds = configure_for_performance(test_ds,seed, batch_size= batch_size)     

    return train_ds, val_ds, test_ds, X_test, y_test 

 

# CREATE  SETS FOR AUGMENDED MODELS 

def train_validation_augmentation(x_train, y_train, x_val, y_val, seed=42, 

batch_size=1):        

    image_data_gen_args = dict(rotation_range = 10, 

                               width_shift_range = 0.1, 

                               height_shift_range = 0.1, 

                               shear_range = 0.1, 

                               zoom_range = 0.2, 

                               brightness_range = (0.2, 0.9), 

                               fill_mode= 'nearest')            
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    # Train images 

    image_data_generator = ImageDataGenerator(**image_data_gen_args) 

    image_data_generator.fit(x_train, augment = True, seed = seed) 

 

    train_image_generator = image_data_generator.flow(x_train, y_train, 

                                                      seed = seed, 

                                                      shuffle=True, 

                                                      batch_size=batch_size)    

     

    # Validation images  

    valid_image_gen = ImageDataGenerator(**image_data_gen_args) 

    valid_image_gen.fit(x_val, augment = True, seed = seed ) 

    valid_img_generator = valid_image_gen.flow(x_val, y_val, 

                                               seed = seed, 

                                               shuffle=True, 

                                               batch_size=batch_size)     

    return train_image_generator, valid_img_generator 

 

# EVALUATION FUNCTIONS 

# Take trained CNN_model mode 

def get_CNN_model(CNN_model_name): 

    return models.load_model(CNN_model_name) 

 

# Evaluate CNN_model on unknown Test set 

# without augmentation 

def print_CNN_test_evaluation(CNN_model_name, CNN_model, test_set, 

verbose=2): 

    _, acc = CNN_model.evaluate(test_set, verbose = verbose) 

    print(f"Binary Accuracy evaluation of {CNN_model_name} CNN model is:  

    {acc*100.0} %  ") 
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# with augmentation 

def print_CNN_test_evaluation_AUGM(CNN_model_name, CNN_model, 

X_test,y_test, batch_size, verbose=2): 

    _, acc = CNN_model.evaluate(X_test,y_test, batch_size=batch_size, verbose  

     = verbose) 

    print(f"Binary Accuracy evaluation of {CNN_model_name} CNN model is:  

    {acc*100.0} %  ") 

 

# Calculate Predictions 

def labels_to_strings(label): 

    if label == 0: 

        return 'abnormal' 

    else: 

        return 'normal' 

 

def labels_to_binary(label): 

    if label == 'abnormal': 

        return 0 

    else: 

        return 1 

 

# without augmentation 

def calc_predictions(CNN_model,test_ds, binarizer):     

    pred = CNN_model.predict(test_ds)     

    predictions = binarizer.inverse_transform(pred)               

    return np.asarray(predictions) 

 

# with augmentation 

def calc_predictions_AUGM(CNN_model,X_test, batch_size, binarizer):         
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    pred = CNN_model.predict(X_test, batch_size=batch_size)     

    predictions = binarizer.inverse_transform(pred)     

    return np.asarray(predictions) 

 

# Check predicted vs true labels of images in Test set 

def unbatch_set(dataset): 

    unbatached_dataset = []     

    for batch in dataset: 

        for image in batch: 

            unbatached_dataset.append(image)     

    return np.asarray(unbatached_dataset)   

 

def test_image_sunnity_check(test_images, test_true_labels, predictions, 

binarizer, lines=9):    

    test_labels = np.asarray(binarizer.inverse_transform(test_true_labels))   

    predicted_labels = predictions    

    plt.figure(figsize=(15, 15)) 

    for i in range(15):         

        ax = plt.subplot(4, 4, i + 1)            

        plt.imshow(test_images[i])         

        plt.title(f'True: {test_labels[i]}\nPredicted: {predicted_labels[i]}')         

        plt.axis("off")      

 

def plot_confusion_matrix(model_name, test_true_labels, predictions,  

binarizer): 

    true_labels = np.asarray(binarizer.inverse_transform(test_true_labels)) 

     

    cm = confusion_matrix(true_labels, predictions, normalize='true') 

    print(f"Confusion matrix:\n {cm}") 

    display_cm = ConfusionMatrixDisplay(confusion_matrix=cm) 
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    display_cm.plot(cmap=plt.cm.Blues) 

    plt.title(f'Confusion Matrix on {model_name} Test set \n') 

    plt.show()       

 

# Display Models metrics  

def display_model_metrics(model_name, test_true_labels, predictions,  

binarizer): 

    true_labels = np.asarray(binarizer.inverse_transform(test_true_labels)) 

         

    report = classification_report(true_labels, predictions,  zero_division=0 ) 

    print(f'Model\'s {model_name} metrics:\n {report}')    

 

# Plot Auc-Roc curves 

def plot_auc_roc(model_name, test_true_labels, predictions, binarizer, 

class_names=['abnormal','normal'],  average="macro", zero_division=0):        

    true_labels = np.asarray(binarizer.inverse_transform(test_true_labels)) 

    true_labels = np.asarray(list(map(labels_to_binary, true_labels))) 

    predictions = np.asarray(list(map(labels_to_binary, predictions))) 

    

    false_positive, true_positive, threshold = roc_curve( true_labels, predictions) 

    auc_score = auc(false_positive, true_positive) 

     

    plt.figure(figsize=(10, 10)) 

    plt.style.use('seaborn') 

    plt.plot(false_positive, true_positive, linestyle='--',color='darkorange', 

label=f"ROC curve (area = {'{:.2f}'.format(auc_score)})")        

    plt.plot(false_positive, false_positive, linestyle='--', color='blue') 

    plt.title('ROC curve for ' + model_name, fontsize=20)        

    plt.xlim([0, 1]) 
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    plt.ylim([0, 1]) 

    plt.xlabel('False Positive Rate', fontsize=20) 

    plt.ylabel('True Positive Rate', fontsize=20) 

    plt.legend(loc='lower right', fontsize=15) 

    plt.show()                                 

   

          

# EVALUATION OF THE MONDELS (Extended masks paradigm) 

# Insert Data 

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented' 

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info' 

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv' 

 

# Dataset BSA calculation 

# BSA SETUP 

bsa_data = upload_data(bsa_directory,  

['image','height','weight','long_axis','area','volume','birth','gender']) 

 

bsa_data.head() 

bsa_data.tail() 

 

# Body Mass Area (BSA) calculation per image 

bsa_data_dict = create_bsa_data_dict(bsa_data) 

bsa_data_dict 

# BSA calculation 

bsa_coef_dict = bsa_calculation(bsa_data_dict) 

bsa_coef_dict 

 

# Image Size 240 x 320 
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# Constants 

IMG_WIDTH= 320 

IMG_HEIGHT = 240 

CHANNELS = 1 

START_CONVS = 16 

BATCH_SIZE = 32 

SEED = 42 

 

# Upload images and masks - Create masked images dataset, calculate labels 

image_dataset, image_masked_dataset, mask_dataset, label_dataset, 

bsa_data_dict, classes, _, X_train, y_train, X_val, y_val, X_test, y_test = 

datasets_CNN_extended(image_directory, mask_directory, bsa_data_dict, 

IMG_WIDTH, IMG_HEIGHT) 

 

# Shapes of uploaded original images, masks sets, labels 

print_size_shapes(image_dataset, mask_dataset, image_masked_dataset, 

label_dataset, 'Original Images', 'Masks', 'Masked Images', 'Labels' ) 

 

# Print images, masks,masked-images and respective labels 

print_sets_size_shapes(X_train, y_train, X_val, y_val, X_test, y_test) 

 

# Data Inspection 

bsa_data_dict 

label_dataset 

plot_images(image_dataset, mask_dataset, image_masked_dataset, 

label_dataset, lines=10) 

classes 

 

# Dataset for the model- Without Augmentation 
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train_set, val_set, test_set, test_images, test_true_labels = 

create_performance_dataset(X_train, y_train, X_val, y_val, X_test, 

y_test,seed=SEED, batch_size=BATCH_SIZE) 

 

# Shapes of uploaded original images sets 

# shape of train and label batch 

for image_batch, labels_batch in train_set: 

    print('Train batch size:', image_batch.shape) 

    print('Training Labels batch size:', labels_batch.shape) 

    break 

for image_batch, labels_batch in val_set: 

    print('Validation batch size:', image_batch.shape) 

    print('Validation Labels batch size:', labels_batch.shape) 

    break 

for image_batch, labels_batch in test_set: 

    print('Test batch size:', image_batch.shape) 

    print('Test Labels batch size:', labels_batch.shape) 

    break     

train_Generator, validation_Generator =  

train_validation_augmentation(X_train, y_train, X_val, y_val, seed=SEED, 

batch_size=BATCH_SIZE) 

 

# Evaluate MODEL Extended masks 240x320 - Without 

Augmentation 

cnn_extended_batch32_bigDim = get_CNN_model 

('saved_CNN_models/cnn_extended_batch32_bigDim') 

 

print_CNN_test_evaluation("cnn_extended_batch32_bigDim", 

cnn_extended_batch32_bigDim, test_set) 
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cnn_extended_batch32_bigDim_predictions = 

calc_predictions(cnn_extended_batch32_bigDim, test_set, label_binarizer) 

cnn_extended_batch32_bigDim_predictions 

 

test_image_sunnity_check(test_images, test_true_labels, 

cnn_extended_batch32_bigDim_predictions, label_binarizer) 

 

# confusion matrix 

plot_confusion_matrix('cnn_extended_batch32_bigDim',test_true_labels, 

cnn_extended_batch32_bigDim_predictions, label_binarizer) 

 

display_model_metrics('cnn_extended_batch32_bigDim',test_true_labels, 

cnn_extended_batch32_bigDim_predictions,label_binarizer) 

 

 

plot_auc_roc('CNN Extended Maks 320x240',test_true_labels,  

cnn_extended_batch32_bigDim_predictions,label_binarizer) 

 

# EVALUATE AUGMENTED MODEL Extended masks 240x320 

cnn_extended_batch32_bigDim_AUGM = get_CNN_model  

( 'saved_CNN_models/cnn_extended_batch32_bigDim_AUGM') 

 

print_CNN_test_evaluation_AUGM("cnn_extended_batch32_bigDim_AUGM

", cnn_extended_batch32_bigDim_AUGM, X_test, y_test, BATCH_SIZE) 

 

cnn_extended_batch32_bigDim_AUGM_predictions = 

calc_predictions_AUGM(cnn_extended_batch32_bigDim_AUGM, X_test, 

BATCH_SIZE, label_binarizer) 

cnn_extended_batch32_bigDim_AUGM_predictions 
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test_image_sunnity_check(X_test, y_test, 

cnn_extended_batch32_bigDim_AUGM_predictions, label_binarizer) 

 

plot_confusion_matrix('cnn_extended_batch32_bigDim_AUGM',y_test, 

cnn_extended_batch32_bigDim_AUGM_predictions, label_binarizer) 

 

display_model_metrics('cnn_extended_batch32_bigDim_AUGM',y_test, 

cnn_extended_batch32_bigDim_AUGM_predictions,label_binarizer) 

 

plot_auc_roc('CNN Augmented Extended Masks 240x320',y_test, 

cnn_extended_batch32_bigDim_AUGM_predictions,label_binarizer) 

1.5 CNN-UNET Pipeline Evaluation Code 

# Dataset Creation Functions Import 

%run Datasets_Creation.ipynb 

 

# Plot Functions 

def plot_images_UNET(image_set, mask_set, lines=6): 

    image_indexs = []     

    plt.figure(figsize=(15, 15)) 

    for i in range(lines):  

        plt.figure(figsize=(15, 15)) 

        image = random.randint(0, len(image_set)) 

        ax = plt.subplot(121) 

        plt.imshow(image_set[image,:,:,0]) 

        ax = plt.subplot(122) 

        plt.imshow(mask_set[image,:,:,0]) 

        plt.axis("off") 

 

def plot_images_CNN(images,masks, masked_images, labels):    
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    for image in range(len(images)): 

        print(labels[image]) 

                 

        plt.figure(figsize=(16, 12)) 

        plt.subplot(131) 

        plt.title(f'Original Image - {labels[image]}') 

        plt.imshow(images[image]) 

        plt.subplot(132) 

        plt.title('Mask') 

        plt.imshow(masks[image]) 

        plt.subplot(133) 

        plt.title('Masked image') 

        plt.imshow(masked_images[image])                    

        plt.show() 

 

def plot_images_CNN_original_masks(images,masks, masked_images, 

labels): 

   for image in range(len(images)): 

        print(labels[image]) 

                 

        plt.figure(figsize=(16, 12)) 

        plt.subplot(131) 

        plt.title(f'Original Image - {labels[image]}') 

        plt.imshow(images[image]) 

        plt.subplot(132) 

        plt.title('Mask') 

        plt.imshow(masks[image]) 

        plt.subplot(133) 

        plt.title('Predicted Mask') 

        plt.imshow(masked_images[image])                    
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        plt.show() 

         

# Print dimensions         

def print_size_shapes(images, masks, masked_images, labels, images_name, 

masks_name, masked_images_name, labels_name ): 

    # Dataset 

    print(f'{images_name} Dataset size : {len(images)}') 

    print(f'{images_name} shape: {images.shape}') 

    print(f'Single {images_name} shape: {images[1].shape}') 

    print(f'{masks_name} shape: {masks.shape}') 

    print(f'Single {masks_name} shape: {masks[1].shape}') 

    print(f'{masked_images_name} shape: {masked_images.shape}') 

    print(f'Single {masked_images_name} shape: {masked_images[1].shape}') 

    print(f'{labels_name} shape: {np.asarray(list(labels.values())).shape}') 

 

#  Train, Validation,Test Set 

def print_sets_size_shapes(X_train, y_train, X_val, y_val, X_test, y_test): 

    # Train dataset 

    print(f'Training Dataset size : {len(X_train)}') 

    print(X_train.shape) 

    print(X_train[1].shape) 

    

     

    # Validation Dataset 

    print(f'Validation Dataset size : {len(X_val)}') 

    print(X_val.shape) 

    print(X_val[1].shape) 

    

     

    # Test Dataset 
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    print(f'Test Dataset size : {len(X_test)}') 

    print(X_test.shape) 

    print(X_test[1].shape) 

    

# EVALUATION FUNCTIONS 

# UNET metric and Loss 

def jaccard_index(masks_true, masks_predicted): 

    masks_true_flatten = Kb.flatten(masks_true) 

    masks_predicted_flatten = Kb.flatten(masks_predicted) 

    intersection = Kb.sum(masks_true_flatten * masks_predicted_flatten) 

    return (intersection + 10.0) / (Kb.sum(masks_true_flatten) + 

Kb.sum(masks_predicted_flatten) - intersection + 10.0) 

 

def jaccard_loss(y_true, y_pred, p_value=1.75,smooth = 10):     

    y_true_f = Kb.flatten(y_true) 

    y_pred_f = Kb.flatten(y_pred) 

 

    intersection = Kb.sum(y_true_f * y_pred_f) 

    term_true = Kb.sum(Kb.pow(y_true_f, p_value)) 

    term_pred = Kb.sum(Kb.pow(y_pred_f, p_value)) 

    union = term_true + term_pred - intersection 

    return 1 - ((intersection + smooth) / (union + smooth))   

 

# Take UNET and CNN_model model   

def get_unet_model(model_name): 

    return models.load_model(model_name, 

custom_objects={"jaccard_loss":jaccard_loss,"jaccard_index":jaccard_index}) 

 

def get_CNN_model(CNN_model_name): 

    return models.load_model(CNN_model_name) 
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# UNET predictions  

def calc_unet_predictions_AUGM(unet_model,X_test, batch_size, 

threshold=0.5):        

    masks_predictions = unet_model.predict(X_test, batch_size=batch_size)     

    masks_pred_thresholed = masks_predictions > threshold     

    return masks_pred_thresholed.astype(np.uint8) 

 

def create_masked_images(images, masks): 

    masked_image_dataset = [] 

    for i in range(len(images)): 

        image = cv2.bitwise_and(images[i], images[i], mask= masks[i]) 

        masked_image_dataset.append(np.expand_dims(image,2)) 

    return np.asarray(masked_image_dataset).astype(np.uint8) 

 

def create_masked_image(test_images, mask_predictions): 

    return cv2.bitwise_and(test_images, mask_predictions, mask= mask) 

 

def test_image_sunnity_check_UNET(X_test,mask_test, 

model_masks_predicted): 

             

    for i in range(X_test.shape[0]): 

        test_img = X_test[i]         

        ground_truth = mask_test[i]         

        test_img_input=np.expand_dims(test_img, 0)         

        prediction_mask = model_masks_predicted[i].astype(np.uint8) 

         

        predicted_masked_image = create_masked_image(test_img,  

         prediction_mask) 
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        print (f'Test Image : {i+1}') 

        plt.figure(figsize=(16, 12)) 

        plt.subplot(241) 

        plt.title('Testing Image') 

        plt.imshow(test_img) 

        plt.subplot(242) 

        plt.title('Testing Label') 

        plt.imshow(ground_truth) 

        plt.subplot(243) 

        plt.title('Prediction on test image') 

        plt.imshow(prediction_mask) 

        plt.subplot(244) 

        plt.title('Image with prediction mask') 

        plt.imshow(predicted_masked_image)                    

        plt.show() 

         

   # Evaluate CNN_model on unknown Test set    

def print_CNN_test_evaluation_AUGM(CNN_model_name, CNN_model, 

X_test,y_test, batch_size, verbose=2): 

    _, acc = CNN_model.evaluate(X_test,y_test, batch_size=batch_size, verbose  

                                                                                                                               = verbose) 

    print(f"Binary Accuracy evaluation of {CNN_model_name} CNN model is: 

{acc*100.0} %  ")   

 

# Calculate CNN Predictions 

def calc_predictions_AUGM(CNN_model,X_test, batch_size, binarizer):         

    pred = CNN_model.predict(X_test, batch_size=batch_size)     

    predictions = binarizer.inverse_transform(pred)     

    return np.asarray(predictions) 
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# Check predicted vs true labels of images in Test set 

def test_image_sunnity_check_CNN(test_images, test_true_labels, 

predictions, binarizer, lines=9):        

    test_labels = np.asarray(binarizer.inverse_transform(test_true_labels))   

    predicted_labels = predictions   

     

    plt.figure(figsize=(15, 15)) 

    for i in range(15):         

        ax = plt.subplot(4, 4, i + 1)            

        plt.imshow(test_images[i])         

        plt.title(f'True: {test_labels[i]}\nPredicted: {predicted_labels[i]}')         

        plt.axis("off")   

 

def plot_confusion_matrix(model_name, test_true_labels, predictions, 

binarizer): 

    true_labels = np.asarray(binarizer.inverse_transform(test_true_labels)) 

     

    cm = confusion_matrix(true_labels, predictions, normalize='true') 

    print(f"Confusion matrix:\n {cm}") 

    display_cm = ConfusionMatrixDisplay(confusion_matrix=cm) 

         

    display_cm.plot(cmap=plt.cm.Blues) 

    plt.title(f'Confusion Matrix on {model_name} Test set \n') 

    plt.show()     

 

# Display Models metrics  

def display_model_metrics(model_name, test_true_labels, predictions, 

binarizer): 

    true_labels = np.asarray(binarizer.inverse_transform(test_true_labels)) 
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    report = classification_report(true_labels, predictions,  zero_division=0 ) 

    print(f'Model\'s {model_name} metrics:\n {report}')     

 

def labels_to_binary(label): 

    if label == 'abnormal': 

        return 0 

    else: 

        return 1     

 

 

# Plot Auc-Roc curves 

def plot_auc_roc(model_name, test_true_labels, predictions, binarizer, 

class_names=['abnormal','normal'],  average="macro", zero_division=0):        

    true_labels = np.asarray(binarizer.inverse_transform(test_true_labels)) 

    true_labels = np.asarray(list(map(labels_to_binary, true_labels))) 

    predictions = np.asarray(list(map(labels_to_binary, predictions))) 

    

    false_positive, true_positive, threshold = roc_curve( true_labels, predictions) 

    auc_score = auc(false_positive, true_positive) 

     

    plt.figure(figsize=(10, 10)) 

    plt.style.use('seaborn') 

    plt.plot(false_positive, true_positive, linestyle='--',color='darkorange', 

label=f"ROC curve (area = {'{:.2f}'.format(auc_score)})")        

    plt.plot(false_positive, false_positive, linestyle='--', color='blue') 

    plt.title('ROC curve for ' + model_name, fontsize=20)        

    plt.xlim([0, 1]) 

    plt.ylim([0, 1]) 

    plt.xlabel('False Positive Rate', fontsize=20) 

    plt.ylabel('True Positive Rate', fontsize=20) 
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    plt.legend(loc='lower right', fontsize=15) 

    plt.show()                                 

 

 

# EVALUATION OF THE MONDELS PIPELINE       

#(Extended Masks Paradigm 120 x 160 with augmentation) 

# Insert Data  

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented' 

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info' 

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv' 

 

# Upload images and masks - Create masked images dataset, calculate labels 

image_dataset, mask_dataset,image_masked_dataset, X_train, mask_train, 

y_train, X_val, mask_val, y_val, X_test, mask_test, y_test, label_dataset, 

bsa_data_dict, classes, label_binarizer =  

datasets_UNET(image_directory, mask_directory,bsa_directory, 

IMG_WIDTH, IMG_HEIGHT) 

 

# Shapes of uploaded original images, masks sets, labels 

print_size_shapes(image_dataset, mask_dataset, image_masked_dataset, 

label_dataset, 'Original Images', 'Masks', 'Masked Images', 'Labels' ) 

 

# Print images, masks,masked-images and respective labels 

print_sets_size_shapes(X_train, y_train, X_val, y_val, X_test, y_test) 

 

# Data Inspection 

bsa_data_dict 

label_dataset 

 

# Plot images, masks,masked-images and respective labels 
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plot_images_UNET(image_dataset, mask_dataset, lines=6) 

classes 

 

# EVALUATE Unet - CNN Pipeline 

unet_model = get_unet_model 

('models/unet_extended_batch8_bigDim_AUGM') 

 

# Predictions for Image Generator Augmented Model 

unet_masks_predictions = calc_unet_predictions_AUGM(unet_model,X_test, 

BATCH_SIZE) 

 

test_masked_images = create_masked_images(X_test, 

unet_masks_predictions) 

 

plot_images_CNN(X_test, unet_masks_predictions, test_masked_images, 

y_test) 

 

# Cnn evaluation with predicted masked images 

BATCH_SIZE = 32 

cnn_model = get_CNN_model 

('models/cnn_extended_batch32_bigDim_AUGM') 

 

print_CNN_test_evaluation_AUGM("cnn_extended_batch32_smallDim_AUG

M", cnn_model, test_masked_images, y_test, BATCH_SIZE) 

 

cnn_model_predictions = calc_predictions_AUGM(cnn_model, 

test_masked_images, BATCH_SIZE, label_binarizer) 

 

cnn_model_predictions 
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test_image_sunnity_check_CNN(test_masked_images, y_test, 

cnn_model_predictions, label_binarizer) 

 

plot_confusion_matrix('cnn_extended_batch32_smallDim_AUGM',y_test, 

cnn_model_predictions, label_binarizer) 

 

display_model_metrics('cnn_extended_batch32_smallDim_AUGM',y_test, 

cnn_model_predictions,label_binarizer) 

 

plot_auc_roc('Unet-CNN Augmented Extended Masks 240x320',y_test, 

cnn_model_predictions,label_binarizer) 

 

1.6 GAN CODE 

1.6.1 Code for Train GAN  

# Dataset Creation Functions import 

%run Datasets_Creation.ipyn 

 

# Plot Datasets Functions 

def plot_images(images, labels, lines=10): 

         

    for i in range(lines):  

        image = random.randint(0, images.shape[0]) 

        plt.figure(figsize=(16, 12)) 

        plt.title(f'Original Image - {list(labels.values())[image]}') 

        plt.imshow(images[image]) 

        plt.show() 

 

# Print dimensions 

def print_size_shapes(images, labels, images_name,labels_name ): 
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    # Dataset 

    print(f'{images_name} Dataset size : {len(images)}') 

    print(f'{images_name} shape: {images.shape}') 

    print(f'Single {images_name} shape: {images[1].shape}') 

    print(f'{labels_name} shape: {np.asarray(list(labels.values())).shape}') 

 

def print_sets_size_shapes(X_sup, y_sup, X_unsup, y_unsup, X_test, y_test): 

    # supervised dataset 

    print(f'Supervised Dataset size : {len(X_sup)}') 

    print(X_sup.shape) 

    print(y_sup.shape) 

     

    # unsupervised dataset 

    print(f'Unsupervised Dataset size : {len(X_unsup)}') 

    print(X_unsup.shape) 

    print(y_unsup.shape)     

            

    # Test Dataset 

    print(f'Test Dataset size : {len(X_test)}') 

    print(X_test.shape) 

    print(y_test.shape) 

     

# Model's functions 

# Model construction 

def build_generator(noise_shape=(1,1,100), input_shape=(110,110,1) , 

start_neurons= 16, n_classes=2): 

     

    noise_input = tf.keras.Input(noise_shape) 

   deconv1 = layers.Conv2DTranspose(start_neurons * 64, (3, 3), strides=2,  

                                                                                   activation='relu')(noise_input) 
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    batch1 = layers.BatchNormalization()(deconv1) 

     

    deconv2 = layers.Conv2DTranspose(start_neurons * 32, (3, 3), strides=2, 

activation='relu')(batch1) 

    batch2 = layers.BatchNormalization()(deconv2) 

     

    deconv3 = layers.Conv2DTranspose(start_neurons * 16, (3, 3), strides=2, 

activation='relu')(batch2) 

    batch3 = layers.BatchNormalization()(deconv3) 

     

    deconv4 = layers.Conv2DTranspose(start_neurons * 8, (3, 3), strides=2, 

activation='relu')(batch3) 

    batch4 = layers.BatchNormalization()(deconv4) 

     

    deconv5 = layers.Conv2DTranspose(start_neurons * 4, (3, 3), strides=2, 

activation='relu')(batch4) 

    batch5 = layers.BatchNormalization()(deconv5) 

     

    deconv6 = layers.Conv2DTranspose(start_neurons * 4, (3, 3), strides=2, 

activation='relu')(batch5) 

    batch6 = layers.BatchNormalization()(deconv5) 

     

    deconv7 = layers.Conv2DTranspose(start_neurons * 4, (3, 3), strides=2, 

activation='relu')(batch6) 

    batch7 = layers.BatchNormalization()(deconv7) 

     

    fake_img = layers.Conv2DTranspose(1, (4, 4), activation='tanh')(batch7) 

    model = tf.keras.Model(noise_input,fake_img)     

    return model 
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def build_discriminator(input_shape , start_neurons= 16, n_clasess=2): 

    

    input_layer = tf.keras.Input(shape=input_shape) 

        

     

    conv_1a = layers.Conv2D(start_neurons * 4, (3, 3),strides=1)(input_layer) #,  

    batch_1a = layers.BatchNormalization()(conv_1a) 

    activ_1a = layers.LeakyReLU()(batch_1a) 

    conv_1b = layers.Conv2D(start_neurons * 4, (3, 3),strides=1)(activ_1a) #,  

    batch_1b = layers.BatchNormalization()(conv_1b) 

    activ_1b = layers.LeakyReLU()(batch_1b) 

    conv_1c = layers.Conv2D(start_neurons * 4, (3, 3),strides=2)(activ_1b) #,  

    batch_1c = layers.BatchNormalization()(conv_1c) 

    activ_1c = layers.LeakyReLU()(batch_1c) 

    drop_1 = layers.Dropout(0.4)(activ_1c) 

     

    conv_2a = layers.Conv2D(start_neurons * 8, (3, 3),strides=1)(drop_1) #,  

    batch_2a = layers.BatchNormalization()(conv_2a) 

    activ_2a = layers.LeakyReLU()(batch_2a) 

    conv_2b = layers.Conv2D(start_neurons * 8, (3, 3),strides=1)(activ_2a) #,  

    batch_2b = layers.BatchNormalization()(conv_2b) 

    activ_2b = layers.LeakyReLU()(batch_2b) 

    conv_2c = layers.Conv2D(start_neurons * 8, (3, 3),strides=2)(activ_2b) #,  

    batch_2c = layers.BatchNormalization()(conv_2c) 

    activ_2c = layers.LeakyReLU()(batch_2c) 

    drop_2 = layers.Dropout(0.4)(activ_2c) 

 

    conv_3a = layers.Conv2D(start_neurons * 16, (3, 3),strides=1)(drop_2) #,  
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    batch_3a = layers.BatchNormalization()(conv_3a) 

    activ_3a = layers.LeakyReLU()(batch_3a) 

    conv_3b = layers.Conv2D(start_neurons * 16, (3, 3),strides=1)(activ_3a) #,  

    batch_3b = layers.BatchNormalization()(conv_3b) 

    activ_3b = layers.LeakyReLU()(batch_3b) 

    conv_3c = layers.Conv2D(start_neurons * 16, (3, 3),strides=2)(activ_3b) #,  

    batch_3c = layers.BatchNormalization()(conv_3c) 

    activ_3c = layers.LeakyReLU()(batch_3c) 

    drop_3 = layers.Dropout(0.4)(activ_3c)     

     

    conv_4a = layers.Conv2D(start_neurons * 32, (3, 3),strides=1)(drop_3) #,  

    batch_4a = layers.BatchNormalization()(conv_4a) 

    activ_4a = layers.LeakyReLU()(batch_4a) 

    conv_4b = layers.Conv2D(start_neurons * 32, (3, 3),strides=1)(activ_4a) #,  

    batch_4b = layers.BatchNormalization()(conv_4b) 

    activ_4b = layers.LeakyReLU()(batch_4b) 

    conv_4c = layers.Conv2D(start_neurons * 32, (3, 3),strides=2)(activ_4b) #,  

    batch_4c = layers.BatchNormalization()(conv_4c) 

    activ_4c = layers.LeakyReLU()(batch_4c) 

    drop_4 = layers.Dropout(0.4)(activ_4c) 

    pool = layers.MaxPooling2D(pool_size=(2, 2), strides=2)(drop_4) 

     

    flatten = layers.Flatten()(pool) 

    drop_f = layers.Dropout(0.5)(flatten) 

     

    full_con = layers.Dense(start_neurons * 64)(drop_f ) 

    activ_full = layers.LeakyReLU()(full_con)     

    output_layer = layers.Dense(n_clasess)(activ_full) 

    model = tf.keras.Model(input_layer, output_layer)     
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    return model 

def supervised_discriminator(disc_model): 

    model = Sequential() 

    model.add(disc_model) 

    model.add(layers.Activation('sigmoid')) 

     

    opt = tf.keras.optimizers.Adam(learning_rate=0.0003) 

    model.compile(loss='binary_crossentropy', optimizer = opt,  

                                                  metrics=[tf.keras.metrics.BinaryAccuracy()])     

    return model    

 

def unsupervised_discriminator(disc_model): 

    model = Sequential() 

    model.add(disc_model) 

    model.add(layers.Activation('sigmoid')) 

    #model.add(layers.Lambda(norm_activation)) 

     

    opt = tf.keras.optimizers.Adam(learning_rate=0.0003) 

    model.compile(loss='binary_crossentropy', optimizer = opt,  

                                 metrics=[tf.keras.metrics.BinaryAccuracy()])     

    return model   

 

def compined_gan(generator, unsupervided_disciminator): 

    unsupervided_disciminator.trainable = False        

    # get image output from the generator model 

    gen_output = generator.output 

     

    # generator image output and corresponding inputlabelare inputs to the  

       discriminator 
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    gan_output = unsupervided_disciminator(gen_output) 

     

    model = tf.keras.Model(generator.input, gan_output) 

     

    opt = tf.keras.optimizers.Adam(learning_rate=0.0003) 

    model.compile(loss=tf.keras.losses.MeanSquaredError(), optimizer = opt,  

                                                      metrics=[tf.keras.metrics.BinaryAccuracy()])     

    return model  

 

def check_performance(step, gen_model, sup_disc, unsup_disc, gen_input, 

images,labels, epoch, batch=32): 

    

    X,_ = generate_fake_images(gen_model, gen_input,batch) 

     

    X = (X + 1) / 2.0 

     

    for i in range(20):         

        plt.subplot(5, 5, i + 1) 

        plt.axis("off") 

        plt.imshow(X[i, :, :, 0], cmap = 'gray_r') 

         

    filename1 = 'gan_images/generated_plot_'+ str(epoch) + '.png' 

    plt.savefig(filename1) 

     

    #Χ_real, y_real= images, labels 

    _, acc = sup_disc.evaluate(images,labels, verbose=0) 

    print('Discriminator accuracy: %.3f%%' % (acc * 100)) 

     

    filename2 = 'saved_GAN_models/gen_model_'+ str(epoch)  

    gen_model.save(filename2) 
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    filename3= 'saved_Sup_Discriminator_models/sup_disc_'+ str(epoch)  

    sup_disc.save(filename3) 

     

    filename4= 'saved_unSup_Discriminator_models/unsup_disc_'+ str(epoch)  

    unsup_disc.save(filename4) 

     

    print(f'> Saved: {filename1} , {filename2}, {filename3}, {filename4} ') 

 

def train_gan(generator, unsup_disc, sup_disc, gan_model, X_train, y_train, 

X_sup, y_sup, X_unsup, y_unsup, X_test,y_test, sup_length, gen_input= 100, 

epochs=50, n_batch=32, seed=42, start=0): 

       

    batch_per_epoch = int(sup_length / n_batch) 

     

    n_steps = batch_per_epoch * epochs 

     

    half_batch = int(n_batch / 2) 

    print(f'n_epochs={epochs}, n_batch={n_batch}, 1/2={half_batch}, 

b/e={batch_per_epoch}, steps={n_steps}') 

     

    for i in range(n_steps): 

         

        [X_sup_real, y_sup_real], _ = generate_real_images(X_sup, y_sup,  

                                                                                                                   half_batch)        

        sup_loss, sup_acc = sup_disc.train_on_batch(X_sup_real, y_sup_real) 

         

        [X_unsup_real, _], y_unsup_real = generate_real_images(X_train,  

                                                                                                           y_train, half_batch) 

        d_loss_real = unsup_disc.train_on_batch(X_unsup_real, y_unsup_real) 
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        X_fake, y_fake = generate_fake_images(generator, gen_input, half_batch) 

        d_loss_fake = unsup_disc.train_on_batch(X_fake, y_fake) 

         

        X_gan, y_gan = generate_noise_points(gen_input, n_batch),                      

                                                                                                     ones((n_batch, 1)) 

        gan_loss = gan_model.train_on_batch(X_gan, y_gan) 

     

        print(f'> {i+1}, c[{sup_loss}, {sup_acc*100}], D[{d_loss_real},  

                                                                                    {d_loss_fake}], G[{gan_loss}]') 

        if (i+1) % (batch_per_epoch * 50) == 0: 

            epoch = int((i+1) / (batch_per_epoch)) 

            check_performance(i, generator, sup_disc, unsup_disc, gen_input,  

                                                                     X_train, y_train, epoch + start, n_batch) 

         

def get_trained_models(sup_disc_model, unsup_disc_model, gen_model): 

    return models.load_model(sup_disc_model) ,  

                   models.load_model(unsup_disc_model),  

                   models.load_model(gen_model) 

 

# RUN MODEL 

# Constants 

IMG_WIDTH= 130 

IMG_HEIGHT = 130 

CHANNELS = 1 

START_CONVS = 16 

BATCH_SIZE = 32 

SEED = 42 

GEN_INPUT = 100 
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# Insert Data 

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented' 

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info' 

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv' 

 

# Dataset BSA calculation 

bsa_data = upload_data(bsa_directory, 

['image','height','weight','long_axis','area','volume','birth','gender']) 

 

bsa_data.tail() 

 

bsa_data_dict = create_bsa_data_dict(bsa_data) 

 

# BSA calculation 

bsa_coef_dict = bsa_calculation(bsa_data_dict) 

 

# Upload images - Create supervised, unsupervised datasets, calculate labels 

image_dataset, X_train, y_train, X_sup, y_sup, X_unsup, y_unsup, X_test, 

y_test, label_dataset, bsa_data_dict, classes, label_binarizer= 

datasets_GAN(image_directory, bsa_data_dict, IMG_WIDTH, IMG_HEIGHT) 

 

# Shapes of uploaded original images, masks sets, labels 

print_size_shapes(image_dataset, label_dataset, 'Original Images', 'Labels' ) 

 

print_sets_size_shapes(X_sup, y_sup, X_unsup, y_unsup, X_test, y_test) 

 

# Plot images and respective ladels 

plot_images(image_dataset, label_dataset, lines=10) 
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# Create Models 

image_size = (IMG_HEIGHT , IMG_WIDTH) 

 

discriminator = build_discriminator(input_shape= image_size + 

(CHANNELS,)) 

sup_disc = supervised_discriminator(discriminator) 

unsup_disc = unsupervised_discriminator(discriminator) 

 

generator = build_generator() 

gan_model = compined_gan(generator, unsup_disc) 

 

total_images = X_sup.shape[0] 

print(f'Total supervised images : {total_images}') 

 

discriminator.summary() 

 

sup_disc.summary() 

 

generator.summary() 

 

# Train 

train_gan(generator, unsup_disc, sup_disc, gan_model, X_train, y_train, 

X_sup, y_sup, X_unsup,y_unsup, X_test, y_test, total_images, gen_input= 

GEN_INPUT, epochs=300, n_batch=BATCH_SIZE) 

 

1.6.1 Code for Evaluating GAN’s supervised Discriminator  

# Dataset Creation Functions Import 

%run Datasets_Creation.ipynb 
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def labels_to_binary(label): 

    if label == 'abnormal': 

        return 0 

    else: 

        return 1 

 

# Plot Datasets Function 

def plot_images(images, labels, lines=10): 

         

    #plt.figure(figsize=(15, 15)) 

    for i in range(lines):  

        image = random.randint(0, images.shape[0]) 

        plt.figure(figsize=(16, 12)) 

        plt.title(f'Original Image - {list(labels.values())[image]}') 

        plt.imshow(images[image]) 

        plt.show() 

 

# Print dimensions 

def print_size_shapes(images, labels, images_name,labels_name ): 

    # Dataset 

    print(f'{images_name} Dataset size : {len(images)}') 

    print(f'{images_name} shape: {images.shape}') 

    print(f'Single {images_name} shape: {images[1].shape}') 

    print(f'{labels_name} shape: {np.asarray(list(labels.values())).shape}') 

 

def print_sets_size_shapes(X_sup, y_sup, X_unsup, y_unsup, X_test, y_test): 

    # supervised dataset 

    print(f'Training Dataset size : {len(X_sup)}') 

    print(X_sup.shape) 
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    print(y_sup.shape) 

     

    # unsupervised dataset 

    print(f'Training Dataset size : {len(X_unsup)}') 

    print(X_unsup.shape) 

    print(y_unsup.shape) 

     

            

    # Test Dataset 

    print(f'Test Dataset size : {len(X_test)}') 

    print(X_test.shape) 

    print(y_test.shape) 

 

# Supervised Discriminator Evaluation Functions 

# Take Supervised Discriminatorl model 

def get_sup_Discr_model(sup_Discr_model): 

    return models.load_model(sup_Discr_model) 

 

# Evaluate CNN_model on unknown Test set 

def print_sup_Discr_test_evaluation(sup_Discr_model_name, 

sup_Discr_model, X_test,y_test, batch_size, verbose=2): 

    _, acc = sup_Discr_model.evaluate(X_test,y_test, batch_size=batch_size,  

                                                                                                          verbose = verbose) 

    print(f"Binary Accuracy evaluation of {sup_Discr_model_name} Supervised  

                                                                     Discriminator model is: {acc*100.0} %  ") 

 

# Calculate Predictions 

def calc_predictionsM(sup_Discr_model,X_test, batch_size, binarizer):         

    pred = sup_Discr_model.predict(X_test, batch_size=batch_size) 
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    predictions = binarizer.inverse_transform(pred) 

     

    return np.asarray(predictions) 

 

# Check predicted vs true labels of images in Test set 

def supervised_discriminator(disc_model): 

    model = Sequential() 

    model.add(disc_model) 

    model.add(layers.Activation('softmax')) 

     

    opt = tf.keras.optimizers.Adam(learning_rate=0.0003) 

    model.compile(loss='categorical_crossentropy', optimizer = opt,  

                                          metrics=[tf.keras.metrics.BinaryAccuracy()]) 

     

    return model    

 

def test_image_sunnity_check(test_images, test_true_labels, predictions, 

binarizer, lines=9): 

     

     

    test_labels = np.asarray(binarizer.inverse_transform(test_true_labels))   

    predicted_labels = predictions 

     

     

    plt.figure(figsize=(15, 15)) 

    for i in range(15):         

        ax = plt.subplot(4, 4, i + 1)            

        plt.imshow(test_images[i])         

        plt.title(f'True: {test_labels[i]}\nPredicted: {predicted_labels[i]}')         

        plt.axis("off")       



- 178 - 

 

def plot_confusion_matrix(model_name, test_true_labels, predictions, 

binarizer): 

    true_labels = np.asarray(binarizer.inverse_transform(test_true_labels)) 

     

    cm = confusion_matrix(true_labels, predictions, labels=binarizer.classes_, 

normalize='true' ) 

    print(f"Confusion matrix:\n {cm}") 

    display_cm = ConfusionMatrixDisplay(confusion_matrix=cm) 

         

    display_cm.plot(cmap=plt.cm.Blues) 

    plt.title(f'Confusion Matrix on {model_name} Test set \n') 

    plt.show()         

 

# Display Models metrics  

def display_model_metrics(model_name, test_true_labels, predictions, 

binarizer): 

    true_labels = np.asarray(binarizer.inverse_transform(test_true_labels)) 

         

    report = classification_report(true_labels, predictions,  zero_division=0)  

    print(f'Model\'s {model_name} metrics:\n {report}') 

 

# Plot Auc-Roc curves 

def plot_auc_roc(model_name, test_true_labels, predictions, binarizer, 

class_names=['abnormal','normal'],  average="macro", zero_division=0): 

        

    true_labels = np.asarray(binarizer.inverse_transform(test_true_labels)) 

    true_labels = np.asarray(list(map(labels_to_binary, true_labels))) 

    predictions = np.asarray(list(map(labels_to_binary, predictions))) 

     

    false_positive, true_positive, threshold = roc_curve( true_labels, predictions) 
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    auc_score = auc(false_positive, true_positive)     

     

    plt.figure(figsize=(10, 10)) 

    plt.style.use('seaborn') 

    plt.plot(false_positive, true_positive, linestyle='--',color='darkorange',  

                                label=f"ROC curve (area = {'{:.2f}'.format(auc_score)})")        

    plt.plot(false_positive, false_positive, linestyle='--', color='blue') 

    plt.title('ROC curve for ' + model_name, fontsize=20)        

    plt.xlim([0, 1]) 

    plt.ylim([0, 1]) 

    plt.xlabel('False Positive Rate', fontsize=20) 

    plt.ylabel('True Positive Rate', fontsize=20) 

    plt.legend(loc='lower right', fontsize=15) 

    plt.show()                                 

 

#RUN EVALUATION 

 # Constants 

IMG_WIDTH= 130 

IMG_HEIGHT = 130 

CHANNELS = 1 

START_CONVS = 16 

BATCH_SIZE = 40 

SEED = 42 

GEN_INPUT = 100       

 

# Insert Data 

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented' 

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info' 

bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv' 
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# Dataset BSA calculation 

bsa_data = upload_data(bsa_directory,  

['image','height','weight','long_axis','area','volume','birth','gender']) 

 

bsa_data.head() 

 

bsa_data.tail() 

 

bsa_data_dict = create_bsa_data_dict(bsa_data) 

 

bsa_data_dict 

 

# BSA calculation 

bsa_coef_dict = bsa_calculation(bsa_data_dict) 

bsa_coef_dict 

 

# Upload images - Create images datasets, calculate labels 

image_dataset, X_train, y_train, X_sup, y_sup, X_unsup, y_unsup, X_test, 

y_test, label_dataset, bsa_data_dict, classes, label_binarizer = 

datasets_GAN(image_directory, bsa_data_dict, IMG_WIDTH, IMG_HEIGHT) 

 

# Shapes of uploaded original images, masks sets, labels 

print_size_shapes(image_dataset, label_dataset, 'Original Images', 'Labels' ) 

 

print_sets_size_shapes(X_sup, y_sup, X_train, y_train, X_test, y_test) 

 

# Plot images and respective ladels 

plot_images(image_dataset, label_dataset, lines=10) 

 

# EVALUATE Supervised Discriminator MODEL 
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sup_discr_model = 

get_sup_Discr_model('saved_Sup_Discriminator_models/sup_disc_300') 

 

print_sup_Discr_test_evaluation("sup_disc_300", sup_discr_model, X_test, 

y_test, BATCH_SIZE) 

 

sup_discr_predictions = calc_predictionsM(sup_discr_model, X_test,  

                                                                            BATCH_SIZE, label_binarizer) 

sup_discr_predictions 

 

plot_confusion_matrix('sup_disc_300',y_test, sup_discr_predictions,  

                                                                                                     label_binarizer) 

 

display_model_metrics('sup_disc_300',y_test, sup_discr_predictions,  

                                                                                                      label_binarizer) 

 

plot_auc_roc('sup_disc_300',y_test, sup_discr_predictions, label_binarizer) 

 

1.7 DATASET STATISTICS 

# Dataset Creation 

# create bsa_data 

def upload_data(bsa_file, columns=[]): 

    df = pd.read_csv(bsa_file , sep=';', header=0, usecols= columns)[columns]  

    df['gender'].replace('m','Male', inplace=True ) 

    df['gender'].replace('f','Female' , inplace=True)     

    return df 
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def create_bsa_data_dict(dataframe): 

    dataframe.set_index('image') 

    data_dict = dataframe.to_dict('index') 

    data_diction = {} 

    for i in data_dict: 

        data_diction[str(data_dict[i]['image'])]= {'Height':  data_dict[i]['height'], 

                                                      'Weight':  data_dict[i]['weight'], 

                                                      'Long_Axis':  data_dict[i]['long_axis'], 

                                                      'Area':  data_dict[i]['area'], 

                                                      'Volume':  data_dict[i]['volume'], 

                                                      'Birth':  data_dict[i]['birth'], 

                                                      'Gender':   data_dict[i]['gender'], 

                                                      'BSA_coef': math.sqrt( ( data_dict[i]['height']) *  

                                                                                               data_dict[i]['weight'] )/60}                                                            

    return data_diction 

 

# calculate Body Mass Area(BSA) coefficient 

# bsa (body-surface-area) coeffiecent per (Mosteller's formula) 

def bsa_calculation(data_diction): 

    bsa_coef_dict = {} 

    for image in data_diction.keys():         

        bsa_coef_dict[image] = math.sqrt( (data_diction[image]['Height']) *  

                                                                      data_diction[image]['Weight'] )/60          

    return bsa_coef_dict 

 

# Crete masked_images and normal, ubnormal labels 

# Apply Original Masks to Image 

def create_masked_image(images, masks): 

    masked_image_dataset = [] 
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    for i in range(len(images)): 

        image = cv2.bitwise_and(images[i], images[i], mask= masks[i]) 

        masked_image_dataset.append(np.expand_dims(image,2)) 

    return np.asarray(masked_image_dataset) 

 

def sort_list_asc(image_list): 

    sorted_list = [] 

    for image_name in image_list: 

        image_name= os.path.splitext(image_name)[0] 

        sorted_list.append(int(image_name))     

    return  sorted(sorted_list)   

 

def create_image_mask_label_sets(image_directory, mask_directory, 

bsa_data_dict, img_width, img_height ): 

    image_dataset = [] 

    mask_dataset = [] 

    label_dataset = {} 

    volume_over_bsa = {} 

            

    images = os.listdir(image_directory) 

    images = sort_list_asc(images) 

    for image_name in images:         

        mask = cv2.imread(mask_directory + '/' +  str(image_name) + '.jpg',  

                                                                              cv2.IMREAD_UNCHANGED) 

        mask = cv2.resize(mask, (img_width, img_height), interpolation =  

                                                                                       cv2.INTER_NEAREST) 

        mask_dataset.append(np.expand_dims(mask,2)) 

         

         

        image = cv2.imread(image_directory + '/' + str(image_name) + '.jpg',  
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                                                                                          cv2.IMREAD_UNCHANGED) 

        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

        image = cv2.resize(image, (img_width, img_height), interpolation =  

                                                                                                cv2.INTER_NEAREST) 

        image_dataset.append(np.expand_dims(image,2))         

         

        volume_over_bsa =   

                                          round(float(bsa_data_dict[str(image_name)]['Volume'])         

                                           / bsa_data_dict[str(image_name)]['BSA_coef'],3) 

         

        bsa_data_dict[str(image_name)]['Volume_Over_BSA'] =  

                                                                                                                volume_over_bsa         

        if volume_over_bsa >= 34: 

            bsa_data_dict[str(image_name)]['Label'] = 'abnormal' 

            label_dataset[str(image_name)] = 'abnormal' 

        else: 

            bsa_data_dict[str(image_name)]['Label'] = 'normal' 

            label_dataset[str(image_name)] =  'normal'     

         

    image_masked_dataset= create_masked_image(image_dataset,  

                                                                                                                mask_dataset)        

    image_dataset = np.asarray(image_dataset, dtype=np.float32) 

    mask_dataset = np.asarray(mask_dataset, dtype=np.float32)    

     

    return image_dataset, image_masked_dataset, mask_dataset,  

                   label_dataset, bsa_data_dict 

 

def print_size_shapes(images, masks, masked_images, labels, images_name, 

masks_name, masked_images_name, labels_name ): 

    # Dataset 
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    print(f'{images_name} Dataset size : {len(images)}') 

    print(f'{images_name} shape: {images.shape}') 

    print(f'Single {images_name} shape: {images[1].shape}') 

    print(f'{masks_name} shape: {masks.shape}') 

    print(f'Single {masks_name} shape: {masks[1].shape}') 

    print(f'{masked_images_name} shape: {masked_images.shape}') 

    print(f'Single {masked_images_name} shape: {masked_images[1].shape}') 

    print(f'{labels_name} shape: {np.asarray(list(labels.values())).shape}') 

 

def plot_images(images,masks, masked_images, labels, lines=20): 

       

    for i in range(lines):  

        image = random.randint(0, images.shape[0]) 

        plt.figure(figsize=(16, 12)) 

        plt.subplot(131) 

        plt.title(f'Original Image - {list(labels.values())[image]}') 

        plt.imshow(images[image]) 

        plt.subplot(132) 

        plt.title('Mask') 

        plt.imshow(masks[image]) 

        plt.subplot(133) 

        plt.title('Masked image') 

        plt.imshow(masked_images[image])                    

        plt.show() 

 

# DISPLAY STATISTICS 

# Insert Data 

image_directory = 'D:/A4C/CNN/EXTENDED/images_full_info_extented' 

mask_directory = 'D:/A4C/CNN/EXTENDED/masks_extended_full_info' 
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bsa_directory = 'D:/A4C/CNN/EXTENDED/bsa_data_full_info_extended.csv 

 

# Dataset BSA calculation 

# BSA SETUP 

dataframe = upload_data(bsa_directory, 

['image','height','weight','long_axis','area','volume','birth','gender']) 

 

dataframe.head() 

 

dataframe.tail() 

 

# Body Mass Area (BSA) calculation per image 

data_dict = create_bsa_data_dict(dataframe) 

 

data_dict['57'] 

 

# BSA calculation 

bsa_coef_dict = bsa_calculation(data_dict) 

bsa_coef_dict['57'] 

 

# Load Images-Masks 

# Constants 

IMG_WIDTH= 320 

IMG_HEIGHT = 240 

 

image_dataset, image_masked_dataset, mask_dataset, label_dataset, 

data_dictionary= create_image_mask_label_sets(image_directory, 

mask_directory, data_dict, IMG_WIDTH, IMG_HEIGHT) 

 

data_dictionary['100'] 
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# Shapes of uploaded original images, masks sets, labels 

print_size_shapes(image_dataset, mask_dataset, image_masked_dataset, 

label_dataset, 'Original Images', 'Masks', 'Masked Images', 'Labels' ) 

 

# Plot images, masks,masked-images and respective ladels 

plot_images(image_dataset, mask_dataset, image_masked_dataset, 

label_dataset, lines=10) 

 

# Labels 

labels = np.asarray(list(label_dataset.values())) 

labels 

 

# Statisitics Pressentation 

# Population Gender 

dataframe['Volume_Over_BSA'] = [data_dictionary[i]['Volume_Over_BSA'] 

for i in data_dictionary.keys()] 

dataframe['Label'] = [data_dictionary[i]['Label'] for i in 

data_dictionary.keys()] 

 

gender_plot = 

dataframe['gender'].value_counts().plot(kind='pie',autopct='%1.1f%%', 

figsize=(8,8), fontsize=15, colors=['lightblue','pink']) 

gender_plot.set_title('Populatation Gender Distribution', size=20) 

 

# Population Age Range 

current_yeara = datetime.today().year 

younger = current_year - dataframe['birth'].max() 

younger 
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oldest = current_year - dataframe['birth'].min() 

oldest 

 

# Average Height, Weight and Volume Over BSA 

dataframe['height'].mean() 

 

dataframe['weight'].mean() 

 

dataframe['Volume_Over_BSA'].mean() 

 

# Dataset Balance 

print(Counter(labels)) 

 

labels_count_dict = dict(Counter(labels)) 

labels_count_dict 

 

labels_classes = list(labels_count_dict.keys()) 

labels_classes_counts = list(labels_count_dict.values()) 

 

plt.figure(figsize = (8,8)) 

plt.pie(labels_classes_counts, labels=labels_classes, autopct='%1.1f%%', 

textprops={"fontsize":15}, colors=['red', 'lightgreen']) 

plt.title('Cardiac Left Atria Enlargement \nClassification Distribution\n', 

size=20) 

plt.axis('equal') 

plt.show() 
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# Dataset balance per Gender 

dataframe['Volume_Over_BSA'] = [data_dictionary[i]['Volume_Over_BSA'] 

for i in data_dictionary.keys()] 

 

dataframe['Label'] = [data_dictionary[i]['Label'] for i in data_dictionary.keys()] 

 

dataframe 

 

# Atria enlargment on male gender 

male_data = dataframe[dataframe['gender'] == 'Male' ] 

 

male_data 

 

younger_male = current_year - male_data['birth'].max() 

younger_male 

 

older_male = current_year - male_data['birth'].min() 

older_male 

 

male_data['height'].mean() 

 

male_data['weight'].mean() 

 

male_data['Volume_Over_BSA'].mean() 

 

dict(Counter(male_data['Label'])) 

 

labels_classes = list(dict(Counter(male_data['Label'])).keys()) 

labels_classes_counts = list(dict(Counter(male_data['Label'])).values()) 
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plt.figure(figsize = (8,8)) 

plt.pie(labels_classes_counts, labels=labels_classes, autopct='%1.1f%%', 

textprops={"fontsize":15}, colors=['red', 'lightgreen']) 

plt.title('Cardiac Left Atria Enlargement\nClassification Distribution \nof Male 

Population\n', size=20) 

plt.axis('equal') 

plt.show() 

 

# Atria enlargment on female gender 

female_data = dataframe[dataframe['gender'] == 'Female' ] 

female_data 

 

younger_female = current_year - female_data['birth'].max() 

younger_female 

 

older_female = current_year - female_data['birth'].min() 

older_female 

 

female_data['height'].mean() 

 

female_data['weight'].mean() 

 

female_data['Volume_Over_BSA'].mean() 

 

dict(Counter(female_data['Label'])) 

 

labels_classes = list(dict(Counter(female_data['Label'])).keys()) 

labels_classes_counts = list(dict(Counter(female_data['Label'])).values()) 

 

plt.figure(figsize = (8,8)) 
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plt.pie(labels_classes_counts, labels=labels_classes, autopct='%1.1f%%', 

textprops={"fontsize":15}, colors=['red', 'lightgreen']) 

plt.title('Cardiac Left Atria Enlargement\nClassification Distribution\n of 

Female Population\n', size=20) 

plt.axis('equal') 

plt.show() 

 

 


