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Abstract

The Android platform is the dominant Operating System (OS) for mobile and IoT devices.
Its wide distribution is mainly due to the freedom it grants to mobile manufacturers (OEMs)
to use it as the primary operating system for their devices. In terms of security, Android’s
enhanced security model safeguards the end-users from the threats of conventional Operating
Systems (macOS, Windows, Linux, etc.). However, Android has vulnerabilities due to its
architecture particularities. This thesis focuses on the threats, vulnerabilities and security
mechanisms of the Android Operating System (OS).

Initially, the permission-based access control model of the Android Operating System for
controlling access to sensitive phone resources and its “relation’ to the Android framework’s
methods for constructing the permission maps has been investigated. The aforementioned
“relation” between a framework method and a permission can be found in the Android doc-
umentation. However, in addition to the fact that documentation may accidentally lack
information, Android features undocumented and hidden API methods. To this direction, this
thesis proposes Dypermin, a transparent framework for compiling the Android permission
map without requiring any modification to the underlying operating system. To achieve
that, Dypermin capitalizes on intrinsic properties of the Android framework, that is, security
exceptions during run time and the availability of any protected API method through the
Android framework, as well as on the advantages of the Java reflection mechanism. Further-
more, Dypermin, in contrast to other related methods, validates itself as it relies on run time
information, meaning that it does not generate false-positive map entries. Dypermin has been
evaluated on different Android versions. The results have been compared with those of other
proposed methods demonstrating Dypermin’s efficacy for compiling the Android permission
map for any given version.

Furthermore, it has been demonstrated that the Android’s activity and task hijacking
attacks may have a significant impact on end users’ data confidentiality since malicious
applications can deceive end-users and silently gain access to sensitive data. Undoubtedly,
such attacks are of vital importance and thus, for their thorough study, a tool named Anactijax
has been proposed, used for identifying specific configurations that an application may be
vulnerable to. Furthermore, an operating system level defensemechanism named TaskAuth has
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been proposed, controlling the access to the applications’ activities. TaskAuth is transparent
to both end-users and developers by leveraging their built-in signatures. The effectiveness of
TaskAuth has been evaluated against various vulnerable configurations provided by Anactijax.
Results have proved that the proposed solution does not affect Android’s task management
and that end-users suffer negligible execution overhead.

Finally, the Android intent redirection and intent hijacking attacks were examined. Again
this type of attacks can be launched by malicious applications in order to gain access to
users’ sensitive data. For addressing this type of attacks an operating system-level defense
mechanism named IntentAuth has been proposed. IntentAuth allows end-users to explicitly
define dynamic policies that specify a trust model for applications allowed to interact with each
other. Additionally, upon the user-defined trust model for installed applications, the proposed
implementation can verify and encrypt the data transmitted (application to application) during
the Android’s Inter-Process communication mechanism via implicit Intents. The execution
overhead imposed has been proved to be negligible.

Keywords: Android Security, Activity Hijacking Attacks, Task Hijacking Attacks, Task
Hijacking Prevention, Activity Hijacking Prevention, Mobile Operating System Security,
Mobile Application Security, Mobile Application Privacy, Android Privacy, Intent Redirection
Attacks Prevention, Intent Hijacking Prevention, Intent Encryption, Intent Authorization,
Intent Authentication, Android Permissions Map, Reflection Technique, Dynamic Analysis



Περίληψη

Η πλατφόρμα Android αποτελεί το �υρίαρχο λειτουργι�ό σύστημα για �ινητές �αι IoT
συσ�ευές. Η ευρεία διάδοση του οφείλεται στην ελευϑερία χρήσης που δίνετε στους
�ατασ�ευαστές �ινητών συσ�ευών (Original Equipment Manufacturers - OEMs) να το
χρησιμοποιούν ως το �ύριο λειτουργι�ό σύστημα για τις συσ�ευές τους. Αφενός μεν,
το μοντέλο ασφαλείας του Android προστατεύει τους χρήστες από τις απειλές των συμ-
βατι�ών λειτουργι�ών συστημάτων όπως macOS, Windows, Linux, �λπ. Αφετέρου δε,
στο Android εμφανίζονται αδυναμίες εξαιτίας των ιδιαιτεροτήτων της αρχιτε�τονι�ής
του. Η παρούσα διδα�τορι�ή διατριβή επι�εντρώνεται στο λειτουργι�ό σύστημα An-
droid, τους μηχανισμούς ασφάλειας του, τις απειλές του, τα τρωτά σημεία του, �αι την
αποτροπή σειράς επιϑέσεων σε αυτό.

Αρχι�ά διερευνάτε το μοντέλο ελέγχου αδειών (permission model) του λειτουργι�ού
συστήματος για τον περιορισμό της πρόσβασης σε ευαίσϑητους πόρους από εφαρμογές
�αι τη "σχέση" του με τις μεϑόδους API (Application Programming Interface) του An-
droid framework για την �ατασ�ευή των συσχετίσεων αδειών (permissions) �αι των
μεϑόδων του framework. Η συσχέτιση μεταξύ μιας μεϑόδου API του Android frame-
work �αι ενός permission μπορεί να βρεϑεί μέσω του documentation των μεϑόδων του
συστήματος Android. Ωστόσο, όχι μόνο το documentation μπορεί τυχαία να στερεί-
ται πληροφοριών αλλά �αι το Android διαϑέτει undocumented �αι private μεϑόδους
API. Το αποτέλεσμα της ανάλυσης ήταν το Dypermin, ένα εργαλείο ι�ανό να συσχετίσει
μεϑόδους API �αι permissions χωρίς να απαιτείται τροποποίηση του υπο�είμενου λει-
τουργι�ού συστήματος. Για να επιτευχϑεί αυτό, το Dypermin αξιοποιεί τις εξαιρέσεις
ασφαλείας (runtime Java security exceprtions) �ατά τη διάρ�εια ε�τέλεσης μεϑόδων του
Android Framework �αι τη τεχνι�ή reflection της γλώσσας προγραμματισμού Java για την
προσπέλαση οποιασδήποτε προστατευμένης (private) μεϑόδου API του Android Frame-
work. Επιπλέον, το Dypermin, σε αντίϑεση με άλλες σχετι�ές μεϑόδους, βασίζεται σε
πληροφορίες �ατά τους χρόνους ε�τέλεσης των μεϑόδων API του Android framework,
πράγμα που σημαίνει ότι δεν δημιουργεί ψευδώς ϑετι�ές (false positives) συσχετίσεις.
Το Dypermin αξιολογήϑη�ε σε διαφορετι�ές ε�δόσεις Android �αι τα αποτελέσματα



xvi

του συγ�ρίϑη�αν με αντίστοιχα αποτελέσματα άλλων προτεινόμενων μεϑόδων για την
ανάδειξη της αποτελεσματι�ότητα του για οποιαδήποτε έ�δοση του συστήματος.

Παράλληλα εξετάζονται οι επιϑέσεις activity, �αι task hijacking στο λειτουργι�ό
σύστημα Android που μπορούν να έχουν μεγάλο αντί�τυπο για τους χρηστες, �αϑώς
�α�όβουλες εφαρμογές που ε�μεταλλεύονται τέτοιες αδυναμίες μπορούν να τους εξαπ-
ατήσουν �αι να απο�τήσουν πρόσβαση σε ευαίσϑητα δεδομένα τους �αι λογαριασμούς
τους. Αναμφίβολα, αυτές οι απειλές έχουν μεγάλη σημασία �αι για τη διεξοδι�ή μελέτη
τους, δημιουργήϑη�ε το εργαλείο Anactijax, ι�ανό να εντοπίσει συγ�ε�ριμένες διαμορ-
φώσεις στις οποίες μπορεί να είναι ευάλωτη μια εφαρμογή. Επιπλέον, προτάϑη�ε ένας
μηχανισμός αποτροπής σε επίπεδο λειτουργι�ού συστήματος με όνομα TaskAuth που
ελέγχει �αι περιορίζει την πρόσβαση των εφαρμογών σε activities. Το TaskAuth λει-
τουργεί με διαφάνεια τόσο για τους χρήστες όσο �αι για τους προγραμματιστές �αϑώς
αξιοποιεί τις ενσωματωμένες υπογραφές που φέρουν οι εφαρμογές Android. Η αποτε-
λεσματι�ότητα του TaskAuth αξιολογήϑη�ε σε σχέση με διάφορες ευάλωτες διαμορφώ-
σεις που ανέδειξε to Anactijax �αι τα αποτελέσματα έδειξαν ότι η εφαρμογή της προ-
τεινόμενης λύσης δεν επηρεάζει τη διαχείριση των tasks του Android ούτε επιβαρύνει
τους χρόνους ε�τέλεσης των εφαρμογών.

Τέλος, εξετάζονται οι απειλές intent redirection and intent hijacking στο σύστημα
Android. Αυτές οι απειλές μπορούν να επηρεάσουν την εμπιστευτι�ότητα �αι την α�-
εραιότητα των δεδομένων των χρηστών, �αϑώς �α�όβουλες εφαρμογές που ε�μετ-
αλλεύονται τέτοιες ευπάϑειες σε άλλες εφαρμογές μπορούν να εξαπατήσουν τους χρή-
στες �αι να απο�τήσουν πρόσβαση ή να παραποιήσουν τα δεδομένα τους. ΄Ετσι, μελετή-
ϑη�αν διεξοδι�ά οι απειλές intent redirection and intent hijacking �αι για την αποτροπή
τους προτάϑη�ε ένας μηχανισμός προστασίας των χρηστών σε επίπεδο λειτουργι�ού
συστήματος με όνομα IntentAuth που δίνει τη δυνατότητα στους χρήστες να �αϑορίζουν
δυναμι�ές πολιτι�ές στα σύνολα των εφαρμογών που επιτρέπουν να αλληλοεπιδρούν
μεταξύ τους. Επιπλέον, βάσει του μοντέλου εμπιστοσύνης που ο �άϑε χρήστης �α-
ϑορίζει για τις εγ�ατεστημένες εφαρμογές του, ο μηχανισμός IntentAuth μπορεί να �ρυπ-
τογραφήσει τα μεταδιδόμενα δεδομένα της διαδιεργασια�ής επι�οινωνίας του συστή-
ματος μεταξύ εφαρμογών με implicit intents χωρίς επιβάρυνση του χρόνου ε�τέλεσης.

Λέξεις Κλειδιά: Ασφάλεια Android, Επιϑέσεις Activity Hijacking, Επιϑέσεις Task Hijack-
ing, Πρόληψη Επιϑέσεων Activity Hijacking, Πρόληψη Επιϑέσεων Task Ηijacking, Ασ-
φάλεια Λειτουργι�ών Συστημάτων, Ασφάλεια Εφαρμογών, Ιδιωτι�ότητα Εφαρμογών,
Ιδιωτι�ότητα στοAndroid,Πρόληψη Επιϑέσεων Intent Redirection,Πρόληψη Επιϑέσεων
Intent Hijacking, Κρυπτογραφία Διαδιεργασια�ής Επι�οινωνίας, Εξουσιοδότηση Δι-
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αδιεργασια�ής Επι�οινωνίας,Πιστοποίηση Δεδομένων Διαδιεργασια�ής Επι�οινωνίας,
Android Permissions Map, Reflection Technique, Δυναμι�ή Ανάλυση
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Chapter 1

Introduction

Nowadays, mobile phones are not only used for making phone calls but they also support
our digital interactions with different types of services i.e., banking, traveling, etc., through
the corresponding mobile applications (apps). In the mobile world, currently, Android is
considered the dominant operating system (OS)1, with more than three million available
applications for downloading (only) from Google play2. In fact, as Android end users basis is
constantly expanding, more and more malicious software (malware) targets their devices for
fun and profit3,4.

One pillar of Android’s security is the process isolation at the kernel level, so that malev-
olent applications and services do not to affect the reliability of other services/applications or
even of the device itself. Furthermore, it introduces an access control model, at application
layer, for restricting access to “sensitive” resources (camera, location data, network, to men-
tion a few) that could affect user’s privacy or cause a security incident. Specifically, access
to any sensitive resource is granted through a protected Application Programming Interface
(API) method. An application in order to use a protected API method it must first declare the
corresponding permissions in its manifest file, and request it also at runtime if it is executed
on Android latest versions, otherwise a security exception is raised. In any case, users should
give their consent for the permissions requested by the application either during the first
time that a protected API method is invoked or during installation process, depending on the
Android version. A more detailed analysis of the Android security model and the evolution
of its permissions subsystem can be found in [38, 100].

1https://www.idc.com/promo/smartphone-market-share
2https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
3https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
4https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf

https://www.idc.com/promo/smartphone-market-share
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
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Programmers get information on the correlation between permissions and protected
API methods through Android’s documentation. To this direction, an issue that attracts
the attention of researchers, developers and Android enthusiasts is the question “What is
the exact correlation between Android Software Development Kit (SDK) API methods and
permissions?”. This is caused by the fact that (a) documentation may accidentally lack
information, and (b) Android has hidden and internal API methods that are not directly
accessible at the application layer since they are not included in the Development SDK.
Though the latter cannot be directly accessed there are several publicly available sources5 that
give guidelines on how to gain access to such resources [58]. So eventually, programmers
can gain access to these hidden API methods.

At this point it should be stressed that an accurate correlation between permissions and
API methods is of high importance, as this correlation is utilized for malware detection [23]
and other misconfigurations (i.e., over-privileges [44]) identification. Today there are attempts,
such as Stowaway [41], PScout [24], Axplorer [25] and Bartel et al. [26], to compile the
correlation of API methods - permissions that extend Android’s documentation. However,
these approaches are bounded to specific Android versions and also require access to the
underlying OS source code.

Moreover, as the Android OS evolves and in order to improve end-users’ experiences, it
proceeds with various modifications to the underlying subsystems. For instance, as already
mentioned, permissions are enabled dynamically on the latest versions of Android, while
from version 6.0 backwards they were granted statically. In addition, some API methods are
deprecated, while other are introduced to support additional functionalities. So it is evident
that these types of changes not only affect the API methods and permission mapping but
also introduce inconsistencies in it among different Android versions according to [100].
Thus even other solutions, such as DPSpec [29], that exclusively rely on annotations (e.g., of
documentation) cannot provide a complete coverage for the Android permission mapping.

The research work of this thesis [65] has elaborated on the developments of Android’s
API methods - permissions mapping, by proposing a framework, called Dypermin, capable
of generating the permission map in a transparent way without requiring access to the OS
source code and without generating false positive alarms. Dypermin automatically invokes
Android’s publicly accessible and hidden API methods in order to intentionally raise runtime
security exceptions and thus decide whether or not a permission dependency exists.

More specifically, Dypermin relies on the simple observation that the Android OS raises a
security exception if a protected API method is invoked without the appropriate permissions
being defined in the application’s manifest file. Dypermin, in order to identify and report the

5https://github.com/anggrayudi/android-hidden-api

https://github.com/anggrayudi/android-hidden-api
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permissions for every available API method, builds a single application that is automatically
invoked after installation.

Dypermin achieves to extract all available API methods since it is provided through the
SDK and thus it does not require any modifications to the underlying OS. Furthermore, it
validates its finding as it relies on runtime information. Dypermin was evaluated with some
well-known classes for different Android versions and its results are compared with both
Android public and SDK source documentation as well as with the results of other related
proposed methods. Currently, Dypermin does not provide a full mapping since it takes a
substantial amount of time but it has been proved that it can accurately identify the API
methods - permission map and deduce whether the available documentation is missing a
relation between an API method and a permission.

Various types of malware [40], such as trojan, backdoors etc., target mobile devices.
Even though various protection techniques [54, 62, 72, 98] have been introduced in order to
enhance their protection level and minimise the attack surface for Android platform, malicious
entities do not only find new approaches to by pass the deployed countermeasures, but they
also manage to launch their attacks silently [39, 97]. Researches have shown [84, 74] that
attackers can bypass security checks and that malicious software can be published even in
trusted sources.

In fact, some of Android security flaws are because of its divergent characteristics, some-
thing which is not the case for typical OS distributions. For instance, Android allows applica-
tions: (a) to monitor end users devices’ sensors by granting the appropriate permission(s), (b)
to interact directly with other applications, services and components through inter-process
communication (IPC), and (c) combine activities from different applications into a certain
task. Unlike other operating systems, an Android task is a combination of activities that end
users interact with in order to perform a certain job; note that activities are the core element
of Android’s User Interfaces (UI) and are organized in tasks. Even though this functionality
enables and improves end users experience on seamless transfer among different activities
and applications, it may turn them vulnerable to activity injection [81, 89, 79, 80, 48] and task
hijacking attacks [55, 48, 93, 61, 92]. Such attacks aim to deceive end users, by masquerading
silently User Interfaces (UI), and steal credentials or other sensitive data provided to the
targeted application.

Currently, various researchers have attempted to address task [55, 48, 93, 61, 92] and
activity [81, 89, 79, 80] hijacking vulnerabilities, through various different approaches. While
the effectiveness of these researches is not questionable, some of them have become obso-
lete [81, 89] due to Android framework’s revisions, others require device ‘rooting’ [80] to
enforce controls, others demand end users’ intervention [93] assuming that their capable of
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recognizing malicious activities, others suffers from well-known limitations of static analysis
in Android applications (for instance: disregard of implicit intents invocations) [55, 48].
Orthogonal solutions, such as [61], propose the deployment of additional static and dynamic
analysis controls at vetting process, whereas authors in [92] introduce a system level mech-
anism, by modifying the underlying OS, in order to inform end users for possible activity
hijacking attacks. In [48] a reformation of the current Android application development frame-
work is required for introducing a signature based mechanism to protect Android applications
against task hijacking attacks.

In an attempt to complement and improve the existing security provisions, research
work presented in this thesis [66] aims to enhance the security of Android’s task handling
mechanism. The preconditions of task injection and activity hijacking attacks have been
studied by introducing an open source tool called Anactijax that is capable of automatically
generating activity injection test cases for assessing whether an application is vulnerable or
not to such type of attacks. Moreover, they presented a system level authorization mechanism
named TaskAuth that minimises the attack surface of Android’s task handling mechanism by
correlating the origin of interacting applications through their carrying signatures. TaskAuth
controls the access among applications’ activities using dynamic predefined policies i.e., allow
only vendor application or applications by the same developer to acquire a task from another
application to their process. TaskAuth effectiveness has been evaluated in terms of possible
implication on OS functionality and the overhead it introduces i.e., how end user’s experience
is affected. The experiments performed highlight that TaskAuth does not affect Android’s
task handling core mechanism functionality, while the execution overhead introduced is
considered negligible as it is not more than 4.3 ms in average.

Finally, another class of threats against the Android platform regards attacks against
it’s Inter-Process Communication (IPC) mechanism. As already mentioned, Android has
divergent characteristics that are not found in typical OS distributions, such as the Inter-
Process Communication (IPC) or, similarly, the Inter-Component Communication (ICC)
mechanism similar to the “client-server” model. Due to its implementation peculiarities,
Android’s Inter-Process communication mechanism needs to employ protection measures
against Intent Redirection [85, 37, 88] and Intent Hijacking [31, 95] attacks. The former
category concerns cases where malicious applications leverage publicly available exported
components (i.e., Activities) and transfer data to other components that perform sensitive
operations upon them. The latest threat concerns malicious applications that define Intent
filters to intercept data transmitted by a legitimate application.

Currently, various research works attempt to address these security flaws using different
approaches ranging from (a) static analysis detection tools [85, 37] to (b) system-level en-
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hancements to prevent such attacks [88, 95] and minimize the OS’s attack surface. While the
effectiveness of these researches is not questionable, some of them suffer [85, 37] from the
common limitations of static analysis approaches, while others that require the modification
of the underlying OS, cannot be re-configured [88] dynamically, or expose intents beyond the
interaction processes [95].

The research work of this thesis [68] complements and improves existing security pro-
visions, by enhancing Android’s IPC mechanism security. In particular, the security flaws
associated with intent activity launch, intent hijacking and redirection have been thoroughly
studied and a novel and practical open source system-level mechanism, namely IntentAuth (In-
tent Authentication), has been proposed enabling secure communication between applications
and thus protecting users against such attacks. In fact, IntentAuth’s goal is to minimize, if not
eliminate, benign applications’ attack surface by authenticating applications’ communicating
components through asymmetric key cryptography, and securing data exchange through
symmetric key cryptography, employing user defined dynamic policies. In this way, users
can control each applications’ inter processes communication access transparently.

The rest of this thesis is structured as follows: Chapter 2 provides an overview and the main
contributions of the conducted research. Chapter 3 provides an overview of the Android Op-
erating System’s core components, emphasizing on its security architecture. Chapter 4 briefly
describes the Android Framework’s permission model, the related threats and the methodolo-
gies proposed in the literature for the accurate construction of the Android’s permission map.
Chapter 5 describes the platform’s task handling mechanism, the methodologies proposed
in the literature for the investigation of the attack surface, and the mitigation mechanisms
for eliminating the identified vulnerabilities. Chapter 6 presents the Android’s Inter-Process
Communication model with intents, its attack surface, and the mitigation mechanisms, as
resulted from the relevant literature review, for addressing the identified threats. Finally,
Chapter 7 concludes the thesis and provides remarks for future work.





Chapter 2

Contribution

Android is a custom Linux-based operating system. The primary running environment is
the Dalvik Virtual Machine (DVM) similar to the Java Virtual Machine (JVM) in the initial
versions or the Android Runtime Environment (ART) in the newer versions. Due to its
architectural uniqueness, the Android Operating System (OS) is facing new types of threats
and attacks. These new threats and attacks mainly concern the Android framework which
adopts a "Client-Server” model for application interaction (Inter-Process Communication -
IPC) or, similarly, Inter-Component Communication - ICC). Additionally, threats arise due to
partial access control to sensitive system resources and actions from malicious applications.

This thesis, as depicted in Table 2.1 and Table 2.2, is focusing on how threats and attacks
against the Android platform can be mitigated. More specifically automated tools for a)
evaluating the platform’s security mechanisms and b) exploiting vulnerabilities have been
developed, as well as mechanisms for preventing attacks have been proposed.

Chapter 3 presents the Android operating system’s architecture and all the technical
features that govern it, along with all the fundamental security mechanisms that protect it at
both system and application level.

Chapter 4 focuses on one of the most important security and privacy mechanism of the
Android platform, which is the application permission model. According to this model, an
Android application must explicitly define permissions when using sensitive API (Application
Programming Interface) framework methods. The user should accept it for an application to
gain access to sensitive system resources (such as geographical location or access to users’
messages) or perform actions such as making phone calls or sending SMS. Understandably,
there is a strong relationship between the Android Framework methods and the permissions
that protect them. However, this correlation is not given as there are multiple control points
of permissions throughout the Android Framework. Although Google systematically reports
in the Android API documentation the permissions a method needs, deficiencies have been
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observed. The documentation descriptions confuse developers several times, leading to mis-
configurations or misuse of permissions, which is a significant security risk for applications.
Taking into account the above context and assumptions, a methodology has been developed to
strictly correlate Android permissions with the methods they protect by extending the existing
literature that mainly suffers from false positives due to static analysis methods limitations or
operating system modifications. This methodology does not require the modification of the
operating system and does not suffer from false positives, as it utilizes techniques provided
by the Android Framework to create automated applications, execute them and examine if
security exceptions were caused during their execution [65]. With this approach, the required
permission for the proper invocation of methods can be extracted from the exception traces.
The result of this work was the Dypermin1 tool.

Chapter 5 investigates and redefines the Task and Activity Hijacking attacks [66]. A
mechanism named Anactijax2,3 has been developed to identify possible combinations of
Activity attributes and Intent Flags that a malicious application can use to exploit design
weaknesses of the Android Framework or applications in order to deceive users or intercept
their data. To prevent this attack, a system-level mechanism was developed, named TaskAuth4

(Task Authorization). This mechanism checks the ownership of the applications involved,
based on the signatures and certificates they carry from their developers. For TaskAuth, the
distinction between the Activity Hijacking attack and the Activity Injection technique is
related to the ownership of the applications involved. More specifically, if an application tries
to inject an Activity into a task or process of another application, it is checked whether the
two applications belong to the same developer. If the verification fails, Activity hijacking is
dynamically prevented while using this technique it is allowed only for system applications
or between applications belonging to the same developer. The above-mentioned mechanism
extends the capabilities of other methods proposed in the literature and at the same time it
addresses some of their practical limitations, as it neither requires an unsafe device configu-
ration to operate nor it involves users or developers creating complex policies that allow or
prevent Activity Injection between applications. Finally, TaskAuth is completely transparent
to the users as it does not prevent applications that use Activity Injection techniques from
running without meeting the specifications it has set.

Chapter 6, focuses on the threats of Inter-Process Communication of the Android operating
system and, more specifically, on Intent Redirection and Intent Hijacking [68]. Intents are
the means of communication between processes on the Android platform. A component

1Dypermin Implementation: https://gitlab.ds.unipi.gr/systems-security-laboratory/dypermin
2Anactijax Implementation: https://gitlab.ds.unipi.gr/systems-security-laboratory/anactijax
3Anactijax Results: https://gitlab.ds.unipi.gr/systems-security-laboratory/anactijax-results
4TaskAuth Implementation: https://gitlab.ds.unipi.gr/systems-security-laboratory/taskauth

https://gitlab.ds.unipi.gr/systems-security-laboratory/dypermin
https://gitlab.ds.unipi.gr/systems-security-laboratory/anactijax
https://gitlab.ds.unipi.gr/systems-security-laboratory/anactijax-results
https://gitlab.ds.unipi.gr/systems-security-laboratory/taskauth
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to communicate and exchange data with another component that belongs to the same or
another application uses Intents. The Intent Redirection threat occurs when a malicious
application sends data through intents to a benign application in order for the latter to process
it and perform an action on behalf of the malware based on the received data. In this threat
model, the benign application performs a sensitive and not a malicious action. However,
receiving and using data from an untrusted application may turn the sensitive action into a
malicious one. Another threat against Intents are the Hijacking attacks, where a malicious
application intercepts the intents intended for a benign application. In order to prevent the
above threats, a system-level security mechanism has been developed offering to users the
ability to setup dynamic policies specifying the applications that are allowed to exchange data
and communicate with each other. The developed mechanism is called IntentAuth5 (Intent
Authentication) and in addition to the creation of dynamic policies it supports authentication of
transmitted data among processes. Hence, based on the user-defined trust model, IntentAuth,
can impose end-to-end (application to application) cryptography and signature verification in
order to protect the data transmitted between processes in the service-oriented Framework of
Android. To achieve that, IntentAuth takes advantage of existing operating systemmechanisms,
such as SELinux and cryptographic keys, generated by Trusted Execution Environment (TEE)
or Hardware Security Module (HSM). This enables IntentAuth to ensure the authenticity,
integrity, and confidentiality of both transmitted data and the cryptographic keys of the
interacting applications.

Finally, Chapter 7 concludes the research carried out and provides remarks for future work
and improvements regarding the enhancement of the Android Inter-Process Communication
scheme.

5IntentAuth Implementation: https://gitlab.ds.unipi.gr/systems-security-laboratory/intentauth

https://gitlab.ds.unipi.gr/systems-security-laboratory/intentauth
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Solution Type Category Enforcement Layer Availability

Prevention Detection
Recognition

Exploitation

Dypermin [65] No Yes No Permission Map Application Yes

Anactijax [66] No Yes Yes
Task Hijacking

Application Yes
Activity Hijacking

TaskAuth [66] Yes No No
Task Hijacking

Operating System Yes
Activity Hijacking

IntentAuth [68] Yes No No

Intent Hijacking

Operating System YesMalicious Activity
Launch

Intent Redirection

Table 2.1 Technical Contribution of the Research Work Included in this Thesis.

Research Authors Topic

Dypermin: Dynamic PermissionMining
Framework for Android Platform, Com-
puters & Security [65]

Christos Lyvas, Costas Lambrinoudakis,
and Dimitris Geneiatakis

Android Operating System Security and
Privacy

OnAndroid’s Activity Hijacking Preven-
tion, Computers & Security [66]

Christos Lyvas, Costas Lambrinoudakis,
and Dimitris Geneiatakis

Android Operating System Security and
Privacy

IntentAuth: Securing Android’s Intent
Based Inter-Process Communication, In-
ternational Journal of Information Secu-
rity [68]

Christos Lyvas, Costas Lambrinoudakis,
and Dimitris Geneiatakis

Android Operating System Security and
Privacy

Table 2.2 List of Publications Directly Related to the Work of this Thesis

Even though this thesis focuses on the security of the Android operating system, in the
course of the work research was also carried out in other related topics such as the security
of the iOS Operating System, intrusion detection for virtual operating system environments,
automated malware generation, and security on IoT environments, especially for Intelligent
Transportation Systems (ITS) as Table 2.3 summarizes. The knowledge gained from the
aforementioned related research activities provided useful ideas and techniques for this thesis.



11

Research Authors Topic

The Far Side of Mobile Application Inte-
grated. Development Environments [64]

Christos Lyvas, Nikolaos Pitropakis, and
Costas Lambrinoudakis iOS Application Security

[m]allotROPism: A Metamorphic En-
gine for Malicious Software. Variation
Development [67]

Christos Lyvas, Christoforos Ntanto-
gian, and Christos Xenakis Malicious Software Development

The Greater The Power, The More Dan-
gerous The Abuse: FacingMalicious. In-
siders in The Cloud [78]

Nikolaos Pitropakis, Christos Lyvas, and
Costas Lambrinoudakis

Intrusion Detection System for Virtual
Operating System Environments

Towards the Design of an Assurance
Framework for Increasing Security and
Privacy in Connected Vehicles [51]

Christos Kalloniatis, Vasiliki Diaman-
topoulou, Konstantinos Kotis, Christos
Lyvas, KonstantinosMaliatsos, Matthieu
Gay, Athanasios Kanatas, and Costas
Lambrinoudakis

Intelligent Transportation Systems
Security

Standardizing Security Evaluation Crite-
ria for Connected Vehicles: A Modular
Protection Profile [69]

Konstantinos Maliatsos, Christos Ly-
vas, Panagiotis Pantazopoulos, Costas
Lambrinoudakis, Athanasios Kanatas,
Matthieu Gay, and Angelos Amditis

Intelligent Transportation Systems
Security

Aligning the Concepts of Risk, Security
and Privacy Towards the Design of Se-
cure Intelligent Transport Systems [35]

Vasiliki Diamantopoulou, Christos
Kalloniatis, Christos Lyvas, Kon-
stantinos Maliatsos, Matthieu Gay,
Athanasios Kanatas, and Costas Lambri-
noudakis

Intelligent Transportation Systems
Security

Table 2.3 Contribution on Other Related Fields.





Chapter 3

Android Overview

3.1 Android Framework Internals

Android is an open-source mobile operating system (OS) officially released in 2007 by Google
and the Open Handset Alliance (OHA). Since then, Android has managed to be established
as the dominant operating system for mobile and other Internet of Things (IoT) devices. This
is mainly because of its open-source nature that enables Original Equipment Manufacturers
(OEMs) to use Android as the core operating system of their devices.

3.1.1 Android Platform Architecture

The Android platform consists of several layers, as Figure 3.1 depicts. The operating system’s
baseline is the reformed Linux kernel [53] responsible for orchestrating and managing hard-
ware via drivers, memory, processes, and the Inter-Process communication mechanism based
on Binder. Apart from the Android kernel, in the baseline of its architecture, resides the
Secure Element, which can be the Trusted Execution Environment (TEE) that is implemented
upon the System on Chip (SoC) and Central Processing Unit (CPU) system-wide approach of
ARM TrustZone [46] or a dedicated Hardware Security Module (HSM) that is responsible
for several critical cryptographic operations. The implementation of the Trusted Execution
Environment (TEE) for Android is provided by an isolated operating system called Trusty
OS [22], which is secluded from the rest of the system by hardware and software. On top of the
layers mentioned above resides the Hardware Abstraction Layer (HAL) that exposes standard
programming interfaces for device hardware management to the higher-level layers. On top of
HAL resides the Android Runtime Environment (ART) and all the supporting Native C/C++
Libraries. In the Android platform’s initial releases, during the application’s execution, the
JIT (Just-in-Time) compiler was responsible for translating the Dalvik Executable (DEX)
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application format to machine code and executed it into multiple virtual machines (Dalvik
Virtual Machine - DVM) similar to the Java Virtual Machine (JVM). Where the Dalvik Virtual
Machine kernel (Zygote DVM) was responsible for creating separate, secure processes in
shared memory, DVM was directly deployed as the execution environment for each appli-
cation. Android Runtime Environment (ART) replaced the Dalvik Virtual Machine with
the Ahead-Of-Time (AOT) compilation, where the transformation occurs at the installation
phase of each application. However, the use of a virtual machine as an execution environment
for each application still holds. Above the Android Runtime and native libraries reside the
Android System Services that provide functionality exposed by application framework APIs
(Application Programming Interfaces) that communicate with system services to access the
underlying hardware. Application developers may interact mostly with two groups of services:
a) the system (services such as windowmanager and package manager) and b) media (services
involved in playing and recording media). These are the services that provide application
interfaces as part of the Android framework. Besides these services, there are also native
services similar to Linux daemons supporting these system services, such as netd, logcatd,
etc. Another layer of the Android architecture is the Android Application Programming
Interface (API), namely Android Framework, which offers all the functionalities and features
of the Android operating system to the developers for building their applications. Finally, in
the top layer of the architecture reside the Android applications divided into the pre-installed
system applications that have been developed by vendors or OEMs for handling critical
capabilities of the device (such as SMS, phone calls, etc.), and the user-installed applications
that can be found and installed through several distribution channels such as the official
Android application market called Google Play1 or other secondary sources such as Amazon
Appstore2 or Samsung Galaxy Store3.

3.1.2 Android Application Components

Android applications can be developed in Java, C++, and Kotlin programming languages [1].
An AndroidPacKage (APK) archive is generated after the successful compilation of the source
files that can be installed in the targeted Android device. The Java or Kotlin programming lan-
guage are the recommended languages for developing Android applications over the standard
Java Android SDK (Software Development Kit). At the same time, applications may contain
native code as libraries with the aid of the Android Native Development Kit (NDK). Java
Native Interface (JNI) is the framework that enables Java to call and be called by native appli-

1https://play.google.com/store
2https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
3https://www.samsung.com/global/galaxy/apps/galaxy-store/

https://play.google.com/store
https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
https://www.samsung.com/global/galaxy/apps/galaxy-store/
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Figure 3.1 Android Operating System Architecture.

cations and libraries written in unmanaged code (C/C++). An Android application, without
loss of generality, may consist of one or more combinations of the following components:

• Activities comprise the (UI) of Android applications and enables end user interaction
with the device.

• Broadcast Receivers allow the system to send events to applications outside the normal
execution flow, and execute in the background to handle incoming events.

• Services run in the background, as well, to perform a variety of computational tasks
on behalf of the application.

• Content Providers enable applications to store internal data or share them with other
Android components.

These components as well as the required permission are declared in application’s Mani-
fest; otherwise, the application does not function properly.
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3.1.3 Android Inter-Process Communication

Android OS does not allow Android application components to exchange information directly
with each other whenever it is needed. In general, Android OS relies on Inter-Process
Communication (IPC) [52] or equivalently Inter–Component Communication (ICC) to enable
the communication between different processes following a “server-client” model.

In fact, in Android OS, IPC is a mechanism IPC is a mechanism that enables one ap-
plication to use a component of another application and synchronize their actions by using
remote procedure calls (RPCs) [83, 28]. In a nutshell, Android OS has two fundamental IPC
mechanisms:

(a) the Binder [16], considered to be the core of Android’s IPC mechanism, that allows
app’s processes to interact with other components and services at kernel level. So at low
level, all communications between applications’ components are established through the
Binder IPC [52]. It consists of the Server, the Service Manager, the Client, and the Binder
components. A client requests a service and the Server is the responsible process for providing
that service. Simultaneously, the Service Manager handles the registered service [86], and

(b) the Intent [2], which provides a higher-level of abstraction that is executed over
the Binder and is frequently deployed at the application layer for ICC communication [52].
Briefly, an Intent is a messaging object that carries data used to start an activity, communicates
with services, or broadcasts messages [75]. In fact, intents can be used either explicitly or
implicitly. In the former the application defines the target activity, service or broadcast receiver
that will handle the intent, while on the latter the system or the user will determine which
component should take care of it. Briefly, as Figure 3.2 depicts, an Intent is a messaging
object that may carry data used to start an activity, communicate with services, or send
broadcast messages [75].

Intents are divided into implicit and explicit. Explicit Intents (A.3) are used when the
name of the class of target activity, service, or broadcast receiver that will handle the intent
is defined (A.4). Implicit Intents (A.1) are used by the declaration of a general action to
perform (A.2), rather than the class name’s definition. At the same time, the system will
determine the appropriate activity or broadcast receiver to handle the intent.

3.1.4 Android Task Handling

Android starts a new process [3], upon the initiation of an application’s component (i.e., ac-
tivities), with one thread of execution. In case that another application component starts,
assuming that the application has been already initiated, it is executed under the same process
sharing the same thread; meaning that all components (of the same application) are executed
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Figure 3.2 Android Application Core Components and Fundamental Communication Chan-
nels Among Them.

under the same process and thread, except if the application’s developer has defined that
specific components need to run under a separate process.

Android handles activities as a collection (of activities) named as task [4]. Usually, a
task is limited within the context of an application, however, it may also contain activities
from different applications [79]. Inside a task, activities are managed as a Last–in–First–
Out (LIFO) [80] data structure and support only push and pop functions. So whenever an
application initiates a new activity4, the Android OS pushes the latter on the top of the stack,
being in the foreground, while previous activities are pushed down in the stack without being
executed. If end user presses the back button, the foreground activity is popped from the top
of the stack and its execution is stopped, while the activity that is now on the top of the stack
is restored. Figure 3.3 overviews activity initialization mechanism from the OS perspective.

4The initialization of an activity requires the invocation of the startActivity(...) method of
the Activity class.
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In this context, the ActivityManagerService (AMS)5 class handles the life-cycle of all
activities and gives to applications the capacity to communicate with it through the Activi-
tyManager interface6. Thus for activities task management purposes the method startAc-
tivityAsUser(...) is called to initialise a task which finally triggers the startActivity-
MayWait(...) method, belonging to ActivityManagerService, and ActivityStarter7

classes correspondingly.
At this point, it should be noted that the startActivityMayWait(...) method is

fundamental for the analysis as it contains all the information concerning the assignment of
activities into tasks. Specifically, it manages the aInfo object of ActivityInfo class which
holds all the information regarding application’s activities i.e., permissions required for an
activity to be executed, task affinity name, etc.Moreover, Android OS through its API allows
(developers) to change activities’ default association with a task. For instance, it might be
desired the back stack to be cleared. This can be achieved by defining the appropriate activity
attributes either in application’s manifest or in its source code. Such attributes enable the
activities to (a) assign an activity to a new task, (b) clear the current stack, and (c) relaunch
an activity from the stack if already exists in it, while all the rest, on top of it in the stack, are
destroyed.

3.2 Android Security Model

Android platform is a mobile operating system with several security mechanisms enforced in
multiple layers, as presented in Table 3.1 shows.

5https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-9.0.0_r54/services/
core/java/com/android/server/am/ActivityManagerService.java

6https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-9.0.0_r54/core/
java/android/app/IActivityManager.aidl

7https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-9.0.0_r54/services/
core/java/com/android/server/am/ActivityStarter.java

https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-9.0.0_r54/services/core/java/com/android/server/am/ActivityManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-9.0.0_r54/services/core/java/com/android/server/am/ActivityManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-9.0.0_r54/core/java/android/app/IActivityManager.aidl
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-9.0.0_r54/core/java/android/app/IActivityManager.aidl
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-9.0.0_r54/services/core/java/com/android/server/am/ActivityStarter.java
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-9.0.0_r54/services/core/java/com/android/server/am/ActivityStarter.java
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Security Mechanism Android Version Layer of Enforcement

Application-Level Permissions 1.0 Android Framework

Application Signing 1.0 Android Framework

Discretionary Access Control (DAC) 1.0 Kernel

No eXecute (NX) 2.3 Kernel

Random Stack Canary 4.0 Kernel

Address Space Layout Randomization (ASLR) 4.0 Kernel

Mandatory Access Control (MAC) 4.3 Kernel

Keystore System 4.3 TEE

Verified Boot 4.4 Kernel

Full Disk Encryption (FDE) 5.0
TEE

OS

Gatekeeper 6.0
TEE

OS

File Based Encryption (FBE) 7.0
OS

TEE or HSM

Strongbox Keymaster System 9.0 HSM

Weaver 9.0
HSM

OS

Table 3.1 Primary Android Security Mechanisms and Their Enforcement Point.
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3.2.1 System Security

Each application (as a UNIX-based process) is executed in an isolated sandbox environment,
separated from other processes. Android OS assigns a different User Identifier (UID)8 and
a directory to each application (except for applications coming from the same developer
where a UID can be shared). At the same time, all its files are protected against unauthorized
access from other applications in such a way that only the assigned UID can access them.
More precisely, the UNIX–based permission model is enforced by the Kernel through the
Uniform Resource Identifier (URI) [71] permissions that allow an application to application
interaction, giving the ability to an application to grant selective access to data resources it
owns.

In addition to the aforementioned Discretionary Access Control (DAC) mechanism, in the
Android platform a Mandatory Access Control (MAC) has been implemented upon SELinux
since Android 4.3. The MAC is enforced by system-level security policies that enforce
the default deny [5]. Thus, SELinux provides a centralized policy configuration approach
stronger than DAC for isolating and sandboxing Android applications and privileged Android
system daemons. More precisely, it uses roles based on identities to limit their access to
domains (processes) or types (for objects, i.e., , files, folders, etc.). Moreover, SELinux grants
permissions based on UIDs or other security-relevant information [71] about each process
where only explicitly defined actions can be performed.

Keymaster implements the Android key store into the Trusted Execution Environment
(TEE). This mechanism stores cryptographic keys into TEE and protects them from unautho-
rized access, and even if a process is compromised (including Kernel), an attacker cannot
read key material stored in Keymaster. Keystore [19] is the crypto–service API in the Android
framework based on Keymaster Hardware Abstraction Layer (HAL). The security of Android
Keystore is highly dependent on SELinux enforcement, and dedicated policies9 safeguard it.
In the Android framework, a process can gain access to other processes Keystore if this is
explicitly defined. This is a standard method whenever a privileged process is dependent upon
or manages other processes. Such an example is the defined rules that allow system services
to handle the keys of VPN (Virtual Private Network), Bluetooth, and WiFi services based on
their UIDs. Another implementation of the Android key store is the Strongbox imported into
Android version 9.0 that implements the Android Keymaster Hardware Abstraction Layer

8https://android.googlesource.com/platform/system/core/+/refs/tags/android-11.0.0_r3/libcutils/
include/private/android_filesystem_config.h

9https://android.googlesource.com/platform/system/security/+/refs/tags/android-11.0.0_r3/keystore/
permissions.cpp

https://android.googlesource.com/platform/system/core/+/refs/tags/android-11.0.0_r3/libcutils/include/private/android_filesystem_config.h
https://android.googlesource.com/platform/system/core/+/refs/tags/android-11.0.0_r3/libcutils/include/private/android_filesystem_config.h
https://android.googlesource.com/platform/system/security/+/refs/tags/android-11.0.0_r3/keystore/permissions.cpp
https://android.googlesource.com/platform/system/security/+/refs/tags/android-11.0.0_r3/keystore/permissions.cpp
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(HAL) into a dedicated tamper-resistant hardware security module (HSM) for supported
devices.

The verified boot is the security mechanism that provides a chain of trust since the
introduction of Android 4.4 by ensuring the firmware’s integrity and authenticity from the
bootloader to the boot, system, vendor and OEM partitions with the aid of TEE enforced
at the kernel level [71]. More specifically, during the device boot, every stage verifies the
upcoming stage’s integrity before its execution.

The Gatekeeper [17] or Weaver implements the authentication of the end-user ownership
of the device. The first case implements user lock screen verification based on PIN or password
or pattern with Keymaster for TEE, while the latter with HSM upon Strongbox [71]. After the
successful end-user authentication, Gatekeeper or Weaver communicates this to Keymaster
or Strongbox to grant access to authentication-related keys.

Data encryption at rest was implemented initially in Android 4.4 with the Full Disk
Encryption (FDE) mechanism that uses a protected credential key to encrypt the entire
user data partition. The use of Trusted Execution Environment’s (TEE) signing capability
was firstly introduced in Android 5.0. This mechanism’s main disadvantage was the core
device services’ inability to operate until the device’s end-user provided a valid password
entry [71]. The Full Disk Encryption mechanism was replaced by the File-Based Encryption
(FBE) mechanism in Android 7.0 that leverages TEE or HSM to protect individual files with
credentials by different users. File-Based Encryption provides cryptographical protection of
per-user data on Android devices.

3.2.2 Application Security

Another class of permissions in the Android platform is the Application-Level Permissions
or more specific Android permissions [20]. In this model, applications should “request”
the suitable permissions to interact with sensitive system services, other applications, and
components. This means that programmers should declare the necessary permissions (both
normal and dangerous ones) in the application’s manifest file if they target devices relying
on Android Lollipop and previous versions in order to gain access to protected resources.
From Android 6.0 onwards, programmers should define the permissions at the application’s
manifest file and in cases where “dangerous” permissions [20] are used to protect a resource
these permissions should be requested at run time. The permissions requested by applications
are granted by users either during the installation of the application or at runtime, depending
on the Android version that they rely on. For instance, if an application reads the device
ID (e.g., IMEI), it requires the READ_PHONE_STATE permission to be defined in its manifest
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file and the user to grant it at runtime otherwise, a security exception will be raised during
execution.

Android application signing [21] is a mechanism enforced in the Android Framework to
ensure that only applications from legitimate sources can be executed into a mobile device.
Applications from non–trusted sources can be executed into Android devices only when the
developer option is enabled for testing purposes. As part of the System Service, the Package
Manager checks the application’s signature’s validity based on their carrying certificate during
installation. Currently, Android does not provide Certificate Authority (CA) verification for
application certificates, and all of them are self–signed and generated by OEMs, vendors, or
developers. With this Public Key Infrastructure (PKI) oriented mechanism, Android OS can
ensure each application’s ownership onto a device. After the successful signature validation
process, the system assigns UIDs into applications and enforces the isolation sandbox. An
application that shares the same certificate with others can share the same UID if this is
explicitly defined in its manifest file. In addition, applications that share the same UID can
share resources such as preferences, TEE or Strongbox keys, etc.

3.2.3 Exploit Prevention

The most effective security mechanisms regarding the prevention of stack and heap-based
vulnerabilities exploitation on Android are presented here, while more comprehensive lists
can be found in [27, 6, 8–15, 7].

Stack Canary is a prevention mechanism that usually places random bytes (QWORD) based
on /dev/urandom into a stack frame before the return address of an invoked function and
checks if the contents are changed before the function returns. The android platform uses
random canary since the introduction of version 4.0 [36].

Hardware-based No eXecute (NX) prevents code execution on the stack and heap, and it
was introduced in Android version 2.3 [6]. With this mechanism, memory sections (pages) of
the process which contain code are marked as executable and read-only [45]. In other words,
a memory page can be marked as executable or writable.

Another prevention mechanism against code–reusing attacks that complement the NX
mechanism was imported into the Android platform in version 4.0 called Address Space
Layout Randomization (ASLR). This mechanism randomizes the locations of memory areas
within an address space to make it probabilistically difficult for an attacker to gain control of
a process [60].
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public final int startActivityAsUser(IApplicationThread caller, String callingPackage,
        Intent intent, String resolvedType, IBinder resultTo, String resultWho, int requestCode,
        int startFlags, ProfilerInfo profilerInfo, Bundle bOptions, int userId,
        boolean validateIncomingUser) {

... 
    return mActivityStartController.obtainStarter(intent, "startActivityAsUser")
            .setCaller(caller)
            .setCallingPackage(callingPackage)
            .setResolvedType(resolvedType)
            .setResultTo(resultTo)
            .setResultWho(resultWho)
            .setRequestCode(requestCode)
            .setStartFlags(startFlags)
            .setProfilerInfo(profilerInfo)
            .setActivityOptions(bOptions)
            .setMayWait(userId)
            .execute();

}

int execute() {
    ... 
        if (mRequest.mayWait) {
            return startActivityMayWait(mRequest.caller, mRequest.callingUid,
                    mRequest.callingPackage, mRequest.intent, mRequest.resolvedType,
                    mRequest.voiceSession, mRequest.voiceInteractor, mRequest.resultTo,
                    mRequest.resultWho, mRequest.requestCode, mRequest.startFlags,
                    mRequest.profilerInfo, mRequest.waitResult, mRequest.globalConfig,
                    mRequest.activityOptions, mRequest.ignoreTargetSecurity, mRequest.userId,
                    mRequest.inTask, mRequest.reason,
                    mRequest.allowPendingRemoteAnimationRegistryLookup,
                    mRequest.originatingPendingIntent);
        }

...
}

ActivityStarterActivityStarter

private int startActivityMayWait(IApplicationThread caller, int callingUid,
        String callingPackage, Intent intent, String resolvedType,
        IVoiceInteractionSession voiceSession, IVoiceInteractor voiceInteractor,
        IBinder resultTo, String resultWho, int requestCode, int startFlags,
        ProfilerInfo profilerInfo, WaitResult outResult,
        Configuration globalConfig, SafeActivityOptions options, boolean ignoreTargetSecurity,
        int userId, TaskRecord inTask, String reason,
        boolean allowPendingRemoteAnimationRegistryLookup,
        PendingIntentRecord originatingPendingIntent) {

...

final int realCallingPid = Binder.getCallingPid();
final int realCallingUid = Binder.getCallingUid();
...
ResolveInfo rInfo = mSupervisor.resolveIntent(intent, resolvedType, userId,
            0, computeResolveFilterUid(callingUid, realCallingUid, mRequest.filterCallingUid));
...
ActivityInfo aInfo = mSupervisor.resolveActivity(intent, rInfo, startFlags, profilerInfo);
...

ActivityManagerService
com.android.server.am

Figure 3.3 Android (Version 9) Activity Initialization and Task Handling.





Chapter 4

Android Permission Model

Android Permission Model is a vital security mechanism for end user’s privacy protection.
Programmers get information on the correlation between permissions and protected Applica-
tion Programming Interface (API) methods through Android’s documentation. However a
full correlation between the Android’s Software Development Kit (SDK) API methods and
permissions doesn’t exist. This is caused by the fact that (a) documentation may accidentally
lack information, and (b) Android has hidden and internal API methods that are not directly
accessible at the application layer since they are not included in the Development SDK.
Though the latter cannot be directly accessed there are several publicly available sources that
give guidelines1 on how to gain access to such resources [58]. So eventually, programmers
can gain access to these hidden API methods.

Moreover, as the Android OS evolves and in order to improve end users’ experiences, it
proceeds with various modifications to the underlying subsystems. For instance, permissions
are enabled dynamically on the latest versions of Android, while from version 6.0 backwards
they were granted statically. In addition, some API methods are deprecated, while other are
introduced to support additional functionalities. So it is evident that these types of changes
not only affect the API methods and permission mapping but also introduce inconsistencies
in it among different Android versions according to [100].

4.1 System Level Permission Enforcement

Android utilizes the Application-Level Permissionmodel to restrict access to device’s sensitive
features from untrusted applications. Specifically, Android as a service oriented framework en-
forces permissions’ control at the lower stack layers; at Android framework level [82], without

1Android Hidden APIs: https://github.com/anggrayudi/android-hidden-api

https://github.com/anggrayudi/android-hidden-api
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providing a centralized point for accomplishing this task. For instance, at the Android frame-
work layer there are several API methods (enforceCallingOrSelfPermission(...),
enforcePermission(...), enforceCallingPermission(...), etc.,) that impose per-
mission controls declared in the Context2 Interface which is responsible to expose methods
for accessing the underlying resources.

Figure 4.1 illustrates a high level example of a permission enforcement procedure. Ac-
cording to this example the application invokes the getIsimImpi()3 API method using Java
reflection technique (this specific method cannot be found in the public documentation of
the Android framework as it is not part of the public API) which is responsible to call the
relevant resource implemented in the service side. In this specific case, the latter performs a
permission control through the enforceCallingOrSelfPermission() API method. If the
application has not defined the corresponding permissions (i.e., READ_PRIVILEGED_PHONE_-
STATE) the framework will cause a security exception reporting in the exception stack the
missing permission. Note that not all the enforcement points raise such a security exception
if a permission is missing; for instance this is the case of checkPermission() Framework
method.

4.2 Android Application Permission Acquisition

Access to any sensitive resource of Android Framework is granted through a protected
Application Programming Interface (API) method. An application in order to use a protected
API method it must first declare the corresponding permissions in its manifest file, and request
it also at runtime if it is executed on Android latest versions, otherwise a security exception
is raised. In any case, users should give their consent for the permissions requested by the
application either during the first time that a protected API method is invoked or during
installation process, depending on the Android version [38, 100].

4.3 Threats of Android Permission Model

4.3.1 Permission Re-Delegation

The threat of permission re-delegation is a form of confused deputy attack [47, 91] or similarly
privilege escalation attack. In the Android platform, the threat of permission re-delegation

2https://android.googlesource.com/platform/frameworks/base.git/+/refs/tags/android-7.0.0_r34/core/
java/android/content/Context.java

3https://android.googlesource.com/platform/frameworks/base.git/+/refs/tags/android-7.0.0_r34/
telephony/java/android/telephony/TelephonyManager.java

https://android.googlesource.com/platform/frameworks/base.git/+/refs/tags/android-7.0.0_r34/core/java/android/content/Context.java
https://android.googlesource.com/platform/frameworks/base.git/+/refs/tags/android-7.0.0_r34/core/java/android/content/Context.java
https://android.googlesource.com/platform/frameworks/base.git/+/refs/tags/android-7.0.0_r34/telephony/java/android/telephony/TelephonyManager.java
https://android.googlesource.com/platform/frameworks/base.git/+/refs/tags/android-7.0.0_r34/telephony/java/android/telephony/TelephonyManager.java
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package ssl.ds.unipi.gr.permissionscnanner; 
import java.lang.reflect.Method;
import java.lang.reflect.Constructor; 
import android.telephony.TelephonyManager; 
             : 
public class MainActivity extends AppCompatActivity { 
       @Override 
      protected void onCreate(Bundle savedInstanceState) { 
          super.onCreate(savedInstanceState); 
          setContentView(R.layout.activity_main); 
          StringBuilder sb = new StringBuilder(); 
          try {
            String sClass = "android.telephony.TelephonyManager";
            Class<?> telephonyClass = Class.forName(sClass);
            Constructor<?> telephonyConstructor = telephonyClass.getDeclaredConstructor();
            telephonyConstructor.setAccessible(true);
            Object telephonyObject = telephonyConstructor.newInstance(new Object[]{});
            /*public java.lang.String android.telephony.TelephonyManager getIsimImpi()*/
            Method methodGetIsimImpi =
                   Class.forName("android.telephony.TelephonyManager").getDeclaredMethod("getIsimImpi");
            methodGetIsimImpi.invoke(telephonyObject);
            : 
          } 
          : 
      } 
}  

package android.telephony; : 
public class TelephonyManager { 
                 : 
     public String getIsimImpi() { 
        try { 
            IPhoneSubInfo info = getSubscriberInfo(); 
            if (info == null) 
               return null;
            return info.getIsimImpi(); 
            } catch (RemoteException ex) { 
                return null; 
            } catch (NullPointerException ex) { 
                return null; 
            } 
    } 
} 

package com.android.internal.telephony; : 
public class PhoneSubInfoController extends IPhoneSubInfo.Stub { 
          :
   public String getIsimImpi() { 
        PhoneSubInfoProxy phoneSubInfoProxy = getPhoneSubInfoProxy(getDefaultSubscription());
        return phoneSubInfoProxy.getIsimImpi(); 
   } 
         :
} 
 
package com.android.internal.telephony; 
        : 
public class PhoneSubInfoProxy extends IPhoneSubInfo.Stub { 
        : 
   @Override
   public String getIsimImpi() { 
       return mPhoneSubInfo.getIsimImpi(); 
   } 
        : 
} 

package com.android.internal.telephony; 
        : 
public class PhoneSubInfo { 
        : 
    public String getIsimImpi() { 
          mContext.enforceCallingOrSelfPermission(READ_PRIVILEGED_PHONE_STATE, 
                                                    "Requires READ_PRIVILEGED_PHONE_STATE"); 
          IsimRecords isim = mPhone.getIsimRecords(); 
          if (isim != null) {
              return isim.getIsimImpi(); 
          } 
          else { 
                                   return null; 
          } 
    }
        :
} 

Figure 4.1 Android (Version 7) Permission Enforcement Control Point Example.

occurs whenever an application with granted permission performs an action on behalf of a
less privileged application [42]. This kind of threat can be materialised in several ways: (a)
An application may intentionally expose sensitive functionality, and a malicious application
leverages it in order to perform a non-legitimate action. (b) A developer may accidentally
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expose a sensitive functionality that can be exploited by an intrusive application. In any
of the cases mentioned above, permission re-delegation is a threat with a severe impact on
end users’ privacy because the Android framework does not restrict application with fewer
permissions to access more privileged application’s components [32]. This type of attacks is
primarily linked with design errors [49] by the application developers that ignore security
recommendations and best practices suggestions.

4.3.2 Over-Privileged Android Applications

An application is considered over-privileged whenever it declares more than the needed
permissions for its normal functionality [41, 44]. This could increase vulnerabilities as well
as security and privacy risks in those applications [90]. The main causes of over-privileged
applications are development misconfigurations, poor documentation regarding the correla-
tion between Android permissions and API methods, or lack of knowledge on application
developers’ behalf about application security development best practices. Several research
works have tried to detect over-privileged applications with static [24, 26], dynamic [41], or
hybrid analysis [44].

4.4 Android Permission Model Mapping

The correlation between Android permissions and API methods is defined as Permission
Map and is undoubtedly a vital component for Android’s application security assessment
e.g., overprivilleges [24, 26, 94, 41, 44], malware detection [23, 77, 57], etc., since it can
identify inconsistencies, misconfigurations and other flaws. Thus, several researchers embrace
either a static or a dynamic approach in order to correlate Android APIs with the corresponding
permissions, and construct the so-called permission map.

Solutions adopting the static approach perform a full analysis [24, 26, 25] of the Android
OS source code. Though such solutions can achieve high coverage, they don’t have a way to
validate their outcomes; in other words, they suffer of false positives pairs. On top of that,
in many cases [24, 26] they require the identification of Android’s permission enforcement
functions beforehand, otherwise their analysis fails. Or other’s scope of analysis is quite
limited despite their accuracy [29]. Approaches adopting the dynamic analysis [41, 65] are
free of false positives but, depending on their characteristics, may not achieve to cover the
full set of protected API methods. The latter it is also limitation of [65] which in fact cannot
successfully generate permission mapping for APIs methods requiring specific conditions
to be met i.e., in case where an API method requires a previous event to be triggered for its
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execution afterwards. The comparison among the proposed methods regarding the Android
permission mapping generation is listed in Table 4.1.

4.4.1 Dynamic Analysis Based Approaches

Stowaway [41] is the very first work that develops a map between protected APIs and per-
missions in the context of detecting over-privileged applications. Stowaway builds a solution
considering the advantages of Java tests and Randoop [76] in order to compile the appropriate
tests and dynamically invoke the APIs incorporated in a given application. However, Stowaway
needs modifications to the underlying OS in order to monitor the permission enforcement
mechanism and thus identify which permission is required for a specific Android’s API. This
method achieves 85% coverage of the Android API, but it also requires manual testing for
the permission map identification and manual effort to be adaptable to a variety of Android
Open Source Project (AOSP) versions. It is important to stress that Stowaway is no longer
supported and thus the provided permission map is totally outdated4.

Lyvas et al. [65] introduced an open-source orthogonal to the existing approaches frame-
work, named Dypermin, which builds on the advantages of the Android framework features
to generate the permission map. Dypermin relies on: (a) the security exceptions raised by
the Android OS during the execution of an application that lacks the necessary permissions
for invoking protected APIs, (b) the capability to access any protected API i.e., publicly
accessible or hidden, through the Android framework, and (c) the Java reflection technique
for invoking protected APIs at run time.

Using the aforementioned features, Dypermin generates and invokes the appropriate
objects and APIs embedded in an application, and inspects whether a security exception is
raised. In this way, no modifications to the underlying Android OS is required and thus the
proposed methodology can be applied to any unmodified Android device, emulator or Virtual
Machine without needing root access.

As depicted in Figure 4.2 Dypermin’s operation can be abstracted in three phases. Specif-
ically, during the first phase (steps 1-2) Dypermin extracts from the Android framework all
the packages and their classes with their corresponding APIs, including additional related
information such as arguments, modifiers, class members, returning values as well as annota-
tions and comments, and stores them in a collection named SDK dump. Moreover, during
this phase Dypermin processes also API’s documentation; that is the Javadoc comments of
API’s methods, and identifies if a given method is publicly accessible or hidden (based on
“@hide” document annotations). Additionally, it extracts all the permissions per method that

4http://www.android-permissions.org

http://www.android-permissions.org


30 Android Permission Model

are defined in comments or method annotations. In this way, Dypermin is able to compile the
complete list of available methods.

To generate a signature for any available method of the Android framework, Dypermin
utilizes a custom made tool based on the javalang python parser package.

In this point it is crucial to recall that the Android framework contains both publicly
accessible and hidden protected API methods, and also that the hidden API methods are
excluded from the Android development SDK library (android.jar), meaning that they
cannot be directly invoked by an application. To bypass this restriction developers have two
options:

1. either use the Java reflection mechanism that enables an application to load, at runtime,
the corresponding API from the devices framework.jar classes, or

2. replace the original Android development SDK library (android.jar) with a custom
one that includes all Android APIs.
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Figure 4.2 Dypermin’s Design for Permission Map Compilation

The proposed framework, has adopted the Java reflection approach since it is transparent
to the underlying OS and it does not pose a need for modifying the device’s OS.

During the second phase (steps 3-5), Dypermin identifies all the available constructors
for the corresponding APIs, using the SDK dump collection that was generated during the
first phase. Dypermin in order to instantiate an object of a given class first prioritize the
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candidate constructors based on the type of arguments that they contain in the following
way: (a) Firstly, constructors with arguments that belong to Java basic datatypes (int, long,
char etc.) or belong to android.content.Context and/or java.lang.String class. (b)
Secondly, constructors with basic datatypes or arguments from Context and/or from classes
that belongs to java.lang package. (c) Thirdly comes constructors that they dont’ require
arguments. (d) Finally, any constructor that do not contain arguments from abstract classes
or belong to interfaces.

Dypermin in order to instantiate the objects of a given constructor, it first generates the
object instantiation code of the involved arguments in a recursive way, as Listing 4.1 depicts.

If more than one available constructor belongs in the same category Dypermin prioritize
them in those that belongs to the publicly accessible API and then to those from the hidden
API. Using such an approach it is possible to generate automatically valid code for almost
any object. Furthermore it should be stressed that in cases where constructors or methods of
the corresponding classes require access to a valid Context class object, an instance of an
application context is passed. Otherwise, object instantiation either fails or it does not trigger
a security exception, since the context object is null. For method invocation where objects
are required as parameters, Dypermin generates them in the same way as above.

In cases where classes have constructors with abstract class or interface arguments the
aforementioned heuristic cannot be applied for their instantiation. This is leveraged by the
fact that in most cases the required constant values associated with the manager class are
hardcoded in the class code. Dypermin is able to parse the under-analysis class code and
extract those tokens and use them to create a valid object of the given class.

During the third phase,Dypermin employs the toolkit Gradle [18] for building applications
(step 6), that call (through the source code generated in the second phase) the methods that
are necessary i.e., ( onCreate() method - see Figure 4.1) for the invocation of the examined
APIs. These applications do not specify any permissions in their manifest files and handle
security exceptions in a try ... catch statement. For every security exception all relative
data are kept in a log file. The applications are installed and executed (steps 7-8), through
the Android Debug Bridge (adb), the APIs under examination are invoked, and the status is
monitored through the analysis of the log files. Utilizing the fact that the Android framework
raises a security exception if a protected API is invoked without the appropriate permissions
appearing in the application’s manifest file, Dypermin identifies the permission that caused
the security exception and correlates it with the examined API (step 10).

In step 9-10, Dypermin defines the identified missing permissions in the application’s
manifest file and repeats the execution of the applications until no more security exceptions
appear. In this way Dypermin can also identify protected APIs that are correlated with
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multiple permissions. Dypermin revokes the application (step 11) from the device after the
first successful invocation of the examined API.

The above-mentioned method is also suitable for mining multiple permission for a given
API method. The high-level overview of this functionality is as follows. For every method
invocation that triggers a Security Exception the Dypermin Proof-of-concept implemen-
tation would be able to import it in the application’s manifest file and repeat this process until
no new security exceptions occur. This practice is able to discover all needed permissions (if
multiple permissions required) for any method (as long as a security exception occurs).

An example of Dypermin’s auto generated application code is depicted in Listing 4.1. In
particular, in line 7 the method getSystemService(..) was used to retrieve of the system-
level service by its name, with a new instance of the class ConnectivityManager5, able to
handle the management of network connections. From line 11 to 75 Dypermin generates
in a recursive way, the object instantiation code of the involved arguments of the method
registerNetworkAgent(..). The method to be invoked is declared by its name and its
parameter’s signature (lines 80-86). Then all the generated class objects (lines 11-75) are used
to call the method registerNetworkAgent(..) (lines 87-92). If any security exceptions are
raised they will be handled at the catch block (lines 100 to 135), identifying the permissions
that are missing from the application’s manifest file.

1
2 protected void onCreate(Bundle savedInstanceState) {
3 super.onCreate(savedInstanceState );
4 setContentView(R.layout.activity_main );
5 StringBuilder sb = new StringBuilder ();
6 try{
7 ConnectivityManager object_aaed329c =
8 (ConnectivityManager)
9 getSystemService(Context.CONNECTIVITY_SERVICE );
10 try{
11 /* public android.os.Handler Handler(boolean)*/
12 String string_12b34e3b = "android.os.Handler";
13 Class <?> class_12b34e3b =
14 Class.forName(string_12b34e3b );
15 Constructor <?> constructor_12b34e3b =
16 class_12b34e3b.getDeclaredConstructor(Boolean.TYPE);
17 Object object_12b34e3b = constructor_12b34e3b.newInstance(true);
18 /* public android.os.Messenger Messenger(android.os.Handler)*/
19 String string_3f76bc12 = "android.os.Messenger";
20 Class <?> class_3f76bc12 = Class.forName(string_3f76bc12 );

5https://android.googlesource.com/platform/frameworks/base.git/+/refs/tags/android-7.0.0_r34/core/
java/android/net/ConnectivityManager.java

https://android.googlesource.com/platform/frameworks/base.git/+/refs/tags/android-7.0.0_r34/core/java/android/net/ConnectivityManager.java
https://android.googlesource.com/platform/frameworks/base.git/+/refs/tags/android-7.0.0_r34/core/java/android/net/ConnectivityManager.java
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21 Constructor <?> constructor_3f76bc12 =
22 class_3f76bc12.getDeclaredConstructor(Handler.class );
23 Object object_3f76bc12 =
24 constructor_3f76bc12.newInstance (( Handler) object_12b34e3b );
25 /* public java.lang.String String(int[], int , int)*/
26 String string_e65b2e74 = "java.lang.String";
27 Class <?> class_e65b2e74 = Class.forName(string_e65b2e74 );
28 Constructor <?> constructor_e65b2e74 =
29 class_e65b2e74.getDeclaredConstructor(int [].class ,
30 Integer.TYPE , Integer.TYPE);
31 Object object_e65b2e74 =
32 constructor_e65b2e74.newInstance(new int[]{1, 1, 1}, 1, 1);
33 /* public java.lang.String String(int[], int , int)*/
34 String string_440aa7cf = "java.lang.String";
35 Class <?> class_440aa7cf =
36 Class.forName(string_440aa7cf );
37 Constructor <?> constructor_440aa7cf =
38 class_440aa7cf.getDeclaredConstructor(int [].class ,
39 Integer.TYPE , Integer.TYPE);
40 Object object_440aa7cf =
41 constructor_440aa7cf.newInstance(new int[]{1, 1, 1}, 1, 1);
42 /* public android.net.NetworkInfo NetworkInfo(int , int ,
43 java.lang.String , java.lang.String)*/
44 String string_895891de = "android.net.NetworkInfo";
45 Class <?> class_895891de = Class.forName(string_895891de );
46 Constructor <?> constructor_895891de =
47 class_895891de.getDeclaredConstructor(Integer.TYPE ,
48 Integer.TYPE ,
49 String.class , String.class );
50 Object object_895891de =
51 constructor_895891de.newInstance (1, 1,
52 (String) object_e65b2e74 , (String) object_440aa7cf );
53 /* public android.net.LinkProperties LinkProperties ()*/
54 String string_9fc32827 = "android.net.LinkProperties";
55 Class <?> class_9fc32827_0591_4521_b76e_0481d35c7905 =
56 Class.forName(string_9fc32827 );
57 Constructor <?> constructor_9fc32827 =
58 class_9fc32827_0591_4521_b76e_0481d35c7905.
59 getDeclaredConstructor(null);
60 Object object_9fc32827 =
61 constructor_9fc32827.newInstance(new Object []{});
62 /* public android.net.NetworkCapabilities NetworkCapabilities ()*/
63 String string_78b4abb2 = "android.net.NetworkCapabilities";
64 Class <?> class_78b4abb2 = Class.forName(string_78b4abb2 );
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65 Constructor <?> constructor_78b4abb2 =
66 class_78b4abb2.getDeclaredConstructor(null);
67 Object object_78b4abb2 =
68 constructor_78b4abb2.newInstance(new Object []{});
69 /* public android.net.NetworkMisc NetworkMisc ()*/
70 String string_6998d15e = "android.net.NetworkMisc";
71 Class <?> class_6998d15e = Class.forName(string_6998d15e );
72 Constructor <?> constructor_6998d15e =
73 class_6998d15e.getDeclaredConstructor(null);
74 Object object_6998d15e =
75 constructor_6998d15e.newInstance(new Object []{});
76 /* public int android.net.ConnectivityManager
77 registerNetworkAgent(android.os.Messenger ,
78 android.net.NetworkInfo , android.net.LinkProperties ,
79 android.net.NetworkCapabilities , int , android.net.NetworkMisc)*/
80 Method methodregisterNetworkAgent =
81 Class.forName("android.net.ConnectivityManager").
82 getDeclaredMethod("registerNetworkAgent",
83 Messenger.class , NetworkInfo.class ,
84 LinkProperties.class ,
85 NetworkCapabilities.class ,
86 Integer.TYPE , NetworkMisc.class );
87 methodregisterNetworkAgent.invoke(object_aaed329c ,
88 (Messenger) object_3f76bc12 ,
89 (NetworkInfo) object_895891de ,
90 (LinkProperties) object_9fc32827 ,
91 (NetworkCapabilities) object_78b4abb2 ,1,
92 (NetworkMisc) object_6998d15e );
93 System.out.println("android.net.ConnectivityManager public " +
94 "int registerNetworkAgent(android.os.Messenger ," +
95 "android.net.NetworkInfo , android.net.LinkProperties , " +
96 "android.net.NetworkCapabilities ," +
97 "int , android.net.NetworkMisc)" + " No Error");
98 }
99 catch (Exception e) {
100 StringWriter sw = new StringWriter ();
101 PrintWriter pw = new PrintWriter(sw);
102 e.printStackTrace(pw);
103 String error = sw.toString ();
104 String pattern1 = ".permission .[A-Z_]+";
105 String pattern2 = "[cC]arrier [Pp]rivilege";
106 String pattern3 = "java.lang.SecurityException: Requires ([A-Za-z_]+)";
107 Pattern r1 = Pattern.compile(pattern1 );
108 Pattern r2 = Pattern.compile(pattern2 );
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109 Pattern r3 = Pattern.compile(pattern3 );
110 Matcher m1 = r1.matcher(error );
111 Matcher m2 = r2.matcher(error );
112 Matcher m3 = r3.matcher(error );
113 if (m1.find ()) {
114 sb.append("android.net.ConnectivityManager public int " +
115 "registerNetworkAgent(android.os.Messenger ," +
116 "android.net.NetworkInfo , android.net.LinkProperties , " +
117 "android.net.NetworkCapabilities , int ," +
118 "android.net.NetworkMisc) " + m1.group (0));
119 }else if (m2.find ()) {
120 sb.append("android.net.ConnectivityManager public int" +
121 "registerNetworkAgent(android.os.Messenger ," +
122 " android.net.NetworkInfo , " +
123 "android.net.LinkProperties ," +
124 "android.net.NetworkCapabilities , int , android.net.NetworkMisc) " +
125 m2.group (0));
126 System.out.println("Permission -Extracted:" + " " + sb.toString ());
127 }else if (m3.find ()) {
128 sb.append("android.net.ConnectivityManager public int" +
129 " registerNetworkAgent(android.os.Messenger ," +
130 "android.net.NetworkInfo , android.net.LinkProperties , " +
131 "android.net.NetworkCapabilities , " +
132 "int , android.net.NetworkMisc) " + "android.permission." +
133 m3.group (1));
134 }else{
135 e.printStackTrace ();
136 }
137 }
138 }
139 catch (Exception e) {
140 e.printStackTrace ();
141 }
142 }

Listing 4.1 Code Generated by Dypermin For registerNetworkAgent(...) Private API
Method.

4.4.2 Static Analysis Based Approaches

While only Stowaway [41] and Dypermin [65] utilize dynamic analysis, there are few other
methods such as PScout [24], Bartel et al.[26], and Axplorer [25] that use static analysis of
Android OS source code to derive the permission map.
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PScout [24] is the first tool that could perform Java bytecode analysis with the aid of Soot
framework [87] and generate a control flow graph (CFG) based on Class Hierarchy Analysis
(CHA) [33] of the Android framework, including Binder Inter Process Communication (IPC)
and Remote Procedure Calls (RPCs). For its initialization, PScout requires the identification of
all possible permission enforcement points of the Android framework in order to approximate
whether or not a particular API invocation triggers a permission check using a backward
reachability traversal approach over the CFG. Though someone may consider PScout’s
permission map partially outdated, since the latest list available online is for Android version
4.1.16, it is worth noting that in several cases it is an essential part of other research works
that focus on privacy leaks identification, and malware detection [59, 99]. PScout is based on
several assumptions for mapping between protected API methods and permissions that may
produces false positives.

Similarly, Bartel et al. [26] utilize different static analysis methods to extract the permission
map. Specifically, they have generated a CFG based on CHA for Android version 4.0.1 at
bytecode level, in several variations (CHA-Naive, CHA-Android and Spark-Android) with the
aid of Soot [87] and Spark [56]. Firstly, they performed a string analysis tomine the permission
names from the CFG. Then, they carried out a service redirection to pair the service caller to
services. Finally, with service identity inversion they removed the unnecessary code from
their initial CFG. Although in their research they provide all the necessary evidence that their
analysis produces reliable results, they have neither published the code of their method, nor
they have provided any experimental verification. Finally, the generated permission map is
not any longer available7. Additionally, the proposed framework is unable to detect dynamic
code loading.

Axplorer [25] relies on the static analysis of the Android framework, as the aforementioned
methods do, aiming, however, at a much higher precision. In contrast to other solutions,
Axplorer conducts an in-depth static analysis of the Android framework by constructing inter
procedural CFGs. In order to improve precision, instead of analyzing the CHA, Axplorer
exploits the advantages of object sensitive pointer resolution [73]. It is important to stress
that only the public API methods are included in the analysis while hidden API methods are
excluded. Furthermore, Axplorer results highlight that the PScout’s [24] permission map
contains inconsistencies; mainly false positive identifications.

Last but by no means least, another work that focus on Android permission mapping is
presented in [29]. A solution (named DPSpec) in which the permission mapping is generated
based on XML annotations and Javadoc comments of Android SDK is introduced. Although,

6http://pscout.csl.toronto.edu
7https://www.abartel.net/permissionmap/

http://pscout.csl.toronto.edu
https://www.abartel.net/permissionmap/
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authors claim higher accuracy compared to Axplorer they do not provide neither the source
code of their tool nor the permission map. The proposed tool is limited to construct permission
maps from Android’s SDK source code annotations, Javadoc comments and XML annotations
only.

Solution Characteristics Android Version Availability Adaptability

Stowaway [41] Dynamic analysis framework based
on reflection (method invocation)
and modifications of the underlying
OS (permission enforcement points
monitoring). It requires manual ef-
fort to be adaptable to a variety of
AOSP versions.

2.2 Not available source code nor
permission maps.

No

PScout [24] Static analysis framework based on
CFGs and CHA with several as-
sumptions formapping between pro-
tected API methods and permis-
sions.

2.2.3-5.1.1 Available source code and per-
mission maps.

Unknown

Bartel et al. [26] Static analysis framework based on
CFGs andCHA in several variations
unable to detect dynamic code load-
ing.

4.0.1 Not available source code nor
permission maps.

Unknown

Axplorer [25] Static analysis framework based on
inter procedural CFGs and sensitive
pointer resolution designed to anal-
yse only the public API methods.

4.1.1 - 6.0 Not available source code but
available permission maps.

Unknown

DPSpec [29] Static analysis tool able to parse and
construct permissionmaps fromAn-
droid’s SDK source code annota-
tions, Javadoc comments and XML
annotations.

Any Not available source code nor
permission maps.

Yes

Dypermin [65] Dynamic analysis framework based
on Android SDK source object cor-
relation map, reflection (method in-
vocation) and permission based Se-
curity Exception extraction. De-
pended on valid object generation.

Any Available source code but not
available permission maps.

Yes

Table 4.1 Method Comparison for Android Permission Mapping Generation

4.4.3 Experimental Evaluation

To assess Dypermin’s accuracy, correctness and performance, it has been deployed on two
different Android emulators configured with versions 4.1.1 and 6.0 correspondingly, run
on an Intel Core i5 1,3 GHz CPU with 8 GB RAM. The selection of the above Android
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versions was based on the fact that they are considered as the major Android milestones, but
also because other related methods, such as Stowaway [41], PScout [24], Axplorer [25] and
Bartel et al. [26], were tested on the same versions. Furthermore, for the evaluation four
managers i.e., TelephonyManager, WiFiManager, ConnectivityManager, and SmsMan-
ager and two other general purpose classes i.e., SystemVibrator and SipAudio, have been
selected in order to demonstrate the completeness of the approach.

Through the Dypermin’s code generation module, described in Subsection 4.4.1, and
without loss of generality, the total number of classes, from the Android source code related
packages8, that the Dypermin tool could instantiate were counted with static analysis (based
on the recursive calculation of class constructors and methods arguments). Specifically,
for Android version 6.0, Dypermin would be able to generate code for 28170 classes. The
total number of methods from classes that Dypermin was able to successfully calculate their
instantiation in the previews step (static analysis and recursive computation based on their
arguments also available in the SDK dump) were 247897 out of 276067 methods. The reason
that Dypermin could not invoke 10.3% of the methods, is that they belong in abstract classes
or that they contain arguments that belong to abstract classes or interfaces or their constructors
cannot be invoked as well. The efficiency of Dypermin has been based on the static analysis
since the compilation time of any generated application is relatively high, a fact already
depicted in Figure 4.4 and Figure 4.5.

Since today a complete list of permissions related to protected APImethods is not available,
the evaluation of the accuracy of the proposed solution, as well as its comparison to other
methods, has been solely based on the heuristic formula (1) that provides the full coverage of
Android’s Framework permissions. That is the set of protected API methods that according
to Dypermin, other methods, the SDK source and other public documents, are requiring at
least one permission.

|Dypermin[SDKSource[PublicDocumentation[Other|(1)

Note that none of the existing wokrs tries to accomplish such an holistic comparison.
Results highlight that Dypermin can infer with high accuracy the map between protected API
methods and permissions, as it overwhelms both public and SDK documentation (Figure 4.3).
Specifically, according to formula (1) for the Android version 4.1.1 the identification rate
for permissions - protected API methods, reaches 91.6%, for the TelephonyManager class,
94.5% for the WiFiManager class, 94.2% for the ConectivityManager class, 72.7% for the
SmsManager class, 100% for the SystemVibrator Class and 12.5% for the SipAudioCal
class.

8com.android.* , android.*
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Android 6.0
Class Name Dypermin SDK Source Documentation

TelephonyManager 91.6% 66.6% 37.5%

WiFiManager 94.5% 0% 0.02%

ConectivityManager 94.2% 14.2% 22.8%

SmsManager 72.7% 27.2% 27.2%

SystemVibrator 100% 0% 0%

SipAudioCall 12.5% 12.5% 12.5%

Table 4.2 Protected API methods coverage comparison between Dypermin and Android’s
available sources for Android version 4.1.1.

The corresponding results for the Android version 6.0 are 92.7%, 100%, 79.2%, 57.1%
100% and 33.3% respectively. It can be clearly noticed from Table 4.2 and Table 4.3 that in
all cases public and SDK source documentation report a smaller number of protected API
methods, as compared to Dypermin. In other words the currently available documentation
is missing important information about the permissions that protected API methods are
requiring for their execution, something that, as already explained, Dypermin can accurately
identify eliminating any false positive results.

Moreover, Dypermin in this point it should be mentioned that is able to mine also system
permissions, which are those used only by system applications. For instance, consider the
case of a non-public API of the TelephonyManager class such as getCompleteVoice-
MailNumber(int) for which Dypermin identifies as a required permission for its execution
the “CALL_PRIVILEGED”. Note that this permission is only available to system application,
according to Android public documentation9 and as a result there is not any other way to
retrieve this pair of API method - permission beforehand.

Regarding Dypermin’s performance evaluation in terms of the time consumed for the
generation of the permission map (object generation, application building, installation which
is incorporated in the building time and execution), Figures 4.4 and 4.5 illustrate a snapshot

9https://developer.android.com/reference/android/Manifest.permission.html#CALL_PRIVILEGE

https://developer.android.com/reference/android/Manifest.permission.html#CALL_PRIVILEGE
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Figure 4.3 Total number of methods with at least one permission as identified by Dypermin
in comparison with Android software development kit source code and its online counterpart
documentation.

of the required processing time for each phase per different method10. Results are provided
for the different Android versions and for all the classes that were tested. Briefly, outcomes
demonstrate that Dypermin requires on average less than 17 seconds for code generation,
building and testing for each method on both Android 4.1.1 and 6.0. For instance, the worst
case scenario was for TelephonyManager class in which the code generation, building and
testing consume up to 0.06, 13.4, and 3.8 seconds respectively. For the remaining classes
that were tested the average processing time is slightly lower. Without loss of generality it
can be noticed that the most time consuming phase is that of application’s built, while the
execution time varies depending on the method. Nevertheless the latter processed time can
be considered negligible as it reaches up to 0.06 sec.

10Recall that for every method a new application is generated, installed and executed on an emulator.
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Android 6.0
Class Name Dypermin SDK Source Documentation

TelephonyManager 92.7% 61.1% 21.2%

WiFiManager 100% 0.01% 0.01%

ConectivityManager 79.2% 75.4% 32%

SmsManager 57.1% 21.4% 21.4%

SystemVibrator 100% 0% 0%

SipAudioCall 33.3% 33.3% 33.3%

Table 4.3 Protected API methods coverage comparison between Dypermin and Android’s
available sources for Android version 6.0.

Overall, Dypermin needs less than 17 seconds for generating the permission map for a
single method. Eventhough such an overhead per method it can be considered insignificant,
the generation of the permission map for the entire Android framework will require a very
long processing. To eliminate this significant processing overhead the testing procedure can
be parallelized, on different emulators.
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Figure 4.4 A snapshot of Dypermin’s time performance per method on Android Version 4.1.1

Figure 4.5 A snapshot of Dypermin’s time performance per method on Android Version 6.0



Chapter 5

Android Task Management

The Android framework offers the option to activities from different applications to coexist
under the same task. This, unlike other OSes, refers to a multitasking mechanism for providing
certain functionality i.e., to maintain the state of the activity without launching a new instance
or clearing anything on top of it. Though such a mechanism, as already mentioned, offers
several advantages i.e., seamless transfer between activities and applications, a malicious entity
may try to manipulate it in order to launch hijacking attacks [81, 89, 79, 80, 55, 93, 61, 92].
The comparison of the methods, proposed in the literature, for detecting and preventing the
Android task and activity hijacking attacks, can be found in Table 5.1.

5.1 Threats of Android Task Management

The research by Ren et al. [79] was the first that systematically study and address the ac-
tivity hijacking vulnerabilities in Android OS. Attacks against Android’s task handling
mechanism can be accomplished by manipulating the attributes of <activity>1 elements,
like taskAffinity, launchMode, etc., defined in the target application’s manifest and/or
intent flags. Activity’s attributes, among others, define in which task the activity belongs.
By default all app’s activities belong to the same task. Whenever the taskAffinity at-
tribute points to a different package name from the one to which it belongs, the initiated
activity is assigned to a different task affinity. Note that in cases where the taskAffinity
attribute is combined with the allowTaskReparenting, the activity is pushed to the targeted
application’s task stack; that is defined in the taskAffinity attribute.

It is evident that a malicious application can interfere with other (benign) applications
silently, neither being recognized by end user nor by the underlying OS, by simply ex-

1https://developer.android.com/guide/topics/manifest/activity-element

https://developer.android.com/guide/topics/manifest/activity-element
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Solution
Vulnerability
Discovery Protection

Implementation
Layer Prerequisites Availability

Ren et al. [81] Yes Exploitation Application - No

Wang et al. [89] Yes Exploitation Application - No

Ren et al. [79] Yes Threat Identification - - No

Xiao et al. [93] Yes Detection Application - No

Ren et al. [80] No Prevention Runtime Device to be rooted No

Lee et al. [55] No Detection Application - Yes

Liu et al. [61] Yes Detection Application Bouncer Yes

Wu et al. [92] No Prevention Operating System OS modification No

Hwang et al. [48] No Prevention Operating System OS modification No

TaskAuth [66] No Prevention Operating System OS modification Yes

Anactijax [66] Yes Detection / Exploitation Application - Yes

Table 5.1 Task and Activity Hijacking Related Works Comparison.

tracting the required information from the targeted application’s manifest. In particular, a
malicious application can inject an activity into another application’s task stack by point-
ing its taskAffinity attribute to the target (legitimate) application’s package name and
the launchMode attribute being equals to singleTask, or equivalently the malicious activity
is initiated with the intent flag FLAG_ACTIVITY_NEW_TASK set. The same result, against a
targeted app, can also occur with various combinations of flags and attributes i.e., by us-
ing allowTaskReparenting attribute that the malicious application ‘manipulates’ in order
to accomplish hijacking attacks. Similarly, benign applications that expose their activities to
other applications are vulnerable against the same type of attacks. Figure 5.1 shows how a
malicious application can accomplish a hijacking attack against any app on the left side. On
the right side, a slightly different case is illustrated where an application explicitly defines
a taskAffinity for an activity that can be manipulated by malicious applications.
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Figure 5.1 Hijacking Execution Flows.

5.2 Android Task and Activity Hijacking Attacks

Various researchers have attempted to address task [55, 48, 93, 61, 92] and activ-
ity [81, 89, 79, 80] hijacking vulnerabilities, through various different approaches. Currently,
some of them have become obsolete [81, 89] due to Android framework’s revisions, others
require device ‘rooting’ [80] to enforce controls, others demand end users’ intervention [93]
assuming that their capable of recognizing malicious activities, others suffers from well-
known limitations of static analysis in Android applications (for instance: disregard of implicit
intents invocations) [55, 48]. Orthogonal solutions, such as [61], propose the deployment of
additional static and dynamic analysis controls at vetting process, whereas authors in [92]
introduce a system level mechanism, by modifying the underlying OS, in order to inform end
users for possible activity hijacking attacks. In [48] a reformation of the current Android
application development framework is required for introducing a signature based mechanism
to protect Android applications against task hijacking attacks.

5.2.1 Exploitation and Detection Mechanisms

Ren et al. [81] demonstrate a phishing attack against Android activities that require end
user’s input such as username and password. To do so, the proposed attack assumes that
a malicious service is constantly running in the background in order to remain ‘hidden’.
Whenever the initialization of the target process is detected a malicious fake activity appears,
impersonating the original one, by deceiving the end user and steal her/his credentials. In
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the same direction, Wang et al. [89] develop an application named ActivityHijacker that
mimic legitimate application’s activities and perform phishing attacks. Authors demonstrate
the applicability of their approach by performing activity phishing attacks against twenty
two (22) banking applications, and introduce a static analysis tool, named DroidChain, that
can identify malicious application’s behaviors based on legitimate application’s invocations
sequences. However, security flaws identified both by Ren et al. [81] and Wang et al. [89] are
no longer applicable due to system modifications at Android’s latest versions.

In another work, Ren et al. [79] was the first that systematically study and address the
activity hijacking vulnerabilities in Android OS. Their research reveals different types of
attacks against activities such as (a) phishing, (b) denial of service, (c) end user monitoring
and (d) spoofing. Authors analyze 6.8 million applications to highlight the importance of the
identified vulnerabilities in the Android framework and demonstrate that various applications
attributes might be manipulated for achieving activity hijacking attacks, and introduce a
theoretical mechanism able to circumvent activity hijacking in the Android framework, in
which it is recommended that the taskAffinity attribute should be scrutinised by Google
Bouncer [74].

Lee et al. [55] in their work demonstrate how a malicious activity can be injected in a
legitimate (target) application’s task stack. To do so, a malicious application should have
define the target application’s package name to the taskAffinity attribute in its mani-
fest file, while the corresponding malicious activity is “initiated” as a new task with the
intent flag FLAG_ACTIVITY_NEW_TASK set. Authors considering the different combinations
of launchMode and task related intent flags demonstrate that such an attack can be performed
in more than two hundred ways, and deploy a static analysis tool named AIDetector2 to detect
vulnerable applications by correlating information extracted from application’s manifest and
its disassembled code. The AIDetector reports possible injection cases whenever an applica-
tion declares activities that contain different taskAffinity attribute from their (original)
package name, combined with attributes such as the lunchMode. However, AIDetector does
not consider implicit intents or flows involving built-in method calls or static fields, and might
report false positives combinations as it does not trigger the execution of the activity. Authors
extend their approach in [48] where they introduce a signature-based defense mechanism
that requires the modification of: (a) Android application’s structure (by adding new tags
into activity attributes), (b) Android framework, and Google’s vetting process to enforce
their scheme. More precisely, authors introduce a signature-based activity access control
mechanism based on policies that define each application’s interactions with other services
and applications. The policies are defined by application developers during the development

2https://github.com/SunghoLee/AIDetector

https://github.com/SunghoLee/AIDetector
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phase. So, whenever a developer needs to modify an application interaction policy, all the
relevant applications should be recompiled and republished to the Google Play store.

Xiao et al. [93] study activity injection attacks by combining, for both the malicious and
benign activities, (a) the allowTaskReparenting, (b) the taskAffinity attributes (c) the
different launch Intent flags and (d) the sequences of launching events. They developed an
activity hijacking vulnerability tool that follows a similar approach withAnactijax. It combines
activity attributes and intent flags to generate pairs of malicious and benign applications
that are executed under various scenarios to identify possible task interference combinations.
In this way, the authors demonstrate four task interference proof-of-concept attacks: (a) UI
Phishing, (b) Activity-in-the-middle, (c) Gallery Stealing and (d) Screen Shot Capturing. In
order to minimise the attack surface and protect end users against such a threat, the authors
introduce a task interference detection application named Task Interference Checking (TICK),
to detect potential task interferences among applications. Although, TICK has no prevention
capabilities. In fact, TICK scans either an application before installation or periodically a set
of installed application to report possible activity hijacking vulnerabilities, without allowing
any action to be taken against malicious activities.

Liu et al. [61] in their study propose a tool, named TDroid3, applicable to apps’ distribution
market in order to enhance the vetting [74] process. TDroid combines static and dynamic
analysis to detect malicious applications that attempt to replace legitimate application’s top
activity. During the static analysis phase, TDroid transforms the application into runnable
slices to check if they contain potentially activity related attacks. In the second phase of
dynamic analysis, TDroid executes these slices on an Android phone or emulator and extracts
possible malicious activities. However, such an approach does not consider: (a) the inter-
component communication (ICC) and reflection APIs, (b) the data dependencies through
persistent storage that might result in partial hijacking attacks identification.

Lyvas et al. [66] developed a tool, named Anactijax (Android Activity Hijacking Exam-
iner), capable of accomplishing activity hijacking attacks against other (target) applications,
demonstrating through experiments how a malicious application functions in such a scenarios.
Anactijax provides a framework for automatically generating a malicious application to ac-
complish activity hijacking attacks. This is achieved by retrofiring the malicious application
generator with specific flags and attributes i.e., such info can be extracted from legitimate
(target) application’s manifest..

On one hand, Anactijax, similar to Xiao et al. [93], automatically calculates all the
combinations of intent flags and <activity> attributes extracted from the Android Software
Development Kit (SDK), aiming at generating malicious activities that can be injected against

3https://tdroidtool.github.io

https://tdroidtool.github.io
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any benign application, employing a brute force approach. On the other hand, Anactijax has
the capacity to generate activity injection use cases against real-world Android applications;
a functionality that, no other current tool supports. As Figure 5.2 depicts, Anactijax for
each combination of intent flag and <activity> attribute, Anactijax deploys a malicious
application against a benign one (target), and deduce whether the malicious activity has been
successfully pushed in the benign application’s task by monitoring system’s and application’s
logs.

To demonstrate activity hijacking attacks an environment where a malicious and a benign
application co-exist in an Android device, has been assumed. The malicious application runs
in the background and launches attacks against any given (target) application considering
the default settings i.e., the target application exports the main activity. In order to assess
its accuracy and correctness, Anactijax has been deployed on a standard Android emulator
version 9 with 2 GB of RAM and 1 Central Processing Unit (CPU), running on a machine
with an Intel Core i5 1,3 GHz CPU and 8 GB RAM.

For testing purposes a customized benign application was developed, that contains a
main activity which is by default exported and, alternatively, that it declares an explicit
taskAffinity for an activity that Anactijax targets. In this context, Anactijax generates all
the possible combinations considering different activity attributes with related intent flags. For
instance, considering the use of 2 or 3 activity attributes with related intent flags, Anactijax
creates 3744 uses cases to be executed against the target app, and reports 80 successful activity
injection attacks. Table 5.2 provides and overview of the analysis of the tested use cases.
Results suggest that successful hijacking attacks combine either activity’s taskAffinity
and launchMode attributes, or rely on FLAG_ACTIVITY_NEW_TASK intent flag.

The ability of Anactijax to produce malicious applications which can launch activity
injection attacks against real-world applications, relies on its capacity to extract the appropriate
features from the targeted APK as Figure 5.3 depicts. For any given real-world application,
Anactijax extracts its manifest file, exports its package name, the main activity’s name, and
any other activity name with the taskAffinity value set. Note that the information in the
manifest file is in clear text as it is used by Android OS to execute properly the application.
The overall approach has been already described above.

In particular to demonstrate that a malicious application can take the control of a benign
(target) one: case (a) (left side of Figure 5.1) during the initialization of the target application,
Anactijax generates a hijacking application that contains a manifest with a taskAffinity
attribute value equal to the target application’s package name and adds the necessary Java code
for the initialization of the malicious activity with the intent flag FLAG_ACTIVITY_NEW_-
TASK set in the malicious activity’s source code, and afterwards it generates the malicious
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APK and case (b) (right side of Figure 5.1) while the user navigates to benign application
activities Anactijax injects a malicious activity into the benign application in such a way
that the malicious task is placed in the stack of the benign application and will be triggered
when the user navigates back. To do so Anactijax searches if the given benign application
code activities define explicitly the taskAffinity attribute. If this is the case it extracts the
taskAffinity value and generates a hijacking application that contains a malicious activity
with the taskAffinity attribute value equal to the victim activity’s one (in the malicious
applications Manifest file). Then it adds the necessary Java code for the initialization of
the malicious activity with the intent flag FLAG_ACTIVITY_NEW_TASK set in the malicious
activity’s source code in order to be capable to be injected into target application’s stack.
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5.2.2 Prevention Mechanisms

Wu et al. [92] provided a detection service that alerts end users for possible password phishing
attempts via activity hijacking attacks. The proposed system-level mechanism is limited only
to inform users via pop-up windows for potential activity hijacking attacks whenever password
fields are involved.

In an extended approach of Xiao et al. [55] a signature-based defense mechanism named
SAAC was proposed in [48] that requires the modification of: (a) Android application’s
structure (by adding new tags into activity attributes), (b) Android framework, and Google’s
vetting process to enforce their scheme. More precisely, authors introduce a signature-based
activity access control mechanism based on policies that define each application’s interactions
with other services and applications. The policies are defined by application developers
during the development phase. So, whenever a developer needs to modify an application
interaction policy, all the relevant applications should be recompiled and republished to the
Google Play store.

Ren et al. [80] designed an application able to prevent Graphic User Interface (GUI) attacks
against Android namedWindowGuard, a solution that requires the device to be ‘rooted’ as it is
deployed upon Xposed framework [34]. WindowGuard enforces an android window integrity
mechanism (AWI) that provides the following enhancements into Android GUI system: (a)
an activity session integrity, (b) access control for the free windows, and (c) safeguarding
of focused activity transition. The effectiveness of WindowGuard has been evaluated over
12,060 applications, which 1% trigger warning for possible activity manipulation.

In order to prevent task and activities hijacking attacks and, at the same time, minimize
Android’s attack surface, it is proposed [66] to enhance the Android’s task management
mechanism by introducing a system level service, namely the TaskAuth, that authenticates the
activity’s source whenever it invokes other applications. In order for the proposed approach
to be transparent, it leverages on application’s signature verification scheme, used during
application’s initialization, by extending the ActivityManager system service. In this
way, TaskAuth, does not require any intervention or application modification by end users or
developers respectively.

More specifically, TaskAuth, verifies whether or not the identities of source and tar-
get activities match, as depicted in Figure 5.4. To do so, TaskAuth whenever an activity
(source) invokes another one (target), TaskAuth scrutinizes source activity’s taskAffinity
and processName fields of aInfo object4 and checks if the source activity declares another
application’s package name in the taskAffinity field. If this is not the case, TaskAuth does
not intervene and the execution is processed normally, otherwise it retrieves a PackageInfo

4belongs to the ActivityInfo class.
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object for both activities, by executing the getPackageInfo(...), that among others con-
tains the application’s singing certificates and compares them to determine whether source
and target activities packages belong to the same developer.

At this point it should be noted that TaskAuth considers legitimate the declaration of
the taskAffinity pointing in another application’s package name or in another application’s
package name, if both belong to the same developer, or the source activity belongs to a trusted
organisation i.e., Google. Otherwise, TaskAuth classifies it as a task hijacking attempt and
‘blocks’ it by setting dynamically the taskAffinity of the malicious activity to the default
value that is its package name. In this way, taskAffinity does not affect the application’s
execution at all. Of course, other policies could be retrofitted to the TaskAuth for covering
additional needs.

5.2.3 Empirical Analysis

For evaluating [66] the capacity of Anactijax to generate malicious applications that can
attack real-world applications as well as the ability of TaskAuth to prevent these attacks,
300 applications, were randomly downloaded after random sampling from a pull of 5.350
unique application titles crawled from Google Play5 covering the majority of all the provided
application categories. From this initial application set, 52 were supporting only ARM
architectures and another 34 applications could not be executed on the emulated environment
and thus were excluded. Finally for 14 applications Anactijax was unable to extract features.

5https://play.google.com/store

https://play.google.com/store
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For the remaining 200 applications (three applications on average from 43 different
application categories such as games, social, finance, business etc.), we used an automated
procedure in order to evaluate the functionality of Anactijax and the effectiveness of TaskAuth.
More precisely, Anactijax was used to generate hijacking applications that target a specific
real-world application. Then, with the aid of a standard Android emulator, we automatically
executed the benign and themalicious applications, and bymonitoring the results of dumpsys6

we were able to determine if the malicious application managed to inject the malicious activity
into a benign application task or if the benign application task was injected into the malicious
process.

For the 200 applications, Anactijax was able to generate 202 applications (requiring on
average, 7.2 s for each one) from which 200 were targeting the given application’s main
activity with taskAffinity pointing to the targeted application’s package name (benign
task injection into the malicious process - case - a) and 2 malicious applications targeting
benign activities with declared taskAffinity (malicious activity injection into the benign
process - case - b).

After executing each malicious application against each targeted benign application, we
identified two cases where the activity injection failed because the developers of the benign
applications had defined their main activities with the flag launchMode set to a singleTask
and their back button is used to exit directly the applications rather than navigating among
activities. For the rest 198 cases (99%), the malicious applications were able to accomplish
successfully activity injection attacks.

At this point it is worth mentioning that 28 targeted applications had declared their main
activity with the flag launchMode set to singleTop something that made them vulnerable
to malicious activity injection into the benign process (case - b) rather than being vulnerable
to benign task injection into the malicious process (case - a) which was the case for the
remaining 170 applications.Finally, for 10 applications out of 28, the malicious activity was
injected on top of a splash screen main activity that instantly initiated other activities, a fact
that caused the injected activity to remain invisible to the user.

TaskAuth was deployed on a modified Android framework version 9 on the standard
Android emulator with 2 GB of RAM and 1 CPU on a machine featuring Intel Core i5 1,3
GHz CPU and 8 GB RAM, and we have evaluated its effectiveness in terms of: (a) efficacy to
detect hijacking attacks and (b) overhead introduced i.e., . how TaskAuth influences application
performance.

6The adb shell dumpsys activity command shows the current state of running activities into a
system along with their task records.
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Figure 5.5 Overhead Introduced by TaskAuth to the (Default Exported) Main Activity
With Default (Application Package Name) taskAffinity.

From evaluation standpoint, TaskAuth was tested against Anactijax were Anactijax has not
reported any successful injection attack (from the initial 80 injection attacks) when TaskAuth
is enforced. Table 5.3 overviews the results of the tests, where the malicious application
(Mprocess) was unable to inject a malicious activity (Mactivity) into the benign task (Btask or
Bprocess), thus allowing the benign process (Bprocess) to proceed with its normal execution in
all identified activity injection cases.

As far as the TaskAuth processing overhead is concerned, results have indicated that it
has caused a negligible increase of the execution time i.e., the maximum observed execution
time was as little as 7 ms, with a minimum of 2.6 ms, while it requires on average 4.3 ms to
detect whether an activity is malicious or not as Figure 5.5 and 5.6 show.

In the same direction, to assess TaskAuth efficacy to protect also real-world applications,
the Anactijaxmalicious generated applications were reused and repeated the hijacking attacks
while the TaskAuth was in place. The results demonstrate that TaskAuth managed to prevent
all the hijacking attack attempts and also that its performance, in terms of the overhead
introduced, is similar to the demo use case (see previous paragraphs). In particular, the
overhead introduced is on average 4.8 ms, with a minimum of 2.6 ms and a maximum of 6.9
ms as Figure 5.7 illustrates.
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Figure 5.6 Overhead Introduced by TaskAuth for Vulnerable Applications
With Activities That Declare Explicitly taskAffinity Other Than the Default (Application

Package Name).

Figure 5.7 Overhead Introduced by TaskAuth For Each Real-World Application Used in the
Evaluation (Total Two Hundred Applications).
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# Malicious Application Benign Application Impact

Activity Attributes Intent Flags Activity Attributes Intent Flags

1 launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim"

- - - Mactivity 2 Btask |
Btask 2 Mprocess

2 launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
allowTaskReparenting="true"

- - - Mactivity 2 Btask |
Btask 2 Mprocess

3 taskAffinity=
"gr.unipi.ds.victim

FLAG_ACTIVITY_NEW_TASK - - Mactivity 2 Btask |
Btask 2 Mprocess

4 allowTaskReparenting="true"
taskAffinity=
"gr.unipi.ds.victim

FLAG_ACTIVITY_NEW_TASK - - Mactivity 2 Btask |
Btask 2 Mprocess

5 allowTaskReparenting="true"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK Mactivity 2 Btask |
Btask 2 Bprocess

6 taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK Mactivity 2 Btask |
Btask 2 Bprocess

7 launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

- taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK Mactivity 2 Btask |
Btask 2 Bprocess

8 launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"
allowTaskReparenting="true"

- taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK Mactivity 2 Btask |
Btask 2 Bprocess

9 allowTaskReparenting="true"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

- Mactivity 2 Btask |
Btask 2 Bprocess

10 taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

- Mactivity 2 Btask |
Btask 2 Bprocess

11 launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

- launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

- Mactivity 2 Btask |
Btask 2 Bprocess

12 launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"
allowTaskReparenting="true"

- launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

- Mactivity 2 Btask |
Btask 2 Bprocess

Table 5.2 AnactijaxHas Successfully Identified Hijacking Combinations of Activity Attributes
and Intent Flags.
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# Malicious Application Benign Application Impact

Activity Attributes Intent Flags Activity Attributes Intent Flags

1 launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim"

- - - Mactivity 2 Mtask 2 Mprocess ,
Bactivity 2 Btask 2 Bprocess

2 launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
allowTaskReparenting="true"

- - - Mactivity 2 Mtask 2 Mprocess ,
Bactivity 2 Btask 2 Bprocess

3 taskAffinity=
"gr.unipi.ds.victim

FLAG_ACTIVITY_NEW_TASK - - Mactivity 2 Mtask 2 Mprocess ,
Bactivity 2 Btask 2 Bprocess

4 allowTaskReparenting="true"
taskAffinity=
"gr.unipi.ds.victim

FLAG_ACTIVITY_NEW_TASK - - Mactivity 2 Mtask 2 Mprocess ,
Bactivity 2 Btask 2 Bprocess

5 allowTaskReparenting="true"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK Mactivity 2 Mtask 2 Mprocess ,
Bactivity 2 Btask 2 Bprocess

6 taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK Mactivity 2 Mtask 2 Mprocess ,
Bactivity 2 Btask 2 Bprocess

7 launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

- taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK Mactivity 2 Mtask 2 Mprocess ,
Bactivity 2 Btask 2 Bprocess

8 launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"
allowTaskReparenting="true"

- taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK Mactivity 2 Mtask 2 Mprocess ,
Bactivity 2 Btask 2 Bprocess

9 allowTaskReparenting="true"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

- Mactivity 2 Mtask 2 Mprocess ,
Bactivity 2 Btask 2 Bprocess

10 taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

FLAG_ACTIVITY_NEW_TASK launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

- Mactivity 2 Mtask 2 Mprocess ,
Bactivity 2 Btask 2 Bprocess

11 launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

- launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

- Mactivity 2 Mtask 2 Mprocess ,
Bactivity 2 Btask 2 Bprocess

12 launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"
allowTaskReparenting="true"

- launchMode="singleTask"
taskAffinity=
"gr.unipi.ds.victim
.secondactivity"

- Mactivity 2 Mtask 2 Mprocess ,
Bactivity 2 Btask 2 Bprocess

Table 5.3 Execution Prevention of the Identified Activity Hijacking Use Cases of Anactijax
after the Enforcement of TaskAuth.



Chapter 6

Android Intent Handling

The Android framework offers to application components (from the same or different process)
the option of interaction (send/receive or exchange data) via intents which are at a higher-level
of abstraction executed over the Binder (as already mentioned in Subsection 3.1.3). Figure 6.1
depicts the control flow of an activity to activity communication between different applications
through implicit intents. In detail, in the case where an application requests from some other
component to take an action (i.e., open a document, through some available user application)
it employs an implicit intent call, as it is not aware which application can handle such a
request. Afterwards, the execution flow is transferred to the activity task manager service
(ATMS) which is responsible for delivering it to the application that is able to handle the
implicit intent request; such applications are those that contain the corresponding intent-filter,
and normally the user is the one selecting it. Finally, ATMS delivers the implicit intent to the
application (selected by the user) through the Android framework.

6.1 Threats of Android Inter-Process Communication

Inter-Process Communication (IPC) or Inter-Component Communication (ICC) in Android
platform is performed over Intent message objects. Activity’s implicit intents are used
whenever a new activity is initialized with a ‘description’ of an action (A.2) rather than
defining explicitly (A.4) a component to handle it, while simultaneously might be used to
exchange data between different processes. This exchange mechanism might arises security
and privacy implications since not only the source activity is unaware of the component that
will manage it, but also the destination activity does not know the origin of the received intent
driving either to intent redirection ormalicious activity launch and intent hijacking attacks. On
one side, the former category concerns cases where legitimate applications’ publicly available
exported components (i.e., activities) are exploited by malicious one to send malevolent data
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Figure 6.1 Android (Version 11) Activity Handling.

to other legitimate components and services, which might perform sensitive operations upon
them, considering the data as trusted due to the fact that a well known source sent them. On
the other side, the latest threat is related to malicious applications that define intent filters to
intercept a legitimate application’s transmitted data and gain unauthorized access to otherwise
private data.

Currently, various research works attempt to address these security flaws using different
approaches ranging from (a) static analysis detection tools [85, 37] to (b) system-level enhance-
ments to prevent such attacks [88, 95] and minimize the OS’s attack surface. Though their
effectiveness is unquestionable, some of them suffer [85, 37] from the common limitations
of static analysis approaches, while others that require the modification of the underlying
OS, cannot be re-configured [88] dynamically, or expose intents beyond the interaction
processes [95].
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The comparison among the proposed methods regarding the Android intent redirection
or malicious activity launch and intent hijacking, detection, and prevention mechanisms is
listed in Table 6.1

Solution Protection Type Limitations Layer Availability

IPC Encryption Intent
Threats [88, 31]

Wang et al. [88] No Yes Static Policies Application
Development

Yes

Framework (Intents)

Yagemann and Du [95] No Yes Not purely build-in solu-
tion

Framework (Intents) Yes

Kaladharan et al. [50] Yes No Only service to
application transactions

Kernel (Binder) No

Not platform generated
keys

IntentAuth [68] Yes Yes Limited to implicit In-
tents (application to ap-
plication encryption)

Framework (Intents)
Yes

Kernel (SELinux)

Table 6.1 Android Inter-Process Related Threat Prevention Mechanisms Comparison.

6.1.1 Malicious Activity Launch and Intent Hijacking

According to Chin et al. [31] a benign application that exports components (i.e., activities) to
other applications may be manipulated by a malicious application that performs malicious
activity launch attacks. In this case, a malicious application may corrupt the targeted applica-
tion’s storage by sending rogue data or by forcing the execution of specific components which
return private or other sensitive data; an action based on the fact that the application receiving
intents may not be able to verify the applications using its exported components. This type
of attacks is primarily linked with design errors [49] by the application developers, who
define activities with public access (public component) that perform sensitive operations over
received data or return sensitive information upon their invocation without any restriction,
ignoring the recommendations1 and the best practices that suggest that any activity that
performs sensitive operations should be limited to invocations by activities inside the scope
of the application they belong. Additionally, the platform allows activities from different
applications to securely interact if they are protected through signature-level permissions

1https://cwe.mitre.org/data/definitions/926.html

https://cwe.mitre.org/data/definitions/926.html
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Malicious Activity

Intent intent = new Intent("gr.unipi.ds.receiver.AN_ACTION");
intent.putExtra(Intent.AN_ACTION_TEXT, "malicious_data");

Exported Activity Private Sensitive Activity

Benign Process

Malicious Activity Launch
Intent Redirection

Malicious Process

Intent intent = new Intent(MaliciousActivity.this, 
                                  ExportedActivity.class);
intent.putExtra("AN_ACTION_TEXT", malicious_data);

Intent intent = new Intent(ExportedActivity.this, 
                         PrivateSensitiveActivity.class);
intent.putExtra("AN_ACTION_TEXT", malicious_data);

Another Process

Activity
1

Expose user’s data based on the malicious_data

Internet

Figure 6.2 Intent Related Threats in Android Platform.

(activities that belong to different applications signed by the same certificate). Figure 6.2
depicts an example of such a case (refer to the inner part) in which a malicious application
invokes directly a benign’s exported activity.

At this point it should be stressed that a malicious application may launch another type of
attack, called intent hijacking attack, by exporting an activity with the same intent-filter as
the benign targeted application, thus trying to trick the user to select it for handling a specific
intent request. This is because, whenever an application exports activities with the same
intent-filter as other applications, the user is prompted to choose the application he prefers
for managing the request. Moreover, whenever a malicious application exports an activity
with the same intent-filter as a legitimate one which, however, is not installed on the device,
the malicious application will handle the intent message by default, without the user being
notified.

6.1.2 Intent Redirection

A variation of the malicious activity launch attack, described above, arises whenever a benign
application that exports components, receives intents from untrusted or unknown sources and
forwards them to other sensitive components. The exploitation of this vulnerability is known
as intent redirection attack [85, 37, 88] or equivalently next-intent vulnerability that generally
falls under the confused deputy problem [91]. In such cases, a legitimate application may
support a malicious application by forwarding malicious requests to other private components
(depicted in the outer part of Figure 6.2).

In other words, a malicious application may launch a legitimate application’s private
component (via a publicly exported activity that interacts with the private one) with poisoned
arguments or arbitrarily launch a legitimate application’s component leading to private data
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leakages. So similarly to the malicious launch attack (see Section 6.1.1), a malevolent
application instead of directly invoking another’s application sensitive protected activity
it can implicitly trigger the execution of a publicly exported application component that
communicates and exchange data with the sensitive one, and force the intermediate component
to perform a malicious act in it’s behalf.

6.2 Enhancement Mechanisms for Android Inter-Process
Communication

Chin et al.[31] are the first work focusing on flaws against Android Inter-Application commu-
nication with emphasis on intents manipulation, demonstrating activity and service hijacking
attacks against legitimate applications. In the same direction, Wang et al. [88] and Tang et
al. [85] disclose another class of vulnerability called intent redirection that expose legitimate
application’s components to data originated from untrusted sources that might cause data
leakages. To protect applications and services against these threats various solutions have
been proposed in literature varying from (a) static and dynamic analysis detection to (b) run
time protection mechanisms.

6.2.1 Static & Dynamic Analysis Detection

CHEX [63] introduces a static analysis tool, the first of its kind, that automatically tests An-
droid applications for component hijacking vulnerabilities. Indeed, CHEX analyzes Android
applications and detects possible flaws by conducting low-overhead reachability tests based
on customized system dependency graphs. In the same direction, DroidChecker [30] relies on
static analysis, however, it builds upon inter-procedural control flow graph and taint analysis.

Complementing such approaches, [70] proposes an Inter-Application Data Flow (IADF)
analyzer leveraging on reverse engineering to extract and correlate the under examination
application’s intents, activities, and manifest features to detect potential leakages that might be
caused due to Inter-application communication flaws. Similarly, El–Zawawy et al. [37] intro-
duce another static analysis tool for detecting intent redirection vulnerabilities by investigating
application’s execution sequences.

Instead of relying upon static analysis, IntentFuzzer [96] deploys a dynamic intent fuzzing
mechanism, requiring system-level modifications, in order to discover vulnerable applica-
tions that can be forced to act on behalf of a malicious application. In a slightly different
approach LetterBomb [43] combines static analysis and symbolic execution to automatically
generate exploits against Android applications and thus disclose vulnerable Inter-Component
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Communication (ICC) implementations, whereas Tang et al. [85] uses static and dynamic
execution approaches to achieve the same goal.

6.2.2 Runtime Protection

IPC Inspection [42] protects applications against permission re-delegation attacks by in-
troducing a system level runtime mechanism that reduces the privileges of the recipient
application to the intersection of the recipient’s and requester’s permissions. The permission
re-delegation attacks concern cases where an application with granted permissions perform
privileged tasks on behalf of another application without permission.

Wang et al. [88] propose an open-source system-level mechanism, embedded in Android’s
Intent message mechanism, namely Morbs2, that can restrict applications’ communication
according to white-list policies introduced during applications’ development. On the contrary,
IEM [95] introduced an adaptable policy enforcement mechanism through an intent firewall
service that was implemented in the Android framework.

In another scheme, Kaladharan et al. [50] propose a system-level encryption mechanism
that protects Android’s IPC against malicious interceptions. The proposed mechanism builds
upon Android’s binder inter–process communication mechanism and operates at kernel level,
providing confidentiality services to Android applications. However, such an approach does
not protect applications against hijacking attacks nor Intent redirection and malicious activity
launch attacks.

Lyvas et al. [68] introduced a system-level mechanism that provides (a) intents source
and/or destination authentication, and (b) confidentiality services for secure IPC between
components. Moreover, the proposed solution named IntentAuth allows users’ to define their
policies, regarding which components are allowed to communicated with, in order to gain the
control of their data.

Android OS does not support the use of policies for controlling the interactions of an
application with others i.e., who is allowed to communicate with whom through implicit
intents. In this context, the proposed approach supports this functionality, allowing users to
define policies according to their needs.

To do so, a user interface was implemented (as Figure 6.3 depicts) through which a
user can specify which application can receive intents from others, by extending Android’s
framework settings application. The apps that are allowed to communicate can be changed at
any time by the user, and thus they are considered dynamic policies. At this point it should
be stressed that IntentAuth and Android built-in settings application share the same UID as

2https://github.com/mobile-security/Morbs

https://github.com/mobile-security/Morbs
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parts of the Android system service (UID = 1000). Therefore, IntentAuth can obtain user’s
preferences via settings application at runtime.

By default, IntentAuth policies allow any user-installed application to receive implicit
intents containing data only from system/vendor applications or themselves while denying
any interaction with implicit intents from other user-installed applications, following the least
privilege principle. Via settings application, the end users are responsible for enabling or
disabling an application’s ability to receive intents from another application installed by the
user.

The users’ policies enable users to control the access to implicit intents requests, however,
if this mechanism is not supported by secure communication between the components it can be
easily circumvent. In order to ensure secure communication between the components, during
the very first execution of a user-space application (invocation of startActivity(...)
method belonging to Activity class), the IntentAuth service generates a public/private
key pair (Keychainn(PUn,PRn)) and a symmetric key (SecretKeyn) that will be used for the
authentication of components and for data encryption/decryption purposes respectively.

Note that the service can identify whether the appropriate keys have been deployed
by checking the existence of them in Android’s Keystore, where they are securely stored.
Moreover, due to SELinux policy enforcements in the Android Keystore, each application
can generate and retrieve keys based on its UID only, and consequently an application cannot
retrieve keys from another application if it does not share the same UID or a dedicated policy
that allows such an action.

In this context, whenever a user-space application attempts to start an activity that requires
the communication with other component(s), through an implicit intent, the IntentAuth service,
which acts on behalf of the application, retrieves the keys of the corresponding (source)
application from the keystore and uses them to sign (with the private key (PRsource)) and
encrypt intent’s data (with the symmetric key (SecretKeysource)), thus enabling the verification
(authentication) of the source activity and the protection of the data confidentiality. In fact,
intent’s initial plaintext is replaced by SIGNPRsource(data),(ENCSecretKeysource

(data)). At that
point, the source application is still unaware where the intent is going to be delivered because
of its implicit nature. This is the responsibility of the activity task manager which specifies
the appropriate activity (destination) for delivering the intent.

As soon as the activity task manager selects the destination activity, the IntentAuth consults
the user defined policies to check if the communication between the source and the destination
applications is allowed or not. If the communication is not allowed the execution is terminated.
Otherwise IntentAuth validates the origin of the source application, by verifying the signature



64 Android Intent Handling

embedded to the intent’s data, and proceeds with the decryption of the intent data, using the
source application’s symmetric key.

Afterwards, the IntentAuth mechanism prior the delivery of the intent to the destination
component, it signs and encrypts it (i.e., SIGNPRdest

(data),(ENCSecretKeydest
(data))), in a way

similar to the one followed by the source application. Then, the intent is forwarded to the
target activity which, upon receipt, verifies the authenticity of the intent. If the verification
is successful, it decrypts the intent data DECSecretKeydest

(ENCSecretKeydest
(data))). Figure 6.4

overviews this procedure. In this way, IntentAuth can achieve a secure delivery from one
application to another considering the operating system as a trusted entity.

Moreover, IntentAuth was evaluated in terms of the execution overhead imposed to users’
applications. IntentAuth was deployed on an emulator configured with Android framework
version 11 using a proof of concept testbed with applications that communicate over IPC
through implicit intents. The results indicate that the applications’ execution time increases
by 190 ms, at the most, when IntentAuth is enabled. The execution overhead mentioned above
from the enforcement of IntentAuth regards an application to application transmitted intent
that contained a 26-byte string data. Of course, the introduced overhead is also affected by
the size of data that should be encrypted for secure communication between the processes.

Overall, IntentAuth effectively safeguards the integrity, confidentiality, and authenticity
of the Inter-Process communication in Android and is implemented as a system service that
third party applications can employ for achieving secure communication with other Android
components.

IntentAuth key management operations are deployed on top of Android’s keystore system
that by design is considered as a TEE. Moreover, according to the provisions of the SELinux
policy of the Android keystore, applications are not allowed to access keys belonging to other
applications; meaning that applications can manage keys belonging only to the same UID.

However, due to its intrinsic characteristics, it requires access to application keys. Thus,
an additional SELinux policy was deployed for Android Keychain that allows system service
(UID = 1000) to gain access to user-space applications (10000  UID  19999)3 keys.
Therefore, IntentAuth was developed as an operating system service, and hence it can be
considered a trusted component similar to other OS components.

Indeed, with the support of such a mechanism, IntentAuth gains access only to the key
chains and symmetric keys of the involved user-space applications without exposing them to
other user-space applications. As such, IntentAuth safeguards the integrity, confidentiality,
and authenticity of the keys required for the secure communication of the intents.

3https://android.googlesource.com/platform/system/core/+/refs/tags/android-11.0.0_r3/libcutils/
include/private/android_filesystem_config.h

https://android.googlesource.com/platform/system/core/+/refs/tags/android-11.0.0_r3/libcutils/include/private/android_filesystem_config.h
https://android.googlesource.com/platform/system/core/+/refs/tags/android-11.0.0_r3/libcutils/include/private/android_filesystem_config.h
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Figure 6.3 IntentAuth User-Defined Policies via Android (Version 11) Settings Application.

A
p
p
lic
at
io
n

F
ra
m
ew

o
rk

startActivity(intent);

intent(data)

P
ro
ce
ss

S
o
u
rc
e

A
p
p
licatio

n

performCreate(...)

intent(data)

P
ro
cessD

estin
atio

n

(5.1)

(6)

(5.2)

(4.2)

(4.1)

(3)

IntentAuth Android API in
te

nt
(S

IG
N 

(E
NC

 (
da

ta
))

)
PR

 S 

IntentAuth Server Side

Keystore        

IntentAuth Android API

User_Policy(Allow(App ,App ))

Activity Task Manager Service

intent(DEC  (VERIFY (data)))PR D PUD 

startActivity(Intent 
            intent, ...)

PR 

Activity

S S S 

F
ram

ew
o
rk

Activity

performCreate(...)

(8.1)

PU Secret Key PU PR D D D Secret Key 

SK
 S 

intent(VERIFY (SIGN (ENC (data)))

intent(DEC (ENC (data))
PR 

S D 
PU S S SK S 

SK S 
SKD PRD 

SK S 
intent(SIGN (ENC (data)))

SKD
PRD 

intent(SIGN (ENC (data)))

SELinux (SYS_PROC → USER-APP        )

Source

SELinux (SYS_PROC → USER-APP             )

User-Defined Policies

com.android.settings

System Service Process 

Android Keystore (TEE or HSM)
Source

Keystore DestinationKeystore

Source Destination

Source Keystore
Source

Keystore       Destination Keystore       
Destination

(1)

(2)

(5)

(6.1)

(7)

(8)

(9)

Figure 6.4 IntentAuth High-Level Overview.





Chapter 7

Conclusions

Android is one of the dominant mobile operating systems with millions of applications
available for its plethora of users. Several system and application-level mechanisms protect
the security of the devices and the privacy of the users. However, there are several threats
against user’s privacy and security due to the platform’s peculiarities. This dissertation
copes with the permission map compilation and the threats of task, activity, intent hijacking,
malicious activity launch, and the intent redirection. As such threats are eminent security flaws
requiring high attention, several mechanisms have been introduced to identify deficiencies,
discover vulnerabilities, and prevent exploitation in this thesis.

For the Android permission map generation, the Dypermin tool was introduced based on
a method capable of compiling the permission map for any given Android version without
generating any false positives. In addition,Dypermin is transparent to the underlying operating
system, meaning that there is no need for any operating system modifications.

Additionally, Anactijax was deployed to identify vulnerable applications and configura-
tions regarding task and activity hijacking threats. Moreover, the system level prevention
mechanism TaskAuth was introduced that controls activities interactions based on predefined
dynamic policies. TaskAuth demands system-level modifications, but it is transparent both to
end-users and developers.

Finally, regarding the threats of intent hijacking, malicious activity launch, and intent
redirection, a system-based security service named IntentAuth was introduced to enable
encrypted IPC between applications and provide users the capacity to control applications’
IPC through adaptable policies. Although IntentAuth requires system-level modifications,
it is completely transparent to applications and users and does not impose any significant
overhead on users’ experience navigation.

We are currently focusing on prioritizing the Android framework threats, aiming to extend
our work to protect all forms of the Inter-Process Communication scheme of the Android
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platform with the redesign of the presented in this thesis prevention mechanism of IntentAuth
without the need for underlying operating system modification able to provide a combined
trust model with dynamic policies given by both developers and end-users.
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Appendix A

Intents Usage Examples

A.1 Implicit Intents

1 ...
2 <activity android:name=".SecondActivity">
3 <intent -filter >
4 <action android:name="SECOND_ACTIVITY"/>
5 <category android:name="android.intent.category.DEFAULT"/>
6 <data android:mimeType="text/plain"/>
7 </intent -filter >
8 ...
9 </activity >
10 ...

Listing A.1 Declaration of Activity Initiated by Implicit Intent.

1 ...
2 Intent intent = new Intent("SECOND_ACTIVITY");
3 intent.putExtra(Intent.EXTRA_TEXT , new String("finalText");
4 intent.setType("text/plain");
5 startActivity(intent );

Listing A.2 Invocation of an Activity with an Implicit Intent.

A.2 Explicit Intents

1 ...
2 <activity android:name=".SecondActivity">
3 ...
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4 </activity >
5 ...

Listing A.3 Declaration of Activity Initiated by Explicit Intent.

1 ...
2 Intent intent = new Intent(this , SecondActivity.class);
3 intent.putExtra("EXTRA_TEXT", new String("finalText"));
4 startActivity(intent );

Listing A.4 Invocation of an Activity with an Explicit Intent.



Appendix B

Anactijax Generated Use Cases Examples

B.1 Activity Injection Against any Benign Application

1 ...
2 <activity
3 android:exported="true"
4 android:windowSoftInputMode="stateHidden"
5 android:launchMode="singleTask"
6 android:taskAffinity="gr.unipi.ds.victim"
7 android:name="gr.unipi.ds.hijacker.MainActivity2">
8 </activity >
9 ...

Listing B.1 Example of Manifest File Generated by Anactijax for Malicious Activity Injection
Against a Default Benign Application.

1 ...
2 <activity android:name=".MainActivity">
3 <intent -filter >
4 <action android:name="android.intent.action.MAIN"/>
5 <category android:name="android.intent.category.LAUNCHER"/>
6 ...
7 </intent -filter >
8 ...
9 </activity >
10 ...

Listing B.2 Example of Manifest File Generated by Anactijax for Default Vulnerable Benign
Application.
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B.2 Activity Injection Against Vulnerable Benign Applica-
tion’s Tasks

1 ...
2 <activity
3 android:exported="true"
4 android:taskAffinity="gr.unipi.ds.victim.second"
5 android:name="gr.unipi.ds.hijacker.MainActivity2">
6 </activity >
7 ...

Listing B.3 Example of Manifest File Generated by Anactijax for Malicious Activity Injection
Against a Vulnerable Benign Application with Explicitly Defined Tasks.

1 ...
2 Intent intent = new Intent(MainActivity.this , MainActivity2.class );
3 intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK );
4 startActivity(intent );

Listing B.4 Example of Code Generated by Anactijax for Malicious Activity Injection Against
a Vulnerable Benign Application with Explicitly Defined Tasks.

1 ...
2 <activity
3 android:name="gr.unipi.ds.victim.SecondActivity"
4 android:taskAffinity="gr.unipi.ds.victim.second">
5 ...
6 </activity >
7 ...

Listing B.5 Example of Manifest File Generated by Anactijax for Vulnerable Benign Applica-
tion with Explicitly Defined Tasks.
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