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Περίληψη 

 

Η παρούσα διπλωματική εργασία αναφέρεται στην «Τροποποιημένη προσέγγιση 

πλέγματος για την τιμολόγηση δικαιωμάτων προαίρεσης» του Tian (1993). Για να 

προχωρήσουμε στην τιμολόγηση και τη σύγκριση, χρησιμοποιούμε το διωνυμικό 

μοντέλο του Cox, Ross & Rubinstein (1979), το τριωνυμικό μοντέλο του Boyle 

(1986), τo τροποποιημένo διωνυμικό μοντέλο του Tian (1993) και τα δύο 

τροποποιημένα τριωνυμικά μοντέλα του Tian (1993). 

 

Πρώτον, παρατίθεται το θεωρητικό μέρος, το οποίο απαιτείται για την ολοκλήρωση 

της εμπειρικής μελέτης. Ως εκ τούτου, παρουσιάζεται μια σύντομη ιστορική 

ανασκόπηση σχετικά με την ανάγκη εύρεσης ενός πιο αποτελεσματικού μοντέλου 

τιμολόγησης δικαιωμάτων προαίρεσης και ανάλυσης των προβλημάτων που 

προκύπτουν χρησιμοποιώντας σταθερή μεταβλητότητα σε υφιστάμενα μοντέλα. 

Στην συνέχεια περιγράφονται το μοντέλα πλέγματος των Cox, Ross & Rubinstein 

(1979), του Boyle (1986) καθώς και του Tian (1993) για την αποτίμηση 

Ευρωπαϊκών Δικαιωμάτων Αγοράς και Πώλησης. 

 

Ακολουθεί η πραγματοποίηση της ανάλυσης αριθμητικής ακρίβειας και της 

εμπειρικής έρευνας, στην οποία οι επιλογές προσαρμόζονται ανάλογα με το 

υποκείμενο περιουσιακό στοιχείο (δηλαδή τη μετοχή της Apple εντός 

συγκεκριμένου χρονικού πλαισίου). Στη συνέχεια, εκτιμώντας τις παραμέτρους των 

μοντέλων και ελέγχοντας την προβλεπτική τους ικανότητα τα συγκρίνουμε μεταξύ 

τους. 
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Abstract 

 

This thesis refers to “A Modified Lattice Approach to Option Pricing” of Tian (1993). In 

order pricing and comparison to be succeeded, we use the binomial model of Cox-Ross-

Rubinstein (1979), the Boyle Trinomial Model (1986) and the Tian Modified Binomial and 

Trinomial Models (1993). 

 

Firstly, we cite the theoretical part, which is required for the completion of the empirical 

study. Therefore, we present a brief historical review towards the need to find a more 

efficient option pricing model and analyze the problems that arise by using constant 

volatility in pre-existing models. We proceed with the theoretical analysis of the models 

starting from the binomial valuation model, continuing with the trinomial tree model, and 

reaching at the main topic, the construction of the modified binomial tree and the two 

modified trinomial trees for the valuation of European call and put options. 

 

Then carry out numerical accuracy analysis and empirical research in turn, in which options 

are adjusted according to the underlying asset (that is, Apple's within a certain time frame). 

Then, estimate the price of the parametric model and estimate the performance of the out-

of-sample model. Finally, compare the models in order to get the most effective model. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Problem description 

 

There are a few contentions supporting why individuals are so excited about economy and 

finance. One of them lies in the case that market trading is a classic illustration of complex 

framework, where seemingly random fluctuations of market prices are the outcome of  

various origins, such as non-linear reactions from dealers and brokers with increased 

mutual related operations settled inside in a period developing and in a to some degree 

capricious way area. This adversity in predicting the behavior of trade values has indeed 

been disputed to be an essential property of “efficient” markets, where is stated that any 

undeniable unsurprising chance ought to quickly be removed by the response of the market 

itself. Up to the minute, math and trade theories of finance are developed according to the 

point of view of stochastic models where specialists can reconsider their judging 

consistently on schedule as a reaction to various external and individual stimulus. It is the 

intricacy of the agent anticipated probabilities and intercommunication that stipulate the 

critical difficulty in the study of economy.  

 

Consequently, with regards to choose the amount to spend on an option agreement we 

manage the primary concern at the assignment of appraising options, which become 

substantially more intricate when we seek to predict the future conceivable cost of the 

option. This is feasible, if the relative likelihoods of prices going vertical, descending, or 

continuing as before are known. Each financial backer's longing is to make benefit on 

whichever sum they put in the stock market and accordingly the necessity for a reliable 

structured strategy that gives a nearby approximation to the market costs. 

 

The valuation of an option has proved to be particularly important for the analysis of many 

dimensions of corporate finance and investment practices. The volume and variety of 

options traded in global exchange market has expanded considerably following the 

approach developed by Black & Scholes (1973). 

 

Research reveal that the theory of options valuation is applicable to pretty much every field 

in finance. For instance, all corporate finance securities can be deciphered as portfolios 

consisting of buying and selling options over company assets.  

 

The simplest option pricing problem we can trace out there is the “European call option”, in 

which case consider that an investor desires to acquire a share, at a specified period in 

future t=T from current moment (t=0), at a predefined strike price K. If the worth of the 

share at t=T, S(T) is higher than K, the investor will proceed with exercising his option. His 

gain, if he immediately resells the share, will be the difference between S(T)-K. 
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Contrariwise, if S(T)<K, the investor will not exercise his option. Correspondingly, a 

European put option provides the holder with the alternative to sell his share at time t=T at 

a fixed price K. These types of potentialities given to the investor by a financial institute are 

options and have clearly themselves a price. 

 

In some respects, the obstacle of options is the main component of the general obstacle of 

appraising the threats connected with market deals and mostly appraising the risks linked 

with human activities. Of course, stock options can be considered as insurance premiums 

opposed to threats prompted by stock market incertitude. When you insure a vehicle, you 

are acquiring an insurance company’s put option, for example, an option to sell a car at a 

certain price. On the off chance that you have never had a collision (you disburse the 

premium and do not charge anything), this option is worthless. Nonetheless, if your vehicle 

is obliterated, you reserve the option to leave the leftovers of the vehicle in the insurance 

company which is contractually obligated to purchase the vehicle and disburse the 

insurance total amount. In consequence, the primary purpose of options is to permit 

investors to handle partly the impact of the market changes on their investment portfolios. 

For a particular cost, the stakeholder of an option confines the loss by having almost no 

limit on his earnings. Option sellers who anticipate trivial market changes might have the 

opportunity to collect additional premiums. To put it plainly, the options address the issues 

of both conservative individuals and gamblers. Moreover, the evaluating of more tangled 

financial underlying assets is fundamentally founded on similar charges. 

 

Therefore, the valuation of such securities poses demanding problems, as it is a complex set 

of embedded rights whose performance depends on two or more status variables. Such 

problems become more acute when the additional issue of early practice is raised. 

 

A beneficial and quite well-received process for valuing an option, either simple or 

complex, is the construction of a binomial or trinomial tree. This is a schema that illustrates 

dissimilar feasible paths that the price of the underlying security may follow during the 

existence of the option. 

 

The basic premise is that the price of the underlying title follows a "random walk". At each 

time step the value of the stock has a specific probability of an upward trend, a specific 

probability of a downward trend and the probability of remaining stable. As the time step 

becomes smaller and as the quantity of steps expands, the worth of the option resulting in 

the binomial or trinomial model is closer to that obtained from the Black, Scholes & 

Merton (1973) model. 

 

1.2  Historical Overview 

 

Options have been traded for many years but continued being quite vague financial 

instruments until 1973 (Appolloni and Ligori, 2014). The year 1973 marked a new era in 
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options trading, which in a relatively short time expanded into the US stock markets. 

Algorithms based on tree diagram approaches have been studied since 1979 (Cox, Ross and 

Rubinstein, 1979), and in fact seem to be very effective, both in terms of efficiency and 

speed of execution, using a reverse induction in their calculations (Muroi and Yamada, 

2013). 

 

Pricing options have drawn the attention of a significant number of scholars in order to 

dedicate their time for researching option pricing by utilization of tree processes. Black and 

Scholes hype the prominent pricing option procedure. Nevertheless, the information on 

math of this model is excessively profound and hard to comprehend, and it is not broadly 

known by the overall stakeholders. Merton posted an article with headline “theory of 

rational option pricing” , in order to accomplish a leap forward in the area of options 

pricing they built a model known as “Black-Scholes” formula or “Black-Scholes-Merton”. 

This model was significantly innovative because the price of the option was determined by 

known parameters. 

 

1.2.1 Binomial Historic Overview 

 

Cox-Ross-Rubinstein (1979) developed a popular and broadly utilized discrete time model 

for option valuation, the binomial approach. It is related to the composition of the binomial 

tree that models the movement of the price of the underlying asset. This model does not 

include speculative opportunities. 

 

Jarrow and Rudd (1983) extend the classical CRR model. They developed a binomial 

model with time-dependent parameters that are equal to all moments of the tree valuation 

and increases with the corresponding snapshots of the increments of the Itô valuation 

process. 

 

Hull and White (1990) propose an adjustment of the explicit finite difference technique for 

the valuation of safety derivatives. In this paper, as more limited time spans are examined, 

the estimated upsides of the safety derivative converge to the answer of the underlying 

differential equation. It is feasible to be utilized to appraise any security derivative 

contingent on one state variable and can be extended to address more derivative valuation 

issues in which cases there are many state factors. Via delineation, this article illustrates the 

methodology using bond valuation and bond options written in two distinctive loan rate 

cost systems. 

 

The article by Kunitomo and Ikeda (1992) gives an overall valuation technique to European 

options whose installment is restricted by arched cutoff points authoritatively set in the 

underlying asset evaluating measure following Brown's geometric motion. Their result is 

depended on the speculation of Levy's equation for Brownian movement by Anderson in 

successive examination. It gives the unequivocal equation of likelihood that Brown's 
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geometric motion arrives at a space in the termination date without hitting either the lower 

or upper arched limits. Albeit the overall valuation equations for limit rights are 

communicated as endless series in the overall case, their mathematical examination shows 

that the series union is quick. Their results contain the classes of options with a lower limit 

than Merton's (1973) for the Goldman, Sossin and Gatto trail-dependent options(1979) and 

for certain corporate assets. 

 

Leisen and Reimer (1996) proposed that the order of speed convergence should be 

considered as a measure for European market options. This article examines, at first, the 

obstacle of defining the sequence of convergence in the valuation of US put options. After 

that, it focuses on analytical examination of the extrapolation and control of the "Variate" 

method in order to boost convergence, and furthermore to justify their unforeseen obstacles. 

Thus, the research discloses the demand for smoothly converging models so as to make the 

opening inaccuracies smaller. 

 

The article by Broadie and Detemple (1996)   the lower and maximum cutoff values of 

American call and put options composed on assets that provide income. It gives two value 

draws near, one dependent on the limit (called LBA) and one dependent on the two 

thresholds (called LUBA). The LUBA approach has a normal exactness tantamount to a 

1,000-step binomial tree with a computational speed practically identical to a 50-step 

binomial tree. It likewise presents an amendment of the binomial strategy (called BBSR), 

which is exceptionally easy to carry out and performs amazingly well. It additionally leads 

a cautious enormous scope assessment of numerous new techniques at ascertaining 

American options values. 

 

Heston and Zhou (1997) describe the speed of convergence of a multi-level discrete-time 

option. They present that the convergence rate is subject to the smoothness of payment 

function provided by the option and is far less than is typically thought, because of the 

payment. So as to spice up accuracy, they suggest two straightforward approaches, a 

modification of the discrete time resolution before expiration, and also the smoothing of the 

payment process that yields answers that converge to the corresponding continuous cut-off 

date at the foremost conceivable rate appreciated by smooth payment operations. 

Additionally, they suggest a procedure that steadily infers multinational models by 

combining moments of a standard distribution.  

 

P. Boyle (1998)'s article is an extension of the CRR model within the valuation of options. 

This approach includes an expansion of the lattice binomial approach developed by Cox, 

Ross, and Rubinstein to estimate options price on one asset. The primary purpose of the 

study was that payment by options depends on over one variable. Specifically, it examines 

the option could be a function of two underlying state variables although it’s possible to 

expand the procedure to situations involving a bigger number of state variables. 
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Kou (2003)'s article argues that an option subject to a barrier may be a derivative contract 

that’s activated or extinguished when the price of the underlying item exceeds a selected 

level. Most models assume continuous barrier monitoring. Nevertheless, practically, in 

most cases the market barrier options traded are discretely monitored. In contrast with their 

continuous bonds that haven’t any closed form solution, whereas pricing is additionally 

difficult. This study extends a Broadie, Glasserman, and Kou (1997) approach to barrier 

discretion covering most cases and providing an easier proof. The specific methods utilized 

are produced through sequential analysis by Siegmund, Yuh (1982) and Siegmund (1985). 

 

Walsh (2003)'s article examines the definite convergence of the binomial tree. It is gleaned 

that the figure is first class. Tracks down the specific constants and shows that it is feasible 

to change the Richardson diversion to get a technique for request of three parts. 

Furthermore, he accompanies the clarification that the delta utilized in the hedge converges 

at indistinguishable rate. This is mainly investigated by integrating the trees into the Black-

Scholes model through the integration of Skorokhod. We notice that this strategy applies in 

considerably more broad cases. 

 

The article by Francine Diener and Marc Diener (2004) argues that the value of a European 

simple option calculated on a binomial tree converges to the value of Black & Scholes 

when the time-step inclines to zero. In addition, it was spotted that this convergence is of 

the sequence of 1 / n in conventional approaches and that it is oscillating. Moreover, the 

article calculates this oscillating functioning utilizing asymptotically Laplace completions, 

explicitly providing the first conditions asymptotic. Therefore, it shows the lack of 

asymptotic extension in the ordinary perceptions but that the convergence rate is indeed of 

the order of 1 / n in the case of ordinary binomial procedures once the number-two term 

disappears. The succeeding term is type 𝐶2(n) / n with C2(n) some precise finite function of 

n, which has no restriction when n inclines to infinity. 

 

The article by Chang and Palmer (2006) considers an overall category of binomial models 

with a supplemental parameter λ. It shows that in the circumstance of a European market 

option the binomial value converges to the Black & Scholes value with a factor of 1 / n and 

most crucially, gives a formula for the factor of 1 / n in the error extension. This allows us 

to demonstrate that convergence is smooth in a new central binomial model he proposes by 

making specific options for λ. 

 

Joshi (2007's) article presents another group of binomial trees as ways to deal with the 

Black-Scholes model. For this class of trees, the presence of complete asymptotic 

expansions at the costs of European straightforward options is demonstrated and the initial 

three conditions are expressly estimated. In other explicit cases, a tree with third sequence 

convergence is fabricated and the notion of Leisen and Reimer (1996) demonstrates that 

their tree has secondary convergence. 

 



10 
 

 

 
Figure 1.1 Binomial Historic Overview 

  

Author Title Year

Cox, Ross, & Rubinstein Option pricing: A simplified approach 1979

Jarrow & Rudd Option pricing 1983

Hull & White
Valuing derivative securities using the explicit finite difference 

method
1990

Kunitomo & Ikeda Pricing options with curved boundaries 1992

Leisen & Reimer
Binomial models for option valuation: Examining and improving 

convergence
1996

Broadie & Detemple
American option valuation: new bounds, approximations, and a 

comparison of existing methods
1996

Heston & Zhou On rate of convergence of discrete-time contingent claims 1997

Boyle A lattice framework for option pricing with two state variables 1998

Kou On pricing of discrete barrier options 2003

Walsh The rate of convergence of the binomial tree scheme 2003

Francine Diener & Marc Diener
Asymptotic of the Price Oscillations of a European Call Option in a 

Tree Model-Francine Mathematical Finance
2004

Chang & Palmer Smooth convergence in the binomial model 2006

Joshi 
Achieving Higher Order Convergence for the Prices of European 

Options in Binomial Trees
2007
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1.2.2 Trinomial Historic Overview 

 

Three-jump models are used before within the literature to explicate option valuation 

issues. Stapleton and Subrahmanyan (1984) talked about a three-jump approach, but they 

failed to investigate its numerical accuracy or find out a way to study the attitude of jump 

probabilities. Parkinson (1977) utilized a three-jump procedure to appraise the American 

put option, but his method seems hard to be generalized to circumstances entailing over one 

state factor. Brennan and Schwartz (1978) associated the coefficients of a modified Black 

& Scholes formula to the possibilities of a three-jump procedure. 

 

Boyle (1986) made the CRR philosophy one stride further and propounded a trinomial 

option valuing model, known as a three-jump model, where the stock value can move 

towards 3 bearings, upwards, downwards, or stay unaltered for a given time frame of 

period. A whole arrangement of trinomial cross section boundaries was acknowledged, 

including three probabilities and three leaps. Besides, he looked at the mathematical 

exactness of his model immediately in comparison to the CRR binomial model. 

 

In a later article Boyle (1988) presented how a five-jump, three-dimensional lattice is 

elaborated to appraise options on two underlying securities. The strategy accustomed 

calculate the jump probabilities within the lattice is outlined, and a procedure for choosing 

the jump amplitudes is explained. It’s supposed that the joint density of the 2 underlying 

assets may be a bivariate lognormal distribution. When we apply the risk-neutral valuation 

process, it is obliquely stated that the two assets earn the riskless rate. A five-point jump 

procedure can be built to satisfy the varied requirements and can be utilized to generate a 

two-x one-dimensional lattice appropriate for valuing the options we desire. 

 

E. Derman, I. Kani and N. Chriss (1996) demonstrated how to fabricate implied trinomial 

tree approaches of the volatility grin. Trinomial trees have naturally a bigger number of 

factors than binomial trees. They utilized these extra factors to helpfully pick the "state 

space" of all hub values in the trinomial tree and let just the conversion probabilities be 

restrained by market options values. This opportunity of state space delivers an adaptability 

that is here and there worthwhile in coordinating with trees to grins. 

 

S. Crepey (2003) showed an inventive trinomial tree execution of the technique, in which 

the specific angle can be determined to the detriment of valuing the options and tackling 

one Fokker–Planck condition. Accordingly, the precision of the first technique is retained 

however the computational time is diminished. Typically, the calibration time decline is an 

attainable errand. The utilization of parallelism permits one to acquire a further factor. 

Also, he extends this procedure to the American calibration issue. 

 

Ahn and Song (2007) inspected the convergence of the trinomial tree approach and 

demonstrate the assembly and exactness of this model. They exhibited a trinomial tree 
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technique for valuing European/American options and fostered that it is identical to a 

specific express contrast strategy. By temperance of thickness arrangements, they 

demonstrated the uniform convergence of the expounded trinomial tree strategy for 

estimating European/American options. From their mathematical reproductions, the 

trinomial tree strategy with N/2 time-steps shows the equivalent or indistinguishable 

exactness contrasted with the binomial tree technique with N time-steps. As far as 

effectiveness, the computational expenses for the trinomial tree strategy with N/2 time-

steps is achievable to be diminished, for example, at around 33 up to 34% mitigation for 

large N, contrasted with the corresponding for the binomial tree technique with N time-

steps. 

 

Yuen and Yang (2010) introduced a quick and simple tree structure to evaluate simple and 

exotic options in MRSM - Markov Regime Switching Model with multi-regime. They 

altered Boyle's trinomial tree structure by controlling the risk neutral probability measure in 

various system states to affirm that the tree model can adjust to the information of every 

single distinctive system and simultaneously keeping up with its joining tree structure. 

 

Xiong (2012) propounded a trinomial pricing option process depended on Bayesian 

Markov Chain Monte Carlo Approach which ordered the old style binomial tree approach, 

the traditional trinomial tree approach, the BS approach, and the warrant value by utilizing 

the genuine information of the Chinese warrant market. The outcome demonstrates that the 

value deviation of the trinomial tree estimating alternative model depended on Bayesian 

MCMC technique is considerably more less than any other models, in spite of the fact that 

they all underestimate the market cost. 

 

Han (2013) inspected the trinomial tree model to value options for explicit cases in 

mathematical techniques and wound up to the accompanying significant outcomes: 

contrasted to the binomial model, the trinomial tree model can approximate in a superior 

manner to the continuous distribution of the fundamental asset value movements with more 

states and has a more prominent exactness. 
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Figure 1.2 Trinomial Historic Overview 

  

Author Title Year

Boyle Option valuation using a three jump process 1986

Boyle A lattice framework for option pricing with two state variables 1988

Derman, Kani & Chriss Implied trinomial trees of the volatility smile 1996

Crepey 
Calibration of the local volatility in a trinomial tree using 

Tikhonov regularization
2003

Ahn & Song 
Convergence of the trinomial tree method for pricing 

European/American options
2007

Yuen & Yang Option pricing with regime switching by trinomial tree method 2010

Xiong 
A trinomial option pricing model based on Bayesian Markov 

chain Monte Carlo method
2012

Han Pricing American options based on trinomial tree model 2013
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1.3 Thesis Description 

 

The purpose of this dissertation is to present the modified lattice approach to option pricing 

that was elaborated by Yisong Tian in 1993. More explicitly, Tian fostered a modified way 

to deal with the choice of cross section boundaries including probabilities and jumps. An 

overall methodology can be applied to any multi-dimensional cross section approach. It is 

perceived that the fundamental conditions for a cross section model to join to the Black-

Scholes model don't give an exceptional answer for the grid boundaries. Extra restriction(s) 

on the grid boundaries is (are) required. In the modified methodology the determination of 

cross section boundaries is made to such an extent that the exactness of estimation is 

improved. The methodology is then applied to modify both the CRR binomial model and 

the Boyle trinomial model. 

 

In Chapter 2, we will first give a general introduction to the options. Next, we will analyze 

the binomial tree of Cox, Ross and Rubinstein (1979), which is a two-step method through 

the reproduction and valuation of the portfolio in a risk-neutral environment. Furthermore, 

the trinomial valuation model will be built as a two-step binomial tree, in which the price of 

the underlying stock moves up and down, but can stay at the same price, making it more 

flexible and accessible to real market data.  

 

In Chapter 3, we will present the modifications implied in both CRR binomial model and 

Boyle trinomial model. Hence, the Tian Bin model varies from the CRR binomial model in 

the accompanying two angles. To start with, in the CRR model the difference of the stock 

value is just right in the breaking point as the time step h approaches zero. In the Tian Bin 

model, both the mean and variance are right for some random h. Second, rather than 

picking the right third moment (along these lines right skewness), Cox, Ross, and 

Rubinstein (1979) chose the accompanying condition for demonstrating effortlessness. The 

modified trinomial models are instinctively more engaging than the Boyle model. Review 

that Boyle (1986) tracked down the "ideal" arrangement through an experimentation test. A 

precise strategy for taking care of the issue is introduced here. The Tian Trin1 model 

specifically permits one to precisely adjust the probabilities. Boyle could do as such as it 

were "generally". The explanation is that m is permitted to contrast from 1 in the modified 

trinomial cross section. Then again just the mean and fluctuation of the discrete-time 

measure are right in the Boyle model, while the third and fourth minutes (skewness and 

kurtosis) are likewise right in the Tian Trin2 model. In view of this instinct, one might 

expect that the two adjusted variants are essentially pretty much as exact as the Boyle 

model. Moreover, both changed adaptations of the trinomial model act appropriately in the 

cutoff as 0  , while the Boyle model does not.  

 

In Chapter 4, we will perform the numerical accuracy analysis and the empirical study. At 

first, the numerical accuracy and convergence properties of the modified estimate 

strategies, when contrasted with the CRR and Boyle models are analyzed in this segment. 
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Inside and out five cross section strategies are examined and analyzed. Mathematical 

reenactments are done in Matlab to compute the worth of an alternative on a stock that pays 

no dividend utilizing the information boundary esteems we have used. Afterwards, we will 

conduct an empirical option valuation study using the Cox-Ross-Rubinstein (1979), the 

Boyle Trinomial model (1986) and the Tian Modified models (1993). 

 

In Chapter 5, we will introduce the conclusions drawn from the model comparison. Finally, 

we attach an appendix of the Matlab codes used for research.  
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CHAPTER 2 

 

CRR BINOMIAL AND BOYLE TRINOMIAL MODELS 

 

In this chapter we will get acquainted with basic financial concepts regarding the Binomial 

Model elaborated by Cox-Ros-Rubenstein (1979) and the Trinomial Model developed by 

Boyle (1986), which will help us to better understand the way that these models study the 

behavior of the asset we are considering. 

 

2.1 Options 

 

Options are described as one of the most widespread types of financial derivative 

instruments. It is an agreement that gives the proprietor (purchaser) the right, yet not the 

commitment, to purchase or sell an asset at a foreordained cost and time span. 

 

Despite what might be expected, the vender of an option has the commitment and not the 

choice to make the exchange for the underlying asset with the holder (purchaser) of the 

option in the event that he exercises it. Depending on the category of option and its 

attributes, the transaction is executed at the end of the contract or during it. 

  

Options are delegated as either call options or put options. The basic elements that 

characterize an option and which are defined in the contract are as follows: 

 

 The underlying asset, which is any financial and non-financial product. A stock, an 

exchange rate, a commercial good (consumer or not) are examples of underlying 

securities in an option contract. 

 The price of the underlying security, which also defines the cash flows at the 

expiration of the contract if it is a European type option or the cash flows at any 

time during the validity of the contract if it is an American type option. 

 The strike value of the option, which is the foreordained worth at which the holder 

of an option will make the exchange, on the off chance that he exercises his option. 

 The time to maturity of the option, which denotes the time until the expiration of the 

option. In European type options the expiration date coincides with the date on 

which the options can be exercised, while in American type options the exercise can 

take place at any time up to the expiration date of the option. 

 The premium or cost of the option which is the value paid by the buyer of the option 

to the seller to obtain the right to make a transaction with the underlying security. 

 The position in an option. Each investor can hold two opposing positions: the long 

position and the short position. 
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 The size of the contract (contract size). This is the quantity of stocks of the 

underlying asset that the holder has the right to purchase or offer to the backer of the 

option.  

 The option type determines whether the right is of European or American type. 

 The option class alludes to options that are of similar kind and on a similar 

fundamental title. 

 The option series concerns rights that belong to the same class, have the same 

maturity and the same exercise price. 

 

Furthermore, the options are differentiated according to the cash flow that they cause from 

their direct exercise, compared to the strike price and the price of the underlying asset, so 

we have: 

 

 In the money: Exercising the option outcomes in a positive cash flow. [Figure (a)] 

 At the money: Exercising the option outcomes in a zero-sum cash flow. [Figure (b)] 

 Out of the money: Exercising the option outcomes in a negative cash flow. [Figure 

(c)] 

 

         

Due to the characteristics mentioned above, an option is only exercised if it is in the money 

and the value of the option corresponds to the intrinsic value in conjunction to the time 

value.  

 

Thus, the intrinsic value for a European call option and for a European put option is 

respectively: 

 

 max ,0S K          ,           max ,0K S  

The time value indicates the value of the option that is retained if the exercise of it is 

postponed. Particularly important is the fact that an “in the money” American option has at 

least as much value as its intrinsic value, as its holder can generate a positive cash flow 

through immediate exercise. 

 

Moreover, there are four possible positions in the options: 

 

 “Long position” in a call option 

 “Short position” in a call option 

Call Option S > K

Put Option S < K

Figure (a)

Call Option S = K

Put Option S = K

Figure (b)

Call Option S < K

Put Option S > K

Figure (c)
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 “Long position” in a put option 

 “Short position” in a put option 

The above positions can provide us with the payoff and the profit, which a European option 

produces at the maturity. For the holder of the market position in a call option, denoting the 

exercise price with K, the expiration time with T and the price of the underlying asset at 

maturity with ST, so if we have: 

 

 TS K , then is recommended to exercise the call option and the profit will be 

TS K  

 TS K , then the call option will not be exercised and expires with zero value and 

zero profit 

 

Consequently, the payment for the buyer from such a call option at maturity is: 

 

 max ,0TPayoff S K   

 

The above payoff also indicates the value of the option and is expressed with fcall. 

The gain from exercising the call option for the buyer (long position) will be (without 

taking into consideration the time value of money): 

 

     ,

0,max ,0 T T

T

S K S K

T T S KS K S K
 

     

 

In case we take into consideration the premium (c), then it will be ( )TS K c  . It also 

important to mention that if the value of the asset at the expiration date is equal to the 

exercise price, then an investor will have no real interest in exercising his option. 

Similarly, for the holder of the market position in a put option, we have: 

 

 TK S , in which occasion is recommended to exercise the put option and the profit 

will be TK S  

 TS K , then the put option will not be exercised and expires with zero value and 

zero profit 

 

Consequently, the payment for the buyer from such a put option at maturity is: 

 max ,0TPayoff K S   

This payoff also indicates the value of the option and is expressed with fput. 
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The gain from exercising the put option for the buyer (long position) will be (without 

taking into consideration the time value of money): 

 

     ,

0,max ,0 T T

T

K S K S

T T K SK S K S
 

     

In case we take into consideration the premium (c), then it will be ( )TK S c  . Here as 

well, we must mention that if the value of the asset at the expiration date is equal to the 

exercise price, then an investor will have no real interest in exercising his option. 

The criteria by which an investor chooses his position depends on his assessment of the 

market. Therefore: 

 If he estimates that the price of the asset, e.g., of a stock will rise enough then he 

can take a long position on a call option. Thus, he succeeds in gaining access to the 

rise and protection under a possible fall in the market value. 

 If he estimates that the stock price will decrease a little, then he can take a short 

position in a call option. This is how the price is reaped, hoping that the share price 

will not augment. Of course, he is exposed to the risk of exercising the option if the 

share price eventually rises, unless he has already filled his position with a share 

purchase. 

 If he estimates that the stock price will decline considerably, then he can take a long 

position in a put option. If this happens, then he benefits from the fall, otherwise he 

is protected against the rise, since the maximum he can lose is the price of the 

option he purchased. Alternatively, he could borrow the share and sell it, known as 

“short – selling”. 

 If he estimates that the share price will rise a bit, then he can take a short position in 

a put option. Along these lines, he secures the worth of the option with the 

assumption that the stock value cost will not decline. He is exposed to the risk of 

exercising the option if the share price eventually falls. 

 

Hence, the elements that affect the price of an option are mentioned subsequently: 

 Price of the underlying security: Call options acquire greater value when the price 

of the underlying security increases, in which case the value of the put options 

decreases. 

 Exercise price: Put options acquire greater value when the exercise price increases, 

while then the value of the call options decreases. 

 Maturity: In the American type of options, the one with the longest duration has a 

greater value, while in the European type of options the impact of time on their 

value is uncertain. 

 Volatility of the underlying security: Instability of the hidden security: The worth of 

the options increments when the volatility of the underlying asset increments. 
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 Risk free interest rate: The value of the put option decreases when the interest rate 

increases, while then the value of the call option increases. 

 Dividend yield of the underlying security: Any anticipated dividend is contrarily 

corresponded with the worth of a call option, while it is positively related with the 

worth of the put option. 

Therefore, for the purpose of estimating the value of a call or put option at the time of the 

agreement in order to give the appropriate premium, its final price must be calculated as 

reliably as possible and then the final cash flows must be discounted. So, the difficulty of 

valuing an option lies in the primary difficulty of valuing any asset with uncertain income. 

 

2.2 Binomial Tree Model 

 

A handy and widely known method for pricing options includes building a binomial tree. 

This is a diagram introducing two divergent outcomes that may arise by the stock price 

during the life of an option. The main assumption is that the stock value brings up the rear a 

random walk. In each time step, it has a specific probability of moving up by a specific 

percentage amount and a specific probability of moving down by a specific percentage 

amount. In the boundary, as the time step becomes lesser, this technique appropriates  the 

same process results as the Black–Scholes–Merton model. Indeed, it is well established that 

for instance, the European option price given by the binomial tree converges to the Black–

Scholes–Merton price as the time step becomes lesser. 

 

The binomial model for valuing an option was founded in 1979 by John Cox, Stephen Ross 

and Mark Rubinstein (CRR). The model is superstructure on the idea of Black & Scholes 

(1973). However, the formula presented in their article is at a discrete time, in contrast to 

that of Black & Scholes (1973) which is at a continuous time. 

 

CRR (1979) constructed a binomial tree that presents different possible course of the 

underlying share price until the end of the option. The basic premise they make for the 

stock price is that it follows a random walk. At each time step the stock price has a certain 

probability of rising and a certain probability of falling. 

 

We assume that the period we study the share’s price lasts for one period. The kickoff of 

this period is time zero (0) and its end is time one (1). At time zero we are in the present 

and we consider a stock whose price is known to us. This value is obviously always 

positive and is denoted as S0. We define the contingencies u and d, which represent the 

ascent and the descent of the share price, respectively. At time one (1), the stock price can 

take two possible prices depending on which probability comes true. These values are 

denoted by S0(u) and S0(d). Additionally, we will denote by “q” the probability of an 

increase, and “1 – q” the probability of a fall in the share price. 
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At time zero we do not know which of the two possibilities will take place at time one. We 

will only find out the outcome of the two possibilities when we finally reach at moment 

one, not earlier. However, we know in advance the price that the stock will receive under 

each circumstance, event u or event d. Let’s define two positive numbers, u and d, which 

originate from the words “Up” and “Down”. If event u occurs, the stock will take the value 

u·S0, while if event d occurs, the stock will take the value d·S0. The logical outcome is to 

take the assumption that u > d should hold. If u = d was valid, the stock price at time one 

would not be random, and the model would be shiftless. From the above, it is reasonable to 

conclude that “u” gets values greater than one and “d” values less than one, but not 

negative. Everything we have mentioned so far can be graphically depicted in the 

subsequent figure: 

 

 
Then we set the discount rate, which we consider equal to the interest rate of a risk-free 

investment (e.g. government bonds) and we denote it “rf”. In plain words, someone who 

invests one unit of a currency at time zero, will then get (1 + rf) at time one. At the present 

time, we presume that the interest rate is not continuous compounded. Obviously, the 

interest rate will always get a positive price. 

 

For the purpose of a market to be consider as "fair" (and as we will see later, in 

"equilibrium"), it is essential that there is no opportunity to make a certain (discounted) 

profit or otherwise arbitrage for any investor. However, how can an investor make a profit 

without risk? A typical example is a stock that is traded not only in the domestic market, 

but also in a foreign stock exchange market. There, may be a share price in one of the two 

markets that has not adjusted properly due to the ever-changing currency exchange rate. An 

investor who realizes this difference, is capable to (theoretically momentarily) buy from the 

stock market, where the stock is undervalued and sell it the one where it is overvalued, 

managing to make a definite profit instantaneously. In fact, markets sometimes offer 

arbitrage opportunities. Nevertheless, this happens for a very short time because it is 

quickly perceived and eliminated (because the demand for the undervalued and the supply 

of the overvalued increases as a result of which the two prices change and reach a level 

where there is no longer an opportunity for arbitrage) . 

In the model we are considering, the relation 0 1  d r u     must be valid, otherwise the 

stock always has a better return (when d ≥ 1 + r) and it does not make sense to issue bonds 
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or it always has a worse return (when u ≤ 1 + r) and the issuance of shares does not make 

sense. Otherwise, we can say in an equivalent way that the above relation should be valid 

so that there is no possibility for arbitrage. Indeed, if   1  d r   is valid, then an investor 

can in year zero buy the share borrowing money (i.e. by issuing bonds) and in year 1 sell 

the share and repay its borrowers with a definite profit. In the event of,   1  u r   the 

investor can take the opposite positions (bond purchase, open stock sale) and making a 

definite profit, as previously. 

It is obvious that the model we presented is inappropriate to describe the movement of a 

stock satisfactorily. But when it involves many periods, it is a very good approach to 

continuous time models. 

 

Let us now see how the binomial model is used in practice. Suppose we have a European 

Call option on a stock with a price K. Based on what we have explained about the way that 

options make a profit, it is easy to see that 0 0    S d S u   , should apply. If the share 

price falls, the holder does not exercise the option. Otherwise the option is exercised, and 

the profit is (S0·u – K). Let Cu be the value of the option (or otherwise the profit it returns) 

at time one if there is an increase in the share price, Cd the corresponding value in the event 

of price turndown, and C the requested value of the option at time zero. 

 

 
 

In order to define C, we use a self-financed strategy. We build the so-called "hedging 

portfolio" which includes money deposits (or zero risk bonds) and shares and secures the 

buyer of the option from the risk posed by its purchase. The value of this portfolio at time 

one (but also any time at the multi-period model) is equal to the no-arbitrage value of the 

option at the same time, regardless of the event (rise or fall) that occurred. Thus, the initial 

value of the portfolio will be equal to the requested no-arbitrage value of the option. In 

order to corroborate what has just been mentioned, the appropriate interventions must be 

made in the composition of the portfolio at any time. Thus, the collateral portfolio is 

dynamic and self-financed. 

 

Continuous Compounding 

 

To begin with continuous compounding, we assume that we start with a portfolio which 

includes Δ stocks and a short position in a call option, at time zero. So, the construction 

cost of the portfolio is P = ΔS - c. At time one (1) the value of the portfolio will be as it is 

depicted subsequently: 
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Since the portfolio is in the neutral risk world we can equate the two final nodes. 

 2.1
( )

u d
u d u d

c c
P P uS c dS c

S u d


         


 

We are aware of the value of the portfolio at time one (1), which will be 

u dP uS c dS c      . 

Additionally, since there is no arbitrage opportunity, and because the value of future option 

equals the value of the future portfolio, the value of today’s option must equal the value of 

today’s portfolio. Therefore: 1 ( )rT rT

uP Pe uS c e      

 

Thus, by equating the last condition with the preliminary cost of the portfolio, we can solve 

in terms of the value of the purchase option “c”. 

 

 

(2.1)

( )

( )

(1 ) (2.2)

rT

u

rT

u

rT rT
rT

u d

rT

u d

S c uS c e

c S uS c e

e d u e
c e c c

u d u d

c e pc p c









     

     

  
   

  

  

 

Where, 1
rT rTe d u e

p and p
u d u d

 
  

 
 

 

In this neutral hazard environment, p = q. Therefore, we interpret p as the probability of an 

upward thrust in the share price, and 1 - p as the probability of a downward thrust in the 

share price. 

 

The present value of the option corresponds to the discounted future risk-free income.  

ˆ( )rT

Tc e E c   

 

The expected return on the stock corresponds to the risk-free interest rate, which means that 

the expected price of the stock at maturity is ˆ( ) rT

TE S Se . 
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In the world of neutral risk, since the price of the asset follows the lognormal distribution, 

the properties arise for time interval [t, t + Δt] are, 

 

( ) (2.3)r t

t tE S Se 

   

22 2( ) ( 1) (2.4)r t t

t tVar S S e e 

    

 

From relation (2.3) we have: 

 

( )

(1 )

(1 )

(2.5)

r t

t t

r t

r t

r t

E S Se

puS p dS Se

pu p d e

e d
p

u d











 

   

   






 

 

Analyzing equation (2.4) it follows: 

 
2

2

2

2

2

2

2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2

2 2 2

2 2 2 2

(2.5
2 2 2 2

( ) ( ) ( ) ( 1)

(1 ) ( 1)

(1 ) ( 1)

(1 ) ( 1 1)

( )

r t t

t t t t t t

r t r t t

r t t r t

r t t

r t t

r t t

Var S E S E S S e e

pu S p d S S e S e e

pu p d e e e

pu p d e e

pu d pd e

p u d d e













 

  

  

  

 

  

  

    

     

     

     

   

   

2

2

2

2

)

2 2

2

2

2 2

( )( )

( ) 1

1
( ) 1

(1 ) 0

r t
r t t

r t r t t

r t r t t

r t r t t r t

e d
u d u d d e

u d

e u d e

e u e
u

u e u e e










  

   

   

    


    



   

   

   

 

 

The solution of the quadratic equation obtained is: 

 

2 22 2 2 2(1 ) (1 ) 4

2

r t t r t t r t

r t

e e e
u

e

       



   
  

 

Which through the Taylor development is simplified and the final form is achieved: 
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tu e       ,     
td e        ,     

r te d
p

u d

 



 . 

 

Discrete compounding 

 

Let's examine it more thoroughly. We assume that we start with a portfolio which consists 

of D shares and B cash (or zero risk bonds) which we deposit with an interest rate rf, at time 

zero. The current value of the portfolio is ΔS + Β. At time one (1) the value of the portfolio 

will be as follows: 

 

 
 

We choose D and B in such a way that the two possible values of the portfolio at the end of 

the period are equal to the corresponding value of the purchase option. Grounded on the 

aforementioned statements, the self-financed strategy prescribes that the following 

relationships should be valid: 

 

  (2.6)uuS rB C    

 ddS rB C    

 

Solving the system of equations, it turns out that: 

 

     
(2.7)

( ) ( )

u d d uC C C u C d
and B

u d S u d r

 
  

 
  

 

Since there are no opportunities for arbitrage and since the value of the option in the future 

is equal to the value of the portfolio in the future, the value of the option today should be 

equal to the value of the portfolio today. Therefore: 

 

       
( ) ( ) / (2.8)

( )

u d u d

u d

C C C d C u r d u r
C S B C C r

u d u d r u d u d

    
           

 

 

We define: 
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1 (2.9)
r d u r

p and p
u d u d

 
  

 
 

 

Then relation (2.8) is simplified and written as follows: 

 

[ (1 ) ] / (2.10)u dC pC p C r     

 

Relation (2.10) is the valuation formula of the purchase option, before its expiration, for a 

period in terms S, K, u, d, r. The formula mentioned above, has several noteworthy 

features. Initially, the probability q does not flash up in the formula. 

This means that even if different investors have different preferences in the probability of 

the stock moving up or down, eventually everyone could agree on the price C, as it is 

independent of q. 

 

Then the price of the option to buy is independent of investors' preferences for risk. For the 

construction of the formula the only assumption that is made is that every investor prefers 

more wealth than less and therefore there would be an incentive for arbitrage. 

 

Therefore, the same formula could be used whether the investor is risk-preferring or risk-

averse. Also, the only random variable on which the price of the option depends is the share 

price itself. Videlicet, it is not determined by the market appraisements of other securities 

or portfolios. 

 

Finally, it is noted that 0 < p < 1 and therefore could be characterized as a pseudo-

probability. In fact, p is the value of q under the conjecture that all investors are risk averse. 

So, the value of the purchase option is represented as its expected future price, discounted 

in a world of neutral risk. 
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2.3 Trinomial Tree Model 

 

In this section we will analyze the valuation of options through a trinomial tree model. This 

is a more accurate model than CRR Binomial model as it also incorporates the possibility 

that the share price will remain stable at the end of a period, which makes it a more realistic 

approach. 

 

We are in a risk-neutral world where S is your asset’s current value, which follows the 

lognormal distribution. The composition of the trinomial tree gives the green light for the 

value of the underlying asset to shift towards one of the three values assigned as up (u), 

down (d) and middle (m). The set of risk-neutral probabilities, pu, pd and pm, are associated 

with these branches and offer a higher rate of convergence if the tree is built symmetrically 

for some applications according to Figlewski and Gao (1999). A method for determining 

the probabilities pu, pm, pd in the risk-neutral world results from the basic assumption that 

the price of the underlying asset follows the logarithmic (lognormal) distribution. 

 

 
 

Specifically, five new unknown variables appear, u, d, pu, pm, and pd which have yet to be 

found. One way leads through the types that have already emerged from the analysis of the 

binomial tree. 

 

21 1 (2.11)ud ud m     

 

This equation's motivation is as follows. Unlike the preceding section's binomial lattice, the 

above trinomial lattice does no longer commonly recombine properly. The previous 

equation guarantees that an upward pass accompanied through a downward pass is equal to 

a downward pass accompanied through an upward pass. A downward movement followed 

by a middle movement is the same as a middle movement followed by a downward 

movement. In fact, with this constrain, the range of nodes on an N-duration trinomial lattice 

is decreased from  13 1 / 2N   to  
2

1N  . In that way the trinomial lattice is considered 

computationally efficient. 

For the alternative two extra constraints, Boyle (1986) selected 1m , 
tu e   and 

obtained a trinomial model, wherein 1   is a parameter that is defined by its users. 
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However, if the two extra constrains are used rather to offer accurate values for better 

moments of the trinomial distribution, which include the third and/or fourth moments, 

convergence is likely to be maximized. 

 

The constrains which are adequate to assure the desired convergence are much like the ones 

withinside the binomial case. Specifically, those constrains are: 

 

 
2

2 2 2 2

2

1 , 0 , , 1 (2.12)

(2.13)

(2.14)

, & 1 .

u m d u m d

u m d

u m d

r t t

p p p p p p

p u p m p d M

p u p m p d M V

where M e V M e 

    

  

  

  

 

 

Therefore, the mean value of the discrete distribution is equal to the mean value of the 

logarithm. 

(2.12)

( )

1

1
(1 )

1
( 1) ( 1) 1

( 1) ( 1)
(2.15)

1
1

r tM e
r t

t t

u m d

u m d

u m d

u u d d

u d
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d

E S Se SM

p uS p S p dS SM

p u p p d M

p u p p M
u

p u p p p M
u

p u p M
u
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At the same time, the variance of the discrete distribution is equal to the variance of the 

logarithmic distribution. 
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On that note, 
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Last of all, for pd we head back to equation (2.15) and by using the results from equation 

(2.17) we have: 
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In the aggregate we have: 
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It is observed that the transition probabilities of the resulting trinomial model using the u-

parameters defined in the CRR (1979) binomial model and the definition of m = 1 are not 

between 0 and 1 but are even negative. Therefore, Boyle proposed the use of a parameter λ 
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> 1 on the basis of which we have t t

bin binu e and d e     , although this parameter 

also offers negative transition possibilities for small values of λ. By testing different values 

for λ, a range of u-values is obtained in which there is an interval that simultaneously 

produces acceptable values for all probabilities. The best results were obtained when the 

parameter λ was set so that the transition probabilities were approximately the same. 

 

Boyle also observed that the precision of the triple jump method with 5 time intervals for a 

range of values was comparable to that of the CRR method with 20 time intervals.  

Later, Komorád (1990) improved the model to correct the possible problem of negative 

transition probabilities, giving a feasible set of probabilities for every 1  .  

 

As shown in the one-step binomial tree, we have respectively in the one-step trinomial: 

 
Thus, in order by finding the intrinsic value in the last node and with the formula we tested 

in the binomial model we have: 

 

( ) (2.19)r t

u u m m d de p c p c p cc      
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CHAPTER 3 

 

TIAN MODIFIED BINOMIAL AND TRINOMIAL MODELS 

 

As already mentioned, the binomial model simulates the movements of an asset. In this 

chapter we will show how the CRR binomial model, and the Boyle trinomial model are 

extended and replaced by the modified binomial model, and the modified trinomial models 

elaborated by Tian (1993), also known as BIN and TRIN1 & TRIN2, respectively. 

3.1 Modified Binomial Tree Model 

 

Cox, Ross, and Rubinstein initially elaborated the lattice methodology in 1979. They 

elaborated a discrete-time, binomial methodology for option valuation. The core of their 

strategy is the composition of a binomial lattice of share values, where they preserve the 

norm of the risk-neutral valuation world. With a specific choosing as regards binomial 

parameters, as for instance probabilities and jumps, they demonstrated the convergence of 

the CRR binomial model with the Black-Scholes model. The CRR process has been 

expanded consequently by a variety of investigators. 

 

In this section we demonstrate a modified approach to the selection of lattice parameters 

that contain probabilities and jumps with respect to the binomial model. This general 

approach is feasible to be applied to any multi-dimensional lattice approach. It is identified 

that the elementary circumstances for a lattice model to converge to the Black-Scholes 

model do not provide a sole solution to the lattice parameters. Further constraint(s) on the 

lattice parameters is (are) required. In the modified methodology the lattice parameters are 

selected in such a way that the accuracy of approximation is enhanced. The subsequent 

presentation pertains to the approach applied for the modification of the CRR binomial 

model. 

 

To begin with, suppose you want to model the price movement of a non-dividend stock 

over the period from t = 0 to t = T. It is assumed that in a risk-neutral world, the stock price 

follows the following stochastics process: 

 

 

 

(3.1)
t

t

dS
rdt dz

S
   

 

where the pair of r and σ are steady, are the immediate proportional deviation and volatility 

rates, respectively. A logarithmic alteration elucidates the above process to: 
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2

( )log (3.2)
2

td S r dt dz



 

   
 

 

  

It trails behind promptly that the share value is lognormally distributed. In particular, the 

yield retention period ( ) 0log[ / ]tS S  is normally distributed with mean value 
2

2
r t

 
 

 
 and 

variance 2t . For the most part, the mth non-central moment of the share value S(t) is stated 

by the succeeding formula: 

 

2

[( ( 1) ) ]
2

( ) 0 0[ | ] (3.3)
mr m m t

m m

tE S S S e


 

  

  

Based on the preceding continuous stochastic process we can elaborate a binomial 

estimation, as follows. The time to maturity (T) of an option on the share is divided into N 

equal sub-intervals of length /t T N  . During each period of time, say from k t  to 

 1k t  , with 0,  1,2,. . . ,  1k N  , stock price movements are assumed to follow a 

binomial process, sometimes referred to as the two-jump process. The share value jumps 

from its initial value, S(kΔt), either upward to uS(kΔt) or downward to dS(kΔt), where 

0 1d u   . This binomial branching process is shown in next figure, where p and q are 

the implicit probabilities in the risk neutral world.  

 

 
 

This binomial lattice in overall has four input values, u, d, p , and q. These input values 

clearly determine the progression of share prices, which in turn defines a unique value of an 

option on the share. Nevertheless, these parameters cannot be selected arbitrarily, because 

the option price gained may not converge towards the corresponding limit. It is a broadly 

established fact that the price of an option is the discounted expectation of the final payoff 

according to the appropriate martingale measure. If a discrete-time process (e.g. a binomial 

process) converges against the continuous-time process, which is tracked by the stock price, 

i.e., a Geometric Brownian Motion, then the anticipations from the discrete-time case will 

converge to the continuous-time one.  

 

Thereby, it is guaranteed that the option value gained from a discrete-time model is 

converged to the one from a continuous-time model. 
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Thus, the binomial parameters ought to be decided on such a way that the convergence of 

the share value gained from the discrete-time distribution to the one from a lognormal 

distribution in continuous-time is accomplished. According to Lindeberg’s Central Limit 

Theorem, the subsequent statements are adequate to confirm this convergence: 

 

(i) the possibilities [p and 1-p (=q)] are positive withinside the threshold between zero 

and one but not matched to either zero or one, 

(ii) the possibilities aggregate to 1, 

(iii) jumps (u and d) are unrelated to the share value level, 

(iv) binomial distribution’s mean is the same as the one of the lognormal distribution, 

(v) binomial distribution’s variance is the same as the one of the lognormal 

distribution.  

 

The mathematical illustration of these constraints is: 

 

1 , 0 , 1 (3.4)p q p q     

(3.5)pu qd M   

2 2 2 (3.6)pu qd M V   

 

where, r tM e  , 
2 tV e  , and /t T N  . There are 4 undefined parameters, u, d, p , and 

q withinside the preceding 3 equations. Hence, for a sole answer one extra equation is 

required. The range for this extra constraint is theoretically unlimited, and there is no 

obvious criterion to select among these unlimited options. The optimal choice of this 

equation is the one, with the intention to derive the suited convergence properties of the 

binomial estimation process. With ulterior motive the above intention, the subsequent 

constraint is suggested: 

 

3 3 3 3 (3.7)pu qd M V   

 

This circumstance guarantees that the 3rd moment of the discrete-time procedure is likewise 

accurate in step with to the continuous-time procedure. Since the binomial distribution is a 

skewed one, this circumstance is probably more realistic and bring about an even more 

correct binomial process. 

 

Solving equations (3.4) – (3.7), an answer to the 4 binomial unknowns is emanated, and the 

ensuing binomial model constitute a modified version of the original CRR model, which is 

mentioned to henceforth as the BIN model: 
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Based on (3.9) – (3.10) we have: 
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Equation (3.11) indicates that the binomial lattice grows approximately at the rate (r + σ2).  

In order to estimate the precise cost of an option we can utilize a rearward recurring 

process. Operating rearwards from the maturity of the option, we are capable to estimate 

the value of the option at time k t  through the discounted anticipated value of the option 

at time  1k t  . For a call option on a non-dividend paying share, such a rearward 

recursion can be done with the aid of using the subsequent recursive valuation equation: 

 

     1 1
( ) (3.12)

u d

r t

pC k t qC k t
C k t

e 

         

 

For alternative options, principally American options, some slight adjustments to the 

preceding recursion equation are required. 

 

The BIN design diversifies from the CRR binomial design in the succeeding two features. 

Initially, withinside the CRR version the variance of the share value is solely accurate in the 

threshold as the time step Δt approaches zero. In the BIN version, each of the mean and 

variance are accurate for any given Δt. Secondary, as a substitute of selecting the proper 

third moment (consequently accurate skewness), Cox, Ross, and Rubinstein (1979) decided 

on the subsequent circumstance for modeling plainness: 

1 (3.13)ud    
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3.2 Modified Trinomial Tree Model 

 

Boyle used the CRR model to refine it and proposed a trinomial option pricing model, also 

known as the triple jump model, in which the value of the share can either rise, fall, or 

remain the same over a given period. This procedure resulted in an entire pack of trinomial 

lattice parameters such as probabilities and three jumps. In addition, he examined the 

numerical precision of his model in comparison to that of the CRR binomial model. In a 

later effort, Boyle demonstrated how a five-jump, three-dimensional lattice can be 

developed to value options on two underlying securities, back in 1988. 

 

The trinomial approximation technique is a clear-cut generalization of its binomial 

equivalent. Surmise that you desire to appraise a call option on a share which pays no 

dividend, matures at time t = T and it could be exercised at a striking price of K. For 

instance, suppose that the share value tracks the same stochastic dispersal procedure as 

expressed in the anterior section. Therefore, the trinomial approximation regarding the 

continuous-time procedure of the share value may be elaborated as it is depicted hereafter. 

 

The time to maturity T of an option is separated into N equal sub-interims of length Δt = 

T/N. Throughout every single time span, for instance from k t  to  1k t   (with 

0,  1,2,. . . ,  1k N  ), it is presumed that the value shifts of the share follow a trinomial 

procedure, e.g., a three-jump procedure. The share value can either shift from its opening 

price S(kΔt), up to uS(kΔt), down  to dS(kΔt), or remain stable at mS(kΔt). This kind of 

trinomial process for a share value is presented in the following figure, where u > m > d > 

0, u > 1, and d < 1. 

 

 
 

This trinomial frame has six parameters, u, m, d, pu, pm, and pd, which is comprised of 

three jump parameters and three probability parameters. These parameters clearly define 

the progress of share values, which in turn defines a sole price for an option on the share. 

Once more, as within the binomial circumstance, they cannot be selected arbitrarily. They 

must be bounded in such a way that the convergence of the trinomial procedure to the 

lognormal distribution of the share value in continuous time is accomplished. The 

constraints that are adequate to ensure this convergence are identical to those in the 
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binomial illustration. The fundamental constraints, plus the additional ones, which are 

required are depicted as needed. 

 

1 0 , , 1 (3.14)u m d u m dp p p p p p      

(3.15)u m dp u p m p d M    

2 2 2 2 (3.16)u m dp u p m p d M V    

2 (3.17)ud m  

 

Thus, in this section we demonstrate a modified approach to the selection of lattice 

parameters that contain probabilities and jumps with respect to the trinomial model. This 

general approach is feasible to be applied to any multi-dimensional lattice approach. It is 

identified that the elementary circumstances for a lattice model to converge to the Black-

Scholes model do not provide a sole solution to the lattice parameters. Further constraint(s) 

on the lattice parameters is (are) required. In the modified methodology the lattice 

parameters are selected in such a way that the accuracy of approximation is enhanced. The 

subsequent presentation pertains to the approach applied for the modification of the Boyle 

trinomial model. 

 

3.2.1 The First Modified Trinomial Model 

 

Remember that in the Boyle trinomial version states that “greatest findings were gained 

when the probabilities were approximately equal”. In the modified trinomial lattice where 

m can differ from 1, it is possible to make these probabilities equivalent, so we have: 

 

(3.18)u m dp p p   

 

Once we solve the system of equations (3.14) – (3.18), we come up to a modified trinomial model, 

which is mentioned here as the “TRINl” model: 

 

1
(3.19)

3
u m dp p p    

2 2 (3.20)u K K m    

2 2 (3.21)d K K m    

(3 )
(3.22)

2

M V
m


  

Where, 
4

)3(V
K M


 . 
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3.2.2 The Second Modified Trinomial Model 

 

To elaborate the second modified trinomial model, the subsequent two constraints are 

implemented: 

 

3 3 3 3 3 (3.23)u m dp u p m p d M V    

4 4 4 4 6 (3.24)u m dp u p m p d M V    

These two equations ensure that the third and fourth moments of the trinomial distribution 

are accurate based on their counterparts of the continuous distribution. By solving the 

system of equations (3.14)-(3.17), (3.23), and (3.24) an answer detected is the following: 

 

 

  
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 

  
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(3.27)d

um M u m M V
p

u d m d

  
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 
 

2 2 (3.28)u K K m    

2 2 (3.29)d K K m    

2 4 3, ( ) (3.30)
2

M
m MV K V V    

 

This modified trinomial model is mentioned as the “TRIN2” model. 

The modified trinomial models are instinctively more attractive than the Boyle model. 

Remember that Boyle (1986) discovered the “optimal” solution through a trial-and-error 

experiment. While, here we have a systematic method to solve the problem. Specifically, 

the TRINl model permits balancing the odds (equal probabilities).The only way Boyle 

could accomplish it, was only “approximately”. The cause for this is that m may differ from 

1 in the modified trinomial lattice. On the contrary, only the mean value and variance of the 

discrete-time procedure are accurate in the Boyle version, whilst the third and fourth 

moments (skewness and kurtosis) are also accurate in the TRIN2 version. Because of this 

statement, the average expectation is that the two modified versions are at minimum as 

accurate as the Boyle model. 

 

In addition, both modified versions of the trinomial model behave correctly at the limit as 

0  , whilst the Boyle model does not. Contemplate the price of a call option on a share 
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that does not pay dividends. A little algebra demonstrates that as 0   the Black-Scholes 

formula is downsized to: 

 

 0max ,0 (3.31)rTC S Ke   

 

Hereby, an approximation process should therefore lead to call prices which also 

approximate this limit. Nevertheless, the Boyle version does not converge at all in the case 

where 0  . It is frivolous to demonstrate that when 0  , the Boyle trinomial lattice 

is downscaled to the one shown in next figure. Undoubtedly, the Boyle lattice frame is 

inaccurate in this thresholding situation. 

 
 

All the same, the modified versions do converge to the accurate solution when 0  , as 

indicated in the equation (3.31), and the lattice frame for the two modified models is 

downscaled to the one shown in figure (a) and the one shown in figure (b), respectively.  
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Chapter 4 

 

NUMERICAL ACCURACY AND EMPIRICAL STUDY 

 

In this chapter we will apply at first numerical analysis, in order to study the accuracy of 

the models we have mention  until now under different precision levels. After that, by using 

the market data we have chosen we perform an empirical study, so as to determine the 

ability of the models, which describes the price of the options and examines if the results 

coming out the numerical accuracy analysis are confirmed. 

 

4.1 Numerical Accuracy 

 

The mathematical precision and union properties of the altered estimate strategies, when 

contrasted with the CRR and Boyle models are analyzed in this segment. By and large five 

grid techniques are examined and analyzed. Mathematical recreations are performed in 

Matlab to figure the worth of a stock option that  do not pay dividends utilizing the 

information boundary esteems given as following: 

 

 
 

Table 4.1 depicts the worth of the European call options obtained from the five programs in 

the network using time intervals of 5, 10, 20, …, 100. Obviously, the value of the call 

option obtained from all methods soon will converge to the price of Black and Scholes. 

Using 100 time-steps, the prices generated by all methods are within 3 cents of the Black 

and Scholes price, and the Black and Scholes price ranges from $ 24.7643 to $ 9.7205. 

Similar results were obtained from European put option studies using the same option 

parameter values and are recapitulated in Table 4.2. 

S0 K r sigma T

200 185, 200, 215 4% 25% 6 months
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Table 4.1 – European Call prices 

 

 
Table 4.2 – European Put prices 

 

Time Steps (N) CRR BIN BOYLE TRIN1 TRIN2 BS

5 24,2134 24,9895 24,9190 24,8706 24,6368 24,7643

10 24,9722 24,6763 24,8206 24,8303 24,8837 24,7643

20 24,6317 24,8551 24,8343 24,8230 24,8114 24,7643

40 24,8248 24,7936 24,7959 24,7989 24,7837 24,7643

60 24,7949 24,7590 24,7737 24,7607 24,7318 24,7643

80 24,7348 24,7740 24,7786 24,7816 24,7754 24,7643

100 24,7709 24,7804 24,7773 24,7714 24,7665 24,7643

5 16,7084 16,0900 15,9298 15,9762 16,3427 16,0160

10 15,6701 16,3360 15,9651 16,0094 15,9332 16,0160

20 15,8417 16,1486 15,9894 16,0237 16,0098 16,0160

40 15,9286 15,9768 16,0024 16,0273 16,0382 16,0160

60 15,9576 16,0036 16,0069 16,0271 15,9854 16,0160

80 15,9722 16,0416 16,0091 16,0264 16,0354 16,0160

100 15,9810 16,0474 16,0105 16,0257 16,0256 16,0160

5 9,2035 10,3525 9,9354 9,9903 9,2919 9,7205

10 9,9851 9,7823 9,7140 9,6433 9,5708 9,7205

20 9,6416 9,8128 9,8057 9,8004 9,6810 9,7205

40 9,7670 9,7954 9,7333 9,7025 9,7213 9,7205

60 9,7695 9,7773 9,7457 9,7480 9,7296 9,7205

80 9,7224 9,7635 9,7165 9,7298 9,7318 9,7205

100 9,6943 9,7528 9,7366 9,7239 9,7322 9,7205

Exercise Price, K=215

Exercise Price, K=185

Exercise Price, K=200

Time Steps (N) CRR BIN BOYLE TRIN1 TRIN2 BS

5 5,5502 6,3263 6,2558 6,2074 5,9735 6,1011

10 6,3089 6,0131 6,1574 6,1670 6,2205 6,1011

20 5,9685 6,1919 6,1710 6,1598 6,1481 6,1011

40 6,1616 6,1303 6,1326 6,1356 6,1205 6,1011

60 6,1317 6,0957 6,1105 6,0975 6,0685 6,1011

80 6,0716 6,1108 6,1154 6,1183 6,1122 6,1011

100 6,1076 6,1171 6,1140 6,1081 6,1033 6,1011

5 12,7482 12,1297 11,9696 12,0160 12,3824 12,0557

10 11,7098 12,3758 12,0048 12,0491 11,9730 12,0557

20 11,8815 12,1884 12,0291 12,0634 12,0496 12,0557

40 11,9683 12,0166 12,0421 12,0671 12,0779 12,0557

60 11,9974 12,0433 12,0466 12,0668 12,0252 12,0557

80 12,0119 12,0814 12,0489 12,0661 12,0752 12,0557

100 12,0207 12,0872 12,0502 12,0654 12,0653 12,0557

5 19,9462 21,0952 20,6781 20,7330 20,0346 20,4632

10 20,7279 20,5250 20,4567 20,3860 20,3135 20,4632

20 20,3843 20,5555 20,5484 20,5432 20,4237 20,4632

40 20,5097 20,5381 20,4760 20,4452 20,464 20,4632

60 20,5122 20,5200 20,4884 20,4907 20,4723 20,4632

80 20,4652 20,5062 20,4592 20,4725 20,4745 20,4632

100 20,4370 20,4955 20,4793 20,4666 20,4749 20,4632

Exercise Price, K=200

Exercise Price, K=215

Exercise Price, K=185
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European Call Option Prices with Strike Price=185 

 

 
Graph 4.1 

 

 We can observe that, Tian Trin1 and Boyle almost concur with Black and Scholes from 

the beginning, where Time steps are equal to 5. 

 From N=40 and thereon all models are close enough to Black and Scholes line. 
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European Call Option Prices with Strike Price=200 

 

 
Graph 4.2 

 

 We can observe that, Tian Trin1 and Boyle almost concur with Black and Scholes from 

the beginning, where Time steps are equal to 5. 

 CRR seems to be the least accurate model. 
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European Call Option Prices with Strike Price=215 

 

 
Graph 4.3 

 

 We can observe that, Tian Trin1 and Boyle almost concur with Black and Scholes from 

the beginning, where Time steps are equal to 5. 

 CRR and Tian Bin seem to be the least accurate models. 

 From N=40 and thereon all models are close enough to the Black and Scholes line. 
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European Put Option Prices with Strike Price=185 

 

 
Graph 4.4 

 

 We can observe that, Tian Trin1 and Boyle almost concur with Black and Scholes from 

almost the beginning, where Time steps are equal to 10. 

 As time steps increased, accuracy is improved too. 
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European Put Option Prices with Strike Price=200 

 

 
Graph 4.5 

 

 We can observe that, Tian Trin1 and Boyle almost concur with Black and Scholes from 

the beginning, where Time steps are equal to 5. 

 From N=40 and thereon all models are close to the Black and Scholes line. 

 

  



46 
 

 

European Put Option Prices with Strike Price=215 

 

 
Graph 4.6 

 

 We can observe that, Tian Trin1 and Boyle almost concur with Black and Scholes from 

almost the beginning, where Time steps are equal to 10. 

 CRR and Tian Bin seem to be the least accurate models. 

 

The valuation of an American put option on a stock that does not pay dividends is very 

different from the valuation of an American call option on the same stock. Exercising 

American put options with a positive likelihood before expiration may be the best option. 

Therefore, there is no shut structured answer to the value of American put options. In order 

to examine the convergence characteristics of various lattice approaches applied to 

American put options, the 400-step Tian Trin1 trinomial program is used to calculate the 

precise price of American put options. The outcomes are listed in Table 4.3. Comparative 

combination properties are displayed by these outcomes. Using 100 time-steps, the prices 

reported by all methods are within 2 cents of the "accurate" price of $21,2049 to $6.2493. 

However, in order to further study the comparative accuracy of the five lattice processes, 

including three modified versions and the CRR and Boyle processes, it is necessary to 

accurately point out the meaning of "precision". The precision of a guess strategy is 

estimated by the base number of steps expected to accomplish a given accuracy level. For 

example, in case it is necessitated that the guess mistake be under 5 cents, and in case it is 

discovered that estimate technique (X) needs no less than 70 stages to accomplish a 
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particularly required precision, contrasted with 50 stages for guess strategy (Y), then, at that 

point technique (Y) is considered more exact than (X). 

 

 
Table 4.3 – American Put prices 

 

  

Time Steps (N) CRR BIN BOYLE TRIN1 TRIN2 ACCURATE*

5 5,8595 6,3973 6,4214 6,3690 6,0478 6,2493

10 6,4834 6,1234 6,2947 6,3001 6,3376 6,2493

20 6,1591 6,3390 6,3176 6,3069 6,2677 6,2493

40 6,3052 6,2689 6,2764 6,2788 6,2522 6,2493

60 6,2825 6,2476 6,2591 6,2472 6,2101 6,2493

80 6,2279 6,2533 6,2601 6,2624 6,2525 6,2493

100 6,2529 6,2628 6,2599 6,2546 6,2432 6,2493

5 13,0826 12,5865 12,4185 12,4153 12,6284 12,4137

10 12,2087 12,6940 12,4060 12,4112 12,2823 12,4137

20 12,3110 12,5449 12,4089 12,4199 12,3605 12,4137

40 12,3606 12,3926 12,4099 12,4221 12,4202 12,4137

60 12,3767 12,3973 12,4099 12,4209 12,3729 12,4137

80 12,3850 12,4312 12,4098 12,4202 12,4182 12,4137

100 12,3900 12,4378 12,4097 12,4194 12,4135 12,4137

5 20,8749 21,6829 21,3432 21,3740 20,7194 21,2049

10 21,4292 21,3290 21,2383 21,1769 20,9800 21,2049

20 21,1536 21,3055 21,2787 21,2755 21,1020 21,2049

40 21,2617 21,2721 21,2236 21,1972 21,1730 21,2049

60 21,2480 21,2510 21,2258 21,2277 21,1881 21,2049

80 21,2076 21,2380 21,2054 21,2113 21,2003 21,2049

100 21,1930 21,2284 21,2180 21,2087 21,2015 21,2049

Exercise Price, K=185

Exercise Price, K=200

Exercise Price, K=215
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American Put Option Prices with Strike Price=185 

 

 
Graph 4.7 

 

 We can observe that, Tian Trin1 and Boyle almost concur with Black and Scholes from 

almost the beginning, where Time steps are equal to 10. 

 CRR and Tian Trin2 seem to be the least accurate models. 
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American Put Option Prices with Strike Price=200 

 

 
Graph 4.8 

 

 We can observe that, Tian Trin1 and Boyle concur with Black and Scholes from the 

beginning, where Time steps are equal to 5. 

 CRR seems to be the least accurate model. 
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American Put Option Prices with Strike Price=215 

 

 
Graph 4.9 

 

 We can observe that, Tian Trin1 and Boyle almost concur with Black and Scholes from 

the beginning, where Time steps are equal to 5. 

 From N=40 and thereon all models are close to the Black and Scholes line. 

 

Accuracy examination 

 

Officially, the precision of an estimate technique might be characterized as follows: 

Consider a boundless sequence {P(n)}, which merges to a positive breaking point P*. Given 

an accuracy level, i.e., a small positive number ε, characterize a positive integer Nε, 

*

*

( )
: , (4.1)

P n P
N Min N for all n N

P
 

  
   

  
 

This number N, is alluded to as the minimum convergence step (MCS) comparative with ε. 

In case P* is the exact cost of an options, and P(n) is the cost of the choice acquired from a 

n-step estimate technique, then, at that point the MCS (i.e., N,) of the value arrangement 

estimates the exactness of the guess strategy at the ε accuracy level. The more modest the 

MCS, the more precise the method. 

This meaning of exactness accentuates the significance of the steadiness of assembly. It 

distinguishes the base number of steps that are expected to guarantee that the overall 

estimation blunder be not exactly the necessary accuracy level for every resulting step. The 
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more modest the MCS, the more exact the estimation. A model might assist with 

representing this idea. Consider two groupings: 
1 1

1 1
2

n nn
and b

n

   

      
   

. Both 

groupings converge to 1. Unmistakably the grouping {an} meets to 1 a lot quicker than the 

other grouping. To apply the idea of MCS to those two groupings, consider ε = 0.05. The 

MCS is 5 for the grouping {an} and 21 for the grouping {bn}. 

 

At this juncture, the idea of least assembly step is applied to research the near exactness of 

the five cross section techniques considered previously.' The option boundary esteems 

displayed in Table 4.1 are utilized for the investigation underneath. The worth of an option 

is determined for every grid technique utilizing time steps going from 1, 2, 3, … , 400. By 

contrasting these option prices and the exact worth, the MCS is then gotten given an 

exactness level. Call options on a share that pays no dividend are analyzed first. A nearby 

structure answer for the worth of such an option is accessible and it is given by the notable 

Black-Scholes equation. Table 4.4 reports the MCS esteems at three exactness levels, 5%, 

1% and 0.5%. 

 

European call option on share that pays no dividend 

 

 
Table 4.4 – The accuracy of the proposed methods as compared to the CRR binomial 

and the Boyle trinomial – Call option on share that pays no dividend 

 

At the 5% exactness level, all methods are extremely precise. Tian Trin1 presents the 

lowest average MCS of 2.3, while both CRR and Tian Bin present the highest average 

MCS of 4.7 and 3.0, individually.  

CRR BIN BOYLE TRIN1 TRIN2

185 2 1 2 2 2

200 5 2 2 1 1

215 7 6 4 4 5

Average 4,7 3,0 2,7 2,3 2,7

185 9 9 5 5 5

200 22 19 3 3 16

215 30 18 7 7 13

Average 20,3 15,3 5,0 5,0 11,3

185 22 18 6 5 16

200 43 25 7 3 18

215 61 71 26 29 19

Average 42,0 38,0 13,0 12,3 17,7

Precision level, e=5%

Precision level, e=1%

Precision level, e=0,5%

Exercise 

Price (K)

Numerical Method
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At the 1% exactness level, Boyle and Tian Trin1 are the most accurate methods and present 

the lowest average MCS of 5.0. CRR is the least accurate and presents an average MCS of 

20.3, while Tian Bin is more accurate with an average MCS of 15.3.  

At the 0.5% exactness level, Tian Trin1 is the most accurate and presents the lowest 

average MCS of 12.3. Boyle is close enough with an identical average MCS of 13.0, while 

Tian Trin2 is less accurate with an average MCS of 17.7. However, Tian Trin2 in the OTM 

case with a strike price at 215 is the most accurate with a MCS of 19 against Tian Trin1 

which although overall is the best model, in the OTM has a MCS of 29. CRR is the least 

accurate and presents the highest average MCS of 42.0, compared to a value of 38.0 

presented by the Tian Bin method.  

Summing up the outcomes at all three exactness levels, Boyle and Tian Trin1 are the most 

precise and very little discrepancies are seen between them. CRR is the most un-precise 

strategy and is fundamentally less exact than Tian Bin. It is additionally certain that all 

trinomial techniques are substantially more precise than binomial strategies. 

 

European put option on share that pays no dividend 

 

 
Table 4.5 – The accuracy of the proposed methods as compared to the CRR binomial 

and the Boyle trinomial – Put option on share that pays no dividend 

 

At the 5% exactness level, Tian Trin1 is the most precise, with the least presented average 

MCS of 2.7, while Boyle and Tian Trin2 are marginally less precise presenting an average 

MCS of 3.0 and 4.0, respectively. CRR is the least accurate and presents the highest 

average MCS of 5.7, while Tian Bin is more accurate presenting an average MCS of 5.0.  

At the 1% exactness level, Tian Trin1 is again the most accurate, with the lowest reported 

average MCS of 9.7, while Boyle’s accuracy is slightly lower with an average MCS of 

11.0. The accuracy of Tian Trin2 is much lower with an average MCS of 20.0. CRR is the 

CRR BIN BOYLE TRIN1 TRIN2

185 9 9 5 4 5

200 6 2 2 2 4

215 2 4 2 2 3

Average 5,7 5,0 3,0 2,7 4,0

185 45 48 22 20 34

200 29 21 5 3 17

215 11 12 6 6 9

Average 28,3 27,0 11,0 9,7 20,0

185 88 94 50 47 92

200 59 52 9 5 18

215 28 18 7 7 13

Average 58,3 54,7 22,0 19,7 41,0

Precision level, e=1%

Precision level, e=0,5%

Exercise 

Price (K)

Numerical Method

Precision level, e=5%
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least accurate with the highest average MCS of 28.3, while Tian Bin’s average MCS of 

27,0, which is not much better.  

At the 0.5% exactness level, Tian Trin1 is still the most accurate with the lowest average 

MCS of 19.7, although Boyle is only slightly worse with an average MCS of 22.0. On the 

other hand, the precision of Tin Trin2 is much lower with an average MCS of 41.0. CRR is 

the least accurate with the highest average MCS of 58.3, while Tian Bin's performance is 

better, with an average MCS of 54.7. 

Summing up the aftereffects of the European put options, Boyle and Tian Trin1 are the 

most precise with practically indistinguishable MCSs, while CRR is the most un-exact with 

the most elevated averages MCSs. Tian Bin and Tian Trin2 are mediocre. 

American put option on share that pays no dividend 

 

 
Table 4.6 – The accuracy of the proposed methods as compared to the CRR binomial 

and the Boyle trinomial – American put option on share that pays no dividend 

 

At the 5% exactness level, all strategies are exceptionally precise. Tian Trin1 presents the 

lowest average MCS of 2.0, while both CRR and Tian Bin present the most elevated 

average MCS of 6.0 and 4.3, respectively.   

At the 1% exactness level, Tian Trin1 and Boyle are the most exact strategies and present 

the lowest averages MCS of 9.0 and 9.3 , respectively. CRR is most un-precise and presents 

an average MCS of 23.0,while Tian Bin is more exact with an average MCS of 20.7. 

At the 0.5% exactness level, Tian Trin1 is the most exact and presents the lowest average 

MCS of 11.0. Boyle is close enough with an indistinguishable average MCS of 11.3, while 

CRR BIN BOYLE TRIN1 TRIN2

185 9 9 4 4 5

200 6 2 2 1 1

215 3 2 2 1 3

Average 6,0 4,3 2,7 2,0 3,0

185 32 33 21 20 35

200 26 21 2 2 17

215 11 8 5 5 11

Average 23,0 20,7 9,3 9,0 21,0

185 61 94 25 23 92

200 52 27 3 3 20

215 26 19 6 7 20

Average 46,3 46,7 11,3 11,0 44,0

Precision level, e=5%

Precision level, e=1%

Precision level, e=0,5%

Exercise 

Price (K)

Numerical Method
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Tian Trin2 is less exact with an average MCS of 44.0. CRR and Tian Bin are the most un-

precise and present the most noteworthy average MCS of 46.3 and 46,7, respectively.  

Summing up the outcomes at all three exactness levels, Boyle and Tian Trin1 are the most 

precise and very little discrepancies are noted between them. CRR is the most un-exact 

strategy and is significantly less exact than Tian Bin in the ATM and ITM cases per 

accuracy level e=0.5%. It is additionally evident that all trinomial techniques are 

substantially more exact than binomial strategies. Of the trinomial techniques, Tian Trin1 

and Boyle are the most exact and report practically indistinguishable MCSs. Tian Trin2 is 

less precise than its trinomial partners. 

In synopsis, apparently all trinomial strategies are more exact than binomial models. Albeit 

a N-step trinomial strategy includes a larger number of calculations than a N-step binomial 

method, the huge improvement in exactness appears to legitimize the extra calculations that 

are required on a money saving advantage premise. All in all, to accomplish a given degree 

of accuracy, the trinomial process appears to require less calculations than its binomial 

partner. For example, to get the cost of a call option on a share that pays no dividend 

permitting a blunder of 0.5%, a 12-step Tian Trin1 trinomial strategy is for the most part 

required which requires checking 240 hubs and assessing an articulation at every hub, while 

a 38-step Tian Bin binomial technique is by and large required which requires checking 742 

hubs and assessing an articulation at every hub. In this manner, the trinomial method 

seems, by all accounts, to be more cost efficient than the binomial methodology. Besides, 

of the two binomial techniques, Tian Bin is more precise when applied to call options and 

American put options. At long last, of the trinomial techniques, Tian Trin1 and Boyle are 

indistinguishably precise while Tian Trin2 is less exact. 

 

4.2 Empirical Study 

 

In this section we will experientially approach the lattice models of CRR (1979) & Boyle 

(1988) and Tian (1993) elaborated in the preceding chapters and compare them in terms of 

their effectiveness. More specifically: 

 

 Collect our data from the source mentioned below and process them appropriately 

in an excel file. 

 Estimate the parameters which have been mentioned before and bring the most 

accurate pairing of the models’ prices with the observed market prices. 

 By estimating the parameters, we will check the forecasting ability of the models. 
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4.2.1 Empirical Study Collected Data 

 

For the purpose of conducting the empirical study, we drew upon data from Thompson 

Reuters for American-style market options, with the underlying asset being the Apple stock 

for the 09/07/2020 – 07/05/2021 period that was chosen for the various historical purchase 

options prices were available at the time. 

 

Consequently, the limited availability of historical prices of market options was a deterrent 

to the conduct of this empirical study. Even so, the Apple stock was preferred after meeting 

the following criteria: 

 

 It is listed on the American stock exchange. 

 Its stock has a significant market value. 

 The volume of securities traded on daily basis is satisfactory. 

 

We consider that Apple stock’s dividend distribution policy has no significant impact on 

the price of the stock. It should be mentioned that the lattice models we demonstrate do not 

include a dividend, although they can be expanded appropriately. 

 

Furthermore, it is more than crucial to point out that the American type of market options in 

the underlying asset of a share that pays no dividend, function in an identical way as the 

European type of market options, regarding the terms of early exercise. 

 

Videlicet, this kind of options is not wised to be exercised before the maturity. 

Nevertheless, in case of the expectation that the stock is going to pay a dividend, it may be 

best to exercise the option before maturity. This could be explained by considering that 

when the dividend is given, the share price shifts downwards and consequently the 

purchase option will be less appealing since its value has decreased. 

 

In order to prove that, suppose we possess an American type call option, which at some 

point of time (t1) before maturity (T) is deep in the money, so the price of the stock is 

1 0S S , where S0 is the stock price at time zero when we purchased the call option. Therefore, the 

value of the option at t1 will be C1. We know that 1 1C c , where c1 is the value of the respective 

European type call option. Additionally, we are familiar with the following condition:  

 

𝐶1 ≥ 𝑐1 ≥ 𝑆𝑡1 −𝐾𝑒−𝑟(𝑇−𝑡1) > 𝑆𝑡1 −𝐾 

 

As a result, at that point in time 1( )t T , the holder of the option owns an asset with a 

larger value than the one that its early exercise would bring him. 
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For the purpose of the specific study, since we assume that the dividend has a negligible 

impact on the share value, we will treat the American type call option of American type as 

a European type call option. A European type option was not preferred in the first place, as 

the market considers them platitude and either do not exist or are not traded and 

consequently we do not have an adequate quantity of historical data. 

 

For the prosecution of the experiential examination, we needed historical values of the 

following data:  

 

 The values of the call options for different maturities and for different exercise 

prices. 

 The exercise prices for the above call options. 

 The daily stock price of the Apple stock. 

 The implied volatility of every call option. 

 The yield on the American 10 years Treasury Note. 

 

The data we used refer only to call options to conserve time for the execution of the 

empirical study. Specifically, 12 call options were used for each day and the data implied 

was for 4 specific maturities and 3 exercise prices. The options tickers acquired from 

Thomson Reuters Database are depicted bellow: 

 

 
 

4.2.2 Parameters Estimation 

 

Broadly speaking, from the observations of the sample, we can compute the point estimate 

of the parameter of a random variable. The point estimate of a parameter is the statistic that 

we compute from the sample. It is a value calculated based on the sample data and 

represents the actual value of the population relative parameter. 

 

In the models we are investigating, the volatility σ of the share price or the return on the 

share is an unknown parameter, so this parameter must be evaluated. For this process we 

use the iterative algorithm Levenberg Marquardt (1944 and 1963), that assumes that we 

have a model and a set of parameters to estimate. 

 

The algorithm detects those values of the parameters for which the squares of the 

differences between the values of the options derived from the model (theoretical values) 

AAPL US 6/18/21 C120 Equity AAPL US 6/18/21 C130 Equity AAPL US 6/18/21 C140 Equity

AAPL US 9/17/21 C120 Equity AAPL US 9/17/21 C130 Equity AAPL US 9/17/21 C140 Equity

AAPL US 1/21/22 C120 Equity AAPL US 1/21/22 C130 Equity AAPL US 1/21/22 C140 Equity

AAPL US 6/17/22 C120 Equity AAPL US 6/17/22 C130 Equity AAPL US 6/17/22 C140 Equity

Tickers
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and the values of the market options (actual values) have the lowest possible value. The 

procedure of minimizing square errors is illustrated by the following relationship: 

 

 
2

mod

0

arg min (4.2)market el

i i

i

f f




    

 

In which state   is the estimated parameter for σ and N is the number of days the sample 

observations were made (in sample).  

 

The Levenberg-Marquardt algorithm was developed in the early 1960s to solve nonlinear 

least squares problems (least square curve fitting problems). Fewer least squares problems 

occur when a parameter   is placed in a data sample by minimizing the sum of the squares 

of the errors between the sample data and the function. If the fitting function in the 

parameters is non-linear, the least squares problem is non-linear. The nonlinear least 

squares method repeatedly reduces the sum of squares of the errors between the function 

and the data sample through a series of parameter value updates.  

 

Suppose we have N observations iy , where 1,2,...,i N  and a function : : ng R R  with 

parameters 1 2, ,..., nx x x , where n N . In this case iy  are the allocation prices as we 

collected them from the market. Therefore, we calculate the model values   i
g x y  and 

then compute the residuals   ii
n x y y  . Therefore, we have calculated a N dimensions 

vector which contains the residuals  1 2, ,...,
T

nR r r r . So, the following minimization 

problem needs to be solved: 

 

       
2

1

1 1
min (4.3)

2 2

N
T

i

x i

f x r x R x R x


   

 

Levenberg and Marquardt (1944 and 1963) in order to find the answer to the previous 

problem, proposed to use an iterative algorithm that combines the Newton-Gauss method 

and the Steepest Descent method (expansion of the Laplace method to approximate an 

integral). 

 

In his article (1944) Levenberg suggests the calculation of a dk search direction, as a 

solution to the Newton-Gauss equation: 
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   ' ' ' '( ) ( ) ( ) ( ) (4.4)k k k T k

k kR x R x I d R x R x    

 

Where, I is the unitary matrix and k  is an amortization parameter with 0k  . The table 

on the left of the equation is defined positively, so the solution kd  gives a fair direction for 

the function f  for all positive amortization parameters. 

 

For small k , the iterative algorithm Levenberg - Marquardt (1944 & 1963) is reminiscent 

of the iterative Newton-Gauss method and shows a quadratic rate of convergence for kx   

values that are close to *x . 

 

For repetitions that are not optimal, the amortization parameter is too large, and the kd  

search direction is approximately:  

 

' '1
( ) ( ) (4.5)k T k

k

k

d R x R x


   

 

The above relationship is a step of the Steepest Descent method. The selection of the 

amortization parameter directly affects the stability of the procedure. The most common 

choice is:  

 

 0 0 1,2,...,
max ( , ) (4.6)

i ni
D i i 


   

where   is the parameter related to the initial prognostication for the estimated parameter. 

 

In our analysis we find the prices of 12 call options for a period starting at 09.07.2020 and 

ending at  23.04.2021 and we apply the iterative algorithm Levenberg - Marquardt (1944 

and 1963) using the programming language MATLAB and more specifically the command 

Lsqnonlin. We give an initial value to the parameters that we want to estimate. The value 

we think is most likely is usually used so that when we run the algorithm on the model, we 

get a theoretical value with the least possible error relative to the actual value. 

 

Therefore, we first estimate the unknown parameters for all call options (in sample). Then 

we calculate the theoretical prices of the call options that we have according to the models 

and the estimated parameters as they turned out for each day. The theoretical values were 
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calculated to represent the absolute error, which, when combined with the squared 

residuals, is useful for drawing conclusions and is expressed as follows:  

mod (4.7)absolute error market price el price    

4.2.3 Efficiency study of the models (In the sample) 

 

CRR results 

In the CRR model there is one parameter to be estimated, the stock price volatility σ. The 

accompanying measurements are given in Table 4.7. The average value for the daily 

estimates we made for σ is 0.45423, with a standard deviation of 0.27965. The minimum 

and maximum of the parameter sigma are 0.28705 and 1.69545, respectively. 

 

Tian Bin results 

In the Tian Bin model there is one parameter to be estimated, the stock price volatility σ. 

The accompanying measurements are given in Table 4.7. The average value for the daily 

estimates we made for σ is 0.45512, with a standard deviation of 0.28238. The minimum 

and maximum of the parameter sigma are 0.28727 and 1.70699, respectively. 

 

Boyle results 

In the Boyle model there are two parameters to be considered, the stock price volatility σ 

and the parameter λ used to bounce u of the stock price. The accompanying measurements 

are given in Table 4.7. The average value for the daily estimates we made for σ and λ are 

0.45380 and 1.48310 respectively, with a standard deviation of 0.27736 and 0.48672 

respectively. The minimum and maximum of the two parameters are 0.28692 and 0.99353 

for the minimum, while 1.68156 and 3.5 for the maximum, for each parameter. 

 

Tian Trin1 results 

In the Tian Trin1 model there is one parameter to be estimated, the stock price volatility σ. 

The accompanying measurements are given in Table 4.7. The average value for the daily 

estimates we made for σ is 0.45317, with a standard deviation of 0.27624. The minimum 

and maximum of the parameter sigma are 0.28702 and 1.67333, respectively. 

 

Tian Trin2 results 
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In the Tian Trin2 model there is one parameter to be estimated, the stock price volatility σ. 

The accompanying measurements are given in Table 4.7. The average value for the daily 

estimates we made for σ is 0.45449, with a standard deviation of 0.27940. The minimum 

and maximum of the parameter sigma are 0.28731 and 1.67110, respectively. 

 

Total model results 

 

 

Graph 4.10 

 

 We observe that residuals are negligible, except for the period between 09/08/2020 to 

09/09/2020. 

 All model residuals follow an almost identical path for N=100. 

 

 
Table 4.7 

 

Regarding the call options, we have utilized and for the specific time of period we have 

collected our data, based on the Table 4.7,  we observe that residuals do not differ 

significantly because of the expansion of the quantity of time steps N. Having considered 

the 12 options for valuation, whose market prices are affected by different parameters that 

N=100 Sigma Residuals Sigma Residuals Sigma Lamda Residuals Sigma Residuals Sigma Residuals

Average 0,45423 110,53623 0,45512 109,58794 0,45380 1,48310 107,84297 0,45317 107,59111 0,45449 108,64079

Standard deviation 0,27965 338,00829 0,28238 333,88695 0,27736 0,48672 329,16719 0,27624 328,54055 0,27940 330,71367

Minimum 0,28705 0,04423 0,28727 0,06705 0,28692 0,99353 0,04319 0,28702 0,05699 0,28731 0,04763

Maximum 1,69545 1797,32847 1,70699 1713,78349 1,68156 3,50000 1667,79431 1,67333 1699,11466 1,67110 1690,69039

CRR Tian Bin Boyle Trin Tian Trin1

Parameter estimation results

Tian Trin 2
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our models doesn't consider, like the interest for an option at a specific time, it makes sense 

to have such discrepancies. Also, we should point out that the results from the numerical 

accuracy are confirmed here, as we can state that Boyle and Tian Trin1 are the best models 

with residuals being 107,84297 and 107,59111 for N=100. Tian Trin2 is less accurate with 

residuals being 108,64079 for N=100. The least accurate model is CRR with residuals 

being 110,53623 for N=100. Summarizing the results for 100 N-steps level, Boyle and Tian 

Trin1 are the most accurate and very little discrepancies are observed between them. CRR 

is the least accurate method. It is also clear that all trinomial methods are much more 

accurate than binomial methods. 

4.2.4 Efficiency study of the models (Out of sample) 

 

After completing the estimation of the parameters of our models, the assessment of their 

forecasting capacity follows. That is, we will use the average values of the parameters we 

estimated from 21/04/2021 to 23/04/2021 (estimates of the last 3 days in Sample) to 

calculate the theoretical value of the call options according to our models for the period 

from 26/04/2021 to 07/05/2021 (Out of Sample) with a time-step of N=100. 

The theoretical values of the call options were used to calculate the absolute forecast error, 

in order to obtain the square residuals. The absolute error is expressed as follows: 

mod (4.8)absolute error market price el forecast price   

The fact that the specific models manage to describe the contract price in the sample does 

not mean that this should also apply to prices outside the valuation sample. For this reason, 

we will control their behavior at out of sample prices. 
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Forecasting capability for all options’ maturities, N=100 

 

 
Graph 4.11 

 

 We observe that there are very small differences between the models. Therefore, we are 

going to investigate where those differences came from. 

 The residuals between the prices we calculated are small in the first days, following the 

price of the residuals of the last valuation day (In Sample) and gradually increasing. 

 

 
Table 4.8 

 

CRR TianBin BoyleTrin TianTrin1 TianTrin2

N=100 Residuals Residuals Residuals Residuals Residuals

26/4/2021 0,91648 0,85697 0,83383 0,83544 0,85838

27/4/2021 1,57374 1,50388 1,48842 1,49445 1,50696

28/4/2021 1,83775 1,79981 1,74231 1,67438 1,80181

29/4/2021 4,68932 4,70348 4,60280 4,61506 4,65240

30/4/2021 6,55025 6,55531 6,45457 6,45619 6,52103

3/5/2021 8,27857 8,38329 8,18511 8,21274 8,37200

4/5/2021 5,49263 5,51965 5,35562 5,31873 5,44539

5/5/2021 7,46097 7,44161 7,25848 7,12760 7,31188

6/5/2021 11,14453 11,15914 10,96190 10,93996 11,10249

7/5/2021 7,68806 7,63319 7,42020 7,59234 7,69076

Average 5,56323 5,55563 5,43032 5,42669 5,52631

Forecasting Ability



63 
 

 

Summarizing the results that are presented at table 4.8, Tian Trin1 and Boyle are the most 

accurate and very little differences are observed between them, with average residuals of 

5.42669 and 5.43032, respectively. CRR is the least accurate method with an average 

residual of 5.56323 and is less accurate than BIN which has average residuals of 5.55563 . 

It is also clear that all trinomial methods are much more accurate than binomial methods.  

 

Afterwards we examine the forecasting capability by segregating the options in three 

different periods, the short-term for the ones that are expiring at 18/06/2021, the mid-term 

for the ones that are expiring at 17/09/2021 and at 21/01/2022 and the long-term for the 

options that are expiring at 17/06/2022. 

 

Forecasting capability for short-term options (expiring at 18/06/2021),  N=100 

 

 
Graph 4.12 

 

 The one-month options seem to follow the same route. 

 The residuals between the prices we calculated are small in the first days, following the 

price of the residuals of the last valuation day (In Sample) and gradually increasing. 
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Forecasting capability for mid-term options (expiring at 17/09/2021 & 21/01/2022),  

N=100 

 

 
Graph 4.13 

 

 The mid-term options as we approach the 10th day appear the same behavior and it is 

impossible to draw a conclusion based on the graph. 

 The residuals between the prices we calculated are small in the first days, following the 

price of the residuals of the last valuation day (In Sample) and gradually increasing. 
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Forecasting capability for long-term options (expiring at 17/06/2022),  N=100 

 

 
Graph 4.14 

 

 The twelve-month options seemed to have differences between the different forecasting 

models, however those discrepancies are also low. 

 The residuals between the prices we calculated are small in the first days, following the 

price of the residuals of the last valuation day (In Sample) and gradually increasing. 

 

 
Table 4.9 

 

In order to draw clear conclusions, it is necessary to look at our numerical results that are 

depicted at table 4.9.  

Regarding short-term options we observe that the model with the best forecasting ability is 

the CRR with average residuals of 1.14407, while the Tian Bin model is the one with the 

worst predictability with average residuals being 1.15633.  

Short-term options Mid-term options Long-term options

N=100 Average Residuals Average Residuals Average Residuals

CRR 1,14407 1,68552 1,04813

BIN 1,15633 1,67972 1,03986

BOYLE 1,14755 1,65138 0,98002

TRIN1 1,15080 1,65323 0,96943

TRIN2 1,15318 1,67668 1,01977

Forecasting Ability
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As concerns the mid-term options, Boyle seems to have the best accuracy with average 

residuals being 1.65138, while Tian Trin1 is lightly less accurate with average residuals of 

1.65323. Whereas the CRR is the least accurate with average residuals being 1.68552.  

Finally, regarding long-term options, Tian Trin1 is the most accurate with the lowest 

average residuals of 0.96943, although Boyle is slightly worse with an average residual of 

0.98002. CRR is the least accurate with the highest average residual of 1.04813, while Tian 

Bin performs better with an average residual of 1.03986. 

Summarizing the results at all three maturities, Tian Trin1 and Boyle are the most accurate 

and very little differences are observed between them. CRR is the least accurate method 

and is less accurate than BIN. It is also clear that all trinomial methods are much more 

accurate than binomial methods, apart from the short-term period accuracy level, where the 

result should not concern us, because compared to the long-term situation, there is less 

uncertainty in the short term. Over time, a factor that contains uncertainty is mainly 

volatility σ. In Boyle's (1986) model and Tian’s models, volatility is used repeatedly when 

calculating jump probability, greatly affecting the theoretical value of options. 
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CHAPTER 5 

 

CONCLUSIONS 

 

Options are one of the most popular securities transactions on the market. In fact, more and 

more companies hope to offer more mature financial products to the investing public and 

are looking for better valuation methods for this purpose. Many models have been used for 

this purpose. We mentioned five of them, the Cox Ross Rubinstein model (1979), the Boyle 

Trinomial model (1986), the Tian Modified Binomial model (1993), the Tian Modified 

Trinomial 1 model (1993) and the Tian Modified Trinomial 2 model (1993). 

 

Therefore, we proceeded to the numerical accuracy analysis for the lattice models of CRR 

(1979), Boyle (1986) and Tian (1993) for European-type call options, European-type put 

options and American-type put options. Recognizing that as long as the first two moments 

of the discrete-time process are correct according to the continuous-time process, that is, 

geometric Brownian motion, the convergence of the discrete-time lattice model and the 

continuous-time Black & Scholes model can be ensured. In principle, these two conditions 

do not provide a single solution for the parameters of the network, including probability 

and jump. The choice of additional conditions will lead to different parameter values, 

which in turn leads to different lattice procedures. In this study, the main purpose behind 

these choices for the modified procedures is that the accuracy of the approximation process 

is higher than the one in the previous models. Numerical results revealed that the modified 

binomial model Tian Bin is more accurate than the CRR binomial model when applied to 

call options and put options on stocks that do not pay dividends. For all three trinomial 

processes, Tian Trin1 and Boyle have almost the same accuracy, while Tian Trin2 has 

lower accuracy. In addition, all trinomial methods tested in this study seem to be more 

accurate than binomial methods. It seems that the best trinomial process is better than the 

best binomial process based on cost-exactness basis. 

 

The empirical examination that followed assessed an American call option with all five 

different models. However, because the stock we picked as the underlying title gives a 

dividend which has a negligible effect on its price, we considered that the stock is treated as 

though it doesn't give any dividends at all, and accordingly the option functions as a 

European type call option. Therefore, we evaluated the parameters of each model and 

determined the order in which the models are ranked based on the evaluation errors. Thus, 

we confirmed the conclusion we came up, at the preceding numerical accuracy, as the 

empirical analysis also revealed that Tian Bin is more accurate than the CRR binomial 

model, Tian Trin1 and Boyle have almost the same accuracy, while Tian Trin2 has lower 

accuracy. Additionally, all trinomial methods tested in this study seem to be more accurate 

than binomial methods.  Finally, we tested their predictive power to see how the models 

behave at optional and out-sample prices. That is, how much more accurate can the 

behavior of our models be in market forecasts and at a great level confirmed the conclusion 
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we previously reached at the numerical accuracy analysis and during the estimation of 

parameters at the empirical study. 
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MATLAB ALGORITHMS 

 

1. Calculation of European Option Payoff 

 

function PayoffValue = calcPayoff(S0, K, CallorPut) 

if strcmp(CallorPut, 'put') || strcmp(CallorPut, 'Put') 

    PayoffValue = max(K - S0, 0); 

else 

    PayoffValue = max(S0 - K, 0); 

end 

end 

 

2. Creation of Binomial/ Trinomial Lattice 

 

function DataStructure = buildLattice(N, BinTrinLattice) 

DataStructure = ''; 

if strcmp(BinTrinLattice, 'trin') || strcmp(BinTrinLattice, 'Trin') 

    for i = 1:N     

        DataStructure{i} = nan(1,2*i-1);     

    end   

else 

    for i = 1:N     

        DataStructure{i} = nan(1,i);       

    end 

end 

end 

 

3. Black-Scholes-Merton (BSM) European Call - Put Option 

 

function OptionPrice = ... 

    priceOptionBSM(S0, K, r, T, sigma, CallorPut) 

X1=1/(sigma*sqrt(T))*(log(S0/K)... 

        + (r +1/2*sigma^2)*T);  

X2=X1-sigma*sqrt(T); 

OptionPrice=S0*normcdf(X1)... 

    -K*exp(-r*T)*normcdf(X2); 

if strcmp(CallorPut,'put') || strcmp(CallorPut,'Put') 

    % Put-Call Parity 

    OptionPrice = K*exp(-r*T)-S0... 

                    +OptionPrice;                 

end 

end 
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4. Binomial Cox-Ross-Rubinstein (CRR) European Call - Put Option 

 

function [OptionPrice, BinLatticeS0, BinLatticeOption] = ... 

    priceOptionBinCRR(S0, K, r, T, N, sigma, CallorPut) 

dt=T/N; 

M=exp(r*dt); 

u=exp(sigma*sqrt(dt)); 

d=1/u; 

p=(M-d)/(u-d); 

%% Loop over each node of S0 price tree 

BinLatticeS0=buildLattice(N+1,'bin'); 

BinLatticeS0{1}(1)=S0; 

for i=2:N+1 

    BinLatticeS0{i}(1)=BinLatticeS0{i-1}(1)*u; 

    BinLatticeS0{i}(2)=BinLatticeS0{i-1}(1)*d;     

    x=length(BinLatticeS0{i}); 

    if  x>2 

        for j=3:x 

            BinLatticeS0{i}(j)=BinLatticeS0{i-1}(j-1)*d; 

        end 

    end 

    clear x 

end 

%% Calculate the value at expiry 

BinLatticeOption = buildLattice(N+1, 'bin'); 

for j=1:length(BinLatticeOption{end}) 

    BinLatticeOption{end}(j)=calcPayoff(BinLatticeS0{end}(j), ... 

        K, CallorPut); 

end 

%% Loop backwards to get values at the earlier times 

for i=N:-1:1 

    for j=1:length(BinLatticeOption{i}) 

        BinLatticeOption{i}(j)= ... 

            M^(-1)*(p*BinLatticeOption{i+1}(j) ... 

                +(1-p)*BinLatticeOption{i+1}(j+1)); 

    end 

end 

OptionPrice=BinLatticeOption{1}(1);  

end 

 

5. Trinomial Boyle European Call - Put Option 
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function [OptionPrice, TrinLatticeS0, TrinLatticeOption] = ... 

                   priceOptionTrinBoyle(S0, K, r, T, N, sigma, CallorPut) 

dt=T/N; 

M=exp(r*dt);  

lamda=1.2; 

V=M^2*(exp(sigma^2*dt)-1); 

u=exp(lamda*sigma*sqrt(dt)); 

m=1; 

d=exp(-lamda*sigma*sqrt(dt)); 

pu=((V+M^2-M)*u-(M-1))/((u-1)*(u^2-1)); 

pd=((V+M^2-M)*u^2-(M-1)*u^3)/((u-1)*(u^2-1)); 

pm=1-pu-pd; 

%% Loop over each node of S0 price tree 

TrinLatticeS0=buildLattice(N+1,'trin'); 

TrinLatticeS0{1}(1)=S0; 

for i=2:N+1 

    TrinLatticeS0{i}(1)=TrinLatticeS0{i-1}(1)*u; 

    TrinLatticeS0{i}(2)=TrinLatticeS0{i-1}(1)*m;  

    TrinLatticeS0{i}(3)=TrinLatticeS0{i-1}(1)*d;   

    x=length(TrinLatticeS0{i}); 

    if  x>3 

        for j=4:x 

            TrinLatticeS0{i}(j)= TrinLatticeS0{i-1}(j-2)*d; 

        end 

    end 

    clear x 

end 

%% Calculate the value at expiry 

TrinLatticeOption=buildLattice(N+1,'trin'); 

for j=1:length(TrinLatticeOption{end}) 

    TrinLatticeOption{end}(j)=calcPayoff(TrinLatticeS0{end}(j), ... 

        K, CallorPut); 

end 

%% Loop backwards to get values at the earlier times 

for i=N:-1:1 

    for j=1:length(TrinLatticeOption{i}) 

        TrinLatticeOption{i}(j)= ... 

            M^-1*(pu*TrinLatticeOption{i+1}(j) ... 

                +pm*TrinLatticeOption{i+1}(j+1) ...  

                +pd*TrinLatticeOption{i+1}(j+2)); 

    end 
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end 

OptionPrice=TrinLatticeOption{1}(1);  

end 

 

6. Modified Binomial Tian European Call - Put Option 

 

function [OptionPrice, BinLatticeS0, BinLatticeOption] = ... 

    priceOptionBinTian(S0, K, r, T, N, sigma, CallorPut) 

dt=T/N; 

M=exp(r*dt); 

V=exp(sigma^2*dt); 

u=M*V/2*(V+1+sqrt(V^2+2*V-3)); 

d=M*V/2*(V+1-sqrt(V^2+2*V-3)); 

p=(M-d)/(u-d); 

%% 

% Loop over each node of S0 price tree 

BinLatticeS0=buildLattice(N+1,'bin'); 

BinLatticeS0{1}(1)=S0; 

for i=2:N+1 

    BinLatticeS0{i}(1)=BinLatticeS0{i-1}(1)*u; 

    BinLatticeS0{i}(2)=BinLatticeS0{i-1}(1)*d;     

    x=length(BinLatticeS0{i}); 

    if  x>2 

        for j=3:x 

            BinLatticeS0{i}(j)=BinLatticeS0{i-1}(j-1)*d; 

        end 

    end 

    clear x 

end 

%% Calculate the value at expiry 

BinLatticeOption = buildLattice(N+1, 'bin'); 

for j=1:length(BinLatticeOption{end}) 

    BinLatticeOption{end}(j)=calcPayoff(BinLatticeS0{end}(j), ... 

        K, CallorPut); 

end 

%% Loop backwards to get values at the earlier times 

for i = N:-1:1 

    for j=1:length(BinLatticeOption{i}) 

        BinLatticeOption{i}(j)= ... 

            M^-1*(p*BinLatticeOption{i+1}(j) ... 

                +(1-p)*BinLatticeOption{i+1}(j+1)); 

    end 
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end 

OptionPrice=BinLatticeOption{1}(1);  

end 

 

 

7. Modified Tian Trin1 European Call - Put Option 

 

function [OptionPrice, TrinLatticeS0, TrinLatticeOption] = ... 

                priceOptionTrin1Tian(S0, K, r, T, N, sigma, CallorPut) 

dt=T/N; 

M=exp(r*dt); 

V=exp(sigma^2*dt); 

m=M*(3-V)/2; 

KA=M*(V+3)/4; 

u=KA+sqrt(KA^2-m^2); 

d=KA-sqrt(KA^2-m^2); 

pu=1/3; 

pm=1/3; 

pd=1/3; 

%% Loop over each node of S0 price tree 

TrinLatticeS0=buildLattice(N+1,'trin'); 

TrinLatticeS0{1}(1)=S0; 

for i=2:N+1 

    TrinLatticeS0{i}(1)=TrinLatticeS0{i-1}(1)*u; 

    TrinLatticeS0{i}(2)=TrinLatticeS0{i-1}(1)*m;  

    TrinLatticeS0{i}(3)=TrinLatticeS0{i-1}(1)*d;   

    x=length(TrinLatticeS0{i}); 

    if  x>3 

        for j=4:x 

            TrinLatticeS0{i}(j)=TrinLatticeS0{i-1}(j-2)*d; 

        end 

    end 

    clear x 

end 

%% Calculate the value at expiry 

TrinLatticeOption=buildLattice(N+1,'trin'); 

for j=1:length(TrinLatticeOption{end}) 

    TrinLatticeOption{end}(j)=calcPayoff(TrinLatticeS0{end}(j), ... 

        K, CallorPut); 

end 

%% Loop backwards to get values at the earlier times 
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for i=N:-1:1 

    for j=1:length(TrinLatticeOption{i}) 

        TrinLatticeOption{i}(j)= ... 

            M^-1*(pu*TrinLatticeOption{i+1}(j) ... 

                +pm*TrinLatticeOption{i+1}(j+1) ...  

                +pd*TrinLatticeOption{i+1}(j+2));     

    end 

end 

OptionPrice=TrinLatticeOption{1}(1);  

end 

 

 

8. Modified Tian Trin2 European Call - Put Option 

 

function [OptionPrice, TrinLatticeS0, TrinLatticeOption] = ... 

                priceOptionTrin2Tian(S0, K, r, T, N, sigma, CallorPut) 

dt=T/N; 

M=exp(r*dt); 

V=exp(sigma^2*dt); 

m=M*V^2; 

KA=M/2*(V^4+V^3); 

u=KA+sqrt(KA^2-m^2); 

d=KA-sqrt(KA^2-m^2); 

pu=(m*d-M*(m+d)+M^2*V)/((u-d)*(u-m)); 

pm=(M*(u+d)-u*d-M^2*V)/((u-m)*(m-d)); 

pd=(u*m-M*(u+m)+M^2*V)/((u-d)*(m-d)); 

%% Loop over each node of S0 price tree 

TrinLatticeS0=buildLattice(N+1,'trin'); 

TrinLatticeS0{1}(1)=S0; 

for i=2:N+1 

    TrinLatticeS0{i}(1)=TrinLatticeS0{i-1}(1)*u; 

    TrinLatticeS0{i}(2)=TrinLatticeS0{i-1}(1)*m;  

    TrinLatticeS0{i}(3)=TrinLatticeS0{i-1}(1)*d;   

    x=length(TrinLatticeS0{i}); 

    if  x>3 

        for j=4:x 

            TrinLatticeS0{i}(j)=TrinLatticeS0{i-1}(j-2)*d; 

        end 

    end 

    clear x 

end 

%% Calculate the value at expiry 
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TrinLatticeOption=buildLattice(N+1,'trin'); 

for j=1:length(TrinLatticeOption{end}) 

    TrinLatticeOption{end}(j)=calcPayoff(TrinLatticeS0{end}(j), ... 

        K, CallorPut); 

end 

%% Loop backwards to get values at the earlier times 

for i=N:-1:1 

    for j=1:length(TrinLatticeOption{i}) 

        TrinLatticeOption{i}(j)= ... 

            M^-1*(pu*TrinLatticeOption{i+1}(j) ... 

                +pm*TrinLatticeOption{i+1}(j+1) ...  

                +pd*TrinLatticeOption{i+1}(j+2));     

    end 

end 

OptionPrice=TrinLatticeOption{1}(1);  

end 

 

 

9. CRR Bin American Put Option 

 

function [OptionPrice, BinLatticeS0, BinLatticeOption] = ... 

    CRRBinAmerPut(S0, K, r, T, N, sigma) 

dt=T/N; 

M=exp(r*dt); 

u=exp(sigma*sqrt(dt)); 

d=1/u; 

p=(M-d)/(u-d); 

%% Loop over each node of S0 price tree 

BinLatticeS0=buildLattice(N+1,'bin'); 

BinLatticeS0{1}(1)=S0; 

for i=2:N+1 

    BinLatticeS0{i}(1)=BinLatticeS0{i-1}(1)*u; 

    BinLatticeS0{i}(2)=BinLatticeS0{i-1}(1)*d;     

    x=length(BinLatticeS0{i}); 

    if  x>2 

        for j=3:x 

            BinLatticeS0{i}(j)=BinLatticeS0{i-1}(j-1)*d; 

        end 

    end 

    clear x 

end 

%% Calculate the value at expiry 
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BinLatticeOption = buildLattice(N+1, 'bin'); 

for j=1:length(BinLatticeOption{end}) 

    BinLatticeOption{end}(j)=calcPayoff(BinLatticeS0{end}(j), ... 

        K, 'Put'); 

end 

%% Loop backwards to get values at the earlier times 

for i=N:-1:1 

    for j=1:length(BinLatticeOption{i}) 

        BinLatticeOption{i}(j)= ... 

            max(M^(-1)*(p*BinLatticeOption{i+1}(j) ... 

                +(1-p)*BinLatticeOption{i+1}(j+1)),... 

                K-BinLatticeS0{i}(j)); 

    end 

end 

OptionPrice=BinLatticeOption{1}(1);  

end 

 

10. Boyle Trin American Put Option 

 

function [OptionPrice, TrinLatticeS0, TrinLatticeOption] = ... 

                   BoyleTrinAmerPut(S0, K, r, T, N, sigma) 

dt=T/N; 

M=exp(r*dt);  

lamda=1.2; 

V=M^2*(exp(sigma^2*dt)-1); 

u=exp(lamda*sigma*sqrt(dt)); 

m=1; 

d=exp(-lamda*sigma*sqrt(dt)); 

pu=((V+M^2-M)*u-(M-1))/((u-1)*(u^2-1)); 

pd=((V+M^2-M)*u^2-(M-1)*u^3)/((u-1)*(u^2-1)); 

pm=1-pu-pd; 

%% Loop over each node of S0 price tree 

TrinLatticeS0=buildLattice(N+1,'trin'); 

TrinLatticeS0{1}(1)=S0; 

for i=2:N+1 

    TrinLatticeS0{i}(1)=TrinLatticeS0{i-1}(1)*u; 

    TrinLatticeS0{i}(2)=TrinLatticeS0{i-1}(1)*m;  

    TrinLatticeS0{i}(3)=TrinLatticeS0{i-1}(1)*d;   

    x=length(TrinLatticeS0{i}); 

    if  x>3 

        for j=4:x 

            TrinLatticeS0{i}(j)= TrinLatticeS0{i-1}(j-2)*d; 
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        end 

    end 

    clear x 

end 

%% Calculate the value at expiry 

TrinLatticeOption=buildLattice(N+1,'trin'); 

for j=1:length(TrinLatticeOption{end}) 

    TrinLatticeOption{end}(j)=calcPayoff(TrinLatticeS0{end}(j), ... 

        K, 'Put'); 

end 

%% Loop backwards to get values at the earlier times 

for i=N:-1:1 

    for j=1:length(TrinLatticeOption{i}) 

        TrinLatticeOption{i}(j)= ... 

            max(M^-1*(pu*TrinLatticeOption{i+1}(j) ... 

                +pm*TrinLatticeOption{i+1}(j+1) ...  

                +pd*TrinLatticeOption{i+1}(j+2)),... 

                K-TrinLatticeS0{i}(j)); 

    end 

end 

OptionPrice=TrinLatticeOption{1}(1);  

end 

 

11. Tian Bin American Put Option 

 

 

function [OptionPrice, BinLatticeS0, BinLatticeOption] = ... 

    TianBinAmerPut(S0, K, r, T, N, sigma) 

dt=T/N; 

M=exp(r*dt); 

V=exp(sigma^2*dt); 

u=M*V/2*(V+1+sqrt(V^2+2*V-3)); 

d=M*V/2*(V+1-sqrt(V^2+2*V-3)); 

p=(M-d)/(u-d); 

%% 

% Loop over each node of S0 price tree 

BinLatticeS0=buildLattice(N+1,'bin'); 

BinLatticeS0{1}(1)=S0; 

for i=2:N+1 

    BinLatticeS0{i}(1)=BinLatticeS0{i-1}(1)*u; 

    BinLatticeS0{i}(2)=BinLatticeS0{i-1}(1)*d;     

    x=length(BinLatticeS0{i}); 
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    if  x>2 

        for j=3:x 

            BinLatticeS0{i}(j)=BinLatticeS0{i-1}(j-1)*d; 

        end 

    end 

    clear x 

end 

%% Calculate the value at expiry 

BinLatticeOption = buildLattice(N+1, 'bin'); 

for j=1:length(BinLatticeOption{end}) 

    BinLatticeOption{end}(j)=calcPayoff(BinLatticeS0{end}(j), ... 

        K, 'Put'); 

end 

%% Loop backwards to get values at the earlier times 

for i = N:-1:1 

    for j=1:length(BinLatticeOption{i}) 

        BinLatticeOption{i}(j)= ... 

            max(M^-1*(p*BinLatticeOption{i+1}(j) ... 

                +(1-p)*BinLatticeOption{i+1}(j+1)),... 

                K-BinLatticeS0{i}(j)); 

    end 

end 

OptionPrice=BinLatticeOption{1}(1);  

end 

 

 

12. Tian Trin1 American Put Option 

 

function [OptionPrice, TrinLatticeS0, TrinLatticeOption] = ... 

                TianTrin1AmerPut(S0, K, r, T, N, sigma) 

dt=T/N; 

M=exp(r*dt); 

V=exp(sigma^2*dt); 

m=M*(3-V)/2; 

KA=M*(V+3)/4; 

u=KA+sqrt(KA^2-m^2); 

d=KA-sqrt(KA^2-m^2); 

pu=1/3; 

pm=1/3; 

pd=1/3; 

%% Loop over each node of S0 price tree 
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TrinLatticeS0=buildLattice(N+1,'trin'); 

TrinLatticeS0{1}(1)=S0; 

for i=2:N+1 

    TrinLatticeS0{i}(1)=TrinLatticeS0{i-1}(1)*u; 

    TrinLatticeS0{i}(2)=TrinLatticeS0{i-1}(1)*m;  

    TrinLatticeS0{i}(3)=TrinLatticeS0{i-1}(1)*d;   

    x=length(TrinLatticeS0{i}); 

    if  x>3 

        for j=4:x 

            TrinLatticeS0{i}(j)=TrinLatticeS0{i-1}(j-2)*d; 

        end 

    end 

    clear x 

end 

%% Calculate the value at expiry 

TrinLatticeOption=buildLattice(N+1,'trin'); 

for j=1:length(TrinLatticeOption{end}) 

    TrinLatticeOption{end}(j)=calcPayoff(TrinLatticeS0{end}(j), ... 

        K, 'Put'); 

end 

%% Loop backwards to get values at the earlier times 

for i=N:-1:1 

    for j=1:length(TrinLatticeOption{i}) 

        TrinLatticeOption{i}(j)= ... 

            max(M^-1*(pu*TrinLatticeOption{i+1}(j) ... 

                +pm*TrinLatticeOption{i+1}(j+1) ...  

                +pd*TrinLatticeOption{i+1}(j+2)),... 

                K-TrinLatticeS0{i}(j));     

    end 

end 

OptionPrice=TrinLatticeOption{1}(1);  

end 

 

 

 

 

13. Tian Trin2 American Put Option 

 

function [OptionPrice, TrinLatticeS0, TrinLatticeOption] = ... 

                TianTrin2AmerPut(S0, K, r, T, N, sigma) 
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dt=T/N; 

M=exp(r*dt); 

V=exp(sigma^2*dt); 

m=M*V^2; 

KA=M/2*(V^4+V^3); 

u=KA+sqrt(KA^2-m^2); 

d=KA-sqrt(KA^2-m^2); 

pu=(m*d-M*(m+d)+M^2*V)/((u-d)*(u-m)); 

pm=(M*(u+d)-u*d-M^2*V)/((u-m)*(m-d)); 

pd=(u*m-M*(u+m)+M^2*V)/((u-d)*(m-d)); 

%% Loop over each node of S0 price tree 

TrinLatticeS0=buildLattice(N+1,'trin'); 

TrinLatticeS0{1}(1)=S0; 

for i=2:N+1 

    TrinLatticeS0{i}(1)=TrinLatticeS0{i-1}(1)*u; 

    TrinLatticeS0{i}(2)=TrinLatticeS0{i-1}(1)*m;  

    TrinLatticeS0{i}(3)=TrinLatticeS0{i-1}(1)*d;   

    x=length(TrinLatticeS0{i}); 

    if  x>3 

        for j=4:x 

            TrinLatticeS0{i}(j)=TrinLatticeS0{i-1}(j-2)*d; 

        end 

    end 

    clear x 

end 

%% Calculate the value at expiry 

TrinLatticeOption=buildLattice(N+1,'trin'); 

for j=1:length(TrinLatticeOption{end}) 

    TrinLatticeOption{end}(j)=calcPayoff(TrinLatticeS0{end}(j), ... 

        K, 'Put'); 

end 

%% Loop backwards to get values at the earlier times 

for i=N:-1:1 

    for j=1:length(TrinLatticeOption{i}) 

        TrinLatticeOption{i}(j)= ... 

            max(M^-1*(pu*TrinLatticeOption{i+1}(j) ... 

                +pm*TrinLatticeOption{i+1}(j+1) ...  

                +pd*TrinLatticeOption{i+1}(j+2)),... 

                K-TrinLatticeS0{i}(j));     

    end 

end 

OptionPrice=TrinLatticeOption{1}(1);  
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end 

14. Accuracy Examination General Algorithm 

 

(For instance: fa= TianTrin1AmerPut(S0, 185, r, T, 400, sigma); , fb= 

TianTrin1AmerPut(S0, 200, r, T, 400, sigma); , fc= TianTrin1AmerPut(S0, 215, r, T, 400, 

sigma);, where we define the rest of the input values) 

AccurN=zeros(200,1); 

for i=1:200 

N=i; 

p(N)= CRRBinAmerPut(S0, K, r, T, N, sigma); 

f=fa; %We change for each execution the f value based on the model and the strike price 

if abs((p(N)-f)/f)<e 

AccurN(i)=N; 

end 

end 

 

15. Parameter Estimation of Cox Ross Rubinstein Call Option Model with Time 

Steps N=100 

 

 

function[x,resnorm,residual,exitflag]=CRRCalibration(~) 

clear all 

global S0;  

global K;  

global r;  

global T;  

global imp_vol;  

global marketprice;  

global k;  

S0=zeros(191); 

K=zeros(191,12); 

r=zeros(191); 

T=zeros(191,12); 

imp_vol=zeros(191,12); 

marketprice=zeros(191,12); 

parameter=zeros(191,1); 

res=zeros(191,1); 

exit=zeros(191,1); 

S0=xlsread('DataAppleCall.xls','price','B2:B192'); 

K=xlsread('DataAppleCall.xls','strike','B3:M193'); 

r=xlsread('DataAppleCall.xls','rate','B2:B192'); 
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T=xlsread('DataAppleCall.xls','timetomaturity','B3:M193'); 

imp_vol=xlsread('DataAppleCall.xls','volatility','B3:M193'); 

marketprice=xlsread('DataAppleCall.xls','marketprice','B3:M193'); 

CRR_call_matrix=zeros(191,12); 

for i=1:191 

x0=[0.3792647]; 

lb=[0.001]; 

ub=[2]; 

k=i; 

[x,resnorm,residual,exitflag]=lsqnonlin(@LSQDCRR,x0,lb,ub); 

parameter(i)=x; 

res(i)=resnorm; 

exit(i)=exitflag; 

for j=1:12 

CRR_call_matrix(i,j)=priceOptionBinCRR(S0(i), K(i,j), r(i), T(i,j), 100, x(1), 'Call'); 

end 

pricedata=(CRR_call_matrix); 

end 

xlswrite('DataAppleCall.xls',pricedata,'CRRresults','D3:O193'); 

xlswrite('DataAppleCall.xls',res,'CRRresults','B3:B193'); 

xlswrite('DataAppleCall.xls',parameter,'CRRresults','A3:A193'); 

end 

 

 

16. Supporting Function for Parameter Estimation of Cox Ross Rubinstein Call 

Option Model with Time Steps N=100 

 

function[CRR_lsqd]=LSQDCRR(x) 

%Define Differences 

global S0; 

global K; 

global r; 

global T; 

global imp_vol; 

global marketprice; 

global k; 

CRR_lsqd=zeros(1,12); 

for j=1:12 

CRR_lsqd(j)=marketprice(k,j)-priceOptionBinCRR(S0(k), K(k,j), r(k), T(k,j), 100, x(1), 

'Call'); 

end 
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17. Parameter Estimation of Tian Bin Call Option Model with Time Steps N=100 

 

 

18. Supporting Function for Parameter Estimation of Tian Bin Call Option Model 

with Time Steps N=100 

 

function[CRR_lsqd]=LSQDTIANBIN(x) 

%Define Differences 

global S0; 

global K; 

global r; 

global T; 

global imp_vol; 

global marketprice; 

global k; 

CRR_lsqd=zeros(1,12); 

for j=1:12 

CRR_lsqd(j)=marketprice(k,j)-priceOptionBinTian(S0(k), K(k,j), r(k), T(k,j), 100, x(1), 

'Call'); 

end 

 

 

19. Parameter Estimation of Boyle Trinomial Call Option Model with Time Steps 

N=100 

 

function[x,resnorm,residual,exitflag]=BoyleTRINCalibration(~) 

clear all 

global S0;  

global K;  

global r;  

global T;  

global imp_vol;  

global marketprice;  

global k;  

S0=zeros(191); 

K=zeros(191,12); 

r=zeros(191); 

T=zeros(191,12); 

imp_vol=zeros(191,12); 

marketprice=zeros(191,12); 

parameter=zeros(191,2); 

res=zeros(191,1); 
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exit=zeros(191,1); 

S0=xlsread('DataAppleCall.xls','price','B2:B192'); 

K=xlsread('DataAppleCall.xls','strike','B3:M193'); 

r=xlsread('DataAppleCall.xls','rate','B2:B192'); 

T=xlsread('DataAppleCall.xls','timetomaturity','B3:M193'); 

imp_vol=xlsread('DataAppleCall.xls','volatility','B3:M193'); 

marketprice=xlsread('DataAppleCall.xls','marketprice','B3:M193'); 

BoyleTRIN_call_matrix=zeros(191,12); 

for i=1:191 

x0=[0.3792647,1.2]; 

lb=[0.001,0.7]; 

ub=[2,3.5]; 

k=i; 

[x,resnorm,residual,exitflag]=lsqnonlin(@LSQDBOYLETRIN,x0,lb,ub); 

parameter(i,:)=x; 

res(i)=resnorm; 

exit(i)=exitflag; 

for j=1:12 

BoyleTRIN_call_matrix(i,j)=priceOptionTrinBoyleEurC(S0(i), K(i,j), r(i), T(i,j), 100, x(1), 

x(2), 'Call'); 

end 

pricedata=(BoyleTRIN_call_matrix); 

end 

xlswrite('DataAppleCall.xls',pricedata,'BoyleTRINresults','E3:P193'); 

xlswrite('DataAppleCall.xls',res,'BoyleTRINresults','C3:C193'); 

xlswrite('DataAppleCall.xls',parameter,'BoyleTRINresults','A3:B193'); 

end 

 

20. Supporting Function for Parameter Estimation of Boyle Trinomial Call Option 

Model with Time Steps N=100 

 

function[CRR_lsqd]=LSQDBOYLETRIN(x) 

%Define Differences 

global S0; 

global K; 

global r; 

global T; 

global imp_vol; 

global marketprice; 

global k; 

CRR_lsqd=zeros(1,12); 

for j=1:12 
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CRR_lsqd(j)=marketprice(k,j)-priceOptionTrinBoyleEurC(S0(k), K(k,j), r(k), T(k,j), 100, 

x(1),x(2), 'Call'); 

end 

 

 

21. Boyle Trinomial Option Model used for Parameter Estimation 

 

function [OptionPrice, TrinLatticeS0, TrinLatticeOption] = ... 

                   priceOptionTrinBoyleEurC(S0, K, r, T, N, sigma, lamda, CallorPut) 

dt=T/N; 

M=exp(r*dt);  

V=M^2*(exp(sigma^2*dt)-1); 

u=exp(lamda*sigma*sqrt(dt)); 

m=1; 

d=exp(-lamda*sigma*sqrt(dt)); 

pu=((V+M^2-M)*u-(M-1))/((u-1)*(u^2-1)); 

pd=((V+M^2-M)*u^2-(M-1)*u^3)/((u-1)*(u^2-1)); 

pm=1-pu-pd; 

%% Loop over each node of S0 price tree 

TrinLatticeS0=buildLattice(N+1,'trin'); 

TrinLatticeS0{1}(1)=S0; 

for i=2:N+1 

    TrinLatticeS0{i}(1)=TrinLatticeS0{i-1}(1)*u; 

    TrinLatticeS0{i}(2)=TrinLatticeS0{i-1}(1)*m;  

    TrinLatticeS0{i}(3)=TrinLatticeS0{i-1}(1)*d;   

    x=length(TrinLatticeS0{i}); 

    if  x>3 

        for j=4:x 

            TrinLatticeS0{i}(j)= TrinLatticeS0{i-1}(j-2)*d; 

        end 

    end 

    clear x 

end 

%% Calculate the value at expiry 

TrinLatticeOption=buildLattice(N+1,'trin'); 

for j=1:length(TrinLatticeOption{end}) 

    TrinLatticeOption{end}(j)=calcPayoff(TrinLatticeS0{end}(j), ... 

        K, CallorPut); 

end 

%% Loop backwards to get values at the earlier times 

for i=N:-1:1 

    for j=1:length(TrinLatticeOption{i}) 



88 
 

 

        TrinLatticeOption{i}(j)= ... 

            M^-1*(pu*TrinLatticeOption{i+1}(j) ... 

                +pm*TrinLatticeOption{i+1}(j+1) ...  

                +pd*TrinLatticeOption{i+1}(j+2)); 

    end 

end 

OptionPrice=TrinLatticeOption{1}(1);  

end 

 

 

 

22. Parameter Estimation of Tian Trin1 Call Option Model with Time Steps 

N=100 

 

function[x,resnorm,residual,exitflag]=TianTRIN1Calibration(~) 

clear all 

global S0;  

global K;  

global r;  

global T;  

global imp_vol;  

global marketprice;  

global k;  

S0=zeros(191); 

K=zeros(191,12); 

r=zeros(191); 

T=zeros(191,12); 

imp_vol=zeros(191,12); 

marketprice=zeros(191,12); 

parameter=zeros(191,1); 

res=zeros(191,1); 

exit=zeros(191,1); 

S0=xlsread('DataAppleCall.xls','price','B2:B192'); 

K=xlsread('DataAppleCall.xls','strike','B3:M193'); 

r=xlsread('DataAppleCall.xls','rate','B2:B192'); 

T=xlsread('DataAppleCall.xls','timetomaturity','B3:M193'); 

imp_vol=xlsread('DataAppleCall.xls','volatility','B3:M193'); 

marketprice=xlsread('DataAppleCall.xls','marketprice','B3:M193'); 

TianTRIN1_call_matrix=zeros(191,12); 

for i=1:191 

x0=[0.3792647]; 

lb=[0.001]; 
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ub=[2]; 

k=i; 

[x,resnorm,residual,exitflag]=lsqnonlin(@LSQDTIANTRIN1,x0,lb,ub); 

parameter(i)=x; 

res(i)=resnorm; 

exit(i)=exitflag; 

for j=1:12 

TianTRIN1_call_matrix(i,j)=priceOptionTrin1Tian(S0(i), K(i,j), r(i), T(i,j), 100, x(1), 

'Call'); 

end 

pricedata=(TianTRIN1_call_matrix); 

end 

xlswrite('DataAppleCall.xls',pricedata,'TianTRIN1results','D3:O193'); 

xlswrite('DataAppleCall.xls',res,'TianTRIN1results','B3:B193'); 

xlswrite('DataAppleCall.xls',parameter,'TianTRIN1results','A3:A193'); 

end 

 

 

23. Supporting Function for Parameter Estimation of Tian Trin1 Call Option 

Model with Time Steps N=100 

 

function[CRR_lsqd]=LSQDTIANTRIN1(x) 

%Define Differences 

global S0; 

global K; 

global r; 

global T; 

global imp_vol; 

global marketprice; 

global k; 

CRR_lsqd=zeros(1,12); 

for j=1:12 

CRR_lsqd(j)=marketprice(k,j)-priceOptionTrin1Tian(S0(k), K(k,j), r(k), T(k,j), 100, x(1), 

'Call'); 

end 

 

24. Parameter Estimation of Tian Trin2 Call Option Model with Time Steps 

N=100 

 

function[x,resnorm,residual,exitflag]=TianTRIN2Calibration(~) 

clear all 
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global S0;  

global K;  

global r;  

global T;  

global imp_vol;  

global marketprice;  

global k;  

S0=zeros(191); 

K=zeros(191,12); 

r=zeros(191); 

T=zeros(191,12); 

imp_vol=zeros(191,12); 

marketprice=zeros(191,12); 

parameter=zeros(191,1); 

res=zeros(191,1); 

exit=zeros(191,1); 

S0=xlsread('DataAppleCall.xls','price','B2:B192'); 

K=xlsread('DataAppleCall.xls','strike','B3:M193'); 

r=xlsread('DataAppleCall.xls','rate','B2:B192'); 

T=xlsread('DataAppleCall.xls','timetomaturity','B3:M193'); 

imp_vol=xlsread('DataAppleCall.xls','volatility','B3:M193'); 

marketprice=xlsread('DataAppleCall.xls','marketprice','B3:M193'); 

TianTRIN2_call_matrix=zeros(191,12); 

for i=1:191 

x0=[0.3792647]; 

lb=[0.001]; 

ub=[2]; 

k=i; 

[x,resnorm,residual,exitflag]=lsqnonlin(@LSQDTIANTRIN2,x0,lb,ub); 

parameter(i)=x; 

res(i)=resnorm; 

exit(i)=exitflag; 

for j=1:12 

TianTRIN2_call_matrix(i,j)=priceOptionTrin2Tian(S0(i), K(i,j), r(i), T(i,j), 100, x(1), 

'Call'); 

end 

pricedata=(TianTRIN2_call_matrix); 

end 

xlswrite('DataAppleCall.xls',pricedata,'TianTRIN2results','D3:O193'); 

xlswrite('DataAppleCall.xls',res,'TianTRIN2results','B3:B193'); 

xlswrite('DataAppleCall.xls',parameter,'TianTRIN2results','A3:A193'); 

end 
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25. Supporting Function for Parameter Estimation of Tian Trin2 Call Option 

Model with Time Steps N=100 

 

function[CRR_lsqd]=LSQDTIANTRIN2(x) 

%Define Differences 

global S0; 

global K; 

global r; 

global T; 

global imp_vol; 

global marketprice; 

global k; 

CRR_lsqd=zeros(1,12); 

for j=1:12 

CRR_lsqd(j)=marketprice(k,j)-priceOptionTrin2Tian(S0(k), K(k,j), r(k), T(k,j), 100, x(1), 

'Call'); 

end 

 

26. Forecast Function of CRR Call Option Model 

 

function[pricedata,pricedata_squares,res]=CRRforecast(~) 

clear all 

sigma=0.289646; %Average of last 3 observations(21/4/2021-23/4/2021) 

S0=zeros(10); 

K=zeros(10,12); 

r=zeros(10); 

T=zeros(10,12); 

marketprice=zeros(10,12); 

%Εισάγω τις τιμές 

S0=xlsread('DataAppleCall.xls','price','B193:B202'); 

K=xlsread('DataAppleCall.xls','strike','B194:M203'); 

r=xlsread('DataAppleCall.xls','rate','B193:B202'); 

T=xlsread('DataAppleCall.xls','timetomaturity','B194:M203'); 

marketprice=xlsread('DataAppleCall.xls','marketprice','B194:M203'); 

res=zeros(10,1); 

CRR_call_matrix=zeros(10,12); 

CRR_call_matrix_squares=zeros(10,12); 

for i=1:10 

for j=1:12 
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CRR_call_matrix(i,j)=abs(marketprice(i,j)-priceOptionBinCRR(S0(i), K(i,j), r(i), T(i,j), 

100, sigma, 'Call')); 

CRR_call_matrix_squares(i,j)=(abs(marketprice(i,j)-priceOptionBinCRR(S0(i), K(i,j), r(i), 

T(i,j), 100, sigma, 'Call'))^2); 

end 

pricedata=[CRR_call_matrix]; 

pricedata_squares=[CRR_call_matrix_squares]; 

end 

for i=1:10 

res(i)=(sum(CRR_call_matrix_squares(i,:))); 

end 

xlswrite('DataAppleCall.xls',pricedata,'CRRforecast','B2:M11'); 

xlswrite('DataAppleCall.xls',pricedata_squares,'CRRforecast','B13:M22'); 

xlswrite('DataAppleCall.xls',res,'CRRforecast','B24:B33'); 

end 

 

27. Forecast Function of Tian Binomial Call Option Model 

 

function[pricedata,pricedata_squares,res]=TianBINforecast(~) 

clear all 

sigma=0.289816; %Average of last 3 observations(21/4/2021-23/4/2021) 

S0=zeros(10); 

K=zeros(10,12); 

r=zeros(10); 

T=zeros(10,12); 

marketprice=zeros(10,12); 

%Εισάγω τις τιμές 

S0=xlsread('DataAppleCall.xls','price','B193:B202'); 

K=xlsread('DataAppleCall.xls','strike','B194:M203'); 

r=xlsread('DataAppleCall.xls','rate','B193:B202'); 

T=xlsread('DataAppleCall.xls','timetomaturity','B194:M203'); 

marketprice=xlsread('DataAppleCall.xls','marketprice','B194:M203'); 

res=zeros(10,1); 

TianBIN_call_matrix=zeros(10,12); 

TianBIN_call_matrix_squares=zeros(10,12); 

for i=1:10 

for j=1:12 

TianBIN_call_matrix(i,j)=abs(marketprice(i,j)-priceOptionBinTian(S0(i), K(i,j), r(i), T(i,j), 

100, sigma, 'Call')); 

TianBIN_call_matrix_squares(i,j)=(abs(marketprice(i,j)-priceOptionBinTian(S0(i), K(i,j), 

r(i), T(i,j), 100, sigma, 'Call'))^2); 

end 
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pricedata=[TianBIN_call_matrix]; 

pricedata_squares=[TianBIN_call_matrix_squares]; 

end 

for i=1:10 

res(i)=(sum(TianBIN_call_matrix_squares(i,:))); 

end 

xlswrite('DataAppleCall.xls',pricedata,'TianBINforecast','B2:M11'); 

xlswrite('DataAppleCall.xls',pricedata_squares,'TianBINforecast','B13:M22'); 

xlswrite('DataAppleCall.xls',res,'TianBINforecast','B24:B33'); 

end 

 

28. Forecast Function of Boyle Trinomial Call Option Model 

 

function[pricedata,pricedata_squares,res]=BoyleTRINforecast(~) 

clear all 

sigma=0.289885; %Average of last 3 observations(21/4/2021-23/4/2021) 

lamda=2.028614; %Average of last 3 observations(21/4/2021-23/4/2021) 

S0=zeros(10); 

K=zeros(10,12); 

r=zeros(10); 

T=zeros(10,12); 

marketprice=zeros(10,12); 

%Εισάγω τις τιμές 

S0=xlsread('DataAppleCall.xls','price','B193:B202'); 

K=xlsread('DataAppleCall.xls','strike','B194:M203'); 

r=xlsread('DataAppleCall.xls','rate','B193:B202'); 

T=xlsread('DataAppleCall.xls','timetomaturity','B194:M203'); 

marketprice=xlsread('DataAppleCall.xls','marketprice','B194:M203'); 

res=zeros(10,1); 

BoyleTRIN_call_matrix=zeros(10,12); 

BoyleTRIN_call_matrix_squares=zeros(10,12); 

for i=1:10 

for j=1:12 

BoyleTRIN_call_matrix(i,j)=abs(marketprice(i,j)-priceOptionTrinBoyleEurC(S0(i), K(i,j), 

r(i), T(i,j), 100, sigma, lamda, 'Call')); 

BoyleTRIN_call_matrix_squares(i,j)=(abs(marketprice(i,j)-

priceOptionTrinBoyleEurC(S0(i), K(i,j), r(i), T(i,j), 100, sigma, lamda, 'Call'))^2); 

end 

pricedata=[BoyleTRIN_call_matrix]; 

pricedata_squares=[BoyleTRIN_call_matrix_squares]; 

end 

for i=1:10 
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res(i)=(sum(BoyleTRIN_call_matrix_squares(i,:))); 

end 

xlswrite('DataAppleCall.xls',pricedata,'BoyleTRINforecast','B2:M11'); 

xlswrite('DataAppleCall.xls',pricedata_squares,'BoyleTRINforecast','B13:M22'); 

xlswrite('DataAppleCall.xls',res,'BoyleTRINforecast','B24:B33'); 

end 

 

29. Forecast Function of Tian Trin1 Call Option Model 

 

function[pricedata,pricedata_squares,res]=TianTRIN1forecast(~) 

clear all 

sigma=0.289697; %Average of last 3 observations(21/4/2021-23/4/2021) 

S0=zeros(10); 

K=zeros(10,12); 

r=zeros(10); 

T=zeros(10,12); 

marketprice=zeros(10,12); 

%Εισάγω τις τιμές 

S0=xlsread('DataAppleCall.xls','price','B193:B202'); 

K=xlsread('DataAppleCall.xls','strike','B194:M203'); 

r=xlsread('DataAppleCall.xls','rate','B193:B202'); 

T=xlsread('DataAppleCall.xls','timetomaturity','B194:M203'); 

marketprice=xlsread('DataAppleCall.xls','marketprice','B194:M203'); 

res=zeros(10,1); 

TianTRIN1_call_matrix=zeros(10,12); 

TianTRIN1_call_matrix_squares=zeros(10,12); 

for i=1:10 

for j=1:12 

TianTRIN1_call_matrix(i,j)=abs(marketprice(i,j)-priceOptionTrin1Tian(S0(i), K(i,j), r(i), 

T(i,j), 100, sigma, 'Call')); 

TianTRIN1_call_matrix_squares(i,j)=(abs(marketprice(i,j)-priceOptionTrin1Tian(S0(i), 

K(i,j), r(i), T(i,j), 100, sigma, 'Call'))^2); 

end 

pricedata=[TianTRIN1_call_matrix]; 

pricedata_squares=[TianTRIN1_call_matrix_squares]; 

end 

for i=1:10 

res(i)=(sum(TianTRIN1_call_matrix_squares(i,:))); 

end 

xlswrite('DataAppleCall.xls',pricedata,'TianTRIN1forecast','B2:M11'); 

xlswrite('DataAppleCall.xls',pricedata_squares,'TianTRIN1forecast','B13:M22'); 

xlswrite('DataAppleCall.xls',res,'TianTRIN1forecast','B24:B33'); 
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end 

 

 

30. Forecast Function of Tian Trin2 Call Option Model 

 

function[pricedata,pricedata_squares,res]=TianTRIN2forecast(~) 

clear all 

sigma= 0.290014; %Average of last 3 observations(21/4/2021-23/4/2021) 

S0=zeros(10); 

K=zeros(10,12); 

r=zeros(10); 

T=zeros(10,12); 

marketprice=zeros(10,12); 

%Εισάγω τις τιμές 

S0=xlsread('DataAppleCall.xls','price','B193:B202'); 

K=xlsread('DataAppleCall.xls','strike','B194:M203'); 

r=xlsread('DataAppleCall.xls','rate','B193:B202'); 

T=xlsread('DataAppleCall.xls','timetomaturity','B194:M203'); 

marketprice=xlsread('DataAppleCall.xls','marketprice','B194:M203'); 

res=zeros(10,1); 

TianTRIN2_call_matrix=zeros(10,12); 

TianTRIN2_call_matrix_squares=zeros(10,12); 

for i=1:10 

for j=1:12 

TianTRIN2_call_matrix(i,j)=abs(marketprice(i,j)-priceOptionTrin2Tian(S0(i), K(i,j), r(i), 

T(i,j), 100, sigma, 'Call')); 

TianTRIN2_call_matrix_squares(i,j)=(abs(marketprice(i,j)-priceOptionTrin2Tian(S0(i), 

K(i,j), r(i), T(i,j), 100, sigma, 'Call'))^2); 

end 

pricedata=[TianTRIN2_call_matrix]; 

pricedata_squares=[TianTRIN2_call_matrix_squares]; 

end 

for i=1:10 

res(i)=(sum(TianTRIN2_call_matrix_squares(i,:))); 

end 

xlswrite('DataAppleCall.xls',pricedata,'TianTRIN2forecast','B2:M11'); 

xlswrite('DataAppleCall.xls',pricedata_squares,'TianTRIN2forecast','B13:M22'); 

xlswrite('DataAppleCall.xls',res,'TianTRIN2forecast','B24:B33'); 

end 
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