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Abstract 

The increasing interconnection of our world over the last decade has led to an exponential growth 

of data that are emitted from personal devices, IoT sensors and other activities of our society. As a 

result, a very large amount of this data is produced in the form of continuous streams.  Data stream 

processing in real-time has become a crucial operation for several business domains, however 

processing a large amount of data often from different sources still represents a challenge both 

technologically and operationally. These needs have led to the emergence of open source and 

commercial systems that aim to manage and analyze data streams. These systems are of continuing 

importance as the constant multiplication of data stream sources increases. 

This dissertation presents the theoretical background on data processing and the two prevalent 

architectures for stream processing: The Lambda and Kappa architecture. We also present popular 

open-source and commercial products on the wider data streaming domain. In the second part of 

the dissertation, we present the design and implementation of a stream analytics pipeline built on 

top of Microsoft’s Azure cloud platform. We use the Twitter API to stream and analyze data as 

well as to execute benchmarks to examine the solution’s performance. Finally, we present the 

solution’s artifacts as deployable templates. 

Keywords: Big data; Cloud computing; Stream analytics; Real-time Processing. 
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Chapter 1. Introduction 

Over the last decade the world has seen an unprecedented amount of data being generated in various 

fields, fueled initially by the rise of Web 2.0 and growing at ever-increasing rates with the adoption 

of Internet of Things (IoT) applications. This proliferation in data generation has been dubbed with 

the term "Big data" which refers to this increase in the volume of data that is difficult to store, 

process and analyze with traditional methodologies, technologies and software architectures. The 

proper collection, management and insights discovery from these data is being recognized as a 

significant potential competitive advantage for businesses, due to the breadth of their applications 

across the entire value chain [1]. 

The complexity, diversity and massive scale of large datasets require new methodologies and 

frameworks to be properly handled and has thus led to the need of having the ability to deploy and 

manage adequate workflows which integrate, manage and analyze data from widely distributed 

sources in a reasonable time frame. This need has also prompted the development of platforms that 

can adequately handle big data with consideration to performance, scalability and fault tolerance 

requirements. 

The problem of how to efficiently handle data streams is not new: The high-level requirements that 

a real-time stream processing application should fulfill have been laid out as early as 2005 [ref]. 
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The projects "Aurora" [3] and "Borealis" [4] ran by Brandeis University, Brown University, and 

MIT are early attempts at creating a stream processing framework. 

Presently there is a large number of open-source stream processing solutions and frameworks such 

as Apache Foundation's Storm [5], Spark Streaming [6], Flink [7] and Samza [8] with each 

framework, tackling different aspects of big data streaming. On top of these frameworks, major 

cloud and technology vendors have developed commercial offerings (Amazon Kinesis [9], Azure 

Stream Analytics [10], Google Cloud Dataflow [11], IBM Infosphere [12]) targeted towards 

enterprise customers. Such solutions are typically offered with the SaaS model, taking away the 

complexity of maintaining a full infrastructure while offering increased efficiency. The challenges 

posed by emerging industry needs reinforce the feedback loop towards research and development 

efforts for improved frameworks and platforms. 

The proliferation of stream processing frameworks combined with their increasing importance in 

business operations has prompted the proposal for the establishment of a standardized framework 

for managing streams, with the name "Flow": In [13] Urquhart proposes that flow is conceptualized 

as "networked software integration that is event-driven, loosely coupled, and highly adaptable and 

extensible. It is principally defined by standard interfaces and protocols that enable integration with 

a minimum of conflict and toil". 

In this dissertation, we present a prototype solution with configurable components for a stream 

analytics pipeline which adheres to established architecture principles for applications in the stream 

analytics domain. The main features is that it has a “decoupled” ingestion component and that the 

stream processing component can work simultaneously with heterogenous incoming data and 

output the desired results. All components are deployed / maintained as-code so the entire solution 

can be very quicky be upgraded and extended to serve use case scenarios. 

Thus, this dissertation has the following primary aims: 
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- To present an overview of the primary architecture models used in stream processing 

workflows and applications. 

- To design and implement a fully functional and configurable stream processing solution 

built on a COTS cloud computing environment (Microsoft Azure) and execute real-world 

scenarios on it. 

1.1 Methodology – approach 

The methodology used in this dissertation is primarily based on empirical research work in utilizing 

Microsoft's Azure cloud platform offering to build an application in the space of stream analytics. 

We attempt to apply best practices in the solution design and architecture by performing a literature 

review of the relevant domain and by presenting an overview of the prevailing stream analytics 

architectures. In section Chapter 3, we present the architecture and a reference implementation of 

an application that ingests streaming data from several independent sources and pushes them as 

events to a message queuing subsystem. A stream analytics component which functions as a 

consuming subsystem reads the events from the message queue, performs a series of computations 

depending on the type of event being processed and publishes the results in a dashboard. 

The solution that we implement uses a modular design, to facilitate scenarios where individual, 

loosely coupled components must be updated or to allow expansion by adding additional 

components not currently being covered in the solution scope. Finally, all the solution components 

and Azure platform deployment configurations that we have developed for this dissertation have 

been made publicly available in GitHub repositories using the MIT license.  

1.2 Dissertation outline 

The rest of this dissertation is organized as follows: Section Chapter 2 presents background 

information on cloud computing, data processing and stream analytics architectures and discusses 

the prevalent architecture patterns of stream processing solutions. Section Chapter 3 presents the 
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solution architecture that has been implemented for this thesis and discusses design and 

configuration choices made towards its implementation. Section 0 presents findings and benchmark 

results on the solution’s performance under different use case scenarios. Section 0 summarizes the 

dissertation, presents its conclusions, and proposes further work for expanding the implemented 

solution. Finally, the Annexes provide hyperlinks to code repositories and other artifacts developed 

for this dissertation as well as a short deployment guide for the solution, aimed at the technically 

oriented reader.  
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Chapter 2. Theoretical background 

In section Chapter 1 we introduced the general context of this dissertation, outlined an overview of 

the streaming data analytics solution under examination and presented its primary objectives. This 

section presents an overview on the theoretical background of streaming data and the primary 

architectural patterns for software applications that ingest, process, analyze and store them. We 

also provide an overview of the most frequent system-level challenges that data streaming solutions 

must respond to as well as common real-world business applications involving streaming data. 

2.1 Data processing 

Data processing can be defined as a series of actions or steps performed on data to verify, organize, 

transform, integrate, and extract data in an appropriate output form for subsequent use1. In this 

context, data processing can be considered a specific case of the information processing domain, 

which is concerned with gathering, manipulating, storing, retrieving, and classifying recorded 

 
1 Note that the term of data processing in the context of the General Data Protection Regulation (GDPR) in 

Article 4(2) [16] is defined as "any operation or set of operations which is performed on personal data or on 

sets of personal data, whether or not by automated means, such as collection, recording, organisation, 

structuring, storage, adaptation or alteration, retrieval, consultation, use, disclosure by transmission, 

dissemination or otherwise making available, alignment or combination, restriction, erasure or destruction". 

In this context, data streaming solutions fall under the regulation if they are processing personal data as is 

usually the case, for example when processing application usage logs, transactions and other similar data 

types. 



Theoretical background 6 

 

information. A popular information processing model from the cognitive psychology domain is the 

Atkinson-Shiffrin memory model or multi-store model [14] which describes the information 

describes flow between three permanent storage systems of memory: the sensory register (SR), 

short-term memory (STM) and long-term memory (LTM). It is worth noting the similarity between 

the multi store model and a typical modern stream processing pipeline: In Figure 2-1 we attempt to 

highlight this similarity by mapping the activities and subsystems involved between what 

effectively is a prevalent cognitive psychology model and an architecture paradigm for a data 

stream processing application. 
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Figure 2-1: A comparison between the multi-store memory model and a typical stream analytics architecture. 

 

At the highest level of abstraction, a real-time processing system consists of three elements: 
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• One or more data producers. 

• The system which captures, processes and stores the incoming data. 

• One or more data consumers. 

In [16] a classification of different real-time systems is proposed primarily based on their latency 

and their tolerance for delay, that is the degree of system failure to meet its objectives if latency 

exceeds the expected threshold. Table 1 presents the proposed classification along with example 

applications for each class. 

Classification Example Latency measurement Delay tolerance 

Hard real-time Health monitoring 

applications in 

intensive care 

units. 

Microseconds – milliseconds None 

Near real-time Airline reservation 

system. 

Milliseconds – seconds Low 

Soft real-time Home automation. Seconds - minutes High 

Table 1: Classification of real-time systems 

Figure 2-2 displays a visualization of a real-time processing system with the three components 

discussed in the previous paragraph. Note that the consumption side (the data consumers in the 

diagram) are not necessary for the operation of a real-time processing system.  
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Figure 2-2: A generic real-time system with data producers, a real-time processing layer and data consumers 

 

Stream processing systems which handle data volumes classified as “big data” have two major 

architectural paradigms which we will present in the following paragraphs: 

- Batch processing: Referring to the processing of high-volume data (i.e. financial 

transactions) in batches and using a repetitive approach. Batch jobs can be executed with 

no end user interaction or can be scheduled to execute on a specific time frame. 

- Stream processing: Referring to the processing of high-volume data that arrive (“data in 

motion”) and are processed in a real-time fashion. Stream processing also allows processed 

/ analyzed incoming data to be fed into analytics tools or otherwise be made immediately 

available to data consumers. 

Table 2 presents the primary differentiating attributes between the batch and real-time data 

processing paradigms as well as typical use cases that are usually supported by each one. 

 Batch processing Real-time data processing 
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Data collection Data are collected over a time 

frame before processing. 

Data are collected in real-

time, as they arrive in the 

system. 

Dataset size Limited by the size of the 

batch. 

Unlimited – technically 

limited by the time the data are 

being streamed. 

Performance – latency Minutes to hours Seconds to milliseconds. 

Typical use cases Transactions, Billing, Payroll 

applications, data 

transformations. 

Traffic logs, Social media 

sentiment analysis, Log 

monitoring. 

Table 2: A high-level comparison between batch and real-time data processing 

In sections 2.1.1 and 2.1.2 we present the basic features of the batch and stream processing 

paradigms. The popularity and increased importance to business success of the ability to process 

data originating from streams in a continuous basis has given birth to multiple proprietary and open-

source stream processing platforms. A selection of these platforms with each one’s primary features 

is presented in section 2.6. 

A data stream can be defined as an append-only sequence of timestamped items that arrive in a 

particular order. For applications involving publish / subscribe systems such as the one discussed 

in this dissertation, data are produced by several sources and consumed by consumers who 

subscribe independently to those data feeds, a data stream can be conceived as a sequence of events 

that are being reported in a continuous manner. A data stream may can also be defined as a sequence 

of sets of elements, to cover scenarios where items arrive in batches, with each set containing 

elements that have arrived during the same predefined time interval [17]. 

A typical data streaming system with its major components is displayed in the diagram of Figure 

2-3. An input monitor is responsible for handling the inputs from a variety of data sources. Streamed 
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data are stored in three partitions: temporary working storage (for example to execute a window 

query), summary storage for stream synopses (i.e. data aggregations), and static storage for 

metadata (e.g., physical location of each source). The query repository component is responsible 

for handling the query execution by allocating them into groups for shared processing. The query 

processor component communicates with the input monitor and may re-optimize the query plans 

in response to changing input rates. Finally, the result is streamed to an end user application, such 

as a dashboard which typically provides the functionality of further refining the output, for example 

to filter the query result based on an ad-hoc criterion [17]. 

 

Figure 2-3: An abstract reference architecture for a data stream management system [17]. 

Using the definitions presented above, a data streaming model typically conforms to one of the 

following categories [18]: 

1. Unordered: Individual items from various domains arrive in no particular order and 

without any pre-processing. 

2. Ordered: Individual items from various domains are not preprocessed but arrive in some 

known order. 

3. Unordered aggregate: Individual items from the same domain are preprocessed and only 

one item per domain arrives in no particular order. 

4. Ordered aggregate: Individual items from the same domain are pre-processed and one 

item per domain arrives in some known order. 
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2.1.1 Stream processing 

Stream processing is a big data processing paradigm that focuses on being able to instantaneously 

process and analyze data that are arriving from a device (producer) to another device (consumer). 

Referring to Table 1 where the different real-time systems are classified based on the time 

sensitivity aspect, a streaming data system can be defined as a “non-hard real-time system that 

makes its data available at the moment a client application needs it” [16]. This means that the client 

is not obliged to consume the processed data in real-time, but asynchronously, at the moment it’s 

needed. In [19] a streaming system is defined as “A type of data processing engine that is designed 

with infinite datasets in mind.” 

A stream processing system typically is built to function with unbounded data, contrary to batch 

processing systems which are designed to handle bounded datasets. Unbounded datasets pose 

additional challenges to be tackled by the system [19]: 

- They can arrive unordered with respect to their event time, which requires specific 

implementation to be done in order to analyze them in the context in which they occurred. 

- The incoming data can be of varying event-time skew and as such the system needs to take 

into account that there will be a fraction of incoming data for a given event time within a 

specific time window. 

It becomes obvious that the time factor is especially important for the successful implementation 

of a stream processing pipeline. The time factor can be classified as: 

- The Event time, which refers to the time the event actually occurred, i.e. a timestamp on 

a log entry. Consideration of the event time is especially important for use cases such as 

billing applications or generally transaction related workflows. 

- The Processing time, which refers to the time at which the event is observed in the system. 
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The skew between event time and processing time can be affected by variables such as shared 

resource limitations, the software implementation itself as well as features related to the specific 

dataset being ingested such as variance in throughput [19]. 

Figure 2-4 depicts the skew that can be observed between the event time and processing time in a 

stream processing system. In the figure, the X axis represents the event time. They Y axis represents 

the progress of processing time (the actual clock time observed by the system during the execution 

of the event processing activity). 

 

Figure 2-4: Processing time lag and event time skew in a stream processing system. 
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Typically, a streaming data pipeline’s flow consumes a stream of messages, applies operations (i.e. 

transformations, aggregations, joins) to the incoming messages and publishes the output to anther 

system or even another stream for further processing. Such a pipeline is composed of: 

- One or more data source connectors, which handle the data that are ingested from the 

sources. 

- One or more data sink connectors which extract the processed messages from the stream 

and publishes them to a “downstream” consumer, i.e. a data warehouse or a UI component. 

Figure 2-7 presents a high-level overview of a stream processing data flow. 

 

 

Figure 2-5: A high-level stream processing data flow. 

2.1.2 Batch processing 

In the batch processing paradigm, the data processing takes pace in blocks (batches) of data that 

have been stored over a period of time. Each record in the batch is being processed with the same 
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algorithm and its results are published to the consuming systems before the next batch is processed 

in an iterative fashion. Depending on the implementation, a batch pipeline can be executed 

manually or recurringly based on a set of rules, for example when the batch reaches a certain size. 

This rule set sequence of steps can be handled by an orchestration component. The processing itself 

is usually handles by a parallelized job and may also include multiple iterative steps before the 

transformed results are published to a data store or other persistent storage for further usage such 

as reporting [20]. Figure 2-6 displays a high-level overview of a batch processing system described 

in this section. By its nature, batch processing implies a latency between the time the data appears 

in the pipeline’s storage layer and the time it’s made available in consuming systems. It is therefore 

important to note that batch processing may not be suitable for processing datasets that are time 

sensitive [21].  

 

Figure 2-6: High-level overview of a batch processing system [20]. 

Frequent use cases that support the usage of a batch processing operation compared to streaming 

are the following [22]: 

- When real-time data processing and results are not critical for the purpose they are needed 

(small time-sensitivity of the processed dataset).  

- When very large volumes of data need to be processed with a resource intensive algorithm 

that requires access to the entire batch contents, for example a sorting algorithm. 

- When a join operation is needed between relational database tables. 

- Performing bulk operations in the dataset such as digital image resizing, conversion or 

other mass-editing activities. 
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Note that a batch processing system is considered to be significantly less complex compared to a 

stream processing system, as it does not require the implementation effort and resources required 

to always maintain connection to data sources and the data flow of a stream processing system. 

Finally, Figure 2-7 presents a high-level overview of a typical batch processing data flow. 

 

Figure 2-7: A high-level batch processing data flow. 

2.1.3 A comparison between stream and batch processing 

In this section we summarize the primary differences between the stream and batch processing 

paradigms. It is evident that there is no “best” approach as there are multiple factors to be taken 

into account, ranging from the availability of technical and computing resources to the nature of 

the business use case  that the data processing will be required to fit into [23].  

Factor Batch processing Stream processing 

Hardware More storage and computing 

resources to process large 

batches of data. 

Less storage but more 

computing resources in order 

to maintain the system in an 
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active state and guarantee 

real-time processing. 

Latency / Performance From minutes to days for 

more complex processing. 

From milliseconds to seconds, 

as the time sensitivity is 

significantly lower for 

systems that depend on stream 

processing. 

Dataset Large batches of data 

(bounded set). 

Continuous stream of 

incoming data (unbounded 

set). 

Analysis Complex computations and 

analysis algorithms 

Simpler computations for 

reporting 

Transactions Each transaction is part of a 

group (the batch) 

Each transaction is unique and 

stand-alone. 

Table 3: A comparison between batch and stream data processing  paradigms. 

2.2 Stream processing challenges 

An adequate stream processing system shall be able to handle system-level challenges related to 

the data that it manages that can be categorized as follows [24]: 

Data ingestion: Handling massive streams of data can be a challenging task, requiring the system 

to have auto-scaling capabilities to handle the incoming data velocity. The type of incoming data 

(structured / unstructured) can affect in a major way the design of a stream processing system as 

typically unstructured data requires pre-processing activities (i.e. filtering, extraction).  

Data management: Depending on the solution scope, the streaming system design must be able to 

handle persistent storage for the incoming data and potentially at different stages of the data 

lifecycle: For example, there may be a need to persist the originally streamed data for future 
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reference, analysis or auditing purposes and to also persist filtered or processed data for caching or 

future usage. 

Data modeling: Low latency is a typical requirement for the processing capabilities of a stream 

processing system. Latency is affected by the data volume, variety, velocity and veracity and as 

such all these factors must be taken into account for the system design. 

Data mining / analytics: The mining / analytics component of a data streaming solution must be 

able to handle heterogenous ingested data and produce the desired results (i.e. summaries, 

visualizations, dashboards) in a short amount of time, or even requiring near real-time publishing 

of the results. 

2.3 Indicative business applications involving stream processing systems 

Interest in processing and analyzing streaming data is reflected in the adoption of relevant 

techniques and technologies in a number of industries. In the following paragraphs we present 

sample business domains which are utilizing stream analytics in their operations. We expect that in 

the future, more businesses will transform their business models in an effort to reap benefits from 

analyzing real time data streams. 

Social Media: Due to their popularity, social media platforms continuously generate large amounts 

of data that are being processed by numerous data services, tools and analytics platforms. Many of 

these platforms include stream analytics components in their systems to perform tasks such as text 

analytics, opinion mining and sentiment analysis [25]. 

Smart Cities: Smart City projects aim to improve the quality of life of different facets of communal 

living such as transportation, working environments, government services by utilizing digital 

technologies to collect data that are being continuously generated and using that data as inputs to 

improve decision making and to optimize the efficiency of city operations and services. In this 

context, real-time data and stream processing technologies can assist smart city projects to achieve 
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these objectives in areas such as traffic monitoring, real-time fault detection on critical equipment 

and public infrastructure monitoring [26]. 

Financial Services: The large volume of transactions that takes place daily in banks and other 

financial institutions is being processed using stream analytics solutions to extract insights and 

enhance their business intelligence capabilities. Popular uses of stream analytics techniques in the 

financial services can be found in the domains of money laundering/payment fraud detection, risk 

management and to survey the stock market for emerging trends. 

2.4 Stream processing architecture patterns 

A streaming data architecture can be conceived as a framework or a system designed and developed 

to ingest, process, and output large volumes of streaming data from a variety of sources.  In this 

section we discuss streaming data architectures and elaborate on the Lambda and Kappa 

architecture, the two major architecture patterns for data / stream processing systems that are 

currently being used in the industry. In Information Technology, a System Architecture is the 

conceptual model that defines the structure, behavior, and more views of a system. An architecture 

typically consists of components and subsystems that cooperate to implement the overall system 

that is envisaged. The primary objectives of an architecture are to explain the structure of the 

underlying components / software, to guide the person who will do the actual implementation 

towards following a set of predefined patterns and to enable the requirements which directed the 

creation of the architecture [27]. 

When abstracted to its basic components, a simplified data processing architecture can be 

visualized as in the conceptual architecture diagram shown in Figure 2-8. The model presented here 

also follows the data flow patterns discussed in sections 2.1.1 and 2.1.2 for the batch and stream 

data processing paradigms.  
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Figure 2-8: A high-level data processing architecture. More details on the batch / real-time / stream processing 

architectures have been presented in section 2.1. 

For data streaming and especially related to Big Data two primary architecture patterns have 

emerged the last decade and attempt to tackle common problems and challenges that arise in the 

data processing domain.  

Table 4 presents a high-level comparison of the main features of the primary emergent data 

processing architecture patterns [28], the Lambda and Kappa architectures. Each pattern is 

presented and elaborated in the next sections 2.4.1 2.4.2. Finally, section 2.4.3 presents a 

comparison of the main characteristics of each architecture. 

Criteria Lambda architecture Kappa architecture 

Layers Batch, Real-time, Serving Stream, Serving 

Data processing Batch and real-time Real-time only 

Processing guarantees Yes, in batch but approximate 

in streaming 

Exactly once processing 

Re-processing paradigm In every batch cycle Only when code base changes 

Real-time accuracy Not guaranteed Guaranteed 

Table 4: High-level comparison of the main characteristics of Lambda and Kappa architectures for stream processing 

applications 

2.4.1 Lambda architecture 

The Lambda architecture is a way to process high-volumes of data and provides access to batch-

processing and stream-processing methods by means of a hybrid approach which will be presented 
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in this section. It appeared in 2012 and its components, functions and purpose are thoroughly 

presented in [29], which is considered to be the “foundational” book on this architecture2. The 

Lambda architecture’s primary objective is to have a data processing system that is scalable, robust, 

fault-tolerant that is linearly scalable and allows for write and read operations with low latency.  

Figure 2-9 displays an overview of the three-layered Lambda architecture. 

 

Figure 2-9: Overview of the Lambda architecture [29]. 

In [29] a list of attributes is presented that an architecture based on the Lambda model must fulfill 

to be deemed successful: 

1. Robustness and fault-tolerance: The system must behave correctly despite infrastructure 

failures or data quality issues. The fault tolerance aspect revolves primarily around the 

preventing human errors, by building immutability and re-computation aspects and 

providing clear and simple recovery mechanisms. 

 
2 See also the precedent article [31] which established the foundations on the Lambda architecture: “How to 

beat the CAP theorem”. 
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2. Low latency reads and updates: the system shall be able to achieve low latency updates 

when dictated by the business use case and without compromising its robustness. Low 

latency is handled by the architecture’s speed layer. 

3. Scalability: The system shall be able to scale horizontally across all its layers, by adding 

more compute resources. 

4. Generalization: The system shall be able to support a a wide range of applications. Since 

the Lambda architecture is based on functions over data it is possible to generalize the 

processing to accommodate a large number of use cases. 

5. Extensibility: The system shall be able to be extended with additional functionalities with 

minimal development effort. In addition, migration of old data in new formats should 

ideally be supported. 

6. Ability to execute ad hoc queries: As large datasets can be examined and processed in 

different ways to extract insights. Therefore, the system shall be able to support the 

arbitrary execution of queries over the processed dataset without requiring development 

effort. 

7. Debuggability: The system shall be able to provide necessary information for debugging 

activities to be performed, so those errors can be adequately traced. This aspect is 

accomplished in the Lambda Architecture through the batch layer by preferring to use re-

computation algorithms when possible. 

The Lambda architecture consists of a series of layers with each layer building upon the 

functionality implemented by the previous layer, with the three-layer system consisting of: 

1. The batch layer: Stores the master copy of the dataset to be processed and precomputes 

batch views on it. In addition, the batch layer's responsibility is to store an immutable, 

master dataset which will be regularly updated in the future, and compute arbitrary 

functions on that dataset. 
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2. The speed layer: Updates whenever the batch layer finishes computing a view. Effectively 

the goal of the speed layer is to ensure that any new data that arrived while the pre-

computation view was executed in the batch layer and therefore not represented there, have 

the same functions executed over them. Thus, the speed layer compensates for the 

“missing” data from the batch layer. In that sense the speed layer is similar to the batch 

layer as it produces views based on the received data – the difference being that the speed 

layer only looks at recent data compared to the batch layer which processes the entire 

dataset. 

3. The serving layer: Loads the views emitted by the batch layer as a result of the functions 

it executed over the data. The serving layer is usually a distributed database that loads a 

batch view and enables random read queries. The layer's database also supports batch 

update and random read operations. 

Finally, a Query component is responsible for submitting the end user's queries to both the serving 

layer and the speed layer and consolidating the results. This process provides the benefit to the end 

user to execute a complete query on all data, both in the Batch and the Speed layer, thus providing 

a near real-time result. 

It should be noted that the Lambda architecture does have flaws that have been considered before 

implementing it for a big data processing activity [28]: 

- The business logic has to be implemented twice: Once in the batch and once in the speed 

layer, leading to the need to maintain two separate codebases. 

- The processing is asynchronous, even though it is compensated by the existence of the 

speed layer. Hence the computed results are expected to display even a small degree of 

inconsistency compared to the original data. 
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2.4.2 Kappa architecture 

The Kappa architecture was originally proposed in [31] as an alternative over the Lambda 

architecture, aiming to set an architecture that would handle the entire computation over a single 

streaming layer, thus simplifying the overall architecture. The premise of the Kappa architecture is 

that the stream processing component of the data processing system (the “speed layer” of the 

Lambda architecture) can be adjusted to handle the entire computations over the data set and thus 

eliminating the need for including the “batch layer” in the architecture. It can therefore be conceived 

as an “improvement” on the Lambda architecture which comes with the added benefit of being able 

to handle both streaming and batch jobs with the same code base and infrastructure, while 

improving the latency requirement as the entire dataset is processed in real-time. In [32] it is 

proposed that a well-designed stream processing system should actually provide a superset of a 

batch processing system such as the Lambda architecture3. 

Generally, the processing from solely a stream processing component is done as follows [31]: 

1. The dataset for processing is loaded into a message queuing system such as Apache Kafka.  

2. Processing is done by a stream processing job that starts processing from the beginning of 

the data stored in the Kafka topic and direct the output of the computation to a new output 

table (reprocessing is effectively done by “replaying” the Kafka topic whenever it’s 

needed). 

3. When a reprocessing is needed, a second instance of the stream processing job is initialized 

and directs the output data to a new database output table (output table n + 1 in Figure 2-10) 

4. The application (i.e. a dashboard) that uses the processed data is switched to read / query 

the new table. 

 
3 This is also one of Apache Flink’s primary use cases: It exposes two execution modes (batch / streaming), 

where the batch mode is targeted at bounded datasets and the streaming mode is target at both bounded and 

unbounded datasets. See also the relevant documentation at: https://ci.apache.org/projects/flink/flink-docs-

release-1.13/docs/dev/datastream/execution_mode/.  

https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/dev/datastream/execution_mode/
https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/dev/datastream/execution_mode/
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5. Finally old job versions and old output tables are deleted, and the process repeats for new 

incoming data. 

Note that unlike the Lambda architecture, the Kappa architecture is focused at processing data and 

it does not foresee their persistent storage. It is possible however to extend the architecture to 

include a persistent storage component that comes at an additional resource, development and 

maintenance cost. 

Figure 2-10 provides an overview of the Kappa architecture. Notice the effective “merging” of the 

batch and speed layers presented in Lambda architecture (Figure 2-9) into a single stream 

processing layer. 

 

Figure 2-10: Overview of the Kappa architecture [31]. 

The primary appeal of the Kappa architecture is that it can be used to perform both real-time and 

batch processing using the same technology stack. This results in simplified development, testing 

and maintenance processes, accompanied by significant cost reductions. This is largely attributed 

to the possibility of dropping the batch layer can be dropped and instead only employ a stream 

processing component, with the primary objective of achieving real time or near-real time 

processing and at the same time simplifying the technology stack as the same stack is responsible 

for processing all incoming data. 
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2.4.3 A comparison between the Lambda and Kappa architectures 

In the two previous sections of this chapter, we presented a summary of the two prevalent data 

processing architectures that are currently in use, dubbed “Lambda” and “Kappa” along with their 

basic functions and components. It is apparent that in a vacuum, the Kappa architecture can be seen 

as a strict improvement over its predecessor as it can perform the same operations that Lambda 

architecture does with arguably less resources and less development effort. However, when 

designing such a system, a major factor to be considered is the nature of the data that will be 

processed (i.e. whether it is a bounded or unbounded dataset) which will itself be largely dictated 

by the overall business use case that necessitates the implementation of such a system. Another 

factor to consider is usually the pre-existing infrastructure and other systems that will need to 

cooperate with the processing system, which may restrict the choice towards one or the other way. 

So, for example if computation – heavy operations which occur on a very specific time window 

such transaction reconciliation operations the Lambda architecture might be more suitable for the 

task. On the other hand an operation that relies heavily on data arriving at real time and need to be 

processed immediately may warrant the implementation of system based on the Kappa architecture.  

 Lambda architecture Kappa architecture 

Fault tolerance Yes Yes 

Scalability Yes Yes 

Persistent storage Yes No 

Layers 1. Batch 

2. Speed 

3. Serving 

1. Real-time 

2. Serving 

Data processing Batch and streaming Streaming 
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Processing guarantee Yes for batch data, 

approximation for streaming 

data. 

Exactly once processing. 

Re-processing paradigm In every batch cycle Only when code base changes. 

Real-time accuracy No Yes 

Table 5: A comparison of the primary attributes of Lambda and Kappa architectures. 

A list of pros and cons which were discussed in this section is presented in Table 6. 

 Lambda architecture Kappa architecture 

Pros • Offers a balance between 

speed and reliability. 

• Batch layer manages 

historical data with a fault 

tolerant distributed storage, 

thus making the system more 

resilient if a failure occurs. 

 

• Effectively only the “speed layer” is required 

to function. 

• Re-processing is required only when the 

code base is updated. 

• Can scale horizontally by adding more 

compute resources. 

• Single processing layer is less intensive on 

development and maintenance effort. 

Cons • Requires a more complicated 

code base due to the need to 

implement and maintain 

twice the same processing 

algorithm, once for each 

layer. 

• Requires errors handling to cover scenarios 

where data must be reprocessed or 

reconciled. 

Table 6: A collection of pros and cons for the Lambda and Kappa architectures. 
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2.5 Architecture principles for a stream analytics solution 

The Open Group [33] defines an architectural principle as "general rules and guidelines, intended 

to be enduring and seldom amended, that inform and support the way in which an organization sets 

about fulfilling its mission". At the solution level, we can similarly define a set of principles 

formatted as high - level requirements that must be met by a stream analytics solution to 

successfully fulfil its purpose. The sets of architecture principles proposed in [34] result in the 

creation of a succession of layers in order to allow the composition of a solution which can combine 

different data analytics technologies and allow each layer to independently communicate and 

cooperate with technologies in the adjacent layers. Based on the above we can define the following 

principles: 

1. The solution shall be able to collect both structured and unstructured data generated by one 

or more sources. Data collection shall be done in the solution's collection layer. 

2. The solution shall be able to store incoming data ingested in the collection layer or 

migrated data, both for short-term and for long-term duration in the storage layer. 

3. The solution shall contain an analytics layer whose primary purpose will be to provide a 

cooperative and scalable distributed programming framework to process the data streams 

that are ingested in the collection layer. 

4. The solution shall perform data mining, prediction and other ad-hoc tasks created by its 

users in the analytics layer. 

5. The solution shall contain an application layer whose purpose is to realize the business 

needs from different users and present the output of the analysis layer (i.e., with a 

dashboard accessible to end users). 

6. The solution shall be able to accept input data in streams and in batches.  
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7. The final output of the solution such as analytics results for value extraction, knowledge 

discovery and visualization shall be published to the analytics layer and made available to 

end users. 

8. The solution shall be able to handle analytics in an abstract way such that it is possible to 

adapt it to different analytics needs. 

Figure 2-11 proposed in [34] displays a five-layered architecture for a stream analytics system 

based on the above architecture principles. 
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Figure 2-11: A five-layer architecture pattern for a stream analytics application [34]. 
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2.6 Open-source and commercial streaming solutions 

As discussed in section Chapter 1, the proliferation of big data has given birth to a multitude of 

open-source and commercial applications targeted at managing big data streams. This section 

presents a brief overview of the major solutions currently in the market. 

2.6.1 Open – source streaming solutions 

2.6.1.1 Apache Storm 

Apache Storm is a distributed real-time computation system which can process unbounded streams 

of data [5]. Typical use cases for Storm are real-time analytics, ETL applications and social media 

feed processing.  Architecturally, Apache Storm is composed of three components: Topology, 

Stream and Spout. A Storm application is designed as a "topology" in the shape of a directed acyclic 

graph (DAG) where the spouts and bolts function as the graph vertices. In this graph, edges are 

represented by streams which direct data flow between the nodes. A stream is an unbounded 

sequence of tuples that is processed and created in parallel in a distributed fashion. In a Storm 

topology, a spout is a source of streams. Typically, a spout reads tuples from an external source 

(for example an application log) and emit them into the topology. Depending on the configuration, 

a spout can be capable of replaying a tuple if it failed to be processed by Storm, or "forget" about 

the tuple as soon as it is emitted. Processing in a topology is done with bolts. Bolts can do operations 

such as filtering, functions, aggregations, and joins [5]. In its entirety, the storm topology acts as a 

data transformation pipeline with the advantage of being able to add multiple transformation steps 

over a stream source depending on the computation needs. 
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Figure 2-12: Apache storm topology overview [5] 

2.6.1.2 Apache Flink 

Apache Flink is a framework and distributed processing engine for stateful computations over 

unbounded and bounded data. Unbounded data streams are represented as having a defined start 

time but no end thus they are not expected to terminate and continuously generate data [7]. Bounded 

data streams have a defined start and end time and can thus be processed by Flink by ingesting all 

data before any computations are performed. For stream processing operations, Flink utilizes the 

DataStream API which provides functions such as windowing, aggregations, joins and also. In 

addition, Flink also features two relational APIs, the Table API and SQL API to handle relational 

data streams. Streams processed by Flink are fault tolerant as Flink has the capacity to use a 

combination of stream replay and checkpointing. 
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Figure 2-13: High-level overview of the Apache Flink stream processing solution [7]. 

2.6.1.3 Apache Samza 

Apache Samza is a distributed stream processing framework that enables the creation of stateful 

applications that process real-time data from multiple sources [8]. The input unit that Samza 

processes is the “stream”, which is composed of immutable messages of a similar type or category. 

A stream can be read by any number of consumers either simultaneously or in separate time frames. 

The transformation on a set of input streams with the purpose of outputting a message to an output 

stream is called “job”. A Samza stream application can process messages from input streams, 

transform them and emits the results to an output stream or a database. Samza is able to handle a 

large volume of load by parallelizing streams into partitions and jobs into tasks [35]. 

Architecturally, Samza consists of three layers: a streaming layer based on Kafka, an execution 

layer based on Yarn and a processing layer which utilizes the Samza API. Both the execution and 

streaming layers can be switched for other applications, thus offering Samza increased flexibility 

in terms of fitting it into an existing data warehouse or similar infrastructure [36]. 
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Figure 2-14: High-level overview of the Samza stream processing framework [8]. 

2.6.2 Commercial streaming solutions 

2.6.2.1 Amazon Kinesis 

Amazon Kinesis [9] is a SaaS product whose main function is to process massive data streams in 

real-time. Typical applications of Amazon Kinesis include real-time data ingestion from 

application logs, IoT telemetry and social media feeds into a variety of outputs such as databases 

and data lakes. A Kinesis stream consists of data records organized into tuples. Kinesis has a client 

library (KCL) which can be used to create consumer and worker components [37]. Therefore, KCL 

acts as an intermediary between the record processing logic and the incoming data stream. The 

KCL Worker functions as a client application, which receives the Kinesis stream performs the 

required processing and sends it to a specified output. The KCL Consumer application’s purpose 

is to read and process records from data streams ingested from the KCL worker. Kinesis has the 

typical features offered by big data streaming products such as load-balancing by auto-scaling, fault 

tolerance by check-pointing and a configurable data retention period. 
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Figure 2-15: High-level overview of the Amazon Kinesis Stream product [38]. 

2.6.2.2 IBM InfoSphere Streams 

IBM InfoSphere Streams [12] is a SaaS product which consists of a programming language, an 

API, an integrated development environment, and a runtime system that can run the applications 

on a single or distributed set of resources either hosted on IBM’s cloud or on-premises. A stream 

processing application built with InfoSphere Streams consists of tuples, data streams, operators, 

processing elements (PEs), and jobs. A tuple represents an individual piece of structured or 

unstructured data in a stream with a data stream representing a running sequence of tuples. The 

data stream is processed by the operator component which produces an output stream. The operator 

- stream relationship is then broken down into a set of individual processing elements which are all 

packaged into a Job component. Stream applications are developed with the Streams Processing 

Language (SPL) which is proprietary to IBM or with Java and Python client libraries. 

2.6.2.3 Azure Stream Analytics 

Azure Stream Analytics (ASA) is a SaaS product of Microsoft's Azure cloud platform [10]. It is 

a real-time analytics engine that can handle processing of big data streams originating from input 

sources such as logs, IoT telemetry data and sensors and output results to multiple outputs such as 

data bases and data lakes. 



Theoretical background 36 

 

An ASA's functional unit is the "job" which consists of an input, query, and an output. The job can 

be configured to ingest data from Azure Event Hubs (or Apache Kafka), Azure IoT Hub, or Azure 

Blob Storage. The processing query is based on the SQL query language, can be used to perform 

filter, sort, aggregation, join and other functions over the incoming stream. An ASA job can be 

configured with one or more outputs for the transformed data such as storage, power BI dashboards, 

a Service Bus topic or a function that uses the output as a trigger for a downstream application. 

Azure Stream Analytics is the product that we have chosen to design a streaming solution 

architecture for this dissertation and is further elaborated in section 3.4.1. 

 

Figure 2-16: High-level overview of the Azure Stream Analytics product. 
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Chapter 3. Solution architecture and design 

This chapter presents the architecture of our stream processing solution, outlines its components 

and discusses design and configuration choices. The solution will be built with components from 

the Azure cloud platform and the custom development that was needed was done in the Python 

programming language4. The purpose of the solution is to facilitate ingestion of data from multiple 

sources, store the incoming data as events in a message queue, perform analytics operations and 

publish the results in a dashboard as well as persist them in a data store for future reference or 

reprocessing. 

The solution design is influenced by the 5-layer architecture and the relevant architecture principles 

proposed in [34] and presented in section 2.5. It is also based on the Kappa architecture presented 

in section 2.4.2 as we will be primarily working with streaming data that will be fetched from 

Twitter utilizing the Twitter streaming API. It should be noted however that with the proposed 

solution it is possible to facilitate scenarios where bounded datasets must be processed. We 

 
4 Refer to the annexes for details of the technical implementation and the solution deployment guide: 

- Development environment, 

- Solution deployment guide  
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demonstrate that scenario – also for benchmarking purposes, in section Error! Reference source n

ot found.. 

Figure 3-1 outlines an architectural blueprint for a general-purpose data stream processing solution. 

Such a solution typically consists of the following components [16]: 

- Data producer: This component represents the entities that generate the data that are 

captured and analyzed. For example, smartphone devices and applications, IOT devices, 

user activity on a system. 

- Collection tier: This is the entry point for incoming data to the data streaming solution. 

Typically, the data collection is done using a commonly used interaction pattern, such as 

the request / response, publish / subscribe or the stream pattern. 

- Message queuing tier: This tier is responsible for decoupling the collection and the 

analysis tier of the system by employing a three-tiered producer / broker / consumer layer 

to handle incoming data. 

- Analysis tier: This tier is responsible for executing queries in the ingested data such as 

aggregations transformations and joins. 

- Long term storage: This tier is responsible for persisting incoming data either in 

unprocessed or processed forms (or both) for future reference and re-processing.  

- In-memory data store: An in-memory data store can be used to facilitate quicker read 

operations from the data access tier. 

- Data access tier: Data consumers can access the processed data via this tier. Depending 

on the solution, this can be implemented with a variety of communication patterns, such as 

exposing API methods, Remote Procedure Calls (RPC). 

- Data consumer: This component represents the entities that consume the processed data, 

for example smartphone applications, dashboards or other systems that further process or 

analyze the data. 
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Figure 3-1: Architectural blueprint for a generic streaming data solution [16]. 

The solution architecture consists of six distinct conceptual layers which will be further analyzed 

in the following sections: 

- Producer 

- Ingestion 

- Processing 

- Storage 

- Analytics / Reporting 

- Infrastructure monitoring 

Figure 3-2 presents a conceptual architecture diagram of the solution. As discussed in section 

Chapter 2, the solution architecture is modeled after the Kappa architecture pattern, which will 

enable the processing component to rely on just a single code base. In addition, the decoupled 

nature of the rest of the components enables us to modify them with minimal impact to the rest of 

the solution. 
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Figure 3-2: Conceptual architecture diagram of the architecture for the solution presented in this thesis. 

Architecture layer Contents 

Producer Collection of sources that produce data which will be 

ingested by the solution 

Ingestion Applications, Event Hub 

Processing Stream Analytics 

Storage Blob storage, Document DB 

Presentation / Consumption Analytics Dashboard 

Table 7: High-level view of the solution's architecture layers. 

The following sections present in detail each architecture tier and its components. We also discuss 

configuration options and provide specific implementation details for the components that were 

custom built. 
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3.1 Resource groups breakdown 

A resource group in Azure is a container that holds related resources for a solution. Depending on 

the solution design, a resource group can include all the resources for the solution, or only those 

resources that are related in some way, for example they are elements of the same component. 

Further to the above, resource groups can be used to manage access to the underlying resources, as 

displayed in Figure 3-3. Role based access control is out of the scope of the solution presented in 

this paper and as such will not be further discussed or taken into account in the solution design. 

 

Figure 3-3: Example of role-based access control for Azure resource groups5. 

The solution’s components are separated into Resource Groups, which offer a way to logically 

group the different resources. As such, there is no “correct” way to organize the solution and it 

should be noted that resources can be transferred or redeployed to other resource groups if needed. 

Note that the breakdown of the solution’s components into resource groups does not affect in any 

way its functionalities. However, the deployment guide in Annex III assumes that the resource 

groups defined in this section will be used. 

 
5 Source: Azure RBAC documentation, available online at https://docs.microsoft.com/en-us/azure/role-

based-access-control/overview. 

https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
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The solution consists of the following three resource groups. The current break-down of the 

resources has been done primarily to hold components that are more cost-effective and store 

persistent information (blob storage, databases) into a dedicated resource group and to group 

resources that are deployed and re-deployed with different configuration depending on the business 

need (event hubs, stream analytics jobs) into a separate group.  

- rg-apps-alpha: Contains the core application deployments that implement the streaming 

pipeline component of the solution. 

- rg-containers-alpha: Contains the docker container deployments (Azure Container 

Instance resource type) that are used to host the Twitter stream listener and the Botometer 

checker applications. 

- rg-ops-alpha: Contains deployments related to infrastructure health, security and 

performance monitoring. 

 

Figure 3-4: Overview of the solution's resource groups. 
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The resource groups have been annotated with CATEGORY and ENVIRONMENT tags6 to assist with 

management, maintenance, and cost monitoring activities. All resource groups have been 

provisioned in the West Europe location7. 

Note that the component allocation over the resource groups outlined in this section attempts to 

follow a best practice approach. As described in the solution deployment guide in Annex III, all 

resources can be deployed in a single resource group with zero impact on the solution’s 

functionality or performance. 

 

Figure 3-5: The resource groups for the solution in the Azure UI. Note that the resource group “rg-vms-alpha” visible 

in the screenshot contains a Virtual Machine created for the solution development and is not to be considered part of 

the solution itself. 

3.2 Producer tier 

The producer tier consists of external sources that act as data producers for the streaming pipeline 

solution presented in this dissertation. We will consider the following sources to serve as data 

producers for our solution: 

1. Twitter streaming API [40]. 

2. Twitter’s GET trends/place API endpoint [41]. 

3. Botometer API exposed via the RapidAPI service [42]. 

 
6 See the following link for more information on Azure resource tagging: https://docs.microsoft.com/en-

us/azure/azure-resource-manager/management/tag-resources. 
7 The location here refers to the hosting location of the resource groups themselves and not of any contained 

resource groups, which have their own location provisioning property. 

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/tag-resources
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/tag-resources
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4. NYC Taxi & Limousine Commission - green taxi trip records dataset [43]. 

The following sections provide summary information on the data emitted from each of the above 

producers. Further to the above, to measure the run-time performance of the ingestion and 

processing components we will be imitating a high-volume producer emitting events using a subset 

of the dataset “NYC Taxi & Limousine Commission - green taxi trip records dataset”. 

The above mentioned four sources were selected for the scenario presented in this work with the 

following criteria: 

1. 24-hour access to a free, though rate-limited, streaming API which can provide data at a 

consistent frequency. 

2. Availability of client libraries that can facilitate the development of the applications that 

will ingest the data in the Ingestion layer. 

3. Opportunity to execute real-world scenarios with actual data that can be valuable to a 

business scenario. 

4. Capacity to imitate a high-volume stream in a repeatable manner to be able to execute 

debugging and performance evaluation scenarios (this is the primary purpose for including 

the NYC taxi dataset). 

From a conceptual point of view, the Producer tier can be extended to include any data producer - 

source that exposes data and that can be programmatically accessed by an application in the 

solution’s Ingestion tier. It is important to maintain documentation with each producer’s data model 

and how it is accessed so that the Ingestion tier’s applications can be appropriately updated in case 

the data model is updated. Figure 3-6 provides a conceptual overview of the solution’s Producer 

tier and its interaction with the Ingestion tier. The Ingestion tier displayed in the figure is composed 

of one container instance for each data producer and a single Event Hub namespace to receive the 
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ingested data as events. The rest of this section presents a brief overview of the APIs that will be 

used as producers in the different scenarios we will be working with. 

 

Figure 3-6: Overview of the architecture's producer layer and its interaction with the ingestion layer. 

3.2.1 Twitter streaming API 

Twitter is a microblogging and social networking service on which users post and interact with 

messages known as "tweets". As tweets are short and constantly generated, they are well suited for 

applications involving ingestion and processing of data streams. Twitter provides an API8 to stream 

tweets in real-time. Tweets are exposed in JSON format and thus are easy to consume and process 

 
8 See also the official documentation on consuming streaming data: 

https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data. 

https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
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with applications oriented towards data processing and analytics tasks. As described in section 

3.3.1, a Python application has been developed which primarily utilizes the Tweepy Python library 

[44] to connect to the streaming API and retrieve tweets that contain a list of predefined hashtags. 

The API returns JSON objects representing tweets which will be ingested into the Event Hub as 

events for further processing. Due to ease of use and the platform’s popularity, Twitter’s streaming 

API has been widely utilized in academic research for numerous subjects such as sentiment analysis 

[45], real-time data analysis [46], real-time event recognition [47], health research [48] as well as 

a multitude of other fields. 

3.2.2 Twitter GET Trends/place API 

Twitter exposes trending topics for specific locations via the GET TRENDS/PLACE API endpoint [41]. 

The endpoint returns a JSON response containing the top 50 trending topics for a given place. A 

sample response for a location is provided in Sample ingestion data. In this dissertation we are 

going to utilize the GET TRENDS/PLACE API endpoint in a Python application to retrieve trends for 

a list of predefined locations and publish them as events into the Event Hub for persistent storage 

and processing, as described in section 3.3.2. The trends API has been utilized in research, for 

example to study the dynamics of emerging trends [49] and to perform real-time classification of 

tweets [50].  

3.2.3 Botometer API 

Botometer is an online service which evaluates the likelihood of a twitter account to belong to a 

bot or demonstrate a bot-like behavior [51]. This is done by utilizing Twitter's API to extract 

features of the account such as friends, social network structure, temporal activity patterns, 

language, and sentiment and comparing features of the tweet history of the account against a dataset 

of labeled examples. The outcome of this process is a "bot score" which indicates the likelihood 

that the account under examination belongs to a bot. A low score will indicate a likely human 

account while a high score will indicate a likely bot account. 
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Botometer is developed and published as a joint project by the Network Science Institute (IUNI), 

the Center for Complex Networks and Systems Research (CNetS) at the Luddy School of 

Informatics, Computing, and Engineering, and the Media School at Indiana University. 

In the context of this dissertation, the Botometer service will be utilized to score twitter accounts 

that are ingested in the stream when monitoring twitter for hashtags of interest using the streaming 

API, so that tweets belonging to accounts with a high probability of being bots will be flagged. The 

combination of these can produce insights as to how much bot activity exists in popular hashtags, 

assessing whether influential users within a hashtag are bots and other similar scenarios. 

3.2.4 NYC Taxi & Limousine Commission - green taxi trip records dataset 

The New York City TLC dataset [52] contains records about yellow and green taxi trips, which 

have captured pick-up and drop-off dates/times, pick-up and drop-off locations, trip distances, 

itemized fares, rate types, payment types, and driver-reported passenger counts. The data are 

collected on behalf of the NYC Taxi and Limousine Commission (TLC) and are published in yearly 

datasets. In this dissertation the dataset is only used to benchmark and evaluate the performance of 

the various components of the solution. A sample of the dataset is presented in Sample ingestion 

data. The NYC taxi dataset has been thoroughly analyzed in numerous papers, such as in 

[53][54][55] to perform analytics on fare data, distances covered, as well as to test prediction 

algorithms regarding passenger and taxi driver behaviors. 

3.3 Ingestion tier 

The ingestion tier (also referred to as “collection tier” in reference architectures, i.e., in the 

reference architecture presented in section 2.5) serves as the foundation for the entire solution as it 

effectively is the point of entry of inputs. It consists of Python applications that execute in container 

instances, connect to the external data producers defined in section 3.1, perform minimal 
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preprocessing in the received inputs and publish them as events to an Event Hub instance. The 

ingestion layer of the architecture is presented in Figure 3-7. 

 

Figure 3-7: Overview of the architecture’s ingestion layer 

Each component is manually deployed as an Azure Container Instance using the deployment scripts 

provided in Development environment. 

The applications in the solution's Ingestion layer that are presented in have been developed with 

the Python programming language, version 3.9.1. Visual Studio Code was used as IDE, with the 

extensions listed in Table 16. For individual libraries that were utilized (primarily Tweepy to access 

the Twitter streaming API, Botometer to access the Botometer API and various Azure API libraries 
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to interface with the different Azure components) and their versions, please refer to the respective 

requirements.txt file in the application repositories listed in Solution deployment guide. 

All the Ingestion layer's applications were locally tested and debugged with Docker Desktop for 

Windows, version 3.2.0. The ARM templates and CLI deployment scripts have been developed in 

Visual Studio code utilizing the Azure CLI Tools and the Azure Resource Manager extensions. 

Once deployed, the container will execute until its allocated runtime finishes and is available for 

further repeated execution. The process of container deployment is shown in Figure 3-8 below. 

 

Figure 3-8: Overview of the Azure Container Instance deployment process 

[1]. All components used as ingestion components in the solution are published in Docker Hub9 

repositories (see also   

 
9 Docker Hub is a service to share container images. See more information at https://docs.docker.com/docker-

hub/. 

https://docs.docker.com/docker-hub/
https://docs.docker.com/docker-hub/
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Supplementary materials). Each application’s functionality is thoroughly discussed in the next 

paragraphs of this section. 

 

Figure 3-9: Overview of a container instance's status in the Azure UI. 

3.3.1 Twitter Stream Listener 

The Twitter Stream Listener application is a Python program that connects to the Twitter streaming 

API and retrieves tweets that contain one or more hashtags from a predefined list which is 

configured at the program’s initialization. The collected tweets are converted to JSON objects and 

are sent as events to an Azure Event Hub instance (see more information in section 0 on the Event 

Hub configuration and purpose). 

The application has been developed with the Python programming language, version 3.9.1. For 

individual libraries used (primarily Tweepy to access the Twitter streaming API and various Azure 

API libraries to interface with the different Azure components) and their versions, please refer to 

the respective requirements.txt file in the application repository (https://github.com/orestisf/twitter-

stream-listener/blob/main/requirements.txt). 

One of the application’s objectives are to capture in a structured way as much information about 

an incoming tweet as possible so that it can be utilized in different processing scenarios while 

https://github.com/orestisf/twitter-stream-listener/blob/main/requirements.txt
https://github.com/orestisf/twitter-stream-listener/blob/main/requirements.txt
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minimizing – ideally eliminating the need to re-contact the Twitter API to get more information 

about a specific tweet. 

The application will perform additional processing over each incoming tweet by appending 

additional properties by means of a boolean flag to indicate: 

- If the tweet is a reply to another tweet. 

- If the tweet contains a retweet. 

- If the tweet contains a quote (a “quote” tweet is a wrapper around another tweet). 

- If the tweet is associated with a place (for example a city or a point of interest). 

This processing is done with the purpose of making easier queries and aggregations that will be 

done in the solution’s analytics layer. 

For each of the above properties, additional related metadata are extracted from the tweet object, 

for example in case a tweet contains a retweet, the program will extract the retweeted tweet’s ID, 

user ID and username. This way, the application has the flexibility to accommodate multiple 

scenarios where tweets are used as data inputs to a streaming pipeline and furthermore to avoid re-

contacting the Twitter API to request additional metadata about tweets after they are captured and 

stored in the solution’s database. 

The architecture of the application provides the agility to instantiate multiple instances in different 

containers and track different sets of hashtags as well as route the captured tweets to separate event 

hub partitions.   

Table 8 shows a sample tweet in JSON format processed by the Twitter Stream Listener application 

and ready to be sent to the Event Hub. A sample dataset of tweets collected with the application 

has been published in the link: https://github.com/orestisf/twitter-stream-listener/blob/main/data-

output-sample.json. 

https://github.com/orestisf/twitter-stream-listener/blob/main/data-output-sample.json
https://github.com/orestisf/twitter-stream-listener/blob/main/data-output-sample.json
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[ 

    { 

        "USER_ID_STR": "1300542919590522880", 

        "USER_NAME": "LIL_RED", 

        "USER_SCREENNAME": "LILRED30411902", 

        "USER_LOCATION": "CHICAGO IL", 

        "COORDINATES": NULL, 

        "TWEET_LANG": "UND", 

        "USER_CREATED": "31-AUG-2020", 

        "CREATED": "08-FEB-2021", 

        "FOLLOWERS_COUNT": 105, 

        "FRIENDS": 111, 

        "USER_LISTED_COUNT": 0, 

        "USER_VERIFIED": FALSE, 

        "STATUSES_COUNT": 16323, 

        "FAVOURITES_COUNT": 16112, 

        "TWEET_ID": "1358896365766643716", 

        "TRUNCATED": FALSE, 

        "HASHTAGS": [ 

            { 

                "TEXT": "SAVEAMERICA", 

                "INDICES": [ 

                    0, 

                    12 

                ] 
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            } 

        ], 

        "HASHTAGS_COUNT": 1, 

        "USER_MENTIONS": NULL, 

        "USER_MENTIONS_COUNT": 0, 

        "URLS": NULL, 

        "URLS_COUNT": 0, 

        "SYMBOLS": NULL, 

        "SYMBOLS_COUNT": 0, 

        "MEDIA_COUNT": 0, 

        "FULL_TEXT": "#SAVEAMERICA", 

        "CLEANTEXT": "", 

        "IS_REPLY": TRUE, 

        "TWEET_REPLY_ID_STR": NULL, 

        "TWEET_REPLY_USER_ID_STR": NULL, 

        "TWEET_REPLY_USER_SCREEN_NAME": NULL, 

        "HAS_RETWEET": FALSE, 

        "HAS_QUOTE": TRUE, 

        "QUOTED_TWEET_ID": "1358821818056863744", 

        "QUOTED_TWEET_USER_ID": "2314018987", 

        "QUOTED_TWEET_USER_SCREEN_NAME": "SHELBYKSTEWART", 

        "HAS_PLACE": FALSE 

    } 

] 

Table 8: Sample tweet processed and sent as event by the Twitter Stream Listener application. 
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3.3.1.1 Tweet object properties 

For each incoming tweet, the application will capture and send as an event to the Event Hub the 

properties presented in Table 9. For each tweet processed, the Azure Stream Analytics Service 

appends additional properties related to when the incoming event was enqueued for processing, 

and the Event Hub partition ID where the tweet was retrieved from. These properties are presented 

in Table 10. Finally, when the tweet is eventually stored as a JSON document in a Cosmos DB 

container where additional attributes are added (unique id, timestamp). These attributes are 

displayed in Table 11. 

Attribute  Type Example value 

user_id_str String 909848411352043520 

user_name String Tom Germanotta Lipa 

user_screenname String tom_germanotta 

user_location String Denver, CO 

coordinates JSON       [ 

        [ 

          -74.026675, 

          40.683935 

        ], 

        [ 

          -74.026675, 

          40.877483 

        ], 

        [ 

          -73.910408, 

          40.877483 
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        ], 

        [ 

          -73.910408, 

          40.3935 

        ] 

      ] 

tweet_lang String el 

user_created Date 18-Sep-2017 

created Date 27-Dec-2020 

followers_count Integer 231 

friends Integer 0 

user_listed_count Integer 0 

user_verified Integer 0 

statuses_count Integer 13113 

favourites_count Integer 11381 

tweet_id Integer – The 

unique ID of the 

tweet. 

1343260640547364865 

truncated Integer (accepted 

values: 0,1) 

0 

hashtags  [ 

    { 

      "indices": [ 

        32, 

        38 
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      ], 

      "text": "somehashtag" 

    } 

  ] 

user_mentions String someUserName 

urls  [ 

    { 

      "indices": [ 

        32, 

        52 

      ], 

      "url": "http://t.co/IOwBrTZR", 

      "display_url": 

"youtube.com/watch?v=oHg5SJ…", 

      "expanded_url": 

"http://www.youtube.com/watch?v=oHg5SJYRH

A0" 

    } 

  ] 

symbols  [ 

    { 

      "indices": [ 

        12, 

        17 

      ], 
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      "text": "twtr" 

    } 

  ] 

media  [ 

    { 

      "display_url": 

"pic.twitter.com/5J1WJSRCy9", 

      "expanded_url": 

"https://twitter.com/nolan_test/status/9300778475

35812610/photo/1", 

      "id": 9.300778475358126e17, 

      "id_str": "930077847535812610", 

      "indices": [ 

          13, 

          36 

      ], 

      "media_url": 

"http://pbs.twimg.com/media/DOhM30VVwAEpI

Hq.jpg", 

      "media_url_https": 

"https://pbs.twimg.com/media/DOhM30VVwAEp

IHq.jpg" 

      "sizes": { 

          "thumb": { 

               "h": 150, 



Solution architecture and design 58 

 

               "resize": "crop", 

               "w": 150 

          }, 

          "large": { 

              "h": 1366, 

              "resize": "fit", 

              "w": 2048 

          }, 

          "medium": { 

              "h": 800, 

              "resize": "fit", 

              "w": 1200 

          }, 

          "small": { 

              "h": 454, 

              "resize": "fit", 

              "w": 680 

          } 

      }, 

      "type": "photo",       

      "url": "https://t.co/5J1WJSRCy9", 

    } 

  ] 

full_text  This is a tweet body. 
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is_reply Integer (accepted 

values: 0,1) 

1 

tweet_reply_id_str  1343260640547364865 

tweet_reply_user_id

_str 

 someUserName 

tweet_reply_user_sc

reen_name 

String someUserName 

has_retweet Integer (accepted 

values: 0,1) 

1 

retweeted_tweet_id Integer 1343260640547364865 

retweeted_tweet_us

er_id 

Integer 909848411352043520 

retweeted_tweet_us

er_screen_name 

String SomeUserName 

has_quote Integer (accepted 

values: 0,1) 

1 

quoted_tweet_id Integer 1343260640547364865 

quoted_tweet_user_

id 

Integer 909848411352043520 

quoted_tweet_user_

screen_name 

 SomeUserName 

has_place Integer (accepted 

values: 0,1) 

1 

place_id  01a9a39529b27f36 
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place_url String https://api.twitter.com/1.1/geo/id/01a9a39529b27f

36.json 

place_type String city 

place_name String Manhattan 

place_full_name String Manhattan, NY 

place_country_code String US 

place_country String United States 

place_bounding_bo

x.type 

String Polygon 

place_bounding_bo

x.coords 

JSON [ 

        [ 

          [ 

            -74.026675, 

            40.683935 

          ], 

          [ 

            -74.026675, 

            40.877483 

          ], 

          [ 

            -73.910408, 

            40.877483 

          ], 

          [ 

            -73.910408, 
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            40.683935 

          ] 

        ] 

      ] 

Table 9: Sample tweet properties captured by the Twitter Stream Listener application 

ATTRIBUTE  TYPE EXAMPLE VALUE 

EVENTENQUEUEDUTCTIME DateTime 2020-12-

27T18:21:13.9020000Z 

EVENTPROCESSEDUTCTIME DateTime 2020-12-

27T18:21:15.0320935Z 

PARTITIONID Integer 0 

Table 10: Additional properties to the tweet JSON document appended by the Azure Stream Analytics Service. 

ATTRIBUTE  TYPE EXAMPLE VALUE 

_RID Resource ID10. A unique 

identifier for the document. 

YLUFAJAion8GAAAAAAAAAA

== 

_SELF The unique addressable URI 

for the document. 

dbs/YLUFAA==/colls/YLU

FAJAion8=/docs/YLUFAJA

ion8GAAAAAAAAAA==/ 

_ETAG The document’s etag used by 

Cosmos DB for concurrency 

control. 

\"00001000-0000-0d00-

0000-5fe8d0a00000\" 

 
10 See the following link for system generated properties in Cosmos DB documents: 

https://docs.microsoft.com/en-us/rest/api/cosmos-db/documents.  

https://docs.microsoft.com/en-us/rest/api/cosmos-db/documents
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_TS Epoch11 value in seconds (not 

milliseconds) since an item 

was last modified. 

1609093280 

Table 11: System properties appended to the tweet JSON documents in the Azure Cosmos DB. 

Finally, each tweet is stored as JSON document in the tweets Cosmos DB container. Figure 3-10 

displays a view of a document stored in the Cosmos DB container. 

 

Figure 3-10: View of the tweets Cosmos DB container in the Azure UI. A single tweet is displayed as JSON document. 

3.3.1.2 Configurable properties 

The Twitter Stream Listener application has several configuration items exposed as environmental 

properties to allow the user to run the container in any Azure subscription, to set the desired 

hashtags to be tracked and the total running time of the application without having to modify and 

re-publish the container itself. The configurable environmental properties of the Twitter Trends 

Monitor application are displayed in Table 12. 

 
11 See the following link for more information on the _ts property: 

https://devblogs.microsoft.com/cosmosdb/new-date-and-time-system-functions/#converting-the-system-

_ts-property-to-a-datetime-string/. 

https://devblogs.microsoft.com/cosmosdb/new-date-and-time-system-functions/#converting-the-system-_ts-property-to-a-datetime-string
https://devblogs.microsoft.com/cosmosdb/new-date-and-time-system-functions/#converting-the-system-_ts-property-to-a-datetime-string


63 Chapter 3. Solution architecture and design 

 

 

Environmental 

property 

Explanation 

CONSUMER_KEY String - The consumer API key of the Twitter App. 

CONSUMER_SECRET String - The consumer API secret of the Twitter App. 

ACCESS_KEY String - The access token of the Twitter App. 

ACCESS_SECRET String - The access secret of the Twitter App. 

EVENTHUB_ENDPOINT String – The Connection string – primary key property12 of the Event 

Hub instance that will be used to push the processed tweets to. 

EVENTHUB_NAME String – The name of the Event Hub that the tweets will be pushed to 

as events. 

RUNTIME_MINS Integer – Define how many minutes the application will connect to 

the Twitter Streaming API before closing. 

HASHTAGS String - A comma separated list of hashtags that the application will 

monitor. 

Table 12: List of environmental properties for the Twitter Stream Listener application. 

 
12 The property can be retrieved by this Azure CLI script: az eventhubs eventhub authorization-
rule keys list --resource-group rg-apps-alpha --namespace-name evh-namespace-
alpha --eventhub-name evh-alpha --name common-sas-alpha --subscription xxxxxxxx-
xxxx-xxxx-xxxx-xxxxxxxxxxxxxxxxx. See also the relevant documentation at: 

https://docs.microsoft.com/en-us/cli/azure/eventhubs/eventhub/authorization-rule/keys?view=azure-cli-

latest#az_eventhubs_eventhub_authorization_rule_keys_list-examples. 

https://docs.microsoft.com/en-us/cli/azure/eventhubs/eventhub/authorization-rule/keys?view=azure-cli-latest#az_eventhubs_eventhub_authorization_rule_keys_list-examples
https://docs.microsoft.com/en-us/cli/azure/eventhubs/eventhub/authorization-rule/keys?view=azure-cli-latest#az_eventhubs_eventhub_authorization_rule_keys_list-examples
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Figure 3-11: View of the application deployed in Azure as a container. The environmental properties set for the 

particular instance are displayed. 

3.3.2 Twitter Trends Monitor 

The Twitter Trends Monitor is a Python program that polls at predefined intervals and for a list of 

predefined locations such as cities or countries, Twitter’s GET TRENDS/PLACE API endpoint for the 

Trending topics that trending at the specific time for that place. The response contains the top 50 

trending topics and includes metadata on the name and WOEID13 of the location and timestamps 

on when the file was generated and requested. 

The application has been developed with the Python programming language, version 3.9.1. For 

individual libraries used, refer to the respective requirements.txt file in the application repository 

(https://github.com/orestisf/twitter-trends-monitor/blob/main/requirements.txt). 

Table 13 shows a sample response from the GET TRENDS/PLACE API for the location “Athens”. Due 

to its length, the response is presented truncated, with the full response sample being available in 

Sample ingestion data. A sample dataset of trends collected for several locations with this 

 
13 WOEID (Where On Earth IDentifier) is a unique 32-bit reference identifier for locations which is used by 

the Twitter API to refer to locations for trending topics. 

https://github.com/orestisf/twitter-trends-monitor/blob/main/requirements.txt
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application is also published at the location: https://github.com/orestisf/twitter-trends-

monitor/blob/main/data-output-sample.json. 

[ 

    { 

        "TRENDS": [ 

            { 

                "NAME": "#ELAXAMOGELA", 

                "URL": "HTTP: //TWITTER.COM/SEARCH?Q=%23ELAXAMOGELA", 

                "PROMOTED_CONTENT": "NONE", 

                "QUERY": "%23ELAXAMOGELA", 

                "TWEET_VOLUME": "NONE" 

            }, 

            { 

                "NAME": "#ΙΚΑΡΙΑ", 

                "URL": 

"HTTP://TWITTER.COM/SEARCH?Q=%23%CE%B9%CE%BA%CE%B1%CF%81%CE%B9%CE%B1", 

                "PROMOTED_CONTENT": "NONE", 

                "QUERY": "%23%CE%B9%CE%BA%CE%B1%CF%81%CE%B9%CE%B1", 

                "TWEET_VOLUME": "NONE" 

            }, 

            { 

                "NAME": "ΜΑΝΤΣΕΣΤΕΡ ΓΙΟΥΝΑΙΤΕΝΤ", 

                "URL": 

"HTTP://TWITTER.COM/SEARCH?Q=%22%CE%9C%CE%B1%CE%BD%CF%84%CF%83%CE%B5%CF%8

https://github.com/orestisf/twitter-trends-monitor/blob/main/data-output-sample.json
https://github.com/orestisf/twitter-trends-monitor/blob/main/data-output-sample.json
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3%CF%84%CE%B5%CF%81+%CE%93%CE%B9%CE%BF%CF%85%CE%BD%CE%B1%CE%B9%CF%84%

CE%B5%CE%BD%CF%84%22", 

                "PROMOTED_CONTENT": "NONE", 

                "QUERY": 

"%22%CE%9C%CE%B1%CE%BD%CF%84%CF%83%CE%B5%CF%83%CF%84%CE%B5%CF%81+%CE%

93%CE%B9%CE%BF%CF%85%CE%BD%CE%B1%CE%B9%CF%84%CE%B5%CE%BD%CF%84%22", 

                "TWEET_VOLUME": "NONE" 

            } 

        ], 

        "AS_OF": "2021-02-06T10:49:38Z", 

        "CREATED_AT": "2021-01-07T16:56:34Z", 

        "LOCATIONS": [ 

            { 

                "NAME": "GREECE", 

                "WOEID": 23424833 

            } 

        ] 

    } 

] 

Table 13: Sample response JSON of the GET trends/place API endpoint for the location "Athens". 

Even though the primary purpose of the application is to be used as a data ingestion component in 

the solution presented in this dissertation, it can also be used as a stand-alone program to collect 

Twitter trends for a list of locations at a specified time interval and persist them in a JSON file. 

Such a stand-alone version of the application is published as a Jupyter notebook for reference at 

the following location: 
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https://github.com/orestisf/twitter-trends-monitor/blob/main/twitterTrendMonitor_v_1_0.ipynb.  

The application is also published as a docker container and is publicly available at the url: 

https://hub.docker.com/repository/docker/ofotiadis/twitter-trends-monitor. This way it can be 

executed in an Azure Container Instance as described in Solution deployment guide. 

 

Figure 3-12: The Twitter Trends Monitor application executing as an Azure Container Instance 

Scenarios where the application can be utilized include: 

- Creating dashboards showing trending topics for a list of locations. 

- Uncovering trends in a regional or global level. 

- Monitoring the evolution of trending topics for a region over a time period.  

 

Figure 3-13: Captured twitter trend events as they appear in Azure's stream analytics job. 

https://github.com/orestisf/twitter-trends-monitor/blob/main/twitterTrendMonitor_v_1_0.ipynb
https://hub.docker.com/repository/docker/ofotiadis/twitter-trends-monitor
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3.3.2.1 Configurable properties 

The application has several configuration items exposed as environmental variables to allow the 

user to run the container in any Azure subscription and to set the location and polling frequency 

without having to modify and re-push the container itself. The configurable environmental 

properties of the Twitter Trends Monitor application are displayed in Table 14. 

Environmental property Explanation 

CONSUMER_KEY String - The consumer API key of the Twitter App. 

CONSUMER_SECRET String - The consumer API secret of the Twitter App. 

ACCESS_KEY String - The access token of the Twitter App. 

ACCESS_SECRET String - The access secret of the Twitter App. 

APP_INSIGHTS_KEY String – The Instrumentation key of the Application 

Insights instance which is used by the application to log 

exceptions. 

EVENTHUB_ENDPOINT String – The Connection string – primary key property 

of the Event Hub instance that will be used to push the 

processed tweets to. 

EVENTHUB_NAME String – The name of the Event Hub that the tweets will 

be pushed to as events. 

RUNTIME_MINS Integer – Define how many minutes the application will 

execute. 

QUERY_INTERVAL_SEC Integer – Define every how many seconds the 

application will connect to the Twitter GET 
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TRENDS/PLACE API endpoint14 and retieve trends for each 

location. 

LOCATIONS String - A comma separated list of the locations that the 

application will submit to the Twitter API to retrieve the 

trends. 

Table 14: List of environmental properties for the Twitter Trends Monitor application. 

3.3.3 NYC Green Taxi dataset publisher 

As discussed in section 3.1 the motive for this application is to use it to imitate event generation in 

a predictable manner, for benchmarking and testing purposes. The “NYC Green Taxi dataset 

publisher” is a Python application that: 

- Downloads the dataset in Parquet format as it exists in the azureml.opendatasets Python 

library; 

- Samples a number of records that can be configured by the user and exports these records 

as a Pandas dataframe; 

- Filters the dataframe to keep only a subset of the available attributes (‘vendorID', 

'passengerCount', 'lpepPickupDatetime', 'lpepDropoffDatetime', 'tripDistance', 

'tipAmount', 'totalAmount); 

- Converts each record to JSON; 

- Sends each record as an event to an Azure Event Hub. 

To examine different scenarios, the application can be configured to send events in two ways: 

1. Serially, one-by-one. 

2. In a batch, with a size that is configurable by the user (i.e., 500 events per batch); 

 
14 Note that the free API allows for a maximum of 75 requests every 15 minutes. See also API reference at 

https://developer.twitter.com/en/docs/twitter-api/v1/rate-limits. 

https://developer.twitter.com/en/docs/twitter-api/v1/rate-limits
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This has been done to be able to test the Event Hub’s performance in scenarios with varying 

volumes.  

 

Figure 3-14: A sample of NYC Green Taxi records sent as events to the Event Hub. 

3.3.3.1 Configurable properties 

The NYC Green Taxi dataset publisher application has several configuration items exposed as 

environmental properties to allow the user to run the container in any Azure subscription. The 

configurable environmental properties of the application are displayed in Table 12. 

Environmental 

property 

Explanation 

EVENTHUB_ENDPOINT String – The Connection string – primary key property15 of the Event 

Hub instance that will be used to push the processed tweets to. 

EVENTHUB_NAME String – The name of the Event Hub that the tweets will be pushed to 

as events. 

 
15 The property can be retrieved by this Azure CLI script: az eventhubs eventhub authorization-
rule keys list --resource-group rg-apps-alpha --namespace-name evh-namespace-
alpha --eventhub-name evh-alpha --name common-sas-alpha --subscription xxxxxxxx-
xxxx-xxxx-xxxx-xxxxxxxxxxxxxxxxx. See also the relevant documentation at: 

https://docs.microsoft.com/en-us/cli/azure/eventhubs/eventhub/authorization-rule/keys?view=azure-cli-

latest#az_eventhubs_eventhub_authorization_rule_keys_list-examples. 

https://docs.microsoft.com/en-us/cli/azure/eventhubs/eventhub/authorization-rule/keys?view=azure-cli-latest#az_eventhubs_eventhub_authorization_rule_keys_list-examples
https://docs.microsoft.com/en-us/cli/azure/eventhubs/eventhub/authorization-rule/keys?view=azure-cli-latest#az_eventhubs_eventhub_authorization_rule_keys_list-examples
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sample_size Integer – The number of taxi trip records that will be sent to the Event 

Hub as events. 

execution_type String – Accepted values: “Single”, ‘Batch”. Whether the records 

will be published one-by-one or as a batch. 

batch_size Integer – The number of records that will be included in a batch. 

Table 15: List of environmental properties for the NYC Green Taxi dataset publisher application. 

 

3.3.4 Botometer Checker 

The Botometer Checker application is a Python program that utilizes the Botometer service (see 

section 3.2.3 for details on the service) to assess each tweet captured with the Twitter Stream 

Listener application in whether it was posted by a bot account. It will then store each user’s score 

in a persistent store to make it available when analyzing tweet datasets. 

The application has been designed to function as follows: 

1. Connects to the solution’s Cosmos DB and reads tweets stored as documents. 

2. For each tweet, it checks the Cosmos DB container to determine whether the account that 

posted this tweet has been checked against Botometer in the past. 

3. For each unchecked account, calls the Botometer API and stores the response (see a sample 

at Botometer API sample response for Twitter account) with the account’s assessment in 

the “botometerCheckedAccounts” container of the solution’s Cosmos DB database. 

The application can thus function in two ways: 

1. Synchronously, executing in parallel with the when the Twitter Stream Listener 

application. 

2. Asynchronously, executed at a different time frame using tweets already stored in the Event 

Hub. 
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The following table presents a sample response returned from Botometer along with each attribute’s 

description. 

Attribute Example value Description 

user_id 115410344236278579

7 

The unique ID of the user in Twitter. 

user_screen_name ierodidaskalos The screen name of the user's Twitter account. 

user_majority_lan

g 

el The language used for the majority of the user's 

tweets. 

cap 
 

The user's Complete Automation Probability 

(CAP) score, a cumulative probability: it 

represents the probability that accounts with a 

score equal to or greater than this are automated. 

english 0.874857504 CAP for accounts tweeting primarily in the 

english language. 

universal 0.660850031 CAP for accounts tweeting primarily in 

languages other than english. 

raw_scores_englis

h / universal  

 
The bot score in the [0,1] range is given, both 

using English (all features) and Universal 

(language-independent) features; in each case 

the overall score is provided as well as the sub-

scores for each bot class as shown in the rows 

below. 

display_scores_english / universal  Same as raw scores, but in the [0,5] range. 



73 Chapter 3. Solution architecture and design 

 

 

astroturf 2 Represents manually labeled political bots and 

accounts involved in follow trains that 

systematically delete content. 

fake_follower 1.2 Represents bots purchased to increase follower 

counts. 

financial 0.1 Represents bots that post using cashtags. 

other 4.6 Represents miscellaneous other bots obtained 

from manual annotation, user feedback, etc. 

self_declared 0 Represents bots from botwiki.org. 

spammer 0 Represents accounts labeled as spambots from 

several datasets. 

Table 16: Attributes returned by the Botometer API 

3.3.4.1 Configurable properties 

The Botometer checker application has several configuration elements exposed as environmental 

properties to allow the user to run the container in any Azure subscription. In addition, the purpose 

of the configurable elements is to set the user’s personal Twitter and RapidAPI API keys The 

configurable environmental properties of the application are displayed in Table 12. 

Environmental property Explanation 

CONSUMER_KEY String - The consumer API key of the Twitter App. 

CONSUMER_SECRET String - The consumer API secret of the Twitter App. 

ACCESS_KEY String - The access token of the Twitter App. 

ACCESS_SECRET String - The access secret of the Twitter App. 
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EVENTHUB_CONNECTION_STRING String – The Connection string – primary key property16 

of the Event Hub instance that will be used to push the 

processed tweets to. 

EVENTHUB_NAME String – The name of the Event Hub that the tweets will 

be pushed to as events. 

EVENTHUB_CONSUMER_GROUP String – The consumer group name that will be used to 

read the event hub topic which contains the tweets. 

COSMOSDB_URL String – The endpoint for the Cosmos DB account. 

COSMOSDB_KEY String – The connection string for the Cosmos DB 

account. 

COSMOSDB_DB_NAME String – The Cosmos DB database name 

COSMOSDB_BOTOMETER_INDEX_CO

NTAINER_NAME 

String – The container name that will store the 

Botometer results. 

COSMOSDB_BOTOMETER_COUNTER_

CONTAINER_NAME 

String – The container name that will store the daily 

usage of the Botometer API. 

STORAGE_CONNECTION_STRING String – The connection string for the Blob store that is 

used to save the event hub consumer’s checkpoints. 

BLOB_CONTAINER_NAME String – The blob container name for the Blob store that 

is used to save the event hub consumer’s checkpoints. 

RAPIDAPI_KEY String – The personal RapidAPI key that will be used to 

access the Botometer API. 

 
16 The property can be retrieved by this Azure CLI script: az eventhubs eventhub authorization-
rule keys list --resource-group rg-apps-alpha --namespace-name evh-namespace-
alpha --eventhub-name evh-alpha --name common-sas-alpha --subscription xxxxxxxx-
xxxx-xxxx-xxxx-xxxxxxxxxxxxxxxxx. See also the relevant documentation at: 

https://docs.microsoft.com/en-us/cli/azure/eventhubs/eventhub/authorization-rule/keys?view=azure-cli-

latest#az_eventhubs_eventhub_authorization_rule_keys_list-examples. 

https://docs.microsoft.com/en-us/cli/azure/eventhubs/eventhub/authorization-rule/keys?view=azure-cli-latest#az_eventhubs_eventhub_authorization_rule_keys_list-examples
https://docs.microsoft.com/en-us/cli/azure/eventhubs/eventhub/authorization-rule/keys?view=azure-cli-latest#az_eventhubs_eventhub_authorization_rule_keys_list-examples
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BOTOMETER_SESSION_LIMIT Integer – How many Twitter accounts to send to 

Botometer API per session. 

Table 17: List of configurable environmental properties for the Botometer Checker Python application.  
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3.3.5 Event Hub 

Azure Event Hubs is a scalable publish-subscribe data integrator which is capable of consuming 

large volumes of events per second from input sources. It abstracts the complexity of ingesting 

multiple different input streams directly into the solution's analytics layer.  Its functionality is thus 

similar to Apache Kafka, which is also is designed to handle large scale stream ingestion driven by 

real-time events. At a high-level, both Kafka and Event Hub are a distributed, partitioned and 

replicated commit log service and both use a partitioned consumer model thus enabling concurrent 

consumers to independently subscribe and read the events. Each system uses a different 

terminology for similar concepts. To familiarize the reader with the terminology used for the Event 

Hub architecture and configuration, Table 18 presents a comparison of equivalent terms between 

Apache Kafka and Azure Event Hub17. 

Apache Kafka concept Azure Event Hub concept 

Cluster Namespace 

Topic Event Hub 

Partition Partition 

Consumer Group Consumer Group 

Offset Offset 

Table 18: Corresponding terms between Apache Kafka and Azure Event Hub concepts 

Azure Event hub uses the Advanced Message Queuing Protocol (AMQP) to handle its messaging 

workflow. AMQP is an open standard application layer protocol for message-oriented middleware. 

AMQP enables a flow controlled, message-oriented communication with message-delivery 

guarantees such as (O’Hara, 2007): 

 
17 Table originally provided in the Azure documentation, see: https://docs.microsoft.com/en-us/azure/event-

hubs/event-hubs-for-kafka-ecosystem-overview#kafka-and-event-hub-conceptual-mapping. 

https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-for-kafka-ecosystem-overview#kafka-and-event-hub-conceptual-mapping
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-for-kafka-ecosystem-overview#kafka-and-event-hub-conceptual-mapping
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1. at-most-once (each message is delivered once or never), 

2. at-least-once (each message is certain to be delivered, but may do so multiple times) 

3. exactly-once (each message will always certainly arrive and do so only once) 

An Event Hub is used in the industry to accommodate scenarios where a high volume of events 

must be ingested into a streaming / analytics pipeline for further processing. Typical usage 

scenarios include: 

- Anomaly detection 

- Application logging 

- Analytics pipelines 

- Live dashboards 

- Data archiving 

- Transaction processing 

A reference high-level architecture of an Azure event hub in is shown in Figure 3-15. 
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Figure 3-15: Architecture of an Azure Event Hub 

Using the above diagram’s pattern, the Event Hub designed and deployed for the solution presented 

in this dissertation is displayed in Figure 3-16. 
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Figure 3-16: Architecture overview of the Event Hub “evh-namespace-alpha” implemented for the solution 

architecture. 

Three event hubs have been created (evh-alpha, evh-beta and evh-benchmark), with each event hub 

configured as follows: 

- 4 partitions 

- 4 consumer groups 

To be able to “replay” a stream, the event hubs are configured with a 7-day retention period. Stream 

replay can be utilized in scenarios where the ingested data need to be processed with a different 

algorithm of for troubleshooting purposes. 

The Event Hub Namespace for the scenarios examined in this dissertation will be configured with 

1 throughput unit, without the possibility to auto-inflate (effectively auto-scale) up to 2 throughput 
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units, as we will also be examining its performance under load in section 0. This means that all 

event hubs (throughput units are shared across all event hubs in the namespace we have deployed) 

in the namespace can consume18: 

- Up to 2 MB per second of ingress events or 2000 ingress events per second (whichever 

comes first). 

- Up to 4 MB per second of egress events, or 8192 egress events per second. 

- Up to 168 GB of event storage for retention. 

In case these numbers are violated, ingress will be throttled, and an exception will be received by 

the component that publishes the event19. 

 

Figure 3-17: Overview in the Azure UI of an event hub deployed for the solution. 

 

 
18 The numbers provided are calculated using the official documentation information, available at: 

https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-scalability#throughput-units. 
19 Note that we currently do not perform exception handling due to Event Hub throttling in the producer tier’s 

applications that we have developed for this solution. 

https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-scalability#throughput-units
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3.4 Processing layer 

The processing layer contains components that receive the events generated by the producer layer, 

process them and output them to the storage and analytics layers. In layered architectures, the 

processing activities that typically takes place in the processing layer can be: 

- Cleansing 

- Integration 

- Indexing 

- Fusion 

In the solution, the processing layer consists of a Stream analytics Job which is responsible of: 

- Receiving and parsing incoming events from the Event Hub. 

- Processing the incoming events to aggregate and join data, for example to produce the top 

hashtags over a x-minute time window. 

- Depending on the scenario, outputting the processed events in JSON format to: 

o Blob files 

o Cosmos DB container 

o Power BI Dashboard 

3.4.1 Stream Analytics Job 

As the core functionality of the Azure Stream Analytics service has been presented in section 

2.6.2.3, in this section we present more details on the service as well as the specific configuration 

that we have implemented for the solution under consideration. 

Azure Stream Analytics is built on Trill, an in-memory, high-throughput streaming analytics engine 

[39]. Trill supports a wide range of use case scenarios for analytics such as: 

1. Real-time analytics: Application monitoring, fraud detection. 
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2. Real-time analytics with historical data: Scenarios where it is needed to correlate live 

data stream with historical activity. 

3.  Offline: Back - testing an analytics algorithm over historical data, perform general data 

transformations on a bounded dataset. 

Capability Azure Stream Analytics Job Apache Spark Streaming 

Temporal/windowing 

support  

Yes Yes 

Input data formats  Avro, JSON or CSV, UTF-8 

encoded  

Any format using custom code 

Scalability Yes, by query partitioning Yes, bound by cluster size 

Late arrival and out of order 

event handling support

  

Yes Yes 

Table 19: Figure 3 14: Comparison between Stream Analytics Job and Apache Spark Streaming20 

 

 
20 The table contains information compiled from the Azure Data Architecture guide, available at 

https://docs.microsoft.com/en-us/azure/architecture/data-guide/technology-choices/stream-processing. 

https://docs.microsoft.com/en-us/azure/architecture/data-guide/technology-choices/stream-processing
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Figure 3-18: Reference high-level overview of an Azure Stream Analytics process21. 

A Stream Analytics Job consists of the following three configuration items: 

- Input 

- Query 

- Output 

 To perform computations, Stream Analytics offers the "Stream Analytics Query Language", which 

is a subset of standard T-SQL syntax. The listing below showcases an example stream analytics 

query using the Stream Analytics Query Language, with two steps and the usage of the column 

TollBoothId as partition key. 

 
21 Source: Azure Stream Analytics documentation, available at https://docs.microsoft.com/en-

us/azure/stream-analytics/stream-analytics-introduction. 

https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
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WITH Step1 AS ( 

    SELECT COUNT(*) AS Count, TollBoothId 

    FROM Input1 

    GROUP BY TumblingWindow(minute, 3), TollBoothId 

    ) 

 

    SELECT SUM(Count) AS Count, TollBoothId 

    FROM Step1 

    GROUP BY TumblingWindow(minute, 3), TollBoothId 

Code block 3-1: Example ASA query 

In our solution, the Stream Analytics job will work with the Twitter Stream Listener, the Botometer 

Checker and the Twitter Trends Monitor as input sources. 

The job is configured with the following inputs: 

1. twitterStreamInput: Reads the Event Hub topic which stores tweets captured with the 

Twitter Stream Listener application. 

2. twitterTrendsInput: Reads the Event Hub topic which stores the trending topics for 

different countries captured with the Twitter Trends Monitor application. 

3. botometerInput: Reads a blob path which contains twitter accounts checked with the 

Botometer Checker application along with their bot scores. 

The job will perform the following outputs to persistent storage: 

1. Send all received tweets from twitterStreamInput to a Cosmos DB container. 

2. Send all received trends from twitterTrendsInput to a Cosmos DB container. 

The stream analytics job also performs the following data aggregation outputs, both to a blob store 

and to a Power BI dashboard: 
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1. Creates a list for the top hashtags over the received tweets. 

2. Creates a list of the top users over the received tweets. 

3. Create a list of the most retweeted users. 

4. Creates a list of the top locations over the received tweets. 

All the above outputs are processed with a 2-miute tumbling window to produce near-real time 

results for the Power BI dashboard that is available to the end users of the pipeline. 

The query that executes the processing described above is presented in Listing 1. 

WITH rawTweets AS ( 

    SELECT * 

    FROM [twitterStreamInput] 

), 

    topUsers AS ( 

    SELECT 

    System.Timestamp [WindowTime], 

    [user_screenname], 

    COUNT(*) AS numberOfTweets 

    FROM 

    [twitterStreamInput] 

    GROUP BY 

    TumblingWindow(second, 60), [user_screenname]     

), 

    topRetweetedUsers AS ( 

    SELECT 

    System.Timestamp [WindowTime], 
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    [retweeted_tweet_user_screen_name], 

    COUNT(*) AS numberOfRetweets 

    FROM 

    [twitterStreamInput] 

 WHERE [retweeted_tweet_user_screen_name] IS NOT NULL 

    GROUP BY 

    TumblingWindow(second, 60), [retweeted_tweet_user_screen_name] 

), 

    topLocations AS ( 

    SELECT 

    System.Timestamp [WindowTime], 

    [user_location], 

    COUNT(*) 

    FROM 

    [twitterStreamInput] 

    WHERE 

        [user_location] IS NOT NULL 

    GROUP BY 

        TumblingWindow(second, 60), [user_location] 

    HAVING COUNT(*) >= 1 

), 

    topHashtags AS ( 

    SELECT 

    hashtags.Arrayvalue.text as tags 

    FROM 
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    [twitterStreamInput] as e 

    CROSS APPLY 

            GetArrayElements(e.hashtags) as hashtags 

), 

    trends AS ( 

    SELECT * 

    FROM [twitterTrendsInput] 

), 

    trendVolumes AS ( 

    SELECT 

    i.locations, 

    i.as_of as 'asOfDate', 

    i.created_at as 'createdDate', 

    hashtagLocation.ArrayValue.name as hashtagLocationName, 

    hashtagLocation.ArrayValue.woeid as hashtagLocationWoeid, 

    trendingHashtags.ArrayValue.name as hashtagName, 

    trendingHashtags.ArrayValue.tweet_volume as hashtagVolume 

    FROM twitterTrendsInput i 

    CROSS APPLY GetArrayElements(trends) AS trendingHashtags 

    CROSS APPLY GetArrayElements(i.locations) AS hashtagLocation 

) 

 

SELECT * INTO [twitterStreamOutput-Blob] FROM rawTweets 

 

SELECT * INTO [twitterStreamOutput-Cosmos] FROM rawTweets 
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SELECT * INTO [twitterStreamOutput-locations-Blob] FROM topLocations 

 

SELECT * INTO [twitterStreamOutput-locations-PBI] FROM topLocations 

 

SELECT * INTO [twitterStreamOutput-topUsers-PBI] FROM topUsers 

 

SELECT * INTO [topRetweetedUsers-PBI] FROM topRetweetedUsers 

 

SELECT * INTO [twitterTrendsOutput-Cosmos] FROM trends 

 

SELECT * INTO [trendingHashtags-Blob] FROM trendVolumes 

 

SELECT 

    COUNT(*) 

INTO 

    [twitterStreamOutput-volume-PBI] 

FROM 

[rawTweets] 

GROUP BY 

    TumblingWindow(second, 120) 

 

SELECT 

    tags, COUNT(*) 

INTO 
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    [twitterStreamOutput-hashtags-PBI] 

FROM 

    topHashtags 

GROUP BY 

    tags, TumblingWindow(second, 30) 

SELECT * 

INTO [greeceTrendsOutput-PBI] 

FROM trendVolumes 

WHERE hashtagLocationName = 'Greece' 

Listing 1: The Stream Analytics Query used to process data captured in the Event Hub. 

3.5 Persistent storage tier 

The primary purpose of the storage tier is to persist events that are ingested and processed through 

the streaming pipeline for long term archiving, reference and other general-purpose retrieval. In 

addition, it stores the checkpoints from stateful Event Hub consumer applications (Stream 

Analytics Jobs), logs and other reference data.  

The storage layer of the solution consists of the following resources: 

- Blob Storage (to handle unstructured data) 

- Azure Cosmos DB (to handle structured data) 

The following paragraphs provide information on how each component has been configured. 

3.5.1 Blob storage 

Blob Storage is an Azure resource designed for storing unstructured data. Azure Blob storage 

supports several different types of blob entities, though in the solution we will be working with 

"block blobs", which store files used by applications such as the solution's Stream Analytics and 
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the Event Hub components. Blobs are organized into entities called containers, with a container 

being functionally similar to a directory in a file system. 

Blobs exist under an "account" entity which provides a unique namespace for accessing the data 

stored within. The account name combined with the Azure Storage blob endpoint constitute the 

base address for the objects stored in the account. For the solution and based on the Blob Storage 

configuration, the endpoint will be: http://st00000alpha.blob.core.windows.net. 

Figure 3-19 displays the blob containers and indicative files that will be stored in them. 

 

Figure 3-19: High level overview of the Blob storage account implemented for the solution. 

3.5.2 Cosmos DB database 

For the solution’s needs a Cosmos DB resource has been provisioned with the following properties 

For cost control purposes, the  

The Cosmos DB resource in the solution has the following containers: 

1. tweets: Stores tweets fetched from the Twitter Stream Listener application as JSON 

documents. 

http://st00000alpha.blob.core.windows.net/


91 Chapter 3. Solution architecture and design 

 

 

2. botometerCheckedAccounts: Stores information about Twitter accounts checked with 

the Botometer Checker application as JSON documents. 

3. botometerDailyCounter: Stores details about how many times the Botometer Checker 

application is used on a daily basis. 

4. benchmarks: Stores records processed from the NYC Taxi mock producer application 

which is used to perform performance tests on the solution as JSON documents. 

Each container has been allocated 400 RUs and has been configured with a different partition key 

depending on the documents that it will store, as shown  

CONTAINER PARTITION KEY 

Tweets /PartitionId 

Trends /PartitionId 

botometerCheckedAccounts /user_majority_lang 

botometerDailyCounter /id 

 

The database is set up to use the SQL API and thus gives us the possibility to execute SQL like 

statements over JSON documents. As an example, we provide below a few sample queries for the 

“tweets” container, which stores tweets captured with the Twitter Stream Listener application (see 

section 3.3.1). 

SELECT {"Username":c.user_name, "StatusesCount":c.statuses_count} AS UserInfo 

FROM c 

WHERE c.statuses_count >= 1000 

-- example results 

[ 

    { 
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        "UserInfo": { 

            "Username": "Maritel", 

            "StatusesCount": 2466 

        } 

    } 

] 

Listing 2: Cosmos DB SQL query example - querying a subset of user properties that have tweeted above a certain 

volume. 

SELECT {"Username":c.user_name, "StatusesCount":c.statuses_count} AS UserInfo 

FROM c 

WHERE c.statuses_count >= 1000 

-- example results 

[ 

    { 

        "UserInfo": { 

            "Username": "Maritel", 

            "StatusesCount": 2466 

        } 

    } 

] 

Listing 3: Cosmos DB SQL query example - querying a subset of user properties that have tweeted above a certain 

volume. 

SELECT VALUE COUNT(1) 

FROM tweets c 

WHERE lower(c.hashtags[0].text) LIKE "%ακρο%" 

-- example results 
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[ 

    6 

] 

Listing 4: Cosmos DB SQL query example - counting tweets that contain a hashtag with a specified substring. 

SELECT 

    c.user_name AS userName, 

    c.statuses_count AS statusCount, 

    c.user_created AS userAge, 

    c.hashtags as hashtags 

FROM tweets c 

WHERE lower(c.hashtags[0].text) LIKE "%ακρο%" 

-- example results 
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[ 

    { 

        "userName": "Maritel", 

        "statusCount": 2466, 

        "userAge": "04-Oct-2020", 

        "hashtags": [ 

            { 

                "text": "Ακροπολη", 

                "indices": [ 

                    34, 

                    43 

                ] 

            } 

        ] 

    } 

] 

Listing 5: Cosmos DB SQL query example - querying usernames, hashtags and statuses count for tweets that contain a 

hashtag with a specified substring. 

 

3.6 Presentation tier 

For the stream analytics pipeline presented in this dissertation, the presentation layer consists of a 

Power BI dashboard which presents the outputs produced by the Stream Analytics job from section 

3.4.1. 

A version of this dashboard is displayed in Figure 3-20 below. 
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Figure 3-20: The Power BI dashboard used as the presentation layer of the pipeline. 

Note that due to product limitations, it is currently not possible to automate the configuration of the 

dashboard and as such each tile displayed must be configured manually.  
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Chapter 4. Performance evaluation 

In this section we present a series of evaluations carried out on the implemented solution to 

demonstrate its performance and scalability by executing streaming data ingestion and processing 

scenarios using a subset of the “NYC Taxi & Limousine Commission - green taxi trip records” 

dataset presented in section 3.2.4. We use the dataset as a source to imitate two data streams, one 

regarding the fare information (passengers, pick-up and drop-off coordinates, trip type) and another 

one regarding the payment information (fare, surcharges, taxes, tips). These events are published 

as events to two event hub topics. A Stream Analytics Job reads the event streams, joins the streams 

based on the partitions and performs aggregations on the incoming data (see Listing 6 below). 

Finally, the processed stream outputs are saved in a blob store. We are executing two scenarios, 

where we modify the throughput and processing capabilities of the Event Hub instances and of the 

Stream Analytics job. The data sample used is the same throughout both scenarios. 

The data flow of this operation is shown in Figure 4-1 below. In the next paragraphs we go through 

the configuration of the event hub and the stream analytics job that we use for the scenario and 

present the results. 
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Figure 4-1: Data flow overview of the benchmark 

4.1 Dataset and producer application configuration 

In this section we present the application setup which we use to publish the trip records to the Event 

Hub. A sample of the “NYC Taxi & Limousine Commission – green taxi trip records” dataset’s 

records that will be processed in the scenarios is available at Sample ingestion data. For the 

performance evaluation scenario, we have developed a Jupyter notebook 22which performs the 

following: 

1. Loads the “NYC Taxi & Limousine Commission – green taxi trip records” dataset using 

the azureml.opendatasets Python library. 

2. Samples 500.000 records from the dataset and loads the into a Pandas Dataframe object 

(the dataset originally exists as parquet file in the Python library). 

3. Splits the dataset into two separate datasets: 

a. Fare data: Contains information about the fare. We use the following columns from 

the dataset: 

 
22 The notebook is published in GitHub and is available in the following link: 

https://github.com/orestisf/Notebooks/blob/master/NYC-Green-Taxi-Event-Hub-Publisher.ipynb. 

https://github.com/orestisf/Notebooks/blob/master/NYC-Green-Taxi-Event-Hub-Publisher.ipynb
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i. vendorID 

ii. tripType 

iii. lpepPickupDatetime lpepDropoffDatetime 

iv. passengerCount 

v. tripDistance 

vi. puLocationId 

vii. doLocationId 

viii. pickupLongitude 

ix. pickupLatitude 

x. dropoffLongitude 

xi. dropoffLatitude 

b. Payment data: Contains information about the trip’s payment. We use the 

following columns from the dataset: 

i. vendorID 

ii. rateCodeID 

iii. paymentType 

iv. fareAmount 

v. extra 

vi. mtaTax 

vii. improvementSurcharge 

viii. tipAmount 

ix. tollsAmount 

x. totalAmount 

4. For each record we use the data frame’s index as the record’s unique ID so that it can be 

used by the stream analytics job to correlate the events in the two streams. 

5. Converts each dataframe row to JSON. 
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6. Instantiates two event hub producer clients (one for the “payment” data and one for the 

“fare” data) and sends each JSON as an event to the corresponding Event Hub. 

7. Sends each record as event to the designated event hub, in batches of 1000 records: 

a. Records from the “fare” dataset are sent to the evh-taxi-fare-data event hub.  

b. Records from the “payments” dataset are sent to the evh-taxi-payment-data event 

hub. 

4.2 Event hub and Stream Analytics job configuration 

For the performance evaluation scenario, we will use two event hub instances (evh-taxi-fare-data, 

evh-taxi-payment-data), with two partitions each. We will use the least resource-intensive 

configuration for both components, in order to establish a baseline of the performance that can be 

achieved. For the second scenario, we enable auto-inflate on the Event Hub up to 4x the baseline 

TPUs and increase the processing power of the Stream Analytics Job to 3x. Based on this, the 

configuration is summarized in the following table. 

Benchmark 

scenario 

Event Hub configuration 

Stream analytics job 

configuration 

Scenario 1 

1. 1 throughput unit (TPU). 

2. Auto-inflate disabled. 

3. 2 partitions. 

1 streaming unit (SU). 

Scenario 2 

1. 1 throughput unit 

2. Auto-inflate enabled with 4 

throughput units maximum. 

3. 2 partitions. 

3 streaming units. 

Table 20: Event Hub and Stream Analytics job configuration for benchmark scenarios 

The query that is executed by the stream analytics job is visualized in Figure 4-2. Listing 6 contains 

the query that we use to process the events. 
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Figure 4-2: Stream analytics job visualization used for the benchmark scenarios. 

The job functions as follows: 

1. Reads the events from the event hub topics using partitioning based on the partition ID 

(WITH statements fareData and paymentData). 

2. Joins the events based on the partition ID and the record ID (joinedData step). 

3. Outputs to a blob the average tip per mile amount (calculated as the sum of tips divided by 

the sum of trip distances), the average trip distance and the average number of passengers 

over a 5-minute hopping window with 1-minute hops. 

4. Outputs to another blob the joined record for archiving purposes and to validate the results. 

WITH fareData AS ( 

    SELECT recordId AS fareId, 

    vendorID, 

    DATEADD(millisecond, lpepPickupDatetime, ‘1970-01-01T00:00:00Z’) 
as ‘PickupTime’, 

    DATEADD(millisecond, lpepDropoffDatetime, ‘1970-01-01T00:00:00Z’) 
as ‘DropoffTime’, 

    tripType, 

    tripDistance, 

    passengerCount, 

    PartitionId 

    FROM [fareinput] 
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    PARTITION BY PartitionId 

), 

paymentData AS ( 

    SELECT recordId as paymentId, 

    vendorID, 

    rateCodeID, 

    paymentType, 

    fareAmount, 

    extra, 

    mtaTax, 

    improvementSurcharge, 

    tipAmount, 

    tollsAmount, 

    totalAmount, 

    PartitionId 

    FROM [paymentinput] 

    PARTITION BY PartitionId 

), 

joinedData AS ( 

  SELECT  

  tf.fareId, 

  tf.tripDistance, 

  tf.tripType, 

  tf.passengerCount, 
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  tf.VendorID, 

  tp.paymentId, 

  tp.paymentType, 

  tp.fareAmount, 

  tp.mtaTax, 

  tp.extra, 

  tp.tipAmount, 

  tp.totalAmount 

  FROM [fareData] tf 

  PARTITION BY PartitionId 

  JOIN [paymentData] tp PARTITION BY PartitionId 

  ON tf.PartitionId = tp.PartitionId 

  AND tf.VendorID = tp.VendorID 

  AND tf.fareId = tp.paymentId 

  --AND tr.PickupTime = tf.PickupTime 

  AND DATEDIFF(minute, tf, tp) BETWEEN 0 AND 5 

) 

SELECT System.Timestamp AS WindowTime, tr.VendorID, 

       ROUND(SUM(tr.TipAmount) / SUM(tr.tripDistance),3) AS 
AverageTipPerMile, 

       ROUND(AVG(tr.tripDistance),3) AS AverageTripDistange, 

       ROUND(AVG(tr.passengerCount),3) AS AveragePassengerCount 

  INTO [taxiDashboard-blob] 

  FROM [joinedData] tr 
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  GROUP BY HoppingWindow(Duration(minute, 5), Hop(minute, 1)), 
tr.VendorID 

 

select * 

INTO [taxiMergedDatasets-blob] 

FROM [joinedData] 

Listing 6: The stream analytics job query that is used for the benchmark scenarios. 

4.3 Results 

To monitor the Event Hub and Stream Analytics job performance we use Azure’s built-in resource 

metrics that are automatically available when deploying a component. To monitor the performance 

during the test execution we have designed a dashboard which monitors in real-time the component 

metrics, as shown in Figure 4-3. 

 

Figure 4-3: Azure dashboard we used to monitor the Event Hub and Stream Analytics job performance during the scenario 

execution. 

Table 21 presents the metrics monitored during the scenario execution. For each metric we have 

measured the sum (where applicable) as well as the max, min, and average values. We also calculate 

the performance change for each metric between the two scenarios. 
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Metric   

Scenario 1 

(1 TPU / 1 

SU) 

  

Scenario 2 (1 

TPU auto-

inflate to 4 

TPU / 3 SU) 

Performance 

difference 

 Sum Max Min Average Sum Max Min Average  

SU % 

Utilization 

- 91 % 14 % 60.25 % - 76 % 6 % 48.85 % 18.92 % 

Backlogged 

Input 

Events 

- 9.700 0 298.30 - 3.130  129.40 56.62 % 

Watermark 

Delay 

- 1.33 

min 

0 sec 3.32 sec  43 sec 0 sec 1.80 sec 45.78 % 

Incoming 

Bytes 

376.7 

MB 

10.6 

MB 

267.4 Kb 3 MB 338.9 

MB 

13.1 

MB 

539.4 

Kb 

7.7 MB 156.67 % 

Outgoing 

Bytes 

338.9 

MB 

10.6 

MB 

794.5 Kb 4.8 MB 338.9 

MB 

13.1 

MB 

0 B 7.1 MB 47.92 % 

Throttled 

Requests 

113 4 1 2.09 0 0 0 0 100% 

Table 21: Summary of the metrics observed for the evaluation scenarios. 

From the scenario execution we observe the following: 

• Throttled requests were eliminated after enabling auto-inflate. 

• Throughput (Incoming bytes / Outgoing bytes) rate was almost doubled for both incoming 

and outgoing side. 

• Streaming Unit utilization dropped by ~20% – note here that, even the observed average 

of 60.25% of the 1st scenario is not considered high enough to cause bottlenecks, however 

it did cause throttled requests and delayed events. 
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• Watermark delay was visibly improved from 3.32 sec to 1.80 sec on average which is 

also consistent with the decrease of backlogged input events and the overall better 

performance of the pipeline during scenario 2. 

Figure 4-4 displays visualizations of a subset of the metrics that were monitored during the scenario 

execution. 

 

Figure 4-4: Visualizations of throughput, requests, SU utilization and backlogged event metrics for both scenarios. 

The figure below shows a sample of the output JSON files captured in the blob store as outputs the 

stream analytics job. 
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Figure 4-5: Sample JSON of the stream analytics job outputs. 

The two figures below display the built-in job monitor diagram that was produced by the Stream 

Analytics job. The increased performance due to the scaled-up components is visible in the second 

figure. 

 

Figure 4-6: Stream Analytics job performance for scenario 1 

 

Figure 4-7: Stream Analytics job performance for scenario 2 

From the results posted for the two scenarios we examined, it is evident that the proposed pipeline 

is more than adequate at capturing and processing inputs from the Twitter Stream Listener, Trends 

Monitor and Botometer Checker applications. 
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In addition, when there is a need to process – or re-process a fairly large dataset, for example to 

perform an ad-hoc analysis of archived data, both components of the solution can be adequately 

scaled to the task’s needs. Note that the maximum TPUs supported by the Event Hub is 20 and the 

maximum SUs supported by the Stream Analytics Job is 192 and as such even the “high-

performing” scenario two is positioned exceptionally low on the full spectrum of the components’ 

capabilities. 
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Chapter 5. Conclusions and future work 

The last decade, the rise of big data has given birth to a multitude of technologies and frameworks 

to be used in receiving processing and consuming big data streams. These technologies, initially 

available in commodity form (i.e. as open-source projects) have evolved to be offered as 

commercial services via all the major cloud providers, thus enabling their easier integration in 

corporate infrastructures.    

In this dissertation we provided an overview of the primary big data processing paradigms that are 

in use the last years, the batch and stream processing. We presented the two major architectural 

frameworks, the “Lambda” and “Kappa” architecture, discussed the advantages and disadvantages 

of each architecture and the problems that they attempt to solve. We designed and implemented an 

end-to-end stream processing solution based on the Kappa architecture and hosted it in the Azure 

cloud. We also provided a method to deploy all the architecture’s components, so that it can be 

easily deployed with new configuration to cover a wide range of use cases. Finally, all the solution’s 

artifacts and deployment templates were published to GitHub and Docker Hub. 

The real-time stream processing solution proposed and discussed in section Chapter 3 can be 

improved in several areas, due to its modular design and depending on the business use cases that 

it will have to handle. We are discussing several such improvements in the following paragraphs. 
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- The ingestion layer can be expanded by developing additional “connector” applications to 

enable more sources to be ingested. As an example, for potential new implementation, we 

consider that the recent popularity of the social media application “TikTok” has already 

resulted in a rising academic interest 23in collecting and analyzing content generated by 

TikTok users. Similarly to the Twitter Stream Listener component we developed for this 

dissertation (3.2.1), a Python application24 can be developed to capture messages published 

to TikTok, extract their metadata and publish them to an Azure Event Hub. 

- The component deployment process can be further automated by implementing a proper 

workflow that will deploy the entire solution infrastructure from scratch, as currently this 

process needs to be done manually following the steps described in Solution deployment 

guide. In addition, the resource templates can be re-implemented with the Bicep25 Domain 

Specific Language that has been released by Microsoft with the primary purpose of being 

the best language to describe, validate, and deploy infrastructure to Azure. 

- The processing layer can be expanded by implementing an alert subsystem that will trigger 

email alerts to end users when a particular predefined event takes place, for example when 

the tweet volume of a hashtag of interest surpasses a specific value. A prototype 

implementation can leverage the SendGrid26 API to deliver these alerts. 

- A machine learning subsystem can be added to the solution to enhance its insight 

extraction capabilities27. As an example, a sentiment analysis can be performed in the data 

 
23 A collection of scholarly bibliography on TikTok is available in the following link: 

https://tiktokcultures.com/bibliography/. 
24 An unofficial Python API wrapper for TikTok is already available and can be utilized towards that purpose: 

https://github.com/davidteather/TikTok-Api. 
25 Bicep is Domain Specific Language (DSL) for deploying Azure resources declaratively and is a transparent 

abstraction over ARM and ARM templates: https://github.com/Azure/bicep. 
26 See also the SendGrid API documentation at https://docs.sendgrid.com/for-developers/sending-email/api-

getting-started. 
27 Azure provides a machine learning service that can be utilized for that purpose: 

https://azure.microsoft.com/en-us/services/machine-learning/. 

https://tiktokcultures.com/bibliography/
https://github.com/davidteather/TikTok-Api
https://github.com/Azure/bicep
https://docs.sendgrid.com/for-developers/sending-email/api-getting-started
https://docs.sendgrid.com/for-developers/sending-email/api-getting-started
https://azure.microsoft.com/en-us/services/machine-learning/#security
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collected from Twitter hashtags and have its results (i.e. the prevailing sentiment in the 

tweets for a hashtag over a hourly window) published in a dashboard. 

Further utilization of the developed solution can involve the automated collection and 

publication of a Twitter dataset on topics that can be of use to the academic or business 

community: This would be possible by continuously monitoring over time of one or more 

Twitter hashtags related to a particular topic, extracting a subset of their attributes, storing the 

processed tweets in a persistent storage and publishing the resulting dataset in a publicly 

accessible location28 for further usage by the academic community. 

The domain of data stream processing and analytics is still relatively young: There are still 

technical and business challenges to be solved. As a closing remark we have to point out that 

the ever-increasing need for real-time data processing and the evolving needs of businesses and 

organizations that want to take advantage of these data is set to pose new challenges as there 

are increasing needs in scalability, resilience, security and other aspects. As such, the 

underlying frameworks and architectures will have to evolve as well to tackle those challenges.

 
28 A similar work has been done by in collecting and publishing tweets in the Arabic language related to 

COVID-19. The authors are publishing the collected tweets at: https://github.com/SarahAlqurashi/COVID-

19-Arabic-Tweets-Dataset. 

https://github.com/SarahAlqurashi/COVID-19-Arabic-Tweets-Dataset
https://github.com/SarahAlqurashi/COVID-19-Arabic-Tweets-Dataset


 

Availability of data and materials 

All code developed for this thesis has been made available in public repositories listed in   
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Supplementary materials. The same section also contains links to sample datasets collected for the 

purpose of demonstrating the functionality of the ingestion components.  
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Annex I. Supplementary materials 

1. Twitter Stream Listener repository: https://github.com/orestisf/botometer-checker-azure 

2. Twitter Stream Listener Docker image: 

https://hub.docker.com/repository/docker/ofotiadis/msciss 

3. Botometer Checker repository: https://github.com/orestisf/botometer-checker-azure 

4. Botometer Checker Docker image: 

https://hub.docker.com/repository/docker/ofotiadis/botometer-checker-azure 

5. Twitter Trends Monitor repository: https://github.com/orestisf/twitter-trends-monitor  

6. Twitter Trends Monitor Docker image: https://hub.docker.com/r/ofotiadis/twitter-trends-

monitor 

7. Azure components deployment templates repository: https://github.com/orestisf/azure-arm-

templates 

8. Sample dataset of tweets collected with the Twitter Stream Listener application: 

https://github.com/orestisf/twitter-stream-listener/blob/main/data-output-sample.json 

9. Sample dataset of trending topics collected with the Twitter Trends Monitor application: 

https://github.com/orestisf/twitter-trends-monitor/blob/main/data-output-sample.json  

https://github.com/orestisf/botometer-checker-azure
https://hub.docker.com/repository/docker/ofotiadis/msciss
https://github.com/orestisf/botometer-checker-azure
https://hub.docker.com/repository/docker/ofotiadis/botometer-checker-azure
https://github.com/orestisf/twitter-trends-monitor
https://hub.docker.com/r/ofotiadis/twitter-trends-monitor
https://hub.docker.com/r/ofotiadis/twitter-trends-monitor
https://github.com/orestisf/azure-arm-templates
https://github.com/orestisf/azure-arm-templates
https://github.com/orestisf/twitter-stream-listener/blob/main/data-output-sample.json
https://github.com/orestisf/twitter-trends-monitor/blob/main/data-output-sample.json
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Annex II. Development environment 

The applications in the solution's Ingestion layer that are presented in have been developed with 

the Python programming language, version 3.9.1. Visual Studio Code was used as IDE, with the 

extensions listed in Table 22. For individual libraries that were utilized (primarily Tweepy to access 

the Twitter streaming API, Botometer to access the Botometer API and various Azure API libraries 

to interface with the different Azure components) and their versions, please refer to the respective 

REQUIREMENTS.TXT file in the application repositories listed in section 3.3. 

All the Ingestion layer's applications were locally tested and debugged with Docker Desktop for 

Windows, version 3.2.0. 

The ARM templates and CLI deployment scripts have been developed in Visual Studio code 

utilizing the Azure CLI Tools and the Azure Resource Manager extensions. 

Extension Name Description Link 

Azure Resource 

Manager (ARM) 

Tools 

Language server, editing 

tools and snippets for 

Azure Resource Manager 

(ARM) template files. 

https://marketplace.visualstudio.com/ite

ms?itemName=msazurermtools.azurerm-

vscode-tools 

https://marketplace.visualstudio.com/items?itemName=msazurermtools.azurerm-vscode-tools
https://marketplace.visualstudio.com/items?itemName=msazurermtools.azurerm-vscode-tools
https://marketplace.visualstudio.com/items?itemName=msazurermtools.azurerm-vscode-tools
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Azure Tools Extension pack to interact 

with Azure resources. 

https://marketplace.visualstudio.com/ite

ms?itemName=ms-vscode.vscode-node-

azure-pack  

Azure CLI Tools Tools for developing and 

running commands of the 

Azure CLI. 

https://marketplace.visualstudio.com/ite

ms?itemName=ms-vscode.azurecli 

Pylance Language server for 

Python in VS Code 

https://marketplace.visualstudio.com/ite

ms?itemName=ms-python.vscode-

pylance  

Python Linting, Debugging 

(multi-threaded, remote), 

Intellisense, Jupyter 

Notebooks, code 

formatting, refactoring, 

unit tests. 

https://marketplace.visualstudio.com/ite

ms?itemName=ms-python.python  

Docker Build, manage, and 

deploy containerized 

applications from Visual 

Studio Code 

https://marketplace.visualstudio.com/ite

ms?itemName=ms-azuretools.vscode-

docker 

Table 22: Visual Studio Code extensions used in the solution development. 

  

https://marketplace.visualstudio.com/items?itemName=ms-vscode.vscode-node-azure-pack
https://marketplace.visualstudio.com/items?itemName=ms-vscode.vscode-node-azure-pack
https://marketplace.visualstudio.com/items?itemName=ms-vscode.vscode-node-azure-pack
https://marketplace.visualstudio.com/items?itemName=ms-vscode.azurecli
https://marketplace.visualstudio.com/items?itemName=ms-vscode.azurecli
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
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Annex III. Solution deployment guide 

This annex contains instructions to deploy the solution presented in this thesis into an Azure 

subscription. This instruction set assumes that the deployment takes place from scratch, in an empty 

subscription. However, the reader may use preexisting components (i.e. a Log analytics workspace) 

by appropriately modifying the template files. 

Important note: Please refer to the latest readme file the repository where the scripts and 

templates are uploaded for the latest version of these instructions: 

https://github.com/orestisf/azure-arm-templates. 

Prerequisites 

To replicate and use the solution presented in section Chapter 2 of this thesis, the following are 

required: 

- An Azure subscription with adequate credits. The subscription’s ID will have to be used in 

this section’s scripts at the –-SUBSCRIPTION parameter which is denoted by “XXXXXXXX-

XXXX-XXXX-XXXX-XXXXXXXXXXXXX”. 

- The Azure principal that will execute the deployments must have at least OWNER role to the 

subscription’s tenant. 

https://github.com/orestisf/azure-arm-templates
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- A Docker Hub account where the ingestion components will be uploaded. Alternatively  

- Access to Azure CLI. 

- A local copy (i.e., via GIT CLONE) of the ARM templates and the Azure CLI deployment 

scripts hosted in the GitHub repository: https://github.com/orestisf/azure-arm-templates. 

- A copy of the Docker images for the ingestion components (Twitter stream listener and 

Botometer checker applications) from the following Docker Hub repositories, pushed to 

the user’s Docker Hub account29. These will be referenced when deploying the components 

as Azure Container Instances: 

o https://hub.docker.com/r/ofotiadis/msciss 

o https://hub.docker.com/r/ofotiadis/botometer-checker-azure. 

In summary, the AZ DEPLOYMENT SUB CREATE30 and AZ DEPLOYMENT GROUP CREATE CLI commands are 

used with the provided ARM templates to deploy each distinct component in the Azure 

subscription. 

Deploying the components 

The following paragraphs in this section provide instructions on deploying each individual 

component of the solution.  

Creating the resource groups 

Three resource groups will be deployed (rg-apps-alpha, rg-ops-alpha, rg-containers-alpha), each 

containing a separate set of the solution’s resources as described in section 3.4. Note that this step 

is optional, and all resources may be deployed under the same resource group. 

 
29 Alternatively the docker images can be uploaded to an Azure Container Registry. To reduce costs, in this 

document we are not using one. The relevant documentation  
30 See also documentation: https://docs.microsoft.com/en-us/cli/azure/deployment/sub?view=azure-cli-

latest#az_deployment_sub_create. 

https://github.com/orestisf/azure-arm-templates
https://hub.docker.com/r/ofotiadis/msciss
https://hub.docker.com/r/ofotiadis/botometer-checker-azure
https://docs.microsoft.com/en-us/cli/azure/deployment/sub?view=azure-cli-latest#az_deployment_sub_create
https://docs.microsoft.com/en-us/cli/azure/deployment/sub?view=azure-cli-latest#az_deployment_sub_create
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az deployment sub create --name resourceGroupOpsDeployment --
subscription XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXXX --location 
"westeurope" ` 

--template-file "C:\path\to\file\resourceGroupOps.json" ` 

--parameters "C:\path\to\file\resourceGroupOps.parameters.json" 

 

az deployment sub create --name resourceGroupAppsDeployment --
subscription XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXXX --location 
"westeurope" ` 

--template-file "C:\path\to\file\resourceGroupApps.json" ` 

--parameters "C:\path\to\file\resourceGroupApps.parameters.json" 

 

az deployment sub create --name resourceGroupContainersDeployment --
subscription XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXXX --location 
"westeurope" ` 

--template-file "C:\path\to\file\resourceGroupContainers.json" ` 

--parameters "C:\path\to\file\resourceGroupContainers.parameters.json" 

Deploy the Log Analytics workspace 

A log analytics workspace will be provisioned, and its resulting workspace id will be referenced in 

subsequent deployments as discussed in Error! Reference source not found. so that they will be a

ble to post metric and usage information to the Log analytics tables.  

az deployment group create --name logAnalyticsWorkspaceDeployment --
subscription 3fb06c81-20d9-4c91-8fa1-dd7f2606ba21 --resource-group rg-
ops-alpha ` 

--template-file "C:\Users\ofoti\Dropbox\personal\University\UNIPI\MDA-
998 Dissertation\99. Working\logAnalyticsWorkspace.json" ` 

--parameters "C:\Users\ofoti\Dropbox\personal\University\UNIPI\MDA-998 
Dissertation\99. Working\logAnalyticsWorkspace.parameters.json" 
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Deploy Application Insights resource 

A single Application Insights resource will be provisioned, and its instrumentation key used to send 

telemetry data to Azure Monitor (see section Error! Reference source not found. for details on t

he Application Insights configuration) for the ingestion components of the solution. 

az deployment group create --name applicationInsights --subscription 
3fb06c81-20d9-4c91-8fa1-dd7f2606ba21 --resource-group rg-ops-alpha ` 

--template-file "C:\Users\ofoti\Dropbox\personal\University\UNIPI\MDA-
998 Dissertation\99. Working\applicationInsights.json" ` 

--parameters "C:\Users\ofoti\Dropbox\personal\University\UNIPI\MDA-998 
Dissertation\99. Working\applicationInsights.parameters.json" 

Deploy Event Hub namespace and event hubs 

A single Event Hubs Namespace resource with three event hub instances will be provisioned. Each 

event hub will have 4 partitions and 3 consumer groups to allow for an equivalent number of 

consumer components (i.e. a stream analytics service or another processing service that reads 

events from the event hub). 

az deployment group create --name eventHubDeployment --subscription 
3fb06c81-20d9-4c91-8fa1-dd7f2606ba21 --resource-group rg-apps-alpha ` 

--template-file "C:\Users\ofoti\Dropbox\personal\University\UNIPI\MDA-
998 Dissertation\99. Working\eventHub.json" ` 

--parameters "C:\Users\ofoti\Dropbox\personal\University\UNIPI\MDA-998 
Dissertation\99. Working\eventHub.parameters.json" 

Deploy storage account and blob container 

A single storage account with a blob container will be provisioned. The blob container will be used 

to store logs, as general purpose storage and for storing Event Hub consumer checkpoints. 
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az deployment group create --name storageAccountAndBlobContainer --
subscription 3fb06c81-20d9-4c91-8fa1-dd7f2606ba21 --resource-group rg-
apps-alpha ` 

--template-file "C:\Users\ofoti\Dropbox\personal\University\UNIPI\MDA-
998 Dissertation\99. Working\blobContainer.json" ` 

--parameters "C:\Users\ofoti\Dropbox\personal\University\UNIPI\MDA-998 
Dissertation\99. Working\blobContainer.parameters.json" 

Deploy Azure Container Instance for Twitter stream listener 

The Twitter stream listener Python application is deployed as an Azure Container Instance, while 

the image itself that will be used is hosted in the user’s Docker Hub repository. Before executing 

the deployment, environmental variables such as EVENTHUB_ENDPOINT MUST be configured in 

the CONTAINERINSTANCE-TWITTERSTREAMLISTENER.PARAMETERS.JSON file. Refer to section 3.3.1.2 

for more information on the application’s environmental variables. 

az deployment group create --name ContainerInstanceTwitterStreamListener 
--subscription 3fb06c81-20d9-4c91-8fa1-dd7f2606ba21  --resource-group 
rg-apps-alpha ` 

--template-file "C:\Users\ofoti\Dropbox\personal\University\UNIPI\MDA-
998 Dissertation\99. Working\containerInstance-
TwitterStreamListener.json" ` 

--parameters "C:\Users\ofoti\Dropbox\personal\University\UNIPI\MDA-998 
Dissertation\99. Working\containerInstance-
TwitterStreamListener.parameters.json" 

Deploy Azure Container Instance for Twitter Trends Monitor 

The Twitter Trends Monitor Python application is deployed as an Azure Container Instance, while 

the image itself that will be used is hosted in the user’s Docker Hub repository. Before executing 

the deployment, environmental variables such as EVENTHUB_ENDPOINT MUST be configured in 

the CONTAINERINSTANCE-TWITTERTRENDSMONITOR.PARAMETERS.JSON file. Refer to section 3.3.2.1 for 

more information on the application’s environmental variables. 
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az deployment group create --name ContainerInstanceTwitterStreamListener 
--subscription 3fb06c81-20d9-4c91-8fa1-dd7f2606ba21  --resource-group 
rg-containers-alpha ` 

--template-file "C:\Users\ofoti\Dropbox\personal\University\UNIPI\MDA-
998 Dissertation\99. Working\containerInstance-
TwitterStreamListener.json" ` 

--parameters "C:\Users\ofoti\Dropbox\personal\University\UNIPI\MDA-998 
Dissertation\99. Working\containerInstance-
TwitterStreamListener.parameters.json" 

Cleaning up the environment 

To tear down the environment, it is enough to delete31 the three provisioned resource groups which 

contain all the solution’s deployments, by running the following Azure CLI commands. Note that 

this operation will also delete any data ingested and persisted the Cosmos DB containers. You may 

export locally in JSON format any container using the Cosmos DB migration tool32.  Alternatively, 

any data that have been persisted in blobs (i.e. in the storage account presented in 3.5.1) can be 

downloaded locally using the Azure Storage explorer tool33. 

az group delete --name rg-ops-alpha --yes 

az group delete --name rg-apps-alpha --yes 

az group delete --name rg-containers-alpha –yes 

  

 
31 See also the documentation on the az group delete CLI command: https://docs.microsoft.com/en-

us/cli/azure/group?view=azure-cli-latest#az_group_delete. 
32 Executable available here: https://docs.microsoft.com/en-us/azure/cosmos-db/import-data#Install. 
33 See the following link for the Azure Storage Explorer: https://azure.microsoft.com/en-us/features/storage-

explorer/. 

https://docs.microsoft.com/en-us/cli/azure/group?view=azure-cli-latest#az_group_delete
https://docs.microsoft.com/en-us/cli/azure/group?view=azure-cli-latest#az_group_delete
https://docs.microsoft.com/en-us/azure/cosmos-db/import-data#Install
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
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Annex IV. Sample ingestion data 

This annex presents sample responses from the Twitter API and a sample of the dataset used to 

evaluate the solution’s performance. 

Twitter Streaming API, sample response for hashtag #tesla 

{ 

    "created_at": "Wed Feb 10 11:04:59 +0000 2021", 

    "id": 1359458334215196673, 

    "id_str": "1359458334215196673", 

    "text": "\ud83d\udcb8 #tesla COMPRA #bitcoin ! #Ethereum est\u00e1 en graves 
PROBLEMAS \ud83d\ude30| CriptoNoticias #22 https://t.co/Ek2HUVVio5 via @YouTube", 

    "source": "<a href=\"http://twitter.com/download/iphone\" rel=\"nofollow\">Twitter 
for iPhone</a>", 

    "truncated": false, 

    "in_reply_to_status_id": null, 

    "in_reply_to_status_id_str": null, 

    "in_reply_to_user_id": null, 

    "in_reply_to_user_id_str": null, 

    "in_reply_to_screen_name": null, 
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    "user": { 

        "id": 797800235078709249, 

        "id_str": "797800235078709249", 

        "name": "Guillem Ferrer", 

        "screen_name": "GuillemFerrer3", 

        "location": "Barcelona", 

        "url": "https://youtube.com/c/GuillemFerrer", 

        "description": "\ud83c\udd95 Creador de contenido sobre #blockchain y 
#criptomonedas \u26d3Apasionado del #bitcoin \ud83d\udcf0Not\u00edcias relevantes sobre 
el mundo cripto", 

        "translator_type": "none", 

        "protected": false, 

        "verified": false, 

        "followers_count": 140, 

        "friends_count": 88, 

        "listed_count": 2, 

        "favourites_count": 324, 

        "statuses_count": 252, 

        "created_at": "Sun Nov 13 13:56:13 +0000 2016", 

        "utc_offset": null, 

        "time_zone": null, 

        "geo_enabled": true, 

        "lang": null, 

        "contributors_enabled": false, 

        "is_translator": false, 

        "profile_background_color": "F5F8FA", 

        "profile_background_image_url": "", 

        "profile_background_image_url_https": "", 
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        "profile_background_tile": false, 

        "profile_link_color": "1DA1F2", 

        "profile_sidebar_border_color": "C0DEED", 

        "profile_sidebar_fill_color": "DDEEF6", 

        "profile_text_color": "333333", 

        "profile_use_background_image": true, 

        "profile_image_url": 
"http://pbs.twimg.com/profile_images/1327352799294840836/MV6DAOoq_normal.jpg", 

        "profile_image_url_https": 
"https://pbs.twimg.com/profile_images/1327352799294840836/MV6DAOoq_normal.jpg", 

        "profile_banner_url": 
"https://pbs.twimg.com/profile_banners/797800235078709249/1595247391", 

        "default_profile": true, 

        "default_profile_image": false, 

        "following": null, 

        "follow_request_sent": null, 

        "notifications": null 

    }, 

    "geo": null, 

    "coordinates": null, 

    "place": null, 

    "contributors": null, 

    "is_quote_status": false, 

    "quote_count": 0, 

    "reply_count": 0, 

    "retweet_count": 0, 

    "favorite_count": 0, 

    "entities": { 
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        "hashtags": [ 

            { 

                "text": "tesla", 

                "indices": [ 

                    2, 

                    8 

                ] 

            }, 

            { 

                "text": "bitcoin", 

                "indices": [ 

                    16, 

                    24 

                ] 

            }, 

            { 

                "text": "Ethereum", 

                "indices": [ 

                    27, 

                    36 

                ] 

            } 

        ], 

        "urls": [ 

            { 

                "url": "https://t.co/Ek2HUVVio5", 
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                "expanded_url": "https://youtu.be/c7vXGLvx0J0", 

                "display_url": "youtu.be/c7vXGLvx0J0", 

                "indices": [ 

                    84, 

                    107 

                ] 

            } 

        ], 

        "user_mentions": [ 

            { 

                "screen_name": "YouTube", 

                "name": "YouTube", 

                "id": 10228272, 

                "id_str": "10228272", 

                "indices": [ 

                    112, 

                    120 

                ] 

            } 

        ], 

        "symbols": [] 

    }, 

    "favorited": false, 

    "retweeted": false, 

    "possibly_sensitive": false, 

    "filter_level": "low", 
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    "lang": "es", 

    "timestamp_ms": "1612955099048" 

} 
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Twitter GET trends/place API endpoint sample response for location “New 

York” 

[ 

    { 

       "trends":[ 

          { 

             "name":"Rose", 

             "url":"http://twitter.com/search?q=Rose", 

             "promoted_content":"None", 

             "query":"Rose", 

             "tweet_volume":403824 

          }, 

          { 

             "name":"Britney", 

             "url":"http://twitter.com/search?q=Britney", 

             "promoted_content":"None", 

             "query":"Britney", 

             "tweet_volume":169848 

          }, 

          { 

             "name":"Randle", 

             "url":"http://twitter.com/search?q=Randle", 

             "promoted_content":"None", 

             "query":"Randle", 

             "tweet_volume":"None" 
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          }, 

          { 

             "name":"#SwitchtoDUBCHAENG", 

             "url":"http://twitter.com/search?q=%23SwitchtoDUBCHAENG", 

             "promoted_content":"None", 

             "query":"%23SwitchtoDUBCHAENG", 

             "tweet_volume":142932 

          }, 

          { 

             "name":"Lauren London", 

             "url":"http://twitter.com/search?q=%22Lauren+London%22", 

             "promoted_content":"None", 

             "query":"%22Lauren+London%22", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"#둡챙으로_바꾸자", 

             
"url":"http://twitter.com/search?q=%23%EB%91%A1%EC%B1%99%EC%9C%BC%EB%A1%9C_%EB%B0%94%EA
%BE%B8%EC%9E%90", 

             "promoted_content":"None", 

             
"query":"%23%EB%91%A1%EC%B1%99%EC%9C%BC%EB%A1%9C_%EB%B0%94%EA%BE%B8%EC%9E%90", 

             "tweet_volume":122213 

          }, 

          { 

             "name":"DUBCHAENG MELODY PROJECT", 

             "url":"http://twitter.com/search?q=%22DUBCHAENG+MELODY+PROJECT%22", 
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             "promoted_content":"None", 

             "query":"%22DUBCHAENG+MELODY+PROJECT%22", 

             "tweet_volume":99107 

          }, 

          { 

             "name":"alex quackity", 

             "url":"http://twitter.com/search?q=%22alex+quackity%22", 

             "promoted_content":"None", 

             "query":"%22alex+quackity%22", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Donovan Mitchell", 

             "url":"http://twitter.com/search?q=%22Donovan+Mitchell%22", 

             "promoted_content":"None", 

             "query":"%22Donovan+Mitchell%22", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Karl", 

             "url":"http://twitter.com/search?q=Karl", 

             "promoted_content":"None", 

             "query":"Karl", 

             "tweet_volume":73500 

          }, 

          { 
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             "name":"#DedicatedToDUBCHAENG", 

             "url":"http://twitter.com/search?q=%23DedicatedToDUBCHAENG", 

             "promoted_content":"None", 

             "query":"%23DedicatedToDUBCHAENG", 

             "tweet_volume":25238 

          }, 

          { 

             "name":"dahyun", 

             "url":"http://twitter.com/search?q=dahyun", 

             "promoted_content":"None", 

             "query":"dahyun", 

             "tweet_volume":83944 

          }, 

          { 

             "name":"Kemba", 

             "url":"http://twitter.com/search?q=Kemba", 

             "promoted_content":"None", 

             "query":"Kemba", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Mark Cuban", 

             "url":"http://twitter.com/search?q=%22Mark+Cuban%22", 

             "promoted_content":"None", 

             "query":"%22Mark+Cuban%22", 

             "tweet_volume":27260 
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          }, 

          { 

             "name":"Jazz", 

             "url":"http://twitter.com/search?q=Jazz", 

             "promoted_content":"None", 

             "query":"Jazz", 

             "tweet_volume":43382 

          }, 

          { 

             "name":"#njnbg", 

             "url":"http://twitter.com/search?q=%23njnbg", 

             "promoted_content":"None", 

             "query":"%23njnbg", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"#SAPNAP", 

             "url":"http://twitter.com/search?q=%23SAPNAP", 

             "promoted_content":"None", 

             "query":"%23SAPNAP", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Aunt Jemima", 

             "url":"http://twitter.com/search?q=%22Aunt+Jemima%22", 

             "promoted_content":"None", 
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             "query":"%22Aunt+Jemima%22", 

             "tweet_volume":24748 

          }, 

          { 

             "name":"Wind Waker", 

             "url":"http://twitter.com/search?q=%22Wind+Waker%22", 

             "promoted_content":"None", 

             "query":"%22Wind+Waker%22", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Infinity Train", 

             "url":"http://twitter.com/search?q=%22Infinity+Train%22", 

             "promoted_content":"None", 

             "query":"%22Infinity+Train%22", 

             "tweet_volume":11549 

          }, 

          { 

             "name":"Tiafoe", 

             "url":"http://twitter.com/search?q=Tiafoe", 

             "promoted_content":"None", 

             "query":"Tiafoe", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Krispy Kreme", 
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             "url":"http://twitter.com/search?q=%22Krispy+Kreme%22", 

             "promoted_content":"None", 

             "query":"%22Krispy+Kreme%22", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"chris beard", 

             "url":"http://twitter.com/search?q=%22chris+beard%22", 

             "promoted_content":"None", 

             "query":"%22chris+beard%22", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"BOTW", 

             "url":"http://twitter.com/search?q=BOTW", 

             "promoted_content":"None", 

             "query":"BOTW", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"mark lee", 

             "url":"http://twitter.com/search?q=%22mark+lee%22", 

             "promoted_content":"None", 

             "query":"%22mark+lee%22", 

             "tweet_volume":39094 

          }, 
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          { 

             "name":"Zelda", 

             "url":"http://twitter.com/search?q=Zelda", 

             "promoted_content":"None", 

             "query":"Zelda", 

             "tweet_volume":22744 

          }, 

          { 

             "name":"Gobert", 

             "url":"http://twitter.com/search?q=Gobert", 

             "promoted_content":"None", 

             "query":"Gobert", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Kiely", 

             "url":"http://twitter.com/search?q=Kiely", 

             "promoted_content":"None", 

             "query":"Kiely", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Link to the Past", 

             "url":"http://twitter.com/search?q=%22Link+to+the+Past%22", 

             "promoted_content":"None", 

             "query":"%22Link+to+the+Past%22", 
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             "tweet_volume":"None" 

          }, 

          { 

             "name":"Venus Williams", 

             "url":"http://twitter.com/search?q=%22Venus+Williams%22", 

             "promoted_content":"None", 

             "query":"%22Venus+Williams%22", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Jaylen Brown", 

             "url":"http://twitter.com/search?q=%22Jaylen+Brown%22", 

             "promoted_content":"None", 

             "query":"%22Jaylen+Brown%22", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Pearl Milling Company", 

             "url":"http://twitter.com/search?q=%22Pearl+Milling+Company%22", 

             "promoted_content":"None", 

             "query":"%22Pearl+Milling+Company%22", 

             "tweet_volume":11710 

          }, 

          { 

             "name":"Ocarina of Time", 

             "url":"http://twitter.com/search?q=%22Ocarina+of+Time%22", 
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             "promoted_content":"None", 

             "query":"%22Ocarina+of+Time%22", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Breath of the Wild", 

             "url":"http://twitter.com/search?q=%22Breath+of+the+Wild%22", 

             "promoted_content":"None", 

             "query":"%22Breath+of+the+Wild%22", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Theis", 

             "url":"http://twitter.com/search?q=Theis", 

             "promoted_content":"None", 

             "query":"Theis", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Djokovic", 

             "url":"http://twitter.com/search?q=Djokovic", 

             "promoted_content":"None", 

             "query":"Djokovic", 

             "tweet_volume":"None" 

          }, 

          { 
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             "name":"Ponce", 

             "url":"http://twitter.com/search?q=Ponce", 

             "promoted_content":"None", 

             "query":"Ponce", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"LET ME IN PLEASE", 

             "url":"http://twitter.com/search?q=%22LET+ME+IN+PLEASE%22", 

             "promoted_content":"None", 

             "query":"%22LET+ME+IN+PLEASE%22", 

             "tweet_volume":11071 

          }, 

          { 

             "name":"YOU TOOK SO LONG", 

             "url":"http://twitter.com/search?q=%22YOU+TOOK+SO+LONG%22", 

             "promoted_content":"None", 

             "query":"%22YOU+TOOK+SO+LONG%22", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Joe Ingles", 

             "url":"http://twitter.com/search?q=%22Joe+Ingles%22", 

             "promoted_content":"None", 

             "query":"%22Joe+Ingles%22", 

             "tweet_volume":"None" 
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          }, 

          { 

             "name":"Caren", 

             "url":"http://twitter.com/search?q=Caren", 

             "promoted_content":"None", 

             "query":"Caren", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Bagley", 

             "url":"http://twitter.com/search?q=Bagley", 

             "promoted_content":"None", 

             "query":"Bagley", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Lori Harvey", 

             "url":"http://twitter.com/search?q=%22Lori+Harvey%22", 

             "promoted_content":"None", 

             "query":"%22Lori+Harvey%22", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"My Valentine's Day", 

             "url":"http://twitter.com/search?q=%22My+Valentine%27s+Day%22", 

             "promoted_content":"None", 
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             "query":"%22My+Valentine%27s+Day%22", 

             "tweet_volume":36362 

          }, 

          { 

             "name":"sharks", 

             "url":"http://twitter.com/search?q=sharks", 

             "promoted_content":"None", 

             "query":"sharks", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Spida", 

             "url":"http://twitter.com/search?q=Spida", 

             "promoted_content":"None", 

             "query":"Spida", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Pistons", 

             "url":"http://twitter.com/search?q=Pistons", 

             "promoted_content":"None", 

             "query":"Pistons", 

             "tweet_volume":14511 

          }, 

          { 

             "name":"Grant Williams", 
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             "url":"http://twitter.com/search?q=%22Grant+Williams%22", 

             "promoted_content":"None", 

             "query":"%22Grant+Williams%22", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"Lowell", 

             "url":"http://twitter.com/search?q=Lowell", 

             "promoted_content":"None", 

             "query":"Lowell", 

             "tweet_volume":"None" 

          }, 

          { 

             "name":"The Celtics", 

             "url":"http://twitter.com/search?q=%22The+Celtics%22", 

             "promoted_content":"None", 

             "query":"%22The+Celtics%22", 

             "tweet_volume":10960 

          } 

       ], 

       "as_of":"2021-02-10T09:58:50Z", 

       "created_at":"2021-02-08T21:22:21Z", 

       "locations":[ 

          { 

             "name":"New York", 

             "woeid":2459115 
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          } 

       ] 

    } 

 ]  
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Botometer API sample response for Twitter account 

{ 

    "id": "1154103442362785797", 

    "user_id": "1154103442362785797", 

    "user_screen_name": "ierodidaskalos", 

    "user_majority_lang": "el", 

    "cap": { 

        "english": 0.8748575042966269, 

        "universal": 0.6608500314332488 

    }, 

    "display_scores_english": { 

        "astroturf": 2, 

        "fake_follower": 1.2, 

        "financial": 0.1, 

        "other": 4.6, 

        "overall": 4.6, 

        "self_declared": 0, 

        "spammer": 0 

    }, 

    "display_scores_universal": { 

        "astroturf": 1.8, 

        "fake_follower": 0.4, 

        "financial": 0, 

        "other": 2.4, 

        "overall": 0.8, 

        "self_declared": 0, 
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        "spammer": 0.1 

    }, 

    "raw_scores_english": { 

        "astroturf": 0.4, 

        "fake_follower": 0.24, 

        "financial": 0.02, 

        "other": 0.91, 

        "overall": 0.91, 

        "self_declared": 0.01, 

        "spammer": 0 

    }, 

    "raw_scores_universal": { 

        "astroturf": 0.35, 

        "fake_follower": 0.08, 

        "financial": 0, 

        "other": 0.48, 

        "overall": 0.17, 

        "self_declared": 0.01, 

        "spammer": 0.02 

    }, 

    "last_checked": "30/06/2021 13:10:03", 

    "_rid": "dFFiAOExCIcWAAAAAAAAAA==", 

    "_self": "dbs/dFFiAA==/colls/dFFiAOExCIc=/docs/dFFiAOExCIcWAAAAAAAAAA==/", 

    "_etag": "\"04008c03-0000-0d00-0000-60dc6d2b0000\"", 

    "_attachments": "attachments/", 

    "_ts": 1625058603 
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}
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-153- 

 

NYC Taxi & Limousine Commission - green taxi trip records dataset, sample data 

vend
orID 

lpepPickupDat
etime 

lpepDropoffDa
tetime 

passeng
erCount 

tripDis
tance 

puLoca
tionId 

doLoca
tionId 

rateC
odeID 

storeAnd
FwdFlag 

payme
ntType 

fareA
moun

t 

ex
tr
a 

mta
Tax 

improve
mentSu
rcharge 

tipAmoun
t 

tollsA
mount 

totalA
mount 

trip
Typ

e 

puY
ear 

puM
onth 

2 2018-06-05 
18:00:51 

2018-06-05 
18:12:26 

1 1.89 75 41 1 N 1 9.5 1 0.5 0.3 0 0 11.3 1 20
18 

6 

2 2018-06-05 
13:55:47 

2018-06-05 
14:05:28 

1 0.94 41 74 1 N 2 7.5 0 0.5 0.3 0 0 8.3 1 20
18 

6 

1 2018-06-05 
17:46:27 

2018-06-05 
17:51:08 

2 0.6 41 152 1 N 1 5 1 0.5 0.3 4 0 10.8 1 20
18 

6 

1 2018-06-05 
16:21:20 

2018-06-05 
16:44:10 

2 1.9 255 37 1 N 2 14.5 1 0.5 0.3 0 0 16.3 1 20
18 

6 

2 2018-06-05 
09:30:38 

2018-06-05 
09:48:49 

1 2.65 166 263 1 N 2 14 0 0.5 0.3 0 0 14.8 1 20
18 

6 

2 2018-06-05 
22:29:31 

2018-06-05 
22:35:41 

1 1.11 260 7 1 N 1 6.5 0.
5 

0.5 0.3 2.34 0 10.14 1 20
18 

6 

1 2018-06-05 
08:24:56 

2018-06-05 
08:48:34 

1 5.2 7 36 1 N 1 19 0 0.5 0.3 0 0 19.8 1 20
18 

6 

2 2018-06-05 
11:03:20 

2018-06-05 
11:21:29 

1 2.14 17 17 1 N 1 12.5 0 0.5 0.3 0 0 13.3 1 20
18 

6 

2 2018-06-05 
14:23:23 

2018-06-05 
14:28:16 

1 1.22 74 263 1 N 2 6 0 0.5 0.3 0 0 6.8 1 20
18 

6 

2 2018-06-05 
19:12:03 

2018-06-05 
19:15:01 

1 0.68 75 74 1 N 2 4.5 1 0.5 0.3 0 0 6.3 1 20
18 

6 

Table 23: NYC Taxi & Limousine Commission sample dataset 


