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NepiAnyn

Ta teAevutaia 10 xpovia éva ouVeXwS auaVOUEVO EVOLAQEPOV EKONAWVETAL OTO XWPO
Tou Aladiktuou twv lMpayudtwyv (loT). Exovrac éskivioet aoxedov 20 xpovia mptv, ot Smart
Cards Bptokotav oxedov oe kade rrruxn ¢ {wng UaG (TNAEPWVIKEC KAPTEC TIPOTTIANPWUEVOU
XPOVOU, MIOTWTIKEC KAPTEC, CUVOPOUNTLKN TNAEOPAON, KATT).

2NUEPT, TO OLKOOUOTNUO TWV EVOWUATWUEVWY CUTTNUATWYV EXEL EMEKTAVEL SpauaTIKA
o€ mnAnSwpa epapuoywv TN KAGNUEPLIVOTNTAC UaC. YYEIQ, UETUPOPEC, TAPAYWYI) EVEPYELNC
KOl OTPATIWTIKNC PUOEWG UAOTTOLOELG, E(VaL UOVO LUEPLKOL ATTO TOUC TOUEIC TTou e€apTwvTal
ard v aloniotia kot Baoilovrtal otnv ao@AAEll QUTWV TwV OUCKEUWYV. E@ooov
ammo9nkevouv kat eneéepyalovral  evaiodntec mAnpo@opiec mpEmeL  va  €ivol
TIPOOTATEVUEVEC amo un eéovotodotnuevn npooBaon. Etol, molkido UETPO aoPaAEiaG Kot
KoUTnToypapikol aAyoptOuol EyYouv EMIOTPATEUTEL Yl va aUuéoouv TV aoQAAEll TwV
OUOTNUATWY QUTWV.

Qotooo, Exouv Bpelei va eivol ekTEJEIUEVEC OE EVO OUYKEKPLUEVO TUTTO ETUITIECEWYV,
TI¢ em¥Eoels mAeuplkoU kavaAloU, yvwotéc we Side Channel Attacks. H emtuyia kat n
QITOTEAECUATIKOTNTA TOUG BaoileTal 0TV EKUETAAAEUDN TWV ATEAELWV TWV NAEKTPOVIKWV
KUKAwudtwy kot tnv eéaptnon UETAéU KATaVAAwGCNG pEUUATOC Kol TwV SES0UEVWY TTOU
eneéepyaldovral oL KOUTTTOOUOKEVEG. 2TNV mapouoa SUTAwUATIKY Epyacia Ya EOTIHOOUUE O
vAorourjoetg tou Advanced Encryption Standard (AES), ota avtiueTpa mou UMOPOUUE va
EVOWUATWOOULE Kal Ta adUvaTtd TouG onuela.

Apxlkd, Ba meplypdPoule YLaTi Ol KPUMTOOUOKEVEC €ival eVAAWTEG O emLIEoElg
TAgUpLkoU kavaAlou. Oa amodeioule TOUG LOXUPLOUOUG UaC EKTEAWVTAC uia entifeon 1M
taénc kat Ba eényrioovue ta anoteAéouara. Encita, da avaAUoouue TO QVTIUETPO TOU
masking ko Sa To EQAPUOCOULE OTNV UAOTTOINGN UOG YLot VA TNV TPOOTATEUCOUE.

Epooov Exoue ao@aldiosl Tov ULKPOEAEYKTH UaG, Bo EMXELPHOOUUE VO EEMELAOOULE
T0 avtiuetpo ue pia enideon 2" Taéng. Emeldry o Oyko¢ TwV amoUTOUUEVWY UXTNUATIKWV
untodoylouwv auvéavetal pe ekVeTiko pudud, Ga eéetaoovue UeIodouc yla va KAVOUUE
QUTEC TIC EMLTEOELC TTILO EQPLKTEC YLa CUUBATIKA UTTOAOYLOTIKG CUCTHUATAL.

Tédog, Ba ouykpivouue ta amoteAeouata kat Ja kataAnéouue o€ ouumEpdOoUATA
OXETIKA LE TNV TOAUTTAOKOTNTA KAl TNV OMOTEAECUATIKOTHTA oUTOU Tou €Eldouc Twv
emUEcEWV.
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Abstract

Over the past 10 years, a continuously increasing interest has been shown in the field
of Internet of Things (loT) devices. Having started almost two decades earlier, smart cards
could be found almost everywhere in our everyday lives (Payphone Cards, ATM/Credit Cards,
Computer Security, Satellite TV, etc).

Today, the embedded devices ecosystem has expanded dramatically to multiple areas
of our lives. Health, Transport, Energy, Military are just some of the fields that are now
heavily dependent on the reliability and security of these devices. Since they hold sensitive
data and, sometimes, crucial information, they have to be protected from unauthorized
access. Therefore, various security measures and cryptographic algorithms are applied to
enhance their security.

However, they have found to be vulnerable to specific kind of attacks, the Side-Channel
Attacks, which take advantage of the physical imperfections of the devices and the data-
power dependency. In this thesis, we will focus on the implementations that use the
Advanced Encryption Standard (AES), the countermeasures that can be integrated and their
weak spots.

First, we will describe what makes the cryptographic devices prone to side-channel
attacks. As a proof of concept, we will mount a 1%t Order Attack and explain the results.
Afterwards, we will focus on the Masking countermeasure to secure our device against these
types of attacks.

Having our microcontroller set up and secured, as described above, we will attempt to
overcome this protection mechanism by exploiting it and executing a 2" Order Attack, using
power traces. As the volume of the needed computations rises exponentially, even for today’s
standards, we will examine methods to make these attacks more effective and feasible.

Lastly, we will compare the results and draw conclusions about the complexity and
effectiveness of the attacks.

Side Channel Attacks and Countermeasures — Analysis of Secure Implementations 5
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Notation

di

Glossary
AES
CPA
DPA
FFT
HD
HEX
HW
HO
EM
MMIA
NIST
POI
SCA
SPA
XOR

Exclusive OR

The it byte of the plaintext

The it" byte of the key

Correct key

Number of plaintexts

Matrix of power traces

Number of possible key byte values

Matrix containing f(d; k) for all possible key values
Matrix containing hypothetical power consumptions of matrix V
Position where power consumption depends on vk

The targeted intermediate value — The output of f(d; k)
Pearson’s Correlation Coefficient

Value u concealed by the mask m

S-Box lookup result of value x

Masked S-Box lookup result of value x

Preprocessed trace

Matrix of preprocessed traces

Advanced Encryption Standard
Correlation Power Analysis

Differential Power Analysis

Fast Fourier Transformation

Hamming Distance

Hexadecimal

Hamming Weight

Higher Order

Electromagnetic

Multivariate Mutual Information Analysis
National Institute of Standards and Technology
Point of Interest

Side Channel Attack

Simple Power Analysis

Exclusive OR
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1 Introduction

Side channel attacks are based on information gained from the implementation of a
computer system. This thesis is focused on exploiting the leakage of the cryptographic
devices. The term refers to devices which run cryptographic algorithms. Practically, these
algorithms take as an input some data (plaintext) and a key. By applying multiple mathematic
calculations, the algorithm produces the encrypted plaintext, or as we say, the ciphertext.
Our goal is to be able to retrieve the key from the device running the cryptographic
algorithm.

Typically, breaking a cryptographic algorithm means finding the secret key based on
some available information, for example having access to sets of plaintexts and ciphertexts.
While brute-force attacks can be mounted in almost any case, we consider an algorithm
secure if these kinds of attacks cannot retrieve the key in a reasonable amount of time, using
reasonable computing resources.

Since we are focusing on the Advanced Encryption Standard (AES), it is useful to mention
that, up to the time writing this thesis, AES is considered mathematically secure. In other
words, there is no literature referring to decrypting the ciphertext without having the
encryption key.

Before we start exploring the side channel attacks, we will refer to the literature and
mention the most important papers and its contributions.

The authorsin[1] introduce us to cryptography and cryptographic devices. They describe
how power analysis attacks can be mounted and why they work. By using Differential Power
analysis (DPA) they are able to recover the key, by using only a few power traces. Moreover,
they explain what masking is and how can be applied to AES. Essentially, masking refers to
altering the intermediate values of the encryption algorithm, in such a way that the
instantaneous power consumption of the device is not related to the actual values anymore.
Lastly, they describe, in theory, how this countermeasure scheme can be attacked.

In [2] A. A. Ding et al. propose a statistical model for higher order DPA on masked
cryptographic algorithms. Their goal is to reveal how higher order attacks work on masked
embedded devices and aim to help the system designers regarding their masking
implementations.

According to [3], by applying both additive and multiplicative masking, at the cost of a
small timing overhead to AES, significant resistance is achieved on higher order attacks. They
also describe an affine masking scheme for AES and present their results.

Paul Bottinelli and Joppe W. Bos in [4] analyze the computational aspect of Correlation
Power Analysis (CPA) and they propose multiple time-memory trade off techniques to utilize
their processing algorithms. Their most important contribution is the incremental Pearson
technique, which can compute the correlation coefficient without the need to keep all the
traces inside the memory at the same time.

Side Channel Attacks and Countermeasures — Analysis of Secure Implementations 9
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Francgois Durvaux et al. [5] propose how the selection of Points of Interest (POls) can be
conducted more effectively. Especially in masked implementations, from the adversary’s
point of view, finding the points where the leakage is located can be a very time-consuming
procedure. They also present two case studies to validate their claims. Since the number of
shares is a parameter in their formula, its scope is universal, regardless the number of masks
being used.

As described in [6], State-of-the-art masking extraction techniques target the S-Box
computation and do not consider the cases where precomputed S-Boxes are stored in the
non-volatile memory. Their attack focuses on this gap with a very high success rate, requiring
at the same time much less power traces.

In [7], the authors improve the resistance of the high-order masking. They combine three
different methods with notable improvement, both in efficiency and speed.

According to [8], if d is the number of shares involved in a masking scheme, then an
attack with order higher than d can be more successful than a d-order attack. Additionally,
they show that for d=1 the Hamming Weight model is the less preferable to the attacker.

Jigiang Lu et al. [9], explore the AES’ rounds and the importance of protecting them with
masking. Taking into consideration the 1" and 2" order attacks, they define the minimum
protection against them. This consists of securing the first 2.5 and the last 3 rounds in order
to render these attacks ineffective.

The authors in [10] propose a novel Higher Order (HO) attack that takes the pre-
processing out of the equation. Their experiments on 2" and 3™ order Multivariate Mutual
Information Analysis (MMIA) showed that, with less than 1000 traces, 100% success rate was
achieved. Hence, the need for countermeasures against HO attacks becomes more
imperative.

Weijian Li & Haibo Yi [11] presented an improved 2" Order attack against AES with
precomputed masked S-Box. Their adapted CPA technique using the Hamming Weight model
is able to reveal the key after 16,000 traces.

Oscar Reparaz et al. [12] deal with the “combinatorial explosion” problem, which is the
exponential growth of calculations needed in a higher-order attack. They present a technique
to identify the interesting tuples in a “black-box” multivariate environment.

Regarding the bivariate attacks, in [13] a set of preprocessing tools is introduced, which
improves the efficiency of these attacks, even if the two leakage points are far from each
other. By keeping the analysis in the frequency domain, they can successfully reveal the key
in only 3,000 traces, with each of trace being consisted of 4,000 datapoints.

In this thesis, power analysis attacks (a side channel attack variation) and the masking
countermeasure will be in the spotlight. We will explain in detail every piece of the puzzle
that needs to fall together in order to mount successful attacks. We will begin with AES, refer
to the electronic components of typical microcontrollers and their power consumption
characteristics. Additionally, we will show experimentally how they can be exploited by using
recorded power traces, with the assistance of an oscilloscope. Afterwards, we will switch,

Side Channel Attacks and Countermeasures — Analysis of Secure Implementations 10
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from the adversary’s point of view, to the defending one’s. By using a publicly available
Masked AES implementation, the device will be efficiently protected. Next, we will overcome
this protection mechanism by escalating our attack to 2™ Order, and we will compare the
results. Lastly, our proposal of key-windowing, for the sake of security evaluation and
efficiency, will be presented and explained.

The remainder is organized as follows. Section 2 explains what AES is and how its rounds
work. Section 3 introduces us to microcontrollers and summarizes the vulnerabilities of
cryptographic implementations. Section 4 summarizes the Power Analysis Attacks and
describes the necessary steps in order to mount a 1%t order attack, whereas in Section 5 we
mount a 1t Order CPA attack. Section 6 analyzes the masking countermeasure and presents
an existing software implementation on AES. In Section 7 we explain what differentiates a
masked implementation, from the attacker’s point of view. In Section 8 we mount a 2" order
attack against the masking scheme we described earlier. Last, Conclusions are drawn in
Section 9.

Side Channel Attacks and Countermeasures — Analysis of Secure Implementations 11
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2 The AES Block Cipher Algorithm

Rijndael’s AES [14] is one of the industry’s standards when it comes to symmetric
encryption. It was approved by National Institute of Standards and Technology (NIST) in 2001
and belongs to the block cipher group of cryptographic algorithms. This means that it splits
the data into fixed-size blocks in order to process them. Their size depends on the key size
that is being used. Therefore, AES comes in three flavors with key sizes of 128, 192 and 256
bits. For the sake of simplicity, in this thesis we will focus only on the 128-bit version.

2.1 Structure

AES encrypts a 128-bit data block using a 128-bit key (block). Both the data and the key
are represented as a rectangular matrix of 4x4 elements in hexadecimal (hex). In the case of
AES-128, ten rounds of specific operations (round transformations) are applied. It is
important to mention that each round uses a different key, which is deriving from the initial,
using the key scheduling algorithm. In order to decrypt the ciphertext, these keys and round
transformations need to be applied in reversed order.

PLAINTEXT Y PLAINTEXT

4
AddRoundKey AddRoundKey

o
=
., =2
. 3
:
.
3 = | InvShiftRows
c
z ~—
o [ WS
& £ : 3
= e MixColumns > =
AddR K
. § o 2 ddRoundKey
E @ | AddRoundKey E 3
O O o InvMixColumns —
bz L 1 l L
LLl () = zZ
: :
o SubBytes [+
2 2
8 o
c
= g
2
- | AddRoundKey AddRoundKey
v
A\ CIPHERTEXT CIPHERTEXT

Figure 2.1: AES’ Encryption & Decryption Rounds
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2.2 Round Transformations

The round transformation is consisted of four different operations, which are applied
sequently. These are: AddRoundKey, SubBytes, ShiftRows and MixColumns. In Figure 2.1 we
see how the operations and iterations are being performed during encryption and
decryption. The “Nr” for AES-128 is 10, meaning that they will be executed 10 times. The only
exception is the MixColumns operation, which in the last round is omitted.

2.2.1 AddRoundKey

The key is being added to the state (blocks of plaintexts) using the exclusive-or (XOR)
operator (D). Since both of them are the same size, the operation is as shown in Figure 2.2

State Key Output
32188 (31 |e0 2b |28 |ab | 09 19 (a0 | 9a | e9
43 | 5a | 31 | 37 o 7e | ae | f7 | cf _ 3d [ f4 | cb6 | f8
fe |30 |98 |07 15 | d2 | 15 | 4f - e3 |e2 | 8d |48
a8 | 8d|a2 |34 16 [ a6 | 88 | 3c be |2b | 2a |08

Figure 2.2: AddRoundKey Operation

In the above example the output will be a matrix 4x4. The elements of its first line will
be: 326p2b=19, 8828=a0, 31@Pab=9a, e0P09=e9. The rest of the lines will be
calculated respectively.

2.2.2 SubBytes

The SubBytes is an operation that substitutes all the elements of the matrix using
Rijndael’s S-box [15], which is also known as S-Box or, just, S. Depending on the
implementation, it can be either precomputed or calculated “on-the-fly” and it is based on
the equation:

S(x)=Axx"1+b (2.1)

The inverse of x is computed over a finite field of 256 elements. A declares a matrix and
b is a vector. This formula has been chosen due to meeting several crucial criteria. Firstly, it
is non-linear. This means that the correspondence between the input and output is minimal.
Moreover, it is algebraically complex to withstand linear and differential cryptanalysis. Since
its computation is resource demanding, it is often precomputed and stored in the non-
volatile memory.

Side Channel Attacks and Countermeasures — Analysis of Secure Implementations 13
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0 1 2 3 4 5 6 7 8 9 | 0Da|0Ob)|Oc|od]| 0Oe] Of
D63 | T7c|77|7b|f2]6b|6f|cs|30) 1 )67 )2b)| fe]|d7|ab] 76
10)ca|82|cO|7d]| fa 50|47 |f0 |ad|dd)a2|af |9 |ad]|72]cO
20 b7 | fd |93 |26 |36 3f | f7 | cc | 34| a5 eS| fl|71]d8]31]15
30) 4| c7|23|c3|18)9% | 5 |9)| 7 |12]|8|ez]|eb]|27|b2]75
40) 9 |83 | 2c|1la|1b ) be|5a|la0|52|3b]do|b3|29)|e3]| 2f | 84
50153 |dl| O |ed|20) fc | bl |5b|6a|ch|be |39 4a| 4c | 58 ) cf
60 | dO | ef | aa | fb | 43 ) 4d | 33| 85| 45| f9 2 7f | 50| 3¢ | of | a8
JO) 51| a3 |40 &f |92 )9d |38 | f5 | bc|bo|da]|21)|10]| ff | f3]d2
80 fod | Oc |13 ) ec | SF |97 44|17 | 4| a7 |7e]|3d]|64]5d]|19]73
90 | 60 | 81 | 4f | dc | 22 | 2a | 90 | B8 | 46 | ee | b8 | 14 | de | 5e | Ob | db
a0l JeO | 32| 3a|0a|49) 6 | 24| 5c|c2 |d3ac|62]|]91]|95|ed] 79
bO | e7 | c8 |37 |6d |8 | d5 | 4e| a9 | 6c|S6]|fd |ea|65]7a)ae] 8
O ba|78)25] 2| 1c]ab|bd|cb|eB|dd]|74] 1f |4b]bd | 8b] 8a
do) 70| 3e|b5]|66| 48] 3 |fo |06l ]|35]57|bo|8 |cl]id] %e
eD el | f8 |98 | 11|69 ) d9 |8 |94 |9 | 1e |87 |ed| ce|55]| 28] df
fO )8 |a1|B89|0d| bf |e6 |42 | 68| 41|99 2d | Of | bO| 54 | bb | 16

Figure 2.3: Rijndael S-box Table

An example of the S-Box lookup is as follows. In the output matrix of Figure 2.2 we select
the hex in the first row and column, which is 19. So, we need the element from the S-Box
table in the 15t row and 9% column, which is d4. We will repeat this process for the rest 15
elements. The final matrix is shown in Figure 2.4

d4

el

b8

le

27

bf

b4

41

11

98

5d

52

dae

f1

e5

30

Figure 2.4: S-box lookup output
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2.2.3 ShiftRows

This operations shifts the positions of the bytes in the matrix. More specifically, the first
row remains intact, the second one rotates over 1 byte, the third over 2 bytes and the fourth
over 3.

d4d |e0 | b8 | 1le
bf | b4 | 41| 27
5d |52 11 (98
30 [ae | f1 |e5

Figure 2.5: ShiftRows Output

2.24 MixColumns

The mixing of the elements, which applies to the columns of the matrix is called
MixColumns. Each column is modulo multiplied in Rijndael’s Galois Field by a given matrix,
motivated by the so-called wide trail design strategy, which provides high resistance against
linear and differential cryptanalysis.

d4 | e0 [ b8 | 1e 02|03|01|01 04 [e0 | 48 | 28
bf | b4 |41 |27 01|02|03 |01 _ 66 [cb | f8 | 06
5d |52 (11|98 ® 01|01(02|03 - 81(19|d3 |26
30 |ae [f1 | e5 03|101|01 |02 e5 (9% |7a|4c

Figure 2.6: MixColumns Operation

2.3 Key Schedule

Key Schedule [16] or Key Expansion is the procedure which generates the keys for each
round (round keys). In the first step the key is expanded, and the round keys are extracted
from it. The result of the key expansion has a size of 11 x 128 bits. Hence, all the necessary
keys are generated for the corresponding 11 AddRoundKey operations. We define:
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N as the length of the key in 32-bit words. (Equals to 4 for AES-128)

Ko, K1, ..., Kn-1 as the 32-bit words of the original key.

R as the number of rounds needed. (Equals to 11 for AES-128)

Wo, W3, ..., Wag.1 as the 32-bit words of the expanded key.

RotWord() as a one-byte left circular shift

SubWord() as a function of S-box lookup for every byte of the word.
Then, for i=0 ... 4R-1:

( K; ) ifi <N
W:iWiN (a5 SubWord(RotWord(Wi_l)) @D rconi/Nf if i =Nandi=0(modN)
' W;_y @ SubWord(W;_,) ifi >N,N>6,andi =4 (mod N)
Wi_y D W,_; otherwise.
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3 Cryptographic Devices

Cryptographic devices are electronic devices which implement cryptographic algorithms
and use a secret key, usually stored in non-volatile memory. Although most of us imagine
computers to be the most common case that is far from the truth. Smart cards,
Microcontrollers and hardware tokens are increasingly and widely adopted.

In order to evaluate the security and reliability of a cryptographic devices we should
make assumptions about the knowledge an attacker can have. In this case the safest
approach is to apply Kerckhoff’s principle. In other words, the attacker knows everything
about the device and how the cryptographic algorithm works.

3.1 Components

Cryptographic devices are consisted of various components, each one having its own
roles and functionalities. Essentially, we can divide them into two groups. The first one deals
with the cryptographic operations, e.g. a digital circuit which performs the encryptions. The
second group includes the components which handle the data during the encryption, e.g.
non-volatile memory which holds the encryption key. The most typical components of
cryptographic devices are:

e Dedicated Cryptographic Hardware: A single component includes all the hardware
and is exclusively used for performing the cryptographic operations, e.g. an AES encryption
chip.

e General-Purpose Hardware: This component consists of all general-purpose
hardware which are used to perform the encryptions/decryptions, e.g. a microcontroller
programmed to implement AES.

e Cryptographic Software: Includes any type of software that implements a
cryptographic algorithm, e.g. Tiny AES [17], which is an AES implementation in C.

e Memory: Volatile and not. This component stores the data required by the algorithm,
e.g. the cryptographic keys or the intermediate values during an encryption.

e Interface: It's purpose is to transfer data from and to a cryptographic device, e.g. a
serial connection which feeds the device with plaintexts, in order for them to be encrypted.

3.2 Power Consumption

All digital circuits and their components consume power whenever calculations or
operations are performed. Using their power supply to draw current, they transform this
electric energy into heat. We distinguish this consumption into two types, Static and
Dynamic.
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The static power consumption (Pstat) includes the power consumptions of the individual
components, when the device is idle, meaning that no operation is performed. Generally
speaking, the static power consumption is very low.

The dynamic power consumption (Pgyn) occurs when a logic cell is flipped (from 0 -> 1 or
1 ->0). Since the above transitions are data and operation dependent, we can conclude that
Payn is also data/operation dependent. Stated the above, we easily understand that:

Ptotal = Pstat + den (3-1)

Moreover, since Pstatis very low, the dominant factor of Piotal, is Payn. Likewise, the total
power consumption is data/operation dependent. This constitutes the basic principle of
every power analysis attack.

3.3 Power Models & Simulations

In power analysis attacks it is necessary to map the data values being processed with
their corresponding power consumption values. However, in order to correlate these values
between them, there is no need of knowing the absolute values of the power consumption.
Instead, only relative values are being acquired and used. Although, we mentioned earlier
that Kerckhoff’s principle is applied, the attackers usually have limited information about the
attacked device. From their point of view, it is easier to overcome this lack of knowledge by
using a power model, compared to studying and analyzing the device’s characteristics, which
may often require expensive equipment and advanced electronic engineering experience. To
our knowledge, the two most widely adopted and used power models are the Hamming
Distance and the Hamming Weight.

3.3.1 Hamming Distance

The basic idea behind this model is to count the number of transitions that occur in a
digital circuit, given a specific time frame. This way, the number can approach the relative
power consumption of the device for this fragment of time. Hence, by splitting the execution
time of the algorithm to small time chunks, a kind of power trace can be created. Of course,
this power trace will not contain actual power measurements, but just the number or
transitions.

It is important to note that when the Hamming Distance (HD) power model is applied,
the following assumption are made:
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e Both types of transitions (0 -> 1 and 1 -> 0) contribute equally to the power
consumption.

e Absence of transitions (0 -> 0 and 1 -> 1) also contribute equally.
e The static power consumption of the cells is not being taken into consideration.

Due to its simplicity, this power model is often used for power simulations. These
simulations provide a rough estimation of the power consumption, and it can be calculated
relatively quickly.

3.3.2 Hamming Weight

This power model is even simpler than the HD model and is used if the attacker has no
information about the device or the preceding and succeeding values of the bus. This power
model is accurate when buses of memory elements are pre-charged before writing the new
values to them. So, the Hamming Weight (HW) assumes that the power consumption is
proportional to the number of bits, in a processed value, which are set to 1. This way, both
the data values being processed before and after are completely ignored.

3.3.3 Comparison

Summarizing the above, we can see that HD and HW models are connected. A universally
applicable relationship between them is:

HD(uy,up) = HW (uy @ up) (3.2)

Nonetheless, in order to compare in detail the two power models and draw conclusions
about their use cases, we need to take a look into some concrete scenarios. For these
scenarios we assume that the attacked device first processes us, then uz and last us . The goal
is to simulate the power consumption of u,, without knowing the other two values. It is
obvious that two transitions take place (u1 -> uz and u; -> usz). We will deal only with the first
one, for the sake of simplicity, as the same principles apply for the second transition.

e Bits of us are equal and constant: The bus processes a n-bit value with all bits of u;
being constantly 0. In this case HD equals to HW, as HD(u1, uz) = HW (u1 @ uz) = HW(uz). In
case all bits are set to 1, HD(u1, uz) = HW (u: @ uz) = n - HW(u;). Since we are using these
models for a power analysis attack, it doesn’t matter if the simulated power consumption is
proportional or inversely proportional. It is important that, in this case, the HW and HD
models are equivalent.
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e Bits of u; are constant: The value u; has all its bits constant, but not set to the same
value, hence it is not known by the attacker. If we just consider one bit, then the HW and HD
are equivalent, just as described in the previous case. If more bits are taken in mind, then the
HW model does not describe the uz->u>transition very well. However, the more equal bits
uz has, the better the approach of the HW power estimation is.

e Bits of u; are uniformly distributed and independent of uz: This is the worst-case
scenario for an attacker trying to apply the HW. Since the bits of u; are random and
independent of uy, HW(u;) is also independent of HW (u; @ uz). So, HW and HD in this
scenario are unrelated.

It is important to mention that although the HD model assumes that both transitions
contribute equally to the power consumption, this is not completely accurate. It is shown [1]
that a 0 -> 1 transition can lead to a bigger consumption, compared to a 1 -> 0. This means
that values with bigger hamming weight lead to bigger power drain. Likewise, HW is, up to a
degree, related to the actual power consumption. However, this relationship becomes
weaker the more bits of the preceding value are set to 1. Therefore, in a “black box”
environment, an attacker should prefer the HD model over the HW, when this is possible.
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Power analysis attacks are a form of side channel attacks. They rely on studying the

4 Power Analysis Attacks
power consumption of a cryptographic hardware device. As we explained earlier, the
physical imperfections of the devices cause a data/power dependency. By observing how the

voltage drops or rises during encryptions, an adversary can extract information which,

ultimately, lead to the recovery of the key being used by the encryption algorithm.
Typically, the equipment required to mount such attacks includes an oscilloscope, in
order to record the power trace(s), optionally an EM probe if we also need to collect EM
traces and a computer to communicate with the cryptographic device. Additionally, this
computer will run the software which will mount the attack on the recorded power or EM
traces.
Based on the individual situation an adversary is (time availability, device characteristics,
computing resources, cryptographic algorithm, etc), different approaches of power analysis

attacks can be applied.

4.1 Simple Power Analysis
Simple Power Analysis (SPA), as described by Kocher et al. [18], is “a technique that
consumption measurements collected during

involves directly interpreting power

cryptographic operations”. In other words, an attacker attempts to extract the key directly
from a very small set of given power traces. In the most extreme case, only one power trace
is available. We can realize that this can be quite challenging, as in-depth knowledge about

the cryptographic algorithm, the device and its instructions are required.
First, a visual inspection of the given power trace(s) should take place. Knowing that, in
the AES case, 9 identical rounds (as in the 10t round the MixColumns operation is omitted)

are executed (Figure 4.1) [19], we isolate the part of the trace which corresponds to of one
of them, e.g. the 1%t. This part includes all the 16 bytes of the data and the key being

processed.
0.621

0.615 +
0 2000 4000 6000 8000 10000 12000 14000 16000
time
Figure 4.1: Visual Inspection of AES Rounds
21
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Afterwards, we use an identical device we possess and fully control. By feeding this
device with multiple plaintexts and keys, we record a large number of power traces. More
specifically, we encrypt all possible values of d; (if it is unknown) with all possible values of
the k;, and record the power traces. Each combination of these values is called template.

Last, we isolate the parts of the power traces that correspond to the same AES round as
the initial one and we use statistical methods to calculate their probability. This probability
measures how well a template fits with the given trace. Therefore, the highest value
corresponds to the better fitting template and, ultimately, to the key byte which was used.
Since the algorithm executes the same operations consecutively to all the bytes of the data
and the key, by using the same power traces all 16 bytes of the key can be extracted.

4.2 Differential Power Analysis

Differential Power Analysis (DPA) attacks are the most popular type of attacks. This is
due to the fact that no detailed knowledge about the device is required. In fact, it is enough
to only study the cryptographic algorithm being executed. However, a large amount of power
traces is often necessary, especially in a noisy environment, in order for a DPA attack to be
successful.

Another important difference between SPA and DPA is that the latter relies on the data
dependency of power traces, whereas SPA focuses solely on the time axis in order to find
patterns.

A typical DPA attack consists of five steps:

o Step 1 — Choose an Intermediate Value of the Algorithm: After studying how the
cryptographic algorithm works, we choose an intermediate value v (which should be the
output of a known function f(d,k), where d is a known value (e.g. plaintext) and k is the key.

o Step 2 — Measure the Power Consumption: We measure the power consumption of
the device while it encrypts (or decrypts) D different plaintexts. For each of these encryptions
the attacker should know the plaintext involved. So, we have a vector d = (d,..., dp), where
didenotes the data of the it" encryption. The corresponding vector of the power traces is ti=
(tis,..., ti7), where T denotes the length of a trace. We will refer to it as datapoints. Since we
run D encryptions, the traces synthesize a matrix T, sized D x T.

e Step 3 — Generate Hypothetical Intermediate Values: We calculate all hypothetical
intermediate values for all possible choices of k. Knowing that all the operations of AES are
executed on the byte level, the possible values for one byte of the key are 28 = 256. These
values are stored in a vector k = (ks,...,k256), which we will call key hypotheses. By applying the
known function f(d, k) to the 1% bytes of the D matrix, for all k, we create a matrix V, with a
size of D x K. It should be clear by now that one of the 256 columns of V corresponds to the
correct key and the calculation of f, that actually took place in the device.
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e Step 4 — Map Hypothetical Intermediate Values to Power Consumption Values:
Using one of the two power models described in the previous chapter, we create a matrix H,
containing the hypothetical power consumption values, for every element of V. Therefore,
the size of H equals to V’s.

e Step 5 - Compare Hypothetical Power Consumptions with Power Traces: In this final
step, each column of H is compared, using statistical analysis methods, with each column of
T. This means that we compare the hypothetical power consumptions with the actual
consumption, which is imprinted on the power traces. We will store the result in the matrix
R, sized K x T. Each element r;; contains the comparison results between the column h; and
t;, from matrices H and T, respectively.

At this point, it is important to note that the power traces need to be aligned in order
for a DPA to be mounted successfully. Each column t;j of the matrix T must correspond to the
same algorithm operation. In a “white-box” or security evaluation environment this can be
achieved by setting triggers to the oscilloscope, so in every run the traces start and finish at
the same operations. If this is not possible, the traces need to be manually aligned, by
inspecting and setting one as a “guide” and adjusting the rest of them to match the guide.

Lastly, we denote as ct the position of the power traces where the power consumption
depends on the intermediate value vc. Consequently, the columns hec and te are strongly
related, leading to the highest value of the matrix R. We can see the steps 3-5 in Figure 4.2
[1]. Since this value corresponds to an index (from 1-256), the targeted byte of the 16-byte
key is retrieved.

4.3 Correlation Power Analysis

The Correlation Power Analysis (CPA) attacks are, actually, very similar to DPA attacks.
In fact, the first 4 steps are identical. Even in the last step of a DPA attack we create the same
matrices. The only difference lies in the statistical method being used. We utilize the
Pearson’s Correlation Coefficient (p) [20], to determine the linear relationship between the
columns as:

_ YL (xi=%) (yi—)
p =
\/z{‘zl(xz—@z J2?=1<yi—y)2

(4.1)

In this equation n denotes the number of plaintexts (D), X and y the mean values of h;and t;,
respectively (i ranges from 1,...,256 and j from 1,...,T). As stated in [21], -1 < p < 1. Value of
-1 declares perfectly negative linear correlation, 1 shows perfectly positive linear correlation
and 0 stands for no relationship between the two compared variables X and Y.
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Figure 4.2: Steps 3-5 of a typical DPA attack
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5 1%t Order DPA Attack

In the previous chapter we explained how a DPA or CPA attack can be mounted. As a
proof of concept, a 1°t Order CPA attack on a microcontroller running AES will be executed.
Before diving into the technical part of this experiment, we will explain what “Order of an
Attack” means.

In section 4.2 we chose an intermediate value to attack (the output of a function f(d,k)).
Since we are considering only one value, this is referred as a 1%t Order Attack. Higher Order
attacks will be described and explained in the next chapter. For now, it is enough to say that
by increasing the number of intermediate values we target, we also raise the order of the
attack.

5.1 Equipment

To mount this attack we will use an STM32 F103RB to perform the encryptions, a digital
oscilloscope and a ChipWisperer CW503 probe power supply, in order to record the power
traces. The computer which will communicate with the microcontroller and execute the
attack hosts an Intel Xeon X5670 with 24GB of DDR3 RAM and is also equipped with an Nvidia
GTX1060 6GB GDDR5 GPU.

Processor Type ARM® 32-bit Cortex®-M3

Clock Frequency Up to 72 MHz

Internal Memory 128Kb Flash Memory
20Kb of SRAM

Supply Voltage 5 volts

Communication Interface | USB to Serial (ST-Link)

Figure 5.1: STM32F103RB Microcontroller Table 5.2: Basic Properties of the Attacked Device
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5.2 Setup

Given the hardware we will use, its setup is organized as follows. STM32 is connected to
a power supply, providing stable voltage. A cable is connected from the trigger pin (as
explained in Section 5.2.1) to the input channel No.1 of the oscilloscope. Moreover, a USB
connection between the oscilloscope and the computer is made, in order for the traces to
be recorded and stored in the computer’s hard disk.

In Figure 5.3 we see the schematics of STM32 and we point in red where a known value
resistor (e.g. 1ohm) should be connected. We connect one alligator clip from the CW503’s
probe on each side of the resistor, so the voltage can be measured. One extra cable
implements the connection between the CW503 and the input channel No.2 of the
oscilloscope. Lastly, one mini-USB cable is connected from the ST-Link interface on STM32 to
the computer. This connection will implement the serial bus over which the plaintexts and
ciphertexts will be transferred.

Morpho connector
CN7

PC10 I 2 PC11 +5V +3V3
PCI2 3 4 PD2 /PB11
Bl s g
VPP 556610 o 6 | 25V N6 S
PF6 s i B
w19 10 41 |0
112 = 2 |E
Al3 13 14 | NRST 316
- 1 15 16 : a9
| e 17 18 Sl
' 2 '
||| PB7 L1 1 |”’E o8
PCI3 23 24 8 |
~—~SB49Default: open_| 55 3¢
~~SB48Defautt:open | 57 g | VIN Header 8X1_Fem
~—SB55 2 30 CN8
~—SB54 Al A0 AO
31 32 o
} 33 34 I AL AT 2 |8
" PC2 35 36 PA4 A2 3 83
PC3 37 38 I B0 A3 4 |ES
= 1 g Ad s |§<
Header 19X2 A | _ T 6 1O
Header 6X1_Fem
PCl SB56.—~_ | SBS2 PBS
PCO SBSI.—. SB46.—~ PBY

Figure 5.3: Resistor Placement on STM32

5.3 Software

The required software can be divided into two parts. The first one includes the code
running in the microcontroller and is written in C language. On the computer side, we will
use the MATLAB environment to write the necessary scripts. The reason MATLAB was chosen
is because it makes relatively simple to work with matrices and copes perfectly with the
microcontroller and the oscilloscope.
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5.3.1 Microcontroller

Our microcontroller will run the Tiny AES Project [17], which is an AES implementation,
written in C. We will modify it with System Workbench for STM32 [22] and add a few lines of
code, which will implement the following:

1. The device will wait for plaintexts. When a plaintext is received via the serial
port (from MATLAB) it will be encrypted using a predefined key, stored in the non-volatile
memory. The ciphertext will be sent through the serial port (to MATLAB), and the device will
wait again, for the next plaintext.

2. We will define a pin as a trigger to the oscilloscope. Afterwards, the trigger is
set to start and stop just before and after the S-Box lookup, during the first round of AES.
This will be our attack point. Moreover, the traces do not need alignment, as we use the
oscilloscope’s trigger to synchronize the signals.

The reason behind choosing this exact operation is because it meets the criteria
described in the first step of Section 4.2. As we also explained in Section 2.2, the S-Box
function is a known operation, which consists of a publicly available table lookup.

5.3.2 Computer

As we mentioned above, we will use MATLAB. The computer plays a double role in this
attack. More specifically:

e Ourfirst script will generate a random and fixed size (16 bytes) plaintext and
transmit it to STM32. When the ciphertext is received, both the plaintext
and ciphertext will be recorded, along with the power trace. Afterwards, the
next plaintext will be generated and sent. This procedure will be repeated
for 1.000 times.

e The second script will execute the attack. This script follows all the principles
and steps mentioned in the previous chapter and was provided by the
University’s Lab.

5.4 Power Traces

The collected 1.000 power traces are stored in the matrix T, sized 1.000 x 2.000. The
2.000 corresponds to the number of datapoints (or columns) of a single trace. We set the
oscilloscope sampling rate low, so we don’t get a lot of information to process, as the
correlation calculation can be quite resource demanding.
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5.5 Mounting the Attack

The attack will be executed to the 1 byte of the key and plaintexts. Using the same
power traces and exactly the same procedure, all 16 bytes of the key can be recovered. Since
we have chosen already the intermediate value to attack, we will calculate all the possible
outputs of S-Box (hypothetical intermediate values) for each plaintext. So, for i = 1,...,2000
and j=1,...,256 we will generate the matrix V (1000 x 256) as:

We denote d; as the 1%t byte of the i plaintext and k; as the 1% byte of the hypothetic
key. The reason we are using the XOR operator and the S-Box lookup is due to AES’ structure,
and more specifically, its AddRoundKey and SubBytes functions.

Thereafter, we will map the matrix V to hypothetical power consumption values. We
chose to use the Hamming-Weight (HW) model, for the sake of its simplicity. In order to save
execution time, we will store all the matrices into the GPU and use its cores for all the
calculations. We have also generated a matrix, containing all the hamming-weight numbers
for all 256 possible byte values. This way, the power model calculations will not take place
on-the-fly. On the contrary, the mapping will be executed as a simple table lookup, using the
precomputed HW matrix. Lastly, we will use MATLAB’s built-in function to compute the
correlations for all hypothetical key values.

5.6 Results

The execution time was 0,86 seconds for the calculations and another 1,32 seconds for
plotting the correlation results. During the attack, RAM usage rose by 400 MB and GPU RAM
by 600 MB. As we can see in Figure 5.4a, the higher correlation value is 0,473 and
corresponds to index 93. Due to MATLAB’s indices starting at 1 instead of 0, we conclude
that the correct key index is decimal 92 (which corresponds to the backslash character “\”
on the ASCII table) [23].

In Figure 5.4b we see with grey all the hypothetic keys but the real, which is colored in
blue. Although we run 1.000 encryptions, we can see that the correlation was over 0,5 after
the first 100 traces. Thus, we broke AES with less than 100 traces.

Side Channel Attacks and Countermeasures — Analysis of Secure Implementations 28



MSc Thesis Paschalis Kyranoudis

051
X 93
U4 Y 0.473712
03t
02}

Correlation
Correlation

0.3
04r
0.5 : : 7 Z z g
0 50 100 150 200 250 300
Key Hypotheses Number of traces (x100)
Figure 5.4a: Correlation — Key Hypotheses Plot Figure 5.4b: Correlation — Number of Traces Plot

Side Channel Attacks and Countermeasures — Analysis of Secure Implementations 29



MSc Thesis Paschalis Kyranoudis

6 Masking

As we showed in the previous chapter, unprotected devices running cryptographic
algorithms can be easily exploited and have their keys retrieved. In order to reduce, or even
eliminate, these cases various methods have been proposed and applied. The goal of all
these countermeasures is to make the power consumption of the cryptographic devices
independent of the intermediate values of the algorithm.

Masking accomplishes this by randomizing the values that are processed. A great
advantage of this technique is that it can implemented at the software level, without the
need of modifying the device’s physical characteristics.

6.1 Description

In a masked implementation, each protected intermediate value is concealed by a mask
m. This mask has a random value, is generated by the device itself and changes in every
execution. Hence, the attacker cannot know or predict the masks. We denote as un the value
u concealed by the random mask m:

Uy, =U*M (6.1)

The operation = varies according to the chosen masking implementation. As we will
explain later in this chapter, it is most often exclusive-or (@), modular addition (+) or
modular multiplication (x).

It is important that once an intermediate value is masked, it should stay masked all the
time. To achieve it, the cryptographic algorithm should be adapted to apply and keep track
of all the masks. Once the encryption ends, the masks should be removed in order to obtain
the correct ciphertext.

As it is easily understandable, this masking and unmasking procedures adds some
overhead, due to the additional computations needed. In order to keep the performance at
an acceptable level, the number of masks applied should be chosen carefully.

6.2 Types of Masking

There are two major types of masking: Boolean and Arithmetic. In the first one, the
intermediate value is concealed by XOR-ing the value with the mask, on the bit level. In this
case we have:

Up,=u@Pm (6.2)
On the other hand, in arithmetic masking we use either modular addition or
multiplication. The modulo is defined by the cryptographic algorithm. However, there are
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cases where both types of masking are required. This originates from the nature of the
algorithm, which is based on both boolean and arithmetic operations. Studies have shown
[24],[25] that this arises problems, because switching between different types of masking
usually requires a significant amount of additional calculations.

In this thesis we will focus solely on boolean masking, and more specifically on an AES
masking implementation, which will be analyzed later in this chapter.

6.3 Shares

As we explained before, in the case of boolean masking, a masked value um =u @ m. In
order to remove the mask and retrieve the initial value, um and m must be given. In other
words, this intermediate value u is represented by two shares (um, m). Knowing only one of
them, gives no information about u. Hence, masking is defined as a secret-sharing scheme
that uses two shares.

Applying more than one mask on the same intermediate value, and keeping track of all
the masks and shares involved, increases the cost of the implementation. Such an approach
requires more memory to store the shares and more computing time, in order to compute
them. Thus, in practice masking schemes are most often using just two shares.

6.4 Security

The reason why DPA attacks are effective is because at some point, during the execution
time of the algorithm, the power consumption of the device depends on an intermediate
value which is processed. Masking removes this dependency by altering these intermediate
values with the use of masks. Hence, the actual processed value cannot be guessed by the
attacker, as the mask is unknown to him.

In order for masking to achieve its goal, the masks should be chosen carefully. The theory
is that if umis independent of u, then the power consumption of um, is also independent of
u. We can conclude that if each intermediate value um is pairwise independent of u and m,
then masking provides resistance against 15t Order DPA attacks.

In typical masking implementations, each masked value induces a distribution which
does not depend (statistically) on the unmasked value. Likewise, the distribution of u @ m,
is always the same, regardless the value of u.

It is shown in [26] that, in case of several different masks applied for each protected
intermediate value, resistance against Higher Order DPA is achieved. More specifically, n
masks can prevent up to a n'” Order Attack.
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6.5 AES Masking

In this section we will present a software masked AES implementation, as proposed in
[1]. This scheme uses exclusively boolean masking and it is tailored to AES structure, as
analyzed in Chapter 2. Some of the masks are applied to the state (plaintext) and some others
on the first round key. Hence, the whole key schedule operation is masked, as well. Regarding
the other operations:

e AddRoundKey: This operation XOR-es the state with the key. Since the key is
masked, this mask is also applied to the state: d @ (k @ m) =(d & k) & m.

e SubBytes: Constitutes the only non-linear operation of AES. As it is a table lookup,
we will generate a masked S-Box table.

o ShiftRows: This operation moves the bytes of the state. Because at this point the
state is already masked, there is no need to apply further masks.

e MixColumns: This operation requires more attention, because it mixes the bytes
from different rows of a column. Thus, it requires at least 2 masks and we need to
make sure, at the same time, that all intermediate values stay masked. On the
other hand, it is preferred to mask each row with a different mask. This way, the
same masks are used in every round and the output masks are also the same.
Hence, we keep the number of different masks used low.

Now, we will put all the pieces of the puzzle together. We will use 10 different masks.
The first 2 masks m and m’ are the input and output masks of the SubBytes operation.
Afterwards we will generate a masked S-Box table, denoted as Sm, such that Sm(x @ m) = 5(x)
& m’. The next 4 masks (m1, mz, m3, ms) are the input masks of MixColumns operation. The
last 4 masks (m1’, m2’, ms’, m4’) are the output masks of MixColumns and they are deriving
from the previous four, by applying a masked S-Box lookup.

A masked AES rounds works as follows. At the beginning of each round the plaintext is
masked with m:’, m,’, ms’, m4’. The round key is masked with m:"é@@ m, my’é@@ m, ms’@@ m
and m4s’@ m. The AddRoundKey operation changes the masks of the state to m. This happens
because m’@ mi/’@ m =m (i = 1,2,3,4). Next, the SubBytes operation, using the masked S-
Box, changes the masks to m’, as Sm(x @ m) = S(x) @ m’. ShiftRows has no effect on the
masks, as mentioned before. At this point we will apply the Remasking, meaning that the
masks of the state will change from m’to mi for each row, with i declaring the number of the
row. Lastly, the MixColumns operation will change these masks from mito m/’.

We can observe that, in the end of the round we described, the state’s masks are exactly
the same as in the beginning of this round. This way, we can apply this masking scheme as
many times as required by AES. In the last encryption round, where MixColumns is omitted,
the last AddRoundKey operation will remove the masks and we will have the unmasked
ciphertext. A schematic of the described procedure and the masks applied in each step can
be seen in Figure 6.1.
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Figure 6.1: AES Masking Scheme
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7 Attacks on Masking

Higher order attacks exploit the combined leakage of several intermediate values that
are being processed by the cryptographic algorithm. As we mentioned in the previous
chapter, typical masking schemes reuse the same masks, with one mask being applied each
time. Even today, in implementations where efficiency (speed, memory, low power
consumption) is needed, this type of masking is preferred. Although, additional
countermeasures against DPA attacks may be applied, when it comes to masking, it is
sufficient to concentrate on 2" Order Attacks, which exploit the joint leakage of two
intermediate values. These values can be either two values concealed by the same mask, or
a masked value and its corresponding mask.

In the previous chapter we explained what the masking countermeasure is and how it
can be applied in AES. In this chapter we will describe the principles and the theory behind
2" Order Attacks.

7.1 Description

Second-Order DPA attacks exploit the joint leakage of two intermediate values.
Generally speaking, this leakage cannot be exploited directly, because it takes place in
different operations of the algorithm. Hence, the targeted 2 values are being processed at
different times. In this case, it is necessary to preprocess the power traces in order to locate
the power consumption values which depend on both intermediate values. Afterwards, we
apply a 1°t Order attack on these preprocessed traces. More specifically, in the 15 step of a
2"d Order DPA attack we choose two intermediate values, concealed by the same mask, let
them be u and v. Because they are masked, these values occur in the device as um and vp. In
the next step, we record the power traces the same way as if it were a 1% order attack. In
step 3 we will do the traces’ preprocessing. The result of this step is a preprocessed trace,
denoted as t. The matrix which will contain the preprocessed traces for all D plaintexts is
denoted as 7. Step 4 includes the calculation of hypothetical values, which are a combination
of u and v: w = comb(u,v). Since the attack will be mounted on a boolean masking scheme,
this comb function will be just the XOR operation:

W=u€9m=(um@m)@(vm@m)=(um@17m)€9m€9m= um@”m (7.1)

In the above equation we showed how we are able to calculate the hypothetical values
of the masked values, without the need to know the masks. In the next step we map w to
hypothetical power consumption h. Last, in step 6 we compare the hypothetical power
consumptions with the preprocessed traces. Consequently, we need to find a preprocessing
function which maximizes the correlation equation:

p[HW (u @ v),T] (7.2)
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7.2 Preprocessing Function

In order to select the appropriate preprocessing function, we need to take into
consideration that for the correct key hypothesis kc« the above equation is maximized at
some point f. This point results from two datapoints in the initial, unprocessed, trace. These
instantaneous and exploitable power consumptions occur when each of the two
intermediate values are processed.

In an ideal scenario we would compare the hamming weights of the hypothetical
consumptions with the hamming weight of the actual computations. Unfortunately, this is
not possible because we do not know the actual values being processed. However, applying
some operations between hamming weights for hypothetical values gives us indications
about the preprocessing’s theoretical performance. This is justified, because hamming
weights are, up to a degree, related with the actual power consumption (See also Section
3.3.3).

Various types of preprocessing functions have been proposed in the scientific literature.
In [26], Chari et al. introduce pre(tyt,) = tx . t,, whereas in [27] the author presents the
absolute value of the difference of the two points: pre(tyt,) = | t« - t, |. In Table 7.1 we
compare the reliability of several proposed preprocessing functions for a Single-bit scenario.
For both values of a bit (0,1) we calculate the HW(u @ v). The next 5 lines include the
preprocessed function being evaluated, based on the value of p. We can see that the
absolute difference performs the best, with p=1.

Value Correlation

Um 0|0 |11

Vm o|1|0/|1

HW(u @ v) oj1]1]o0

HW(um) . HW(vr) o|o|o|1|p=-0.57
|[HW(um) - HW(vm) | o|1|1|0|p=1
(HW(um) + HW(vnm))? 0|1|1|4|p=-0.33
HW(um) + HW(vy) o|1|1|2|p=0
HW(um) - HW(vp) o|-1|1|0|p=0

Table 7.1: Single Bit Correlation Performance

Likewise, a Multiple-Bit scenario is evaluated in Table 7.2. The performance drops as
more bits are added in the equation. Since AES operates on the byte level (8 bits), the
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maximum theoretical value for the correlation coefficient is 0.24, and is given, once again,

by the absolute difference function.

Number of bits of u, and v,

1 2 4 8
HW(um) . HW(vr) -0.58 | 032 | -0.17 | 0.09
|HW(um) - HW(vp) | 1.00 | 053 034 | 0.24
(HW(um) + HW(vp))? 033 | -0.16 | 0.08 | -0.04
HW(um) + HW(vpm) 0.00 0.00 0.00 0.00
HW(um) - HW(vn) 0.00 0.00 0.00 0.00

Table 7.2: Multiple Bit Correlation Performance
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8 2"YOrder Attack

In this chapter we will attempt to mount a 2" Order Attack against a masked AES
implementation. This code will run on the same hardware (STM32 microcontroller) we
described in Section 5.1. Moreover, the setup will be exactly the same, as the way of
executing the attack is, up to the step of collecting the power traces, identical with the 1°
Order Attack.

8.1 Software

The software the microcontroller will run (Masked AES) is implemented by CENSUS, and
is publicly available at [28]. It uses the same principles and approaches described in this
thesis, and also in [1]. The two intermediate values we will target are the S-Box output of two
consecutive bytes during the first round of AES. They meet the criteria described in Section
7, as they are both values concealed by the same mask.

After inspecting the code and its iterations, we noticed that the state’s and the key’s
matrices are processed line by line. This means that after the 1t byte, the next being
processed is the 5™, instead of the 2"9. Hence, we target the 15t and 5™ bytes of the data and
the key. Additionally, in order to reduce the number of the traces, we will set the trigger of
the oscilloscope to start and stop exactly before and after the S-Box lookups. In Figure 8.1
we see a plot of the power consumption for 100 plaintexts. On x-axis we see the number of
datapoints (14.000) and on y-axis the relative power consumption. Intuitively, we conclude
that the two spikes are when the lookups take place.

0 2000 4000 6000 8000 10000 12000 14000

Figure 8.1: Power Consumption Plot for 100 plaintexts
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In order to preprocess the traces, with the absolute difference method, we need to take
all possible combinations of these datapoints. For 14.000 datapoints the possible
combinations are 14.000 * (13.999 / 2) = 97.993.000, corresponding to approximately 70GB
of RAM, for 100 traces. Hence, we need to compress the traces in order to reduce the
number of datapoints. In Figure 8.2 we compressed the traces and added the synchronized
trigger signal (on the top). This will give us indications about where the processing of the
intermediate values took place.

1000

Figure 8.2: Trigger and Consumption Signals

8.2 Incremental Processing

Even after compressing the number of datapoints by a factor of 6, the possible
combinations, for all the plaintexts needed by the attack, are forbidden for any conventional
computer system. We take into consideration that any further compressing may lead to the
absence of leakage points, as the compression (essentially, under-sampling) is lossy. Thus,
we will implement an incremental way of a 1%t Order Attack, as introduced in [4].

In detail, we need to decompose the built-in Pearson Correlation Coefficient function in
MATLAB and calculate the products and mean values in separate variables. It is known that
the Eg. (4.1) can be rewritten as:

N1 XiVi— Dieq Xi Lreq Vi
p(X,Y) = 1 2 1 1 2
\/n Z?:lxl'z_ (Z?=1xl') \/nz‘]'{lzl in_ (Z?:]_ yl)

(8.1)
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Consequently, in order to calculate p, we need to compute the following 5 values:

n n n n n
_ § _ E 2 _ § _ E 2 _ E
S1 = Xi, Sy = Xi S3 = Yi, Sy = Vi S5 = XiYi
] i=1 i=1 i=1

Once they are computed, Eg. (8.1) can be rewritten as:

(nss—s153)
) ) ) ) = 8.2
p(S1,52,53,54,Ss5) \/(nsz_s%)(nsrsg) (8.2)

The above products can be calculated in an incremental way. We will load batches of power
traces into RAM, computed these products, free the memory and load the next batch. The
only things we need to keep are these 5 variables. Essentially, there is no limit in the number
of the power traces we can use to mount the attack.

8.3 Security Evaluation

Before attempting a 2™ Order attack, it is crucial to determine if the masking
implementation we chose actually resists against a typical 1t Order CPA. Using the
incremental MATLAB script, we target just one intermediate value and we will perform the
attack. After 5.000.000 traces, the correct key remains hidden in the correlation charts.
Please note that all the attacks we conducted so far take place in the time domain, where
each datapoint represents a fragment of time.

The authors in [29] propose applying Fast Fourier Transformations (FFT) in CPA, in order
to improve the effectiveness of an attack. Thus, we applied this frequency-domain approach
in our attack script. The results can be seen in Figure 8.3a and 8.3b. After almost 3.000.000
traces the correct key stands out in the correlation plot. However, 3 million traces is an
extremely high number, hence we consider that the Masked AES resists a 15t Order CPA
attack successfully.
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8.4 Mounting the Attack

In a 15t Order attack the possible values of the key are 256. As we explained in the first
section of this chapter, when it comes to a 2" Order Attack, two intermediate values
(plaintext bytes) and two key bytes are targeted. This increases the number of possible key
values to 2562 = 65.536. These are the combination of keys we need to examine in order to
find the correct keys. Please note that our attack will reveal 2 bytes of the key, as the highest
correlation index will point to a matrix consisted of key combinations. The highest scoring
index will correspond to two bytes of the key.

In the computer system we are using, even with the compressed traces, the usage of
RAM stays out of bounds. Hence, we need to use some kind of windowing, as it has been
proposed in the scientific literature. This consists of splitting each unprocessed power trace
into small windows of, e.g. 50 datapoints. For a total of 2300 datapoints we will get 46
windows. All the possible combinations of these windows are 46 * (45 / 2) = 1035. However,
as the recorded and targeted operation of AES consists of two identical S-Box lookups, we
can safely assume that the power trace is symmetric to the middle of the trace. Hence, there
is no benefit into combining windows which belong to the same half of the trace. This will

2
reduce the number of combinations to 1035 — (42—6) = 506.

From each valid combination of the traces a preprocessed trace will be generated and
the attack will be mounted on it. The window of 50 traces was chosen, as the resulting batch
of 100 preprocessed traces fits into the 6GB of GPU RAM, and we will be able to mount the
attack more effectively. On the other hand, instead of this approach, we could apply
windowing on the key hypotheses matrix. This is a simpler implementation, as we split the
matrix of 65.536 keys into chunks of, so to say, 100 keys and mount attacks, for a fixed
number of traces (e.g. 10.000). Once each batch of keys is processed, we will move the
window to the next hundred of keys. However, we might mistakenly assume that 10.000 of
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traces are enough for the CPA to work. In case none of these windows reveals the key, we
need to start from the beginning and increase the number of traces.

Nonetheless, we are in a “white-box” environment, and our goal is to evaluate if our
masked AES implementation can be broken. Therefore, our key hypotheses matrix will
contain the correct combination of the 15t and 5% key bytes, and another 2 false
combinations. If our attack works, the points where the leakage is will be revealed.

As expected, the correct key combination stands out among the other two and we get
an indication about the datapoints where the leakage is. In Figure 8.4 we mark the two points
where the 2 leakages of the targeted intermediate values are.

X 600
Y 3.38

X770
Y338

| — 1 L L |
0 500 1000 1500 2000

Figure 8.4: The 2 Leakage Points

Now that we got an “educated guess” about the location of the leakage we can execute
the attack again using all possible 65.536 keys and target only the windows which contain
the leakage points.

8.5 Results

In our experiments we targeted 10, 5 and 2 datapoints from the preprocessed traces.
The execution time of the attack was 3’ 20”, 1’ 50” and 58”, respectively, for a total of 10.000
traces. In all 3 cases the key index was recovered successfully, even when using just 2
datapoints from the initial trace of 2300! In Table 8.5 we can see more detailed performance
results.
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Number of Datapoints Execution Time RAM GPU RAM Max. Correlation
2 58” 100MB 150MB 0.0877291
4 1’ and 50” 150MB 200MB 0.0877291
10 3’ and 20” 200MB 250MB 0.0877291

Table 8.5: 2nd Order Attack Performance

In Figures 8.6 the correct key (in blue) stands out after almost 5.500 traces, whereas in
Figure 8.7 we see the index of the recovered key (64558). This index corresponds to the 1
key byte decimal 252 (character “i) and 5™ key byte decimal 45 (character “-“)[23].
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Figure 8.7: Correlation — Key Hypotheses Plot
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9 Conclusions

In this thesis we focused on AES and its operations. We noticed that although it is a block
cipher algorithm and splits data into blocks of 16, 28 or 32 bytes (depending on the key
length), it processes these blocks byte after byte. Consequently, the instantaneous
consumption of a device running AES depends on single bytes.

By using power models, we were able to simulate hypothetical power consumptions for
all possible key values. Afterwards, we utilized the Pearson Correlation Coefficient (p) in
order to compare the hypothetical consumptions with the measured power traces. The
benefit using p, is that allows us to determine the relationship between two variables using
different metric system. Note that our hypothetical consumption is simulated with the HW
model. Hence, this matrix contains values from 0-8 (essentially, the HW counts the bits set
to 1in a byte). On the other hand, the power traces measure relative power consumption.

We showed that an unprotected AES implementation on an embedded device can be
broken relatively easy. In our case, just 100 traces were enough to reveal the key byte under
attack.

As a countermeasure, we explained what masking is, its types and how each one works.
In any case, the goal of masking is to remove the dependency between the plaintext byte
being processed and the power consumption. As a proof of concept, we mounted a 1% Order
CPA attacks against the masked AES.

During our attack, the secret key remained well hidden against our typical 1%t Order CPA,
even after using 10.000 power traces. So, we needed to add more traces to be certain. Since
our computed resources are limited, an incremental calculation of p was required, as
described in [4]. Thus, we added more power traces while being able, at the same time, to
keep the resources usage low. We recorder as many as 5.000.000 traces. Afterwards, we
applied the incremental attack using all available traces and the key was, once again, not
recovered. At this point, we concluded that masking actually does what it promises.

As we moved deeper into the CPA attacks, we explored 2" Order Attacks in the scientific
literature. The theory behind these attacks was explained and we attempted to mount one.
The results were positive, as the key was recovered after approximately 5.500 power traces.

However, what troubled us was the amount of computations needed for a 2" order
attack to succeed. As the key hypotheses are now 65.536, the resources required exceed the
memory capacity of a typical computer system. Hence, windowing needs to be applied, in
order to break down the attack into smaller, and more feasible, attacks on windowed traces.
Undoubtedly, this solves the memory capacity problem, but the execution time remains high.
Although, some approaches have been presented in literature, and we proposed our key-
windowing technique, we believe that it is still an issue that needs to be investigated, in order
to further improve efficiency in black-box environments, as well.
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