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ABSTRACT 

5G networks will support demanding services such as enhanced Mobile 
Broadband, Ultra-Reliable and Low Latency Communications and massive 
Machine-Type Communications, which will require data rates of tens of Gbps, 
latencies of few milliseconds and connection densities of millions of devices per 
square kilometer. In order all these above services to be reliable in 5G networks 
there is an increase in the interest in software solutions that will help to provide 
this reliability. Therefore, root cause analysis and performance diagnosis has 
been gaining popularity in order to find effective methods to provide reliability to 
the 5G services. These methods consist of two major aspects, prediction and 
localize faults and service degradations that will help network engineers to make 
fact-based decisions on how to improve the system or mitigate the possible 
faults. In this master thesis we implement a performance diagnostics platform 
which implements an algorithm based on adjacency lists to perform Root Cause 
Analysis (RCA).  
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Structure of Master Thesis 

 
We will start by making a reference to the various technologies that will use at 
the completion of this work so that the reader can understand and be able to get 
acquainted with them. Then we will describe the RCA algorithm and the topology 
of the experimental network and finally the analysis, study and presentation of 
various experimental measurements that will be implemented. 

 

 

 

1. Introduction 
 
Computer networks are becoming an essential part of everyday life. Networking 
systems can be viewed as a key-means for a wide range of services in critical 
domains including defence, transportation, manufacturing and healthcare. 

Meanwhile, impressive changes in the telecommunication industry have 
emerged thanks to significant evolution of technological science. Wireless and 
mobile communication technologies have developed massively leading to the 
ability to connect various wireless technologies, networks, and applications 
simultaneously. The most recent technology in this field is called 5G. The fifth 
generation wireless system (or 5G for short) is the newest generation of wireless 
communication systems. It is the next significant phase of mobile 
telecommunications standards following the current 4G. 5G moves beyond 
computer networks for mobile devices alone toward systems that connect 
various types of devices functioning at significantly higher speeds (Table 1). 

Similarly to previous cellular networks, 5G networks consist of cells divided into 
sectors and send data through radio waves. Each cell is connected to a network 
backbone through a wired/wireless connection. 5G may transmit data over the 
unlicensed frequencies that are now used for Wi-Fi. Upon application,  it is 
expected to be an efficient, smart network with unprecedented speed. The target 
mission of much anticipated 5G is to have by far higher speeds available, at 
larger capacity per sector, and at lower latency than 4G. Ιn order to optimize 
network efficiency, the cell is subdivided into micro and pico cells and thus, 5G 
will be a new mobile revolution as it promises to offer gigabit-per-second data 
rates whenever and wherever in the entire world [1].  
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Table 1: Basic comparison among 1G, 2G, 3G, 4G and 5G Technology 
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Additionally to the previously mentioned advantages, 5G is sufficiently capable 
to support both software and consultancy. It has increased data rate at the edge 
of the cell and more extensive coverage area. However, the transformation from 
4G to 5G is quite challenging due to various steps of transition that have to be 
fulfilled or tackled to fully realize the 5G vision. Thankfully the technologies that 
are being developed to enable 5G are expected to face successfully these 
challenges. However, there are also challenges considering the integration of 
this new technology to provide services in different application scenarios [2]. 

A necessary feature of such systems is their sustainability, which can be 
measured in terms of their ability to tolerate faults and maintain an acceptable 
performance in the presence of failures. 

In order to deal successfully with anomalies that often appear and are 
unavoidable in communication networks, timely detection, recognition and 
accurate classification of such errors is pivotal to providing high-level networking 
services with availability and reliability [3]. The diagnosis of network faults is a 
quite complex mission. Adequate knowledge of the network architecture and 
services are much required. This work is usually performed by 
telecommunication experts who search and analyze network logs to identify 
issues and determine their origins. Identifying the origin of an anomaly is a key 
step for efficient troubleshooting. Nevertheless, this process is far from simple. 
Two identical problems may result in multiple dysfunctions in different points of 
a network. As a result, experts have to identify these errors and point among 
them the one creating the issue. With the increased complexity of current 
networks, this procedure can no longer be executed by human experts, nor can 
it be deployed by a simple expert system implementing a set of hard coded rules. 

The development of an automatic solution for network anomaly detection is 
difficult due to two major aspects [4]: data handling and integration within the 
monitoring system. The first aspect is related to data preparation and 
processing. The metrics of the monitoring system can be either constant, 
periodic, or chaotic. Since our target here is to address the issue of anomaly 
detection in periodic data, the solution has to automatically recognize the types 
of the metrics and process only the periodic ones. Periodicity detection is quite 
challenging, especially in irregular metrics where the interval between different 
samples is not constant. This is always the case in real monitoring systems 
where the data measurements are controlled by queuing systems. Furthermore, 
the solution has to learn a short history of data as monitoring systems are 
designed to erase data in short periods. The solution has also to adapt to the 
natural growth of the traffic. This growth should be integrated into the model of 
data created by the solution in order to prevent it from being detected as an 
anomaly. Another challenging fact is the wide range of patterns of anomalies. 
The solution has to identify new anomaly patterns that were not predefined 
during the implementation. The second aspect concerns the integration of the 
solution in the monitoring system. The solution should be transparent and not 
interfere with any other monitoring process. As a result, it has to have limited 
computational and memory needs. The solution should not request any post 
implementation effort from experts. Consequently, all the steps of the process 
should be fully automatic. Finally, the solution has to provide accurate results 
which is not easily applicable with limited calculation resources. 
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As mentioned previously, to achieve efficient diagnosis, it is required to perform 
a deep analysis of the data logs and determine the root cause of issues. The 
automation of this process is challenging as both domain knowledge and 
analysis capabilities from experts are needed. The network architecture is 
required to diagnose network issues. However, to determine the issue a large 
effort prior to the installation of the solution is manually required. Moreover, this 
information has to be changed each time the architecture is modified. To surpass 
this difficulty, the architecture can be discovered automatically based on the 
data. However, the inference of such complicated structure may need a lot of 
calculations. The network architecture is not the only information that is needed. 
The structure of services provided by Internet Service Providers (ISPs) and web 
content providers is also required. Additionally, the analysis of communication 
logs to export information about existing issues is difficult in multiple aspects. 
The number of communication logs is vast, each having a large number of 
features. The features may be related. There is no dependency chart defining 
exactly and reliably the relations between different features. Another challenging 
point is the large heterogeneity of network issues. Some issues may be 
interrelated and thus even more difficult to be diagnosed automatically. The 
network issues do not have the same significance and thus a prioritization task 
must be integrated within the diagnosis process. 
Monitoring functions can be divided into three main categories: performance 
monitoring, troubleshooting, and planning. There are operators that use 
numerous different systems, each one implementing a part of the monitoring 
functions while others use a centralized monitoring system that contains and the 
three categories. Next, we explain in detail each category of the monitoring 
functions. Troubleshooting is the most significant function as operators want 
their services to be continuously available without any disruptions. The 
troubleshooting process can be divided into four main functions: 

 Data collection, issue detection, issue identification, and recovery. Data 
collection is responsible for collecting data that is relevant to the 
troubleshooting process by creating and collecting logs, generating 
reports, mirroring the traffic, recording events, and calculating metrics. 
Next, issue detection function is responsible for evaluating the several 
metrics from the previous step and analyzing logs in order to detect any 
anomalies that may occur. If a metric has an abnormal value or any 
anomaly is found in the logs, then the operator is notified. The 
notification the operator gets can have multiple forms such as raising an 
alarm or creating a ticket. The third function, issue identification consists 
in a deep analysis of the data to diagnose the network and identify the 
issue. Finally, the recovery function includes fixing the problem by 
triggering the adequate compensation and recovery mechanisms. The 
above four functions of the troubleshooting process can be manual, 
partially automated, or fully automated. 

 Performance monitoring is responsible for measuring Key Performance 
Indicators (KPIs) to gain insights regarding the network’s performance, 
benchmark network services and elements, and identify the low 
performing ones. Through performance monitoring, operators may 
improve the QoS and therefore the QoE. 
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 Planning and prediction are based on the monitoring of the various 
resources and processes. By analyzing KPI trends, operators can 
improve their services in different ways. As an example, they can 
anticipate events and prevent downtime. Furthermore, they can predict 
churn and propose more personalized subscriptions. Moreover, they 
can allocate resources more efficiently. 

To ensure network high performance, the monitoring system has to be effective. 
In order to succeed this effectiveness different requirements must be met. First, 
the monitoring system should be flexible to supervise multi-vendor and 
heterogeneous network equipment and infrastructure. Second, the monitoring 
system should scale to handle the growth of the traffic and the expansion of 
cellular networks. Third, the monitoring system should be adequate reactive to 
detect any issues that may occur and trigger mitigation operations in real time to 
limit downtime. In addition, it should perform an in-depth analysis of the network 
and go to fine granularity levels to find hidden issues. Fourth, the monitoring 
system should be autonomous where it is possible and reduce demanded 
human efforts. Routine tasks should be automated and more advanced tasks 
can be partially automated by the use of ML. The settings of the monitoring 
system should be straightforward. Also, it has to be compliant with the several 
telecommunication standards and market. The monitoring system should 
respect the standards by insuring the demanded QoS. It has also to respond to 
the marked needs  (e.g. integrating new functions to monitor new services). 
Furthermore, it should be fault tolerant and easy to troubleshoot. Finally, the 
monitoring system has to be cost-effective. As the network traffic is huge, the 
analysis implemented in the monitoring system should be optimized to reduce 
computational needs. The monitoring system should also store only needed data 
and for a limited period of time. 

While the monitoring systems continuously evolved, they are still not meet the 
requirements mentioned above in many aspects. First, the monitoring process 
still relies on the human presence. Many monitoring tasks today are still carried 
out manually. While monitoring systems generate KPIs and alarms, these latter 
are analyzed by experts when troubleshooting the network. This has as a result 
to make the troubleshooting task very costly for the operators. Second, the 
cellular networks still suffer from low efficiency occasionally (downtime) or 
continually in some specific cases such as roaming and mobility. The monitoring 
systems are not sufficiently reactive and efficient to address unavailable services 
in real time nor to handle roaming and handovers in an optimal way. Last, the 
5G standards have set high expectations in terms of QoS. The current 
monitoring systems are not capable of guaranteeing such performance. 

Troubleshooting issues related to network is becoming more and more mission 
critical every day. In order to successfully identify and solve defects that have an 
impact on service and lower Mean-Time-To-Resolution (MTTR), ITOps need to 
monitor a wide range of data and metrics, including data in real time. 

Troubleshooting network issues consists of many processes - from the initial 
understanding that something went wrong to the exact identification of the root 
of the problem. The better understanding of the correlation between network 
performance and the problem, the faster the issue can be resolved. 
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The development of a stable network requires to overcome a variety of 
challenges such as outages, poor performance, and security issues. However, 
root cause analysis capabilities may provide an answer to these concerns and 
offer network monitoring solutions.  

Root Cause Analysis (RCA) is undeniably a complex process. But in the past, 
when networks and IT infrastructure had a basic architecture, the identification 
of  a root cause was not that challenging. It was based either on the LAN or the 
WAN. 

Nowadays, this former simplicity has been replaced with ever greater 
complexity. Today, LANs are still available, but they often connect one server to 
many others that also connect resulting to feed wireless access points which are 
how end users access the network. 

Meanwhile, computing is now widely distributed. Applications can be found in-
house and in the cloud as well, while some of these may be hybrid so the 
processing is shared. Additionally the on-premises server is almost always 
virtualized currently, so this creates many servers out of one  and makes it even 
more difficult to find which VM is causing the issue. 

Additionally, today’s significant applications serve users in multiple departments 
and spanning various geographic locations around the globe. 

Based on the above, there is no doubt that diagnosis and Root Cause Analysis 
play a pivotal role in error management as it makes networks able to operate 
reliably by maintaining performance and availability. 
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2. Root Cause Analysis 
 
 
2.1 What is Root Cause Analysis 

 
Root cause analysis (RCA) is a systematic process for recognizing “root causes” 
of problems or events and an approach to resolve or deal with them. 

RCA is based on the fact that an efficient troubleshooting system should focus 
on identifying the reason and location of the problem rather than “putting out 
fires all day”. After determining the above, it goes further: RCA deals with the 
problem so that it never appears again. 

At first this method of troubleshooting was implemented in the field of 
aeronautical engineering, but currently it is applied in every industry, but with 
mostly and to a great extent in telecommunication networks. 

Root cause analysis (RCA) is pivotal to face and restrain any possible failures 
and errors in networks and systems and to minimize the downtime when it 
happens. It deals with the identification of the “roots” of errors and has an integral 
part in network management systems along with monitoring, prediction and 
reparation. 

 
2.2 Why is Root Cause Analysis necessary? 

 
The current business environment dictates that technology is the lifeblood of 
most operations. Consequently, it is essential for every business to have a 
reliable and efficient IT infrastructure. That means that it is much needed to have 
a well-maintained platform that is capable to act automatically and intelligently 
and quickly gather the required information to perform further testing and 
troubleshooting on your IT infrastructure. This is what is known as RCA. 

 

RCA has a wide range of advantages where the more significant are: 

 

 RCA focuses on the reason of the problem and not just the symptoms. It 
identifies and determines the factors that generated the problem or event.  

 The cost spent by catching problems early is significantly decreased by 
RCA.  

 Identifying the problem’s cause as early as possible permits the 
developers/technicians to maintain an agile environment and drive 
process improvement. 

 RCA shortens time to market: when you find the root of the defect in a 
timely manner and then you correct it quickly and efficiently, the product 
is released earlier in the market with less uncaught defects. 

 Despite the fact that performing RCA might present as time consuming, 
the opportunity to eliminate risks and root causes is without any doubt 
worthwhile. 
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Define the problem 

Gather Data 

Determine Root 
Cause 

Implement the 
solution 

Document Actions 
Taken 

Figure 1: Steps of RCA Process

In conclusion, the advantages of adopting the indicated RCA process to prevent 
defects are numerous since it significantly reduces development time and cost, 
increases customer satisfaction, decreased work repetition effort and thus, it  
decreases cost and improves the quality of the product. 

 

2.3 How to perform Root Cause Analysis 

 
The RCA process is usually divided into five major steps: 
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Let’s analyze the above steps: 

 

 Define the problem. When a problem or event appears, the first action you 
should take is to identify every part of it and try to isolate it. This will help 
contain the problem. 
 

 Gather data. When the problem is defined, gather all data and evidence 
associated with this specific event in order to understand and identify a 
possible cause. One significant difficulty in this process of data collecting is 
to decide the location from which you should start collecting. If the place from 
which you begin to collect the data is wrong, then you will fail to gather the 
required data to deal with the problem. On the other hand if you attempt to 
gather all the available data you may lose again the essential data within the 
noise that is created. Conclusively a good balance between the two methods 
is required so that the process runs efficiently.  

 
 Determine root cause. This is the true core and main target of root cause 

analysis. When the sequence of events leading to the appearance of an error 
have been identified they in turn can be utilized to identify the original root 
cause of the defect. 
 

 Implement the solution. Following the identification of the root cause, one 
or several solutions will likely be indicated. In some cases you may be able 
to apply the solution instantly, but in other cases extra work might be needed. 
Either way, RCA isn’t complete until you’ve applied the indicated solution. 
 

 Document actions taken. After you’ve determined and dealt with the root 
problem, the error must recorded and filed so that engineers can use it as a 
resource in the future. 
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3. Platform Architecture 
 
The platform is implemented using ContainerNet [5], the nodes of our virtual 
network  use Ubuntu 18.04 OS and bash scripts are used for the initialization of 
the platform and for implementing fault injections. The collection of the metrics 
is performed with ELK stack [6] and a kafka broker [7] is used for getting the 
metrics from the nodes. 

 

Our platform consists of the below four components 

 

 Network Configuration component: This component handles the 
configuration of the virtual testbed. Initialization and fault injections are 
performed using bash scripts. 
 

 Virtual Network component: This component handles the virtual 
network over which the performance diagnosis scenarios take place. It is 
implemented using ContainerNet, a version of Mininet that deploys 
docker containers instead of virtual hosts. 
 

 Monitoring component: This component handles the monitoring and 
indexing of the metrics. We use the ELK stack for this purpose. 
  

 Message Broker component: This component implements a message 
broker service using Apache Kafka where It collects the metrics. 

 
 Performance Diagnosis Component: This component will handle 

querying the collected metrics/KPIs and the execution of the RCA 
algorithm 
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3.1 Containernet 
 
Our platform is developed using a tool called Containernet. Containernet 
extends the Mininet emulation framework and allows us to use standard Docker 
containers as compute instances within the emulated 
network. Containernet allows adding and removing containers from the 
emulated network at runtime, which is not possible in Mininet. This concept 
allows us to use Containernet like cloud infrastructure in which we can start and 
stop compute instances (in form of containers) at any point in time. Another 
feature of Containernet is that it allows to change resource limitations, e.g., CPU 
time available for a single container, at runtime and not only once when a 
container is started, like in normal Docker setups.  

 

 

 

Figure 2: Platform Architecture
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3.2 Apache Kafka 
 
Apache Kafka [8] is developed by the Apache Software Foundation written in 
Scala and Java, it is an open source, stream processing platform with aim to 
provide a unified, high throughput, low-latency platform for handling real-time 
data feeds. 

Kafka is actually a store which gathers data or messages originated by one or 
many processes that are called producers. The information is then divided in 
different partitions within various Topic-categories. In each Topic’s partition the 
messages are categorized and gathered together with a timestamp. On the other 
end, other processes called Consumers can inquire messages from these 
partitions.  

Some popular use cases for Apache Kafka are 

 Messaging 
 Website Activity Tracking 
 Metrics 
 Log Aggregation 
 Stream Processing 
 Event Sourcing 
 Commit Log 

 
 
3.3 The ELK Stack 
 
The ELK platform is a complete log analysis solution, built in combination of 
three open source tools, Elasticsearch, Logstash and Kibana. ELK uses the 
open source stack of Elasticsearch for deep search and data analytics. Logstash 
for centralized logging management and also Kibana for beautiful and powerful 
data visualizations. 

 

 

 

A brief overview of each of these systems follows 

 

Elasticsearch  

Elasticsearch is a distributed open source search engine based on Apache 
Lucence and released under an Apache 2.0 license. It provides reliability, 
horizontal scalability and multitenant capability for real time search. The 
searching capabilities are backed by a schema-less Apache Lucene Engine, 
which allows it to dynamically index data without knowing the structure 
beforehand. Elasticsearch is able to achieve fast search responses because it 
uses indexing to search over the texts. 
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Logstash 

Logstash is a data pipeline that enables collecting, defining and analyzing a wide 
variety of unstructured and structured data and events created across various 
systems. It provides plugins to connect to various types of input sources and 
platforms and is helps to successfully handle logs, events and unstructured data 
sources for distribution into many different outputs with the use of its output 
plugins or Elasticsearch. 

Logstash consists of the following key features 

 Centralized data processing 
 Support for custom log formats 
 Plugin development 

 

 

Kibana 

Kibana is an open source Apache 2.0 licensed data visualization platform that 
helps in visualizing all types of unstructured or structured data collected in 
Elasticsearch indexes. Kibana is entirely written in HTML and JavaScript. The 
highly efficient search and indexing capabilities of Elasticsearch exposed 
through its RESTful API are used by this platform to display powerful graphics 
for the end users. 

In other words, Kibana makes understanding large volumes of data an easy task. 
Its simple browser-based interface enables you to quickly create and share 
dynamic dashboards that display changes to Elasticsearch queries in real time 
[9]. 

 
 

 
 
 
 
 
 
 

Figure 3: ELK Stack
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4. Our Proposed Algorithm 
 
 
A typical managed network has a large number of elements and often a large 
number of fault conditions or abnormalities occur. A single fault in the network 
may be manifested as multiple alarms in the Network Manage System (NMS). 
These can result in tens of thousands of alarms getting generated. 

Making sense of all the alarms and identifying significant faults can become 
tedious for the human operator/administrator. It is important to pinpoint the root 
cause for all the alarms by localizing the fault and generating an alarm only for 
the faulty elements, as it will reduce the volume of information thrown to the 
network manager from NMS. 

For this reason a low complexity Root Cause Analysis algorithm [10] has been 
implemented to localize a problematic node that causes performance 
degradation to other nodes and the deployed service in general. 

The basic principle of the algorithm is to check the reachability between the 
nodes (in our case instances that belong to Virtual Network Functions), using 
each node’s health status that is determined by the network topology and the 
system’s status. 

The health status of a node can be dependent on the status of another, non-
healthy node in the network path. 

The algorithm uses the health status provided, to label the service nodes as “Up” 
or “Down”. An extra label “Unknown” is applied for the “Down” nodes that may 
be affected by other respective nodes. This is performed using an adjacency list 
that is obtained from the network topology. Specifically, an n-node undirected 
graph represented as an adjacency list is created using the virtual links of the 
topology. The nodes are numbered from 1 to n. The adjacency list is an array 
(size n) of linked lists where index i of the array contains the linked list of all the 
nodes directly connected by a network link to node i. Next, each “Unknown” node 
is examined to identify the Down nodes that may cause the node’s non-healthy 
state. The algorithm’s output is one list per “Unknown” node, that contains the 
“Down” node(s) identified as the root cause for the respective node’s 
performance issues. 

Based on the above approach we can split the algorithm in two parts. Part A 
determines the status of individual elements in the network (“Up”, “Down”, 
“Unknown”) and Part B creates the Root Cause lists for the “Unknown” nodes. 

 

Specifically, 

 

• Part A: Starting with the node connected to the NMS we check it’s 
neighbors (nodes connected by one link). All the neighbors are set as 
reachable. If a neighbor is Up, it is added to temp buffer. Then we check 
the neighbors of the rest of the nodes added to the temp buffer. Thus we 
check every Up node’s neighbors. At the end, every node that was 
reachable and Down is set as unknown. 
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• Part B: We select a target node from the list of unknown nodes (from Part 
A). We check the status of the neighbors of the target node. If a neighbor 
is Up it is added to a temp buffer (like in Part A) to be checked next. If it’s 
down, we add it to a set of root causes. After that, we check the neighbors 
of the first neighbor that was Up, and so forth. In the end we come up with 
the final set that includes the root cause nodes of the target node. 

 

 

 

The flowchart of the algorithm is illustrated in Figures 4 and 5 

 
 
 

 
 

 
 
 

 
 

Figure 4: Part A - Determine Node's Status

Figure 5: Part B - Find Root Cause Nodes
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5. Experimental Scenarios 
 
 
Below is a description of the experimental procedure as well as the scenarios 
that were implemented to assess the algorithm’s performance. 

 

Purpose of this experimental process is to observe the behavior of the RCA 
algorithm and evaluate its performance under certain circumstances such as the 
duration of a fault injection on a node, the time period the impairments algorithm 
stays in a fault injection command for a node and the algorithm’s data collection 
frequency.  

The network topology that was selected to validate the algorithm is a 3-level tree 
as shown in Figure 6. 

 

 

 

 

The network topology consists of two types of nodes, the simple nodes (d1 - 
d15) and the routers (r0,r1,r2,r3,r11,r12,r13). 

 

The fault injection is introduced randomly at the router nodes (marked with red) 
r1, r2, r3, r11, r12, r13.  

The dotted lines show which client is sending data to whom (and waiting for 
response) over the network producing the “request latency” metric. RAM and 
CPU overload is injected to the routers and negative impact of that fault injection 
on the request latency metric is expected  

Figure 6: Network Topology
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Essentially what we do is το cause impairments to a random router and expect 
to see increased application latency values at the “clients” sending and receiving 
requests. 

 

 

 

 

 

 

In order to test the RCA algorithm’s performance we will use some  timing 
variables which are described below 

 

• Switch Time: The time period the impairments algorithm stays in a fault 
injection command for a node, until it proceeds to another fault injection 
command for a different node 

• Impairment Time: The time period the fault injection command lasts 

• Algorithm data collection frequency: The frequency of time points data is 
collected by the RCA algorithm 

 

 

 

 

 

 

 

 

Figure 7: Router nodes with fault injection
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5.1 Experimental Scenarios  
 
 

 Scenario 1: We will evaluate RCA algorithm’s performance when the 
Switch time is greater than the Impairment time 
 

 Scenario 2: We will evaluate RCA algorithm’s performance when the 
Impairment time is greater than the Switch time 

 
 Scenario 3: We will evaluate RCA algorithm’s performance when the 

Impairment time is greater than 2 times the Switch time 
 

 Scenario 4: We will evaluate RCA algorithm’s performance when the 
Impairment time is greater than 3 times the Switch time 
 

 Scenario 5: We will evaluate RCA algorithm’s performance when the 
Impairment time is greater than 7 times the Switch time 
 
 

Our RCA algorithm fetches metrics from the system every 10,15 and 30 
seconds for each one of the experimental scenarios described above. 
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To evaluate the operation of the Root Cause Analysis algorithm, as we have 
mentioned we will use ContainerNet, a virtual network emulator that utilizes 
the realistic network emulator of MiniNet (to create virtual controllers, 
switches and routers) and Docker containers as hosts. 

 

1. As a first step, we built the 3-level topology showed in Figure 6 by running 
the relevant bash script in the VM where the ContainerNet runs. 

 

 

 

 

 

 

Figue 9 below shows that the topology has been created and it is ready to 
run our experimental scenarios. 

 
Figure 9: ContainerNet - Topology created 

 
 
 
 
 
 
 

Figure 8: Bash script for building the experimental topology 
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2. On another PC we start running the RCA algorithm. Because we have 
not add any impairments to the routers the algorithm shows the 
message “All nodes are up”. 

 

 
 
 

3. Next we run the relative bash script which will start the fault injections on 
the routers of our 3-level tree topology randomly. 

 

 
 
 

 

 

Figure 11: Run impairments bash script

Figure 10: Run RCA algorithm with no impairments 
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4. Returning back to the RCA algorithm, now we observe that there are 
some SLA violations and the algorithm has detected two root causes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: RCA algorithm - Root Cause found
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6. Presentation of Experimental Measurements 
 
 
In this chapter we will present and analyze the measurements of experimental 
process, which will be done through graphs as well as we will comment on the 
results of these experimental measurements. 

 
6.1 Scenario 1 
 
In this first scenario the algorithm starts collecting metrics sent to the Kafka 
broker at an indefinite time point, and keeps a certain collecting frequency after 
that, which is independent from the fault injection timing.  

 

For the experimental measurement of the first scenario we have set the time 
variables as Table 2 indicates and the results are showed in Figures 14, 15, 16 
and 17.  

 

 

Table 2: Scenario 1 Time Variables 

Switch Time Impairment Time Algorithm data 
collection frequency 

35 Sec. 25 Sec. 10, 15, 30 Sec. 

 

 

 
 

 
 

Figure 13: Scenario 1 - Time Evolution
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Figure 14: Scenario 1 - Data Collection Frequency 10 Sec. 

 
 
 

 
Figure 15: Scenario 1 - Data Collection Frequency 15 Sec. 
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Figure 16: Scenario 1 - Data Collection Frequency 30 Sec. 
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From the above results it was found that when the algorithm’s data collection 
frequency is set to 10 seconds the overall accuracy reached a percentage of 
92%, meaning that the node responsible for the high response time value was 
either identified, or included in a list of possible root cause nodes. 

When we increased the algorithm’s data collection frequency to 15 seconds, the 
overall accuracy dropped to 71% while for 30 seconds data collection frequency 
the overall accuracy retained almost the same to 75%. 
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Figure 17: Scenario 1 overall results
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6.2 Scenario 2 
 
At the second scenario the time variables have been set with the Impairment 
time to be greater than the Switch time as Table 3 indicates. 

 

 

Table 3: Scenario 2 Time Variables 

Switch Time Impairment Time Algorithm data 
collection frequency 

20 Sec. 35 Sec. 10, 15, 30 Sec. 

 

 

Because of the timing configuration Fault Injection overlaps are produced. 
Impairments are introduced at 2 nodes simultaneously for specific time points 
as we can observe in Figure 18. 

 
 
 

 

 

 

 

 

 

Figure 18: Scenario 2 - Time Evolution
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The results of the experimental measurement of the second scenario are 
showed below. 

 

 
Figure 19: Scenario 2 - Data Collection Frequency 10 Sec. 

 
 
 

 
Figure 20: Scenario 2 - Data Collection Frequency 15 Sec. 
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Figure 21: Scenario 2 - Data Collection Frequency 30 Sec. 
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Based on the above results we observe much more better performance of the 
algorithm in comparison with the previous scenario. In this scenario the overall 
accuracy reached 94% for data collection frequency of 10 seconds, 96% for data 
collection frequency of 15 seconds and 94% for data collection frequency of 30 
seconds. 
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Figure 22: Scenario 2 overall results
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6.3 Scenario 3 
 
At the third scenario the time variables have been set with the Impairment time 
to be greater than two times the Switch time as Table 4 shows below. 

 

 

Table 4: Scenario 3 Time Variables 

Switch Time Impairment Time Algorithm data 
collection frequency 

20 Sec. 55 Sec. 10, 15, 30 Sec. 

 

 

 

Because of the timing configuration multiple overlaps are produced. Impairments 
are introduced at 2 or 3 nodes simultaneously for specific time points. 

 

 

 
 

 

 

 

Figure 23: Scenario 3 - Time Evolution
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The results of the experimental measurement of the second scenario are 
showed in the below Figures. 

 

 
Figure 24: Scenario 3 - Data Collection Frequency 10 Sec. 

 
 
 

 
Figure 25: Scenario 3 - Data Collection Frequency 15 Sec. 
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Figure 26: Scenario 3 - Data Collection Frequency 30 Sec. 
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Examining the results of the experimental scenario 3 we observe the overall 
accuracy reached 91% when the algorithm is fetching metrics form the system 
every 10 seconds, 94% when the data collection frequency is 15 seconds and 
99% for data collection frequency of 30 seconds. 

Compared with scenario 2, despite the fact that we have multiple fault injection 
overlaps on the routers the algorithm’s performance remains almost the same.  
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Figure 27: Scenario 3 overall results
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6.4 Scenario 4 
 
At the fourth scenario we continue increase the Impairment time. The time 
variables have been set for this experimental scenario as Table 5 shows below. 

 
  

Table 5: Scenario 4 Time Variables 

Switch Time Impairment Time Algorithm data 
collection frequency 

20 Sec. 70 Sec. 10, 15, 30 Sec. 

 
 
Because of the timing configuration multiple overlaps are produced same as the 
Scenario 3. Impairments are introduced at 3 or 4 nodes simultaneously for 
specific time points. 

 

 

 

 
Figure 28: Scenario 4 - Time Evolution 
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The results of the experimental measurement of this 4th experimental scenario 
are showed in the below Figures. 

 

 

 
Figure 29: Scenario 4 - Data Collection Frequency 10 Sec. 

 
 
 

 
Figure 30: Scenario 4 - Data Collection Frequency 15 Sec. 
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Figure 31: Scenario 4 - Data Collection Frequency 30 Sec. 
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As we can see, despite the fact that the we have increased the impairment time 
in comparison with the previous experimental scenario the algorithm still 
performs very well with the overall accuracy reached 96% when the data 
collection frequency is set to 10 seconds, 97% overall accuracy with data 
collection frequency set to 15 seconds and finally, 93% overall accuracy when 
data collection frequency is set to 30 seconds.  
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Figure 32: Scenario 4 overall results 
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6.5 Scenario 5 
 
In this scenario we will increase the Impairment time even more in order to check 
the RCA Algorithm’s performance. The time variables have been set for this 
experimental scenario as Table 6 shows below. 
 

 

Table 6: Scenario 5 Time Variables 

Switch Time Impairment Time Algorithm data 
collection frequency 

20 Sec. 140 Sec. 10, 15, 30 Sec. 

 

 

Same as the previous scenario because of the timing configuration multiple 
overlaps are produced. Impairments are introduced at 5 or 6 nodes 
simultaneously for specific time points. 

 

The results of the experimental Scenario 5 are demonstrated below 

 

 
Figure 33: Scenario 5 - Data Collection Frequency 10 Sec. 
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Figure 34: Scenario 5 - Data Collection Frequency 15 Sec. 

 
 
 

 
Figure 35: Scenario 5 - Data Collection Frequency 30 Sec. 
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Figure 36: Scenario 5 overall results 

 

Based on the above results we observe a small decrease in the overall accuracy 
in comparison with experimental scenario 4 but still the algorithm’s performance 
remains high since the overall accuracy reached 91% when the data collection 
frequency is set to 10 seconds, 95% overall accuracy with data collection 
frequency set to 15 seconds (61% RC Detected and 34% List if probable RCs)  
and finally, 90% overall accuracy when data collection frequency is set to 30 
seconds. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

71%

20%

9%

61%

34%

5%

64%

26%

10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

RC Detected List of probable RCs RC not Detected

Scenario 5

R:10 R:15 R:30



41 
 

7. Conclusions 
 
Through this work, a performance diagnosis platform for 5G services has been 
implemented and demonstrated. An RCA algorithm has developed and 
implemented to identify the cause of a system degradation and its evaluation 
shows the effectiveness of the RCA algorithm.   

 

From the experimental scenarios we conducted: 

  

         The RCA algorithm was successfully implemented in all the 
scenarios and was able to precisely detect the root cause in most of the 
cases. 

  

         In all the scenarios, in cases when the exact root cause was not 
identified, the RCA algorithm provided a list of possible root causes in 
which the correct root cause was always included. 

  
         When the Switch time is greater than the Impairment time  
(Scenario 1) the RCA algorithm is performing well, but the percentage 
of the cases that it could not detect the root cause is much higher 

  

         In most of our experimental scenarios the RCA algorithm can detect 
exactly the root cause when it is fetching data every 10 seconds. 

  
         Even though we have increased the Impairment time in order to 
produce multiple overlaps, the RCA algorithm’s results are considerably 
successful. 
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