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Abstract 

 
Genetic engineering involves different techniques to intentionally modify genetic material (primarily 

deoxyribonucleic acid or DNA) in order to alter, restore, or boost shape or function. Established in the 

latter half of the twentieth century, recombinant DNA technologies include chemical splicing 

(recombination) of different strands of DNA, usually using either bacteria (such as Escherichia coli) or 

bacteriophages (viruses that infect bacteria, such as λ phage) or bacteria (viruses that infect bacteria, such 

as λ phage) or by way of simple microinjection. In recent years, modern techniques to design and create, 

literally to engineer, new life forms, typically referred to as synthetic biology, have supplemented these 

conventional instruments.[1] 

 

A flexible and efficient gene therapy technique is precision genome editing. The area has been subject to 

continuing developments since the introduction of CRISPR/Cas systems for genome editing. The new 

biotechnology includes the development of a site-specific DSB accompanied by two key forms of repair 

mechanisms: end-joining non-homologous and repair-directed homology. The enabled type of the 

mechanism for molecular repair relies on the cycle of the chromosome, cellular heterogeneity and cell 

division.[2] 

 

In the current diploma thesis, we tried to break down and understand the main components of prime 

editing technique. An automated approach is required for advancing our understanding of the evolution 

and diversity of prime editing and for finding new candidates for genome engineering. We used Duchenne 

Muscular Dystrophy as a use case for this proposed approach. More specifically, we applied the 

knowledge of machine learning over prime editing in the genetic disease of Duchenne Muscular 

Dystrophy. 
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Abbreviations 
 
 

DMD Duchenne Muscular Dystrophy 

BMD Becker's Muscular Dystrophy 

gRNA guide Ribonucleic Acid 

tracrRN
A 

trans-activating crRNA 

pegRNA prime editing guide Ribonucleic Acid 

MD Muscular Dystrophy 

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats 

PAM Protospacer Adjacent Motif 

NHEJ Non-homologous end joining 

HDR Homology directed repair 

Nick A break in only one strand of DNA 

Nickase Enzyme that is capable of cleaving only one strand of 
target DNA. 

Coding 
DNA 
strand 

The double-stranded chain of the DNA of the gene used as 
a template for the RNA synthesis. 

Non 
coding 
DNA 
strand 

The DNA sequence of the gene that has a sequence similar 
to the RNA synthesized from it. 

Bp Base pair, unit consisting of two nucleobases bound to 
each other by hydrogen bonds 
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1 Introduction 
 

The ability to make site-specific alterations to the human genome has been a goal of medicine 

since the gene was established as the fundamental unit of heredity. Thus, gene therapy is 

understood as the ability to change biology by the reversal of modified (mutated genes or site-

specific changes that target clinical treatment. This treatment was made possible by the 

advances in genetics and bioengineering that made it possible to modify vectors for the 

transmission of extrachromosomal material to target cells. One of the key interests of this 

strategy is the optimization of delivery vehicles (vectors) which are often plasmids, 

nanostructured or viruses. Viruses are most frequently studied due to their excellence of 

infecting cells and the inclusion of their genetic material. However, there is great concern about 

exacerbated immune responses and modification of the genome, especially in germ line cells. 

In vivo somatic cell experiments have shown satisfactory outcomes with accepted protocols in 

clinical trials.[3] 

 

This innovation in genetic methodologies lead to the development of vast quantities of data 

that require the help of mathematical and analytical tools to be properly analysed. Thus, an 

automated approach is therefore needed to advance our knowledge of the evolution and 

diversity of these methodologies and to identify new candidates for genome engineering in 

eukaryotic models. [4] [5] 

 

Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is 

characterized by cardiovascular and skeletal muscle degeneration, lack of ambulation and 

premature death. Dystrophin is a huge protein (>3600 amino acids) that stabilizes muscle 

membranes by binding the actin cytoskeleton to the inner surface of the sarcolemma. 

Thousands of mutations that inhibit the development of dystrophin have been identified in 

patients with DMD. These mutations cluster in hotspot regions of the genome that can in 

theory, be bypassed by various exon skipping strategies to return the dystrophin to an open 

reading frame. To date, however, there has been no appropriate long-term medication for this 

condition, and the only medication approved by the Food and Drug Administration for the 

treatment of DMD allows for the recovery of <1 per cent of the normal level of dystrophin 

protein after sustained treatment. There is however a significant unmet medical need for new 

strategies to correct the root cause of DMD—genetic mutations in the dystrophin gene.[6] 

 
The rapid advancement of gene editing techniques derived from the invention of CRISPR/Cas9 

now enables the alteration of the human genome and opens up the prospect of developing 

treatments for genetic diseases such as DMD. 

 

The main contribution of this thesis is an automated way of progressing from Crispr Cas 9 gene 

editing to prime editing. With the aid of machine learning, we propose the most efficient 

pegRNAs for editing DMD exon 44 mutation in order to reframe the open reading frame of the 

exon 45, and finally to restore the dystrophin gene. 
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2 Biological background 
 

2.1 CRISPR Gene Editing 
 

 
Figure 1: How does CRISPR work. (reproduced from Joana R. Costa, Bruce E. Bejcek et al., Genome Editing Using 

Engineered Nucleases and Their Use in Genomic Screening, Assay Guidance Manual, 2004) 

CRISPR stands for clustered regularly interspaced short palindromic repeats. CRISPR “spacer” 

sequences are transcribed into short RNA sequences (“CRISPR RNAs” or “crRNAs”) capable 

of guiding the system to matching sequences of DNA. When the target DNA is found, the 

Cas9, which is one of the enzymes produced by the CRISPR system, binds to the DNA and 

cleaves it. This results in shutting the targeted gene off. Using modified versions of Cas9, 

researchers have the ability to activate gene expression instead of cutting directly the DNA. 

These techniques allow researchers to study the gene’s function and also modify it.[7] 

 

Engineered CRISPR systems consist of two components: a guide RNA (gRNA or sgRNA) and 

a CRISPR-associated endonuclease (Cas protein). The gRNA is a short synthetic RNA 

composed of a scaffold sequence necessary for Cas-binding and a pre-defined ∼20 

nucleotide spacer that defines the genomic target to be modified. Thus, the genomic target of 
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the Cas protein can be modified by simply changing the target sequence present in the 

gRNA.[8] 

 

2.2 The Cas9 nuclease 
 

The Cas9 protein, an RNA-coordinated DNA endonuclease, is an amazing asset for controlling 

the genome. The simplicity of programming Cas9 (CRISPR-related protein 9) has empowered 

CRISPR (bunched, routinely interspaced, short palindromic rehashes)- based hereditary 

screens, recognizing settled qualities and giving novel knowledge into quality capacity for 

different phenotypes. Introductory libraries were planned with little information on sgRNA 

movement runs, a basic structure parameter, as deciphering screening information requires 

consistency among numerous sgRNAs focusing on a similar quality to recognize genuine hits 

from bogus positives. Dormant and vague sgRNAs lessen the powerful quality inclusion of the 

library and the exactness of the hit rundown. Numerous examinations show that Cas9 off-target 

action relies upon both sgRNA succession and trial conditions. These investigations have given 

subjective however inadequate comprehension of particularity determinants.  

 

Finding generalizable examples is very testing, requiring huge informational collections to 

sufficiently test the tremendous number of conceivable blemished sgRNA-DNA 

communications to uncover grouping highlights for forecast of askew action. Here, we present 

the plan and portrayal of human and mouse genome-wide sgRNA libraries dependent on our 

recently distributed standards for foreseeing on-target efficiency. Expanding on screening 

information created with the new libraries and enormous scale appraisal of off-target 

movement, we create improved calculations for on-and off-target action expectation, 

permitting further advancement of our genome-wide libraries.[9] 

 

2.3 Applications of CRISPR 
 

2.3.1 Gene knockout using CRISPR 
 

CRISPR can be used to generate knockout cells or animals by co-expressing an endonuclease 

like Cas9 or Cas12a (also known as Cpf1) and a gRNA specific to the targeted gene. The 

genomic target can be any ∼20 nucleotide DNA sequence, provided it meets two conditions: 

 

1. The sequence is unique compared to the rest of the genome. 

2. The target is present immediately adjacent to a Protospacer Adjacent Motif (PAM).  

 

The PAM sequence serves as a binding signal for Cas9, but the exact sequence depends on 

which Cas protein is used.  The most popular nuclease used is S. pyogenes Cas9 (SpCas9). 

Once expressed, the Cas9 protein and the gRNA form a ribonucleoprotein complex through 

interactions between the gRNA scaffold and surface-exposed positively charged grooves on 

Cas9. Cas9 undergoes a conformational change upon gRNA binding that shifts the molecule 

from an inactive, non-DNA binding conformation into an active DNA-binding conformation. 

Importantly, the spacer region of the gRNA remains free to interact with target DNA. 

 

Cas9 will only cleave a given locus if the gRNA spacer sequence shares sufficient homology 

with the target DNA. Once the Cas9-gRNA complex binds a putative DNA target, 

the seed sequence (8-10 bases at the 3′ end of the gRNA targeting sequence) will begin to 

anneal to the target DNA. If the seed matches the target DNA sequence, the gRNA will 
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continue to anneal to the target DNA in a 3′ to 5′ direction. Thus, mismatches between the 

target sequence in the 3′ seed sequence completely abolish target cleavage, whereas 

mismatches toward the 5′ end distal to the PAM often still permit target cleavage. 

 

Cas9 undergoes a second conformational change upon target binding that positions the 

nuclease domains, called RuvC and HNH, to cleave opposite strands of the target DNA. The 

end result of Cas9-mediated DNA cleavage is a double-strand break (DSB) within the target 

DNA (∼3-4 nucleotides upstream of the PAM sequence). 

 

The resulting DSB is then repaired by one of two general repair pathways: 

 

1. The efficient but error-prone non-homologous end joining (NHEJ) pathway 

2. The less efficient but high-fidelity homology directed repair (HDR) pathway 

 

The NHEJ repair pathway is the most active repair mechanism, and it frequently causes small 

nucleotide insertions or deletions (indels) at the DSB site. The randomness of NHEJ-mediated 

DSB repair has important practical implications, because a population of cells expressing Cas9 

and a gRNA will result in a diverse array of mutations (for more information, jump to Plan 

Your Experiment). In most cases, NHEJ gives rise to small indels in the target DNA that result 

in amino acid deletions, insertions, or frameshift mutations leading to premature stop codons 

within the open reading frame (ORF) of the targeted gene. The ideal end result is a loss-of-

function mutation within the targeted gene. However, the strength of the knockout phenotype 

for a given mutant cell must be validated experimentally.[8] 

 



 12 

 
Figure 2: Gene knockout using CRISPR (reproduced from https://www.addgene.org/guides/crispr/) 

 

2.4 Single guide RNA 

sgRNA is an abbreviation for “single guide RNA.” The sgRNA is a single RNA molecule that 

contains both the custom-designed short crRNA sequence fused to the scaffold tracrRNA 

sequence. sgRNA can be made either by synthetically generation or in vitro or in vivo from a 

DNA template. 

Different genetic manipulations require different CRISPR components. A good way of 

selecting a specific genetic manipulation could narrow down the are appropriate reagents for a 

given experiment. The table below shows some of the different CRISPR components. 

Table 1: Different CRISPR components (reproduced from https://www.addgene.org/guides/crispr/) 

Genetic 
Manipulation 

Application Cas9 gRNA Additional 
considerations 

 

Knockout 

Permanently 

disrupt gene 

function in a 

particular cell 

 

Cas9 (or Cas9 

nickase) 

 

Single (or dual) 

gRNA targeting 5′ 

High-fidelity Cas 

enzymes increase 

specificity. Dual-nickase 

approach increases 
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type or 

organism 

without a 

specific 

preferred 

mutation 

exon or essential 

protein domains 

specificity but is less 

efficient. Each putative 

knockout allele must be 

experimentally verified. 

 

Edit 

Generate a 

specific user-

defined 

sequence 

change in a 

particular 

gene, such as 

generating a 

point mutation 

or inserting a 

tag 

 

Cas9 (or Cas9 

nickase) 

Base editor 

 

Single (or dual) 

gRNA targeting the 

region where the 

edit should be made 

HDR requires a repair 

template and displays 

reduced efficiency 

compared to NHEJ 

knockout. Base editors 

can make a limited set of 

mutations. 

 

2.5 Applications of Crispr to DMD 
 

The most recent developments in DMD therapy do not provide DMD with permanent therapy. 

As an appealing tool for DMD gene therapy, the CRISPR/Cas technology is both reliant and 

independent of the particular mutation. 

 

CRISPR/Cas technologies can be used for modulating disease modifiers irrespective of the 

patient mutation. Using a single sgRNA strategy, full length dystrophin may be restored with 

respect to DMD replication mutations. The open reading frame can be restored for DMD 

deletion and point mutations by deleting or reframing exon(s) to create a shorter version of 

dystrophin. Using homologous recombination, full-length wild type dystrophin may also be 

recovered.[10] 

 

2.6 Duchenne Muscle Dystrophy 
 

Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy that occurs 

primarily in males, though in rare cases may affect females. DMD causes progressive weakness 

and loss (atrophy) of skeletal and heart muscles.[11] 

 

The DMD gene is responsible for the encoding of the dystrophin protein (Error! Reference 

source not found.). Dystrophin is a rod-shaped cytoplasmic protein found in muscle cells and 

is one of a group of proteins that work together to strengthen muscle fibers. Also, it protects 

them from injury as muscles contract and relax.[12] 

 

The sequence of the gene can be found in various databases like UniProt and Ensembl. The id 

of the gene in the UniProt database is P11532 and in the Ensembl database is 

ENSG00000198947. The structure of the dystrophin gene is presented below. 
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Figure 3: The dystrophin gene. (reproduced from https://www.uniprot.org) 

DMD was first described by the French neurologist Guillaume Benjamin Amand Duchenne in 

the 1860. In 1986, MDA-supported researchers identified a particular gene on the X 

chromosome that, when flawed (mutated), leads to DMD. In 1987, the protein associated with 

this gene was identified and named dystrophin. Lack of the dystrophin protein in muscle cells 

causes them to be fragile and easily damaged. DMD has an X-linked recessive inheritance 

pattern and is passed on by the mother, who is referred to as a carrier. 

 

DMD is characterized by progressive muscle degeneration and weakness due to the alterations 

of a protein called dystrophin that helps keep muscle cells intact. It is one of four conditions 

known as dystrophinopathies. The other three diseases that belong to this group are: 

 

I. Becker Muscular dystrophy (BMD, a mild form of DMD) 

II. an intermediate clinical presentation between DMD and BMD 

III. and DMD-associated dilated cardiomyopathy (heart-disease) with little or no clinical 

skeletal, or voluntary, muscle disease. 

DMD symptom onset is in early childhood, usually between ages 2 and 3. The disease primarily 

affects boys, but in rare cases it can affect girls. As the disease progresses, muscle weakness 

and atrophy spread to affect the trunk and forearms and gradually progress to involve additional 

muscles of the body. [13] [14] 

2.6.1 The dystrophin gene 
 

The dystrophin gene spans a genomic range of greater than 2 Mb and encodes a large protein 

(dystrophin) containing an N-terminal actin-binding domain and multiple spectrin repeats. The 

protein that is encoded forms a component of the dystrophin-glycoprotein complex (DGC). 

This bridges the inner cytoskeleton and the extracellular matrix. Duchenne muscular 

dystrophy, Becker muscular dystrophy or cardiomyopathy may be caused by deletions, 

duplications, and point mutations at the gene. Alternative promoter usage and alternative 

splicing result in numerous distinct transcript variants and protein isoforms for this gene. 
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As stated in the National Center for Biotechnology Information (NCBI), the cytogenetic 

location of dystrophin is Xp21.2-p21.1, which is the short (p) arm of the X 

chromosome between positions 21.2 and 21.1. The molecular location is made up of base pairs 

31,119,219 to 33,339,460 on the X chromosome. 

 

 
Figure 4: Chromosomal location. (reproduced from https://ghr.nlm.nih.gov) 

The major DMD deletion is found between exons 45 and 53, thus making this a ‘hot spot’ area 

for 70% of DMD patients. Notably, skipping exon 51 is predicted to ameliorate the dystrophic 

phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used 

animal model of DMD, although its mild phenotype limits its suitability in clinical trials.[15] 

 

Mutations to the dystrophin gene are the main cause of DMD. Most commonly, one or more 

exons are missing, and the remaining exons don’t fit together properly (exons are a portion of 

the gene).  Because of this error in the genetic instructions, cells cannot make dystrophin, the 

protein that muscles need in order to working properly.[12]  

 

2.6.2 Mutations 
 

The four bases of adenine, cytosine, guanine and thymine are the fundamental building block

s of DNA. They are commonly known by their letters A, C, G, and T respectively. 

Three billion of these letters form the entire manual for the construction and maintenance of t

he human body, but apparently tiny errors (mutations) can cause a disease. 

 

Thousands of different mutations have been reported within the dystrophin gene. It is crucial 

to remember that everyone contains mutations in some of our genes, although we commonly 

do not comprehend it because the mutations do not have an effect on us in any substantial way. 

 

The different types of mutations that can happen in the dystrophin gene are deletions, 

duplications and point mutations. 
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Figure 5: Schematic depiction of dystrophin transcripts in healthy, Duchenne muscular dystrophy (DMD) and Becker 

muscular dystrophy (BMD) individuals (reproduced from Annemieke Aartsma-Rus, Ieke B. Ginjaar et al., Journal of 

Medical Genetics, 53, 3, 2) 

Deletions arise when pieces of the gene (known as exons) are missing. Small mutations can 

result in a premature stop signal (stop mutations), or they can disrupt the genetic code (a small 

deletion of duplication within and exon).[16] 

Deletions of 1 or more exons are the most common sort of mutation. Since there are a complete 

of 79 exons within the dystrophin gene, there are many specific deletions that can arise. 

However, there are sure areas of the gene which might be more likely to have a deletion, and 

these areas are referred to as “hot spots”. Exons 44-55 are a hot-spot vicinity for deletions.  

 

Duplications occur while one or more exons in the gene are doubled. Duplications are not as 

commonplace as deletions. Like deletions, duplications might occur in the course of all 

seventy-nine exons of the dystrophin gene. 

 

Point mutations are smaller changes in the gene that do not involve a whole exon. Sometimes 

just one letter inside the DNA code is missing (deleted), doubled (duplicated), or changed. One 

of the most common factor mutations is called a nonsense mutation. Nonsense mutations 

motive a premature stop in the gene which leads to little or no dystrophin protein 

production.[17] 

 

Genetic therapy is promising due to the fact that the dystrophin gene is inserted. However, 

several obstacles have been met along the way. The size of the dystrophin gene is the main 

obstacle in gene therapy. Thus, smaller genes, micro or mini dystrophin, have been developed, 

which can be inserted into a vector. The most suitable vector found so far is a virus associated 

with the adenovirus, a non-pathogenic parvovirus, but it has been shown to cause an 

immunological response. In order to assess the response, mdx mice dys-/dys- have been 

created, and there is evidence that when the gene is injected, the dystrophin is partially 

expressed, and muscular strength is improved. However, in preliminary studies on humans, 90 
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days after treatment initiation this gene expression was not observed. Results suggest that the 

success of this therapy is inhibited by cellular immunity.[18] 

 

Exon-skipping therapy is one of the most promising therapeutic approaches aiming to restore 

the expression of a shorter but functional dystrophin protein. The antisense field has 

remarkably progress over the last years with recent accelerated approval of the first antisense 

oligonucleotide-based therapy for DMD, Exon 51, though the therapeutic benefit remains to 

be proved in patients. Despite clinical advances, the poor effective delivery to target all muscle 

remains the main hurdle for antisense drug therapy.[19] 

 

In the current thesis the main focus will be in genetic therapy, and more precisely in the method 

of CRISPR using the enzyme Cas9. 

 

2.6.3 Existing Crispr methods for potential DMD treatment 
 

Below is a brief presentation of related works for the treatment of DMD using CRISPR Cas9: 

 
Table 2: Related works targeting the DMD gene 

 

 

Target Gene 

Region 

 

 

Protospacer sequence (5'-3') 

 

 

Reference 

 

DMD exon 

44 

 

CTTACAGGGAGAACTCCAGGA 

 

[6] 

 

 

DMD  

introns 45-55 

 

CTGGACGGAGCTGGTTTATCT  

 

 

[20] 

various 

DMD  

exon 23 

indel 

mutations 

 

 

CTATCTGAGTGACACTGTGA 

 

 

[21] 

 

DMD exon 

45 

 

GGCTTACAGGAACTCCAGGA 

 

[22] 

 

Yi-Li Min. et. al. developed a patient-derived induced pluripotent stem cell (iPSCs) from a 

DMD patient without exon 44 of the dystrophin gene (DMD). The regular dystrophin gene 

from the sibling of the same patient was set as a healthy monitoring system. Deletion of exon 

44 (Ex44) disrupts the open reading frame of dystrophin by inducing splicing in exon 43 to 

exon 45 and the implementation of early termination codon. Using CRISPR-Cas9 gene editing 

to skip exon 43, which allows splicing between exons 42 and 45, or to skip exon 45, which 

allows splicing between exons 43 and 46, the reading frame can be restored. Alternatively, by 

adding one nucleotide (+3n+1 insertion) or removing two nucleotides (+3n−2 deletion), the 

reframing of exon 43 or 45 may restore the protein reading frame.[6] 
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Courtney S. Young et. Al. developed a novel dystrophic mouse model by using CRISPR/Cas9 

to delete exon 45 in the human DMD gene in DMD mice, which makes DMD out of frame. 

They used this model to show that their clinically applicable CRISPR/Cas9 interface, which 

targets the removal of human DMD exons 45–55, can be directly used in vivo to restore 

dystrophin.[20] 

 

Taeyoung Koo. et. al. used Cas9 which was extracted from S. Pyogens in order to produce 

Dmd knockout mice with a frameshift mutation in the DMD gene. Then, they expressed 

CjCas9, its single-guide RNA, and the EGFP gene in the tibialis anterior muscle of the Dmd 

knockout mice using an all-in-one adeno-associated virus (AAV) vector. CjCas9 effectively 

cut the target site in the DMD gene in vivo and caused minor insertions or deletions at the 

target site. Their study resulted in the conversion of the damaged DMD reading frame from out 

of frame to in frame, leading to the expression of dystrophin in the sarcolemma. Importantly, 

muscle strength was improved in CjCas9-treated muscles, with no off-target mutations, 

suggesting high efficiency and specificity of CjCas9. That study showed that CjCas9-mediated 

in vivo DMD frame correction has significant potential for the treatment of DMD and other 

neuromuscular diseases.[21] 

 

Yu Zhang et. Al. loaded a Cas9 nuclease in a single-stranded AAV (ssAAV) and CRISPR 

single-stranded AAV (scAAV) guide RNAs and supplied that dual AAV system to a DMD 

mouse model. The dose of scAAV needed for effective genome editing was at least 20 times 

lower than that of ssAAV. Mice undergoing systemic therapy demonstrated preserved 

expression of dystrophin and strengthened muscle contractility. Their results indicated that the 

performance of CRISPR-Cas9-mediated genome editing can be greatly increased by using the 

scAAV method.[22] 

 

2.7 Prime Editing 
 

2.7.1 Prime editing strategy 

 
Some genetic variants leading to various diseases are difficult to correct effectively and witho

ut surfeit by-products. Prime editing is a versatile and precise genome editing method that 

directly writes new genetic information into a specified DNA site using a catalytically impaired 

Cas9 endonuclease fused to an engineered reverse transcriptase, programmed with a prime 

editing guide RNA (pegRNA) that both specifies the target site and encodes the desired edit. 

Anzalone et. al, performed more than 175 edits in human cells, including targeted insertions, 

deletions, and all 12 types of point mutation, without requiring double-strand breaks or donor 

DNA templates.  

 

Prime editing guide Ribonucleic Acid (pegRNA) is an important component of the Prime 

Editing system due to the fact that it specifies the target site but also encodes the desired edit 

and prime reverse transcription. The edit from the pegRNA is transferred into the target site 

while, a branched intermediate is formed with two single strand DNA flaps; an unedited 5′ flap 

and a 3′ flap with the edited sequence from the pegRNA.[23]  

 

Prime editing was used in human cells to correct, efficiently and with few byproducts, the 

primary genetic causes of sickle cell disease (requiring a transversion in HBB) and Tay–Sachs 

disease (requiring a deletion in HEXA); to install a protective transversion in PRNP; and to 
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insert various tags and epitopes precisely into target loci. Four human cell lines and primary 

post-mitotic mouse cortical neurons support prime editing with varying efficiencies. Prime 

editing presented higher or similar efficiency and fewer byproducts than homology-directed 

repair, had complementary strengths and weaknesses compared to base editing, and induced 

much lower off-target editing than Cas9 nuclease at known Cas9 off-target sites.  

 

Prime editing substantially could expand the scope and capabilities of genome editing, and in 

principle could correct up to 89% of known genetic variants associated with human diseases. 

Cas9 targets DNA employing a direct RNA containing a spacer arrangement that hybridizes to 

the target DNA site. Engineered guide RNAs were used in order to specify the DNA target. 

Also, they contained new genetic information that replaces target DNA nucleotides. To 

exchange data from these built direct RNAs to target DNA, the genomic DNA had to be 

utilized, scratched at the target location to uncover a 3’-hydroxyl gather, to prime the 

turnaround translation of an edit-encoding expansion on the built direct RNA (in the future 

alluded to as the prime altering direct RNA, or pegRNA) straightforwardly into the target 

location.[2] 

 

Figure 6: Components of Prime Editing (reproduced from https://www.synthego.com/blog/prime-editing) 

The main advantage of prime editing over CRISPR is that the first’s enzymes do not have to 

break both strands of DNA to create changes, liberating researchers from depending on the 
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cell’s DNA repair framework, which they cannot control to create the alters that they need. 

This implies that prime editing might empower the advancement of medicines for hereditary 

maladies caused by changes that are not effectively tended to by existing gene-editing 

tools.[24] 

This gene editing method shows high accuracy levels. Off-target cuts were below 10 percent, 

and less than one-tenth of edited cells had unwanted changes to their genome. On the contrary 

off-target cuts were up to 90 percent for first-gen CRISPR systems.[25] 

 

Figure 7: Prime editing relies on precision editing (reproduced from Heidi Ledford, Super-precise new CRISPR tool could 

tackle a plethora of genetic diseases, NLM (Medline), 2019). 

This gene editing method shows high accuracy levels. Off-target cuts were below 10 percent, 

and less than one-tenth of edited cells had unwanted changes to their genome. On the contrary 

off-target cuts were up to 90 percent for first-gen CRISPR systems.[25] 

 

2.7.2 Genes – Diseases correlations 
 

We searched through bibliography given the gene names for the associated diseases described 

in Anzalone et. al., in order to understand if there was a connection between the various 

protospacers used in CRISPR experiments and the spacers used in Prime Editing. 

All genes from ‘Search-and-replace genome editing without double-strand breaks or donor 

DNA’ by Anzalone et. al, were bibliographically inspected in order to find each associated 

disease. 
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Table 3: Genes and related diseases. 

 

 

The gene names as well as the associated diseases to each gene or coding protein were found 

using GeneCards. GeneCards is a searchable, integrative database that provides 

comprehensive, user-friendly information on all annotated and predicted human genes. The 

knowledgebase automatically integrates gene-centric data from ~150 web sources, including 

genomic, transcriptomic, proteomic, genetic, clinical and functional information.[17] 

 

The following table shows the protospacers that were used in various CRISPR experiments. 

 
Table 4: Protospacers used in various CRISPR experiments 

Abbreviation Related Gene Associated Disease 

HBB Hemoglobin Sickle cell disease 

 

HEXA Hexosaminidase A 

 

Tay–Sachs disease 

 

HEK3 Ephrin type-A receptor 8 

 

Epithelial ovarian cancer 

 

HEK4 EPH receptor A3 

 

Lung cancer 

 

EMX1 Homeobox protein EMX1 

 

Kallmann Syndrome and 

Epileptic Encephalopathy 

 

FANCF Fanconi anemia group F 

protein 

 

Fanconi Anemia 

DNMT1 DNA (cytosine-5)-

methyltransferase 1 

Certain human tumors and 

developmental abnormalities 

RUNX1 Runt-related transcription 

factor 1 

 

Several types of leukemia 

 

VEGFA 

 

Vascular Endothelial Growth 

Factor A 

 

 Microvascular Complications 

of Diabetes 1 and Poems 

Syndrome 

 

RNF2 

 

Ring Finger Protein 2 

 

Angelman Syndrome 

 

 

Gene 

 

Protospacer used in CRISPR 

 

Reference 

HBB GTAACGGCAGACTTCTCCAC [26] 
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The protospacers of the CRISPR experiments were the same with the spacers used in the prime 

editing experiments described in Anzalone et. al. 

 
Table 5: Protospacers used in CRISPR and spacers used in Prime Editing. 

HEK3 GGCCCAGACTGAGCACGTGA 

 

 

[27] 

HEK4 GGCACTGCGGCTGGAGGTGG [28] 

EMX1 GAGTCCGAGCAGAAGAAGAA [29] 

FANCF GGAATCCCTTCTGCAGCACC [29] 

DNMT1 GATTCCTGGTGCCAGAAACA [30] 

RUNX1 GCATTTTCAGGAGGAAGCGA 

 

[29] 

VEGFA GATGTCTGCAGGCCAGATGA 

 

[31] 

RNF2 GTCATCTTAGTCATTACCTG [27] 

 

Gene 

 

Protospacers used in CRISPR 

 

Spacer used in Prime Editing 

HBB GTAACGGCAGACTTCTCCAC GTAACGGCAGACTTCTCCAC 

*HEXA - GATCCTTCCAGTCAGGGCCAT 

HEK3 GGCCCAGACTGAGCACGTGA 

 

 

GGCCCAGACTGAGCACGTGA 

HEK4 GGCACTGCGGCTGGAGGTGG GGCACTGCGGCTGGAGGTGG 

EMX1 GAGTCCGAGCAGAAGAAGAA GAGTCCGAGCAGAAGAAGAA 

FANCF GGAATCCCTTCTGCAGCACC GGAATCCCTTCTGCAGCACC 

DNMT1 GATTCCTGGTGCCAGAAACA GATTCCTGGTGCCAGAAACA 

RUNX1 GCATTTTCAGGAGGAAGCGA 

 

GCATTTTCAGGAGGAAGCGA 

VEGFA GATGTCTGCAGGCCAGATGA 

 

GATGTCTGCAGGCCAGATGA 
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For the HEXA gene, there was not found any CRISPR protospacer identical to the one 

described in Anzalone et. al. The largest portion of the 3’ extension is common to the same 

groups of pegRNAs (same pegRNAs refer to the same genomic group as HBB, HEXA etc). 

 

Also, within this common sequence is the PBS (Primer Building Site) and the RT template. So, 

the sequence that was changed every time in the 3’ extension among the same group of 

pegRNAs was the RT template. Thus, Anzalone et. al. experimented on different templates in 

order to find out which made the best repair.[2]  

 

The complementary sequences were found using the online tool 

http://arep.med.harvard.edu/labgc/adnan/projects/Utilities/revcomp.html 

 

In the paper ‘Search-and-replace genome editing without double-strand breaks or donor DNA’ 

of Anzalone et. al, are presented the pegRNAs that had the highest biological efficiency in the 

conducted experiments for each target gene. In the table below, those pegRNAs are given along 

with the target gene. 

 

2.8 Dystrophin gene and exon 44 mutation 
 

The second most commonplace mutational hotspot in the dystrophin gene consists of exon 44, 

which disrupts the open reading frame in surrounding exons. Deletion of exon 44 disrupts the 

open analyzing frame of dystrophin through causing splicing of exon 43 to exon 45 and 

introducing a premature termination codon.[6]  

 

This would result in patients with DMD not having exon 44 in their mature mRNA. DNA 

coding goes from exon 43 straight to 45, resulting in out of frame mutation. So, the DNA 

deletion mutation would be corrected either at exon 43 or exon 45. In either case it can be done 

by insertion of one bp or the deletion of two bps. 

 

The sequence of both the coding and the non-coding strand were found using Benchling.[32] 

 

 
Figure 8: Sequence of exon 44 

Benchling is an online resource that helps researchers manage and coordinate laboratories and 

experimental results by offering experimental design and data analysis software tools for the 

molecular biology. Benchling provides tools for functions such as priming design and colony 

counting, as well as CRISPR design guides and automated cloning of Gibson and Golden Gate. 

Users can take data notes in line with data, link data through entries, keep files and data in one 

place, and manage and monitor team progress.[33] 

 

RNF2 GTCATCTTAGTCATTACCTG GTCATCTTAGTCATTACCTG 
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3 The dataset 
 

Anzalone et. al. shared with us the data that were produced from the experiments for both HBB 

and HEXA genes. Both datasets included data for those genes from multiple experiments. 

Those data included each pegRNA with the corresponding spacer sequence, the 3’ extension, 

along with the PBS length and the RT template length. In order to use those data, we took and 

trained the machine learning algorithms with the mean value of each correct edit. 

 

The data described in the following sections were taken from Anzalone et. al. From the original 

dataset, only data for the genes HBB and HEXA were kept.  

 

Also, we kept the columns that provided the information for the 3’ extension sequence along 

with the columns with the correct edit for each of the three replications. During the preprocess 

of the dataset we computed ‘the mean of correct edit’, the percentage that showed the correct 

edit of each 3’ extension. 

 
Table 6: Sample of the dataset 

 
pegRNA 

 
Spacer sequence 

 
3' extension 

 
PBS 

length 

 
RT 

tem
plat

e 
len
gth 

 
Mean of % 
correct edit 

(w/o 
indels) 

HEXAs 1 GATCCTTCCAGTCAGGGCCAT ATATCTTATGGCCCTGACTGGAA 13 14 0,24436087 

HEXAs 2 GATCCTTCCAGTCAGGGCCAT TATATCTTATGGCCCTGACTGGAA 13 15 
0,20043559
3 

HEXAs 3 GATCCTTCCAGTCAGGGCCAT GTATATCTTATGGCCCTGACTGGAA 13 16 0,97492582 

HEXAs 4 GATCCTTCCAGTCAGGGCCAT ACCGTATATCTTATGGCCCTGACTGGAA 13 19 
3,50145735
7 

HBB 3.7 GCATGGTGCACCTGACTCCTG AGACTTCTCCTCAGGAGTCAGGTGCAC 13 14 
38,3423478
6 

HBB 5.2 GCATGGTGCACCTGACTCCTG TAACGGCAGACTTCTCCTCAGGAGTCAGGTGCAC 13 19 
30,6498218
4 

HBB 5.3 GCATGGTGCACCTGACTCCTG ACGGCAGACTTCTCCTCAGGAGTCAGGTGCAC 13 17 
34,2326691
5 

HBB 5.4 GCATGGTGCACCTGACTCCTG GGCAGACTTCTCCTCAGGAGTCAGGTGCAC 13 16 
43,9451287
1 

 

4 Computational approach for pegRNAs creation 
 

The protospacer that was used in the paper ‘CRISPR-Cas9 corrects Duchenne muscular 

dystrophy exon 44 deletion mutations in mice and human cells’ was taken to be part of the 

produced pegRNA. After an extensive bibliographic research, we concluded that all of the 

protospacers used in various CRISPR-Cas 9 experiments, were part of the pegRNAs introduced 

in Anzalone et. al. There were three steps followed to produce the pegRNA targeting the 

dystrophy exon 44: 
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1. The protospacer mentioned in the paper above was taken in order to be part of the 

produced pegRNA. 

 

2. The position of the mutation was detected within the gene. From bibliographic research 

it resulted that the mutation was a small deletion. As a result, the cell skips the exon 43 

and 45.  

 

3. The protospacer position was found within the gene and it was placed precisely in the 

same position as the 3' extension on the complementary chain. 

 

Two rules applied in the creation of the pegRNA: as mentioned in the work of Anzalone et. al., 

the PBS length had to be between twelve to fifteen nucleotides and the RT template length had 

to be equal or greater than seven nucleotides. Also, according to Anzalone et. al., the total 

length of the pegRNA would be: 

 

 For insertions 1bp to ≥ 44bp 

 For deletions 1bp to ≥ 80bp 

 

4.1 pegRNAs creation for reframing exon 45 
 

In our approach, we created pegRNAs for both the insertion and deletion of bps in order to 

repair the small deletion occurring in exon 44. In the case of insertion, the goal of the produced 

pegRNAs was to insert +1bp in the exon 45, in order to reframe the genetic information. In the 

case of deletion, we deleted -2 bp in order to achieve the reframing of the same exon. 

 

As one could see from the image below, Yi-Li Min et. al. presented 34 different candidates for 

CRISPR editing of exon 45 along with the wildcard gene (HC). The image presents an analysis 

of the sgRNAs that target the splice acceptor or donor sites for exons 43 and 45, along with the 

corresponding base modifications and the result in the dystrophin gene.  
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Figure 9: Analysis of sgRNAs that target the splice acceptor or donor sites for exons 43 and 45 (reproduced from Yi-Li Min 

et. al. Supplementary Materials for CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in 

mice and human cells, Science Advances, 06 Mar 2019) 

We chose to reproduce the candidates sgRNAs 1 and 2 through Prime Editing. The reason for 

choosing only these two was the restrictions that are applied as described in Anzalone et. al. 

For instance the candidate 11 was excluded, as we mentioned in the previous section the 

maximum number of a pegRNAs for the case of a deletion would be of a maximum of 80bp. 

Another example of an excluded candidate would be the sgRNA 32, as another restriction of 

pegRNAs is that the edit should occur inside the PBS. As we can see the sgRNA 32 lacks most 

of the bps that would be needed for creating the proportional PBS.  

 

4.1.1 Insertion and deletion for reframing exon 45 
 

Initial steps were followed so that the pegRNAs targeting exon 44 could be created: 

 

1. Detection of the mutation in the mutant gene. 

 

2. Detection of PAM site (NGG) next to the mutation site. 

 

3. If there is a PAM site nearby, according to Anzalone et. al., the complementary to PAM 

strand would be used for the creation of the RT template. 

 

4. Selection of the length of both the RT template and the PBS. 

 

More specifically, we started by searching Benchling for the DMD gene by giving the 

chromosomal location and the desired organism (homo sapiens in our case study). Although, 

the edited gene described in the paper by Min et. al., referred to the genomic loci of mus 

musculus, we searched for the human DMD gene as that same genomic region is conserved by 

a hundred percent among mus musculus and homo sapiens. After locating the exon 45, we 

verified that the base pairs of the protospacer used in the Crispr experiment from Min et. al. 

targeting the homonymous exon, were found in the beginning of the same exon. Having 
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assumed that the top chain is the coding strand and the bottom is the non-coding strand the 

protospacer orientation was on the left 5΄ and on the right 3΄. Counter to the coding strand, the 

non-coding was 3΄ on the left and 5΄ on the right. 

 

It is of vital importance to add that we tested our approach for an automated way of creating 

the desired pegRNAs for both cases of exon 45, after testing the method on the data provided 

by Anzalone et. al. As a result we produced the same pegRNAs mentioned in the supplementary 

information of the paper “Search-and-replace genome editing without double-strand breaks or 

donor DNA”, thus making the assumption that the procedure that we followed was correct. 

 
Figure 10: Conserved region between the two species. (reproduced Yi-Li Min et. al., Supplementary Materials for 

CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells, 

Science Advances, 06 Mar 2019) 

In order to understand how to locate the base pairs for the creation of the different RT 

templates, we studied the HBB and HEXA spacers used in Anzalone et. al. Our study resulted 

in a pattern where the first three bps of the minimum RT template would be the last three 

complementary bps of the protospacer that are right next to the PAM site. As in our case study 

we wanted to edit the gene by adding a +A for the reframing to happen, we added a +T at the 

very beginning of the RT template. This was done, because as we concluded from studying 

Anzalone et. al., the correct edit must be included in the RT template. 

 

The next three bps added, resulting in a total of seven bp for the minimum RT template, were 

the complementary bases moving downstream to the 5΄ end of the non-coding strand.  We 

created a total of twenty-three different RT templates by adding each time one bp to the 

minimum RT template until the total number of bps of the maximum in length RT template 

was twenty-nine. Anzalone et. al. had not mentioned anything about the total number of bps 

for the RT template, but after studying thoroughly the supplementary material provided with 

the main article, we concluded that the specific number of bps for the maximum in length RT 

would be the desired one. 

 

The location of the RT template revealed the bps of the minimum PBS, after studying the same 

supplementary material we concluded that the first bp of the PBS would be right next to the 

site where the RT template was found. Anzalone et. al. suggested that the PBS would be in 

total length of minimum of 8 bps to a maximum of 15 bps. First, we created a minimum PBS 

by adding seven more bps moving towards to the 3΄ end of the same strand, resulting in a total 

of eight bps. In order to generate, the other PBS up to the maximum length, we added each one 

bp moving again towards to the 3΄ end. 

 

One hundred eighty-four different 3' extension were produced for reframing the dystrophin 

gene by inserting a +A bp. All sequences are shown in 5’ to 3’ orientation. The 3’ extensions 

contain both the PBS and the RT template. 

 



 28 

It is very important to point out that Anzalone et. al. recommends designing pegRNAs such 

that the first base of the 3’ extension is not C. As, a result we did not keep any 3’ extensions 

that the first bp was C. 

 

4.1.2 Pseudocode for generating the 3’ extensions for insertion 
 

A more detailed guide with the initial steps for generating the 3’ extensions is presented below: 

 

1. Search Benchling for the DMD gene by giving the chromosomal location and the 

desired organism (homo sapiens). 

 

2. Locate the target exon. 

 

3. Verify that the base pairs of the protospacer used in the Crispr experiment. targeting 

the homonymous exon, were found in the beginning of the same exon.  

 

4. The first three bps of the minimum RT template would be the last three complementary 

bps of the protospacer that are right next to the PAM site.  

 

5. Inputs: 

a. Coding strand of the targeted exon e.g., 

“AAAAAGACATGGGGCTTCATTTTTGTTTTGCCTTTTTGGTATCTTACAGGAACTCCAGG

ATGGCATTGGGCAGCGGCAAACTGTTGTCAGAACATTGAATGCAACTGGGGAAGAAATA

ATTCAGCAATCCTCAAAAACAGATGCCAGTATTCTACAGGAAAAATTGGGAAGCCTGAAT

CTGCGGTGGCAGGAGGTCTGCAAACAGCTGTCAGACAGAAAA” 

b. PAM sequence e.g., “TGG” 

c. Protospacer sequence e.g., “CTTACAGGAACTCCAGGA” 

d. Place the correct base or bases that will be inserted e.g., “T” 

6. Calculations: 

a. Find the PAM sequence 

b. Find the protospacer sequence 

c. Create the minimum RT Template by adding the next three bps of the PAM, 

resulting in a total of seven bp 

d. Generate multiple RT templates by adding each time one bp to the minimum 

RT template until the total number of bps of the maximum in length RT template 

is 29. 

e. Based on the location of the RT template find the bps of the minimum PBS (the 

first bp of the PBS would be right next to the site where the RT template was 

found). 

f. Create the minimum PBS by adding seven more bps moving towards to the 3΄ 

end of the same strand.  

g. Merge all the produced PBS and RT Templates, to generate the 3΄ extensions 

All the same steps apply for the case of deletion with the only difference, that one does not 

have to input any base or bases, as the protospacer that would be inputted carries the deleted 

base or bases. 
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5 Selection of the most promising pegRNAs using machine learning 
 

Due to the huge volume of data produced by the in vivo and in vitro experiments, the need for 

in silico experiments arises. Machine learning could potentially help eliminate the need for 

making all of those experiments happen. Our goal is to produce a tool that could help Biologists 

chose the most efficient pegRNAs for gene editing by using mainly computational methods. 

This could be done by finding the optimal algorithms for each specific biological problem and 

each time tuning the algorithmic parameters so that scientists could achieve the same results 

but without the need of exhausting all of the laboratory resources and time needed. 

 

Different algorithms were tested on the data in order to find the one that could predict the target 

variable more precisely. Those algorithms were: Multiple Linear Regression, Support Vector 

Regression, Random Forest Regressor and Gradient Boosting Regressor. 

 

5.1 Multiple Linear Regression 
 

Multiple linear regression (MLR), also known simply as multiple regression, is a statistical 

technique that predicts the outcome of a response variable using many explanatory variables. 

Multiple linear regression (MLR) is intended to model the causal relationship between the 

explanatory (independent) variables and the variable response (dependent).[34] 

 

5.2 Support Vector Regression 
 
Support Vector Machines are very different algorithm types, distinguished by the use of 

kernels, lack of local minima, sparse solution and capacity control obtained by acting on the 

edge, or number of support vectors, etc. They were conceived by Vladimir Vapnik and his 

colleagues, and first presented with the paper at the 1992 Conference on Computational 

Learning Theory (COLT). All these nice features were however already present in machine 

learning since the 1960s: use of kernels by wide margin hyper planes, geometric representation 

of kernels as internal products in a feature space. Different methods of optimization were used 

in pattern recognition and there was widespread discussion of sparseness methods. The use of 

slack variables was implemented in the 1960s to address noise in the data and non-

separability.[35] 

 

5.3 Random Forest Regressor  
 

A random forest is a meta estimator that matches a number of decision trees on different dataset 

sub-samples to be listed. This algorithm makes use of average to improve predictive accuracy 

and over-fitting power. The sub-sample size is always the same as the original input sample 

size but the samples are drawn with replacement if bootstrap is True (default).[36] 
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Figure 11: Structure of the Random Forests regressor (reproduced from Liarokapis et al., Learning the Post-Contact 

Reconfiguration of the Hand Object System for Adaptive Grasping Mechanisms, Conference: IEEE/RSJ) 

5.4 Gradient Boosting Regressor 
 

The logic behind gradient boosting is basic, as it could be seen instinctively, without utilizing 

scientific documentation. A basic assumption of linear regression is that sum of its residuals is 

0, i.e. the residuals should be spread randomly around zero. 
Now think of those residuals as errors committed by our model of predictors. While tree-based 

models are not based on these assumptions, if we think about this assumption logically, we 

might say that if we can see any residual pattern about 0, we can use that pattern to match a 

standard.[37] 

 

5.5 Experimental settings 
 

For applying the machine learning algorithms on the dataset, we tested the data on various train 

/ test splits, and we concluded that the ideal percentage, was 70% for training the algorithms 

and 30% for testing. To decide the optimal values to be used for our model hyperparameters 

from a given range of values, we then used the grid search cross validation method from the 

Scikit-Learn library.  

 

For the Gradient Boosting Regressor algorithm, we chose to optimize the four 

hyperparameters: learning rate, max-depth, max-features and min-samples-leaf.  

 

• Max_depth = overall depth of the tree 

• Learning_rate = shrinks the contribution of each tree by learning_rate 

• Max-features = the number of features to consider when looking for the best split  
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• Min_samples_leaf = the minimum number of samples required to be at a leaf node. A 

split point at any depth will only be considered if it leaves at 

least min_samples_leaf training samples in each of the left and right branches.[38] 

 

Although model parameters such as the slope and intercept in a linear regression are learned 

during training, hyperparameters must be set by the data scientist before training. 

Hyperparameters include, in the case of a random forest, the number of decision trees in 

the forest and the number of characteristics considered by each tree when splitting a node. 

(The variables and thresholds used to break every node learned during training are the 

parameters of a random forest). For all models, Scikit-Learn introduces a set of rational 

default hyperparameters, but these are not guaranteed to be optimal for a problem. In 

general, it is difficult to decide the best hyperparameters in advance, and tuning a model is 

where machine learning transforms from science into trial-and-error-based engineering. 

Hyperparameter tuning depends more on experimental results than on theory, so trying 

several different combinations to test the output of and model is the best way to decide the 

optimal settings. In machine learning, however, testing each model only on the training set 

can lead to one of the most fundamental problems: overfitting. The hyperparameters that 

were searched were: 

 

• n_estimators = number of trees in the forest 

• max_features = max number of features considered for splitting a node 

• max_depth = max number of levels in each decision tree 

• min_samples_split = min number of data points placed in a node before the node is split 

• min_samples_leaf = min number of data points allowed in a leaf node 

• bootstrap = method for sampling data points (with or without replacement) 

 

5.5.1 Parameters tuning – Grid Search with Cross Validation 
 

Grid Search was used for finding the best Model parameters for the dataset. Although model 

parameters are learned during training — like the slope and intercept in a linear regression — 

one must set hyperparameters prior to training. In the case of a random forest, the 

hyperparameters include the number of decision trees in the forest and the number of 

characteristics that each tree considers when dividing a node. (The variables and thresholds 

used to split each node learned during training are the parameters of a random forest). For all 

models, Scikit-Learn implements a set of sensible default hyperparameters but these are not 

guaranteed to be optimal for a problem. It is generally difficult to decide the best 

hyperparameters in advance, and tuning a model is where machine learning transforms from a 

science into trial-and - error dependent engineering. 

 

Hyperparameter tuning depends more on experimental tests than on theory, and so the best way 

to assess the optimal settings is to try to test the output of each model in several different 

combinations. Evaluating each model only on the training set, however, will result in one of 

the most basic machine learning problems: overfitting. If model is optimized for the training 

data, it will perform very well on the training set, but it will not be able to generalize to new 

data as in a test set for example. This is known as overfitting, or simply designing a model that 

knows the training set very well but cannot be applied to new problems when a model performs 

strongly on the training set but poorly on the test set.[39] 

 

First, GridSearchCV was imported from the Scikit-Learn library, which is a python machine 

learning library. GridSearchCV's estimator parameter includes the model that was used for the 



 32 

method of tuning the hyper-parameter. We used the GridSearchCV for the Random Forest 

Regressor and the Gradient Boosting Regressor. Also, we further divided our training set into 

K=10 numbers of subsets, called folds, in K-Fold CV. We then fit the model 10 times 

iteratively, training the data on K-1 of the folds each time and evaluating on the 10th fold 

(called the validation data) each time. We averaged the results on and of the folds at the very 

end of training to come up with final validation metrics for the model.  

 

5.6 Feature representation 
 

In order to train a machine learning algorithm on the data, the input DNA sequences are 

required to be encoded as numerical values and represented as either vectors or multi-

dimensional matrices.[40] 

 

There are many approaches for Machine Learning with DNA sequence data, in the current 

work we used three different ways of encoding the sequence information: 

 

1. ordinal vectors 

 

2. one-hot encoding  

 

3. k-mer counting 

 

When a sequence is coded based on its nucleotide composition, it essentially results in a 

multidimensional vector which dimensions depend on the original sequence length. The 

problem that we had to deal with was that when converting sequences of different length using 

ordinal vectors and one hot encoding, the generated vectors had different sizes, thus resulting 

to NaN values between the vectors mismatches. To overcome this, we tried two different 

approaches. The first was to replace the NaN values with zeros and the second was to convert 

the vectorized sequences to same length before training the algorithms on the data. 

 

In the following sections, the different nucleotide representations will be analyzed thoroughly. 

 

5.6.1 Encoding DNA sequence data 
 

5.6.1.1 Ordinal Vectors  
 

Ordinal encoding is to encode each nucleotide characters as an ordinal value. For example, 

“ATGC” becomes [0.25, 0.5, 0.75, 1.0]. Any other base such as “N” can be a 0. According to 

the paper "Evaluation of Convolutionary Neural Networks Modeling of DNA Sequences using 

Ordinal versus one-hot Encoding Method"  by Allen Chieng, Hoon Choong and Nung Kion 

Lee, was shown that this way of encoding of the nucleotides characters worked well.[40]  

 
Table 7: Performance of the algorithms using the window approach and the zero padding. 

 

Vectorized sequences – window 

approach 

Vectorized sequences – zero 

padding 

Metrics 
Random Forest 

Regressor 

Gradient 

Boosting 

Regressor 

Random Forest 

Regressor 

Gradient 

Boosting 

Regressor 
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Mean 

Absolute 

Error (MAE) 

4.731 3.431 4.940 3.202 

          

Root-Mean-

Square Error 
37.979 25.567 55.647 61.254 

(RMSE)          

 

Mean 

Squared 

Error (MSE)  

6.162 5.056 7.459 7.826 

     

 

 
 

5.6.1.2 One hot encoding 
 

One-hot encoding is widely used in deep learning methods and lends itself well to algorithms 

like convolutional neural networks. In this example, “ATGC” would become [0,0,0,1], 

[0,0,1,0], [0,1,0,0], [1,0,0,0]. And these one-hot encoded vectors can either be concatenated or 

turned into 2 dimensional arrays.[41] 
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5.6.1.3 K-mer counting 
 

A problem that remains is that none of these approaches lead to uniform length vectors, and 

that is a prerequisite to feed data to a classification or regression algorithm. For the ordinal 

vector approach, you need to resort to stuff like truncating sequences or padding for "n" or "0

"to get uniform length vectors. 

 

DNA and protein sequences can be interpreted as the language of creation, metaphorically. 

The language encodes instructions, as well as work for the molecules present in all types of 

life.  

 

The comparison of sequence language continues with the genome as the terms text, 

subsequences (genes and gene families) are sentences and chapters, k-mers and peptides 

(motifs), and nucleotide bases and amino acids are the alphabets. 

 

The method that was used takes the long biological sequence first and splits it into k-mer length 

overlapping “words”. For example, if “words” of length 6 (hexamers) are used, “AGACTTCT” 

becomes: ‘AGACTT’, ‘GACTT’, ‘ACTTCT’. 

 

In genomics such types of manipulations as are referred as "k-mer counting," or counting each 

possible k-mer sequence occurrences. Specialized tools are available for this but the natural 

language processing tools from Python make it simple.[41] 

 

For training thee algorithms the dataset was split at a ratio of 70/30 for training and testing 

respectively. Grid search was used to find the best parameters for both the Random Forest 

Regressor and the Gradient Boosting Regressor. (Error! Reference source not found.) 
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For the purpose of finding the optimal performance for both the algorithms used, we tested the 

algorithms with k-mers of length 3,4,5 and 6. After creating the k-mers along with the 

corresponding vocabulary, the count vectorizing module was used from Scikit-Learn Natural 

Language Processing library. 

 

The last step before training the algorithms was to create vectors that had a dimensionality 

equal to the size of the vocabulary created. If the text data featured that vocab word, a one was 

put in that dimension. Every time that word was encountered again, the count would increase, 

leaving 0s everywhere the word was not found even once. 
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6 Experimental results 
 

6.1 Algorithms performance 
 

In general, Gradient Boosting Regressor had the best performance on the data in comparison 

with the Random Forest Regressor, regardless of the metric or the number of k. For the window 

method, Multiple Linear Regression and Support Vector Regression had the worst performance 

on the dataset. Multiple Linear Regression showed to have the best overall performance for k- 

mers, and specifically for k=3. 

 

 
 

Also, from the above plot we could see that regardless of the algorithm used, k-mer counting 

appeared to have the best performance. 
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7 Conclusions and future work 
 

In the current diploma thesis, we tried to create pegRNAs for use in prime editing, for the 

potential treatment of Duchene Muscular Dystrophy, and more specifically the mutation at 

exon 44 described in Yi-Li Min et. al. We took the protospacers that were used in CRISPR 

experiments and found through an extensive bibliographic research that the same protospacers 

are part of the pegRNAs used in prime editing. Also, we suggested an automated way of 

creating pegRNAs and we tried to evaluate them with machine learning algorithms. 

 

As we mentioned in previous sections, we trained the algorithms on the data for HBB and 

HEXA provided to us by Anzalone et. al. The same algorithms were tested on the produced 

pegRNAs, in order to find those that would result in high biological efficiency. The most 

promising pegRNAs for both the case of insertion and deletion were kept. Likewise, the case 

that we studied for HBB and HEXA, we kept the pegRNAs that its mean of correct edit 

exceeded the scaffold of 14%. 

 

As shown in the previous section multiple algorithms were tested as well as three approaches 

of encoding the data. Of all the algorithms tested, the Random Forest Regressor using the kmers 

approach, showed the best overall performance in predicting the efficiency of the pegRNAs. 

 

We suggest that the current thesis would help researchers to automate the creation and 

evaluation of pegRNAs even for other more complex diseases. Through our computational 

work we concluded that every protospacer used in CRISPR could be used as part of the 

pegRNA that could potentially be used in prime editing. Future researchers should bear in mind 

that the total length of each pegRNA should not exceed the number of 44 bps for insertion and 

80 bps for deletions, and the first bp should not be a Cytosine as highlighted in Anzalone et. al. 

Also, we suggest that additional experiments should be made with data from other experiments 

using CRISPR gene-editing, utilizing machine learning in order to find the best candidates for 

transitioning from CRISPR to prime editing. 
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Appendix 
 

Table 8: Complete list of produced pegRNAs for reframing the exon 45, insertion. 

pegRNA 

 

spacer 3’ extension (5' to 3') 

DMD 1 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTC 

DMD 2 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTC 

DMD 3 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTC 

DMD 4 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTC 

DMD 5 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTC 

DMD 6 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTC 

DMD 7 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTC 

DMD 8 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTC 

DMD 9 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTC 

DMD 10 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTC 

DMD 11 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTC 

DMD 12 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTC 

DMD 13 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTC 

DMD 14 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTC 

DMD 15 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTC 

DMD 16 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTC 

DMD 17 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTC 

DMD 18 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTC 

DMD 19 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTC 

DMD 20 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTC 

DMD 21 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTC 

DMD 22 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTC 

DMD 23 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTC 

DMD 24 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCC 

DMD 25 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCC 

DMD 26 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCC 

DMD 27 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCC 

DMD 28 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCC 

DMD 29 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTCC 

DMD 30 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTCC 

DMD 31 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTCC 

DMD 32 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTCC 

DMD 33 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTCC 

DMD 34 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTCC 

DMD 35 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTCC 

DMD 36 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTCC 

DMD 37 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTCC 

DMD 38 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTCC 

DMD 39 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTCC 

DMD 40 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTCC 

DMD 41 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTCC 

DMD 42 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTCC 

DMD 43 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTCC 

DMD 44 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTCC 

DMD 45 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTCC 
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DMD 46 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTCC 

DMD 47 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCT 

DMD 48 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCT 

DMD 49 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCT 

DMD 50 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCT 

DMD 51 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCT 

DMD 52 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCT 

DMD 53 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTCCT 

DMD 54 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTCCT 

DMD 55 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTCCT 

DMD 56 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTCCT 

DMD 57 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTCCT 

DMD 58 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTCCT 

DMD 59 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTCCT 

DMD 60 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTCCT 

DMD 61 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTCCT 

DMD 62 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTCCT 

DMD 63 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTCCT 

DMD 64 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTCCT 

DMD 65 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTCCT 

DMD 66 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTCCT 

DMD 67 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTCCT 

DMD 68 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTCCT 

DMD 69 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTCCT 

DMD 70 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG 

DMD 71 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG 

DMD 72 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG 

DMD 73 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG 

DMD 74 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG 

DMD 75 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG 

DMD 76 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG 

DMD 77 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG 

DMD 78 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTCCTG 

DMD 79 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTCCTG 

DMD 80 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTCCTG 

DMD 81 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTCCTG 

DMD 82 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTCCTG 

DMD 83 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTCCTG 

DMD 84 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTCCTG 

DMD 85 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTCCTG 

DMD 86 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTCCTG 

DMD 87 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTCCTG 

DMD 88 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTCCTG 

DMD 89 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTCCTG 

DMD 90 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTCCTG 

DMD 91 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTCCTG 

DMD 92 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTCCTG 

DMD 93 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT 

DMD 94 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT 

DMD 95 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT 

DMD 96 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT 
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DMD 97 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT 

DMD 98 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT 

DMD 99 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT 

DMD 100 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT 

DMD 101 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT 

DMD 102 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTCCTGT 

DMD 103 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTCCTGT 

DMD 104 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTCCTGT 

DMD 105 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTCCTGT 

DMD 106 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTCCTGT 

DMD 107 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTCCTGT 

DMD 108 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTCCTGT 

DMD 109 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTCCTGT 

DMD 110 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTCCTGT 

DMD 111 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTCCTGT 

DMD 112 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTCCTGT 

DMD 113 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTCCTGT 

DMD 114 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTCCTGT 

DMD 115 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTCCTGT 

DMD 116 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 117 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 118 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 119 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 120 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 121 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 122 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 123 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 124 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 125 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 126 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 127 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 128 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 129 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 130 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 131 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTCCTGTA 

DMD 132 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTCCTGTA 

DMD 133 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTCCTGTA 

DMD 134 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTCCTGTA 

DMD 135 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTCCTGTA 

DMD 136 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTCCTGTA 

DMD 137 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTCCTGTA 

DMD 138 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTCCTGTA 

DMD 139 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 140 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 141 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 142 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 143 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 144 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 145 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 146 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 147 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA 
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DMD 148 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 149 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 150 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 151 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 152 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 153 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 154 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 155 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTCCTGTAA 

DMD 156 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTCCTGTAA 

DMD 157 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTCCTGTAA 

DMD 158 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTCCTGTAA 

DMD 159 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTCCTGTAA 

DMD 160 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTCCTGTAA 

DMD 161 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTCCTGTAA 

DMD 162 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 163 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 164 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 165 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 166 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 167 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 168 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 169 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 170 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 171 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 172 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 173 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 174 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 175 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 176 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 177 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 178 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 179 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTCCTGTAAG 

DMD 180 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTCCTGTAAG 

DMD 181 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTCCTGTAAG 

DMD 182 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTCCTGTAAG 

DMD 183 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTCCTGTAAG 

DMD 184 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTCCTGTAAG 

 
Table 9: Complete list of produced pegRNAs for reframing exon 45, deletion. 

pegRNA 

 

spacer 3’ extension (5' to 3') 

DMD 1 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTC 

DMD 2 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTC 

DMD 3 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTC 

DMD 4 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTC 

DMD 5 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTC 

DMD 6 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTC 

DMD 7 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTC 

DMD 8 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTC 

DMD 9 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTC 

DMD 10 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTC 
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DMD 11 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTC 

DMD 12 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTC 

DMD 13 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTC 

DMD 14 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTC 

DMD 15 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTC 

DMD 16 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTC 

DMD 17 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTC 

DMD 18 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTC 

DMD 19 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTC 

DMD 20 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTC 

DMD 21 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTC 

DMD 22 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTC 

DMD 23 CTTACAGGAACTCCAGGA TGCCATTGGAGTTC 

DMD 24 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCC 

DMD 25 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCC 

DMD 26 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCC 

DMD 27 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCC 

DMD 28 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTCC 

DMD 29 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTCC 

DMD 30 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTCC 

DMD 31 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTCC 

DMD 32 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTCC 

DMD 33 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTCC 

DMD 34 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTCC 

DMD 35 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTCC 

DMD 36 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTCC 

DMD 37 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTCC 

DMD 38 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTCC 

DMD 39 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTCC 

DMD 40 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTCC 

DMD 41 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTCC 

DMD 42 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTCC 

DMD 43 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTCC 

DMD 44 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTCC 

DMD 45 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTCC 

DMD 46 CTTACAGGAACTCCAGGA TGCCATTGGAGTTCC 

DMD 47 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCT 

DMD 48 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCT 

DMD 49 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCT 

DMD 50 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCT 

DMD 51 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCT 

DMD 52 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTCCT 

DMD 53 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTCCT 

DMD 54 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTCCT 

DMD 55 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTCCT 

DMD 56 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTCCT 

DMD 57 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTCCT 

DMD 58 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTCCT 

DMD 59 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTCCT 

DMD 60 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTCCT 

DMD 61 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTCCT 
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DMD 62 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTCCT 

DMD 63 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTCCT 

DMD 64 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTCCT 

DMD 65 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTCCT 

DMD 66 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTCCT 

DMD 67 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTCCT 

DMD 68 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTCCT 

DMD 69 CTTACAGGAACTCCAGGA TGCCATTGGAGTTCCT 

DMD 70 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTG 

DMD 71 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTG 

DMD 72 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTG 

DMD 73 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTG 

DMD 74 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTG 

DMD 75 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTG 

DMD 76 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTCCTG 

DMD 77 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTCCTG 

DMD 78 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTCCTG 

DMD 79 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTCCTG 

DMD 80 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTCCTG 

DMD 81 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTCCTG 

DMD 82 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTCCTG 

DMD 83 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTCCTG 

DMD 84 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTCCTG 

DMD 85 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTCCTG 

DMD 86 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTCCTG 

DMD 87 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTCCTG 

DMD 88 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTCCTG 

DMD 89 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTCCTG 

DMD 90 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTCCTG 

DMD 91 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTCCTG 

DMD 92 CTTACAGGAACTCCAGGA TGCCATTGGAGTTCCTG 

DMD 93 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT 

DMD 94 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT 

DMD 95 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT 

DMD 96 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT 

DMD 97 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT 

DMD 98 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT 

DMD 99 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT 

DMD 100 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT 

DMD 101 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTCCTGT 

DMD 102 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTCCTGT 

DMD 103 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTCCTGT 

DMD 104 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTCCTGT 

DMD 105 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTCCTGT 

DMD 106 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTCCTGT 

DMD 107 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTCCTGT 

DMD 108 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTCCTGT 

DMD 109 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTCCTGT 

DMD 110 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTCCTGT 

DMD 111 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTCCTGT 

DMD 112 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTCCTGT 
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DMD 113 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTCCTGT 

DMD 114 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTCCTGT 

DMD 115 CTTACAGGAACTCCAGGA TGCCATTGGAGTTCCTGT 

DMD 116 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 117 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 118 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 119 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 120 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 121 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 122 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 123 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 124 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 125 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 126 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 127 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 128 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 129 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 130 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTCCTGTA 

DMD 131 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTCCTGTA 

DMD 132 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTCCTGTA 

DMD 133 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTCCTGTA 

DMD 134 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTCCTGTA 

DMD 135 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTCCTGTA 

DMD 136 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTCCTGTA 

DMD 137 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTCCTGTA 

DMD 138 CTTACAGGAACTCCAGGA TGCCATTGGAGTTCCTGTA 

DMD 139 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 140 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 141 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 142 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 143 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 144 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 145 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 146 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 147 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 148 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 149 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 150 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 151 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 152 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 153 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 154 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTCCTGTAA 

DMD 155 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTCCTGTAA 

DMD 156 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTCCTGTAA 

DMD 157 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTCCTGTAA 

DMD 158 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTCCTGTAA 

DMD 159 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTCCTGTAA 

DMD 160 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTCCTGTAA 

DMD 161 CTTACAGGAACTCCAGGA TGCCATTGGAGTTCCTGTAA 

DMD 162 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 163 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG 
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DMD 164 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 165 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 166 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 167 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 168 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 169 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 170 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 171 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 172 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 173 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 174 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 175 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 176 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 177 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 178 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTCCTGTAAG 

DMD 179 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTCCTGTAAG 

DMD 180 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTCCTGTAAG 

DMD 181 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTCCTGTAAG 

DMD 182 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTCCTGTAAG 

DMD 183 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTCCTGTAAG 

DMD 184 CTTACAGGAACTCCAGGA TGCCATTGGAGTTCCTGTAAG 
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