

University of Piraeus

Department of Digital Systems

Postgraduate Program “Information Systems & Services”

Big Data and Analytics

Masters diploma thesis

Computational Methods for Improving Genetic

Therapies for Duchenne Muscular Dystrophy

Georgios Ch. Kargas

Athens 2021

 2

Supervisor: Associate Professor Michael Filippakis

Department of Digital Systems, University of Piraeus

Supervisor: Dr. Georgios Paliouras

Institute of Informatics and Telecommunications, National Center for Science Research “Demokritos”

Supervisor: Dr. Anastasia Krithara

Institute of Informatics and Telecommunications, National Center for Science Research “Demokritos”

 3

Acknowledgments

First of all, I would like to thank the supervisor of my thesis Professor Michael Filippakis, who accepted

to be my supervisor, for his valuable help and guidance during my work. I am also grateful to Professor

Georgios Paliouras, Mrs. Anastasia Krithara and Mr. Anastasios Nentidis for carefully reading my work

throughout this writing, for their suggestions, as well as for their valuable assistance and cooperation.

Above all, I am grateful to my parents, Christos and Paraskevi Karga and for their wholehearted love and

support over the years. I devote this work to them.

Georgios Ch. Kargas

 4

Abstract

Genetic engineering involves different techniques to intentionally modify genetic material (primarily

deoxyribonucleic acid or DNA) in order to alter, restore, or boost shape or function. Established in the

latter half of the twentieth century, recombinant DNA technologies include chemical splicing

(recombination) of different strands of DNA, usually using either bacteria (such as Escherichia coli) or

bacteriophages (viruses that infect bacteria, such as λ phage) or bacteria (viruses that infect bacteria, such

as λ phage) or by way of simple microinjection. In recent years, modern techniques to design and create,

literally to engineer, new life forms, typically referred to as synthetic biology, have supplemented these

conventional instruments.[1]

A flexible and efficient gene therapy technique is precision genome editing. The area has been subject to

continuing developments since the introduction of CRISPR/Cas systems for genome editing. The new

biotechnology includes the development of a site-specific DSB accompanied by two key forms of repair

mechanisms: end-joining non-homologous and repair-directed homology. The enabled type of the

mechanism for molecular repair relies on the cycle of the chromosome, cellular heterogeneity and cell

division.[2]

In the current diploma thesis, we tried to break down and understand the main components of prime

editing technique. An automated approach is required for advancing our understanding of the evolution

and diversity of prime editing and for finding new candidates for genome engineering. We used Duchenne

Muscular Dystrophy as a use case for this proposed approach. More specifically, we applied the

knowledge of machine learning over prime editing in the genetic disease of Duchenne Muscular

Dystrophy.

 5

Table of Contents

FIGURES ... 6

TABLES ... 6

ABBREVIATIONS .. 7

1 INTRODUCTION ... 8

2 BIOLOGICAL BACKGROUND... 9

2.1 CRISPR GENE EDITING .. 9
2.2 THE CAS9 NUCLEASE ... 10
2.3 APPLICATIONS OF CRISPR.. 10

2.3.1 Gene knockout using CRISPR ... 10
2.4 SINGLE GUIDE RNA ... 12
2.5 APPLICATIONS OF CRISPR TO DMD .. 13
2.6 DUCHENNE MUSCLE DYSTROPHY ... 13

2.6.1 The dystrophin gene .. 14
2.6.2 Mutations .. 15
2.6.3 Existing Crispr methods for potential DMD treatment ... 17

2.7 PRIME EDITING... 18
2.7.1 Prime editing strategy ... 18
2.7.2 Genes – Diseases correlations ... 20

2.8 DYSTROPHIN GENE AND EXON 44 MUTATION ... 23

3 THE DATASET ... 24

4 COMPUTATIONAL APPROACH FOR PEGRNAS CREATION ... 24

4.1 PEGRNAS CREATION FOR REFRAMING EXON 45 .. 25
4.1.1 Insertion and deletion for reframing exon 45 ... 26
4.1.2 Pseudocode for generating the 3’ extensions for insertion .. 28

5 SELECTION OF THE MOST PROMISING PEGRNAS USING MACHINE LEARNING ... 29

5.1 MULTIPLE LINEAR REGRESSION ... 29
5.2 SUPPORT VECTOR REGRESSION ... 29
5.3 RANDOM FOREST REGRESSOR ... 29
5.4 GRADIENT BOOSTING REGRESSOR .. 30
5.5 EXPERIMENTAL SETTINGS .. 30

5.5.1 Parameters tuning – Grid Search with Cross Validation ... 31
5.6 FEATURE REPRESENTATION ... 32

5.6.1 Encoding DNA sequence data ... 32

6 EXPERIMENTAL RESULTS ... 36

6.1 ALGORITHMS PERFORMANCE .. 36

7 CONCLUSIONS AND FUTURE WORK .. 39

APPENDIX .. 40

BIBLIOGRAPHY: ... 48

 6

Figures

FIGURE 1: HOW DOES CRISPR WORK. (REPRODUCED FROM JOANA R. COSTA, BRUCE E. BEJCEK ET AL., GENOME EDITING USING ENGINEERED

NUCLEASES AND THEIR USE IN GENOMIC SCREENING, ASSAY GUIDANCE MANUAL, 2004) .. 9
FIGURE 2: GENE KNOCKOUT USING CRISPR (REPRODUCED FROM HTTPS://WWW.ADDGENE.ORG/GUIDES/CRISPR/) 12
FIGURE 3: THE DYSTROPHIN GENE. (REPRODUCED FROM HTTPS://WWW.UNIPROT.ORG) .. 14
FIGURE 4: CHROMOSOMAL LOCATION. (REPRODUCED FROM HTTPS://GHR.NLM.NIH.GOV) ... 15
FIGURE 5: SCHEMATIC DEPICTION OF DYSTROPHIN TRANSCRIPTS IN HEALTHY, DUCHENNE MUSCULAR DYSTROPHY (DMD) AND BECKER MUSCULAR

DYSTROPHY (BMD) INDIVIDUALS (REPRODUCED FROM ANNEMIEKE AARTSMA-RUS, IEKE B. GINJAAR ET AL., JOURNAL OF MEDICAL

GENETICS, 53, 3, 2) ... 16
FIGURE 6: COMPONENTS OF PRIME EDITING (REPRODUCED FROM HTTPS://WWW.SYNTHEGO.COM/BLOG/PRIME-EDITING) 19
FIGURE 7: PRIME EDITING RELIES ON PRECISION EDITING (REPRODUCED FROM HEIDI LEDFORD, SUPER-PRECISE NEW CRISPR TOOL COULD TACKLE A

PLETHORA OF GENETIC DISEASES, NLM (MEDLINE), 2019).. 20
FIGURE 8: SEQUENCE OF EXON 44 .. 23
FIGURE 9: ANALYSIS OF SGRNAS THAT TARGET THE SPLICE ACCEPTOR OR DONOR SITES FOR EXONS 43 AND 45 (REPRODUCED FROM YI-LI MIN ET.

AL. SUPPLEMENTARY MATERIALS FOR CRISPR-CAS9 CORRECTS DUCHENNE MUSCULAR DYSTROPHY EXON 44 DELETION MUTATIONS IN MICE

AND HUMAN CELLS, SCIENCE ADVANCES, 06 MAR 2019) ... 26
FIGURE 10: CONSERVED REGION BETWEEN THE TWO SPECIES. (REPRODUCED YI-LI MIN ET. AL., SUPPLEMENTARY MATERIALS FOR CRISPR-CAS9

CORRECTS DUCHENNE MUSCULAR DYSTROPHY EXON 44 DELETION MUTATIONS IN MICE AND HUMAN CELLS, SCIENCE ADVANCES, 06 MAR

2019) .. 27
FIGURE 11: STRUCTURE OF THE RANDOM FORESTS REGRESSOR (REPRODUCED FROM LIAROKAPIS ET AL., LEARNING THE POST-CONTACT

RECONFIGURATION OF THE HAND OBJECT SYSTEM FOR ADAPTIVE GRASPING MECHANISMS, CONFERENCE: IEEE/RSJ) 30

Tables

TABLE 1: DIFFERENT CRISPR COMPONENTS (REPRODUCED FROM HTTPS://WWW.ADDGENE.ORG/GUIDES/CRISPR/) 12
TABLE 2: RELATED WORKS TARGETING THE DMD GENE .. 17
TABLE 3: GENES AND RELATED DISEASES... 21
TABLE 4: PROTOSPACERS USED IN VARIOUS CRISPR EXPERIMENTS ... 21
TABLE 5: PROTOSPACERS USED IN CRISPR AND SPACERS USED IN PRIME EDITING. .. 22
TABLE 6: SAMPLE OF THE DATASET .. 24
TABLE 7: PERFORMANCE OF THE ALGORITHMS USING THE WINDOW APPROACH AND THE ZERO PADDING.. 32
TABLE 8: COMPLETE LIST OF PRODUCED PEGRNAS FOR REFRAMING THE EXON 45, INSERTION. .. 40
TABLE 9: COMPLETE LIST OF PRODUCED PEGRNAS FOR REFRAMING EXON 45, DELETION. ... 43

 7

Abbreviations

DMD Duchenne Muscular Dystrophy

BMD Becker's Muscular Dystrophy

gRNA guide Ribonucleic Acid

tracrRN
A

trans-activating crRNA

pegRNA prime editing guide Ribonucleic Acid

MD Muscular Dystrophy

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

PAM Protospacer Adjacent Motif

NHEJ Non-homologous end joining

HDR Homology directed repair

Nick A break in only one strand of DNA

Nickase Enzyme that is capable of cleaving only one strand of
target DNA.

Coding
DNA
strand

The double-stranded chain of the DNA of the gene used as
a template for the RNA synthesis.

Non
coding
DNA
strand

The DNA sequence of the gene that has a sequence similar
to the RNA synthesized from it.

Bp Base pair, unit consisting of two nucleobases bound to
each other by hydrogen bonds

 8

1 Introduction

The ability to make site-specific alterations to the human genome has been a goal of medicine

since the gene was established as the fundamental unit of heredity. Thus, gene therapy is

understood as the ability to change biology by the reversal of modified (mutated genes or site-

specific changes that target clinical treatment. This treatment was made possible by the

advances in genetics and bioengineering that made it possible to modify vectors for the

transmission of extrachromosomal material to target cells. One of the key interests of this

strategy is the optimization of delivery vehicles (vectors) which are often plasmids,

nanostructured or viruses. Viruses are most frequently studied due to their excellence of

infecting cells and the inclusion of their genetic material. However, there is great concern about

exacerbated immune responses and modification of the genome, especially in germ line cells.

In vivo somatic cell experiments have shown satisfactory outcomes with accepted protocols in

clinical trials.[3]

This innovation in genetic methodologies lead to the development of vast quantities of data

that require the help of mathematical and analytical tools to be properly analysed. Thus, an

automated approach is therefore needed to advance our knowledge of the evolution and

diversity of these methodologies and to identify new candidates for genome engineering in

eukaryotic models. [4] [5]

Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is

characterized by cardiovascular and skeletal muscle degeneration, lack of ambulation and

premature death. Dystrophin is a huge protein (>3600 amino acids) that stabilizes muscle

membranes by binding the actin cytoskeleton to the inner surface of the sarcolemma.

Thousands of mutations that inhibit the development of dystrophin have been identified in

patients with DMD. These mutations cluster in hotspot regions of the genome that can in

theory, be bypassed by various exon skipping strategies to return the dystrophin to an open

reading frame. To date, however, there has been no appropriate long-term medication for this

condition, and the only medication approved by the Food and Drug Administration for the

treatment of DMD allows for the recovery of <1 per cent of the normal level of dystrophin

protein after sustained treatment. There is however a significant unmet medical need for new

strategies to correct the root cause of DMD—genetic mutations in the dystrophin gene.[6]

The rapid advancement of gene editing techniques derived from the invention of CRISPR/Cas9

now enables the alteration of the human genome and opens up the prospect of developing

treatments for genetic diseases such as DMD.

The main contribution of this thesis is an automated way of progressing from Crispr Cas 9 gene

editing to prime editing. With the aid of machine learning, we propose the most efficient

pegRNAs for editing DMD exon 44 mutation in order to reframe the open reading frame of the

exon 45, and finally to restore the dystrophin gene.

 9

2 Biological background

2.1 CRISPR Gene Editing

Figure 1: How does CRISPR work. (reproduced from Joana R. Costa, Bruce E. Bejcek et al., Genome Editing Using

Engineered Nucleases and Their Use in Genomic Screening, Assay Guidance Manual, 2004)

CRISPR stands for clustered regularly interspaced short palindromic repeats. CRISPR “spacer”

sequences are transcribed into short RNA sequences (“CRISPR RNAs” or “crRNAs”) capable

of guiding the system to matching sequences of DNA. When the target DNA is found, the

Cas9, which is one of the enzymes produced by the CRISPR system, binds to the DNA and

cleaves it. This results in shutting the targeted gene off. Using modified versions of Cas9,

researchers have the ability to activate gene expression instead of cutting directly the DNA.

These techniques allow researchers to study the gene’s function and also modify it.[7]

Engineered CRISPR systems consist of two components: a guide RNA (gRNA or sgRNA) and

a CRISPR-associated endonuclease (Cas protein). The gRNA is a short synthetic RNA

composed of a scaffold sequence necessary for Cas-binding and a pre-defined ∼20

nucleotide spacer that defines the genomic target to be modified. Thus, the genomic target of

 10

the Cas protein can be modified by simply changing the target sequence present in the

gRNA.[8]

2.2 The Cas9 nuclease

The Cas9 protein, an RNA-coordinated DNA endonuclease, is an amazing asset for controlling

the genome. The simplicity of programming Cas9 (CRISPR-related protein 9) has empowered

CRISPR (bunched, routinely interspaced, short palindromic rehashes)- based hereditary

screens, recognizing settled qualities and giving novel knowledge into quality capacity for

different phenotypes. Introductory libraries were planned with little information on sgRNA

movement runs, a basic structure parameter, as deciphering screening information requires

consistency among numerous sgRNAs focusing on a similar quality to recognize genuine hits

from bogus positives. Dormant and vague sgRNAs lessen the powerful quality inclusion of the

library and the exactness of the hit rundown. Numerous examinations show that Cas9 off-target

action relies upon both sgRNA succession and trial conditions. These investigations have given

subjective however inadequate comprehension of particularity determinants.

Finding generalizable examples is very testing, requiring huge informational collections to

sufficiently test the tremendous number of conceivable blemished sgRNA-DNA

communications to uncover grouping highlights for forecast of askew action. Here, we present

the plan and portrayal of human and mouse genome-wide sgRNA libraries dependent on our

recently distributed standards for foreseeing on-target efficiency. Expanding on screening

information created with the new libraries and enormous scale appraisal of off-target

movement, we create improved calculations for on-and off-target action expectation,

permitting further advancement of our genome-wide libraries.[9]

2.3 Applications of CRISPR

2.3.1 Gene knockout using CRISPR

CRISPR can be used to generate knockout cells or animals by co-expressing an endonuclease

like Cas9 or Cas12a (also known as Cpf1) and a gRNA specific to the targeted gene. The

genomic target can be any ∼20 nucleotide DNA sequence, provided it meets two conditions:

1. The sequence is unique compared to the rest of the genome.

2. The target is present immediately adjacent to a Protospacer Adjacent Motif (PAM).

The PAM sequence serves as a binding signal for Cas9, but the exact sequence depends on

which Cas protein is used. The most popular nuclease used is S. pyogenes Cas9 (SpCas9).

Once expressed, the Cas9 protein and the gRNA form a ribonucleoprotein complex through

interactions between the gRNA scaffold and surface-exposed positively charged grooves on

Cas9. Cas9 undergoes a conformational change upon gRNA binding that shifts the molecule

from an inactive, non-DNA binding conformation into an active DNA-binding conformation.

Importantly, the spacer region of the gRNA remains free to interact with target DNA.

Cas9 will only cleave a given locus if the gRNA spacer sequence shares sufficient homology

with the target DNA. Once the Cas9-gRNA complex binds a putative DNA target,

the seed sequence (8-10 bases at the 3′ end of the gRNA targeting sequence) will begin to

anneal to the target DNA. If the seed matches the target DNA sequence, the gRNA will

 11

continue to anneal to the target DNA in a 3′ to 5′ direction. Thus, mismatches between the

target sequence in the 3′ seed sequence completely abolish target cleavage, whereas

mismatches toward the 5′ end distal to the PAM often still permit target cleavage.

Cas9 undergoes a second conformational change upon target binding that positions the

nuclease domains, called RuvC and HNH, to cleave opposite strands of the target DNA. The

end result of Cas9-mediated DNA cleavage is a double-strand break (DSB) within the target

DNA (∼3-4 nucleotides upstream of the PAM sequence).

The resulting DSB is then repaired by one of two general repair pathways:

1. The efficient but error-prone non-homologous end joining (NHEJ) pathway

2. The less efficient but high-fidelity homology directed repair (HDR) pathway

The NHEJ repair pathway is the most active repair mechanism, and it frequently causes small

nucleotide insertions or deletions (indels) at the DSB site. The randomness of NHEJ-mediated

DSB repair has important practical implications, because a population of cells expressing Cas9

and a gRNA will result in a diverse array of mutations (for more information, jump to Plan

Your Experiment). In most cases, NHEJ gives rise to small indels in the target DNA that result

in amino acid deletions, insertions, or frameshift mutations leading to premature stop codons

within the open reading frame (ORF) of the targeted gene. The ideal end result is a loss-of-

function mutation within the targeted gene. However, the strength of the knockout phenotype

for a given mutant cell must be validated experimentally.[8]

 12

Figure 2: Gene knockout using CRISPR (reproduced from https://www.addgene.org/guides/crispr/)

2.4 Single guide RNA

sgRNA is an abbreviation for “single guide RNA.” The sgRNA is a single RNA molecule that

contains both the custom-designed short crRNA sequence fused to the scaffold tracrRNA

sequence. sgRNA can be made either by synthetically generation or in vitro or in vivo from a

DNA template.

Different genetic manipulations require different CRISPR components. A good way of

selecting a specific genetic manipulation could narrow down the are appropriate reagents for a

given experiment. The table below shows some of the different CRISPR components.

Table 1: Different CRISPR components (reproduced from https://www.addgene.org/guides/crispr/)

Genetic
Manipulation

Application Cas9 gRNA Additional
considerations

Knockout

Permanently

disrupt gene

function in a

particular cell

Cas9 (or Cas9

nickase)

Single (or dual)

gRNA targeting 5′

High-fidelity Cas

enzymes increase

specificity. Dual-nickase

approach increases

 13

type or

organism

without a

specific

preferred

mutation

exon or essential

protein domains

specificity but is less

efficient. Each putative

knockout allele must be

experimentally verified.

Edit

Generate a

specific user-

defined

sequence

change in a

particular

gene, such as

generating a

point mutation

or inserting a

tag

Cas9 (or Cas9

nickase)

Base editor

Single (or dual)

gRNA targeting the

region where the

edit should be made

HDR requires a repair

template and displays

reduced efficiency

compared to NHEJ

knockout. Base editors

can make a limited set of

mutations.

2.5 Applications of Crispr to DMD

The most recent developments in DMD therapy do not provide DMD with permanent therapy.

As an appealing tool for DMD gene therapy, the CRISPR/Cas technology is both reliant and

independent of the particular mutation.

CRISPR/Cas technologies can be used for modulating disease modifiers irrespective of the

patient mutation. Using a single sgRNA strategy, full length dystrophin may be restored with

respect to DMD replication mutations. The open reading frame can be restored for DMD

deletion and point mutations by deleting or reframing exon(s) to create a shorter version of

dystrophin. Using homologous recombination, full-length wild type dystrophin may also be

recovered.[10]

2.6 Duchenne Muscle Dystrophy

Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy that occurs

primarily in males, though in rare cases may affect females. DMD causes progressive weakness

and loss (atrophy) of skeletal and heart muscles.[11]

The DMD gene is responsible for the encoding of the dystrophin protein (Error! Reference

source not found.). Dystrophin is a rod-shaped cytoplasmic protein found in muscle cells and

is one of a group of proteins that work together to strengthen muscle fibers. Also, it protects

them from injury as muscles contract and relax.[12]

The sequence of the gene can be found in various databases like UniProt and Ensembl. The id

of the gene in the UniProt database is P11532 and in the Ensembl database is

ENSG00000198947. The structure of the dystrophin gene is presented below.

 14

Figure 3: The dystrophin gene. (reproduced from https://www.uniprot.org)

DMD was first described by the French neurologist Guillaume Benjamin Amand Duchenne in

the 1860. In 1986, MDA-supported researchers identified a particular gene on the X

chromosome that, when flawed (mutated), leads to DMD. In 1987, the protein associated with

this gene was identified and named dystrophin. Lack of the dystrophin protein in muscle cells

causes them to be fragile and easily damaged. DMD has an X-linked recessive inheritance

pattern and is passed on by the mother, who is referred to as a carrier.

DMD is characterized by progressive muscle degeneration and weakness due to the alterations

of a protein called dystrophin that helps keep muscle cells intact. It is one of four conditions

known as dystrophinopathies. The other three diseases that belong to this group are:

I. Becker Muscular dystrophy (BMD, a mild form of DMD)

II. an intermediate clinical presentation between DMD and BMD

III. and DMD-associated dilated cardiomyopathy (heart-disease) with little or no clinical

skeletal, or voluntary, muscle disease.

DMD symptom onset is in early childhood, usually between ages 2 and 3. The disease primarily

affects boys, but in rare cases it can affect girls. As the disease progresses, muscle weakness

and atrophy spread to affect the trunk and forearms and gradually progress to involve additional

muscles of the body. [13] [14]

2.6.1 The dystrophin gene

The dystrophin gene spans a genomic range of greater than 2 Mb and encodes a large protein

(dystrophin) containing an N-terminal actin-binding domain and multiple spectrin repeats. The

protein that is encoded forms a component of the dystrophin-glycoprotein complex (DGC).

This bridges the inner cytoskeleton and the extracellular matrix. Duchenne muscular

dystrophy, Becker muscular dystrophy or cardiomyopathy may be caused by deletions,

duplications, and point mutations at the gene. Alternative promoter usage and alternative

splicing result in numerous distinct transcript variants and protein isoforms for this gene.

 15

As stated in the National Center for Biotechnology Information (NCBI), the cytogenetic

location of dystrophin is Xp21.2-p21.1, which is the short (p) arm of the X

chromosome between positions 21.2 and 21.1. The molecular location is made up of base pairs

31,119,219 to 33,339,460 on the X chromosome.

Figure 4: Chromosomal location. (reproduced from https://ghr.nlm.nih.gov)

The major DMD deletion is found between exons 45 and 53, thus making this a ‘hot spot’ area

for 70% of DMD patients. Notably, skipping exon 51 is predicted to ameliorate the dystrophic

phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used

animal model of DMD, although its mild phenotype limits its suitability in clinical trials.[15]

Mutations to the dystrophin gene are the main cause of DMD. Most commonly, one or more

exons are missing, and the remaining exons don’t fit together properly (exons are a portion of

the gene). Because of this error in the genetic instructions, cells cannot make dystrophin, the

protein that muscles need in order to working properly.[12]

2.6.2 Mutations

The four bases of adenine, cytosine, guanine and thymine are the fundamental building block

s of DNA. They are commonly known by their letters A, C, G, and T respectively.

Three billion of these letters form the entire manual for the construction and maintenance of t

he human body, but apparently tiny errors (mutations) can cause a disease.

Thousands of different mutations have been reported within the dystrophin gene. It is crucial

to remember that everyone contains mutations in some of our genes, although we commonly

do not comprehend it because the mutations do not have an effect on us in any substantial way.

The different types of mutations that can happen in the dystrophin gene are deletions,

duplications and point mutations.

 16

Figure 5: Schematic depiction of dystrophin transcripts in healthy, Duchenne muscular dystrophy (DMD) and Becker

muscular dystrophy (BMD) individuals (reproduced from Annemieke Aartsma-Rus, Ieke B. Ginjaar et al., Journal of

Medical Genetics, 53, 3, 2)

Deletions arise when pieces of the gene (known as exons) are missing. Small mutations can

result in a premature stop signal (stop mutations), or they can disrupt the genetic code (a small

deletion of duplication within and exon).[16]

Deletions of 1 or more exons are the most common sort of mutation. Since there are a complete

of 79 exons within the dystrophin gene, there are many specific deletions that can arise.

However, there are sure areas of the gene which might be more likely to have a deletion, and

these areas are referred to as “hot spots”. Exons 44-55 are a hot-spot vicinity for deletions.

Duplications occur while one or more exons in the gene are doubled. Duplications are not as

commonplace as deletions. Like deletions, duplications might occur in the course of all

seventy-nine exons of the dystrophin gene.

Point mutations are smaller changes in the gene that do not involve a whole exon. Sometimes

just one letter inside the DNA code is missing (deleted), doubled (duplicated), or changed. One

of the most common factor mutations is called a nonsense mutation. Nonsense mutations

motive a premature stop in the gene which leads to little or no dystrophin protein

production.[17]

Genetic therapy is promising due to the fact that the dystrophin gene is inserted. However,

several obstacles have been met along the way. The size of the dystrophin gene is the main

obstacle in gene therapy. Thus, smaller genes, micro or mini dystrophin, have been developed,

which can be inserted into a vector. The most suitable vector found so far is a virus associated

with the adenovirus, a non-pathogenic parvovirus, but it has been shown to cause an

immunological response. In order to assess the response, mdx mice dys-/dys- have been

created, and there is evidence that when the gene is injected, the dystrophin is partially

expressed, and muscular strength is improved. However, in preliminary studies on humans, 90

 17

days after treatment initiation this gene expression was not observed. Results suggest that the

success of this therapy is inhibited by cellular immunity.[18]

Exon-skipping therapy is one of the most promising therapeutic approaches aiming to restore

the expression of a shorter but functional dystrophin protein. The antisense field has

remarkably progress over the last years with recent accelerated approval of the first antisense

oligonucleotide-based therapy for DMD, Exon 51, though the therapeutic benefit remains to

be proved in patients. Despite clinical advances, the poor effective delivery to target all muscle

remains the main hurdle for antisense drug therapy.[19]

In the current thesis the main focus will be in genetic therapy, and more precisely in the method

of CRISPR using the enzyme Cas9.

2.6.3 Existing Crispr methods for potential DMD treatment

Below is a brief presentation of related works for the treatment of DMD using CRISPR Cas9:

Table 2: Related works targeting the DMD gene

Target Gene

Region

Protospacer sequence (5'-3')

Reference

DMD exon

44

CTTACAGGGAGAACTCCAGGA

[6]

DMD

introns 45-55

CTGGACGGAGCTGGTTTATCT

[20]

various

DMD

exon 23

indel

mutations

CTATCTGAGTGACACTGTGA

[21]

DMD exon

45

GGCTTACAGGAACTCCAGGA

[22]

Yi-Li Min. et. al. developed a patient-derived induced pluripotent stem cell (iPSCs) from a

DMD patient without exon 44 of the dystrophin gene (DMD). The regular dystrophin gene

from the sibling of the same patient was set as a healthy monitoring system. Deletion of exon

44 (Ex44) disrupts the open reading frame of dystrophin by inducing splicing in exon 43 to

exon 45 and the implementation of early termination codon. Using CRISPR-Cas9 gene editing

to skip exon 43, which allows splicing between exons 42 and 45, or to skip exon 45, which

allows splicing between exons 43 and 46, the reading frame can be restored. Alternatively, by

adding one nucleotide (+3n+1 insertion) or removing two nucleotides (+3n−2 deletion), the

reframing of exon 43 or 45 may restore the protein reading frame.[6]

 18

Courtney S. Young et. Al. developed a novel dystrophic mouse model by using CRISPR/Cas9

to delete exon 45 in the human DMD gene in DMD mice, which makes DMD out of frame.

They used this model to show that their clinically applicable CRISPR/Cas9 interface, which

targets the removal of human DMD exons 45–55, can be directly used in vivo to restore

dystrophin.[20]

Taeyoung Koo. et. al. used Cas9 which was extracted from S. Pyogens in order to produce

Dmd knockout mice with a frameshift mutation in the DMD gene. Then, they expressed

CjCas9, its single-guide RNA, and the EGFP gene in the tibialis anterior muscle of the Dmd

knockout mice using an all-in-one adeno-associated virus (AAV) vector. CjCas9 effectively

cut the target site in the DMD gene in vivo and caused minor insertions or deletions at the

target site. Their study resulted in the conversion of the damaged DMD reading frame from out

of frame to in frame, leading to the expression of dystrophin in the sarcolemma. Importantly,

muscle strength was improved in CjCas9-treated muscles, with no off-target mutations,

suggesting high efficiency and specificity of CjCas9. That study showed that CjCas9-mediated

in vivo DMD frame correction has significant potential for the treatment of DMD and other

neuromuscular diseases.[21]

Yu Zhang et. Al. loaded a Cas9 nuclease in a single-stranded AAV (ssAAV) and CRISPR

single-stranded AAV (scAAV) guide RNAs and supplied that dual AAV system to a DMD

mouse model. The dose of scAAV needed for effective genome editing was at least 20 times

lower than that of ssAAV. Mice undergoing systemic therapy demonstrated preserved

expression of dystrophin and strengthened muscle contractility. Their results indicated that the

performance of CRISPR-Cas9-mediated genome editing can be greatly increased by using the

scAAV method.[22]

2.7 Prime Editing

2.7.1 Prime editing strategy

Some genetic variants leading to various diseases are difficult to correct effectively and witho

ut surfeit by-products. Prime editing is a versatile and precise genome editing method that

directly writes new genetic information into a specified DNA site using a catalytically impaired

Cas9 endonuclease fused to an engineered reverse transcriptase, programmed with a prime

editing guide RNA (pegRNA) that both specifies the target site and encodes the desired edit.

Anzalone et. al, performed more than 175 edits in human cells, including targeted insertions,

deletions, and all 12 types of point mutation, without requiring double-strand breaks or donor

DNA templates.

Prime editing guide Ribonucleic Acid (pegRNA) is an important component of the Prime

Editing system due to the fact that it specifies the target site but also encodes the desired edit

and prime reverse transcription. The edit from the pegRNA is transferred into the target site

while, a branched intermediate is formed with two single strand DNA flaps; an unedited 5′ flap

and a 3′ flap with the edited sequence from the pegRNA.[23]

Prime editing was used in human cells to correct, efficiently and with few byproducts, the

primary genetic causes of sickle cell disease (requiring a transversion in HBB) and Tay–Sachs

disease (requiring a deletion in HEXA); to install a protective transversion in PRNP; and to

 19

insert various tags and epitopes precisely into target loci. Four human cell lines and primary

post-mitotic mouse cortical neurons support prime editing with varying efficiencies. Prime

editing presented higher or similar efficiency and fewer byproducts than homology-directed

repair, had complementary strengths and weaknesses compared to base editing, and induced

much lower off-target editing than Cas9 nuclease at known Cas9 off-target sites.

Prime editing substantially could expand the scope and capabilities of genome editing, and in

principle could correct up to 89% of known genetic variants associated with human diseases.

Cas9 targets DNA employing a direct RNA containing a spacer arrangement that hybridizes to

the target DNA site. Engineered guide RNAs were used in order to specify the DNA target.

Also, they contained new genetic information that replaces target DNA nucleotides. To

exchange data from these built direct RNAs to target DNA, the genomic DNA had to be

utilized, scratched at the target location to uncover a 3’-hydroxyl gather, to prime the

turnaround translation of an edit-encoding expansion on the built direct RNA (in the future

alluded to as the prime altering direct RNA, or pegRNA) straightforwardly into the target

location.[2]

Figure 6: Components of Prime Editing (reproduced from https://www.synthego.com/blog/prime-editing)

The main advantage of prime editing over CRISPR is that the first’s enzymes do not have to

break both strands of DNA to create changes, liberating researchers from depending on the

 20

cell’s DNA repair framework, which they cannot control to create the alters that they need.

This implies that prime editing might empower the advancement of medicines for hereditary

maladies caused by changes that are not effectively tended to by existing gene-editing

tools.[24]

This gene editing method shows high accuracy levels. Off-target cuts were below 10 percent,

and less than one-tenth of edited cells had unwanted changes to their genome. On the contrary

off-target cuts were up to 90 percent for first-gen CRISPR systems.[25]

Figure 7: Prime editing relies on precision editing (reproduced from Heidi Ledford, Super-precise new CRISPR tool could

tackle a plethora of genetic diseases, NLM (Medline), 2019).

This gene editing method shows high accuracy levels. Off-target cuts were below 10 percent,

and less than one-tenth of edited cells had unwanted changes to their genome. On the contrary

off-target cuts were up to 90 percent for first-gen CRISPR systems.[25]

2.7.2 Genes – Diseases correlations

We searched through bibliography given the gene names for the associated diseases described

in Anzalone et. al., in order to understand if there was a connection between the various

protospacers used in CRISPR experiments and the spacers used in Prime Editing.

All genes from ‘Search-and-replace genome editing without double-strand breaks or donor

DNA’ by Anzalone et. al, were bibliographically inspected in order to find each associated

disease.

 21

Table 3: Genes and related diseases.

The gene names as well as the associated diseases to each gene or coding protein were found

using GeneCards. GeneCards is a searchable, integrative database that provides

comprehensive, user-friendly information on all annotated and predicted human genes. The

knowledgebase automatically integrates gene-centric data from ~150 web sources, including

genomic, transcriptomic, proteomic, genetic, clinical and functional information.[17]

The following table shows the protospacers that were used in various CRISPR experiments.

Table 4: Protospacers used in various CRISPR experiments

Abbreviation Related Gene Associated Disease

HBB Hemoglobin Sickle cell disease

HEXA Hexosaminidase A

Tay–Sachs disease

HEK3 Ephrin type-A receptor 8

Epithelial ovarian cancer

HEK4 EPH receptor A3

Lung cancer

EMX1 Homeobox protein EMX1

Kallmann Syndrome and

Epileptic Encephalopathy

FANCF Fanconi anemia group F

protein

Fanconi Anemia

DNMT1 DNA (cytosine-5)-

methyltransferase 1

Certain human tumors and

developmental abnormalities

RUNX1 Runt-related transcription

factor 1

Several types of leukemia

VEGFA

Vascular Endothelial Growth

Factor A

 Microvascular Complications

of Diabetes 1 and Poems

Syndrome

RNF2

Ring Finger Protein 2

Angelman Syndrome

Gene

Protospacer used in CRISPR

Reference

HBB GTAACGGCAGACTTCTCCAC [26]

 22

The protospacers of the CRISPR experiments were the same with the spacers used in the prime

editing experiments described in Anzalone et. al.

Table 5: Protospacers used in CRISPR and spacers used in Prime Editing.

HEK3 GGCCCAGACTGAGCACGTGA

[27]

HEK4 GGCACTGCGGCTGGAGGTGG [28]

EMX1 GAGTCCGAGCAGAAGAAGAA [29]

FANCF GGAATCCCTTCTGCAGCACC [29]

DNMT1 GATTCCTGGTGCCAGAAACA [30]

RUNX1 GCATTTTCAGGAGGAAGCGA

[29]

VEGFA GATGTCTGCAGGCCAGATGA

[31]

RNF2 GTCATCTTAGTCATTACCTG [27]

Gene

Protospacers used in CRISPR

Spacer used in Prime Editing

HBB GTAACGGCAGACTTCTCCAC GTAACGGCAGACTTCTCCAC

*HEXA - GATCCTTCCAGTCAGGGCCAT

HEK3 GGCCCAGACTGAGCACGTGA

GGCCCAGACTGAGCACGTGA

HEK4 GGCACTGCGGCTGGAGGTGG GGCACTGCGGCTGGAGGTGG

EMX1 GAGTCCGAGCAGAAGAAGAA GAGTCCGAGCAGAAGAAGAA

FANCF GGAATCCCTTCTGCAGCACC GGAATCCCTTCTGCAGCACC

DNMT1 GATTCCTGGTGCCAGAAACA GATTCCTGGTGCCAGAAACA

RUNX1 GCATTTTCAGGAGGAAGCGA

GCATTTTCAGGAGGAAGCGA

VEGFA GATGTCTGCAGGCCAGATGA

GATGTCTGCAGGCCAGATGA

 23

For the HEXA gene, there was not found any CRISPR protospacer identical to the one

described in Anzalone et. al. The largest portion of the 3’ extension is common to the same

groups of pegRNAs (same pegRNAs refer to the same genomic group as HBB, HEXA etc).

Also, within this common sequence is the PBS (Primer Building Site) and the RT template. So,

the sequence that was changed every time in the 3’ extension among the same group of

pegRNAs was the RT template. Thus, Anzalone et. al. experimented on different templates in

order to find out which made the best repair.[2]

The complementary sequences were found using the online tool

http://arep.med.harvard.edu/labgc/adnan/projects/Utilities/revcomp.html

In the paper ‘Search-and-replace genome editing without double-strand breaks or donor DNA’

of Anzalone et. al, are presented the pegRNAs that had the highest biological efficiency in the

conducted experiments for each target gene. In the table below, those pegRNAs are given along

with the target gene.

2.8 Dystrophin gene and exon 44 mutation

The second most commonplace mutational hotspot in the dystrophin gene consists of exon 44,

which disrupts the open reading frame in surrounding exons. Deletion of exon 44 disrupts the

open analyzing frame of dystrophin through causing splicing of exon 43 to exon 45 and

introducing a premature termination codon.[6]

This would result in patients with DMD not having exon 44 in their mature mRNA. DNA

coding goes from exon 43 straight to 45, resulting in out of frame mutation. So, the DNA

deletion mutation would be corrected either at exon 43 or exon 45. In either case it can be done

by insertion of one bp or the deletion of two bps.

The sequence of both the coding and the non-coding strand were found using Benchling.[32]

Figure 8: Sequence of exon 44

Benchling is an online resource that helps researchers manage and coordinate laboratories and

experimental results by offering experimental design and data analysis software tools for the

molecular biology. Benchling provides tools for functions such as priming design and colony

counting, as well as CRISPR design guides and automated cloning of Gibson and Golden Gate.

Users can take data notes in line with data, link data through entries, keep files and data in one

place, and manage and monitor team progress.[33]

RNF2 GTCATCTTAGTCATTACCTG GTCATCTTAGTCATTACCTG

 24

3 The dataset

Anzalone et. al. shared with us the data that were produced from the experiments for both HBB

and HEXA genes. Both datasets included data for those genes from multiple experiments.

Those data included each pegRNA with the corresponding spacer sequence, the 3’ extension,

along with the PBS length and the RT template length. In order to use those data, we took and

trained the machine learning algorithms with the mean value of each correct edit.

The data described in the following sections were taken from Anzalone et. al. From the original

dataset, only data for the genes HBB and HEXA were kept.

Also, we kept the columns that provided the information for the 3’ extension sequence along

with the columns with the correct edit for each of the three replications. During the preprocess

of the dataset we computed ‘the mean of correct edit’, the percentage that showed the correct

edit of each 3’ extension.

Table 6: Sample of the dataset

pegRNA

Spacer sequence

3' extension

PBS

length

RT

tem
plat

e
len
gth

Mean of %
correct edit

(w/o
indels)

HEXAs 1 GATCCTTCCAGTCAGGGCCAT ATATCTTATGGCCCTGACTGGAA 13 14 0,24436087

HEXAs 2 GATCCTTCCAGTCAGGGCCAT TATATCTTATGGCCCTGACTGGAA 13 15
0,20043559
3

HEXAs 3 GATCCTTCCAGTCAGGGCCAT GTATATCTTATGGCCCTGACTGGAA 13 16 0,97492582

HEXAs 4 GATCCTTCCAGTCAGGGCCAT ACCGTATATCTTATGGCCCTGACTGGAA 13 19
3,50145735
7

HBB 3.7 GCATGGTGCACCTGACTCCTG AGACTTCTCCTCAGGAGTCAGGTGCAC 13 14
38,3423478
6

HBB 5.2 GCATGGTGCACCTGACTCCTG TAACGGCAGACTTCTCCTCAGGAGTCAGGTGCAC 13 19
30,6498218
4

HBB 5.3 GCATGGTGCACCTGACTCCTG ACGGCAGACTTCTCCTCAGGAGTCAGGTGCAC 13 17
34,2326691
5

HBB 5.4 GCATGGTGCACCTGACTCCTG GGCAGACTTCTCCTCAGGAGTCAGGTGCAC 13 16
43,9451287
1

4 Computational approach for pegRNAs creation

The protospacer that was used in the paper ‘CRISPR-Cas9 corrects Duchenne muscular

dystrophy exon 44 deletion mutations in mice and human cells’ was taken to be part of the

produced pegRNA. After an extensive bibliographic research, we concluded that all of the

protospacers used in various CRISPR-Cas 9 experiments, were part of the pegRNAs introduced

in Anzalone et. al. There were three steps followed to produce the pegRNA targeting the

dystrophy exon 44:

 25

1. The protospacer mentioned in the paper above was taken in order to be part of the

produced pegRNA.

2. The position of the mutation was detected within the gene. From bibliographic research

it resulted that the mutation was a small deletion. As a result, the cell skips the exon 43

and 45.

3. The protospacer position was found within the gene and it was placed precisely in the

same position as the 3' extension on the complementary chain.

Two rules applied in the creation of the pegRNA: as mentioned in the work of Anzalone et. al.,

the PBS length had to be between twelve to fifteen nucleotides and the RT template length had

to be equal or greater than seven nucleotides. Also, according to Anzalone et. al., the total

length of the pegRNA would be:

 For insertions 1bp to ≥ 44bp

 For deletions 1bp to ≥ 80bp

4.1 pegRNAs creation for reframing exon 45

In our approach, we created pegRNAs for both the insertion and deletion of bps in order to

repair the small deletion occurring in exon 44. In the case of insertion, the goal of the produced

pegRNAs was to insert +1bp in the exon 45, in order to reframe the genetic information. In the

case of deletion, we deleted -2 bp in order to achieve the reframing of the same exon.

As one could see from the image below, Yi-Li Min et. al. presented 34 different candidates for

CRISPR editing of exon 45 along with the wildcard gene (HC). The image presents an analysis

of the sgRNAs that target the splice acceptor or donor sites for exons 43 and 45, along with the

corresponding base modifications and the result in the dystrophin gene.

 26

Figure 9: Analysis of sgRNAs that target the splice acceptor or donor sites for exons 43 and 45 (reproduced from Yi-Li Min

et. al. Supplementary Materials for CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in

mice and human cells, Science Advances, 06 Mar 2019)

We chose to reproduce the candidates sgRNAs 1 and 2 through Prime Editing. The reason for

choosing only these two was the restrictions that are applied as described in Anzalone et. al.

For instance the candidate 11 was excluded, as we mentioned in the previous section the

maximum number of a pegRNAs for the case of a deletion would be of a maximum of 80bp.

Another example of an excluded candidate would be the sgRNA 32, as another restriction of

pegRNAs is that the edit should occur inside the PBS. As we can see the sgRNA 32 lacks most

of the bps that would be needed for creating the proportional PBS.

4.1.1 Insertion and deletion for reframing exon 45

Initial steps were followed so that the pegRNAs targeting exon 44 could be created:

1. Detection of the mutation in the mutant gene.

2. Detection of PAM site (NGG) next to the mutation site.

3. If there is a PAM site nearby, according to Anzalone et. al., the complementary to PAM

strand would be used for the creation of the RT template.

4. Selection of the length of both the RT template and the PBS.

More specifically, we started by searching Benchling for the DMD gene by giving the

chromosomal location and the desired organism (homo sapiens in our case study). Although,

the edited gene described in the paper by Min et. al., referred to the genomic loci of mus

musculus, we searched for the human DMD gene as that same genomic region is conserved by

a hundred percent among mus musculus and homo sapiens. After locating the exon 45, we

verified that the base pairs of the protospacer used in the Crispr experiment from Min et. al.

targeting the homonymous exon, were found in the beginning of the same exon. Having

 27

assumed that the top chain is the coding strand and the bottom is the non-coding strand the

protospacer orientation was on the left 5΄ and on the right 3΄. Counter to the coding strand, the

non-coding was 3΄ on the left and 5΄ on the right.

It is of vital importance to add that we tested our approach for an automated way of creating

the desired pegRNAs for both cases of exon 45, after testing the method on the data provided

by Anzalone et. al. As a result we produced the same pegRNAs mentioned in the supplementary

information of the paper “Search-and-replace genome editing without double-strand breaks or

donor DNA”, thus making the assumption that the procedure that we followed was correct.

Figure 10: Conserved region between the two species. (reproduced Yi-Li Min et. al., Supplementary Materials for

CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells,

Science Advances, 06 Mar 2019)

In order to understand how to locate the base pairs for the creation of the different RT

templates, we studied the HBB and HEXA spacers used in Anzalone et. al. Our study resulted

in a pattern where the first three bps of the minimum RT template would be the last three

complementary bps of the protospacer that are right next to the PAM site. As in our case study

we wanted to edit the gene by adding a +A for the reframing to happen, we added a +T at the

very beginning of the RT template. This was done, because as we concluded from studying

Anzalone et. al., the correct edit must be included in the RT template.

The next three bps added, resulting in a total of seven bp for the minimum RT template, were

the complementary bases moving downstream to the 5΄ end of the non-coding strand. We

created a total of twenty-three different RT templates by adding each time one bp to the

minimum RT template until the total number of bps of the maximum in length RT template

was twenty-nine. Anzalone et. al. had not mentioned anything about the total number of bps

for the RT template, but after studying thoroughly the supplementary material provided with

the main article, we concluded that the specific number of bps for the maximum in length RT

would be the desired one.

The location of the RT template revealed the bps of the minimum PBS, after studying the same

supplementary material we concluded that the first bp of the PBS would be right next to the

site where the RT template was found. Anzalone et. al. suggested that the PBS would be in

total length of minimum of 8 bps to a maximum of 15 bps. First, we created a minimum PBS

by adding seven more bps moving towards to the 3΄ end of the same strand, resulting in a total

of eight bps. In order to generate, the other PBS up to the maximum length, we added each one

bp moving again towards to the 3΄ end.

One hundred eighty-four different 3' extension were produced for reframing the dystrophin

gene by inserting a +A bp. All sequences are shown in 5’ to 3’ orientation. The 3’ extensions

contain both the PBS and the RT template.

 28

It is very important to point out that Anzalone et. al. recommends designing pegRNAs such

that the first base of the 3’ extension is not C. As, a result we did not keep any 3’ extensions

that the first bp was C.

4.1.2 Pseudocode for generating the 3’ extensions for insertion

A more detailed guide with the initial steps for generating the 3’ extensions is presented below:

1. Search Benchling for the DMD gene by giving the chromosomal location and the

desired organism (homo sapiens).

2. Locate the target exon.

3. Verify that the base pairs of the protospacer used in the Crispr experiment. targeting

the homonymous exon, were found in the beginning of the same exon.

4. The first three bps of the minimum RT template would be the last three complementary

bps of the protospacer that are right next to the PAM site.

5. Inputs:

a. Coding strand of the targeted exon e.g.,

“AAAAAGACATGGGGCTTCATTTTTGTTTTGCCTTTTTGGTATCTTACAGGAACTCCAGG

ATGGCATTGGGCAGCGGCAAACTGTTGTCAGAACATTGAATGCAACTGGGGAAGAAATA

ATTCAGCAATCCTCAAAAACAGATGCCAGTATTCTACAGGAAAAATTGGGAAGCCTGAAT

CTGCGGTGGCAGGAGGTCTGCAAACAGCTGTCAGACAGAAAA”

b. PAM sequence e.g., “TGG”

c. Protospacer sequence e.g., “CTTACAGGAACTCCAGGA”

d. Place the correct base or bases that will be inserted e.g., “T”

6. Calculations:

a. Find the PAM sequence

b. Find the protospacer sequence

c. Create the minimum RT Template by adding the next three bps of the PAM,

resulting in a total of seven bp

d. Generate multiple RT templates by adding each time one bp to the minimum

RT template until the total number of bps of the maximum in length RT template

is 29.

e. Based on the location of the RT template find the bps of the minimum PBS (the

first bp of the PBS would be right next to the site where the RT template was

found).

f. Create the minimum PBS by adding seven more bps moving towards to the 3΄

end of the same strand.

g. Merge all the produced PBS and RT Templates, to generate the 3΄ extensions

All the same steps apply for the case of deletion with the only difference, that one does not

have to input any base or bases, as the protospacer that would be inputted carries the deleted

base or bases.

 29

5 Selection of the most promising pegRNAs using machine learning

Due to the huge volume of data produced by the in vivo and in vitro experiments, the need for

in silico experiments arises. Machine learning could potentially help eliminate the need for

making all of those experiments happen. Our goal is to produce a tool that could help Biologists

chose the most efficient pegRNAs for gene editing by using mainly computational methods.

This could be done by finding the optimal algorithms for each specific biological problem and

each time tuning the algorithmic parameters so that scientists could achieve the same results

but without the need of exhausting all of the laboratory resources and time needed.

Different algorithms were tested on the data in order to find the one that could predict the target

variable more precisely. Those algorithms were: Multiple Linear Regression, Support Vector

Regression, Random Forest Regressor and Gradient Boosting Regressor.

5.1 Multiple Linear Regression

Multiple linear regression (MLR), also known simply as multiple regression, is a statistical

technique that predicts the outcome of a response variable using many explanatory variables.

Multiple linear regression (MLR) is intended to model the causal relationship between the

explanatory (independent) variables and the variable response (dependent).[34]

5.2 Support Vector Regression

Support Vector Machines are very different algorithm types, distinguished by the use of

kernels, lack of local minima, sparse solution and capacity control obtained by acting on the

edge, or number of support vectors, etc. They were conceived by Vladimir Vapnik and his

colleagues, and first presented with the paper at the 1992 Conference on Computational

Learning Theory (COLT). All these nice features were however already present in machine

learning since the 1960s: use of kernels by wide margin hyper planes, geometric representation

of kernels as internal products in a feature space. Different methods of optimization were used

in pattern recognition and there was widespread discussion of sparseness methods. The use of

slack variables was implemented in the 1960s to address noise in the data and non-

separability.[35]

5.3 Random Forest Regressor

A random forest is a meta estimator that matches a number of decision trees on different dataset

sub-samples to be listed. This algorithm makes use of average to improve predictive accuracy

and over-fitting power. The sub-sample size is always the same as the original input sample

size but the samples are drawn with replacement if bootstrap is True (default).[36]

 30

Figure 11: Structure of the Random Forests regressor (reproduced from Liarokapis et al., Learning the Post-Contact

Reconfiguration of the Hand Object System for Adaptive Grasping Mechanisms, Conference: IEEE/RSJ)

5.4 Gradient Boosting Regressor

The logic behind gradient boosting is basic, as it could be seen instinctively, without utilizing

scientific documentation. A basic assumption of linear regression is that sum of its residuals is

0, i.e. the residuals should be spread randomly around zero.
Now think of those residuals as errors committed by our model of predictors. While tree-based

models are not based on these assumptions, if we think about this assumption logically, we

might say that if we can see any residual pattern about 0, we can use that pattern to match a

standard.[37]

5.5 Experimental settings

For applying the machine learning algorithms on the dataset, we tested the data on various train

/ test splits, and we concluded that the ideal percentage, was 70% for training the algorithms

and 30% for testing. To decide the optimal values to be used for our model hyperparameters

from a given range of values, we then used the grid search cross validation method from the

Scikit-Learn library.

For the Gradient Boosting Regressor algorithm, we chose to optimize the four

hyperparameters: learning rate, max-depth, max-features and min-samples-leaf.

• Max_depth = overall depth of the tree

• Learning_rate = shrinks the contribution of each tree by learning_rate

• Max-features = the number of features to consider when looking for the best split

 31

• Min_samples_leaf = the minimum number of samples required to be at a leaf node. A

split point at any depth will only be considered if it leaves at

least min_samples_leaf training samples in each of the left and right branches.[38]

Although model parameters such as the slope and intercept in a linear regression are learned

during training, hyperparameters must be set by the data scientist before training.

Hyperparameters include, in the case of a random forest, the number of decision trees in

the forest and the number of characteristics considered by each tree when splitting a node.

(The variables and thresholds used to break every node learned during training are the

parameters of a random forest). For all models, Scikit-Learn introduces a set of rational

default hyperparameters, but these are not guaranteed to be optimal for a problem. In

general, it is difficult to decide the best hyperparameters in advance, and tuning a model is

where machine learning transforms from science into trial-and-error-based engineering.

Hyperparameter tuning depends more on experimental results than on theory, so trying

several different combinations to test the output of and model is the best way to decide the

optimal settings. In machine learning, however, testing each model only on the training set

can lead to one of the most fundamental problems: overfitting. The hyperparameters that

were searched were:

• n_estimators = number of trees in the forest

• max_features = max number of features considered for splitting a node

• max_depth = max number of levels in each decision tree

• min_samples_split = min number of data points placed in a node before the node is split

• min_samples_leaf = min number of data points allowed in a leaf node

• bootstrap = method for sampling data points (with or without replacement)

5.5.1 Parameters tuning – Grid Search with Cross Validation

Grid Search was used for finding the best Model parameters for the dataset. Although model

parameters are learned during training — like the slope and intercept in a linear regression —

one must set hyperparameters prior to training. In the case of a random forest, the

hyperparameters include the number of decision trees in the forest and the number of

characteristics that each tree considers when dividing a node. (The variables and thresholds

used to split each node learned during training are the parameters of a random forest). For all

models, Scikit-Learn implements a set of sensible default hyperparameters but these are not

guaranteed to be optimal for a problem. It is generally difficult to decide the best

hyperparameters in advance, and tuning a model is where machine learning transforms from a

science into trial-and - error dependent engineering.

Hyperparameter tuning depends more on experimental tests than on theory, and so the best way

to assess the optimal settings is to try to test the output of each model in several different

combinations. Evaluating each model only on the training set, however, will result in one of

the most basic machine learning problems: overfitting. If model is optimized for the training

data, it will perform very well on the training set, but it will not be able to generalize to new

data as in a test set for example. This is known as overfitting, or simply designing a model that

knows the training set very well but cannot be applied to new problems when a model performs

strongly on the training set but poorly on the test set.[39]

First, GridSearchCV was imported from the Scikit-Learn library, which is a python machine

learning library. GridSearchCV's estimator parameter includes the model that was used for the

 32

method of tuning the hyper-parameter. We used the GridSearchCV for the Random Forest

Regressor and the Gradient Boosting Regressor. Also, we further divided our training set into

K=10 numbers of subsets, called folds, in K-Fold CV. We then fit the model 10 times

iteratively, training the data on K-1 of the folds each time and evaluating on the 10th fold

(called the validation data) each time. We averaged the results on and of the folds at the very

end of training to come up with final validation metrics for the model.

5.6 Feature representation

In order to train a machine learning algorithm on the data, the input DNA sequences are

required to be encoded as numerical values and represented as either vectors or multi-

dimensional matrices.[40]

There are many approaches for Machine Learning with DNA sequence data, in the current

work we used three different ways of encoding the sequence information:

1. ordinal vectors

2. one-hot encoding

3. k-mer counting

When a sequence is coded based on its nucleotide composition, it essentially results in a

multidimensional vector which dimensions depend on the original sequence length. The

problem that we had to deal with was that when converting sequences of different length using

ordinal vectors and one hot encoding, the generated vectors had different sizes, thus resulting

to NaN values between the vectors mismatches. To overcome this, we tried two different

approaches. The first was to replace the NaN values with zeros and the second was to convert

the vectorized sequences to same length before training the algorithms on the data.

In the following sections, the different nucleotide representations will be analyzed thoroughly.

5.6.1 Encoding DNA sequence data

5.6.1.1 Ordinal Vectors

Ordinal encoding is to encode each nucleotide characters as an ordinal value. For example,

“ATGC” becomes [0.25, 0.5, 0.75, 1.0]. Any other base such as “N” can be a 0. According to

the paper "Evaluation of Convolutionary Neural Networks Modeling of DNA Sequences using

Ordinal versus one-hot Encoding Method" by Allen Chieng, Hoon Choong and Nung Kion

Lee, was shown that this way of encoding of the nucleotides characters worked well.[40]

Table 7: Performance of the algorithms using the window approach and the zero padding.

Vectorized sequences – window

approach

Vectorized sequences – zero

padding

Metrics
Random Forest

Regressor

Gradient

Boosting

Regressor

Random Forest

Regressor

Gradient

Boosting

Regressor

 33

Mean

Absolute

Error (MAE)

4.731 3.431 4.940 3.202

Root-Mean-

Square Error
37.979 25.567 55.647 61.254

(RMSE)

Mean

Squared

Error (MSE)

6.162 5.056 7.459 7.826

5.6.1.2 One hot encoding

One-hot encoding is widely used in deep learning methods and lends itself well to algorithms

like convolutional neural networks. In this example, “ATGC” would become [0,0,0,1],

[0,0,1,0], [0,1,0,0], [1,0,0,0]. And these one-hot encoded vectors can either be concatenated or

turned into 2 dimensional arrays.[41]

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

Mean Absolute Error (MAE) Root-Mean-Square Error (RMSE) Mean Squared Error (MSE)

Evaluation Metrics for Ordinal Vectos

Random Forest Regressor - windows approach Gradient Boosting Regressor - windows approach

Random Forest Regressor - zero padding Gradient Boosting Regressor - zero padding

 34

5.6.1.3 K-mer counting

A problem that remains is that none of these approaches lead to uniform length vectors, and

that is a prerequisite to feed data to a classification or regression algorithm. For the ordinal

vector approach, you need to resort to stuff like truncating sequences or padding for "n" or "0

"to get uniform length vectors.

DNA and protein sequences can be interpreted as the language of creation, metaphorically.

The language encodes instructions, as well as work for the molecules present in all types of

life.

The comparison of sequence language continues with the genome as the terms text,

subsequences (genes and gene families) are sentences and chapters, k-mers and peptides

(motifs), and nucleotide bases and amino acids are the alphabets.

The method that was used takes the long biological sequence first and splits it into k-mer length

overlapping “words”. For example, if “words” of length 6 (hexamers) are used, “AGACTTCT”

becomes: ‘AGACTT’, ‘GACTT’, ‘ACTTCT’.

In genomics such types of manipulations as are referred as "k-mer counting," or counting each

possible k-mer sequence occurrences. Specialized tools are available for this but the natural

language processing tools from Python make it simple.[41]

For training thee algorithms the dataset was split at a ratio of 70/30 for training and testing

respectively. Grid search was used to find the best parameters for both the Random Forest

Regressor and the Gradient Boosting Regressor. (Error! Reference source not found.)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Mean Absolute Error (MAE) Root-Mean-Square Error
(RMSE)

Mean Squared Error (MSE)

Evaluation Metrics for One-hot Encoding

Random Forest Regressor - window approach Gradient Boosting Regressor - window approach

Random Forest Regressor - zero padding Gradient Boosting Regressor - zero padding

 35

For the purpose of finding the optimal performance for both the algorithms used, we tested the

algorithms with k-mers of length 3,4,5 and 6. After creating the k-mers along with the

corresponding vocabulary, the count vectorizing module was used from Scikit-Learn Natural

Language Processing library.

The last step before training the algorithms was to create vectors that had a dimensionality

equal to the size of the vocabulary created. If the text data featured that vocab word, a one was

put in that dimension. Every time that word was encountered again, the count would increase,

leaving 0s everywhere the word was not found even once.

0.00

5.00

10.00

15.00

20.00

25.00

Mean Absolute Error (MAE)
Root-Mean-Square Error

(RMSE)
Mean Squared Error (MSE)

Evaluation Metrics for K-mer counting

Random Forest Regressor - k=3 Gradient Boosting Regressor - k=3 Random Forest Regressor - k=4

Gradient Boosting Regressor - k=4 Random Forest Regressor - k=5 Gradient Boosting Regressor - k=5

Random Forest Regressor - k=6 Gradient Boosting Regressor - k=6

 36

6 Experimental results

6.1 Algorithms performance

In general, Gradient Boosting Regressor had the best performance on the data in comparison

with the Random Forest Regressor, regardless of the metric or the number of k. For the window

method, Multiple Linear Regression and Support Vector Regression had the worst performance

on the dataset. Multiple Linear Regression showed to have the best overall performance for k-

mers, and specifically for k=3.

Also, from the above plot we could see that regardless of the algorithm used, k-mer counting

appeared to have the best performance.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Mean Absolute Error (MAE)
Root-Mean-Square Error

(RMSE) Mean Squared Error (MSE)

Algorithms and representations performance

Random Forest Regressor – Ordinal Vectors Gradient Boosting Regressor – Ordinal Vectors

Random Forest Regressor – One hot encoding Gradient Boosting Regressor – One hot encoding

Random Forest Regressor – kmer counting Gradient Boosting Regressor – kmer counting

 37

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Root-Mean-Square Error (RMSE)

One - hot encoding RMSE

Random Forest Regressor - windows approach Gradient Boosting Regressor - windows approach

Random Forest Regressor - zero padding Gradient Boosting Regressor - zero padding

Multiple Linear Regression - windows approach Support Vector Regression - windows approach

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Root-Mean-Square Error (RMSE)

Ordinal Vectos RMSE

Random Forest Regressor - windows approach Gradient Boosting Regressor - windows approach

Random Forest Regressor - zero padding Gradient Boosting Regressor - zero padding

Multiple Linear Regression - windows approach Support Vector Regression - windows approach

 38

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

Root-Mean-Square Error
(RMSE)

K-mer counting for k = 3 RMSE

Random Forest Regressor Gradient Boosting Regressor

Multiple Linear Regression Support Vector Regression

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

Root-Mean-Square Error (RMSE)

Evaluation Metrics for Window approach

Random Forest Regressor - Ordinal Vectors Gradient Boosting Regressor - Ordinal Vectors

Random Forest Regressor - One hot encoding Gradient Boosting Regressor - One hot encoding

Multiple Linear Regression - Ordinal Vectors Support Vector Regression - Ordinal Vectors

Multiple Linear Regression - One hot encoding Support Vector Regression - One hot encoding

 39

7 Conclusions and future work

In the current diploma thesis, we tried to create pegRNAs for use in prime editing, for the

potential treatment of Duchene Muscular Dystrophy, and more specifically the mutation at

exon 44 described in Yi-Li Min et. al. We took the protospacers that were used in CRISPR

experiments and found through an extensive bibliographic research that the same protospacers

are part of the pegRNAs used in prime editing. Also, we suggested an automated way of

creating pegRNAs and we tried to evaluate them with machine learning algorithms.

As we mentioned in previous sections, we trained the algorithms on the data for HBB and

HEXA provided to us by Anzalone et. al. The same algorithms were tested on the produced

pegRNAs, in order to find those that would result in high biological efficiency. The most

promising pegRNAs for both the case of insertion and deletion were kept. Likewise, the case

that we studied for HBB and HEXA, we kept the pegRNAs that its mean of correct edit

exceeded the scaffold of 14%.

As shown in the previous section multiple algorithms were tested as well as three approaches

of encoding the data. Of all the algorithms tested, the Random Forest Regressor using the kmers

approach, showed the best overall performance in predicting the efficiency of the pegRNAs.

We suggest that the current thesis would help researchers to automate the creation and

evaluation of pegRNAs even for other more complex diseases. Through our computational

work we concluded that every protospacer used in CRISPR could be used as part of the

pegRNA that could potentially be used in prime editing. Future researchers should bear in mind

that the total length of each pegRNA should not exceed the number of 44 bps for insertion and

80 bps for deletions, and the first bp should not be a Cytosine as highlighted in Anzalone et. al.

Also, we suggest that additional experiments should be made with data from other experiments

using CRISPR gene-editing, utilizing machine learning in order to find the best candidates for

transitioning from CRISPR to prime editing.

 40

Appendix

Table 8: Complete list of produced pegRNAs for reframing the exon 45, insertion.

pegRNA

spacer 3’ extension (5' to 3')

DMD 1 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTC

DMD 2 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTC

DMD 3 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTC

DMD 4 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTC

DMD 5 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTC

DMD 6 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTC

DMD 7 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTC

DMD 8 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTC

DMD 9 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTC

DMD 10 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTC

DMD 11 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTC

DMD 12 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTC

DMD 13 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTC

DMD 14 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTC

DMD 15 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTC

DMD 16 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTC

DMD 17 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTC

DMD 18 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTC

DMD 19 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTC

DMD 20 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTC

DMD 21 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTC

DMD 22 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTC

DMD 23 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTC

DMD 24 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCC

DMD 25 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCC

DMD 26 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCC

DMD 27 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCC

DMD 28 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCC

DMD 29 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTCC

DMD 30 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTCC

DMD 31 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTCC

DMD 32 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTCC

DMD 33 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTCC

DMD 34 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTCC

DMD 35 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTCC

DMD 36 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTCC

DMD 37 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTCC

DMD 38 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTCC

DMD 39 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTCC

DMD 40 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTCC

DMD 41 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTCC

DMD 42 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTCC

DMD 43 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTCC

DMD 44 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTCC

DMD 45 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTCC

 41

DMD 46 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTCC

DMD 47 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCT

DMD 48 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCT

DMD 49 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCT

DMD 50 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCT

DMD 51 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCT

DMD 52 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCT

DMD 53 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTCCT

DMD 54 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTCCT

DMD 55 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTCCT

DMD 56 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTCCT

DMD 57 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTCCT

DMD 58 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTCCT

DMD 59 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTCCT

DMD 60 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTCCT

DMD 61 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTCCT

DMD 62 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTCCT

DMD 63 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTCCT

DMD 64 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTCCT

DMD 65 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTCCT

DMD 66 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTCCT

DMD 67 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTCCT

DMD 68 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTCCT

DMD 69 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTCCT

DMD 70 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG

DMD 71 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG

DMD 72 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG

DMD 73 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG

DMD 74 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG

DMD 75 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG

DMD 76 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG

DMD 77 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTCCTG

DMD 78 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTCCTG

DMD 79 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTCCTG

DMD 80 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTCCTG

DMD 81 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTCCTG

DMD 82 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTCCTG

DMD 83 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTCCTG

DMD 84 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTCCTG

DMD 85 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTCCTG

DMD 86 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTCCTG

DMD 87 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTCCTG

DMD 88 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTCCTG

DMD 89 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTCCTG

DMD 90 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTCCTG

DMD 91 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTCCTG

DMD 92 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTCCTG

DMD 93 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT

DMD 94 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT

DMD 95 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT

DMD 96 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT

 42

DMD 97 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT

DMD 98 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT

DMD 99 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT

DMD 100 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT

DMD 101 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTCCTGT

DMD 102 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTCCTGT

DMD 103 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTCCTGT

DMD 104 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTCCTGT

DMD 105 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTCCTGT

DMD 106 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTCCTGT

DMD 107 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTCCTGT

DMD 108 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTCCTGT

DMD 109 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTCCTGT

DMD 110 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTCCTGT

DMD 111 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTCCTGT

DMD 112 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTCCTGT

DMD 113 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTCCTGT

DMD 114 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTCCTGT

DMD 115 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTCCTGT

DMD 116 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 117 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 118 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 119 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 120 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 121 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 122 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 123 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 124 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 125 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 126 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 127 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 128 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 129 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 130 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTCCTGTA

DMD 131 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTCCTGTA

DMD 132 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTCCTGTA

DMD 133 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTCCTGTA

DMD 134 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTCCTGTA

DMD 135 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTCCTGTA

DMD 136 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTCCTGTA

DMD 137 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTCCTGTA

DMD 138 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTCCTGTA

DMD 139 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 140 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 141 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 142 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 143 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 144 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 145 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 146 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 147 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA

 43

DMD 148 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 149 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 150 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 151 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 152 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 153 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 154 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTCCTGTAA

DMD 155 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTCCTGTAA

DMD 156 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTCCTGTAA

DMD 157 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTCCTGTAA

DMD 158 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTCCTGTAA

DMD 159 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTCCTGTAA

DMD 160 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTCCTGTAA

DMD 161 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTCCTGTAA

DMD 162 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 163 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 164 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 165 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 166 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 167 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 168 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 169 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 170 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 171 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 172 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 173 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 174 CTTACAGGAACTCCAGGA CTGCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 175 CTTACAGGAACTCCAGGA TGCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 176 CTTACAGGAACTCCAGGA GCCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 177 CTTACAGGAACTCCAGGA CCCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 178 CTTACAGGAACTCCAGGA CCAATGCCATCCTTGGAGTTCCTGTAAG

DMD 179 CTTACAGGAACTCCAGGA CAATGCCATCCTTGGAGTTCCTGTAAG

DMD 180 CTTACAGGAACTCCAGGA AATGCCATCCTTGGAGTTCCTGTAAG

DMD 181 CTTACAGGAACTCCAGGA ATGCCATCCTTGGAGTTCCTGTAAG

DMD 182 CTTACAGGAACTCCAGGA TGCCATCCTTGGAGTTCCTGTAAG

DMD 183 CTTACAGGAACTCCAGGA GCCATCCTTGGAGTTCCTGTAAG

DMD 184 CTTACAGGAACTCCAGGA CCATCCTTGGAGTTCCTGTAAG

Table 9: Complete list of produced pegRNAs for reframing exon 45, deletion.

pegRNA

spacer 3’ extension (5' to 3')

DMD 1 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTC

DMD 2 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTC

DMD 3 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTC

DMD 4 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTC

DMD 5 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTC

DMD 6 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTC

DMD 7 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTC

DMD 8 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTC

DMD 9 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTC

DMD 10 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTC

 44

DMD 11 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTC

DMD 12 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTC

DMD 13 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTC

DMD 14 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTC

DMD 15 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTC

DMD 16 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTC

DMD 17 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTC

DMD 18 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTC

DMD 19 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTC

DMD 20 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTC

DMD 21 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTC

DMD 22 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTC

DMD 23 CTTACAGGAACTCCAGGA TGCCATTGGAGTTC

DMD 24 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCC

DMD 25 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCC

DMD 26 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCC

DMD 27 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCC

DMD 28 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTCC

DMD 29 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTCC

DMD 30 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTCC

DMD 31 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTCC

DMD 32 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTCC

DMD 33 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTCC

DMD 34 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTCC

DMD 35 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTCC

DMD 36 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTCC

DMD 37 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTCC

DMD 38 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTCC

DMD 39 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTCC

DMD 40 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTCC

DMD 41 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTCC

DMD 42 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTCC

DMD 43 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTCC

DMD 44 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTCC

DMD 45 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTCC

DMD 46 CTTACAGGAACTCCAGGA TGCCATTGGAGTTCC

DMD 47 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCT

DMD 48 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCT

DMD 49 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCT

DMD 50 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCT

DMD 51 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCT

DMD 52 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTCCT

DMD 53 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTCCT

DMD 54 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTCCT

DMD 55 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTCCT

DMD 56 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTCCT

DMD 57 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTCCT

DMD 58 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTCCT

DMD 59 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTCCT

DMD 60 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTCCT

DMD 61 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTCCT

 45

DMD 62 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTCCT

DMD 63 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTCCT

DMD 64 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTCCT

DMD 65 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTCCT

DMD 66 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTCCT

DMD 67 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTCCT

DMD 68 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTCCT

DMD 69 CTTACAGGAACTCCAGGA TGCCATTGGAGTTCCT

DMD 70 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTG

DMD 71 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTG

DMD 72 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTG

DMD 73 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTG

DMD 74 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTG

DMD 75 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTG

DMD 76 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTCCTG

DMD 77 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTCCTG

DMD 78 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTCCTG

DMD 79 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTCCTG

DMD 80 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTCCTG

DMD 81 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTCCTG

DMD 82 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTCCTG

DMD 83 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTCCTG

DMD 84 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTCCTG

DMD 85 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTCCTG

DMD 86 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTCCTG

DMD 87 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTCCTG

DMD 88 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTCCTG

DMD 89 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTCCTG

DMD 90 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTCCTG

DMD 91 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTCCTG

DMD 92 CTTACAGGAACTCCAGGA TGCCATTGGAGTTCCTG

DMD 93 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT

DMD 94 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT

DMD 95 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT

DMD 96 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT

DMD 97 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT

DMD 98 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT

DMD 99 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT

DMD 100 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTCCTGT

DMD 101 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTCCTGT

DMD 102 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTCCTGT

DMD 103 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTCCTGT

DMD 104 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTCCTGT

DMD 105 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTCCTGT

DMD 106 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTCCTGT

DMD 107 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTCCTGT

DMD 108 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTCCTGT

DMD 109 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTCCTGT

DMD 110 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTCCTGT

DMD 111 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTCCTGT

DMD 112 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTCCTGT

 46

DMD 113 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTCCTGT

DMD 114 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTCCTGT

DMD 115 CTTACAGGAACTCCAGGA TGCCATTGGAGTTCCTGT

DMD 116 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA

DMD 117 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA

DMD 118 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA

DMD 119 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA

DMD 120 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA

DMD 121 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA

DMD 122 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA

DMD 123 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA

DMD 124 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTCCTGTA

DMD 125 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTCCTGTA

DMD 126 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTCCTGTA

DMD 127 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTCCTGTA

DMD 128 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTCCTGTA

DMD 129 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTCCTGTA

DMD 130 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTCCTGTA

DMD 131 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTCCTGTA

DMD 132 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTCCTGTA

DMD 133 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTCCTGTA

DMD 134 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTCCTGTA

DMD 135 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTCCTGTA

DMD 136 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTCCTGTA

DMD 137 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTCCTGTA

DMD 138 CTTACAGGAACTCCAGGA TGCCATTGGAGTTCCTGTA

DMD 139 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 140 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 141 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 142 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 143 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 144 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 145 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 146 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 147 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 148 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 149 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 150 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 151 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 152 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 153 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTCCTGTAA

DMD 154 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTCCTGTAA

DMD 155 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTCCTGTAA

DMD 156 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTCCTGTAA

DMD 157 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTCCTGTAA

DMD 158 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTCCTGTAA

DMD 159 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTCCTGTAA

DMD 160 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTCCTGTAA

DMD 161 CTTACAGGAACTCCAGGA TGCCATTGGAGTTCCTGTAA

DMD 162 CTTACAGGAACTCCAGGA ACAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 163 CTTACAGGAACTCCAGGA CAACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG

 47

DMD 164 CTTACAGGAACTCCAGGA AACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 165 CTTACAGGAACTCCAGGA ACAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 166 CTTACAGGAACTCCAGGA CAGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 167 CTTACAGGAACTCCAGGA AGTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 168 CTTACAGGAACTCCAGGA GTTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 169 CTTACAGGAACTCCAGGA TTTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 170 CTTACAGGAACTCCAGGA TTGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 171 CTTACAGGAACTCCAGGA TGCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 172 CTTACAGGAACTCCAGGA GCCGCTGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 173 CTTACAGGAACTCCAGGA CCGCTGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 174 CTTACAGGAACTCCAGGA CGCTGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 175 CTTACAGGAACTCCAGGA GCTGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 176 CTTACAGGAACTCCAGGA CTGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 177 CTTACAGGAACTCCAGGA TGCCCAATGCCATTGGAGTTCCTGTAAG

DMD 178 CTTACAGGAACTCCAGGA GCCCAATGCCATTGGAGTTCCTGTAAG

DMD 179 CTTACAGGAACTCCAGGA CCCAATGCCATTGGAGTTCCTGTAAG

DMD 180 CTTACAGGAACTCCAGGA CCAATGCCATTGGAGTTCCTGTAAG

DMD 181 CTTACAGGAACTCCAGGA CAATGCCATTGGAGTTCCTGTAAG

DMD 182 CTTACAGGAACTCCAGGA AATGCCATTGGAGTTCCTGTAAG

DMD 183 CTTACAGGAACTCCAGGA ATGCCATTGGAGTTCCTGTAAG

DMD 184 CTTACAGGAACTCCAGGA TGCCATTGGAGTTCCTGTAAG

 48

Bibliography:

[1] “Genetic Engineering - an overview | ScienceDirect Topics.” [Online]. Available:

https://www.sciencedirect.com/topics/neuroscience/genetic-engineering. [Accessed:

22-Nov-2020].

[2] A. V Anzalone et al., “Search-and-replace genome editing without double-strand

breaks or donor DNA,” Nature, Oct. 2019.

[3] G. A. R. Gonçalves and R. de M. A. Paiva, “Gene therapy: advances, challenges and

perspectives,” Einstein (Sao Paulo, Brazil), vol. 15, no. 3. Instituto de Ensino e

Pesquisa Albert Einstein, pp. 369–375, 01-Jul-2017.

[4] F. Camastra, M. D. Di Taranto, and A. Staiano, “Statistical and Computational

Methods for Genetic Diseases: An Overview,” Computational and Mathematical

Methods in Medicine, vol. 2015. Hindawi Publishing Corporation, 2015.

[5] V. A. Padilha, O. S. Alkhnbashi, S. A. Shah, A. C. P. L. F. de Carvalho, and R.

Backofen, “CRISPRcasIdentifier: Machine learning for accurate identification and

classification of CRISPR-Cas systems,” Gigascience, vol. 9, no. 6, pp. 1–12, Jun.

2020.

[6] Y. L. Min et al., “CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44

deletion mutations in mice and human cells,” Sci. Adv., vol. 5, no. 3, 2019.

[7] J. R. Costa, B. E. Bejcek, J. E. McGee, A. I. Fogel, K. R. Brimacombe, and R.

Ketteler, Genome Editing Using Engineered Nucleases and Their Use in Genomic

Screening. 2004.

[8] Addgene, “Addgene CRISPR Guide,” 2018. [Online]. Available:

https://www.addgene.org/guides/crispr/. [Accessed: 16-Dec-2019].

[9] J. G. Doench et al., “Optimized sgRNA design to maximize activity and minimize off-

target effects of CRISPR-Cas9,” Nat. Biotechnol., vol. 34, no. 2, pp. 184–191, 2016.

[10] T. W. Y. Wong and R. D. Cohn, “Therapeutic Applications of CRISPR/Cas for

Duchenne Muscular Dystrophy,” Curr. Gene Ther., vol. 17, no. 4, Nov. 2017.

[11] “Duchenne muscular dystrophy | Genetic and Rare Diseases Information Center

(GARD) – an NCATS Program.” [Online]. Available:

https://rarediseases.info.nih.gov/diseases/6291/duchenne-muscular-dystrophy.

[Accessed: 08-Jan-2020].

[12] “The Role of Dystrophin in Duchenne | Duchenne.com.” [Online]. Available:

https://www.duchenne.com/importance-of-dystrophin. [Accessed: 09-Nov-2019].

[13] “Duchenne Muscular Dystrophy (DMD) | Muscular Dystrophy Association.” [Online].

Available: https://www.mda.org/disease/duchenne-muscular-dystrophy. [Accessed:

08-Nov-2019].

[14] “Duchenne Muscular Dystrophy - NORD (National Organization for Rare Disorders).”

[Online]. Available: https://rarediseases.org/rare-diseases/duchenne-muscular-

dystrophy/. [Accessed: 08-Jan-2020].

[15] G. L. Walmsley et al., “A duchenne muscular dystrophy gene hot spot mutation in

dystrophin-deficient Cavalier King Charles Spaniels is amenable to exon 51 skipping,”

PLoS One, vol. 5, no. 1, Jan. 2010.

[16] “Taken from www.dmd.nl/gt. Mutation specific therapies.”

[17] “Types of Mutations - Parent Project Muscular Dystrophy.” [Online]. Available:

https://www.parentprojectmd.org/about-duchenne/what-is-duchenne/types-of-

mutations/. [Accessed: 18-Jan-2020].

[18] M. De Los Angeles Beytía, J. Vry, and J. Kirschner, “Drug treatment of Duchenne

muscular dystrophy: Available evidence and perspectives,” Acta Myologica, vol. 31,

no. MAY. pp. 4–8, May-2012.

 49

[19] L. Echevarría, P. Aupy, and A. Goyenvalle, “Exon-skipping advances for Duchenne

muscular dystrophy,” Human molecular genetics, vol. 27, no. R2. NLM (Medline), pp.

R163–R172, 01-Aug-2018.

[20] C. S. Young, E. Mokhonova, M. Quinonez, A. D. Pyle, and M. J. Spencer, “Creation

of a Novel Humanized Dystrophic Mouse Model of Duchenne Muscular Dystrophy

and Application of a CRISPR/Cas9 Gene Editing Therapy,” J. Neuromuscul. Dis., vol.

4, no. 2, pp. 139–145, 2017.

[21] T. Koo et al., “Functional Rescue of Dystrophin Deficiency in Mice Caused by

Frameshift Mutations Using Campylobacter jejuni Cas9,” Mol. Ther., vol. 26, no. 6,

pp. 1529–1538, Jun. 2018.

[22] Y. Zhang et al., “Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy

in mice by a self-complementary AAV delivery system,” Sci. Adv., vol. 6, no. 8, 2020.

[23] “Genome Editing Heads to Primetime.” [Online]. Available:

https://www.genengnews.com/insights/genome-editing-heads-to-primetime/.

[Accessed: 06-Nov-2019].

[24] H. Ledford, “Super-precise new CRISPR tool could tackle a plethora of genetic

diseases,” Nature, vol. 574, no. 7779. NLM (Medline), pp. 464–465, 01-Oct-2019.

[25] “Everything You Need to Know About Superstar CRISPR Prime Editing.” [Online].

Available: https://singularityhub.com/2019/11/05/everything-you-need-to-know-

about-superstar-crispr-prime-editing/. [Accessed: 06-Nov-2019].

[26] S. H. Park et al., “Highly efficient editing of the β-globin gene in patient-derived

hematopoietic stem and progenitor cells to treat sickle cell disease,” Nucleic Acids

Res., vol. 47, no. 15, pp. 7955–7972, 2019.

[27] D. Kim, D. eun Kim, G. Lee, S. I. Cho, and J. S. Kim, “Genome-wide target

specificity of CRISPR RNA-guided adenine base editors,” Nature Biotechnology, vol.

37, no. 4. Nature Publishing Group, pp. 430–435, 01-Apr-2019.

[28] H. Peng, Y. Zheng, Z. Zhao, T. Liu, and J. Li, “Recognition of CRISPR/Cas9 off-

target sites through ensemble learning of uneven mismatch distributions,”

Bioinformatics, vol. 34, no. 17, pp. i757–i765, Sep. 2018.

[29] B. P. Kleinstiver et al., “High-fidelity CRISPR-Cas9 nucleases with no detectable

genome-wide off-target effects,” Nature, vol. 529, no. 7587, pp. 490–495, Jan. 2016.

[30] I. M. Slaymaker, L. Gao, B. Zetsche, D. A. Scott, W. X. Yan, and F. Zhang,

“Rationally engineered Cas9 nucleases with improved specificity,” Science (80-.).,

vol. 351, no. 6268, pp. 84–88, 2016.

[31] H. Nishimasu et al., “Engineered CRISPR-Cas9 nuclease with expanded targeting

space,” Science (80-.)., vol. 361, no. 6408, pp. 1259–1262, 2018.

[32] “Benchling [Biology Software].” .

[33] “RRID | Resource Report (RRID:SCR_013955).” [Online]. Available:

https://scicrunch.org/resources/Any/record/nlx_144509-

1/SCR_013955/resolver?q=*&l=. [Accessed: 20-Jan-2020].

[34] K. Will, “Multiple Linear Regression – MLR Definition,” Mult. Linear Regres. – MLR

Defin., 2019.

[35] “Support Vector Machine Regression,” 2015. [Online]. Available:

http://kernelsvm.tripod.com/. [Accessed: 15-Apr-2020].

[36] “8.6.2. sklearn.ensemble.RandomForestRegressor — scikit-learn 0.11-git

documentation.” [Online]. Available: https://ogrisel.github.io/scikit-learn.org/sklearn-

tutorial/modules/generated/sklearn.ensemble.RandomForestRegressor.html.

[Accessed: 17-Mar-2020].

[37] “Gradient Boosting from scratch - ML Review - Medium.” [Online]. Available:

https://medium.com/mlreview/gradient-boosting-from-scratch-1e317ae4587d.

 50

[Accessed: 04-Apr-2020].

[38] “3.2.4.3.6. sklearn.ensemble.GradientBoostingRegressor — scikit-learn 0.22.2

documentation.” [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html.

[Accessed: 17-Mar-2020].

[39] Will Koehrsen, “Hyperparameter Tuning the Random Forest in Python – Towards

Data Science,” Towards Data Science, 2018. [Online]. Available:

https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-

using-scikit-learn-28d2aa77dd74. [Accessed: 16-May-2020].

[40] A. C. H. Choong and N. K. Lee, “Evaluation of Convolutionary Neural Networks

Modeling of DNA Sequences using Ordinal versus one-hot Encoding Method,”

bioRxiv, p. 186965, Sep. 2017.

[41] “Working with DNA sequence data for ML | Kaggle.” [Online]. Available:

https://www.kaggle.com/thomasnelson/working-with-dna-sequence-data-for-ml.

[Accessed: 06-Feb-2020].

	Figures
	Tables
	Abbreviations
	1 Introduction
	2 Biological background
	2.1 CRISPR Gene Editing
	2.2 The Cas9 nuclease
	2.3 Applications of CRISPR
	2.3.1 Gene knockout using CRISPR

	2.4 Single guide RNA
	2.5 Applications of Crispr to DMD
	2.6 Duchenne Muscle Dystrophy
	2.6.1 The dystrophin gene
	2.6.2 Mutations
	2.6.3 Existing Crispr methods for potential DMD treatment

	2.7 Prime Editing
	2.7.1 Prime editing strategy
	2.7.2 Genes – Diseases correlations

	2.8 Dystrophin gene and exon 44 mutation

	3 The dataset
	4 Computational approach for pegRNAs creation
	4.1 pegRNAs creation for reframing exon 45
	4.1.1 Insertion and deletion for reframing exon 45
	4.1.2 Pseudocode for generating the 3’ extensions for insertion

	5 Selection of the most promising pegRNAs using machine learning
	5.1 Multiple Linear Regression
	5.2 Support Vector Regression
	5.3 Random Forest Regressor
	5.4 Gradient Boosting Regressor
	5.5 Experimental settings
	5.5.1 Parameters tuning – Grid Search with Cross Validation

	5.6 Feature representation
	5.6.1 Encoding DNA sequence data
	5.6.1.1 Ordinal Vectors
	5.6.1.2 One hot encoding
	5.6.1.3 K-mer counting

	6 Experimental results
	6.1 Algorithms performance

	7 Conclusions and future work
	Appendix
	Bibliography:

