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Η παρούσα Διπλωματική Εργασία εγκρίθηκε ομόφωνα από την Τριμελή Εξεταστική Επιτρο-

πή που ορίσθηκε από το ΓΣΕΣ του τμήματος Στατιστικής και Ασφαλιστικής Επιστήμης του

Πανεπιστημίου Πειραιώς στην υπ’ αριθμόν . . . . . . . συνεδρίαση του σύμφωνα με τον Εσωτερι-

κό Κανονισμό Λειτουργίας του Προγράμματος Μεταπτυχιακών Σπουδών στην Εφαρμοσμένη

Στατιστική.

Τα μέλη της επιτροπής ήταν:

- Αναπληρωτής καθηγητής Μπερσίμης Σωτήριος (Επιβλέπων)

- Αναπληρωτής καθηγητής Πολίτης Κωνσταντίνος

- Αναπληρωτής καθηγητής Τζαβελάς Γεώργιος

Η έγκριση της Διπλωματικής Εργασίας από το τμήμα Στατιστικής και Ασφαλιστικής Επι-

στήμης του Πανεπιστημίου Πειραιώς δεν υποδηλώνει αποδοχή των γνωμών του συγγραφέα.
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Περίληψη

Η παρούσα διπλωματική εργασία παρουσιάζει μεθόδους για τον πρόωρο τερματισμό

κλινικών δοκιμών φάσης ΙΙΙ και άλλων δοκιμών μεγάλου μεγέθους. ΄Εμφαση δίνεται

σε σχεδιασμούς στους οποίους οι ασθενείς εισέρχονται στη μελέτη σε διαφορετικούς

χρόνους και αναλύονται κατά ομάδες σε μία σειρά επαναλαμβανόμενων στατιστικών

συγκρίσεων που επιτρέπουν τη συνέχεια διενέργειας της μελέτης ή επιβάλλουν τον

πρόωρο τερματισμό της.

Αρχικά θα εξετασθεί ο απλός σχεδιασμός ενός σταδίου στον οποίο υπάρχουν μόνο δύο

ομάδες ασθενών, και η απόκριση μετριέται είτε με συνεχείς μεταβλητές ή με διάστημα

χρόνου πρωτού συμβεί το αναμενόμενο γεγονός. ΄Εμφαση θα δοθεί στο μαθηματικό υ-

πόβαθρο του κάθε σχεδιασμού το οποίο παρουσιάζεται αναλυτικά για τους σχεδιασμούς

που έχουν επιλεχθεί από τη βιβλιογραφία.

Στη συνέχεια θα εξετασθούν σχεδιασμοί δύο σταδίων οι οποίοι μπορεί να περιλαμ-

βάνουν δύο ή και περισσότερες ομάδες ασθενών, καθώς και ενοποιημένοι κλινικοί

σχεδιασμοί φάσης ΙΙ/ΙΙΙ. Οι τελευταίοι επιλέγονται κυρίως για λόγους εξοικονόμη-

σης χρόνου (λ.χ. όταν υπάρχει άμεση ανάγκη για χορήγηση άδειας κυκλοφορίας στην

αγορά), λόγοι κόστους καθώς και μείωση του αριθμού των ασθενών. Τέλος θα εξε-

τασθούν σχεδιασμοί στους οποίους η απόκριση μετριέται με δύο μεταβλητές οι οποίες

αξιολογούνται ταυτόχρονα και έχουν την ίδια βαρύτητα.

Στο δεύτερο μέρος της μελέτης, θα επιχειρηθεί μία σύγκριση των σχεδιασμών σε σχέση

με το συνολικό δείγμα που απαιτούν για να επιτευχθεί η αναμενόμενη στατιστική ισχύς,

καθώς και την ικανότητά τους να αντιληφθούν μία διαφορά στην επίδραση των δύο

θεραπειών, εαν αυτή υπάρχει, εμπλέκοντας όσο το δυνατόν λιγότερους ασθενείς.

Οι κανόνες τερματισμού είναι σημαντικό μέρος του σχεδιασμού, πρωτίστως για λόγους

ηθικής και σεβασμού προς τον ασθενή και την παγκόσμια κοινότητα. Το κλείσιμο της

μελέτης επιβάλλεται σε περίπτωση που η νέα θεραπεία δεν είναι αποτελεσματική (ή δεν

είναι το ίδιο αποτελεσματική όσο η ενδεδειγμένη) ώστε να εκτεθούν όσο γίνεται λιγότε-

ροι ασθενείς και για λιγότερο χρονικό διάστημα, ή όταν η νέα θεραπεία διαπιστωθεί

ότι είναι πιο αποστελεσματική από την ενδεδειγμένη ώστε άμεσα να γίνει διαθέσιμο το

φάρμακο στην αγορά.
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Quoted dialogue from Multiple Testing in Clinical Trials, Statistics in Medicine, vol. 10,
pp. 871-890 (1991)

Mr. Louis: "In the stagewise procedure, where you’ re ordering p-values, for example,
and then rejecting a hypothesis if the lowest one is lower than α/3, and the next if α/2,
and so on. I understand that this strategy will protect the multiple level. But how do we
interpret the rejections? We can say that we have rejected the hypothesis associated with
the third smallest observed p-value, but that’s not necessary the same thing as saying we
reject a specific hypothesis. Could you discuss a bit how one takes the next step in terms
of saying that this rejection applies to specific hypothesis? I may have made this more
confusing than necessary."

Mr. Bauer: "I have no good answer for that other than the suggestion to report the
individual p-values, which could be used in a descriptive way. One applies such multiple
test procedures in order to satisfy the confirmatory aspect in terms of error probabilities,
which is certainly a concept not unanimously agreed on by biometricians."
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Abstract

This review presents various methods to early terminate phase III and other large-
scale clinical trials. Focus is given on the group sequential design which involves
sequential patient enrollment and analyses of accumulating data at pre-defined in-
spection times. Efficacy evaluation is performed in the context of a repeated signif-
icance testing to allow for early stopping.

In the first part, several approaches for the one-stage, two-arm design will be dis-
cussed. Treatment efficacy is being evaluated using either a continuous or a time-
to-event endpoint. Emphasis is given in the mathematical background of each ap-
proach.

Subsequently, various approaches for the multi-stage design will be discussed, as
well as the seamless phase II/III design. The latter is widely used for time saving
reasons (e.g. due to an urgent need for drug approval), for cost-reducing reasons
and for minimising the sample size. Designs having two co-primary endpoints will
also be discussed.

In the second part, a comparison among various designs is attempted with regard
to the total sample size needed to reach the expected statistical power, and their
ability to detect a treatment difference, if any, without allowing a large number of
participants to be engaged.

Stopping rules constitute an integral part of the statistical design, primarily for
ethical reasons. Early termination must take place in case of the new treatment
proven to be inefficient (or not as efficient as the existing one) to prevent more
patients from being exposed to ineffective drugs. Early stopping must also take
place in case of the new treatment proven to be superior to the existing one to
rapidly make it available to the public. Other reasons for stopping a trial, such
as high toxicity rate, low accrual rate, arising breakthrough treatments, are out of
scope of this review.
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Glossary

clinical benefit A favourable effect on a meaningful aspect with regard to patient’s
clinical condition. Clinical benefit may refer to symptom relief, functionality or
survival rate. A treatment may induce a pathological response (e.g. tumor size
reduction) without having a clinical benefit (e.g. increased survival).

clinical relevance (also known as clinical significance) Indicates whether the results
of a study are meaningful with regard to the disease under research. Should not be
confused with statistical significance.

comparative study A clinical trial with two or more arms with the intention to
compare between them. Clinical trials can have several arms with no intention to
compare (non-comparative studies).

confirmatory trial An adequately controlled trial with a well-defined research
question and a clinically relevant endpoint. Confirmatory trials intend to provide
firm evidence of efficacy and may lead to drug licensing.

endpoint A variable that can be measured objectively to determine whether the
intervention being studied is beneficial.

event An event occurs when the endpoint under study is reached. For instance, if
the endpoint is overall survival, event is death.

interim analysis Pre-planned, statistical analysis of accumulated data with regard
to treatment efficacy (safety data are also considered) to early terminate a trial in
favour or against the experimental treatment. Other vocabulary used here with a
similar meaning: inspection time, look and group.

information time The ratio of the number of evaluated patients to the total num-
ber of patients planned to be evaluated. Another definition: the number of events at
a specific time point t over the total number of events needed to reach the expected
power.
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Brief history

Drug development dates back to the early days of human civilization - from the
Chinese traditional medicine originated in 3500BC to Indian, Egyptian, Roman and
Greek medicine which is traced back to 400BC. Hippocrates the "Father of Medicine",
founded a medical school and established the first ethics for physicians. Early sub-
stances derived from plants, animals and minerals, were developed through observa-
tion and error experimentation on humans and animals. [1]

The Renaissance period marked the transition from Middle ages to modern world
and besides others, laid the foundation for medicinal science as we know it today.
In the late 1700s, Edward Jenner worked with smallpox inoculations leading the
way for vaccine development. John Hunter (1768) discovered that scurvy is caused
by lack of vitamin C. Louis Pasteur (1864) devised a vaccine against rabies and
saved thousands of lives. More recently, Alexander Fleming discovered the potency
of Penicillium mold against staphylococcus. [1]

Synthetic drugs, the ones that we use today, were developed in the early 1900s, at the
time when the pharmaceutical industry was founded. [1] By early 1940s, new arrivals
in drug industry, such as sulfanilamide, amphetamines and insulin made the need
of organised, well-performed clinical trials more urgent. [2] The first double blind
clinical trial took place in 1943 investigating patulin for the treatment of common
cold. Although, patulin turned out to be ineffective, the trial pioneered as the first
controlled human trial. [3]

Modern history of human experiments is long and sombre as much unethical research
has been carried out in the name of science. Since the late 19th century, several noto-
rious experiments had taken place including exposing people to pathogens, toxic and
radioactive chemicals, radiation and other deleterious agents. Much of the research
was conducted on children, prisoners and mentally disabled people. [4] Between 1946
and 1948, a large-scale experiment of approximately 1,500 highly vulnerable people
was carried out in Guatemala. People were infected with gonorrhea and syphilis
under the guise of STD prevention. The study was funded by the US. Public Health
Service and was never published. [5] During World War II, there is strong evidence
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that Nazis conducted hundreds of experiments on war prisoners which mostly ended
in pain, physical and phycological trauma, amputation and often death. Humans
were forced to participate or they were deceived. A total of 23 officials, doctors and
administrators were prosecuted for crimes against humanity in what today is known
as the Doctors’ Trial in Nuremberg. [6]

Guidelines

In 1949, following the Nuremberg’s trials, a list specifying 10 conditions under which
medical experiments can be allowed was published as the Nuremberg’s Code. Among
others, the Code emphasises the importance of voluntary consent, risk to human
subjects, animal experimentation preceding human trials, right to withdraw, and early
termination. [7] Even though it does not have any legal status, the Nuremberg’s
Code formed the foundation on which later regulations were based. In 1964, in their
annual meeting, the World Medical Association adopted the Declaration of Helsinki.
[8] Ever since, the Declaration has been revised many times with the most recent
major revision taking place in 2013. The Declaration of Helsinki is the basis of Good
Clinical Practice (GCP) and other ethics guidelines issued worldwide. It highlights
the need for written consent, restricts the use of placebo, and introduces the concept
of prior review and approval of protocol by independent institutional review boards.

More recently, different laws, guidelines and requirements among countries high-
lighted the importance of harmonisation. The inception of the International Coun-
cil for Harmonisation of technical requirements for pharmaceuticals for human use
(ICH) was born in 1990 when industry associations and regulatory agencies of Eu-
rope, Japan and the US met in Brussels. These harmonisation guidelines would
eventually become the basis for developing, testing and authorising medicinal prod-
ucts. Today the guideline ICH E6 (commonly known as the ICH GCP guideline) is
considered the most important guideline that covers clinical trials and constitutes a
joint standard for mutual acceptance of clinical data by regulatory authorities. [6][9]

Among others, ethical and regulatory requirements suggest that sample size shall
be large enough to assure robustness, but not larger than required as this would
undermine beneficence of participants. Controls and suitable safeguards shall be in
place to ensure that trials will be stopped after statistical significance is reached, or
futility will be shown early enough without allowing further enrolment and treatment
continuation.
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Introduction

1.1 Modern clinical trials

Clinical trials are used to evaluate the effects of new treatments in the human health
in terms of efficacy, clinical benefit, quality of life and side effects. They are carefully
designed, reviewed and completed to answer 3 main questions: Does the treatment
work? Does it work better than the existing one? Does its overall benefit overtake
its harm?

According to the ICH, a clinical trial is any investigation on human subjects in-
tended to discover or verify the clinical, pharmacological or other pharmacodynamic
effects of an investigational product, to identify any adverse reactions related to the
investigational product, to study absorption, distribution, metabolism, and excretion
with the object of ascertaining its safety and/or efficacy. [9] People consent to take
part in the clinical research to test medical interventions including drugs, medical
devices, cells and other biological products, surgical procedures, radiological proce-
dures, preventive care and other.

Each trial is strictly conducted according to a comprehensive plan: the protocol.
The protocol outlines the accrual, the treatment scheme, the schedule of tests and
procedures, the follow-up period and the length of the study. It also describes the
variables that will be measured and the type of information that will be collected.

Pre-market clinical research consists of three phases examining safety and efficacy of
the new treatment. In the first phase, toxicity profile and dose limiting toxicity are
explored; efficacy may be recorded as well, but it does not constitute an endpoint
(no conclusions on efficacy shall be drawn). Phase I trials are almost always non-
randomised and typically terminate after several months. Sample size typically
ranges from 20 to 100 participants (healthy or having the disease/condition), and
approximately 7/10 drugs move to the next phase. [10]

In the second phase of clinical research, proving efficacy is the main goal whilst
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toxicity rate is constantly recorded. Sample consists of up to several hundred people
having the disease/condition, trials typically last several months to two years and
approximately 1/3 drugs move to the next phase. Caution should be taken when
interpreting results as sample size can be relatively small and effective drugs may
be rejected or vice versa. [10]

In the last pre-market clinical phase, research focuses on showing equivalence, su-
periority or non-inferiority of the investigational product as compared to standard
treatment, best supportive care, or placebo (if this is the case). Phase III trials are
always randomised and comparative, consist of 300 to 3,000 participants having
the disease/condition, and typically last one to four years. Approximately, 25−30%
of drugs entering phase III get market approval. [10]

Clinical research also takes place in the post-market surveillance with sample size
being as large as the entire population receiving the treatment (phase IV follow-up
studies). Post-market surveillance may lead to licence recall and drug removal from
the market if unexpected toxicity or poor real-world clinical outcome is recorded.

Traditional clinical trials have two main drawbacks - there are time consuming and
often need a significant number of participants to obtain robustness. In industry’s
world, fast standardised trials denote rapid drug registry and low cost. In patients’
world, often it is a matter of life and death. In science’s world, designing flexible
and time-saving trials is always a challenge. Recently, the adaptive seamless design
has gained ground. This approach combines two or more phases in a single trial and
allows for real-time design modifications. Seamless trials are flexible, cost-saving
and often lead to speedy approval procedures.

1.2 Key issues in the design phase

Clinical research is a highly interdisciplinary field with focus on the human. Before
any intervention, the primary research question shall be addressed; primary end-
point, eligibility criteria, treatment scheme, randomisation and statistical approach
are all selected in such a way so as to account for the primary objective of the study.
In confirmatory trials, a suitable, clinically relevant endpoint is evaluated to answer
a specific pre-defined question, whilst other questions may be explored by secondary
endpoints. In some cases, more than one primary endpoints (often correlated) are
used to answer the research question, with statistical design addressing the issue of
multiplicity and endpoint correlation.

The parameter of interest broadly depends on the nature of endpoint used to assess
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efficacy. For instance, if the measured response is a continuous variable (e.g. sugar
levels), a suitable parameter to construct the test statistics would be the means
difference, whilst in a clinical trial involving failure times as seen in cancer research,
a suitable parameter would be the log-hazards ratio or a Kaplan-Meier estimate of
the median survival time.

1.3 Repeated significance testing

A fixed sample size design demands that the results of the experiment will be judged
once and for all when the (pre-defined) sample size is reached. [11] However, ethics
requires minimum sample size and early termination, especially when the new treat-
ment is inferior to the standard of care. For this reason, the biometrician is asked
to analyse accumulating results at pre-planned time points.

It is widely known that performing sequential tests inflates type I error−10 repeated
tests increase α from 5% to 19%, and if one continues testing, one can be certain
of the existence of a treatment difference whether one is present or not. [11][12]
To overcome this burden, the global level α has to be preserved. The concept of
repeated significance testing was born in the late 1960s by Armitage, McPherson &
Rowe. [13][14] It involves choosing appropriate decision regions such as the actual
significance level does not exceed the global α. This is feasible if a fixed schedule of
inspections has been decided before the initiation of the trial.

Repeated significance testing constitutes an early termination method; it is often
used in the context of a group sequential design which is widely used in oncology
and other disease areas. In the group sequential approach, response is tested at
a series of interim analyses on accumulating data maintaining an overall type I
error. This approach is commonly used in oncology and other disease areas where
patients are gradually involved and time before an event occurs may be of weeks or
up to several months. Group sequential and adaptive group sequential designs will
be extensively discussed throughout this review. Table 1.1, an example by Pocock
(1982) [12], presents a group-sequential design with two treatment arms for various
numbers (1-4) of maximum interim analyses (groups). Expected and average sample
size have been determined through numerical integration. Note that the sequential
design slightly increases the maximum number of needed patients while reduces the
average number when treatment difference actually exists.

Joint distribution of the test statistic
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In the context of a group sequential design, interim analyses take place at regular
time points with the test statistic of each arm being compared to a stopping bound-
ary. It is important to realise that the joint distribution of test statistic computed
in the context of repeated significance testing only depends on the number of ob-
servations (or events) at the looks to date (even though it seems to depend on the
total sample size or the needed events to reach the expected power). [15] This is
because the joint distribution depends only on the ratios of the information times
(ti/tj = ni/nj) with ni denoting the group size and therefore, the biometrician does
not really need to know in advance the information times (t1, t2, ..., tj) of the first j
looks to determine the joint distribution of the test statistic up to point j. [16]

J α∗ 2n 2nJ Average 2nJ underH1

1 0.05 52.0 52.0 52.0
2 0.029 28.4 56.8 37.2
3 0.022 19.7 59.2 33.7
4 0.018 15.2 60.8 32.2

Table 1.1: Group sequential designs for a normal response with known variance σ2, global
α = 0.05, power 1−β = 0.95, alternative hypothesis H1 : µA−µB = δ and several choices
of maximum number J of groups. Table presents the nominal level α∗, the required number
of patients per group for both arms (2n), the maximum number of patients (2nJ), and the
average number of patients until trial termination under H1. Sample sizes have to be
multiplied by σ2/δ2. [12]

1.4 Multiple testing

Multiple testing is often performed when more than one treatment is compared
with the control, when the trial involves more than one primary endpoint, or in an
adaptive scheme combing several stages. The main concern of such a design is how
to control the global level α, or otherwise referred to as the family error. In his
work "Multiple Testing in Clinical Trials", Bauer states that the reason our interest
is restricted in type I error is because one would give up an existing standard of care
in favour of a new promising treatment only when strong evidence demonstrates that
one should do so. In real world practice, we often have far less knowledge on the
arising treatment compared to the existing one. This fact alone creates an inherent
imbalance between the two treatments rendering risks of erroneous decision hardly
foreseeable. [17]

But even if one accepts the type I error philosophy, is it the expected number of
erroneous rejections or the probability of at least one erroneous rejection that should
be controlled? [18] Bauer believes that for clinical trials involving a small number
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of null hypotheses to be decided on (which is often the case), it seems reasonable
to control the probability of at least one erroneous rejection, also controlling the
probability of not performing any erroneous rejection at all. [17] In the conventional
approach, this probability is controlled under the global null hypothesis which states
that all individual hypotheses are simultaneously true:

Ho =
k⋂
i=1

Hoi

A multiple test procedure controls the multiple level α (the family error in the strong
sense) if the probability of erroneously rejecting at least one true individual null
hypothesis is controlled by α, irrespective of which and how many of the individual
null hypotheses are in fact true. [17]

Even though there is much more to be said for multiple testing, further exploration
is out of scope of this review. The interested reader may refer to work by Paulson
(1962, 1964) [19][20], Dunnett (1965) [21], Bechhofer et al. (1968) [22], Armitage et
al. (1969) [13], Spjøtvoll (1972) [23], Holm (1979) [24], DeMets & Ware (1980) [25],
Hsu & Edwards (1983) [26], Simes (1986) [27], Kim et al. (1987) [28], Hochberg et
al. (1987, 1988) [29][30] and Bauer (1987−1989) [31–35]. Some of this work will
be discussed here focusing on stopping rules of these designs.

1.5 Stopping by design

Stopping rules are introduced before initiation of the trial, in the design phase.
They prevent researchers from involving a large number of participants, and also
they save time and cost. Ineffective drugs will be rejected in the initial stages
of the trial, without allowing a large number of patients to be exposed to them,
whilst effective treatments will rapidly manage to get though the licence process
and become available to the public. In phase I designs with primary endpoint drug
toxicity, stopping rules often aim at early termination when serious adverse events
are recorded. In phase II & III designs, early stopping takes place if drug effectiveness
or ineffectiveness is proven, although unexpected toxicity is always a reason to stop.

Repeated significance testing is often performed to early terminate a trial with
sequential patient enrolment. The total sample size is not fixed; the study continues
until the test statistic ξj exceeds its specified boundary. Common choices for ξj
include the maximum likelihood estimate, a normalised Z statistic based on Ho, a p-
value, Bayesian posterior probabilities, Bayesian predictive probabilities, conditional
power etc. [36] The maximum number of interim analyses and the group sample size
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are often determined in advance. Calculations for the latter are based on parameter
estimates (usually from historical data) and expected statistical power. At each
look, the outcome space for ξj is partitioned into two regions: the stopping and
the continuation region. One could have more stringent significance level at the
first looks of the trial (to prevent early termination without having a substantial
treatment difference) and less stringent later on. [37] The most important aspect of
a group sequential design is its ability to detect a treatment difference soon enough
to allow for early stopping. This aspect is reflected through the last column of Table
1.1: the average number of patients under the alternative hypothesis.

During the course of the trial, it is very common to deal with unexpected issues
such as low accrual rate, low event rate, extreme censoring or treatment deviations.
Usually these issues may lead to protocol amendments or even trial discontinuation
(e.g. due to unexpected serious adverse events or arising breakthrough treatments).
Stopping the trial due to unacceptable toxicity is planned in advance, however it
is highly dependent on the nature of adverse events that will arise. Stopping for
toxicity is out of scope of this review.

1.6 Aim and scope

The aim of the present review is to present and discuss broadly accepted designs to
early terminate large-scale randomised clinical trial. In the first part, the mathe-
matical background of some widely used designs for the group sequential approach
and various adaptive designs for two-arm and multi-arm trials is presented. The
reader may refer to relevant sources to further explore these methods.

In real world, choosing a suitable design broadly depends on factors such as the dis-
ease area, the question to be answered, the primary endpoint, the available number
of patients, the resources, and even how urgent the need for market approval is.
Some designs perform better than others in terms of sample size, time and cost. In
the second part, we attempt to compare various designs in terms of the total sample
size needed to reach the expected statistical power, and their ability to detect a
treatment difference, if one exists, without allowing a large number of participants
to be engaged.
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Group sequential design

2.1 Introduction

The strict sequential design for a two-arm trial requires that patients are enrolled in
pairs, and that a pair can only enter the trial after the results of the prior pair have
been analysed. This costly and time-consuming design is not practical, especially
when a large number of patients needs to be engaged (e.g. in phase II&III trials).
In 1947, Wald [38] suggested a grouped analysis for the sequential design where
testing is performed once a certain number of patients have been involved. Group
sequential test procedures are actually quite older since they were used for quality
control already from the late 1930s [39] (for a historical review see [40]). Today,
the group sequential design is the gold standard when patients enter the trial at
different time points and endpoint assessment is not done instantly.

The group sequential design is widely used in clinical research, especially in phase
II&III trials. Accumulating data is analysed at pre-defined time points (usually in
terms of number of events, or information time) and early termination takes place
when the ultimate decision is known with high confidence. More precisely, stopping
may occur in case of treatment superiority, non-inferiority or equivalence (depending
on the trial’s objective; all of them referred here as stopping for efficacy) or in case
of foreseeable failure to reject the null hypothesis (stopping for futility). One of the
benefits of this design is the possibility that it offers to conduct repeated significance
tests having a fixed number of patients (or events) per group; the latter has to be
determined in advance, independently of the acquired data. [41]

In certain cases, fixed group sample size may turn out to be a burden, for example
due to unforeseeably slow accrual or event rate. Fortunately, in the context of an
adaptive design, the expected number of observations per group may be changed
as the trial goes on. The concept of the adaptive design was due to Bauer (1989)
[35] and Bauer & Köhne (1994) [42]. Today, adaptive designs allow for real-time
modifications such as sample size recalculation, adding or dropping treatment arms
(e.g. drop the loser design), modifying the treatment scheme, interfering with the
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randomisation method (e.g. adding or removing stratification factors), a combina-
tion of the aforementioned changes or other adaptations, all in line with the protocol
specifications.

In the applied field, biometricians often prefer to perceive the problem of sequential
testing identical to that of multiple testing. Having multiple primary endpoints
being tested simultaneously is viewed in a similar manner as having one (or multiple)
endpoint being assessed at multiple consecutive times (as the same null hypothesis
would be tested repeatedly). Hence, a sequential test of global level α can be treated
as a test of a single hypothesis using a multivariate test statistic. The main difference
between a multiple testing scheme and a sequential design lies in the fact that in
the latter, a stopping rule must be used to early terminate the trial if needed. [17]

Early work on the group sequential design has been carried out by Popock (1977)
[43], O’Brien & Fleming (1979) [37], Lan & Demets (1983) [44], Kim & DeMets
(1987) [45] and others. Much of this work referred to a previous method proposed
by Armitage et al. (1969) [13], subsequently known as recursive numerical integra-
tion (or Simpson’s rule). Recursive numerical integration is a quite sophisticated
method used to estimate the score statistics joint distribution allowing for early
stopping. The method originally referred to a sequential design in which patients
enrol in matched pairs and significance testing takes place instantly in a continuous
monitoring scheme. However, as stated earlier, continuous monitoring is often non-
feasible due to practical issues such as reporting delays and other time-consuming
administrative procedures. [46] Since then, most trials with sequential enrolment
used ill-defined rules for early stopping. [43]

In 1977, Pocock [43] modified recursive numerical integration to allow for repeated
significance testing of accumulating data. He discussed two-sided tests with variables
having a normal response and known variance whilst assuming equal number of
observations between looks. Significance level, as well as stopping boundary, at each
interim remains the same. Since then, several approaches have been suggested with
fewer restrictions. O’ Brien & Fleming (1979) [37] used a consecutive test statistic
with variance proportional to sample size so that stopping in favour of the alternative
is less likely to occur in the beginning of the trial, where a small accumulated sample
size would most probably be insufficient to a prove treatment difference. Both
methods ([43][37]) assume equally spaced looks (in terms of information time). A
couple of years later, Pocock investigated a sequential design with varying nominal
significance levels. [12] Wang & Tsiatis (1987) [47] proposed a family of critical
values with Pocock’s and O’ Brien & Fleming’s being sub-cases.

A different approach by Slud & Wei (1982) [46] suggested discrete sequential bound-
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aries based on modified-Wilcoxon scores (Gehan scores). At the jth of J looks (J
specified in advance), a part πj of the global level α is spent so that ∑J

j=1 πj = α.
Slud & Wei’s method can be applied to other statistics as well (e.g. Tsiatis (1982)
[48]). [16] It can be applied even if the inspection times are not specified in advance
(though the maximum number of looks has to be pre-specified). [49]

Even though defining in advance the maximum number of inspection times is a
tempting approach, and actually constitutes the gold standard in many disease
areas, in some cases the investigator might simply not have a good estimate for
that. In 1983, Lan & DeMets [44] proposed the use of an α-spending function
without having to specify in advance the maximum number of interim looks, just
the total sample size. They used an increasing function α(t) with t denoting the
information time, α(0) = 1 and α(1) = α so that at each interim analysis j, only a
part (α(tj)−α(tj−1)) of global α is spent. In 1986, Bauer [50] used Lan & DeMets’s
approach and suggested a design that neither the maximum number of interim
analyses nor the total sample size have to be specified in advance. His method only
requires the joint distribution of the test statistics at the last two inspection times.
Also, the Fleming, Harrington & O’ Brien’s approach (F-H-O method) [49] allows
for increasing the number of interim analyses if needed (e.g. due to slow accrual or
event rate).

Stochastic curtailment is another method that does not require to specify in advance
the number of interim looks. In a different line of thought, this approach is based
on data accumulated up to a point t and the null hypothesis for the remaining
time T − t. Using this method, the biometrician projects ahead and computes the
probability of an Ho rejection at the end of the study. [51] Bayesian methods also do
not require to specify in advance the number of interim looks. A prior distribution
for the parameter of interest θ is specified and continuously updated as more data
comes in, whilst decision on trial termination is based on the posterior distribution.

In 1992, Proschan, Follmann & Waclawiw [16] in a very interesting publication,
investigated the degree to which assumption violations can inflate type I error in
several sequential monitoring schemes. Among others, they examined violation of
the assumption of equal spacing (in terms of information time) between interim
analyses, and to what extent type I error is affected in the designs where future
looks are planned based on data trends.

In this chapter, focus is given on the mathematical background of selective group
sequential approaches for comparing a single experimental treatment with a control.
Tables with expected number of patients and statistical power are provided along
with methods as reported by the authors.
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2.2 Recursive numerical integration (Simpson’s
rule)

Consider the problem of comparing an experimental treatment with a control whilst
having a continuous endpoint. The score statistics Sj (with j denoting the interim
analysis) could be expressed as follows:

Sj = θ̂jFj(j = 1, ..., J) (2.1)

with θ denoting the difference in efficacy between the two treatments, and Fj the
Fisher information table. Under Ho, Sj follows the multivariate normal distribution
with:

Sj ∼ N(θFj,Fj) (2.2)

so that the quantity Sj − Sj−1 is independent of S1, ..., Sj−1.

At interim analysis j:
- if Sj ≥ uj, the trial is stopped and Ho is rejected
- if Sj ≤ lj, the trial is stopped and Ho is not rejected
- if lj < Sj < uj, the trial continues to interim analysis j + 1

The stopping boundaries (l1, u1), ..., (lJ , uJ) are chosen so as to control the overall
type I error. For the exact test:

P (stop and reject Ho | θ = 0) = α (2.3)

Many choices of (l1, u1), ..., (lJ , uJ) will satisfy (2.3), and therefore critical values will
also have to satisfy another condition: an α-spending function. For the one-sided
test, boundaries for efficacy/futility stopping can be computed using two conditions
[52]:

P (stop and reject Ho at or before interim analysis j | θ = 0) = α∗U(tj)

P (stop and do not reject Ho at or before interim analysis j | θ = 0) = α∗L(tj)
(2.4)

where

tj = Fj/FJ , α∗U(0) = 0, α∗U(1) = α, α∗L(0) = 0 and α∗L(1) = 1− α

The joint distribution of (S1, ..., SJ) under Ho can be approached using recursive
numerical integration as follows. According to (2.2), under Ho:
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S1 ∼ N(0,F1)
thus,

f1(s) = φ(s/
√

F1) 1√
F1

where φ denotes the standard normal density function. To satisfy (2.4), critical val-
ues (l1, u1) are set to the lower α∗L(t1) and upper α∗U(t1) points of this distribution.
S2 follows a distribution having a sub-density of S1 distribution; this sub-density
is equal to the area within the continuation region of S1 with S2 ∈ (l1, u1) . Ac-
cordingly, the density of Sj distribution equals the continuation region of Sj−1 with
Sj ∈ (lj−1, uj−1) (see figure 2.1; left panel). Sj − Sj−1 is normally distributed and
independent of Sj−1 so that:

fj(s) =
uj−1∫
lj−1

fj−1(sj−1) 1√
Fj −Fj−1

φ

 s− sj−1√
Fj −Fj−1

 dsj−1, j = 2, ..., J (2.5)

translates into the probability of continuing to the j interim analysis. Critical values
(lj, uj) are set to the lower α∗L(tj)− α∗L(tj−1) and upper α∗U(tj)− α∗U(tj−1) points of
Sj − Sj−1 density, respectively.

Recursive numerical integration is an alternative technique to a rather ill-defined
approach of repeated significance tests to accumulating data which inflates type I
error and increases the possibility of erroneously rejecting the null hypothesis. [43]
The method constitutes a milestone in the group sequential statistical design, and
over the years it has been discussed and adjusted by multiple authors.

2.3 Alpha-spending functions

In bibliography, various forms for the spending functions α∗L(t) and α∗U(t) exist, with
one of the most popular being that of Lan & Demets’s [44]. In 1983, Lan & DeMets
suggested a method to compute a flexible discrete boundary (u1, ..., uJ) using a pre-
defined increasing α-spending function α∗(t) without having to decide in advance
the number of maximum looks J . Three possible choices of α∗(t) were introduced:
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Figure 2.1: Plots of sub-densities f1(s), ..., f5(s) to compare a single experimental treat-
ment with a control (left panel) and to select the best of 3 experimental treatments at the
first interim analysis (right panel) for a trial with 5 analyses at F = 0.2, ..., 1. Areas
corresponding to stopping with Ho rejection are heavily shaded; areas corresponding to
stopping for futility are lightly shaded; areas corresponding to continuation are unshaded.
The total area under each sub-density is equal to the area within the continuation region
under the sub-density for the previous look. [53]

α = 0.025 α = 0.05

c1 c2 c3 c4 c5 c1 c2 c3 c4 c5

Pocock 2.41 2.41 2.41 2.41 2.41 2.12 2.12 2.12 2.12 2.12
O’ Brien & Fleming 4.56 3.23 2.63 2.28 2.04 3.92 2.77 2.26 1.96 1.75
Lan & DeMets - α∗

1(t) 4.90 3.35 2.68 2.29 2.03 4.23 2.89 2.30 1.96 1.74
Lan & DeMets - α∗

2(t) 2.44 2.43 2.41 2.40 2.39 2.18 2.14 2.11 2.09 2.07
Lan & DeMets - α∗

3(t) 2.58 2.49 2.41 2.34 2.28 2.33 2.22 2.12 2.03 1.96

Table 2.1: One-sided boundary for the standard Brownian motion at 5 interim analyses
using Pocock’s method, O’ Brien & Fleming’s method and three different approaches by
Lan & DeMets. [44]
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α1(t) = 2− 2Φ
(
zα/2√
t

)
α2(t) = α log (1 + (e− 1) t)
α3(t) = αt


(2.6)

with 0 < t ≤ 1, α1(0) = α2(0) = α3(0) = 0 and α1(1) = α2(1) = α3(1) = α.

Ho is rejected at information time tj if:

Z(tj) > C(t1, ... , tj) (2.7)

with C(t1, ... , tj) chosen so that:

P (Z(t1) ≤ C(t1), ... , Z(tj−1) ≤ C(t1, ... , tj−1), Z(tj) > C(t1, ... , tj)) = α(tj)−α(tj−1)
(2.8)

From (2.8) it is clear that the amount of α to be spent at the next look is integrally
dependent on its information time. This is the reason why the number of looks do
not need to be specified in advance. [16]

Table 2.1 presents stopping boundaries for 5 interim analyses using Pocock’s [43] and
O’Brien & Fleming’s [37] methods, and the aforementioned α-spending functions.

Another work by Hwang, Shih & De Cani (1990) generalised Lan & DeMets’s
α∗(t) to the following one-parameter truncated exponential distribution family of
α-spending functions α∗(γ, t) [54]:

α∗(γ, t) =


α

1− e−γt
1− e−γ , γ 6= 0

αt , γ = 0
0 ≤ t ≤ 1 (2.9)

so that α∗(γ, 0) = 0 and α∗(γ, 1) = α for all γ. Time t denotes the information time.

2.4 Pocock’s method

In 1977, Pocock [43] modified the recursive numerical integration method to allow for
group sequential testing as the method was originally designed for simple sequential
testing. Having two treatment arms A and B of n patients each, with normal
responses x̄A and x̄B and a common known variance σ2, after j interim analyses:

d̄j =
j∑
i=1

x̄Ai − x̄Bi
j

∼ N

(
µA − µB,

2σ2

jnj

)
(2.10)
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A two-sided significance test allows for the p-value of:

pj = 2
1− Φ

 d̄j
√
jnj

√
2σ

 (2.11)

to be compared with some nominal significance level α′ . If pj < α
′ , the null hypoth-

esis of µA = µB is rejected and trial is stopped. Else, if pj ≥ α
′ , trial continues to

the next interim analysis.

The whole idea behind Pocock’s method is to allow for repeated testing while main-
taining an overall type I error (α) and having pre-defined a maximum number of
interim analyses. At each interim look, significance testing takes place at the same
nominal level α∗, with α∗ not depending on the sample size n. In practice, Ho is
rejected if:

Z(tj) > C
(J)
P (2.12)

where C(J)
P is a constant chosen so that the overall probability of rejection under Ho

(assuming equally spaced information time points tj = j/J) is α.

Interestingly, Pocock’s boundary can be approximated by a Hwang, Shih & De
Cani’s spending function (with γ = 1).

Table 2.2 provides the average number of patients under both Ho and H1 for several
values of maximum interim analyses J and for specific values of overall type I error
(α) , expected treatment difference (µA − µB) and power (1− β).

No. of maximum interim analyses 1 2 3 5
Required no. of patients per group and treatment arm 84.1 46.2 32.2 20.3
Maximum no. of patients per treatment arm 84.1 92.4 96.6 101.5
Average no. of patients per group and treatment arm under H1 84.1 65.2 60.5 57.5

Table 2.2: Required, maximum and average (under the alternative hypothesis) number of
patients for several numbers of maximum interim analyses in a group sequential design of
two treatment arms with normally distributed response and known common variance σ2

using Pocock’s method (α = 0.05; µA − µB = 0.5σ; 1− β = 0.90). [43]
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2.5 O’ Brien & Fleming’s method

A couple of years later, O’ Brien & Fleming [37] published an alternative approach
for terminating the group sequential design in which αj increases with j such that
αJ ' α. This means that, unlike Pocock’s method, O’ Brien & Fleming’s method
allows for having a stringent stopping rule at the beginning of the trial and less
stringent later on. This is due to the fact that stopping in favour of the alternative
is less likely to be decided at the first looks where the small number of accumulated
patients (or events) would most probably be insufficient to show any treatment
difference. At each look, Ho is rejected if:

Z(tj)
√
j

J
> C

(J)
O−F (2.13)

with j ∈ {1, 2, ..., J} denoting the interim analysis. O’ Brien & Fleming’s boundary
can be approximated by a Hwang, Shih & De Cani’s spending function with γ = −4.

O’ Brien & Fleming’s bound is widely used in clinical trials utilising the group se-
quential design, especially in the analysis of censored survival data since it preserves
the sensitivity to late occurring survival differences. [49] Table 2.3 gives C(J)

O−F for
5 different values of global α for 5 inspection times.

Look (j)
α 1 2 3 4 5

0.05 3.87 3.92 3.94 4.17 4.15
0.04 4.29 4.23 4.26 4.48 4.58
0.03 4.80 4.72 4.70 4.96 5.05
0.02 5.49 5.39 5.46 5.56 5.79
0.01 6.67 6.57 6.50 6.86 6.84

Table 2.3: Approximate values of stopping boundary C(J)
O−F . [37]

2.6 Wang & Tsiatis’s method

In 1987, Wang & Tsiatis [47] introduced a family of critical values with Pocock’s
(∆ = 0.5) and O’ Brien & Fleming’s (∆ = 0) boundaries being family members.
Authors considered a trial with two treatment arms A and B, with a unknown
normal response X and a known common variance σ2. Rejection of Ho : µA = µB

can be managed if:
|Sj| ≥ αj, j = 1, ..., J (2.14)
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with
Sj = √nj

j∑
i=1

x̄Ai − x̄Bi√
2σ

(2.15)

with x̄ denoting the mean response, and nj the sample size at j interim analysis per
treatment arm (j = 1, ..., J). Stopping boundaries αj are chosen so that an overall
α is maintained. The probability of failing to reject Ho while it is true is:

P ( |S1| < α1, ..., |SJ | < αJ |µA = µB ) = 1− α (2.16)

and can be computed using recursive numerical integration.

Wang & Tsiatis defined the optimal boundaries as those that require the least num-
ber of patients for detecting a treatment difference at a given significance level α
and power 1− β, and proposed a class of boundaries indexed by a single parameter
∆ as follows:

|Sj| ≥ Γ(α, J,∆) j∆, j = 1, ..., J (2.17)

Γ(α, J,∆) is a positive constant derived to satisfy (2.16). Table 2.4 presents the
maximum and expected sample size using Pocock’s, O’ Brien & Fleming’s, and
Wang & Tsiatis’s method computed for optimal choice of ∆.

1− β
0.80 0.90 0.95 0.99

J = 1
31.4 (31.4) 42.0 (42.0) 52.0 (52.0) 73.5 (73.5)

J = 2
Pocock 26.8 (34.9) 32.6 (46.2) 37.3 (56.8) 46.3 (79.5)
O’ Brien & Fleming 28.3 (31.6) 35.8 (42.3) 41.7 (52.3) 51.9 (73.9)
Wang & Tsiatis 26.7 (33.9) 32.6 (46.0) 37.3 (56.9) 46.3 (79.0)
(Optimal choice of ∆)
J = 3
Pocock 25.7 (36.6) 30.3 (48.4) 33.7 (59.2) 39.6 (82.5)
O’ Brien & Fleming 26.9 (31.9) 33.6 (42.7) 39.0 (52.8) 49.1 (74.5)
Wang & Tsiatis 25.5 (34.6) 30.3 (47.9) 33.7 (60.3) 39.4 (85.5)
(Optimal choice of ∆)

Table 2.4: Expected (maximum) sample size for 1, 2 and 3 maximum interim analyses J
using Pocock’s, O’ Brien & Fleming’s, and Wang & Tsiatis’s (optimal boundaries) methods
for a significance level of 0.05. [47]
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2.7 Modified Wilcoxon statistic

Having a different approach, Slud & Wei (1982) [46] assumed that patients enrol se-
quentially to treatment arms A and B, following a superposition of two independent
Poisson distributions with λc(t) = c(λA+λB) (c > 0) and random loss to follow-up.

Let Zk ∈ {0, 1} be an index variable denoting assignment to treatment arm A or
B, and Xk and Yk being the survival and loss-to-follow-up time of patient k (k =
1, ..., N), respectively. The modified Wilcoxon statistic Wc(t) is used for testing the
null hypothesis of FA = FB at each interim analysis, with FA and FB denoting the
distribution function of the survival time. Wc(t) is given by:

Wc(t) = 1√
nA(t)nB(t)n(t)

n(t)∑
k=1

n(t)∑
l=1

Zk(1− Zl)φ (Tk(t),∆k(t); Tl(t),∆l(t)) (2.18)

with

φ (Tk(t),∆k(t); Tl(t),∆l(t)) =


1 , if Tk(t) < Tl(t) and ∆k(t) = 1
−1 , if Tk(t) > Tl(t) and ∆l(t) = 1

0 , otherwise

denoting the Gehan-Gilbert score function, Tk(t) = min (Xk, Yk, t− tk), ∆k(t) =
I[Xk ≤ min (Yk, t− tk)], tk the arrival time of patient k, and I the indicator func-
tion.

At time point tj (1 ≤ j ≤ J), the stopping boundary dj can be derived as follows:

P ( |V1| < d1 , ... , |Vj−1| < dj−1 , |Vj| ≥ dj) = αj (2.19)

with (V1, V2, ..., Vj) a multivariate normal having µ = 0 and covariance:

σim = σ̂(ti, tm)√
σ̂(ti, ti) σ̂(tm, tm)

(1 ≤ i ≤ m ≤ j) (2.20)

while the significance level αj must have been pre-defined as α = ∑J
j=1 αj.

- If |Wc(tj)| ≥ dl
√
σ̂(tj, tj) the trial is stopped and Ho is rejected.

P-value is defined as:

pj = P
(
|V1| < d1 , ... , |Vj−1| < dj−1 , |Vj| ≥ Wc(tj)

√
σ̂(tj, tj)

)
(2.21)
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Table 2.5 presents stopping boundaries dj and p-values for repeated two-sided tests
at four time points tj ∈ {3, 6, 9, 12} for two different sequences of αj. For further
detail on this example refer to [46].

tj

3 6 9 12
αj 0.0075 0.0125 0.015 0.015
boundary dj 2.674 2.478 2.307 2.162
p-value 0.321 0.020 0.008 0.008
αj 0.005 0.010 0.015 0.020
boundary dj 2.807 2.560 2.325 2.095
p-value 0.321 0.021 0.003 0.009

Table 2.5: Two-sided boundary dj and p-value at 4 interim analyses for two choices of
significance levels αj with overall α = 0.05 using modified Wilcoxon test scores. Values
correspond to data from a study on prostate cancer conducted by the Veterans Adminis-
tration Cooperative Urological Research Group (VACURG) presented in [46].

2.8 The F-H-O procedure

Fleming, Harrington & O’ Brien (1984) [49] used Slud & Wei’s technique [46] (dis-
cussed in 2.7) to develop a design that preserves the appealing aspects of O’ Brien
& Fleming’s method, whilst the maximum number of interim analyses may be in-
creased in certain cases such as low event or accrual rate.

Assume that the joint distribution of the test statistic is a multivariate normal such
that:

{S1, S2, ..., SJ} ∼N(0,Σ) (2.22)

and that the J statistics form an independent increment process, so that for every
j < k (with j ∈ {1, ..., J}):

E(Sj Sk) = var(Sj) (2.23)

The probability that the trial will be terminated for efficacy under Ho at time tj is
given by:

πj = P (| Z1 |< c1, ..., | Zj−1 |< cj−1, | Zj |≥ cj |Ho) (2.24)

with
α = π1 + π2 + ... + πJ−1 + πJ (2.25)

Zj the standard normal variate:
Zj = Sj

σj
(2.26)
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and cj the stopping boundaries.

Slud & Wei [46] pointed out that if the joint distribution of (Z1, ..., Zj) is known
for every j, then a group sequential procedure can be formulated by specifying
(π1, ..., πj) and then recursively solving for (c1, ..., cj) using (2.24). Note that α∗j
(the nominal level at which the j test is performed) satisfies the equality of:

cj = z1−α∗j/2 (2.27)

with zα denoting the α-percentile of the standard normal distribution.

Assuming
π1 = π2 = ... = πJ−1 = π (2.28)

it follows that
πJ = α− (J − 1)π (2.29)

Two ways exist to obtain the joint distribution of the test statistic, and subse-
quently to set the group sequential design−by assuming (2.22), (2.23) and either
consistently estimate σj or by assuming that:

σj = j/J (2.30)

(an assumption that often does hold).

Having specified α, J and π and assuming (2.28), stopping boundaries cj can be
determined by either recursive numerical multivariate integration or computer sim-
ulations (e.g. Monte Carlo simulation).

Table 2.6 gives the nominal levels α∗j for J = 2 and J = 3 interim looks, for dif-
ferent values of π (= α∗1) assuming (2.30). Values were obtained through numerical
integration.

F-H-O method relates to an older method discussed by Haybittle [55] in 1971.
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J = 2 J = 3

1 2 1 2 3
0.005 0.048 0.0025 0.0030 0.0483
0.010 0.045 0.0050 0.0061 0.0459
0.015 0.042 0.0075 0.0094 0.0429
0.020 0.038 0.0100 0.0127 0.0395
0.025 0.034 0.0125 0.0161 0.0356

Table 2.6: Nominal significance levels using the F-H-O method for J = 2 and J = 3 looks,
for overall α of 0.05. The nominal level of the first look (highlighted cells) is pre-selected.
[49]

2.9 Discrete sequential boundaries

In 1986, Bauer [50] constructed conservative critical regions when neither the max-
imum number of interim analyses nor the the group sizes are pre-defined. Critical
regions under Ho are determined by the following two conditions:

P (Y1 ∈ w1) ≤ α∗(n1/n)
P
((⋂i−1

j=1(Yj 6∈ wj)
)
∩ (Yi ∈ wi)

)
≤ α∗

(∑i
j=1 nj/n−

∑i−1
j=1 nj/n

)
 (2.31)

where Y is the test statistic, α∗ the Lan & DeMets’s spending function and i ∈
{2, ..., K} the interim analysis. By using (2.31) and the following boundary condition
for Lan & DeMets’s α:

α∗(t), (0 ≤ t ≤ 1)
α∗(1) = α

 (2.32)

global α will be achieved if:

1− P ((Y1 6∈ w1) ∩ ... ∩ (YK 6∈ wK)) ≤ α (2.33)

From (2.31) it is clear that the only requirement of this approach is the knowledge
of the joint distribution of the test statistics at the last two inspection times.

Unfortunately, establishing the joint distribution of test statistics for equal or un-
equal group sample sizes (ni) can be a quite burdensome procedure. Bauer [50]
allowed for dimension reduction of the left-hand side of (2.31) by proving that:
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P

i−1⋂
j=1

(Yj 6∈ wj)
 ∩ (Yi ∈ wi)

 ≤ P (Yi ∈ wi)− P
 i−1⋃
j=m

((Yj ∈ wj) ∩ (Yi ∈ wi))


(2.34)
for i ∈ {2, ..., K} and m ∈ {1, ..., i}.

- For m = i the right-hand side of (2.34) equals P (Yi ∈ wi), constituting a very
conservative Bonferroni-type approximation.

- For m = i− 1, the right-hand side of (2.34) is now approximated by:

P (Yi ∈ wi)− P ((Yi−1 ∈ wi−1) ∩ (Yi ∈ wi)) (2.35)

The approximation is unlikely to be improved by using a m < i − 1. Table 2.7
presents exact and approximated (using Bauer’s method [50]) stopping boundaries
of 5 sequential interim analyses having equal sample sizes and following a Lan &
DeMets’s spending function. Note that the approximate values are clearly close to
the exact ones.

c1 c2 c3 c4 c5

α = 0.025
Exact 2.58 2.49 2.41 2.34 2.28
Approx. 2.58 2.49 2.43 2.37 2.33

α = 0.050
Exact 2.33 2.22 2.12 2.03 1.96
Approx. 2.33 2.22 2.14 2.08 2.03

Table 2.7: Comparison of the exact (Lan & DeMets’s [44]) and approximate (Bauer’s
[50]) one-sided boundaries for 5 groups with equal group sizes and α∗(t) = αt. More
information on this example in [50].

2.10 Stochastic curtailment

Using the stochastic curtailment approach to terminate a trial for futility, the stop-
ping boundary depends on a measure of the probability that Ho will be rejected at
the final analysis. In essence, at each interim look, the biometrician projects ahead
and computes the probability of Ho rejection at the end of the trial. Stochastic
curtailment often requires the determination of frequentist conditional power and
Bayesian predictive power. [36]

Conditional power is the frequentist conditional probability that at final look J ,
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the test statistic would exceed its boundary for declaring significance. [51] The
conditional power at each look is computed based on the assumption that the test
statistic at the final analysis J is a weighted average of the test statistic at interim
analysis j and the information that would be accumulated between j and J analyses.
This method requires the distribution of the yet unobserved information. To do so,
the biometrician, at each interim look, has to assume some particular value for the
parameter of interest θ. Common choices for θ include the current crude estimate
θ̂, the hypothesized value of θ under Ho (especially when stopping for efficacy is
viewed as most probable) or the hypothesized value of θ under H1 (especially when
stopping for futility is considered). Also, it is possible that θ estimates vary across
interim analyses. [36]

Conditional power can be determined as [36]:

Cj
(
l
(S)
J , θ1

)
= P

(
SJ ≤ l

(S)
J |Sj = sj; θ = θ1

)
(2.36)

with l(S)
J denoting the efficacy boundary at the final look J , S the test statistic and

θ1 the value of θ under H1.

The conditional power Cj serves as a test statistic with early stopping for futility
being decided when:

Cj ≥ d
(C)
j j ∈ (1, 2, ... , J − 1) (2.37)

In this case, d(C)
j is the stopping boundary for futility of the new treatment. It is a

common approach that biometricians use a constant boundary d(C)
j across interim

looks, with values of 0.1 or 0.2 being the most popular choices for d(C)
j . However,

as with other approaches, a boundary shape function can make early stopping more
efficient. [36]

2.11 Assumption violations

In 1992, Proschan, Follmann &Waclawiw [16] examined the degree to which assump-
tion violations can inflate type I error in several sequential designs. For simplicity
reasons, authors assumed a one-sided alternative hypothesis (analogous results can
be obtained for a two-sided test). Early termination can occur only due to strong
evidence for Ho rejection.

Unequally spaced looks

A number of group sequential methods like those of Pocock’s [43] and O’ Brien &
Fleming’s [37], assume equally spaced information time between interim analyses.
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Accidental violation of this assumption can be due to various factors such as non-
constant accrual or event rate.

What happens if the information times tj = j/J are not equally spaced and for
example, after three looks (J=3) and overall α=0.05, the actual global level is as
high as 0.068? [16]

Pocock’s and O’ Brien & Fleming’s methods

In O’ Brien & Fleming’s method, if J=5 and α=0.05, the worst-case scenario for the
resulting α is 0.078. And if one chooses to look too many times close to information
time 0, the probability of falsely rejecting Ho will be close to 1. Not surprisingly, this
problem is largely overcome if the biometrician agrees not to look at the data before
some information time δ. By using for example Pocock’s method, when α = 0.05,
J = 3 and δ = 0.30, the upper bound of α is as low as 0.057. [16]

Tables 2.8 & 2.9 present 2 scenarios (A & B) with 4 designs each using Pocock’s and
O’ Brien & Fleming’s methods, respectively. Exact type I error rates were calculated
using recursive numerical integration. Note that for Pocock’s method, the α inflation
is subtle when the first look is done as scheduled (Scenario A; Table 2.8), whilst the
inflation is moderate if the first look is done 50% earlier than expected (Scenario
B; Table 2.8). On the other hand, O’ Brien & Fleming’s method is more sensitive
to unequally spaced looks as α inflation is sharp even when the first look is done as
scheduled (Table 2.9).

Scenario t1 t2 t3 t4 t5 α = 0.025 α = 0.05
0.50 1.00 0.0250 0.0500

A 0.33 0.60 1.00 0.0251 0.0503
0.25 0.40 0.70 1.00 0.0253 0.0507
0.20 0.28 0.44 0.68 1.00 0.0256 0.0511
0.25 1.00 0.0271 0.0547

B 0.17 0.42 1.00 0.0277 0.0558
0.13 0.21 0.48 1.00 0.0281 0.0564
0.10 0.19 0.37 0.64 1.00 0.0285 0.0569

Table 2.8: Type I error inflation with Pocock’s method [43] for two values of α (t denoting
the information time). Scenario A: First and last looks as scheduled, intermediate looks
chosen to inflate global α. Scenario B: First look at 50% earlier than scheduled, last look
as scheduled, intermediate looks chosen to inflate global α. For more information on the
evaluation method see [16].
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Scenario t1 t2 t3 t4 t5 α = 0.025 α = 0.05
0.50 1.00 0.0250 0.0500

A 0.33 0.40 1.00 0.0269 0.0542
0.25 0.33 0.40 1.00 0.0281 0.0564
0.20 0.28 0.36 0.44 1.00 0.0289 0.0575
0.25 1.00 0.0257 0.0524

B 0.17 0.25 1.00 0.0279 0.0565
0.13 0.21 0.30 1.00 0.0292 0.0590
0.10 0.19 0.28 0.37 1.00 0.0299 0.0600

Table 2.9: Same as Table 2.8 for O’ Brien & Fleming’s method [37]. [16]

Planning based on data trends

When using methods that do not require to specify in advance the number of inspec-
tion times (e.g. an α-spending function or the F-H-O approach [49]), biometricians
are often tempted to determine the number of future looks based on the accumu-
lated data, even if this act could inflate type I error. In this case, an assumption
violation (which is not accidental, though quite natural) may occur. [16]

[1] The authors make it clear that look times should not be chosen based on trends
in the data, but how much α inflation will occur if this is done? [16]

The Slud & Wei / F-H-O procedure
In the Slud & Wei [46] / F-H-O procedure [49], Ho is rejected at information time
tj, if:

Z(tj) > C(t1, ... , tj) (2.38)

with C(t1, ... , tj) chosen so that:

P (Z(t1) < C(t1), ... , Z(tj−1) < C(t1, ... , tj−1), Z(tj) > C(t1, ... , tj)) = πj (2.39)

with
J∑
j=1

πj = α (2.40)

Using the F-H-O method, the answer to [1] is "not much" since (π1, π2, ... , πJ−1) are
quite small compared to πJ . However:

If πJ is not the bulk of α, we may grossly inflate α by basing future look times on
data trends. [16]

Proschan et al. (1992) [16] gave an example: Suppose that πJ−1 ' α and the other
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πj close to 0. One can look very close to information time 0, say time ε1, using
virtually a negligible part of α, and therefore having no chance of rejecting−he
simply notes whether Z(ε1) > zα. If so, he chooses to spend (π2, ... , πJ−1) almost
immediately thereafter, with rejection taking place almost certainly when πJ−1 is
spent. If Z(ε1) < zα, the biometrician may be tempted to look at information time
ε2 again close to information time 0 but such that ε1/ε2 is very small (to ensure
that Z(ε1) and Z(ε2) are independent). If he continues in this vein and at least
one Z(εi) exceeds zα, rejection is almost guaranteed. The probability of rejection is
approximately:

P

 ⋃
i≤J−1

Z(ti) > zα

 ≈ 1− (1− α)J−1 (2.41)

Note that, according to (2.41), as J increases, the probability of rejection increases
too.

When J is large, the probability of rejecting Ho is almost 1! This procedure can be
open to extreme abuse depending on the choice of πj. [16]

Table 2.10 presents type I error inflation when using less "abusive" ways of scheduling
interim analyses based on data trends. For instance, when πj = α/J (Scenario A),
or when πJ = α/2 and (π1, π2, ... , πJ−1) = α/[2(J−1)] (Scenario B). At information
time 1/J , if Z(1/J) exceeds its boundary, or if it does not but is close enough
so that Ho will be almost certainly rejected, (π2, ... , πJ−1) are subsequently spent
almost immediately. In another case, trial continues to look 2/J and so on. Note
that in both cases there is a substantial α inflation, even in scenario B suggested
by Fleming, Harrington & O’ Brien (1984) [49]. As expected, type I error increases
with the maximum number of looks J .

J Scenario A Scenario B
2 0.050 0.050
3 0.062 0.059
4 0.075 0.066
5 0.087 0.072

Table 2.10: Limiting case of "unintentional abuse": Type I error inflation with Slud & Wei
[46] / F-H-O procedure [49] (α = 0.05). Scenario A: πj = α/J . Scenario B: πJ = α/2,
(π1, π2, ... , πJ−1) = α/[2(J − 1)]. For further information see [16].

Alpha-spending functions
A substantial difference between Slud & Wei / F-H-O procedure and the use of an
α-spending function is that, as pointed out in paragraph 2.3, in the latter case, the
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amount of α to be spent at the next look is integrally dependent on its information
time (see (2.8) for α-spending functions, and (2.38) & (2.24) for the Slud & Wei /
F-H-O procedure). [16]

If one looks the data at time t, then unlikely the F-H-O method, he will pay a price
for looking again soon after t, say t+ ε. The reason is that he will be able to spend
only the α(t+ε)−α(t) amount of α and therefore the constant necessary to conclude
significance will be large.

The use of an α-spending function provides some protection if α(t) is continuous
against basing future look times on current data trends, though again the authors
make it clear that this is prohibited. [16]

Table 2.11 presents a worst-case scenario of α inflation with 3 common use α-
spending functions [44] and 3 looks at 10%, 25% and 50% of information time.
Note that type I error inflation is mild in all cases. For instance, using α1(t) and
having α = 0.05, when one abusively looks at the data at t = 0.10, one will get an
actual type I error of approximately 0.053 which is only 6% larger than the required
one.

α = 0.025 α = 0.050

δ1 = 0.10 δ2 = 0.25 δ3 = 0.50 δ1 = 0.10 δ2 = 0.25 δ3 = 0.50
α1(t) 0.0261 0.0256 0.0260 0.0528 0.0514 0.0520
α2(t) 0.0272 0.0269 0.0260 0.0537 0.0531 0.0517
α3(t) 0.0268 0.0267 0.0261 0.0529 0.0529 0.0518

Table 2.11: Worst-case α inflation with 3 common used α-spending functions (3 looks at
10%, 25% and 50% of information time) for two different values of global α. α1(t) =
2 − 2Φ(zα/2/

√
t) ; α2(t) = α log(1 + (e − 1) t) ; α3(t) = αt. [44] Values were obtained

through numerical integration (this method of abuse is computationally intensive even
with only 3 looks−most values required many hours of CPU time on a micro Vax II to be
obtained). For further information see [16].

2.12 Further sources

For more information on the group sequential design, the reader may refer to review
articles and books by Jennison & Turnbull (1991, 1999) [40] [56], Turnbull (1997)
[57] and Whitehead (1997) [58]. For the adaptive design, interesting reviews are
those of Wassmer’s (2000) [41] and Maca’s (2006) [59].
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Multi-stage design

3.1 Introduction

In clinical research, there are often several therapeutic regimens - candidates to
be evaluated against a control (a standard treatment). These regimens may refer
to different treatments, different doses or defining the most efficient duration of
exposure to the new intervention in terms of risk-benefit ratio. Sometimes selection
is made in an informal manner based on non-randomised pilot studies often from
various sources. [60] This renders treatment selection a poorly-controlled and subtly
arbitrary process. Another approach includes selecting an appropriate treatment or
therapeutic dose in a phase II trial and then compare it with the standard of care in
a phase III trial. [61] However, if selection and comparison phases could be combined
in a single trial, sample size will be reduced, and a great deal of time and cost will
be saved. Table 3.1 (an example by Todd & Stallard [62]) illustrates the magnitude
of sample size saving using either a two-stage or a seamless design (the latter will
be discussed in chapter 4).

Treatment selection is typically performed at the first interim analysis in where
multiple treatments are compared with a control (exploratory phase), but only one
(or some) continues along with it to the second stage (confirmatory phase), or it may
be done by dropping arms in a series of interim analyses (multi-stage scheme). In the
two-arm scheme, obtaining a significant difference at an interim analysis implies trial
termination, and therefore the stopping boundaries used to close an arm are identical
to those used for closing the entire trial. However, this is not the case for multi-armed
trials. In the pairwise comparison scheme, several treatments are usually compared
with a control and arms are gradually rejected. At each interim analysis, several
test statistics are compared with the corresponding critical values and each interim
analysis has to answer two questions: the number of treatments which will continue
along with the control, and whether the entire trial must be terminated. The latter
may happen after the last treatment arm has been proven superior or inferior to
the control, or when all planned patients have been evaluated. However, in practice
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other factors may also be taken into consideration when deciding whether to drop
or keep a treatment arm. For instance, risk-benefit analysis may allow inferior arms
with low rate of serious adverse events to continue and reject superior arms with
higher toxicity rate.

A classic approach demands that the experimental arm with the largest effect es-
timate being selected at the first interim analysis, whilst its test statistic ξ1 being
compared with two numeric constants (stopping boundaries) C11 and C12, so that
when ξ1 < C11 the trial is stopped for futility, whilst when ξ1 > C12 the trial is
stopped for efficacy, with C11, C12 ∈ (−∞,+∞). In any other case, the experimen-
tal treatment continues along with the control to the confirmatory phase, in where
data from both two stages are looked at a series of interim analyses. At interim
analysis j, if ξj > Cj2 the trial is stopped and Ho is rejected, whilst if ξj < Cj1

the trial is stopped for futility. If ξj ∈ [Cj1, Cj2] the trial continues to the j + 1
interim analysis. At the final analysis J , if ξJ > CJ the trial is stopped with Ho

rejection, whilst in another case, the experimental treatment cannot be concluded
to be effective. Stopping boundaries are chosen in such a way to maintain an overall
type I error, whilst sample size is calculated based on parameter estimates to fulfil
a power prerequisite under the alternative hypothesis.

In multi-armed comparative trials, multiplicity arises from two sources: multiple
comparisons of different arms and repeated significance testing that is done in the
context of a group sequential design. [63] Note than when multiple treatments are
compared with a control, a type I error can occur in several ways, whilst power
slipping away from its traditional definition, now can be expressed as a function of
both type II and type I error. [64][62]

Early work on multiple decision, or otherwise known as ranking and selection pro-
cess, started in the mid-1950s by Bechhofer [65] who considered the normal means
problem under what today is known as the indifference zone approach (see Appendix
A), and by Paulson (1964) [20] who assumed normal distributions with equal vari-
ances for selecting the population with the largest mean in the context of a se-
quential elimination procedure. Hoel & Mazumdar (1968) [66] extended Paulson’s
elimination process to other distributions. Bechhofer et al. (1968) [22] proposed
the Koopman-Darmois exponential distribution family. Hsu & Edwards (1983) [26]
proposed a method to select the best treatment(s) based on confidence sets. In 1994,
Follman et al. [67] modified some broadly used α-maintaining methods to allow for
pairwise comparisons in a multi-arm setting demanding equal evidence against all
pairwise comparisons. Maximum number of interim analyses does not have to be
specified in advance. Unfortunately, this approach increases expected sample size
and renders it suitable only for large-scale clinical trials. [60]
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In 1990, a two-stage approach by Schaid et al. [68] for time-to-event endpoints used
the logrank statistic for comparing between treatments assuming risk proportion-
ality. Stallard & Todd (2003) [61] generalised the designs of Thall et al. [60] for
binary data and Schaid et al. for failure times in a simple two-stage sequential design
suitable for binary, normally distributed and failure time response. Treatment se-
lection is based on comparing test statistics among investigational treatments, with
the best arm compared against the control in the context of a formal hypothesis
testing. Bischoff & Miller (2005) on the other hand, performed treatment selection
by comparing mean estimates [64].

The mathematical background of some of the aforementioned approaches is pre-
sented in this chapter. Emphasis is given in the sequential design using continuous
endpoints (including failure-time data) to measure response.

Design Total sample size
Four-arm phase III 4,000
Four-arm phase II followed by a two-arm phase III
(fixed sample)

2,100

Four-arm phase II followed by a two-arm phase III
(group sequential)

1,440 (under H1)

Combined phase II/III 1,390 (under H1)

Table 3.1: An example by Todd & Stallard: Expected total sample size for different designs.
For more information see [62].

3.2 Pairwise comparisons

Lan & DeMets’s method [44] for the two arm group sequential scheme dictates
that Ho shall be rejected at time tj if |Z(tj)| > c(t1, ..., tj) with stopping boundary
c(t1, ..., tj) being chosen so that:

P (reject Ho at t1 ∪ ... ∪ reject Ho at tj) = α∗(tj) (3.1)

with α∗(t) denoting the α-spending function. Follman et al. (1994) [67] adjusted
(3.1) to account for pairwise comparisons in a multi-armed scheme. Now the condi-
tion is expressed as:

P (∪ik∈ I(reject Hik at t1 ∪ ... ∪ reject Hik at tj)) = α∗(tj) (3.2)

In other words, stopping boundaries shall be chosen so that the cumulative chance
of any Hik rejection up to or at interim analysis tj to be equal to α∗(tj), with Hik
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denoting the null hypothesis for the equality of treatments i and k, and I the set of
hypotheses under testing. Hik is rejected at time tj if |Zik(tj)| > c(I, t1, ..., tj). Note
that the same boundary c is used for all pairwise testing at a given interim analysis.

Follman et al. also suggested a Pocock’s [43] and an O’ Brien & Fleming’s [37]
analogue for hypotheses testing. Having a set of I comparisons and J interim looks,
Pocock’s method translates as:

P (|Zik(j/J)| > CP (I, J) for some (i, k) ∈ I and some j = 1, ..., J) = α (3.3)

whilst O’ Brien & Fleming’s method translates as (see also Table 3.2):

P (|Zik(j/J)| > COF (I, J)
√
J

j
for some (i, k) ∈ I and some j = 1, ..., J) = α

(3.4)
Pairwise comparisons approach usually requires a large sample size to reject Ho.
Alternatives to this method will be discussed in this chapter.

Treatments vs Control All pairwise comparisons

No. of arms J Pocock O’ Brien Pocock O’ Brien
2 1 1.96 1.96 1.96 1.96

2 2.18 1.98 2.18 1.98
3 2.29 2.00 2.29 2.00

3 1 2.24 2.24 2.39 2.39
2 2.45 2.25 2.60 2.40
3 2.56 2.27 2.70 2.42

4 1 2.39 2.39 2.64 2.64
2 2.60 2.40 2.83 2.64
3 2.70 2.42 2.93 2.66

Table 3.2: Critical values for a multi-arm analogue to Pocock’s and O’ Brien & Fleming’s
methods having J interim analyses using Bonferroni approach at an overall two-sided
significance level of α = 0.05 (equal variances assumed). [67]

3.3 Logrank statistic in a two-stage scheme for
failure times

Schaid et al. (1990) [68] used logrank statistic for comparing between treatment
arms assuming proportional hazard rates λo(t) and λk(t) for patients of different
treatment arms. Having n1 patients at each of the treatment K + 1 groups (K
investigational arms plus the control) at the end of the exploratory phase t = t1,
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accrual is terminated at time t1 in the following two cases:

- if all the K statistics are lower than a C1 boundary (stopping for futility)

- if at least one statistic exceeds an upper boundary C2 (stopping for efficacy)

In any other case, accrual is continued for the control group and all experimental
groups for which C1 ≤ T k(t1) ≤ C2, with T k(t) denoting the logrank statistic for
comparing a k experimental treatment (k = 1, ..., K) with the control at time point
t. At the end of confirmatory phase, successful treatments should have T k(t2) > C3.

By using the Bonferroni approximation for the overall significance level, under Ho,
the expected total sample size is given by:

N = (K + 1)n1p0 +
K∑
j=1

[n2(j + 1) + n1(K − j)]pj (3.5)

with j denoting the comparison number (j = 1, ..., K), p0 the probability of accrual
termination at the end of the exploratory phase and pj the probability that accrual
of j experimental treatments (along with the control) will continue to the next phase
(for p0 and pj evaluation see [68]).

For a fixed type I error (α) and power (1−β), an optimal design is the one with the
smallest expected sample size under Ho. For simplicity, Schaid et al. assumed a uni-
form accrual rate in [0, tα], an exponential survival time distribution with parameter
λo(t) = λo, and no loss to follow-up (other forms of accrual, survival and censoring
may be assumed as well). The parameters that need to be pre-specified are α, 1−β,
K, λo, θ, follow-up time t2 − tα and accrual rate, with θ denoting the hazards ra-
tio λo(t)/λk(t), whilst the parameters to be calculated are the stopping boundaries
C1, C2, C3 and the sample size of each stage n1, n2. C1 and C3 boundaries were set
equal to:

C1 = 1
2
√
d1 log θ̃

C3 = Φ−1(1− α)

 (3.6)

with d1 denoting the expected number of deaths at the end of the exploratory phase,
and θ̃ the minimum hazards ratio that need to be recorded before continuing accrual.

Using (3.5) and having defined (α, 1−β, K, λo, θ, C1 and C3), the optimal choice of
(n1, n2, C2) is the one leading the smallest expected total sample size N under Ho.
Table 3.3 presents the expected sample size (asymptotically derived and simulated),
power and type I error for two different combinations of accrual and hazard rate (c).
This design can offer a substantial saving of sample size when the hazard rate of the
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experimental treatment is large relative to the accrual rate. [68]

c = 50 c = 100

θ K 1− β 1− β n n α 1− β n n α

Asym. Sim. Asym. Sim. Sim. Sim. Asym. Sim. Sim.
1.5 2 0.80 0.81 124.9 122.2 0.043 0.80 142.0 140.7 0.050

0.90 0.90 160.8 161.4 0.040 0.87 179.9 180.1 0.048
4 0.80 0.77 111.7 112.0 0.044 0.80 121.8 123.5 0.049

0.90 0.90 141.9 142.2 0.048 0.88 152.7 151.0 0.047
2.0 2 0.80 0.81 56.0 57.6 0.054 0.80 67.2 67.0 0.049

0.90 0.89 70.7 70.0 0.058 0.89 84.2 84.2 0.065
4 0.80 0.76 46.9 47.0 0.044 0.79 54.8 54.6 0.055

0.90 0.87 58.6 58.3 0.037 0.89 67.8 68.1 0.046

Table 3.3: Expected sample size per treatment arm (n) (asymptotically derived and sim-
ulated), Bonferroni approximated overall type I error (α), and pairwise power (1 − β)
(asymptotically derived and simulated) for two values of accrual rate/hazard rate (c) (nom-
inal overall type I error set to 0.05). [68]

3.4 Other sequential two-stage designs

More recently, Stallard & Todd [61] proposed a two-stage design where selection is
made from a small number of treatment arms, and subsequently the most efficient
treatment is evaluated. At the first interim analysis, assuming equal variances among
the experimental arms, the treatment which displayed the largest observed score is
compared with the control. If a treatment difference is proven, then the trial is
terminated, otherwise the best treatment continues along with the control to stage
II. Authors adopted a number of settings for the parameter of interest θ and the
score statistics Z given by Whitehead [58] for binary and normally distributed data
with stopping boundaries depending on the observed Fisher’s information table.

Stallard and Todd’s design presents a series of benefits against other designs, includ-
ing its simplicity, its applicability to various types of endpoints and the ability to
incorporate covariate information. Note that treatment selection is not done by hy-
pothesis testing, rather it is based on comparing test statistics of the investigational
arms assuming homoscedasticity.

Bischoff & Miller (2005) [64] published an adaptive two-stage design for choosing
the best treatment among a set of three different arms (including the control arm).
If Yijk is the response of the ith patient to treatment j at stage k with k = 1 denoting
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the first stage and k = 2 the second, then Yijk can be viewed as:

Yijk = µj + εijk (3.7)

independently for each i, j and k, with j = 0 denoting the control arm. In a
superiority design, the hypotheses testing writes as follows:

Ho : max(µ1, µ2) ≤ µo

H1 : max(µ1, µ2) > µo
(3.8)

with type I error given by:

α = P (Ho rejected, θ̂ = 1) I[µ1 ≤ µo] + P (Ho rejected, θ̂ = 2) I[µ2 ≤ µo] (3.9)

with θ denoting the best treatment, and I the indicator function. Note that, in con-
trast to traditional hypotheses testing, a type I error can occur even if the alternative
is true. And power π now is related to both type II and type I error:

π = 1− (α + β) I[µ1 > µo or µ2 > µo] (3.10)

with β denoting type II error (β = P (Ho not rejected) I[µ1 > µo or µ2 > µo]). Mean
µj can be estimated by:

Y .j1 = 1
n1

n1∑
i=1

Yij1 (j = 0, 1, 2) (3.11)

with n1 the number of allocated patients to each arm in stage I of the trial.

Treatment selection is done by comparing µ estimates of arms j = 1 and 2 so that
Y .θ̂1 = max(Y .11, Y .21), with test statistics expressed as:

ξ1 = (Y .θ̂1 − Y .01)
√
n1

2S2
1

(3.12)

with
S2

1 = 1
3n1 − 3

2∑
j=0

n1∑
i=1

(Yij1 − Y .j1)2 (3.13)

denoting the variance estimate.

At interim analysis, stopping rules write as follows:
- if ξ1 > c stop and reject Ho

- if ξ1 < b (b ≤ c) stop and do not reject Ho

- if ξ1 ∈ [b, c] continue and compute N2
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with c, b ∈ (−∞,+∞) and N2 being equal to:

N2 = N2(S2
1) = vS2

1 − n1 (3.14)

and v an arbitrarily positive constant.

If trial continues to the second stage, another n2 patients will be added to each of
the two arms (the best treatment and the control), and final response is calculated
based on data from patients of both first and second stage so that:

µ̂j = Y .j. = 1
n1 + n2

(n1Y .j1 + n2Y .j2) j ∈ {0, θ̂} (3.15)

with test statistics now being equal to:

ξ2 = (Y .θ̂. − Y .0.)
√
n1 + n2

2S2
1

(3.16)

Here Ho is rejected if ξ2 > u with u being chosen suitably.

Figure 3.1 presents the expected power as a function of µ1 (µ1 ∈ [0,∆]) for µo = 0
and µ2 = ∆ with max(µ1−µo, µ2−µo) ≥ ∆. Table 3.4 presents three combinations
of the values (n1, b, c, u and v) and the expected total sample size (N), whilst table
3.5 shows the expected sample size for various (b, c) combinations. The method can
be generalised to have more than three arms.

Figure 3.1: Typical shape of the power as a function of µ1 for µo = 0 and µ2 = ∆, for
fixed σ2, n1, b, c, u and v for a three-arm two-stage trial. [64]
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n1 b c u v N

30 -1.0 2.7 2.29 1.77 197
40 -0.6 2.7 2.27 1.58 191
50 -0.1 2.6 2.30 1.52 198

Table 3.4: Expected total sample size for three combinations of (n1, b, c, u and v) for a
three-arm, two-stage trial following the group sequential design. More information on this
example in [64].

b c = 2.5 c = 2.6 c = 2.7 c = 2.8 c = 2.9
-0.8 193.2 191.2 190.9 191.8 193.9
-0.6 193.0 191.0 190.7 191.7 193.9
-0.4 193.0 191.3 191.2 192.0 194.6

Table 3.5: Expected total sample size for different (b, c) combinations, having n1 = 38 for
a three-arm, two-stage trial following the group sequential design. More information on
this example in [64].
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Other designs

4.1 Introduction

The seamless phase II/III design
Seamless phase II/III trials have become quite popular due to their advantages
upon other designs. An adaptive seamless II/III design combines the exploratory
and the confirmatory stage in a single confirmatory trial allowing data collected
from both phases to be used for the final efficacy assessment, thus leading to sample
size reduction. Another advantage of such a design is the short span of time needed
to seamlessly move from one phase to another.

Chow & Tu [69] named 4 categories of seamless designs according to study objectives
and measuring endpoints of each stage: (a) same objectives/same endpoints; (b)
same objectives/different endpoints; (c) different objectives/same endpoints; (d)
different objectives/different endpoints. Note that by the term "different objectives",
authors mostly refer to designs described in chapter 3 (e.g. treatment selection in
the exploratory phase and formal comparison in the confirmatory phase). In this
chapter, focus is given on (a) and (b) designs.

To seamlessly move from a phase II to a phase III trial, patients must be treated
under the same protocol. [62] However, an adaptive design allows for real-time
protocol modifications which may refer to either the trial procedures (e.g. eligibility
criteria, study dose, treatment duration, a change of endpoint, laboratory testing
procedures, diagnostic procedures) or the statistical methods (e.g. sample size,
randomization process, statistical design, a change of hypotheses to be tested). [69]
These modifications must by planned in such a way to protect the validity and
integrity of the trial. [70]

In 1994, Bauer & Köhne [42] proposed and evaluated a general method for multiple
testing in the context of an adaptive two-stage scheme. The method is based on
p-values obtained from the disjoint sample before and after the interim look. Ef-
ficacy analysis is then performed by combining the two p-values into a global test
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statistic. This process is known as a p-value combination test. Authors used the
Fisher’s combination test [71] and assumed that the two p-values are independent
and uniformly distributed under Ho. Figure 4.1 presents the rejection region for
such a design.

More recently, Stallard [53] utilised the recursive numerical integration method [13]
to compute the test statistics in a seamless design having multiple treatment arms.
Although in a general treatment selection design, the number of treatments which
continue along with the control in the next phase is determined by the data, in
Stallard’s design this is specified in advance, unless the entire trial is terminated
early, either for efficacy or futility reason.

Multiple endpoints
Typically in clinical research, a single, clinically relevant endpoint is used to measure
response to study treatment. Sample size determination, number and timing of
interim looks and early termination rules are all related to the primary endpoint.
However, the effect of a treatment is almost always multidimensional, rendering a
single endpoint inadequate to present the full picture of benefit (including clinical
benefit). Most clinical trials address different aspects of treatment benefit with
secondary and exploratory endpoints. It is also quite usual, especially in the field of
oncology, to conduct a translational study after the end of the trial to explore how
study treatment could benefit different subgroups of patients.

The objective of a confirmatory trial is always addressed through its primary end-
point. Other endpoints that may be measured have only exploratory nature and no
conclusion shall be drawn regarding them. The reason for that is that the entire sta-
tistical design (sample size, group size and interim analyses) is based on the primary
endpoint. So what if, to objectively measure clinical benefit of a new treatment, two
endpoints must be used?

In clinical research, it is not uncommon to use two co-primary endpoints to measure
response. An efficacy endpoint and the toxicity rate, or two efficacy endpoints may
constitute two primary endpoints of a clinical trial. Their responses can be corre-
lated, and the degree of correlation is often non-foreseeable. In 2016, EMA released
draft guidelines on multiplicity issues (CHMP, 2017), and in 2017, FDA issued guid-
ance on multiple endpoints in clinical trials (FDA, 2017). These guidelines address
the challenges raised by using multiple primary endpoints, including guidance on
proper control of type I & II error.
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In this Chapter, focus is given on the adaptive seamless II/III design and designs
utilising more than one primary endpoint. Tables, figures and flowcharts are pro-
vided along with methods as reported by the authors.

Figure 4.1: The p-value combination test. Rejection regions of the different test procedures
in terms of the observed error probabilities p1 and p2 in the two stages of the trial. The
uniformly most powerful test (u.m.p.t.) is based on the assumption of normally distributed
test statistics with known variance and equal sample sizes at both stages. [42]
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4.2 The p-value combination test approach

Bauer & Kieser (1999) [72] assumed a seamless design with treatment selection. At
first interim analysis, the null hypothesis to be tested writes as follows:

Ho = HoA = Ho1 ∩Ho2 ∩ ... ∩Ho(K−1) ∩HoK (4.1)

with

Hok : µo ≥ µk

H1k : µo < µk
(4.2)

with k = 1, ..., K and K denoting the number of experimental arms to be compared
with the control.

HoA is tested on significant levels (αAL, αAU) (stopping for futility or efficacy, re-
spectively) providing a p-value pA. Selected treatments after protocol adaptation
continue to the second phase along with the control. Now the null hypothesis writes
as follows:

HoB =
⋂
l∈L

Hol (4.3)

with L a subset of K arms (note that by definition HoA ∩ HoB = HoA = Ho). A
p-value pB is obtained by testing HoB with data collected only from patients joined
in the second stage (disjoint sample).

Final decision for the rejection or not of the global null hypothesis Ho, using data
from patients recruited in both phases, is performed by a combination test for pA

and pB by assuming that pA and pB are independent and uniformly distributed under
Ho (Fisher’s combination test). The global level α is set equal to:

α = αAL +
∫ αAU

αAL

∫ cB/pA

0
dpBdpA = αAL + cB [log(αAU)− log(αAL)] (4.4)

with

cB = exp
[
−1

2X 2
4 (1− αB)

]
(4.5)

Stopping rules write as follows:
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Stage I:
- if pA ≤ αAL, the trial is stopped and Ho is rejected
- if pA ≥ αAU , the trial is stopped and Ho is not rejected
- if αAL < pA < αAU , the trial continues to the second stage

Stage II:
- if pA pB ≤ cB, Ho is rejected
- if pA pB > cB, Ho is not rejected

Fig. 4.2 presents a more general seamless sequential design using Fisher’s combina-
tion test. For αAL = cB (with α = αB) the design corresponds to a non-stochastic
curtailment, whilst for (αAU → αAL)⇒ (αAU → α) the design corresponds to a fixed
sample size test using only the first phase. Another design by the same authors−an
adaptive seamless two-stage design for multiple inference of the treatment-control
comparisons−is presented in Appendix B. [72]

4.3 Recursive numerical integration in a seamless
design

In 2011, Stallard [53] used the method of recursive numerical integration (described
in Chapter 2) in a seamless phase II/III design having multiple experimental treat-
ments to be compared with a control. More specifically, he utilised two designs: a
design proposed in 2003 by Stallard & Todd [61] in which only a single experimental
arm moves to the second phase; and another design proposed by Stallard & Fiede
(2008) [73] in which a pre-specified number of treatments continue along with the
control.

In the first stage of Stallard’s [53] design, the family of null hypotheses to be tested
writes as follows:

Hoi : θi ≤ 0 i ∈ {1, 2, ... , k} (4.6)

with θi denoting the effect of the Ti treatment relative to the control.

To control the familywise type I error in a strong sense, a one-sided test requires
that:

P (reject any true Hoi) ≤ α (4.7)

while a less stringent approach demands that:

P (reject any Hoi | Ho1, Ho2, ..., Hok) ≤ α (4.8)

45

Univ
ers

ity
of

Pira
eu

s
Univ

ers
ity

of
Pira

eu
s



First stage

HoA

pA ≤ αALStop and reject HoA

pA < αAU

Second stage (after adaptation)

Stop without rejection

HoB

pA pB ≤ cBReject HoA ∩HoB

No rejection

Yes

No

Yes

No

Yes

No

Figure 4.2: Decision making in the general seamless two-stage sequential design using
Fisher’s combination test approach - a flowchart visualisation. [72]

At interim analysis j:

◦ if there is any treatment arm with Si,j ≥ uj, the trial is stopped and Hoi is
rejected for all such i
◦ if Si,j ≤ lj for all treatment arms, the trial is stopped for futility
◦ otherwise, a subset of experimental treatments is chosen to continue along with
the control to the next analysis

with Si,j denoting the score statistics of each treatment arm i with i ∈ {1, 2, ..., k}
at each interim analysis j.

46



A single experimental treatment to continue along with the control

Using Stallard & Todd’s [61] design, only a single experimental treatment can con-
tinue to the next stage of a seamless trial−the one with the highest score statistic at
the first interim analysis. Stopping boundaries (l1, l2, ..., lJ) and (u1, u2, ..., uJ) can
be computed such that the familywise type I error is controlled in a weak sense:

P (stop and reject Ho(I) at or before interim analysis j | θ1 = θ2 = ... = θk = 0) = α∗U(tj)

P (stop and do not reject Ho(I) at or before interim analysis j | θ1 = θ2 = ... = θk = 0) = α∗L(tj)
(4.9)

with I denoting the experimental treatment, if any, which continues to the next
stage. Note that (4.9) is equivalent to (2.4) for a seamless trial having multiple
treatment arms.

As in the simple case of paragraph 2.2, an α-spending function or nominal signifi-
cance levels derived using Pocock’s or O’Brien & Fleming’s method can be utilised
to define α∗U(tj) and α∗L(tj).

To compute (l1, l2, ..., lJ) and (u1, u2, ..., uJ), besides (4.9), one must approximate
the (SI1, SI2, ... , SIJ) distribution. As in paragraph 2.2, SI,j − SI,j−1 is normally
distributed with SI,j − SI,j−1 being independent of SI,j−1. Thus, subdensities SI,j
are given by (2.5).

Figure 2.1 (right panel) is an illustration of recursive numerical integration in a
seamless design with 5 interim analyses and 4 arms (3 experimental treatments and
the control), with only 2 of them (an experimental and the control) continuing to
the second analysis and further testing. Note that at the first interim analysis, the
distribution (and therefore the critical values) is shifted to the right to allow for
treatment selection.

A pre-specified number of experimental treatments to continue along
with the control

In 2008, Stallard & Friede [73] generalised Stallard & Todd’s [61] method to allow
for a (pre-specified) number of treatment arms to continue to the next stage of
the seamless design. The method was altered so that stopping boundaries would
account for the test statistics Si,j of the treatment arms continuing to stage II. For
more information on this approach see [73].
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4.4 Having more than one primary endpoint

Bauer (1991) [17] considered a design with two treatments i with i ∈ {A,B} (a new
treatment A versus a control B) and three primary endpoints j (j ∈ {1, 2, 3}) which
follow a trivariate normal distribution N(µ(i),Σ).

Fixed sample size approach

The extended closed set of null hypotheses in the fixed sample size approach writes
as follows [17]:

The null hypothesis of global efficacy:

Ho :
(
µ

(A)
1 = µ

(B)
1

)
∩
(
µ

(A)
2 = µ

(B)
2

)
∩
(
µ

(A)
3 = µ

(B)
3

)
(4.10)

The intersection null hypotheses:

Ho1 :
(
µ

(A)
1 = µ

(B)
1

)
∩
(
µ

(A)
2 = µ

(B)
2

)
Ho2 :

(
µ

(A)
1 = µ

(B)
1

)
∩
(
µ

(A)
3 = µ

(B)
3

)
Ho3 :

(
µ

(A)
2 = µ

(B)
2

)
∩
(
µ

(A)
3 = µ

(B)
3

) (4.11)

The elementary null hypotheses:

H̃o1 : µ(A)
1 = µ

(B)
1

H̃o2 : µ(A)
2 = µ

(B)
2

H̃o3 : µ(A)
3 = µ

(B)
3

(4.12)

The step-down procedure dictates that:

1. Ho is tested first, at global level α.
2. If Ho is rejected, the set of intersection null hypotheses (4.11) is tested.
3. If at least two are rejected at global level α, testing proceeds to the elementary
null hypotheses (4.12).

Note that one cannot test all three (or two) elementary hypotheses at global level
α. If one does so, the probability of falsely rejecting at least one of them would
inflate and exceed α. By rejecting the intersection hypothesis before proceeding to
the elementary hypotheses, global level α is protected.

Further, if one elementary null hypothesis is rejected, then all intersection null hy-
potheses which involve this elementary hypothesis and the global null hypothesis are
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rejected too (coherence by definition). For example, if H̃o1 is rejected, then Ho1, Ho2

and Ho are rejected as well. On the other hand, consonance is not guaranteed (if Ho

is rejected, that does not translate into rejection of any intersection or elementary
hypothesis).

Testing can be performed using global test statistics. For example, Ho can be tested
using a T 2-test, {Ho1, Ho2, Ho3} will then be tested using T 2-tests, and subsequently
elementary {H̃o1, H̃o2, H̃o3} will be tested using t-tests, all tests at level α.

In a different line of thought, Holm (1979) [24] made good use of the union intersec-
tion principle [74] and the Bonferroni inequality, suggesting ordering the observed
p-values of the elementary tests according to their magnitude and then using them
as test statistics for the intersection null hypotheses. In our example with three
primary endpoints:

p(1) ≤ p(2) ≤ p(3) (4.13)

Holm’s stepwise rejective conservative procedure writes as follows [17]:

◦ if (p(1) ≤ α/3) ∩ (p(2) ≤ α/2) ∩ (p(3) ≤ α) then reject all elementary null
hypotheses
◦ if (p(1) ≤ α/3) ∩ (p(2) ≤ α/2) ∩ (p(3) > α) then reject H̃o(1) and H̃o(2)

◦ if (p(1) ≤ α/3) ∩ (p(2) > α/2) then reject H̃o(1)

◦ if p(1) > α/3 do not reject any elementary null hypothesis

The generalisation to the k elementary null hypotheses (corresponding to k primary
endpoints) is straightforward:

◦ if (p(1) ≤ α/k) ∩ (p(2) ≤ α/(k − 1)) ∩ ... ∩ (p(k) ≤ α) then reject all elementary
null hypotheses
◦ if (p(1) ≤ α/k) ∩ (p(2) ≤ α/(k− 1)) ∩ ...∩ (p(k) > α) then reject all intersection
null hypotheses but those involving the elementary null hypothesis of H̃ok and
so on
◦ last, if p(1) > α/k do not reject any elementary null hypothesis

Further, elementary null hypotheses can be weighed using different multiplicators
for the observed p-values. [24][75]

Instead of using the Bonferroni inequality, Rüger (1978) [76] proposed a less conser-
vative approach. He suggested Ho to be rejected if p(r) ≤ rα/k with r being fixed in
advance 1 < r ≤ k. For further information on approaches for the fixed sample size
design, the interested reader may refer to work by Hommel (1986, 1988) [75][77],
Simes (1986) [27] and Abt (1987) [78].
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Sequential design

Bauer (1986) [79] investigated a two-stage design with two treatment arms i and two
primary endpoints j−one efficacy endpoint (stopping for efficacy) and the toxicity
rate (stopping for toxicity). He assumed that the two variables (Z(i)

1 , Z
(i)
2 ) follow a

bivariate, normal distribution N(µ(i), Σ) and have an unknown correlation ρi. The
test statistics for each stage and treatment arm are denoted as:

Y T = (Y1n, Y2n, Y1N , Y2N) (4.14)

with n the sample size at the end of the first stage, and N the total sample size. The
test statistics are given by:

Y1M = 1√
2M

(
M∑
m=1

Z
(1)
lm −

M∑
m=1

Z
(2)
lm

)
(4.15)

with l ∈ {1, 2} and M ∈ {n,N}. Note that Z(i)
lm denotes the co-primary variable

response of each treatment arm i.

Y follows a multivariate normal distribution with a mean of:

µTY =
(
δ1

√
(n2 ), δ2

√
(n2 ), δ1

√
(N2 ), δ2

√
(N2 )

)
(4.16)

where δ1 = µ
(1)
1 − µ

(2)
1 and δ2 = µ

(1)
2 − µ

(2)
2 , and a covariance matrix of:

Σ =


1 ρ1+ρ2

2

√
n
N

√
n
N

ρ1+ρ2
2

1
√

n
N

ρ1+ρ2
2

√
n
N

1 ρ1+ρ2
2

1

 (4.17)

The null hypothesis of interest writes as follows:

Ho : δT = (δ1, δ2)T = (0, 0)T ≡ Ho1 ∩Ho2 (4.18)

with

Ho1 : δ1 = 0
Ho2 : δ2 = 0

(4.19)

Ho is rejected if at least one individual hypothesis (Ho1, Ho2) is rejected. Critical
regions Wk for the individual test statistics {Y1n, Y2n, Y1N , Y2N} = {Y1, Y2, Y3, Y4}
are chosen so that:
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P

( 4⋂
k=1

(Yk 6∈ Wk)|Ho

)
= 1− α (4.20)

For the one-sided test:
Wk ≡ (ck,+∞) (4.21)

For the symmetric two-sided test:

Wk ≡ (−∞,−ck) ∩ (ck,+∞) (4.22)

The problem now can be summarised as:

How to choose Wk(or ck), and therefore the "individual" marginal significance levels
αk = P (Yk ∈ Wk|Ho), in different test situations when the only known condition is
(4.20)?

If α2 = α4 = 0 (α1 = α3 = 0), the problem would be identical to a repeated
significance testing for the efficacy endpoint (toxicity endpoint) only. For α3 =
α4 = 0 (α1 = α2 = 0), the problem would reduce to a fixed sample test of sample
size n(N) and two primary endpoints. If 3 out of 4 αk were zero, the problem would
reduce to a fixed sample size test for a single random variable. If 0 < αk < 1 for all
(or some) k ∈ {1, 2, 3, 4} then various scenarios could arise.

Scenario 1:

◦ The procedure stops at the first stage due to unacceptable toxicity if (Y1 6∈
W1) ∩ (Y2 ∈ W2).

Scenario 2:

◦ The procedure stops at the first stage for efficacy reason if (Y1 ∈ W1) ∩ (Y2 6∈
W2).

Scenario 3:

◦ The procedure stops at the first stage due to unacceptable toxicity if (Y1 ∈
W1) ∩ (Y2 ∈ W2).

Scenario 4:

◦ The procedure continues to the second stage if (Y1 6∈ W1) ∩ (Y2 6∈ W2)

To determine the stopping boundaries ck, the problem of endpoint correlation must
be tackled. Bauer [79] adopted results known from the multivariate normal distri-
bution. For the two-sided symmetrical case [80]:

P
(
(Y(1) ∈ C1) ∩ (Y(2) ∈ C2)

)
≥ P (Y(1) ∈ C1) P (Y(2) ∈ C2) (4.23)

with Y T
(1) = (Y1, Y2, ..., Yr) and Y T

(2) = (Yr+1, Yr+2, ..., Ys).
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From (4.20) and (4.23), if

P
(
(Y(1) 6∈ W1) ∩ (Y(3) 6∈ W3) |Ho

)
P
(
(Y(2) 6∈ W2) ∩ (Y(4) 6∈ W4) |Ho

)
= 1− α

(4.24)
it stands that

P

( 4⋂
k=1

(Yk 6∈ Wk)|Ho

)
6< 1− α (4.25)

Following this line of thought, one can use (4.24) instead of (4.20). For the one-
sided test, Bauer [79] using results by Sleplan (1962) [81] showed that if ρ1 +ρ2 > 0
(a condition usually fulfilled), (4.24) can again be applied instead of (4.20), and the
equality sign in (4.20) can now be replaced by ≥.

Unfortunately (4.24) alone does not suffice to determine the stopping boundaries
ck. A way to approach the problem is as follows [79]:

For the one-sided test, under the pure location shift alternative:

◦ (δ1, δ2)T ≡ (δ11, δ21)T with 0 ≤ δ21 ≤ δ11 being critical values for δ2 and δ1

respectively, the probability of stopping at the first or the second stage with Ho1

rejection is γ1, with γ1 being equal to:

γ1 = P1 = P ((Y1 ∈ W1) ∪ [(Y1 6∈ W1) ∩ (Y2 6∈ W2) ∩ (Y3 ∈ W3)] |δ11, δ21)
(4.26)

◦ (δ1, δ2)T ≡ (δ12, δ22)T with 0 ≤ δ12 ≤ δ22 being critical values for δ1 and δ2

respectively, the probability of stopping at the first or the second stage with Ho2

rejection is γ2, with γ2 being equal to:

γ2 = P2 = P ((Y2 ∈ W2) ∪ [(Y1 6∈ W1) ∩ (Y2 6∈ W2) ∩ (Y4 ∈ W4)] |δ12, δ22)
(4.27)

For the one-sided test:

◦ if δ1 > δ11 and δ2 < δ21 then P1 > γ1

◦ if δ1 < δ12 and δ2 > δ22 then P2 > γ2

Note that (4.26) and (4.27) depend on the unknown ρ, hence, the impact of the
correlation between the co-primary endpoints has still to be determined.

Equations (4.26) and (4.27) have to be modified in case of a two-sided test. More
specifically, Yi ∈ Wi has to be replaced by Yi ∈ (ci,+∞) because stopping would
occur when the test statistics fall into (ck,+∞) and not into (−∞,−ck).

Again (4.24) with the extra conditions (4.26) and (4.27) does not suffice to de-
termine the critical values ck, and subsequently the nominal levels αk. Further

52



assumptions shall be made with regard to sample size n, means difference δ, power
γ and nominal levels αk. Bauer [79] investigated a case of equal sample sizes for
each stage: n = N/2, the means difference of the two primary endpoints has the
same magnitude: δ11 = δ∗1 = δ, δ22 = δ∗2 = δ, δ21 = δ12 = 0, and under the alter-
native, power γ = γ1 = γ2. He also added a fourth condition to (4.24), (4.26) and
(4.27): same nominal levels for the two primary endpoints at the first stage α1 = α2

(symmetry implies that for the second stage α3 = α4). Results are shown in Table
4.1 (for δ∗1/δ∗2 = 1). For γ = 0.90, α1 = α2 = 0.015; this result does not change even
when correlation is as large as ρ = 0.90 (see also Table 4.2).

δ∗
1 δ∗

2 δ∗
1/δ

∗
2 γ = 0.80 γ = 0.90

(1) (2) (1) (2)
0.25 0.25 1 N 282 340 376 440

α1 0.015 0.015 0.015 0.015
α2 0.015 0.015 0.015 0.015

0.25 0.33 0.76 N 232 286 314 376
α1 0.027 0.027 0.028 0.028
α2 0.0030 0.0018 0.0021 0.0012
(c2) (2.75) (3.12) (2.86) (3.23)

0.33 0.5 0.66 N 128 158 174 210
α1 0.029 0.029 0.030 0.029
α2 <0.001 <0.001 <0.001 <0.001
(c2) (3.13) (3.57) (3.31) (3.75)

0.25 0.5 0.50 N 222 280 306 370
α1 0.030 0.029 0.030 0.029
α2 <0.001 <0.001 <0.001 <0.001
(c2) (4.35) (5.0) (4.8) (5.4)

Table 4.1: A two-stage group sequential design having two treatment arms and two co-
primary endpoints (an efficacy and a toxicity endpoint)−required total sample size (N),
nominal significance level for the efficacy endpoint (α1) and the toxicity endpoint (α2),
and stopping boundary for the toxicity endpoint (c2), for two different values of power (γ)
and various combinations of means difference (δ∗1 , δ∗2) assuming zero correlation between
endpoints (ρ = 0) (global α = 0.05). (1)=one-sided test, (2)=two-sided test. [79]
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γ ρ = 0 ρ = 0.9
0.80 340 336
0.90 440 436
0.95 536 532

Table 4.2: Sensitivity analysis of the trial design presented in Table 5.1 (with δ∗1/δ∗2 = 1):
required total sample size for different values of power (γ) and two extreme values of
endpoint correlation ρ. [79]

Maximum sample size can be estimated by:

Nmax =
(
δ∗1
δ∗2

)2

N (4.28)
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Comparison of various designs

5.1 Introduction

In this chapter, we attempt to compare various designs with regard to the total
sample size needed to reach the expected statistical power, and their ability to detect
a treatment difference, if one exists, engaging fewer patients. The best designs are
chosen based on the expected sample size, the cumulative number of patients at
the interims, the total trial duration, and the possibility of stopping for efficacy if a
treatment difference actually exists.

Of note, all the trial designs and the treatment schemes presented here
are not real.

5.2 Methodology

The parameters that change among the models are: the spending function parame-
ters, the number and timing of the interim looks.

Group sequential design with a time-to-event endpoint
The input parameters for a design utilising a time-to-event endpoint to terminate
the trial are the hazards ratio under the alternative, the expected median survival
time of the control arm, the type I error & the statistical power, the expected
censoring rate, the expected enrolment ramp-up duration, the expected accrual rate
after ramp-up phase, the minimum follow-up duration for all patients before the
final analysis, the number of interim looks, the interval spacing, and the spending
function parameters. The output design parameters are: the total sample size, the
cumulative sample size at each interim, the cumulative number of events, the total
trial duration, the stopping boundaries, and the cumulative crossing probabilities.
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Group sequential design with a binary endpoint
The input parameters for a design utilising a binary endpoint are: the event rate of
each arm under the alternative, the type I error & the statistical power, the sample
size of the fixed design, the number of interim looks, the interval spacing, and the
spending function parameters. The output design parameters are the following:
the total sample size, the cumulative sample size at each interim, the stopping
boundaries, and the cumulative crossing probabilities.

Software
The design simulation was performed in RStudio (gsDesign R package). Addition-
ally, gsDesign Explorer v0.61 was explored. gsDesign explorer is a web-based inter-
face to the open-source gsDesign R package for designing group sequential trials built
using the RStudio Shiny package. Creator & Project Manager: Keaven Anderson;
Shiny Developer: John Lueders. Url: https://gsdesign.shinyapps.io/prod/
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5.3 ELPIDA: A two-arm design utilising a time-
to-event endpoint

ELPIDA is a multicentre, double blind, phase III trial exploring the addition of a new
monoclonal antibody to the standard of care for women with advanced, previously
untreated triple negative breast cancer (TNBC). Eligible patients will be randomised
1:1 to receive either stereostatic body radiation (SBRT) to all lesion sites followed
by 4-5 cycles (Q3W) of standard of care chemotherapy (SOCC) (arm A) or SBRT
followed by 4-5 SOCC cycles (Q3W) and adjuvant Elpizumab (arm B). After the end
of SOCC, all patients without progression will undergo surgery. Arm B will receive
Elpizumab (Q4W) 3 weeks (± 1 week) after surgery and will continue for one year
or until first disease progression, intolerance or refusal, whichever comes first. After
surgery, arm A will receive placebo in an analogous treatment scheme. Patients
with CNS metastasis, active autoimmune disease, pregnant or breastfeeding women
are not eligible in this trial.

Elpizumab is considered a quite promising treatment as it is expected to lower risk
of death to 65% as compared to the standard of care (HR: 0.65). From historical
data, median overall survival (OS) of women with advanced, previously untreated
TNBC receiving the standard of care is 15.1 months.

Statistical concerns
Patients are gradually enrolled in different sites, and therefore a group sequential
scheme is utilised. In this superiority trial design, type I error & statistical power
are set equal to 0.025 (one-sided) and 80%, respectively.

The Kim & Tsiatis’s (1990) [82] method will be used to determine the trial duration.
Using this method, the enrolment rate and the follow-up duration will be fixed, and
the total trial duration will be determined to power the design. After a ramp-up
period of 6 months, 22 patients per month are expected to be recruited at the 8
centres. Final analysis is expected to be performed 6 months after randomisation
of the last patient.

Finally, an exponential drop-out (censoring) rate of 5% is expected in the trial
(indicating the rate of lost to follow-up patients).
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Scenario A

Two equally spaced looks are planned. Efficacy and futility bounds are derived using
a Lan & DeMets’s spending function approximating O’Brien & Fleming’s bound.

Scenario B

Three looks are planned, at 30%, 60% and 100% of the information time. Effi-
cacy and futility bounds are derived using a Lan & DeMets’s spending function
approximating O’Brien & Fleming’s bound.

Scenario C

Three looks are planned, at 30%, 60% and 100% of the information time. Effi-
cacy and futility bounds are derived using a Lan & DeMets’s spending function
approximating O’Brien & Fleming’s and Pocock’s bound, respectively.

Scenario t1 t2 t3 Lower bound Upper bound
A 0.50 1.0 O’Brien&Fleming O’Brien&Fleming
B 0.30 0.60 1.0 O’Brien&Fleming O’Brien&Fleming
C 0.30 0.60 1.0 Pocock O’Brien&Fleming

Table 5.1: Design parameters of the 3 scenarios. t1, t2 and t3 denote the time points that
the interim looks are planned.

Fixed design
The sample size of a trial having only one analysis would be 527 patients. A total
of 170 events would be required to reach the expected power of 80%. The trial
duration would be 33.0 months, whilst the enrolment is expected to last for 27.0
months.
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Results - Scenario A

A total of 550 patients have to be recruited to detect a hazards ratio of 0.65. In
total, 179 events are needed to reach the required 80% power. First analysis will be
performed after half of them (90 events) have been reached, engaging 410 patients
(74.5%). Enrolment and total study duration are expected to be 28 and 34 months,
respectively.

From Figure 5.1, it is clear that:

◦ at interim 1, the trial will be terminated with Ho rejection if the normal test
statistic exceeds the value of 2.96
◦ at interim 1, the trial will be terminated for futility if the normal test statistic
is less than 0.56
◦ at the final analysis, Ho will be rejected if the normal test statistic exceeds the
value of 1.97

This is also graphically depicted in Figure 5.2. Also:

◦ P (stopping for efficacy at interim 1 |Ho) = 0.0015
◦ P (stopping for futility at interim 1 |Ho) = 0.71
◦ P (stopping for efficacy at interim 1 |H1) = 0.18
◦ P (stopping for futility at interim 1 |H1) = 0.070

◦ P (stopping for efficacy at or before the final analysis |Ho) = 0.023 (= α)
◦ P (stopping for futility at or before the final analysis |Ho) = 0.98 (= 1− α)
◦ P (stopping for efficacy at or before the final analysis |H1) = 0.80 (= 1− β)
◦ P (stopping for futility at or before the final analysis |H1) = 0.20 (= β)

Additionally, the model predicts that if the observed HR at the first look is ≤ 0.53
the boundary will be crossed and the trial will be stopped for efficacy. On the other
hand, if the observed HR at the first look is ≥ 0.89 the trial will be stopped for
futility.

Figure 5.1 also shows the expected time in months that the interim analyses are
expected to occur. More precisely, the model predicts that the 90 events needed
for the first analysis will be reached at 21.6 months from randomisation of the first
patient. However, this is highly dependent on the observed event rate, and thus
reality might be quite different as the trial goes on. In case of high event rate, the
90 events will occur earlier than expected and therefore the data will be inspected
sooner. In case of extremely low event rate, the review board might even decide to
close the trial.
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Figure 5.1: Tabular summary of scenario A. An asymmetric, two-sided scheme was utilised
for the boundaries. Efficacy and futility bounds were set using Lan-DeMets spending func-
tion approximating O’Brien & Fleming’s bound. Hazards ratio (HR) presented here is not
a requirement, but an estimate of the HR required to cross each bound. Month is estimated
given enrolment and event rate assumptions under the alternate hypothesis. P(Cross) is
the probability of crossing the given bound (efficacy or futility) at or before the given anal-
ysis under the assumed HR. Design assumes futility bound is discretionary (non-binding).
Image taken using the gsDesign Explorer v0.61.

In Figure 5.3, the black solid line represents the cumulative crossing probability at
each interim vs. true HR. Notice that above the value of 0.60, the probability of
rejecting Ho rapidly decreases. As expected, the probability of rejecting at the first
look under the alternative (dashed black line) is much lower.

Figure 5.4 shows how type I and type II errors are spent with information time
(expected events at time t / total expected events).
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Figure 5.2: Stopping boundaries for scenario A. The solid (dashed) line represents the
efficacy (futility) boundary.

Figure 5.3: Cumulative boundary crossing probabilities by effect size for scenario A. Power
by effect size is represented by the solid black line. Power at the first look is represented
by the black dashed line. One minus the probability of crossing the futility bound by the
first look is represented by the red dashed line.

Figure 5.4: Alpha & beta -spending functions (solid and dashed line, respectively) approx-
imating O’Brien & Fleming’s boundary.
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Results - Scenario B
In total, 564 patients have to be recruited to detect a hazards ratio of 0.65. 184
events are needed to reach the required 80% power. First analysis will be performed
after 56 events have been reached, engaging 304 patients (53.9%). Second analysis
will be performed after 111 events, engaging 470 patients (83.3%). Enrolment and
total study duration are expected to be 28.6 and 34.6 months, respectively.

Figure 5.5: Tabular summary of scenario B. An asymmetric, two-sided scheme was utilised
for the boundaries. Efficacy and futility bounds were set using a Lan & DeMets’s spending
function approximating O’Brien & Fleming’s bound. Hazards ratio (HR) presented here
is not a requirement, but an estimate of the HR required to cross each bound. Month
is estimated given enrolment and event rate assumptions under the alternate hypothesis.
P(Cross) is the probability of crossing the given bound (efficacy or futility) at or before
the given analysis under the assumed HR. Design assumes futility bound is discretionary
(non-binding). Image taken using the gsDesign Explorer v0.61.
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Figure 5.6: Stopping boundaries for scenario B. The solid (dashed) line represents the
efficacy (futility) boundary.

Figure 5.7: Cumulative boundary crossing probabilities by effect size for scenario B. Power
by effect size is represented by the solid black line. Power at interim 1 is represented by
the black dotted line. One minus the probability of crossing the futility bound by interim 1
is represented by the red dotted line. Power at interim 2 is represented by the black dashed
line. One minus the probability of crossing the futility bound by interim 2 is represented
by the red dashed line.

Figure 5.8: Alpha & beta -spending functions (solid and dashed line, respectively) approx-
imating O’Brien & Fleming’s boundary.
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Results - Scenario C
In total, 622 patients have to be recruited to detect a hazards ratio of 0.65. 208
events are needed to reach the required 80% power. First analysis will be performed
after 63 events have been reached, engaging 328 patients (52.7%). Second analysis
will be performed after 125 events, engaging 508 patients (81.7%). Enrolment and
total study duration are expected to be 31.2 and 37.2 months, respectively.

Figure 5.9: Tabular summary of scenario C. An asymmetric, two-sided scheme was utilised
for the boundaries. Efficacy and futility bounds were set using a Lan & DeMets’s spending
function approximating O’Brien & Fleming’s and Pocock’s bound, respectively. Hazards
ratio (HR) presented here is not a requirement, but an estimate of the HR required to
cross each bound. Month is estimated given enrolment and event rate assumptions under
the alternate hypothesis. P(Cross) is the probability of crossing the given bound (efficacy
or futility) at or before the given analysis under the assumed HR. Design assumes futility
bound is discretionary (non-binding). Image taken using the gsDesign Explorer v0.61.
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Figure 5.10: Stopping boundaries for scenario C. The solid (dashed) line represents the
efficacy (futility) boundary.

Figure 5.11: Cumulative boundary crossing probabilities by effect size for scenario C. Power
by effect size is represented by the solid black line. Power at interim 1 is represented by
the black dotted line. One minus the probability of crossing the futility bound by interim 1
is represented by the red dotted line. Power at interim 2 is represented by the black dashed
line. One minus the probability of crossing the futility bound by interim 2 is represented
by the red dashed line.

Figure 5.12: Alpha-spending function (solid line) approximating O’Brien & Fleming’s
bound. Beta-spending function (dashed line) approximating Pocock’s bound.
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5.4 Discussion on ELPIDA trial

As expected, sample size of all the sequential designs is greater than the fixed one
(with 527 required patients) as the sequential design slightly increases the total
sample size under Ho. Although the 3 designs demand 23 (a 4.4% increase), 37
(7.0%) and 95 (18%) more patients than the fixed one, they reap all the benefits
of a group sequential design, and thus they are much preferred to a fixed design.
From all 3 scenarios, the one with the smallest sample size is A with 550 patients.
Attained α is 0.023 for A & B, and 0.020 for C.

Although design B requires 14 more patients than A, it has an advantage upon
A with regard to its ability to detect a treatment difference, if one exists. More
precisely, under the alternative, Ho will be rejected at or before the second look
with 34% chance. If Ho is rejected at the second interim, 470 patients of the
total 564 required (83.3%) would be needed to terminate the trial in favour of the
experimental treatment (10.8% less patients than the fixed design). Design A, on
the other hand, will reject Ho, if Ho is not true, with 18% chance at the interim look,
engaging 410 patients of the total 550 required (74.5%). Additionally, the chance of
stopping for futility under Ho amounts to 71% at the interim, while the respective
value for B is 32% at the first look (engaging only 304 patients) and 83% at the
second. The trial duration needed in B is longer only by 0.6 month as compared to
A (and only 1.6 month longer than the fixed design).

Despite the aforementioned, design A has a great drawback compared to other
designs. The model predicts that the 90 events required for the first analysis (50% of
the information time) will be reached only after 410 patients have been enrolled. It
is clear that 410 patients is a large number of patients to be involved before looking
at the data.

Design C, on the other hand, demands the largest number of patients. Its biggest
advantage upon B is the ability to terminate the trial for futility under Ho with 62%
chance at the first look engaging only 328 patients. However, its large sample size
(95 more patients that the fixed design) is still a deterrent factor.

Following this line of thought, the biometrician searches for other scenarios that
would probably yield better results. Figure 5.13(I) depicts the crossing probabilities
and the sample size at different time points (ti) of the interim look for a scenario
having 2 looks and utilising the O’Brien & Fleming’s bound. Notice that for t=0.50,
we get design A. Designs with t ≥0.50 would not be chosen due to the fact that
they require more than 400 patients at the interim, while designs with t ≤0.40
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are not suitable due to their decreased ability to detect a treatment difference at
the interim, if one exists (<6% chance). The best-case scenario for an O’Brien &
Fleming’s design with two looks is to plan the interim at 45% of the information
time (scenario D; results presented in Table 5.3). Design D engages 546 patients (4
less than A), and demands 382 patients at the interim, at the expense of a lower
chance of stopping for futility under Ho (63%) (but still satisfactory), and a lower
chance of stopping for efficacy under the alternative (11%). Attained α is 0.024.

A analogous simulation has been performed for a scenario with 3 looks (Figure 5.13
IIa-c). This situation is more complex as two parameters have to be optimised (t1
and t2 for the first and second look, respectively). If we demand a sample size of less
than 340 patients at the interim and >40% chance of stopping for futility under Ho

at the first look, the scenario which derives the smallest total sample size is the one
with (t1=0.35, t2=0.60; scenario E). Design E demands the same sample size as B
and engages 334 patients at the interim (30 more than B), and has an attained α of
0.023. However, it offers a greater chance of stopping for futility under Ho (44%).
As expected, the crossing probabilities at or before the second look remain the same
(the timing of the second look has not been changed).

Conclusion on ELPIDA trial
The best-case scenarios with regard to the total expected sample size and the cross-
ing probabilities are scenarios D&E. Between the two, the safest choice would be
E, as the large sample size that ELPIDA trial demands (527 for the fixed design)
suggests to plan for more than one look before the final analysis. However, the final
choice will be taken in collaboration with the principal investigator and the multidis-
ciplinary team of the trial. Both designs use an α-spending function approximating
O’Brien & Fleming’s bound. Pocock’s bound (scenario C) was rejected due to the
increased sample size that this approach derives. The O’ Brien & Fleming’s bound
is widely accepted in clinical research.
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Scenario t1 t2 t3 Lower bound Upper bound

A 0.50 1.0 O’Brien&Fleming O’Brien&Fleming

B 0.30 0.60 1.0 O’Brien&Fleming O’Brien&Fleming

C 0.30 0.60 1.0 Pocock O’Brien&Fleming

D 0.45 1.0 O’Brien&Fleming O’Brien&Fleming

E 0.35 0.60 1.0 O’Brien&Fleming O’Brien&Fleming

Table 5.2: Design parameters of all 5 scenarios of ELPIDA trial. Highlighted entries
represent new scenarios.
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5.5 BREATH: A two-arm design utilising a bi-
nary endpoint

BREATH is a multicentre, phase III trial comparing the efficacy of CNP-00x (a
virus-like particle that stimulates the immune system) and chemotherapy (arm B)
with chemotherapy alone (arm A) for patients with unresectable, stage IIIb & IV
non-small cell lung cancer (NSCLC). Eligible patients will be randomised 1:1 in the
two arms. Treatment will last for 9 months.

Tumour assessments will be performed at baseline, and thereafter every 3 months (±
1 week) for the first year, and subsequently every 6 months (± 3 weeks) until death
or first disease progression. In case of tumour progression detected in radiological
imaging, patients will discontinue treatment and will be followed for their survival
status.

Objective of the trial
The primary objective of the trial is to detect a 50% increase in the objective
response rate (ORR) from 0.30 in the control to 0.45 in the experimental arm.
Patients with a >30% decrease (as a best overall response) in the sum of diameters
of all measurable lesion sites are considered to have achieved an objective response.

Best overall response (BOR) refers to the largest tumour size reduction from the
baseline that was recorded throughout the trial. For example, if 55 out of the 100
patients of the one arm achieve an objective response at their "best" imaging, the
ORR would be 55%.

In this superiority trial, two equally spaced looks are planned. A two-sided, asym-
metric design was considered for the boundaries. The trial is powered by 80% with
a one-sided type I error of 0.025.

Scenario A

Efficacy and futility bounds are derived using a Lan & DeMets’s spending function
approximating O’Brien & Fleming’s bound.

Scenario B

Efficacy bound is derived using a Lan & DeMets’s spending function approximating
O’Brien & Fleming’s bound. Futility bound is derived using the Hwang, Shih & De
Cani’s spending function with γ = -7.
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Scenario C

Efficacy and futility bounds are derived using the Hwang, Shih & De Cani’s spending
function with γU = -3 and γL = -2, respectively.

Scenario Lower bound Upper bound

A O’Brien&Fleming O’Brien&Fleming

B Hwang-Shih-DeCani (γ = -7) O’Brien&Fleming

C Hwang-Shih-DeCani (γ = -2) Hwang-Shih-DeCani (γ = -3)

Table 5.4: Design parameters of the 3 scenarios.

Fixed design
The sample size of a trial having only one analysis would be 325 patients.
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Results - Scenario A

In total, 343 patients have to be recruited to detect a 0.15 difference in ORR with
80% power. First analysis will be perfored after the results of 172 patients are
available.

Stopping boundaries are shown in Figure 5.14, and they are also graphically depicted
in Figure 5.15. In Figure 5.16, the black solid line represents the cumulative crossing
probability at each interim vs. true treatment difference. Notice that above the value
of -0.20, the probability of rejecting Ho rapidly decreases. Figure 5.17 presents the
total expected sample size by true treatment difference.

Figure 5.14: Tabular summary of scenario A. An asymmetric, two-sided scheme was
utilised for the boundaries. Efficacy and futility bounds were set using a Lan & DeMets’s
spending function approximating O’Brien & Fleming’s bound.Treatment difference pre-
sented here is not a requirement, but an estimate of the difference required to cross each
bound. P(Cross) is the probability of crossing the given bound (efficacy or futility) at or
before the given analysis under the assumed treatment difference. Design assumes futility
bound is discretionary (non-binding).
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Figure 5.15: Stopping boundaries for scenario A. The solid (dashed) line represents the
efficacy (futility) boundary.

Figure 5.16: Cumulative boundary crossing probabilities by effect size for scenario A. Power
by effect size is represented by the solid black line. Power at the first look is represented
by the black dashed line. One minus the probability of crossing the futility bound by the
first look is represented by the red dashed line.

Figure 5.17: Total expected sample size by treatment difference for scenario A.
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Results - Scenario B
In total, 327 patients have to be recruited to detect a 0.15 difference in ORR with
80% power. First analysis will be perfored after the results of 164 patients are
available.

Figure 5.18: Tabular summary of scenario B. An asymmetric, two-sided scheme was
utilised for the boundaries. Efficacy bound was set using a Lan & DeMets’s spending
function approximating O’Brien & Fleming’s bound. Futility bound was set using the
Hwang, Shih & De Cani’s spending function with γ = -7. Treatment difference presented
here is not a requirement, but an estimate of the difference required to cross each bound.
P(Cross) is the probability of crossing the given bound (efficacy or futility) at or before the
given analysis under the assumed treatment difference. Design assumes futility bound is
discretionary (non-binding).
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Figure 5.19: Stopping boundaries for scenario B. The solid (dashed) line represents the
efficacy (futility) boundary.

Figure 5.20: Cumulative boundary crossing probabilities by effect size for scenario B.
Power by effect size is represented by the solid black line. Power at the first look is
represented by the black dashed line. One minus the probability of crossing the futility
bound by the first look is represented by the red dashed line.

Figure 5.21: Total expected sample size by treatment difference for scenario B.
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Results - Scenario C
In total, 341 patients have to be recruited to detect a 0.15 difference in ORR with
80% power. First analysis will be perfored after the results of 171 patients are
available.

Figure 5.22: Tabular summary of scenario C. An asymmetric, two-sided scheme was
utilised for the boundaries. Efficacy and futility bounds were set using the Hwang, Shih
& De Cani’s spending function with γU=-3 and γL=-2, respectively. Treatment difference
presented here is not a requirement, but an estimate of the difference required to cross each
bound. P(Cross) is the probability of crossing the given bound (efficacy or futility) at or
before the given analysis under the assumed treatment difference. Design assumes futility
bound is discretionary (non-binding).
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Figure 5.23: Stopping boundaries for scenario C. The solid (dashed) line represents the
efficacy (futility) boundary.

Figure 5.24: Cumulative boundary crossing probabilities by effect size for scenario C.
Power by effect size is represented by the solid black line. Power at the first look is
represented by the black dashed line. One minus the probability of crossing the futility
bound by the first look is represented by the red dashed line.

Figure 5.25: Total expected sample size by treatment difference for scenario C.
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5.6 Discussion on BREATH trial

Scenarios A, B and C derive 343, 327 and 341 total sample size, respectively, while
the sample size of the fixed design is 325 patients. Scenario A requires 18 more
patients than the fixed design, which is translated in 5.5% increase; scenario B
requires only 2 more patients (0.62% increase); scenario C requires 16 more patients
(4.9% increase). Attained α is 0.023, 0.025 and 0.024 for A, B and C, respectively.

Scenarios B&C use the less conservative approach of Hwang, Shih & De Cani (see
paragraph 2.3) to terminate the trial for futility. Specifically for design B which de-
rives the smallest sample size of all 3 sequential designs, the lower futility boundary
is the Hwang, Shih & De Cani’s spending function with γ=-7. Such a small value
of γ results in a quite slow spending rate of type II error (see Figure 5.27). Under
the alternative, Ho will be rejected with 16% chance at the interim, engaging 164
patients of the total 327 required (a 49.5% decrease compared to the fixed design).
Under Ho, the trial will be stopped for futility with 30% chance. Additionally, the
model predicts that at the interim, the boundary will be crossed for efficacy (futility)
if a difference of > 0.22 (< 0.040) is observed (Figure 5.18).

Scenarios A&C, require similar sample size and no more than 6% increase from the
fixed design. For design A, both the upper and lower boundaries have been derived
using an α-spending function approximating O’Brien & Fleming boundary. Under
the alternative, Ho will be rejected with 18% chance at the interim, engaging 172
patients of the total 343 required (a 47.1% decrease compared to the fixed design).
Under Ho, the trial will be stopped for futility with 71% chance. The respective
probability for design B is only 30%, as cited above−the less conservative method
that was used in scenario B resulted in a smaller sample size at the expense of having
less change of stopping for futility under Ho.

Scenario C, on the other hand, uses the Hwang, Shih & De Cani’s spending function
for both boundaries, with the difference that in this case, γ is not so extreme. Under
Ho, the trial will be stopped for futility with 66% chance. Under the alternative,
Ho will be rejected with 28% chance at the interim−a value high enough to render
scenario C the best choice to date.

Figures 5.26-5.28 show how β is spent for the 3 scenarios, while Figure 5.29 presents
the Hwang, Shih & De Cani’s spending function for various γ. Of note, with γ =
-4 the function approximates the O’Brien & Fleming’s bound, while with γ = 1 it
approximates the Pocock’s bound. The reader may now perceive the magnitude to
which a value of γ = -7 diverges from conservatism.
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Figure 5.26: Scenario A: Alpha & beta -spending functions (solid and dashed line, respec-
tively) approximating O’Brien & Fleming’s boundaries.

Figure 5.27: Scenario B: Alpha-spending function (solid line) approximating O’Brien &
Fleming’s bound. Beta-spending function (dashed line) is the Hwang, Shih & De Cani’s
spending function with γ = -7.

Figure 5.28: Scenario C: Alpha & beta-spending function (solid and dashed line, respec-
tively) is the Hwang, Shih & De Cani’s spending function with γU=-3 and γL=-2, respec-
tively.
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Figure 5.29: Hwang, Shih & De Cani’s spending function for various γ. With γ =-4, the
Hwang, Shih & De Cani’s spending function approximates O’Brien & Fleming’s bound;
with γ =1, it approximates Pocock’s bound. Source: https://rdrr.io/cran/gsDesign/

Figure 5.30 is a graphical representation of a design simulation. Crossing probabili-
ties and sample size are given as a function of the Hwang, Shih & De Cani’s γ, which
is used for the lower bound. Upper bound is an a-spending function approximating
O’Brien & Fleming. Notice that for γ =-7 we get design B.

If we demand a sample size of less than 340 patients, and >65% chance of stopping
for futility under Ho, the scenario which derives the smallest total sample size is the
one with γ = -2 (scenario D; result presented in Table 5.6). Although D engages
4 less patients than C, under H1, the trial will be stopped for efficacy with much
lower chance. Design C still remains the best choice.

Figure 5.31 presents crossing probabilities and sample size for various γL and γU .
Both upper and lower boundaries were set using the Hwang, Shih & De Cani’s
spending function. The scenario which yields a sample size of less than 340 patients,
>65% chance of stopping for futility under Ho, and >20% chance of stopping for
efficacy under the alternative (and of them the smallest total sample size) is the one
with (γL =-2, γU =-4.5) (scenario E). Although E requires 3 less patients than C
(Table 5.6), it still has a lower chance of stopping for efficacy under H1, rendering
C is the best-case scenario.
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Figure 5.30: Crossing probabilities and sample size for various γ for a sequential design
with two, equally-spaced looks. Upper boundary is an a-spending function approximating
O’Brien & Fleming’s bound; lower boundary is the Hwang, Shih & De Cani’s spending
function.

Scenario Lower bound Upper bound
A O’Brien&Fleming O’Brien&Fleming
B Hwang-Shih-DeCani (γ = -7) O’Brien&Fleming
C Hwang-Shih-DeCani (γ = -2) Hwang-Shih-DeCani (γ = -3)
D Hwang-Shih-DeCani (γ = -2) O’Brien&Fleming
E Hwang-Shih-DeCani (γ = -2) Hwang-Shih-DeCani (γ = -4.5)

Table 5.5: Design parameters of all 5 scenarios. Highlighted entries represent new scenar-
ios.
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Conclusion on BREATH trial
The best-case scenario with regard to the total expected sample size and the crossing
probabilities is scenario C. Scenario C utilises the Hwang, Shih & De Cani’s spending
function with γU=-3 and γL=-2 for the upper and the lower boundary, respectively.

5.7 Future research

A more sophisticated technique to determine the design parameters would be to use
an optimization algorithm to approach the best solution in terms of sample size and
crossing probabilities. For BREATH trial, an optimization method to determine γU

and γL would probably be more appropriate. Also, designs utilising other spending
functions (e.g. the exponential spending function) could yield even better results.
Such cases are left for future research.
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Review summary

In this review, we looked back into the late 1960s starting from recursive numerical
integration by Armitage et al. [13]; Pocock’s (1977) [43], O’Brien & Fleming’s
(1979) [37] and Wang & Tsiatis’s (1987) [47] methods; error spending functions by
Lan & DeMets (1983) [44] and Hwang, Shih & De Cani (1990) [54]; the Slud &
Wei’s (1982) [46] and F-H-O (1984) [49] methods; discrete sequential boundaries
by Bauer (1986) [50]; stochastic curtailment [36]; various multi-stage designs by
Schaid et al. (1990) [68], Follman et al. (1994) [67], Stallard & Todd (2003) [61],
Bischoff & Miller (2005) [64]; seamless designs by Stallard (2011) [53]; the p-value
combination test approach by Bauer & Kisser (1999) [72]; having more than one
primary endpoint (Bauer, 1991 [17]). Other methods, such as Bayesian posterior
probabilities [83][84], the triangular and the double triangular test [85], symmetric
[86] and asymmetric [87] designs, which are not presented here, have also shaped
the landscape of statistical methodology for analysing accumulating data.
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Appendix A

Ranking and Selection Procedures

The indifference zone approach−A section taken from a tutorial by Golds-
man (1986) [88]
Let π1, π2, ...., πk be k normal populations with µi means (i ∈ {1, 2, ..., k}) and a
common variance of σ2.

Which of the k populations has the largest mean?

This question can be rephrased as:

Which population corresponds to the (k) population with µ(1), µ(2), ..., µ(k) denoting
the ordered means?

If the quantity of µ(k) − µ(k−1) is very small, one could say that in practice, these
two populations can be considered as one. A boundary δ is chosen as the smallest
µ(k) − µ(k−1) difference that the experimenter sees as "worth detecting". So if µ(k) −
µ(k−1) ≥ δ, the π(k) population will be chosen as the one with the largest mean.
Whilst if µ(k) − µ(k−1) < δ, the experimenter would be indifferent about which of
the two populations to choose as the one with the largest mean.

Ωδ ≡ {µ |µ(k) − µ(k−1) ≥ δ} is called the preference zone and its complement Ω∗δ is
called the indifference zone.
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Appendix B

An adaptive two-stage design using the p-combination test
approach

Stage I

Ho = Ho1 ∩Ho2

pA ≤ αAL

Reject Ho

(p(1)
A ≤ αAL) ∩

(p(2)
A ≤ αAL)

Stop and reject
Ho1and Ho2

(p(i)
A ≤ αAL) ∩

(p(j)
A > αAL)

with i 6= j and
i, j ∈ {1, 2}

Reject Hoi

Rename j = l

Proceed to
stage II

(i) arm is
excluded

pA < αAU

Stop without
rejection

Yes

Yes

No

Yes No

No

No

Yes

Multiple inference of the individual treatment-control comparisons in an adaptive seamless
two-stage design having two investigational arms (and the control) and using the conser-
vative approach of pA = 2min(p(1)

A , p
(2)
A ) - Stage I. [72]
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Stage II

Ho, Ho1 , Ho2

Ho, Hol

with
l = {1 or 2}

pA pB ≤ cB

Stop and
reject Ho

Stop without
Ho rejection

(p(i)
A ≤ αAL) ∪ [(αAL < p

(i)
A <

αAU) ∩ (p(i)
A p

(i)
B ≤ cB) ]

with i ∈ {1, 2}

Also
reject Hoi

Do not
reject Hoi

(pA ≤ αAL) ∪
(pA p

(l)
B ≤ cB)

Stop without
Ho rejection

Stop and
reject Ho

(p(l)
A ≤ αAL) ∪ [(αAL <

p
(l)
A < αAU) ∩ (p(l)

A p
(l)
B ≤ cB) ]

Also
reject Hol

Do not
reject Hol

Yes No

Yes No

No Yes

Yes No

Stage II of the same design (pB = 2min(p(1)
B , p

(2)
B )). [72]
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Appendix C

R code for design simulations

# gsDesign package

install .packages("gsDesign")
library (gsDesign)

#################################################

################ ELPIDA TRIAL ################

#################################################

# Fixed Design

nSurv(lambdaC = c(0.0459037867920494), hr = 0.65, hr0 = 1, eta = 0.05, gamma =

c(5.5,11,16.5,22), R = c(2,2,2,6), S = NULL, T = NULL, minfup = 6, ratio = 1, alpha

= 0.025, beta = 0.2)

# Group Sequential Design - Scenario A

x <- gsSurv(k = 2, test .type = 4, alpha = 0.025, beta = 0.2, astar = 0, timing = c(1),
sfu = sfLDOF, sfupar = c(0), sfl = sfLDOF, sflpar = c(0), lambdaC =

c(0.0459037867920494), hr = 0.65, hr0 = 1, eta = 0.05, gamma = c(5.5,11,16.5,22),

R = c(2,2,2,6), S = NULL, T = NULL, minfup = 6, ratio = 1)

# Group Sequential Design - Scenario B

x <- gsSurv(k = 3, test.type = 4, alpha = 0.025, beta = 0.2, astar = 0, timing =

c(0.30,0.60), sfu = sfLDOF, sfupar = c(0), sfl = sfLDOF, sflpar = c(0), lambdaC =

c(0.0459037867920494), hr = 0.65, hr0 = 1, eta = 0.05, gamma = c(5.5,11,16.5,22),

R = c(2,2,2,6), S = NULL, T = NULL, minfup = 6, ratio = 1)

# Group Sequential Design - Scenario C

x <- gsSurv(k = 3, test.type = 4, alpha = 0.025, beta = 0.2, astar = 0, timing =

c(0.30,0.60), sfu = sfLDOF, sfupar = c(0), sfl = sfLDPocock, sflpar = c(0), lambdaC

= c(0.0459037867920494), hr = 0.65, hr0 = 1, eta = 0.05, gamma =

c(5.5,11,16.5,22), R = c(2,2,2,6), S = NULL, T = NULL, minfup = 6, ratio = 1)

# Group Sequential Design - Scenario D

x <- gsSurv(k = 2, test .type = 4, alpha = 0.025, beta = 0.2, astar = 0, timing = c(0.45),

sfu = sfLDOF, sfupar = c(0), sfl = sfLDOF, sflpar = c(0), lambdaC =

c(0.0459037867920494), hr = 0.65, hr0 = 1, eta = 0.05, gamma = c(5.5,11,16.5,22),

R = c(2,2,2,6), S = NULL, T = NULL, minfup = 6, ratio = 1)

# Group Sequential Design - Scenario E

x <- gsSurv(k = 3, test.type = 4, alpha = 0.025, beta = 0.2, astar = 0, timing =

c(0.35,0.60), sfu = sfLDOF, sfupar = c(0), sfl = sfLDOF, sflpar = c(0), lambdaC =

c(0.0459037867920494), hr = 0.65, hr0 = 1, eta = 0.05, gamma = c(5.5,11,16.5,22),
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R = c(2,2,2,6), S = NULL, T = NULL, minfup = 6, ratio = 1)

# Tabular Output

gsBoundSummary(x, ratio = 1, digits = 4, tdigits = 1, timename = ’Month’)

# Plot Design: Boundary

plot(x, plottype = 1, xlab = ’Events’, ylab = ’Normal critical value’ )

# Plot Design: Power

plot(x, plottype = 2, xlab = ’Hazard ratio’ , ylab = ’Cumulative Boundary Crossing

Probabilities’)

# Plot Design: Conditional power at bounds

plot(x, plottype = 4, xlab = ’Events’, ylab = expression(paste(’Conditional power at ’ ,

theta, ’ = ’, hat(theta))))

# Plot Design: HR at bounds

plot(x, plottype = 8, xlab = ’Events’, ylab = ’Estimated hazards ratio’)

# Plot Design: Spending function

plot(x, plottype = 5, xlab = ’Proportion of final events’ , ylab = ’Proportion of

spending’)

###############################################

############### BREATH TRIAL ##############

###############################################

# Binomial Fixed Design

n <- nBinomial(p1 = 0.3, p2 = 0.45, delta0 = 0, alpha = 0.025, beta = 0.2, ratio = 1)

# Group Sequential Design - Scenario A

x <- gsDesign(k = 2, test .type = 4, alpha = 0.025, beta = 0.2, astar = 0, timing = c(1),
sfu = sfLDOF, sfupar = c(0), sfl = sfLDOF, sflpar = c(0), delta = 0, delta1 = -0.15,

delta0 = 0, endpoint = ’binomial’, n. fix = n)

# Group Sequential Design - Scenario B

x <- gsDesign(k = 2, test .type = 4, alpha = 0.025, beta = 0.2, astar = 0, timing = c(1),
sfu = sfLDOF, sfupar = c(0), sfl = sfHSD, sflpar = c(-7), delta = 0, delta1 = -0.15,

delta0 = 0, endpoint = ’binomial’, n. fix = n)

# Group Sequential Design - Scenario C

x <- gsDesign(k = 2, test .type = 4, alpha = 0.025, beta = 0.2, astar = 0, timing = c(1),
sfu = sfHSD, sfupar = c(-3), sfl = sfHSD, sflpar = c(-2), delta = 0, delta1 = -0.15,

delta0 = 0, endpoint = ’binomial’, n. fix = n)

# Group Sequential Design - Scenario D
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x <- gsDesign(k = 2, test .type = 4, alpha = 0.025, beta = 0.2, astar = 0, timing = c(1),
sfu = sfLDOF, sfupar = c(0), sfl = sfHSD, sflpar = c(-2), delta = 0, delta1 = -0.15,

delta0 = 0, endpoint = ’binomial’, n. fix = n)

# Group Sequential Design - Scenario E

x <- gsDesign(k = 2, test .type = 4, alpha = 0.025, beta = 0.2, astar = 0, timing = c(1),
sfu = sfHSD, sfupar = c(-4.5), sfl = sfHSD, sflpar = c(-2), delta = 0, delta1 =

-0.15, delta0 = 0, endpoint = ’binomial’, n. fix = n)

# Tabular Output

gsBoundSummary(x, digits = 4)

# Plot Design: Boundaries (Z)

plot (x, plottype = 1, xlab = ’Sample size’ , ylab = ’Normal critical value’ )

# Plot Design: Power

plot(x, plottype = 2, xlab = ’Treatment difference’ , ylab = ’Cumulative Boundary

Crossing Probabilities’)

# Plot Design: Conditional power at bounds

plot(x, plottype = 4, xlab = ’Sample size’ , ylab = expression(paste(’Conditional power at
’ , theta, ’ = ’, hat(theta))))

# Plot Design: Expected samle size

plot(x, plottype = 6, xlab = ’Treatment difference’ , ylab = ’Expected sample size’)

# Plot Design: Treatment Difference at Boundaries

plot(x, plottype = 3, xlab = ’Sample size’ , ylab = ’Estimated treatment difference at

bounds’)

# Plot Design: Spending function

plot(x, plottype = 5, xlab = ’Proportion of total sample size ’ , ylab = ’Proportion of

spending’)

# R Version: 3.5.1

# gsDesign Version: 3.0.1
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