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Abstract 
 

The increasing rate of adoption of containers and container orchestration in cloud 

computing and on premise arises a number of questions about their security. 

Kubernetes combined with Docker is by far the most frequently adopted solution for 

implementing containerized workloads. Kubernetes is divided on two planes the 

control plane and the data plane. The control plane includes the components that are 

required for Kubernetes to function and manage the cluster state while the data plane 

the components that are responsible for the actual workloads. Furthermore, 

Kubernetes includes several objects that are necessary for describing the cluster’s 

desired state. In this thesis, specific attacks were conducted into a Kubernetes cluster, 

that can be divided into four categories. (a) Attacks on a Kubernetes engine and 

components. (b) Attacks on Kubernetes network layer where MITM and DNS spoofing 

attacks are possible under circumstances. (c) Attacks that concern the containers 

inside a pod and how an attacker can inject malicious code and upload it, on a 

container registry or a container with one or more vulnerabilities that can be 

exploited. (d) Finally, attacks that are bases on Infrastructure as code vulnerabilities 

that a malicious actor can take advantage of. Correspondingly to the attacks a number 

of defenses where recommended as countermeasures depending on the layer that 

each of the attacks can take place. For the attacks that concern the Kubernetes engine, 

kube-bench was recommended as a tool that detects misconfigurations and entry 

points that an attacker can take advantage of. In order for network layer to be 

protected, network policies are taking the place of a layer 3 firewall compared to a 

typical infrastructure in addition with the use of service meshes that are operating in 

layer 7. Containers inside pods can be scanned before being upload on a registry. On 

this thesis Clair scanner was used for his purpose. Eventually, Pod Security policies 

were used to block vulnerable code from being deployed. 
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Περίληψη 

 

Ο αυξανόμενος ρυθμός υιοθέτησης των containers και των container orchestration 

εργαλείων στο cloud και στις on premises υποδομές εγείρει μια σειρά ερωτημάτων 

σχετικά με την ασφάλειά τους. Το Kubernetes σε συνδυασμό με το Docker είναι 

μακράν, η πιο συχνά χρησιμοποιούμενη λύση για την εφαρμογή φορτίων εργασίας 

σε containers. Το Kubernetes χωρίζεται σε δύο επίπεδα το επίπεδο ελέγχου και το 

επίπεδο δεδομένων. Το επίπεδο ελέγχου περιλαμβάνει τα στοιχεία που απαιτούνται 

για τη λειτουργία και τη διαχείριση της κατάστασης ενός Kubernetes cluster, ενώ το 

επίπεδο δεδομένων περιλαμβάνει τα στοιχεία που είναι υπεύθυνα για τα 

πραγματικά φορτία εργασίας. Επιπλέον, το Kubernetes περιλαμβάνει πολλά 

αντικείμενα που είναι απαραίτητα για την περιγραφή της επιθυμητής κατάστασης 

ενός cluster. Σε αυτή τη διπλωματική εργασία, πραγματοποιήθηκαν συγκεκριμένες 

επιθέσεις σε ένα Kubernetes cluster, οι οποίες μπορούν να χωριστούν σε τέσσερις 

κατηγορίες. (α) Επιθέσεις στη μηχανή και τα επιμέρους τμήματα του Kubernetes. (β) 

Επιθέσεις στο επίπεδο δικτύου του Kubernetes όπου υπό συνθήκες, είναι δυνατές οι 

επιθέσεις MITM και DNS spoofing. (γ) Επιθέσεις που αφορούν τα containers μέσα σε 

ένα pod και πώς ένας εισβολέας μπορεί να εισάγει κακόβουλο κώδικα και να τον 

ανεβάσει, σε μια container registry καθώς και containers με μία ή περισσότερες 

ευπάθειες που μπορούν να εκμεταλλευτούν. (δ) Τέλος, επιθέσεις που βασίζονται σε 

ευπάθειες στον κώδικα υποδομής (infrastructure as code) και μπορεί να 

εκμεταλλευτεί ένας επιτιθέμενος. Αντίστοιχα, με τις επιθέσεις, μια σειρά από άμυνες 

συστάθηκαν ως αντίμετρα, με γνώμονα το επίπεδο στο οποίο μπορεί να 

πραγματοποιηθεί κάθε μία από τις επιθέσεις. Για τις επιθέσεις που αφορούν τη 

μηχανή του Kubernetes, συνιστάται το kube-bench ως ένα εργαλείο που εντοπίζει 

λανθασμένες ρυθμίσεις και σημεία εισόδου, τα οποία μπορεί να εκμεταλλευτεί ένας 

εισβολέας. Προκειμένου να προστατευτεί το επίπεδο του δικτύου, η χρήση των 

network policies υποκαθιστά ένα τείχος προστασίας επιπέδου 3 του OSI σε σύγκριση 

με μια τυπική υποδομή, συμπληρωματικά με τη χρήση ενός service mesh που 

λειτουργεί στο επίπεδο 7. Τα containers μέσα σε ένα pod μπορούν να σαρωθούν 

προτού μεταφορτωθούν σε μια registry. Σε αυτή τη διπλωματική εργασία 

χρησιμοποιήθηκε ο σαρωτής Clair για το σκοπό αυτό. Τέλος, προτάθηκαν οι Pod 

Security policies για να αποκλείσουν την ανάπτυξη ευάλωτου κώδικα. 
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1. Introduction 
 

For more than a decade migrating workloads to hypervisor-based virtualized 

environments was a one-way street for enterprises. This technology allows the slicing 

of a host computer into multiple (the number is depending on the resources of the 

host) isolated virtual environments. These individual environments are able to 

operate as an ordinary physical server providing the same or sometimes more 

features.   

However, lately the scenery is changing as a new type of virtualization is gaining 

ground that exists for many years but until recently it was unusual for private cloud. 

With the increase of cloud endorsement, the adoption of methodologies like Agile, 

Kanban and DevOps processes, Enterprises are now moving towards containerized 

technologies and the philosophy of microservices for their workloads because of the 

plethora of advantages they offer. From better uptime and faster deployments to 

better utilization of the hardware and lower costs are only a few of the strong points 

of such technologies mandating enterprises to the path of OS virtualization and 

containers. Although, containers cannot easily exist in a production environment 

without orchestration. This is where Kubernetes comes to the rescue.  

According to a recent Forbes article[64], container adoption is growing rapidly in the 

enterprise and is much faster than expected. Also, according to a recent Gartner 

report, “By 2023, more than 70% of global organizations will be running more than 

two containerized applications in production, up from less than 20% in 2019 [65].  

On the other hand, this increasing rate of adaptation arises a number of questions 

about the security of containers and container orchestrators environments.   

 

1.1 Hypervisors 
 

In general terms there are two types of virtualization. The first one, which is the most 

commonly used and most adopted by enterprises is the hypervisor-based 

virtualization. A hypervisor (or virtual machine monitor, VMM) is a computer 

software, firmware or hardware that creates and runs virtual machines.  

The hypervisor presents the guest operating systems with a virtual operating platform 

and manages the execution of the guest operating systems. Multiple instances of a 

variety of operating systems may share the virtualized hardware resources: for 

example, Linux, Windows, and macOS instances can all run on a single physical x86 

machine.[1] 

https://www.forbes.com/sites/janakirammsv/2018/12/20/5-modern-infrastructure-trends-to-watch-out-for-in-2019/#2c66c3a017db
https://urldefense.proofpoint.com/v2/url?u=http-3A__link01.gartner.com_track-3Ftype-3Dclick-26enid-3DZWFzPTEmYW1wO21zaWQ9MSZhbXA7YXVpZD00MDU4NjgmYW1wO21haWxpbmdpZD0xMTUzNDcmYW1wO21lc3NhZ2VpZD0xNzgyNSZhbXA7ZGF0YWJhc2VpZD0xNTA5NjMzODY5JmFtcDtzZXJpYWw9MTY3ODMxMzMmYW1wO2VtYWlsaWQ9c2FuZHJhX2xlb25nQGhwZS5jb20mYW1wO3VzZXJpZD0xMDMyMDU2MDoxNTY1MDE0MTA1NjgzJmFtcDt0YXJnZXRpZD0mYW1wO21uPTUxNTU3MzEmYW1wO2ZsPSZhbXA7bXZpZD0mYW1wO2V4dHJhPSZhbXA7JmFtcDsmYW1wOw-3D-3D-26-26-262287-26-26-26https-3A__www.gartner.com_document_3955920-3Fref-3DTrackDBDailyEmail-26refval-3D1565014105683-26utm-5Fsource-3DGartnerTrack-26utm-5Fmedium-3Demail-26utm-5Fcampaign-3DTrackDashboard-26utm-5Fcontent-3DTSDaily&d=DwMFaQ&c=C5b8zRQO1miGmBeVZ2LFWg&r=whklzP3yt-Tx6O8xWZZmdUcN5qUwmc_qTPvexBB18OA&m=tXi3eoSgcb4uPeA1vrBAbRetAwg-4Iu331B3RWnoV-8&s=ByL3QQtZaOgzfFBRjW-OnQLUt7XXX_gzhNZ8W2djLyo&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__link01.gartner.com_track-3Ftype-3Dclick-26enid-3DZWFzPTEmYW1wO21zaWQ9MSZhbXA7YXVpZD00MDU4NjgmYW1wO21haWxpbmdpZD0xMTUzNDcmYW1wO21lc3NhZ2VpZD0xNzgyNSZhbXA7ZGF0YWJhc2VpZD0xNTA5NjMzODY5JmFtcDtzZXJpYWw9MTY3ODMxMzMmYW1wO2VtYWlsaWQ9c2FuZHJhX2xlb25nQGhwZS5jb20mYW1wO3VzZXJpZD0xMDMyMDU2MDoxNTY1MDE0MTA1NjgzJmFtcDt0YXJnZXRpZD0mYW1wO21uPTUxNTU3MzEmYW1wO2ZsPSZhbXA7bXZpZD0mYW1wO2V4dHJhPSZhbXA7JmFtcDsmYW1wOw-3D-3D-26-26-262287-26-26-26https-3A__www.gartner.com_document_3955920-3Fref-3DTrackDBDailyEmail-26refval-3D1565014105683-26utm-5Fsource-3DGartnerTrack-26utm-5Fmedium-3Demail-26utm-5Fcampaign-3DTrackDashboard-26utm-5Fcontent-3DTSDaily&d=DwMFaQ&c=C5b8zRQO1miGmBeVZ2LFWg&r=whklzP3yt-Tx6O8xWZZmdUcN5qUwmc_qTPvexBB18OA&m=tXi3eoSgcb4uPeA1vrBAbRetAwg-4Iu331B3RWnoV-8&s=ByL3QQtZaOgzfFBRjW-OnQLUt7XXX_gzhNZ8W2djLyo&e=
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Firmware
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Platform_virtualization
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/X86
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There are two types of hypervisors: 

Type 1 Hypervisor: Bare-metal hypervisors 

These hypervisors run directly on the host's hardware to control the hardware and to 

manage guest operating systems. 

Type 2 Hypervisor: Hosted hypervisors  

These hypervisors run on a conventional operating system (OS) just as other computer 

programs do. A guest operating system runs as a process on the host. Type-2 

hypervisors abstract guest operating systems from the host operating system 

 

 

Figure 1 - Comparison of the layers of Type-1 and Type-2 Virtualization. 

 

The second type of virtualization is called (OS) virtualization. With this type of 

virtualization, a single OS kernel natively allows secure sharing of resources and a 

computer can run several OS instances. The guest operating systems must have the 

same kernel as the host. For example, different Linux distributions.  OS virtualization 

is commonly referred to as “containers”. 

 

1.2 Containers 
 

A container is a standard unit of software that packages up code and all its 

dependencies, so the application runs quickly and reliably from one computing 

environment to another.[2] This software usually runs in one process, but it can run 

on more if it needs to and those processes are isolated from the rest of the system. 

All the files necessary to run them are provided from a distinct image, meaning that 

Linux containers are portable and consistent as they move from development, to 
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testing, and finally to production. This makes them much quicker than development 

pipelines that rely on replicating traditional testing environments.[3] 

 

 

Figure 2 - An overview of the Container architecture. 

As it can be seen in the image above a container sits on top of a container engine 

which runs on the host operating system. The kernel of the underlying host is shared 

by all the containers. The host operating system can be a virtual machine or a physical 

computer. This configuration allows you to run multiple logically isolated apps and 

services efficiently. Containers take up less space than virtual machines. Usually their 

size is some MBs There are several engines that can achieve containerization with the 

most commonly used today to be Docker. In the image below we can see a comparison 

between virtual machines and containers 

 

 

Figure 3 - Comparison of the layers between a Virtual machine and a Container 

 

1.3 Docker 
 

Docker is an open source tool designed to make it easier to create, deploy, and run 

applications by using containers.[4] Even though container technologies have existed 

for several years (LXC containers), docker, a relatively new technology (since 2013) has 

https://github.com/docker/docker
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managed to become one of the most successful providers due to the new 

characteristics it presents. 

It consists of a Daemon that listens for requests from the API and manages containers 

images networking and volumes, a Docker image that it is built from a set of 

instructions written in a Dockerfile, and a Docker registry that the daemon uses to pull 

the image from.[5] 

Docker has a number of advantages like rapid application deployment because 

containers include the minimal requirements for runtime, portability across machines 

due to the packaging into a single container of all the dependencies that the 

application needs and making it possible to be moved to another machine that runs 

docker and be executed without compatibility issues, version control and component 

reuse because successive versions of a container are tracked and a rollback to a 

previous version can be done easily and quickly. Also, a remote registry can be shared 

with others, so a close or an exact container can be easily found for a particular 

requirement because someone has already created it. Finally, with docker there is a 

lightweight footprint and a minimal overhead making it easy and quick to deliver and 

deploy an application.[5] 

Docker is very good at managing single containers. On the other hand, todays 

applications can utilize hundreds or even thousands of containers which may be or 

may not be interconnected pieces. The need to successfully manage sizeable 

applications consisting of numerous segments, lead to container orchestration tools. 

 

1.4 Container Orchestration 
  

Container orchestration automates the deployment, management, scaling, and 

networking of containers. Enterprises that need to deploy and manage hundreds or 

thousands of containers and hosts can benefit from container orchestration. It can be 

used in any environment where containers are used. It can aid in deploying the same 

application across different environments without needing to redesign it.[6] There are 

a few container orchestrator tools out there like Docker Swarm or Apache Mesos but 

Kubernetes is the tool which is by far the one with the highest adoption.  

 

 

 

https://www.redhat.com/en/topics/containers/whats-a-linux-container
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1.5 Kubernetes 
 

Kubernetes (also called k8s) is an open-source container-orchestration system for 

automating application deployment, scaling, and management.[7] It was originally 

designed by Google, and is now maintained by the Cloud Native Computing 

Foundation. It aims to provide a "platform for automating deployment, scaling, and 

operations of application containers across clusters of hosts". It works with a range of 

container tools, including Docker. Many cloud services offer a Kubernetes-based 

platform or infrastructure as a service (PaaS or IaaS) on which Kubernetes can be 

deployed as a platform-providing service. Many vendors also provide their own 

branded Kubernetes distributions. 

 

 

Figure 4 - A stack infrastructure containing Kubernetes 

 

1.6 Objective 
 

The objective of this thesis is to analyze a default Kubernetes infrastructure and its 

components concerning its security, to illustrate attacks based on possible 

misconfigurations and vulnerabilities, that a malicious actor can take advantage of as 

well as to suggest defenses based on configurations and open sources industry 

solutions. This thesis focuses on an infrastructure that combines Kubernetes and 

Docker even though Kubernetes as container orchestrator can be combined with a 

number of other container runtimes because of the popularity of this combination. 

For the practical part of the thesis a two-node Kubernetes cluster was created by two 

virtual machines. Also, for some tests micork8s was used, which is a way to virtualize 

a Kubernetes cluster on a single host machine. 

 

 

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://en.wikipedia.org/wiki/Orchestration_(computing)
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Kubernetes#cite_note-5
https://en.wikipedia.org/wiki/Cloud_Native_Computing_Foundation
https://en.wikipedia.org/wiki/Cloud_Native_Computing_Foundation
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
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2. Kubernetes Overview 
 

After the deployment of Kubernetes, the outcome is a cluster. A cluster is a set of 

machines that can be physical or virtual that are capable of running containerized 

applications managed by Kubernetes. The recommendation for a Kubernetes cluster 

from a perspective of machines is at least one master node and at least one worker 

node even though a cluster with a single node can be operational. In production 

environments more than one master nodes and more than on worker nodes are 

required for high availability reasons. 

The Kubernetes master is responsible for maintaining the desired state of the cluster. 

When a user interacts with Kubernetes using Kubectl command-line tool, he is 

communicating with the cluster’s master node. With Kubectl a user can run 

commands against Kubernetes clusters and is the main tool for managing Kubernetes. 

Some of its operations are the deployment of applications, the inspection and 

management of resources or log viewing. 

 

2.1 Master node - Control Plane 
 

Kubernetes can be divided into two “planes”. The control plane and the data plane. 

Specific components that run on the master node compose the cluster’s control plane. 

The cluster’s control plane refers to a collection of processes managing the cluster 

state (for example scheduling). Typically, these processes are all run on a single node 

in the cluster and this node is not other but the master. However master components 

can be run on any machine in the cluster.[8] The master can also be replicated for high 

availability and redundancy. The control plane maintains a record of all the 

Kubernetes objects in the system and runs continuous control loops to manage those 

object’s state. For example, when you use the Kubernetes API to create a deployment 

object you provide a new desired state for the system. The Kubernetes control plane 

records that object creation and carries out your instructions by starting the required 

application and scheduling them to the cluster nodes. At the end of the operation the 

actual state must match the desired state. 

Control plane is comprised of the following components:  
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2.1.1 Kube-apiserver 

The API server is a component of the Kubernetes control plane that exposes the 

Kubernetes API.[8] It is a RESTful web server that is responsible for the coordination 

of all aspects of a cluster as well as the primary interface for interacting with it. 

Specifically, it accepts client requests for updating all other components within a 

cluster. These requests are authenticated, authorized, processed, and then stored 

within etcd for further processing and use.[11] 

2.1.2 Kube-scheduler 

The Kube-scheduler watches on the API server for newly created pods that have no 

node assigned and select a node for them to run. When assigning work on the worker 

nodes factors concerning the cluster and the requirements of the deployment are 

taken into consideration. 

2.1.3 Kube-controller-manager 

Kube-controller is a daemon for self-healing. It is responsible for noticing and 

responding when nodes go down. It watches etcd for changes to objects such as 

replication, namespace, and serviceaccount controller objects, and then uses the API 

to enforce the specified state [10]. Kube-controller makes sure the correct number of 

replications requested exist in the cluster. For example, when a user requests of the 

system to scale the application into ten instances kube-controller-manager makes 

sure that if one or more of them go down to spawn replacements, so that the 

requested number, matches the actual number of pods and the application is running 

on full capacity.  

2.1.4 Etcd 

Etcd is a consistent and highly available key value store used as Kubernetes backing 

store for all cluster data.[12] It stores the persistent master state while other 

components watch etcd for changes to bring themselves into the specified state (e.g., 

Kubelet). Etcd leverages gPRC and TLS, used to store the most sensitive data within a 

cluster. By default, TLS is enabled including an optional authentication of the client 

with a certificate. Access to etcd should be restricted to as few users as possible. 

Generally, unrestrained access to etcd is considered “root” (or administrative) access 

to the cluster itself.[11] 

2.1.5 Cloud-controller-manager 

A daemon with similar purpose to kube-controller-manager, but instead of focusing 

on components within Kubernetes, it focuses on maintaining alignment with the cloud 

platform that is hosting the Kubernetes cluster. It was originally in the kube-controller 

manager but because every cloud provider release at a different pace it became a 
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cloud vendor dependent project that gave the cloud providers flexibility in the 

evolution of it. 

 

 

Figure 5 - All Pods of the control plane and Data plane along with CNI and DNS pods with the use of Kubectl tool 

2.2 Worker nodes - Data plane 
 

A worker node in Kubernetes might be a virtual or a physical machine and it is where 

the pods are running. Pods can also be created on the master node, but it is a practice 

that is not recommend and not commonly implemented. Ever node is managed by the 

master and is capable of running multiple pods. The following components are 

considered to be on the data plane grouping of Kubernetes except of the Kubelet. 

Even though Kubelet actually runs on every node it is part of the data plane and that 

is why it is mentioned here. 

Every Kubernetes node runs at least: 

2.2.1 Kubelet 

A Kubelet is an agent that runs on every node in the cluster and manages the 

containers running on it through the pods. It acts as a bridge between the Kubernetes 

master and the nodes. The Kubelet does not manage containers which are not created 

by Kubernetes. It takes a set of defined pod specifications that are provided mostly 

through the API server and ensures that the containers described in those Pod specs 

are running healthy.[13] The Kubelet interacts with the Container Runtime, listens for 

Pod scheduling and related events on the API server, and updates the API server as to 

Pod availability, resource usage, and general status. Also, it is the endpoint the API 

server reaches out to for logs and other updates from nodes and Pods within the 

cluster.[11] 

 

2.2.2 Kube-proxy 
The Kubernetes network proxy runs on each node. It is a component that along with 

the Container Networking Interface (CNI), facilitates Kubernetes transparent model of 

networking.[11] It is responsible for maintaining network rules on the host and 
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performing connection forwarding. kube-proxy utilizes items such as iptables and 

serves proxy or pass-thru traffic in order to ensure that all containers, Pods, and nodes 

are able to communicate with one another as if they were on a single network. Also, 

it is responsible for forwarding Kubernetes Services that are exposed to the outside 

world, across a set of backends inside the cluster. In order for the forwarding to work 

the user must create a service with the apiserver API to configure the proxy.[14] 

 

2.2.3 Container Runtime 
Container runtime is the software that allows the direct execution of containers within 

a cluster. This software consists of the necessary operating system integrations (such 

as control groups on Linux), configuration settings, and Kubernetes interfaces to a 

container system.[11] Kubernetes supports several runtimes. Some of them are 

Docker, CRI-O, Containerd. The most common container runtime is Docker. A 

container runtime will take care of pulling the requested containers from a registry.  

 

2.2.4 Pods 

A Pod is a group of one or more containers with shared storage, network, and 

specifications for how to run the containers in it. Specifically, containers inside a pod 

share an ip address, a port space and they can find each other through localhost. 

Different pods cannot communicate by IPC inter-process communication without 

special configuration They are the smallest deployable units in Kubernetes, and they 

are managed by the nodes. Like individual application containers, Pods are considered 

to be relatively ephemeral entities unlike virtual machines. Pods are created, assigned 

a unique ID (UID), and scheduled to nodes where they remain until termination or 

deletion. This depends on the restart policy that the user has declared on the yaml 

file. If a Node dies, the Pods scheduled to that node are scheduled for deletion, after 

a timeout period. A given Pod is not “rescheduled” to a new node. Instead, it can be 

replaced by an identical Pod, with even the same name if desired, but with a new UID. 

Replication Controllers are responsible for create or delete pods dynamically.[15] 

 

 
Figure 6 - Kube proxy pod of the Data plane. A view from node1 

 

Figure 7 - The Kubelet process on Node1 

 

 

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#why-containers
https://kubernetes.io/docs/concepts/architecture/nodes/
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2.3 CNI – Container Networking Interface 

 
CΝΙ is a set of standards that define how a software should be developed to implement 

networking in a containerized environment. That kind of software is referred to as a 

plugin. Bridge is a CNI interface plugin. Supported CNI plugins are Bridge, Vlan, Ipvlan, 

Macvlan, Windows.[18][19] The aim of the CNI is to provide a specification for 

container networking in order to make them less dependent on the hosting 

environment.[17] Any plugin that is developed should comply with the following 

fundamental requirements imposed by Kubernetes: 

• Pods on a node can communicate with all pods on all nodes without NAT 

• Agents on a node (e.g. system daemons, kubelet) can communicate with all 

pods on that node 

• Pods in the host network of a node can communicate with all pods on all nodes 

without NAT 

In the majority of the plugins every Pod gets its own IP address. This means that there 

is no need for a link to be created between Pods and it is rarely seen a direct mapping 

from a container to the host port. This creates a backwards-compatible model with 

Pods that resembles to the model used on VMs or physical hosts from the perspectives 

of port allocation, naming, service discovery, load balancing, application 

configuration, and migration.[16] Some of the most common CNI plugins are Flannel, 

Calico and Weave Net. Also, some cloud providers have developed their own CNI 

plugins for running in their cloud infrastructures like GCE (Google cloud Engine), Azure 

CNI or AWS VPC CNI for Kubernetes. 

 

2.4 Cluster DNS  

In Kubernetes, you can set up a DNS system with two well-supported add-ons: 

CoreDNS and Kube-DNS. CoreDNS is a newer add-on that became a default DNS server 

as of Kubernetes v1.12. However, Kube-DNS may still be installed as a default DNS 

system by certain Kubernetes installer tools. With DNS, Kubernetes services can be 

referenced by name that will correspond to any number of backend pods managed by 

the service. Services can also be referenced not only via a Fully Qualified Domain 

Name (FQDN) but also via only the name of the service itself. Assume a Service named 

foo in the Kubernetes namespace bar. A pod running in namespace bar can look up 

this service by simply doing a DNS query for foo. A pod running in namespace quux 

can look up this service by doing a DNS query for foo.bar [21]. Both add-ons schedule 

a DNS pod or pods and a service with a static IP on the cluster and both are named 
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kube-dns. In general, Kubernetes services support A records, CNAME, and SRV 

records. 

2.4.1 A Record 

Kubernetes assigns different A record names depending on the service, headless or 

normal. The difference between the two is that on headless service, they are not 

assigned a ClusterIP and don’t perform load balancing. Normal services are assigned a 

DNS A record for a name of the form service-name.svc.cluster.local. This name 

resolves to the cluster IP of the Service. Headless services are also assigned a DNS A 

record for a name of the same form. However, in contrast to a normal service, this 

name resolves to a set of IPs of the pods selected by the service. The DNS will not 

resolve this set to a specific IP automatically so the clients should take care of load 

balancing or round-robin selection from the set. In the case that DNS is enabled, pods 

are assigned a DNS A record in the form of ip.namespace.pod.cluster.local. For 

example, a pod with IP 172.12.3.4 in the namespace default with a DNS name of 

cluster.local would have an entry of the form 172–12–3–4.default.pod.cluster.local . 

 

2.4.2 CNAME 

 

CNAME records are used to point a hostname to another hostname. To achieve this, 

CNAMEs use the existing A record as their value. In its turn, an A record subsequently 

resolves to a specified IP address. In Kubernetes, CNAME records can be used for 

cross-cluster service discovery with federated services. In this scenario, there is a 

common Service across multiple Kubernetes clusters. This service can be discovered 

by all pods no matter what cluster they are living on 

 

2.4.3 SRV Records 

In Kubernetes, SRV Records are created for named ports that can be part of a normal 

or headless service. The SRV record takes the form of port-

name.protocol.namespace.svc.cluster.local . For a normal service, this resolves to the 

port number and the domain name my-svc.namespace.svc.cluster.local. In case of a 

headless service, the name resolves to multiple answers, one for each pod backing the 

service. Each answer contains the port number and the domain name of the pod of 

the form auto-generated-name.my-svc.namespace.svc.cluster.local .[20] [21] 
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Figure 8 - An overview of the Kubernetes Architecture. 

 

 

Figure 9 - A view from Master showing the pods that were previously mentioned. 

 

2.5 Kubernetes Objects 
 

Kubernetes includes a number of objects that their job is to describe a cluster’s desired 

state. Those objects are entities that each and every one of them serve a very specific 

purpose. Usually those purposes concern the type of applications or workloads, what 

container images will they use, the number of replicas, what network and disk 

resources need to have available, and more. The desired state is set by creating 

objects using the Kubernetes API, typically via the command-line interface, Kubectl. 

Also, the Kubernetes API can be called directly to interact with the cluster and set or 

modify the desired state. Next, some of the basic and frequently used Kubernetes 

objects are described.  
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2.5.1 Namespaces 

Namespaces provide a way to keep objects organized and grouped within a cluster. 

They are intended for use in environments with many users spread across multiple 

teams, or projects. They are not recommended for smaller teams because they will 

significantly increase the complexity. Namespaces create virtual clusters that are used 

to separate different applications or different stages of applications, such as 

development, quality and production environment. Names of resources need to be 

unique within a namespace, but not across namespaces. Namespaces cannot be 

nested inside one another and each Kubernetes resource can only be in one 

namespace. Also, namespaces can communicate between one another unless there is 

a network policy that disallows it. 

Namespaces also provide a way to divide cluster resources between multiple users 

with the use of resource quota. That way specific namespaces can have limitations 

about CPU, ram and pods depending on the priority of the namespace. It is not 

necessary to use multiple namespaces just to separate slightly different resources, 

such as different versions of the same software. Objects within the same namespace 

can be separated with the use of labels. In case that no namespace Is specified, 

Kubernetes will assume the default namespace [49]. 

In the scenario below we can see that first the namespace has to be created. Then 

when a pod is declared it can be placed inside that namespace. 

 

Figure 10 - Create a Kubernetes namespace 

https://kubernetes.io/docs/concepts/policy/resource-quotas/
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Figure 11 - Pod creation using yaml configuration file 

 

2.5.2 ReplicaSet 

A replica set is an entity that ensures that a specified number of pods are running at 

any time. In case there are excess pods, they get terminated while if they are less, new 

pods are created until the required number is reached. Also, new pods are launched 

when existing ones get terminated or fail either on the same node they were deleted 

or on a different node. A Replica set’s standard fields, include a selector that specifies 

how to identify Pods it can acquire, a number of replicas indicating how many Pods it 

should be maintaining, and a pod template specifying the data of new Pods it should 

create to meet the number of replicas criteria. When a ReplicaSet needs to create new 

Pods, it uses its Pod template [50]. 

In the scenario below we can see the declaration of a replicaset consisting of three 

pods. Then we notice the pods created in the default namespace. 
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Figure 12 - ReplicaSet creation configuration file 

 

A ReplicaSet ensures that a specified number of pod replicas are running at any given 

time. However, a Deployment is a higher-level concept that manages ReplicaSets and 

provides declarative updates to Pods along with a number of extra features.  

 

2.5.3 Deployment 

A Kubernetes deployment provide a way to declaratively manage a set of replica 

pods. Deployments are a super set of replica sets because they provide extra 

features and powerful functionality such as scaling and rolling updates. A 

deployment defines a desired state for the replica pods. The cluster will constantly 

work to maintain that desired state, creating removing and modifying the replica 

pods accordingly.  
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In the scenario below we create a deployment with three replicas that their unique 

container is a nginx web server. 

 

Figure 13 - Deployment creation configuration file 

 

The use of set image command creates a declaration for changing the version of the 

nginx webserver inside the containers. The outcome of this command is called a 

rolling update. During the rolling update, three newly created pods (or as many pods 

are declared at the initial deployment) are lunched containing the new version of 

nginx. When those pods are up and running, the pods with the old nginx version are 

terminated with zero down time. Also, with the use --record command this action is 

“recorded” thus, in case of a failure, the transition to the previous state can be done 

immediately and equally smoothly.   

A possible role back to the previous version can be performed with the use of rollout 

undo command. After each action is performed, we can check the version of the 

nginx web server by getting inside the container, on one of the running pods from 

the replicas [51]. 
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Figure 14 - Executing Kubernetes Rolling update 

 

 

2.5.4 Service 

In Kubernetes, a Service is an abstraction which provides a way to access the pods. It 

allows access to pods by external users or services as well as intercommunication 

between different application pods on the same cluster. Also, because pods are 

ephemeral and they have a short lifespan, a number of inconsistencies might occur 

due to immediate changes and recycling of the ip addressing. In the scenario that a 

replica set is created with three pods and one of them fails for some reason, the 

replication controller will recreate the failed pod. After the new pod is created it will 

receive a new ip address. As a result, all the other pods must be informed for the 

change and update the new ip address which can create a number of problems. With 

the use of a Kubernetes service an entity is created in front of the pods that want to 

be accessed and it passes the connection to the set of pods that match the label 

declared in the creation of the replica set or deployment. The labels are declared by 

the selector option in both the replica set or deployment and the service. In a 

Kubernetes cluster a user can create as many services as he needs without any limit. 

Finally, a service gets its own ip address like a pod does.  

There are three types of services: 

NodePort Service 

A nodeport service is responsible from exposing an application to the outside of the 

cluster so that is accessible from the users [53]. In the scenario below there is a nginx 

deployment with on replica. Also, there is a NodePort service that exposes the nginx 

webserver to the outside world by accessing the host’s ip address on the port 31000. 
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Figure 15 - NodePort diagram and corresponding code 

In the scenario of a cluster with multiple nodes, an exposed application functions as 

the picture below illustrates.   

 

Figure 16 - Multiple Kubernetes nodes and exposed application with the use of NodePort 

 

ClusterIP Service  

A clusterip service is reachable only within the cluster. It is used in a scenario where 

there is a deployment of an application that consists from a front end and a backend 

and seamless communication between the two ends is needed [54].  
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Figure 17 - Kubernetes ClusterIP diagram 

LoadBalancer service 

The LoadBalancer service option is only available by cloud providers like GKE (Google 

cloud) and AWS (Amazon). It provides load balancing for the exposed services. Each 

cloud providers decides the nature of his load balancer [52]. 

 

Figure 18 - Kubernetes LoadBalancer diagram 
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In the past section, the analysis of Kubernetes objects and components drives to 

conclusion that a Kubernetes environment adds extra layers compared to a 

traditional infrastructure. Those layers extend the field that attacks may occur and 

require security measures. Along with the extra layers of code, container, network 

that are added, Kubernetes engine must also be protected and properly configured 

in order to reduce the attack surface of malicious actors. 

 

Application Application 

Kubernetes Code 

Kubernetes Container  

Kubernetes Network 

Virtual Machine Virtual Machine 

Figure 19 - Kubernetes stack divided to its components 

 

 

 

 

3 Kubernetes architecture – Attack vectors 
 

3.1 Attack on any Node 

As it was previously mentioned a Kubernetes cluster might have nodes that are 

physical or virtual machines. Thus, all nodes must be configured properly in order to 

withstand an attack from malicious actors that have them as target. An attacker could 

compromise a node by using a known vulnerability or a misconfigured port, escalate 

to higher privileges and subsequently move to another node and another node, until 

all the nodes in the cluster are compromised. So, it is very important leave open only 

the necessary ports opened on a server-node (for example ssh port) and close all the 

others. Also, it is equally important to use only the necessary permissions so that it is 

more difficult for unauthorized permission escalations to occur. As a result, all server 

nodes in a containerized environment must be equal hardened as in a virtualized 

environment. 

3.2 Attack on the Kubernetes API server 

The API server is the only Kubernetes component that should expose an API endpoint 

outside the virtual private cluster network. Specifically, it exposes a port to a public IP 

address and allows clients and other server modules to communicate with it. While 
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container applications also expose endpoints, the API server is the only Kubernetes 

component that can be accesses from client systems outside the cluster. Typically, the 

Kubectl utility is the client software that is used for accessing the API server, however, 

Kubernetes supports a number of open source libraries that provide a means for 

custom applications to make REST calls to the API server.  

It is recommended that TLS is implemented for the protection of the API server from 

malicious intrusions. If an attacker achieves in accessing the API server, then with the 

use of declarative configurations, he can direct other Kubernetes components to take 

act. Kubernetes API server offers both insecure and secure API endpoints. The default 

port for an insecure connection is 8080 and 6443 for a secure connection. If the 

insecure port left opened, all API requests bypass authentication and authorization 

modules on that port. To disable the insecure port set the option below. 

--insecure-port-0 -> /etc/Kubernetes/manifests/kube-apiserver.yaml 

The option above is by default turned off on the last versions of Kubernetes. If it was 

opened with the use of Curl an attacker could have gained valuable information about 

cluster’s components or he would have the ability to deploy new ones.  

Curl http://<ip address>:8080 

Curl http://<ip address>:8080/api/v1 

Curl http://<ip address>:8080/api/v1/namespaces 

Curl http://<ip address>:8080/api/v1/pods [22] 

 

Figure 20 - Utilizing Curl for checking Kubernetes insecure configuration 

Also, there is a secure API endpoint. If a user makes an API request to the secure 

endpoint without any sort of authentication token, he is automatically associated with 

system:anonymous account. Anonymous requests are on by default for health checks 

reasons, but they can be disabled. In the scenario that it is mandatory to be disabled 

for security reasons an implementation for mutual authentication is required to check 

for liveness of the cluster. 

Curl -k https://<ip address>:6443 

Curl -k https://<ip address>:6443/api/v1 

Curl -k https://<ip address>:6443/api/healthz 
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Figure 21 - Utilizing Curl for checking Kubernetes insecure configuration. -k parameter is for https 

 

Figure 22 - Utilizing Curl for checking Kubernetes insecure configuration 

 

The 3 A’s Authentication Authorization Admission 

Every request to the API server must be first be examined by three security steps in 

order to be executed. 

Authentication 

The First step is the step of the authentication. The input to the authentication step is 

the entire HTTP request. It is typically just examining the headers and client certificate 

if any. In this step it is verified that the username or service account is known to the 

cluster. The verification can be through password, token or certificate. If the request 

cannot be authenticated, it is rejected with HTTP status code 401. Otherwise, the user 

is authenticated with the specific username, and the username is available to 

subsequent steps to use in their decisions.[23] 

Authorization 

The second step is to evaluate that the request. A request must include the username 

of the requester, the requested action and the object affected by the action. The 

request is authorized if an existing policy declares that the user has permissions to 

complete the requested action. Kubernetes supports RBAC for dealing with 

authorization.  
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Admission 

After to authentication and authorization, admission controllers are the final step 

before Kubernetes persists the resource in etcd. Admission controllers are global rules 

that any request coming from outside the cluster must comply with them. Indicatively, 

some of the admission controllers are: NodeRestriction which limits the permissions 

of each Kubelet, ensuring that it can only modify pods that are in its own node. 

DenyEscalatingExec which ensures that exec and attach commands from privileged 

containers are blocked. 

 

 

Figure 23 - Kubernetes 3A's security procedure before executing a request received from the API 

 

RBAC Role Base Access Control in Kubernetes 

In computer systems security, role-based access control (RBAC) or role-based 

security is an approach to restricting system access to authorized users. [24]. Similarly, 

in Kubernetes it is used as an authorization mode to approve or deny any request that 

comes into the API server. In order for an API request to be approved or not the 

following question must be answered by the authorization mode: 

Can a (subject) (verb) (object)? 

When an API request is arriving on the API server the first thing to be done it to parse 

out the request attributes. In the following example it is shown how the API server 

parses out the request. 
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Figure 24 - Example of an API request with a bearer token and how it is parsed 

 

The POST http method, in the example API request above, maps to the create verb. 

This means that the user making this request wants to create something in the cluster. 

Then the apps API group is extracted along with the namespace ns1 and the resource 

which in this case is deployments. So, this set of attributes becomes the input to the 

authorizer.  

The next step is authentication. The authentication layer looks at the request and 

determines who is making this request. In the example there is a bearer token* which 

can identify the user that this request is coming from. If for example the name of the 

user is bob and he is a member of the group system:authenticated, the question that 

must be answered in order for the API request to be approved is: 

Can bob in group system:authenticated create apps deployments in namespace ns1? 

For the request to be approved or not, a Role must be created. The following role lives 

in the RBAC API group, it is called dev and it is created inside the development 

namespace. As previously mentioned, a rule is just a named list of permissions and an 

RBAC role has a list of rules. Each rule has the opportunity to match the attributes on 

an incoming request. The example role below has two rules. The first rule concerns 

pods and services while the second rule is about deployments. The verbs are all about 

the actions that are allowed. 

 

 

 

* A bearer token is an HTTP authentication scheme which includes a cryptic string, usually generated by the server in response 

to a login request. Bearer authentication as basic authentication should only be used over https(ssl).[26] 
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Figure 25 - Example of a role in yaml 

 

Figure 26 - Example of a RoleBinding in yaml 

Next, is to grant this role to the user. The way for this to happen is by using a 

RoleBinding. First, a namespace must be defined where the role binding is going to 

take place. After that the role is defined along with the user. A subject can be a user 

or a service account.  

In case that the Role was meant to be implemented globally (all namespaces can 

access it), the attribute kind should be changed from Role to ClusterRole. Role binding 

is taking place locally but the ClusterRole globally. That allows an administrator to 

reuse permissions and define policy in one place and reference the policy from 

wherever he needs to use it. Similarly, if the user was supposed to have global access 

to the cluster, by changing the kind from RoleBinding to ClusterRoleBinding. Thus, it is 

recommended to define permissions in a ClusterRole object only if the resources are 

cluster-scoped like nodes or persistent volumes, if there is a need for reference from 

multiple namespaces or there is a requirement for cluster-wide access (e.g. list pods 

across all namespaces – Kubectl get pods –all-namespaces).[25] 
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3.3 Intercept Modify Inject Control plane  
 

Attackers are capable of using inter-process-communications between components 

to discover secrets or steal other digital assets. While Kubernetes control plane 

components typically perform peer-to-peer communications on a private network, 

they still require TLS security to prevent eavesdropping. Once an attacker gains access, 

it is easy to replace a number of the authentic Kubernetes modules with modules that 

follow his malicious intentions. A pod injected with malware that has as an ultimate 

aim to discover information or a pod used for cryptojacking, are difficult to discover 

after they are created.  

The first step to protect against those attacks is to harden the servers running the 

cluster, that way it is a lot difficult for an attacker to find a point of entry to the cluster. 

Also, a mandatory use, along with frequent rotation of the certificates between the 

components could protect against eavesdropping their communication. Finally, 

because of the nature of containerized applications, frequent upgrades sanitize the 

cluster from compromised pods. In addition, to monolithic applications which were 

not containerized, if an attacker was successful in accessing the server and inject a 

payload or install a backdoor leveraging from an existing vulnerability, the malicious 

code would stay in the server until a reinstallation of the OS or an installation of a 

patch for the specific vulnerability. With containerized applications every time an 

upgrade occurs the old pods are deleted and new ones, (usually with patches) are 

taking their place. 

 

3.4 Attack to Kubelet API 

The Kubelet API is the medium between the control plane’s API server and the 

container runtime. While the kubelet’s API is exposed only within the private cluster 

network it is important to implement TLS security to prevent malicious actions. In the 

early days, in order for a cluster to scale up a node or more it had a single TLS key 

inside the server image which could easily leak by compromising a single node of the 

cluster. In the later versions of Kubernetes TLS bootstrapping was presented which is 

responsible for bootstrapping nodes and ensuring that they join master node 

correctly. Kubelet TLS bootstrapping provides the ability for a new Kubelet to create a 

certificate signing request so that certificates are generated when a node joins the 

cluster. The kubelet API is accessible on every node in the cluster and offers both 

insecure and secure API endpoints. The secure endpoint listens to 10250 port while 

the insecure to 10251. An attacker could make requests to the Kubelet API and run 

commands (possibly interactively) from a pod after he has gained access to. 
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Curl -k https://<ip address>:10250 

Curl -k http://<ip address>:10250/metrics 

Curl http://<ip address>:10251 

Curl http://<ip address>:10251/metrics 

 

 

Figure 27 - Checking the kubelet API with the use of curl 

 

 

Figure 28 - Checking the kubelet API with the use of curl with a response from the API 

 

For those attacks to be mitigated it is required to run Kubelet in RBAC mode. That way 

Kubelet can only read things that are relevant to the that specific Kubelet. It cannot 

read secrets that are attached to pods that are not scheduled on that node. Also, a 

frequent certificate rotation could be an extra layer of security. 

 

RBAC for kubelet: 

--authorization-mode=RBAC, Node 

--admission-control=…,NodeRestriction 

Rotate kubelet certs: 

Kubelet –rotate-certificates. 

 

3.5 Attack to the container runtime 

The container runtime is one of the most critical components running within a 

Kubernetes cluster. While Kubernetes security includes the scope of all Kubernetes 

components, it is important to realize that the container runtime also requires its own 
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level of security. Kubernetes can use different container runtimes. The most common 

one is Docker but there are some more like Moby and cri-o. Specific cloud vendors are 

using their one container runtime like moby which is used on azure. Security features 

vary from runtime to runtime. The images run by the container runtime should be 

scanned for vulnerabilities prior to their being stored in a repository or trusted 

registry. There are many Kubernetes options that can implement policies, such as only 

allowing containers to be pulled from secure registered repositories. Additionally, 

since container images may be compromised, and running current or latest images is 

recommended to reduce vulnerabilities and malware, Kubernetes optionally may be 

implemented to require pulling new images upon each deployment. There are tools 

that are capable of scanning images before deployment. The most common one is 

Clair which can be configurated to run inside a pipeline. 

 

3.6 Exploit of vulnerable image  
 

Docker images are typically downloaded from public repositories such as docker hub. 

Anybody with a free account on docker hub can upload images into this public 

repository. So, it is possible that those docker images that are uploaded by the user 

can have publicly know vulnerabilities which could be intentional or unintentional. 

These vulnerabilities can potentially provide access to the containers and the host 

were docker is being run. 

In docker hub there is a large number of containers that are deliberately vulnerable. 

One of them is vulnerables/cve-2014-6271 which is a shellshock vulnerable 

environment. 

 

Figure 29 - Vulnerable docker container form dockerhub 
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By running the following command, we manage to run the vulnerable container. If the 

image is not found locally the docker daemon will download it from docker hub.  

 

 

Figure 30 - Docker run command and port exposure to the host 

 

The port which is exposed in the host machine is 8080 and it is mapped to port 80 on the 

docker container. In the picture below we can see the vulnerable application. 

 

Figure 31 - The default web page of the vulnerable docker with shellshock 

 

Below we can see the output of file etc/passwd by exploiting the shellshock vulnerability. 

 

Figure 32 - Successful dump of the /etc/passwd 
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3.7 Backdooring existing Docker images 
 

Attackers use the same techniques for containers as with mobile applications. They 

download a legitimate application from PlayStore or App store and they add a 

backdoor to it. Afterwards they reupload the application on public repositories and 

when a victim downloads the application, they achieve in gaining access in his device. 

The same thing can be done with docker containers. It is possible to backdoor a docker 

container manually, on the other hand there are automated tools for that job. One of 

those tools is Dockerscan. On the pictures below we can see that a legitimate ubuntu 

image can be backdoored to give an attacker reverse shell. 

The ubuntu image is downloaded from dockerhub and it is saved locally. 

 

Figure 33 - Docker pull and save of ubuntu image 

Then, using Dockerscan we inject a backdoor to the original image. 

 

Figure 34 - Backdoor injection with the use of Dockerscan 

 

 

Figure 35 - Execusion of the Docker with the backdoor 

 

When the docker container is executed we manage to get a reverse shell to it. 
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Figure 36 - Successful reverse shell from backdoored container 

 

3.8 Internal attackers escape to host 

An internal attacker or an attacker who has gained access to a container, can break 

out of it and reach the host by taking advantage of misconfigurations and 

vulnerabilities. One possibility is kernel vulnerabilities. Containers running on a host 

share the same kernel with the host. In case of an exploit in the kernel, a malicious 

actor can use it to break out of the container to the host. Also, misconfigurations like 

–privileged flag and running the container as root might be a weak spot for a malicious 

actor to exploit. Because it is quite harder and time-consuming to configure the 

application to run with low privileges it is very common for containers that run into 

production to run as root. Finally mounting filesystems and network sockets to 

containers can lead to container escape. An attacker can change files and 

configurations on the mounted host filesystem that can lead to privilege escalation. 

The same outcome can result from a network socket mount of the host to a container. 

 

--privileged flag  

When a container is running with the privileged flag, it gives many extra linux 

capabilities to the container. An attacker can use the extra capabilities, escape the 

container and access the host. Specifically, an attacker that gains access to a container 

where more capabilities are present, has the ability to perform a number of malicious 
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actions depending on the capabilities, the container has on it and escape form the 

container and access the host. Cap_sys_ptrace and cap_sys_module are some of the 

dangerous capabilities. Using those capabilities an attacker can install a kernel module 

and load It on the host machine’s kernel. 

 

To notice the difference in capabilities we deployed a container in Kubernetes with –

priviledged flag and one without the flag. Below we can see the configuration yaml 

files of both deployments. Both files create a pod with one container inside it that 

sleeps for 5000 seconds. 

 

Figure 37 - Yaml configuration of a not-privileged pod 

 

Figure 38 - Yaml configuration of a privileged pod 

 

Next we access each container and install capsh inside the alpine image to print out 

the capabilities of each container. We notice that in the container with the priviledge 

flag there are a lot more capabilities and among them cap_sys_module. 
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Figure 39 - List of the capabilities of a pod with the privileged flag 

 

Figure 40 - List of the capabilities of a pod without the privileged flag 

 

3.9 Attack a container with privileged flag 
 

At first, we deploy a pod with –privileged flag on. Then we write a simple module that 

prints a message when the module is loaded into the kernel and when it is unloaded 

form the kernel. Kernel modules are extensions for the Linux kernel. Then we compile 

the Linux kernel module. 

 

 

Figure 41 - kernel module code for printing messages when is loaded and when it exits. 
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Figure 42- Compilation of kernel module 

 

Figure 43 - List of the exported files after compilation 

 

In order for the kernel to be transferred to the container we base64 encode it, we 

copy it inside the container and then we decode it. 

 

Figure 44 - base64 encoding of kernel module 

 

Figure 45 - base64 decoding of the kernel module inside the container 

 

After the module is decoded, we are then able to load it. If we look at the 

/var/log/kern.log in the host machine, we notice the messages that we printed inside 

the module. We also notice the module itself in the host by using lsmod [27]. 

 

Figure 46 - Commands to load and unload a kernel module inside a privileged container 

 

Figure 47 - Kernel module logs inside /var/log/kern.log after insmod and rmmod are executed 
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Figure 48 - lsmod to view the module loaded in the host 

 

Following the same steps, a module that gives a reverse shell to the host machine or 

something relevant could have been loaded. The above procedure was conducted 

with microk8s cluster. 

 

3.10 Privilege escalation using volume mounts and local registry 
 

In this attack a local registry will be used to create a pod so that the user that is running 

pods who has no special rights on the server manages to escalate to root. An attacker 

could exploit the fact that docker daemon requires root privileges to perform some of 

its operations. 

First, we are going to create a docker image using the following components. A shell 

binary that opens a shell as root, a bash script that copies the file into a mounted path 

in the container and changes the permission and a docker file that downloads the 

alpine image and copies the two mentioned files into it. 

 

 

Figure 49 - A Dockerfile, a program and a bash script are used to conduct the attack 

 

Then we run a local docker registry so that Kubernetes is able to download the malicious 

image from and we build the image. 
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Figure 50 - Docker registry running on port 5000  

 

Figure 51 - The build process of the malicious image 

 

Following that, we tag the image so that the registry is able to serve it and then we push it to 

the registry. 

 

Figure 52 - Image being tagged and pushed to the registry  

 

Finally, we deploy the yaml file in Kubernetes that creates a pod which downloads the 

malicious docker image and copies the binary shell in the mounted folder of the host 

(/tmp/shared)  

 

Figure 53 - Yaml configuration of malicious pod 
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We notice that a shell binary has appeared in /tmp/shared location. When the shell is 

executed, we automatically get a shell with root privileges. 

 

Figure 54 - Shell binary execution leads to gaining root priviledges 

 

3.11 Docker.sock  
 

When any docker command is typed using the docker client, the docker client 

interacts with docker socket and manages the containers. Docker socket Is the Unix 

socket which acts as a backbone for managing containers. When an image is 

downloaded from the internet and a container is started using those images at some 

cases /var/run/docker.sock is needed to be mounted. Possible legitimate cases for 

docker socket to be mounted is if a docker is going to run to audit all docker running 

on the host or any case that containers need to be managed by another container. 

Generally, this socket is needed if it is going to interact with other docker images on 

that host. On the other hand, a malicious actor could use this mount for his own 

agenda. In the next pictures we can see how an attacker could use this mount to 

mount the host machines filesystem. 

We are creating a pod that contains a container using the alpine image. The 

var/run/docker.sock of the host is mounted on the var/run/docker.sock of the 

container. The containers sleep for 5000 seconds so that there is enough time to 

execute the attack. After 5000 seconds pass the pod is terminated. 

 

 

Figure 55 - Yaml configuration of a pod with docker.sock mounted 
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After the pod is deployed, we access it and check that /var/run/docker.sock is 

mounted. 

 

Figure 56 - Check if docker.sock is mounted to the container 

 

Then we install docker inside the docker container. Using this docker client and the docker 

socket mounted in the container we can simply spin up another container on the host and 

mount the host directory onto the newly started container and then get a shell on the newly 

started container to be able to access the root directory of the host. 

 

Figure 57 - Docker installation and spin up of a new container in the host 

Finally, we notice that if we list the mounted directory is the host’s root directory [27]. 

 

Figure 58 - Validation that the host's root directory is mounted on the new container 

 

3.12 Attack to etcd  
 

Etcd as previously mentioned is a consistent and highly available key value store used 

for storing all cluster data of Kubernetes. In every master node there is an etcd 
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member. They have an election to choose the leader. When any operation happens 

on the cluster the leader gets the information and then he has to pass it to all the 

members. An attacker who has gained access to etcd can do a reconnaissance of the 

cluster. For security reasons etcd should have its own ca system. So, if the frontend 

certificate is compromised there is an extra layer of security. It is recommended to 

have a different ca for the front end, a different ca for middleware and a different ca 

for etcd. A default Kubernetes setup is not encrypted by default. Secrets are stored in 

plaintext. That means that anyone who has access to etcd, a backup of etcd or the 

master node has access to all of the secrets in plaintext. Specifically, before the secrets 

are stored in etcs they are base 64 encoded which is not to be mistaken as an 

encryption and it can be easily decoded. The above situation refers to the default out 

of the box configuration of Kubernetes. DNS resolution does not work across 

namespaces. Inside etcd you can find ip addresses of all things on k8s. Calico has a 

networking model that allows you to segregate, like a software defined firewall for 

k8s. Most clusters don’t expose etcd to the workers, but some install a separate etcd 

instance to support calico network policy. In some cases, it is exposed with no tls, 

authentication and authorization. Some cloud providers using shared responsibility 

model and can manage the master and etcd for you while pod, containers and nodes 

are the client’s responsibility. [28] 

Etcd runs by default on port 2379. It is mandatory for security reasons to enable the 

options below true so that whoever wants to talk to etcd is required to have a 

certificate.  

--client-cert-auth=true -> /etc/Kubernetes/manifests/etcd.yaml 

Additionally, a firewall around etcd will make an attacker access significantly more 

difficult. Otherwise an attacker with just a curl command can gain information about 

the cluster. [22] 

Curl -k https://<ip address>:2379/version 

 

 

3.13 Attack on Kubernetes Dashboard 

Dashboard is a web-based Kubernetes user interface. The Dashboard can be used to 

deploy containerized applications to a Kubernetes cluster, troubleshoot the 

containerized applications and manage the cluster resources. Also, It can get an 

overview of applications running on the cluster, as well as create or modify individual 

Kubernetes resources such as Deployments. The Dashboard also provides information 

on the state of Kubernetes resources in the cluster and on any errors that may have 

occurred [29]. 
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To access the dashboard, you need either a kubeconfig file or a token. The kubeconfig 

file contains a certificate that is signed form the CA of the cluster. It is possible to use 

an external CA but every Kubernetes cluster has a cluster root Certificate Authority 

(CA). It is the same CA that is used by cluster components to validate the certificates 

needed by them. 

In order for a kubeconfig file to be created, the user generates a key and uses it to 

create a CSR (certificate signing request). After that, the administrators of the cluster 

get the CSR file and they import it inside the cluster. Then the CSR is signed by the 

certificate authority of the cluster creating a CRT file. Next, the CRT is used to create 

the kubeconfig file along with information about the cluster like the cluster name, the 

user and the CA. At the same time, the role is created if it does not already exist and 

specifies the rights of the user or group inside the cluster. Finally, a role binding is 

created that matches the user or group with the role. The kubeconfig can now be used 

[55]. 

A similar procedure is implemented to export a token. After the creation of a role 

binding the token can be exported and sent to the user. 

 

 

Dashboard must always be behind some kind of protection and never be publicly 

accessible. An example of bad configuration of the dashboard is Tesla the electric car 

company. Tesla’s Kubernetes dashboard was publicly accessible and not password 

protected due to a misconfiguration. This allowed hackers to access the dashboard 

and deploy pods that were performing crypto mining. Also, the performed actions so 
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that the attack could be undetected like hiding the mining ip address behind a proxy, 

changing the default port of the mining software as well as keeping the CPU usage 

limited [30].   

 

 

Besides requiring for a kubeconfig file that includes a certificate or a token to sigh in, 

the dashboard in order to be protected must always be behind a firewall, a reverse 

proxy or to be accessed only through a bastion host.   

 

 

3.14 Bastion Model 
A bastion host is a special-purpose computer on a network specifically designed and 

configured to withstand attacks. The computer generally hosts a single application, for 

example a proxy server, and all other services are removed or limited to reduce the 

threat to the computer. It is hardened in this manner primarily due to its location and 

purpose, which is either on the outside of a firewall or in a demilitarized zone (DMZ) 

and usually involves access from untrusted networks or computers[31]. 

 

 

3.15 Secrets 
A Secret in Kubernetes is an object that contains a small amount of sensitive data such 

as a password, a token, or a key. Such information might otherwise be put in a Pod 

specification or in an image. Along with users system also creates some secrets for it 

to function. 

https://en.wikipedia.org/wiki/Proxy_server
https://en.wikipedia.org/wiki/Firewall_(computing)
https://en.wikipedia.org/wiki/Demilitarized_zone_(computing)
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Because secrets can be created independently of the Pods that use them, there is less 

risk of the secret being exposed during the workflow of creating, viewing, and editing 

Pods. The system can also take additional precautions with Secrets, such as avoiding 

writing them to disk where possible.  

A secret is only sent to a node if a Pod on that node requires it. The kubelet stores the 

secret into a tmpfs so that the secret is not written to disk storage. Once the Pod that 

depends on the secret is deleted, the kubelet will delete its local copy of the secret 

data as well. There may be secrets for several Pods on the same node. However, only 

the secrets that a Pod requests are potentially visible within its containers. Therefore, 

one Pod does not have access to the secrets of another Pod. There may be several 

containers in a Pod. However, each container in a Pod has to request the secret 

volume in its volumeMounts for it to be visible within the container. This can be used 

to construct useful security partitions at the Pod level. On most Kubernetes 

distributions, communication between users and the API server, and from the API 

server to the kubelets, is protected by SSL/TLS. Secrets are protected when 

transmitted over these channels. 

On the other hand, containers that carry secretes must be extra protected because if 

they are compromised the secrets can be leaked. An attacker who has compromised 

a pod can easily view the secrets that are mounted on that pod. 

Below we examine the scenario that credentials are mounted on a container inside a 

pod [32]. 

First, we create the credentials. It is mandatory to encode them with base64. 

 

 

Figure 59 - Credentials must be base64 encoded 

 

Then we create the secret using the following yaml configuration, apply the secret and 

check that the secret has been created. 

 

Figure 60 - Yaml configuration of a secret 

 

https://kubernetes.io/docs/concepts/configuration/secret/#use-case-secret-visible-to-one-container-in-a-pod
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Figure 61 - Secret creation 

 

Figure 62 - Validation tha the secret has been created successfully 

 

Finally, we create a test pod using the redis image and we mount the secret. 

 

Figure 63 - Yaml configuration of a pod with a mounted secret 

 

If an attacker manages to gain access to the container, he can then view the secrets 

that are mounted and contain the credentials. 

 

Figure 64 - A compromised pod that revels the mounted secret 

 

In order for scenarios like the above to be avoided, applications should be broken 

down into two or more containers: a frontend container which handles user 

interaction and business logic and a second container that handles the processes that 
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utilize the credentials of the secret like a database connection. With this partitioned 

approach, an attacker now has to pivot between containers that is significantly harder 

than reading a file. 

 

3.16 Man in the middle - DNS spoofing 

An attacker, who manages to run malicious code on a cluster is able to successfully 

spoof DNS responses to all the applications running on the cluster, and from there 

execute a MITM (Man In The Middle) on all network traffic of pods. As previously 

mentioned, pod-to-pod networking inside the node is available via a bridge that 

connects all pods. This bridge is called cbr0. (Some network plugins will install their 

own bridge and give it a different name). The cbr0 can also handle ARP (Address 

Resolution Protocol) resolution. When an incoming packet arrives at cbr0, it can 

resolve the destination MAC address using ARP. Additionally, NET_RAW is a default 

permissive setting in Kubernetes. It’s there to allow ICMP traffic between containers. 

But in addition to ICMP traffic, this capability grants an application the ability to craft 

raw packets (like ARP and DNS), so there's a lot of freedom for an attacker to play with 

network related attacks. 

The combination of those two can firstly lead to an ARP spoofing and by extend to an 

DNS spoofing attack on a Kubernetes cluster. All DNS requests arrive at the cbr0 

behind the CoreDNS pod, after they get DNAT where they are redirected to the DNS 

server pod. DNS requests coming from pods on external nodes will also arrive at this 

cbr0, since it is the bridge that connects the DNS pod to the cluster’s network. So in 

the event an attacker manages to infect an application running next to a DNS pod, he 

could ARP spoof the cbr0, fooling it into thinking that he is the cluster DNS server, and 

take complete control of all DNS resolution in the cluster [68]. 

In the picture below we can see that we have a Kubernetes cluster with three pods. 

The first one is a compromised pod from a malicious user, the second one is a victim 

pods that will be misleaded to a malicious website and the third one is considered to 

be a fake pod that hosts the malicious website. 

 

 

Figure 65 - Deployed pods 

 

First, we get the ip address from the pod serving the malicious website. 
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Figure 66 - Ip address of the malicious website 

 

Then we test a legitimate request from the victim pod to example.com. 

 

 

Figure 67 - Legitimate request to example.com  

 

Next we start the script that executes the DNS spoofing inside the hacker pod. The 

script resolves all the requests for example.com and forwards them to the fake pod 

with ip address 10.32.0.6 [70]. 
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Figure 68 - DNS spoofing script 

 

The attack was successful the victim pod wanted to access ecample.com and accessed 

malicious pod. 

 

 

Figure 69 - DNS spoofing attack was successful 

 

 

Figure 70 - Diagram of the DNS spoofing attack 
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The ARP spoofing attack illustrated in the previous pictures, only works if the 

malicious entity and the target share the same layer 2 segment (e.g. have direct 

Ethernet connectivity). If Calico is used as a CNI, the network is fully routed at layer 

3, meaning that each pod is on its own isolated layer 2 segment. ARP spoofing by 

pods is stopped dead in its tracks. 

Calico directly programs the routing table that determines where IP packets are 

forwarded based on the known IP addresses of the pods, never basing the decision 

on a protocol like ARP which is partially under control of the potential attacker. That 

way Calico ensures that IP packets are delivered to the correct pods by avoiding ARP 

altogether within the node, but what about pods spoofing their source IPs? 

The idea here is that if a pod is granted CAP_NET_ADMIN, it can just add an IP 

address to its network interface inside the pod. Or if it has CAP_NET_RAW it could 

construct IP packets with spoofed addresses and send them over the interface at the 

Ethernet layer. Calico was designed to stop this kind of spoofing. Regardless of what 

the malicious entity can do from within the pod, these packets are processed by the 

host kernel in the root network namespace where Calico has programmed it to be on 

the defensive against spoofing. 

By using a kernel feature called reverse path filtering, IP packets with source 

addresses that are not the pod’s real address are dropped.  Reverse path filtering 

isn’t a new kernel feature, it has been operational for many years. Every packet that 

is processed, must be confirmed on its route back to the source. If the packet came 

through a different interface than the one the kernel would use to forward to it, the 

packet is dropped. Since Calico programs the IP routes for each pod, this effectively 

stops them from sending packets as any address other than their real address [69]. 
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4. Defenses 

 

4.1 Network Security 
 

4.1.1 Network Policies 

Kubernetes provides a mechanism called Network Policies that can be used to enforce 

layer-3 segmentation for applications that are deployed on the platform. Network 

policies lack the advanced features of modern firewalls like layer-7 control and threat 

detection, but they do provide a basic level of network security. Kubernetes assigns 

each pod an IP address which is routable from all other pods, even across the 

underlying servers. Kubernetes network policies specify the access permissions for 

groups of pods 

 

 
Figure 71 - Network policies diagram 

 

A network policy specification consists of four elements: 

1. podSelector: the pods that will be subject to this policy - mandatory 

2. policyTypes: specifies which types of policies are included in this policy, ingress 

and/or egress - optional 

3. ingress: allowed inbound traffic to the target pods - optional 

4. egress: allowed outbound traffic from the target pods – optional 
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There is no need for all four elements to be included. The main podSelector element 

is mandatory, the other three are optional. podSelector works with the help of labels 

and label selectors. It is better for grouping reasons that every pod has at least one 

label. This way it is easier to separate and group pods that are scheduled for a specific 

purpose. For example, pods that have the label “db” might have a mysql container. 

Also, there is the case of {} which when appears means the selection of all the pods.  

If no policyTypes are specified on a NetworkPolicy then by default Ingress will always 

be set and Egress will be set if the NetworkPolicy has any egress rules. 

When no policies are defined, Kubernetes allows all communications. All pods can talk 

to each-other freely. The same thing occurs with communication between 

namespaces in a default environment, even though namespaces are intended to 

isolate the environments from each other. Any forbiddance must be explicitly defined. 

When an isolation is required between namespaces a namespaceSelector must be 

defined to match a specific namespace. 

Unlike firewalls Kubernetes policies define a target and specify ingress and/or egress 

traffic for that target and do not consist of rule with source and destination. 

 
Figure 72 - Yaml configuration of a network policy 

In the picture above there is a test network policy. The policy runs on the default 

namespace and it matches the pods with “db” label. It allows in the default namespace 

pods that matching the “db” label app to allow ingress communication from subnet 

172.17.0.0/16 except the subnet 172.17.1.0/24 and port TCP:6379. It also allows 

ingress communication from namespace project:myproject, port TCP:6379 and any 

pod as well as allow ingress from the default namespace, matching the frontend label 

role and port TCP:6379. Finally, it allows egress communication from pods that 
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matching the “db” label app in the default namespace only to subnet 10.0.0.0/24 and 

port TCP:5978 

In the part that ipBlocks is used the declared ip ranges it is recommended to be cluster-

external IP addresses because pods IPs are ephemeral and unpredictable. 

 

4.1.2 DNS and Network policies 

Kubernetes as previously mentioned uses an internal DNS for the pods. In ever 

declared egress policy must be explicitly exclude the traffic to the DNS service so that 

the pods can communicate with each other. At the same time an extra layer of security 

must be added so that DNS look up are forbidden from outside the cluster so that 

possible compromised pods cannot query malicious DNS servers.  

 
Figure 73 - Yaml configuration of a network policy allowing DNS 

 

In the picture above there is a test network policy that exclude DNS service but at the 

same time it allows DNS only inside the cluster by adding a namespaceSelector with {} 

that includes all of the clusters namespaces. 

Firewall policies usually have an any-any-any-deny rule to drop all non-explicitly 

allowed traffic or an allow any to any to allow all traffic. 
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Figure 74 - Yaml configuration of a network policy to deny all traffic 

Kubernetes doesn’t have a deny action, but you can achieve the same effect with a 

regular (allow) policy that specifies Ingress but omits the actual ingress definition. 

This is interpreted as no ingress allowed 

 
Figure 75 -  Yaml configuration of a network policy to allow all traffic 

The above picture shows a configuration that allows communications from all pods in 

all namespaces (and all IPs) to any pod in the default namespace. This is the default 

behavior, so this is not needed to be defined. It could be useful, however, to override 

any more specific allow rules temporarily for diagnosing a problem. 

Kubernetes network policies provide a good means for segmenting a Kubernetes 

cluster, but the high complexity is a concern. High complexity increases the 

possibilities for misconfigurations that may lead to vulnerable clusters. Possible 

solutions could be automating the policy definitions or using other means of 

segmentation. Also, Kubernetes network policies cannot generate traffic logs. This 

makes it difficult to know whether a policy is working as expected or not. It’s also a 

major limitation with regards to security analysis [33]. 

http://m.com/@tufin/generating-kubernetes-network-policies-automatically-678ca0411
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4.1.3 Service Mesh   
 

A service mesh is further action to network policies. It is a way to control how different 

parts of an application and by extend pods, share data with one another. It provides a 

transparent and language-independent way to flexibly and easily automate 

application network functions. It adds an additional layer above the existing 

Kubernetes workloads without modifying them and through a set of proxies, it 

succeeds in managing network connections consistently. Unlike other systems for 

managing relative communication, a service mesh is a dedicated infrastructure layer 

built right into an app. Network meshes apart from microservices can also be 

implemented to affect traffic between VMs.  

There are a number of corresponding applications but Istio is the most common one. 

A service mesh like Istio comes to fill the void that network policies leave open by 

default. Unlike, network policies which they manage and filter workloads on the layers 

3 and 4 of the OSI model, Istio can manipulate traffic in the application layer. 

Istio after installation can manually or automatically inject sidecar proxies (envoy) 

inside each pod. As previously mentioned, inside a pod can exist multiple containers 

that share the same networks interface. Containers on the same pod can 

communicate with each other via localhost. After the container injection all traffic 

inbound and outbound passes through them[63].  

The use of Istio can decouple the network from the application code. During the 

migration of an application to a microservices philosophy it might have multiple 

programming languages. Developers do have to think about firewall rules and retry 

logic to transition the application. The idea is to take all that network logic and put on 

the hands of istio operators so that it can be managed in a unified way. 

Istio has the following advantage when implemented side by side to a Kubernetes 

environment.   

Visibility 

The use of microservices have increased significantly the network calls that occur 

between services, compared with the calls that were made when the same application 

was monolithic. This has increased the need for visibility between the communications 

that pods do. Istio combined with observability platforms like Grafana and 

Prometheus provides a clear picture about the services communication and 

detectability in case of http responses that correspond to an error.  
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Traffic inspection 

Istio can inspect http headers from requests and make routing decisions based on 

those requests. This feature is called content-based routing and can also provide an 

extra layer of security by whitelisting legitimate http headers. Also, it can easily 

implement A/B testing canary rollouts and staged rollouts with percentage-based 

traffic splits while on simple Kubernetes service the percentage is equally shared and 

limited with workload scaling. 

Security 

Istio performs authentication between the services, to ensure that the traffic flowing 

inside the cluster is secure. It channels service-to-service communication through a 

proxy container within each Kubernetes pod, and uses mutual TLS for transport 

authentication. It also manages keys, certificates, and the TLS configuration, to ensure 

continual encryption. Istio provides policy-based authentication that allows two 

services to establish a mutual TLS configuration for secure encrypted service-to-

service communication, as well as end-user authentication with the use of protocols 

like OAuth2.0. With Istio, the user no longer needs to implement encryption or 

manage certificates, as these responsibilities are moved from the app developer to 

the framework layer [61].  

 

 

Figure 76 - Istio Overview 

 

 

Istio consist of the following control-plane components: 
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Pilot 

Pilot is the head in an Istio mesh. It stays synchronized with the underlying platform 

like Kubernetes by tracking and representing the state and location of running service 

to the data plane. Pilot interfaces with the environment’s service discovery system 

and produces configuration for the Envoy and Mixer 

Mixer 

Mixer bares responsibility for precondition checking, quota management and 

telemetry reporting. Service proxies and gateways invoke mixer to do precondition 

checks to determine whether a request should be allowed to proceed, whether 

communication between the caller and the service is allowed or has exceeded quota 

and to report telemetry after a request has completed report. 

Citadel 

Citadel empowers istio to provide strong service to service and end-user 

authentication using mutual Transport Layer Security (mtLS) with built-in identity and 

credential management Citadel CA component approves and signs certificate signing 

requests (CSRs) sent by citadel agents and it performs key and certificate generation 

deployment rotation and revocation[62]. 

 

Figure 77 - Istio components 
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4.2 Image Security 
 

After the network defenses, like on an ordinary infrastructure, every OS and every 

application installed on that OS must be vulnerability free, in order to reduce the 

probability to a malicious attack. The same thing corresponds to a Kubernetes 

infrastructure. When you work with containers, you are not only packaging your 

application but also part of the OS. It is crucial to know if any of the libraries are 

vulnerable inside the container. One way to find this information is to look at the 

Docker registry security scan. However, this means that your vulnerable image is 

already on the Docker registry. 

A solution would be a scan as a part of CI/CD pipeline that stops a Docker image with 

vulnerabilities before it is pushed on the registry. Clair is an open source solution, 

created by CoreOS, for container scanning. Clair first tests the container for 

vulnerabilities against its database and then reports back the results.  

In a CI/CD environment, Clair is injected inside the pipeline and comes after the 

building process looking for weak spots. If any of them are found, it categorizes them 

to medium and high severity. The ones that are considered to be medium severity 

are noted with a warning while the high severity ones are noted with an error. If any 

high severity vulnerabilities are found, the pipeline process stops so that corrective 

actions can occur before the image is deployed. 

In order for clair to run, it needs two docker containers. The first one for the 

application and the second one for the vulnerability database. 

 

Figure 78 - Execution of Clair database 
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Figure 79 -Execution of Clair application 

In the scenario below we run an ubuntu 12.04 that is unsupported and hold a great 

number of unpatched vulnerabilities. 

 

Figure 80 - Docker pull of ubuntu 12.04 

With the use of Clair binary file and by declaring the ip address of the docker 

interface in the command, the scan is executed. After it finishes the procedure it 

projects the outcome of the scan that can also be exported to a json file, for further 

analysis [60]. 

 

Figure 81 - Outcome of the Clair scanner 
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4.3 Docker Security 
 

4.3.1 Apparmor 
 

AppArmor (application armor) is a Linux kernel security module based on Mandatory 

Access Control (MAC) that extends the standard Linux user and group-based 

permissions to restrict programs to a limited set of resources. The standard user and 

group-based permissions are part of Discretionary Access Controls (DAC). First, DAC is 

executed and after that comes MAC. AppArmor can be configured for any application 

to reduce its potential attack surface and provide greater in-depth defense. It is 

configured through profiles to whitelist the access needed by a specific program such 

as Linux capabilities, network access or file permissions. Each profile can be run in 

either enforcing mode, which blocks access to disallowed resources, 

or complain mode, which only reports violations.  

Since docker makes use of Linux kernel, Apparmor can be used with Docker 

containers. To use it with Docker we need to associate an Apparmor security profile 

with each container. Docker expects to find an Apparmor policy loaded and enforced. 

If a profile is not specified when the container is launched the Docker daemon 

automatically loads a default profile to the container, which denies access to 

important filesystems on the host such as /sys/fs/cgroups and /sys/kernel/security/ 

[40]. AppArmor can be used by extension in Kubernetes and add extra security value 

in a deployment by restricting what containers are allowed to do and provide better 

auditing through system logs [35][36]. 

In the two pictures below there is an app armor profile customized for protecting a 

nginx installation inside a container. With the use of apparmor_parser the profile is 

loaded on the host machine. Then, with the use of --security opt apparmor=  and by 

adding the apparmor profile file in the docker command it is assigned to the container. 

The status of the policies can be viewed with aa-status. We notice with the use of aa-

status that docker-nginx policy is in enforcing mode.  

 



68 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 84 - Loading AppArmor profile when the container is executed 

 

 

Finally, by entering the container we can see that apparmor is blocking us form 

executing the following commands based on the policy of nginx [37].  

Figure 82 - AppArmor profile 1/2 Figure 83 - AppArmor profile 2/2 
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Figure 85 - Creating a new file in specific paths is blocked by AppArmor 

 

 

4.3.2 SELinux  
 

SELinux (security-enhanced linux) is another security enhancement to the Linux 

system which is part of Mandatory access control and its purpose like apparmor is to 

enforce security policies on system resources to forbid malicious behavior. In SELinux, 

everything is controlled by labels. Every file or directory, process and system object 

has a label. Based on these labels specific rules are declared to control access between 

processes and system objects. These rules are called policies. 

The SELinux policies can be divided into three classes: Type enforcement, Multi-level 

security (MLS) enforcement, and Multi-category security (MCS) enforcement. 

With the DAC mechanism, owners have full authority over their objects, meaning that 

if the owners are compromised, the attacker has control over all of their objects. On 

the other hand, in SELinux model, the kernel manages and enforces all of the access 

controls over objects, not their owners. This provides a secure separation for 

containers as it can prevent processes, even with root privileges, within a container to 

illegitimately access objects outside the containers. 

Docker uses two classes of policy enforcement: Type enforcement and MCS 

enforcement. The Type enforcement protects the host from the processes in 

containers, and the MCS enforcement protects a container from another container. 

With Type enforcement, Docker labels all container processes with svirt_lxc_net_t 

type and all content within a container with svirt_sandbox_file_t type. The processes 

running with svirt_lxc_net_t type can only access/write to the content labeled with 

svirt_sandbox_file_t type, but not to any other label on the system. Therefore, the 

processes running within containers can only use the content inside containers. 

However, only with this policy enforcement, Docker allows the processes in one 

container to have access to the content of other containers. MCS enforcement is 

necessary to solve this issue. When a container is launched, the Docker daemon picks 

a random MCS label and then puts this label on all of the processes and content of the 
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container. The kernel only allows processes to access content with the same MCS 

label, thus preventing a compromised process in one container from attacking other 

containers [40]. 

 

4.3.3 Seccomp 
 

Secure computing mode (seccomp) is a Linux kernel feature. It can be used to restrict 

the actions available within the container. It defines which system calls should and 

should not be allowed to be executed. For example, if an application was redirected 

to execute malicious code that could not work within the limitations of the listed 

system calls, it would be unable to fully carry out its payload. This protects the system 

and can make attacks either impossible or require a higher degree of sophistication 

[39]. Docker includes default seccomp profiles that drop system calls that are unsafe 

and typically not used for container operations. The additional seccomp policies are 

defined in a JSON file that can be applied when a container starts.  

In the file below we declare seccomp permissions to block chmod and chown so 

containers that are run along with this policy are unable to execute chmod and chown.  

 

 

 

Figure 86 - Seccomp profile 

 

 

 

Then, with the use of --security opt seccomp=  and by adding the seccomp profile file 

in the docker command it is assigned to the container. Along with the docker 

command a chown command is executed which is blocked [38]. 
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Figure 87 - Chmod is not permitted due to seccomp profile 

 

4.3.4 Capabilities 
 

The Linux kernel has the ability to divide the privileges of the superuser into 

capabilities and allow for them to be granted separately as needed. The separation 

into capabilities allows better control of what a root user or a simple user are allowed 

to do. Adding some specific extra privileges to standard users that are needed in order 

to execute a task or remove some capabilities from a superuser that is not using them, 

adds an extra layer of security. Docker containers run on a kernel shared with the host 

system, so most of their tasks can be handled by the host. As a result, in most cases, 

it is unnecessary to provide full root privileges to a container, thus removing some of 

the root capabilities from a container does not affect the usability or functionality of 

the container but effectively improves the security of the system. By default, docker 

drops all capabilities except those needed, using a whitelist approach. However, 

Docker provides an option to configure the capabilities that a container can use. 

 

 

Figure 88 - Capabilities allowed by default in Docker 
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In the table above we can see the Linux capability options which are allowed by default 

and can be dropped in docker [41]. 

 

 

4.3.5 Namespaces 
 

Containers like Docker utilize two major features of the Linux kernel. The first feature 

is namespaces. Namespaces are providing containers with the necessary isolation that 

resembles with the isolation of virtual machines. This isolation includes container to 

host isolation as well as container to container isolation to protect from cases of one 

or more compromised containers. When a container is run, Docker creates a set of 

namespaces for that container. Each aspect of that container runs in a separate 

namespace and its access is limited to that namespace. 

 

4.3.6 PID Namespace 
 

The PID is the namespace that is responsible for process isolation. The Linux operating 

system organizes processes in a process tree. The tree root is the first process that 

gets started after the operating system is booted and it has the PID 1. As only one 

process tree can exist, all other processes need to be directly or indirectly started by 

this process. Due to the fact that this process initializes all other processes it is often 

referred to as the init process. Inside the process tree, every process can see every 

other process and send signals to one another if they wish. With the use of PID 

namespaces, the PID for a specific process and all its sub processes is virtualized, 

making it think that this process has PID 1. That wrapping feature of the running 

process with the use of namespace makes it unable to see any other processes except 

its own children. However, the host is allowed to operate the processes inside the new 

PID namespace. By default, all containers have the PID namespace enabled. PID 

namespace provides separation of processes [42].  

In the pictures below we can see that if we run two docker containers on the same 

host and we run ps aux in each of them we notice the process that The PID Namespace 

removes the view of the system processes and allows process ids to be reused 

including pid 1. 

 

Figure 89 - Execution of two different containers from the same image 
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Figure 90 - Process isolation inside containers 

There are cases that containers need to share the host’s process namespace, 

specifically allowing processes within the container to see all of the processes on the 

system. For example, a container with debugging tools like strace or gdb, using them 

when debugging processes of the host within the container. This can be achieved with 

–pid host parameter where the host’s PID namespace is used inside the container. 

With the same parameter and the container name or id of another container, the 

current container can join second container’s PID namespace [41]. 

 

 

Figure 91 - Sharing PID namespace with the host 

 

4.3.7 NET Namespace 
 

The NET (Network) is the namespace that is responsible for network isolation. It 

provides a new independent network stack for all the processes within the 

namespace. That includes network interfaces, routing tables, iptables rules and an IP 

addresses. In order to achieve connectivity between containers as well as the host 

machine a virtual network bridge is used. A network bridge is a networking device that 

creates a single aggregate network from multiple communication networks or 

network segments. On the Docker host all processes need somehow to share access 

to physical network card.  
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In order to isolate the networking of containers, Docker allows to create a virtual 

network interface for each newly created container and it then connects all the virtual 

network interfaces to the host network adapter named docker0 [42]. 

 

 

 

Figure 92 - Virtual network interface inside Docker 

 

The two containers in this picture have their own eth0 network interface inside their 

network namespace. It is assigned to a corresponding virtual network 

interface veth0 and veth1 on the Docker host. The virtual network 

bridge docker0 connects the host network interface eth0 to all container network 

interfaces. 

 

Figure 93 - Host and containers network interfaces 

 

Docker provides the option to access the host namespace or another container’s 

network namespace, when a container is run, bypassing the network isolation 

provided by its interface. Thus, the container will have access to the host machines 

network interfaces. 

Providing containers access to the host namespace is sometimes required, such as for 

debugging tooling, but is regarded as bad practice. This is because it is breaking out of 
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the container security model which may introduce vulnerabilities. Instead, if it's 

required, a shared namespace can be used to provide access to only the namespaces 

the container requires. 

 

 

Figure 94 - Shared network namespace between docker and host 

 

 

4.3.8 IPC Namespace 
 

The IPC (inter-process communication) namespace is responsible for isolating objects 

that exchange data among processes like semaphores, message queues, and shared 

memory segments. Shared memory segments are used to accelerate inter-process 

communication at memory speed, rather than through pipes or through the network 

stack. Shared memory is commonly used by databases and custom-built performance 

applications for scientific computing and financial services industries [41].  The 

processes running in containers must be restricted so that they can access only 

through certain set of IPC resources and are disallowed to interfere with those in other 

containers and the host machine. If the IPC resource created by one container is 

consumed by another container, then the application running on the first container 

could fail [43]. Docker achieves IPC isolation by using the IPC namespaces. The 

processes in an IPC namespace cannot read or write the IPC resources in other IPC 

namespaces. Docker assigns an IPC namespace to each container, thus preventing the 

processes in a container from interfering with those in other containers [40]. 
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4.3.9 MNT Namespace 
 

Similar to the previous namespaces, MNT (mount) namespace isolates filesystems. It 

virtualizes parts of the filesystem tree. The Linux filesystem is organized as a tree and 

it has a root, typically referred to as /. In order to achieve isolation on a filesystem 

level, the namespace will map a junction in the filesystem tree to a virtual root inside 

that namespace. Browsing the filesystem inside that namespace, it does not allow you 

to go beyond your virtualized root [42].  

The following picture shows a visualization of a filesystem that contains multiple 

“virtual” filesystem roots inside the /drives/xx folders. 

 

Figure 95 - Container’s isolated filesystem from host 

4.3.10  UTS Namespace 
 

The UTS (UNIX Time-Sharing) namespace is named after the structure used to store 

information returned by the uname system call. In the context of containers, the UTS 

namespace feature allows each container to have separate hostname from the host 

machine [44]. The host (--uts=host) setting will result in the container using the same 

UTS namespace as the host. You may wish to share the UTS namespace with the host 

if you would like the hostname of the container to change as the hostname of the host 

changes. A more advanced use case would be changing the host’s hostname from a 

container [41]. 
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4.3.11  User Namespace 
 

The user namespace provides disassociation between the uid of the user inside the 

container and the uid that the docker daemon uses. Τhe best way to significantly 

reduce the probability of privilege-escalation attacks from within a container, is to 

configure the application to run as non-root. For the cases that running with lower 

privileges inside the container is not possible, re-mapping the root user (inside the 

container) to a less-privileged user on the Docker host, makes it a lot harder for a 

malicious actor to achieve escalation. Thus, the root on the container is not equivalent 

to the root on the host. The mapped user is assigned a range of UIDs which function 

within the namespace as normal UIDs from 0 to 65536 but have no privileges on the 

host machine itself. Finally, it is possible to share namespaces between the host and 

container and among other containers [45]. 

By default, the Docker Daemon runs as root user on the host. As a result of the 

Daemon running as root, any containers started will have the same security context 

as the host's root user. This has the side-effect that if files owned by the root user are 

accessible from the container, then can be modified by the running container. 

In the picture below we copy the touch binary and we create a touch.bak file. Then 

we mount the /bin into the alpine container and because Docker Daemon runs as root 

and the user inside the container is root, the process is allowed to delete the .bak file. 

 

 

Figure 96 - Container run as root is able to delete touch binary 

 

In the picture below we copy the touch binary like before and we create a touch.bak. 

Then we mount the /bin into the alpine container and even though Docker Daemon 

runs as root the process is disallowed to delete the .bak file. That is why because we 

started the container as a non-root user with a uid and group of 1000.  
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Figure 97 - Container run as non-root, is not able to delete touch binary 

If it is mandatory for a container to run as root, then the container is exposed to the 

previous example. That is the reason why user namespaces are needed in docker. 

We stop the docker service and modify the file /etc/docker/daemon.json like in the 

picture below. Then we start the service again. Now docker will no longer store files 

on disk as the root user. Instead, everything is processed as the mapped user. 

The Docker Root Dir defines where Docker is storing data for the mapped user. 

 

Figure 98 - Change the Docker daemon to run as non-root 

After the change in the json file, the user inside the container will have root privileges, 

if a non-privileged user is not defined with --user option of docker. However, the user 

will not be able to modify anything running on the host. We notice that the user has 

no permission on deleting the .bak file [47]. 

 

Figure 99 - Container cannot modify files on the host even though the user inside is root 
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4.3.12  Control groups 
  

Controls groups or cgroups is a feature of the Linux kernel that controls how much 

resources a process can use. In the absence of restrictions systems can be easily 

overwhelmed by heavy and asymmetric utilization. Cgroups usage can deliver a 

guaranteed Quality of Service to applications by ensuring they have enough resources 

to operate. It's also possible to protect the system from potentially malicious users or 

applications aiming to perform Denial of Service (DoS) applications via resource 

exhaustion. This can also help limit applications from memory leaks or other 

programming bugs by defining upper boundaries [46]. 

Containers rely on cgroups which not only track groups of processes, but also expose 

metrics about CPU, memory, block I/O usage and network or combinations of these. 

Cgroups are exposed through a pseudo-filesystem. In most cases, the filesystem is 

located under /sys/fs/cgroup. Under that directory, there are multiple sub-directories 

that correspond to a different cgroup hierarchy [48]. 

 

Figure 100  - Different options for cgroups depending on the resources 

 

In the picture below we define a container that has a memory limit of 100mb. In 

memory limits the maximum value is defined. 

 

Figure 101 - Memory limitation on Docker with the use of cgroups 

 

CPU limits are based on shares. These shares are a weight between how much 

processing time one process should get compared to another. If a CPU is idle, then the 

process will use all the available resources. If a second process requires the CPU then 

the available CPU time will be shared based on the weighting. 

The picture below shows that if a container defines a share of 768, while another 

defines a share of 256, the first container will have 75% share with the other having 

25% of the available total share. These numbers are due to the weighting approach 
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for CPU sharing instead of a fixed capacity. A process can have 100% of the share, no 

matter defined weight, if no other processes is running [46]. 

 

Figure 102 - CPU allocation with the use of cgroups 

 

4.4 Infrastructure as Code Security - PSPs 
 

Pod Security Policies (PSP) are cluster-wide resources that control sensitive aspects of 

pod specification. They are designed to limit what can be run on a Kubernetes cluster. 

Some of the things that possibly need to be controlled are pods that have privileged 

access, pods with access to the host network or pods that have access to the host 

processes. A container isn’t as isolated as a VM by default so taking the necessary 

precautions ensures that containers are not affecting the node’s health and security. 

Pod Security Policies (PSP) are an optional admission controller added to a cluster. 

These admission controllers are an additional check that determines if a pod should 

be admitted to the cluster or not. That additional check comes after both 

authentication and authorization have been checked for the api call. A pod security 

policy uses the admission controller to check if the scheduled pod meets the extra 

layer of security before being added to the cluster [34]. 

PSPs are using many of the features that Docker is using for its own security and are 

based on Linux kernel as well as options of the Kubernetes platform that might be a 

potential threat for an infrastructure.  
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Figure 103 - All available options for Pod Security Polices 

 

In the picture above there is a list with all the available options for pod security policies from 

the Kubernetes manual. 

Below there is a picture of a recommended restricted policy by the Kubernetes manual. Next 

all the parts that this policy consists of will be analyzed.  

 

 

Figure 104 - Yaml configuration of PSP 
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4.4.1 Privileged 
With the use of privileged flag, it is determined if any container in a pod can enable 

privileged mode. By default, a container is allowed to access only the necessary 

capabilities, but a privileged container is given access to all the capabilities on the host 

which depending on the capability can be a potential dangerous for escaping the 

container and gaining access on the host. This allows the container nearly the same 

access as processes running on the host. This can be useful for containers that want 

to use Linux capabilities like manipulating the network stack and accessing devices for 

specific purposes.  

 

 

 

4.4.2 Host namespaces 
HostPID  

This option controls whether the pod containers can share the host process ID 

namespace. Because the use of this option paired with ptrace can be used to escalate 

privileges outside of the container, it is forbidden by default. 

HostIPC  

This option controls whether the pod containers can share the host IPC namespace. 

HostNetwork 

This option controls whether the pod may use the node network namespace. 

Changing the flag to true gives the pod, access to the loopback device, services 

listening on localhost, and could be used to monitor on network activity of other pods 

on the same node. 

 

4.4.3 Volumes and file systems 
Volumes 

This option provides a whitelist of allowed volume types. The allowable values 

correspond to the volume sources that are defined when creating a volume. A 

recommendation of allowed volumes focusing on security are: 

 

configMap 
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The configMap resource provides a way to inject configuration data into Pods. The 

data stored in a configMap object can be referenced in a volume of 

type configMap and then consumed by containerized applications running in a Pod. 

When referencing a configMap object, you can simply provide its name in the volume 

to reference it. You can also customize the path to use for a specific entry in the 

configMap. 

downwardAPI 

A downwardAPI volume is used to make downward API data available to applications. 

It mounts a directory and writes the requested data in plain text files. 

emptyDir 

It is a type of volume that is created when a Pod is first assigned to a Node. It remains 

active as long as the Pod is running on that node. The volume is initially empty and the 

containers in the pod can read and write the files in the emptyDir volume. Once the 

Pod is removed from the node, the data in the emptyDir is erased. 

persistentVolumeClaim 

A persistentVolumeClaim volume is used to mount a PersistentVolume into a pod.  

secret 

A secret volume is used to pass sensitive information, such as passwords, to pods. 

 

projected 

A projected volume maps several existing volume sources into the same directory. 

The types of volume sources that can be projected are secrets, downwardAPIs, 

configMaps, serviceAccountTokens. 

 

We notice that PersistentVolumes and HostPaths are not part of the list even though 

they are considered to be volume types that are commonly used. PersistentVolumes 

(PV) are a way for users to claim permanent storage without knowing the details of 

the storage layer or particular cloud environment. Each cloud provider has their own 

volume type for permanent storage like awsElasticBlockStore, azureDisk or 

gcePersistentDisk. Also, there more traditional types of volumes for permanent 

storage like iSCSi, FC (Fiber Channel), or NFS. PVs are typically created at the 

integration stage of the cluster usually by the administrator so that they can be 

claimed by a developer at a later time with the use of a persistentVolumeClaim (PVC). 

This is the reason PersistentVolume is not included in the allowed volume because 

only trusted users should have permission to create PV objects. 

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://kubernetes.io/docs/concepts/storage/volumes/#downwardapi
https://kubernetes.io/docs/concepts/storage/volumes/#configmap
https://kubernetes.io/docs/concepts/storage/volumes/#awselasticblockstore
https://kubernetes.io/docs/concepts/storage/volumes/#azuredisk
https://kubernetes.io/docs/concepts/storage/volumes/#gcepersistentdisk
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Furthermore, HostPath volumes are also not allowed because without any limitations, 

a malicious actor can mount any path on the host like the root path / and act 

maliciously: escalate privileges, reading data from other containers, and abusing the 

credentials of system services, such as Kubelet or creating docker  . 

On the other hand, there are a number of cases that require a particular host path or 

a number of host paths to be mounted. AllowedHostPaths option gives the solution 

to the problem by whitelisting specific host paths to be used by hostPath volumes. 

This is defined as a list of objects with a single pathPrefix field, which allows hostPath 

volumes to mount a path that begins with an allowed prefix, and a readOnly field 

indicating it must be mounted read-only. An empty list means there is no restriction 

on host paths used. 

 

 
Figure 105 - Yaml configuration of allowed Host paths 

 

Writeable hostPath directory volumes allow containers to write to the filesystem in 

ways that let them move outside the pathPrefix in the host filesystem. The option 

readOnly: true, must be used on all allowedHostPaths to effectively limit access to the 

specified pathPrefix. 

 

 

4.4.4 FSGroup  
This option controls the ID group applied to mounted volumes and any files created in 

those volumes. It is used alongside with the option rule that variates usually between 

MustRunAs and RunAsAny where the first one is strict about the range of the group 

while the second allows any FsGroup ID to be specified. 

 

 

4.4.5 ReadOnlyRootFilesystem  
This option controls whether a container will be able to write into its own root 

filesystem. A unchangeable root filesystem prevents applications from writing to their 

local disk. This is desirable in the event of an intrusion as the attacker will not be able 

to tamper with the filesystem or write foreign executables to disk. However, if there 

are runtimes available in the container then this is not sufficient to prevent code 
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execution. In case there is a requirement for temporary files or local caching an 

emptyDir volume can be used 

 

 

 

4.4.6 Users and groups 
Users and groups are controlled by Pod Security Policies given the options of 

RunAsUser for controlling the user ID the containers are run with, RunAsGroup for the 

control of the primary group ID the containers are run with as well as 

SupplementalGroups to control which group IDs containers add. All of the previous 

options provide the stricter choice of MustRunAs that accepts a mandatory range of 

ids and the less strict choice of RunAsAny that allows any user, group or supplement 

group id respectively, to be specified. Finally, RunAsUser also includes the choice 

MustRunAsNonRoot which requires that the pod be submitted with a non-zero id. This 

option provides more flexibility.  

 

 

4.4.7 AllowPrivilegeEscalation 
This option controls whether or not a user is allowed to set the security context of a 

container to allowPrivilegeEscalation=true. This option is allowed by default. Setting 

it to false ensures that no child process of a container can gain more privileges than 

its parent. 

 

4.4.8 RequiredDropCapabilities 
This option sets the capabilities that must not be allowed to containers. Capabilities 

declared in RequiredDropCapabilities must not be included in AllowedCapabilities. 

The ALL option means that all capabilities are dropped. In the use of Allowed 

capabilities, the option * declares all capabilities. The default set of capabilities are 

implicitly allowed.  

 

4.4.9 SELinux - AppArmor 
SELinux in Pod Security Policies comes with two options MustRunAs and RunAsAny. 

The first option requires seLinuxOptions to be loaded in the hosts of the Kubernetes 

cluster while the second option does not require any seLinuxOptions to be specified. 

AppArmor is controlled via annotations on the PodSecurityPolicy until future 

versions. AppArmor also requires the profile to be loaded on the underline hosts 

before it can be enforced inside the container. With the use of runtime/default, the 

default container runtime profile is used. 
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4.4.10  Seccomp 
The use of seccomp profiles in pods can be controlled via annotations on the 

PodSecurityPolicy. With the use of runtime/default, the default container runtime 

profile is used [34]. 

 

 

Kubernetes, because of its infrastructure as code capability has the advantage of being 

versioned and committed to a code repository, like git, as well as deploy and identical 

infrastructure elsewhere, like on a different cloud provider with ease. One the other 

hand, like every programming language, that code might be vulnerable to attacks. 

PSPs are basically an audit tool for IAC (Infrastructure as Code). The 2020 Cloud Threat 

Report released by Unit 42 (the threat intelligence unit of cybersecurity provider Palo 

Alto Networks) identified around 200,000 potential vulnerabilities in infrastructure as 

code templates [66]. 

 

  

4.5 Kubernetes Engine Security 
 

After network, image and code defenses, Kubernetes engine must also be secured and 

configured correctly to prevent malicious acts. The Center for Internet Security (CIS) 

provides a number of guidelines and benchmark tests for best practices in securing a 

number of operating systems, application and platforms. So, it has released a 

benchmark that suggests a number of recommendations for a Kubernetes 

infrastructure to increase security [67]. 

Kube-bench [68] is an opensource tool, written in Go, that is distributed as a container 

and is based on the security benchmark of CIS for Kubernetes. It can be executed on 

each of the nodes to establish if the infrastructure meets the best practice 

recommendations from the CIS community. After the analysis is finished it presents 

information about whether each test passes or fails as well as advice on how to 

remediate any issues that may have been detected. This information might, for 

example, include recommendations to change or remove an insecure configuration 

setting on one of the Kubernetes executables, make the permissions on a config file 

more restrictive or to disable cryptographic algorithms that are less secure than 

others. Kube-bench can produce JSON-format output, to make it easier to integrate 

with automated tools. 

https://en.wikipedia.org/wiki/Palo_Alto_Networks
https://en.wikipedia.org/wiki/Palo_Alto_Networks
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In the picture below we can see the command that executes kube-bench, along with 

its outcome, that has a list of recommendations that either comply or not. In the 

second picture appears to be a number of remediation steps that correspond to the 

findings of the first picture. 

 
Figure 106 - Execution of Kube-bench with the use of Docker along with its results 

 

 
Figure 107 - Remediation steps on the findings of kube-bench  
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5. Conclusion 
 

A Kubernetes environment increases the number of layers involved, compared to a 
typical infrastructure. This addition expands the layers that require protection.  From 
top to bottom, under the traditional application layer an additional code layer is 
added. This code layer refers to infrastructure as a code (IAC) that describes the type 
and form of the infrastructure to be created. Like on every programming language IAC 
must be audited so that there are no vulnerable pieces of the code that can be used 
as entry points from external attackers. One layer down, is the layer of the container 
runtime. Container runtime corresponds to a physical or virtual machine. Every 
container located inside a pod must be free of known vulnerabilities and downloaded 
from a trusted registry which is scanned and updated on a regular basis. The third 
layer concerns the network. The equivalent role of firewalls here is played by network 
policies. Network policies are used to block illegitimate layer 3 traffic. In addition to 
network polices, service meshes are able to protect layer 7 traffic and due to their 
encryption capabilities on the traffic between pods, are capable of preventing 
eavesdropping attacks. Finally, Kubernetes as a platform must be constantly scanned 
for misconfigurations and possible entry points to reduce the attack surface of 
unethical parties. 
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