

UNIVERSITY OF PIRAEUS

DEPARTMENT OF DIGITAL SYSTEMS

MSC DIGITAL SYSTEMS SECURITY

Attack methods and defenses on Kubernetes

Mytilinakis Panagiotis

MTE 1822

Supervisor

Christoforos Dadoyan

Piraeus, June 2020

2

3

Abstract

The increasing rate of adoption of containers and container orchestration in cloud

computing and on premise arises a number of questions about their security.

Kubernetes combined with Docker is by far the most frequently adopted solution for

implementing containerized workloads. Kubernetes is divided on two planes the

control plane and the data plane. The control plane includes the components that are

required for Kubernetes to function and manage the cluster state while the data plane

the components that are responsible for the actual workloads. Furthermore,

Kubernetes includes several objects that are necessary for describing the cluster’s

desired state. In this thesis, specific attacks were conducted into a Kubernetes cluster,

that can be divided into four categories. (a) Attacks on a Kubernetes engine and

components. (b) Attacks on Kubernetes network layer where MITM and DNS spoofing

attacks are possible under circumstances. (c) Attacks that concern the containers

inside a pod and how an attacker can inject malicious code and upload it, on a

container registry or a container with one or more vulnerabilities that can be

exploited. (d) Finally, attacks that are bases on Infrastructure as code vulnerabilities

that a malicious actor can take advantage of. Correspondingly to the attacks a number

of defenses where recommended as countermeasures depending on the layer that

each of the attacks can take place. For the attacks that concern the Kubernetes engine,

kube-bench was recommended as a tool that detects misconfigurations and entry

points that an attacker can take advantage of. In order for network layer to be

protected, network policies are taking the place of a layer 3 firewall compared to a

typical infrastructure in addition with the use of service meshes that are operating in

layer 7. Containers inside pods can be scanned before being upload on a registry. On

this thesis Clair scanner was used for his purpose. Eventually, Pod Security policies

were used to block vulnerable code from being deployed.

4

Περίληψη

Ο αυξανόμενος ρυθμός υιοθέτησης των containers και των container orchestration

εργαλείων στο cloud και στις on premises υποδομές εγείρει μια σειρά ερωτημάτων

σχετικά με την ασφάλειά τους. Το Kubernetes σε συνδυασμό με το Docker είναι

μακράν, η πιο συχνά χρησιμοποιούμενη λύση για την εφαρμογή φορτίων εργασίας

σε containers. Το Kubernetes χωρίζεται σε δύο επίπεδα το επίπεδο ελέγχου και το

επίπεδο δεδομένων. Το επίπεδο ελέγχου περιλαμβάνει τα στοιχεία που απαιτούνται

για τη λειτουργία και τη διαχείριση της κατάστασης ενός Kubernetes cluster, ενώ το

επίπεδο δεδομένων περιλαμβάνει τα στοιχεία που είναι υπεύθυνα για τα

πραγματικά φορτία εργασίας. Επιπλέον, το Kubernetes περιλαμβάνει πολλά

αντικείμενα που είναι απαραίτητα για την περιγραφή της επιθυμητής κατάστασης

ενός cluster. Σε αυτή τη διπλωματική εργασία, πραγματοποιήθηκαν συγκεκριμένες

επιθέσεις σε ένα Kubernetes cluster, οι οποίες μπορούν να χωριστούν σε τέσσερις

κατηγορίες. (α) Επιθέσεις στη μηχανή και τα επιμέρους τμήματα του Kubernetes. (β)

Επιθέσεις στο επίπεδο δικτύου του Kubernetes όπου υπό συνθήκες, είναι δυνατές οι

επιθέσεις MITM και DNS spoofing. (γ) Επιθέσεις που αφορούν τα containers μέσα σε

ένα pod και πώς ένας εισβολέας μπορεί να εισάγει κακόβουλο κώδικα και να τον

ανεβάσει, σε μια container registry καθώς και containers με μία ή περισσότερες

ευπάθειες που μπορούν να εκμεταλλευτούν. (δ) Τέλος, επιθέσεις που βασίζονται σε

ευπάθειες στον κώδικα υποδομής (infrastructure as code) και μπορεί να

εκμεταλλευτεί ένας επιτιθέμενος. Αντίστοιχα, με τις επιθέσεις, μια σειρά από άμυνες

συστάθηκαν ως αντίμετρα, με γνώμονα το επίπεδο στο οποίο μπορεί να

πραγματοποιηθεί κάθε μία από τις επιθέσεις. Για τις επιθέσεις που αφορούν τη

μηχανή του Kubernetes, συνιστάται το kube-bench ως ένα εργαλείο που εντοπίζει

λανθασμένες ρυθμίσεις και σημεία εισόδου, τα οποία μπορεί να εκμεταλλευτεί ένας

εισβολέας. Προκειμένου να προστατευτεί το επίπεδο του δικτύου, η χρήση των

network policies υποκαθιστά ένα τείχος προστασίας επιπέδου 3 του OSI σε σύγκριση

με μια τυπική υποδομή, συμπληρωματικά με τη χρήση ενός service mesh που

λειτουργεί στο επίπεδο 7. Τα containers μέσα σε ένα pod μπορούν να σαρωθούν

προτού μεταφορτωθούν σε μια registry. Σε αυτή τη διπλωματική εργασία

χρησιμοποιήθηκε ο σαρωτής Clair για το σκοπό αυτό. Τέλος, προτάθηκαν οι Pod

Security policies για να αποκλείσουν την ανάπτυξη ευάλωτου κώδικα.

5

Table of Contents

Abstract .. 3

Περίληψη ... 4

Table of Contents ... 5

List of figures .. 8

1. Introduction .. 11

1.1 Hypervisors ... 11

1.2 Containers ... 12

1.3 Docker ... 13

1.4 Container Orchestration ... 14

1.5 Kubernetes .. 15

1.6 Objective ... 15

2. Kubernetes Overview ... 16

2.1 Master node - Control Plane ... 16

2.1.1 Kube-apiserver .. 17

2.1.2 Kube-scheduler ... 17

2.1.3 Kube-controller-manager .. 17

2.1.4 Etcd .. 17

2.1.5 Cloud-controller-manager ... 17

2.2 Worker nodes - Data plane ... 18

2.2.1 Kubelet .. 18

2.2.2 Kube-proxy .. 18

2.2.3 Container Runtime .. 19

2.2.4 Pods ... 19

2.4.1 A Record .. 21

2.4.2 CNAME .. 21

2.4.3 SRV Records ... 21

2.5 Kubernetes Objects ... 22

2.5.1 Namespaces .. 23

2.5.2 ReplicaSet .. 24

2.5.3 Deployment ... 25

6

2.5.4 Service ... 27

3 Kubernetes architecture – Attack vectors .. 30

3.1 Attack on any Node ... 30

3.2 Attack on the Kubernetes API server .. 30

3.3 Intercept Modify Inject Control plane .. 36

3.4 Attack to Kubelet API .. 36

3.5 Attack to the container runtime ... 37

3.6 Exploit of vulnerable image .. 38

3.7 Backdooring existing Docker images .. 40

3.8 Internal attackers escape to host ... 41

3.9 Attack a container with privileged flag ... 43

3.10 Privilege escalation using volume mounts and local registry 45

3.11 Docker.sock ... 47

3.12 Attack to etcd .. 48

3.13 Attack on Kubernetes Dashboard ... 49

3.14 Bastion Model ... 51

3.15 Secrets ... 51

3.16 Man in the middle - DNS spoofing .. 54

4. Defenses ... 58

4.1 Network Security .. 58

4.1.1 Network Policies .. 58

4.1.2 DNS and Network policies ... 60

4.1.3 Service Mesh ... 62

4.2 Image Security... 65

4.3 Docker Security ... 67

4.3.1 Apparmor .. 67

4.3.2 SELinux... 69

4.3.3 Seccomp .. 70

4.3.4 Capabilities .. 71

4.3.5 Namespaces .. 72

4.3.6 PID Namespace ... 72

4.3.7 NET Namespace... 73

4.3.8 IPC Namespace .. 75

7

4.3.9 MNT Namespace ... 76

4.3.10 UTS Namespace .. 76

4.3.11 User Namespace ... 77

4.3.12 Control groups .. 79

4.4 Infrastructure as Code Security - PSPs .. 80

4.4.1 Privileged ... 82

4.4.2 Host namespaces .. 82

4.4.3 Volumes and file systems .. 82

4.4.4 FSGroup ... 84

4.4.5 ReadOnlyRootFilesystem .. 84

4.4.6 Users and groups ... 85

4.4.7 AllowPrivilegeEscalation ... 85

4.4.8 RequiredDropCapabilities ... 85

4.4.9 SELinux - AppArmor ... 85

4.4.10 Seccomp ... 86

4.5 Kubernetes Engine Security .. 86

5. Conclusion .. 88

6. References .. 89

8

List of figures

Figure 1 - Comparison of the layers of Type-1 and Type-2 Virtualization. 12

Figure 2 - An overview of the Container architecture. .. 13

Figure 3 - Comparison of the layers between a Virtual machine and a Container 13

Figure 4 - A stack infrastructure containing Kubernetes ... 15

Figure 5 - All Pods of the control plane and Data plane along with CNI and DNS pods

with the use of Kubectl tool ... 18

Figure 6 - Kube proxy pod of the Data plane. A view from node1 19

Figure 7 - The Kubelet process on Node1 .. 19

Figure 8 - An overview of the Kubernetes Architecture. ... 22

Figure 9 - A view from Master showing the pods that were previously mentioned. .. 22

Figure 10 - Create a Kubernetes namespace ... 23

Figure 11 - Pod creation using yaml configuration file .. 24

Figure 12 - ReplicaSet creation configuration file ... 25

Figure 13 - Deployment creation configuration file .. 26

Figure 14 - Executing Kubernetes Rolling update .. 27

Figure 15 - NodePort diagram and corresponding code ... 28

Figure 16 - Multiple Kubernetes nodes and exposed application with the use of

NodePort .. 28

Figure 17 - Kubernetes ClusterIP diagram ... 29

Figure 18 - Kubernetes LoadBalancer diagram .. 29

Figure 19 - Kubernetes stack divided to its components .. 30

Figure 20 - Utilizing Curl for checking Kubernetes insecure configuration 31

Figure 21 - Utilizing Curl for checking Kubernetes insecure configuration. -k

parameter is for https .. 32

Figure 22 - Utilizing Curl for checking Kubernetes insecure configuration 32

Figure 23 - Kubernetes 3A's security procedure before executing a request received

from the API ... 33

Figure 24 - Example of an API request with a bearer token and how it is parsed 34

Figure 25 - Example of a role in yaml ... 35

Figure 26 - Example of a RoleBinding in yaml .. 35

Figure 27 - Checking the kubelet API with the use of curl ... 37

Figure 28 - Checking the kubelet API with the use of curl with a response from the

API .. 37

Figure 29 - Vulnerable docker container form dockerhub .. 38

Figure 30 - Docker run command and port exposure to the host 39

Figure 31 - The default web page of the vulnerable docker with shellshock 39

Figure 32 - Successful dump of the /etc/passwd ... 39

Figure 33 - Docker pull and save of ubuntu image .. 40

Figure 34 - Backdoor injection with the use of Dockerscan .. 40

Figure 35 - Execusion of the Docker with the backdoor .. 40

9

Figure 36 - Successful reverse shell from backdoored container 41

Figure 37 - Yaml configuration of a not-privileged pod ... 42

Figure 38 - Yaml configuration of a privileged pod ... 42

Figure 39 - List of the capabilities of a pod with the privileged flag 43

Figure 40 - List of the capabilities of a pod without the privileged flag 43

Figure 41 - kernel module code for printing messages when is loaded and when it

exits. ... 43

Figure 42- Compilation of kernel module .. 44

Figure 43 - List of the exported files after compilation ... 44

Figure 44 - base64 encoding of kernel module ... 44

Figure 45 - base64 decoding of the kernel module inside the container 44

Figure 46 - Commands to load and unload a kernel module inside a privileged

container .. 44

Figure 47 - Kernel module logs inside /var/log/kern.log after insmod and rmmod are

executed ... 44

Figure 48 - lsmod to view the module loaded in the host ... 45

Figure 49 - A Dockerfile, a program and a bash script are used to conduct the attack

.. 45

Figure 50 - Docker registry running on port 5000 ... 46

Figure 51 - The build process of the malicious image ... 46

Figure 52 - Image being tagged and pushed to the registry .. 46

Figure 53 - Yaml configuration of malicious pod ... 46

Figure 54 - Shell binary execution leads to gaining root priviledges 47

Figure 55 - Yaml configuration of a pod with docker.sock mounted 47

Figure 56 - Check if docker.sock is mounted to the container 48

Figure 57 - Docker installation and spin up of a new container in the host 48

Figure 58 - Validation that the host's root directory is mounted on the new container

.. 48

Figure 59 - Credentials must be base64 encoded ... 52

Figure 60 - Yaml configuration of a secret ... 52

Figure 61 - Secret creation ... 53

Figure 62 - Validation tha the secret has been created successfully 53

Figure 63 - Yaml configuration of a pod with a mounted secret 53

Figure 64 - A compromised pod that revels the mounted secret 53

Figure 65 - Deployed pods ... 54

Figure 66 - Ip address of the malicious website .. 55

Figure 67 - Legitimate request to example.com .. 55

Figure 68 - DNS spoofing script .. 56

Figure 69 - DNS spoofing attack was successful .. 56

Figure 70 - Diagram of the DNS spoofing attack.. 56

Figure 71 - Network policies diagram .. 58

Figure 72 - Yaml configuration of a network policy ... 59

Figure 73 - Yaml configuration of a network policy allowing DNS 60

Figure 74 - Yaml configuration of a network policy to deny all traffic 61

10

Figure 75 - Yaml configuration of a network policy to allow all traffic 61

Figure 76 - Istio Overview .. 63

Figure 77 - Istio components ... 64

Figure 78 - Execution of Clair database ... 65

Figure 79 -Execution of Clair application ... 66

Figure 80 - Docker pull of ubuntu 12.04 .. 66

Figure 81 - Outcome of the Clair scanner .. 66

Figure 82 - AppArmor profile 1/2 .. 68

Figure 83 - AppArmor profile 2/2 .. 68

Figure 84 - Loading AppArmor profile when the container is executed 68

Figure 85 - Creating a new file in specific paths is blocked by AppArmor 69

Figure 86 - Seccomp profile ... 70

Figure 87 - Chmod is not permitted due to seccomp profile 71

Figure 88 - Capabilities allowed by default in Docker ... 71

Figure 89 - Execution of two different containers from the same image 72

Figure 90 - Process isolation inside containers .. 73

Figure 91 - Sharing PID namespace with the host ... 73

Figure 92 - Virtual network interface inside Docker .. 74

Figure 93 - Host and containers network interfaces ... 74

Figure 94 - Shared network namespace between docker and host 75

Figure 95 - Container’s isolated filesystem from host ... 76

Figure 96 - Container run as root is able to delete touch binary 77

Figure 97 - Container run as non-root, is not able to delete touch binary 78

Figure 98 - Change the Docker daemon to run as non-root .. 78

Figure 99 - Container cannot modify files on the host even though the user inside is

root ... 78

Figure 100 - Different options for cgroups depending on the resources 79

Figure 101 - Memory limitation on Docker with the use of cgroups 79

Figure 102 - CPU allocation with the use of cgroups ... 80

Figure 103 - All available options for Pod Security Polices .. 81

Figure 104 - Yaml configuration of PSP .. 81

Figure 105 - Yaml configuration of allowed Host paths .. 84

Figure 106 - Execution of Kube-bench with the use of Docker along with its results . 87

Figure 107 - Remediation steps on the findings of kube-bench 87

file:///C:/Users/Panmyt-Laptop/Desktop/Thesis%20(Ανακτημένο).docx%23_Toc40822869
file:///C:/Users/Panmyt-Laptop/Desktop/Thesis%20(Ανακτημένο).docx%23_Toc40822870

11

1. Introduction

For more than a decade migrating workloads to hypervisor-based virtualized

environments was a one-way street for enterprises. This technology allows the slicing

of a host computer into multiple (the number is depending on the resources of the

host) isolated virtual environments. These individual environments are able to

operate as an ordinary physical server providing the same or sometimes more

features.

However, lately the scenery is changing as a new type of virtualization is gaining

ground that exists for many years but until recently it was unusual for private cloud.

With the increase of cloud endorsement, the adoption of methodologies like Agile,

Kanban and DevOps processes, Enterprises are now moving towards containerized

technologies and the philosophy of microservices for their workloads because of the

plethora of advantages they offer. From better uptime and faster deployments to

better utilization of the hardware and lower costs are only a few of the strong points

of such technologies mandating enterprises to the path of OS virtualization and

containers. Although, containers cannot easily exist in a production environment

without orchestration. This is where Kubernetes comes to the rescue.

According to a recent Forbes article[64], container adoption is growing rapidly in the

enterprise and is much faster than expected. Also, according to a recent Gartner

report, “By 2023, more than 70% of global organizations will be running more than

two containerized applications in production, up from less than 20% in 2019 [65].

On the other hand, this increasing rate of adaptation arises a number of questions

about the security of containers and container orchestrators environments.

1.1 Hypervisors

In general terms there are two types of virtualization. The first one, which is the most

commonly used and most adopted by enterprises is the hypervisor-based

virtualization. A hypervisor (or virtual machine monitor, VMM) is a computer

software, firmware or hardware that creates and runs virtual machines.

The hypervisor presents the guest operating systems with a virtual operating platform

and manages the execution of the guest operating systems. Multiple instances of a

variety of operating systems may share the virtualized hardware resources: for

example, Linux, Windows, and macOS instances can all run on a single physical x86

machine.[1]

https://www.forbes.com/sites/janakirammsv/2018/12/20/5-modern-infrastructure-trends-to-watch-out-for-in-2019/#2c66c3a017db
https://urldefense.proofpoint.com/v2/url?u=http-3A__link01.gartner.com_track-3Ftype-3Dclick-26enid-3DZWFzPTEmYW1wO21zaWQ9MSZhbXA7YXVpZD00MDU4NjgmYW1wO21haWxpbmdpZD0xMTUzNDcmYW1wO21lc3NhZ2VpZD0xNzgyNSZhbXA7ZGF0YWJhc2VpZD0xNTA5NjMzODY5JmFtcDtzZXJpYWw9MTY3ODMxMzMmYW1wO2VtYWlsaWQ9c2FuZHJhX2xlb25nQGhwZS5jb20mYW1wO3VzZXJpZD0xMDMyMDU2MDoxNTY1MDE0MTA1NjgzJmFtcDt0YXJnZXRpZD0mYW1wO21uPTUxNTU3MzEmYW1wO2ZsPSZhbXA7bXZpZD0mYW1wO2V4dHJhPSZhbXA7JmFtcDsmYW1wOw-3D-3D-26-26-262287-26-26-26https-3A__www.gartner.com_document_3955920-3Fref-3DTrackDBDailyEmail-26refval-3D1565014105683-26utm-5Fsource-3DGartnerTrack-26utm-5Fmedium-3Demail-26utm-5Fcampaign-3DTrackDashboard-26utm-5Fcontent-3DTSDaily&d=DwMFaQ&c=C5b8zRQO1miGmBeVZ2LFWg&r=whklzP3yt-Tx6O8xWZZmdUcN5qUwmc_qTPvexBB18OA&m=tXi3eoSgcb4uPeA1vrBAbRetAwg-4Iu331B3RWnoV-8&s=ByL3QQtZaOgzfFBRjW-OnQLUt7XXX_gzhNZ8W2djLyo&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__link01.gartner.com_track-3Ftype-3Dclick-26enid-3DZWFzPTEmYW1wO21zaWQ9MSZhbXA7YXVpZD00MDU4NjgmYW1wO21haWxpbmdpZD0xMTUzNDcmYW1wO21lc3NhZ2VpZD0xNzgyNSZhbXA7ZGF0YWJhc2VpZD0xNTA5NjMzODY5JmFtcDtzZXJpYWw9MTY3ODMxMzMmYW1wO2VtYWlsaWQ9c2FuZHJhX2xlb25nQGhwZS5jb20mYW1wO3VzZXJpZD0xMDMyMDU2MDoxNTY1MDE0MTA1NjgzJmFtcDt0YXJnZXRpZD0mYW1wO21uPTUxNTU3MzEmYW1wO2ZsPSZhbXA7bXZpZD0mYW1wO2V4dHJhPSZhbXA7JmFtcDsmYW1wOw-3D-3D-26-26-262287-26-26-26https-3A__www.gartner.com_document_3955920-3Fref-3DTrackDBDailyEmail-26refval-3D1565014105683-26utm-5Fsource-3DGartnerTrack-26utm-5Fmedium-3Demail-26utm-5Fcampaign-3DTrackDashboard-26utm-5Fcontent-3DTSDaily&d=DwMFaQ&c=C5b8zRQO1miGmBeVZ2LFWg&r=whklzP3yt-Tx6O8xWZZmdUcN5qUwmc_qTPvexBB18OA&m=tXi3eoSgcb4uPeA1vrBAbRetAwg-4Iu331B3RWnoV-8&s=ByL3QQtZaOgzfFBRjW-OnQLUt7XXX_gzhNZ8W2djLyo&e=
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Firmware
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Platform_virtualization
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/X86

12

There are two types of hypervisors:

Type 1 Hypervisor: Bare-metal hypervisors

These hypervisors run directly on the host's hardware to control the hardware and to

manage guest operating systems.

Type 2 Hypervisor: Hosted hypervisors

These hypervisors run on a conventional operating system (OS) just as other computer

programs do. A guest operating system runs as a process on the host. Type-2

hypervisors abstract guest operating systems from the host operating system

Figure 1 - Comparison of the layers of Type-1 and Type-2 Virtualization.

The second type of virtualization is called (OS) virtualization. With this type of

virtualization, a single OS kernel natively allows secure sharing of resources and a

computer can run several OS instances. The guest operating systems must have the

same kernel as the host. For example, different Linux distributions. OS virtualization

is commonly referred to as “containers”.

1.2 Containers

A container is a standard unit of software that packages up code and all its

dependencies, so the application runs quickly and reliably from one computing

environment to another.[2] This software usually runs in one process, but it can run

on more if it needs to and those processes are isolated from the rest of the system.

All the files necessary to run them are provided from a distinct image, meaning that

Linux containers are portable and consistent as they move from development, to

13

testing, and finally to production. This makes them much quicker than development

pipelines that rely on replicating traditional testing environments.[3]

Figure 2 - An overview of the Container architecture.

As it can be seen in the image above a container sits on top of a container engine

which runs on the host operating system. The kernel of the underlying host is shared

by all the containers. The host operating system can be a virtual machine or a physical

computer. This configuration allows you to run multiple logically isolated apps and

services efficiently. Containers take up less space than virtual machines. Usually their

size is some MBs There are several engines that can achieve containerization with the

most commonly used today to be Docker. In the image below we can see a comparison

between virtual machines and containers

Figure 3 - Comparison of the layers between a Virtual machine and a Container

1.3 Docker

Docker is an open source tool designed to make it easier to create, deploy, and run

applications by using containers.[4] Even though container technologies have existed

for several years (LXC containers), docker, a relatively new technology (since 2013) has

https://github.com/docker/docker

14

managed to become one of the most successful providers due to the new

characteristics it presents.

It consists of a Daemon that listens for requests from the API and manages containers

images networking and volumes, a Docker image that it is built from a set of

instructions written in a Dockerfile, and a Docker registry that the daemon uses to pull

the image from.[5]

Docker has a number of advantages like rapid application deployment because

containers include the minimal requirements for runtime, portability across machines

due to the packaging into a single container of all the dependencies that the

application needs and making it possible to be moved to another machine that runs

docker and be executed without compatibility issues, version control and component

reuse because successive versions of a container are tracked and a rollback to a

previous version can be done easily and quickly. Also, a remote registry can be shared

with others, so a close or an exact container can be easily found for a particular

requirement because someone has already created it. Finally, with docker there is a

lightweight footprint and a minimal overhead making it easy and quick to deliver and

deploy an application.[5]

Docker is very good at managing single containers. On the other hand, todays

applications can utilize hundreds or even thousands of containers which may be or

may not be interconnected pieces. The need to successfully manage sizeable

applications consisting of numerous segments, lead to container orchestration tools.

1.4 Container Orchestration

Container orchestration automates the deployment, management, scaling, and

networking of containers. Enterprises that need to deploy and manage hundreds or

thousands of containers and hosts can benefit from container orchestration. It can be

used in any environment where containers are used. It can aid in deploying the same

application across different environments without needing to redesign it.[6] There are

a few container orchestrator tools out there like Docker Swarm or Apache Mesos but

Kubernetes is the tool which is by far the one with the highest adoption.

https://www.redhat.com/en/topics/containers/whats-a-linux-container

15

1.5 Kubernetes

Kubernetes (also called k8s) is an open-source container-orchestration system for

automating application deployment, scaling, and management.[7] It was originally

designed by Google, and is now maintained by the Cloud Native Computing

Foundation. It aims to provide a "platform for automating deployment, scaling, and

operations of application containers across clusters of hosts". It works with a range of

container tools, including Docker. Many cloud services offer a Kubernetes-based

platform or infrastructure as a service (PaaS or IaaS) on which Kubernetes can be

deployed as a platform-providing service. Many vendors also provide their own

branded Kubernetes distributions.

Figure 4 - A stack infrastructure containing Kubernetes

1.6 Objective

The objective of this thesis is to analyze a default Kubernetes infrastructure and its

components concerning its security, to illustrate attacks based on possible

misconfigurations and vulnerabilities, that a malicious actor can take advantage of as

well as to suggest defenses based on configurations and open sources industry

solutions. This thesis focuses on an infrastructure that combines Kubernetes and

Docker even though Kubernetes as container orchestrator can be combined with a

number of other container runtimes because of the popularity of this combination.

For the practical part of the thesis a two-node Kubernetes cluster was created by two

virtual machines. Also, for some tests micork8s was used, which is a way to virtualize

a Kubernetes cluster on a single host machine.

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://en.wikipedia.org/wiki/Orchestration_(computing)
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Kubernetes#cite_note-5
https://en.wikipedia.org/wiki/Cloud_Native_Computing_Foundation
https://en.wikipedia.org/wiki/Cloud_Native_Computing_Foundation
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/Infrastructure_as_a_service

16

2. Kubernetes Overview

After the deployment of Kubernetes, the outcome is a cluster. A cluster is a set of

machines that can be physical or virtual that are capable of running containerized

applications managed by Kubernetes. The recommendation for a Kubernetes cluster

from a perspective of machines is at least one master node and at least one worker

node even though a cluster with a single node can be operational. In production

environments more than one master nodes and more than on worker nodes are

required for high availability reasons.

The Kubernetes master is responsible for maintaining the desired state of the cluster.

When a user interacts with Kubernetes using Kubectl command-line tool, he is

communicating with the cluster’s master node. With Kubectl a user can run

commands against Kubernetes clusters and is the main tool for managing Kubernetes.

Some of its operations are the deployment of applications, the inspection and

management of resources or log viewing.

2.1 Master node - Control Plane

Kubernetes can be divided into two “planes”. The control plane and the data plane.

Specific components that run on the master node compose the cluster’s control plane.

The cluster’s control plane refers to a collection of processes managing the cluster

state (for example scheduling). Typically, these processes are all run on a single node

in the cluster and this node is not other but the master. However master components

can be run on any machine in the cluster.[8] The master can also be replicated for high

availability and redundancy. The control plane maintains a record of all the

Kubernetes objects in the system and runs continuous control loops to manage those

object’s state. For example, when you use the Kubernetes API to create a deployment

object you provide a new desired state for the system. The Kubernetes control plane

records that object creation and carries out your instructions by starting the required

application and scheduling them to the cluster nodes. At the end of the operation the

actual state must match the desired state.

Control plane is comprised of the following components:

17

2.1.1 Kube-apiserver

The API server is a component of the Kubernetes control plane that exposes the

Kubernetes API.[8] It is a RESTful web server that is responsible for the coordination

of all aspects of a cluster as well as the primary interface for interacting with it.

Specifically, it accepts client requests for updating all other components within a

cluster. These requests are authenticated, authorized, processed, and then stored

within etcd for further processing and use.[11]

2.1.2 Kube-scheduler

The Kube-scheduler watches on the API server for newly created pods that have no

node assigned and select a node for them to run. When assigning work on the worker

nodes factors concerning the cluster and the requirements of the deployment are

taken into consideration.

2.1.3 Kube-controller-manager

Kube-controller is a daemon for self-healing. It is responsible for noticing and

responding when nodes go down. It watches etcd for changes to objects such as

replication, namespace, and serviceaccount controller objects, and then uses the API

to enforce the specified state [10]. Kube-controller makes sure the correct number of

replications requested exist in the cluster. For example, when a user requests of the

system to scale the application into ten instances kube-controller-manager makes

sure that if one or more of them go down to spawn replacements, so that the

requested number, matches the actual number of pods and the application is running

on full capacity.

2.1.4 Etcd

Etcd is a consistent and highly available key value store used as Kubernetes backing

store for all cluster data.[12] It stores the persistent master state while other

components watch etcd for changes to bring themselves into the specified state (e.g.,

Kubelet). Etcd leverages gPRC and TLS, used to store the most sensitive data within a

cluster. By default, TLS is enabled including an optional authentication of the client

with a certificate. Access to etcd should be restricted to as few users as possible.

Generally, unrestrained access to etcd is considered “root” (or administrative) access

to the cluster itself.[11]

2.1.5 Cloud-controller-manager

A daemon with similar purpose to kube-controller-manager, but instead of focusing

on components within Kubernetes, it focuses on maintaining alignment with the cloud

platform that is hosting the Kubernetes cluster. It was originally in the kube-controller

manager but because every cloud provider release at a different pace it became a

18

cloud vendor dependent project that gave the cloud providers flexibility in the

evolution of it.

Figure 5 - All Pods of the control plane and Data plane along with CNI and DNS pods with the use of Kubectl tool

2.2 Worker nodes - Data plane

A worker node in Kubernetes might be a virtual or a physical machine and it is where

the pods are running. Pods can also be created on the master node, but it is a practice

that is not recommend and not commonly implemented. Ever node is managed by the

master and is capable of running multiple pods. The following components are

considered to be on the data plane grouping of Kubernetes except of the Kubelet.

Even though Kubelet actually runs on every node it is part of the data plane and that

is why it is mentioned here.

Every Kubernetes node runs at least:

2.2.1 Kubelet

A Kubelet is an agent that runs on every node in the cluster and manages the

containers running on it through the pods. It acts as a bridge between the Kubernetes

master and the nodes. The Kubelet does not manage containers which are not created

by Kubernetes. It takes a set of defined pod specifications that are provided mostly

through the API server and ensures that the containers described in those Pod specs

are running healthy.[13] The Kubelet interacts with the Container Runtime, listens for

Pod scheduling and related events on the API server, and updates the API server as to

Pod availability, resource usage, and general status. Also, it is the endpoint the API

server reaches out to for logs and other updates from nodes and Pods within the

cluster.[11]

2.2.2 Kube-proxy
The Kubernetes network proxy runs on each node. It is a component that along with

the Container Networking Interface (CNI), facilitates Kubernetes transparent model of

networking.[11] It is responsible for maintaining network rules on the host and

19

performing connection forwarding. kube-proxy utilizes items such as iptables and

serves proxy or pass-thru traffic in order to ensure that all containers, Pods, and nodes

are able to communicate with one another as if they were on a single network. Also,

it is responsible for forwarding Kubernetes Services that are exposed to the outside

world, across a set of backends inside the cluster. In order for the forwarding to work

the user must create a service with the apiserver API to configure the proxy.[14]

2.2.3 Container Runtime
Container runtime is the software that allows the direct execution of containers within

a cluster. This software consists of the necessary operating system integrations (such

as control groups on Linux), configuration settings, and Kubernetes interfaces to a

container system.[11] Kubernetes supports several runtimes. Some of them are

Docker, CRI-O, Containerd. The most common container runtime is Docker. A

container runtime will take care of pulling the requested containers from a registry.

2.2.4 Pods

A Pod is a group of one or more containers with shared storage, network, and

specifications for how to run the containers in it. Specifically, containers inside a pod

share an ip address, a port space and they can find each other through localhost.

Different pods cannot communicate by IPC inter-process communication without

special configuration They are the smallest deployable units in Kubernetes, and they

are managed by the nodes. Like individual application containers, Pods are considered

to be relatively ephemeral entities unlike virtual machines. Pods are created, assigned

a unique ID (UID), and scheduled to nodes where they remain until termination or

deletion. This depends on the restart policy that the user has declared on the yaml

file. If a Node dies, the Pods scheduled to that node are scheduled for deletion, after

a timeout period. A given Pod is not “rescheduled” to a new node. Instead, it can be

replaced by an identical Pod, with even the same name if desired, but with a new UID.

Replication Controllers are responsible for create or delete pods dynamically.[15]

Figure 6 - Kube proxy pod of the Data plane. A view from node1

Figure 7 - The Kubelet process on Node1

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#why-containers
https://kubernetes.io/docs/concepts/architecture/nodes/

20

2.3 CNI – Container Networking Interface

CΝΙ is a set of standards that define how a software should be developed to implement

networking in a containerized environment. That kind of software is referred to as a

plugin. Bridge is a CNI interface plugin. Supported CNI plugins are Bridge, Vlan, Ipvlan,

Macvlan, Windows.[18][19] The aim of the CNI is to provide a specification for

container networking in order to make them less dependent on the hosting

environment.[17] Any plugin that is developed should comply with the following

fundamental requirements imposed by Kubernetes:

• Pods on a node can communicate with all pods on all nodes without NAT

• Agents on a node (e.g. system daemons, kubelet) can communicate with all

pods on that node

• Pods in the host network of a node can communicate with all pods on all nodes

without NAT

In the majority of the plugins every Pod gets its own IP address. This means that there

is no need for a link to be created between Pods and it is rarely seen a direct mapping

from a container to the host port. This creates a backwards-compatible model with

Pods that resembles to the model used on VMs or physical hosts from the perspectives

of port allocation, naming, service discovery, load balancing, application

configuration, and migration.[16] Some of the most common CNI plugins are Flannel,

Calico and Weave Net. Also, some cloud providers have developed their own CNI

plugins for running in their cloud infrastructures like GCE (Google cloud Engine), Azure

CNI or AWS VPC CNI for Kubernetes.

2.4 Cluster DNS

In Kubernetes, you can set up a DNS system with two well-supported add-ons:

CoreDNS and Kube-DNS. CoreDNS is a newer add-on that became a default DNS server

as of Kubernetes v1.12. However, Kube-DNS may still be installed as a default DNS

system by certain Kubernetes installer tools. With DNS, Kubernetes services can be

referenced by name that will correspond to any number of backend pods managed by

the service. Services can also be referenced not only via a Fully Qualified Domain

Name (FQDN) but also via only the name of the service itself. Assume a Service named

foo in the Kubernetes namespace bar. A pod running in namespace bar can look up

this service by simply doing a DNS query for foo. A pod running in namespace quux

can look up this service by doing a DNS query for foo.bar [21]. Both add-ons schedule

a DNS pod or pods and a service with a static IP on the cluster and both are named

21

kube-dns. In general, Kubernetes services support A records, CNAME, and SRV

records.

2.4.1 A Record

Kubernetes assigns different A record names depending on the service, headless or

normal. The difference between the two is that on headless service, they are not

assigned a ClusterIP and don’t perform load balancing. Normal services are assigned a

DNS A record for a name of the form service-name.svc.cluster.local. This name

resolves to the cluster IP of the Service. Headless services are also assigned a DNS A

record for a name of the same form. However, in contrast to a normal service, this

name resolves to a set of IPs of the pods selected by the service. The DNS will not

resolve this set to a specific IP automatically so the clients should take care of load

balancing or round-robin selection from the set. In the case that DNS is enabled, pods

are assigned a DNS A record in the form of ip.namespace.pod.cluster.local. For

example, a pod with IP 172.12.3.4 in the namespace default with a DNS name of

cluster.local would have an entry of the form 172–12–3–4.default.pod.cluster.local .

2.4.2 CNAME

CNAME records are used to point a hostname to another hostname. To achieve this,

CNAMEs use the existing A record as their value. In its turn, an A record subsequently

resolves to a specified IP address. In Kubernetes, CNAME records can be used for

cross-cluster service discovery with federated services. In this scenario, there is a

common Service across multiple Kubernetes clusters. This service can be discovered

by all pods no matter what cluster they are living on

2.4.3 SRV Records

In Kubernetes, SRV Records are created for named ports that can be part of a normal

or headless service. The SRV record takes the form of port-

name.protocol.namespace.svc.cluster.local . For a normal service, this resolves to the

port number and the domain name my-svc.namespace.svc.cluster.local. In case of a

headless service, the name resolves to multiple answers, one for each pod backing the

service. Each answer contains the port number and the domain name of the pod of

the form auto-generated-name.my-svc.namespace.svc.cluster.local .[20] [21]

22

Figure 8 - An overview of the Kubernetes Architecture.

Figure 9 - A view from Master showing the pods that were previously mentioned.

2.5 Kubernetes Objects

Kubernetes includes a number of objects that their job is to describe a cluster’s desired

state. Those objects are entities that each and every one of them serve a very specific

purpose. Usually those purposes concern the type of applications or workloads, what

container images will they use, the number of replicas, what network and disk

resources need to have available, and more. The desired state is set by creating

objects using the Kubernetes API, typically via the command-line interface, Kubectl.

Also, the Kubernetes API can be called directly to interact with the cluster and set or

modify the desired state. Next, some of the basic and frequently used Kubernetes

objects are described.

23

2.5.1 Namespaces

Namespaces provide a way to keep objects organized and grouped within a cluster.

They are intended for use in environments with many users spread across multiple

teams, or projects. They are not recommended for smaller teams because they will

significantly increase the complexity. Namespaces create virtual clusters that are used

to separate different applications or different stages of applications, such as

development, quality and production environment. Names of resources need to be

unique within a namespace, but not across namespaces. Namespaces cannot be

nested inside one another and each Kubernetes resource can only be in one

namespace. Also, namespaces can communicate between one another unless there is

a network policy that disallows it.

Namespaces also provide a way to divide cluster resources between multiple users

with the use of resource quota. That way specific namespaces can have limitations

about CPU, ram and pods depending on the priority of the namespace. It is not

necessary to use multiple namespaces just to separate slightly different resources,

such as different versions of the same software. Objects within the same namespace

can be separated with the use of labels. In case that no namespace Is specified,

Kubernetes will assume the default namespace [49].

In the scenario below we can see that first the namespace has to be created. Then

when a pod is declared it can be placed inside that namespace.

Figure 10 - Create a Kubernetes namespace

https://kubernetes.io/docs/concepts/policy/resource-quotas/

24

Figure 11 - Pod creation using yaml configuration file

2.5.2 ReplicaSet

A replica set is an entity that ensures that a specified number of pods are running at

any time. In case there are excess pods, they get terminated while if they are less, new

pods are created until the required number is reached. Also, new pods are launched

when existing ones get terminated or fail either on the same node they were deleted

or on a different node. A Replica set’s standard fields, include a selector that specifies

how to identify Pods it can acquire, a number of replicas indicating how many Pods it

should be maintaining, and a pod template specifying the data of new Pods it should

create to meet the number of replicas criteria. When a ReplicaSet needs to create new

Pods, it uses its Pod template [50].

In the scenario below we can see the declaration of a replicaset consisting of three

pods. Then we notice the pods created in the default namespace.

25

Figure 12 - ReplicaSet creation configuration file

A ReplicaSet ensures that a specified number of pod replicas are running at any given

time. However, a Deployment is a higher-level concept that manages ReplicaSets and

provides declarative updates to Pods along with a number of extra features.

2.5.3 Deployment

A Kubernetes deployment provide a way to declaratively manage a set of replica

pods. Deployments are a super set of replica sets because they provide extra

features and powerful functionality such as scaling and rolling updates. A

deployment defines a desired state for the replica pods. The cluster will constantly

work to maintain that desired state, creating removing and modifying the replica

pods accordingly.

26

In the scenario below we create a deployment with three replicas that their unique

container is a nginx web server.

Figure 13 - Deployment creation configuration file

The use of set image command creates a declaration for changing the version of the

nginx webserver inside the containers. The outcome of this command is called a

rolling update. During the rolling update, three newly created pods (or as many pods

are declared at the initial deployment) are lunched containing the new version of

nginx. When those pods are up and running, the pods with the old nginx version are

terminated with zero down time. Also, with the use --record command this action is

“recorded” thus, in case of a failure, the transition to the previous state can be done

immediately and equally smoothly.

A possible role back to the previous version can be performed with the use of rollout

undo command. After each action is performed, we can check the version of the

nginx web server by getting inside the container, on one of the running pods from

the replicas [51].

27

Figure 14 - Executing Kubernetes Rolling update

2.5.4 Service

In Kubernetes, a Service is an abstraction which provides a way to access the pods. It

allows access to pods by external users or services as well as intercommunication

between different application pods on the same cluster. Also, because pods are

ephemeral and they have a short lifespan, a number of inconsistencies might occur

due to immediate changes and recycling of the ip addressing. In the scenario that a

replica set is created with three pods and one of them fails for some reason, the

replication controller will recreate the failed pod. After the new pod is created it will

receive a new ip address. As a result, all the other pods must be informed for the

change and update the new ip address which can create a number of problems. With

the use of a Kubernetes service an entity is created in front of the pods that want to

be accessed and it passes the connection to the set of pods that match the label

declared in the creation of the replica set or deployment. The labels are declared by

the selector option in both the replica set or deployment and the service. In a

Kubernetes cluster a user can create as many services as he needs without any limit.

Finally, a service gets its own ip address like a pod does.

There are three types of services:

NodePort Service

A nodeport service is responsible from exposing an application to the outside of the

cluster so that is accessible from the users [53]. In the scenario below there is a nginx

deployment with on replica. Also, there is a NodePort service that exposes the nginx

webserver to the outside world by accessing the host’s ip address on the port 31000.

28

Figure 15 - NodePort diagram and corresponding code

In the scenario of a cluster with multiple nodes, an exposed application functions as

the picture below illustrates.

Figure 16 - Multiple Kubernetes nodes and exposed application with the use of NodePort

ClusterIP Service

A clusterip service is reachable only within the cluster. It is used in a scenario where

there is a deployment of an application that consists from a front end and a backend

and seamless communication between the two ends is needed [54].

29

Figure 17 - Kubernetes ClusterIP diagram

LoadBalancer service

The LoadBalancer service option is only available by cloud providers like GKE (Google

cloud) and AWS (Amazon). It provides load balancing for the exposed services. Each

cloud providers decides the nature of his load balancer [52].

Figure 18 - Kubernetes LoadBalancer diagram

30

In the past section, the analysis of Kubernetes objects and components drives to

conclusion that a Kubernetes environment adds extra layers compared to a

traditional infrastructure. Those layers extend the field that attacks may occur and

require security measures. Along with the extra layers of code, container, network

that are added, Kubernetes engine must also be protected and properly configured

in order to reduce the attack surface of malicious actors.

Application Application

Kubernetes Code

Kubernetes Container

Kubernetes Network

Virtual Machine Virtual Machine

Figure 19 - Kubernetes stack divided to its components

3 Kubernetes architecture – Attack vectors

3.1 Attack on any Node

As it was previously mentioned a Kubernetes cluster might have nodes that are

physical or virtual machines. Thus, all nodes must be configured properly in order to

withstand an attack from malicious actors that have them as target. An attacker could

compromise a node by using a known vulnerability or a misconfigured port, escalate

to higher privileges and subsequently move to another node and another node, until

all the nodes in the cluster are compromised. So, it is very important leave open only

the necessary ports opened on a server-node (for example ssh port) and close all the

others. Also, it is equally important to use only the necessary permissions so that it is

more difficult for unauthorized permission escalations to occur. As a result, all server

nodes in a containerized environment must be equal hardened as in a virtualized

environment.

3.2 Attack on the Kubernetes API server

The API server is the only Kubernetes component that should expose an API endpoint

outside the virtual private cluster network. Specifically, it exposes a port to a public IP

address and allows clients and other server modules to communicate with it. While

31

container applications also expose endpoints, the API server is the only Kubernetes

component that can be accesses from client systems outside the cluster. Typically, the

Kubectl utility is the client software that is used for accessing the API server, however,

Kubernetes supports a number of open source libraries that provide a means for

custom applications to make REST calls to the API server.

It is recommended that TLS is implemented for the protection of the API server from

malicious intrusions. If an attacker achieves in accessing the API server, then with the

use of declarative configurations, he can direct other Kubernetes components to take

act. Kubernetes API server offers both insecure and secure API endpoints. The default

port for an insecure connection is 8080 and 6443 for a secure connection. If the

insecure port left opened, all API requests bypass authentication and authorization

modules on that port. To disable the insecure port set the option below.

--insecure-port-0 -> /etc/Kubernetes/manifests/kube-apiserver.yaml

The option above is by default turned off on the last versions of Kubernetes. If it was

opened with the use of Curl an attacker could have gained valuable information about

cluster’s components or he would have the ability to deploy new ones.

Curl http://<ip address>:8080

Curl http://<ip address>:8080/api/v1

Curl http://<ip address>:8080/api/v1/namespaces

Curl http://<ip address>:8080/api/v1/pods [22]

Figure 20 - Utilizing Curl for checking Kubernetes insecure configuration

Also, there is a secure API endpoint. If a user makes an API request to the secure

endpoint without any sort of authentication token, he is automatically associated with

system:anonymous account. Anonymous requests are on by default for health checks

reasons, but they can be disabled. In the scenario that it is mandatory to be disabled

for security reasons an implementation for mutual authentication is required to check

for liveness of the cluster.

Curl -k https://<ip address>:6443

Curl -k https://<ip address>:6443/api/v1

Curl -k https://<ip address>:6443/api/healthz

32

Figure 21 - Utilizing Curl for checking Kubernetes insecure configuration. -k parameter is for https

Figure 22 - Utilizing Curl for checking Kubernetes insecure configuration

The 3 A’s Authentication Authorization Admission

Every request to the API server must be first be examined by three security steps in

order to be executed.

Authentication

The First step is the step of the authentication. The input to the authentication step is

the entire HTTP request. It is typically just examining the headers and client certificate

if any. In this step it is verified that the username or service account is known to the

cluster. The verification can be through password, token or certificate. If the request

cannot be authenticated, it is rejected with HTTP status code 401. Otherwise, the user

is authenticated with the specific username, and the username is available to

subsequent steps to use in their decisions.[23]

Authorization

The second step is to evaluate that the request. A request must include the username

of the requester, the requested action and the object affected by the action. The

request is authorized if an existing policy declares that the user has permissions to

complete the requested action. Kubernetes supports RBAC for dealing with

authorization.

33

Admission

After to authentication and authorization, admission controllers are the final step

before Kubernetes persists the resource in etcd. Admission controllers are global rules

that any request coming from outside the cluster must comply with them. Indicatively,

some of the admission controllers are: NodeRestriction which limits the permissions

of each Kubelet, ensuring that it can only modify pods that are in its own node.

DenyEscalatingExec which ensures that exec and attach commands from privileged

containers are blocked.

Figure 23 - Kubernetes 3A's security procedure before executing a request received from the API

RBAC Role Base Access Control in Kubernetes

In computer systems security, role-based access control (RBAC) or role-based

security is an approach to restricting system access to authorized users. [24]. Similarly,

in Kubernetes it is used as an authorization mode to approve or deny any request that

comes into the API server. In order for an API request to be approved or not the

following question must be answered by the authorization mode:

Can a (subject) (verb) (object)?

When an API request is arriving on the API server the first thing to be done it to parse

out the request attributes. In the following example it is shown how the API server

parses out the request.

34

Figure 24 - Example of an API request with a bearer token and how it is parsed

The POST http method, in the example API request above, maps to the create verb.

This means that the user making this request wants to create something in the cluster.

Then the apps API group is extracted along with the namespace ns1 and the resource

which in this case is deployments. So, this set of attributes becomes the input to the

authorizer.

The next step is authentication. The authentication layer looks at the request and

determines who is making this request. In the example there is a bearer token* which

can identify the user that this request is coming from. If for example the name of the

user is bob and he is a member of the group system:authenticated, the question that

must be answered in order for the API request to be approved is:

Can bob in group system:authenticated create apps deployments in namespace ns1?

For the request to be approved or not, a Role must be created. The following role lives

in the RBAC API group, it is called dev and it is created inside the development

namespace. As previously mentioned, a rule is just a named list of permissions and an

RBAC role has a list of rules. Each rule has the opportunity to match the attributes on

an incoming request. The example role below has two rules. The first rule concerns

pods and services while the second rule is about deployments. The verbs are all about

the actions that are allowed.

* A bearer token is an HTTP authentication scheme which includes a cryptic string, usually generated by the server in response

to a login request. Bearer authentication as basic authentication should only be used over https(ssl).[26]

35

Figure 25 - Example of a role in yaml

Figure 26 - Example of a RoleBinding in yaml

Next, is to grant this role to the user. The way for this to happen is by using a

RoleBinding. First, a namespace must be defined where the role binding is going to

take place. After that the role is defined along with the user. A subject can be a user

or a service account.

In case that the Role was meant to be implemented globally (all namespaces can

access it), the attribute kind should be changed from Role to ClusterRole. Role binding

is taking place locally but the ClusterRole globally. That allows an administrator to

reuse permissions and define policy in one place and reference the policy from

wherever he needs to use it. Similarly, if the user was supposed to have global access

to the cluster, by changing the kind from RoleBinding to ClusterRoleBinding. Thus, it is

recommended to define permissions in a ClusterRole object only if the resources are

cluster-scoped like nodes or persistent volumes, if there is a need for reference from

multiple namespaces or there is a requirement for cluster-wide access (e.g. list pods

across all namespaces – Kubectl get pods –all-namespaces).[25]

36

3.3 Intercept Modify Inject Control plane

Attackers are capable of using inter-process-communications between components

to discover secrets or steal other digital assets. While Kubernetes control plane

components typically perform peer-to-peer communications on a private network,

they still require TLS security to prevent eavesdropping. Once an attacker gains access,

it is easy to replace a number of the authentic Kubernetes modules with modules that

follow his malicious intentions. A pod injected with malware that has as an ultimate

aim to discover information or a pod used for cryptojacking, are difficult to discover

after they are created.

The first step to protect against those attacks is to harden the servers running the

cluster, that way it is a lot difficult for an attacker to find a point of entry to the cluster.

Also, a mandatory use, along with frequent rotation of the certificates between the

components could protect against eavesdropping their communication. Finally,

because of the nature of containerized applications, frequent upgrades sanitize the

cluster from compromised pods. In addition, to monolithic applications which were

not containerized, if an attacker was successful in accessing the server and inject a

payload or install a backdoor leveraging from an existing vulnerability, the malicious

code would stay in the server until a reinstallation of the OS or an installation of a

patch for the specific vulnerability. With containerized applications every time an

upgrade occurs the old pods are deleted and new ones, (usually with patches) are

taking their place.

3.4 Attack to Kubelet API

The Kubelet API is the medium between the control plane’s API server and the

container runtime. While the kubelet’s API is exposed only within the private cluster

network it is important to implement TLS security to prevent malicious actions. In the

early days, in order for a cluster to scale up a node or more it had a single TLS key

inside the server image which could easily leak by compromising a single node of the

cluster. In the later versions of Kubernetes TLS bootstrapping was presented which is

responsible for bootstrapping nodes and ensuring that they join master node

correctly. Kubelet TLS bootstrapping provides the ability for a new Kubelet to create a

certificate signing request so that certificates are generated when a node joins the

cluster. The kubelet API is accessible on every node in the cluster and offers both

insecure and secure API endpoints. The secure endpoint listens to 10250 port while

the insecure to 10251. An attacker could make requests to the Kubelet API and run

commands (possibly interactively) from a pod after he has gained access to.

37

Curl -k https://<ip address>:10250

Curl -k http://<ip address>:10250/metrics

Curl http://<ip address>:10251

Curl http://<ip address>:10251/metrics

Figure 27 - Checking the kubelet API with the use of curl

Figure 28 - Checking the kubelet API with the use of curl with a response from the API

For those attacks to be mitigated it is required to run Kubelet in RBAC mode. That way

Kubelet can only read things that are relevant to the that specific Kubelet. It cannot

read secrets that are attached to pods that are not scheduled on that node. Also, a

frequent certificate rotation could be an extra layer of security.

RBAC for kubelet:

--authorization-mode=RBAC, Node

--admission-control=…,NodeRestriction

Rotate kubelet certs:

Kubelet –rotate-certificates.

3.5 Attack to the container runtime

The container runtime is one of the most critical components running within a

Kubernetes cluster. While Kubernetes security includes the scope of all Kubernetes

components, it is important to realize that the container runtime also requires its own

38

level of security. Kubernetes can use different container runtimes. The most common

one is Docker but there are some more like Moby and cri-o. Specific cloud vendors are

using their one container runtime like moby which is used on azure. Security features

vary from runtime to runtime. The images run by the container runtime should be

scanned for vulnerabilities prior to their being stored in a repository or trusted

registry. There are many Kubernetes options that can implement policies, such as only

allowing containers to be pulled from secure registered repositories. Additionally,

since container images may be compromised, and running current or latest images is

recommended to reduce vulnerabilities and malware, Kubernetes optionally may be

implemented to require pulling new images upon each deployment. There are tools

that are capable of scanning images before deployment. The most common one is

Clair which can be configurated to run inside a pipeline.

3.6 Exploit of vulnerable image

Docker images are typically downloaded from public repositories such as docker hub.

Anybody with a free account on docker hub can upload images into this public

repository. So, it is possible that those docker images that are uploaded by the user

can have publicly know vulnerabilities which could be intentional or unintentional.

These vulnerabilities can potentially provide access to the containers and the host

were docker is being run.

In docker hub there is a large number of containers that are deliberately vulnerable.

One of them is vulnerables/cve-2014-6271 which is a shellshock vulnerable

environment.

Figure 29 - Vulnerable docker container form dockerhub

39

By running the following command, we manage to run the vulnerable container. If the

image is not found locally the docker daemon will download it from docker hub.

Figure 30 - Docker run command and port exposure to the host

The port which is exposed in the host machine is 8080 and it is mapped to port 80 on the

docker container. In the picture below we can see the vulnerable application.

Figure 31 - The default web page of the vulnerable docker with shellshock

Below we can see the output of file etc/passwd by exploiting the shellshock vulnerability.

Figure 32 - Successful dump of the /etc/passwd

40

3.7 Backdooring existing Docker images

Attackers use the same techniques for containers as with mobile applications. They

download a legitimate application from PlayStore or App store and they add a

backdoor to it. Afterwards they reupload the application on public repositories and

when a victim downloads the application, they achieve in gaining access in his device.

The same thing can be done with docker containers. It is possible to backdoor a docker

container manually, on the other hand there are automated tools for that job. One of

those tools is Dockerscan. On the pictures below we can see that a legitimate ubuntu

image can be backdoored to give an attacker reverse shell.

The ubuntu image is downloaded from dockerhub and it is saved locally.

Figure 33 - Docker pull and save of ubuntu image

Then, using Dockerscan we inject a backdoor to the original image.

Figure 34 - Backdoor injection with the use of Dockerscan

Figure 35 - Execusion of the Docker with the backdoor

When the docker container is executed we manage to get a reverse shell to it.

41

Figure 36 - Successful reverse shell from backdoored container

3.8 Internal attackers escape to host

An internal attacker or an attacker who has gained access to a container, can break

out of it and reach the host by taking advantage of misconfigurations and

vulnerabilities. One possibility is kernel vulnerabilities. Containers running on a host

share the same kernel with the host. In case of an exploit in the kernel, a malicious

actor can use it to break out of the container to the host. Also, misconfigurations like

–privileged flag and running the container as root might be a weak spot for a malicious

actor to exploit. Because it is quite harder and time-consuming to configure the

application to run with low privileges it is very common for containers that run into

production to run as root. Finally mounting filesystems and network sockets to

containers can lead to container escape. An attacker can change files and

configurations on the mounted host filesystem that can lead to privilege escalation.

The same outcome can result from a network socket mount of the host to a container.

--privileged flag

When a container is running with the privileged flag, it gives many extra linux

capabilities to the container. An attacker can use the extra capabilities, escape the

container and access the host. Specifically, an attacker that gains access to a container

where more capabilities are present, has the ability to perform a number of malicious

42

actions depending on the capabilities, the container has on it and escape form the

container and access the host. Cap_sys_ptrace and cap_sys_module are some of the

dangerous capabilities. Using those capabilities an attacker can install a kernel module

and load It on the host machine’s kernel.

To notice the difference in capabilities we deployed a container in Kubernetes with –

priviledged flag and one without the flag. Below we can see the configuration yaml

files of both deployments. Both files create a pod with one container inside it that

sleeps for 5000 seconds.

Figure 37 - Yaml configuration of a not-privileged pod

Figure 38 - Yaml configuration of a privileged pod

Next we access each container and install capsh inside the alpine image to print out

the capabilities of each container. We notice that in the container with the priviledge

flag there are a lot more capabilities and among them cap_sys_module.

43

Figure 39 - List of the capabilities of a pod with the privileged flag

Figure 40 - List of the capabilities of a pod without the privileged flag

3.9 Attack a container with privileged flag

At first, we deploy a pod with –privileged flag on. Then we write a simple module that

prints a message when the module is loaded into the kernel and when it is unloaded

form the kernel. Kernel modules are extensions for the Linux kernel. Then we compile

the Linux kernel module.

Figure 41 - kernel module code for printing messages when is loaded and when it exits.

44

Figure 42- Compilation of kernel module

Figure 43 - List of the exported files after compilation

In order for the kernel to be transferred to the container we base64 encode it, we

copy it inside the container and then we decode it.

Figure 44 - base64 encoding of kernel module

Figure 45 - base64 decoding of the kernel module inside the container

After the module is decoded, we are then able to load it. If we look at the

/var/log/kern.log in the host machine, we notice the messages that we printed inside

the module. We also notice the module itself in the host by using lsmod [27].

Figure 46 - Commands to load and unload a kernel module inside a privileged container

Figure 47 - Kernel module logs inside /var/log/kern.log after insmod and rmmod are executed

45

Figure 48 - lsmod to view the module loaded in the host

Following the same steps, a module that gives a reverse shell to the host machine or

something relevant could have been loaded. The above procedure was conducted

with microk8s cluster.

3.10 Privilege escalation using volume mounts and local registry

In this attack a local registry will be used to create a pod so that the user that is running

pods who has no special rights on the server manages to escalate to root. An attacker

could exploit the fact that docker daemon requires root privileges to perform some of

its operations.

First, we are going to create a docker image using the following components. A shell

binary that opens a shell as root, a bash script that copies the file into a mounted path

in the container and changes the permission and a docker file that downloads the

alpine image and copies the two mentioned files into it.

Figure 49 - A Dockerfile, a program and a bash script are used to conduct the attack

Then we run a local docker registry so that Kubernetes is able to download the malicious

image from and we build the image.

46

Figure 50 - Docker registry running on port 5000

Figure 51 - The build process of the malicious image

Following that, we tag the image so that the registry is able to serve it and then we push it to

the registry.

Figure 52 - Image being tagged and pushed to the registry

Finally, we deploy the yaml file in Kubernetes that creates a pod which downloads the

malicious docker image and copies the binary shell in the mounted folder of the host

(/tmp/shared)

Figure 53 - Yaml configuration of malicious pod

47

We notice that a shell binary has appeared in /tmp/shared location. When the shell is

executed, we automatically get a shell with root privileges.

Figure 54 - Shell binary execution leads to gaining root priviledges

3.11 Docker.sock

When any docker command is typed using the docker client, the docker client

interacts with docker socket and manages the containers. Docker socket Is the Unix

socket which acts as a backbone for managing containers. When an image is

downloaded from the internet and a container is started using those images at some

cases /var/run/docker.sock is needed to be mounted. Possible legitimate cases for

docker socket to be mounted is if a docker is going to run to audit all docker running

on the host or any case that containers need to be managed by another container.

Generally, this socket is needed if it is going to interact with other docker images on

that host. On the other hand, a malicious actor could use this mount for his own

agenda. In the next pictures we can see how an attacker could use this mount to

mount the host machines filesystem.

We are creating a pod that contains a container using the alpine image. The

var/run/docker.sock of the host is mounted on the var/run/docker.sock of the

container. The containers sleep for 5000 seconds so that there is enough time to

execute the attack. After 5000 seconds pass the pod is terminated.

Figure 55 - Yaml configuration of a pod with docker.sock mounted

48

After the pod is deployed, we access it and check that /var/run/docker.sock is

mounted.

Figure 56 - Check if docker.sock is mounted to the container

Then we install docker inside the docker container. Using this docker client and the docker

socket mounted in the container we can simply spin up another container on the host and

mount the host directory onto the newly started container and then get a shell on the newly

started container to be able to access the root directory of the host.

Figure 57 - Docker installation and spin up of a new container in the host

Finally, we notice that if we list the mounted directory is the host’s root directory [27].

Figure 58 - Validation that the host's root directory is mounted on the new container

3.12 Attack to etcd

Etcd as previously mentioned is a consistent and highly available key value store used

for storing all cluster data of Kubernetes. In every master node there is an etcd

49

member. They have an election to choose the leader. When any operation happens

on the cluster the leader gets the information and then he has to pass it to all the

members. An attacker who has gained access to etcd can do a reconnaissance of the

cluster. For security reasons etcd should have its own ca system. So, if the frontend

certificate is compromised there is an extra layer of security. It is recommended to

have a different ca for the front end, a different ca for middleware and a different ca

for etcd. A default Kubernetes setup is not encrypted by default. Secrets are stored in

plaintext. That means that anyone who has access to etcd, a backup of etcd or the

master node has access to all of the secrets in plaintext. Specifically, before the secrets

are stored in etcs they are base 64 encoded which is not to be mistaken as an

encryption and it can be easily decoded. The above situation refers to the default out

of the box configuration of Kubernetes. DNS resolution does not work across

namespaces. Inside etcd you can find ip addresses of all things on k8s. Calico has a

networking model that allows you to segregate, like a software defined firewall for

k8s. Most clusters don’t expose etcd to the workers, but some install a separate etcd

instance to support calico network policy. In some cases, it is exposed with no tls,

authentication and authorization. Some cloud providers using shared responsibility

model and can manage the master and etcd for you while pod, containers and nodes

are the client’s responsibility. [28]

Etcd runs by default on port 2379. It is mandatory for security reasons to enable the

options below true so that whoever wants to talk to etcd is required to have a

certificate.

--client-cert-auth=true -> /etc/Kubernetes/manifests/etcd.yaml

Additionally, a firewall around etcd will make an attacker access significantly more

difficult. Otherwise an attacker with just a curl command can gain information about

the cluster. [22]

Curl -k https://<ip address>:2379/version

3.13 Attack on Kubernetes Dashboard

Dashboard is a web-based Kubernetes user interface. The Dashboard can be used to

deploy containerized applications to a Kubernetes cluster, troubleshoot the

containerized applications and manage the cluster resources. Also, It can get an

overview of applications running on the cluster, as well as create or modify individual

Kubernetes resources such as Deployments. The Dashboard also provides information

on the state of Kubernetes resources in the cluster and on any errors that may have

occurred [29].

50

To access the dashboard, you need either a kubeconfig file or a token. The kubeconfig

file contains a certificate that is signed form the CA of the cluster. It is possible to use

an external CA but every Kubernetes cluster has a cluster root Certificate Authority

(CA). It is the same CA that is used by cluster components to validate the certificates

needed by them.

In order for a kubeconfig file to be created, the user generates a key and uses it to

create a CSR (certificate signing request). After that, the administrators of the cluster

get the CSR file and they import it inside the cluster. Then the CSR is signed by the

certificate authority of the cluster creating a CRT file. Next, the CRT is used to create

the kubeconfig file along with information about the cluster like the cluster name, the

user and the CA. At the same time, the role is created if it does not already exist and

specifies the rights of the user or group inside the cluster. Finally, a role binding is

created that matches the user or group with the role. The kubeconfig can now be used

[55].

A similar procedure is implemented to export a token. After the creation of a role

binding the token can be exported and sent to the user.

Dashboard must always be behind some kind of protection and never be publicly

accessible. An example of bad configuration of the dashboard is Tesla the electric car

company. Tesla’s Kubernetes dashboard was publicly accessible and not password

protected due to a misconfiguration. This allowed hackers to access the dashboard

and deploy pods that were performing crypto mining. Also, the performed actions so

51

that the attack could be undetected like hiding the mining ip address behind a proxy,

changing the default port of the mining software as well as keeping the CPU usage

limited [30].

Besides requiring for a kubeconfig file that includes a certificate or a token to sigh in,

the dashboard in order to be protected must always be behind a firewall, a reverse

proxy or to be accessed only through a bastion host.

3.14 Bastion Model
A bastion host is a special-purpose computer on a network specifically designed and

configured to withstand attacks. The computer generally hosts a single application, for

example a proxy server, and all other services are removed or limited to reduce the

threat to the computer. It is hardened in this manner primarily due to its location and

purpose, which is either on the outside of a firewall or in a demilitarized zone (DMZ)

and usually involves access from untrusted networks or computers[31].

3.15 Secrets
A Secret in Kubernetes is an object that contains a small amount of sensitive data such

as a password, a token, or a key. Such information might otherwise be put in a Pod

specification or in an image. Along with users system also creates some secrets for it

to function.

https://en.wikipedia.org/wiki/Proxy_server
https://en.wikipedia.org/wiki/Firewall_(computing)
https://en.wikipedia.org/wiki/Demilitarized_zone_(computing)

52

Because secrets can be created independently of the Pods that use them, there is less

risk of the secret being exposed during the workflow of creating, viewing, and editing

Pods. The system can also take additional precautions with Secrets, such as avoiding

writing them to disk where possible.

A secret is only sent to a node if a Pod on that node requires it. The kubelet stores the

secret into a tmpfs so that the secret is not written to disk storage. Once the Pod that

depends on the secret is deleted, the kubelet will delete its local copy of the secret

data as well. There may be secrets for several Pods on the same node. However, only

the secrets that a Pod requests are potentially visible within its containers. Therefore,

one Pod does not have access to the secrets of another Pod. There may be several

containers in a Pod. However, each container in a Pod has to request the secret

volume in its volumeMounts for it to be visible within the container. This can be used

to construct useful security partitions at the Pod level. On most Kubernetes

distributions, communication between users and the API server, and from the API

server to the kubelets, is protected by SSL/TLS. Secrets are protected when

transmitted over these channels.

On the other hand, containers that carry secretes must be extra protected because if

they are compromised the secrets can be leaked. An attacker who has compromised

a pod can easily view the secrets that are mounted on that pod.

Below we examine the scenario that credentials are mounted on a container inside a

pod [32].

First, we create the credentials. It is mandatory to encode them with base64.

Figure 59 - Credentials must be base64 encoded

Then we create the secret using the following yaml configuration, apply the secret and

check that the secret has been created.

Figure 60 - Yaml configuration of a secret

https://kubernetes.io/docs/concepts/configuration/secret/#use-case-secret-visible-to-one-container-in-a-pod

53

Figure 61 - Secret creation

Figure 62 - Validation tha the secret has been created successfully

Finally, we create a test pod using the redis image and we mount the secret.

Figure 63 - Yaml configuration of a pod with a mounted secret

If an attacker manages to gain access to the container, he can then view the secrets

that are mounted and contain the credentials.

Figure 64 - A compromised pod that revels the mounted secret

In order for scenarios like the above to be avoided, applications should be broken

down into two or more containers: a frontend container which handles user

interaction and business logic and a second container that handles the processes that

54

utilize the credentials of the secret like a database connection. With this partitioned

approach, an attacker now has to pivot between containers that is significantly harder

than reading a file.

3.16 Man in the middle - DNS spoofing

An attacker, who manages to run malicious code on a cluster is able to successfully

spoof DNS responses to all the applications running on the cluster, and from there

execute a MITM (Man In The Middle) on all network traffic of pods. As previously

mentioned, pod-to-pod networking inside the node is available via a bridge that

connects all pods. This bridge is called cbr0. (Some network plugins will install their

own bridge and give it a different name). The cbr0 can also handle ARP (Address

Resolution Protocol) resolution. When an incoming packet arrives at cbr0, it can

resolve the destination MAC address using ARP. Additionally, NET_RAW is a default

permissive setting in Kubernetes. It’s there to allow ICMP traffic between containers.

But in addition to ICMP traffic, this capability grants an application the ability to craft

raw packets (like ARP and DNS), so there's a lot of freedom for an attacker to play with

network related attacks.

The combination of those two can firstly lead to an ARP spoofing and by extend to an

DNS spoofing attack on a Kubernetes cluster. All DNS requests arrive at the cbr0

behind the CoreDNS pod, after they get DNAT where they are redirected to the DNS

server pod. DNS requests coming from pods on external nodes will also arrive at this

cbr0, since it is the bridge that connects the DNS pod to the cluster’s network. So in

the event an attacker manages to infect an application running next to a DNS pod, he

could ARP spoof the cbr0, fooling it into thinking that he is the cluster DNS server, and

take complete control of all DNS resolution in the cluster [68].

In the picture below we can see that we have a Kubernetes cluster with three pods.

The first one is a compromised pod from a malicious user, the second one is a victim

pods that will be misleaded to a malicious website and the third one is considered to

be a fake pod that hosts the malicious website.

Figure 65 - Deployed pods

First, we get the ip address from the pod serving the malicious website.

55

Figure 66 - Ip address of the malicious website

Then we test a legitimate request from the victim pod to example.com.

Figure 67 - Legitimate request to example.com

Next we start the script that executes the DNS spoofing inside the hacker pod. The

script resolves all the requests for example.com and forwards them to the fake pod

with ip address 10.32.0.6 [70].

56

Figure 68 - DNS spoofing script

The attack was successful the victim pod wanted to access ecample.com and accessed

malicious pod.

Figure 69 - DNS spoofing attack was successful

Figure 70 - Diagram of the DNS spoofing attack

57

The ARP spoofing attack illustrated in the previous pictures, only works if the

malicious entity and the target share the same layer 2 segment (e.g. have direct

Ethernet connectivity). If Calico is used as a CNI, the network is fully routed at layer

3, meaning that each pod is on its own isolated layer 2 segment. ARP spoofing by

pods is stopped dead in its tracks.

Calico directly programs the routing table that determines where IP packets are

forwarded based on the known IP addresses of the pods, never basing the decision

on a protocol like ARP which is partially under control of the potential attacker. That

way Calico ensures that IP packets are delivered to the correct pods by avoiding ARP

altogether within the node, but what about pods spoofing their source IPs?

The idea here is that if a pod is granted CAP_NET_ADMIN, it can just add an IP

address to its network interface inside the pod. Or if it has CAP_NET_RAW it could

construct IP packets with spoofed addresses and send them over the interface at the

Ethernet layer. Calico was designed to stop this kind of spoofing. Regardless of what

the malicious entity can do from within the pod, these packets are processed by the

host kernel in the root network namespace where Calico has programmed it to be on

the defensive against spoofing.

By using a kernel feature called reverse path filtering, IP packets with source

addresses that are not the pod’s real address are dropped. Reverse path filtering

isn’t a new kernel feature, it has been operational for many years. Every packet that

is processed, must be confirmed on its route back to the source. If the packet came

through a different interface than the one the kernel would use to forward to it, the

packet is dropped. Since Calico programs the IP routes for each pod, this effectively

stops them from sending packets as any address other than their real address [69].

58

4. Defenses

4.1 Network Security

4.1.1 Network Policies

Kubernetes provides a mechanism called Network Policies that can be used to enforce

layer-3 segmentation for applications that are deployed on the platform. Network

policies lack the advanced features of modern firewalls like layer-7 control and threat

detection, but they do provide a basic level of network security. Kubernetes assigns

each pod an IP address which is routable from all other pods, even across the

underlying servers. Kubernetes network policies specify the access permissions for

groups of pods

Figure 71 - Network policies diagram

A network policy specification consists of four elements:

1. podSelector: the pods that will be subject to this policy - mandatory

2. policyTypes: specifies which types of policies are included in this policy, ingress

and/or egress - optional

3. ingress: allowed inbound traffic to the target pods - optional

4. egress: allowed outbound traffic from the target pods – optional

59

There is no need for all four elements to be included. The main podSelector element

is mandatory, the other three are optional. podSelector works with the help of labels

and label selectors. It is better for grouping reasons that every pod has at least one

label. This way it is easier to separate and group pods that are scheduled for a specific

purpose. For example, pods that have the label “db” might have a mysql container.

Also, there is the case of {} which when appears means the selection of all the pods.

If no policyTypes are specified on a NetworkPolicy then by default Ingress will always

be set and Egress will be set if the NetworkPolicy has any egress rules.

When no policies are defined, Kubernetes allows all communications. All pods can talk

to each-other freely. The same thing occurs with communication between

namespaces in a default environment, even though namespaces are intended to

isolate the environments from each other. Any forbiddance must be explicitly defined.

When an isolation is required between namespaces a namespaceSelector must be

defined to match a specific namespace.

Unlike firewalls Kubernetes policies define a target and specify ingress and/or egress

traffic for that target and do not consist of rule with source and destination.

Figure 72 - Yaml configuration of a network policy

In the picture above there is a test network policy. The policy runs on the default

namespace and it matches the pods with “db” label. It allows in the default namespace

pods that matching the “db” label app to allow ingress communication from subnet

172.17.0.0/16 except the subnet 172.17.1.0/24 and port TCP:6379. It also allows

ingress communication from namespace project:myproject, port TCP:6379 and any

pod as well as allow ingress from the default namespace, matching the frontend label

role and port TCP:6379. Finally, it allows egress communication from pods that

60

matching the “db” label app in the default namespace only to subnet 10.0.0.0/24 and

port TCP:5978

In the part that ipBlocks is used the declared ip ranges it is recommended to be cluster-

external IP addresses because pods IPs are ephemeral and unpredictable.

4.1.2 DNS and Network policies

Kubernetes as previously mentioned uses an internal DNS for the pods. In ever

declared egress policy must be explicitly exclude the traffic to the DNS service so that

the pods can communicate with each other. At the same time an extra layer of security

must be added so that DNS look up are forbidden from outside the cluster so that

possible compromised pods cannot query malicious DNS servers.

Figure 73 - Yaml configuration of a network policy allowing DNS

In the picture above there is a test network policy that exclude DNS service but at the

same time it allows DNS only inside the cluster by adding a namespaceSelector with {}

that includes all of the clusters namespaces.

Firewall policies usually have an any-any-any-deny rule to drop all non-explicitly

allowed traffic or an allow any to any to allow all traffic.

61

Figure 74 - Yaml configuration of a network policy to deny all traffic

Kubernetes doesn’t have a deny action, but you can achieve the same effect with a

regular (allow) policy that specifies Ingress but omits the actual ingress definition.

This is interpreted as no ingress allowed

Figure 75 - Yaml configuration of a network policy to allow all traffic

The above picture shows a configuration that allows communications from all pods in

all namespaces (and all IPs) to any pod in the default namespace. This is the default

behavior, so this is not needed to be defined. It could be useful, however, to override

any more specific allow rules temporarily for diagnosing a problem.

Kubernetes network policies provide a good means for segmenting a Kubernetes

cluster, but the high complexity is a concern. High complexity increases the

possibilities for misconfigurations that may lead to vulnerable clusters. Possible

solutions could be automating the policy definitions or using other means of

segmentation. Also, Kubernetes network policies cannot generate traffic logs. This

makes it difficult to know whether a policy is working as expected or not. It’s also a

major limitation with regards to security analysis [33].

http://m.com/@tufin/generating-kubernetes-network-policies-automatically-678ca0411

62

4.1.3 Service Mesh

A service mesh is further action to network policies. It is a way to control how different

parts of an application and by extend pods, share data with one another. It provides a

transparent and language-independent way to flexibly and easily automate

application network functions. It adds an additional layer above the existing

Kubernetes workloads without modifying them and through a set of proxies, it

succeeds in managing network connections consistently. Unlike other systems for

managing relative communication, a service mesh is a dedicated infrastructure layer

built right into an app. Network meshes apart from microservices can also be

implemented to affect traffic between VMs.

There are a number of corresponding applications but Istio is the most common one.

A service mesh like Istio comes to fill the void that network policies leave open by

default. Unlike, network policies which they manage and filter workloads on the layers

3 and 4 of the OSI model, Istio can manipulate traffic in the application layer.

Istio after installation can manually or automatically inject sidecar proxies (envoy)

inside each pod. As previously mentioned, inside a pod can exist multiple containers

that share the same networks interface. Containers on the same pod can

communicate with each other via localhost. After the container injection all traffic

inbound and outbound passes through them[63].

The use of Istio can decouple the network from the application code. During the

migration of an application to a microservices philosophy it might have multiple

programming languages. Developers do have to think about firewall rules and retry

logic to transition the application. The idea is to take all that network logic and put on

the hands of istio operators so that it can be managed in a unified way.

Istio has the following advantage when implemented side by side to a Kubernetes

environment.

Visibility

The use of microservices have increased significantly the network calls that occur

between services, compared with the calls that were made when the same application

was monolithic. This has increased the need for visibility between the communications

that pods do. Istio combined with observability platforms like Grafana and

Prometheus provides a clear picture about the services communication and

detectability in case of http responses that correspond to an error.

63

Traffic inspection

Istio can inspect http headers from requests and make routing decisions based on

those requests. This feature is called content-based routing and can also provide an

extra layer of security by whitelisting legitimate http headers. Also, it can easily

implement A/B testing canary rollouts and staged rollouts with percentage-based

traffic splits while on simple Kubernetes service the percentage is equally shared and

limited with workload scaling.

Security

Istio performs authentication between the services, to ensure that the traffic flowing

inside the cluster is secure. It channels service-to-service communication through a

proxy container within each Kubernetes pod, and uses mutual TLS for transport

authentication. It also manages keys, certificates, and the TLS configuration, to ensure

continual encryption. Istio provides policy-based authentication that allows two

services to establish a mutual TLS configuration for secure encrypted service-to-

service communication, as well as end-user authentication with the use of protocols

like OAuth2.0. With Istio, the user no longer needs to implement encryption or

manage certificates, as these responsibilities are moved from the app developer to

the framework layer [61].

Figure 76 - Istio Overview

Istio consist of the following control-plane components:

64

Pilot

Pilot is the head in an Istio mesh. It stays synchronized with the underlying platform

like Kubernetes by tracking and representing the state and location of running service

to the data plane. Pilot interfaces with the environment’s service discovery system

and produces configuration for the Envoy and Mixer

Mixer

Mixer bares responsibility for precondition checking, quota management and

telemetry reporting. Service proxies and gateways invoke mixer to do precondition

checks to determine whether a request should be allowed to proceed, whether

communication between the caller and the service is allowed or has exceeded quota

and to report telemetry after a request has completed report.

Citadel

Citadel empowers istio to provide strong service to service and end-user

authentication using mutual Transport Layer Security (mtLS) with built-in identity and

credential management Citadel CA component approves and signs certificate signing

requests (CSRs) sent by citadel agents and it performs key and certificate generation

deployment rotation and revocation[62].

Figure 77 - Istio components

65

4.2 Image Security

After the network defenses, like on an ordinary infrastructure, every OS and every

application installed on that OS must be vulnerability free, in order to reduce the

probability to a malicious attack. The same thing corresponds to a Kubernetes

infrastructure. When you work with containers, you are not only packaging your

application but also part of the OS. It is crucial to know if any of the libraries are

vulnerable inside the container. One way to find this information is to look at the

Docker registry security scan. However, this means that your vulnerable image is

already on the Docker registry.

A solution would be a scan as a part of CI/CD pipeline that stops a Docker image with

vulnerabilities before it is pushed on the registry. Clair is an open source solution,

created by CoreOS, for container scanning. Clair first tests the container for

vulnerabilities against its database and then reports back the results.

In a CI/CD environment, Clair is injected inside the pipeline and comes after the

building process looking for weak spots. If any of them are found, it categorizes them

to medium and high severity. The ones that are considered to be medium severity

are noted with a warning while the high severity ones are noted with an error. If any

high severity vulnerabilities are found, the pipeline process stops so that corrective

actions can occur before the image is deployed.

In order for clair to run, it needs two docker containers. The first one for the

application and the second one for the vulnerability database.

Figure 78 - Execution of Clair database

66

Figure 79 -Execution of Clair application

In the scenario below we run an ubuntu 12.04 that is unsupported and hold a great

number of unpatched vulnerabilities.

Figure 80 - Docker pull of ubuntu 12.04

With the use of Clair binary file and by declaring the ip address of the docker

interface in the command, the scan is executed. After it finishes the procedure it

projects the outcome of the scan that can also be exported to a json file, for further

analysis [60].

Figure 81 - Outcome of the Clair scanner

67

4.3 Docker Security

4.3.1 Apparmor

AppArmor (application armor) is a Linux kernel security module based on Mandatory

Access Control (MAC) that extends the standard Linux user and group-based

permissions to restrict programs to a limited set of resources. The standard user and

group-based permissions are part of Discretionary Access Controls (DAC). First, DAC is

executed and after that comes MAC. AppArmor can be configured for any application

to reduce its potential attack surface and provide greater in-depth defense. It is

configured through profiles to whitelist the access needed by a specific program such

as Linux capabilities, network access or file permissions. Each profile can be run in

either enforcing mode, which blocks access to disallowed resources,

or complain mode, which only reports violations.

Since docker makes use of Linux kernel, Apparmor can be used with Docker

containers. To use it with Docker we need to associate an Apparmor security profile

with each container. Docker expects to find an Apparmor policy loaded and enforced.

If a profile is not specified when the container is launched the Docker daemon

automatically loads a default profile to the container, which denies access to

important filesystems on the host such as /sys/fs/cgroups and /sys/kernel/security/

[40]. AppArmor can be used by extension in Kubernetes and add extra security value

in a deployment by restricting what containers are allowed to do and provide better

auditing through system logs [35][36].

In the two pictures below there is an app armor profile customized for protecting a

nginx installation inside a container. With the use of apparmor_parser the profile is

loaded on the host machine. Then, with the use of --security opt apparmor= and by

adding the apparmor profile file in the docker command it is assigned to the container.

The status of the policies can be viewed with aa-status. We notice with the use of aa-

status that docker-nginx policy is in enforcing mode.

68

Figure 84 - Loading AppArmor profile when the container is executed

Finally, by entering the container we can see that apparmor is blocking us form

executing the following commands based on the policy of nginx [37].

Figure 82 - AppArmor profile 1/2 Figure 83 - AppArmor profile 2/2

69

Figure 85 - Creating a new file in specific paths is blocked by AppArmor

4.3.2 SELinux

SELinux (security-enhanced linux) is another security enhancement to the Linux

system which is part of Mandatory access control and its purpose like apparmor is to

enforce security policies on system resources to forbid malicious behavior. In SELinux,

everything is controlled by labels. Every file or directory, process and system object

has a label. Based on these labels specific rules are declared to control access between

processes and system objects. These rules are called policies.

The SELinux policies can be divided into three classes: Type enforcement, Multi-level

security (MLS) enforcement, and Multi-category security (MCS) enforcement.

With the DAC mechanism, owners have full authority over their objects, meaning that

if the owners are compromised, the attacker has control over all of their objects. On

the other hand, in SELinux model, the kernel manages and enforces all of the access

controls over objects, not their owners. This provides a secure separation for

containers as it can prevent processes, even with root privileges, within a container to

illegitimately access objects outside the containers.

Docker uses two classes of policy enforcement: Type enforcement and MCS

enforcement. The Type enforcement protects the host from the processes in

containers, and the MCS enforcement protects a container from another container.

With Type enforcement, Docker labels all container processes with svirt_lxc_net_t

type and all content within a container with svirt_sandbox_file_t type. The processes

running with svirt_lxc_net_t type can only access/write to the content labeled with

svirt_sandbox_file_t type, but not to any other label on the system. Therefore, the

processes running within containers can only use the content inside containers.

However, only with this policy enforcement, Docker allows the processes in one

container to have access to the content of other containers. MCS enforcement is

necessary to solve this issue. When a container is launched, the Docker daemon picks

a random MCS label and then puts this label on all of the processes and content of the

70

container. The kernel only allows processes to access content with the same MCS

label, thus preventing a compromised process in one container from attacking other

containers [40].

4.3.3 Seccomp

Secure computing mode (seccomp) is a Linux kernel feature. It can be used to restrict

the actions available within the container. It defines which system calls should and

should not be allowed to be executed. For example, if an application was redirected

to execute malicious code that could not work within the limitations of the listed

system calls, it would be unable to fully carry out its payload. This protects the system

and can make attacks either impossible or require a higher degree of sophistication

[39]. Docker includes default seccomp profiles that drop system calls that are unsafe

and typically not used for container operations. The additional seccomp policies are

defined in a JSON file that can be applied when a container starts.

In the file below we declare seccomp permissions to block chmod and chown so

containers that are run along with this policy are unable to execute chmod and chown.

Figure 86 - Seccomp profile

Then, with the use of --security opt seccomp= and by adding the seccomp profile file

in the docker command it is assigned to the container. Along with the docker

command a chown command is executed which is blocked [38].

71

Figure 87 - Chmod is not permitted due to seccomp profile

4.3.4 Capabilities

The Linux kernel has the ability to divide the privileges of the superuser into

capabilities and allow for them to be granted separately as needed. The separation

into capabilities allows better control of what a root user or a simple user are allowed

to do. Adding some specific extra privileges to standard users that are needed in order

to execute a task or remove some capabilities from a superuser that is not using them,

adds an extra layer of security. Docker containers run on a kernel shared with the host

system, so most of their tasks can be handled by the host. As a result, in most cases,

it is unnecessary to provide full root privileges to a container, thus removing some of

the root capabilities from a container does not affect the usability or functionality of

the container but effectively improves the security of the system. By default, docker

drops all capabilities except those needed, using a whitelist approach. However,

Docker provides an option to configure the capabilities that a container can use.

Figure 88 - Capabilities allowed by default in Docker

72

In the table above we can see the Linux capability options which are allowed by default

and can be dropped in docker [41].

4.3.5 Namespaces

Containers like Docker utilize two major features of the Linux kernel. The first feature

is namespaces. Namespaces are providing containers with the necessary isolation that

resembles with the isolation of virtual machines. This isolation includes container to

host isolation as well as container to container isolation to protect from cases of one

or more compromised containers. When a container is run, Docker creates a set of

namespaces for that container. Each aspect of that container runs in a separate

namespace and its access is limited to that namespace.

4.3.6 PID Namespace

The PID is the namespace that is responsible for process isolation. The Linux operating

system organizes processes in a process tree. The tree root is the first process that

gets started after the operating system is booted and it has the PID 1. As only one

process tree can exist, all other processes need to be directly or indirectly started by

this process. Due to the fact that this process initializes all other processes it is often

referred to as the init process. Inside the process tree, every process can see every

other process and send signals to one another if they wish. With the use of PID

namespaces, the PID for a specific process and all its sub processes is virtualized,

making it think that this process has PID 1. That wrapping feature of the running

process with the use of namespace makes it unable to see any other processes except

its own children. However, the host is allowed to operate the processes inside the new

PID namespace. By default, all containers have the PID namespace enabled. PID

namespace provides separation of processes [42].

In the pictures below we can see that if we run two docker containers on the same

host and we run ps aux in each of them we notice the process that The PID Namespace

removes the view of the system processes and allows process ids to be reused

including pid 1.

Figure 89 - Execution of two different containers from the same image

73

Figure 90 - Process isolation inside containers

There are cases that containers need to share the host’s process namespace,

specifically allowing processes within the container to see all of the processes on the

system. For example, a container with debugging tools like strace or gdb, using them

when debugging processes of the host within the container. This can be achieved with

–pid host parameter where the host’s PID namespace is used inside the container.

With the same parameter and the container name or id of another container, the

current container can join second container’s PID namespace [41].

Figure 91 - Sharing PID namespace with the host

4.3.7 NET Namespace

The NET (Network) is the namespace that is responsible for network isolation. It

provides a new independent network stack for all the processes within the

namespace. That includes network interfaces, routing tables, iptables rules and an IP

addresses. In order to achieve connectivity between containers as well as the host

machine a virtual network bridge is used. A network bridge is a networking device that

creates a single aggregate network from multiple communication networks or

network segments. On the Docker host all processes need somehow to share access

to physical network card.

74

In order to isolate the networking of containers, Docker allows to create a virtual

network interface for each newly created container and it then connects all the virtual

network interfaces to the host network adapter named docker0 [42].

Figure 92 - Virtual network interface inside Docker

The two containers in this picture have their own eth0 network interface inside their

network namespace. It is assigned to a corresponding virtual network

interface veth0 and veth1 on the Docker host. The virtual network

bridge docker0 connects the host network interface eth0 to all container network

interfaces.

Figure 93 - Host and containers network interfaces

Docker provides the option to access the host namespace or another container’s

network namespace, when a container is run, bypassing the network isolation

provided by its interface. Thus, the container will have access to the host machines

network interfaces.

Providing containers access to the host namespace is sometimes required, such as for

debugging tooling, but is regarded as bad practice. This is because it is breaking out of

75

the container security model which may introduce vulnerabilities. Instead, if it's

required, a shared namespace can be used to provide access to only the namespaces

the container requires.

Figure 94 - Shared network namespace between docker and host

4.3.8 IPC Namespace

The IPC (inter-process communication) namespace is responsible for isolating objects

that exchange data among processes like semaphores, message queues, and shared

memory segments. Shared memory segments are used to accelerate inter-process

communication at memory speed, rather than through pipes or through the network

stack. Shared memory is commonly used by databases and custom-built performance

applications for scientific computing and financial services industries [41]. The

processes running in containers must be restricted so that they can access only

through certain set of IPC resources and are disallowed to interfere with those in other

containers and the host machine. If the IPC resource created by one container is

consumed by another container, then the application running on the first container

could fail [43]. Docker achieves IPC isolation by using the IPC namespaces. The

processes in an IPC namespace cannot read or write the IPC resources in other IPC

namespaces. Docker assigns an IPC namespace to each container, thus preventing the

processes in a container from interfering with those in other containers [40].

76

4.3.9 MNT Namespace

Similar to the previous namespaces, MNT (mount) namespace isolates filesystems. It

virtualizes parts of the filesystem tree. The Linux filesystem is organized as a tree and

it has a root, typically referred to as /. In order to achieve isolation on a filesystem

level, the namespace will map a junction in the filesystem tree to a virtual root inside

that namespace. Browsing the filesystem inside that namespace, it does not allow you

to go beyond your virtualized root [42].

The following picture shows a visualization of a filesystem that contains multiple

“virtual” filesystem roots inside the /drives/xx folders.

Figure 95 - Container’s isolated filesystem from host

4.3.10 UTS Namespace

The UTS (UNIX Time-Sharing) namespace is named after the structure used to store

information returned by the uname system call. In the context of containers, the UTS

namespace feature allows each container to have separate hostname from the host

machine [44]. The host (--uts=host) setting will result in the container using the same

UTS namespace as the host. You may wish to share the UTS namespace with the host

if you would like the hostname of the container to change as the hostname of the host

changes. A more advanced use case would be changing the host’s hostname from a

container [41].

77

4.3.11 User Namespace

The user namespace provides disassociation between the uid of the user inside the

container and the uid that the docker daemon uses. Τhe best way to significantly

reduce the probability of privilege-escalation attacks from within a container, is to

configure the application to run as non-root. For the cases that running with lower

privileges inside the container is not possible, re-mapping the root user (inside the

container) to a less-privileged user on the Docker host, makes it a lot harder for a

malicious actor to achieve escalation. Thus, the root on the container is not equivalent

to the root on the host. The mapped user is assigned a range of UIDs which function

within the namespace as normal UIDs from 0 to 65536 but have no privileges on the

host machine itself. Finally, it is possible to share namespaces between the host and

container and among other containers [45].

By default, the Docker Daemon runs as root user on the host. As a result of the

Daemon running as root, any containers started will have the same security context

as the host's root user. This has the side-effect that if files owned by the root user are

accessible from the container, then can be modified by the running container.

In the picture below we copy the touch binary and we create a touch.bak file. Then

we mount the /bin into the alpine container and because Docker Daemon runs as root

and the user inside the container is root, the process is allowed to delete the .bak file.

Figure 96 - Container run as root is able to delete touch binary

In the picture below we copy the touch binary like before and we create a touch.bak.

Then we mount the /bin into the alpine container and even though Docker Daemon

runs as root the process is disallowed to delete the .bak file. That is why because we

started the container as a non-root user with a uid and group of 1000.

78

Figure 97 - Container run as non-root, is not able to delete touch binary

If it is mandatory for a container to run as root, then the container is exposed to the

previous example. That is the reason why user namespaces are needed in docker.

We stop the docker service and modify the file /etc/docker/daemon.json like in the

picture below. Then we start the service again. Now docker will no longer store files

on disk as the root user. Instead, everything is processed as the mapped user.

The Docker Root Dir defines where Docker is storing data for the mapped user.

Figure 98 - Change the Docker daemon to run as non-root

After the change in the json file, the user inside the container will have root privileges,

if a non-privileged user is not defined with --user option of docker. However, the user

will not be able to modify anything running on the host. We notice that the user has

no permission on deleting the .bak file [47].

Figure 99 - Container cannot modify files on the host even though the user inside is root

79

4.3.12 Control groups

Controls groups or cgroups is a feature of the Linux kernel that controls how much

resources a process can use. In the absence of restrictions systems can be easily

overwhelmed by heavy and asymmetric utilization. Cgroups usage can deliver a

guaranteed Quality of Service to applications by ensuring they have enough resources

to operate. It's also possible to protect the system from potentially malicious users or

applications aiming to perform Denial of Service (DoS) applications via resource

exhaustion. This can also help limit applications from memory leaks or other

programming bugs by defining upper boundaries [46].

Containers rely on cgroups which not only track groups of processes, but also expose

metrics about CPU, memory, block I/O usage and network or combinations of these.

Cgroups are exposed through a pseudo-filesystem. In most cases, the filesystem is

located under /sys/fs/cgroup. Under that directory, there are multiple sub-directories

that correspond to a different cgroup hierarchy [48].

Figure 100 - Different options for cgroups depending on the resources

In the picture below we define a container that has a memory limit of 100mb. In

memory limits the maximum value is defined.

Figure 101 - Memory limitation on Docker with the use of cgroups

CPU limits are based on shares. These shares are a weight between how much

processing time one process should get compared to another. If a CPU is idle, then the

process will use all the available resources. If a second process requires the CPU then

the available CPU time will be shared based on the weighting.

The picture below shows that if a container defines a share of 768, while another

defines a share of 256, the first container will have 75% share with the other having

25% of the available total share. These numbers are due to the weighting approach

80

for CPU sharing instead of a fixed capacity. A process can have 100% of the share, no

matter defined weight, if no other processes is running [46].

Figure 102 - CPU allocation with the use of cgroups

4.4 Infrastructure as Code Security - PSPs

Pod Security Policies (PSP) are cluster-wide resources that control sensitive aspects of

pod specification. They are designed to limit what can be run on a Kubernetes cluster.

Some of the things that possibly need to be controlled are pods that have privileged

access, pods with access to the host network or pods that have access to the host

processes. A container isn’t as isolated as a VM by default so taking the necessary

precautions ensures that containers are not affecting the node’s health and security.

Pod Security Policies (PSP) are an optional admission controller added to a cluster.

These admission controllers are an additional check that determines if a pod should

be admitted to the cluster or not. That additional check comes after both

authentication and authorization have been checked for the api call. A pod security

policy uses the admission controller to check if the scheduled pod meets the extra

layer of security before being added to the cluster [34].

PSPs are using many of the features that Docker is using for its own security and are

based on Linux kernel as well as options of the Kubernetes platform that might be a

potential threat for an infrastructure.

81

Figure 103 - All available options for Pod Security Polices

In the picture above there is a list with all the available options for pod security policies from

the Kubernetes manual.

Below there is a picture of a recommended restricted policy by the Kubernetes manual. Next

all the parts that this policy consists of will be analyzed.

Figure 104 - Yaml configuration of PSP

82

4.4.1 Privileged
With the use of privileged flag, it is determined if any container in a pod can enable

privileged mode. By default, a container is allowed to access only the necessary

capabilities, but a privileged container is given access to all the capabilities on the host

which depending on the capability can be a potential dangerous for escaping the

container and gaining access on the host. This allows the container nearly the same

access as processes running on the host. This can be useful for containers that want

to use Linux capabilities like manipulating the network stack and accessing devices for

specific purposes.

4.4.2 Host namespaces
HostPID

This option controls whether the pod containers can share the host process ID

namespace. Because the use of this option paired with ptrace can be used to escalate

privileges outside of the container, it is forbidden by default.

HostIPC

This option controls whether the pod containers can share the host IPC namespace.

HostNetwork

This option controls whether the pod may use the node network namespace.

Changing the flag to true gives the pod, access to the loopback device, services

listening on localhost, and could be used to monitor on network activity of other pods

on the same node.

4.4.3 Volumes and file systems
Volumes

This option provides a whitelist of allowed volume types. The allowable values

correspond to the volume sources that are defined when creating a volume. A

recommendation of allowed volumes focusing on security are:

configMap

83

The configMap resource provides a way to inject configuration data into Pods. The

data stored in a configMap object can be referenced in a volume of

type configMap and then consumed by containerized applications running in a Pod.

When referencing a configMap object, you can simply provide its name in the volume

to reference it. You can also customize the path to use for a specific entry in the

configMap.

downwardAPI

A downwardAPI volume is used to make downward API data available to applications.

It mounts a directory and writes the requested data in plain text files.

emptyDir

It is a type of volume that is created when a Pod is first assigned to a Node. It remains

active as long as the Pod is running on that node. The volume is initially empty and the

containers in the pod can read and write the files in the emptyDir volume. Once the

Pod is removed from the node, the data in the emptyDir is erased.

persistentVolumeClaim

A persistentVolumeClaim volume is used to mount a PersistentVolume into a pod.

secret

A secret volume is used to pass sensitive information, such as passwords, to pods.

projected

A projected volume maps several existing volume sources into the same directory.

The types of volume sources that can be projected are secrets, downwardAPIs,

configMaps, serviceAccountTokens.

We notice that PersistentVolumes and HostPaths are not part of the list even though

they are considered to be volume types that are commonly used. PersistentVolumes

(PV) are a way for users to claim permanent storage without knowing the details of

the storage layer or particular cloud environment. Each cloud provider has their own

volume type for permanent storage like awsElasticBlockStore, azureDisk or

gcePersistentDisk. Also, there more traditional types of volumes for permanent

storage like iSCSi, FC (Fiber Channel), or NFS. PVs are typically created at the

integration stage of the cluster usually by the administrator so that they can be

claimed by a developer at a later time with the use of a persistentVolumeClaim (PVC).

This is the reason PersistentVolume is not included in the allowed volume because

only trusted users should have permission to create PV objects.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/concepts/storage/volumes/#secret
https://kubernetes.io/docs/concepts/storage/volumes/#downwardapi
https://kubernetes.io/docs/concepts/storage/volumes/#configmap
https://kubernetes.io/docs/concepts/storage/volumes/#awselasticblockstore
https://kubernetes.io/docs/concepts/storage/volumes/#azuredisk
https://kubernetes.io/docs/concepts/storage/volumes/#gcepersistentdisk

84

Furthermore, HostPath volumes are also not allowed because without any limitations,

a malicious actor can mount any path on the host like the root path / and act

maliciously: escalate privileges, reading data from other containers, and abusing the

credentials of system services, such as Kubelet or creating docker .

On the other hand, there are a number of cases that require a particular host path or

a number of host paths to be mounted. AllowedHostPaths option gives the solution

to the problem by whitelisting specific host paths to be used by hostPath volumes.

This is defined as a list of objects with a single pathPrefix field, which allows hostPath

volumes to mount a path that begins with an allowed prefix, and a readOnly field

indicating it must be mounted read-only. An empty list means there is no restriction

on host paths used.

Figure 105 - Yaml configuration of allowed Host paths

Writeable hostPath directory volumes allow containers to write to the filesystem in

ways that let them move outside the pathPrefix in the host filesystem. The option

readOnly: true, must be used on all allowedHostPaths to effectively limit access to the

specified pathPrefix.

4.4.4 FSGroup
This option controls the ID group applied to mounted volumes and any files created in

those volumes. It is used alongside with the option rule that variates usually between

MustRunAs and RunAsAny where the first one is strict about the range of the group

while the second allows any FsGroup ID to be specified.

4.4.5 ReadOnlyRootFilesystem
This option controls whether a container will be able to write into its own root

filesystem. A unchangeable root filesystem prevents applications from writing to their

local disk. This is desirable in the event of an intrusion as the attacker will not be able

to tamper with the filesystem or write foreign executables to disk. However, if there

are runtimes available in the container then this is not sufficient to prevent code

85

execution. In case there is a requirement for temporary files or local caching an

emptyDir volume can be used

4.4.6 Users and groups
Users and groups are controlled by Pod Security Policies given the options of

RunAsUser for controlling the user ID the containers are run with, RunAsGroup for the

control of the primary group ID the containers are run with as well as

SupplementalGroups to control which group IDs containers add. All of the previous

options provide the stricter choice of MustRunAs that accepts a mandatory range of

ids and the less strict choice of RunAsAny that allows any user, group or supplement

group id respectively, to be specified. Finally, RunAsUser also includes the choice

MustRunAsNonRoot which requires that the pod be submitted with a non-zero id. This

option provides more flexibility.

4.4.7 AllowPrivilegeEscalation
This option controls whether or not a user is allowed to set the security context of a

container to allowPrivilegeEscalation=true. This option is allowed by default. Setting

it to false ensures that no child process of a container can gain more privileges than

its parent.

4.4.8 RequiredDropCapabilities
This option sets the capabilities that must not be allowed to containers. Capabilities

declared in RequiredDropCapabilities must not be included in AllowedCapabilities.

The ALL option means that all capabilities are dropped. In the use of Allowed

capabilities, the option * declares all capabilities. The default set of capabilities are

implicitly allowed.

4.4.9 SELinux - AppArmor
SELinux in Pod Security Policies comes with two options MustRunAs and RunAsAny.

The first option requires seLinuxOptions to be loaded in the hosts of the Kubernetes

cluster while the second option does not require any seLinuxOptions to be specified.

AppArmor is controlled via annotations on the PodSecurityPolicy until future

versions. AppArmor also requires the profile to be loaded on the underline hosts

before it can be enforced inside the container. With the use of runtime/default, the

default container runtime profile is used.

86

4.4.10 Seccomp
The use of seccomp profiles in pods can be controlled via annotations on the

PodSecurityPolicy. With the use of runtime/default, the default container runtime

profile is used [34].

Kubernetes, because of its infrastructure as code capability has the advantage of being

versioned and committed to a code repository, like git, as well as deploy and identical

infrastructure elsewhere, like on a different cloud provider with ease. One the other

hand, like every programming language, that code might be vulnerable to attacks.

PSPs are basically an audit tool for IAC (Infrastructure as Code). The 2020 Cloud Threat

Report released by Unit 42 (the threat intelligence unit of cybersecurity provider Palo

Alto Networks) identified around 200,000 potential vulnerabilities in infrastructure as

code templates [66].

4.5 Kubernetes Engine Security

After network, image and code defenses, Kubernetes engine must also be secured and

configured correctly to prevent malicious acts. The Center for Internet Security (CIS)

provides a number of guidelines and benchmark tests for best practices in securing a

number of operating systems, application and platforms. So, it has released a

benchmark that suggests a number of recommendations for a Kubernetes

infrastructure to increase security [67].

Kube-bench [68] is an opensource tool, written in Go, that is distributed as a container

and is based on the security benchmark of CIS for Kubernetes. It can be executed on

each of the nodes to establish if the infrastructure meets the best practice

recommendations from the CIS community. After the analysis is finished it presents

information about whether each test passes or fails as well as advice on how to

remediate any issues that may have been detected. This information might, for

example, include recommendations to change or remove an insecure configuration

setting on one of the Kubernetes executables, make the permissions on a config file

more restrictive or to disable cryptographic algorithms that are less secure than

others. Kube-bench can produce JSON-format output, to make it easier to integrate

with automated tools.

https://en.wikipedia.org/wiki/Palo_Alto_Networks
https://en.wikipedia.org/wiki/Palo_Alto_Networks

87

In the picture below we can see the command that executes kube-bench, along with

its outcome, that has a list of recommendations that either comply or not. In the

second picture appears to be a number of remediation steps that correspond to the

findings of the first picture.

Figure 106 - Execution of Kube-bench with the use of Docker along with its results

Figure 107 - Remediation steps on the findings of kube-bench

88

5. Conclusion

A Kubernetes environment increases the number of layers involved, compared to a
typical infrastructure. This addition expands the layers that require protection. From
top to bottom, under the traditional application layer an additional code layer is
added. This code layer refers to infrastructure as a code (IAC) that describes the type
and form of the infrastructure to be created. Like on every programming language IAC
must be audited so that there are no vulnerable pieces of the code that can be used
as entry points from external attackers. One layer down, is the layer of the container
runtime. Container runtime corresponds to a physical or virtual machine. Every
container located inside a pod must be free of known vulnerabilities and downloaded
from a trusted registry which is scanned and updated on a regular basis. The third
layer concerns the network. The equivalent role of firewalls here is played by network
policies. Network policies are used to block illegitimate layer 3 traffic. In addition to
network polices, service meshes are able to protect layer 7 traffic and due to their
encryption capabilities on the traffic between pods, are capable of preventing
eavesdropping attacks. Finally, Kubernetes as a platform must be constantly scanned
for misconfigurations and possible entry points to reduce the attack surface of
unethical parties.

89

6. References

[1] https://en.wikipedia.org/wiki/Hypervisor

[2] https://www.docker.com/resources/what-container

[3] https://www.redhat.com/en/topics/containers/whats-a-linux-container

[4] https://opensource.com/resources/what-docker

[5] https://www.freecodecamp.org/news/a-beginner-friendly-introduction-to-

containers-vms-and-docker-79a9e3e119b/

[6] https://www.redhat.com/en/topics/containers/what-is-container-orchestration

[7] https://en.wikipedia.org/wiki/Kubernetes

[8] https://kubernetes.io/docs/concepts/overview/components/

[9] https://kubernetes.io/docs/reference/command-line-tools-reference/kube-

apiserver/

[10] https://access.redhat.com/documentation/en-

us/openshift_container_platform/4.1/html/architecture/control-plane

[11] https://github.com/kubernetes/community/blob/master/wg-security-

audit/findings/Kubernetes%20Threat%20Model.pdf

[12] https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/

[13] https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

[14] https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/

[15] https://kubernetes.io/docs/concepts/workloads/pods/pod/

[16] https://kubernetes.io/docs/concepts/cluster-administration/networking/

[17] http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1231856&dswid=-7557

[18] https://www.youtube.com/watch?v=l2BS_kuQxBA

[19] https://events19.linuxfoundation.org/wp-content/uploads/2018/07/Secondary-

Network-Interfaces-for-Containers-its-Types-and-Use-cases_v1.pdf

[20] https://medium.com/kubernetes-tutorials/kubernetes-dns-for-services-and-pods-

664804211501

[21] https://www.youtube.com/watch?v=W5xHec3_Tts (Kubernetes: DNS and Name

Discovery)

[22] https://www.youtube.com/watch?v=eCvBZemdKyg (DIY PEN Testing for Kubenretes

Cluster – OSCON 2019 Portland Oregon)

https://en.wikipedia.org/wiki/Hypervisor
https://www.docker.com/resources/what-container
https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://opensource.com/resources/what-docker
https://www.freecodecamp.org/news/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b/
https://www.freecodecamp.org/news/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b/
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://en.wikipedia.org/wiki/Kubernetes
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html/architecture/control-plane
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html/architecture/control-plane
https://github.com/kubernetes/community/blob/master/wg-security-audit/findings/Kubernetes%20Threat%20Model.pdf
https://github.com/kubernetes/community/blob/master/wg-security-audit/findings/Kubernetes%20Threat%20Model.pdf
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1231856&dswid=-7557
https://www.youtube.com/watch?v=l2BS_kuQxBA
https://events19.linuxfoundation.org/wp-content/uploads/2018/07/Secondary-Network-Interfaces-for-Containers-its-Types-and-Use-cases_v1.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2018/07/Secondary-Network-Interfaces-for-Containers-its-Types-and-Use-cases_v1.pdf
https://medium.com/kubernetes-tutorials/kubernetes-dns-for-services-and-pods-664804211501
https://medium.com/kubernetes-tutorials/kubernetes-dns-for-services-and-pods-664804211501
https://www.youtube.com/watch?v=W5xHec3_Tts
https://www.youtube.com/watch?v=eCvBZemdKyg

90

[23] https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/

[24] https://en.wikipedia.org/wiki/Role-based_access_control

[25] https://swagger.io/docs/specification/authentication/bearer-authentication/

[26] https://www.youtube.com/watch?v=Nw1ymxcLIDI (Effective RBAC - Jordan Liggitt,

Red Hat)

[27] https://www.udemy.com/course/hacking-and-securing-docker-containers/

[28] https://www.youtube.com/watch?v=V7z2SErgNmE&t=1060s (Kubernetes security

101 – Voxxed Days Singapore 2019)

[29] https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

[30] https://redlock.io/blog/cryptojacking-tesla

[31] https://en.wikipedia.org/wiki/Bastion_host

[32] https://kubernetes.io/docs/concepts/configuration/secret/

[33] https://medium.com/@reuvenharrison/an-introduction-to-kubernetes-network-

policies-for-security-people-ba92dd4c809d

[34] https://kubernetes.io/docs/concepts/policy/pod-security-policy/#what-is-a-pod-

security-policy

[35] https://kubernetes.io/docs/tutorials/clusters/apparmor/

[36] https://docs.docker.com/engine/security/apparmor/

[37] https://www.katacoda.com/courses/docker-security/bane

[38] https://www.katacoda.com/courses/docker-security/intro-to-seccomp

[39] https://etd.auburn.edu/handle/10415/6318 (From Bare Metal to Private Cloud:

Introducing DevSecOps and Cloud Technologies to Naval Systems by Robert Anderson)

[40] https://arxiv.org/abs/1501.02967 (Analysis of Docker Security by Thanh Bui)

[41] https://docs.docker.com/engine/reference/run/

[42] https://blog.codecentric.de/en/2019/06/docker-demystified/

[43] Docker Cookbook by Neependra Khare – PACKT PUBLISHING

[44] https://lwn.net/Articles/531114/

[45] https://docs.docker.com/engine/security/userns-remap/

[46] https://www.katacoda.com/courses/docker-security/cgroups-and-namespaces

[47] https://www.katacoda.com/courses/docker-security/userns-user-namespaces

https://kubernetes.io/docs/reference/access-authn-authz/controlling-access/
https://en.wikipedia.org/wiki/Role-based_access_control
https://swagger.io/docs/specification/authentication/bearer-authentication/
https://www.youtube.com/watch?v=Nw1ymxcLIDI
https://www.udemy.com/course/hacking-and-securing-docker-containers/
https://www.youtube.com/watch?v=V7z2SErgNmE&t=1060s
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://redlock.io/blog/cryptojacking-tesla
https://en.wikipedia.org/wiki/Bastion_host
https://kubernetes.io/docs/concepts/configuration/secret/
https://medium.com/@reuvenharrison/an-introduction-to-kubernetes-network-policies-for-security-people-ba92dd4c809d
https://medium.com/@reuvenharrison/an-introduction-to-kubernetes-network-policies-for-security-people-ba92dd4c809d
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#what-is-a-pod-security-policy
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#what-is-a-pod-security-policy
https://kubernetes.io/docs/tutorials/clusters/apparmor/
https://docs.docker.com/engine/security/apparmor/
https://www.katacoda.com/courses/docker-security/bane
https://www.katacoda.com/courses/docker-security/intro-to-seccomp
https://etd.auburn.edu/handle/10415/6318
https://arxiv.org/abs/1501.02967
https://docs.docker.com/engine/reference/run/
https://blog.codecentric.de/en/2019/06/docker-demystified/
https://lwn.net/Articles/531114/
https://docs.docker.com/engine/security/userns-remap/
https://www.katacoda.com/courses/docker-security/cgroups-and-namespaces
https://www.katacoda.com/courses/docker-security/userns-user-namespaces

91

[48] http://manpages.ubuntu.com/manpages/eoan/en/man7/cgroups.7.html

[49] https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

[50] https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

[51] https://www.youtube.com/watch?v=HPutXDwSWM0 (Deployments in Kubernetes |

Kubernetes Made Easy | Kubernetes Tutorial - Srinath Challa)

[52] https://www.youtube.com/watch?v=xCsz9IOt-fs (Load Balancing Service in

Kubernetes | Kubernetes Made Easy - Srinath Challa)

[53] https://www.youtube.com/watch?v=eth7osiCryc&t=1s (NodePort Service in

Kubernetes | Kubernetes Made Easy | Kubernetes Tutorial - Srinath Challa)

[54] https://www.youtube.com/watch?v=dVDElh_Kd48&t=652s (ClusterIP Service in

Kubernetes | Kubernetes Made Easy | Kubernetes Tutorial - Srinath Challa)

[55] https://medium.com/better-programming/k8s-tips-give-access-to-your-clusterwith-

a-client-certificate-dfb3b71a76fe

[60] https://github.com/arminc/clair-scanner

[61] https://www.portshift.io/product/service-mesh-security/

[62] Istio Up & Running Using a Service Mesh to Connect, Secure, Control and Observe –

Lee Calcote & Zack Butcher – O’REILLY

[63] https://www.youtube.com/watch?v=7cINRP0BFY8 - Istio in Production: Day 2 Traffic

Routing (Cloud Next '19)

[64] https://www.forbes.com/sites/janakirammsv/2018/12/20/5-modern-infrastructure-

trends-to-watch-out-for-in-2019/#7d282ea517db

[65] https://www.cio.com/article/3434010/more-enterprises-are-using-containers-here-

s-why.html

[66] https://en.wikipedia.org/wiki/Infrastructure_as_code#Relationship_to_DevOps

[67] https://www.cisecurity.org/benchmark/kubernetes/

[68] https://github.com/aquasecurity/kube-bench

[69] https://blog.aquasec.com/dns-spoofing-kubernetes-clusters

[70] https://www.tigera.io/blog/prevent-dns-and-other-spoofing-with-calico/

[71] https://github.com/danielsagi/kube-dnsspoof/

http://manpages.ubuntu.com/manpages/eoan/en/man7/cgroups.7.html
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://www.youtube.com/watch?v=HPutXDwSWM0
https://www.youtube.com/watch?v=xCsz9IOt-fs
https://www.youtube.com/watch?v=eth7osiCryc&t=1s
https://www.youtube.com/watch?v=dVDElh_Kd48&t=652s
https://medium.com/better-programming/k8s-tips-give-access-to-your-clusterwith-a-client-certificate-dfb3b71a76fe
https://medium.com/better-programming/k8s-tips-give-access-to-your-clusterwith-a-client-certificate-dfb3b71a76fe
https://github.com/arminc/clair-scanner
https://www.portshift.io/product/service-mesh-security/
https://www.youtube.com/watch?v=7cINRP0BFY8
https://www.forbes.com/sites/janakirammsv/2018/12/20/5-modern-infrastructure-trends-to-watch-out-for-in-2019/#7d282ea517db
https://www.forbes.com/sites/janakirammsv/2018/12/20/5-modern-infrastructure-trends-to-watch-out-for-in-2019/#7d282ea517db
https://www.cio.com/article/3434010/more-enterprises-are-using-containers-here-s-why.html
https://www.cio.com/article/3434010/more-enterprises-are-using-containers-here-s-why.html
https://en.wikipedia.org/wiki/Infrastructure_as_code#Relationship_to_DevOps
https://www.cisecurity.org/benchmark/kubernetes/
https://github.com/aquasecurity/kube-bench
https://blog.aquasec.com/dns-spoofing-kubernetes-clusters
https://www.tigera.io/blog/prevent-dns-and-other-spoofing-with-calico/
https://github.com/danielsagi/kube-dnsspoof/

