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Abstract 

The increased interest in social networks and how the information spread within them, has 

highlighted the need to identify what makes the nodes that contribute more to the information 

spread important. Centrality indices are measures of a node’s importance in a given network. Many 

of those have been proposed over the years, although there is not a common approach on how to 

use them in the case of information spread maximization. In this study, we evaluate five existing 

centrality algorithms, based on their performances as centrality measures to select nodes that will 

spread information across the graph. The centrality algorithms that are evaluated are Degree, 

Closeness, Betweenness, Eigenvector and PageRank. The results indicate the importance of nodes’ 

in-degree and of relationships’ direction. Although none of the algorithms outperforms the others 

in all cases, Degree Centrality has consistently good performance. The algorithm that achieves the 

lowest spreads of information is Betweenness.   
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1 Introduction 

1.1 General information 

In this study, we have researched the spread of information on social networks. More specifically, 

we focus on the methods of selecting which nodes will spread information more efficiently. By 

“efficiently”, we mean that the information will spread as much as possible, starting with a 

minimum number of nodes, and with the minimum possible total distance to cover. The latter 

means that it is desired to have a big spread quickly and then to try reaching as many distant nodes 

as possible. 

In social networks, people get connected and perform actions. By following, or liking, a person or 

page that you are interested in, you can watch their activity. Several topics, ideas, news, pieces of 

art, events, and many other information can be spread widely across the network. The promotion 

of such information can be easily and cheaply achieved. The pros versus a traditional advertising 

method are that people are reached with this information via people that they find interesting and 

most probably influence them. 

Which nodes of a social network are those that can spread information more efficiently, though? 

In graph theory, centrality is a measure that identifies the most important nodes within a graph. 

What makes a node important, though? Several centrality algorithms have been implemented over 

the last decades, and each of them sees the importance of nodes from another perspective. 

A node can usually be considered as important if it has many connections, if it is connected to 

popular nodes that in turn are connected to other popular nodes, or if it serves as a bridge between 

clusters. 

Many researchers have tried to identify the most important nodes of graphs by using existing or 

improved versions of centrality algorithms. However, the results are still inconclusive as to the 

way that one can choose the most suitable centrality for a network with a specific structure. 

In this study, we attempt to evaluate common centrality measures for their performances on 

information spread. We try to interpret the results and identify the areas that need improvement 

based on the networks’ structure. 
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1.2 Problem Statement 

The problem that we try to solve in this study is that there is not one common approach to selecting 

nodes for efficient information spread within social networks. There is a need to evaluate existing 

centrality algorithms in several social graphs to understand their strong points and weaknesses in 

each case. We need to examine if characteristics of the graphs’ structures can define which 

centrality algorithm is the most suitable to achieve the best results.  

We will achieve this by studying three different datasets of Facebook pages and running five 

centrality algorithms to score their nodes. Then, we will examine the results of the information 

spreads achieved when using the top scored nodes with each centrality measure. 

1.3 Dissertation Structure 

In Chapter 2 “Background”, we have written a Literature Review about published researches that 

are related to this dissertation. A description of the technologies used for the purpose of this study 

follows next. The technologies that are described concern the graph database management system, 

the query language, the libraries that were used and the graph algorithms, in general.   

In Chapter 3 “Solution Architecture”, you can find the description of the solution architecture, 

described with a block diagram and a high-level description of how the solution is designed. All 

modules are, then, described in more detail and those concern the environment that hosts the graph 

database, the graph database itself, the user interface for managing the graphs, the libraries and 

what was used in each one of them and graph visualization tool. 

In Chapter 4 “Graph Algorithms”, the Centrality algorithms that are chosen for evaluation are 

described in detail. For each one of them there is information about their history, use, the use cases 

for which they suit most, and explanation of how they work.  

In Chapter 5 “Experimental Study”, we have described the whole experiment step by step. There 

is an explanation of the datasets, the Cypher commands used to run the process, the graph data 

models, the graph stats, and tables and charts with the top scored nodes and the nodes where the 

information spreads. Finally, the results are described and discussed. 

In Chapter 6 “Conclusions and Future Work”, the conclusions drawn by the results of the 

experiment are described in detail. The problems and difficulties that were met, as well as the 
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results that were unexpected, are also referred. In the end, there are some ideas for further 

investigation and possible improvement of the results.  
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2 Background 

2.1 Literature Review 

Many research studies have been conducted in the past years regarding node importance and 

information spread in social networks. Many researchers have tried to define what importance 

means in specific contexts. Others focused on evaluating existing centrality algorithms using 

several different methodologies, and some tried to improve existing algorithms to better suit 

specific needs. 

In "Centralities: Capturing the Fuzzy Notion of Importance in Social Graphs", the authors 

reviewed, compared, and highlighted several centrality measures in contemporary social networks. 

The method they followed to assess the importance of nodes was to sequentially remove nodes, 

starting from the highest-ranking node and the others following by descending rank order and 

observe the remaining graph as to the size of the biggest connected component and the average 

route length. The results were what they expected, with betweenness centralities succeeding to 

disrupt the graph's structure efficiently and eccentricity, degree, Eigenvector, and closeness not 

significantly affecting the graph's connectivity. (Merrer & Tredan, 2009) 

The "Spread of (mis)information in social networks" analyzed the spread of misinformation in 

large societies. According to the paper, the critical role in misinformation spread is held by 

"forceful agents", defined as those who influence the beliefs of other individuals, without them 

ever changing their opinions. The analysis exploited the fact that belief evolution is a stochastic 

process (Markov chain). The results showed that social network matrices with large second 

eigenvalues placed tight bounds on the spreading of misinformation. Another finding was that the 

location of these forceful agents within the network played an important role. Each social network 

would result in very different limitations on spreading, based on the agents' locations. (Acemoglu, 

Ozdaglar, & ParandehGheibi, 2010) 

In their paper "Why Rumors Spread Fast in Social Networks", the authors analyze how news 

spread in social networks by simulating an information spread process in others than the existing 

social network topologies. They proved that information spreads in sub-logarithmic time in 

existing social networks. At the same time, they need at least logarithmic time for the same 
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information spreading process in the other social network topologies. As existing real-world social 

networks, they consider topologies that demonstrate preferential attachment. Their findings show 

the importance of nodes with few neighbors in the quick dissemination. High-degree nodes 

broadcast news to a broad audience, while the low-degree nodes transfer the news quickly from 

one neighbor to another. (Doerr, Fouz, & Friedrich, 2012) 

In "Social Contagion: An Empirical Study of Information Spread on Digg and Twitter Follower 

Graphs", the authors studied the dynamics of information spread on social networks and how the 

network's structure affects it analyzing data from Digg and Twitter. Their findings showed that in 

Digg networks that were dense and highly connected, the information appeared to spread through 

an interconnected community, while on Twitter, the spreads were more tree-like. They also found 

that when top nodes in Twitter became part of an information spreading, they broadened the spread 

and increased its size without affecting its depth. However, in Digg, when top users submitted a 

story, they always resulted in a big spread of a specific size. In contrast, for a story submitted by a 

poorly connected user to grow, there had to be involvement from a top user, and that was unusual. 

(Lerman, Ghosh, & Surachawala, 2012) 

In "Six degrees of information: Using social network analysis to explore the spread of information 

within sport social networks", the study was about exploring how sports events organizers spread 

information through Twitter. The results showed how the organizers leverage Twitter and top users 

to help promote the events. Using sociograms and quantitative analysis, the key findings answered 

how the organizers attracted followers, how fast they gained their followers, and which users 

helped more in the fast spread of the information. (Hambrick, 2012) 

In “Degree Centrality and Eigenvector Centrality in Twitter”, the authors applied Degree and 

Eigenvector centralities on Twitter data, to find the most influential nodes. The results showed 

significant difference between the two centrality measures. The influential nodes according to each 

algorithm were completely different, and Eigenvector would indicate nodes with low weight or 

degree. (Maharani, Adiwijaya, & Gozali, 2014) 

In “Identification of Influential Nodes from Social Networks based on Enhanced Degree Centrality 

Measure”, the researchers combined the clustering coefficient value with degree centrality. The 

so-called Enhanced Degree Centrality Measure was applied to three Facebook datasets for 
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performance analysis. The results compared to those of Degree Centrality and SPIN, showed an 

increase in the spread achieved. (Srinivas & Velusamy, 2015) 

In the journal article “Influence maximization on social graphs: A survey” (Li, Fan, Wang, & Tan, 

2018), the researchers studied the problem of Influence Maximization from an algorithmic 

perspective. More specifically, they reviewed existing information diffusion models, they 

classified and compared such algorithms based on their objectives and studied the techniques in 

combination with social networks’ context attributes. 

2.2 Technologies 

2.2.1 Neo4j 

Social networks represent social relations among entities. In other words, social networks are 

graphs and can be studied as such. In this study, three graphs are created and analyzed by importing 

social networks' data into Neo4j, the graph database system.  

Neo4j is an open-source, distributed data store that is used to model graph problems. It was 

released in 2007 and is sponsored by Neo4j, Inc., which also offers enterprise licensing and support 

for Neo4j.  

In Neo4j, data modeling is adaptable to changing requirements as the graph evolves. Through its 

flexibility, it captures new data sources, entities, and the relationships among them as they occur. 

The easy adaptation of the database to the changes provides quick responsiveness to changing 

requirements, making Neo4j an extremely agile solution. 

Data modeling is a three-step process that involves the following steps: 

1. Definition of requirements in the form of questions that need to be answered by the model 

2. Identification of entities and their relationships 

3. Configuration of patterns from the initial questions and their execution 

This whole process is applied iteratively and incrementally and is repeated whenever the 

requirements change. 
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Neo4j implements the property graph data model, a relationship-centric approach to data 

modeling, where data is organized as nodes, relationships, and properties. This implementation is 

at the storage level, which means that nodes, edges, and properties are stored on disk in stores 

specific for each type. Then, the traversal of the graph is done with the use of pointers. It is 

designed to ensure that nodes and edges are stored efficiently and that nodes can be connected 

with any number of relationships of any type without sacrificing performance. This provides an 

efficient, flexible, and adaptive solution of storing any data in the form of nodes, properties, and 

relationships. Apart from that, Neo4j has evolved the traditional model to the labeled property 

graph, where nodes can be tagged with labels. 

Mainly, in Neo4j, everything is defined in either one of the following forms: 

• Nodes: the fundamental unit of a graph, which can also be viewed as an entity 

• Relationships: the connection between two nodes 

• Properties: attributes that are related to either nodes or relationships 

• Labels: they are used to group nodes into sets 
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Figure 1:Neo4j’s labeled property graph 

The data is fetched from the data model through traversals. Traversals are an essential aspect of 

graphs, where given a starting node and following the relationships with other nodes, paths are 

created. Neo4j provides two types of traversal; the breadth-first and depth-first.   

Neo4j is a schema-less or schema-optional graph database. The schema does not have to be defined 

unless there is a need to provide some structure to the data for performance reasons. In that case, 

the schema can be defined, and indices, constraints, and rules can be created over data.   

Neo4j is an ACID-compliant and transactional database that ensures security, reliability, 

scalability, and high performance. It ensures that modification in the data happens in transactions 

to guarantee consistency. Also, because transactions in Neo4j dictate the state, idempotency is 
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ensured. Reapplying transactions for a recovery event results in replaying the transactions as of a 

given safe point. 

 

Figure 2: Neo4j is an ACID-compliant database 

Neo4j is implemented in Java but can also be accessed by software written in other languages. It 

is supported by a vibrant ecosystem of libraries, tools, drivers, and guides provided by partners, 

users, and community contributors. The integrated tools sit on top of a common protocol, API, and 

a query language to provide effective access for different uses.  

Diving deeper inside the Neo4j Graph Database and its native graph technology, compared to 

others that are non-native, the advantages of it become instantly apparent. It is obvious in 

technology that anything trying to be good at everything usually fails miserably, and as such, graph 

databases are not different. 

Some of the functionalities commonly found with databases are: 

• batch and transactional workloads 

• memory access and disk access 

• SQL and XML access 

• graph and document data storage 

DB developers usually need to identify upfront the use cases for which they should optimize their 

DBMS. Thus, if a graph is to be used heavily, they might decide to go “graph first,” aka native 

graph technologies or another DB where graphs were “patched” later on to satisfy a niche audience, 

known as non-native. 
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Native graph technology is split into two main categories: storage and processing.  

Graph storage refers to the infrastructure used for storing graph data. When such storage is built 

with graphs in mind, it is called native. This type of storage considers the design of graphs, 

ensuring all data is stored efficiently, keeping connected nodes and relationships closely stored, 

thus increasing performance. 

Non-native storage is external to the graph and decoupled from its logic. Other types are used in 

these cases, like relational, NoSQL, and other databases. 

Finally, what makes Neo4j a right choice is that it shares many of the qualities of a traditional 

relational database management system while using an entirely different data model that is well 

suited for use cases with densely connected entities. 

2.2.2 Cypher 

One of the defining features of Neo4j is its query language, Cypher. Cypher emerged from the 

Neo4j graph database's evolution and was initially intended to be used only alongside Neo4j. It 

was mostly an invention of Andrés Taylor, an engineer in Neo4j, in early 2011. The openCypher 

project made Cypher available to everyone in late 2015 to standardize Cypher as the common 

graph query language, just like SQL is in the RDBMS world (Francis, et al., 2018). 

Querying a graph database using the Java API would require visiting the whole graph and skip the 

nodes that don't match the requirements. Changes in the query would require to rethink the code, 

change it, and rebuild it. This is because an imperative language doesn't work well in pattern 

matching.  

Cypher is a declarative query language that is used to query a Neo4j database. Being declarative 

means that it focuses on the results, rather than on retrieving them, making it human-readable and 

expressive. This helps the developers focus on the domain model instead of learning complicated 

procedures to access the database. 

Data is evolving, not fixed, and, sometimes, could even be not known. Using object-oriented 

principles with a set of functions to access the data would mean revisiting the code regularly. 
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The solution to this problem is patterns and pattern matching. Cypher is based on these principles 

while being robust and straightforward. 

• Pattern: Describes the shape of data that need to be found in a dataset 

• Pattern matching: The process to find or match a pattern or sequence of patterns against 

a given dataset 

Some well-known graph query languages that implement pattern matching and can be used to 

query graphs are SPARQL, GREMLIN, and MQL. However, they require much work in 

maintenance and enhancements. Also, they couldn't be the query language for Neo4j, as they failed 

to meet one or more of its primary goals: 

• Declarative 

• ASCII art pattern 

• External DSL 

• SQL familiarity 

• Closures 

 

Figure 3: Cypher’s ASCII art pattern syntax 

Having considered all the above goals, Neo4j implemented a new declarative graph query 

language, Cypher, as a query language for the Neo4j graph database.  
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Cypher borrows much of its structure from SQL. This makes things easy for developers who are 

familiar with SQL. It also helped them achieve one of their primary goals of SQL familiarity. It 

was designed to be as powerful and capable as SQL is for Relational Database Management 

Systems but based on the components and needs of a graph database. 

 

Figure 4: Similarity between the structure of Cypher and SQL 

2.2.3 Graph Data Science Library 

Graph Data Science (GDS) library is an open-source add-on for Neo4j that is used for graph 

analytics. It was developed by Neo4j's Product Engineering and was released in 2020. It provides 



18 

 

a set of high-performance standard graph algorithms for Community Detection, Similarity 

Calculation, Centrality, Pathfinding, and Link Prediction, exposed as Cypher procedures. It also 

provides APIs for the implementation of custom algorithms. 

GDS library uses a specialized in-memory graph format to represent the data so that the algorithms 

run as efficiently as possible. So, before running an algorithm, it is required to load the data from 

the database to an in-memory computational graph, the graph catalog. The underlying data from 

the database is transformed into a data structure optimized for global traversals and aggregations 

for extremely efficient and scalable execution over large graphs. The data that is loaded can be 

filtered through graph projections. 

 

Figure 5: GDS library workflow 

There is no limit in the number of computational graphs stored in memory. There can be multiple 

with different names and can be used by their name as a reference to execute algorithms against 

different projections. The results of running an algorithm as a Cypher procedure with GDS can be 

either updating the computational graph, stream results out, or writing the results back to the 

database. 

2.2.4 APOC 

APOC is the largest and most widely used library for Neo4j. It was developed by a developer 

working in Neo4j as a standard utility library for common procedures and functions. With the 
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library's use, developers across platforms can only focus on writing their functionality for business 

logic and business requirements specific needs. 

APOC stands for both of the following: 

• Awesome Procedures on Cypher 

• A Package Of Components 

It was first released in 2016, with version 3.0.12 of Neo4j. It includes over 450 standard procedures 

that are well-supported and easy to run as separate functions or included in Cypher queries.  

APOC's collection of functions and procedures that are available for use in Cypher cover the 

following subjects: 

• Collection operations (sorting, min, max, etc) 

• Graph operations (indices and refactoring) 

• Text search 

• Conversions 

• Ranking 

• Geospatial operations 

• Data integration 

• Reporting 

• Getting a meta graph representing the graph 

2.2.5 Graph Algorithms 

Graph algorithms are used to calculate metrics for graphs, nodes, or relationships. They can 

provide insights on relevant entities in the graph, patterns, or existing sub-structures like 

communities. 

Many graph algorithms iteratively traverse the graph to compute the requested outputs using 

random walks, breadth-first or depth-first searches, or pattern matching. Because of the probably 
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immense number of possible paths with long distances, many of the approaches have high 

algorithmic complexity. There are optimized versions of algorithms that utilize specific structures 

of the graph, memorize already explored parts, and parallelize operations. 

The graph algorithms are divided into the following groups that represent different graph 

problems: 

• Community Detection 

• Centrality 

• Similarity 

• Path finding 

• Link prediction 

The graph algorithms that will be used to find the most critical nodes in the graphs are called 

Centrality algorithms. The word "important" can be interpreted in many ways, resulting in many 

different definitions of centrality. Finding what makes a node important in a specific use case 

defines the most suitable algorithm to solve the problem. Common approaches to distinguish 

important nodes are the count of directly related nodes, the ability of a node to link multiple 

clusters, and the nodes being related to other important nodes.  
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3 Solution Architecture 

In this solution architecture, the actor is a researcher studying graphs. They import data to create 

the graphs and run queries and procedures to explore them and enhance them. The actor’s 

interaction with the graph database is happening via the graph’s user interface, where they can use 

a query language to get the results desired. The outputs of this architecture may be the created 

graphs, query results, the results of algorithms or an enriched graph. 

 

Figure 6: The main components of the suggested solution 

As per Figure 6, all implemented and utilized modules live inside the Azure Cloud, Microsoft's 

Cloud SaaS, PaaS, and IaaS. This service was selected because of past personal experience over 

the equivalents from Amazon and Google. Combining the power of Neo4j, the leading graph 

database worldwide with the capabilities of Microsoft's cloud offering was key to extract the value 

from the imported data and conduct this research. 

The depicted architecture is a visual representation of the main components that compose the 

suggested solution, as described within this dissertation's boundaries. In no way is it a complete 

architecture of the systems used. The modules displayed are the following: 

• Neo4j Browser 

• Neo4j Graph DB 

• GDS library 
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• APOC library 

• Bloom 

Further below, a deeper analysis of each module will be performed to clarify what purpose each 

one serves and how they interact with each other. 

3.1 Neo4j Browser 

From the researcher's perspective, the neo4j Browser is the front-end module that the Researcher 

actor directly interacts with to access the rest of the system's functionalities. It's an online browser 

interface to query and view the data in the database. 

There are two ways to access the neo4j Browser, either directly from a web browser or through 

the neo4j Desktop, by connecting to the Graph DB. Specifically, in this case, both ways were 

utilized for separate tasks depending on the performance requirements of each task.  

This module offers rich graph visualization capabilities. Once a query is executed through the 

dedicated input field, the browser will populate the results directly in any of the three available 

and appropriate formats: 

• Visual graph 

• Table 

• ASCII-table 

The user may swap between them through the browser’s GUI and focus on specific areas of the 

query results through the visual view. 

3.2 Neo4j Graph DB 

This is the core graph database where all the connected data related to the platform are stored and 

retrieved from. 

It is the most critical module of this system, the place where all nodes and relationships reside. 

There are no other persistence layers or mechanisms. It manages transactions and analytics and is 

optimized to traverse data by utilizing the relationships within the graph to discover connections 

in-between. 
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Below is a high-level overview of Neo4j’s features. 

3.2.1 Multi-database 

Neo4j provides the capability to operate and manage multiple databases inside each installation of 

the Neo4j database management system. Data segmentation may apply depending on the use case 

and different needs that may arise, for example, separate databases. 

3.2.2 Neo4j Fabric 

Neo4j Fabric gives the option to break down graph data into smaller graphs and store them in 

different databases. These pieces can be accessed separately or combined to provide a view of all 

the data when needed. 

3.2.3 Cypher 

Cypher is a graph query language, as mentioned in the Technologies section, that enables reading 

and writing data into the graph. It is a simple yet powerful way to interact with both nodes and 

relationships. 

3.2.4 Data access controls 

Data security is a complex and significant task, all the more when handling sensitive information 

and regulatory aspects. There are many ways to secure data – access levels, roles, environments, 

permissions, architecture, etc. Neo4j provides these capabilities and regularly improves or adds to 

them. 

3.2.5 Reactive drivers 

Neo4j reactive drivers embrace the reactive manifesto (Bonér, Farley, Kuhn, & Thompson, 2014) 

and its principles by using specific drivers to pass data between the DB and clients. It is much 

faster and way more productive for individual professional developers to take advantage of this 

approach and process queries to return results. This influences communications between the driver 

and the database and can be managed dynamically based on each specific use case. 

3.2.6 “Graph First” approach 

Focusing on the left box of Figure 6 and the Neo4j graph database architecture, the one used for 

this research, it is visible that all layers are designed with graph data in mind. From Cypher queries 
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to disk storage, not a single decision was made without considering maximizing the speed of 

traversals during arbitrary graph algorithms. 

The graph data are stored in files, segmented by particular areas of the graph.  

• neostore.nodestore.db; stores node related data 

• neostore.relationshipstore.db: stores relationship related data 

• neostore.propertystore.db: stores the key/value properties 

• neostore.labelstore.db: stores label related data 

The data on the disk is all stored as linked lists of fixed-size records. The properties are stored as 

a linked list of property records that hold a key and a value and point to the next property. All 

nodes and relationships reference their first property record. Each node also references the first 

relationship in its relationship chain. Relationships reference their start and end nodes and the 

previous and next relationship records for the start and end node, respectively. By splitting data 

this way, highly performant graph traversals are enabled. 

On the contrary, non-native graph storage uses a columnar DB or other generic data stores instead 

of being explicitly developed for graph technologies. Although the techniques and technologies 

employed may be familiar with most the engineers, the gap between the two implementations 

(graph data against non-graph storage) increases concerns and potential risks on performance and 

scalability. In the scenario where a non-native graph database is live on production and retrieval 

queries are executed upon it continuously, the algorithms used to write those data, due to the non-

native nature of the infrastructure, will result in scattered data in distant places of the storage 

medium. Hence every time, in order to retrieve this data, they need to be reassembled from the 

storage, resulting in thousands of queries per minute.  

Graphs, in general, are prone to errors when writing data due to their nature. Each time a 

connection is stored, three write operations must be made. One operation to store the relationship 

and two updates, one on each connected node. If one of these operations fails, the graph becomes 

corrupted. Hence fully ACID-compliant transactions are commonly used to ensure integrity. 
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Native graph processing, the other main element when speaking about native graphs, is about the 

way operations are processed by the graph database. Specifically, index-free adjacency makes the 

most impact on the performance of native graph processing. 

Index-free adjacency is a concept designed to achieve the highest efficiency in storing and 

processing graph data. When writing data, this technique ensures that each node is stored directly 

next to its adjacent nodes and relationships, thus speeding up the process. 

Reading is then even faster, making retrieval easy without the need for indexes, or at least heavily. 

On the other hand, non-native databases rely mostly on indexes to optimize specific use cases of 

querying data, while at the same time slowing down the operations by using too many them. 

Index-free adjacency is way more efficient than working with indexes. Query times are 

proportional to the size of the graph, instead of increasing as the size of the data stored increases. 

Any large graph dataset, especially when speaking about Big Data, would become impossible to 

work with due to its size. Data graph queries execute at a constant pace regardless of the size of 

the graph. 

Relationships are easier to find within a graph because they are considered first-class entities and, 

as such, are easier to traverse in any direction as well. 

Figures 7 and 8 demonstrate the main differences between native and non-native graph queries. 

 
Figure 7:Native graph storage 
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Figure 8: Non-native graph storage 

To sum up, both native and non-native have their pros and cons. For example, a development team 

is more likely already familiar with a non-native graph database, or if the dataset is small the 

differences between the two are not important. 

But if scaling up is likely and the datasets are expected to grow, then a native approach is the safest 

choice. Either way, every tool has its own purpose.  

3.3 GDS library 

As described in Chapter 2, this is an officially supported library and most commonly used for its 

graph algorithms. Graph algorithms enable the capability to analyze connected data as their 

calculations are built to operate on relationships. They enumerate steps to process a graph in order 

to discover its general qualities and specific quantities. 

The ones mainly explored within the scope of this research are presented in Figure 6 on the top-

right box: 
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• Closeness Centrality 

• Betweenness Centrality 

• Eigenvector 

• PageRank 

• Triangle Count 

• Local Clustering Coefficient 

3.4 APOC library 

As described in Chapter 2, this is a standard utility library for Neo4j, including various procedures 

and functions. APOC was created to provide developers a well-written, consistent alternative to 

writing essential custom functions from scratch, thus avoiding possible duplication and creating 

technical debt. With the addition of APOC, the system leveraged its functionality to allow focusing 

mainly on business logic. It is the most popular library for neo4j at the time, containing more than 

450 standard procedures that may run independently or included within Cypher queries. 

Specifically, for this research, the subgraphNodes procedure was used mostly. This procedure 

finds subgraph nodes that can be reached from the start node by following the relationships. 

3.5 Bloom 

Bloom is a fairly new addition to the Neo4j products. It is a visualization tool that may cover a 

user’s needs without any programming skills or other relevant knowledge. It provides data 

exploration through a GUI that enables users to navigate and query the connected data.  

3.6 Block diagram summary 

Figure 6 is a high-level block diagram depicting the modules used to complete this piece of work. 

It is certainly not a complete product, and as such, the actor’s persona is a Researcher with the 

skillset needed to install, setup, manage and maintain the system as well as execute the appropriate 

queries to deduct their results. This could be used for future developments as a subset of tools to 

create a broader set of functionalities packaged in a much richer set of features. A typical block 

diagram, as described by Neo4j, with multiple different actors that interact with the system via 

front-ends to retrieve data and perform their researches, is displayed further below in Figure 9. 
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Figure 9: Neo4j block diagram (https://neo4j.com/product/) 

  

https://neo4j.com/product/


29 

 

4 Graph Algorithms 

4.1 Centrality algorithms 

The idea of centrality was first introduced in a research conducted by Alex Bavelas at the Group 

Networks Laboratory, M.I.T., in 1948. The studies were about human communication in small 

groups with the hypothesis that there was a relation between the structural centrality and the 

influence in group processes. That first research triggered many more, the results of which were 

often confusing or contradictory. Since then, many algorithms and methods are implemented to 

detect nodes that have some importance in a graph. 

Centrality algorithms are used to understand better the roles of nodes in a graph and their impact 

on that network. They are useful because they help understand group dynamics such as 

accessibility, the speed at which things spread, and bridges between groups. Many of these 

algorithms were implemented for social network analysis. However, they are also being used in a 

variety of industries and fields. 

4.1.1 Degree Centrality 

The Degree Centrality algorithm is the simplest one in concept. It is often used as a baseline metric 

of a graph’s connectedness. It was proposed by Linton C. Freeman in 1979 in his paper “Centrality 

in Social Networks: Conceptual Clarification”, where he examined the concepts of both point and 

network centrality (Freeman L. C., 1978). 

A node’s degree is defined as the number of edges tied to it. In a directed graph, there is usually 

the need for two types of degree centrality, the in-degree, and the out-degree. The in-degree refers 

to the number of edges that are directed to the node, while the out-degree is the number of edges 

that start from the node directing to other nodes. 
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Figure 10: Doug has the highest in-degree score and Alice has the highest out-degree score 

In social networks, a high in-degree of a node is an indication of popularity. In a study for an 

epidemic, such nodes are considered at high risk to get contaminated or spread the contamination. 

Although simple, degree centrality has significant usability in many networks and can provide 

valuable information for the graph. 

A graph’s average degree is the total number of edges divided by the total number of nodes. The 

average degree alone cannot provide much insight as it can be heavily skewed by high degree 

nodes. The degree distribution is the probability that a randomly selected node will have a certain 

number of edges. Those measures, along with the minimum degree, maximum degree, and 

standard deviation, provide a quick estimation of the graph’s potential for spreading things. 

Degree centrality is very useful when there is an interest in immediate connectedness or near-term 

probabilities. However, it is also applied to global analysis while exploring the entire graph. 

4.1.2 Closeness Centrality 

The closeness centrality of a node is defined as the average shortest distance of the node from all 

other nodes in the graph. The definition was made by Alex Bavelas in 1950, in his paper 

“Communication patterns in task-oriented groups”, a psychological research in group 

communication. 

Closeness centrality measures how central a node is to a graph by calculating the shortest paths to 

all other nodes. It is a way of detecting nodes that can spread information efficiently through a 
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subgraph. Nodes that have the highest closeness scores have the shortest distances from all other 

nodes. 

The algorithm calculates the lengths of the shortest paths between all pairs of nodes in a graph and 

then calculates the sum of these distances for every node. The closeness centrality score for a node 

is the inverted result of its sum of shortest distances. 

 

Figure 11: C is the best connected node in this graph 

It is common to normalize these scores so that they represent the average lengths of shortest paths 

rather than their sums. This normalization allows comparing closeness centrality scores of nodes 

among graphs with different sizes. 

The original algorithm, as explained, can only be applied to connected graphs, as the distance 

between disconnected components is infinite. If there is at least one node that is unreachable from 

all other nodes, its sum of distances from all other nodes is infinite. In practice, variations of the 

original formula are preferred to handle cases with disconnected groups. 

A variation of the original formula was proposed by Stanley Wasserman and Katherine Faust in 

their book (Wasserman & Faust, 1994), which is an improved version for calculating closeness in 

graphs with many disconnected subgraphs. The formula returns the ratio of the fraction of nodes 

that are reachable in the group to the average distance from the reachable nodes. This formula is 

useful for detecting important nodes in the entire graph rather than within their subgraph, as nodes 

from small components will get lower closeness scores. 
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Another variation of the original algorithm is the Harmonic Closeness Centrality (Marchiori & 

Latora, 2000). Also known as Valued Centrality, it is a variation of the original Closeness 

Centrality algorithm, implemented to solve the issue with disconnected graphs. This improved 

version sums the inverse of the distances of a node to all other nodes. As a result, infinite values, 

caused by unreachable nodes, become irrelevant. As with the original formula, it is also possible 

to calculate the normalized harmonic centrality of nodes. 

In general, closeness centrality is a very useful measure for finding nodes hat are best placed to 

influence quickly a big part of the graph. However, in a highly connected network it is very likely 

that all nodes will have similar scores. Sometimes, it is more useful to use Closeness Centrality to 

find important nodes within clusters. 

4.1.3 Betweenness Centrality 

Betweenness centrality was introduced in the paper “A set of measures of centrality based on 

betweenness”  (Freeman L. , 1977) and is used to find those nodes in a graph that act as bridges 

among groups. 

First, it calculates the shortest paths between every pair of nodes in the graph. The score for each 

node is based on the number of the calculated shortest paths that pass through the node. The nodes 

with the highest scores are those that lie on the biggest numbers of shortest paths. 

 

Figure 12: Alice is the main broker in this network 
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In this approach, the importance of the nodes lies in the fact that sometimes the most important 

ones in a graph are not those with the most connections. Nodes that connect groups may have the 

most control over them and are able to facilitate the flow of information. Betweenness centrality 

is typically used to find nodes that serve as a bridge from one part of a graph to another. 

A node, as well as a relationship, can be considered as bridges in a network. They can be identified 

in a graph by searching for the node or relationship that would cause disconnection in the graph 

when removed. A group of nodes can also have a betweenness score if treated as a node. 

Betweenness centrality is typically used to find bottlenecks, control points and vulnerabilities in a 

network. 

4.1.4 Eigenvector Centrality 

Eigenvector Centrality, or Eigencentrality, was proposed in the paper “Power and Centrality: A 

Family of Measures” (Bonacich, 1987) and was the first centrality measure considering the 

transitive importance of a node in a graph, rather than only its direct importance. 

The nodes’ scores are relative, based on the concept that nodes that connect to high-scoring nodes 

get a higher score. Two nodes with the same number of connections can have different eigenvector 

scores depending on the nodes with which they connect. 

 

Figure 13: The Home page has the highest Eigenvector Centrality because it has incoming links from all other pages 
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A high score means that the node has a greater level of influence within the network. A node with 

a high degree score will have a relatively low eigenvector centrality score if its connections are 

with low-scored nodes. Also, a node with high betweenness centrality score would have a low 

eigenvector centrality score if it is far from the powerful nodes. 

Unlike degree centrality, which weighs every contact equally, the eigenvector weighs contacts 

according to their centralities. Eigenvector centrality can also be considered as a weighted sum of 

not only direct connections but also indirect connections of every length. Thus, it considers the 

entire pattern in the network (Bonacich, 2007). 

Eigenvector centrality is useful when there is a need to identify nodes that have a wide-reaching 

influence within a network. 

4.1.5 PageRank 

PageRank is a variant of the Eigenvector Centrality, that measures the transitive influence of nodes 

by considering the influence of neighbors and their neighbors. It was developed by Larry Page and 

Sergey Brin at Stanford University in 1996, as part of a research about a search engine. The idea 

behind their implementation was that information on the web should be ordered by link popularity. 

This means that a page should rank higher if there are many links to it by other pages. The first 

paper describing PageRank, as part of the Google search engine, was published in 1998 (Brin & 

Page, 1998). 

In the beginning of the first iteration of the algorithm, all nodes have the same PageRank score. 

This value used to be 1, but in later versions of PageRank each node begins with a value between 

0 and 1. In the end of the iteration, each node has granted equally its PageRank score to the nodes 

it links to. The PageRank transferred by an outbound link is equal to its own PageRank score 

divided by the total number of its outbound links. 

In PageRank, links from a node to itself are ignored. Also, regardless of the number of links from 

a node to a node, as long as a connection between them exists, it counts as one. Nodes with zero 

out-degree are assumed to be connected to all other nodes in the graph. 

PageRank’s algorithm takes into account a damping factor. This is the probability that an action 

will continue further with another hop. In case of a person that clicks randomly on links, they will 



35 

 

eventually stop clicking at some point. The probability, at every step, that they will continue with 

a new click is the damping factor and it is usually set around 0.85. 

Although the PageRank is a variant of the Eigenvector centrality, the fact that it uses in-degrees 

makes it more suitable for use in directed graphs. However, it does not make sense to use PageRank 

in undirected graphs.  

4.2 Community Detection Algorithms 

A network is considered to have community structure when its nodes can be grouped into sets 

within which they are densely connected. Communities can overlap, as long as their members are 

more related within the group than with nodes outside the group. The identification of these groups 

provides valuable insight into group behaviors and emergent phenomena.  

Community detection helps in revealing clusters, isolated groups and the overall graph’s structure. 

These findings can help when there is a need to find similar behavior or preferences within groups. 

Also, Community detection algorithms are usually used early in an analysis to plan the next steps 

correctly based on the graph’s characteristics. It is also common to use them to produce graph 

visualizations for general inspection. 

4.2.1 Triangle Count 

Triangle Count is a Community Detection algorithm that measures the number of triangles formed 

by nodes and to what degree the nodes tend to cluster together. A triangle is defined as a set of 

three nodes where each one has undirected relationships with the other two.  

A Triangle Count run for a node, calculates how many triangles pass through the node and the 

probability that its neighbors are connected among them. It can also be used globally for the 

evaluation of the whole graph. 
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Figure 14: 'Michael' node has the most triangles 

Triangle Count is useful when there is a need to determine a group’s stability or as part of 

calculating general network measures. It is popular in social network analysis for detecting 

communities. 

4.2.2 Clustering Coefficient 

The Clustering Coefficient algorithm measures the degree to which a group is clustered compared 

to the maximum degree that it could be clustered. Triangle Count is used in its calculations to 

provide a ratio of existing triangles to possible relationships. The maximum value 1 means that the 

group is a clique with its every node connected to all other nodes. 

The clustering coefficient algorithm can be run locally and globally. 

The local clustering coefficient of a node is the probability that its neighbors are also connected 

among them. This computation involves triangle counting. A node’s clustering coefficient can be 

found by multiplying the number of triangles passing through it by two and then dividing that by 

the maximum number of relationships in the group, which is equal to the degree of that node, 

minus one. 

The global clustering coefficient is the normalized sum of all the local clustering coefficients. 

Clustering coefficients is an effective means to find obvious groups like cliques, in which every 

node is related with all other nodes, but there is also the ability to specify thresholds to set levels.  
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Clustering Coefficient calculates the probability that random nodes will be connected. It can also 

be used to quickly evaluate the cohesiveness of a specific group or the whole graph. The Clustering 

Coefficient and Triangle Count algorithms are usually presented together because they are often 

used together. These algorithms combined are used for resiliency estimation and exploration of 

network structures. 

4.2.3 Weakly Connected Components 

The Weakly Connected Components, or just Connected Components algorithm finds subgraphs in 

an undirected graph, in which every node is reachable from every other node of that same group, 

without considering the direction of relationships. 

 

Figure 15: The graph has two weakly connected components, each with three nodes 

It is often used in early steps of analysis to understand the graph’s structure. It is useful to run 

Connected Components as a preparatory step for general graph analysis to test whether a graph is 

connected. This quick test helps to avoid running algorithms on a disconnected component of a 

graph and getting wrong results. 
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4.2.4 Strongly Connected Components 

Strongly Connected Components is run on a directed graph to discover sets of connected nodes in 

which all nodes are reachable from all other nodes in the same set, following the direction of 

relationships, but not necessarily directly. 

 

Figure 16: The graph has three strongly connected components 

It differs from the Weakly Connected Components algorithm because it needs a path to exist in 

both directions, whereas Strongly Connected Components only needs a path to exist between two 

nodes regardless of the directions. 

Strongly Connected Components algorithm is also used in early steps of graph analysis to see the 

graph structure or for tight clusters identification that might need independent investigation. A 

strongly connected component can be useful for profiling similar behaviors or trends for 

applications like recommendation engines. It can also be used to discover and collapse groups into 

single nodes for further analysis.  



39 

 

5 Experimental Study 

5.1 Experimental methodology 

The problem investigated in this experiment is the potential information spread in social networks 

by using common centrality algorithms. For this purpose, datasets were collected that contain 

relationships among social network pages. The datasets were chosen based on their stats, sizes and 

because of their identical structures. 

To run the experiment, Neo4j was selected as the graph database management system to store, 

process and query the graphs. The choice was made mainly because of Neo4j’s fast read and write 

performance, its installation options and the query language that accompanies it, Cypher. Because 

of the expensiveness of the graph algorithms that were evaluated, the database was hosted in 

Microsoft Azure cloud, in a virtual machine with enough memory and disk space to run them 

efficiently. 

After the Azure VM and Neo4j installations, the data was imported into the database. The graph 

analysis process followed to help get an idea of the graphs’ structures. In this phase, community 

detection algorithms were used to explore the graphs’ connectedness. Also, the graphs’ stats were 

calculated and gathered, such as the number of nodes and edges, the degree distribution and the 

density. 

In the next phase, for each graph, the centrality scores from the five different centrality algorithms 

were calculated and written as node properties. The centrality algorithms chosen for evaluation for 

this experiment’s purpose were Degree, Closeness, Betweenness, Eigenvector and PageRank. 

Next, for each graph and for each centrality measure, the n nodes with the highest centrality scores 

were found. The number n of the top nodes was calculated as the 0.05% of total nodes in the graph. 

Then, for these nodes, the distinct nodes that direct to them were found beginning with neighbor 

nodes. The maximum distance from the top nodes was increased by 1 in each step, until the number 

of distinct nodes stopped increasing. 

After having collected all the results and converted them to percentages of the total graphs, the 

algorithms’ performances were interpreted and compared for each graph. The results show for 

each centrality algorithm the percentage of the graph that will directly receive the information, the 
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maximum percentage of information spread that it can achieve, the spread’s rate and the number 

of hops that are required to achieve the maximum spread.  

5.2 Datasets 

Facebook is a social network that allows users to create their profiles and interact with each other. 

As it is used worldwide by millions of users, it provides a great example of a large social graph, 

for which one can find multiple open datasets that are available for research. 

For the purpose of this study, datasets are chosen that are provided by the Network Repository and 

represent Facebook pages and the “likes” among them. The three datasets (Ahmed, Rossi, & K., 

2015) concern pages of artists, public figures and politicians and all three have the exact same 

format where a node represents a Facebook page and an edge represents the like from or to a page. 

 

Figure 2: Sample subgraph of the artists’ Facebook pages graph 

The chosen datasets are quite simple in their structure with one node having two properties and 

the nodes connecting with directed relationships of one type. 

Node Properties 

Artist | PublicFigure | Politician Id, name 

 

http://networkrepository.com/


41 

 

Relationship Properties 

LIKES None 

 

5.2.1 Artists Facebook pages 

The initial graph model for the Artist Facebook pages dataset is shown in the Figure below. An 

Artist node can be linked to another or the same Artist node with the LIKES relationship type. An 

artist has two properties; the artist’s id, which is unique, and their name. The graph is directed, 

with the relationship “LIKES” showing if a page likes another one or is liked by it. 

 

Figure 3: The Artist Facebook pages graph model 

The data is imported in Neo4j with the following Cypher commands that read the CSV files which 

are uploaded in Neo4j’s import folder. The first command creates the nodes and the second one 

creates the edges that link them. 

:auto USING PERIODIC COMMIT 1000 

LOAD CSV WITH HEADERS FROM “file:///fb-pages-artist.nodes.csv” AS row 

WITH row WHERE row.new_id IS NOT NULL 

MERGE (:Artist {id: row.new_id, name: row.name}) 

 

:auto USING PERIODIC COMMIT 1000 

LOAD CSV WITH HEADERS FROM “file:///fb-pages-artist.edges.csv” AS row 

MATCH (source:Artist {id: row.src}) 

MATCH (destination:Artist {id: row.dst}) 

MERGE (source)-[:LIKES]->(destination) 
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The graph consists of 50492 nodes connected with 819096 edges. To further understand the graph 

and draw better conclusions later, it is examined with Cypher queries. First, the existence of self-

linking nodes is checked. Such an existence means that we should count them while calculating 

the maximum number of relationships the graph could have, in order to have a view at the graph’s 

density.  

MATCH (a)-[r:LIKES]->(a) RETURN a,r, count(a) 

 

Figure 4: Artists-216 nodes that link to themselves 

There are 216 “self-liking” nodes, so the maximum number of relationships between all artists 

would be 50492².  

The node with the highest number of incoming relationships has 1290 likes, whereas the highest 

number of pages liked by a single node is 1237. These high numbers are far from the low average 

values, and the low standard deviations show that most nodes do not have so many relationships 

among them. For the purpose of this study, only the number of incoming relationships matters and 

only this will be referred as “likes”. The reason is that a piece of information in a page is directly 

visible only to the pages that like them. 
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Minimum Likes 0 

Maximum Likes 1290 

Average Likes 16.22 

Standard Deviation Likes 37.84 

Table 1:The artist nodes’ in-degree distribution 

As shown in the pie chart below, there are many nodes with 0 likes. Most nodes receive up to 50 

likes and there are less than 10 nodes that are liked by more than 1000 pages. 

The nodes that have 0 in-degree are 2340. This means that 4.63% of the graph’s nodes cannot 

spread the information at all. 

According to the frequency histogram in Figure 18, the graph can be assumed to be scale free, 

meaning that it follows a power law. This means that the characteristics of the graph are regardless 

of the number of nodes. This is plausible as a social graph grows over time and pages that are liked 

by many tend to attract more than pages with small numbers of likes. This is the idea of preferential 

attachment, that is particularly observed in social networks.  

Likes

0

1-50

51-100

101-500

501-1000

1001-1290

Figure 17: Likes grouped by ranges 
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Figure 18: Frequency histogram for number of likes per artist page  

 

Figure 19: An example power-law graph. By User:Husky - Own work, Public Domain, 

https://commons.wikimedia.org/w/index.php?curid=1449504 
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With the use of GDS library, a graph “myGraph” is created, as required, to run the Triangles Count, 

Local Clustering Coefficient, Weakly Connected Components and Strongly Connected 

Components algorithms. 

CALL gds.graph.create( 

  'myGraph', 

  'Artist', 

  { 

    LIKES: { 

      orientation: 'UNDIRECTED' 

    } 

  } 

) 

 

CALL gds.triangleCount.stats('myGraph') 

YIELD globalTriangleCount 

 

CALL gds.localClusteringCoefficient.stats('myGraph') 

YIELD averageClusteringCoefficient 

 

CALL gds.wcc.stream({ 

  nodeProjection: 'Artist', 

  relationshipProjection: 'LIKES' 

}) 

YIELD nodeId, componentId 

RETURN gds.util.asNode(nodeId).name AS Name, componentId AS Component 

 

CALL gds.alpha.scc.stream({ 

  nodeProjection: 'Artist', 

  relationshipProjection: 'LIKES' 

}) 

YIELD nodeId, componentId 

RETURN gds.util.asNode(nodeId).name AS Name, componentId AS Component 

Finally, the graph’s stats are collected and shown below. 
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Nodes 50492 

Edges 819096 

Density 0.0003 

Average Degree 32.4 

Minimum Degree 1 

Maximum Degree 1468 

Global Triangle count 1423840 

Average Clustering Coefficient 0.097 

Weakly Connected Components 1 

Strongly Connected Components 50492 

Table 2: Artist Facebook pages graph stats 

5.2.2 Public Figures Facebook pages 

By running the same Cypher queries as for the first dataset, with nodes labeled with 

“PublicFigure”, the new graph is created, and its stats are gathered in Table 3.  

Like in the first dataset, the existence of self-linking nodes is checked, and 76 self-liking nodes are 

discovered.  
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Figure 20: Public Figures-76 nodes that link to themselves 

In public figures graph, 1926 nodes have 0 in-degree. This means that 16.67% of the graph nodes 

cannot spread the information at all.  

Minimum Likes 0 

Maximum Likes 274 

Average Likes 6.054 

Standard Deviation Likes 12.93 

Table 3: The public figure nodes’ in-degree distribution 

In the frequency histogram below, it is observed that public figures distribution is similar to that 

of artists but with lower values due to the graph’s size. The average in-degree of the graph is much 

smaller than the maximum. The graph, same as with the previous one, can be assumed to be scale 

free. 
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Figure 21: Frequency histogram for number of likes per public figure page 

After running the Weakly Connected Components and Strongly Connected Components 

algorithms, the results show that the graph is connected and 9185 strongly connected components 

were discovered. This actually means that there is one strongly connected component of 2375 

nodes and the remaining 9184 nodes form single node components with paths of 0 length. 

Nodes 11559 

Edges 67099 

Density 0.0005 

Average Degree 11.6 

Minimum Degree 1 
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Maximum Degree 326 

Global Triangle count 13706 

Average Clustering Coefficient 0.129 

Weakly Connected Components 1 

Strongly Connected Components 9185 

Table 4: Public Figure Facebook Pages graph stats 

5.2.3 Politicians Facebook pages 

The third graph created, which consists of Facebook pages of politicians, has 5908 nodes 

connected with 41729 edges. Again, there are 23 self-liking pages and 1011 pages have 0 likes, 

meaning that 17.11% of pages cannot spread information.  

 

Figure 22: Politicians-23 nodes that link to themselves 

 

Minimum Likes 0 
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Maximum Likes 225 

Average Likes 7.06 

Standard Deviation Likes 12.75 

Table 5:The politician nodes’ in-degree distribution 

As with the previous graphs, the network seems to be scale free. 17 pages have more than 100 

likes and only two of them are liked by more than 200 other pages. 

 

Figure 23: Frequency histogram for number of likes per politician page 

Finally, as shown in the graph’s stats below, the graph is connected, with practically no strongly 

connected components, as the 5908 strongly connected components are single nodes. 

Nodes 5908 
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Edges 41729 

Density 0.0012 

Average Degree 14.1 

Minimum Degree 1 

Maximum Degree 323 

Global Triangle count 127858 

Average Clustering Coefficient 0.289 

Weakly Connected Components 1 

Strongly Connected Components 5908 

Table 5: Politicians Facebook Pages graph stats 

5.3 Data processing 

In this phase, the graph models are being enriched with new properties that will hold the values of 

the centrality scores as computed with each centrality algorithm. 

5.3.1 Degree Centrality 

The following command sets a new property on the Artist nodes. The “likes” property of a node 

holds the number of pages that like the node. 

MATCH (p:Artist | PublicFigure | Politician) 

with p, size((p)<-[:LIKES]-()) AS likes 

set p.likes = likes 

5.3.2 Closeness Centrality 

In this command, GDS library’s closeness centrality algorithm is used which writes on each node 

its centrality score as a property named “closeness_centrality”. 

CALL gds.alpha.closeness.write({ 

  nodeProjection: 'Artist | PublicFigure | Politician', 

  relationshipProjection: 'LIKES', 

  writeProperty: 'closeness_centrality' 

}) YIELD nodes, writeProperty 
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5.3.3 Betweenness Centrality 

Here, GDS library’s betweenness centrality algorithm is used for calculating the score for each 

node and writing it in a new node property “betweenness_centrality”. 

CALL gds.alpha.betweenness.write({ 

  nodeProjection: 'Artist | PublicFigure | Politician', 

  relationshipProjection: 'LIKES', 

  writeProperty: 'betweenness_centrality' 

}) YIELD nodes, minCentrality, maxCentrality, sumCentrality 

5.3.4 Eigenvector Centrality 

In the following command running the eigenvector centrality algorithm, the scores are calculated 

with maximum normalization, meaning that all scores are divided by the maximum score. The 

scores will be written in node properties called “eigenvector”. 

CALL gds.alpha.eigenvector.write({ 

  nodeProjection: ‘Artist | PublicFigure | Politician’, 

  relationshipProjection: 'LIKES', 

  normalization:'max', 

  writeProperty: 'eigenvector' 

}) 

YIELD nodes, iterations, dampingFactor, writeProperty 

5.3.5 Page Rank 

The last algorithm chosen for evaluation, PageRank, is run with the following command with 

damping factor set to 0.85 and maximum number of iterations set to 20. The PageRank scores are 

stored in “pagerank” node properties. 

CALL gds.pageRank.write('myGraph', { 

  maxIterations: 20, 

  dampingFactor: 0.85, 

  writeProperty: 'pagerank' 

}) 

YIELD nodePropertiesWritten AS writtenProperties, ranIterations 

5.3.6 Final data model 

After calculating the centrality scores and writing them on the nodes as properties, the data model 

in its final version is shown in Figure 5. 
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Figure 24: The Artist data model with the centrality scores added as node properties 

5.3.7 Centrality Scores 

 Degree Closeness Betweenness Eigenvector PageRank 

1 Yuna Alvara 

(1290) 

Beyoncé 

(0.3987) 

Justin Bieber 

(14005427.15) 

Calvin Harris 

(1.0) 

The Police 

(84.60) 

2 Beyoncé 

(1230) 

Lady Gaga 

(0.3970) 

Michael Jackson 

(13061464.76) 

Yuna Alvara 

(0.81) 

Robert 

Downey Jr 

(73.52) 

3 PLASTIKO 

(1053) 

Yuna Alvara 

(0.3967) 

Adele 

(11043352.61) 

F4ST (0.74) Joseph 

Capriati 

(72.20) 

4 The Beatles 

(1018) 

Adele (0.3961) Coldplay 

(9199130.96) 

Diplo (0.72) Excision 

(71.26) 

5 Diplo (1013) Taylor Swift 

(0.3955) 

Rihanna 

(8869733.01) 

Joseph Capriati 

(0.70) 

Yuna Alvara 

(66.64) 

Table 6: Top artist nodes by centrality score 
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 Degree Closeness Betweenness Eigenvector PageRank 

1 Oprah Winfrey 

(274) 

Daniel Amos 

(0.348) 

Ross Mathews 

(13869310.54) 
成語蕎 Jenny 

Cheng (1) 

Dwayne The 

Rock Johnson 

(25.69) 

2 煎熬弟 鍾明軒 

(221) 

Dwayne The 

Rock Johnson 

(0.3479) 

Susie Meister 

(13795055.96) 
熊熊 Bear Genie 

(0.65) 

Oprah 

Winfrey 

(25.28) 

3 Sergio Carlo 

(207) 

Hugh Jackman 

(0.346) 

Tony Robbins 

(12872679.63) 
白吉勝&徐小

可 Love 白宮這

一家 (0.62) 

Hugh 

Jackman 

(20.39) 

4 Lulu 黃路梓茵 

(204) 

Oprah Winfrey 

(0.342) 

Kris Carr 

(10076673.25) 
小小瑜 張芯瑜 

(0.62) 

Daniel Amos 

(19.04) 

5 白吉勝&徐小

可 Love 白宮

這一家 (203) 

Sergio Carlo 

(0.339) 

Latrice Royale 

INC. 

(9736722.34) 

蘇哥哥 蘇銘翔 

(0.55) 

貝兒 

Joannabelle 

(18.06) 

Table 7: Top public figure nodes by centrality scores 

 

 Degree Closeness Betweenness Eigenvector PageRank 

1 Barack Obama 

(225) 

Barack Obama 

(0.3588) 

Manfred Weber 

(207104.25) 

Johannes 

Schraps (1) 

Sir Peter 

Bottomley 

MP (27.77) 

2 Katarina 

Barley (208) 

Mariya Gabriel 

(0.3235) 

Hillary Clinton 

(158919.74) 

Klaus Mindrup 

(0.79) 

Barack 

Obama 

(23.89) 

3 Joachim 

Herrmann(200) 

Michael Roth 

(0.3205) 

Michael Roth 

(143227.16) 

Simone Raatz 

(0.77) 

Manfred 

Weber 

(21.45) 

4 Katja Mast 

(174) 

Niels Annen 

(0.3174) 

Terri Butler MP 

(135783.27) 

Frank Junge 

(0.68) 

Joachim 

Herrmann 

(15.6) 

5 Heike 

Baehrens (149) 

Mariano Rajoy 

Brey (0.3125) 

Angela Merkel 

(123823.37) 

Hubertus Heil 

(0.62) 

Angela 

Merkel 

(12.58) 

Table 7: Top politician nodes by centrality scores 

 



55 

 

5.4 Results and Discussion 

In order to be able to draw better conclusions, it was decided to start the spread from the top 0.05% 

of the population in each graph. For the artists’ graph, top 25 nodes according to each centrality 

algorithm were chosen to post the information. For the other two graphs, 0,05% of all nodes means 

6 and 3 nodes, respectively. 

The following command uses an APOC procedure, which starting from given nodes, expands to 

subgraph nodes that are reachable following the specified relationship with the specified direction 

with a maximum set distance. More specifically, the specific command below returns the number 

of distinct nodes that are related to the 25 nodes with the highest in-degree with direction towards 

them and are maximum 2 hops away, plus the 25 starting nodes, as the minimum level is set to 0. 

MATCH (p:Artist) 

WITH p ORDER BY p.likes DESC LIMIT 25 

CALL apoc.path.subgraphNodes(p, { 

    relationshipFilter: "<LIKES", 

    minLevel: 0, 

    maxLevel: 2 

}) 

YIELD node 

RETURN count(distinct node) 

This procedure was run several times for each centrality measure with the maximum level starting 

from 1 and increasing by one in each step, until the number of nodes reached stopped increasing. 

The results collected for each graph are shown in the tables below.  

Hops Degree 

Centrality 

Closeness 

Centrality 

Betweenness 

Centrality 

Eigenvector 

Centrality 

PageRank 

1 10805 7043 261 8180 7557 

2 32911 29079 3891 31551 28946 

3 38178 36563 12981 38749 36490 

4 39152 37879 21039 40032 37851 

5 39445 38169 25229 40335 38164 

6 39565 38246 26372 40414 38246 
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7 39632 38263 26760 40438 38263 

8 39679 38270 26955 40439 38270 

9 39701 38270 27063 40439 38270 

10 39723 38270 27112 40439 38270 

11 39739 38270 27126 40439 38270 

12 39743 38270 27130 40439 38270 

13 39743 38270 27131 40439 38270 

Table 8: Number of artist nodes reached per maximum number of hops for each centrality measure 

As expected, the centrality measure with the best direct reach of nodes to spread information is the 

degree. In 12 hops the potential spread is maximized, and the information can reach up to 78.7% 

of the graph. Eigenvector Centrality achieves to have a slightly higher potential spread percentage 

(80%) which it achieves in 8 hops. However, the initial information transmission to the starting 

nodes’ neighbors is significantly lower. Eigenvector starts prevailing over Degree in 3 hops’ 

distance. The lowest performance in this case is observed by Betweenness Centrality which 

spreads information in significantly less nodes and achieves its highest spread in 13 hops. 

Closeness Centrality and PageRank have very similar performance, as they both need 8 hops for 

the maximum spread and the numbers of nodes reached in each hop are very close to each other. 

This is because the sets of 25 nodes each are very similar as they share the same 20 artists. 

As seen in the chart below, Degree, Closeness, Eigenvector and PageRank centralities have similar 

rates of spread. Degree and Eigenvector are very close in their performances, with Degree 

Centrality transmitting directly the information to as many nodes as possible and Eigenvector 

achieving the highest possible spread.   
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Figure 25: Centrality algorithms’ performances in information spread for artists’ graph 

In Public Figures’ graph, the spreads are very different for each centrality measure. When promoter 

nodes are selected by their high betweenness score, the performance is again not satisfying 

compared to the other centrality measures. PageRank seems to have a clear leverage as a centrality 

measure used to achieve high spread (up to 59%), although Degree and Closeness Centralities 

achieve to start with higher numbers of direct information transmission. By selecting promoters 

according to their PageRank score, more nodes can be reached from 3 hops distance and on than 

when selecting any other centrality measure. Regardless of the measure selected, spread in this 

network with this percentage of promoting nodes can be maximized in 8 hops. 

Hops Degree 

Centrality 

Closeness 

Centrality 

Betweenness 

Centrality 

Eigenvector 

Centrality 

PageRank 

1 1055 792 87 483 617 

2 3463 3038 524 1148 3247 

3 4952 4651 1812 2502 5501 
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4 5546 5273 2875 4083 6479 

5 5717 5447 3332 4844 6745 

6 5746 5472 3510 5075 6805 

7 5751 5480 3572 5132 6818 

8 5752 5480 3585 5142 6822 

Table 9: Number of public figure nodes reached per maximum number of hops for each centrality measure 

 

Figure 26: Centrality algorithms’ performances in information spread for public figures’ graph 

For the last case of politicians’ pages graph, Degree Centrality is the dominant centrality measure 

for starting nodes selection. With Degree Centrality, a maximum spread of 56.99% can be achieved 

with 9 hops. The nodes with the highest Betweenness Centrality scores can spread information to 

only up to 1.64% of the graph with four hops. Closeness centrality and PageRank follow Degree 

Centrality with slightly lower performances, both able to achieve up to 56.53% with 9 hops. 

Hops Degree 

Centrality 

Closeness 

Centrality 

Betweenness 

Centrality 

Eigenvector 

Centrality 

PageRank 
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1 623 360 5 192 412 

2 1823 1566 85 494 1494 

3 2802 2645 94 1150 2674 

4 3162 3106 97 1824 3166 

5 3318 3280 97 2205 3282 

6 3352 3320 97 2346 3320 

7 3360 3332 97 2411 3332 

8 3366 3339 97 2439 3339 

9 3367 3340 97 2440 3340 

10 3367 3340 97 2441 3340 

Table 10: Number of politician nodes reached per maximum number of hops for each centrality measure 

As seen in the chart below, the centrality measures that worked better in this network are Degree, 

Closeness and PageRank. Their rates of spread seem very similar and their performances are very 

close. Betweenness Centrality is proved to be a bad choice for selecting the promoting nodes. 
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Figure 27: Centrality algorithms’ performances in information spread for politicians’ graph 

The percentage of spread achieved in the first network is much higher than those of the other two, 

although the artists graph has the lowest density of the three. Also, its average clustering coefficient 

is 0.097, the lowest of the three.  

Selection of promoters based on their Eigenvector score seems to work well for this network. In 

the first hop, the information has reached the 16,2% of the whole network. In the next hop, an 

impressive 62,5% have received it. This is already much higher than the final percentage of 

information spread in the other two networks.  

The 25 nodes with the highest Eigenvector scores have all high in-degrees, with the lowest one 

having 148 likes, which is much higher than the average in-degree. Also, the 11.33% of the graph 

nodes have 0 likes, so if the information reaches them, they disrupt the spread. 

In the next graph, the centrality measure with which the best promoter nodes were chosen was 

PageRank. In this graph, there is a strongly connected component of 2375 nodes and the average 

clustering coefficient is higher than that of the previous graph. The density is also slightly higher. 

However, the maximum spread that could be achieved was 59%.  
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The 6 nodes with the highest PageRank scores are not those with the highest in-degrees too, as in 

the previous graph. Three of them are also in the top 6 of degree centrality, but the remaining have 

relatively low in-degrees. 

In the last graph, the politicians’ Facebook pages, the centrality measure that achieved the best 

results was again the Degree Centrality. However, the percentage of the spread it achieved was the 

lowest comparing to the previous two. The graph is the densest of the three, and its average 

clustering coefficient, although low, it is also the highest. 

Closeness and PageRank Centralities had similar performances to the Degree, achieving slightly 

lower spreads. However, Degree was clearly a better choice in this case, as it dominated at every 

hop reaching more nodes than the others. Betweenness Centrality was once again the poorest 

choice of centrality measure. 

To sum up, all three graphs, regardless of their sizes, could achieve maximum spread within 8-9 

hops. Degree Centrality, although being a simple count of nodes’ incoming connections, was the 

centrality measure that had the most success in spreading information in more nodes, as it had the 

best results in two graphs and the second best, close to the first’s results, in the other one. Degree 

is, by definition, the best in direct dissemination of information, but, surprisingly, it achieved to 

maximize the spread comparing to other “smarter” centrality measures. The amount of spreads 

was not predictable, as despite the graphs’ similarities the spread percentages were quite different.  
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6 Conclusions and Future Work 

The objective of this research was to evaluate the use of common existing centrality algorithms 

for selecting promoter nodes to spread information on social networks efficiently. The centrality 

algorithms that were tested are Degree, Closeness, Betweenness, Eigenvector, and PageRank. 

Each of the algorithms uses a different approach in scoring centrality, and for each one of them, 

node “importance” is defined differently. 

The tests were run on three datasets containing Facebook pages linked among them with 

relationships of type “LIKES”. The three graphs created are of different sizes, but all three of them 

were hard to visualize efficiently. Thus, in the phase of exploratory analysis, an attempt was made 

to understand the characteristics and structure of each graph. Apart from the graphs’ sizes, the 

other characteristics that were calculated are the triangles count, the average clustering coefficient, 

the density, the minimum, maximum, and average degree. Also, regarding the in-degree of the 

nodes, which is the degree type that is important in the information spread problem, the minimum, 

maximum, and standard deviation values were calculated, along with the numbers of self-linking 

nodes and nodes with 0 in-degree. Finally, the Weakly Connected Components and Strongly 

Connected Components algorithms were used to identify clusters in the graphs. It appeared that 

there were no such groups, except for one large Strongly Connected Component in the second 

graph. 

The small number of nodes with high in-degrees that are much higher than the average and the 

frequency histogram of node in-degrees indicate that the three graphs are scale-free, meaning that 

they follow the power-law distribution. This is quite common in social networks, as the popular 

nodes tend to attract many other nodes. Thus, if new nodes are added in the graph, there is a 

significant probability that they will connect with the popular nodes. This is the principle of 

preferential attachment, as it is commonly known in social networks. 

The top nodes, according to each centrality measure, were often repeated in all three datasets. For 

example, a node with a high degree could also have high Eigenvector and PageRank centrality 

scores. This indicates that in social networks, the graph areas around popular nodes are often 

“crowded” resulting in other types of high centrality scores too. 
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The results of the information spreads did not allow for definite conclusions. There was not one 

single centrality algorithm that worked best on all three graphs, neither the spreads achieved were 

the expected.  

Betweenness Centrality was the centrality algorithm with the worst performance on all three 

graphs. The spreads achieved in the three graphs were very low. This can be justified by the fact 

that betweenness centrality does not consider the relationships’ direction. It is highly likely that 

nodes with high betweenness centrality score in a social network, are unpopular nodes that like 

more popular nodes. This assumption is most apparent in the third graph, where the top 3 nodes 

managed to reach only two other neighbor nodes, meaning that at least one of them had 0 in-

degree. Nodes that are so unpopular are hard to be involved in popular circles; thus, they cannot 

spread information efficiently. 

Closeness Centrality did not have the best results for any of the three graphs. However, its 

performance was close to the best in all three cases. Closeness Centrality does not consider the 

direction of relationships, either. For a node being close to many other nodes doesn’t mean that it 

is popular in social graphs. However, it seems that in dense graph parts, there is a big probability 

that the information can spread easily, though this is not necessarily the case. The closeness 

centrality measure could have undesired results, as a node could have a high closeness score due 

to its high out-degree and the high connectedness of its neighbors even though its in-degree could 

be 0. Such a node would not be able to spread information at all. 

Eigenvector centrality had, in general, a mediocre performance, although it achieved the best 

spread in the first graph. This is surprising, though, as PageRank, with its use of in-degrees, was 

expected to outperform Eigenvector in all cases. Besides the consideration of relationships’ 

directions, the only other difference that could lead to these results is the damping factor. 

Eigenvector had a damping factor set to 1, by default, while for the PageRank, it was set to 0.85. 

PageRank was the most suitable centrality measure for the second graph, and, generally, its 

performance was good and close to that of Closeness. As mentioned above, PageRank considers 

the direction of relationships, as well as the nodes’ connectivity when scoring the nodes, thus its 

results were above average in every case. However, it was expected that it could achieve higher 

spreads and outperform the other centrality algorithms. 
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Degree Centrality, which is the simplest in concept and usually used as a baseline method, had the 

best performance overall. Although it is normal that nodes selected with this measure reached the 

most neighbors in one hop, the final total spread was also the highest or the second-highest in all 

three graphs. 

Although there is not a clear answer to which centrality algorithm is more suitable to be used as a 

measure for selecting nodes for information spread, the results of the experiment raise important 

questions. Also, after studying the centrality algorithms and exploring the graphs’ structure, there 

are conclusions drawn as to what needs attention in finding solutions for such problems. There are 

results in this experiment that led to new questions and need more investigation.  

In the beginning of this study, there was the intent to visualize the graphs and draw conclusions 

about their structures through the visualizations. This was proved to be impossible in graphs of 

this scale, even for the smallest dataset. There is a technique that helps, where connected 

components are treated as single nodes, making it possible for the researcher to visually check the 

graph’s structure. However, not all graphs have large connected components, and, more 

specifically, this was not the case in this study. 

This obstacle made it difficult to explore further the connectivity of nodes that appeared to be 

important in most centralities. It would be interesting to discover more about these nodes that are 

important in many different ways and see if they provide more than other nodes in the final spread. 

Another finding that needs more investigation is the case where Eigenvector centrality 

outperformed the PageRank algorithm unexpectedly, although the graph was directed. An 

assumption was made that it could be due to the different damping factors. More testing is required 

to score the nodes with different damping factors and check how the results change. 

Also, regarding the good performance of Degree Centrality, more analysis is needed to see if its 

success is somehow connected with the social graphs’ structures. It would be desired to calculate 

the probability of popular nodes being liked by other popular nodes. This could explain the high 

spreads achieved without having considered the transitivity. 

Another aspect that needs to be investigated further is the maximum spread that could be achieved 

in each network. The specific graphs are all connected, but that doesn’t consider the direction of 
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the relationships. The spread stops after some hops, and it would be interesting to investigate what 

happens in the ending nodes and which nodes were left unreached. 

Much work has been left for the future due to lack of time. Besides the aforementioned further 

investigations, there are some ideas for improvement of the results. 

It is clear that degree is very important in the selection of nodes. It is also clear that the direction 

of relationships must always be considered, as the important nodes for this problem are the popular 

ones. It could be interesting to select nodes combining both PageRank and Degree centralities. In 

this way, all three requirements would be met. The selection could be made by finding a set of the 

top n PageRank scored nodes and order them by their in-degrees to select those with the highest 

numbers of likes. 

Another idea is to re-run the experiment with increased sets of promoter nodes and see when and 

if the spreads will keep stopping at some nodes while the starting nodes increase. As the goal in 

information spread problems is to maximize the nodes reached, it would be interesting to attempt 

to implement an algorithm that calculates the minimum number of nodes required as starting nodes 

to spread information across the whole graph. 
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