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Abstract 
    We examine the size of the BDS test in the flexible framework that the 
GARCH(1,1) process provides us in terms of moment, memory and heterogeneity  
properties. The validity of a number of assumptions about the functionality of the 
BDS test is under consideration. Using Monte Carlo simulations, we conclude to a 
new general assumption under which the asymptotic normality of the BDS statistic is 
verified. 
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1. Introduction 
 
      There is a common point that everyone agrees; our world is rather complex and in 
order for its aspects to be described correctly, employment of complex ways is a 
necessity. We generally talk of the existence of chaotic or nonlinear stochastic 
dynamics in financial data that must be modeled so as to increase our ability to 
understand and correctly forecast them. A variety of such models is available to the 
potential modeler bringing him to the last but most vital question…Which model 
describes the data more successfully and is there a way to find it? The answer for this 
question is quite simple. The researcher must find a test that would be able to detect 
or accept the best model and simply reject the others. 
    There are two categories of tests. The first category includes tests that attempt to 
diagnose the existence of a specific model. They check the data of whether they can 
be described by a model of certain properties. Such a test is the Engle test for 
detecting Autoregressive Conditional Heteroskedastic (ARCH) models. The other 
category includes tests that are of more general use and their null hypothesis is a very 
broad one. They are also called as portmanteau tests. A well known example for this 
category is the Ljung-Box statistic. 
    Another  test of this category that was first introduced in 1987 and is now generally 
used as a test for detecting nonlinearity is the BDS test (after Brock, Dechert, 
Scheinkman ). The test was initially intended to test for the existence or not of chaotic 
dynamics. It was based on the idea that a chaotic system is sensitive upon initial 
conditions and that close trajectories of  the series remain close in the future. All this, 
lead to a particular metric, the correlation integral, a measure of spatial correlation of 
scattered points or particles in m-dimensional space,  and its transformations to the 
BDS statistic. The null hypothesis is simple; if the series under scrutiny is iid then the 
BDS statistic asymptotically follow a standard normal distribution. The alternative 
hypothesis can be anything. Any hypotheses of chaos or nonlinearity are nested 
within the alternative hypothesis, which includes both nonwhite linear and nonwhite 
nonlinear processes. This gives the BDS test its generality. Nowadays it is mainly 
used as a test for the existence or not of nonlinear dynamics or as a goodness-of-fit 
test. That is, if we have correctly specified a model for a data series, after the 
estimation procedure we expect the residuals to be iid. 
   However the nature of the test and the mathematical tools that were used in order to 
provide the final result, requested a number of assumptions. Many of them concern 
the mathematical tools themselves, for example smoothness conditions for the kernel 
function that is used for the calculation of the correlation integral, and it is of little 
importance for the modeler. Others are about the properties of the series itself such as 
temporal dependence and existence of moments. It is vital to understand the nature of 
these assumptions and investigate the potential impact on the test if we relax some of 
them. In most cases we are not able to recognize the exact properties of a series. 
Knowing potential problems that may arise when we use the test in cases that the 
series fails to satisfy the appropriate assumptions can help us to evaluate our results 
correctly. 
    In order to investigate the assumptions of the BDS test, it would ease our task if we 
could have a flexible model for which we can alter its properties in a way that we 
wish. The GARCH(1,1) process can fit perfectly to this role. Nelson (1990) provided 
conditions for the existence or not of the moments of the unconditional model, 
depending on the innovation process and the relation between the coefficients of the 
model. Therefore by simply altering a distribution and tampering the values of the 



coefficients we could create a model with moment and memory characteristics that we 
prefer. Furthermore the GARCH(1,1) is very popular among the econometricians for 
modeling the conditional variance of financial time series. The results on the behavior 
of the test  for this model will provide us data for its validity if it is used to check the 
residuals of an estimation of a GARCH(1,1) model for remaining nonlinearities.   
    The analysis of the behavior of the BDS test and especially its size for the various 
GARCH(1,1) processes will be made through a Monte Carlo simulation. This gives us 
the flexibility to study the validity of assumptions for small or large samples and 
therefore approach the asymptotic results. We expect either to state new assumptions 
or to relax some of the old. Besides that we will attempt to verify the results of Brock 
et al (1991) concerning the size of the test when it is applied directly to an iid series. 
Setting new assumptions about the existence or not of moments is expected. 
Therefore we use distributions with different moment structures in order to test all 
cases. 
   After we have evaluated the performance of the test, we will apply it to two data 
sets; a set of exchange rates and a set of stock indices. Our goal is to check whether 
filtering the data with a GARCH(1,1) process would remove all nonlinearities 
existing. 
   The thesis is structured as follows: in paragraph 2 the properties of the GARCH(1,1) 
models are presented analytically. Based on the work of Nelson (1990) we notice that 
moment and memory characteristics of the model are subject to the choice of the 
distribution for the iid innovations and especially the number of its moments. 
Additionally these characteristics change for different combinations of the 
coefficients of the model. We also study the moment properties as analyzed in He and 
Teräsvirta (1999) focusing on the conditions for the existence of 4th order stationarity. 
Finally we examine in this paragraph the  memory properties of the process as it is 
described by the concept of Near Epoch Dependence and L0-approximability. 
    In paragraph 3 we proceed in the analysis of the BDS test itself. We initially 
provide a number of definitions for various mathematical tools and statistical concepts 
that are used  in a later stage.  Then we continue by defining the BDS test in  the most 
formal manner and along certain assumptions are stated. The nuisance parameter free 
property is then examined and the necessary assumptions are provided. Finally we 
summarize all the assumptions mentioned and we examine the existing literature for 
the size of the BDS test. 
   In paragraph 4 we describe the Monte Carlo procedure that we will follow. The 
results are reported for both cases; the size of the test in the case of the iid series and 
the size of the test when it is applied to GARCH(1,1) models. We discuss the results 
and we check whether the assumptions that were made in paragraph 3 need revision 
or not. In paragraph 5 we describe our empirical study. We begin by examining the 
results of the existing literature. Then we describe our methodology and the data we 
will use. As last step we provide and discuss the results. Conclusion summarizes the 
course of the thesis and yields once more the plus interesting results that were 
derived. Finally in the Appendix we present  all the results from the simulations and 
the empirical study. 
     
 
 
 
 
 



2. Properties of GARCH (1, 1) models 
 
2.1 Introduction 
 
   The vast use of conditional heteroskedasicity models can be attributed to their 
ability to include in terms of variance past information. Quoting Engle (1982) from 
his seminal paper for ARCH models: 
 
“Consider initially the first-order autoregression  

yt= γyt-1+εt 
where ε is white noise with Var(ε)=σ2.The  conditional mean of yt is γyt-1 while the 
unconditional mean is zero. Clearly, the vast improvement in forecasts due to time-
series models stems from the use of the conditional mean….For real processes one 
might expect better forecast intervals if additional information from the past were 
allowed to affect the forecast variance; a more general class of models seems 
desirable.” 
 
  These models have been widely used to model time-varying volatility and the 
persistence of shocks to volatility. Especially one member of the family, the 
GARCH(1,1) process, since its introduction by Bollerslev (1986) has been very 
popular in econometric modeling.  
 
Definition of the model: 
 

t t ,{z } i.i.d,=−∞ ∞ ∼  nondegenerate, P[-∞<zt<∞]=1, (2.1.1)
2
tσ =ω+β 2

t 1−σ +α 2
t 1−ξ , (2.1.2)

t t tzξ = σ ⋅  , (2.1.3)
 
where ω.0,β.0 and α>0 . In most papers a further restrictions has been placed on 

{zt}: 
 

E[zt]=0 and E[ 2
tz ]=1 (2.1.4)

 
  We will not use the restriction (2.1.4) unless mentioned. Instead we will adopt the 
requirement that: 
 

E[ln(β+α 2
tz )] exists (2.1.5)

  Note that (2.1.5) does not require that E[ln(β+α 2
tz )] be finite, only that the 

expectations of the positive and negative parts of ln(β+α 2
tz ) are not both infinite. 

Relation (2.1.5) holds trivially for β>0. 
  We also define as the conditional model the { 2

tσ , ξt}t=0,∞ and as the unconditional 
model the process { 2

u tσ , u tξ }t=-∞,∞. 
  If we denote as B the Borel sets on [0, ∞), we define as µt, the probability measure 
for σt

2 : µt(Γ)=P[σt
2∈Γ] , ∀ Γ∈Β. 

2.2 Stationarity and ergodicity in GARCH(1,1) processes. 



 
    The analysis that follows comes directly from Nelson (1991). We keep only the 
basic results concerning stationarity. We must notice that the results concerning the 
properties of the GARCH(1,1) model rely on the relation between the coefficients α,β 
of the model. As  we will see in detail later, combinations of α, β provide different 
stationarity characteristics and different moment results for the unconditional process. 
 
Theorem 2. Let ω>0. If E [ln(β+α 2

tz )]<0 then: 
 

ω/(1-β)≤ 2
u tσ <∞  for all t a.s , (2.2.1)

 
and 2

u tσ is strictly stationary and ergodic with a well-defined probability measure 
 

µ∞ on [ω/(1-β),∞]   ∀t, (2.2.2)
2

u tσ -σt
2 →0 a.s, (2.2.3)

µt→ µ∞ and (2.2.4)

µ∞ is nondegenerate (2.2.5)
 
Corollary of theorem 3. Let ω>0, p>0 and E [ln (β+α 2

tz )] <0. 
  

2[ ] ,p
tE σ − < ∞      t.1 (2.2.6)

2[ ] ,p
u tE σ − < ∞   ∀ t (2.2.7)

2[ ]p
tE σ < ∞   iff  2

0[ ]pE σ < ∞  and E [(β+α 2
tz )p ] <∞ (2.2.8)

2[ ]p
u tE σ < ∞  iff E [(β+α 2

tz )p ] <1 (2.2.9)
2limsup [ ]p
tt

E σ
→∞

< ∞  iff 2
0[ ]pE σ < ∞   and E [(β+α 2

tz )p ] <1 (2.2.10)
2 2lim [ ] [ ]p p
t u tt

E Eσ σ
→∞

=   if 2
0[ ]pE σ <∞ (2.2.11)

 
Theorem 4. (a) Let ω>0 and E [ln (β+α 2

tz )] <0. If 2[ ]q
tE z < ∞ for some q>0, then 

there exists a p, 0<p<q, such that E [(β+α 2
tz )p ] <1.(b) If, in addition, E [(β+α 2

tz )r ] <1 
for 0<r<q, then exists a δ>0 such that E [(β+α 2

tz )r+δ ] <1. 
  Theorem 4(a) says that if 2

u tσ  is strictly stationary and zt
2 has a finite moment of 

some (arbitrarily small, possibly fractional) order, then 2
u tσ  has a finite (possibly 

fractional) moment as well. The existence of such a finite fractional moment implies, 
for example, that E[ln( 2

u tσ )]<∞ . In addition we notice that in order for E [(β+α 2
tz )p ] 

<1 to hold for p=1, the iid innovation must have at least a fractional moment of order 
larger than 2. Part (b) gives a condition for 2( )[ ]p

u tE δσ + < ∞  for some δ>0, given that 
2[ ]p

u tE σ < ∞ . It says, for example, that if E [(β+α 2
tz )1/2 ] <1 and 2[ ]p

tE z < ∞ for 

some p> 1
2

, then not only is  [ ]u tE ξ < ∞ , but there is also a δ>0 with 1[ ]u tE δξ + < ∞ . 



Summarizing the above results Nelson (1991) produced the following figure for the 
case that zt~NIID(0,1) : 

Z~N(0,1)
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Figure 2.2.1 

 
REGION 1 E[ln(β+α 2

tz )]>0 
2
tσ is explosively nonstationary 

REGION 2  E[ln(β+α 2
tz )]<0 

2
u tσ , u tξ  are strictly stationary and ergodic 

REGION 3 E[ln(β+α 2
tz )]<0 & E[(β+α 2

tz )1/2 ]<1 
2

u tσ , u tξ  are strictly stationary and ergodic and [ ] 0u tE ξ = , 2[ ]u tE ξ = ∞  
REGION 4 E[ln(β+α 2

tz )]<0 & E[(β+α 2
tz )1/2 ]<1 & E[(β+α 2

tz )]<1 
2

u tσ , u tξ  are strictly stationary and ergodic and [ ] 0u tE ξ = , 2[ ]u tE ξ < ∞  
(covariance stationarity as well) 

(the results and the relations contained in the table above, are the same for all 
distributions provided certain moment conditions hold ) 

Table 2.2.1 
 

Note # 1: We must stress one more that according to theorem 4(a), in order for the 
region 4 to exist, and therefore the existence of covariance stationarity for some 
values of the coefficients α, β, the innovation process must have a least a fractional 
moment of order higher than 2. For example, for a t-student distribution with 3 
degrees of freedom, even though there exists the second moment, the appropriate 
relation for the existence of region 4 can not be applied. 
Note # 2: It is clear, even for the case of standard normal innovations, the change of 
the moment properties of the unconditional model as we move to different regions of 
the figure 2.2.1 for the α,β coefficients. For Region 4, the first and second moments 
exist, for region 3, there exists only the unconditional mean and for region 2, even 
though that the unconditional process is strictly stationary, no moments exist. 
 



2.3 Properties of moments of GARCH (1, 1) processes. 
 
  Following He & Teräsvirta (1999), we will provide a general condition for the 
existence of any integer moment of the absolute values of the observations. 
Additionally a general expression for this moment as a function of low-order 
moments is provided. First of all we introduce the notation: 

ct-1=β+α 2
1tz −⋅ ,gt-1=ω , ,, , ,i i i i j

i t ci t gi t gi cj t tv E z Ec Eg Eg cγ γ γ= = = =� , 
where i, j positives integers. Let γc=γc1,γg= γg1 , 1, 1gc g cγ γ=� � .We only require that γg>0 . 
 
Theorem 1. For the general GARCH (1, 1) model that started at some finite value 
infinitely many periods ago, the kmth unconditional moment exists if and only if : 
 

m
cm tEcγ = <1 (2.3.1)

  
Under this condition the kmth moment of  ξt can be expressed recursively as  
 

{ } , ( ) ( ) ( )
1

/(1 ) ( / )
m

km
km t km cm gj c m j k m j k m j

j

m
E v v

j
µ ξ γ γ µ− − −

=

  
= = − ⋅  

  
∑ �  

 
(2.3.2)

 
Corollary 1.1. For the general GARCH (1, 1) model with k=2 and γc2<1, the fourth 
unconditional moment of ξt is given by  
 

{ }4 24
4

2

(1 ) 2
(1 ) (1 )
g c gc g

t
c c

v
E

γ γ γ γ
µ ξ

γ γ
⋅ − + ⋅

= =
− ⋅ −

�
 

 
(2.3.3)

 
We can summarize the above results for the unconditional model in what follows: 

     (v2,v4: 2nd and 4th moment of the innovation process respectively) 
 

Existence of 2nd moment 
β+α⋅v2<1 (2.3.4)

Existence of 4th moment 
β2+2⋅β⋅α⋅v2+α2⋅ v4<1 (2.3.5)

 
  We notice that condition (2.3.4) coincides with the relation that describes Region 4 
in the analysis made by Nelson (1990). In both cases the second moment of the 
unconditional model exists and therefore we conclude that the process is covariance 
stationary. In the case that the model has a 4th moment we can speak of  4th order 
stationarity. 
   The existence of the fourth moment depends, as we observe from the relation 
(2.3.5), on the existence of the fourth moment of the original innovation process. For 
example the GARCH(1,1) process does not have a 4th moment in the cases of the t-
student distributions with less than 5 degrees of freedom. 
 
 
 
 



2.4 Memory properties of GARCH (1, 1) processes 
 
  In order to study the memory properties of the process we rely on the concept of 
Near Epoch Dependence that was introduced by Davidson (1994). We use the 
definitions and the notation as it is presented in Davidson (2001). 
 
Definition #1 : xt is said to be near-epoch dependent on {vs} in Lp-norm (or Lp-NED) 
for p>0 if  

( )t m
t t m t tp

x E x d mν+
−− ≤  

 
where dt is a sequence of positive constants, and ν(m)→0 as m→∞. It is said to be Lp-
NED of size –µ if ν(m)=O(m-µ-ε) for ε>0. 

(xt=(…,νt-1,vt,νt+1,…) , 
p
i denotes the Lp-norm 1/( )p pE i  ) 

The NED property offers an approach to proving the FCLT for a range of time series 
models. The NED numbers fully determine the restrictions on the memory of the 

observed process. The CLT can be considered as a special case for size µ= 1
2

. 

   According to Davidson (2002), for GARCH (1, 1) models with innovations with 
variance equal to unity, if the process is fourth-order stationary we can say it is 
geometrically L2-NED on the underlying iid process, with respect to constants dt=1. 
Additionally it can be proved that the process is L1-NED if covariance stationarity 
exists. 
  However the NED measure of memory is unavailable without first moments and 
therefore we introduce an alternative approach with the notion of L0-approximability. 
This is the condition that there exists a locally measurable (finite –lag) approximation 
to ξt, which is accordingly a uniform mixing process, given that zt is independent. 
  In the case of the GARCH (1, 1) process, we call that that 2

tσ is geometrically L0 –
approximable if the process ξt is strictly stationary and the condition for the 
coefficients to satisfy is: 
 

1 1α
β

< −  
 

(2.4.1)
 
  L0-approximable is of importance because it shows a way in which short memory is 
a feature of the strictly stationary case, whether moments exist or not. However this 
property might be used in conjunction with mixing limit theorems to show that, for 
example, a law of large numbers applies to integrable transformations of the process. 
  Therefore we note that when we study a GARCH (1, 1) process we must be able to 
identify the appropriate regions for the coefficients α, β so as the L0-approximability 
and L1-L2 NED to hold. For the latter this region is changed with respect to the 
distribution of the innovations zt. For the case of L0-approximability the condition 
(2.4.1) remains the same, depending on the innovations only for the second 
condition:  the series to be strictly stationary.  
 
 
 
 



3. The Brock, Dechert, Scheinkman (BDS) test  
 
3.1 Introduction  
 
   This test has been widely applied to test the existence of potentially forecastable 
structure, nonstationarity, or hidden patterns. It has also been adapted to test for the 
adequacy of fit of one’s forecasting model. One just applies the test on the forecast 
errors from the model and check for hidden structure. The construction of its null 
hypothesis gives this flexibility; the null hypothesis is that a time series is independent 
and identically distributed. The alternative remains unspecified. The test is based on 
the statistic derived by the use of the correlation integral and therefore its technique is 
a nonparametric one. However the test, in order to work, must satisfy a lot of 
conditions concerning the properties of the series under scrutiny and of the 
mathematical concepts that are used. 
 
3.2 Some Definitions 
 
  Before we proceed with the description of the test and the analysis of the necessary 
assumptions for it to work, it is essential that we introduce certain mathematical and 
probabilistic concepts.   
 

 Strong mixing stochastic process 
  A stochastic process yt defined on the probability space {Ω, F, P} is strong mixing 
if the (mixing) coefficients  
 

j
j k

def

k k j {A F ,B F }
lim a(k) lim sup sup P(A B) P(A)P(B) 0

+∞
−∞ +

→∞ →∞ ∈ ∈
= ∩ − =  

 
(3.2.1)

where: t
sF  is the Borel σ-algebra generated by {ys, ys+1, …, yt }, with s<t. 

 
 Absolutely regular stochastic process 

A stochastic process {yt}t∈N ,that is strictly stationary with values in some countably 
generated measurable space (—,F) , is called absolutely regular if  
 

a
1 a nn n {a }

lim (n) lim sup E[sup{ P(A | ) P(A) A }] 0∞
+→∞ →∞ ∈

β = ℑ − ∈ℑ =
`

 (3.2.2)

where : b
aℑ is the σ-algebra generated by {yt| a ≤t<b} (1≤a≤b≤∞)  

             F the distribution of y1 
 

 Uniformly mixing stochastic process 
A stochastic process {yt}t∈N ,that is strictly stationary with values in some countably 
generated measurable space (—,F) , is called uniformly mixing  if  
 

n
lim
→∞

φ(n)= 
n
lim
→∞

sup max {|P(A|B)-P(A)|,|P(B|A)-P(B)|}=0 (3.2.3)

where the supremum extends over n∈` , A∈ a
1ℑ  and B ∈ a n

∞
+ℑ . 

Note: uniform mixing⇒absolutely regular ⇒strong mixing 
 
 



 Ergodic stochastic process 
A second-order stationary stochastic process {y(t), t∈T } is said to be ergodic if  

T

T 1

1lim Cov(y(t), y(t )) 0
T→∞

τ=

 + τ = 
 
∑  (3.2.4)

 
    It is deduced that for the case of second-order stationary stochastic process strong 
mixing implies ergodicity. 
 

 Kernels, U-Statistics,V-Statistics 
 A measurable function h:—m→R is called a kernel if it is symmetric in its m 

arguments ( i.e. for the functional θ, we have θ(F) :=
m

1 m i
i 1

... h(y ,..., y ) dF(y )
=
∏∫ ∫ ). 

The functional θ(F) is called an estimable parameter or a regular function of F 
over F={F:|θ(F)|<∞} . 

 A U-statistic UN is then given by  
 

1 m

1 2 m

1

N t t
1 t t ... t N

N
U h(y ,..., y )

m

−

≤ ≤ < < ≤

 
=  
 

∑  (N.m). 

 A V-statistic VN ( v.Mises’s functional) is defined to be  

1 m

1 m

N N
m

N t t
t 1 t 1

V N ... h(y ,..., y )−

= =

= ∑ ∑  (N.1) 

 A kernel h is called degenerate (for the distribution F) if for all choices of ai∈— 
(1≤i≤m) and all j∈ (1,…, m)  

E[h(a1,…,aj-1,y1,aj+1,…,am)]=0 
 

 A U-statistic will be called degenerate if the corresponding kernel has this 
property (i.e. it is degenerate).The same applies and for the V-statistic. 

 
3.3 Definition of the BDS test 
 
Before we proceed with the description of the test, let us consider the definitions 
below. 
  Let {ut} be a real-valued scalar time-series process with the m-history process to be: 

def
m
t t t 1 t m 1u (u ,u ,..., u )+ + −=  

 
Definition: The correlation integral at embedding dimension m, for ε>0, is given by: 
 

m m m m
m,C (x , y )dF(x )dF(y )ε ε= χ∫ ∫  (3.3.1)

 
where χε(.,.) is the symmetric indicator kernel with χε(x,y)=1 if x y− <ε and 0 

otherwise, ⋅ is the max-norm, and F(.) is the distribution function of m
tu . 

 



An estimator of the correlation integral for a sample of size T for the process {ut} is 
given by the following U-statistic: 
 

m m
m, t s

1 s t T

1C (u , u )
T
2

ε ε
≤ ≤ ≤

= χ
 
 
 

∑ ∑  
 
(3.3.2) 

T T (m 1)= − −  
 
  If {ut} is an iid process, then Cm,ε=C1,ε

m, almost surely, for all ε>0, m=1,2,…Based 
on this Brock et al (1987) presented the following result : 
 
Theorem (Brock, Dechert, Scheinkman, 1987) 
 
If ut is iid then, 
 

m
m, 1, d

m,
m,

C (C )
V T N(0,1)

s
ε ε

ε
ε

−
= ⋅ → ,   ∀ε>0, m=2, 3,… 

 

 
(3.3.3)

 
sm,ε is an estimator of the asymptotic standard deviation, σm,ε , of m

m, 1,T (C (C ) )ε ε⋅ −  

under the null of iid. The asymptotic variance 2
m,εσ is a continuous function of two 

constants C and K. 
 

1
2 2 2 2 2 2 2

1
4 2 ( 1)

−
− −

=

 
= ⋅ + ⋅ + − − ⋅ ⋅ 

 
∑
m

m m j j m m
m

j
K K C m C m K Cσ  

 
(3.3.4)

 
C=C(ε)= [ ( ) ( )] ( )+ − −∫ F z F z dF zε ε , K=K(ε)= 2[ ( ) ( )] ( )+ − −∫ F z F z dF zε ε  

 
 These two constants can be consistently estimated by the following V-statistics: 

T T

s t2
s 1 t 1

1C (u ,u )
T ε

= =

= χ∑∑  ; 
T T T

r s s t3
r 1 s 1 t 1

1K (u ,u ) (u ,u )
T ε ε

= = =

= χ χ∑∑∑  

 
The above theorem can be generalized for the case of weakly dependent time series, 
using the conditions and the results provided by the Theorem 1 in Denker & Keller 
(1983).Before we precede to the definition of the more general case we provide this 
theorem: 
 
Theorem #1 {M. Denker & Keller G. (1983)} 
 Let h:—m→R be a non-degenerate kernel. Then the asymptotic distribution of 

N
N

N (U (h) )
m

−θ
⋅σ

 is N(0,1) provided one of the following conditions is satisfied : 

 



a) (yn)n.1 is uniformly mixing in both directions of time, σΝ2→∞ and for some 

δ>0  

1 m
1 2 m

2

t t
1 t t ... t

sup E[ h(y ,..., y ) ]
+δ

≤ ≤ < <
< ∞  

b) (yn)n.1 is uniformly mixing in both directions of time with mixing coefficients 

φ(n)  satisfying Σφ(n)<∞, σ2≠0 and 
 

( )1 m
1 2 m

2

t t
1 t t ... t

sup E[ h(y ,..., y ) ]
≤ ≤ < <

< ∞  

c) (yn)n.1 is absolutely regular with coefficients β(n) satisfying  Σβ(n)δ/(2+δ)<∞ for 

some δ>0, σ2≠0 and  

1 m
1 2 m

2

t t
1 t t ... t

sup E[ h(y ,..., y ) ]
+δ

≤ ≤ < <
< ∞  

The same statement holds for v.Mises’s functionals when the supremum in a)- c) is 
replaced by the supremum over all choices of 1≤ti  (1 ≤ i ≤m). 

 It is showed by Sen (1972) that the Central Limit Theorem, for weakly 
dependent random variables, is valid for U-Statistics of mixing processes 
provided that 1(b) holds. 

We can now provide the more general definition that includes the iid as a special case. 
 
Theorem 2.1 (Brock et al (1991)) 
Suppose {ut} is a weakly dependent time series, satisfying conditions (a), (b) or (c) in 
the theorem above. Define: 
 

m
m,T 1,

m,T
m,

C ( ) (C ( ))
w ( )

( )
Τ

Τ

ε − ε
ε =

σ ε
 

 
(3.3.5)

 
Then,  

m
m

m,T
m

C ( ) (C( ))w ( )
( )

ε − ε
ε −

σ ε
 

 
(3.3.6)

 
is asymptotically normally distributed with mean zero and variance [ωm(ε)/σm(ε)]2 .  
     So far there has been no assumption regarding the moment structure of the original 
process ut. As it is mentioned in Brock et al (1991) and in De Lima (1997) there exists 
no moment restriction for the BDS test to work. The only restriction posed is in the 
case that {ut} is iid, and is that the cumulative probability function F of the process 
exists, is nondegenate and twice differentiable. 
 
3.4 Assumptions for the BDS test to be nuisance parameter free. 
 
   BDS test is one more statistical test concerning the presence of nonlinearities, 
instability and predictability in financial time series. It is in our best interest that when 
the test is applied its asymptotic distribution remains the same as if the true 
innovations were observed. However, even if the true innovations are iid, the 
estimation process generates residuals that exhibit a form of dependence.  



   As the main problem is that we estimate the statistical model and we apply the test 
to the remaining residuals, we must be certain that the final asymptotic distribution is 
not affected. Tests that carry this property are called nuisance-parameter free tests. 
Therefore, we provide the definition below: 
 
A test is called nuisance-parameter free, if the intermediate step of estimating 
parameters of a given model does not affect the asymptotic distribution of this test. 
  
In mathematical terms, 
If S( θ̂ ) is a statistic that depends upon some consistently estimated parameter, θ̂ , and 
assuming that at the true value θ, 
 

d(S( ) ( ))T N(0,1)
( )

θ −µ θ
⋅ →

σ θ
 (3.4.1)

 
then S( θ̂ ) is a nuisance-parameter free statistic if  
 

pˆT (S( ) S( )) 0⋅ θ − θ →  (3.4.2)
 

TT
( ) lim E[S ( )]

→∞
µ λ = λ  , 2

TT
( ) lim E[S ( ) ]

→∞
σ λ = λ   

(when the actual value of the parameter is θ) 
   
In order to show that the asymptotic distribution of ST( θ̂ ) is the same as the one 
corresponding to ST(θ), we note that the Mean Value Theorem guarantees that  
 

*

ˆ ˆT (S( ) ( )) T (S( ) ( )) T ( ) ' S( )
λ=θ

 ∂
⋅ θ −µ θ = ⋅ θ −µ θ + ⋅ θ − θ λ ∂λ 

 
 

(3.4.3)

, 
where θ* is a point between θ and θ̂ . 

 
Slutsky’s theorem guarantees that S( θ̂ ) and S(θ) are asymptotically equivalent, 
provided that : 
a) P

ˆT ( ) (1)⋅ θ − θ = Ο  , i.e. θ̂  is a T -consistent estimator of θ  

b)
T

*

lim E S( ) 0
→∞

λ=θ

 ∂
λ = ∂λ 

 

Let us concentrate in condition b).It is clear that is we are not able to assume the 
differentiability of S(λ) the above approach to determine the asymptotic distribution 
for a nuisance-parameter statistic is invalid . 
  Under smoothness conditions on the kernel, moment conditions on the interaction of 
the kernel with the data generating process, and regularity conditions on the strength 
of temporal dependence to be detailed in later sections, the nuisance parameter free 
property is valid for the BDS test.  
     In order to prove this property we must provide a theorem guaranteeing that the 
limiting distribution of a bounded U-statistic with a non-differentiable kernel is not 
changed when estimated parameters are present. 
 



Theorem 
Under the assumption A-D, the following holds: 
 

pˆ ˆ ˆQ( ) T [(S( ) ( )) (S( ) ( ))] 0θ = ⋅ θ −µ θ − θ −µ θ →  (3.4.4)
 
Assumptions 
A. (Data Generating Process)  
 yt= G(Yt-1,θ)+ut   

 
where {ut} is iid and Υt-1={yt-1,…,yt-p}; {yt} is a strong mixing process with mixing 

coefficients that satisfy the summability condition 1/ 2

k 1
a(k)

∞

=

< ∞∑ ; G is a measurable 

function of Yt-1.  
 The Residual function, 

ut(λ)
def
= yt- G(Yt-1,λ)=ut + G(Yt-1,θ)- G(Yt-1,λ)⇔ ut(λ)= ut + G*(Yt-1,θ,λ) 

 
satisfies the following three properties : 
1. ut(θ)=ut 
2. ut( θ̂ )= tû  
3. If λ is a constant, ut(λ) is a strong mixing process of size γ, for some γ>2. 
 
G* is a measurable function. Further assume that Yt-1 is a finite-order vector (i.e. p is 
finite). If yt is mixing such that the strong mixing coefficient a(k) is O(k-γ), for some 
γ>0 τhen, we have that ut(λ) is mixing such that a(k) is O(k-γ), for each λ. The 
summability condition on the mixing coefficients implies that a(.) must decline faster 
than 1/k2 . 
 Let S(θ) be a U-statistic with a bounded symmetric kernel, h(u1(θ),…,um(θ))<B, and 
µ(θ)= E[h(u1(θ),…,um(θ))]2. Define as: 

1 m 1 m 1 mj j j j j jW(u ( ),..., u ( )) h(u ( ),..., u ( )) ( ) h(u ( ),..., u ( )) ( ) λ λ = λ λ −µ λ − θ θ −µ θ   
and let  

1 m

def

j j
j

TQ( ) W(u ( ),..., u ( ))
T
m

λ = λ λ
 
 
 

∑  

where Σj denotes summation over the 
T
m
 
 
 

combinations of k distinct elements 

{j1,…,jm} from {1,…T}. The kernel W represents the difference between the kernels 
h evaluated at two different points, λ and θ, of the residual function. 
 
B. 

1 m 1 m
1

s 1 s 1 s s
( ,d)

E sup h(u ( ),..., u ( )) h(u ( ),..., u ( )) M d
θ ∈Κ θ

 θ θ − θ θ < ⋅  
 

 
(3.4.5) 

where M is a constant and K(λ,d)={λ1∈Rp : 1 dλ −λ ≤ }, d>0 and ⋅ is the max-

norm. 
 



C.  

1 m 1 m
1

2

s 1 s 1 s sd 0 ( ,d)
lim E sup h(u ( ),..., u ( )) h(u ( ),..., u ( )) 0
→ θ ∈Κ θ

 θ θ − θ θ =  
 (3.4.6)

 
For a bounded kernel this assumption is automatically satisfied. 
 
D. ( T - consistency) 

P
ˆT ( ) (1)⋅ θ − θ = Ο  (3.4.7)

 
Usually this assumption is valid for the case of stationary and ergodic processes. 
 
   We are now able to prove the nuisance parameter free property for BDS test. As the 
BDS statistic is a function of U-statistics, we expect that as long as the assumptions 
A-D hold, then the test will be nuisance-parameter free. In particular if we define 

as
def

m
m, m, 1,S ( ) C ( ) [C ( )]λ ε ελ = λ − λ , then the BDS test is nuisance parameter free if we 

show that: 
 

p
m, m,

p
m, m,

ˆT [S ( ) S ( )] 0
ˆs ( ) s ( ) 0
ε ε

ε ε

 ⋅ θ − θ →


θ − θ →
 

 
(3.4.8) 

Proposition 
 If  

p
m, m, p

m, m,p
1, 1,

ˆT [C ( ) C ( )] 0 ˆT [S ( ) S ( )] 0ˆT [C ( ) C ( )] 0
ε ε

ε ε

ε ε

⋅ θ − θ → ⇒ ⋅ θ − θ →
⋅ θ − θ → 

 

 
Note 
As σm,ε is a continuous function on C and K then, if  
 

p
p

m, m,p

ˆK( ) K( ) 0 ˆs ( ) s ( ) 0
ˆC( ) C( ) 0

ε ε

θ − θ → ⇒ θ − θ →
θ − θ → 

 

The second assumption is derived by the fact that C is the V-statistic of Cm,ε. The first 
assumption is derived only if the assumption B is valid for the kernel. In particular 
 

p
r s r s

( ,d)

ˆE sup (u ( ),..., u ( )) (u ( ),..., u ( )) M d K( ) K( ) 0ε ε
λ∈Κ θ

 χ λ λ −χ θ θ ≤ ⋅ ⇒ θ − θ →  
 

  
  The assumption above cannot be satisfied when we apply the BDS test on the 
standardized residuals of a GARCH(1,1) model because the residual function G 
(=σ2(Υt-1,θ)) is not measurable, depending on previous values of the series and of the 
conditional variance. Therefore we follow a transformation of the residuals so as the 
kernel satisfy assumption B.  
 
 
 
 



    The appropriate transformation was proposed by Brock & Potter (1992).Instead of 
using the standardized residuals after a prefiltering with a GARCH(1,1) model, use 
their natural logarithms, 
 

def
2 2 2

t t t t 1N ln U ln y ln( (Y , ))−= = − σ θ  
(3.4.9)

 
Under the null hypothesis of correct specification, ut is iid; it follows that Nt is also iid 
(ut∼IID ⇒ Nt∼IID). Moreover if we set 2

t ty ln y=� & 2
t 1 t 1(Y , ) ln( (Y , ))− −σ θ = σ θ� then 

we can rewrite the model as Nt= t t 1y (Y , )−−σ θ� � , this implies that the asymptotic 
distribution of the BDS statistic is the same when applied to the estimated residuals 
ˆ

tN or to Nt, provided that t 1(Y , )−σ θ� satisfies the conditions below. The gradient of the 
residuals function is :  
 

 2
t 1 t 12

t 1

1(Y , ) (1, y ) '
(Y , )− −

−

∇σ θ =
σ θ

�  

 
if ω>0 and α>0 (sufficient and necessary conditions)  then t 1(Y , )−σ θ >ω* and  

2
t 1 t 1

1E{ (Y , )} E{(1, y ) '}
*− −∇σ θ ≤

ω
�  

ω*= 1
1−β

 

 
 the above expectation are finite  if the original series yt is covariance stationary i.e. 
α+β<1 . 
 
3.5 Summary of assumptions  
 
  We summarize the basic assumptions that the BDS test must hold in order for the 
asymptotic distribution to exist and not to be altered if the estimated residuals are 
used. 
The stochastic process is given by: 

yt= G(Yt-1,θ)+ut  
 

1. {ut} is IID with a non-degenerate  cumulative distribution F 
2. There exists the unconditional distribution of {ut

m} 
3. {yt} is stationary and ergodic 
4. The parameters can be consistently estimated 
5. {ut} must satisfy conditions (a)-(c) in Theorem # 1(Denker & Keller (1983)). 
6. G is a measurable function. 
7. Kernels must be nondegenerate (their variance must be positive). 
8. The choice of m, ε, are essential. Large values of m require a large sample size 

when large values of ε may present that the points of the series are closer than 
in reality. Monte Carlo evidence suggested that a choice for ε to be 0.5,1,1.5 of 
the standard deviation of the data and for m to satisfy the condition that 
T/m>200 is sufficient. 

 



 
3.6 Literature Review for the size of  BDS test. 
 
   As far as we have seen, BDS test can be used as a general diagnostic tool for the 
presence or not of nonlinear structure or chaotic dynamics. Therefore it is necessary to 
evaluate its performance in the means of size and power. The literature review reveals 
papers that consider these properties in contest with other nonlinear tests and they are 
focused in the power properties. However the main task of this thesis is to explore the 
size properties of the test so we will present only the analogous papers.  
   We can classify the literature into two categories. The first is concerned about the 
size performance when the test is applied to iid series of various distributions. The 
second focuses in the size of the test when it is applied to residuals of a fitted model; 
estimation takes place using the correct model that generated the original data. It also 
tries to investigate whether the nuisance free property of the test can be verified or 
not. 
    We present the two categories: 
 

 The main reference for the first category is the Brock et al (1991) .Data were 
generated from the distributions: Standard Normal, t-student with 3 degrees of 
freedom, Double exponential, χ2(4), uniform and bimodal mixture of normals.  All 
distributions were scaled so that their standard deviations equal 1 regarding the 
standard normal as the base model and the others as departures from it. The 
authors performed Monte Carlo simulations and they reported that the size is 
reasonable for all distributions provided the sample size is adequate, i.e. larger 
than 500, and that the embedding dimension is smaller than 5. Similar results for 
the same distributions and the same sample size yielded Brooks (1999). He also 
computed the size for 50 observations; he found again that the test is reasonably 
sized. The critical values for performing the test were drawn from the asymptotic 
distribution of the test under the null (N(0,1)) for all cases mentioned above. 
Ashley & Patterson (2001) derived the size of the BDS test for a variety of 
distribution and they used critical values obtained from a bootstrapping procedure. 
Despite the small size of the sample, the size was close to nominal. 

     The second category of papers is about the size of BDS test, when we apply it 
to the residuals of a correctly specified model. As our thesis aim is to explore the 
BDS test size for the cases of GARCH(1,1) process, we will focus only on the 
relevant results. Again Brock et al (1991) explored the size properties for a 
stationary GARCH(1,1) process. They generated an adequately sized sample from 
such a process and they filtered it with the correct model. Then they used the test 
on the standardized residuals. The size turned out to be rather different from that it 
was expected using the asymptotic theory. Following the same procedure, Brooks 
& Henry (1999) derived similar results. The test was under-sized and it became 
more conservative as the sample size increased. In the presence of this evidence 
the authors of the above papers suggested bootstrapping methods or Monte Carlo 
simulations for obtaining the appropriate critical values.    
    De Lima (1996) instead of applying the test on the standardized residuals he 
applied it on the natural logarithms of them as Brock & Potter (1992) suggested. 
He used a stationary GARCH(1,1) model with N(0,1) innovations. The results 
were exceptionally good; size was close to nominal.  

    
 



4. Monte Carlo procedure for the BDS test 
 
4.1 Description of the procedure 
 
    We used Monte Carlo simulations in order to obtain three different sets of results. 
 
i) The size of the BDS test when it is applied directly to an iid series. 
 
    We generated series of sample size of 250, 1000 and 1500 observations from 6 
different distributions.  
 

Cauchy t-student(2) t-student(3) 
t-student(4) t-student(5) N(0,1) 

 
  This choice was due to the stylized fact that the t-student distribution has the 
property that their moments exist only for order equal of its degrees of freedom minus 
1. The Cauchy distribution is regarded as a t-student with 1 degree of freedom. 
Therefore we examine the behavior of the test for iid series that possess different 
moment properties in order to inquiry the validity of the assumption that there are no 
moment restrictions for the test to function. We summarize them in the table below: 
 

Distribution Existing Moments Distribution Existing Moments 
Cauchy none t-student(4) 1st, 2nd, 3rd 

t-student(2) 1st t-student(5) 1st, 2nd, 3rd ,4th 
t-student(3) 1st, 2nd N(0,1) ∞ 

 
Table 4.1.1 

 
 After the series has been generated, BDS test was applied directly to it. The BDS 
statistic was evaluated for embedding dimensions m=2,…,5 and ε equal to one 
standard deviation of the series. For the acceptance or not of the null hypothesis the 
critical value was drawn for the standard normal distribution for significance level of 
5%1. We remind that the null hypothesis is that the series under scrutiny is 
independently and identically distributed. 
   We repeated this procedure 1000 times and 1500 times and we stored the BDS 
statistic each time and whether the null was rejected or not. Then the mean, standard 
deviation, skewness and kurtosis were calculated for the statistic. The size of the test 
was the percentage of rejections of the null over all replications. 
 
ii) Derivation of  the boundaries among the different regions of the α, β coefficients of 
a GARCH(1,1) process for various iid innovations. 
 
   As we have mentioned in paragraph 2, the moment properties of the unconditional 
GARCH(1,1) model change with respect to the innovations process and the relation 
between the coefficients α, β. Since it is our intention to evaluate the BDS test size for 
a variety of innovations and for different regions it is necessary to provide the 
appropriate boundaries (i.e. Figure 2.2.1). 
 
 



   We begin by mentioning the innovation’s distributions. Besides the standard normal 
distribution, we use the t-student distributions with 3, 4, 5 degrees of freedom after we 
multiply them with the inverse of their standard deviation so that the variance equals 
unity. From this point forward we denote these series as sd-t-student.  
 
The following table summarizes the properties of the distributions: 
 
Distribution variance 

v2 
4th moment

v4 
Distribution variance 

v2 
4th moment

v4 
t-stud(3) 3 - sd-t-stud(3) 1 - 
t-stud(4) 2 - sd-t-stud(4) 1 - 
t-stud(5) 5/3 25 sd-t-stud(5) 1 9 

 
Table 4.1.2 

 
Recall that for a t-student distribution with f degrees of freedom we have: 
 

v2= 2
f

f −
 ,   f>2 v4=

2

3 ( 4)
2

f f
f

⋅ ⋅ −
−

 ,  f>4 

 

For the case of Xt=
1
( ) t

t

Z
Var Z

⋅ , Zt~t-student with f degrees of freedom: 

 
v2=1,   f>2 v4=3 ( 2) ( 4)f f⋅ − ⋅ −  ,  f>4 

 
  We provide again the boundary conditions for each region according to Nelson 
(1990): 
 
Boundary  
Region 1-Region 2 E[ln(β+α 2

tz )]=0 
Region 2-Region 3 E[(β+α 2

tz )1/2 ]=1 
Region 3-Region 4 E[(β+α 2

tz )]=1 
 

Table 4.1.3 
 

   For the derivation of each boundary for each distribution a possible, and the correct 
way, is to solve the equations analytically and take the results for the coefficients α, β. 
However this task is much too complicated and is escaping the purpose of this thesis. 
Instead of the analytical solution we will proceed with a numerical solution to our 
problem. 
   We generated a series of 125.000 observations from each of the standardized          
t-student distributions that we already mentioned. Then using a simple program, we 
kept fixed the value of the coefficient α and we started an iteration procedure for the 
estimation of β that satisfied each of the conditions of table 4.1.3. This way we were 
able to determine the boundaries for every region and for each distribution that we 
used as innovation process. 



iii) The size of the BDS test when it is applied to residuals of a correctly fitted 
GARCH(1,1) model. 
 
   The next step in our Monte Carlo procedure brings us closer to the purpose of this 
thesis. The derivation of the size of the BDS test and the estimated distribution of its 
statistic if we generate a GARCH(1,1) model and we estimate the series with a 
GARCH(1,1) model. The procedure is similar to the first case that the series were iid. 
In more details the steps that we followed were: 
-We chose a distribution function for the innovation process to follow; a standard 
normal and the standardized t-student with 3, 4, 5 degrees of freedom. Our primary 
concern was that the variance was equal to unity. This way the estimation process will 
be consistent and the results of Davidson (2002) would be valid. The appropriate 
regions for the coefficients α, β had already been calculated. 
-We generated a GARCH(1,1) model with sample size of 350, 1100 and 1600 
observations. The coefficients α, β were chosen to be in different region each time. 
-We estimated a GARCH(1,1) model on the data after discarding the first 100 
observations of each series. Using the natural logarithms of the standardized residuals 
of this procedure we proceeded with the application of the BDS test. The embedding 
dimension was set to be m=2,3,4,5 and the ε to be equal to one standard deviations2. 
The test provided the BDS statistic for each dimension and an answer to whether the 
null hypothesis that the residuals were clear of any remaining nonlinearities had been 
rejected or not. 
-We repeated the procedure 1000 and 1500 times and we stored the results. Then for 
every embedding dimension we calculated the basic distributional characteristics 
(mean, standard deviation, skewness and kurtosis) for the BDS statistic. The 
percentage of rejections of the null hypothesis was in each case the size of the test. 
 

 
Figure 4.1.1 

 
 

-If during the estimation step, the coefficients were found negative, in contrast with 
the available theory, or they took much larger values than the true, we started the 
procedure again by generating a new series. This problem did not lead to a large 
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increase of the number of replications finally performed3. Instead the quality of the 
coefficient estimates was improved and the distributional characteristics were of 
greater sense4. 
 
4.2 Size of the BDS test: the case of iid series. 
 
 Using the procedure we described above we calculated the distributional 
characteristics of the BDS statistic and the size of the test, for each iid process. The 
results given in the table below are for embedding dimension m=25.  
 

Distribution: Cauchy 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.054911  1.034848  1.868273  18.72275  0.0520000 
1000 

1000 
 0.000451  1.058239  1.501240  13.16928  0.0680000 

1500 2000 -0.004222  1.012158  2.875441  21.08473  0.0540000 
Distribution: t-student(2) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.033302  1.047797  0.346193  2.879772  0.0600000 
1000 

1000 
 0.017934  1.056212  0.179230  3.092861  0.0720000 

1500 2000 -0.021783  1.029198  0.203046  3.006934  0.0565000 
Distribution: t-student(3) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.063450  1.060971  0.366295  3.588656  0.0690000 
1000 

1000 
-0.037556  0.985328 -0.016446  3.017958  0.0480000 

1500 2000 -0.045178  1.012401  0.183272  3.248233  0.0590000 
Distribution: t-student(4) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.067248  1.033512  0.148684  3.335028  0.0720000 
1000 

1000 
-0.031777  0.997771  0.218548  3.399237  0.0510000 

1500 2000 -0.026404  1.036300  0.236622  3.037243  0.0575000 
Distribution: t-student(5) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.057494  1.061156  0.195169  3.041910  0.0660000 
1000 

1000 
-0.080395  1.012596  0.091908  2.846425  0.0500000 

1500 2000 -0.013680  1.001899  0.202866  2.845676  0.0490000 
Distribution: N(0,1)  
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.037955  1.119189  0.310305  3.458254  0.0690000 
1000 

1000 
-0.033040  1.049061 -0.115106  3.166985  0.0640000 

1500 2000 -0.043328  1.041246  0.070926  3.095671  0.0610000 
 

Table 4.2.1 
 



      As we can notice, for all cases but the Cauchy, the BDS statistic’s distribution can 
be well approximated by the standard normal. Additionally the size of the test is very 
close to the nominal value of 5%. We must emphasize the fact that this result is more 
prominent for the case of more than 250 observations. For this case the test is little 
oversized and there are small deviations for all the four distributional characteristics 
we report. Therefore a researcher that intends to use the test must keep in mind that 
his sample size must be as large as possible. So far our results coincide with that of 
the literature.  
    In the case of the Cauchy distribution, we can no longer consider that the statistic’s 
distribution is standard normal. Even though the mean and the standard deviation are 
zero and unity respectively, as in the N (0, 1) case, the values that the skewness and 
the kurtosis take are quite larger. Especially the large value of the kurtosis reveals a 
very leptokurtic distribution. However the size remains close to the nominal. 
  The main point that must be noticed from the analysis above is that one of the 
assumptions we have made so far has failed. It was noted in paragraph 3 that there are 
no moment restrictions for the iid series under scrutiny in order for the BDS test to 
function. The case of the Cauchy distribution proves the opposite. The main property 
of the Cauchy distribution is that despite the existence of its density function, it has no 
moments at all. Here the BDS test behaves as it was assumed for the case of 
distributions that at least their first moment, the mean, exists.  
    Therefore we must restate the moment assumption for the case of the iid series; 
instead of only the existence of the density function, we must pose the restriction that 
the first moment of the distribution exists. Yet we must notice that even the test does 
not approximate the standard normal, size is close to nominal. This creates the 
possibility that the first moment existence assumption may be relaxed and the critical 
values could be drawn from the standard normal.  
 
4.3 Size of the BDS test: the case of GARCH(1,1) series. 
 
   We have mentioned that the Monte Carlo simulation for this case would contain 
results for different distributions for the innovations and for different sets of 
coefficients α, β so that we cover all possible regions. In addition we consider the 
cases that the process is 2nd or 4th order stationary and the case of L0-approximability 
whenever it is possible; i.e. wherever the fourth moment of the innovation exists or 
not for the case of the fourth order stationarity. 
   The results will be report in the following manner: for each innovation distribution 
it will be provided a figure that demonstrates the regions after their boundaries have 
been numerically calculated as described in paragraph 4.1.Insted of the L0-
approximability boundary it is given the boundary that the relation (2.4.1) provides. 
We remind that L0-approximability besides the validity of the relation (2.4.1) requires 
that the series is strict stationary. The boundary lines appear truncated. This is due to 
the numerical procedure and to the approximation we chose for the zero equality. 
However this does not concern us, as we take points that are “deep” inside the regions 
and away from the boundary lines. 
    Then we will present the pairs of α, β coefficients that are used in the simulation 
and the regions they belong, along with the moment characteristics for the 
unconditional process for each case. Finally we will report for embedding dimension 
m=2, the distributional characteristics of the BDS test statistic and its size for each 
coefficient for 250, 1000, 1500 observations and 1000 and 2000 replications. 



     The choice for m=2 was made because we consider the case of 250 observations. 
On key assumption is that the embedding dimension one would use for the test 
depends primarily on the length of the series under check. If the observations are few 
the choice of m=2 is the most appropriate. The results for larger embedding 
dimension are omitted in this paragraph and they are reported in full in the Appendix.    
Another important issue that may be raised is whether the results are point specific. 
Even though their selection was not made in order to match any criterion, unreported 
results for different points from the same regions and therefore identical properties for 
the GARCH process reached the same conclusions.  
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Figure 4.3.1 
 

Distributional Characteristics # observ # replic Point size 
 µ s a3 a4 

1000 A  0.085 0.048790 1.118076 0.265967  2.83240 
1000 B  0.087 0.077560 1.143551 0.395657  3.45682 

250 

1000 C  0.056 0.033520 1.072474 0.290596  3.12098 
1000 A  0.058 0.092502 1.083316 0.347621  3.88416 
1000 B  0.079 0.183223 1.132336 1.188402  12.5768 

1000 

1000 C  0.063 0.050424 1.073817 0.236518  3.14306 
2000 A  0.066 0.096628 1.103159 0.839001 7.42989 
2000 B  0.073 0.172289 1.185840 2.018296 25.5164 

1500 

2000 C  0.065 0.086955 1.110019 1.029108  8.26192 
 

Table 4.3.1 
 
 
 



Point Coordinates Region Moment-Memory 
properties 

L0-approximability 

A (0.52,0.30) 3 strict stationarity 
1st moment 

YES 

B (1.70,0.30) 2 strict stationarity YES 
C (0.80,0.60) 2 strict stationarity NO 

 
Table 4.3.2 

 

• Results for IID innovations Xt=
1
( ) t

t

Z
Var Z

⋅ , Zt~ t-student (4) 

X=(1/sqr(var))*Z,Z~t-stud(4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

α coef

β 
co

ef

region3-4 L0-approx region 2-3 region 1-2  
Figure 4.3.2 

 
Distributional Characteristics # observ #replic Point size 

µ s a3 a4 
1000 A  0.070 -0.07616  1.109222  0.182149  3.402947 
1000 B  0.066  0.001489  1.055650  0.247877  3.149775 
1000 C  0.064 -0.05662  1.092364  0.185671  3.185553 

250 

1000 D  0.061 -0.01348  1.059562  0.267870  2.874518 
1000 A  0.049 -0.08986  0.995256  0.064094  2.802747 
1000 B  0.060 -0.00699  1.054675  0.138975  2.876385 
1000 C  0.071  0.112161  1.178033  1.249408  9.510047 

1000 

1000 D  0.072 -0.05949  1.066752  0.195612  2.940678 
2000 A  0.058  0.020479  1.025831  0.063884  3.041970 
2000 B  0.063 -0.01415  1.051548  0.229238  3.240956 
2000 C  0.100  0.226400  1.376441  1.855231  12.34100 

1500 

2000 D  0.059 -0.0086  1.074656  0.787757  9.379962 
Table 4.3.3 

 
 



Point Coordinates Region Moment-Memory 
properties 

L0-approximability 

 
A 

 
(0.40,0.50) 

 
4 

2nd order stationary 
1st ,2nd moment 

YES 

 
B 

 
(0.85,0.20) 

 
3 

strict stationary 
1st moment 

YES 

C (1.29,0.40) 2 strict stationary YES 
D (0.5,0.68) 2 strict stationary NO 

 
Table 4.3.4 

 

• Results for IID innovations Xt=
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Point Coordinates Region Moment-Memory 

properties 
L0-approximability 

 
A 

 
(0.13,0.40) 

 
4 

4th order stationary 
1st ,2nd ,3rd ,4th moment 

YES 

 
B 

 
(0.33,0.50) 

 
4 

2nd order stationary 
1st ,2nd moment 

YES 

 
C 

 
(0.90,0.20) 

 
3 

strict stationary 
1st moment 

YES 

D (1.31,0.30) 2 strict stationary YES 
 

Table 4.3.5 
 
 
 
 

 



Distributional Characteristics # observ #replic Point size 
µ s a3 a4 

1000 A  0.058 -0.13396  1.066728  0.280347  3.115136 
1000 B  0.065  0.025224  1.057137  0.228024  2.790781 
1000 C  0.050 -0.09345  1.042572  0.105024  2.808112 

250 

1000 D  0.060 -0.04461  1.066005  0.048409  2.945696 
1000 A  0.048 -0.01434  1.021235  0.231608  3.192480 
1000 B  0.052 -0.02634  1.022998  0.095895  2.997172 
1000 C  0.047  0.006391  0.995318  0.249750  2.927890 

1000 

1000 D  0.052 -0.04827  1.013248  0.034611  2.814745 
2000 A  0.050 -0.02162  1.006946  0.173131  3.178304 
2000 B  0.043 -0.06572  0.986474  0.142582  3.088077 
2000 C  0.066 -0.02219  1.056432  0.107103  2.956959 

1500 

2000 D  0.063 -0.02778  1.067078  0.245327  3.664950 
 

Table 4.3.6 
 

• Results for IID innovations Zt~ N(0,1) 
Z~N(0,1)
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Figure 4.3.4 

 
Point Coordinates Region Moment-Memory 

properties 
L0-approximability 

 
A 

 
(0.1,0.60) 

 
4 

4th order stationary 
1st ,2nd ,3rd ,4th moment 

YES 

 
B 

 
(0.5,0.40) 

 
4 

2nd order stationary 
1st ,2nd moment 

YES 

 
C 

 
(0.8,0.30) 

 
3 

strict stationary 
1st moment 

YES 

D (1.0,0.34) 2 strict stationary YES 
 

Table 4.3.7 



Distributional Characteristics # observ #replic Point size 
µ s a3 a4 

1000 A  0.055 -0.16110  1.035908  0.230125  2.940034
1000 B  0.058 -0.14458  1.030191  0.180871  3.240725
1000 C  0.073 -0.09671  1.070953  0.214965  2.975537

250 

1000 D  0.058 -0.1657  1.043602  0.326253  3.034485
1000 A  0.043 -0.1055  0.988685  0.059269  3.037820
1000 B  0.057 -0.06053  1.032951  0.094806  2.873307
1000 C  0.051 -0.00422  1.026620  0.153928  2.948097

1000 

1000 D  0.052 -0.07823  0.994844  0.047307  3.141048
2000 A  0.050 -0.02916  1.012702  0.098904  2.897881
2000 B  0.048 -0.0563  0.992907 -0.00692  2.978359
2000 C  0.048 -0.03936  0.987956  0.160154  3.055161

1500 

2000 D  0.054 -0.0454  1.032204  0.428811  5.147213
 

Table 4.3.8 
 

   It is now time to evaluate our results and see whether the procedure revealed any 
possible flows to the assumptions we have made so far. We will examine each 
distribution specifically. 
-for the sd-t-stud(3) we notice that the BDS statistic’s asymptotic distribution can not 
be approximated by the standard normal for all points examined. Even though the 
mean and the standard deviation take values close to those expected, it is the 
skewness and the kurtosis that cause the problem. Yet in the case of point C where we 
have strict stationarity but no L0-approximability, the estimations for skewness and 
kurtosis are reduced. The test is slightly oversized; it takes values from ~6%-8%, 
when the nominal is 5%. What are the special features for case? The innovations 
process has only 2 moments and there is no2nd order stationarity for the GARCH 
process. 
-for the sd-t-stud(4) we have asymptotic normality for the test for the points that 
belongs to regions 3, 4 (A, B) and for the other 2 points (C, D) that belong to region 2 
we have a large deviation from N(0,1).Again for points C, D the mean and the 
standard deviation are as expected. However skewness and kurtosis take large values 
that surprisingly are reduced, not dramatically, when we estimate from point C to 
point D. We remind that the sole difference between these points is that in point D 
there is no L0-approximability. The size of the test is around 8%, not very far from the 
nominal. In this case the innovation process has 3 moments and there exists an area of 
2nd order stationarity for the corresponding GARCH model. 
-for the sd-t-stud(5)  we have similar results with the case for the 4 degrees of 
freedom. For coefficient values in regions 3, 4, regardless of the existence or not of 4th 
order stationarity for the GARCH process the BDS statistic distribution reaches 
asymptotically the standard normal and the size of the test is very close to nominal. 
For the point D, the one belonging in region 2, there is a deviation in terms of the 
skewness and kurtosis that appears to be larger than expected. Despite this difference, 
the size is not distant from 5%. The main features of this innovation process are the 
existence of the first four moments and the existence for the corresponding GARCH 
process of a region that has fourth order stationarity. 
 
 
 



-for the N(0,1) the results are the same as for those for the sd-t-stud(5) case. In regions 
3, 4 we have the BDS test statistic to have an asymptotic standard normal distribution 
and in region 2 there is a deviation from that in terms of skewness and kurtosis. 
However, even in the last case, the size is close to the nominal values. In this case, the 
innovations have an infinite number of moments and there is no restriction in 
considering the notions of 4th and 2nd order stationarity for the unconditional GARCH 
process. We must also notice the movement of the line that describes the coefficients 
relation for the L0-approximability to hold. For sd-t-stud with 3 degrees of freedom 
this line left outside a large part of region 2. As the degrees of freedom increased this 
left out area was decreasing and as the degrees become infinitely large                      

(t-stud(f) 
f →∞

→ N(0,1)) is vanishing. However Davidson (2002) states that even in the 
case of the N(0,1), this area exists. 
   Considering that the test has as an asymptotic the N(0,1) distribution, for points in 
region 3, in all cases but the standardized t-student with 3 degrees of freedom, can 
lead us to the conclusion that the existence of more than 2 moments for the innovation 
process or equivalently the existence of a region where 2nd order stationarity is valid 
for the GARCH(1,1) model is a necessary condition for the test to work.  
    Another aspect of the results that must be considered is the reason that the test fails 
so heavily in region 2. A further clue to this inquiry comes from the mean values of 
the estimators as reported in the Appendix. It is reported that when the estimation was 
made in region 2, the procedure failed to estimate correctly the constant term of the 
model in all cases. Furthermore the large values of the skewness and kurtosis were 
deteriorated with the increase of the sample. We remind that in this region, the 
GARCH model does not have any moments at all and for the case of the iid series we 
concluded that the existence of first moment was necessary. In fact, if there is a close 
similarity of the results for the case of the Cauchy iid series and of those for the 
region 2 points. In conclusion we can say that the failure in this region can be a failure 
of the consistently estimated parameter assumption and the nonexistence of moments 
for the unconditional model. 
   Finally we summarize in order to derive any further assumption if necessary or to 
relax some. So far the test resulted as the theory described in regions  
 
where at least the first moment of the unconditional process existed and the 
innovation distributions had moments, even fractional, of order higher than 2. 
 
This relaxes a lot the assumption mentioned in De Lima (1996) considering that the 
test would work only for coefficients that satisfy the 2nd order stationarity condition; 
for innovations zt~iid(0,1), α+β<1.Probably the estimated conditional variance, that 
enters the procedure of the test, has similar behavior for cases that α+β>1. 
     In every other case the BDS statistic had mean and standard deviation close to zero 
and unity respectively but much larger skewness and kurtosis. The size in all case 
remained fairly close to nominal. A potential user of the test for real data can rely on 
it regardless of the estimations of the coefficients α, β as long has a valid hypothesis 
about the distribution of the innovation.  
 
 
 
 
 



5. Use of the BDS test on financial data 
 
5.1 Existing Literature 
 
   BDS test is widely used for determining the existence of low-order chaos or more 
generally the existence of nonlinearities and nonstationarities in the series under 
scrutiny. As the null hypothesis is that the series or the residuals after an estimation 
procedure are iid, it can also be used as a general portmanteau test. The majority of 
the existing literature uses the BDS test both ways; as a portmanteau test for checking 
whether the imposed model is the correct one, and as specific test at the original series 
for uncovering chaos or nonlinearities. The series that have been examined varies 
from exchange rates to unemployment. In particular:  
 

 Gallegati M. & Mignacca D. (1994) examined whether US Real GNP is 
chaotic or not. They applied the BDS test to the residuals that were obtained 
after the series was filtered with an appropriate ARMA model. This way all 
linear dependence was removed. The sample they used was rather small 
therefore bootstrapping for the derivation of the critical values was used. The 
result was that for post WWII year we can not accept that the residuals are iid 
and that nonlinear or chaotic structures exist. 

 Hsieh D.A (1989) tested daily foreign exchange rates for the existence of 
nonlinear dependence. He used daily quotes for British Pound, Canadian 
Dollar, Japanese Yen, Deutch  Mark, Swiss Franc from January 2nd ,1974 to 
December 30th ,1983;a total of 2510 observations. First Hsieh prefiltered the 
data with a linear model and applied the BDS test to the residuals. He detected 
evidence of strong nonlinear dependence. Then he filtered again the residuals 
with a GARCH(1,1) model with various innovations processes  ( N(0,1) , t-
student with 3 degrees of freedom, generalized error distribution) and applied 
the BDS test to the standardized residuals. The critical values were obtained 
from Monte Carlo simulations. Hsieh concluded that conditional 
heteroskedasticity, in the form of GARCH models, accounts for a large part of 
the nonlinearity in daily exchange rates. 

 Johnson B. & McClelland R (1995) applied the BDS test to US unemployment 
rate after they prefiltered it with an AR (10) model that provided the best value 
for the Akaike Criterion. The test rejected the null hypothesis that the residuals 
were iid even after a SETAR model was posed to counter for the existing 
nonlinearity. 

 Mahajan A. & Wagner A. J. (1999) examined for the existence of nonlinear 
dynamics in foreign exchange rates. They used ten (10) exchange rates for 3 
sub-periods; the first was from January 1974 to December 1978, the second 
from January 1980 to December 1985 and the last from January 1986 to 
November 1991. The BDS test was applied directly to the returns of series and 
it provided different results from period to period. It appeared that the 
nonlinearity was evidently stronger in the first period, rejection of the iid, and 
was reducing to second and vanishing in the third period. The authors 
considered this as evidence that the random walk model can fairly characterize 
the movement of exchange rates. 

 Panas E. & Ninni V. (2000) used the test in oil markets seeking for evidence 
pro the existing of chaotic or more generally nonlinear structure. They 
prefiltered their data with an AR(s)-GARCH(p,q) model that was chosed to 



minimize the Akaike Criterion. Afterwards they applied the BDS test to the 
standardized residuals and they concluded that there existed further 
nonlinearity that was not captured. 

 Adrangi B., Chatrath A., Duhard K.K, Raffiee K. (2001) examined the 
existence of chaos in oil markets yet they used daily prices from futures 
contracts of NYMEX that were seasonally adjusted. Using the BDS test after 
filtering the data with ARCH-type models suggested that there was no further 
evidence of nonlinearity, and therefore chaos. In most cases GARCH(1,1) 
models captured successfully the majority of the existing nonlinear structure. 
The authors obtained the appropriate critical values using Monte-Carlo 
simulations. 

   Kosfeld R. & Robé S. (2001) considered the case of German bank stock 
returns. Data ranged from the 3rd week of March 1987 to the 2nd week of 
February 1998.Again prefiltering with an appropriate ARMA model was used 
in order to remove possible linear dependencies. The application of the BDS 
test to these residuals provided strong evidence of nonlinearity. As a second 
step they applied the BDS test in standardized residuals after the fit of low-
order GARCH processes: mainly (1, 1) or (2, 1) .The test suggested that these 
models captured the existing nonlinearities. 

 Cecen A. A. & Erkal C. (1996) searched for nonlinear dependence in the form 
of chaos for hourly data, of a period of seven months, of four (4) exchange 
rates: British Pound, Deutche Mark, Japanese Yen and Swiss Franc. BDS test 
strongly rejected an iid behavior in the data and thereby implying nonlinear 
dependence. 

 Brock W.A., Hsieh D. A. & LeBaron Blake (1991) used the BDS test to detect 
nonlinearities in stock index data and specifically for the S&P 500 index and 
the CRSP index.In the case of CRSP index they split the data in two periods: 
the first from July 1962 to April 1974 and the second from May 1974 to 
December 1985. They filtered their data with a GARCH(1,1) and they applied 
the test to the standardized residuals. GARCH models captured all nonlinear 
structure for the second period and they failed to do so for the first period. In 
the case of the S&P 500 index, data were split to a period from 1928 to 1939 
and to a period from 1950 to 1962. The BDS test was applied to the 
standardized residuals of a GARCH(1,1) model and showed no evidence for 
the existence of further nonlinear structure. 

 
   We must stress out the point that through the entire literature the BDS test is 
used merely as a general test that provides evidence for nonlinear structure and it 
can not point to any direction for an appropriate model. The critical values that are 
used after a prefiltering with a GARCH model in most cases are derived using a 
Monte Carlo simulation. This is correct for the cases that the test is applied to the 
standardized residuals. However if someone used, as we have already mentioned, 
the natural logarithm of them, the asymptotic distribution of the test remains the 
N(0,1) and there is no further need for simulations or bootstrapping methods.  

 
 
 
 
 
 



5.2 Application to data 
 
5.2.1 Methodology  
   
  Before we use the BDS test on the data we prefiltered them with an ARMA(p, q)-
GARCH(1,1) process in order to remove all linear and possible nonlinear structure. 
Afterwards we applied the test to the natural logarithm of the standardized residuals. 
In particular the procedure was: 
 

 
• An appropriate ARMA(p,q) model was chosen so that it was as parsimonious 

as possible and that it was able to remove all linear dependence of the 
logarithmic returns of original data. The diagnostic check was made by 
examining the serial correlation of the residuals after the estimation of the 
ARMA(p, q) process upon the data. 

• After the ARMA model was found, we estimated an ARMA (p, q)-
GARCH(1,1) process directly. We took the standardized residuals and we 
used their natural logarithms as input for the BDS test. The test was applied 
for values of the embedding dimension m=2, 3, 4, 5 and ε =1 standard 
deviation of the data. 

• It is possible to filter the original data with the ARMA process and then 
estimate a GARCH(1,1) process applied to the residuals. However 
adjustments are required to the associated covariance matrix so as to obtain 
least squares estimates for the GARCH coefficients. 

• The critical values for the test were obtained from the standard normal 
distribution N (0, 1); for 5% significance level are ±1.96.  

• If the BDS test statistic resulted a number larger than 1.96 or smaller than        
-1.96 we rejected the null hypothesis that the residuals were iid and that the 
GARCH (1, 1) removed all nonlinear dependence. 

 
   
5.2.2 Data Description 
 
   The methodology discussed in the previous section was used in two different groups 
of data sets. The first group was comprised by stock indices of 35 different countries6. 
 
 

1 Argentina 11 France 21 New Zealand 
2 Australia 12 Germany 22 Pakistan 
3 Austria 13 Greece 23 Peru 
4 Belgium 14 Hong-Kong 24 Philippines 
5 Brazil 15 India 25 Portugal 
6 Chile 16 Indonesia 26 Russia 
7 China 17 Japan 27 Singapore 
8 ChezhRep 18 Malaysia 28 South Korea 
9 Denmark 19 Mexico 29 Sri-Lanka 
10 Finland 20 Netherlands 30 Switzerland 



  31 Taiwan   
  32 Thailand   
  33 United Kingdom   
  34 United States (S&P500)   
  35 Venezuela   

 
Table 5.2.2.1 

 
   The data ranged from May 1998 to May 2002, a total of 975 observations. We have 
already seen in the simulation that the asymptotic distribution of the BDS statistic can 
well be approximated from the N (0, 1) distribution for 1000 observations. There is 
not any particular characteristic for these indices. We notice that there exist both 
developed and developing countries. 
   The second group is comprised from 27 foreign exchange rate7. All rates are against 
US dollar. 
 

1 Austria 11 Greece 21 Singapore 
2 Belgium 12 Australia 22 Switzerland 
3 Finland 13 Canada 23 United Kingdom 
4 France 14 Denmark 24 India 
5 Germany 15 Hong Kong 25 Sri-Lanka 
6 Ireland 16 Japan 26 Taiwan 
7 Italy 17 Malaysia 27 Thailand 
8 Netherlands 18 Norway   
9 Portugal 19 New Zealand   
10 Spain 20 Sweden   

 
Table 5.2.2.2 

 
  The rates were from January 1997 to April 2002, a total of 1330 observations. Again 
the number is sufficient to ensure that the asymptotic distribution of the BDS statistic 
can be approximated by the standard normal. Again we observe that the exchange 
rates are against the currencies of both developed and developing countries. In the 
case of the countries that participate in the European Union, the national currency is 
replaced by the Euro exchange rate, multiplied by the fixed rate of this country’s 
currency against it. 
 
5.2.3 Results 
 
  Following the methodology described above for the data sets we have, we derived 
the following tables that contain the percentage of the series that the ARMA (p,q)-
GARCH(1,1) was unable to remove all nonlinear dependence: 
 
 
 
 
 



Stock Indices  
Remaining nonlinear structure (%) 

Embedding dimension 
m=2 m=3 m=4 m=5 
5.71 8.57 5.71 8.57 

 
Table 5.2.3.1 

 
   In particular we notice that the ARMA (p,q)-GARCH(1, 1) process can not capture 
all the existing nonlinearity for all embedding dimension for the case of two stock 
indices: the Austrian stock index and the index of Singapore. We may therefore 
assume that the employment of higher order GARCH models or nonlinear models of 
another kind could possibly counter for this form of nonlinearity. However for the 
vast majority of stock indices (33 out of 35) we see that the GARCH(1,1) model can 
account for all nonlinear structure and therefore describe with success these kind of 
dynamics. 
 
  In the case of foreign exchange rates: 
 

Exchange Rate  
Remaining nonlinear structure (%) 

Embedding dimension 
m=2 m=3 m=4 m=5 
18.52 22.22 18.52 14.81 

 
Table 5.2.3.2 

 
 We notice that in this case the ARMA (p,q)-GARCH(1,1) fails in more cases to 
capture the nonlinearity in the data. In particular in 5 cases out of 27, BDS test detects 
further nonlinear structures; for Hong Kong $, Japanese Yen, Malaysia Ringgit, 
Taiwan NT$ and Thailand Baht. The results for the Sri- Lanka Rupee are ambiguous 
as the remaining nonlinear structure is rejected for m=4,5 and is accepted for m=2,3. 
However we notice again that the simple ARMA (p,q)-GARCH(1,1) model can 
account for the existing nonlinearity in most of the cases. 
  All results are reported in detail in Appendix 2.  
 
6. Conclusion 
 
  Our main objective for this thesis was to discover and evaluate the properties of the 
BDS test through the flexible structure of a GARCH(1,1) process by employing 
Monte Carlo simulations. In order to do show, we first explored the moment and 
memory properties of a GARCH model. It was found that depending on the 
innovation distribution, the moment characteristics of the process are a function of the 
relation of the coefficients α, β.Then we study the BDS test and the underlying 
assumptions. The majority of them concerned smoothness conditions on the kernel, 
moment conditions on the interaction of the kernel with the data generating process, 
and regularity conditions on the strength of temporal dependence for the series under 
scrutiny. 
  Our application of the test for deriving its size in the case of GARCH (1,1) process 
with different innovations lead us to propose a further assumption that can 



complement the other already existing. We discovered through the simulation 
procedure that necessary condition for the test to function properly, is the existence of 
the first moment of the unconditional model (existence of region 3) and the existence 
of moment of order higher than 2 for the iid innovation. Finally we use the test to 
discover whether a ARMA(p,q)-GARCH(1,1) process can remove nonlinear 
structures from real data. We considered 27 exchange rates and 35 stock indices. The 
results was that for the majority of the rates and indices, a AR(p)-GARCH(1,1) 
process can remove all nonlinearities. 
 
Notes: 
 
1 The critical value is 1.96 
2The choice was made accordingly to Brock et al (1991). 
3 For example in the case of 2000 replications, this problem appeared only 20 times. 
4 Without the correction, even though the size was close to nominal, the mean of the BDS 
statistic took values even in the range of 100. 
5 The results for the other embedding dimensions were similar. Note that in the case of the 
250 observations , due to the small sample size, we can basically rely on the results for 
embedding dimension m=2. 
6 Data were taken by the web page: http://www.yahoo.com. The initial source of  the data as it 
is mentioned at the site is Reuters. 
7 Exchange rates data were available at the internet web page of Federal Reserve Bank of 
U.S.A  
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APPENDIX 
 
1. BDS test: Size for IID processes. Monte Carlo Results.  
 
1.1 Embedding dimension m=3 
 

Distribution: Cauchy 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.109908  1.010630  1.657947  11.93448  0.0540000 
1000 

1000 
 0.005796  1.026499  1.438528  9.094557  0.0590000 

1500 2000 -0.017227  1.035487  1.412205  21.72654  0.0500000 
Distribution: t-student(2) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.053941  1.062612  0.349986  3.181309  0.0660000 
1000 

1000 
 0.006231  1.053698  0.134340  3.068604  0.0660000 

1500 2000 -0.026093  1.031726  0.195678  2.957093  0.0615000 
Distribution: t-student(3) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.041375  1.045138  0.361682  3.606686  0.0580000 
1000 

1000 
-0.050518  1.000165  0.028756  2.955727  0.0530000 

1500 2000 -0.060629  1.006797  0.160484  3.117441  0.0530000 
Distribution: t-student(4) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.071531  1.025730  0.133983  2.993705  0.0530000 
1000 

1000 
-0.041430  1.021438  0.183374  3.179697  0.0530000 

1500 2000 -0.023209  1.021886  0.203344  3.062869  0.0575000 
Distribution: t-student(5) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.056939  1.031650  0.273322  3.048220  0.0500000 
1000 

1000 
-0.106686  1.017581  0.129562  2.818850  0.0460000 

1500 2000 -0.030957  1.032041  0.238426  3.134125  0.0590000 
Distribution: N(0,1)  
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.049574  1.106696  0.372387  3.275693  0.0730000 
1000 

1000 
-0.023882  1.031308  0.015258  3.247357  0.0710000 

1500 2000 -0.049918  1.026727  0.103056  3.181306  0.0565000 
 



1.2 Embedding dimension m=4 
 

Distribution: Cauchy 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.114347  0.987871  1.456823  9.227464  0.0470000 
1000 

1000 
 0.014240  1.029150  1.330394  6.659900  0.0620000 

1500 2000 -0.017821  1.042666  1.377189  13.65991  0.0500000 
Distribution: t-student(2) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.073057  1.066761  0.318541  3.225002  0.0740000 
1000 

1000 
-0.009529  1.064467  0.091860  3.002785  0.0630000 

1500 2000 -0.027344  1.021978  0.172364  2.984876  0.0565000 
Distribution: t-student(3) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.025602  1.078902  0.434066  3.712323  0.0680000 
1000 

1000 
-0.045312  0.996404  0.044098  3.063518  0.0500000 

1500 2000 -0.076708  0.998518  0.158821  2.984852  0.0520000 
Distribution: t-student(4) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.066680  1.006092  0.174308  2.783134  0.0470000 
1000 

1000 
-0.036784  1.024213  0.208156  3.206473  0.0490000 

1500 2000 -0.027669  1.015443  0.257665  3.034386  0.0535000 
Distribution: t-student(5) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.056543  1.035270  0.363265  3.078482  0.0550000 
1000 

1000 
-0.117204  1.010606  0.206546  2.926262  0.0500000 

1500 2000 -0.031948  1.020744  0.200138  3.067414  0.0580000 
Distribution: N(0,1)  
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.056241  1.105812  0.451667  3.306924  0.0700000 
1000 

1000 
-0.018486  1.030061  0.195283  3.151076  0.0580000 

1500 2000 -0.059546  1.030110  0.183236  3.219839  0.0580000 
 



1.3 Embedding dimension m=5 
 

Distribution: Cauchy 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.121888  1.011192  0.995364  7.357102  0.0470000 
1000 

1000 
 0.011722  1.036544  1.245629  6.034662  0.0620000 

1500 2000 -0.025174  1.053798  1.057712  12.98944  0.0495000 
Distribution: t-student(2) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.088067  1.060145  0.390565  3.285407  0.0580000 
1000 

1000 
-0.011854  1.046911  0.097917  2.919875  0.0630000 

1500 2000 -0.029577  1.021674  0.150610  3.064483  0.0545000 
Distribution: t-student(3) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.026294  1.081933  0.504971  3.916710  0.0620000 
1000 

1000 
-0.036463  1.002481  0.053869  2.994835  0.0480000 

1500 2000 -0.085811  0.993938  0.178438  3.004568  0.0515000 
Distribution: t-student(4) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.077844  1.014841  0.221400  2.785330  0.0470000 
1000 

1000 
-0.033400  1.019247  0.240631  3.157904  0.0530000 

1500 2000 -0.034607  1.009759  0.311697  3.147411  0.0545000 
Distribution: t-student(5) 
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.072144  1.039504  0.468974  3.170226  0.0500000 
1000 

1000 
-0.112284  1.005547  0.241365  2.977387  0.0550000 

1500 2000 -0.030957  1.032041  0.238426  3.134125  0.0590000 
Distribution: N(0,1)  
# 

observ. 
# 

replic 
mean 

µ 
std. dev. 

s 
skewness 

a3 
kurtosis 

a4 
size 

250 -0.064071  1.125752  0.573815  3.488355  0.0770000 
1000 

1000 
-0.011496  1.042179  0.316721  3.249111  0.0680000 

1500 2000 -0.061967  1.025990  0.261202  3.252851  0.0580000 
 
 



2. Monte Carlo Simulation Results  
 

2.1 Results for IID innovations Xt=
1
( ) t

t

Z
Var Z

⋅ , Zt~ t-student (3) 

Point A: [α=0.52, β=0.30], Region 3 
# repl 1000  true GARCH(1,1) process 

# observ 250 iid innov ct coef arch coef garch coef 
  (1/sqr(var))*

tstud(3) 
1   0.52 0.30 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.048790  1.118076  0.265967  2.832408  0.0850000 
dim m=3  0.060956  1.129461  0.255831  2.977675  0.0880000 
dim m=4  0.026017  1.128779  0.328250  3.104233  0.0730000 
dim m=5  0.022783  1.128315  0.421475  3.349418  0.0730000 

    mean estimation  
   ct coef ar coef gar coef 
    0.8559678  0.4929254  0.3493224 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(3) 
1   0.52 0.30 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.092502  1.083316  0.347621  3.884160  0.0580000 
dim m=3  0.107144  1.091297  0.361266  3.754446  0.0790000 
dim m=4  0.107268  1.083859  0.381333  3.573656  0.0670000 
dim m=5  0.110857  1.082081  0.351579  3.375122  0.0670000 

    mean estimation  
    ct coef ar coef gar coef 
    0.9651676  0.5310945  0.3014914 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(3) 
1   0.52 0.30 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.096628  1.103159  0.839001  7.429893  0.0655000 
dim m=3  0.085002  1.104682  0.732227  6.082692  0.0615000 
dim m=4  0.077509  1.090954  0.659845  5.515135  0.0655000 
dim m=5  0.067254  1.083597  0.624355  5.157481  0.0635000 

    mean estimation  
   ct coef ar coef gar coef 
    0.9718186  0.5386050  0.2958768 



2.1 Results for IID innovations Xt=
1
( ) t

t

Z
Var Z

⋅ , Zt~ t-student (3) 

Point B: [α=1.70, β=0.30], Region 2 
# repl 1000  true GARCH(1,1) process 

# observ 250 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(3) 
1   1.70 0.30 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.077560  1.143551  0.395657  3.456820  0.0870000 
dim m=3  0.085322  1.135119  0.421527  3.593589  0.0830000 
dim m=4  0.069401  1.130245  0.555387  3.775787  0.0750000 
dim m=5  0.059590  1.157635  0.684647  3.955845  0.0840000 

    mean estimation  
   ct coef ar coef gar coef 
    1.2707386  1.5414582  0.2830949 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(3) 
1   1.70 0.30 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.183223  1.132336  1.188402  12.57687  0.0790000 
dim m=3  0.173744  1.131372  1.404144  15.23948  0.0780000 
dim m=4  0.165139  1.124291  1.584052  17.80555  0.0730000 
dim m=5  0.150786  1.130593  1.769087  20.77378  0.0660000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0100246  1.6418799  0.2972994 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(3) 
1   1.70 0.30 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.172289  1.185840  2.018296  25.51642  0.0730000 
dim m=3  0.185987  1.197951  2.256547  27.85095  0.0755000 
dim m=4  0.179648  1.201742  2.121340  25.21875  0.0785000 
dim m=5  0.169268  1.199446  1.974531  22.68868  0.0765000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0492448  1.6780973  0.2941117 

 



2.1 Results for IID innovations Xt=
1
( ) t

t

Z
Var Z

⋅ , Zt~ t-student (3) 

Point C: [α=0.80, β=0.60], Region 2, non L0-approximable 
# repl 1000  true GARCH(1,1) process 

# observ 250 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(3) 
1   0.8 0.6 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.033520  1.072474  0.290596  3.120982  0.0560000 
dim m=3  0.018346  1.085746  0.426448  3.375117  0.0720000 
dim m=4  0.001977  1.093824  0.534508  3.830682  0.0700000 
dim m=5 -0.003681  1.110777  0.576152  4.178022  0.0710000 

    mean estimation  
   ct coef ar coef gar coef 
    1.9623387  0.7355162  0.5702226 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(3) 
1   0.8 0.6 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.050424  1.073817  0.236518  3.143067  0.0630000 
dim m=3  0.059444  1.082404  0.133827  2.968537  0.0730000 
dim m=4  0.055594  1.083503  0.167383  2.950700  0.0730000 
dim m=5  0.060521  1.087799  0.283321  2.970982  0.0720000 

    mean estimation  
   ct coef ar coef gar coef 
    1.3481877  0.8120357  0.5825205 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(3) 
1   0.8 0.6 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.086955  1.110019  1.029108  8.261921  0.0645000 
dim m=3  0.097938  1.121268  1.033070  8.267141  0.0690000 
dim m=4  0.090956  1.128254  1.026196  7.998514  0.0675000 
dim m=5  0.089487  1.130355  1.015983  7.856202  0.0655000 

    mean estimation  
   ct coef ar coef gar coef 
    1.2920093  0.8123267  0.5869759 

 



2.2 Results for IID innovations Xt=
1
( ) t

t

Z
Var Z

⋅ , Zt~ t-student (4) 

Point A: [α=0.40, β=0.50], Region 4, 2nd order stationarity 
# repl 1000  true GARCH(1,1) process 

# observ 250 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(4) 
1   0.40 0.50 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.076161  1.109222  0.182149  3.402947  0.0700000 
dim m=3 -0.080161  1.094096  0.321763  3.515127  0.0720000 
dim m=4 -0.084935  1.102157  0.359307  3.502276  0.0720000 
dim m=5 -0.087561  1.112006  0.454073  3.424977  0.0750000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0993281  0.4016346  0.4776559 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(4) 
1   0.40 0.50 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.089864  0.995256  0.064094  2.802747  0.0490000 
dim m=3 -0.090665  1.009033  0.035574  2.917648  0.0480000 
dim m=4 -0.079114  1.011570  0.052176  2.904328  0.0520000 
dim m=5 -0.061542  1.015782  0.139074  2.911779  0.0540000 

    mean estimation  
    ct coef  ar coef  gar coef 
    1.0476198  0.4118625  0.4845287 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(4) 
1   0.40 0.50 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.020479  1.025831  0.063884  3.041970  0.0575000 
dim m=3  0.016178  1.018133  0.168601  3.311867  0.0565000 
dim m=4  0.001940  1.016641  0.223093  3.364376  0.0535000 
dim m=5 -0.001394  1.018832  0.269129  3.428145  0.0545000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0289806  0.4024324  0.4938709 

 



2.2 Results for IID innovations Xt=
1
( ) t

t

Z
Var Z

⋅ , Zt~ t-student (4) 

Point B: [α=0.85, β=0.20], Region 3 
# repl 1000  true GARCH(1,1) process 

# observ 250 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(4) 
1   0.85 0.2 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.001489  1.055650  0.247877  3.149775  0.0660000 
dim m=3 -0.022186  1.048798  0.250708  2.963945  0.0610000 
dim m=4 -0.035855  1.037256  0.302043  3.033981  0.0490000 
dim m=5 -0.042482  1.043959  0.424178  3.259338  0.0540000 

    mean estimation  
   ct coef ar coef gar coef 
    0.9670181  0.8163563  0.2141785 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(4) 
1   0.85 0.2 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.006986  1.054675  0.138975  2.876385  0.0600000 
dim m=3 -0.021154  1.043118  0.175389  2.928806  0.0590000 
dim m=4 -0.032608  1.040246  0.201144  3.118316  0.0610000 
dim m=5 -0.035869  1.048327  0.221061  3.057067  0.0620000 

    mean estimation  
   ct coef ar coef gar coef 
    0.9964614  0.8355175  0.2006862 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(4) 
1   0.85 0.2 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.014150  1.051548  0.229238  3.240956  0.0625000 
dim m=3 -0.021654  1.038483  0.262759  3.128387  0.0535000 
dim m=4 -0.016688  1.029952  0.289733  3.009733  0.0500000 
dim m=5 -0.022476  1.020324  0.346259  3.145052  0.0500000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0113866  0.8459238  0.1967340 

 



2.2 Results for IID innovations Xt=
1
( ) t

t

Z
Var Z

⋅ , Zt~ t-student (4) 

Point C: [α=1.29, β=0.40], Region 2 
# repl 1000  true GARCH(1,1) process 

# observ 250 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(4) 
1   1.29 0.4 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.056623  1.092364  0.185671  3.185553  0.0640000 
dim m=3 -0.086538  1.093089  0.207466  3.078820  0.0680000 
dim m=4 -0.097246  1.083802  0.326444  3.166987  0.0780000 
dim m=5 -0.093749  1.089049  0.505390  3.500497  0.0660000 

    mean estimation  
   ct coef ar coef gar coef 
    2.4243430  1.1926402  0.3949307 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(4) 
1   1.29 0.4 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.112161  1.178033  1.249408  9.510047  0.0710000 
dim m=3  0.111335  1.163736  1.168382  8.668880  0.0740000 
dim m=4  0.101543  1.145625  1.127116  8.009106  0.0720000 
dim m=5  0.092564  1.139790  1.063256  7.424577  0.0690000 

    mean estimation  
   ct coef ar coef gar coef 
    1.7840752  1.3042153  0.3866656 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(4) 
1   1.29 0.4 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.226400  1.376441  1.855231  12.34100  0.1000000 
dim m=3  0.238109  1.369951  1.840045  12.13320  0.0940000 
dim m=4  0.229133  1.332455  1.795875  11.85104  0.0895000 
dim m=5  0.222272  1.319029  1.699119  11.08828  0.0905000 

    mean estimation  
   ct coef ar coef gar coef 
    2.1570813  1.3917367  0.3727349 

 



2.2 Results for IID innovations Xt=
1
( ) t

t

Z
Var Z

⋅ , Zt~ t-student (4) 

Point D: [α=1.29, β=0.40], Region 2, non L0-approximable 
# repl 1000  true GARCH(1,1) process 

# observ 250 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(4) 
1   0.5 0.68 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.013482  1.059562  0.267870  2.874518  0.0610000 
dim m=3 -0.044343  1.083091  0.315418  2.834571  0.0640000 
dim m=4 -0.040602  1.075117  0.354149  2.927834  0.0620000 
dim m=5 -0.037858  1.076167  0.425708  3.138457  0.0640000 

    mean estimation  
   ct coef ar coef gar coef 
    3.1191124  0.4775429  0.6655495 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(4) 
1   0.5 0.68 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.059489  1.066752  0.195612  2.940678  0.0720000 
dim m=3 -0.061066  1.054519  0.173998  2.888580  0.0650000 
dim m=4 -0.047015  1.034894  0.240567  3.007807  0.0660000 
dim m=5 -0.041291  1.031319  0.286292  3.081016  0.0610000 

    mean estimation  
   ct coef ar coef gar coef 
    1.6894625  0.5049376  0.6733662 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(4) 
1   0.5 0.68 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.008598  1.074656  0.787757  9.379962  0.0590000 
dim m=3 -0.009054  1.073677  0.719520  8.710452  0.0640000 
dim m=4 -0.010911  1.066276  0.598599  7.298687  0.0575000 
dim m=5 -0.014917  1.057316  0.531098  6.496824  0.0565000 

    mean estimation  
   ct coef ar coef gar coef 
    1.5062953  0.5097454  0.6735539 

 



2.3 Results for IID innovations Xt=
1
( ) t

t

Z
Var Z

⋅ , Zt~ t-student (5) 

Point A: [α=0.13, β=0.40], Region 4, 4th order stationarity 
# repl 1000  true GARCH(1,1) process 

# observ 250 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(5) 
1   0.13 0.40 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.133963  1.066728  0.280347  3.115136  0.0580000 
dim m=3 -0.156573  1.049225  0.455072  3.268548  0.0600000 
dim m=4 -0.158807  1.050293  0.458017  3.460869  0.0630000 
dim m=5 -0.153050  1.045207  0.471976  3.418080  0.0610000 

    mean estimation  
   ct coef ar coef gar coef 
    0.7358867  0.1471815  0.5163079 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(5) 
1   0.13 0.40 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.014342  1.021235  0.231608  3.192480  0.0480000 
dim m=3 -0.049082  1.032126  0.262028  3.337051  0.0520000 
dim m=4 -0.043373  1.020432  0.252464  3.390413  0.0560000 
dim m=5 -0.037612  1.024977  0.278413  3.534521  0.0600000 

    mean estimation  
   ct coef ar coef gar coef 
    0.9303826  0.1281931  0.4341355 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(5) 
1   0.13 0.40 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.021618  1.006946  0.173131  3.178304  0.0500000 
dim m=3 -0.013527  1.008954  0.158890  3.116670  0.0545000 
dim m=4 -0.015749  1.004008  0.180376  2.993443  0.0535000 
dim m=5 -0.020181  1.004799  0.218535  2.982283  0.0505000 

    mean estimation  
   ct coef ar coef gar coef 
    0.9779385  0.1312999  0.4113732 

 



2.3 Results for IID innovations Xt=
1
( ) t

t

Z
Var Z

⋅ , Zt~ t-student (5) 

Point B: [α=0.33, β=0.50], Region 4, 2nd order stationarity 
# repl 1000  true GARCH(1,1) process 

# observ 250 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(5) 
1   0.33 0.50 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.025224  1.057137  0.228024  2.790781  0.0650000 
dim m=3 -0.027727  1.049129  0.285397  2.865999  0.0610000 
dim m=4 -0.045963  1.057050  0.437981  3.220840  0.0510000 
dim m=5 -0.063134  1.067812  0.564770  3.505293  0.0550000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0701763  0.3350759  0.4830175 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(5) 
1   0.33 0.50 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.026339  1.022998  0.095895  2.997172  0.0520000 
dim m=3 -0.048791  1.017901  0.183778  3.058798  0.0540000 
dim m=4 -0.054416  1.001329  0.243515  3.126572  0.0450000 
dim m=5 -0.062027  0.993066  0.286066  3.224432  0.0540000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0396302  0.3302249  0.4870841 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(5) 
1   0.33 0.50 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.065715  0.986474  0.142582  3.088077  0.0425000 
dim m=3 -0.066735  0.992991  0.165593  3.156270  0.0485000 
dim m=4 -0.065044  0.999445  0.199014  3.244880  0.0515000 
dim m=5 -0.059776  1.009801  0.242001  3.171501  0.0515000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0194680  0.3298474  0.4948654 

 



2.3 Results for IID innovations Xt=
1
( ) t

t

Z
Var Z

⋅ , Zt~ t-student (5) 

Point C: [α=0.90, β=0.20], Region 3 
# repl 1000  true GARCH(1,1) process 

# observ 250 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(5) 
1   0.90 0.20 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.093449  1.042572  0.105024  2.808112  0.0500000 
dim m=3 -0.105405  1.047942  0.165602  2.837803  0.0560000 
dim m=4 -0.125568  1.041734  0.267912  3.018015  0.0590000 
dim m=5 -0.137110  1.038499  0.372837  3.130171  0.0480000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0176372  0.8626131  0.2043834 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(5) 
1   0.90 0.20 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2  0.006391  0.995318  0.249750  2.927890  0.0470000 
dim m=3 -0.013821  1.016929  0.232166  3.092567  0.0550000 
dim m=4 -0.029765  1.012028  0.242274  3.221756  0.0540000 
dim m=5 -0.027930  1.003236  0.279562  3.321289  0.0560000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0136319  0.8882204  0.1986084 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(5) 
1   0.90 0.20 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.022184  1.056432  0.107103  2.956959  0.0660000 
dim m=3 -0.028110  1.045289  0.203320  3.051216  0.0635000 
dim m=4 -0.033323  1.039051  0.227813  3.106398  0.0590000 
dim m=5 -0.028432  1.039814  0.256066  3.074264  0.0630000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0089707  0.8916463  0.1996798 

 



2.3 Results for IID innovations Xt=
1
( ) t

t

Z
Var Z

⋅ , Zt~ t-student (5) 

Point D: [α=1.31, β=0.30], Region 2  
# repl 1000  true GARCH(1,1) process 

# observ 250 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(5) 
1   1.31 0.30 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.044606  1.066005  0.048409  2.945696  0.0600000 
dim m=3 -0.062545  1.093208  0.212558  2.981967  0.0810000 
dim m=4 -0.069519  1.095146  0.301778  3.066757  0.0760000 
dim m=5 -0.078795  1.083032  0.415173  3.201443  0.0690000 

    mean estimation  
   ct coef ar coef gar coef 
    1.4493486  1.2836868  0.2920909 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(5) 
1   1.31 0.30 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.048267  1.013248  0.034611  2.814745  0.0520000 
dim m=3 -0.075184  1.033179  0.139662  2.928540  0.0590000 
dim m=4 -0.078239  1.025684  0.215675  3.024484  0.0630000 
dim m=5 -0.077663  1.027632  0.267496  3.019599  0.0600000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0649278  1.3144789  0.2977638 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  (1/sqr(var))

*tstud(5) 
1   1.31 0.30 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.027781  1.067078  0.245327  3.664950  0.0625000 
dim m=3 -0.018592  1.068316  0.371788  4.250156  0.0620000 
dim m=4 -0.017889  1.058930  0.507884  5.027676  0.0620000 
dim m=5 -0.027246  1.052851  0.587560  5.205914  0.0590000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0825922  1.3200758  0.2964028 

 



2.4 Results for IID innovations Zt ~N (0,1) 
 
Point A: [α=0.10, β=0.60], Region 4, 4th order stationarity 
 

# repl 1000  true GARCH(1,1) process 
# observ 250 iid innov ct coef arch coef garch coef 

  N(0,1) 1  0.10  0.60 
BDS stat characteristics     

 mean stdev skewness kyrtosis size 
dim m=2 -0.161104  1.035908  0.230125  2.940034  0.0550000 
dim m=3 -0.189218  1.022552  0.378041  3.074274  0.0560000 
dim m=4 -0.177177  1.025704  0.461999  3.344374  0.0530000 
dim m=5 -0.165145  1.027865  0.505798  3.443775  0.0530000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0277727  0.1142300  0.5832208 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  N(0,1) 1  0.10  0.60 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.105499  0.988685  0.059269  3.037820  0.0430000 
dim m=3 -0.114689  0.971283  0.074801  3.058635  0.0410000 
dim m=4 -0.103182  0.979407  0.096407  2.937809  0.0430000 
dim m=5 -0.100174  0.989073  0.126425  3.005334  0.0510000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0473065  0.0993089  0.5866018 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  N(0,1) 1  0.10  0.60 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.029163  1.012702  0.098904  2.897881  0.0495000 
dim m=3 -0.040964  1.010190  0.098122  2.916016  0.0505000 
dim m=4 -0.041054  1.021773  0.125431  3.082282  0.0560000 
dim m=5 -0.040918  1.015694  0.187169  3.155526  0.0515000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0406047  0.0995432  0.5874852 

 



2.4 Results for IID innovations Zt ~N (0,1) 
 
Point B: [α=0.50, β=0.40], Region 4, 2nd order stationarity 
 

# repl 1000  true GARCH(1,1) process 
# observ 250 iid innov ct coef arch coef garch coef 

  N(0,1) 1  0.50  0.40 
BDS stat characteristics     

 mean stdev skewness kyrtosis size 
dim m=2 -0.144580  1.030191  0.180871  3.240725  0.0580000 
dim m=3 -0.138957  1.018385  0.313513  3.427933  0.0560000 
dim m=4 -0.138592  1.009322  0.366454  3.185046  0.0480000 
dim m=5 -0.123727  1.023385  0.492412  3.318776  0.0520000 

    mean estimation  
   ct coef ar coef gar coef 
    1.1050305  0.4857606  0.3887670 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  N(0,1) 1  0.50  0.40 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.060525  1.032951  0.094806  2.873307  0.0570000 
dim m=3 -0.063277  1.020477  0.143555  3.183173  0.0590000 
dim m=4 -0.063992  1.006673  0.219170  3.201986  0.0500000 
dim m=5 -0.066034  0.995806  0.279318  3.131026  0.0480000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0170427  0.4963973  0.3987045 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  N(0,1) 1  0.50  0.40 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.056295  0.992907 -0.006919  2.978359  0.0480000 
dim m=3 -0.059907  0.999069  0.022985  3.063781  0.0490000 
dim m=4 -0.050540  1.008951  0.084046  3.258199  0.0495000 
dim m=5 -0.041386  1.011779  0.131449  3.393801  0.0520000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0148083  0.4986828  0.3974963 

 



2.4 Results for IID innovations Zt ~N (0,1) 
 
Point C: [α=0.80, β=0.30], Region 3 
 

# repl 1000  true GARCH(1,1) process 
# observ 250 iid innov ct coef arch coef garch coef 

  N(0,1) 1  0.80  0.30 
BDS stat characteristics     

 mean stdev skewness kyrtosis size 
dim m=2 -0.096714  1.070953  0.214965  2.975537  0.0730000 
dim m=3 -0.130475  1.064871  0.344881  3.234771  0.0620000 
dim m=4 -0.142105  1.057611  0.375741  3.195843  0.0640000 
dim m=5 -0.125018  1.063908  0.423758  3.379619  0.0640000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0946081  0.7825050  0.2938575 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  N(0,1) 1  0.80  0.30 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.004214  1.026620  0.153928  2.948097  0.0510000 
dim m=3 -0.008839  1.025092  0.119083  3.042091  0.0550000 
dim m=4  0.001969  1.017115  0.158720  3.219249  0.0510000 
dim m=5  0.006020  1.010241  0.188020  3.335991  0.0520000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0245120  0.7925008  0.2982350 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  N(0,1) 1  0.80  0.30 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.039359  0.987956  0.160154  3.055161  0.0480000 
dim m=3 -0.053974  1.010678  0.185778  3.068852  0.0545000 
dim m=4 -0.053936  1.022660  0.183654  3.110689  0.0575000 
dim m=5 -0.051065  1.024411  0.218920  3.130555  0.0550000 

    mean estimation  
   ct coef ar coef gar coef 
    1.0154990  0.7952178  0.3001044 

 



2.4 Results for IID innovations Zt ~N (0,1) 
 
Point D: [α=1.00, β=0.34], Region 3 
 

# repl 1000  true GARCH(1,1) process 
# observ 250 iid innov ct coef arch coef garch coef 

  N(0,1) 1   1 0.34 
BDS stat characteristics     

 mean stdev skewness kyrtosis size 
dim m=2 -0.165695  1.043602  0.326253  3.034485  0.0580000 
dim m=3 -0.200306  1.057524  0.219015  2.914052  0.0630000 
dim m=4 -0.212188  1.033205  0.242518  3.022589  0.0620000 
dim m=5 -0.217004  1.039837  0.347264  2.990336  0.0720000 

    mean estimation  
   ct coef ar coef gar coef 
    1.4474064  0.9671329  0.3419771 

 
# repl 1000  true GARCH(1,1) process 

# observ 1000 iid innov ct coef arch coef garch coef 
  N(0,1) 1   1 0.34 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.078226  0.994844  0.047307  3.141048  0.0520000 
dim m=3 -0.075185  0.988351  0.076116  3.344309  0.0530000 
dim m=4 -0.094698  1.002853  0.112271  3.210673  0.0390000 
dim m=5 -0.093677  1.004770  0.141433  3.239775  0.0450000 

    mean estimation  
   ct coef ar coef gar coef 
    1.1182915  0.9981305  0.3372530 

 
# repl 2000  true GARCH(1,1) process 

# observ 1500 iid innov ct coef arch coef garch coef 
  N(0,1) 1   1 0.34 

BDS stat characteristics     
 mean stdev skewness kyrtosis size 

dim m=2 -0.045400  1.032204  0.428811  5.147213  0.0540000 
dim m=3 -0.049568  1.034269  0.445519  4.665604  0.0495000 
dim m=4 -0.055605  1.042664  0.459902  4.557064  0.0540000 
dim m=5 -0.051536  1.038628  0.405062  4.320967  0.0515000 

    mean estimation  
   ct coef ar coef gar coef 
    1.1046518  1.0016466  0.3381617 

 



3. Empirical Results 
 

Stock Indices Foreign Exchange Rate 
Number Country Number Country 

1 Argentina 1 Austria 
2 Australia 2 Belgium 
3 Austria 3 Finland 
4 Belgium 4 France 
5 Brazil 5 Germany 
6 Chile 6 Ireland 
7 China 7 Italy 
8 Chezh Rep 8 Netherlands 
9 Denmark 9 Portugal 
10 Finland 10 Spain 
11 France 11 Greece 
12 Germany 12 Australia 
13 Greece 13 Canada 
14 Hong-Kong 14 Denmark 
15 India 15 Hong Kong 
16 Indonesia 16 Japan 
17 Japan 17 Malaysia 
18 Malaysia 18 Norway 
19 Mexico 19 New Zealand 
20 Netherlands 20 Sweden 
21 New Zealand 21 Singapore 
22 Pakistan 22 Switzerland 
23 Peru 23 United Kingdom 
24 Philippines 24 India 
25 Portugal 25 Sri-Lanka 
26 Russia 26 Taiwan 
27 Singapore 27 Thailand 
28 South Korea 
29 Sri-Lanka 
30 Switzerland 
31 Taiwan 
32 Thailand 
33 United Kingdom 
34 United States (S&P500) 
35 Venezuela 

 

 

 
  Using the table above we correspond to each country a specific number that we use 
as a key in order to read the results that follow. 
 



3.1 Empirical Results (Stock Indices) 
 
 

country 
prefiltering 

model 
ct coef of 
pref.mod 

ar(1) 
coef 

ar(2)  
coef 

ma(1) 
coef 

1 AR(1) -0.0004 0.0958     
2 AR(1) 0.0005 -0.0100     
3 AR(2) 0.0003 0.0945 -0.0126   
4 AR(2) 0.0001 0.1753 -0.0762   
5 AR(1) 0.0007 0.0385     
6 AR(1) -0.0017 -0.2285     
7 AR(1) 0.0004 0.0318     
8 AR(1) 0.0004 0.0832     
9 AR(1) 0.0003 0.1079     
10 AR(1) 0.0013 0.0558     
11 AR(1) 0.0002 0.0324     
12 AR(1) 0.0001 0.0289     
13 AR(1) 0.0002 0.1657     
14 AR(1) 0.0004 0.0603     
15 AR(1) 0.0005 0.0582     
16 AR(1) 0.0003 0.1455     
17 AR(1) -0.0001 -0.0069     
18 AR(1) 0.0007 0.1964     
19 AR(1) 0.0009 0.1475     
20 AR(2) 0.0000 0.0194 -0.0218   
21 AR(1) 0.0002 0.0232     
22 AR(1) -0.0001 0.0585     
23 AR(1) -0.0001 0.1826     
24 AR(1) -0.0005 0.1706     
25 AR(1) 0.0000 0.1378     
26 AR(1) 0.0019 0.0537     
27 AR(1) 0.0006 0.0812     
28 AR(1) 0.0011 0.0826     
29 AR(2) -0.0001 0.3820 -0.0478   
30 AR(1) 0.0002 0.0395     
31 AR(1) 0.0002 0.0799     
32 AR(1) 0.0081 -0.1246     
33 AR(1) -0.0001 0.0189     
34 AR(1) 0.0002 0.0091     
35 ARMA(1,1) -0.0005 0.2689   0.0246 

 
 
The ARMA(p,q) model that is reported here, is the appropriate one that removes all 
linear dependence with the employment of as few parameters as possible.  



3.1 Empirical Results (Stock Indices) (cont) 
 

country 
GARCH 
ct coef 

arch  
coef 

garch 
 coef 

m=2  
non IID 

m=3 
 non IID 

m=4  
non IID  

m=5 
 non IID 

1 0.0000 0.1234 0.8450 YES NO NO NO 
2 0.0000 0.0706 0.8569 NO NO NO NO 
3 0.0000 0.0841 0.8896 YES YES YES YES 
4 0.0000 0.1785 0.8110 NO NO NO NO 
5 0.0000 0.1755 0.7670 NO NO NO NO 
6 0.0001 1.7680 -0.0091 NO NO NO NO 
7 0.0000 0.2056 0.7773 NO YES NO NO 
8 0.0000 0.0890 0.8507 NO NO NO NO 
9 0.0000 0.0909 0.8577 NO NO NO NO 
10 0.0000 0.0392 0.9566 NO NO NO NO 
11 0.0000 0.0667 0.9070 NO NO NO NO 
12 0.0000 0.0936 0.8751 NO NO NO NO 
13 0.0001 0.2573 0.6353 NO NO NO NO 
14 0.0000 0.0521 0.9298 NO NO NO NO 
15 0.0001 0.0907 0.7006 NO NO NO YES 
16 0.0000 0.1618 0.7898 NO NO NO NO 
17 0.0000 0.0765 0.8763 NO NO NO NO 
18 0.0000 0.2145 0.6749 NO NO NO NO 
19 0.0000 0.0870 0.8707 NO NO NO NO 
20 0.0000 0.1146 0.8611 NO NO NO NO 
21 0.0000 0.1740 0.8034 NO NO NO NO 
22 0.0000 0.1277 0.8435 NO NO NO NO 
23 0.0000 0.2644 0.6606 NO NO NO NO 
24 0.0000 0.1510 0.7219 NO NO NO NO 
25 0.0000 0.1948 0.7271 NO NO NO NO 
26 0.0001 0.1164 0.8140 NO NO NO NO 
27 0.0000 0.1474 0.7209 NO YES YES YES 
28 0.0001 0.0772 0.7752 NO NO NO NO 
29 0.0000 0.6102 0.4381 NO NO NO NO 
30 0.0000 0.1358 0.8329 NO NO NO NO 
31 0.0000 0.1425 0.7838 NO NO NO NO 
32 0.0003 2.4060 0.0150 NO NO NO NO 
33 0.0000 0.0960 0.8546 NO NO NO NO 
34 0.0000 0.0892 0.8405 NO NO NO NO 
35 0.0001 0.4891 0.5351 NO NO NO NO 

 
 
If the indication in last columns is “YES”, then we may accept that the data are not 
clear from nonlinear structure after we filtered them with  an AR (p)- GARCH(1, 1) 
model. 
 



3.2 Empirical Results (Foreign Exchange Rates) 
 
 

country 
prefiltering 

model 
ct coef of 
pref.mod 

ar(1) 
coef 

ar(2)  
coef 

ma(1) 
coef 

1 AR(1) 0.0003 0.0188     
2 AR(1) 0.0002 0.0098     
3 AR(1) 0.0003 0.0126     
4 AR(1) 0.0002 0.0262     
5 AR(1) 0.0002 0.0272     
6 AR(1) -0.0003 0.0266     
7 AR(1) 0.0003 0.0295     
8 AR(1) 0.0002 0.0268     
9 AR(1) 0.0003 0.0274     
10 AR(1) 0.0003 0.0268     
11 AR(1) 0.0002 0.0667     
12 AR(1) -0.0003 0.0232     
13 AR(1) 0.0001 0.0641     
14 AR(1) 0.0003 0.0281     
15 ARMA(1,1) 0.0000 0.4599   -0.7220 
16 AR(1) 0.0003 0.0241     
17 AR(2) 0.0000 0.0892 0.0923   
18 AR(1) 0.0002 0.0188     
19 AR(1) -0.0003 -0.0263     
20 AR(1) 0.0003 0.0338     
21 AR(1) 0.0001 0.0079     
22 AR(1) 0.0002 0.0226     
23 AR(1) -0.0001 0.0436     
24 AR(1) 0.0002 -0.2652     
25 AR(2) 0.0005 -0.3247 -0.1366   
26 AR(2) 0.0000 -0.0473 -0.1880   
27 AR(2) 0.0003 0.0191 -0.0289   

 
 
The ARMA(p,q) model that is reported here, is the appropriate one that removes all 
linear dependence with the employment of as few parameters as possible.  



3.2 Empirical Results (Foreign Exchange Rates) (cont) 
 
 

country 
GARCH 
ct coef 

arch  
coef 

garch 
 coef 

m=2  
non IID 

m=3 
 non IID 

m=4  
non IID  

m=5 
 non IID 

1 0.0000 0.0328 0.9127 NO NO NO NO 
2 0.0000 0.0192 0.9669 NO NO NO NO 
3 0.0000 0.0160 0.9750 NO NO NO NO 
4 0.0000 0.0178 0.9700 NO NO NO NO 
5 0.0000 0.0169 0.9705 NO NO NO NO 
6 0.0000 0.0122 0.9731 NO NO NO NO 
7 0.0000 0.0182 0.9709 NO NO NO NO 
8 0.0000 0.0190 0.9674 NO NO NO NO 
9 0.0000 0.0177 0.9667 NO NO NO NO 
10 0.0000 0.0142 0.9768 NO NO NO NO 
11 0.0000 0.1902 0.1026 NO NO NO NO 
12 0.0000 0.0489 0.9207 NO NO NO NO 
13 0.0000 0.0482 0.9268 NO NO NO NO 
14 0.0000 0.1418 0.1228 NO NO NO NO 
15 0.0000 0.1449 0.8656 YES YES YES YES 
16 0.0000 0.0540 0.9229 YES YES YES NO 
17 0.0000 0.3026 0.7556 YES YES YES YES 
18 0.0000 0.1164 0.7226 NO NO NO NO 
19 0.0000 0.0471 0.8898 NO NO NO NO 
20 0.0000 0.0325 0.9270 NO NO NO NO 
21 0.0000 0.0650 0.9315 NO NO NO NO 
22 0.0000 0.0218 0.7872 NO NO NO NO 
23 0.0000 0.0287 0.9432 NO NO NO NO 
24 0.0000 0.2671 0.7876 NO NO NO NO 
25 0.0000 0.1247 0.8583 YES YES NO NO 
26 0.0000 0.5398 0.7768 YES YES YES YES 
27 0.0000 0.1579 0.8654 NO YES YES YES 

 
 
If the indication in last columns is “YES”, then we may accept that the data are not 
clear from nonlinear structure after we filtered them with  an AR (p)- GARCH(1, 1) 
model. 
 
 
 
 
 
 
 
 


