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1. Introduction 

Cryptocurrencies have been a significant topic during the past 10 years. Relying on 

the blockchain technology to gain decentralization, transparency and immutability, this 

internet-based medium of exchange uses cryptographic functions to conduct financial 

transactions. However, they have entered the digital world serving as an innocent (until 

proven otherwise) means of payment and at the same time, a gate to illicit activities such as 

money laundering, information disclosure, crime coverage, etc.  

Digital forensics is a branch of forensic science encompassing the recovery and 

investigation of material found in digital devices, often in relation to computer crime. The 

term digital forensics covers investigation of all devices capable of storing digital data. The 

typical forensic process encompasses the seizure, forensic imaging (acquisition) and analysis 

of digital media and the production of a report into collected evidence. 

In this thesis, the combination of the two aforementioned concepts is analyzed and 

research is made on their artifacts as well as the impact of those in the so-called 

accountability of the blockchain network. 

In chapter 2, a brief but indicative explanation of the general perspective of the 

blockchain network is introduced as far as key concepts like the user anonymity. The results 

of public keys’ tracking are analyzed in regards to the user anonymity and the most 

significant findings are explained. 

Chapter 3 deals with the concept of illicit activities in the cryptocurrency world 

alongside chapter 4 which refers to the “interdependencies” of the cryptocurrencies and 

Tor. 

Chapter 5 goes into a thorough description of artifacts provided from a case 

investigation. Forensics examination is performed in the memory, disk, file locations and 

paths of some transactions and the key findings are analyzed regarding their readability. 

 The next chapter, uses the examples of two known Bitcoin Clients, Bitcoin Core and 

Electrum, in order to expose the results of forensics research into the aforementioned 

artifacts. 

Finally, chapter 7 describes the Ethereum Platform, the smart contracts perspective, 

and introduces the idea of Manticore, a tool for forensics investigation. Chapter 8 concludes 

with the previous chapters’ results and sets some food for thought for future consideration. 
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2. Anonymity in the Bitcoin System 

 

Bitcoin has the confusing property that while the ownership of money is implicitly 

anonymous, its flow is globally visible. Bitcoin identities are thus, pseudo-anonymous: while 

not explicitly tied to real-world individuals or organizations, all transactions are completely 

transparent. This unusual combination of features has given rise to considerable confusion 

about the nature and consequences of the anonymity that Bitcoin provides. In particular, 

there is concern that the combination of scalable, irrevocable, anonymous payments would 

prove highly attractive for criminals engaged in fraud or money laundering. Using the 

dissolution of a large Silk Road [1] wallet and notable Bitcoin thefts [2] as case studies, we 

demonstrate that an agency with subpoena power would be well placed to identify who is 

paying money to whom. 

 

2.1 How Bitcoin works  

 

Bitcoin is a decentralized electronic currency, introduced by (the individual or the 

team) Satoshi Nakamoto in 2008 and deployed on January 3 2009. A chain of transactions 

from one owner to the next, where owners are identified by a public key (ECDSA signature 

scheme [3]) that serves as a pseudonym. For example, users can use any number of public 

keys and their activity using one set of public keys is not inherently tied to their activity using 

another set or to their real-world identity. In each transaction, the previous owner signs, 

using the secret signing key corresponding to his public key, a hash of the transaction in 

which he received the bitcoins (a SHA-256 hash [4]) and the public key of the next owner. 

This transaction is then added to the set of transactions that constitutes the blockchain. 

Since each of these transactions refers to the previous transaction (e.g. while sending 

bitcoins, the current owner must specify where they came from), the transactions form a 

chain. To verify the validity of a bitcoin, a user can check the validity of each of the 

signatures in this chain. 

A considerable issue that can arise is double spending [5]. To prevent double 

spending, it is necessary for each user in the system to be aware of all the transactions. 

Double spending can then be identified when a user attempts to transfer a bitcoin after he 

has already done so. To determine which transaction came first, transactions are grouped 

https://en.wikipedia.org/wiki/Silk_Road_(marketplace)
https://www.vox.com/recode/2019/5/8/18537073/binance-hack-bitcoin-stolen-blockchain-security-safu
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/SHA-256
https://coinsutra.com/bitcoin-double-spending/
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into blocks, which serve to timestamp the transactions they contain and vouch for their 

validity. Blocks are themselves formed into a chain, with each block referencing the previous 

one and thus further reinforcing the validity of all previous transactions. This process yields a 

blockchain, which is then publicly available to every user within the system. 

Throughout this process, bitcoins are transferred and transactions are broadcasted 

to all users of the system. But, since Bitcoin is decentralized and there is no central authority 

minting bitcoins, how are bitcoins generated in the first place? In fact, this happens in the 

process of forming a block. Each accepted block (each block incorporated into the block 

chain) is required to be such that, when all the data inside the block is hashed, the hash 

begins with a certain number of zeroes. To allow users to find this particular collection of 

data, blocks contain, in addition to a list of transactions, a nonce. Once someone finds a 

nonce that allows the block to have the correctly formatted hash, the block is then 

broadcasted in the same peer-to-peer manner as transactions. At inception, each bitcoin 

block reward was worth 50 BTC. This reward is halved after the discovery of every 210,000 

blocks, which takes around four years to complete. As of February 2019, one block reward 

was worth 12.5 BTC [6]. The amount is expected to hit zero around 2140.  

In summary, the shared information within the Bitcoin network works as follows. 

Firstly, users generate at least one signing keypair and publicize the public key or address to 

receive bitcoins (as mentioned earlier, users can choose to use a single public key or 

arbitrarily many). If a user has bitcoins that he wishes to transfer, he broadcasts a 

transaction, proving that he has the bitcoins and indicating the address of the recipient to 

his peers, who in turn broadcast it to their peers. Eventually, this transaction reaches a 

miner who collects the transactions into a block and works on finding the right data/nonce 

balance to hit the target hash. He also includes in the block a special coin generation 

transaction that specifies his address for receiving the block reward. Finally, when the miner 

does find such a block, he broadcasts it to his peers who again broadcast it to their peers. As 

his reward, the block reward and all the fees for the included transactions are credited to his 

specified address. When another block has been formed, referencing his block as the 

previous block, his block can now be considered part of the blockchain [7]. 

 

 

 

https://www.investopedia.com/terms/b/block-reward.asp
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2.2 Interesting Bitcoin Features 

 

Three features of the Bitcoin system are of particular interest. Firstly, the entire 

history of Bitcoin transactions is publicly available. As described in the previous section, this 

is necessary in order to validate transactions and prevent double-spending in the absence of 

a central authority. The only way to confirm the absence of a previous transaction is to be 

aware of all previous transactions. The second feature of interest is that a transaction can 

have multiple inputs and multiple outputs. An input to a transaction is either the output of a 

previous transaction or a sum of newly generated Bitcoins and transaction fees. A 

transaction frequently has either a single input from a previous larger transaction or multiple 

inputs from previous smaller transactions. Also, a transaction frequently has two outputs: 

one sending payment and one returning change. Thirdly, the payer and payee(s) of a 

transaction are identified through public keys from public-private key pairs. However, a user 

can have multiple public keys. In fact, it is considered good practice for a payee to generate 

a new public-private keypair for every transaction. Furthermore, a user can take the 

following steps to better protect their identity: 

- He can avoid revealing any identifying information in connection with his public 

keys.  

- He can repeatedly send varying fractions of his Bitcoins to himself using multiple 

(newly generated) public keys and/or 

- He can use a trusted third-party mixer or laundry.  

These three features, namely the public availability of Bitcoin transactions, the 

input-output relationship between transactions and the re-use and co-use of public keys, 

provide a basis for two distinct network structures: the transaction network (T) and the user 

network (U). The transaction network represents the flow of Bitcoins between transactions 

over time. Each vertex represents a transaction and each directed edge between a source 

and a target represents an output of the transaction corresponding to the source that is an 

input to the transaction corresponding to the target. Each directed edge also includes a 

value in Bitcoins and a timestamp. The user network represents the flow of Bitcoins 

between users over time. Each vertex represents a user and each directed edge between a 

source and a target represents an input-output pair of a single transaction where the input’s 

public key belongs to the user corresponding to the source and the output’s public key 



10 
 

belongs to the user corresponding to the target. Each directed edge also includes a value in 

Bitcoins and a timestamp. 

The below research from Fergal Reid and Martin Harrigan [8] shows how two 

networks (The Transaction Network and the User Network) derived from Bitcoin’s public 

transaction history can have implications on the user’s anonymity. 

 

2.3 The Transaction Network T 

 

The Transaction Network T represents the flow of Bitcoins between transactions 

over time. Each vertex represents a transaction and each directed edge between a source 

and a target represents an output of the transaction corresponding to the source that is an 

input to the transaction corresponding to the target. Each directed edge also includes a 

value in Bitcoins and a timestamp. The below Figure shows an example sub-network of T. t1 

is a transaction with one input and two outputs. It was added to the blockchain on the 1st 

May 2011. One of its outputs assigned 1.2 BTC (Bitcoins) to a user identified by the public 

key pk1. Similarly, t2 is a transaction with two inputs and two outputs, accepted on the 5th 

May 2011. One of its outputs sent 0.12 BTC to a user identified by a different public key, pk2. 

t3 is a transaction with two inputs and one output, accepted on the 5th May 2011. Both of 

its inputs are connected to the two aforementioned outputs of t1 and t2. The only output of 

t3 was redeemed by t4. 

 T has 974.520 vertices and 1.558.854 directed edges. The number of vertices is less 

than the total number of transactions in the dataset because transactions that are not 

connected to at least one other transaction are omitted. These correspond to newly 

generated Bitcoins and transactions fees that are not yet redeemed. The network has 

neither multi-edges (multiple edges between the same pair of vertices in the same direction) 

nor loops. It is a directed acyclic graph (DAG) since the output of a transaction can never be 

an input (either directly or indirectly) to the same transaction. 
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Figure 1: Sub-network from the Transaction Network T 

 

2.4 The User Network U 

 

The user network U represents the flow of Bitcoins between users over time. Each 

vertex represents a user and each directed edge between a source and a target represents 

an input-output pair of a single transaction where the input’s public key belongs to the user 

corresponding to the source and the output’s public key belongs to the user corresponding 

to the target. Each directed edge also includes a value in Bitcoins and a timestamp.  

Suppose U is, at first, imperfect in the sense that each vertex represents a single 

public key rather than a user and that each directed edge between a source and a target 

represents an input-output pair of a single transaction, where the input’s public key 

corresponds to the source and the output’s public key corresponds to the target. In order to 

perfect this network, each subset of vertices whose corresponding public keys belong to a 

single user need to be contracted. The difficulty is that public keys are Bitcoin’s mechanism 

for ensuring anonymity. In fact, it is considered good practice for a payee to generate a new 

public private key-pair for every transaction to keep transactions from being linked to a 

common owner. Therefore, it is impossible to completely perfect the network using the 

dataset alone. However, as Nakamoto has noted [9], some linking is still unavoidable with 

multi-input transactions, which necessarily reveal that their inputs were owned by the same 
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owner. The risk is that if the owner of a key is revealed, linking could reveal other 

transactions that belonged to the same owner.  

This property of transactions was used with multiple inputs to contract subsets of 

vertices in the imperfect network. An ancillary network is constructed in which each vertex 

represents a public key. These vertices are connected with undirected edges, where each 

edge joins a pair of public keys that are both inputs to the same transaction (and are thus 

controlled by the same user). In the dataset, this network has 1.253.054 vertices (unique 

public keys) and 4.929.950 edges. More importantly, it has 86.641 non-trivial maximal 

connected components. Each maximal connected component in this graph corresponds to a 

user and each component’s constituent vertices correspond to that user’s public keys.  

The outputs of t1 and t2 that were eventually redeemed by t3 were sent to a user 

whose public key was pk1 and a user whose public key was pk2 respectively. pk1 and pk2 

are contracted into a single vertex u1 since they correspond to a pair inputs of a single 

transaction so, they are in the same maximal connected component of the ancillary network 

(vertices representing pk1 and pk2 in the dashed grey box in the below Figure). A single user 

owns both public-keys. The maximal connected component in this case is not simply a clique 

since it has a diameter of four indicating that there are at least two public keys belonging to 

that same user that are connected indirectly via three transactions. The sixteen inputs to 

transaction t4 result in the contraction of a further sixteen public keys into a single vertex 

u2. The value and timestamp of the flow of Bitcoins from u1 to u2 is derived from the 

transaction network. After the preprocessing step, U has 881.678 vertices (86.641 non-trivial 

maximal connected components and 795.037 isolated vertices in the ancillary network) and 

1.961.636 directed edges. Unlike T, U has multi-edges, loops and directed cycles.  
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Figure 2: Sub-network of the User Network U 

 

2.5 Anonymity Analysis 

 

The analysis reveals that the user network has considerable cyclic structure. The 

implications of this structure, coupled with other aspects of the Bitcoin system for 

anonymity should be considered. 

There are several ways in which the user network can be used to deduce 

information about Bitcoin users. Global network properties can be used, such as degree 

distribution, to identify outliers. Local network properties can be used to examine the 

context in which a user operates by observing the users with which he interacts with either 

directly or indirectly. The dynamic nature of the user network also enables us to perform 

flow and temporal analysis. The significant Bitcoin flows between groups of users over time 

can be examined. Each of these possibilities is described in more detail and a case study to 

demonstrate their use in practice is provided in the following sections. 
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2.5.1 Integrating off-Network Information 

 

There is no user directory for the Bitcoin system. However, for the purposes of the 

research, a partial user directory was built associating Bitcoin users and their known public 

keys with off-network information. 

Many organizations and services such as on-line stores that accept Bitcoins, 

exchanges, laundry services and mixers have access to identifying information regarding 

their users, e.g. e-mail addresses, shipping addresses, credit card and bank account details, 

IP addresses, etc. If any of this information is publicly available or accessible by the law 

enforcement agencies, then the identities of users involved in related transactions may also 

be at risk. To illustrate this point, a number of publicly available data sources was considered 

and their information with the user network was integrated. 

The Bitcoin Faucet [10] is a website where users can donate Bitcoins to be 

redistributed in small amounts to other users. In order to prevent abuse of this service, a 

history of recent give-aways are published along with the IP addresses of the recipients. 

When the Bitcoin Faucet does not batch the redistribution, it is possible to associate the IP 

addresses with the recipient’s public-keys. This page can be scraped over time to produce a 

time-stamped mapping of IP addresses to users. 

It was found that the public keys associated with many of the IP addresses that 

received Bitcoins were contracted with other public keys in the ancillary network, thus 

revealing IP addresses that are somehow related to previous transactions. 

Another source of identifying information is the voluntary disclosure of public keys 

by users, for example, when posting to the Bitcoin forums [11]. Bitcoin public keys are 

typically represented as strings approximately thirty-three characters in length and starting 

with the digit one. They are indexed very well by popular search engines. Many high degree 

vertices were identified with external information using a search engine alone. Bitcoin 

Forums were searched where users frequently attach a public key to their signatures. Public 

keys from Twitter streams and user-generated public directories were also found. It should 

be noted that large centralized Bitcoin service providers can do the same with their user 

information. 

 

https://freebitco.in/site/bitcoin-faucet/
https://forum.bitcoin.com/
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2.5.2 Analysis and Visualization of the User Network 

 

There are several pieces of information directly derived from the user network 

regarding a particular user: 

- The balance held by a single public key can be computed. 

- We can also aggregate the balances belonging to public keys that are controlled 

by a particular user can be aggregated.  

The donations, on the aforementioned websites, are relatively small and are 

forwarded to other public keys periodically. There was also a noticeable spike in donations 

when the facility was first announced. An important advantage of deriving network 

structures from the Bitcoin transaction history is the ability to use network visualization and 

analysis tools to investigate the flow of Bitcoins. For example, the below Figure shows the 

network structure surrounding the public key in the user network. Several of the vertices 

contain identifying information so, these users can be linked either directly or indirectly to 

their donations. The color denotes the volume of Bitcoins as warmer colors have larger 

volumes flowing through them. The large red vertices represent a Bitcoin mining pool, a 

centralized Bitcoin wallet service and an unknown entity. 

 

Figure 3: Vertex representation of public keys 
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2.5.3 Findings 

 

Given a number of public keys or users of interest, we can use network structure 

and context to better understand the flow of Bitcoins between them. For example, all 

shortest paths between a set of vertices can be examined. Also, the maximum number of 

Bitcoins that can flow from a source to a destination given the transactions and their 

‘capacities’ can be considered in an interesting time-window. For example, the below Figure 

shows all shortest paths between the vertices representing the users who were identified 

using off-network information and the vertex that represents the MyBitcoin service [12] in 

the user network. More than 60% of the users can be identified in this visualization and 

direct and indirect relationships between them can be noted. 

 

 

Figure 4: Visualization of identified users 

 

 

Case Study – Part I: An alleged theft of 25 000 BTC reported in the Bitcoin Forums by 

a user known as allinvain was analyzed at first. The victim reported that a large portion of his 

http://www.mybitcoin.com/
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Bitcoins were sent to pkred [13] on 13/06/2011 at 16:52:23 UTC. The theft occurred shortly 

after somebody broke into the victim’s Slush pool account [14] and changed the payout 

address to pkblue [15]. The Bitcoins rightfully belonged to pkgreen [16]. At the time of theft, the 

stolen Bitcoins had a market value of approximately half a million U.S. dollars. This case 

study was chosen in order to illustrate the potential risks to the anonymity of a user (the 

thief) who has good reason to remain anonymous.  

A restriction to the egocentric network surrounding the thief is made: we include 

every vertex that is reachable by a path of length at most two ignoring directionality and all 

edges induced by these vertices. We also remove all loops, multiple edges and edges that 

are not contained in some biconnected component to avoid clutter. In the below Figure, the 

red vertex represents the thief who owns the public key pkred and the green vertex 

represents the victim who owns the public key pkgreen. The theft is the green edge joining the 

victim to the thief. There are in fact two green edges located nearby in the below Figure but 

only one directly connects the victim to the thief. 

 

Figure 5: Thief Visualization 

 

Interestingly, the victim and the thief are joined by paths (ignoring directionality) 

other than the green edge representing the theft. For example, consider the sub-network 

shown in the below Figure induced by the red, green, purple, yellow and orange vertices. 

https://www.blockchain.com/btc/address/1KPTdMb6p7H3YCwsyFqrEmKGmsHqe1Q3jg
https://slushpool.com/
https://www.blockchain.com/btc/address/15iUDqk6nLmav3B1xUHPQivDpfMruVsu9f
https://www.blockchain.com/btc/address/1J18yk7D353z3gRVcdbS7PV5Q8h5w6oWWG
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This sub-network is a cycle. All vertices whose corresponding public-keys belong to the same 

user are contracted. This permits to attach values in Bitcoins and timestamps to the directed 

edges. A number of observations can be made. Firstly, we note that the theft of 25.000 BTC 

was preceded by a smaller theft of 1 BTC. This was later reported by the victim in the Bitcoin 

forums. Secondly, using off-network data, we have identified some of the other colored 

vertices: the purple vertex represents the main Slush pool account and the orange vertex 

represents the computer hacker group known as LulzSec [17]. We observe that the thief sent 

0.31337 BTC to LulzSec shortly after the theft but we cannot otherwise associate him with 

the group. The main Slush pool account sent a total of 441.83 BTC to the victim over a 70-

day period. It also sent a total of 0.2 BTC to the yellow vertex over a two-day period. One 

day before the theft, the yellow vertex also sent 0.120607 BTC to LulzSec. The yellow vertex 

represents a user who is the owner of at least five public keys. Like the victim, he is a 

member of the Slush pool and like the thief, he is a one-time donator to LulzSec. This 

donation, the day before the theft, is his last known activity using these public-keys.

 

Figure 6: Thief-victim Sub-network 

https://twitter.com/LulzSec/status/76388576832651265
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2.5.4 Flow Analysis 

 

Significant flows of value through the network over time can be followed. For 

example, a vertex representing a user receives a large volume of Bitcoins relative to their 

estimated balance and shortly after, transfers a significant proportion of those Bitcoins to 

another user, is an interesting occurrence. A special tool was built for this purpose, starting 

with a chosen vertex or set of vertices, traces significant flows of Bitcoins over time.  

Case Study – Part II: To demonstrate the tool, the Bitcoin theft described earlier is 

considered. The below Figure shows an annotated visualization produced using the specific 

tool. There are several interesting flows in the aftermath of the theft. The initial theft of a 

small volume of 1 BTC is immediately followed by the theft of 25.000 BTC. This is 

represented as a dotted black line between the relevant vertices, magnified in the left inset. 

In the left inset, the Bitcoins are shuffled between a small number of accounts and 

then transferred back to the initial account. After this shuffling step, four significant outflows 

of Bitcoins that began at 19:49, 20:01, 20:13 and 20:55 have been identified. Of particular 

interest are the outflows that began at 20:55 (labeled as “1” in both insets) and 20:13 

(labeled as “2” in both insets). These outflows pass through several subsequent accounts 

over a period of several hours. Flow 1 splits at the vertex labeled A in the right inset at 04:05 

the day after the theft. Some of its Bitcoins rejoin Flow 2 at the vertex labeled B. This new 

combined flow is labeled as “3” in the right inset. The remaining Bitcoins from Flow 1 pass 

through several additional vertices in the next two days. This flow is labeled as “4” in the 

right inset.  

On 16/06/2011 at approximately 13:37 there is an interesting observation. A small 

number of Bitcoins are transferred from Flow 3 to a heretofore unseen public key pk1. 

Approximately seven minutes later, a small number of Bitcoins are transferred from Flow 3 

to another unseen public key pk2. Finally, there are two simultaneous transfers from Flow 4 

to two more unseen public keys: pk3 and pk4. These four public keys, pk1, pk2, pk3 and pk4– 

which receive Bitcoins from two separate flows that split from each other two days earlier – 

are all contracted to the same user in our ancillary network. This user is represented as C in 

the below Figure.  

The flow labeled as Y involves the movement of Bitcoins through thirty unique public 

keys in a very short period of time. At each step, a small number of Bitcoins (typically 30 BTC 
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which had a market value of approximately US$500 at the time of the transactions) are 

siphoned off. The public keys that receive the small number of Bitcoins are typically 

represented by small blue vertices due to their low volume and degree [18]. On 20/06/2011 

at 12:35, each of these public keys makes a transfer to a public key operated by the 

MyBitcoin service.  

 

Figure 7: Tool representation 

2.6 Research’s conclusion 

 

Through this research it is shown that it is possible to associate many public keys 

with each other and with external identifying information. Also, the activity of known 

users can be observed in detail. Large centralized services such as the exchanges and 

wallet services are capable of identifying and tracking considerable portions of user 

activity. It should be noted that even the technical members of the Bitcoin community 

have cautioned that strong anonymity is not a prominent design goal of the Bitcoin 

system. However, casual users need to be aware of this, especially when sending 

Bitcoins to users and organizations they would prefer not to be publicly associated with. 

 

3. Cryptocurrencies and Illicit Activities 

 

The security and anonymity offered by cryptocurrency transactions sometimes gives 

rise to illicit activities, including the sale of illegal goods, drugs and weapons, assassinations, 

https://www.investopedia.com/terms/b/blockchain.asp
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Ponzi schemes, money laundering, unlawful gambling and identity theft. Illicit activities 

come in many forms and businesses can practice in more than one illicit transaction at the 

same time. In simple words, cryptocurrency has enabled criminals to conduct traditional 

illicit crimes through an almost anonymous payment system, which helps to hide their 

activities from regulators. 

Before further discussing the issue of cryptocurrency anonymity and how this is used 

for illicit activities, we want to discuss the concept of anonymity per se, and in particular 

anonymity as privacy and anonymity as a hidden identity. Anonymity as privacy relates 

mostly to customers who are concerned about potential intrusions in their personal life 

through institutions gathering lots of information for them. In response to these fears they 

tend to use cryptographic tools or other anonymizers so that they can browse the web and 

conduct purchases in an anonymized way. Anonymity as hidden identity relates mostly to 

criminals who require anonymity to conceal their real identity and avoid being tracked by 

the authorities [19]. Since no transaction can be absolutely anonymous, but rather very 

difficult to trace, criminals that use cryptocurrencies risk that their transactions are linked 

with each other. 

Certain illicit activities are reviewed below where cryptocurrencies are commonly 

used as a facilitator. Even though the examples refer to every cryptocurrency, Bitcoin is 

currently the preferred denominator [20]. 

 

3.1 Money Laundering in the Crypto World 

So, what can be defined as “money laundering”? Essentially, it is a process in which 

money is separated from the criminal activities where it was earned and mixed with funds 

from legitimate enterprises, such as small businesses where cash sales are common and 

then funneled back to the original criminal enterprise or source. 

Bitcoins are infamously used to launder money acquired through illicit activities due 

to the lack of “Know Your Client” (KYC) measures that traditional banking institutions 

implement. Unlicensed entities do not typically require any such data collection for 

reporting requirements. Indicative of this popularity [21], a selling exchange for bitcoins 

called “Local Bitcoins” allows buying or selling bitcoins using cash. The transaction fee on 

these platforms averages 10-15%, which is significantly higher than the 1-2% for licensed 

bitcoin exchangers. In essence, the transaction fee allows individuals with quantities of illicit 

http://bitcoin.org/bitcoin.pdf
https://investingalerts.com/2019/07/15/the-effect-of-cryptocurrency-on-money-laundering/
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cash to anonymously convert the cash into bitcoins. Once the transaction is confirmed in the 

blockchain, the seller receives the currency. No KYC information is typically required for this 

type of transactions. The buyer can then successfully accomplish the placement phase of 

money laundering and introduce “clean” cash into the financial system. 

Bitcoin ATMs are another way to launder money since they allow bitcoins to be 

purchased with cash or gift cards. Said ATMs either collect minimal KYC information, that 

remains unverified or no information at all. The first bitcoin ATM was introduced in 2014 

[22]. As of November 2018, there are approximately 4,500 active ATMs in more than 70 

countries around the world [23]. These ATMs charge a commission fee of 10-15% and 

sometimes are as simple to transact as inserting your phone number. While other ATMs 

require an identification, the information provided is rarely verified, which defeats the point 

of KYC in the first place. 

To make things even easier for aspirational money launderers, bitcoin tumbling 

services can conceal the true source and destination of bitcoin transfers by dividing the 

transfer into smaller payments transacted at the same time. Tumblers, also named mixers or 

laundry services, obfuscate bitcoin transactions between parties to make them less 

identifiable by law enforcement and other users on the network. Since the blockchain 

contains bitcoin transactions, users desire to mask their transmissions of bitcoins through 

tumblers to facilitate money laundering [24]. Tumblers take multiple transactions and join 

them together for disbursement to payees through multiple senders. New cryptocurrencies, 

like Monero, have built-in tumbling services which increases the anonymity they offer to 

their users. 

Finally, property exchanges work through intermediaries who purchase items on 

popular websites (e.g. Amazon). The customer creates a wishlist and then the user lists these 

items on the Purse marketplace. Customers receive the goods and pay similarly a 10-15% 

commission fee, as above. Neither Purse nor Amazon conducts KYC or AML programs, which 

similarly enhances the anonymity of the marketplaces. 

A few well-known money laundering cases include the Bitcoin exchange “OKCoin” 

with hundreds of thousands of US dollars laundered as well as the case of “BitInstant”, 

where an estimated sum of more than $1,000,000 was laundered for Silk Road market 

customers [1], [25]. Moreover, cryptocurrencies have advanced the operations of various 

malware families such as ransomware, with CryptoLocker [26] and CryptoWall [27] receiving 

https://en.wikipedia.org/wiki/Bitcoin_ATM
https://www.statista.com/statistics/343127/number-bitcoin-atms/
https://www.elliptic.co/our-thinking/bitcoin-money-laundering
https://en.wikipedia.org/wiki/Silk_Road_(marketplace)
https://info.elliptic.co/whitepaper-fdd-bitcoin-laundering
https://en.wikipedia.org/wiki/CryptoLocker
https://www.symantec.com/security-center/writeup/2014-061923-2824-99
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133,045.9961 BTC and 87,897.8510 BTC respectively. Cryptojacking, with JenkinsMiner [28] 

earning its operator over $3,000,000 worth of Monero and crypto-stealing Trojans, such as 

CryptoShuffler [29] which stole hundreds of thousands of US dollars by targeting the 

contents of volatile memory. 

Cash has traditionally been king for these types of enterprises because it is 

notoriously difficult to trace and because many criminal enterprises, particularly drug 

trafficking, theft and similar crimes deal in cash. However, cryptocurrencies are opening 

pathways for new methods of laundering funds on a scale that has global governments 

showing concern. 

Other types of crimes money laundering “cover-ups”, include customs violations, tax 

violations and cybercrimes [30], making cryptocurrencies a convenient resource for 

“cleaning up” these funds.  

 

3.2 Cryptomarkets and Drug Trafficking 

A cryptomarket is usually defined as a marketplace that hosts multiple sellers or 

vendors, provides participants with anonymity via its location on the hidden (or dark) web 

and the uses cryptocurrencies for payment. Cryptomarkets are designed in a way that allows 

the trafficking of illicit products, predominantly drugs. This type of illicit substance trafficking 

rose to prominence with the creation of the Silk Road in 2011 [1]. In web interface and 

usability, the Silk Road very much resembled engines like the ebay and Amazon, based on 

peer to peer technologies related to encryption processes. In contrast to these popular 

search engines, Silk Road is part of the darknet [31]. Access to it necessitates a specific 

communication protocol, such as an onion routing used to hide a computer’s IP address. 

These cryptomarkets can facilitate the online trafficking of illicit goods through encrypted 

communications and financial transactions using cryptocurrencies (e.g. bitcoins). 

The original Silk Road was launched in 2011 and was shut down by the US Federal 

Bureau of Investigation (FBI) in 2013. It was considered to provide a high level of security 

and anonymity, evidenced by the fact that out of hundreds of thousands of participants, 

only a small fraction was arrested following the take down of the cryptomarket. The 

website’s creator, the American Ross Ulbricht, was sentenced to life imprisonment without 

parole for a number of charges, including money laundering. Consequently, Silk Road 2.0 

was taken down in 2014 following an international operation by police agencies from 17 

https://research.checkpoint.com/2018/jenkins-miner-one-biggest-mining-operations-ever-discovered/
http://cryptoshuffler.com/
https://en.wikipedia.org/wiki/Silk_Road_(marketplace)
https://en.wikipedia.org/wiki/Darknet
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different countries. Silk Road 3.0 opened again in mid-2016 revealing the longer-term limit 

to international police crackdowns. Apart from other factors, the limited experience of law 

enforcement officials also contributed to a less effective prosecution of the cryptomarket 

vendors. 

In essence, cryptomarkets provide a new distribution channel for illegal substances 

for which the costs and benefits are still unknown. These new platforms allow for reputation 

building for vendors who provide illicit products and provide a relatively seamless 

experience since users avoid face to face interaction, which consequently reduces the 

chance for violent incidents. These benefits of using these platforms make them an 

attractive option for users looking to purchase illegal goods. 

 

3.3 Extortion, Attacks and Terrorism Financing 

Extortion schemes have increased as a result of cryptocurrencies’ anonymity. It is 

desirable for those penetrating extortion due to its relevant anonymity and non-oversight by 

a central regulator. These crimes are being funded through anonymous payments in 

cryptocurrency where no physical or electronically traceable handoff occurs. The schemes 

include traditional extortion such as kidnapping and blackmail to higher tech schemes 

including malware, ransomware, and DDoS attacks. Another common scheme is to insert 

malware on a subject’s servers that encrypts their data until a ransom is paid. Similarly, 

hackers can exploit a weakness in the individual’s technology until a ransom is paid, or even 

take control of the distribution of an individual’s funds. Another method whereby blockchain 

is exploited is by injecting arbitrary encoded data chunks (e.g. pictures) in non-standard 

Bitcoin transactions to infiltrate child exploitation material, then asking for ransomware. 

For instance, in November 2015 three Greek banks were reportedly threatened with 

dire consequences by a group of cybercriminals called the Armada Collective unless they 

paid 'hundreds of thousands of Euros' in Bitcoin (they asked for 20,000 bitcoin from each 

bank [32] and, in November 2015, the hackers of the mobile telephone provider TalkTalk 

sought to extort £80,000, also in Bitcoin, in return for not publishing the company's hacked 

customer data [33]. These are just a few recent examples of a growing catalogue of criminal 

activity in which Bitcoin has been nominated as the preferred method of payment. 

https://blog.nsfocusglobal.com/categories/armada-collective-ddos-attack/
https://www.bbc.com/news/business-34743185
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Also, cryptocurrencies have been used to sponsor nation-state attacks since a 

number of countries around the world are affected by the existence of contemporary 

hybrid- war strategies. 

Finally, terrorism financing is a connected point to extortions, ransomware and 

nation-state cyber attacks. Often, the ransomware itself is destined to finance terrorism 

activities, whereas in other instances terrorist groups communicate via the dark web and 

exchange funds through bitcoins. 

  

3.4 Ponzi Schemes/Pump and Dump 

Cryptocurrency is volatile and it fluctuates in a similar way as the stock market- 

which is sometimes referred to as “pump and dump” [34]. A cryptocurrency Ponzi scheme 

works exactly like a traditional Ponzi scheme [35]. A falsely inflated rate of return is used to 

draw in investors since the more money that is invested earlier in the scam allows the 

scammers to continue to pay off their victims for longer before folding and disappearing. 

The longer period of operation creates a false sense of reliance for future investment, which 

subsequently attracts more investors. 

Initial Coin Offerings are also used for exit scams [36] since the unregulated 

environment allows criminals to persuade their victims to buy large numbers of fake coins, 

subsequently disappearing with millions of dollars. Criminals may also use cryptocurrencies 

as a high yield investment or a Ponzi scheme. 

As cryptocurrencies gain worldwide legitimacy, the aforementioned problems are 

only going to continue to grow.  

 

4. Anonymity over Tor 

 

Another interesting issue that should be investigated is the influence a browser which 

allows anonymous communication can have on the distribution of Bitcoin’s information. 

How secure is Bitcoin information via Tor and what can be derived from each transaction? 

 

https://en.wikipedia.org/wiki/Pump_and_dump
https://www.investopedia.com/terms/p/ponzischeme.asp
https://thenextweb.com/hardfork/2019/07/16/whats-a-cryptocurrency-exit-scam-and-how-do-i-spot-one/
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4.1 Cryptos and Tor 

As previously stated, Bitcoin is a decentralized virtual currency and a P2P payment 

system in which coins are generated by miners and double spending [5] is prevented since 

each peer keeps a local copy of the constantly growing public ledger of all the previous 

transactions [37]. Though the original Bitcoin paper states that privacy in such a system may 

still be maintained, the recent findings disprove this. Anonymity and privacy of the plain 

Bitcoin protocol is also not claimed by the Bitcoin developers. 

There are two independent problems: 

 a) the ability of the attacker to link transactions to the IP address of the user by 

studying connectivity and traffic of the peers and  

b) the linkability of the user’s pseudonyms and transactions in the public ledger 

achieved via transaction flow analysis.  

At the same time as Bitcoin increases its user base and moves from mining and 

hoarding to the actual use as a currency and payment protocol in various on-line 

applications, there is a growing demand in more privacy among the Bitcoin users. Since IP 

address leakage is still possible, Bitcoin developers recommend to use third party 

anonymization tools like Tor or VPNs to solve the problem. 

Anoncoin [38], BitTor [39], Torcoin [40], Stealthcoin [41] and others are alternative 

currencies which offer native support for Tor. There are also several other use cases for Tor 

in the Bitcoin ecosystem. For mobile payments, the SPV (simple payment verification) 

method is used for clients which cannot afford to hold the full 20 GB blockchain ledger. Since 

many Bitcoin clients are vulnerable to spoofing attacks which may result in double-spending, 

the current trend is to bundle them with Tor by default to avoid spoofing [42] and man-in-

the-middle attacks. Tor can also be a solution for services and online shops that want to 

prevent DoS attacks against their public IP.  

However, Tor is not a panacea and not all applications are anonymized equally well 

when combined with Tor. The biggest effort has been made so far on improving protection 

of the HTTP(S) protocol on top of Tor. Other protocols are not researched that well. There 

were several documented cases when application level leaked crucial user-identifying 

information. Moreover, there is only a limited number of applications which are studied well 

enough to be considered safe to use with Tor. 

 

https://coinsutra.com/bitcoin-double-spending/
https://coinmarketcap.com/currencies/anoncoin/
https://www.coindesk.com/bittorrents-master-plan-to-bring-a-tron-powered-crypto-token-to-the-masses
https://coinmarketcap.com/currencies/torcoin-tor/
https://coinmarketcap.com/currencies/stealth/
https://www.malwarebytes.com/spoofing/
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4.2 Bitcoins services 

 Bitcoin software does not explicitly divide its functionality between clients and 

servers. So, Bitcoin peers can be grouped into those which accept incoming connections 

(servers) and those which don’t (clients), such as peers behind Network address translation 

(NAT) or firewalls. Bitcoin users connecting to the Bitcoin network through Tor or VPN do 

not accept incoming connections. 

 There are millions of reachable Bitcoin servers and even more Bitcoin clients. By 

default, Bitcoin peers (both clients and servers) try to maintain 8 outgoing connections to 

other peers in the network. If any of the 8 outgoing connections drop, a Bitcoin peer tries to 

replace them with new connections. A Bitcoin client can only establish a connection to a 

Bitcoin server. By default, a server can accept up to 117 incoming connections. If this limit is 

reached, all new connections are dropped. 

1) Bitcoin anti-DoS protection: As an anti-DoS protection, Bitcoin peers implement a 

reputation-based protocol with each node keeping a penalty score for every other Bitcoin 

peer (identified by its IP address). Whenever a malformed message is sent to the node, the 

latter increases the penalty score (different messages incur different penalties) of the sender 

and bans the “misbehaving” IP address for 24 hours when the penalty reaches the value of 

100. 

2) Bitcoin peers as Tor hidden services: Tor hidden services are service-agnostic in 

the sense that any TCP-based service can be made available as a Tor hidden service. This is 

used by Bitcoin which recognizes three types of addresses: IPv4, IPv6, and OnionCat [43]. 

Onioncat address format is a way to represent an onion address as an IPv6 address: the first 

6 bytes of an OnionCat address are fixed and set to FD87:D87E:EB43 and the other 10 bytes 

are the hex version of the onion address (i.e. base32 decoded onion address after removing 

the “.onion” part). 

3) Bitcoin peer discovery and bootstrapping: Bitcoin implements several 

mechanisms for peer discovery and bootstrapping. First, each Bitcoin peer keeps a database 

of IP addresses of peers previously seen in the network. This database survives between 

Bitcoin client restarts. This is done by dumping the database to the hard drive every 15 

minutes and on exit (as we will see later this facilitates setting a cookie on the user’s 

computer). Bitcoin peers periodically broadcast their addresses in the network. In addition, 

peers can request addresses from each other using GETADDR messages and advertise 

addresses using ADDR messages. 

https://www.whonix.org/wiki/Onion_Services
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 If Tor is not used, when a Bitcoin client starts, it first tries to populate its address 

database by resolving 6 hard-coded hostnames. If Tor is used, Bitcoin does not explicitly ask 

Tor to resolve them but rather asks it to establish connections to these hostnames. 

 If Tor is not used, the addresses for outgoing connections are taken from the 

addresses database only. In case Tor is used, every second connection is established to a 

DNS hostname. These DNS hostnames are called “oneshots” and once the client establishes 

a connection to such a hostname it requests a bunch of addresses from it and then 

disconnects and never tries to connect to it again. As a fallback, if no addresses can be found 

at all, after 60 seconds of running the Bitcoin client uses a list of 600 hard-coded IP 

addresses. 

 Bitcoin nodes recognize three types of addresses: IPv4, IPv6, and OnionCat [43]. For 

each type of addresses, the peer maintains a state variable indicating if the Bitcoin node is 

capable of using such address type. These state variables become important when using Tor: 

the only address type which is accepted from other peers is OnionCat type. Curiously, this 

results in that all IPv4 and IPv6 addresses obtained from oneshots are dropped and the 

client uses its original database. The opposite case also holds: if Tor is not used, onion 

addresses are not stored in the address database. 

 Finally, each address is accompanied by a timestamp which determines its freshness. 

4) Choosing outgoing connections: For each address in the address database, a Bitcoin peer 

maintains statistics which among other things includes when the address was last seen in 

the network, if a connection to this address was ever established before and the timestamp 

of such a connection. All addresses in the database are distributed between buckets. There 

are 256 buckets for “new” addresses (addresses to which the Bitcoin client has never 

established a connection) and 64 for “tried” addresses (addresses to which there was at 

least one successful connection). Each bucket can have at most 64 entries (which means that 

there can be at most 20480 addresses in the database). When a peer establishes outgoing 

connections, it chooses an address from “tried” buckets with probability p = 0.9 − 0.1n, 

where n is the number of already established outgoing connections. If an address is 

advertised frequently enough it can be put into up to 4 different “new” buckets. This 

obviously increases its chances to be selected by a user and to be transferred to a “tried” 

bucket. 

 

https://www.whonix.org/wiki/Onion_Services
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4.3 How Tor works 

 

 Tor is the most popular low-latency anonymity network based on ideas of onion 

routing and telescoping path-building design [44]. When a user wants to connect to an 

Internet server while keeping his IP address in secret from the server, he chooses a path 

consisting of three Tor relays (called Guard, Middle and Exit), builds a circuit and negotiates 

symmetric keys with each one of them using the telescoping technique. Before sending a 

message to the server, the user encrypts it using the negotiated keys. While the message 

travels along the circuit, each relay strips off its layer of encryption. In this way the message 

arrives at the final destination in its original form and each party knows only the previous 

and the next hop. 

 Tor tries hard to achieve low traffic latency to provide a good user experience, thus 

sacrificing some anonymity for performance. To keep latency low and network throughput 

high, Tor relays do not delay incoming messages and do not use padding. This makes Tor 

susceptible to traffic confirmation attacks: if an attacker is able to sniff both ends of a 

communication, he is able to confirm that the user communicated with the server. If the first 

hop of a circuit is chosen at random then the probability that a malicious node will be 

chosen as the first hop (and thus will know the IP address of the user) converges to one with 

the number of circuits. Due to this, each user has a set of three Guard nodes. When a user 

builds a circuit the first hop is chosen from the set of Guard nodes. 

 The list of all Tor relays is assembled and distributed in the so-called consensus 

document by nine trusted Tor authorities. For the purpose of traffic balancing, the 

bandwidth of each relay is measured and reported. A user chooses relays for his circuits with 

probability proportional to the relays’ weights listed in the consensus. Each relay in the 

consensus is identified by his fingerprint (or ID) which is the SHA-1 hash of its public key. 

https://fossbytes.com/everything-tor-tor-tor-works/
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Figure 8: Tor Guards 

 

1) Tor stream timeout policy: Tor provides SOCKS interface for applications willing to 

connect to the Internet anonymously. Each connection to the SOCKS port by an application 

is called a stream. For each new stream Tor tries to attach it either to an existing circuit or to 

a newly built one. It then sends a BEGIN cell down the circuit to the corresponding Exit node 

asking it to establish a connection to the server requested by the application. In order to 

improve user’s quality of service, if Tor does not receive a reply from the Exit node within 10 

or 15 seconds, it drops the circuit and tries another one. If none of the circuits worked for 

the stream during 2 minutes, Tor gives up on it and sends a SOCKS general failure error 

message. 

 

2) Tor Exit policy: In order to access a Web resource anonymously through a Tor 

circuit, the Exit relay (the final relay in the circuit) should allow establishing connections 

outside the Tor network. This makes Exit relay operators open to numerous abuses. In order 

to make their life easier, Tor allows them to specify an Exit Policy: a list of IP addresses and 

ports to which the Exit node is willing to establish connections and which destination are 

prohibited. When a client establishes a circuit, he chooses only those Exit nodes which allow 

connections to the corresponding IP addresses and port ranges. 
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3) Tor Hidden Services: Tor is mostly known for its ability to provide anonymity for 

clients accessing Internet services. Tor Hidden Services are another feature of Tor which 

enables responder anonymity: a service can be contacted by clients without revealing its 

physical location. In order to achieve this, a client and the hidden service choose at random 

and connect to a Tor relay (rendezvous point) and forward all the data through it.  

In more details: 

1) The hidden service generates a public key and chooses at random a small number 

of Tor relays (typically three) which become its introduction points. The service maintains 

permanent connection to these relays. 

2) It then generates an HS descriptor which contains the public key and the list of 

introduction points and  

3) Publishes it at 6 different Tor relays having HSDir flag. These are called 

responsible HS directories. The choice of responsible HS directories is deterministic and 

depends on the hash of the hidden service’s public key and current day. 

4) Introduction points are instructed by the hidden service to forward connection 

requests from clients. The base32 encoding of the hash of the hidden service’s public key 

(onion address) is then communicated to clients by conventional means (blog post, e-mail, 

etc.). 

 When a client decides to connect to the hidden service, he: 

1) Determines the list of the responsible HS directories using the onion address and 

downloads the HS descriptor. 

2) Chooses a rendezvous point at random. 

3) Communicates the ID of the rendezvous point to the hidden service’s introduction 

points which then forward it to the hidden service. 

 When the hidden service receives the ID of the rendezvous point, it establishes a 

connection to it and the data transfer between the service and the client can start. All 

communications between the client and the rendezvous point, between the service and the 

rendezvous point and between the service and the introduction points are established over 

three-hop circuits. This hides the location of the hidden service and its clients both from 

each other and from external observer. 
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 The hidden service or a client can determine the fingerprints of the responsible 

directories as follows. They first take all Tor relays which have HSDir flag in the consensus 

and sort their fingerprints in lexicographical order. Second, they compute the descriptor ID’s 

of the hidden service which is the SHA-1 hash of a value composed of the following items: 

public key of the hidden service, current day, and replica (which can be 0 or 1). What is 

important is that: 

a) Τhe ID changes every 24 hours,  

b) Τhere are two replicas of the ID, 

c) They find the place in the sorted list of the fingerprints for the computed ID and take the 

next three relays’ fingerprints (thus having 6 fingerprints it total since there are two 

replicas). 

 

4.4 Possible Attacks 

 

 The possible issues throughout this whole process are described in the below 

sections. 

 

4.4.1 Exploitation 

 By exploiting Bitcoin’s anti-DoS protection, a low-resource attacker can force users 

which decide to connect to the Bitcoin network through Tor to connect exclusively through 

her Tor Exit nodes or to her Bitcoin peers, totally isolating the client from the rest of the 

Bitcoin P2P network [45]. This means that combining Tor with Bitcoin may have serious 

security implications for the users:  

1) they are exposed to attacks in which an attacker controls which Bitcoin blocks and 

transactions the users are aware of and 

2) they do not get the expected level of anonymity. 

 The main building blocks of the attack are: Bitcoin’s reputation-based anti-Dos 

protection, Tor’s stream management policy, the fact that connections between Bitcoin 

peers are not authenticated. The attack consists of four steps: 

https://blockexplorer.com/


33 
 

1) Injecting a number of Bitcoin peers to the network. In order to comply with 

Bitcoin’s limitation “one peer per IP address”, the attacker should obtain a large number of 

IP addresses. The easiest way would be to rent IP addresses on per hour basis. The market 

value is 1 cents per hour per IP address. The important note is that the obtained IP 

addresses will not be involved in any abusive activity (like sending spam or DoS attacks) 

which makes this part of the attack undetectable. 

2) Periodically advertising the newly injected peers in the network so that they are 

included into the maximum possible number of buckets at the client side. The attacker is 

interested in that his Bitcoin peers are chosen by Bitcoin clients as frequently as possible. In 

order to increase the chances for her peers to be included into “tried” buckets, the attacker 

should advertise the addresses of her peers as frequently as possible. This mechanism would 

allow the attacker to inject less malicious peers. Note also that address advertisement is not 

logged by default and thus requires special monitoring to be noticed. 

3) Injecting some number of medium-bandwidth Tor Exit relays. During this step the 

attacker runs a number of Exit Tor nodes. In order to get Exit flag from the Tor authorities, 

an attacker’s Exit node should allow outgoing connections to any two ports out of ports 80, 

443, or 6667. Such an open Exit policy might not be what a stealthy attacker wants. 

Fortunately for the attacker, he can provide incorrect information about his exit policy in his 

descriptor and thus have Exit flag while in reality providing access to port 8333 only. The 

attacker can do even better, and dynamically change the exit policy of his relays so that only 

connections to specific Bitcoin peers are allowed.  

4) Making non-attacker’s Bitcoin peers ban non-attacker’s Tor Exit nodes. In this 

phase, the attacker exploits the built-in Bitcoin anti-DoS protection. The attacker chooses a 

non-attacker’s Bitcoin peer and a non-attacker’s Tor Exit, builds a circuit through this Exit 

node and sends a malformed message to the chosen Bitcoin peer (e.g. a malformed 

coinbase transaction which is 60 bytes in size and which causes the immediate ban for 24 

hours). As soon as the Bitcoin peer receives such a message, it analyses the sender’s IP 

address which obviously belongs to the Tor Exit node chosen by the attacker. The Bitcoin 

peer then marks this IP address as misbehaving for 24 hours. If a legitimate client then tries 

to connect to the same Bitcoin peer over the banned Exit node, his connection will be 

rejected. The attacker repeats this step for all non-attacker’s Bitcoin peers and each non-

attacker’s Tor Exit node. This results in that a legitimate Bitcoin user is only able to connect 
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to Bitcoin over Tor if he chooses either one of the attacker’s peers or establishes a circuit 

through an attacker’s Exit node.  

 

 

4.4.2 Defeating onion peers 

 Bitcoin peers can be made reachable as Tor hidden services. Banning Tor Exit nodes 

will obviously not prevent Bitcoin clients from connecting to such peers. Nonetheless, 

observations show that this case can also be defeated by the attacker.  

 First, the current design of Tor Hidden Services allows a low-resource attacker to 

DoS a hidden service of his choice (this technique is called black-holing of hidden services). 

Before a client can contact a hidden service, he needs to download the corresponding 

descriptor from one of the six responsible hidden service directories. These directories are 

chosen from the whole set of Tor relays in a deterministic way based on the onion address 

and current day. 

 The attacker needs to inject six malicious relays that would become responsible 

directories. In other words, he needs to find the right public keys with fingerprints which 

would be in-between the descriptor IDs of the hidden service and the fingerprint of the 

currently first responsible hidden service directory. This can become a problem though for a 

large number of hidden services: for each hidden service the attacker needs to run at least 6 

Tor relays for at least 25 hours, 2 relays per IP address. 

 Fortunately, for the attacker, the fraction of Bitcoin peers available as Tor hidden 

services is quite small which results in: 

1) a very small probability for a client to choose a peer available as a hidden service 

and  

2) thus, making black-holing of existing Bitcoin hidden services practical. 

 Second, the attacker can at almost no cost inject a large number of Bitcoin peers 

available as Tor hidden services. It requires running only one bitcoind instance and binding it 

with as many onion addresses as needed. Thus, users will more likely connect to attacker 

controlled “onion” peers. 
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 Third, when running Bitcoin without Tor, onion addresses received from peers are 

silently dropped. Thus, one can only obtain OnionCat addresses by either connecting to an 

IPv4 or IPv6 reachable peers through a proxy or by specifying an onion address in the 

command line. 

4.4.3 Attack vectors 

 The technique described in this section allows an attacker to direct all Bitcoin-over-

Tor traffic through servers which are under his control.  

Traffic confirmation attack : First, it becomes much cheaper to mount a successful traffic 

confirmation attack. In traffic confirmation attacks, the attacker controls a fraction of Guard 

and Exit nodes. The attacker sees that one of her exit nodes is requested to access a 

particular (e.g. censored) web-site and the attacker is interested in finding out the user who 

made this request. The attacker sends a traffic signature down the corresponding circuit. If 

the attacker was lucky and the user chose one of her Guard nodes, the attacker will see the 

traffic signature going through this Guard to the target user. This reveals the user’s IP 

address. 

 The success probability of the attack is computed as the product of two factors:  

1) the probability for the user to choose an attacker’s Guard and  

2) the probability for the user to choose an attacker’s Exit.  

Revealing Guard nodes. In case the attacker does not control the user’s Guard node, 

he may try to find this Guard. We assume that the attacker controls a fraction of middle 

nodes. As before, the attacker would send a traffic signature down the circuit and if none of 

the attacker’s middle nodes detects this signature, the attacker drops the circuit. This will 

force the user to build another circuit. After some number of circuit tries, one of the 

attacker’s middle nodes will finally be chosen. This middle node will know the user’s Guard 

node. The re-identification of the user between different circuits is possible e.g. using the 

fingerprinting technique. Revealing the guards does not immediately allow an attacker to 

reveal the location of the user but gives him the next point of attack. Given that guard nodes 

are valid for more than a month, this may be sufficient to mount a legal attack to recover 

traffic meta-data for the guard node, depending on the jurisdiction the guard node is located 

in. 
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Linking different bitcoin addresses. Even without knowing the user’s IP, the attacker 

can link together user’s transactions regardless of pseudonyms used. 

Possibility of double spending. Finally, after successfully mounting the described 

attack, the attacker controls the connectivity to the Bitcoin network for users which chose to 

use Tor which increases the success rate of double-spend attacks. In addition, the attacker 

can defer transactions and blocks and send dead forks. In collusion with a powerful mining 

pool (for example 10-20% of total Bitcoin mining capacity), the attacker can create fake 

blocks. This enables additional possibilities for double spending, however to make this 

relevant the amount should exceed what such miner would be able to mine in the real 

Bitcoin network. Also, complete alternative Bitcoin reality for all the users who access 

Bitcoin solely through Tor is possible. This however would come at a cost of 5-10 times 

slower confirmations, which after some time can be detected by the wallet software. 

 

4.4.5 Sybil Attacks on Bitcoin 

 As previously mentioned, a client needs to connect directly to one of the attacker’s 

nodes in order to reveal his IP address so that an attacker can de-anonymize his previous 

transactions done over Tor. Bitcoin as a peer-to-peer network is vulnerable to Sybil attacks 

and just operating many Bitcoin servers means that a client will sooner or later choose an 

entry node controlled by the attacker (i.e. in some number of sessions). However, running 

too many servers can be. Fortunately for the attacker, there are a couple of ways to prevent 

Bitcoin clients from using non-attacker’s Bitcoin servers (and choose an attacker’s one 

instead). 

4.4.6 Attacks Description 

 Below a few further attacks related to user anonymity are described.  

 Exhausting connections limit 

 As stated earlier, by default a Bitcoin server accepts up to 117 connections. Once 

this limit is reached, all new incoming connections are dropped. At the same time, a Bitcoin 

server neither checks if some of these connections come from the same IP address, nor 

forces clients to provide proof-of-work. As a result, a low-resource attacker can establish 

many connections to all but his Bitcoin servers and occupy all free connection slots. If a 

client connects directly to a Bitcoin server connection slots of which are occupied, the 
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connection will be dropped immediately, thus the client will soon end up connecting to a 

malicious peer.  

Port poisoning attack 

 Peer addresses are of the following form (IP, PORT). However, when a client decides 

to add a received address to the database, he does not take the port number into account. 

For example, assume a client receives an address (IP0, PORT1) and there is already an entry 

in the client’s database (IP0, PORT0). In such case the client will keep (IP0, PORT0) and will 

not store (IP0, PORT1). The attacker can use this fact to flood with clients with addresses of 

legitimate Bitcoin servers but wrong port numbers. If the attacker is the first to send such 

addresses, the client will not be able to connect to legitimate nodes. 

 

4.5 Conclusion  

 The truth about Tor is that it facilitates a growing underground marketplace that 

sophisticated criminals use to traffic drugs, stolen identities, child pornography and other 

illicit products and services. Attackers can link together user’s transactions regardless of 

pseudonyms used, control which Bitcoin blocks and transactions are relayed to which user 

and delay or discard user’s transaction and blocks. So, with the “untraceable” 

cryptocurrencies as the primary means of payment, close cooperation between law 

enforcement, financial institutions and regulators around the world could be useful, under 

certain circumstances, to control all this nefarious activity.  

 

 

5. Bitcoin Forensics 

 

Very little research has been dedicated to what specific forensic artifacts are left on a 

user’s system as a result of a Bitcoin transaction. The below research of Michael Doran [46] 

shows the artifacts of a thorough investigation regarding the memory, the disk and the file 

locations of Bitcoin’s “fingerprint”.    

 

 5.1 Wallets and Transactions 
 

Forensic%20Look
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A Bitcoin wallet should be downloaded at first in order to begin conducting Bitcoin 

transactions. The Bitcoin wallet can show the total balance of all Bitcoins it controls and let a 

user pay a specified amount to a specific person, just like a physical wallet. Once the wallet is 

installed and configured, an address is generated which is similar to an e-mail or physical 

address, since it provides other users a numerical location to which they can send Bitcoins. 

In addition, the wallet contains a user’s private key, which allows the spending of the 

Bitcoins, which are located in the blockchain.  

After concluding the Bitcoin wallet setup, a user is supposed to have Bitcoins in 

order to conduct transactions. At the moment, there are four methods to acquire Bitcoins: 

1) as payment for goods or services,  

2) as purchase of coins through a Bitcoin exchange,  

3) as an exchange with another user or  

4) earning the coins through competitive mining. 

 

When a user has successfully obtained Bitcoins through purchase, trade or by mining, the 

user’s Bitcoins remain in their worker account until they are transferred to their individual 

Bitcoin wallet. When a user wishes to conduct a transaction, three pieces of information are 

required: 

1) An input - the record of which Bitcoin address was used to send Bitcoins to the 

user. 

2) An amount - the number of Bitcoins that the user is sending to another user. 

3) An output - the address of the recipient of the Bitcoins to be sent. 

 

In order for a person to send the Bitcoins to an intended user and complete a 

transaction, the person needs to have a Bitcoin address. This address is automatically 

generated when the Bitcoin wallet software is installed and a private key is generated. A 

private key serves as a cryptographic signature that validates a user’s right to send Bitcoins 

from a specific wallet. If a user is utilizing a software wallet, the private key is stored on the 

user’s computer, whereas if the user makes use of a web-based wallet, the private key is 

stored on a separate server. With the addresses of the sender and the recipient, the amount 

and the private key, the user can then conduct a Bitcoin transaction. The user’s private key 

signs a message with the input, amount and output of Bitcoins before it is sent from their 

Bitcoin wallet out to the wider Bitcoin network. There the transaction is placed on the 

transaction block where it is eventually verified by Bitcoin miners. 
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A series of electronic signatures is required when each owner transfers the coin to 

the next owner. These signatures are unique to each owner and are created by digitally 

signing the hash of the previous transaction as well as the public key of the next owner. The 

signatures will then be added to the end of the coin, which provides a payee with a visual 

representation of the chain of ownership. 

 

Figure 9: Chain of signatures of signatures associated with a Bitcoin transaction as it progresses from one owner 

to the next 

 

Since all the Bitcoin information is transparent, information concerning the Bitcoin 

money supply is readily available on the block chain for anybody to verify and use in real-

time. Thus, if an individual wanted to verify any of their transactions or the signatures 

associated with those specific transactions, they could visit a website such as blockexplorer 

[45] and conduct a search based on the block number, address, block hash, transaction hash 

or public key. Let’s say that we conduct a search for the Bitcoin address of 

17vPdTfLEEtFnpUZK2BUZuGBzyKbBx4iwF, the below six-column ledger would appear.  

 

Figure 10: Transaction Ledger 

 

http://www.blockexplorer.com/
https://blockexplorer.com/
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The ledger, in general, provides details regarding the transaction hash, the block 

that the transaction appeared in (including date and time), the amount, the type, who sent 

the Bitcoin, who received the Bitcoin and finally the balance available to the Bitcoin address. 

 

5.2 Bitcoin artifacts 
The Bitcoin wallet, which is downloaded as software, is similar to that of a physical 

wallet on the Bitcoin network. The user can spend the Bitcoins allocated to it as well as see 

the total balance of all Bitcoins it controls and pay a specific amount to a specific person, just 

like a real wallet. 

Although there are numerous Bitcoin wallet software applications out on the 

market, the most notable is Bitcoin-Qt [47] because it is the original Bitcoin P2P open source 

software created by the creator of Bitcoin, Satoshi Nakamoto. It is not only a Bitcoin wallet, 

but it also contains the public ledger that lists every Bitcoin transaction in the system.  

When examining a hard drive image from a suspect machine that was using Bitcoin-

Qt, the folder structure will consist of three folders:  

1) Blocks - This subdirectory contains blockchain data, a “blk.dat” file and a 

“blocks/index” subdirectory. The “blk.dat” stores actual Bitcoin blocks, in 

network format, which is dumped to disk in raw format. These enable for the re-

scanning of missing transactions in a wallet, reorganizing to a different part of 

the chain, and serving the block data to other nodes that are synchronizing. The 

“blocks/index subdirectory” is a database that contains metadata about all 

known blocks and where to find them on the disk. Without this, finding a block 

would be very slow. 

2) Database - This subdirectory contains database journaling files and 

3) Chainstate - This subdirectory is a database with a compact representation of all 

currently unspent transactions and some metadata about where the transactions 

originated. 

 

Five additional files of Bitcoin-Qt are: 

1) lock - The database-locking file, 

2) db.log – The database file, 

3) debug.log – The Bitcoin’s extensive logging file, 

4)  peers.dat -The storage file for peer information to make a reconnection easier. 

It also utilizes a Bitcoin specific file format, which is unrelated to any other 

database system and 

https://en.bitcoinwiki.org/wiki/Bitcoin-Qt
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5)  wallet.dat – The file for storage of keys, transactions, metadata, and options 

relating to Bitcoin. 

 

Each file folder and file have their specific function and each offers specific forensic 

artifacts and information that can be utilized in the course of an investigation.  

 

 5.3 Investigation 
How an investigation can be designed and what can be extracted from it? 

5.3.1 Building a case 
The content of a case as well as the knowledge, experience, expertise, thoroughness 

and the curiosity of the investigator in charge of the case defined its success. In addition to a 

well-rounded investigator, the success of a digital case rests on a foundational model 

that provides phases by which the investigator can progress through. The Investigation 

Process for Digital Forensic Science model [48] is the foundation for a successful digital 

investigation. 

According to this model, there are six key phases during an investigation: 

1. Identification 

2. Preparation 

3. Collection  

4. Examination 

5. Analysis 

6. Presentation 

 

However, the forensic artifacts of Bitcoin are more difficult than the average case 

due to the technology that Nakamoto implemented to keep the transactions 

pseudonymous. Because of this anonymity, particular pieces of evidence are more difficult 

to obtain and interpret. Still, a successful Bitcoin investigation is possible by escalating 

through the phases of the Investigation Process for Digital Forensic Science. At the moment, 

the focus centers on the Collection, Examination and the Analysis phases as they pertain to 

the forensic artifacts of a Bitcoin case. 

In the Collection phase, the investigator needs to search for, document and collect 

any object or data that could potentially contain digital evidence. Since Bitcoin transactions 

occur via a network connection, an investigator should seize any physical object that can 

connect to the Internet. These objects include cell phones, PDAs, laptops, tablets, desktop 

DFSM
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computers, or iPods. If during the Identification and Preservation phases it is determined 

that, the suspect’s computer is on, it is imperative that the investigator can capture the 

system’s physical memory (RAM). Many types of evidence may be available in volatile 

memory relating to Bitcoin. These types of evidence include: 

-  Running Bitcoin processes and services 

-  System information 

-  Information about logged in users 

-  Registry information 

-  Remnants of chats, communications in social networks and Bitcoin forums 

-  Recent Bitcoin web browsing activities 

-  Recent communications via webmail systems involving Bitcoin 

-  Information from cloud services 

-  Decryption keys for encrypted volumes mounted at the time of the capture 

-  Running Bitcoin malware/Trojans 

 

Upon collecting the evidence, either physically or through extraction or imaging, the 

investigator can now begin the process of examining the data and assigning the level of 

importance of each individual piece. Although the Bitcoin artifacts reside on the suspect’s 

hard drive and can be recovered using robust forensic tools, Internet Evidence Finder [49] 

permits the investigator to view just the Bitcoin artifacts. 

Two different options are available that enable an investigator to recover the Bitcoin 

evidentiary artifacts utilizing Internet Evidence Finder. The first option is that the 

investigator can export the entire Bitcoin file folder from the suspect’s drive and have 

Internet Evidence Finder analyze just that folder for Bitcoin artifacts. The second option is 

that the investigator can point Internet Evidence Finder at the entire image of the suspect’s 

drive. The program will return not only the Bitcoin artifacts, but also Internet and chat 

history, e-mail and web searches to name a few. 

In either option, the Bitcoin artifacts recovered provide a solid base for an 

investigator to build a case on. Because a majority of the user’s activity involving Bitcoin 

resides within their respective Bitcoin wallets, a majority of the forensic artifacts are going to 

be located in the “wallet.dat” file. Internet Evidence Finder will recover the “wallet.dat” file 

and present the addresses from a Bitcoin wallet, as well as queries to the Bitcoin network 

from log files created by the Bitcoin client software in a user-friendly format. 

In addition to the “wallet.dat” file, the investigator can examine the chain state 

https://www.teeltech.com/mobile-device-forensic-tools/magnet-forensics/magnet-internet-evidence-finder-ief/


43 
 

subdirectory to view all currently unspent transactions. These transactions, with 

corresponding addresses, could then be compared to the addresses recovered in the 

“wallet.dat” file as well as those found on the blockchain. By taking the recovered addresses, 

queries and information pertaining to the unspent transactions an investigator can slowly 

begin to piece together a case that could develop leads to not only other potential suspects 

or victims, but also open doors to other potential investigations. 

 

5.3.2 Bitcoin forensic artifact examination 
An experiment was designed in order to provide a visual representation of the 

functionality of Bitcoin and the various forensic artifacts that the software application leaves 

on a suspect system. The experiment utilized a designated computer with a fresh installation 

of Windows 7 Professional, Multibit [50], Bitcoin-Qt [47], Bitminter [51] and a basic USB ASIC 

[52] Bitcoin mining rig [53]. 

A Bitcoin mining rig is typically a computer system used for mining bitcoins. The rig 

might be a dedicated miner built specifically for mining, or it could be a computer used to 

mine only on a part-time basis. An ASIC, or Application Specific Integrated Chip, is a 

microchip designed for a special application, such as Bitcoin mining. After ensuring that the 

default settings are set with the installation of both the Multibit and Bitcoin-Qt wallet 

software applications and creating an account with the Bitminter mining pool, the system 

mined Bitcoins for approximately a month, during which time various transactions were 

made in order to place evidentiary artifacts inside of the Bitcoin wallets. 

At the conclusion of the testing process, an image of the system’s RAM and hard 

drive were examined with EnCase 6.19.9 [54] and Internet Evidence Finder 6.1 [55]. The goal 

of the examination is to see the interaction between the Bitcoin mining software and wallet, 

with the operating system, registry and RAM.  

 

5.3.3 Hardware Setup 
 

The below listed items are the specific items of hardware that were used during the 

experiment. The 120 GB hard drive was wiped and a fresh installation of Windows 7 was 

installed to ensure a clean experimental environment. The individual ASIC Mining drives 

were individually plugged in to the USB hub that was then plugged in to the Gateway laptop 

via USB connection. 

- Gateway laptop ML6720 with power supply 

- 120 GB Western Digital hard drive 

https://en.bitcoinwiki.org/wiki/Multibit
https://en.bitcoinwiki.org/wiki/Bitcoin-Qt
https://bitminter.com/
https://www.techopedia.com/definition/2357/application-specific-integrated-circuit-asic
https://www.investopedia.com/tech/usb-bitcoin-mining/
https://www.guidancesoftware.com/encase-forensic
https://www.forensicfocus.com/c/aid=59/webinars/2013/internet-evidence-finder-ief-advanced-edition-v61/
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- (4) USB ASIC Mining drives 

- 7 port USB hub 

- USB powered cooling fan 

- 32 GB USB thumb drive 

 

5.3.4 Tools 
Throughout the experiment, several tools were utilized in order to maintain a 

running Bitcoin mining computer as well as populate the system’s file system and registry 

with Bitcoin evidentiary artifacts. Each of the tools utilized in the experiment had a specific 

purpose and were chosen based on their platform design and ease of use. 

 

- Bitminter is a Bitcoin mining pool that enables a user to mine for Bitcoins. It 

provides the user with a graphical user interface that enables the user to control 

every facet of their Bitcoin mining experience. 

- Multibit is a lightweight "thin client" Bitcoin wallet for Windows, MacOS and 

Linux based on bitcoinj [56], which is an open source Bitcoin client library built 

using Java and the Bitcoin network protocol. Its main advantages include 

support for opening multiple wallet simultaneously, and not requiring the user 

to download the entire block chain. 

- Bitcoin-Qt is the Bitcoin wallet software developed by Wladimir J. van der Laan, 

which is based on the original source code of Satoshi Nakamoto. It is a desktop 

wallet system and contains the public ledger that lists every Bitcoin transaction 

in the system. 

- Tableau Imager 3.1.2 [57] is a forensic imaging tool used to acquire a bit-for-bit 

copy of a piece of media. It supports Encase .E01, .DD, and .DMG file formats 

and can customize the destination path and file name conventions with the use 

of variables including date/time, drive serial number and model number. It also 

has error recovery and reporting and conducts the calculation of MD5 and SHA-

1 hash values at the conclusion of the imaging process. 

- EnCase 6.19.7 is a forensic program designed for forensic examiners and trained 

investigators who are conducting full forensic examinations on any type of 

digital media. EnCase allows the forensic examiner to acquire data rapidly from 

various device types and perform an in-depth forensic analysis of the media. At 

the conclusion of an analysis, it provides the forensic examiner with the ability 

https://en.bitcoin.it/wiki/Bitcoinj
https://digital-forensics.sans.org/blog/2010/02/16/tableau-imager-first-look


45 
 

to produce comprehensive reports as well as maintain the integrity of the 

evidence in a format that is presentable and accepted by the courts. 

- Internet Evidence Finder 6.2.3 is a forensic program designed for forensic 

examiners and trained investigators who are conducting full forensic 

examinations of Windows and Mac computers. Specifically, Internet Evidence 

Finder recovers data from social networking sites, instant messenger chats, P2P 

file sharing apps, mobile backups, webmail, web browser history, pictures and 

videos. 

- Winen.exe [58] is a RAM acquisition tool that ships with the forensic software 

EnCase. It can run as a command line tool or from a configuration file. The tool 

collects RAM and places the collected information into an .E01 file that can be 

stored on an external drive. 

 

5.4 Results 
The testing environment was the first to be prepared. This phase included a clean 

install of the host operating system, with all drivers and updates installed.  

 

5.4.1 Overview 
The test system was a Gateway ML6720 laptop computer running Windows 7 

Professional Service Pack 1, Build 7601, 32 bits. The processor was an Intel Pentium T2310 

running at 1.46 GHz. The system had 1 GB RAM and the system time zone was set to Central 

Standard Time and was verified through the use of an Apple iPhone utilizing Sprint’s cellular 

network. 

The second phase of testing involved configuring the test system to mine and 

interact with Bitcoins. The first step in this process was to install the Bitcoin wallets that 

would house the Bitcoin transactions, addresses and private keys utilized during the testing. 

The Multibit Bitcoin wallet application was downloaded in the test system’s Internet 

Explorer web browser and saved in the Downloads folder of the test system. The Multibit 

application was located in the Downloads folder and installed by double-clicking on the 

“multibit-0.5.16-windowssetup. exe” file. This action installed the application with the 

default settings in the following location “C:\Program Files\MultiBit-0.5.16.” Upon successful 

installation of the Multibit Bitcoin wallet, the application was opened and the Bitcoin 

address associated with the wallet was “1FdhjMV8s2kzfAdU6TXVS35xkCGcbxAiM6.”  

In addition to verifying the address of the Multibit wallet, the folder structure of 

http://forensiczone.blogspot.com/2008/06/winenexe-ram-imaging-tool-included-in.html
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the installation was documented for reference when conducting further examination with 

EnCase and Internet Evidence Finder. The below figure depicts the folder structure of the 

Multibit wallet application on the test system. 

 

Figure 11: Screenshot of the folder structure of Multibit installed on the test system. 

 

In order to gain an understanding of the various artifacts resulting from different 

Bitcoin wallets, Bitcoin-Qt was downloaded and installed via Internet Explorer to the test 

system as an additional wallet software application. The Bitcoin-Qt application, “bitcoin-

0.8.6-win32-setup.exe,” was installed with the default settings in the following location 

“C:\Program Files\Bitcoin-Qt-0.8.6.” After noting the Bitcoin address associated with the 

wallet as “14igLoRYLjmqc9H5ZSxWqBvdNT3Ro1QeUJ,” was then labeled as “Suspect” and 

saved within the Bitcoin-Qt wallet. 

To verify the address of the Bitcoin-Qt wallet, the folder structure of the installation 

was documented for reference when conducting further examination with EnCase and 

Internet Evidence Finder. The below figure depicts the folder structure of the Bitcoin-Qt 

wallet application on the test system. 

 

Figure 12: Screenshot of the folder structure of Bitcoin-Qt installed on the test system 

 

After installing and configuring both of the Bitcoin wallets, an account was created 

utilizing the G-Mail address of “forensicminer@gmail.com” at website 
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“https://bitminter.com.” The account was created in order to run the software application 

from the test system and to store pertinent information such as Bitcoin addresses and 

worker identities. Upon signing on to the Bitminter mining pool for the first time, all of the 

default account settings were left. However, a “worker” was created and given the identifier 

of “1” serving as the sole worker performing mining from the test system in the Bitminter 

mining pool. The Bitminter application was not installed on to the test system; rather, the 

application was run from the website by clicking on the “Engine Start” button. 

With the Multibit and Bitcoin-Qt wallets installed and the Bitminter account created, 

the Bitcoin mining rig was configured. For the testing environment, the rig consisted of four 

ASIC Block Erupters plugged in to a seven-port USB hub. An ASIC Block Erupter is a tool 

utilized to mine Bitcoins that uses an Application Specific Integrated Chip and mines at 330 

mega hashes a second (MH/s). 

All four of the ASIC miners were attached to a USB port on the hub, in addition to a 

USB cooling fan. The fan kept the ASIC miners cool, increasing performance and preventing 

damage due to the overwhelming amount of work that each miner was doing. Upon 

plugging the hub in for the first time, the test system did not initially recognize the ASIC 

miners because of the lack of the “CP210x USB to UART Bridge VCP Drivers.” The “CP210x 

USB to UART Bridge VCP Drivers” were downloaded via the test system’s Internet Explorer 

web browser from the Silicon Labs website [59]. Upon successful installation, the “Devices 

and Printers” section of the test system’s Control Panel was verified in order to determine 

that the ASIC miners appeared on the test system as four separate entries, each with the 

name of “CP2102 USB to UART Bridge Controller.” 

Internet Explorer was used to visit the website https://bitminter.com, logging in 

with the username of “forensicminer@gmail.com” and clicking on the “Start Engine” button 

that launched the Bitminter control panel and showed the miners actively working. 

While the test system was actively mining for Bitcoins and the Bitminter account had 

accrued enough Bitcoins in order to conduct a transaction, three separate transactions were 

made from the “forensicminer” Bitminter account to the address of the Multibit wallet as 

well as the Bitcoin-Qt wallet. The transactions occurred on separate dates and times and the 

respective wallet application logged each. The below figure depicts the transactions 

conducted within the Multibit wallet on the dates of January 25, February 8, and February 

28, 2014. 

https://www.silabs.com/


48 
 

 

Figure 13:  Screenshot depicting the transactions conducted within the Multibit wallet on the test system. 

 

 

Figure 14: Screenshot depicting the transactions conducted within the Bitcoin-Qt wallet 

 

It is important to note that the address listed as “Suspect” is actually the address of 

the Multibit wallet, “1FdhjMV8s2kzfAdU6TXVS35xkCGcbxAiM6.” 

 

5.4.2 Collection and analysis of evidence 
 

RAM Capture 

At the conclusion of the testing period, a 32 GB USB thumb drive was formatted as 

NTFS and labelled “RAM” for easy identification. The “winen.exe” program was loaded on to 

the thumb drive and attached to the system that assigned drive letter “F:\.” The program 

was run by right clicking on the “winen.exe” file and selecting “Run as Administrator.” A 

series of values in the winen.exe control panel served to tell the program the file path to 

save the “.E01” image file, the evidence number, examiner name and whether or not to 

compress the image file. 

After approximately 15 minutes, the memory acquisition completed successfully and 

the contents of the “RAM” thumb drive had created a new file, “Test1.E01.” The thumb 

drive was properly ejected and stored for later analysis. The test system was shutdown 

properly and the hard drive was removed. 

 

Hard Drive Imaging 
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The test system hard drive was connected to a Digital Intelligence UltraBay 3D 

Hardware Write-Blocker and a physical image of the hard drive was conducted. 

When the imaging process was completed, the log file generated by Tableau Imager 

displayed no acquisition errors with an MD5 acquisition hash of 

B9CCFE1092693E9194AE617262CE3375. From this point forward, all analyses pertaining to 

the Bitcoin artifacts were done from the digital copy to preserve the original disk’s integrity. 

 

Forensic Analysis 

The analysis began with the RAM capture file and progressed through to the system 

image file. The goal of the analysis was to seek out and recover any evidentiary artifacts 

pertaining to the Multibit and Bitcoin-Qt wallets. The analysis of the RAM capture was 

conducted utilizing EnCase 6.19.7 and included keyword searches pertaining to various key 

Bitcoin terms and artifacts. The analysis of the test image file was completed utilizing EnCase 

as well as Internet Evidence Finder 6.1 and included searches for various key Bitcoin 

artifacts, analysis of log files and Internet activity. 

 

RAM Forensics 

The “Test.E01” image file was imported into EnCase, and a new case entitled “Test 

System Examination” was created. The following search terms were entered in to the 

Keyword function of EnCase: 

- Multibit 

- Bitcoin 

- 1FdhjMV8s2kzfAdU6TXVS35xkCGcbxAiM6 

- 14igLoRYLjmqc9H5ZSxWqBvdNT3Ro1QeUJ 

- Bitcoin-Qt 

- Bitminter 

- forensicminer 

Examination of the search results revealed multiple locations in “Program Files,” 

“User files” and the registry where the Multibit and Bitcoin-Qt application files were stored. 

One of the locations indicated was C:\Users\Suspect\AppData\Roaming.” 

Further examination of the search results revealed the transactions that had been 

conducted during the course of the testing phase. There were no specific dates and times 

associated with either transaction. However, the two addresses associated with the Multibit 

and Bitcoin-Qt addresses were in clear text. 
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Hard Drive Forensics 

A new examination case entitled “Bitcoin Test System” was created and the disk 

“Test System Image.E01” file was loaded as the evidence. The examination strategy 

consisted of conducting an analysis of the Multibit and Bitcoin-Qt files and the analysis of 

the Internet activity utilizing Internet Evidence Finder.  

Multibit. The root directory, “C:\,” contained the bulk majority of the files and 

folders used by the system and the user. Based on the results obtained from the analysis of 

the RAM capture, the Multibit application was found to be located in: 

“C:\Users\Suspect\AppData\Roaming\Multibit.” 

 

Examination of the files in detail resulted in the following information: 

- The presence of the Multibit wallet, which had the default name of “multibit.wallet.” This 

particular file is the main wallet file that contains the user’s private keys and transactions. 

- The presence of a rolling backup of the “multibit.wallet” file. This file was located in the 

subfolder of “rolling-backup” and was entitled “multibit- 20140222190122.wallet.” The 

series of numbers following the name of the wallet served as the time stamp when the 

backup was created. In this case, the timestamp of the backup was 02/22/2014 at 19:01:22 

(7:01:22 PM). The backup files are created by the respective user and the primary purpose 

of them is to recover from any sudden loss of power that prevents a clean wallet save. 

- Two backups of the wallet file. One of the backups stores the data for encrypted wallets 

and the other for unencrypted wallets. These files are in the format 

“YYYYMMDDHHMMSS.wallet” and “YYYYMMDDHHMMSS.info.” The Multibit wallet is 

backed up to these directories each time that the user opens a wallet, adds or changes the 

password, adds a receiving address or imports private keys. 

There were also two separate entries on two separate dates for unencrypted rolling 

backups within the Suspect’s Multibit wallet located in the subfolder of “wallet-

unencbackup.” The figure below shows the backup files as they appear in EnCase. 

 

Figure 15: Screenshot depicting the two separate dates for the unencrypted rolling backups of the Suspect’s 
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Each of those entries had timestamps attached to them providing evidence of when 

Multibit had generated the backups: 

-  multibit-20140122211104.wallet (01/22/2014 at 21:11:04 hours) 

- multibit-20140122211104.info (01/22/2014 at 21:11:04 hours) 

- multibit-20140208212323.wallet (02/08/2014 at 21:23:23 hours) 

- multibit-20140208212323.info (02/08/2014 at 21:23:23 hours) 

Examination of each of the “.wallet” files revealed unreadable data; however, 

examination of the two “.info” files revealed information pertaining to the wallet version, 

where the wallet backup was stored, and the specific addresses associated with the wallet 

file. 

Examination of each of the remaining files within the Multibit file folder revealed the 

following: 

- multibit.properties – this file is the MultiBit configuration file that contains the 

location and name of the wallet, the username and the configurations set forth 

by the user upon installation. 

- multibit.checkpoints – the MultiBit checkpoints file enables the Multibit 

program from downloading the entire blockchain. 

- multibit.info – in addition to the multibit.properties file, this is another location 

that stores the name of the wallet. 

 

Figure 16: Some Multibit artifacts recovered during the hard drive analysis Evidentiary Artifact Location of Artifact 

 

Bitcoin-Qt. Examination of the Bitcoin-Qt wallet application began by navigating to 

the location of the Bitcoin-Qt wallet installation obtained from the analysis of the RAM 

capture, “C:\Users\Suspect\AppData\Roaming\Bitcoin.” Examination of the contents of the 
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file folder, revealed the presence of two subfolders “blocks” and “chainstate.” Within the 

“blocks” subfolder, there was an additional subfolder entitled “index.” The “blocks” and 

“index” subdirectory contain metadata about all known blocks, and provides the location of 

them on the user’s disk. 

Specifically, the “blocks” subfolder contained 271 individual files. Of those files, 

there were 240 files with the file extension of “.dat.” Of those 240 files, there were 120 files 

numbered in sequence starting at “blk00000.dat” and ending with “blk00119.dat.” Those 

files store actual Bitcoin blocks in network format and are only needed for rescanning 

missing transactions in a wallet, reorganizing to a different part of the chain, and serving the 

block data to other nodes that are synchronizing. The remaining 120 files had names that 

were also numbered in sequence; however, they started at “rev00000.dat” and ended with 

“rev00119.dat.” The “rev.dat” files contain “undo data.” The user is able to see blocks as 

patches to the chain state and see the undo data as reverse patches. These files are 

necessary for rolling back the chainstate, which is necessary in the case of reorganizations 

when one chain becomes longer than the one currently being worked on. 

Examination of the other files located within the Bitcoin-Qt file folder in detail 

revealed the following information: 

- The presence of the “wallet.dat” file which contains the user’s private keys 

and transactions. Further examination of this file revealed large amounts of unreadable 

Base64 text. 

- The presence of the “peers.dat” file which stores peer information to make a 

reconnect easier. Further examination of this file revealed large amounts of unreadable 

Base64 text. 

- The presence of the “db.log” file which also stores peer information to make a 

reconnect easier. Further examination of this file revealed it was an empty file. 

- The presence of the “Lock” file which is the Bitcoin database-locking file. 

Examination of this file revealed it an empty file. 

- The presence of the “debug.log” file that is the extensive logging file of 

Bitcoin-Qt. Further examination of this file revealed a large amount of logging data that 

included dates and times as well as Bitcoin transaction addresses. The entire log file was 

exported to the desktop of the forensic workstation and given the file name of “Test System 

Bitcoin Log.” Initial examination of the log revealed a standard log file in readable format 

containing dates, times, blocks and IP addresses. A search of the log file utilizing the test 

system’s IP address of 108.XXX.XX.XX resulted in several hits within the log file. 
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Further examination of each log file entry revealed that each was from the 

blockchain and contained a date and time stamp, message version, the specific blocks within 

the block chain, as well as the IP address of the test system and the peer network. The 

following illustrates the breakdown of one of the log entries from the blockchain: 

- Date/Time: 03/02/2014 at 18:23:39 hours (6:23:39 PM) 

- Message Version: Satoshi: 0.8.6 version 7001 (Version of Bitcoin-Qt installed 

on test system) 

- Blocks: 257627 

- US: 108.XXX.XX.XX (IP address of the test system) 

- Them= 131.XXX.XX.XX (IP address of the connected peer) A query of the peer IP 

address through www.iplocation.com, revealed it to be located in Ontario, 

Canada. 

 

The above log file entry is a result of a series of messages transmitted and received 

by the peers of the Bitcoin network. When connecting to the Bitcoin network, everyone 

broadcasts an “addr” message containing his or her own IP address every 24 hours. Nodes 

relay these messages to the peers and they are stored if the address is new. Through this 

system, everyone has a reasonably clear picture of which IPs are connected to the network 

at that particular moment. The peers will request the full transaction with a “getdata” 

message that is a request for a single block or transaction. If the peers consider the 

transaction valid after receiving it, they will in turn broadcast the transaction to all of their 

peers with an “inv” message. 

 

Internet Evidence Finder Forensics 

The “Test System.E01” image file was loaded into Internet Evidence Finder 6.2.3 and 

“Internet Explorer” and “Bitcoin” were selected as the evidentiary artifacts that the program 

would seek out. At the conclusion of the processing, a section under the “IEF Refined 

Results” labeled “Peer to Peer” was populated with two entries for “Bitcoin Addresses.” 

Further examination of those results revealed two addresses, 

“1FdhjMV8s2kzfAdU6TXVS35xkCGcbxAiM6” and 

“14igLoRYLjmqc9H5ZSxWqBvdNT3Ro1QeUJ.” In viewing the source of the evidence, it was 

determined that the above listed addresses originated from the “wallet.dat” file, located at 

“C:\Users\Suspect\AppData\Roaming\Bitcoin.” 
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After right clicking on each of the addresses within Internet Evidence Finder and 

selecting “Query Bitcoin Block Chain,” an Internet Explorer window opened and 

information pertaining to each of the addresses such as the Public Key and the Public Key 

hash, as well as the sent and received transactions with each of the addresses was visible on 

the blockexplorer website [45]. The following query of the Bitcoin address 

“1FdhjMV8s2kzfAdU6TXVS35xkCGcbxAiM6” revealed the following: 

- First seen: Block 282447, 01/25/2014 at 20:10:00 hrs. (This is the first block 

that the address was used in) 

- Received transactions: 2 

- Received BTC: 0.0002 

- Sent transactions: 1 

- Sent BTC: 0.0001 

- Hash160 (This hash value is the hash of the public key): 

“a082bc485913a5d5fffa79e824daa02bebac36a1” 

- Public key: 

“02738b96756e7c101f44098665d64dd41e3a6f9b08b7130db71161be77bf97845

1” 

The following query of the Bitcoin address “14igLoRYLjmqc9H5ZSxWqBvdNT3Ro1QeUJ” 

revealed the following: 

- First seen: Block 288294, 02/28/2014 at 13:39:12 hrs. (This is the first block 

that that the address was used in) 

- Received transactions: 2 

- Received BTC: 0.0002 

- Sent transactions: 2 

- Sent BTC: 0.0002 

- Hash160: 28ca45b6c41a17c31c551632c6f9412d705c46df 

- Public key: 

03d2e19dcabe7e5557e204ba6865355f82062f67794ccb1f450778f05954a215a0 

Further examination of the findings from Internet Evidence Finder revealed no 

evidentiary artifacts from the Multibit wallet or Bitminter mining applications. 

 

5.5 Conclusion  
Bitcoin cryptocurrency is a relatively new technology and very little research has 

been dedicated to what specific forensic artifacts are left on a user’s system as a result of 

Bitcoin, what those artifacts mean and how to recover them in order to build a successful 

https://blockexplorer.com/
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case involving Bitcoin. This research sought to provide a history of Bitcoin cryptocurrency 

and through the use of a test environment, ascertain what specific Bitcoin artifacts are 

recoverable from a user’s system with Bitcoin wallet and mining applications installed and 

actively used. The examination of the data collected after the testing phase provided 

evidence validating the installation of the Multibit and Bitcoin-Qt wallet applications on the 

test machine, as well as confirms the creation of Bitcoin transactions generated by the 

wallet applications. In addition, the analysis provided evidentiary artifacts relating to the 

Bitminter mining software and the interaction of each Bitcoin application with the operating 

system, registry, and RAM. The analysis of the RAM was a success in that it returned a 

multitude of results that matched the Bitcoin wallet addresses, transactions and Bitcoin 

applications on the test system. 

 

6. Memory Investigation of Bitcoin Clients  

 

Evidence relating to the use of Bitcoins can potentially be located in different 

locations, such as the Blockchain, the client software and the network protocol. However, 

existing Bitcoin forensics appear to focus only on the Blockchain so far [60]. The below 

described research was focused on digital evidence present in the memory.  

Memory-resident data of an application can be analyzed in a structured and an 

unstructured manner. The structured approach focuses on the OS perspective of the 

memory (processes, files, tables, etc.), whereas the unstructured approach regards the 

memory dump as a collection of values that can be crawled using tools such as strings and 

grep. Bitcoin applications function as a storage for Bitcoin keys (Bitcoin wallet) and can 

contain data of forensic interest, such as public and private keys, addresses, user labels and 

transaction details. 

 

6.1 Bitcoin Core and Electrum 

 

The specific research was focused on two major Bitcoin clients, Bitcoin Core [61] and 

Electrum [62] which support application-specific functions and could be of great significance 

to a forensic investigator. 

A Bitcoin client generally has, amongst others, three major functions:  

1) to store keys and user data securely,  

Bitcoin%20Clients
https://bitcoin.org/en/bitcoin-core/
https://electrum.org/#home
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2) to initiate Bitcoin transaction from the wallet and  

3) to request for Bitcoins.  

An example of one such function supported by both Bitcoin Core and Electrum is the 

option to sign and verify human-readable messages. 

 

In Bitcoin Core, keys and user data are stored in a Berkeley database [63]. This 

database is written in C and stores the key material as binary data. By default, this database 

is not encrypted, but the user can choose to do so via the menu option “Settings >Encrypt 

Wallet”. Apart from the Bitcoin private and public keys in the wallet, the database stores 

various user data, such as contacts - basically an association between a label and a public 

address - and the transaction history of the wallet. Bitcoin Core also enables the user to 

make a backup of a wallet file to a location on the disk. 

The user can send Bitcoins from the wallet via the “Send” tab. To do so, the user 

enters the Bitcoin address, label and amount for the transaction in the screen and presses 

“Send”. Optionally, the user can add additional addresses to the same transaction or 

override the default settings for determining the transaction fee. Note that the label is not 

part of the public Bitcoin ledger, but is stored in the wallet for bookkeeping purposes. 

To request a payment to the wallet, the user has to enter the label, the amount and 

message in the “Receive” tab in Bitcoin Core and press “Request Payment”. In turn, the 

application generates the request for a Bitcoin address available in the wallet. This address 

corresponds to a public and private key pair in the wallet. The request is represented as a 

URI string and as a QR code, which then can be shared with other Bitcoin users for them to 

initiate the payment requested. 

https://en.wikipedia.org/wiki/Berkeley_DB
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Figure 17: Bitcoin Core Wallet 

The below figure shows all the Application Data that are present in the process 

memory of Bitcoin Core and Electrum. However, even though all of them are of forensic 

relevance, not all can be easily traced back in the process memory. 

 

Figure 18: Application data in Bitcoin Core and Electrum. 
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6.2 Memory Images 
 

Memory images are acquired from a virtual machine running in various states. The 

virtual machine runs the Microsoft Windows 7 Enterprise SP1 (64-bit) operating system in a 

licensed VMWare Fusion Professional Edition v6.0.65 environment. The VM is configured 

with 1 GB of RAM. The operating system was fully patched in all machines. Additionally, all 

virtual machines had VMware Tools installed. In the VM, Electrum v2.6.2 was installed and 

brought to a specific state. Bitcoin Core v0.11.1 based on QT v5.5.0 was used in the Bitcoin 

Core scenarios. Memory snapshots were acquired by suspending the virtual machine and 

copying the file with the .vmem extension from the virtual machine's folder. 

Bitcoin Core has been investigated both in an unencrypted and in an encrypted 

state. Since Electrum v2.6.2 only supports a wallet with encrypted private data, this 

application cannot be analyzed in an unencrypted state. During the creation of the memory 

images, all user data (e.g. labels, passphrases) and application data (e.g. addresses, public 

and private key values) were documented in detail. 
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Figure 19: Memory Images per Application 

 

During memory analysis, these values were traced back in the memory images to 

determine their format, location and context. Incoming transactions to the wallets under 

investigation come from an external wallet, whereas all outgoing transaction return to this 
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same external wallet. Furthermore, all labels defined in the scenarios follow a predefined 

format, namely: MAGIC_CATEGORY_RANDOM_MAGIC 

In this format, MAGIC is a xed value set to f0r3ns1c to facilitate tracing in memory. 

CATEGORY indicates for which purpose the label was created (e.g. the value “req” 

for a payment request). In turn, RANDOM consists of a variable-length alphanumerical 

random string which ensures the uniqueness of the label. 

In the next stage, the memory images are analyzed using Volatility v2.5 [64] and 

standard Linux command-line tools in a virtual machine running Kali GNU/Linux v2.0 (64-bit) 

operating system. Memory snapshots were stored on the host system and available to the 

analysis machine via an HGFS mount point. The memory images were analyzed in two 

different ways. 

Most importantly, all application data known to be processed by the application as 

specified in the previous step were traced back in memory. This analysis is similar to the 

unstructured approach but Volatility makes it possible to attribute values found in memory 

to a particular process. For this analysis, the yarascan plugin in Volatility was used. Then the 

modified yarascan plugin, which includes detailed metadata of the VAD area in which a 

particular value was found in its output. For completeness, the full memory image was 

searched, rather than only the (private) process memory of the Bitcoin application. Binary 

values, such as public and private keys, were searched both as string and as binary value. 

All known user strings found in memory were analyzed for their format, their 

location including their VAD properties and their immediate context. Based on these results, 

it is possible to determine which application data is likely to be memory-resident and how it 

might be retrieved from memory when their values are not previously known (as is the case 

in a regular forensic investigation). 

Apart from the unstructured analysis described above, a more structured analysis 

was performed on the Bitcoin application process in each memory image. In particular, the 

memory-mapped les, registry keys and connections of the application were examined using 

standard Volatility plugins. This is to ensure that no important forensic clue is missed. Also, if 

it is possible to extract Bitcoin data les (i.e. wallet files and log files) from memory, then 

these files would be processed as standard on-disk artefact. Thus, further detailed memory 

analysis becomes unnecessary. 

 

6.3 Findings for Bitcoin Core 
 

https://www.volatilityfoundation.org/25
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Private Keys 

All known private keys were located in binary format in the process memory when 

the wallet was unencrypted. When the wallet was encrypted, no private key could be traced 

back in memory, not even directly after a transaction was initiated. Furthermore, no 

occurrence of private keys in Wallet Import Format (WIF) was found. This observation is not 

surprising, as private keys are stored in binary format in the wallet database and WIF-

formatted keys are only created when exporting keys. 

Public keys 

All known public keys in binary format were located in the process memory in all 

images. Addresses were only calculated from the binary public key in the wallet when a label 

is associated with them. Not all public keys and addresses occurred equally often. However, 

no correlation was found between particular categories (send address, receiving address or 

payment request) or the usage in transactions on the one hand and the number of 

occurrences of the associated public keys and Addresses. 

 

Labels 

Known labels have been found in all memory images. All different labels were found, 

four labels for each category (i.e. message, receiving address, payment request and send 

address). In any case, all labels appeared more than once in process memory. However, 

because labels are not known upfront and do not follow a xed pattern, they can be hard to 

locate for an investigator. This could only be done based on the context of the user labels. 

 

Transaction IDs 

Both search hits corresponded to the Transaction ID of the last transaction initiated 

from the client were found. 

 

Passphrase 

The passphrase used for wallet encryption, was not encountered in process 

memory. 

 

File locations 
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 The full path and location of a backup file was present in memory. When 

scanning for all file paths in the process memory, many other file paths were present as well. 

Hence, an investigator should scan through these manually to determine whether they are 

linked to a backup file (e.g. based on file name or file location, e.g. a thumb drive or user 

folder). 

 

Format 

The public and private keys in binary format were also present as binary data in 

memory. All other values, namely addresses, transaction-IDs, labels and file locations, 

appeared as string values in memory. 

 

Location 

All values were found in private (nonshared) read/write regions in process memory. 

No correlation was found between the memory location and VAD on the one hand and the 

type of data on the other hands. Therefore, no conclusions could be drawn on the co-

existence of particular (types of) values in process memory. 

 

Context 

Private keys 

Private keys can be easily retrieved from memory by carving sequences of 32 bytes 

directly following this fingerprint. Doing so revealed the existence of multiple unknown 

private keys. This is expected, as not all private keys in the wallet are involved in the user 

actions during image creation and included in the search item list. 

 

Public keys and Addresses 

Analysis of the fingerprints showed that these are in fact Berkeley database tags for 

public keys in the wallet.dat file. Comparison with the data in the respective wallet files 

confirmed that the memory regions in which the values were uncovered were in fact 

memory-resident parts of the wallet file. Hence, it is very likely that the same information 

can also be extracted from the wallet file. Also, public keys in binary format have a xed 

length6 and public key addresses have a predictable length and format. All such values 

following the fingerprints mentioned above will yield the correct results. 

 

Labels 



63 
 

No fingerprint could be identified to systematically extract labels from process 

memory with one exception. For a given public address having the name'' tag, its 

corresponding label consisted of the first human-readable string preceding this address. 

 

Transaction IDs 

 Only two transaction IDs were traced back in memory. Information could be better 

retrieved by analysis of the memory-resident debug.log file. 

 

File Locations 

No conclusions could be drawn from the context of the memory locations of the hits 

on file location data (paths and file names). 

 

Files 

 The application files, wallet file (wallet.dat) and the application log file (debug.log), 

were specifically important. 

The wallet file is the key store containing the bitcoin keys and all user data (as 

described earlier). In an encrypted wallet, the private keys are only readable when the 

correct passphrase is known. The debug.log file, on the other hand, can be interesting due to 

two reasons: it shows the transactions initiated by the wallet with their date and time and, 

possibly more important, it shows the full file location of any backup created by the user. 

Hence, it is possible to identify wallet backups on user locations and attribute these to the 

use of the bitcoin client.  

 

Registry Keys 

 Registry keys used by the Bitcoin Core client were identified using the handles 

plugin. The presence of these keys serves as an indicator for the presence of an active 

instance of the Bitcoin Core client. 

 

Connections 

IP addresses of neighboring bitcoin peers were visible. These connections can be 

identified based on the TCP port number 8333. Such connections can serve as an indicator 

for the presence of an active bitcoin client, but further forensic usefulness is yet unclear. 

 

6.4 Findings for Electrum 
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Private keys 

No private key or checksum of private keys was located in process memory. 

 

Public keys and Addresses 

Distinct known private keys were found back in binary format with their 

corresponding public key address. However, no correlation could be detected between the 

usage of a particular key (e.g. in a payment request) and the number of occurrences. 

 

Labels 

All known labels were present in the process memory. 

 

Transaction IDs 

 All known transaction IDs were found at various times in process memory. 

 

Passphrase 

The passphrase for the wallet was not encountered in process memory. 

 

Format 

Almost all data appeared as string values in memory. However, public keys 

associated with key pairs involved in the wallet's transactions were an exception. More 

specifically, the public key of the input transaction(s) for outgoing transactions initiated just 

before the image was made occurred in the binary format. 

 

Location 

All values were found in private (non-shared) read/write regions in process memory. 

There was one exception: one occurrence of the file name of the wallet backup le (not the 

full path) was found in a memory-mapped DLL le (shlwapi.dll). So, no conclusion could be 

drawn on the co-existence of particular (types of) values in process memory. 
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Context 

Analysis of the direct context in which artefacts appeared showed that most were 

present as part of JSON-formatted data. A closer analysis revealed that those occurrences 

were part of memory-resident data from the Electrum wallet file. 

 

Files 

While examining the handle tables from the Electrum processes, no reference to wallet files 

or other relevant Electrum files was found. Hence, extracting these files using Volatility's 

dump files plugin was not possible. However, analysis of the memory-resident MFT table 

revealed the entries for all these files. In addition to the metadata available in the MF table, 

file content of the config, contacts and recent_servers files were found in the $DATA section 

of MFT records due to their small file size. No reference to wallet backup files was found in 

the handle tables in any of the images. 

 

Registry Keys 

No application-specific registry key was in use by the Electrum application. 

 

Connections 

The Electrum application opens multiple connections TCP port 50002 and one 

connection on TCP port 443, to the seed server. These connections are visible in 

the memory image with the netscan plugin and can serve as an indicator for the presence of 

the Electrum application. 

 

6.5 Conclusion 
All in all, data of forensic interest can be extracted from memory by scanning the 

process memory for fingerprints identified in this research or by searching fixed patterns 

with regular expressions (e.g. Bitcoin addresses or file paths). Despite the potential to use 

the located evidence to attribute Bitcoin transactions to the user of the computer, it is 

unlikely the evidence located will directly result in the seizure of the assets stored in the 

wallet. It must be noted, however, that most data found in memory are also available in 

application and wallet files on disk, with a few exceptions. As such, process memory analysis 

is potentially beneficial to a forensic investigation, particularly when application and wallet 

files are not available. 
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7. Ethereum and Smart Contracts 

 

Ethereum is an open source, public, blockchain-based distributed computing 

platform and operating system featuring a smart contract functionality. It supports a 

modified version of Nakamoto’s (Bitcoin’s) consensus via transaction-based state transitions. 

The generated cryptocurrency by the Ethereum platform is Ether (ETH) and is used to 

compensate mining nodes for computations performed [65]. Each Ethereum account has an 

Ether balance and Ether may be transferred from one account to another.  

The notion of smart contracts has been introduced by Nick Szabo in 1997 [66]. He 

described the concept of a trustless system consisting of self-executing computer programs 

that would facilitate the digital verification and enforcement of contract clauses contained in 

legal contracts. However, this concept only became a reality with the release of Ethereum in 

2015. Ethereum smart contracts are different from traditional programs in several aspects. 

For example, as the code is stored on the blockchain, it becomes immutable and its 

execution is guaranteed by the blockchain. Nevertheless, smart contracts may be destroyed, 

if they contain the necessary code to handle their destruction. Once destroyed, a contract 

can no longer be invoked and its funds are transferred to another address. Smart contracts 

are usually developed using a dedicated high-level programming language that compiles into 

low-level bytecode. The bytecode of a smart contract is then deployed to the blockchain 

through a transaction. Once successfully deployed, a smart contract is identified by a 160-bit 

address. Despite a large variety of programming languages such as Vyper [67], LLL [68] and 

Bamboo [69]) Solidity [70] remains the most prominent programming language for 

developing smart contracts in Ethereum. Solidity’s syntax resembles a mixture of C and 

JavaScript. It comes with a multitude of unique concepts that are specific to smart contracts, 

such as the transfer of funds or the capability to call other contracts. 

 

7.1 Ethereum Virtual Machine 

 

The Ethereum blockchain consists of a network of mutually distrusting nodes that 

together form a decentralized public ledger. This ledger allows users to create and invoke 

smart contracts by submitting transactions to the network. These transactions are processed 

by miners. Miners execute smart contracts during the verification of blocks, using a 

https://en.wikipedia.org/wiki/Ethereum
https://en.wikipedia.org/wiki/Smart_contract
https://vyper.readthedocs.io/en/v0.1.0-beta.13/
https://lll-docs.readthedocs.io/en/latest/lll_introduction.html
https://github.com/pirapira/bamboo
https://solidity.readthedocs.io/en/v0.5.12/
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dedicated virtual machine denoted as the Ethereum Virtual Machine [71]. The EVM is a 

stack-based, register-less virtual machine, running low-level bytecode, that is represented by 

an instruction set of opcodes. To guarantee termination of a contract and thus prevent 

miners to be stuck in endless loops of execution, the concept of gas has been introduced. It 

associates costs to the execution of every single instruction. When issuing a transaction, the 

sender has to specify the amount of gas that he or she is willing to pay to the miner for the 

execution of the smart contract. The execution of a smart contract results in a modification 

of the world states, a data structure stored on the blockchain mapping an address a to an 

account state σ[a]. The account state of a smart contract consists of two main parts: a 

balance σ[a]b, that holds the amount of ether owned by the contract, and storage σ[a]s, 

which holds the persistent data of the contract. Storage is organized as a key-value store and 

is the only way for a smart contract to retain state across executions. Besides the world state 

σ, the EVM also holds a transaction execution environment l, which contains the address of 

the smart contract that is being executed Ia, the transaction input data ld, the transaction 

sender Is and the transaction value Iv. The EVM can essentially be seen as a transaction-

based state machine, that takes as input σ and I, and outputs a modified world state σ’. 

 

7.2 Ethereum Honeypots 

 

 A honeypot is a smart contract that pretends to leak its funds to an arbitrary user 

(victim), provided that the user sends additional funds to it. However, the funds provided by 

the user will be trapped and at most the honeypot creator (attacker) will be able to retrieve 

them. The below Figure depicts the different actors and phases of a honeypot. 

A honeypot generally operates in three phases:  

1. The attacker deploys a seemingly vulnerable contract and places a bait in the form 

of funds;  

2. The victim attempts to exploit the contract by transferring at least the required 

amount of funds and fails; 

3. The attacker withdraws the bait together with the funds that the victim lost in the 

attempt of exploitation. 

 

https://www.mycryptopedia.com/ethereum-virtual-machine-explained/
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Figure 20: Honeypot Phases 

 

An attacker does not require special capabilities to set up a honeypot. In fact, an 

attacker has the same capabilities as a regular Ethereum user. He solely requires the 

necessary funds to deploy the smart contract and place a bait. 

 

7.3 Manticore 

 

Honeypots have two participants, the creator of the honeypot and the user whose 

funds are trapped by the honeypot. In general, they are a type of fraud that combines 

security issues with scams. They rely on the blockchain itself and can be detected by 

forensics tools which aim to analyze abnormalities in their overall function. Such a tool is 

Manticore, an open-source dynamic symbolic execution framework which analyzes binaries 

and Ethereum smart contracts. 

 

7.3.1 What is Manticore? 

 

Dynamic symbolic execution is a program analysis technique that explores a state 

space with a high degree of semantic awareness [72]. For paths that are explored by the 

analysis, dynamic symbolic execution identifies a set of path predicates: constraints on the 

program’s input. These are used to generate program inputs that will cause the associated 

paths to execute. This approach produces no false positives in the sense that all identified 

program states can be triggered during concrete execution. For example, if the analysis finds 

a memory safety violation, it is guaranteed to be reproducible.  

Symbolic%20Execution
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Symbolic execution has been extensively researched in a security context [73], but 

industry has been slow to adopt the technique because of the limited availability of flexible, 

user-friendly, tools. Furthermore, existing frameworks are tightly coupled to traditional 

execution models, which makes symbolic execution research challenging for alternative 

execution environments, such as the Ethereum platform.  

Manticore is a symbolic execution framework for analyzing binaries and smart 

contracts. Trail of Bits has used this tool internally in numerous code assessments [74] [79], 

and in program analysis research, including the DARPA Cyber Grand Challenge (CGC) [75]. 

 

 

Figure 21: Manticore Logo 

 

7.3.2 Architecture 

 

Manticore’s design is highly flexible and supports both traditional computing 

environments (x86/64, ARM) and exotic ones, such as the Ethereum platform. To our 

knowledge, it is the only symbolic execution framework that caters to such different 

environments. It is also simple, extensible and as self-contained as possible, avoiding 

unwarranted external dependencies [76]. The primary components are the Core Engine and 

Native and Ethereum Execution Modules. Secondary components include the Satisfiability 

Modulo Theories (SMT-LIB) module, Event System, and API. 

Dynamic%20Symbolic%20execution
https://www.trailofbits.com/
https://github.com/trailofbits/manticore
https://blog.trailofbits.com/category/cyber-grand-challenge/
Honeypots
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Figure 22: Manticore's Architecture 

7.3.3 Core Engine 

 

The Core Engine is the source of Manticore’s flexibility. It implements a generic 

platform-agnostic symbolic execution engine that makes few assumptions about the 

underlying execution model.  

This Core Engine operates and manages program states according to the State Life 

Cycle shown in the above Figure. Program states are abstract objects that represent the 

state of a program at a point in execution. These objects expose an execution interface that 

the Core Engine invokes to trigger one atomic unit of program execution. For native binaries 

and Ethereum, this is one instruction. During execution, states can interrupt back to the Core 

Engine to signal that a life cycle event needs to be handled.  

The State Life Cycle, shown in the below Figure, defines three states:  

1)Ready,  

2)Busy and  

3)Terminated, 

as well as two events:  

1)Termination and  

2)Concretization.  
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The Core Engine repeatedly selects a Ready state and executes it (transitioning it to 

Busy). An executing Busy state can either transition back to Ready or signal a Life Cycle event 

for the Core to handle.  

 

Figure 23: The State Life Cycle 

 

The Termination event occurs when a state reaches an end, typically on program 

exit or a memory access violation, which transitions the state to Terminated. Concretization 

happens when a state signals that a symbolic object should be converted into one or more 

concrete values, subject to the current constraints on the State. For each concrete value, 

one new ”child” State is created and marked Ready. The most common case of 

Concretization, called ”forking”, occurs when a program counter register becomes symbolic 

and is concretized to possible concrete values. This causes new states to be generated for 

each new program path.  

State exploration can be customized using various policies, which implement a 

variety of heuristics for Ready state selection and Concretization. The Core Engine was 

designed for parallelism and supports multiple processes for state queue processing [77]. 

 

7.3.4 Native Execution Module 

 

Manticore
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The native binary symbolic execution module abstracts hardware execution to 

implement the high-level execution interface that the Core Engine expects, via symbolic 

emulation of the CPU, memory and operating system interfaces. Currently, the native 

execution module emulates Linux on x86, x86 64, ARMv7, and AArch64 as well as DECREE on 

x86.  

1) CPU Emulation: The symbolic CPU emulation is straightforward and follows the 

ISA specification, with the caveat that emulated registers and instructions must support both 

concrete and symbolic values. Implementing symbolic support for an instruction typically 

involves building symbolic expression trees, as opposed to performing computation directly. 

2) Memory Emulation: Manticore has a simple virtual address space emulation with 

interfaces for reading, writing and managing memory mappings. Different policies for 

handling symbolic memory accesses are implemented. These include fully symbolic and 

concretized memory models. 

3) Operating System Emulation: Manticore includes OS support for the Linux and 

DECREE operating systems, emulating the system call (syscall) interface, interfaces related to 

a process address space (e.g. auxiliary vectors, thread local storage) and miscellaneous state 

setup (e.g. binary loading). Syscalls must handle symbolic inputs, yet few can be reasonably 

modeled symbolically. Manticore therefore concretizes system call arguments and forwards 

such calls to the real OS. 

 

7.3.5 Ethereum Execution Module 

 

Manticore supports Ethereum smart contracts, which are applications compiled 

according to the Ethereum Virtual Machine (EVM) specification that run on the Ethereum 

blockchain. There are many differences between EVM and traditional execution. A few 

examples include a ”gas” cost for executing instructions, radically different memory and 

persistent storage models, and execution state rollbacks. Despite these differences, adding 

Ethereum support did not require substantial architectural changes to Manticore, since the 

Core Engine is completely decoupled from all execution platform details.  

1) Ethereum Symbolic Execution: Smart contracts receive input as network 

transactions consisting of a value and a data buffer. The transaction data buffer 



73 
 

contains information about which function should be executed in a contract, 

and its arguments.  

Symbolic execution of smart contracts involves symbolic transactions, where both 

value and data are symbolic. Symbolic transactions are applied to all Ready states, which 

cause the symbolic execution of one transaction. Symbolic transactions can be repeatedly 

executed to generically explore the state space of a contract.  

Manticore’s emulated environment for smart contract execution supports an 

arbitrary number of interacting contracts. It is capable of tracking not only a single contract’s 

state, but a full Ethereum ”world”, with multiple interacting contracts.  

 

7.3.6 Auxiliary Modules 

 

Manticore also has auxiliary modules like the SMT-LIB module that supplies a 

custom symbolic expression object model and an SMT solver interface. Different solvers can 

be used seamlessly, since Manticore interacts with solvers via the SMT-LIB language.  

The Event System decouples Manticore as a whole from external instrumentation-

based analyses. Arbitrary points within Manticore can broadcast various symbolic execution 

events (e.g. memory reads/writes, state forking, concretization) that can be handled by an 

event subscriber outside of Manticore, such as an API client. This provides the foundation 

for Manticore’s plugin system allowing users to create modular, event-based analyses. 

The API module of Manticore interacts with the Core Engine, SMT-LIB module, and 

Event System and implements the various external programming interfaces for Manticore. 

 

7.4 Usage 

 

Manticore has a command-line interface and an API that works for both binaries and 

smart contracts. An example command is as follows: 

 $ manticore target_binary ++ +++.txt –data AA --procs 10 
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 The arguments “target ++ +++.txt” instruct Manticore to execute and analyze the 

target_binary with two arguments. The first is a 2-byte string of symbolic data. The second is 

a mixed symbolic/concrete string with five bytes of symbolic data followed by the concrete 

bytes “.txt. –data” specifies concrete bytes to prefix the stdin input stream, which by default 

contain 256 symbolic bytes. “—procs” allocates 10 cores to the analysis. Manticore’s output 

is a directory containing generated inputs and information about each discovered state, as 

shown below: 

$ ls mcore_x2gncpcq/ 

test_00000000.argv  test_00000000.input 

test_00000000.messages  test_00000000.smt 

test_00000000.stdin  test_00000000.trace 

... 

For example, “test_00000000.stdin” can be piped directly to the stdin of the 

program during concrete execution to trigger the execution state corresponding to 

“test_00000000”. 

Manticore also has a Python API for advanced users to customize their analysis using 

various forms of instrumentation. The API allows users to execute callbacks when a certain 

state is reached. The callback can access the corresponding State object, which allows 

complete control over the emulated state [80]. CPU registers, memory and operating system 

state can be read, written, filled with symbolic bytes or concretized. Moreover, states can be 

pruned, custom constraints can be applied, and satisfiability queries can be sent to the 

solver. Writing code using the hook API is relatively straightforward, e.g.:  

from manticore.native import Manticore  

m = Manticore.linux(’./target’) 

@m.hook(0x400ca0) def hook(state): 

# Disregard state if RDX can be equal 0x44 

# (RDX could be symbolic) 

if state.can_be_true(state.cpu.RDX == 0x44) 

state.abandon() 

https://medium.com/haloblock/introduction-to-manticore-a-symbolic-analysis-tool-for-smart-contract-9de08dae4e1e
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input_buf = state.new_symbolic_buffer(32) 

# Apply arbitrary preconstraint on input 

buffer 

state.constrain(input_buf[0] != ord(’A’)) 

# Write symbolic buffer at address RBX 

state.cpu.write_bytes(state.cpu.RBX, 

input_buf) 

 

7.5 Ethereum Smart Contract Analysis Evaluation 

 

Manticore was evaluated based on a corpus of 100 Ethereum smart contracts taken 

directly from the Ethereum blockchain. An analysis was made that repeatedly executed 

symbolic transactions against a contract and tracked the number of states discovered and 

coverage of the contract code.  

Here are the results of running this analysis, with a timeout of 90 minutes per 

contract. Manticore produced an average coverage of 65.64%, with an approximately equal 

median [74]. The mean total number of (symbolic) states reached was 207.71, with median 

52, showing that there were a number of outliers where more states were discovered. 

Coverage ranged from 0% to 100% showing that there were indeed some contracts that 

caused Manticore to entirely fail, while there were many others that Manticore was able to 

completely explore.  

 

Figure 24: Ethereum Contract Code Coverage 
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7.6 How Manticore can be used for smart contract investigation 

 

An effective way to maximize code coverage in software tests is through dynamic 

symbolic execution. As described in the previous chapter, Manticore is a symbolic execution 

tool for analysis of smart contracts and binaries. It can: 

- detect potential overflow and underflow conditions on “ADD”, “MUL” and “SUB” 

instructions 

- detect potential uses of uninitialised memory or storage 

- calculate code coverage 

- generate inputs which could trigger unique code paths (Solidity source code needed) 

- offer a Python API for analysis of EVM bytecodes 

- Auto-generate inputs for triggering different unique code paths 

- Trace inputs that crashed the program 

- Record instruction-level execution trace 

- Expose its analysis engine via Python API 

- Automatically generates inputs that trigger unique code paths 

- Discovers inputs that crash programs via memory safety violations 

- Records an instruction-level trace of execution for each generated input 

- Exposes programmatic access to its analysis engine via a Python API 

  Manticore's flexible architecture allows it to support both traditional and exotic 

execution environments and its API allows users to customize their analysis [75]. Here, we 

discuss Manticore's architecture and demonstrate the capabilities we have used to find bugs 

and verify the correctness of code for our commercial clients. 

Manticore includes built-in "detectors" for certain properties of Ethereum smart 

contracts. Used in this way, Manticore acts like a linter that reports on these conditions as 

they are observed while exploring the state space of a smart contract. These detectors may 

or may not apply to the contract being explored, may falsely detect issues, or may fail to 

report a true issue. These detectors are a default set of properties that we expect most 

contracts will share. It is always best to reason about the application-specific properties of 

your contract, and then build analyses to verify them. 

Manticore uses symbolic execution to simulate complex multi-contract and multi-

transaction attacks against EVM bytecode. Once your app is functional, write Manticore 

https://github.com/trailofbits/manticore
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tests to discover hidden, unexpected, or dangerous states that it can enter. Manticore 

enumerates the execution states of your contract and verifies critical functionality [76]. 

If your contract doesn’t require initialization parameters, then you can use the 

command line to easily explore all the possible executions of your smart contract as an 

attacker or the contract owner: 

manticore contract.sol --contract ContractName --txaccount [attacker|owner] 

Manticore will generate a list of all the reachable states (including assertion failures 

and reverts) and the inputs that cause them. It will also automatically flag certain types of 

issues, like integer overflows and use of uninitialized memory. 

Using the Manticore API to review more advanced contracts is simple [78]: 

1. Initialize your contract with the proper values. 

2. Define symbolic transactions to explore potential states. 

3. Review the list of resulting transactions for undesirable states. 

 

All in all, what should be noted is that through Manticore’s use, potential unwanted 

code errors can be checked and avoided [81]. In case there is a suspicion of planned 

malicious activities concerning the smart contract world and in particular the Ethereum 

Virtual Machine, this tool can serve as a medium for thorough code analysis and adverse 

outcome prevention.  

 

 

 

 

 

 

 

 

https://pentesttools.net/manticore-symbolic-execution-tool-for-analysis-of-binaries-and-smart-contracts/
https://github.com/trailofbits/manticore/blob/master/examples/evm/complete.py#L26
https://github.com/trailofbits/manticore/blob/master/examples/evm/complete.py#L32-L37
https://github.com/trailofbits/manticore/blob/master/examples/evm/complete.py#L41-L43
https://www.cyberpunk.rs/symbolic-execution-tool-manticore
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8 Conclusion 

 

The rise of cryptocurrencies’ value on the market and the growing popularity around 

the world open a number of challenges and concerns for business and industrial economics. 

Cryptocurrencies have largely changed the way we perceive the global economy, the value 

of money, anonymity, online privacy and online services altogether. While their uses can be 

wide and blockchain can also be used in a number of sectors, cryptocurrencies can also be 

misused. They are an infant notion that can be easily manipulated while its increased 

privacy-by-design can backfire and feed in a number of illicit activities ranging from market 

manipulation to drug trafficking and terrorism financing. 

Investigating Cryptocurrencies provides cyber and financial investigators with the 

necessary background, techniques and methodologies to break through the blockchain 

"lockdown" and investigate crimes involving cryptocurrency transactions. The specific thesis 

described, based on lots of already-proven material, that anonymity in the blockchain 

network is not always granted. Based on evidence and through forensics investigation, 

artifacts can provide information which under the right perspective, can be quite useful. 

Either for criminal or simple use, cryptocurrencies can leave their track on a variety of 

records. The only concern is which people will be able to take advantage of this and whether 

they will use it for the greater good (e.g. a cyber crime investigation) or for personal 

ambiguous motives. 

 It was also stated that even the technical members of the Bitcoin system do not 

always consider anonymity as a key priority to their overall prominent design and do not 

seem quite concerned in order to preserve it. 

As far as the smart contract world and platforms as Ethereum are concerned, 

symbolic execution tools can be used in order to prevent potential malicious actions that 

intend to harm transactions and temper their execution. 

Taking everything into account, it is believed that the strive for anonymisation 

within the blockchain infrastructure will continue. When all is said and done, the next years 

will determine whether cryptocurrencies will evolve into a mainstream payment tool that 

can also be used to revolutionize procedures like investments, real estate transfers, voting 

etc or whether they will end up being associated with illicit activities and fraudulent 

schemes.  
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