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Περίληψη 
Η παρούσα διπλωματική εργασία αποτελεί μία μελέτη της ακρίβειας ταξινόμησης του μοντέλου 
μας στο σύνολο δεδομένων που εξετάζουμε. Για τους σκοπούς της συγκεκριμένης εργασίας 
χρησιμοποιήθηκε μοντέλο επιβλεπόμενης μάθησης (supervised learning) πρόσθιας 
τροφοδότησης (feed-forward) με χρήση του αλγόριθμου ανάστροφης μετάδοσης 
(backpropagation). Τα μοντέλα στα οποία εστιάζουμε είναι τα Συνελικτικά Νευρωνικά Δίκτυα 
(CNN) τύπου VGG, εκπαιδευόμενα και αξιολογημένα στο σύνολο δεδομένων με το όνομα FER-
2013. Ο αλγόριθμος μας ταξινομεί σε επτά κατηγορίες συναισθημάτων (Θυμό, Αηδία, Φόβο, 
Ευτυχία, Θλίψη, Έκπληξη και Ουδετερότητα). Το μοντέλο που χρησιμοποιείται για τη 
συγκεκριμένη εργασία αναπτύχθηκε σε Python και τρέχει στη CPU. Όλοι οι ταξινομητές μας 
εφαρμόστηκαν στην διεπαφή προγραμματισμού εφαρμογών Keras (Keras API) με τη χρήση της 
βιβλιοθήκης TensorFlow. Στόχος μας είναι να βελτιώσουμε την ακρίβεια ταξινόμησης στο 
σύνολο δεδομένων μας επιλέγοντας διαφορετικές αρχιτεκτονικές και βελτιστοποιώντας τις 
παραμέτρους του μοντέλου. 
 

Abstract 
This dissertation constitutes a study of the classification accuracy of our model on the given 
dataset. Our supervised learning model uses a feed-forward neural network which we train with 
the backpropagation algorithm. The models we focus on are VGG-like Convolutional Neural 
Networks, trained and evaluated on the FER-2013 dataset. The algorithm classifies on seven 
emotion categories (Anger, Disgust, Fear, Happiness, Sadness, Surprise, and Neutral). We 
implemented this model with Python code on the CPU. All of our classifiers were implemented 
in Keras neural network API using TensorFlow backend. Our goal is to improve the 
classification accuracy on our dataset by choosing different architectures and by optimizing the 
model hyperparameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Μεταπτυχιακή Διατριβή  Αλέξανδρος Ζάγκος 

v 
Facial expression recognition using Deep Convolutional Neural Network techniques 

2 

11 

16 

17 

18 

18 

19 

21 

List of Figures 
Figure 2.1: Computer vision regarding other research fields. 
Retrieved from http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture01.pdf   .  .   
 
Figure 3.1: Example images from the FER-2013 dataset.   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   
 
Figure 4.1: The blue line is an example of overfitting; the algorithm cannot generalize. 
The green line may generalize well on the data points. It is worth mentioning that both 
blue and green functions give zero loss on the given dataset. The orange line is an 
example of underfitting since our model cannot learn. The objective is to build functions 
like the green line, with the ability to generalize on new data points. 
Figure inspired by Nicoguaro - Own work, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=46259145  .  .  .  .  .  .  .  .  .  .  .  .  .  .   
 
Figure 4.2: Data flow diagram of a supervised learning algorithm where x are the inputs 
and y the labels associated with these inputs. There are three basic functions we use in 
our supervised learning algorithm: 1) The score function f that maps examples x to 
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Figure 4.3: We evaluate how the model generalizes by comparison of the training and 
validation curves during the training procedure. The best model would be where the 
validation loss curve has its global minimum (image a). This optimal solution separates 
the curves in the overfitting and underfitting area (image b).  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   
 
Figure 4.4: Signs of overfitting at accuracy curve. No gap between training and 
validation accuracy curves indicates underfitting. We have to increase the capacity of 
the model and keep the gap between training and validation accuracy relatively small .  . 
 
Figure 4.5: A simple three-layer Neural Network (image a). After dropout, all crossed 
nodes have been dropped, producing a thinner network (image b).  
Retrieved from the paper of Srivastava et al.  
(http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf)  .  .  .  .  .  .  .  .  .  .   
 
Figure 4.6: An example of how we can use the gradient descent to minimize a function. 

For (a), if 0,x    then 0
df
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 , so we can decrease  f x  by moving leftward. 

For (b), if  ,0x    then 0
df
dx

 , so we can decrease  f x  by moving rightward.   
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1  
Introduction 

It has long been an objective of the research computer vision community to have an imprint and 
representation of the visual world; capable of recognizing objects in complex scenes. Since the 
facial expression is one of the most important means for human beings to communicate and 
interact with the environment and other humans; automated analysis of nonverbal facial 
behavior has attracted considerable attention in the last decades. Creating an intelligent system 
similar to human perception system is still an active area of research. 
 
Facial expression recognition (FER) is a process which consists of three main steps:  
1. Pre-processing the data. 
2. Learn the algorithm to extract facial features from the detected face region (feature learning 

and feature extraction). 
3. Analyzing the motion of these features or the changes in their appearance and finally 

classifying them into some categories (facial expression classification and interpretation). 
 
Deep neural networks can perform FER in an end-to-end way, unlike the traditional methods, 
where the feature extraction step and the feature classification step are independent [22]. 
 In this work, we implemented several deep learning models with different architecture on 
our dataset. We use a dataset of 35,887 images, called FER-2013, as described in Chapter 3. 
The models we focus on are Visual Geometry Group (VGG) [1] Convolutional Neural Networks 
(CNN) [2, 3]. We train the classifier on a labelled subset of FER-2013 and evaluate the model 
on the test and validation set, respectively. The model classifies on the six basic emotion 
categories (Anger, Disgust, Fear, Happiness, Sadness, Surprise) as indicated by Paul Ekman 
[4] along with the addition of a seventh Neutral emotion category.  
 Conclusions regarding the spotted accuracy and the reliability of the examined architectures 
depict in Chapter 5 and Chapter 6. 
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2  
Literature Review 

The study of visual data (Computer Vision) has become ubiquitous in our modern world since 
visual data have increased to a significant extent in the last years. In a recent study [133] 
carried out by Cisco on February 27, 2019, the estimation is that by 2022, globally IP video 
traffic will be 82% of all IP traffic on the internet, 7% greater than 2017. We can understand that 
the majority of the bits on the internet are visual data. Developing algorithms that can analyze 
and interpret these data is crucial. Computer Vision touches a lot of other research fields such 
as Computer Science, Mathematics, Engineering, Physics, Biology and Psychology (Figure 
2.1). In Computer Vision field, a lot of facial expression recognition models have been 
investigated to encode expression information from facial expressions. 
 
 

 
 
Figure 2.1: Computer vision regarding other research fields. 
Retrieved from http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture01.pdf 
 

2.1 History of Computer Vision 

One of the first research that influenced Computer Vision community comes from the Biology 
field in the early 60s. More specifically, Hubel and Wiesel [5], [6] studied visual processing in 
mammals. They inserted microelectrodes in the primary visual cortex of a cat (striate cortex) 
and observed a distinct pattern by which specific neurons of mammals detect edges of the 
image seen by the eye. The complete map of these receptive fields of the cortical unit, 
stimulated by the image seen by the eye, consisted of a vertically oriented region. By all, they 
discovered that visual processing starts with a simple structure of oriented edges and as the 
information moves along to the structured area of the brain, the mammals begin to build the 
information they receive and finally recognize the visual world. 
 In 1963, Lawrence Roberts [7] in his thesis built a program which processes a two-
dimensional (2-D) photograph into a line drawing and transforms it into a three-dimensional 
array (3-D). This geometric shape recognition and reconstruction model is one of the first in the 
field of computer vision. 
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 In the Summer Vision Project [8] of the MIT in 1966, the researches of the AI group set the 
bar high. This summer project attempted to effectively construct a significant part of a visual 
system complex enough to be a landmark in the development of pattern recognition. 
 David Marr, with his work [9], described a general framework for studying and 
understanding the visual world and devised a systematic approach to edge detection. With his 
work in the 70s, he explained in detail the theory of early vision as proceeding from the input 
image to the three-dimensional output representation of objects. David Marr’s model consists of 
three stages. The researcher implemented the so-called primal sketch for feature extraction of 
components as edges, ends, curves, boundaries etc. In the next step, we piece together these 
components to analyze surfaces, textures, depth information etc. of the visual input ending up 
with a three-dimensional representation as an output of the model. 
 In the early study of object recognition from images it worth mentioning the work of Fischler 
and Elschlager [10] and David Lowe [11] in 1973 and 1987 respectively. In both works, every 
object is analyzed in basic geometric shapes and structures. 
 Since a holistic approach of object recognition from images had major bottlenecks at the 
time, another method changed the course of the history of vision. That is feature-based object 
recognition. These approaches depict that regardless of the variation, deformation, occlusion or 
illumination condition changes in the environment or the object we are studying, some feature-
based characteristics remain the same. Pattern matching studies like David Lowe’s [12] in 1999 
identify these features that stay the same and match these features to another object. David 
Lowe presented a new method for image feature generation called the Scale Invariant Feature 
Transform (SIFT). 
 It is worth mentioning the crucial work of Paul Viola and Michael Jones in 2001 [13], which 
used the AdaBoost algorithm [14] along with statistical methods for real-time face recognition 
based on a set of rectangle features. 
 The recognition of holistic scenes along with human recognition started to grow in the early 
00s, with studies [15], [16], that used feature-based algorithms for feature extraction and 
Support Vector Machines (SVM) on top, for classification. 

2.2 Facial Expression Recognition 

Facial expression analysis and recognition refer to computer systems that attempt to 
automatically analyze and recognize facial feature changes and facial motions from visual 
information. There are various ways to represent the face: as a set of features (analytic 
representation), as a whole unit (holistic representation), or as a combination of these [17]. 
From a temporal point of view, facial expression recognition models can divide into two main 
categories, static-based methods and dynamic-based methods [18]. 
 Feature extraction remains a crucial problem in pattern recognition, such as facial 
expression recognition. From a feature extraction point of view, the techniques aiming to 
recognize facial expressions are categorized into methods that use geometric features and 
methods that use appearance features [19] although some hybrid-based approaches are also 
possible. With geometric-based methods, facial features present the shape and locations of 
facial components (eyes, mouth, eyebrows, nose) and the location of salient facial points 
(corners of the eyes, mouth). In geometric feature extraction system, shape, angles, distances, 
or the coordinates of facial fiducial points are extracted, forming a feature vector representing 
the face geometry. A typical example of a geometric-based model is this of Kotsia and Pitas [36] 
in 2007, who used a 3-D face model named Candide, initially proposed by Jorgen Ahlberg [38]. 
 Appearance representations use texture-based methods, considering the intensity values of 
the pixels. With appearance-based techniques, image filters such as Gabor wavelets, for 
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example, are applied on the whole face or some regions of the face to extract changes in facial 
appearance, forming a feature vector. In the appearance-based method, features represent the 
facial texture, including bulges, wrinkles and furrows. A typical example of appearance-based 
models is this of Bartlett et al. [37], who used Gabor wavelets. 
 As previously stated, a hybrid approach can be used, using both geometric and appearance 
methods. An example of such an approach is this of Lucey et al. [39] who used an Active 
Appearance Model (AAM) to record the shape of facial expressions and the characteristics of 
facial appearance. 
 The feature vectors formed from either geometric or appearance-based methods are used 
for facial expression classification. The classifier divides the extracted features into the relevant 
categories according to the corresponding classification mechanism. 
 In terms of facial expression classification, Facial Action Coding System (FACS), which was 
developed by Paul Ekman and Wallace Friesen [20], is one of the most known studies on facial 
activity and has been considered as a foundation for describing facial expression classification.  
This cross-cultural study on the existence of universal categories of emotional expressions, 
defined six categories, referred to as the basic emotions: Anger, Disgust, Fear, Happiness, 
Sadness and Surprise. It also provides a description of all, visually detectable, facial changes in 
terms of 44 so-called Action Units (AUs) [17]. Although recent research on psychology and 
neuroscience [21] argued that this model is culture-specific and not universal, this categorical 
model is still the most popular perspective for Facial Expression Recognition, due to its 
pioneering investigations along with the direct and intuitive definition of facial expressions [22]. 
The main advantage of this categorical emotion representation is that people use this scheme to 
describe observed emotional displays in real life. This labelling scheme is very instinctive and 
thus matches people experience [25]. 

2.3 Non-Deep Approaches of Facial Expression Recognition 

Complete surveys on automatic facial expression analysis have published in recent years of 
Facial Expression Recognition [17, 19, 23, 24, 25, 26]. These surveys established a set of 
standard algorithmic pipelines for Facial Expression Recognition. In this section, will be 
summarized some of the traditional state-of-the-art models of this early era of automatic facial 
expression analysis. 
 Early efforts toward Facial Expression Recognition include studies like Kobayashi and Hara 
in 1991 [27]. In this feature-based study, researchers proposed a method of back-propagation 
Neural Network (NN) for recognizing human emotions through a CCD camera. With this 
camera-acquired method, they extracted data of Facial Characteristic Points (FCP) from 3 
components of the face (eyebrows, eyes and mouth). The classification is based on the six 
basic categories, as proposed by Paul Ekman and Wallace Friesen [20]. 
 Padgett and Cottrell [28], in 1996, use a holistic face representation with Principal 
Component Analysis (PCA) combined with a back-propagation NN. The input to the NN was the 
normalized projection of the seven extracted blocks of the PCA. The hidden layer of the NN 
employs a nonlinear Sigmoid activation function. The output layer of the NN contains seven 
units, each of which corresponds to one emotion category. Padgett and Cottrell used the 
images of six basics plus a neutral expression. 
 Essa and Pentland [29], in 1997, applied the eigenspace method of Pentland et al. [30], 
using PCA to automatically locate the faces in an arbitrary scene and extract the positions of the 
eyes, nose, and mouth. This method applied to frontal-view facial image sequences.  Essa and 
Pentland use the Optical Flow computation method proposed by Simoncelli [31]. The method is 
real-time and has been successfully tested on a database of people, having different head 
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positions, illumination changes, headwear, facial hair and/or eyeglasses.  In this holistic motion 
model, Essa and Pentland, employed sophisticated 3-D motion and muscle models for facial 
expression recognition and increased tracking stability. They also proposed FACS+, an 
extension to FACS which consists of a set of control parameters using vision-based 
observations, also describing the dynamics of facial expressions. 
 In 1998, Hong et al. [32] proposed an online facial expression recognition system in order to 
perform real-time tracking of faces. He used the PersonSpotter system by Steffens et al. [33]. 
The face dimensions were obtained by fitting a labelled graph into the input facial image. The 
face was previously detected by the PersonSpotter system utilizing the method of elastic graph 
matching. 
 Zhang et al. [34], in 1998, use a hybrid approach to face representation. They use FCP for 
which a set of Gabor wavelet coefficients extracted. A NN with backpropagation algorithm has 
used for classification. A similar face representation was used by Lyons et al. [35], in 1999, for 
expression classification into the basic emotion categories. They used a Fiducial Grid with a set 
of Gabor wavelet coefficients. For classification, PCA and Linear Discriminant Analysis (LDA) 
used on the labelled graph vectors. 
 Cohen et al. [40], in 2003, described a real-time face tracking system used for feature 
extraction developed by Tao and Huang [41]. Cohen et al. described several different classifiers 
developed for recognizing the facial expressions and introduced the Tree-Augmented-Naive 
Bayes (TAN) classifier as introduced by Friedman et al. [42] in 1997. They also introduced a 
multi-level Hidden Markov Model (HMM) architecture for automatic segmentation and 
recognition of emotions. 
 In 2004, Ma and Khorasani [43], proposed a new technique for Facial Expression 
Recognition using a 2-D Discrete Cosine Transform (DCT) as a feature detector, implemented 
over the entire face images. As a facial expression classifier, they used a constructive one-
hidden-layer feedforward NN providing improved generalization and recognition performance 
capabilities. 
 Shan et al. [44] used Local Binary Patterns (LBP) for feature extraction, showing that LBP 
features are robust to low resolution. For facial expression classification, template matching and 
SVM has adopted. 
 Α little work has been done until that time in 3-D facial expression recognition model. Wang 
et al. [45], in 2006, demonstrated the advantages of a 3-D geometric based approach over 2-D 
texture-based approaches for Facial Expression Recognition. For classification, four classifiers 
used and tested, the Quadratic Discriminant Classifier (QDC), LDA, Naive Bayesian Classifier 
(NBC), and Support Vector Classifier (SVC). Another 3-D approach at this time is the approach 
of Kotsia and Pitas [36], with the Candide model, in 2007. 
 Axel Panning et al. [46] in 2008, proposed a novel approach for facial feature detection in 
color image sequences using Haar-like classifiers since they had already been utilized 
successfully for face detection by Paul Viola and Michael Jones in 2001 [13]. This research 
group built a combination of Haar-like-Feature detection and skin color detection for face 
detection. For classification, they trained and used a full connected feed-forward NN with 
sigmoid nodes. 
 Buciu et al. [47], take Independent Component Analysis (ICA) as the baseline for feature 
extraction and test another five ICA approaches. For classification, they use either a Cosine 
Similarity Measure (CSM) classifier or SVM. 
 In 2012, Valstar and Pantic [48], proposed a method that enables the detection of a much 
more extensive range of facial behavior by recognizing AUs, and models their temporal 
characteristics (temporal segments) as neutral, onset, apex, and offset. For feature extraction 
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and thus localization of the fiducial points, they use a Gabor-based facial point detector. For 
classification, a combination of GentleBoost, SVM, and HMM applied. 
 Most recent approaches aim to obtain high-level data-driven representations to encode 
features [26]. Nonnegative Matrix Factorization (NMF) algorithm is such an approach. NMF, 
based on the idea that negative numbers are meaningless in a physical way in a lot of data-
processing tasks; it thus finds a non-negative decomposition of the original data matrix in non-
negative matrices. This method represents a facial image as a linear combination of basis 
images consisting of basis vectors. These basis vectors represent eyes, nose, mouth, etc. One 
NMF technique is Graph-Preserving Sparse Nonnegative Matrix Factorization (GS-NMF) [49]. 
Another NMF approach is Subclass Discriminant Nonnegative Matrix Factorization (SD-NMF) 
[50]. 
 Sparse Representation for facial expressions recognition is based on the idea that every 
image is sparse in some areas.  In this domain, most coefficients of the transformed image are 
zero. The transformation can be adaptive or non-adaptive and is based on a so-called dictionary 
[53]. The computational complexity of these algorithms depends on the optimization algorithm 
and the size of the dictionary. The approaches of Mahoor et al. [51] along with Zafeiriou and 
Petrou [52] describe this method. 

2.3.1 Discussion 

In this section, we will attempt to categorize the methods denoted in the previous section 
depending on feature representation, feature extraction and classification-recognition. 
 
Spatial Representations: 
Spatial representations encode the input image sequences frame-by-frame. Appearance-based 
representations are more common and encode low or high-level subspaces of the image.  
 Low-level representations extract local features, such as edges, encoding them in a 
transformed image. They perform clustering of the local features into uniform regions. In the 
final stage, they pool the features of each area with local histograms and concatenate all local 
histograms to extract the final representation [26]. Representation such as LBP [44, 54] that 
describes local texture variation along a region with an integer, and the Histogram of Gradients 
(HoG) [15] that extracts local features and representing images by the direction of their edges 
are prevalent. Another low-level feature representation is the Gabor representation [37, 48]. 
 High-level representations aim to obtain high-level data-driven semantic representations of 
objects, faces, and scenes. High-level approaches include NMF [49, 50] and Sparse 
Representation [51, 52]. 
 Bag of Words (BoW) representation extracts SIFT [12] descriptors either from the whole 
image or from a spatial pyramid dividing the image into subregions. This approach represents 
images as normalized presence vectors of visual words. Radu Ionescu, Marius Popescu, and 
Cristian Grozea [106] provided a submission using a feature extraction BoW model and got the 
fourth place in FER-2013 competition. 
 Haar-like features [46], utilized initially by Paul Viola and Michael Jones [13] for face 
detection, consider of rectangular regions at a specific location in an image window. These 
features categorize the subsections of an image by summing up the pixel intensities in each 
region, calculating the difference between these sums. The position of the rectangles is defined 
relative to the detection image window that acts like a bounding box to the target object (the 
face). 
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Spatio-Temporal Representations: 
Spatio-temporal representations enable modelling of the temporal variation to represent subtle 
expressions more efficiently, considering a range of frames within a window as a single entity 
[26]. Most spatio-temporal representations are appearance-based representations. 
 Geometric Features from Tracked Facial Points is a representation describing facial activity 
through fiducial points and localize these points. Valstar and Pantic [48] used this method to 
recognize AUs with their temporal segments (neutral, onset, apex, and offset). 
 Low-level representations such as Three Orthogonal Planes (TOP) representation, is a 
popular approach of low-level feature extraction and initially emerged when extending LBP to 
LBP-TOP [55].  
 
Feature Extraction: 
Feature extraction methods extract features from the initial representations mapping them onto 
a lower dimensional space in order to discover their structure. Most popular linear 
transformations are DCT [43], PCA [28, 29, 34] and LDA [34, 45]. 
 
Classification-Recognition: 
Most of traditional facial expression recognition models use machine learning techniques for 
expression recognition. Most of these methods rely on SVMs for classification [44, 47, 48]. In 
order to improve model prediction, statistical models such as HMM and Boosting techniques are 
combined with SVM [48]. 

2.4 Entering a New Era for Object Recognition 

In the early 00s, the field of Computer Vision has defined a significant problem to solve -the 
object recognition problem. At this time, we began to have benchmarked datasets. From the first 
attempts for benchmarked data [56] to the influential datasets such as PASCAL [57, 134] and 
ImageNet [58, 135], one thing is for sure, that benchmarks pushed forward the algorithm 
development for object recognition. These datasets play a vital role since they enable to 
measure the progress in the object recognition problem.  
 Another key point that took the object recognition problem to another level is international 
recognition challenges that helped to measure the progress of Computer Vision algorithms by 
checking the classification results. The year 2012, was written in the history of Computer Vision 
and object recognition. Alex Krizhevsky et al. [128] trained a deep CNN to classify the 1.2 
million high-resolution images of the ILSVRC-2010. This winning model beat all the other 
models in this contest, dropping the error rate significantly regarding all previous classifications 
efforts. The current intensity of commercial interest in deep learning began in 2012, but CNNs 
had been used to win other machine learning and computer vision contests with less impact for 
years earlier [83]. It is evident that benchmarked data and international challenges, along with 
the dramatically increased chip processing abilities and the use of GPUs, changed the history of 
object recognition. Well-designed network architecture studies have begun to transfer to deep 
learning methods. These deep learning methods have achieved state-of-the-art recognition 
accuracy and exceeded previous results by a wide margin 

2.5 Deep Approaches of Facial Expression Recognition 

In this section, there will be an attempt to describe the three main steps of deep Facial 
Expression Recognition models and survey the deep approaches used for FER. 
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Pre-processing: 
Most of the existing traditional approaches on FER are based on engineered features (e.g. 
HOG, LBP, Gabor filters), as depicted in Section 2.3, where the classifier’s hyperparameters are 
tuned to give best classification accuracies across the dataset [59]. 
 Several models use cascade function in order to map the images to a landmark location. 
The prediction and localization of landmarks using cascaded CNNs, proposed originally in 2013 
by Yi Sun et al. with the design of a three-level CNN [60]. Later works proposed multi-task 
algorithms for facial landmark detection, such as Tasks Constrained Deep Convolutional 
Network (TCDCN) [61] and Multi-task Cascaded Convolutional Networks [62]. 
 In 2014, Goodfellow et al. [63], proposed a new framework called Generative Adversarial 
Network (GAN) applied for Data Augmentation. As denoted in this work, GAN could improve the 
performance of classifiers when limited labelled data is available. Later works use GAN 
methods to generate realistic faces, and other types of images, varying in poses and 
expressions (image synthesis) improving recognition tasks [64, 65]. In 2017, researchers 
proposed three different models for frontal view synthesis. The models are the Two-Pathway 
Generative Adversarial Network (TP-GAN) [66], the Face Frontalization Generative Adversarial 
Network (FF-GAN) [67] and the Disentangled Representation Generative Adversarial Network 
(DR-GAN) [68]. 
 
Feature Learning: 
Deep learning approaches promise to discover rich, hierarchical models that represent 
probability distributions over the kinds of data encountered in Computer Vision and Artificial 
Intelligence (AI) applications [63]. The research theory for facial expression recognition based 
on deep learning mainly focuses on four methods: Convolutional Neural Networks (CNN), Deep 
Belief Networks (DBN), Deep Autoencoders (DAE) and Recurrent Neural Networks (RNN). 
Convolutional Neural Networks proposed in the late 80s [2, 3] and have their roots the 
Neocognitron [69] Neural Network. CNN is a deep, feedforward network, more comfortable to 
train with much better generalization than other networks [70]. Many works from the early 00s to 
the present point depict the predominance of CNN models compared to traditional methods in 
FER [129, 130, 131, 132]. Further information regarding CNN architecture listed in Section 4.9. 
 Since objects of interest in the image might have different spatial locations and different 
aspect ratios, a vast number of regions might be selected for feature learning. Finding these 
regions is computationally expensive. Therefore, algorithms like R-CNN [71], Fast R-CNN [72] 
and Faster R-CNN [73] have been developed to find these regions in a fast way. The region-
based CNNs (R-CNN, Fast R-CNN and Faster R-CNN) identify facial expressions by generating 
region proposals. In the YOLO approach [74], the algorithm does not look at the entire image 
searching for regions. It predicts multiple bounding boxes and class probabilities for those boxes 
with a single CNN and extracts features from the image. 
 Regarding 3-Dimensional Convolutional Neural Networks (C3D), in 2013, Ji et al. [75] 
developed and proposed a novel 3-D CNN model for 3-D spatio-temporal feature learning and 
action recognition. This model generates multiple channels of information from the input, and 
the final representation combines information from all these channels. Tran et al. [76], in 2015, 
proposed a C3D for the same purpose. This model was trained on a large-scale supervised 
video dataset using 3-D convolutional kernels with shared weights, instead of the traditional 
method of 2-D kernels. 
 Deep Belief Networks (DBN) originally introduced in 2006 by Geoffrey Hinton et al. [77]. 
DBNs are composed of multiple layers of stochastic hidden units (or feature detectors) with 
binary values in their typical form. The top two layers have undirected, connections between 
them while the lower layers receive top-down, directed connections from the layer above [136]. 
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A DBN can be viewed as a stack of Restricted Boltzmann machines (RBM) [78, 79] that 
contains a visible unit layer that represents the data and a hidden unit layer representing 
features that capture higher-order correlations in the data. This layer-by-layer top-down 
procedure helps the model to learn the weights that determine how the variables in one layer 
depend on the variables in the layer above. Modern studies propose algorithms like Boosted 
Deep Belief Network (BDBN) [80], that performs feature learning, feature selection and classifier 
construction in a unified loopy framework, and Pseudo Boosted Deep Belief Network (PB-DBN) 
[81] where the top layers of the DBN boosted while the lower layers of the base classifiers share 
weights for feature extraction. 
 Deep Autoencoders (DAE) [82] objective is to minimize the reconstruction error between 
input and output. DAE can convert high-dimensional data into low-dimensional codes by using a 
small central layer to reconstruct high-dimensional input vectors.  
 Recurrent Neural Networks (RNN), first introduced in 1986 [84], are a family of neural 
networks for processing sequential data [83]. RNNs include recurrent edges that share the 
same parameters across every step and cover neighbouring time steps [22]. RNNs process an 
input sequence one element at a time, thus are better for language and speech processing and 
other sequential inputs. They maintain in their hidden units a vector that contains information 
about the history of all the past elements of the sequence. RNNs are robust systems but have a 
problem in the training procedure because the back-propagated gradients either grow or shrink 
at each time step leading them to either vanish or explode [70]. Long Short-Term Memory 
(LSTM) is a type of gated (controlled by another hidden unit) RNN introduced in 1997 by 
Hochreiter and Schmidhuber [85] to solve gradient problems regarding RNNs. Hochreiter and 
Schmidhuber introduced self-loops to produce paths where the gradient can flow for long 
durations. In 1999, Gers et al. [86] made another important addition to LSTM model by making 
the weight on this self-loop conditioned on the context, rather than fixed. LSTM models are 
proved very successful in speech recognition [90], machine translation [87, 88, 89], handwriting 
recognition and generation [91, 92], and image captioning [93, 94]. 
 
Neural Network Ensemble: 
Ensemble learning is the technique of training multiple neural networks models instead of one 
and finally combine the predictions from these models. Researchers suggest that Neural 
Network Ensembles can improve generalization performance [95] and classification accuracy 
[96] of the model.  
 In 2015, Hamester at al. [97], proposed a model of a channel of unsupervised DAE 
combined with a standard CNN channel. Results show that the addition of this unsupervised 
channel improved test accuracy and overall training time. Liu et al., in 2016, proposed an 
ensemble of different structured CNNs for improving test classification accuracy on FER-2013 
[99]. 
 In 2018, an end-to-end convolutional architecture proposed for spatio-temporal FER [100]. 
Researchers coupled a C3D network with a Nested LTSM. The Nested-LSTM composed of two 
sub-LSTMs, the Time Aware LSTM (T-LSTM) and the Convolutional LSTM (C-LSTM). 
 
Cascaded Networks: 
Cascade networks are similar to feed-forward networks, including a connection every previous 
layer to the following layers. In this type of NN, various modules are combined sequentially, 
forming a deeper network. 
 Lv et al., in 2014, trained a model with DBN for component detectors. These component 
detectors first detect the face and then detect nose, eyes and mouth in a hierarchically way. For 
FER, A deep architecture with stacked autoencoder is applied [101]. 
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Baccouche et al. [102], proposed a spatio-temporal convolutional sparse autoencoder 
model with LSTM for sequence classification. 
 
Facial Expression Classification: 
The final step of FER algorithms is the classification of the given facial image into one of the 
basic expression (emotion) categories. There are two approaches to deep learning models. 
 In the end-to-end approach, feature extraction and feature classification steps are not 
independent. In CNNs, a loss function layer is added inside the model. Softmax classifier and 
SVM are the two most used functions to minimize this loss function. Finally, the model extracts 
the prediction probabilities for each category. 
  Besides the above end-to-end approach, we can use a deep network as a feature extractor 
and apply an independent classifier for classification. 

2.5.1 Discussion 

Deep learning approaches, the most recent developments in neural networks, have significantly 
advanced the performance of visual recognition systems. These models not only emphasize in 
depth (as its name implies) but highlight the performance of feature learning and feature 
extraction [22]. Deep learning models have made some research achievements in image 
recognition tasks and especially in Facial Expression Recognition. 
 When we are implementing a facial expression recognition model, usually we do not have a 
lot of training data. Thus, the model cannot generalize very well, and overfitting happens too 
fast because of the complexity of image data. With pre-processing techniques like Data 
Augmentation, we strengthen the network’s robustness to common distractions (head pose 
variations, illumination and occlusion) forcing the model to focus in more facial areas with 
valuable information.  
 Neural network ensembles integrate various networks at the feature or decision level for 
both spatial and temporal information to help boost their performance. These methods usually 
enlarge the computational cost and the storage requirement since they use different kinds of 
networks [22]. 
 Cascaded networks can train sequentially various networks in a hierarchical way. In 
general, this method can reduce overfitting problem and disentangling factors that are irrelevant 
to facial expressions [22]. 
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3 
Dataset Description 

The ICML 2013 Workshop on Challenges in Representation Learning [137], organized by LISA 
lab of Montreal University, focused on three challenges [103]. The facial expression recognition 
challenge was one of them. In this challenge hosted on Kaggle [138], the competitors were 
invited to design the best system for emotion recognition. FER-2013 dataset introduced to the 
contest as an entirely new dataset. FER-2013 was prepared by Pierre Luc Carrier and Aaron 
Courville, as part of an ongoing research project. 
 The images of faces collected using the Google image search API (Figure 3.1). OpenCV 
[139] used for face recognition in the collected images. Human labelers then approved the 
correctly labeled, filtered out some duplicate images, corrected the cropping if necessary and 
rejected the incorrect ones. These 35,887 images resized in 48x48 pixels and transformed into 
grayscale. The entire set consists of 35,887 grayscale images divided into three sets, the 
training set, the public set and the private set. The training set consists of 28,709 examples; the 
public validation set consists of 3,589 examples and the private test set consists of 3,589 
examples. The fer2013.csv file contains three columns, “emotion”, “pixels” and “usage” 
respectively. The “emotion” column contains a numeric code from 0 to 6, depending on the 
emotion in the image. The “pixels” column contains a list of 48x48=2,304 pixels representing 
each face. The “usage” column refers to the usage of the image, whether it is for training, 
validation or testing. The task is to categorize the facial expression of each face into one of 
seven categories (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral). The 
set contains 4,953 “Angry” images, 547 “Disgust” images, 5,121 “Fear” images, 8,989 “Happy” 
images, 6,077 “Sad” images, 4,002 “Surprise” images and 6,198 “Neutral” images. 
 
 

 
 
Figure 3.1: Example images from the FER-2013 dataset 
 
 
Ian Goodfellow, one of the organizers of ICML 2013 found that human accuracy on FER-2013 
was 65±5% [103]. James Bergstra determined the best performance using an ensemble of “Null 
Models” (this model presented after the contest was over) obtaining an accuracy of 65.5% on 
the test data [104]. This model uses an ensemble construction method called SVM HyperBoost, 
based on Boosting method [98]. Among the 56 challenge participating teams submitted on the 
final test, only four beats this “Null” model (Table 3.1). All top three teams used Convolutional 
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Neural Networks, including the winner Yichuan Tang who submitted the winning solution with a 
private test score of 71.2% [105]. 
 
 
Table 3.1: Dataset accuracy on FER-2013 for the four first teams 
 
Team Members Private Set Accuracy [138] Public Set Accuracy [138] 
∙YichuanTang [105] 71.161% 69.768% 
∙YingboZhou, ChetanRamaiah 69.267% 69.072% 
∙MaximMilakov 68.821% 68.152% 
∙Radu Ionescu, Marius Popescu, 
Cristian Grozea [106] 

67.483% 67.316% 

 
 
Radu Ionescu, Marius Popescu, and Cristian Grozea [106] provided a submission using a hand-
engineered feature extraction model instead of a feature learning one. Their approach used a 
BoW model [107], [108] with SIFT features [12] and linear kernels, combined into weighted 
sums for Multiple Kernel Learning (MKL). This approach represents images as normalized 
presence vectors of visual words. 
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4 
Basic Principles of Deep Learning 

Deep learning algorithms, is a specific type of machine learning algorithms. To continue with the 
CNN architecture implemented in this thesis, we must cite some of the basic principles of 
machine learning and deep learning algorithms, respectively.  
 Machine learning algorithms are algorithms that can learn from data and have the ability to 
find patterns and generalize to new data. The different settings we make when we design our 
algorithm, that controls the learning process, are called hyperparameters. One of the critical 
issues for accurate and effective deep learning algorithms is to optimize (tune) the 
hyperparameters by choosing the optimal set. 
 The optimization of our supervised learning algorithm is based on an extension of the 
gradient descent algorithm called Stochastic Gradient Descent (SGD) and on an adaptive 
learning rate optimization algorithm called Adam. The task of these optimization algorithms is to 
minimize a function called the loss function in order to perform an accurate mapping of the 
input images to a specific category.  
 In this section, we discuss feed-forward neural networks which we train with the 
backpropagation algorithm.  
 Finally, we discuss techniques to perform well in generalization, including methods to 
avoid overfitting and underfitting and regularization techniques such as L2 regularization, 
dropout and Data Augmentation. The theory provided in this chapter is from the Deep Learning 
book from Ian Goodfellow et al. [83], the Neural Networks and Deep Learning [140] online book 
by Michael Nielsen and CS231n: Convolutional Neural Networks for Visual Recognition class 
notes [141] from Stanford University. 

4.1 Image Classification 

The task of this thesis is to classify with accuracy the given input images into seven categories. 

Our learning algorithm is asked to produce a function  y f x  and assign an input vector x 

to a category identified by a numeric code (label) ŷ . 

 
Image Classification Pipeline: 

 Our input consists of a training set with 28,709 images; each labelled with one of the 
seven classes (Angry, Disgust, Fear, Happy, Sad, Surprise and Neutral). The pixels 
vector x contains a list of 48x48x1=2,304 pixels representing each face. 

 The job of the algorithm is to train a classifier (learn a model) by using the training 
dataset to learn what every one of these seven classes looks like. 

 Finally, the algorithm will evaluate the classifier by predicting labels (Angry, Disgust, 
Fear, Happy, Sad, Surprise and Neutral) for a new unseen dataset called the testing 
dataset. The predicted labels will be compared with the ground truth (correct labels) of 
these images to evaluate the accuracy of the model. 

 
The input of our model consists of a vector with 2,304 pixels per image, and the output consists 
of a distinct price from the set {0,1,…,6} with 0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 

5=Surprise, 6=Neutral; thus the score function we want to produce is: 2304 7:f   . 
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4.2 Supervised Learning 

Supervised learning is the machine learning task of learning a function, from a pre-labelled 

training dataset, that maps an input to an output. We assume a mapping :f X Y , where X 

is the input space and Y the output space. Every example in the dataset (in our case in the 

image dataset) is a data point. Each data point is a pair  ,x y X Y   consisting of an input 

vector and the desired output value (a label). The algorithm analyzes the training data, 
discovers underlying patterns and produces a function. This function is used for mapping new 
examples. The optimal scenario will allow the algorithm to correctly classify unseen data points 
and thus, to generalize.  
 In this section, we will describe the three basic functions we use in our supervised learning 
algorithm. The function that maps examples to predicted labels (score function), the function 
that quantifies the mismatch between the predicted labels and the ground truth labels (loss 
function), and the function that evaluates the complexity of the mapping (regularization 
function). 
 
Loss Function: 
The function that maps an event or an input to an output, as described above, representing 
some cost associated with the event is called a loss function or a cost function. A loss function 
tells how good our current classifier is.  

 We assume a training dataset   
1

,
N

i i i
x y


, where ix X  are the inputs and iy Y  the 

labels associated with these inputs, made up of independent and identically distributed data 
(i.i.d. assumptions) from a data generating distribution. In our model, we have a training set of 

N=28,709 images. Since the input consists of a flattened 2,304-pixel vector, 2304
ix  . Our 

distinct label categories are seven, thus 7
iy  . Note that we use ŷ  to denote the predicted 

label values of the model instead of y which are the ground truth labels of the dataset. Our 

scalar-valued loss function measures the disagreement between ˆiy  and the ground truth label 

iy . By optimizing the loss only over the available training dataset, we consider the loss over the 

entire dataset (total loss) L as an average of the loss over the examples (data loss) Li as we can 
see in Equation 3.1. 

 
1

1 ˆ ,
N

i i i
i

L L y y
N 

                                                    (3.1) 

A given ix X is classified correctly if 0iL  . 

 
Multiclass SVM Classifier and Hinge Loss: 
Support Vector Machines [109, 110] are non-probabilistic supervised algorithms used for 
classification. Although they designed for binary classification, recent approaches extend SVM 
to handle multiclass classification problems [111, 112]. 

 Given an example  , , i 1,...,i ix y N , where ix X  are the input images and iy Y  

the  ground  truth  labels  associated  with these  inputs (as described above), a linear score 
function   

 ˆ , wi i iy s f x wx                                                   (3.2) 
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takes the pixels and computes the vector of class scores. The parameters in matrix w are called 
the weights of this function.  
 The SVM is set up in a way that the score of the correct classes should be higher than the 
sum of scores of all incorrect categories by some safety margin Δ set to Δ=1 in all cases. The 

SVM loss for the j th  element has the form: 

 
0 1

max 0, 1
1,

i

i
i ii

y j
yi j

j y j yyj

if s s
L s s

s s otherwise 





 
   

                      (3.3) 

Since we work with a linear score function  , wis f x , we can rewrite Equation 3.3: 

   
(3.2)

max 0, ,w ,w 1
i

i

i i ij y
j y

L f x f x


  
 

                               (3.4) 

It is worth mentioning that this threshold at zero  max 0,  function used for maximum-margin 

classification is also called hinge loss function. Essentially, the hinge loss function is summing 
across all incorrect classes and compares the output of the scoring function s returned for the 

j th  class label (the incorrect class) and the iy th  ground truth label (the correct class). 

We apply the max operation to stabilize values at zero, which is essential to ensure we do not 
sum negative values. To derive the loss across the entire training set as described by Equation 

3.1, we take the average over each iL : 

 
   

(3.2)

1

1

1 max 0, 1

1 max 0, ,w ,w 1

i
i

i
i

N

yj
j yi

N

i ij yj yi

L s s
N

L f x f x
N





 
  
 



  

  




                   (3.5) 

 
Softmax Classifier and Cross-entropy Loss: 
The most commonly used function for classification is the Softmax classifier with a cross-
entropy loss. This function classifies scores as probabilities. While SVM classifier faces the 
output of the model as scores for each class, Softmax classifier normalizes the output into a 
probability distribution for each class. 
 The Softmax function is often used to predict the probabilities associated with a Categorical 
distribution, which is a generalization of the Bernoulli distribution. The sample space in this 

distribution is taken to be a finite set of integers. Given a score function  , wis f x , we use 

the Softmax function for the j th  element (Equation 3.6): 

 | X x
yi

j

s

si i

j

eP Y y
e

  


                                           (3.6) 

Since we do not know the probability distribution p a priori, we use the estimated probability q 
and use the Cross-entropy (Equation 3.7) to minimize the loss between the estimated and the 
real probability distribution.  

   (p,q) logq
x

H p x x                                               (3.7) 
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If we put it all together by minimizing the Cross-entropy between the estimated class 
probabilities and the correct distribution, we get the loss function (Equation 3.8) 

 log | X x log
yi

j

s

si i i

j

eL P Y y
e

 
 
 
 
 
 

     


                           (3.8) 

Or equivalently:  

log j

i

s
yi

j
L s e                                                    (3.9) 

 
Regularization: 
Regularization is the process of making modifications (add information) to our learning model to 
reduce its generalization error, thus prevent overfitting. However, too much regularization can 
limit the capacity of the model, thus underfit the training data (Figure 4.1). 
 

 
Figure 4.1: The blue line is an example of overfitting; the algorithm cannot generalize. The 
green line may generalize well on the data points. It is worth mentioning that both blue and 
green functions give zero loss on the given dataset. The orange line is an example of 
underfitting since our model cannot learn. The objective is to build functions like the green line, 
with the ability to generalize on new data points. 
Figure inspired by Nicoguaro - Own work, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=46259145 
 
 
Let us consider a set of parameters w (weights) that correctly classifies the examples, thus 

0iL  . The problem is that this solution is not unique and there might be many sets of w that 

classify the examples correctly and have zero loss function (e.g. all , 1w    will have this 

ability). We need a process to regulate the loss function from undesirable weight explosions. 

This process is the addition of a regularization penalty  R w  to the loss function. The 

regularization penalty is a function of w only. 
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 The most common regularization is L2 regularization or weight decay (Equation 3.10). 
The L2 regularization will force the parameters to be relatively small. λ is a regularization 
hyperparameter (that needs to be tuned) which determines how much to penalizes the weights. 

  2
,i j

i j
wR w                                                  (3.10) 

 
Total Loss Function: 
The total loss function consists of the combination of the data loss (Equation 3.1) and the 
regularization loss (Equation 3.10): 

 
1

,
1

ii

N

i
i

y yL L R w
N






 
 
 

                                          (3.11) 

Where N: number of training examples and λ: regularization strength. 
We can visualize the diagram of the data flow of a supervised learning algorithm in Figure 4.2. 
 

 
 
Figure 4.2: Data flow diagram of a supervised learning algorithm where x are the inputs and y 
the labels associated with these inputs. There are three basic functions we use in our 
supervised learning algorithm: 1) The score function f that maps examples x to predicted labels 

ŷ , 2) the data loss function  ˆ ,i iL y y  that quantifies the mismatch between the predicted 

labels and the ground truth labels and 3) the regularization function  R w  that evaluates the 

complexity of the mapping. These functions make up the overall equation of the total loss 

 
1

1 N

i
i

L L R w
N




  . 

Retrieved from the dissertation of Andrej Karpathy (https://purl.stanford.edu/wf528qt3314), 
licensed under a Creative Commons Attribution-Noncommercial 3.0 Unported License. 
 

4.3 Advanced Regularization Techniques for Deep Learning 

In Section 4.2, we described the basic concepts of the total loss function, including the score 
function, the data loss function and the regularization function. Our objective is to make an 
algorithm that will perform well on new input data points, not just on the training data. We need 
to control the capacity of the model and ensure our model generalizes well.  
 We need to be concerned with overfitting and underfitting. Overfitting (Figure 4.3) occurs 
when the model fails to generalize; thus, it models too well the training dataset. When the model 
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is overfitting, the gap between the training loss and the validation loss is too large (similar 
behavior will also exist between train accuracy and validation accuracy). We can control 
overfitting by decreasing the capacity of the algorithm (remove layers of the model) and apply 
regularization techniques.  
 
      

 
Figure 4.3: We evaluate how the model generalizes by comparison of the training and 
validation curves during the training procedure. The best model would be where the validation 
loss curve has its global minimum (image a). This optimal solution separates the curves in the 
overfitting and underfitting area (image b). 
 
 
Underfitting occurs when the model fails to obtain a low error value; thus, the model is not 
learning. Another indicator for underfitting is when the validation accuracy tracks the training 
accuracy reasonably well (Figure 4.4). We can control underfitting by increasing the capacity 
of the algorithm (use a deeper model). We want to ensure our algorithm reduces the loss and 
increases the accuracy while ensuring that the gap between training and validation loss and 
accuracy, respectively, is relatively small. 
 In this section, we describe regularization techniques for deep learning models such as 
Data Augmentation, dropout and early stopping. 
 

 
Figure 4.4: Signs of overfitting at accuracy curve. No gap between training and validation 
accuracy curves indicates underfitting. We have to increase the capacity of the model and keep 
the gap between training and validation accuracy relatively small.  



Μεταπτυχιακή Διατριβή  Αλέξανδρος Ζάγκος 

19 
Facial expression recognition using Deep Convolutional Neural Network techniques 

Data Augmentation: 
Data Augmentation is an effective technique, especially for the object recognition classification 
problem. The amount of input data we have for our classification problem is limited. The basic 
idea of Data Augmentation is that it generates new training fake data points and adds them to 
the training dataset. This technique applies simple geometric transformations such as rotations, 
zooms, scale changes and flips to the data points and creates new data points. Let us consider 

the input of our model as a pair  ,x y X Y   where x is the input images and y the ground 

truth labels associated with these inputs. Data Augmentation creates new pairs by transforming 
the x input without changing its label y. However, each augmented image is considered as a 
new training data point for the algorithm. 
 
Dropout: 
Dropout, proposed initially by Srivastava et al. [113], is a technique for addressing the problem 
of overfitting in NNs. Dropout layers, with probability p, randomly drop units (hidden and visible) 
along with their connection during the training of the model. This method prevents overfitting 
and provides a way of combining many NN architectures. By dropping a unit, we mean 
temporarily removing it (with its incoming and outcoming connection) from the model, as shown 
in Figure 4.5. The dropping of the connection ensures that no single node is responsible for 
activating in a given pattern. 
 By using dropout, we randomly alter the architecture of the NN by producing a thinner 
network from the nodes that survived dropout. After the forward and backward pass (Section 
4.5), the dropped connections are re-connected, and the algorithm samples another set.  
 The hyperparameter we want to tune is p, which is the probability of retaining a unit in the 
network. Typical values of p for hidden units are in the range of 0.5 to 0.8 [113]. 
 

 
Figure 4.5: A simple three-layer Neural Network (image a). After dropout, all crossed nodes 
have been dropped, producing a thinner network (image b).  
Retrieved from the paper of Srivastava et al. 
(http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf) 
 
 
Early Stopping: 
One of the most effective and simple regularization strategies in deep learning is early stopping 
[83]. Validation-based early stopping [114] is the strategy we use by selecting a stopping 
criterion of the learning procedure. We evaluate how the model generalizes by comparison of 
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the training and validation curves during the training procedure. If there are signs of overfitting 
either on loss or on accuracy curves (Figure 4.3 a), we stop the training procedure.  
 We update the parameters with an optimized set or return to the parameter setting at the 
point in time with the lowest validation set error or highest validation accuracy respectively, and 
continue the training. 

4.4 Optimization 

The objective of the optimization process is to find an efficient way to minimize the loss function 
(Equation 3.11). We denote the value that minimizes a function with the superscript *. Thus, the 

problem of optimizing our loss function takes the form of * arg minf L .  

 Optimization algorithms use training examples to optimize the loss function. If the model is 
using the entire set for a single pass, it is called a batch method. In our case, we use subsets 
with more than one but fewer than all the training examples for the pass; thus, we use 
minibatches. We typically use the term batch size to describe the size of the minibatch.  The 
size of the minibatch is a hyperparameter typically set to 32, 64, 128 or other powers of 2. 
 For this thesis, we only use first-order optimization methods such as SGD, along with 
advanced first-order optimization methods such as Momentum, Nesterov Acceleration and 
ADAM.  
 
Gradient Descent: 
The basic technique used to minimize a function f is called gradient descent introduced by 

Cauchy in 1847 [115]. The derivative  'f x or 
dy
dx

 of a function gives the slope of  f x  at 

point x. The slope of  f x  tells us how to change x in order to improve y. Let us define 

 x f x  as the gradient of  f x  with respect to x. The gradient  x f x  is the vector 

containing all the partial derivatives  
i

f x
x



, measuring how  f x  changes with respect to 

ix . To find a local minimum of a function using gradient descent, we have to take steps 

proportional to the negative of the gradient of the function at the current point (Figure 4.6).  The 
gradient descent method described above proposes a new point (Equation 3.12), where 

 x tf x  is the direction of maximum decrease of f at the point tx  with respect to x and 

0a   is a positive scalar step size called learning rate. Learning rate 0a   is a 

hyperparameter that we can tune. 
 

 1 t x ttx x a f x                                                   (3.12), 
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Figure 4.6: An example of how we can use the gradient descent to minimize a function. For (a), 

if 0,x    then 0
df
dx

 , so we can decrease  f x  by moving leftward. For (b), if 

 ,0x    then 0
df
dx

 , so we can decrease  f x  by moving rightward. 

 
 
Stochastic Gradient Descent: 
SGD is an extension of the algorithm described above. SGD technically refers to using a single 
example at a time to evaluate the gradient. In this thesis, we use minibatch SGD since we 
compute the gradient over batches of the training data. The basic algorithm of our SGD 
method, based on Equation 3.12 is summarized below: 
 

1. Sample a minibatch, from the training data, of n examples   
1

,
N

i i i
x y


 along with their 

labels iy . 

2. Estimate the gradient:         
1

1
, ,

N

w w w i i i
i

g w L w L f x w y R w
N




 
  

 
    . 

3. Compute the direction that minimizes the function with the negative gradient: 

 ww a g w    . 

4. Follow the estimated gradient downhill (  w wa g w    ) and update the parameter 

ww w   via the backpropagation algorithm (Section 4.5).  

 

The SGD update may be written as  1 wt ttw w a g w    . For more details about SGD 

tricks, we can refer to the work of Leon Bottou [116]. 
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 While SGD remains a very popular algorithm for optimization, researchers suggest that this 
learning scheme can be very slow. There are two primary extensions for SGD. The first is 
momentum [117, 118], and the other is Nesterov momentum [119, 120]. 
 
Momentum Update: 
The momentum algorithm aggregates an exponentially-decaying average of past gradients and 
continues to move in their direction (Figure 4.7 a). The algorithm uses a variable v that plays the 
role of velocity. The momentum update may be written as:  
 

 1

1 1

t w tt

tt t

gv v a w

w w v



 

  
 

 

Where 0a   and 0,1    . 

 
The basic algorithm of the SGD method with momentum is summarized below: 
 

1. Sample a minibatch, from the training data, of n examples   
1

,
N

i i i
x y


 along with their 

labels iy . 

2. Estimate the gradient:         
1

1
, ,

N

w w w i i i
i

g w L w L f x w y R w
N




 
  

 
    . 

3. Compute velocity v update:  wv v a g w   . 

4. Update our parameter w: w w v  . 

Momentum term γ is a hyperparameter called momentum coefficient, usually set to 0.5, 0.9, or 
0.99 [83]. 
 
Nesterov Acceleration Momentum Update: 
Nesterov momentum is a variant of the momentum algorithm inspired by the accelerated 
gradient method by Nesterov [119]. The Nesterov momentum update (Figure 4.7 b) may be 
written as: 

 1

1 1

t w t tt

tt t

v v a g w v

w w v

 

 

   

 
 

The only difference between the momentum and the Nesterov momentum is the update of the 
velocity vector v. They both apply a gradient-based correction of the velocity vector but while 

momentum algorithm computes the update from the current position tw , Nesterov momentum 

first updates tw  by t tw v ; changing v in a quicker way. 

 The basic algorithm of the SGD method with Nesterov momentum is summarized below: 

1. Sample a minibatch, from the training data, of n examples   
1

,
N

i i i
x y


 along with their 

labels iy . 

2. Partial update of our parameter w: w w v  . 
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3. Estimate the gradient:         
1

1
, ,

N

w w w i i i
i

g w L w L f x w v y R w
N

 


 
 
 

     . 

4. Compute velocity v update:  wv v a wg   . 

5. Update our parameter w: w w v  . 

 

 
 
Figure 4.7: A Momentum update (image a) in comparison with a Nesterov acceleration 
momentum update (image b). 
 
 
Adam: 
Adam algorithm, proposed by Kingma and Ba [121] is a gradient-based optimization method. 
The momentum is embedded in the algorithm along with bias correction for the mean and the 
uncentered variance of the moving averages. 
 The basic algorithm of the Adam method is summarized below: 
 

1. Sample a minibatch, from the training data, of n examples   
1

,
N

i i i
x y


 along with their 

labels iy . 

2. Estimate the gradient:         
1

1
, ,

N

w w w i i i
i

w L w L f x w y R w
N

g 


 
 
 

    . 

3. Update timestep: 1t t  . 

4. Update biased first moment estimate:    1 11 wc c wg     . 

5. Update biased second moment estimate:       2 21 w wk k g w g w      . 

6. Correct first moment bias:   1

11 tc c 
 
  . 

7. Correct second moment bias:   1

21 tk k 
 
  . 

8. Compute the update: 

1

w ac k 


  
 
 

    . 

9. Update our parameter w: w w w  . 
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All operations on vectors are element-wise. The hyperparameters 1 2, 0,1   , control the 

exponential decay rates of the moving averages of c and k. 0a   is the positive scalar step 

size called learning rate and   is a very small number to avoid dividing by zero in the gradient 

update. Good default setting for the hyperparameters are 1 0.9  , 2 0.99   and 810   

[121]. 

4.5 Backpropagation Algorithm 

The main objective of the backpropagation algorithm in NN applications is to find how the input 
parameters influence the loss function, and in what way we shall change them in order to 
reduce the loss. 
 The backpropagation algorithm [84] is the method we use to efficiently compute gradients of 
our functions with respect to their inputs by using the chain rule of Calculus. The 
backpropagation algorithm consists of two phases, the forward propagation and the backward 
propagation.  
 In the forward propagation (forward pass), the information flows forward through the NN. 

The network accepts an input x and produces an output ŷ . In our case, x is the pixel vector of 

an image and ŷ  the predicted label for this image. The information provided by x propagates to 

the layers of the NN and finally produces the predicted label ŷ . The final product of the forward 

pass is the scalar-valued loss function L. 
 In order to perform the parameter update of our functions and continue the learning 

process, we have to compute the gradient wL  with respect to the parameters w and update 

the parameters by applying the chain rule of Calculus. This process takes place during the 
backward propagation (backward pass).  
 Since we use a scalar-valued loss function, we have many values as an input and a single 
output. Straightforwardly computing the gradient could be computationally expensive. It is more 
computationally efficient to use reverse-mode differentiation by going back to front and, thus 
using the backward pass for gradient computation. 
 The backpropagation algorithm is responsible only for computing the gradient and update 
the parameters of our functions. The actual learning process of our algorithm takes place by the 
use of the optimized algorithms, as described in Section 4.4. 
 
Chain Rule of Calculus: 
The chain rule of Calculus is used to compute the derivatives of a composite function. The order 
by which the backpropagation algorithm computes the chain rule proves to be highly efficient 
[83]. 

 Let us suppose we have a vector 0u  that we want to transform into a scalar ku  through a 

series of functions  1 , 1,2,...,i i iu g u i k  . We assume that the nodes are arranged in a 

way we can compute their output one after the other (Figure 4.8).  
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Figure 4.8: A simple computational graph. Every node is arranged in a way that we can 
compute their output one after the other. 
 
 
 The Jacobian matrix of all first-order partial derivatives of our vector-valued function tells us 

how each iu  depends on the changes of 1iu  . Finally, with the use of the product operator of 

the Jacobian matrixes 
10 1

k
k i

i i

u u
u u 

 
  , we can compute the gradient we are interested in. 

Backpropagation algorithm performs such Jacobian products, using the chain rule, for each 
operation in the computational graph. 
 

 
 
Figure 4.9: Backpropagation along a simple computational graph. We have to know what 
function s is computing on the forward propagation. We assume that s is computed by a fixed 

function s x w  . The value of s continues into the graph until the total loss L is produced. 

All the intermediate functions are fixed. The backward propagation proceeds in the opposite 
direction. The objective is to know how x and w influence L. We can compute all the Jacobian 

matrixes , ,
L s s
s x w

  
  

 that tell us what is the influence of s to L, x to s and w to s respectively. 

We continue travelling backwards through the functions, multiplying by Jacobians until the 
inputs are reached.  
 

4.6 Neural Networks 

In the previous section of this chapter, we mentioned a score function f that transforms the input 

vector x into a prediction ŷ  and optimizes this differentiable function with respect to any loss 

function. In this section, we will make a more extensive reference to this function. 
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 Feedforward networks have introduced the notion of hidden layers (Figure 4.10 a). In order 
to compute the hidden layer value, we have to choose an activation function. An activation 
function derives the output of a neuron given a set of inputs and represents the firing rate of a 
neuron. 

                
 
Figure 4.10: (image a): A two-hidden Fully Connected layer Neural Network. The network is 
fully pairwise connected between two adjacent layers. Neurons between a single layer are not 

connected to each other. If 1 2 3, ,W WW  the parameter matrixes and   the non-linearity 

element-wise function, this network will have the form of     3 2 1x W W W xf   . (image b): 

To pass a signal through a node, we compute the sum of the weighted inputs from previous 
nodes; we add a bias vector, fire the signal after the activation function and propagate the 
output to the next layer. 
 
 
 Let us consider a simple linear classifier with a bias vector embedded into the design 

matrix. Thus, this linear function takes the form  ; ,i if x w b wx b  . The bias vector b does 

not interact with the actual data but influences the output of this function. In the absence of any 
input, the output of the transformation is biased to being b.  
 To convert an input signal of a node into an output signal, we have to compute the weighted 
sum of each connection pointing to this specific neuron (Figure 4.11 b). We then pass that sum 
to a non-linear activation function that transforms it into a number between some limits. 
 The activation function has to be differentiable to perform the backpropagation algorithm 
through the chain rule, as described in Section 4.5. The activation function has to be non-linear 
to provide a complex solution and be able to model any data by adding curvature. A linear 
equation is easy to solve but is limited in its complexity with less power to learn complex 
functional mappings from data. 
 Every non-linear activation function performs a specific fixed mathematical operation. There 
are several activation functions we may encounter in practice. For this thesis, we use two 
activation functions, the ReLU activation function and the ELU activation function. 
 
Rectified Linear Unit (ReLU): 
The Rectified Linear Unit [122], depicted in Figure 4.11, is defined by the function (Equation 
3.13): 

  0, 0
, 0

x
x

x x
 








                                                    (3.13) 

Or equivalently:  
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     max 0,x x                                                      (3.14) 

 This function transforms the input to the max of either 0 or the input itself. The more positive 
the neuron, the more activated it is. The derivative of these functions takes the form: 

  0, 0
'

1, 0
x

x
x

 







                                                   (3.15) 

 One problem with this approach is the dying ReLU problem. For activations  ,0x  , 

the gradient will be zero (Equation 3.15), and neurons will stop responding to variations of the 
loss function in the backpropagation procedure. 
 

 
Figure 4.11: The Rectified Linear Unit (ReLU) activation function. 
 
 
Exponential Linear Unit (ELU): 
The Exponential Linear Unit [123], depicted in Figure 4.12, is defined by the function (Equation 
3.16): 

    exp 1 , 0

, 0

x x
x

x x




 







                                    (3.16) 

The hyperparameter 0   controls the value to which an ELU saturate for negative net inputs. 

The derivative of Equation 3.16 takes the form: 

    , 0
'

1, 0

x x
x

x




 







                                    (3.17) 

Exponential Linear Unit function has negative values; thus, it can produce negative outputs, 
allowing them to push activations closer to zero. 
 

 
Figure 4.12: The Exponential Linear Unit (ELU) activation function. 
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4.7 Parameter Initialization 

In this section, we will discuss weight initialization along with the effect of this initialization to 
the training process of our model. We will then mention a technique for parameter 
normalization, called Batch Normalization.  
 Let us suppose that the values of our weights are random numbers distributed with a 

standard Normal (Gaussian) distribution (with mean 0   and standard deviation 1  ). If 

we focus on the inputs of a specific node in the hidden layer (Figure 4.10 b), we presume that 
the input of this hidden neuron is the weighted sum: 

j i jij
i

z w x b                                                    (3.18) 

 Thus, z is itself distributed with a Normal distribution with mean 0  . The problem in this 

procedure is with the prices of the variance and standard deviation because they grow with the 
number of inputs. The value of the standard deviation in the input of the neuron is the sum of 
the values of the standard deviation of each weight pointing at this node, along with the bias: 

j
i

iwz b                                                      (3.19) 

 That is, z has a broader Normal distribution not sharply peaked (Figure 4.13). That leads to 
saturated neurons, which means that every small change in the value of the weights will have a 
minuscule change in the activation of the neuron. This change will negatively affect the ability of 
the NN to learn through the backpropagation algorithm. 
 To avoid learning slowdown along with saturated neurons, we have to choose another way 
to initialize the parameters. We have to squash the Gaussians down, making the neurons less 
likely to saturate. The proposed methods initialize the weights as random Normal distributed 

variables with mean 0   and alter the standard deviation. 

 
Figure 4.13: An example of two Normally distributed curves with mean 0  . The distribution 

with the more significant standard deviation has a much broader curve not sharply peaked and 
squashes down all the prices. 
 
 
Xavier Glorot Normal Initialization: 
In 2010, Xavier Glorot and Yoshua Bengio [124] proposed a new initialization scheme. Let us 

we define as inF  and outF  as the number of the input weights along with the number of the 

output weights of a node. The Glorot normal distribution method draws samples from a Normal 
distribution centered on 0 with standard deviation: 
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2

outin FF



  

 
He et al. (MSRA) Normal Initialization: 
In 2015, He et al. [125] proposed a similar method. The He et al. normal distribution method 
draws samples from a Normal distribution centered on 0 with standard deviation: 

2

inF
   

 
Batch Normalization: 
Another method that makes normalization a part of the model architecture, performing for every 
minibatch, is Batch Normalization. This recently developed technique [126], allow us to be less 
careful about initialization and can be interpreted as doing preprocessing at every layer of the 
network, in a differentiable manner. It maintains the mean activation close to 0 and the 
activation standard deviation close to 1, protecting the weights from becoming imbalanced 
(extraordinarily high or low prices). 
 The basic algorithm of the Batch normalization method, for a minibatch of activations, is 
summarized below: 
 

1. Sample a minibatch of activations   1

N
i i

H x  . 

2. Compute the mean of the given minibatch: 
1

1 N

i
i

x
N




  . 

3. Compute the standard deviation of the given minibatch:  2

1

1 N

i
i

x
N

 


  . 

4. Normalize the output from activation function: 
2

' H
H


 



 .   is a very small number to 

avoid dividing by zero. 

5. Set a new standard deviation and mean for the data: '
i iy x   . The   and the  , are 

called beta and gamma weights hyperparameters.  
 
 At test time, we can replace μ and σ by running averages collected during the training time. 
This technique allows the model to be evaluated without being biased by μ and σ from the 
minibatch that passed through the network during training time. 

4.8 Discussion 

In the previous sections, we described how the information propagates inside a NN designed for 
machine learning. The basic idea is summarized below: 

 Vectorize an input data  ,x y . 
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 Feed the input data to the network. The input data propagates with matrix operations 
layer by layer. The input of every node of the hidden layers is a weighted sum 

j i jij
i

z w x b  . 

 Apply an activation function  jz  to the previous result and pass it to the next layer 

to make the same procedure. 

 The final product of this procedure is an output value depicting a prediction ˆiy . This 

prediction is a combination of a linear function of the input x with a non-linear function 

(through the activations) of the weights iw . 

 Quantify the mismatch between the predicted labels and the ground truth labels via the 

loss function  ˆ ,i i iL y y . 

 Use that error value to compute all the Jacobian matrixes of the partial derivatives with 
respect to the weights during the backward pass. 

 Update the weights with their new values 
 Repeat the procedure until the error is minimized as much as possible. 

4.9 Convolutional Neural Networks 

Convolutional Neural Networks [2] are specialized networks for processing data with a grid-like 
topology and can scale such models to considerable size. Convolutional Neural Networks are 
analogous to traditional Neural since they are made up of neurons with learnable parameters. 
These neurons receive input data, perform an operation and pass it to the next layers. From the 
input image vector to the output predicted score, the network will still express a single 
differentiable scalar-valued score function. We still quantify the mismatch between the predicted 
labels and the ground truth labels via the loss function. Since CNNs are primarily designed for 
image-based pattern recognition, there are specific properties encodes to their architecture that 
reduces the overall parameters.  
 As the name indicates, these types of networks employ a linear operation called 
convolution. Let us suppose we have a weighting function w (or a kernel) and an input function 
x which are defined only on integer t. We define the discrete convolution: 

        s t x w t x w t


 



                                             (3.20) 

That means that we: 

 Reflect the weighting function    w w   . 

 Add a time-offset t, which allows  w t   to slide along axis  . 

 Starting t at  to  , we slide the kernel. Wherever the two functions interact we 

compute a weighted sum of  x   with the weighting function  w  . 

 
In practice, we implement that summation over a finite number of elements.  
 We can generalize this approach over a 2-D input along with a 2-D kernel with a finite 
number of elements. If I is a 2-D image and K a 2-D kernel then: 

     , , ,
p q

S i j I i p j q K p q                                      (3.21) 
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In Equation 3.21, we have flipped the kernel relative to the input. That means if we increase p, 
the index into the kernel increases but the index into the input decreases. Instead of this 
approach, many deep learning libraries implement a cross-correlation function: 

     , , ,
p q

S i j I i p j q K p q   , 

that gives similar results with (3.21). In either way, convolution is the sum of element-wise 
multiplication between the kernel areas that the kernel covers by sliding across the input data. 
 
CNN Architecture: 
The neurons inside the CNN are tensors arranged in three dimensions, the width, the height 
and the depth. Depth refers to the number of channels in the image (an RGB image will have 
three color channels). In contrast with the Fully Connected layers, the neurons inside a given 
CNN layer are connected to a small region of the previous layer. There are three main types of 
layers in a CNN, the Convolutional layer, the Pooling layer and the Fully Connected layer.  

4.9.1 Convolutional Layer 

The Convolutional layer plays a vital role in the operation of a CNN since it is the core building 
block of a CNN. It consists of convolving filters acting as learnable kernels. Every one of these 
filters spreads through the full depth of the input tensor. Each kernel slides across the spatial 
dimensionality of the input tensor, producing scalar product between the parameters of the filter 
and the input volume. These products produce a 2-D activation map during the forward pass. 
The network will learn the kernels that fire when they see a specific type of feature in the given 
image. Every one of our learnable kernels will have a corresponding activation map. These 
maps are stacked along the full depth of the input tensor to produce the output volume of the 
Convolutional layer. 
 
Local Receptive Fields: 
In Convolutional Neural Networks, we do not connect every input pixel to a neuron. Instead, we 
only make connections in a small, localized region of the input volume called the receptive field 
(or filter size). These fields share local connections across their spatial dimensionality but 
always full along the depth on the input tensor. The neurons learn the weights from each one of 
these connections along with an overall bias for the receptive field. We then slide the receptive 
field across the entire input volume. 
 
Output Volume: 
To understand the output volume of the Convolutional layer, we have to talk about the spatial 
arrangement inside the Convolutional layer along with the three hyperparameters that control it. 
The output is optimized through the hyperparameters called depth, stride and zero-padding 
respectively. 
 The depth of the output volume controls the number of filters we use to connect to a local 
region of the input.  
 To control the output spatially, we must specify the stride (S) by which we slide the kernel 

and the amount of zero-padding (P) of this kernel. When we set 1S  , we move the filters from 

left-to-right and top-to-down one pixel at a time. When we set 2S  1S  , we move the filters 

two pixels at a time. Only by changing the stride, we can reduce the spatial dimensions of the 
input volume. In order to preserve the spatial dimensions and ensure that the input volume and 
output volume of the layer will have the same size spatially, we pad the input along the borders 



Μεταπτυχιακή Διατριβή  Αλέξανδρος Ζάγκος 

32 
Facial expression recognition using Deep Convolutional Neural Network techniques 

with zeros. Without the padding, the spatial dimension of the input would decrease too quickly, 
causing problems to the training procedure. 
 If we would like to visualize the convolution of a kernel over an input tensor, let us think of 

an input 48 48 3   image (48 width, 48 height, 3 depth) and a 3 3 3   kernel (3 width, 3 

height, 3 depth) as we can see in Figure 4.14. 

 A Convolution layer requires four hyperparameters -the filter size F , the stride S , the 

number of filters K  and the zero-padding P . 
 A Convolution layer: 

 Accepts an input volume in in inW H D   

 Produces an output volume out out outW H D   where: 

o 
 2

1in
out

W F P
W

S

 
   

o 
 2

1in
out

H F P
H

S

 
   

o out KD   

 

 
 

Figure 4.14: Visualization of a convolving 3 3 3   kernel over a 48 48 3   tensor with stride 

1S   and zero-padding 0P  . The filter spreads through the full depth of the input tensor 

since depth=3. There are 46 46  unique positions for the 3 3  filter in this input. Thus, the 

convolution products an 46 46  activation map (image a). If we suppose that the 

Convolutional layer has a set of 6  different filters, each applied in the same way, we have 6  

activation maps. The activation maps are stacked together to produce the  46 46 6   output of 

the layer. This 46 46 6   new layer, proceeds as an input for the next operation (image b). 

 
 
Parameter Sharing: 

If we consider the example above, we see that there are 46 46 6 12,696    neurons in this 

Convolutional layer, and each one of these neurons has 3 3 3 27    weights along with one 

bias. If we compute the total parameters, we have  12,696 27 1 355,488    parameters on 

the first Convolutional layer. This number is high if we consider that this is an example with 
small numbers.  
 The Convolutional Neural Networks are designed to reduce the overall parameters with 
parameter sharing. This scheme works with the assumption that if a feature region is useful to 
compute in a spatial region, then it is likely to be useful in another spatial region. In every 
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different 2-D activation map, the model constrains the neuron to use the same weights and bias. 
In the given example, with this parameter sharing scheme, this Convolutional layer would have 
only six sets of weights (each one for every slice of the stacked activation map) along with their 

biases, for a total  3 3 3 6 162     unique set of weights and 162 6 168   overall 

parameters. 

 With the parameter sharing, the Convolutional layer produces inF F D   weights per 

filter, for a total   inF F D K    set of weights along with K  biases. Thus, it produces 

 inF F D K K     parameters. 

 
Backpropagation: 
With the parameter sharing assumption, during the backpropagation, each neuron computes 
the total gradient of its weights. These gradients are summed up per slice, thus, updating a 
single set of weights in the backward pass. 

4.9.2 Pooling Layer 

The purpose of the Pooling layer is to reduce the spatial dimensionality of the representation, 
reduce the number of parameters and the computational complexity; thus, control overfitting. It 
implements a fixed function without the need for any parameter. This downsampling technique 
operates in any activation map.  

 A Pooling algorithm requires two hyperparameters -the filter size F  by which it downscales 

(vertical and horizontal) the representation and the stride S . 

 A Pooling operator: 

 Accepts an input volume in in inW H D   

 Produces an output volume out out outW H D   where: 

o 
 

1in
out

W F
W

S


   

o 
 

1in
out

H F
H

S


   

o out inD D  

 
In this thesis, we use the Max Pooling operation [127]. Max Pooling is applying a max filter over 
the representation and creates a new output matrix where each element is the maximum of a 
region in the original input determined by the filter size and the stride. 
 During the forward pass in the backpropagation algorithm, the model keeps track of the 
index of the max activation. In the backward pass, the algorithm uses that index to rout the 
gradient to this input with the highest value. 

4.9.3 Fully Connected Layer 

The Fully Connected layers are analogous to the neurons arranged in a traditional NN with full 
connections to all activations in the previous layer. The neurons are directly connected to the 
neurons of the two adjacent layers, but the neurons between a single layer are not connected to 
each other. 
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4.9.4 VGG Case Study 

Initially proposed by Karen Simonyan and Andrew Zisserman [1] the VGG type of CNN uses 

only a small  3 3  Convolutional filter along with a  2 2  Pooling layers across the whole 

network. Their main contribution was in showing that the depth of the network is one of the 
critical components regarding a good overall performance. 

4.10 Summary 

In this chapter, we described the workflow for applying an image classification task in an end-to-
end way using Neural Networks. The necessary ingredients we need to put together in our deep 
learning algorithm are the following:  
 
Dataset Preprocessing: 
The dataset itself, along with the task we are trying to solve; define our goals. Each data point in 

our dataset is a  ,x y X Y  where x is a vectorized input and y a label associated with this 

input. We split our dataset into three folds, the training, validation and testing fold. We use the 
training dataset for parameter optimization, the validation dataset for hyperparameter 
optimization and the testing dataset for the final evaluation of the model. In terms of data 
preprocessing, conventional techniques include data resizing, data normalization and data 
standardizing. 
 
Model Architecture: 
The architecture of our model is a critical point for the performance of the algorithm. Since our 
data consists of images, we process the pixel data with convolutions. The Convolutional Neural 
Networks are made up of different type stacked layers. Some of these layers perform a fixed 
mathematical operation and do not need parameters (Activation layer, Pooling layer) in contrast 
with other types that contain parameters (Convolutional layer, Fully Connected layer). Each 
layer may or may not have additional hyperparameters (Activation layers do not use 
hyperparameters). 
 
Optimization Method: 
We have to define an optimization method for the optimization of our parameters through the 
backpropagation algorithm. Since we use advanced first-order optimization methods, we must 
decide how to tune the other hyperparameters along with the number of epochs and the batch 
size we will use. 
 
Evaluation: 
With the help of the validation dataset, we define the best model for the task we study. The final 
step is to evaluate the model. We evaluate the model with a single pass of the testing dataset. 
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5 
Experimentation 

In this chapter, we first describe the generic architecture of our CNN model (Section 5.1). In 
Section 5.2, we analyze the details of our classification framework, followed by the experimental 
procedure in Section 5.3. 

5.1 Architecture 

During the training process, the input of the VGG-like [1] type of CNN [2] is a fixed-size 48x48 
grayscale image. The data have been prepared and preprocessed by the organizers of the 
ICML 2013 Workshop on Challenges in Representation Learning [103]. The ICML 2013 
organizers pre-defined a split into three folds, training (80% of the total images), validation (10% 
of the total images) and test (10% of the total images). In terms of data preprocessing, the 
images are grayscaled and resized into 48x48 pixel images.  
 Every image is passed through a stack of Convolutional layers with a fixed receptive field 
and a fixed stride of 1. The spatial dimensionality is preserved after each convolution with the 
use of a zero-padding set to 1 for the Convolutional layers. Reduce of spatial dimensionality is 
achieved through the max-pooling layers. Max pooling is performed over a   filter with a stride of 
two (2). 
 The hidden layers are equipped with either the ELU [123] or the ReLU [122] non-linearities. 
We used a Batch normalization layer [126] before or after the non-linearity, depending on the 
experiment. Furthermore, we add a Dropout layer [113] after each Convolutional layer. The 
multi-dimensional volume of the stack of Convolutional blocks is flattened into a 1-D array, and 
the Fully Connected layers follow the stack. The configuration of the Fully Connected layers is 
not the same for all the networks. The final layer is a Softmax layer.  

 Consider we have M  Convolutional blocks of N  Convolutional layers stacked together, 

followed by L  Fully Connected layers. We can derive the most common Convolutional block 
architectures, of this thesis, using the following patterns: 

  
  ,

INPUT CONV ACT BN N POOL DO M

FC ACT BN DO L Last FC SOFTMAX

         
      

 or 

 

  
  ,

INPUT CONV BN ACT N POOL DO M

FC BN ACT DO L Last FC SOFTMAX

         
      

 

where CONV  Convolutional layer, ACT  Activation layer, BN Batch Normalization 

layer, POOL Max pooling layer, DO   Dropout layer and FC  Fully Connected layer. 

 The CNN architectures evaluated in this thesis are outlined in Tables 5.1 and 5.2. All the 
architectures follow the design presented above and differ in the dimension of depth and the 
configuration of some of their layers, as we will describe in Section 5.3. In the following, we will 
refer to the CNNs by their names (A-F). For each one of the different configurations, we report 
the number of trainable parameters in Table 5.3. 
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Table 5.1: Types A-D of Different VGG-like Convolutional Neural Networks. The depth of the 
architectures increases from left to right. The Convolutional layers are denoted as conv2d 
followed by the depth of the channels (conv2d-Depth). Fully Connected layers are denoted as 
dense followed by the number of their nodes (dense- # of nodes). The Activation layers, along 
with the Batch Normalization and Dropout layers are not shown for brevity. 
  

Type A Type B Type C Type D 

7 weight 
layers 

7 weight 
layers 

9 weight 
layers 

10 weight 
layers 

conv2d - 32 conv2d - 64 
conv2d - 32 conv2d - 32 

conv2d - 32 conv2d - 32 

max_pooling2d 

conv2d - 64 conv2d - 128 
conv2d - 64 conv2d - 64 

conv2d - 64 conv2d - 64 

max_pooling2d 

conv2d - 128 conv2d - 256 conv2d - 128 conv2d - 128 

conv2d - 128 conv2d - 256 conv2d - 128 conv2d - 128 

max_pooling2d 

                         dense - 64 dense - 64 

                         dense - 64 dense - 64 

                         dense - 7 
dense - 32 

dense - 7 

Softmax 

 
 
 
Table 5.3: Number of Trainable Parameters (in thousands). 
 

Type of Network A B C D E F 

Number of Trainable 
Parameters 

541 K 1,556 K 587 K 589 K 1,326 K 1,917 K 

 
 
 
 
 
 
 
 
 
 
 
 
 



Μεταπτυχιακή Διατριβή  Αλέξανδρος Ζάγκος 

37 
Facial expression recognition using Deep Convolutional Neural Network techniques 

Table 5.2: Types E and F of Different VGG-like Convolutional Neural Networks. The depth of 
the architectures increases from left to right. The Convolutional layers are denoted as conv2d 
followed by the depth of the channels (conv2d-Depth). Fully Connected layers are denoted as 
dense followed by the number of their nodes (dense- # of nodes). The Activation layers, along 
with the Batch Normalization and Dropout layers are not shown for brevity. 
 

Type E Type F 

11 weight 
layers 

12 weight 
layers 

conv2d – 32 conv2d – 32 
conv2d – 32 conv2d – 32 

max_pooling2d 
conv2d – 64 conv2d – 64 
conv2d – 64 conv2d – 64 

max_pooling2d 
conv2d – 128 conv2d – 128 
conv2d – 128 conv2d – 128 

max_pooling2d 
conv2d – 256 conv2d – 256 

conv2d – 256 
conv2d – 256 
conv2d – 256 

max_pooling2d 
dense1 – 64 
dense2 – 64 
dense3 – 7 

Softmax 

 

5.2 Classification Framework 

In this section, we present details regarding the classification framework we used during our 
training and testing procedure. 

5.2.1 Implementation 

We implemented this model with Python code on CPU. All of our classifiers were implemented 
in Keras using TensorFlow backend. The original fer2013.csv file converted into HDF5 [142] 

format so we can train a CNN on top of it. With the use of Keras callbacks, we saved the 
model’s weights in HDF5 format, every five epochs.  

5.2.2 Data Augmentation 

In order to prevent from overfitting, due to the small amount of training data, we apply Data 
Augmentation techniques. To increase the number of training samples, we employ Data 
Augmentation in the form of: 

 random rotations with 10° range, 
 random zooms with 0.1 range, 
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 random horizontal flips, 

 points outside the boundaries of the created images are filled with the nearest mode. 
 After applying all other transformations, we rescale all images. The original input pixel 

images are unnormalized, in range  0, 255 ; thus we scale down to range  0,1  with a 

rescaling factor of 1/ 255 .   

 This rescaling factor is also performed in validation and testing dataset. 

5.2.3 Training 

We train every model for up to 100 epochs with the maximum size of the generator queue set to 
10. The loss function is optimized using the Adam update or minibatch SGD with momentum 
and Nesterov momentum updates. We set the batch size to 32, 64 or 128 depending on the 
experiment. All weights are initialized with the Xavier Glorot or He (MSRA) normal distribution 
methods.  

5.3 Experiments 

In this section, we review the experiments we performed in order to improve the classification 
accuracy on FER-2013 dataset. 

5.3.1 Effectiveness of Data Augmentation 

We aim to test whether Data Augmentation improves the classification accuracy of our model. 
We start with an SGD optimizer with 128 batch size, learning rate 1 1e , Nesterov and 
Momentum update with 0.9   and decay of 0.001 (Figure 5.3: Bottom Right). We use a 

Softmax classifier and Cross-entropy Loss- the Data Augmentation techniques applied in this 
section, described in Section 5.2.2.  
 We can visualize this architecture in the schematics in Figures 5.1 and 5.2. We use a Type 
C VGG-like CNNs with architecture using the following pattern: 
 

  
 

ReLU 2 3

ReLU 2 .

INPUT CONV BN POOL DO

FC BN DO Last FC SOFTMAX

         
      

 

 
The results of this experiment are depicted in Figure 5.3. We used a model with all Data 
Augmentation arguments applied (Red line), along with a model we did not use a rescaling 
factor (Yellow line). At the end of the 90th epoch, the private set accuracy for the red lined model 
is 63.39. Τhe corresponding result for the yellow lined model is 62.95. There is a slight 
superiority of the model that uses all Data augmentation arguments. The absence of any Data 
Augmentation technique leads to overfitting if we continue the training process (Bottom Left 
image). 
 
 We can conclude that Data Augmentation significantly improves the model’s accuracy; thus, 

we use Data Augmentation by default in all the next experiments. The FER-2013 dataset is 
a small dataset, so it seems essential to apply these regularization techniques in order to 
generate new training data points and avoid overfitting. The Data Augmentation techniques 
applied in all of our future experiments, described in Section 5.2.2. 
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5.3.2 Lack of the Dropout Layer 

In this section, we aim to test whether the lack of any Dropout technique affects the 
classification accuracy of our model. We refer to the results on the Dropout rate experiments in 
Section 5.3.7.  
 We use the same architecture along with the hyperparameter optimization as described in 
the previous section (5.3.1). The Dropout rates are 0.25 for the Convolutional layers and 0.5 for 
the in-between Fully connected Layers (Figure 5.4: Bottom Right). It is worth denoting that in 
Keras documentation [143], the hyperparameter p of the Dropout layer stands for the probability 
of the element to be dropped (to be zeroed), in contrast with the original paper by Srivastava et 
al. [113]. 
 The results of this experiment are depicted in Figure 5.4. There is no need to compute the 
training and validation accuracy since the overfitting is massive (Top Right image). 
 
 We conclude that Dropout layer improves the overall architecture protecting from overfitting. 
 The use of Dropout layers affects the overall training time since it takes a bit longer to train.  

5.3.3 Experiments on the Momentum Updates 

By using the same Type C VGG-like type and architecture as described in 5.3.1, we conducted 
some experiments on the usefulness of the momentum updates along with the Momentum rate.  
 As figure 5.5 depicts, we can see that Momentum update along with Nesterov accelerated 
momentum update help the SGD to converge much faster to find the global optimum. By the 
end of the 30th epoch, the momentum accelerated method (Figure 5.5: Red-lined model) 
succeeds a test accuracy of 58.43, same as the test accuracy of the non-accelerated method 
(Figure 5.5: Yellow-lined model) on the 85th epoch.  
 A standard set of value for the Momentum update hyperparameter is 0.9. Srivastava et al. 
[113], claimed that Momentum rates at around 0.95 to 0.99 work a lot better combined with 
Dropout techniques. In the experiments we conducted, we found that the loss curves are better 

if we set the Momentum rate to 0.95   (Figure 5.6).  A Momentum rate set to 0.99   does 

not improve train loss and accuracy. 
 
 We conclude that in order to achieve better results with the SGD method, we have to 

combine it with the Momentum and Nesterov accelerated updates. 

 With a momentum rate of 0.95  , we can outperform the performance of the standard 

default setting of 0.9  . 
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5.3.4 Batch Normalization, before or after the Activation Function? 

The authors of the Batch Normalization technique [126], suggest that the Batch Normalization 
transform is added before the non-linearity in the algorithm.  
 From a statistical point of view, this may cause a problem depending on the activation 
function we use. In this thesis, we apply either a ReLU or an ELU activation function (Section 
4.6). The ReLU activation function is thresholded at zero, giving non-negative numbers as an 
output. This feature makes ReLU fragile during training. On the other hand, the ELU function 
can produce negative values.  
 The Batch Normalization technique normalizes the distribution of features. It first computes 
the mean of the given minibatch forwarding it to the normalized output function (Section 4.7). 
Some of these features might have negative values, giving a negative mean (Table 5.4); thus, a 
negative normalized output. If we normalize before the ReLU activation function, we zero the 
normalized values (kill the activation) by passing them through the non-negative ReLU. If we 
use a Batch Normalization layer after the ReLU function, we normalize all the features and pass 
them to the next Convolutional layer. 
 In this section, we use two different network architectures, a 7-weight layer Type A (Table 
5.1, Figure 5.7) and a deeper 9-weight layer Type C (Table 5.1, Figures 5.1 & 5.2). 
 Regarding the Type A network (Figure5.8), we use two patterns: 
 

 
 
 

2

2

2 ,

INPUT CONV RELU BN POOL DO

CONV RELU BN POOL DO

FC RELU BN DO Last FC SOFTMAX

      

        
      

 

for the blue line curve, and 
 

 
 
 

2

2

2 ,

INPUT CONV BN RELU POOL DO

CONV BN RELU POOL DO

FC BN RELU DO Last FC SOFTMAX

      

        
      

 

for the yellow line curve. 
 The use of Batch Normalization layer after the Activation layer seems to increase the 
training accuracy of the model. The blue-lined model achieved a training accuracy of 62.72 at 
the end of the 80th epoch, while the yellow-lined one achieved a 61.44 accuracy by the end of 
the 95th epoch. These are the best training accuracies of the model. 
 Regarding the Type C network (Figure5.9), we use two patterns: 

  
 

2 3

2 ,

INPUT CONV ELU BN POOL DO

FC ELU BN DO Last FC SOFTMAX

         
      

 

for the blue line curve, and 

  
 

2 3

2 ,

INPUT CONV BN ELU POOL DO

FC BN ELU DO Last FC SOFTMAX

         
      

 

for the yellow line curve. 
 The use of Batch Normalization layer after the Activation layer seems to favor the training 
accuracy of the model. By the end of the 75th epoch, both models achieved their best training 
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accuracies. The blue line curved model achieved a training accuracy of 65.54, compared to 
63.39 for the yellow line model.  
 
 We cannot make a safe conclusion on the effect of the ReLU activation function on the 

Batch Normalization negative moving mean values. 
 By placing the Batch Normalization after the activation function, we achieve lower loss and 

slightly higher accuracy. 
 
 
Table 5.4: Moving mean weights from the HDF5 file, regarding the 65th epoch of the two models 
depicted in Figure 5.8. We represent the first 15 means out of 128 from the 4th Batch 
Normalization layer of the models. We can see that the ReLU activation function culls the 
negative values. 
 

Filters ReLU --> BN BN --> ReLU 

1 0.7136606 -5.32962 

2 0.31214255 -7.736952 

3 7.26E-01 -6.048093 

4 8.41E-01 -5.617975 

5 0.43556514 -8.206996 

6 4.91E-01 -4.919324 

7 2.18E-01 -7.189156 

8 4.22E-01 -4.636477 

9 0.50856704 -4.176944 

10 4.16E-01 -7.798513 

11 1.25E+00 -6.208605 

12 1.0797383 -4.22E+00 

13 1.6704437 -2.262339 

14 8.31E-01 -5.12595 

15 1.122856 -4.007105 
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5.3.5 Finding the Best Architecture 

 We conducted experiments regarding the architecture that fits better on our data. We depict 
some of them in Figures 5.10 and 5.11.  Every model uses the following pattern: 
 

  
  ,

INPUT CONV RELU BN N POOL DO M

FC RELU BN DO L Last FC SOFTMAX

         
      

 

In the experiments described by Figure 5.11, we used a decayed SGD (decay=0.001) with the 
same hyperparameter configuration as in Figure 5.10.  
 Type A and Type B models do not seem to follow a stable training procedure with 
fluctuations on the validation curves. If we lower our learning rate and add a regularization 
L2(0.01) factor on the FC layers, the curve seems to make smoother improvements.  
 In any case, we can make some conclusions regarding different model architectures: 
 
 We conclude the predominance of Type C model architecture in any case. 
 Deeper networks do not necessarily have more parameters, as shown in Table 5.3. 
 The architecture design is more an art than a science. Many hyperparameters can be tuned 

and improve the given architectures at a competitive level. 
 Deeper models perform worse, in most of the cases, without overfitting. It seems like 

deeper models are harder to optimize. 
 
5.3.6 Learning Rate Decay 
 
Choosing the learning rate that fits better on our data is one of the most critical settings in 
training a NN. A higher learning rate is faster with bigger risk. A lower learning rate avoids 
fluctuations during the training procedure but is slower. One of the best practices is to start with 
a high learning rate and decay over time. If we decay the learning rate too slowly, we will have a 
computationally expensive procedure that takes more time to deliver acceptable results. Using a 
very high decay will lead to an early stagnation of the training procedure. 
 By babysitting the training procedure, we can early stop when we do not have the desired 
results, adjust the hyperparameters and continue the training.  
 We used two different types of learning decay, the time-based decay and the step decay. 
By using the step-based decay, we adjust the learning rate every epoch using the formula 

0

1 k e

 
 

, where    is the updated learning rate, 0  the learning rate we use , k  the 

decay rate and e  the epoch number. With the step decayed manual method, we drop the 

learning rate during training by some factor after specific epochs that we choose. 
 
 Step decayed method models were easier to tune and worked better on this experiment, 

giving the best classification accuracy results (Section 5.3.8). 
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5.3.7 On the Dropout Rates 

During the training procedure, we experimented with the values of the Dropout rates. In Keras, 
the hyperparameter p of the Dropout layer stands for the probability of the element to be 
dropped (to be zeroed). A common technique is to place the Dropout layer only in between the 

Fully Connected layers with 0.5p  . We may apply Dropout with lower rates after every 

Convolutional layer, including the Fully Connected layers.  
 In this experiment, we use Type C CNNs following the pattern: 
 

  
 

2 3

2 .

INPUT CONV ELU BN POOL DO

FC ELU BN DO Last FC SOFTMAX

         
      

 

 
The hyperparameters for every model are the same (Table 5.5). 

 The best curves are given by a mixed architecture that uses 0.25p   after the 

Convolutional layers and 0.5p   (Red line: Figure 5.12) in the in-between Fully Connected 

layers; along with an architecture that uses 0.3p   in the whole network (Blue line: Figure 

5.12). The use of a Dropout rate 0.5p   only in the in-between FC layers leads to massive 

overfitting by the end of the 40th epoch. 
 
Table 5.5: Hyperparameters for the experiment on the Dropout rates. 
 

Loss Cross-entropy 
Classifier Softmax 
Batch Size 64 
Optimizer Adam 
Learning Rate 
(step decayed) 

1 3e , for the first 40 epochs 

1 4e , for the next 20 epochs 

1 5e , for the last 20 epochs 
Activation Function ELU 
Weight Initialization He (MSRA) normal  
Dropout Rates  Red line: 0.25 for the Convolutional layers 0.5 

for the Fully Connected layers 
 Blue line: 0.3 in the whole network 
 Grey line: 0.5 in the whole network 
 Yellow line: 0.8 in the whole network 
 Green line: 0.8 only on FC layer 

 
 We conclude that adding Dropout to the Convolutional layers as well reduces the training 

and validation loss leading to higher classification accuracy. 
 To achieve better results, we apply lower Dropout rates on the Convolutional layers, 

increasing them on the FC in between layers or a low Dropout constant rate on the whole 
network. 
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5.3.8 Top 3 Classification Accuracies 

In order to succeed high classification accuracy results, we started with an SGD optimizer with 
momentum as a baseline. During the experimental process, we found that SGD optimizer 
requires more tuning on its hyperparameters, thus is harder to optimize. We swapped to Adam, 
an adaptive optimizer that proved a better choice for optimization. In order to avoid the dying 
ReLU problem (Section 4.6), we used the ELU activation function. He (MSRA) weight 
initialization method proved a better choice for this type of data. 
 The top 3 classification accuracies succeeded with a Type C model using the pattern  

  
 

2 3

2 .

INPUT CONV ELU BN POOL DO

FC ELU BN DO Last FC SOFTMAX

         
      

 

Table 5.6 illustrates the hyperparameters for each of these top 3 models (Figure 5.13). The 
achieved accuracies for the public set are outlined in Table 5.7  
 
 
Table 5.6: Illustration of the hyperparameter setting for the best models. 
 
 1st 2nd 3rd 

Loss Cross-entropy Cross-entropy Cross-entropy 
Classifier Softmax Softmax Softmax 
Batch Size 64 64 128 
Optimizer Adam Adam Adam 
Learning Rate and 
Other Optimizer 
Parameters 

1 3e , for the first      
40 epochs 
1 4e , for the next 
20 epochs 
1 5e , for the last 20 
epochs 

1 3e , for the first 40 
epochs 
1 4e , for the next 20 
epochs 
1 5e , for the last 20 
epochs 

1

2

1 1,

decay 0.001,

0.9,

0.999,

1 8

lr e

e





 





 

 

Activation Function ELU ELU ELU 
Weight Initialization He (MSRA) normal He (MSRA) normal He (MSRA) normal 
Dropout Rates 0.3 in the whole 

network 
0.25 for the 
Convolutional layers 
0.5 for the Fully 
Connected layers 

0.25 for the 
Convolutional layers 
0.5 for the Fully 
Connected layers 

 
 
Table 5.7: Private set accuracies for the top 3 model of our experiment. 
 

Model Private Set Accuracy Epoch 
1st 66.55 80th 

2nd 65.88 80th 
3rd 65.82 100th 
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5.4 Discussion 

In the previous section, we implemented several models by optimizing our hyperparameters 
using different model architectures. The purpose of this section is to summarize the concrete 
conclusions we reached. 
 
On the effectiveness of Data Augmentation: 
1. Data Augmentation techniques significantly improves the model’s accuracy. The FER-2013 
 dataset is a small dataset, so it seems essential to apply these regularization techniques 
 and avoid overfitting. 
 
On the Dropout layer and the Dropout rates: 
2. Dropout layer improves the overall architecture protecting from overfitting. 
3. The use of Dropout layers affects the overall training time since it takes a bit longer to train.  
4. Adding Dropout to the Convolutional layers reduces the training and validation loss leading 
 to higher classification accuracy. 
5. To achieve better results, we apply lower Dropout rates on the Convolutional layers, 
 increasing them on the Fully Connected in between layers or a low Dropout constant rate 
 on the whole network. 
 
On the Momentum Updates: 
6. In order to achieve better results with the SGD method, we have to combine it with the 
 Momentum and Nesterov accelerated updates. 

7. With a momentum rate of 0.95  , we can outperform the performance of the standard 

default setting of 0.9  . 

 
On the relative position between Batch Normalization and the Activation Function: 
8. We cannot make a safe conclusion on the effect of the ReLU activation function on the 
 Batch Normalization negative moving mean values. 
9. By placing the Batch Normalization after the activation function, we achieve lower loss and 

slightly higher accuracy. 
 
On the Learning Rates: 
10. Step decayed method models were easier to tune and worked better on this experiment, 
 giving the best classification accuracy results. 
 
The Best Architecture: 
11. We conclude the predominance of Type C model architecture in any case. 
12. Deeper networks do not necessarily have more parameters. 
13. The architecture design is more an art than a science. Many hyperparameters can be tuned 
 and improve the given architectures at a competitive level. 
14. Deeper models perform worse, in most of the cases, without overfitting. It seems like 
 deeper models are harder to optimize. 
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6 
Conclusions and Future Work 

Deep learning approaches, the most recent developments in neural networks, have significantly 
advanced the performance of visual recognition systems. Convolutional Neural Networks are 
specialized networks for processing data with a grid-like topology and can scale such models to 
considerable size. They are primarily designed for image-based pattern recognition; thus, they 
succeed in solving object recognition problems, including facial expression recognition 
problems.  
 In this dissertation, we applied a VGG-like CNN model in order to achieve the highest 
classification accuracy on the FER-2013 dataset. We tested different model architectures and 
optimized a lot of the model hyperparameters.   
 One of the critical issues for accurate and effective deep learning algorithms proved to be 
hyperparameter optimization. By choosing the optimal set, we can improve many given model 
architectures to a competitive level.  
 Our classification results are encouraging since the analysis of faces and expressions 
performs well with deep learning approaches, but this model is subject to a fundamental 
limitation. Since we implemented this model on the CPU, it is computationally expensive not 
allowing us to conduct as many experiments as we desire. 
 
Future Work: 
Convolutional Neural Networks has seen exponential growth in grid-based pattern recognition 
challenges. These types of networks have recently been extended to work on irregularly 
sampled data, such as graphs; opening the door to a new set of potential applications. Deep 
convolutional neural networks are actively used medical image analysis proving to be an active 
research field. Machine learning with CNNs plays a vital role in medical imaging with its 
applications in automated segmentation (for example, automated tumor segmentation), 
detection and classification of abnormalities (for example, cancer), image-guided therapy 
(computer detection or diagnosis) and medical image annotation. The development and use of 
networks for the needs of medical science is a necessity that needs further work by the scientific 
community. 
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