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Abstract 
 

 

 

The scope of this thesis is to conduct a cointegration analysis on crude oil fundamentals based on 

(Dagoumas and Perifanis 2018) and examine whether a long run relation exists. In order to achieve this two 

different techniques were used namely residual based method and system estimation method. In the first 

case we used Engle – Granger procedure, while in the second case we used Johansen’s maximum likelihood 

estimation. Moreover, we imposed identification restrictions in order to identify purely exogenous shocks to 

the system and examine how crude oil price will react. Also, we applied Impulse Response Function 

analysis for presenting the aforementioned reaction graphically for twelve month horizon. The period that 

we analyzed was from 2008 until 2018 in a monthly-based frequency. The independent variables was from 

different segments of the oil industry such as purely economic fundamentals in supply and demand 

framework, from financial sector and macroeconomic variables. Additionally, we evaluated the elasticities 

in the short and in the long run in order to investigate which variables are responsible for fluctuations for 

these different periods. Empirical results showed that there is more than one Cointegration relationship and 

that the crude oil future’s price is mainly affected from fundamentals (supply and demand) in the long run 

but in the short run financial markets could also affect the price. 

 

 

Key words: Cointegration, Johansen procedure, Engle-Granger procedure, VECM, crude oil price. 
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Chapter 1 

 

LITERATURE REVIEW 
 

 Nowadays, there is much debate about the determinants of the crude oil price in a global scale. 

During the last decade there are several new features in the international crude oil market such as the 

increasing globalization, the rapid growth of oil demand in non-OECD countries and the increasingly 

interest in the financial attributes of petroleum. Also, the rapid development of China’s economy as the 

second largest oil consumer and the third highest oil-importing country in the world makes its dependence 

on imported oil to exceed 65% (Wu and Zhang 2014). 

 A brief representation of the evolution of crude oil price could be that since 2005 it gradually 

followed and upward trend and lastly it increased to a record high in July 2008 in $134.56 / brll. Such a peak 

could be attributed to several global factors like Iraq invasion, strikes around crucial oil exporting nations 

such as Venezuela and Nigeria, natural disasters like Katrina and Rita hurricanes, but it also to the fact that 

the global economy has entered into a rapid growth phase. Other dynamics could be the tight relationship 

between supply and demand, the progressively augmented role of speculators from other finance and 

commodity trading markets into oil market and as a final point the devaluation of US dollar caused by the 

reduction of interest rates of Fed pushed up oil prices.  

Subsequently, because of the global financial crisis, world oil demand was decreased and oil price 

dramatically collapsed to $43.05 / brrl in December 2008. In February 2011, oil price exceeded $100 per 

barrel again in just five months, i.e., $104.03 per barrel. From January 2011 to June 2014, the oil price 

remained volatile at a high level with a slight upward trend (Wu and Zhang 2014). However, high oil prices 

led to a significant surge in shale oil production in the US. Hence, in the second half of 2014 oil production 

in US had been growing rapidly, because of the revolution in shale oil technology and the abolish of the US 

oil export embargo in late 2015. Furthermore, the substantial growth in OPEC oil supply parallel to the weak 

oil demand, the stronger US dollar and the substantial growth of speculation, caused a slump in oil prices to 

$31.93/brrl in the beginning of 2016. Thereafter, oil prices have been slowly rebound to a level above 

$50/brrl due to the fact that OPEC and non-OPEC producers reached an agreement on production reductions 

for the first time in late 2016 in the 170th (Extraordinary) Meeting of the OPEC Conference as mentioned in  

(Perifanis and Dagoumas, 2019) . This is enhanced by the fact that other economies, as in the case of Russia, 

are similarly oil dependent (Perifanis and Dagoumas, 2017). 

 In our effort to examine the oil price fundamentals and more specifically whether oil price shocks are 

caused on the supply or the demand side, we first have to specify if those shocks are exogenous or 

endogenous in macroeconomic models. Depending on the nature of the shock it would also have different 

consequences in determining the adequate monetary policy response (Kilian, 2009a). Hence, it is reasonable 

that oil price determinants have become a widespread field of study.  

In our analysis we will highlight the role of the following explanatory factors that could possibly 

contribute to the settlement of crude oil prices based on the literature. Those are: 

 The growing demand due to augmented global economic growth parallel with price/income elasticity 

of crude oil demand  (Demand side) 

 Supply shortages whether they are based on concerted practices of oil producing countries(Supply 

side) 
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 The behavior of financial market participants or speculation (Financial) 

 The increasing role of crude oil inventories 

 Turmoil in oil producing countries such as Middle-East (Political)  

 The role of the trade weighted US dollar index (Macroeconomic variable) 

The aforementioned determinants could coexist together. According to Hamilton (2008) an interpretation 

or a causal relationship among them could be that increasing demand meets stagnating supply and that 

prompts speculation about future shortfalls which then leads oil producing countries to accumulate oil 

reserves. Hotelling (1931) in his seminal paper shows that in a competitive market, the optimum extraction 

path would be such that the price of the non-renewable resource (in our case the price of oil) will rise over 

time at a rate equal to the interest rate r. Therefore, as the price of oil keeps rising, demand is slowly halted 

and eventually disappears due to high prices. As mentioned in Hamilton (2009) price should exceed 

marginal cost even if the oil market were perfectly competitive. Likewise, Hamilton (2009) highlights the 

role of scarcity rent which is the difference between price of oil and marginal production cost and he also 

emphasizes the role of income and price elasticity which are both estimated well below unity. In that case, 

price inelasticity means that if the price of oil goes up, total expenditures on oil go up. Income inelasticity 

means that as real income (real GDP) goes up, the share of oil expenditures should fall.  

 The role of demand was examined in Kilian (2008b) where he uses a newly developed measure of 

global economic activity (Kilian economic index), and proposes a structural decomposition of the real price 

of crude oil into three main components:  

 Supply shocks. 

 Shocks to the global demand for all industrial commodities. 

 Demand shocks that are specific to the crude oil market.  

His analysis showed that oil price increases may have different effects on the real price of oil, depending 

on the underlying cause of the price increase. Likewise, an increase in precautionary demand for crude oil 

causes an immediate, persistent, and large increase in the real price of crude oil while an increase in 

aggregate demand for all industrial commodities causes a slightly delayed but sustained increase in the real 

price of oil and he concludes that crude oil production disruptions cause a small and transitory increase in a 

one year horizon. Thus, high oil prices can slow down economic growth, cause inflationary pressures, 

increase uncertainty and discourage further investment in the oil sector Fattouh (2007).  

By examining the supply-side effects in crude oil price, it is a common consensus the fact that if a 

negative supply shock incurs, aggregate macroeconomic demand would have fallen. This could be translated 

as an underlying tax on final consumers in favor of oil producers. Furthermore, a supply shock could drive 

production costs and inflation which in turn prompts central banks to raise their interest rates, thereby 

further diminishing economic activity. A game changer in the last decade was the rapid expansion of U.S. 

shale oil production (although capital intensive) which was stimulated by the high price of conventional 

crude oil, which made this new technology competitive. As a reaction OPEC experienced significant losses 

in its balance sheets and his long standing dominant position in affecting crude oil price has been tested 

against shale oil producers. 

 Increasing speculation could thrive under tight market conditions, geopolitical uncertainties and 

limited spare capacities. According to Fattouh (2007) despite the fact that inventories have risen, investors 

believe that in case of a supply shock the current level of inventories would not be enough to absorb the 

price rise. Practitioners during the last fifteen years have highlighted the role of noisy traders. Black (1986) 

defines noise traders as agents who sell and buy assets on the basis of irrelevant information rather than on 

market fundamentals or the arrival of new information. Despite the fact that noise traders may be active in 

financial markets, the traditional view has been that their role can be ignored because they will continuously 

lose money and will eventually exit the market. As mentioned in Friedman (1953) “people who argue that 
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speculation is generally destabilizing seldom realize that this is equivalent to saying that speculators lose 

money since speculation can be destabilizing in general only if speculators on average sell low and buy 

high”. As mentioned in Alquist and Kilian (2007), Büyükşahin et al. (2009), and Fattouh (2010a), from the 

starting point of 2003 there was an inflow of investors from outside the oil industry (hedge funds) into oil 

futures markets. These new financial investors were attracted by high returns. At this point both spot and 

futures prices of crude oil began to surge and finally reached unprecedented levels. A natural conjecture at 

the time was that this price surge was caused by the financialization of oil futures markets. On the contrary 

as mentioned in Fattouh (2013) an alternative explanation could be that financial investors merely responded 

to the same market forces as other market participants and that both spot and futures prices were driven by 

the same economic fundamentals. He continued that another possible interpretations could be the low risk-

free interest rates parallel to the low returns in other financial markets or that crude oil was seen as a good 

hedge against inflation risks and a weak U.S. dollar. Finally, Alquist, Kilian and Vigfusson (2012) examine 

the out-of-sample accuracy of daily and monthly oil futures prices and show that there is no compelling 

evidence that oil futures prices help forecast the spot price of oil. Thus, providing evidence of a more 

confined role of speculation in the oil surge of 2008. 

 Many surveys have underlined that movements in exchange rate of the US dollar have the power to 

influence commodity prices. Sadorsky (2000) shows that futures prices of crude oil, heating oil and 

unleaded gasoline are cointegrated with the trade weighted US dollar index. Moreover, Zhang et al. (2008) 

identify a significant long-term equilibrium and cointegrating relationship between exchange rate of US 

dollar and crude oil prices. Also, Kilian (2018) mentioned that the real price of oil, through its effects on the 

terms of trade, could be a primary determinant of long swings in the trade-weighted U.S. real exchange rate. 

Similarly, Brown and Phillips (1986) and Trehan (1986) suggested that the appreciation of the dollar in the 

early 1980s lowered the demand for oil outside of the United States and stimulated the supply of oil outside 

of the United States, contributing to the fall in the real price of oil. What is more, the sustained surge in the 

real price of oil in the 2000 is often attributed in part to the declining real value of the dollar. In addition, 

Kilian and Zhou (2018) showed that an exogenous increase in the U.S. real interest rate causes only a 

modest decline in the real price of oil and this effect tends to be short-lived. The real value of the dollar 

appreciates strongly and persistently, and the level of global real activity declines. On the same survey he 

finds that the real depreciation of the U.S. dollar helped reinforce the surge in flow demand caused by the 

economic boom in emerging economies which is the second most important explanation of this sustained 

surge in the real price of oil because it accounts for a cumulative increase of 50% in the real price of oil 

compared with a 65% cumulative increase caused by demand shocks directly associated with the global 

business cycle.  

 Another fundamental parameter of crude oil price in the bibliography is the enhancing role of 

inventories as a hedging factor against fluctuations of oil price. As noted in Fattouh (2007) the current build-

up of inventories is a sign of oversupply in the crude oil market while others have argued that this incident 

was driven by the demand for precautionary inventories. Litzenberger and Rabinowitz (1995) noted that 80-

90 percent of the time the oil forward curve is in backwardation meaning that futures prices are lower than 

spot prices. More generally the fact that oil for future delivery is trading at a large premium over immediate 

delivery makes the cost of carrying inventories to be covered thus prompting market participants with 

storage facilities to accumulate inventories and make a profit by selling contracts in the futures market. The 

relationship between oil prices and oil inventories is negatively correlated. Finally, Fattouh (2007) 

mentioned the case that the contango market and the associated rise in inventories could occurred together 

with an upward trend in oil prices. In an effort to explain this absurd relationship, some observers argue that 

large inventories are no longer seen as a sign of oversupply and hence do not exert downward pressure on 

prices. 

 Thus, in an effort to reconcile all the above mentioned parameters we will conduct our analysis in a 

framework that will included different variables of the abovementioned factors. Hence, from the 
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fundamentals perspective we employed supply and demand variables such as OPEC production, tight oil or 

shale oil production, real economic activity as a proxy for world demand, trade weighted US dollar index, 

goldman sachs commodity index in order to examine the ‘paper oil’ factor and the OECD oil inventories. 

Finally, the metric of real crude oil nymex price was used as a dependent variable deflated with the CPI 82-

84 of US in 2010 as a base price.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 

 

Data Description 

 

Because of the fact that crude oil as a commodity that belongs to a highly liquid market, there are 

several factors that could determine its price. We know from economic theory that settlement price is 

determined in the equilibrium point of supply and demand. However, there are a variety of sub categories in 

the supply side such as OPEC production behavior, US shale oil production but also in the demand side like 

emerging economies with developing industries and speculators. Hence, for this analysis we will try to 

develop a model that can be applicable upon those aforementioned factors. The period under study is from 

2008 until 2018 on a monthly basis. Thus, 132 observations. The sample size was chosen due to the fact that 

we want to examine the price fluctuation and the main drivers behind it during the ,approximately, last 

decade.  

The price of crude oil that we have chosen to analyze is the New York Mercantile Exchange 

(NYMEX) one month forward real settlement price (adjusted for inflation).This time series was taken from 

EIA’s database and the CPI was taken from FED. In order to interpret consumption in our model we used 
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the re-adjusted Killian’s global real economic activity index derived from ocean freight rates Killian (2009 

and 2018). Also, in the demand side belongs the variable OECD stocks which are the reserves in crude oil 

that OECD countries have (from EIA). The market supply factors were illustrated by OPEC’s crude oil 

production in thousand barrels per day and by US shale oil (tight oil) production in thousand barrels per day 

also. This variables was taken from EIA. In order to calculate the overall shale oil production we have to add 

up each region’s production. According to Büyükşahin and Robe (2014a; 2014b) a variable that incorporates 

the paper oil trading is the S&P GSCI crude oil index. Because of the fact that such a financialization index 

could play a fundamental role in determining nymex crude oil price, we derived it from investing database. 

Moreover, macroeconomic factors such as Trade Weighted Dollar Index from FED’s database are also 

included. The rationale behind this selection is based upon the fact that as the Dollar weakens against other 

currencies it becomes cheaper from oil consuming countries to buy crude oil. The opposite holds true if 

dollar appreciates against other currencies. 

 

Variables Description Data source 

N One month forward crude 

oil prices in real US dollars 

EIA 

SHALE Aggregate tight oil 

production in thousand 
barrels per day 

EIA 

OPEC OPEC crude oil production 

in thousand barrels per day 

EIA 

STOCKS OECD crude oil reserves in 

thousand barrels per day 

EIA 

REA  Killian’s readjusted real 
economic activity 

http://www-personal. 
umich.edu/~lkilian/reaupdate.txt 

TWDI Trade weighted dollar index FED 

GSC S&P GSCI crude oil index Investing.com 

Figure 2.1: Data sources for all the variables that are used in the analysis (Jan 2008- Dec 2018) 

   

 

  We begin our analysis by transforming all the variables to natural Neperian logarithms in order to 

examine their respective elasticities. Also, because of their trending nature (stochastic or deterministic) we 

could use log transformation in order to de-trending them. 
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Figure 2.2: Diagram of all variables in log-level form  

    In addition, because of the fact that our variables are non-stationary in their level form, we took their 

first differences to make them I(1) stationary. According to Engle and Granger (1987) an integrated series is 

defined as a series with no deterministic component that has a stationary, invertible ARMA representation 

after differencing d times and is said to be integrated of order d, which is denoted as xt ∼ I(d).  
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Figure 2.3: Diagram of all variables in log-differenced form  

   As we notice in the above mentioned plots, it is clear that the log-level form is an explosive process 

with non-zero mean and a practically infinite variance. On the other hand, the log-differenced form (or the 

percentage returns) is a mean reverting process with finite variance. Hence, we can proceed with our 

analysis with our I(1) variables. Finally, it obvious that periods with high volatility (spikes in the plots) are 

the period of global economic recession (second semester of 2008 until first semester of 2009) and the 

period of low crude oil prices (last quarter of 2014).    

    Subsequently, we analyze the descriptive statistics of all our seven variables in their level and 

differenced form. It is obvious from our data that financial variables such as LN and LGSC that are 

experiencing stochastic trends are more volatile than the other variables. From excess kurtosis values, we 
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notice that first differences in log variables have a highly non-normal distribution. The negative numbers of 

skewness show that returns have a left-skewed distribution. 

 

 LN LSHALE LSTOCKS LGSC LTWDI REA LOPEC 

Mean 4.183 7.706 8.372 5.930 4.682 -0.015 10.39 

Std.Dev. 0.360 0.869 0.038 0.625 0.094 0.068 0.035 

Variance 0.129 0.754 0.001 0.391 0.009 0.004 0.001 

Min 3.309 6.202 8.316 4.880 4.549 -0.163 10.32 

Max 4.873 8.893 8.451 7.469 4.856 0.187 10.46 

Median 4.309 8.028 8.362 6.176 4.635 -0.031 10.39 

Skewness -0.33 -0.435 0.758 0.049 0.405 0.916 0.005 

Kurtosis -1.046 -1.388 -0.625 -0.572 -1.378 0.798 -1.103 

Figure 2.4: Descriptive statistics of all variables in log-level form  

 

 dLN dLSHALE dLSTOCKS dLGSC dLTWDI dREA dLOPEC 

Mean -0.006 0.021 0.000 -0.016 0.002 -0.001 0.000 

Std.Dev. 0.092 0.021 0.005 0.098 0.013 0.024 0.01 

Variance 0.008 0.000 0.000 0.009 0.000 0.000 0.000 

Min -0.304 -0.024 -0.012 -0.393 -0.029 -0.100 -0.039 

Max 0.212 0.085 0.013 0.242 0.064 0.069 0.027 

Median 0.008 0.02 0.000 -0.004 0.002 -0.001 0.001 

Skewness -0.772 0.154 -0.014 -0.75 0.705 -0.569 -0.711 

Kurtosis 1.222 -0.108 -0.322 1.229 2.317 2.013 1.289 

Figure 2.5: Descriptive statistics of all variables in log-differenced form  

    

 

Finally, we continue with a representation of a correlation matrix from 1 to -1. As the values are 

getting closer to 1 we say that they are positively correlated. The opposite holds true if the variables are 

getting closer to -1 (negatively correlated). For values close to 0 we say that there is no correlation after all. 

A simple distribution of each time series in log-level form is depicted in the diagram below. We notice that 

our depended variable LN (NYMEX crude oil price in real dollars) is strongly negative correlated with 

LSTOCKS and LTWDI while strongly positively correlated with LGSC. In the first case we have that as the 

depended variable increases the other variables are decreasing while in the second case we have that as the 

depended variable increases the independent variable increases accordingly. Weakly correlated with LN are 

the variables LSHALE, REA and LOPEC. However, we notice an interdependence between all variables. 

That is an issue of multicollinearity that we have to deal with when we proceed with our analysis.  
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Figure 2.6: Correlation matrix of all variables in log-level form with their respective distributions and scatter plots 

with regression line.  
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 Chapter 3  

 

3.1 Introduction 

 

    Firstly, we will begin our presentation in this chapter by presenting the basic form of a Vector 

Autoregressive Model (VAR).  A VAR consists of a set of K endogenous variables has the following form: 

yt = A1yt-1 + …Apyt-p + CDt + ut                                                  (3.1) 

 

Where Ai are (K x K) coefficient matrices for i= 1, … , p and ut is a K- dimensional white noise 

process with time invariant positive definite covariance matrix E(utuh
΄) = Σu. The matrix C is the coefficient 

matrix of deterministic regressors (if present) with (K x M) dimensions and Dt is a column vector with (M x 

1) dimensions. As deterministic regressors could perceived constant term, trend and dummy variables. We 

could also express equation (3.1) as a lag polynomial with the term L denoting the lag operator: 

 

A(L)yt= CDt + ut                                                              (3.2) 

 

Where: A(L) = (Ik- A1 - … - Ap). 

    A fundamental prerequisite of a VAR (p) process is its stability. This could be achieved if the time 

series included in VAR (p) are stationary with time – invariant means, variances and covariance structure. 

We are able to examine the stability conditions by evaluating the reverse characteristic polynomial, which 

can be represented as follows: 

 

det (Ik– A1z - … - Apzp) ≠ 0 for |z|  ≤ 1                  (3.3) 

 

In case the solution of the above equation (3.3) has a root for z = 1, then either some or all variables 

in the VAR(p) process are integrated of order one I(1). Also, the stability can be analyzed by considering the 

companion form and calculating the eigenvalues of the coefficient matrix (see Lütkepohl (2006) for more 

detailed derivation). As an example we will present a VAR(1) process as: 

ξt = Aξt-1 + vt                                                         (3.4) 

 

ξt = (

𝑦𝑡

⋮
𝑦𝑡−𝑝+1

) , 𝐴 =

(

 
 

𝐴1 𝐴2

𝐼 0
0 𝐼

⋯
𝐴𝑝−1 𝐴𝑝

0 0
0 0

⋮ ⋱ ⋮
0 0 ⋯ 𝐼 0 )

 
 

, vt =(

𝑢𝑡

0
⋮
0

) , 
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Where the dimension of the vectors ξt and vt is (Kp× 1) and the dimensions of matrix A is (Kp×Kp). 

In case we have in modulus the eigenvalues of A less than one, then the VAR(p) process is a stable one. For 

a given sample of the endogenous variables y1,...yT the coefficients of a VAR(p) could be estimated 

efficiently by OLS (Ordinary Least Squares) which can be applied separately to each equation of the whole 

system. If the error process ut is normally distributed, then this estimator is equal to the one that has been 

derived from maximum likelihood. 

    In general it is possible to interpret a stable AR(p) process as an infinite sum of MA process in the 

univariate case. This is also possible when we have a stable VAR(p). The representation is given from Wold 

theorem and is the following one: 

yt = Φ0ut + Φ1ut-1 + …                                              (3.5) 

 

whereΦ0 = Ικ and ΦS are matrices that can be computed as:  

Φs  = ∑ 𝛷𝑠
𝑗=1 s-jAj                                                                                                 (3.6) 

Where Aj = 0 for j> p 

The issue of the appropriate selection of lags in the VAR(p) process can be tackled with the usage of 

Information Criteria which could select the optimal length without losing degrees of freedom and parallel to 

that minimize the sum of squared errors. As in the univariate AR(p)-models the information criteria that are 

widely used in empirical research are the following: Akaike (1981), Hannan and Quinn (1979), Quinn 

(1980), or Schwarz (1978), or by the final prediction error for a detailed exposition of these criteria). These 

measures are defined as 

AIC(p) = log det (Σu(p)) + 
2

𝛵
pK2,                                    (3.7a) 

HQ (p) = log det (Σu(p)) + 
2 log(log(𝑇))

𝛵
pK2,                     (3.7b) 

SC (p) = log det (Σu(p)) + 
log(𝑇)

𝛵
pK2,                              (3.7c) 

FPE (p) = (  
𝑇+𝑝∗

𝛵−𝑝∗
) Kdet (𝛴̃u(p))                                       (3.7d) 

Where Σu (p) = T -1∑ 𝑢̂𝑡 𝑢̂𝑡
΄𝑇

𝑡=1 and p* is the total number of parameters in each equation and p 

assigns the lag order. It is shown in Lutkepohl (2006) sample sizes.  

 

3.2 Diagnostic Tests 

 

    After estimating our model it is very crucial to test if the residuals are aligned with the model’s 

assumptions (white noises). Hence, we should examine with the usage of the appropriate statistical tests for 

the absence of serial correlation and heteroscedasticity and see if the error process is normally distributed 

but for the multivariate case. Also, we should further conduct the structural stability of the model with 

CUSUM, CUSUM-of-squares, and/or fluctuation tests.  
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To begin with, the two most commonly applied tests for serial correlation in the residuals of a 

VAR(p) model are: i) Portmanteau test and ii) LM (Langrage Multiplier) test proposed by Breusch (1978) 

and Godfrey (1978). The Portmanteau statistic according to Lutkepohl (2007) is testing the overall 

significance of the residual autocorrelations up to lag h and is defined as: 

𝑄(ℎ) = 𝑇 ∑ tr(𝐶𝑗
΄𝐶0  

−1𝐶𝑗   
′ 𝐶0  

−1) ℎ
𝑗=1                                (3.8) 

Where 𝐶̂𝑖= 1
𝑇
∑ 𝑢̂𝑡

𝑇
𝑡=𝑖+1 𝑢̂𝑡−𝑖

΄ . 

    The test statistic has an approximate x2(K2h-n*) distribution and n* is the number of coefficient 

excluding deterministic terms of a VAR(p). The limiting distribution is only valid for h tending to infinity at 

a suitable rate with growing sample size. Hence, the trade-off is between a decent approximation to the x2 

distribution and a loss in power of the test when h is chosen too large. By using Monte Carlo techniques, it 

was found by some researchers that in small samples the nominal size of the portmanteau test tends to be 

lower than the significance level chosen Ljung& Box (1978), Hosking (1980). Thus, as a consequence the 

test has low power against many alternatives. For that reason it has been suggested to use the modified test 

statistic: 

 

Q*(h)= T2∑
1

𝑇−𝑗

ℎ
𝑗=1 tr(𝐶𝑗

΄𝐶0  
−1𝐶𝑗   

′ 𝐶0  
−1)                         (3.9) 

 

The second test is Breush-Godfrey LM-statistic and is based upon the following auxiliary 

regressions: 

 

𝑢̂t = A1yt−1 + ... +Apyt−p +CDt+B1𝑢̂tt−1 + ... +Bh𝑢̂t−h + εt.          (3.10) 

 

The null Hypothesis is Ho : B1 = … = Bh = 0, and correspondingly the alternative hypothesis is of the 

form H1 : Bi ≠ 0 for i = 1,2,…h. The test statistic is defined as: 

 

LMh = T( K −  tr(𝛴̃𝑅
−1𝛴̃𝑒))                                                      (3.11) 

 

Where 𝛴̃𝑅
−1 and 𝛴̃𝑒  assign the residual covariance matrix of the restricted and unrestricted models, 

respectively.The test statistic LMh is distributed as χ2(hK2). 

    In the case of heteroscedasticity testing we will use the multivariate ARCH tests Engle (1982), 

Hamilton (1994) and Lutkepohl (2006). The multivariate ARCH-LM test is based upon the following 

regression: 

vech(𝑢̂𝑡𝑢̂𝑡
΄ )= β0 + B1vech( 𝑢̂𝑡−1𝑢̂𝑡−1

΄ ) +…+ Bqvech(𝑢̂𝑡−𝑞𝑢̂𝑡−𝑞
΄ ) + vt,     (3.12) 

where vt assigns a spherical error process and vech is the column-stacking operator for symmetric matrices 

that stacks the columns from the main diagonal on downward. The null hypothesis is H0 : = B1 = B2 = … Bq 

= 0 and the alternative is H1 : B1 ≠ 0 ∩ … ∩Bq≠ 0. The test statistics is defined as: 
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VARCHLM(q) =
1

2
TK ( K+1 ) 𝑅𝑚

2                                         (3.13) 

And 

𝑅𝑚
2  = 1 – 2/ K(K + 1 ) tr(𝛺̂𝛺̂0

−1)                                    (3.14) 

Where 𝛺̂ denotes the covariance matrix of the aforementioned regression model. The test statistic is 

distributed as χ2(qK2(K +1)2/4). 

In order to test for normality we will apply the multivariate Jarque-Beratest Bera and Jarque (1980), 

(1981), Jarque and Bera (1987), and Lutkepohl (2006). The univariate versions of the Jarque-Bera test are 

applied to the residuals of each equation. By using the residuals that are standardized by a Choleski 

decomposition of the variance-covariance matrix for the centered residuals, a multivariate version of this test 

can be computed. In this case, please note that the test result is depended upon the ordering of the variables. 

The test statistics for the multivariate case are defined as: 

JBmv = 𝑠3
2 + 𝑠4

2                                                                          (3.15) 

Where 

𝑠3
2 = T𝑏1

΄ 𝑏1/ 6                                                                  (3.16) 

𝑠4
2 = T(b2 – 3k)΄( b2 – 3k) / 24                                          (3.17) 

Where b1 and b2 are the third and fourth non-central moment vectors of the standardized residuals 

𝑢̂𝑡
𝑠= 𝑃̂− (𝑢̂𝑡- 𝑢̅

^
𝑡) and 𝑃̃ is a lower triangular matrix with positive diagonal such that PP΄ = Σu which is due to 

the Choleski decomposition of the residual covariance matrix. The test statistic, JBmv is distributed as X2(2K) 

and the multivariate skewness, 𝑠3
2and kurtosis test𝑠4

2are distributed as X2(K). 

 

3.3 Impulse Response Functions 

 

     The main reason that we use impulse response analysis is to investigate the dynamic interactions 

between the endogenous variables. The whole philosophy of the procedure is based upon the Wold moving 

average representation of a VAR(p)-process that we have already mentioned. Thus, the (i,j)th coefficients of 

the matrices Φs are interpreted as the expected response of variable yi,t+s to a unit change in variable yjt.  

     These effects can be cumulated through time s = 1,2, … according to our needs (of course looking 

beyond some threshold augments the error of the estimation)  and hence one would obtain the cumulated 

impact of a unit change in variable j on the variable i at time s. Moreover, it is often very handy to use 

orthogonal impulse responses. This is plausible if the underlying shocks are less likely to occur in isolation 

but rather contemporaneous correlation between the components of the error process ut. This can be the case 

when the off-diagonal elements of Σu are non-zero which is something very common. The orthogonal 

impulse responses then are derived from a Choleski decomposition of the error variance-covariance matrix 

Σu=PP΄ with P being lower triangular. The moving average representation can then be transformed to 

yt = Ψ0εt + Ψ0εt-1 + … ,                                               (3.18) 
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     With εt = P-1ut and ψi = ΦiP for i = 0,1,2… and Ψ0 = P. Because of the fact that the matrix P is 

lower triangular, it follows that only a shock in the first variable of a VAR(p)-process exerts an influence on 

all the other ones and the other variables cannot have a direct impact on y1t. Hence, an ordinal structure of 

the error terms is imposed. It is worth mentioning that orthogonal impulse responses were applied in this 

thesis.  

 

3.4 Forecast Error Variance Decomposition  

 

     The forecast error variance decomposition (FEVD) is based upon the orthogonal impulse response 

coefficient matrices Ψn. The main purpose is to analyze the contribution of variable j to the h-step forecast 

error variance of variable k. If the element-wise squared orthogonal impulse response are divided by the 

variance of the forecast error variance, ∑ (ℎ)2
𝑘 we are taking a percentage figure as a result. Thus, we can 

define the forecast error variance for yk,T+h – Yk,T+h|Tis defined as: 

 

𝜎𝑘
2(h) = ∑ ( 𝜓𝑘1,𝑛 

2ℎ−1
𝑛=0 + … + 𝜓𝑘𝐾,𝑛 

2 )                              (3.19) 

 

The percentage could be extracted if we divide the term (𝜓𝑘𝑗,0 
2 + ⋯+ 𝜓𝑘𝑗,𝑛−1 

2 ) with 𝜎𝑘
2(h).The 

result is: 

 

ωkj(h) = (𝜓𝑘𝑗,0 
2 + ⋯+ 𝜓𝑘𝑗,𝑛−1 

2 ) / 𝜎𝑘
2(h)                         (3.20) 

3.5 Unit Root Process  

 

     Let us assume that a time series {yt} is an expression of a deterministic trend component and a 

stochastic one. We can interpret this notation as: 

yt = TDt+ ut ,                                                                                                        (3.21) 

TDt = β1 + β2t                                                                 (3.22) 

ut =  φut-1 + εt,whereεt ~ N(0,σ2)                                    (3.23) 

 

    Where TDt assigns for the deterministic linear  trend of the above equation and the parameter ut 

represents the stochastic part and can be expressed as an AR(1)  process. In the case that |φ|< 1 then yt is I(0) 

stationary process around the deterministic trend component TDt. Otherwise, when |φ|= 1 then (3) becomes  

ut =  ut-1 + εt orut = u0 + ∑ 𝜀𝑡
𝑇
𝑡=1  which denotes that yt is I(1) non-stationary with a stochastic trend. Basically, 

in order to find if the underlying process is stationary (mean reverting) or non-stationary (unit root process) 

we have to conduct a unit root test. In general, autoregressive unit root tests are based on testing the null 

hypothesis H0that φ = 1 (difference stationary) against the alternative hypothesis Ha that φ< 1 (trend 

stationary). The name unit root derives because of the fact that under H0 the characteristic polynomial of ut, 

φ(z) = (1 − φz) = 0,has a root equal to unity. 
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    For illustrative purposes, let us consider a simple AR(1) model like the following one: 

 

yt =  φyt-1 + ut, where ut ~ N(0,σ2)                                    (3.24) 

 

as we previously mentioned the null hypothesis that we are going to test is: 

 

H0: φ = 1the process contains a unit root yt ~ I(1) 

 

The test statistic (t – statistic) is given from: 

t = 
𝜑̂ − 1

𝑠𝑒(𝜑)̂
                                                                                   (3.25) 

where 𝜑̂ denotes the OLS estimate and se the standard error. Also, the AR(1) model could be written as: 

Δyt = πyt−1 +ut where π = φ − 1.                                            (3.26) 

Testing φ = 1 is then equivalent to testing π = 0. According to Hamilton (1994) if yt is I(0) stationary process 

then: 

√𝑇(𝜑̂ −  𝜑) →
𝑑 N(0, 1-φ2)                                                     (3.27) 

where 

𝜑̂~
𝛢 N ( φ,

1

𝛵
(1 – φ2)                                                        (3.28) 

Where A denotes asymptotical d denotes convergence in distribution and A denotes asymptotically. 

Also, the above mentioned t-statistic follows asymptotically N (0,1). The problem that arises is that 

under the null hypothesis of unit root yt is not stationary and ergodic. Thus, the sample moments do not 

converge to fixed constants. According to Phillips (1987) the sample moments of yt converge to random 

functions of Brownian motion such as: 

T-3/2∑ 𝑦𝑡−1
𝑇
𝑡=1

𝑑
→ σ ∫ 𝑊

1

0
(r)dr                                              (3.29) 

T-2∑ 𝑦𝑡−1
2𝑇

𝑡=1

𝑑
→ σ2∫ 𝑊

1

0
(r)2dr                                              (3.30) 

T-1∑ 𝑦𝑡−1
𝑇
𝑡=1 𝑢𝑡

𝑑
→ σ ∫ 𝑊

1

0
(r)dW(r)                                      (3.31) 

Where the symbol 
𝑑
→ denotes convergence in distribution and W(r) denotes a standard Wiener 

process (or Brownian motion) on the interval (0,1). Phillips showed that under the unit root null hypothesis 

(H0: φ = 1) 

Τ(𝜑̂ – 1) 
𝑑
→ ∫ 𝑊

1

0
(r) d W(r) / ∫ 𝑊

1

0
(r)2dr                      (3.32) 

For φ=1,t 
𝑑
→ ∫ 𝑊

1

0
(r) d W(r) / (∫ 𝑊

1

0
(r)2dr)1/2                        (3.33) 
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Briefly, a Wiener process W (·) is a continuous-time stochastic process, associating each interval r ∈ [0, 

1] a scalar random variable W(r) which satisfies: 

 W 0 = 0 

  for any interval 0 ≤ t1 ≤ … ≤ tk≤ 1 the changes W (t2) −W (t1), W(t3) −W(t2), … , W (tk) −W (tk−1) 

are independent and normally distributed with W(s) − W(t) ∼ N(0, (s − t));  

 W(s) is continuous in s.    

    From the above equations we can extract that 𝜑̂is super consistent which yields that 𝜑̂
𝑝
→φ (converge 

in probability) at a faster rate T instead of the usual T1/2 in the stationary CLM (central limit theorem) case. 

Moreover, 𝜑̂ is not asymptotically normally distributed and its t statistic is not asymptotically standard 

normal. Thus, in this case the limiting distribution of t statistic is called Dickey-Fuller or DF distribution and 

does not have a closed form representation. Hence, the quantiles of the distribution should be computed 

through monte carlo simulation Dickey and Fuller (1979). Finally, because of the fact that the normalized 

bias T(𝜑̂− 1) has a well-defined limiting distribution that does not depend on nuisance parameters it can also 

be used as a test statistic for the initial unit root null hypothesis (H0 : φ =1). 

    Furthermore, when we are testing for unit roots, it is crucial to specify the null and alternative 

hypotheses appropriately to take into consideration the trending behavior of some time series. The type of 

deterministic terms in the test regression will influence the asymptotic distributions of the unit root test 

statistics. We will distinct two commonly used cases: 

1. Constant term only (drifting parameter) 

   The testing regression is the following one: 

 

yt = c + φyt-1 + ut,                                                       (3.34) 

 

The term c denotes a non-zero mean under the alternative hypothesis. Thus, we are going to test the 

following: 

H0 :φ = 1 → yt ~ I(1)without drifting parameter    

Ha : |φ| < 1 → yt ~ I(0) with non-zero mean 

 

2. Constant and Time Trend 

The testing regression is 

yt = c + δt + φyt−1 + ut,   

   Where c is constant and δt denotes the deterministic time trend under the alternative hypotheses. Thus, we 

are testing: 

H0 :φ =1 ⇒yt∼ I(1) with drift  
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Ha :|φ| < 1 ⇒yt∼ I(0) with deterministic time trend 

   These type of test is used in modeling macroeconomic variables such as GDP 

    At this point we will present a widely used statistical test for unit roots, the Augmented Dickey 

Fuller test or ADF. The ADF test tests the null hypothesis that a time series yt is I(1) (non-stationary) against 

the alternative that it is I(0) (stationary process). The usage of the word augmented denotes that we will use 

AR(p) parameters to adjust for autocorrelation. Thus, the dynamics in the data have an ARMA structure. 

The ADF test is based on estimating the following regression: 

 

yt = βDt + πyt-1 + ∑ 𝜑𝑗
𝑝
𝑗=1 Δyt-j + ut,                                           (3.35) 

where the parameter Dt is a vector of deterministic terms (constant, trend, seasonal dummies, etc.),π = φ−1 

which under the null hypothesis implies that π = 0, the sum denotes the p lagged difference terms ∆yt−j 

which are used to eliminate any autocorrelation in the residuals ut. The error term is also assumed to be 

white noise. The specification of the deterministic terms depends on the assumed behavior of yt. Under the 

null hypothesis, yt is I(1) which implies that φ = 1. The ADF t-statistic and normalized bias statistic are 

based on the least squares estimates of the aforementioned equation and are given by: 

ADFt = t = 𝜑̂ – 1/ se(φ),under the null hypothesis         (3.36) 

 

Figure 3.1: ADF distribution under the three different cases that we examined: i) without drift ii) with drift and iii) 

drift and deterministic linear trend. 

 

    In order to select the appropriate lag length p we were based on information criteria, such as Akaike 

(Akaike Information Criteria) (1981) or Schwarz (Bayesian Information Criteria) (1978). Alternatively, the 

lag order can be determined by testing the residuals for a lack of serial correlation, as can be tested via the 

Ljung-Box Portmanteau test or a Lagrange multiplier (LM) test.  
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    To conclude, once we correctly identified the lag order p, we will use the following procedure. First, 

we estimate the following ADF-test: 

 

Δyt = β1 + β2t + πyt-1 + ∑ 𝜑𝑗
𝑝
𝑗=1 Δyt-j + ut                                        (3.37) 

 

The following steps are dependent on the behavior of underlying data generating process. This could be 

according to Pfiaff (2008): 

 Stationary around zero mean,  

 Stationary around a non-zero mean 

 Stationary around a linear trend 

 Contains a unit root with zero drift 

 Contains a unit root with non-zero drift 

 

   So far, the ADF tests have been considered as means to detect the presence of unit roots.  

 

3.6 The Concept of Cointegration and Error- Correction Models 

3.6.1 Spurious Regression 
 

    In the classical VAR case all variables have to be I(0). In those cases the usual statistical results for 

linear regression models hold. On the contrary, when we have to deal with variables that are I(1) then the 

usual statistical results may not hold. This is the case of spurious regression when all the regressors are I(1) 

and not cointegrated. The following statistical implication will explain in a better way the aforementioned 

notation.  

Let Yt=(y1t, ...,ynt)΄ denote an (n×1) vector of I(1) time series that are not cointegrated.  

Where Yt = (y1t , x1t)΄ squares regression of y1t on x1t giving the model 

y1t = β1X1t + ut                                                                                                  (3.38) 

 Since y1t is not cointegrated with X1tis a spurious regression and the true value of β1 is zero. The 

following results about the behavior of β1 in the spurious regression are due to Phillips (1986): 

 β1 coefficient does not converge in probability to zero but instead converges in distribution to a non-

normal random variable not necessarily centered at zero. 

 

 The usual t-statistics for testing that the elements of β1 are zero diverge to ±∞ as the sample size 

goes to infinity T →∞. Hence, with a large enough sample it will appear that Yt is cointegrated 

when it is not if the usual asymptotic normal inference is used. 

 

 The usual R2 from the regression converges to unity as T →∞ so that the model will appear to fit 

well even though it is misspecified. 

 

 In general, regression with I(1) variables only makes sense when the data are cointegrated. 
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3.6.2 Cointegration and Error - Correction Models 
 

    In 1981, Granger (1981) introduced the concept of cointegration into the literature, and the general 

case was publicized by Engle and Granger (1987) in their seminal paper. Finding a linear combination 

between two I(d)-variables that yields a variable with a lower order of integration, is the idea behind 

cointegration. A more formal notion of Cointegration is the following: 

The components of vector Xt are said to be cointegrated of order d, b, denoted Xt~CI(d,b), if: 

(a) all components of Xt are I(d) and 

 (b) a vector β ≠0 exists so that Zt = β’Xt ~ I(d-b), b>0. The vector β is called the cointegrating vector. 

  What is really innovative in cointegration theory is the fact that it is now possible to detect stable 

long-run relationships among non-stationary I(1) variables.  Let us consider for illustrative purposes the case 

of d = 1, b = 1. The variables in the vector xt are all integrated of order one, but if a linear combination a 

exists, then the resultant series ut is stationary. Individual series are tied to each other by the cointegrating 

vector, although they are non-stationary. Generally, in economics deviations from a long-run equilibrium 

between different variables are possible, but these errors are characterized by a mean reversion to its stable 

long-run equilibrium. 

   

  In order to find how to estimate the cointegrating vector a (and cointegrating systems in general) and 

how to model the dynamic behavior of I(d)-variables, we will examine two widely used methods: 

 Single equation methods and 

 System methods 

 

In the first one we are interested in estimating a specific cointegrating vector (CI), while in the second 

one we further determine the number of cointegrating vectors. The most important development is that with 

the concept of Cointegration is feasible to detect a stable long-run relationships among non-stationary 

variables. In the case of d = 1, b = 1the components in the vector Xt are all integrated of order one, but if a 

linear combination β of these exists, then the resultant series ut is stationary. Individual series are tied to 

each other by the cointegrating vector, although they are non-stationary.  

 

3.6.2.1 Single equation methods  
Engle – Granger residual based method 

 
    Engle and Granger (1987) proposed a two-step estimation technique to estimate the cointegrating 

vector β. Firstly, when the cointegrating vector of a regression bivariate model with I(1) variables is unique 

(rank(Π) = 1 as we will see later), then the parameter β can be estimated by OLS (Ordinary Least Squares) 

and a typical model is the following one: 

yt = α1 + βxt + ut                                                                                                (3.39) 

where ut ~ I(0) stationary by assumption 

(𝛽̂ – β) = ∑ 𝑥𝑡
𝑇
𝑡=1 𝑢𝑡 / ∑ 𝑥𝑡

2𝑇
𝑡=1                                         (3.40) 
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Because of the fact that xt ~ I(1) we have to multiply (𝛽̂ – β) by a scaling factor T (which is the 

sample size) in order to obtain a non-degenerate asymptotic distribution, so (3.41) amends into: 

T(𝛽̂ – β) =
1

𝑇
 ∑ 𝑥𝑡

𝑇
𝑡=1 𝑢𝑡 / 

1

𝑇2
 ∑ 𝑥𝑡

2𝑇
𝑡=1                                (3.41) 

 

   What is worth mentioning here in (3.41) is the fact that (𝛽̂ – β) converges to zero at rate T instead of 

the typical √𝑇 that we have in the stationary case. Thus, what we say in this case is that the estimator 𝛽̂ is 

super consistent. Also, the estimator 𝛽̂ remains consistent in the case of a simultaneous equation system 

(bivariate VAR(p) case) because of the uniqueness of the cointegrating vector if it exists (r =1). Although 

the cointegrating vector can be superconsistently estimated, Stock (1987) has shown that the limiting 

distribution is non-normal. For that reason, as in the case of spurious regressions the typical t and F statistics 

are not applicable. Hence, we understand that The Engle – Granger estimator 𝛽̂ has a non-standard 

distribution which is depended on the data generating process (DGP). Because of the existence of unit roots 

we need to use Brownian motion and monte-carlo simulations in order to construct a null hypothesis and a 

distribution.  A typical example is the following one: 

For DGP: 

yt = βxt + ut,  uxt ~ N(0,𝜎2)                                              (3.42) 

Δxt = εxt, εxt ~ N(0,𝜎2)                                                    (3.43) 

and the covariance matrix of residuals is E(𝑢𝑡𝜀𝑥𝑡) = 𝜎𝑢𝜀 

T(𝛽̂ – β) 
𝐿
→ 

𝜎𝑢𝑒

2
 (Wε(1)2 + 1) + σε*h*N(0,∫ [𝑊𝜀

1

0
(r)]2 dr / 𝜎𝜀

2 ∫ [𝑊𝜀
1

0
(r)]2 dr   

                                                                                                                     (3.44) 

Where h = √𝜎𝑢
2  − 𝜎𝑢𝜀

2 /𝜎𝑒
2                                                                                               (3.45) 

    So we have that t-values based on the estimator 𝛽̂ are not normally distributed. Thus, inference in the 

cointegrating regression is impractical due to the fact that standard inference is not valid. Also, even though 

the asymptotic bias goes to zero as the sample size increases, the estimator may be substantially biased in 

smaller samples.   Except of the aforementioned drawbacks, the OLS residual based method of Engle – 

Granger procedure has gained much attention because of its applicability in the case of trending variables, 

and the fact that the residuals from the static regression are in the case of cointegration integrated of order 

zero I(0). These residuals are the errors from the long-run equilibrium path of the set of I (1)-variables. 

Whether this series is stationary (i.e., the variables are cointegrated) can be tested for example with the 

Dickey-Fuller (DF) test or the augmented Dickey-Fuller (ADF) test. It is worth mentioning that critical 

values for ADF test are provided by MacKinnon (1991) based on critical surface regressions. Once the null 

hypothesis (H0) of a unit root in the error series has been rejected, the second step of the two-step procedure 

follows. In the second step, an error-correction model (ECM) is specified (Engle-Granger representation 

theorem). For illustrative purposes, we will present a bivariate case with two cointegrated variables Yt, Xt 

which are I(1) (as previously). The general specification of an ECM with two variables are the following 

ones: 

ΔYt = μ0 + γ1zt-1 + ∑ 𝜓1,𝑖
𝐾
𝑖=1 𝛥𝑋𝑡−𝑖  + ∑ 𝜓2,𝑖

𝐿
𝑖=1 𝛥𝑦𝑡−𝑖 + 𝜀1,𝑡               (3.46) 

ΔXt = ξ0 + γ2zt-1 + ∑ 𝜉1,𝑖
𝐾
𝑖=1 𝛥𝑦𝑡−𝑖  + ∑ 𝜉2,𝑖

𝐿
𝑖=1 𝛥𝑋𝑡−𝑖 + 𝜀2,𝑡                  (3.47) 
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The error correction model in the first equation, states that changes in Yt are explained by their own 

past values, lagged changes of Xt and the error from the long-run equilibrium in the previous period. The 

speed of adjustment is determined by the value of the coefficient γ, and should be negative in sign. 

Otherwise, the system would diverge from its long-run equilibrium path. Furthermore, in the case of two 

cointegrated I(1)-variables, Granger causality must exist in at least one direction, as can be concluded from 

these equations and the static regression. This means that at least one variable can help forecast the other. To 

conclude, by using OLS regression in general is that it can identify only one cointegrating vector even when 

there are many variables in the system (Dolado et al., 1991). On the other hand, the Johansen method (or 

system methods) makes it possible to detect all cointegrating relationship in a system of variables. 

 

3.6.2.2 System estimation methods 
    Because of the fact that single equation methods are based on least squares estimation, we have to 

deal with two basic obstacles: 

 Normalization problems 

 A priori fixed number of cointegrating equations 

    In contrast, with system estimation methods the problem of normalization does not appear and also 

we have to estimate the number of cointegrating equation. In other words, we can estimate more than one CI 

vectors. From all system estimation methods Box-Tiao (1977), Stock and Watson (1988), we shall discuss 

Johansen’s procedure which is commonly used. 

Johansen procedure: 

Let us assume a VAR model with Gaussian errors like the following one: 

Yt = ΦDt + A1Yt-1 + … + AkYt-p + ut,t = 1, … ,T               (3.48) 

Where Yt is an n-vector of I(1) variables and Dt contains deterministic terms such as constant, trend seasonal 

dummies etc. The VAR(p) process is stable if 

Det(In – Π1z - … -Πpz
p) = 0                                             (3.49) 

has all roots outside complex unit circle. Otherwise, some or all of the variables in Yt are I(1) and they may 

be cointegrated. We should recall at this point that Yt is cointegrated if there exists some linear combination 

of the Yt variables that is I(0). 

Then we proceed with the VECM(p) form by transforming the initial VAR(p) model 

ΔYt= ΦDt + ΠYt-1 + Γ1ΔYt-1 + … + Γp-1ΔYt-p+1 + ut                                   (3.50) 

Where Π = Π1 + … + Πp – In and Γk = - ∑ 𝛱𝑗
𝑝
𝑗=𝑘+1  for k = 1, ..., p - 1. The matrix Π is called long–

run impact matrix and Γk are the short-run impact matrices. We denote at this point that the VAR(p) 

parameters Πi may be recovered from the VECM(p) parameters Πand Γk through the following equations: 

Π1 = Γ1 + Π + In,                                                                (3.51) 

Πκ = Γk – Γk-1, k = 2,…, p                                                  (3.52) 

    From the above equation we notice that the variables ΔYt, … ,ΔYt-k+1 are all I(0) but the variable Υt-1 

is I(1). In order for the aforementioned equation to be consistent with I(0) variables, Π1should not be of full 

rank. Hence, ΠYt-1 should encompass the cointegrating relations if present. In case the VAR(p) process 
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contains unit roots then Πmatrix is singular. If this is the case it has reduced rank, that is rank (Π) = r < n. 

We denote the rank of a matrix with the symbol r. We can distinct three cases: 

I. rank(Π) = n, which means that all n linearly independent combinations must be stationary. This 

could happen only if deviations of yt around the deterministic components are stationary. 

II. rank(Π) = 0.This implies that Π = 0 and Yt is I(1) and that cointegration doesn’t exist. In such a case 

the VECM(p) model could be represented by a VAR(p-1) in first differences such as: 

 

ΔYt = ΦDt + Γ1ΔYt-1 + … + Γp-1ΔYt-p+1 + ut             (3.53) 
 

III. 0 < rank(Π) = r<n. Here we have that Yt is I(1) with r linearly independent cointegrating vectors and 

n – r common stochastic trends 

    Because of the fact that Π matrix has a rank r it can be decomposed as the following product: 

                             Π= αβ΄                                                  (3.54) 

    Where αis an (nxr) matrix and β΄is an (r x n)matrix with rank(α) = rank(β) = r. Then the β΄matrix 

designates the span of the cointegrating space such that β΄Yt-1 are the r cointegrated variables, β΄contains the 

coefficients of the cointegrating vectors and αis called loading or adjusted matrix and denotes the speed of 

adjustment to the long run equilibrium of the error correction terms. So, we can re-write the VECM(p) as: 

ΔYt = ΦDt + αβ΄Yt-1 + Γ1ΔYt-1 + … + Γp-1ΔYt-p+1 + ut.                    (3.55) 

Where β΄Yt-1~ I(0) since β΄ is the matrix of cointegrating vectors. 

At this point, we can notice that the factorization of Π matrix as a product of Π = αβ΄ is not uniquely 

identified. This is obvious because of the fact that for any r x r nonsingular positive definite matrix H we 

have that  

αβ  ́= αΗΗ-1β  ́= (αΗ)(βΗ-1΄) = α*β*  ́                       (3.56) 

Thus, we understand that the factorization of Π helps us to identify the space spanned by the 

cointegrating relations. Further restrictions should be taken in order to identify the unique values of αand β΄. 

   Briefly, the Johanen’s methodology consists of the following steps: 

 First we specify a VAR(p) model with the variables of interest and then estimate it.  

 Then we construct likelihood ratio tests for the rank of Π in order to find the exact number of 

cointegrating equations, 

 We could impose normalization and further restrictions on the cointegrating vectors in our model 

(based on economic theory), 

 Finally, we calculate VECM(p) with maximum likelihood. 

    According to Johansen (1995) we have to specify the deterministic terms in our VECM (p) 

beforehand. The deterministic term could have the following form: 

ΦDt = μt = μ0 + μ1t 

    The deterministic behavior of the model can be distinct in five cases which are the following: 

1. µt = 0, which means that we do not have a constant term. Then the restricted VECM is in the form 

of: 

 

∆Yt= αβ΄Yt−1 + Γ1∆Yt−1+ … + Γp−1∆Yt−p+1 + ut,                               (3.57) 
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All the variables in Yt are I(1) without drift and the cointegrating relations β΄Yt have mean zero. 

This case is a theoretical approach and it does not appear into empirical research. 

 

2. µt = µ0 = αρ0, which means that the constant is restricted. Thus, the restricted 

VECM (p) is: 

 

∆Yt= α(β΄Yt−1 + ρ0) + Γ1∆Yt−1+ … + Γp−1∆Yt−p+1 + ut ,                     (3.58) 
 

Again the variables in Yt are I(1) without drift and the cointegrating relations β΄Yt have non-zero 

mean ρ0. 

 

3. µt = µ0, which means that the constant is unrestricted. Then the VECM is: 

 

∆Yt = µ0 + αβ΄Yt−1 + Γ1∆Yt−1 +…+ Γp−1∆Yt−p+1 + ut,                      (3.59) 
 

The variables in Yt are I(1) with a drifting vector µ0 and the cointegrating relations β΄Yt may have a 

non-zero mean. This case is commonly used in applied research. 

 

4. µt= µ0+αρ1t, which means that the linear trend is restricted. Then the restricted form of the VECM 

is: 

 

∆Yt = µ0 +α(β΄Yt−1 + ρ1t) + Γ1∆Yt−1+… +Γp−1∆Yt−p+1+ut,              (3.60) 

 
The variables in Yt are I(1) with drift vector µ0 and the cointegrating relations β΄Yt have a linear 

trend term ρ1t. 

 

5. The last case is that of a quadratic trend: µt= µ0+µ1t, which means that we have an unrestricted 

constant and trend. Thus, the form of the unrestricted VECM is the following one: 

 

∆Yt= µ0 +µ1t +αβ΄Yt−1 +Γ1∆Yt−1 + … +Γp−1∆Yt−p+1 +ut,                  (3.61) 

 
Again the variables in Yt matrixare I(1) with a linear trend (quadratic trend in levels) and the 

cointegrating relations β΄Yt have a linear trend. 

 

In order to estimate the parameters of our VECM(p) (8) we will use the maximum likelihood 

estimation technique for the cointegration vectors and the other vector autoregressive parameters which is 

developed by Johansen (1988), Johansen (1991) and Johansen and Juselius (1990). In this section we will 

describe briefly the procedure for more details a more thorough presentation is given in Johansen (1995). 

The Johansen procedure uses canonical correlation analysis and assumes that the errors of the VAR(p) 

model are Gaussian . This analysis is used due to the fact that our purpose is to reduce the information 

content of our sample of T observations in the K-dimensional space to a reduced dimensional of r 

cointegrating vectors. Thus, canonical correlation analysis determines the extent to which the 

multicollinearity in the data will allow such a smaller r-dimensional space.  

First of all, we have to estimate 2 auxiliary regressions with OLS (ordinary least squares) method. 

The first one is that of ΔYt (first differences) which is regressed on lagged differences of Yt. Then we keep 
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the residuals of the above regression and we denote them with R0t.  In the second set of auxiliary 

regressions, Yt−p (the level form) is regressed on the same set of regressors. In this case, the residuals are 

assigned as R1t. So our regression equation is reduced to the following one: 

 

R0t = αβ΄R1t + ut                                                                       (3.62) 
 

Then we define the product moment matrix of sums of squares and sums of products of Rot and Rit 

(each one of them is n x n dimensional) : 

 

(
𝑆00 𝑆01

𝑆10 𝑆11
) 

The above mentioned matrix could be calculated from the following formula: 

 

𝑆̂ij = 
1

𝑇
∑ 𝑅𝑖𝑡

𝑇
𝑡=1 𝑅́𝑗𝑡with i, j = 0, 1                         (3.63) 

Johansen (1991) shows that the asymptotic variance of β΄Rit isβ΄ Σ11β and the asymptotic variance of 

Rot is Σ00 and their asymptotic covariance matrix is β ΄Σ10. In this case Σ00, Σ10 and Σ11 are denoting the 

population estimates of S00, S10 and S11. Subsequently, we could maximize the likelihood with respect to the 

loading matrix α by holding β constant and then as a second step maximize αwith respect to β. Then we will 

end up with the following notation with the loading matrix: 

𝑎 ̂΄ = (β΄S11β)-1β΄S10                                                   (3.64) 

   The 𝑎 ̂΄ is an (r x n) matrix so the maximized likelihood function is given by: 

𝐿(𝛽)
−2

𝛵  = |S00 – S01β(β΄S11β)-1β΄S10|                           (3.65) 

    The process of maximization of the above likelihood function with respect to βmeans that we have 

to minimize of the determinant with respect of β. More clearly we can achieve this by solving the below 

classical eigenvalue problem: 

|S10S00
-1S01 – λS11| = 0                                                  (3.66) 

   Otherwise, we can modify the above equation and find the eigenvalue of: 

|S11
-1S10S00

-1S01 - λI| = 0                                                       (3.67) 

where I assigns the identity matrix 

We notice that the roots of the above equation are the r canonical correlations between R1t.and R0t. In 

other words, we seek those linear combinations of Yt-1 that are highly correlated with linear combinations of 

ΔYt. If we assume that λi are the canonical correlations given by solving equation the above equation, then 

(1 - λi) are the eigenvalues of (I - S11
-1S10S00

-1S01). Because of the fact that the value of the determinant of 

any matrix is equal to the product of its eigenvalues we can denote the following equation: 

             ∏ (1 − 𝜆𝑖
𝑛
𝑖=1 ) = | I - S11

-1S10S00
-1S01| = |S11 – S10S00

-1| / |S11|        (3.68) 

   By using the following determinant identity formula: 

|C – B΄A-1B| = |A – BC-1B΄| * |C| / |A|                          (3.69) 
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in which we assume that C = S00, A = β΄S11β and B = β΄S10 we could transform (3.69) and get: 

|S00 – S01S11
-1S10| / |S00|                                                 (3.70) 

   Then we can maximize the likelihood function which is given by: 

𝐿𝑚𝑎𝑥
−2/𝑇

 = |S00|*∏ (1 − 𝜆𝑖)𝑛
𝑖=1 ,                                         (3.71) 

Where λi = canonical correlations. In order to determine the number of CI vectors Johansen suggested two 

likelihood ratio tests. The trace test and maximum eigenvalue test. The trace test is a likelihood-ratio test 

statistic of the null nested hypothesis that there are at most r cointegrating vectors: 

H0(r): r = r0 vs. H1(r0): r>r0 , 

and the statistic is given from: 

LR trace(r0) = -T ∑ (1 −𝑛
𝑖=𝑟+1 𝜆𝜄̂),                                         (3.72) 

where 𝜆𝑟+1̂, … , 𝜆𝑝̂ are the n –r smallest eigenvalue of the equation (3.66). We can decompose the (n x n) 

matrix S11by using Cholesky decomposition into a product of a non-singular (n xn) matrix C in the form of 

S11 = CC΄. Then (18) can be transformed into: 

|λΙ – C-1S10S00S01C
-1| = 0,                                                      (3.73) 

    Johansen (1988) has tabulated critical values for the test statistic in Equation (3.66) for various 

quantiles and up to five cointegration relations; i.e., r =1,… , 5. Because of the existence of unit roots the 

distribution of Ltr statistic is not chi-square it is a function of standard Brownian motions. 

   Then we proceed with Johansen’s Maximum Eigenvalue Statistic with a similar likelihood ratio statistic 

for the hypotheses: 

H0(r0): r = r0vs. H1(r0): r0 = r0 + 1 

   The maximum eigenvalue statistic, is given by: 

LR max(r0)= −T ln(1 −𝜆𝑟0+1̂)                                           (3.74) 

Similar with the trace statistic, the asymptotic null distribution of LRmax(r0)is not chi-square but 

instead is a complicated function of Brownian motion, which depends on the dimension n − r0 and the 

specification of the deterministic terms. Critical values for this distribution are tabulated in Osterwald-

Lenum (1992) for the aforementioned five trend cases discussed previously. 
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Chapter 4 

4.1 Stationarity tests 
 

    We begin our presentation in this chapter by performing ADF (Augmented Dickey Fuller test) and 

PP (Phillips – Perron) tests for stationarity. A prerequisite for Cointegration analysis is that all of our 

variables under study must be in the same order of integration. Thus, our first step is to proceed with our 

aforementioned statistical tests in order to find if that holds true. We used also PP test because of the fact 

that ADF tends to identify unit roots in marginal cases such as a coefficient between 0.95 and 0.99. 

Furthermore, we have to identify the optimal lag length for each variable in order to implement the statistical 

testing rigorously. T 

    The information criterion that we used is the Akaike (AIC). The optimal number of lags is the one 

that minimizes the value of the Akaike information criterion or put it differently minimize the residual sum 

of squares. As we mentioned in the previous chapter, both ADF and PP are testing the null hypothesis of 

non-stationarity (presence of a unit root) against the alternative hypothesis of stationarity. Also, we included 

an intercept and a deterministic trend parameters in the log-level form of all variables. It is worth mentioning 

that due to the presence of strong seasonality we seasonally adjust the variables LSTOCKS and LOPEC with 

the X-13ARIMA-SEATS technique. 

Level No. of lags ADF (drift) ADF (drift & trend) PP (drift) PP (drift & trend) 

LN 1 0.2482 0.2051 0.3863 0.3496 

LSHALE 4 0.6423 0.8126 0.6226 0.9651 

LSTOCKS 7 0.2690 0.0624 0.6036 0.7836 

LGSC 1 0.4910 0.2128 0.6139 0.3253 

LTWDI 7 0.9086 0.7880 0.8747 0.6557 

REA 4 0.0171 0.0607 0.0788 0.2243 

LOPEC 0 0.4661 0.0911 0.3940 0.1713 

 Figure 4.1: Unit root tests for all variables in log form. P-values below 5% rejects the null hypothesis of the existence of unit 

root. 

 

1st diff. No. of lags ADF (no drift) ADF (drift) PP (no drift) PP (drift) 

ΔLN 0 0.0000 0.0000 0.0000 0.0000 

ΔLSHALE 8 0.0000 0.0000 0.0000 0.0000 

ΔLSTOCKS 2 0.0003 0.0037 0.0000 0.0000 

ΔLGSC 0 0.0000 0.0000 0.0000 0.0000 

ΔLTWDI 1 0.0000 0.0000 0.0000 0.0000 

ΔREA 3 0.0000 0.0000 0.0000 0.0000 

ΔLOPEC 0 0.0000 0.0000 0.0000 0.0000 

 Figure 4.2: Unit root tests for all variables in Δlog form. P-values below 5% rejects the null hypothesis of the existence of unit 

root. 

    Obviously, our variables are not stationary in their level form but they are stationary in first 

differences. Hence, we conclude that they are I(1) stationary. 
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4.2 Engle – Granger procedure 
 

    Because of the fact that our variables are I(1) stationary we should examine if they are cointegrated. 

More precisely we are testing if there is a long run equilibrium between those variables. The first method 

that we will use is the Engle – Granger procedure which is also known as two step method. In the first step 

we have to calculate with OLS a static regression which is consisted of NYM as the dependent variable. The 

model is as follows: 

LnNYM =β0 + β1LnSHALE + β2LnOPEC + β3REA + β4LnSTOCKS +                                 

β5LnGSCI + β6LnTWDI + β7TREND                

   The Ln operator denotes that our variables are in a logarithmic form except REA which is expressed 

as a percentage and the deterministic Trend variable. After estimating the static regression which represents 

the long run relation among the variables we notice that there are some signs of spurious regression. The 

regression is spurious when we regress one random walk with other independent random walks. The fact 

that is spurious is because the regression will most likely indicate a non-existing relationship. A convenient 

way to distinct a spurious regression is if the adjusted R2 is higher than the Durbin-Watson statistic which is 

the case in our static model. Hence we have to examine if the residual is nonstationary (cannot reject the null 

hypothesis of the unit root test). If this is not the case and our residuals are stationary then a long run 

relationship of lower order exists and we have a cointegrating relationship (or an ECM according to 

Granger’s representation theorem). 

 

Variables Coefficients Std. Error Probability Chi sq. 

C 18.04 a 4.59  

SHALE -0.23 a 0.05  

OPEC -0.50 0.35  

REA 0.27 0.18  

STOCKS -0.52 0.54  

GSCI 0.79 a 0.08  

TWDI -2.09 a 0.24  

TREND 0.01a 0.001  

    

Breusch-Godfrey   0.0000 

Breusch-Pagan   0.0138 

Adj R2 0.9512   

Durbin Watson 0.6862   

Shapiro-Wilk 0.1633   
 aIndicates significance at all levels (1%, 5% and 10%). 

Table 4.1: Static model 

  

The statisticaly significant variables at all levels of significance are SHALE, GSCI, TWDI and the 

TREND. We use the TREND as a dummy due to the fact that there are some independent variables such as 

SHALE which have a deterministic trend. The signs of the regression are correct and align with the 

economic theory as the supply side factors such as SHALE and OPEC have a negative sign while the proxy 

factor for the demand side REA has a positive sign which denotes that if demand for oil increases so will the 

price. The financial index GSCI which measures the performance of the commodity market increases as the 

price of oil  increases while OECD STOCKS decreases in an effort to cover OECD consumption as the price 

of oil increases. Finally, the TWDI variable has a correct sign which comlies with economic theory.  
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 From a statistical testing perspective, we have already mentioned the relationship between adjusted 

R2 and the DW statistic. Furthermore, Breusch-Godfrey statistical test for autocorrelation in residuals does 

not accept the null hypothesis of no autocorrelation in residuals a fact that is obvious from the figure 2. The 

persistent autocorrelation parallel with the fact that the Breusch-Pagan statistic also does not accept the null 

hypothesis of no heteroscedasticity among the residuals leads as to the assumption that additional unit root 

testing has to be done in the residuals before reaching any conclusion. Hence, we conducted ADF test to 

examine the null hypothesis which supports the existence of a unit root which means that the residuals of the 

static model are non-stationary which finally supports the spurious regression hypothesis. The opposite will 

denote the existence of a cointegrating relationship. 

 

 

 

 

Figure 4.3: Plot of residuals of the static model. 

 

The value of ADF test for the residuals without including a constant and trend (because we have already 

included a constant in the static regression) is -4.6618 which rejects the null hypothesis of unit root (-

4.6618<-3.46 for 1% level of significance). Thus, our residuals are stationary and a long run relation exists 

between our variables. This supposition is in acceptance with the visualization of the residuals behavior in   

figure 2. In this case we proceed with the second step of the Engle-Granger residual based Cointegration 

method which denotes that we have a unique cointegrating relationship. Moreover, because of the existence 

of Cointegration the vector OLS estimate 𝛽̂ (n x 1) is superconsistently which means that it converges in a 

higher rate T than the usual OLS estimator Τ1/2 in I(0) cases to the true parameter β.  
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Variables Coefficients Std. Error Probability Chi sq. 

C 

Δ(SHALE) 
0.003 
0.53b 

0.007 
0.25 

 

Δ(OPEC) 0.45 0.46  

Δ(REA) 0.34 0.20  

Δ(STOCKS) 0.90 0.92  

Δ(GSCI) 0.73 a 0.09  

Δ(TWDI) -1.63 a 0.44  

Δ(NYMt-2) 0.16 a 0.05  

Δ(SHALEt-1) 

ECT-1 

-0.46c 
-0.38 a 

0.25 
0.06 

 

    

Breusch-Godfrey   0.8084 

Breusch-Pagan   0.3436 

Adj R2 0.6610   

Durbin Watson 2.0485   

Shapiro-Wilk 0.9844   
aIndicates significance at all levels (1%, 5% and 10%). 
bIndicates significance at levels 5% and 10%. 
cIndicates significance at level 10%. 

Table 4.2: Error correction model. 

 

 From table 4.2 it is evident that our Error Correction Model (ECM) has the following form: 

ΔLnNYM =β0 + β1ΔLnSHALE + β2ΔLnOPEC + β3ΔREA + β4ΔLnSTOCKS + β5ΔLnGSCI + 

β6ΔLnTWDI  + β7ΔLnSHALEt-1 + β8ΔLnNYMt-1 + α1ECMt-1 

The ECM term is a lagged term in order to find the state of error correction of the model. That means 

that we want to deduce if the coefficient of the error correction mechanism has a negative sign and if it is 

statistically significant. This means that the model is correcting with a pace that is equal to 0.38% during a 

month (because we use monthly frequency data) which is the value of the a1 of the ECM term. From the 

other independent variables we see that the statistically significant ones are β5 a positive sign which 

complies with the theory. That is the case with the TWDI variable which is elastic and with a negative sign 

and with the lagged term of SHALE and NYM which are inelastic. Those variables have the ability to adjust 

in the short run while the others don’t. The fact that the SHALE variable at time t has a positive sign is 

really odd because as production grows, price tends to fall. An explanation for this might be the fact that it is 

not an easy case to adjust the scheduled production of crude oil within the same time interval. The fact that 

the lagged term is negative and significant supports this point of view. The other factors are statistically 

insignificant in this analysis especially in the case of OPEC and STOCKS. We used lagged variables due to 

the fact that time series in general are very susceptible to autocorrelation issues. 
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Figure 4.4: Plot of residuals of ECM. 

 

 The residuals of ECM as its concluded from the statistical testing, are i) homoscedastic due to the 

fact that Breusch-Pagan statistic supports the null hypothesis of homoscedasticity ii) uncorrelated as it is 

depicted in figure 2 and iii) they are normally distributed around a zero mean which is an indispensable 

factor in hypothesis testing procedure because of the fact that Central Limit Theorem assumes normality. 

Finally, the adjusted R2 has an acceptable rate which means that the model has the ability to explain 

approximately 66% of the variability of our dependent variable NYM while the other percentage remains 

unexplainable and is represented through the residuals. 

 As a conclusion, we could derive the fact that there is an existence of a long run relationship between 

the variables which is expressed through the a1 coefficient. On the other hand, there are some limitations 

with Engle Granger procedure in our case. The fact that we used many independent variables made us 

assume if there are existed more cointegrating relations. This hypothesis cannot be tested with the above 

method because it is only limited to the estimation of a unique cointegrating relationship. For that reason we 

will continue our analysis with the Johansen procedure which allows for more cointegrating vectors.   

 

4.3 Johansen procedure 
 

 In order to make use of the Johansen procedure properly first we have to estimate a VAR model in 

levels. Initially, we used the information criteria to find the optimal number of lags to minimize the sum of 

squared errors. In table 3 below we notice that the majority of the criteria complying that the number of lags 

to be used in the model is two. 
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 1 2 3 4 

AIC -55.630 -56.389 -56.170 -56.052 

HQ -55.048 -55.354 -54.683 -54.112 

SC -54.197 -53.842 -52.508 -51.276 

Number of Lags 

 AIC HQ SC  

 2 2 1  

Table 4.3: Appropriate number of lags for VAR. 

 

 Subsequently, we continue with the estimation of VAR (2) with the OLS method. Before continuing 

with our results, we will conduct a likelihood ratio test that is available in urca package in R which is testing 

the null hypothesis for not including a linear trend in VAR. The test statistic is distributed as χ2 with (p-r) 

degrees of freedom and for three cointegrating vector. Thus, 4 degrees of freedom in our case. 

 

 Test statistic p - value 

LR test 9.75 0.04 

Table 4.4: LR test for linear trend in VAR. 

 

 The statistical test cannot accept the null hypothesis for 5% level of significance so we conclude that 

we have to insert a deterministic trend variable in our model. From the whole system of VAR model we will 

present the part which is related with our dependent variable LNYM but the residual testing is for the whole 

VAR system of equations. Also, we have to examine the stability of the model. This could be tested from the 

roots of characteristic polynomial. As we notice, all roots are inside the unit circle although marginally. The 

roots are depicted in the table below: 

  

 

 

Roots              

0.97 0.97 0.97 0.78 0.78 0.76 0.66 0.66 0.51 0.51 0.47 0.21   

Table 4.5: Roots of the characteristic polynomial. 

 

 

Then we proceed with the estimation of VAR (2) and present the results in the following table: 

. 

Variables Coefficients Std. 

Error 

 t value p value 

C 

Trend 

14.29 

-0.0002 

4.50 

0.002 

3.18 

-0.09 

0.00b 

0.93 

LNYMt-1 0.67 0.11 5.92 0.00a 

LSHALEt-1 -0.22 0.39 -0.55 0.57 

LSTOCKSt-1 -1.75 1.36 -1.28 0.20 
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LGSCIt-1 0.59 0.10 5.57 0.00a 

LTWDIt-1 -0.63 0.58 -1.09 0.27 

REAt-1 0.58 0.27 2.10 0.04c 

LOPECt-1 0.03 0.62 0.05 0.96 

     

LNYMt-2 -0.17 0.11 1.53 0.12 

LSHALEt-2 0.19 0.38 0.51 0.61 

LSTOCKSt-2 0.38 1.41 0.27 0.78 

LGSCIt-2 -0.69 0.10 -6.84 0.00a 

LTWDIt-2 -0.20 0.59 0.34 0.73 

REAt-2 -0.48 0.29 -1.65 0.10 

LOPECt-2 0.03 0.61 0.06 0.95 

 

Adj. R2 

 

0.96 

   

PT.asympt. (mult.)    0.54 

ARCH LM (mult.)    0.51 

Normality (mult.)    0.34 

Table 4.6: VAR model for LNYM as dependent 

 

 

 

Figure 4.5: Plot of residuals of VAR (2) as a dependent variable. 
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Figure 4.6: CUSUM test for the stability of VAR(2). 

 

As we denote from the results, the statistically significant parameters are the lagged variable of LNt-1, 

LGSCI t-1 and REA t-1 and the signs comply with economic theory. On the other hand, the independent 

variables that are t-2 lags before have absurd signs but are statistically insignificant except LGSCI  t-2 

parameter which has a negative sign. The CUSUM tests confirms the stability of the model and the 

statistical tests for autocorrelation, heteroscedasticity and normality are in compliance with the Gaussian 

white noise residuals. Because of the fact that our variables are I(1) stationary and the marginal case of the 

roots of characteristic polynomial we will continue with VECM(1) (we lose one lag due to the conversion 

from VAR in levels to VECM). 

Initially, we have to estimate the number of cointegrating relations in the model. This could be 

possible by sequential likelihood ratio testing from Johansen (1988) by using the trace test and the maximal 

eigenvalue test. The asymptotic null distribution of those likelihood ratio tests are not chi-square but instead 

is a multivariate version of the Dickey-Fuller unit root distribution which depends on the dimension 

(parameters p – cointegrating relations r) and the specification of the deterministic terms. The table below 

shows the results for both unrestricted constant and restricted trend cases (as mentioned in chapter 3) for 

both tests. 
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Rank Test Statistic 10% 5% 1% 

r ≤ 5 10.07 16.85 18.96 23.65 

r ≤ 4 20.88 23.11 25.54 30.34 

r ≤ 3 25.06 29.12 31.46 36.65 

r ≤ 2 34.73 34.75 37.52 42.36 

r ≤ 1 36.86 40.91 43.97 49.51 

r = 0 75.18 46.32 49.42b 54.71a 

Table 4.7: Cointegration rank: Maximal Eigenvalue Statistic (lambda max), with linear trend in cointegration 

 

Rank Test Statistic 10% 5% 1% 

r ≤ 5 18.59 22.76 25.32 30.45 

r ≤ 4 39.48 39.06 42.44 48.45 

r ≤ 3 64.53 59.14 62.99 70.05 

r ≤ 2 99.26 83.20 87.31 96.58a 

r ≤ 1 136.12 110.42 114.90 124.75a 

r = 0 211.31 141.01 146.76 158.49a 

Table 4.8: Cointegration rank: trace statistic, with linear trend in cointegration 

 

Rank Test Statistic 10% 5% 1% 

r ≤ 5 9.47 13.75 15.67 20.20 

r ≤ 4 15.62 19.77 22.00 26.81 

r ≤ 3 22.94 25.56 28.14 33.24 

r ≤ 2 34.85 31.66 34.40b 39.79 

r ≤ 1 66.24 37.45 40.30 46.82a 

r = 0 73.73 43.25 46.45 51.91a 

Table 4.9: Cointegration rank: maximal eigenvalue statistic (lambda max), without linear trend and with constant in 

cointegration 

 

 

Rank Test Statistic 10% 5% 1% 

r ≤ 5 14.09 17.85 19.96 24.60 

r ≤ 4 29.71 32.00 34.91 41.07 

r ≤ 3 52.64 49.65 53.12 60.16 

r ≤ 2 87.49 71.86 76.07 84.45a 

r ≤ 1 153.73 97.18 102.14 111.01a 

r = 0 227.47 126.58 131.70 143.09a 

Table 4.10: Cointegration rank: trace statistic, without linear trend and with constant in cointegration 

 

 From the above statistical tests we deduce that the appropriate number of cointegrating relations are 

3 except in the case of maximal eigenvalue with linear trend which gave 1 cointegrating relation. After 

estimating a VECM(1) for both one and three cointegrating relations for restricted trend and unrestricted 

constant we find the most robust one to be trace statistic with trend in cointegrating relationship. The fact 

that we have three β΄yt relations is reinforced from the graphical representation of them. 
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Figure 4.7: All three cointegrating relations. 

 

 It is worth mentioning that the deterministic trend variable in cointegrating equations is due to the 

2008 – 09 global recession. Furthermore, all the above depicted relations are stationary hence, we have a 

reduced rank regression of matrix Π (as we mentioned in chapter 3) which has a rank of 3. Below we present 

the error correction parameter for the whole VECM (1) system for all variables. All the statistically 

significant variables for 5% level of significance are correcting in the long run relations. Those parameters 

are the loading matrix α which is giving the rate of error correction towards long run equilibrium. We obtain 

the vector α from the factorization of Π matrix into αβ΄ vectors. The alpha vector as we aforementioned is 

the rate of correction while beta vector denotes the space spanned of the long run stationary cointegrating 

relations. 

 

Variables ECM1 ECM2 ECM3 

LNYM -0.26a -0.09b -0.29 

LSHALE 0.01 -0.05a -0.19a 

LSTOCKS 0.006c 0.004 0.005 

LGSCI -0.20a -0.02 0.06 

LTWDI 0.01 -0.01 -0.04 

REA -0.04a -0.04a -0.23a 

LOPEC -0.01 0.004 0.03 

Table 4.11: Trace with trend model 

Finally, for beta matrix we use the Phillips triangular representation and identify the relationships by 

using two zero restrictions (because we have three cointagrating relations r-1) in each relation and normalize 

the parameters LN, LSHALE and LSTOCKS of ECM1, ECM2 and ECM3. Below we present the beta 

matrix: 
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 ECM1 ECM2 ECM3 

LN 1 0 0 

LSHALE 0 1 0 

LSTOCKS 0 0 1 

LGSCI -0.44 2.49 -0.62 

LTWDI -0.25 2.42 -5.11 

REA 0.70 -11.6 3.38 

LOPEC 1.94 -3.29 0.46 

TREND -0.001 -0.04 0.004 

Table 4.12: VAR model for LNYM as dependent. 

 

 Consequently, after estimating with maximum likelihood the beta matrixes and identify them, we 

continue by estimating alpha. It is worth mentioning that if we identify beta differently we could end up 

with different estimate of alpha. On the contrary, the other estimates are exactly the same and could be 

estimated through OLS. Below we present the partial VECM (1) with the variable of interest LNYM as the 

dependent variable. 

 

Variables Coefficients Std. 

Error 

 t value p value 

ECM1 -0.26 0.05 -4.85 0.00a 

ECM2 -0.09 0.05 -1.96 0.05b 

ECM3 -0.29 0.21 -1.44 0.15 

C 10.61 2.91 3.65 0.00a 

ΔLNYMt-1 -0.12 0.11 -1.16 0.25 

ΔLSHALEt-1 0.07 0.37 0.21 0.84 

ΔLSTOCKSt-1 -1.01 1.37 -0.73 0.46 

ΔLGSCIt-1 0.62 0.09 6.56 0.00a 

ΔLTWDIt-1 -0.01 0.58 -0.02 0.98 

ΔREAt-1 0.55 0.29 1.87 0.06b 

ΔLOPECt-1 0.10 0.61 0.17 0.86 

     

Adj. R2 0.48    

PT.asympt. (mult.)    0.82 

ARCH LM (mult.)    0.57 

Normality (mult.)    0.57 

Table 4.13: VECM (1) of LNYM.. 

 

 Again the statistical testing in residuals for the whole system (multivariate testing) are in accordance 

with uncorrelated, homoscedasticity and normality principles.  The ECM parameters are correcting towards 

long run equilibrium because of negative sign and the first two are statistically significant. From all the other 

variables only intercept, ΔLGSCIt-1 and ΔREAt-1 are statistically significant. Those are the short run 

adjustments and both are inelastic and with positive sign which complies with theory. 

 

Restrictions on alpha matrix – weak exogeneity tests 

 

 In this section we will continue our analysis by imposing some restrictions to identify the alpha 

matrix. Because of the fact that we are considering all variables as endogenous, we need to conduct 
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sequential likelihood ratio tests to examine if some of them are (weakly) exogenous. The hypothesis that we 

will test is if zero restrictions on alpha holds. The restrictions are contained in the (p x m) A matrix such that 

according to Johansen (1982) H4:α = Aψ, where the elements of matrix ψ contain new unrestricted loadings. 

In order to test the validity of H4 : α = Aψ hypothesis given the H1 (r) which is our estimated model 

-2ln (Q;H4|H1(r)) = T ∑ 𝑙𝑛
1− 𝜆4.𝑖

1− 𝜆𝜄

𝑟
𝑖=1  

Which is asymptotically distributed as χ2 with r(K –m) degrees of freedom. We applied the aforementioned 

test to all variables and the A matrix was formed as follows: 

 A1 = 

[
 
 
 
 
 
 
1 0 0
0 0 0
0
0
0
0
0

1
0
0
0
0

0
1
0
0
0

0
0
0

0
0
0

0
0
0

0 0 0
1
0
0

0
1
0

0
0
1]
 
 
 
 
 
 

 

 The variables that we tested restrictions upon are with the following order: 

LNYM, LSHALE, LSTOCKS, LGSCI, LTWDI, REA, LOPEC, where m are the free parameters that are 

excluded from the exogeneity test and p are the number of parameters that we have. In our case the A is (7 x 

6). The following table presents the results from the likelihood ratio test. The null hypothesis is that the 

variable is zero thus exogenous against the alternative which is non-zero (endogenous). 

 

Variable Test stat. p value λ1 λ1 λ1 λ1 

H4.1 | H1 (r = 

3) 

30.23 0.00 0.3375 0.2451 0.1842 0.1540 

H4.2 | H1 (r = 3) 30.23 0.00 0.3375 0.2451 0.1842 0.1540 

H4.3 | H1 (r = 3) 15.8 0.00 0.3958 0.2346 0.2105 0.1752 

H4.4 | H1 (r = 3) 5.17 0.16 0.4391 0.2348 0.2161 0.1584 

H4.5 | H1 (r = 3) 7.25 0.06 0.4098 0.2448 0.2329 0.1493 

H4.6 | H1 (r = 3) 15.61 0.00 0.4123 0.2468 0.1764 0.1593 

H4.7 | H1 (r = 3) 5.14 0.16 0.4376 0.2392 0.2139 0.1740 

Table 4.14: Weak exogeneity test. 

 

 From the above results we conclude that the parameters LGSCI, LTWDI and LOPEC are weakly 

exogenous. The interpretation of such a result could be that in the causality analysis it is evident that the 

aforementioned variables cannot cause LNYM because the alpha loading matrix does not error correcting 

towards long run equilibrium. While the other independent variables do cause LNYM. 

 

Restrictions on beta matrix 

 

 In the same rationale as in the previous case of alpha we will continue with the identification 

procedure by testing linear restriction on the cointegrating long run vector vector beta.  Again we will 

proceed with likelihood ratio tests be testing the null H3 : β = H3Φ with H3 (p × s), Φ(s × r), and r ≤ s ≤ p, 

where p are the number of variables, s are the free parameters (those that we are not tested with zero 

restrictions each time) and r the number of cointegrating relations (in our case 3). Again we will construct 

the H3 matrix by imposing zero restrictions sequentially for every variable. An example of H3 matrix (in our 
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case is an 8x7 matrix because we are also including deterministic trend) for zero restriction in the second 

variable could be the following: 

H3 = 

[
 
 
 
 
 
 
 
1 0 0
0 0 0
0
0
0
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0
0
0

0
0
0

0 0
0 0
0 0

0 0 0 0
1
0
0
0

0
1
0
0

0 0
0 0
1 0
0 1]

 
 
 
 
 
 
 

 

and is based on the likelihood ratio test statistic: 

-2ln (Q;H3|H1(r)) = T ∑ 𝑙𝑛
1− 𝜆3.𝑖

1− 𝜆𝜄

𝑟
𝑖=1  

Again H1(r) denotes our unrestricted model. In the following matrix we present the results for each variable. 

 

Variable Test stat. p value λ1 λ1 λ1 λ1 

H3.2 | H1 (r = 3) 10.31 0.02 0.4285 0.2461 0.1876 0.1560 

H3.3 | H1 (r = 3) 2.52 0.47 0.4383 0.2469 0.2206 0.1664 

H3.4 | H1 (r = 3) 4.36 0.23 0.4238 0.2469 0.2295 0.1493 

H3.5 | H1 (r = 3) 20.09 0.00 0.3813 0.2353 0.2024 0.1496 

H3.6 | H1 (r = 3) 13.86 0.00 0.4210 0.2457 0.1764 0.1611 

H3.7 | H1 (r = 3) 3.2 0.36 0.4304 0.2410 0.2335 0.1749 

H3.8 | H1 (r = 3) 7.66 0.05 0.4279 0.2451 0.2059 0.1515 

Table 4.15: Testing restrictions on beta matrix. 

 

 From the above results we conclude that the variables LSTOCKS, LGSCI and LOPEC do not seem 

to fit in the cointegrating relation because we cannot reject the null hypothesis that they are zero. It is worth 

mentioning that these tests do not depend on the normalization of the Cointegration relations (Pfaff 2008). 

The absence of a compact theoretical background (like the ones tested for power purchasing parity from 

Johansen and Juselius (1992)) for testing restrictions leads us to test a simple hypothesis of zero restrictions 

sequentially for all the long run parameters in order to eliminate those that  could not affect LNYM. 

 Finally, we transform our VECM (1) to VAR(2) in order to examine the impulse response functions 

and the forecast variance decomposition for each variable as we mentioned in Chapter 3. More precisely we 

want to examine how the system behaves to an exogenous shock in innovations for 95% confidence interval. 

Since all variables in a VAR model depend on each other, individual coefficient estimates only provide 

limited information on the reaction of the system to a shock. In order to get a better picture of the model’s 

dynamic behavior, impulse responses (IR) are used. The departure point of every impulse response function 

for a linear VAR model is its moving average (MA) representation or Wold representation theorem (see 

Chapter 3). In our analysis in order to identify the shocks of a VAR model we used orthogonal impulse 

response .The basic idea is to decompose the variance-covariance matrix so that Σ=PP−1, where P is a lower 

triangular matrix with positive diagonal elements, which is often obtained by a Choleski decomposition. 

From this matrix it can be seen that a shock to one variable has a contemporaneous effect on others, but not 

vice versa. It is worth noting that the output of the Choleski decomposition is a lower triangular matrix so 

that the variable in the first row will never be sensitive to a contemporaneous shock of any other variable in 

the system and the last variable will be sensitive to shocks of all other variables. For that reason the outcome 

of Orthogonal Impulse Responses might be sensitive to the order of the variables. In our case we present the 
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order that we used during the previous restrictions on alpha and beta matrices. Next, we present the OIRF’s 

for all variables: 
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Figure 4.8: IRF’s for all variables. 
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It is clear that a shock of all independent variables affect our dependent variable LNYM during the 

one year horizon that we tested. The results are reasonable due the fact that supply shocks such as LOPEC 

and LSHALE have a negative effect in LNYM while REA and LGSCI have a positive effect. The variable 

LSTOCKS also are in accordance with the literature due to the negative effect that it has to LNYM. What is 

really significant is a standard deviation shock from LTWDI variable which seems to affect the price of 

crude oil in a more noteworthy way. Furthermore, it is worth mentioning that LGSCI is also affected with 

the same impact as in the case of LNYM. On the other hand, the other variables do not seem to be affected 

each other. 

 

 

Figure 4.9: FVD’s for all variables. 

A forecast error variance decomposition as we mentioned in chapter 3, is a way to quantify how 

important each shock is in explaining the variation in each of the variables in the system. Hence, it is equal 

to the fraction of the forecast error variance of each variable due to each shock at each horizon. For our 

variable of interest LNYM the results are in compliance with our VECM(1) due  to the fact that for a one 

year horizon the variable LTWDI plays a fundamental role for determining the price of LNYM while 

LGSCI although significant in the first months it decays thereafter. On the other hand, all the other variables 

appears to exert less influence in the settlement of the final crude oil price. The variables LTWDI,REA and  

LOPEC behave in a way that they explain they are own variability while LSHALE, LSTOCKS and LGSCI 

seems to be affected from LTWDI and LNYM. Those results are pretty much the same as in the case of 

IRF’S. 
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 CHAPTER 5   

 

Conclusions  
 

 In the present thesis we conducted a Cointegration analysis on crude oil price determinants for the 

period 2008 until 2018 in monthly frequency. The goal was to apply two different techniques based on 

single equation estimating method and system estimating method. In the first case we estimated a static 

model and then proceed with the ECM as denoted in Engle and Granger (1987) while in the second case we 

calculated a system of seven variables in a VAR form and then examine if Cointegration among them exists. 

The results showed that there were three cointegrating relations. We further continued our survey based on 

identification restriction in cointegrating vectors (beta matrix) and the loading vector (alpha matrix) in order 

to determine if there existed any exogenous variable. We find that Goldman Sachs Commodity Index, OPEC 

and Trade Weighted US dollar Index are exogenous to the system. Hence, they are not correcting to a long 

run equilibrium making them purely exogenous variables. Also, we find that the role of OPEC doesn’t seem 

to affect NYMEX crude oil price and that could be attributed to the fact that WTI is more like a regional 

benchmark (due to the fact that supply is land-locked and relatively expensive to ship to certain parts of the 

globe) rather than BRENT which is a global benchmark (approximately two-thirds of all crude contracts 

around the world reference Brent Blend). On the other hand, shale oil plays an important role in shaping 

NYMEX price in the long run. This result comes as no surprise due to the fact that shale oil production is 

used as a hedging tool for US contrary to production cuts or oversupplies of other producing countries. In 

the short run only real economic activity (a proxy used for world demand) parallel with Goldman Sachs 

Commodity Index seems to affect crude oil price. Their coefficients appears to be inelastic and statistically 

significant. Inelasticity denotes that the coefficients where below unity in responding to a percentage change 

of the independent variable. The positive signs where in compliance with economic theory as both 

independent variables are positively correlated with oil price. Finally, we represented our findings 

graphically by examining the impulse responses which enlighten us about how the system reacts to an 

exogenous standard deviation shock of one variable and variance decompositions which depicted the 

variability that could be explained during one year horizon from each variable. Our analysis was 

implemented using R programming language and with the usage of packages urca, vars, dynlm, lmtest and 

ggplot2. 
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Appendix 

R code 

################ time series ############################## 

nymex.ts=ts(nymex,start=c(2008,1),end=c(2018,12),frequency = 12) 

opec.ts= ts(opec,start=c(2008,1),end=c(2018,12),frequency = 12) 

shale.ts= ts(shale,start=c(2008,1),end=c(2018,12),frequency = 12) 

stocks.ts= ts(stocks,start=c(2008,1),end=c(2018,12),frequency = 12) 

twdi.ts= ts(twdi,start=c(2008,1),end=c(2018,12),frequency = 12) 

rea.ts=ts(killian,start=c(2008,1),end=c(2018,12),frequency = 12) 

gsci.ts=ts(gsci,start=c(2008,1),end=c(2018,12),frequency = 12) 

############### seasonality ################################# 

library(seasonal) 

 

sstocks=seas(stocks.ts) 

stockssa=final(sstocks) # seasonally adjusted values 

sopec=seas(opec.ts) 

opecsa=final(sopec) # seasonally adjusted values 

################ logs ######################################## 

lnymex=log(nymex.ts) 

lopec=log(opecsa) 

lshale=log(shale.ts) 

lstocks=log(stockssa) 

ltwdi=log(twdi.ts) 

ln=log(ln.ts) 

lgsci=log(gsci.ts) 

################### Engle Granger ############################# 

library(vars) 

library(urca) 

 

ur.ln=ur.df(ln,type = "trend",selectlags = "AIC") 

summary(ur.ln) 
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# create trend variable 

 

trend=seq_along(lwti) 

length(lwti) 

# step1 long run model 

engle_granger=lm(ln ~ lshale +  lopec + lgsc + lwcons + lstocks + ltwdi  ) 

summary(engle_granger) 

print(AIC(engle_granger)) 

#NeweyWest(engle_granger, lag = NULL, order.by = NULL, prewhite = TRUE, adjust = FALSE, 

diagnostics = FALSE,  

#          sandwich = TRUE, ar.method = "ols",  verbose = FALSE) 

summary(ur.df(lnymex,type = "none",selectlags = "AIC")) 

summary(ur.df(lwcons,type = "trend",selectlags = "AIC")) 

 

dwtest(engle_granger) 

bptest(engle_granger) 

bgtest(engle_granger,order = 1, order.by = NULL, 

       type = c("Chisq")) 

ggAcf(resid, lag.max = 12, type = "correlation", plot = TRUE) 

ggAcf(resid, lag.max = 12, type = "partial", plot = TRUE) 

 

#residuals 

resid=engle_granger$residuals 

urresid= ur.df(resid,type = "none",selectlags = "AIC") 

summary(urresid) # I(O) 

resid.ts=ts(resid,start = c(2008,1), end=c(2018,12),frequency = 12) 

 

# step2 error correction model 

library(dynlm) 

 

# with lags 



A COINTEGRATION ANALYSIS OF NYMEX CRUDE OIL PRICE                                            Tasiopoulos Konstantinos 

 

  
Page 56 

 

  

dtwdi=diff(ltwdi) 

dstocks=diff(lstocks) 

dshale=diff(lshale) 

dopec=diff(lopec) 

dwcons=diff(lwcons) 

drea=diff(reasa) 

dn=diff(ln) 

dgsci=diff(lgsci) 

mdl1= dynlm(dn ~ dstocks  + dshale  + dtwdi + dwcons   + dgsci + dopec  

               + lag(dn,k=-2)   + lag(resid.ts,k=-1)) 

summary(mdl1) 

print(AIC(mdl1)) 

 

library(lmtest) 

library(tseries) 

library(portes) 

 

LiMcLeod(mdl1$residuals,lags=seq(1,12,1),order=0, squared.residuals = T) #,SquaredQ=FALSE 

LjungBox(mdl1$residuals,lags=seq(1,12,1),order=0) 

bgtest(mdl1, order = 3, order.by = NULL, 

       type = c("Chisq")) 

bptest(mdl1,studentize = T) 

ggAcf(mdl1$residuals, lag.max = 12, type = "correlation", plot = TRUE) 

ggAcf(mdl1$residuals, lag.max = 12, type = "partial", plot = TRUE) 

dwtest(mdl1) 

hist(mdl1$residuals) 

shapiro.test(mdl1$residuals) 

####################### VAR ############################### 

library(vars) 

library(ggfortify) 

library(urca) 
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nv=data.frame(ln,lshale,lstocks,lgsc,ltwdi,rea,lopec) 

dnv=data.frame(diff(ln),diff(lshale),diff(lstocks),diff(lgsc),diff(ltwdi),diff(rea),diff(lopec)) 

#descriptive stats 

library(e1071) 

 

skewness(diff(ln)) 

sd(diff(lshale)) 

var(diff(lstocks)) 

kurtosis(diff(ln)) 

 

# correlation matrix 

 

library("PerformanceAnalytics") 

chart.Correlation(nv, histogram=TRUE, pch=19) 

 

### UNIT ROOT TEST ### 

 

urln=ur.df(diff(lshale),type = "drift",selectlags = "AIC") 

summary(urln) 

ppln=ur.pp(ln,type = "Z-alpha",model = "constant") 

summary(ppln) 

 

library(ggplot2) 

# level form 

lf=data.frame(ln.ts,shale.ts,stocks.ts,gsc) 

objectlf=ts(lf,start=c(2008,1),end=c(2018,12),frequency = 12) 

# graph 

autoplot(objectlf, facets=TRUE) + xlab("years") + ylab("level form")  

+ ggtitle("variables")  + xlim("date") 

 

#2 

lf2=data.frame(twdi.ts,opec.ts,rea.ts) 
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objectlf2=ts(lf2,start=c(2008,1),end=c(2018,12),frequency = 12) 

# graph 

autoplot(objectlf2, facets=TRUE) + xlab("years") + ylab("level form")  

+ ggtitle("variables")  + xlim("date") 

 

object=ts(dnv,start=c(2008,1),end=c(2018,12),frequency = 12) 

# graph 

autoplot(object, facets=TRUE) + xlab("years") + ylab("dlog")  

+ ggtitle("variables")  + xlim("date") 

 

# create date object 

date=seq(as.Date("2008-1-1"), as.Date("2018-12-1"), by = "months") 

 

# 2nd group 

nv222=data.frame(diff(ltwdi),diff(rea),diff(lopec)) 

object2=ts(nv222,start=c(2008,1),end=c(2018,12),frequency = 12) 

# graph 

autoplot(object2, facets=TRUE) + xlab("years") + ylab("dlog")  

+ ggtitle("variables")  + xlim("date") 

############################# VAR  

var=VAR(nv, p = 2,type =c("const"),season = NULL, exogen = NULL) 

summary(var) 

plot(var) 

print(AIC(var)) 

serial.test(var, lags.pt = 16, type = "PT.asymptotic") 

normality.test(var) 

arch.test(var,lags.multi = 2,multivariate.only = T) 

roots(var) 

#############################  VECM ################################################ 

# trend in ci 

 

cajo_eigen=ca.jo(nv, type = c("eigen"), ecdet = c("const"),  K = 2, 
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                 spec=c("transitory"), season = NULL, dumvar = NULL) 

 

cajo_trace=ca.jo(nv, type = c("trace"), ecdet = c("const"),  K = 2, 

                 spec=c("transitory"), season = NULL, dumvar = NULL) 

# constant in ci 

 

cajo_eigen2=ca.jo(nv, type = c("eigen"), ecdet = c("trend"), K = 2, 

                  spec=c("transitory"), season = NULL, dumvar =NULL) 

 

cajo_trace2=ca.jo(nv, type = c("trace"), ecdet = c("trend"), K = 2, 

                  spec=c("transitory"), season = NULL, dumvar =NULL) 

 

# with const 

summary(cajo_eigen)#3 

summary(cajo_trace)#3 

 

# trend 

summary(cajo_eigen2)#1 

summary(cajo_trace2)#3 

 

# models with trend 

cajorls_eigen2=cajorls(cajo_eigen2,r=1,reg.number = NULL) ######## const 3 

summary(cajorls_eigen2$rlm)#1 

 

cajorls_trace2=cajorls(cajo_trace2,r=3,reg.number = NULL) ######## const 3 

summary(cajorls_trace2$rlm)#3 

cajorls_trace2$beta 

# models with constant 

cajorls_eigen=cajorls(cajo_eigen,r=3,reg.number = NULL) ######## const 3 

summary(cajorls_eigen$rlm)#1 

 

cajorls_trace=cajorls(cajo_trace,r=3,reg.number = NULL) ######## const 3 



A COINTEGRATION ANALYSIS OF NYMEX CRUDE OIL PRICE                                            Tasiopoulos Konstantinos 

 

  
Page 60 

 

  

summary(cajorls_trace$rlm)#3#####  

# comparison 

print(AIC(cajorls_eigen$rlm)) 

print(AIC(cajorls_eigen2$rlm)) 

print(AIC(cajo_trace)) 

print(AIC(cajorls_trace2$rlm)) 

######## FINAL ################################# 

################################################################### 

cajorls_eigen2=cajorls(cajo_eigen2,r=3,reg.number=NULL) ######## trend 3 

 

summary(cajorls_trace2$rlm) 

############### restrictions on A (1) 

############### restrictions on A (2) 

### trace2 with trend 

B1= matrix(c( 1, 0, 0, 0, 0, 0, 0,   

              0, 1, 0, 0, 0, 0, 0,  

              0, 0, 1, 0, 0, 0, 0,  

              0, 0, 0, 1, 0, 0, 0, 

              0, 0, 0, 0, 1, 0, 0, 

              0, 0, 0, 0, 0, 1, 0, 

              0, 0, 0, 0, 0, 0, 0, 

              0, 0, 0, 0, 0, 0, 1), nrow = 8,ncol = 7,byrow = TRUE) 

blr=blrtest(cajo_trace2,B1,r=3) 

summary(blr) 

library(urca) 

### eigen2 with trend 

A1= matrix(c( 1, 0, 0, 0, 0, 0,   

              0, 1, 0, 0, 0, 0,   

              0, 0, 1, 0, 0, 0,  

              0, 0, 0, 0, 0, 0,  

              0, 0, 0, 0, 0, 0, 

              0, 0, 0, 0, 1, 0,  
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              0, 0, 0, 0, 0, 1), nrow = 7,ncol = 6,byrow = TRUE) 

 

 

alr=alrtest(cajo_trace2,A1,r=3) 

summary(alr) 

################################# testing residuals 

#trace 

vvt=vec2var(cajo_trace ,r = 3)      #const 

vvt2=vec2var(cajo_trace2 ,r = 2)    #trend 

 

#eigen 

vve=vec2var(cajo_eigen ,r = 1)      #trend 

vve2=vec2var(cajo_eigen2 ,r = 1)    #constant 

 

library(portes) 

#  ARCH EFFECTS 

# trace 

LiMcLeod(vvt2$resid,lags=seq(1,12,1),order=0,squared.residuals = T)  

LjungBox(vve$resid,lags=seq(1,12,1),order=0,squared.residuals = T) 

 

# AUTOCORRELATION 

 

LiMcLeod(vve$resid,lags=seq(1,12,1),order=0) #,SquaredQ=FALSE 

LjungBox(vvt2$resid,lags=seq(1,12,1),order=0) 

 

plot(vvt2$resid) 

# trace 

############## FINAL ################### 

############# with trend 

###################### 

normality.test(vvt2,multivariate.only=T) 

arch.test(vvt2,lags.multi=2,multivariate.only=T) 
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serial.test(vvt2,lags.bg =12,type = "PT.asymptotic") 

 

############################# 

############# with constant 

normality.test(vvt2,multivariate.only=T) 

arch.test(vvt2,lags.multi=2,multivariate.only=T) 

serial.test(vvt2,lags.bg =12,type = 'PT.asymptotic') 

 

#eigen 

############# with trend 

normality.test(vve,multivariate.only=T) 

arch.test(vve,lags.multi=5,multivariate.only=T) 

serial.test(vve,lags.bg =12,type = "PT.asymptotic") 

############# with constant 

normality.test(vve2,multivariate.only=T) 

arch.test(vve2,lags.multi=12,multivariate.only=T) 

serial.test(vve2,lags.bg =12,type = 'PT.asymptotic') 

# include trend null=not include 

 

lttest(johansen1_trace, r=2) 

lttest(johansen1_eigen, r=1) #do not include trend 

 

print(AIC(vvt)) 

print(AIC(vve)) 

#################################################################### 

############# VARIANCE DECOMPOSITION 

library(vars) 

library(tsDyn) 

vardec=fevd(vvt2, n.ahead = 12) 

plot(vardec, col=c("red","blue","green","grey","black","yellow","purple")) 
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############# IMPULSE RESONSE 

impvar=irf(vvt2, impulse = NULL, response = NULL, n.ahead = 12,  

           ortho = T, cumulative = FALSE, boot = TRUE, ci = 0.95,  

           runs = 100) 

plot(impvar) 

# trace 

vvt22=vec2var(cajorls_trace2$rlm,r=3) 

############# with trend 

normality.test(vve2,multivariate.only=T) 

arch.test(vve2,lags.multi=5,multivariate.only=T) 

serial.test(vve2,lags.bg =12,type = "PT.asymptotic") 

############# with const 

normality.test(vve2,multivariate.only=T) 

arch.test(vve2,lags.multi=5,multivariate.only=T) 

serial.test(vve2,lags.bg =12,type = "PT.asymptotic") 

############# VARIANCE DECOMPOSITION 

plot(vardec) 

vardec=fevd(var, n.ahead = 12) 

plot(vardec, col = c("red", "blue", "yellow", "green","purple","black")) 

############# IMPULSE RESONSE 

impvar=irf(vve2, impulse = NULL, response = NULL, n.ahead = 12,  

           ortho = T, cumulative = FALSE, boot = TRUE, ci = 0.95,  

           runs = 100) 

plot(impvar) 

############ STABILITY VAR 

stvar=stability(var, type = c("OLS-CUSUM"), 

                h = 0.15, dynamic = FALSE, rescale = TRUE,nc=2) 

plot(stvar) 

##################################################### 
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