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Abstract 
Nowadays Machine Learning (ML) has been well applied and recognised as an effective tool to 

handle a wide range of real situations, including medical implementations. As the amount of data in 

the field of healthcare grows year by year, there is a remarkable development in disease forecasting 

with the help of ML applications. From the prediction of epidemic outburst and several diseases to 

contributing with better means of labelling and storing healthcare data, implementation of ML in the 

field of healthcare indicates accurate results.  

This thesis focuses mainly on two major aspects of ML areas. Firstly, on analysing a medical dataset 

providing visualisations together with invaluable information on dataset’s variables. Secondly, it 

emphasizes on implementing the appropriate algorithms to execute binary classification in order to 

determine whether a person is labelled as infected or not infected based on feature values of the 

sample set. Choosing the most suitable approach is crucial as it could potentially improve the clinical 

decisions as well as patients’ survival time when applied to real world problems. 

The research is based on the mesothelioma disease dataset, allocated on the UCI repository, 

containing 324 examples with 35 attributes. Regarding the unsupervised learning part, in order to 

deduct results and conclusions, various ML classification algorithms are used to perform the analysis 

such as Decision Tree, Support Vector Machines (SVM), Naive Bayes Classifier, Logistic Regression, k 

Nearest Neighbours (kNN), and Artificial Neural Networks (ANN). 

Concerning the techniques for evaluation, the reader can expect several methods as for example 

statistical measures like accuracy, sensitivity, specificity, f1-score, confusion matrix,  AUC (Area Under 

Curve), and ROC (Receiver Operating Characteristic) curve.  
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Περίληψη 
Στις μέρες μας ο τομέας της μηχανικής μάθησης έχει εφαρμοστεί και 

αναγνωριστεί ως ένα αποτελεσματικό εργαλείο που μπορεί να διαχειριστεί ένα 

ευρύ φάσμα πραγματικών καταστάσεων συμπεριλαμβανομένων και αυτών των 

ιατρικών εφαρμογών. Καθώς ο όγκος των δεδομένων στον τομέα της υγείας 

αυξάνεται χρόνο με το χρόνο, η εξέλιξη της πρόγνωσης μιας νόσου με τη χρήση 

εφαρμογών της μηχανικής μάθησης είναι αξιοσημείωτη. Οι εφαρμογές ακόμα της 

μηχανικής μάθησης στον τομέα της υγείας παρουσιάζουν ακριβή αποτελέσματα 

τόσο στην πρόβλεψη μίας επιδημίας ή διαφόρων ασθενειών όσο και στη 

συνεισφορά της βελτίωσης των τρόπων με τους οποίους σημειώνονται και 

αποθηκεύονται τα ιατρικά δεδομένα. 

Αυτή η διπλωματική εργασία δίνει έμφαση αρχικά στην ανάλυση ιατρικών 

δεδομένων παρουσιάζοντας οπτικοποιήσεις αλλά και μετρικές σχετικά με τις 

πληροφορίες που παρουσιάζουν τα δεδομένα. Έπειτα, επικεντρώνεται στην 

υλοποίηση των κατάλληλων αλγορίθμων ικανών να ταξινομήσουν τα δεδομένα με 

σκοπό να καθορίσουν εάν ένας άνθρωπος έχει προσβληθεί από τη νόσο ή όχι. Η 

επιλογή της καταλληλότερης μεθόδου κρίνεται ως καθοριστικής σημασίας καθώς 

η εφαρμογή της σε πραγματικές καταστάσεις θα μπορούσε ενδεχομένως να 

βελτιώσει τόσο τις κλινικές αποφάσεις όσο και το προσδόκιμο ζωής του ασθενή. 

Η συγκεκριμένη έρευνα βασίζεται στο σύνολο δεδομένων “Νόσος Μεσοθηλίωμα” 

που βρίσκεται στην αποθήκη συνόλων δεδομένων UCI και περιέχει 324 

παρατηρήσεις με 35 χαρακτηριστικά. Σχετικά με τον τομέα της ανάλυσης που 

ασχολείται με τη μη επιβλεπόμενη μάθηση χρησιμοποιούνται αλγόριθμοι 

μηχανικής μάθησης για κατηγοριοποίηση όπως Δέντρα Απόφασης (Decision 

Trees), Μηχανές Διανυσμάτων Στήριξης  (SVM), Λογιστική Παλινδρόμηση (Logistic 

Regression), k Πλησιέστεροι Γείτονες (kNN) και Νευρωνικά Δίκτυα (ΑΝΝ) με σκοπό 

να ολοκληρωθεί η ανάλυση και να οδηγηθεί κανείς σε αποτελέσματα και 

συμπεράσματα. 

Όσον αφορά στις τεχνικές αξιολόγησης ο αναγνώστης μπορεί να περιμένει 

μεθόδους όπως για παράδειγμα τις στατιστικές μετρικές ακρίβεια (accuracy), 

ευαισθησία (sensitivity) και προσδιοριστικότητα (specificity), f1-score, την μήτρα 

σύγχυσης (confusion matrix) και τη χαρακτηριστική καμπύλη λειτουργίας 

(AUC/ROC).   
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Chapter 1  
 

Introduction 
 

 

1.1 Motivation 
 

During the last decades ML has been an emerging research field reaching remarkably successful 

results not only in medicine but in many other applications as well. So far, practitioners run 

procedures which inevitably include subjectivity as well as plenty of time to be carried out. But with 

the usage of ML applications, these procedures can be automated and simplified. In that way, the 

use of ML solutions creates repeatable results free of bias and it also reduces time consumption to a 

minimum level leaving practitioners more time for their numerous duties. Moreover, excessive 

number of features in medical datasets together with usually small samples size makes advanced ML 

of critical importance for clinical interpretation and analysis.  

Typically, it requires many experts from various areas to scrutinise and interpret pathological 

conditions. There are times however, when experts are not enough, or they contradict each other, 

making decision making process even harder. Hence, in a field which involves people with a great 

amount of competence and attentiveness, ML techniques can assist in improving diagnostic accuracy, 

standardization among clinicians, and it aids in developing computer-based appliances to model 

experts’ methods. 

Furthermore, as we live in the Big Data world of late, rapid increase in data volumes available for 

analysis is so obvious on healthcare as in any other field. Insurance companies, research groups and 

laboratories, healthcare suppliers, government agencies and especially hospitals can produce 

voluminous digital data as never seen before. This is the reason why ML approaches should step in 

to manipulate the data concurrently and give light to issues like compact or unlabelled data with 

which scientists and researchers had been struggling over the years to resolve. 

ML consists of many different areas that could be adequately used to serve healthcare. Some of 

these include regression, classification, clustering and dimensionality reduction. Clustering belongs 

to a branch of ML which is called unsupervised learning and it deals with situations when the target 

is to group together examples of the given dataset that exhibit some kind of similarity. This method 

is particularly effective when for example the different types of patients that lie in the dataset are 

missing. Next, regression involves the procedure of providing numerical predictions for features by 

considering the rest of the dimensions for the specific sample. Such models are systematically  
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used in financial forecasting, trend analysis, marketing or even drug response modelling. In 

addition, with dimensionality reduction patients’ significant characteristics can be extracted by 

implementing several methods and thus lead the applied model to more accurate results.  

Even if the techniques explained above are widely chosen from analysts and researchers, they are 

beyond the scope of this work and should be omitted but not get past. Yet, one of the most famous 

and useful areas of supervised learning that will be the main axis of this thesis is classification, which 

takes into account features of an example to predict a discrete class variable. It has an immediate 

effect on daily life with an example of that being the problem of separating people who are infected 

with a virus from those that are not infected.  

Based on this background, the goal of this thesis is to specify, implement and finally to compare 

the outcomes of the most applicable ML classification algorithms. These algorithms should detect a 

healthy/unhealthy person or a malignant/benign tumour on a patient. Thus, lastly the ML algorithm 

is to assign the correct label to each sample and reach high performance evaluation measures.   

 

 

1.2 Related Work 
 

Over the last few years, ML implementations have been notably popular on different domains like 

social media services, online customer support, fraud detection etc. Hence, healthcare sector could 

not have been an exception to the above rule. There has heretofore been a numerous amount of 

surveys, experiment papers, theses, and reports published concerning the applications of ML in 

medicine. From binary or multiclass classification to complicated methods for labelling patients’ 

unstructured records, ML procedures have been of great interest for analysts.   

Nonetheless, concerning the mesothelioma dataset selected for this research, various researches 

have been carried out executing binary classification. Regular Naive Bayes (NB), Logistic Regression 

(LR), Decision Trees (DT) and even more complex algorithms such as Logic Learning Machine are some 

of the techniques that have been used to achieve fascinating results. One could distinguish some of 

them though for their innovative and compelling perspective.  

In central Cappadocia, Turkey, mesothelioma was causing 50% of all deaths and thus in recent 

years this could not have been ignored by local scientists to examine. Indeed, mesothelioma disease 

diagnosis was conducted using Artificial Intelligence Methods by Hamza Osman Ilhan and Enes Celik 

[1]. There, methods like Support Vector Machine (SVM), DT, Artificial Neural Network (ANN) and 

Ensemble Learning for combining the above had been used to classify the data with an accuracy of 

100% even reached. Linear Kernel SVM and Multilayer Perceptron (MLP) scored high accuracy but 

Linear SVM would be able to still perform well in case of data been generalised as authors state.  

Additionally, Orhan Er, Tanrikulu, Abakay and Temurtas [2] approached the problem with 3 

different ANNs to detect malignant tumours in patients. Probabilistic Neural Network (PNN) 

happened to succeed the best results compared to Learning Vector Quantization NN and Multilayer 

NN. With a usage of a 3-fold cross-validation technique, which performed better than other 
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conventional validation algorithms, PNN managed a classification accuracy score of 96.3%. According 

to the writers all 3 of the algorithms used in the analysis were capable and most of all safe to 

satisfactorily classify the data. Nevertheless, PNN was outperformed by Random Forest (RF) classifier 

that was examined by Chicco and Rovelli [3] in their paper. Except from the classifiers they also 

presented feature selection methods such as Mean Square Error decrease and Gini node impurity 

decrease to determine an even more correlated subset of attributes. These approaches pointed that 

the most important and relevant features were “lung side” alongside with “platelet count” (PLT). High 

point of the study was the success of RF to predict mesothelioma patients’ diagnosis regardless of 

the choice made; either complete imbalanced dataset or the under-sampled balanced database. 

Apart from these perspectives on classifying the mesothelioma malady database, another 

interesting survey handles the data with NB classifier [4]. Nilashi, Roudbaraki and Farahmand 

scrutinised an intelligent system in their paper which except from NB for classification it uses 

Expectation Maximisation (EM) for clustering. This algorithm concerns a simple and efficient iterative 

procedure in computing the Maximum Likelihood. After maximising likelihood via Akaike Information 

Criterion model, they applied a 10-fold cross validation technique to receive the most unbiased result 

and at the end 7 clusters. It appears that the combination of EM with NB obtained an overall accuracy 

of 93.21% outcompeting certainly all other algorithms. 

Lastly a recent study from Xue Hu and Zebo Yu [5] from Chongqing Medical University, China has 

brought to light state-of-the-art feature selection methods as well as classification processes. An 

implemented diagnostic model based on Stacked Sparse Autoencoder algorithm was set up to detect 

malignant mesothelioma on patients. The latter together with a genetic algorithm exhibited the 

highest overall performance, namely accuracy, specificity, F-measure and AUC were all 100%. 

Moreover, these two demanded the smallest number of variables compared to other methods 

applied in the paper concluding that this approach could assist pathologists by providing them an 

optimal performance diagnostic system. 

 

 

1.3 Objectives 
 

This work was conducted for the purpose of fulfilling the postgraduate studies towards the 

programme “Digital Systems and Services: Big Data and Analytics” offered by the Department of 

Digital Systems and Services at the University of Piraeus, Piraeus Greece. It uses ML classification 

algorithms inside the branch of unsupervised learning and aims to: 

 

➢ First, clarify and give inside to every concept one should familiarise himself/herself with so 

that all steps of the analysis from preprocessing phase to predictions stage are fully 

understood;  
 

➢ Second, implement the most applicable algorithms on mesothelioma disease dataset to carry 

out binary classification; 
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➢ Last, perform an evaluation overview of the algorithms, providing their merits-demerits 

together with a comparative analysis on their performance rates. 

 

 

1.4 Approach and Methodology 
 

The analysis performed in this thesis concentrates mainly on the implementation of ML 

classification algorithms on medical data provided from the UCI Repository. Apart from that, 

emphasis is given as well to preprocessing phase by investigating metrics together with visualisations 

to extract necessary information regarding features of the dataset. 

The outlined methodology of this master thesis is split into 3 phases, depending on the target of 

the analysis and it can be concisely summarised as follows: 

At first, starting with the preprocessing phase of the study in which the mesothelioma dataset 

from the UCI ML repository is acquired and afterwards actions on preprocessing stage of the study 

are performed. Component wise, the methods included are outlier removal, scaling, label encoding, 

and feature selection/ extraction. Throughout these steps some plots assist the whole procedure in 

order to highlight the most valuable information. 

Secondly, now that the data is ready to be fed into the training process it will be time to implement 

the most suitable ML classification algorithms. Having that in mind, it is fairly obvious in this phase 

that each algorithm comprises of several other substeps and perhaps different preprocessing 

techniques adapted to the requirements of the algorithm. This stage demands besides repeatedly 

implementations to optimise hyperparameters of the model and thus making the algorithm to 

achieve a better performance. 

Finally, the last stage of this work plays a principal role. Here, statistical quantities are presented 

which encapsulate the success and effectiveness that the algorithms managed to reach. These 

metrics aggregated and combined with visualisations have the power to divulge a faulty model’s fit. 

It is a necessary condition a combination of these quantities to be taken into account and the reason 

for this is that although for example an algorithm can predict correctly many target attribute values, 

these may not be of great importance. For instance, suppose a dataset has a binary target attribute 

of values “1” for a person who survives and “0” for a person that does not survive. Let’s say 

furthermore that examples in total are ten, nine of them being “1” s and the last one “0” s. If an 

algorithm predicts successfully nine “1”-valued instances but fails to predict the “0”-valued instance, 

that is to say the patient whose life is in danger, then this algorithm is not efficient for the purpose. 

So, this chapter shall interpret interesting outcomes and their potential that will help to compare the 

selected ML algorithms.      
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1.5 Structure 

 

For the remaining of this thesis in Chapter 2, all the necessary theoretical background is presented 

concerning preprocessing phase, classification algorithms insight and evaluation measures that 

surround the methods implemented later. Chapter 3 explains the mesothelioma disease dataset in 

addition to domain knowledge for the reader to get familiarised. Chapter 4 consists of the techniques 

used to classify the data presenting the associate details of the analysis. Carrying on with Chapter 5 

where the results of each algorithm are described along with performance metrics and a comparative 

evaluation of the selected algorithms. At the end, Chapter 6 contains conclusions reached and 

possible future targets. 

  



 
 

6 

 

Chapter 2  
 

Theoretical Background 
 

 

This chapter concerns the presentation of the necessary theoretical background demanded in 

order to execute the process of the analysis in total. From preprocessing techniques to evaluation 

methods, this section shall provide concrete definitions, details and information for every phase. 

Specifically, the structure contains subchapters as: 
 

➢ Machine Learning and Data Mining 

➢ Knowledge Discovery in Databases (KDD) 

➢ Preprocessing Techniques 

➢ Machine Learning Algorithms 

➢ Evaluation Methods 

 

 

2.1 Machine Learning and Data Mining 
 

In general, the term Machine Learning (ML) denotes the scientific study of algorithms and 

statistical models that computer systems to perform a specific task effectively without using explicit 

instructions, relying on patterns and inference instead. It basically concerns the knowledge extraction 

from data, and it can be identified as the research field at the intersection of statistics, artificial 

intelligence and computer science. Outside of commercial applications, ML has had a tremendous 

influence on the way data driven research is done today [6]. Although one could argue that ML has 

been developed in recent years, the truth is that it has been around for decades in some specialised 

applications, such as Optical Character Recognition (OCR). But the first ML application that really 

became mainstream, improving the lives of hundreds of millions of people, took over the world back 

in the 1990s: it was the spam filter. It was followed by hundreds of ML applications that now quietly 

power hundreds of products and features that people use regularly, from better recommendations 

to voice search [7].  

ML methods differ in their approach, the type of data they input and output, and the type of the 

task or problem they are intended to solve. Thus, ML algorithms can be categorised into 4 major 

groups depending on the above parameters and these are: 

https://en.wikipedia.org/wiki/Computer_systems
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➢ Supervised Learning: it is used when the aim is to predict a certain outcome from a given 

input, and only examples of input-output pairs are given. An ML model from these input-

output pairs is then constructed, which comprise the training set. The goal is to make accurate 

predictions to new, never seen before data. Supervised learning regularly requires human 

effort to build the training set, but afterwards automates and often speeds up an otherwise 

laborious or infeasible task. 

 

➢ Unsupervised Learning: this type of learning subsumes all kinds of ML where there is no 

known output, no teacher to instruct the learning algorithm leaving the algorithm to find a 

structure in its input. Unsupervised learning can be a goal in itself discovering hidden patterns 

in data. Most common method of it is clustering which is a common technique for statistical 

data analysis and  aims to separate data into groups according to similarities detected [8]. 

 

➢ Semi-Supervised Learning: it falls somewhere in between supervised and unsupervised 

learning, since they use both labelled and unlabelled data for training - typically a small 

amount of labelled data and a large amount of unlabelled data. The systems that use this 

method can considerably improve learning accuracy. Usually, semi-supervised learning is 

chosen when the acquired labelled data requires skilled and relevant resources to train it / 

learn from it. Otherwise, acquiring unlabelled data generally doesn’t require additional 

resources. 

 

➢ Reinforcement Learning: this learning method interacts with its environment by producing 

actions and discovers errors or rewards. Trial/error search and delayed reward are the most 

relevant characteristics of reinforcement learning. This method allows machines and 

software agents to automatically determine the ideal behaviour within a specific context in 

order to maximise its performance. Simple reward feedback is required for the agent to learn 

which action is best; this is known as reinforcement signal. 
 

Data mining on the other hand is a subset of ML or even better stated it is the process of 

discovering patterns in large datasets involving methods at the intersection of ML, statistics, and 

database systems. It has an overall goal to extract 

information with intelligent methods from a dataset 

and transform the information into comprehensible 

structure for future use. In data mining, association 

rules are if-then statements that help to show the 

probability of relationships between data items within 

large datasets in various databases. They have several 

applications1 and they are widely used to help discover 

 
1 SAS Institute 2014, and PwC, 2016 https://bit.ly/2tA5BT0 

Figure 2.1 - Venn diagram: how AI intersects with other 
branche𝑠1 

https://bit.ly/2tA5BT0


 
 

8 

 

correlation in medical datasets among others. These association rules are created by analysing data 

for frequent if/then patterns, then using the support and confidence criteria to locate the most 

important relationships within data. Support is how frequently the items appear in the database, 

while confidence is the number of times if/then statements are accurate. 

Data mining is the analysis step of the “knowledge discovery in databases” process or KDD. Aside 

from the raw analysis step, it also involves database and data management aspects, data 

preprocessing, model and inference considerations, interestingness metrics, complexity 

considerations, post processing of discovered structures, visualisations, and online updating. 

 

 

2.2 Knowledge Discovery in Databases (KDD) 
 

Knowledge discovery in databases (KDD) could be defined in various ways.  One of them states that 

it is the nontrivial process of identifying valid, novel, potentially useful, and ultimately understandable 

patterns in data. This widely used data mining technique is a process that includes data preparation 

and selection, cleansing, incorporating prior knowledge on datasets and interpreting accurate 

solutions from the observed results. It is an active research area with promise for high payoffs in 

many business and scientific domains. The grand challenge of KDD is to automatically process large 

quantities of raw data, identify the most significant and meaningful patterns, and present these as 

knowledge appropriate for achieving the user’s goals [9]. KDD process is commonly defined with the 

stages: 

 

1. Problem specification, which comprises the design, the arrangement of the application 

domain, the relevant prior knowledge obtained by experts and the final objectives pursued 

by the end-user; 

 

2. Problem understanding, that includes the comprehension of both the selected data to 

approach and the expert knowledge associated to achieve a high degree of reliability; 

 

3. Selection, whose main role is to create a target dataset from the original data, i.e., selecting 

a subset of variables or data samples, on which discovery must be performed; 

 

4. Preprocessing, which aims to clean data by performing various operations, such as noise 

modelling and removal, defining proper strategies for handling missing data fields, accounting 

for time-sequence information; 

 

5. Transformation, that is in charge of reducing and projecting the data, in order to derive a 

representation suitable for the specific task to be performed; it is typically accomplished by 

involving transformation techniques or methods that are able to find invariant 

representations of the data; 
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6. Data mining, deals with extracting interesting patterns by choosing (i) a specific data-mining 

method or task, (ii) proper algorithm(s) for performing the task in hand, and (iii) an 

appropriate representation of the output results; 

 

7. Interpretation/evaluation, is exploited by the user to interpret and extract knowledge from 

the mined patterns; this interpretation is typically carried out by visualising the patterns, 

models, or the data given such model and, in case, iteratively looking back at the previous 

steps of the process.   

 

8. Results exploitation, the last stage may involve using the knowledge directly; incorporating 

the knowledge into another system for further processes or simply reporting discovered 

knowledge through visualization tools [10] [11]. 

   

 
Figure 2.2 - The KDD process2 

 

 

2.3 Preprocessing Techniques 
 

In the data mining procedure data preprocessing is an important step for a successful algorithm 

implementation later. This data mining technique involves transforming raw data into an 

understandable format. It is highly likely that real-world data contains errors or is incomplete, 

inconsistent, and/or lacking in certain behaviours or trends. Data preprocessing is a proven method 

of resolving such issues. Some of the tasks that it is split together with the approaches used to handle 

them are the following:  
 

● Data cleaning: it is the process of detecting and correcting (or removing) corrupt or inaccurate 

records from a dataset and refers to identifying incomplete, incorrect, inaccurate or irrelevant 

parts of the data and then replacing, modifying, or deleting the dirty or coarse data. 

 

 
2 F. Gullo. From Patterns in Data to Knowledge Discovery: What Data Mining Can Do. 3rd International Conference Frontiers in 

Diagnostic Technologies, ICFDT3 2013  
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○ Missing data: this situation arises when some data is missing for different reasons in 

the data. It can be solved by data imputation which uses several methods to fill these 

variables with some intuitive data. Three mechanisms of missing data are: 

 

■ Missing Completely at Random (MCAR), the propensity for a data point to be 

missing is completely random. It can be handled by substituting the missing 

value with the mean/median/mode of the feature. 

 

■ Missing At Random (MAR), when the probability of missing data on a variable 

is related to some other measured variable in the model, but not to the value 

of the variable with missing values itself. For instance, managers are more 

likely not to share their income if someone collects data on the profession of 

subject. Regression or classification techniques are used to handle this issue. 

 

■ Missing Not At Random (MNAR), the missing values on a variable are related 

to the values of that variable itself, even after controlling for other variables. 

For example, when data are missing on IQ and only the people with low IQ 

values have missing observations for this variable. 

 

○ Noisy data: meaningless data that can’t be interpreted by machines. It can be 

generated due to faulty data collection, data entry errors etc. Handling methods 

include: 

 

■ Binning method: this method works on sorted data in order to smooth it. The 

whole data is divided into segments of equal size and then various methods 

are performed to complete the task. Each segmented is handled separately. 

One can replace all data in a segment by its mean or boundary values can be 

used to complete the task. 

 

■ Regression: noisy data can be transformed to smooth by fitting a regression 

function to them. The regression function can be linear having a single 

independent variable or multiple otherwise. 

 

■ Clustering: this approach groups similar data in a cluster. The outliers may be 

undetected, or it will fall outside the clusters.  

 

● Data transformation: it is the procedure of converting data from one format or structure to 

another more suitable for mining process. It includes the following ways: 
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○ Normalisation:  it’s used to scale the data values in a specified range [-1, 1] or [0,1] to 

more easily compare data from different places. Normalizing the data attempts to 

give all attributes equal weight and it is particularly useful in statistical learning 

methods. 

 

○ Discretisation: its main goal is to transform a set of continuous attributes into discrete 

ones, by associating categorical values to intervals and thus transforming quantitative 

data into qualitative data. 

 

○ Concept hierarchy generation: here attributes are converted from level to higher level 

in hierarchy. For Example, the attribute “city” can be converted to “country”.  

 

● Data reduction: it comprises the set of techniques that obtain a reduced representation of 

the original data. It aims to increase the storage efficiency and reduce data storage and 

analysis costs. The various steps to data reduction are: 

 

○ Instance selection: consists of choosing a subset of the total available data to achieve 

the original purpose of the DM application as if the whole data had been used. It 

constitutes the family of oriented methods that perform in a somewhat intelligent 

way the choice of the best possible subset of examples from the original data by using 

some rules and/or heuristics. 

 

○ Attribute selection: achieves the reduction of the dataset by removing irrelevant or 

redundant features (or dimensions). The goal of FS is to find a minimum set of 

attributes, such as the resulting probability distribution of the data output attributes, 

(or classes) is as close as possible to the 

original distribution obtained using all 

attributes. 

 

○ Dimensionality reduction: this reduces 

the size of data by encoding 

mechanisms. It can be lossy or lossless. If 

after reconstruction from compressed 

data, the original data can be retrieved, 

such reduction are called lossless 

reduction else it is called lossy reduction. 

The two effective methods of 

dimensionality reduction are: Wavelet transforms and PCA (Principal Component 

Analysis) [12]. 

 

Figure 2.3 - The Data preprocessing circle [12]. 
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2.4 Machine Learning Algorithms 
 

The theory associated with each ML algorithm studied in this thesis is widely spread on the web. 

Nevertheless, the intuitive idea together with the necessary mathematical notation that stays behind 

those techniques are presented here. At the end of each subchapter that follows, a table with the 

most applicable advantages and disadvantages of each algorithm is presented.  

 

2.4.1 Decision Tree 

 

One of the most intuitive tools for data classification is the decision tree. It hierarchically partitions 

the input space until it reaches a subspace associated with a class label. Decision trees are 

appreciated for being easy to interpret and easy to use. They are enthusiastically used in a range of 

business, scientific, and health care applications because they provide an intuitive means of solving 

complex decision-making tasks. For example, in business, decision trees are used for everything from 

codifying how employees should deal with customer needs to making high-value investments. In 

medicine, decision trees are used for diagnosing illnesses and making treatment decisions for 

individuals or for communities. 

A decision tree is a rooted, directed tree similar to a flowchart. Each interior node corresponds to 

a partitioning decision, and each leaf node is mapped to 

a class label prediction. To classify a data item, imagine 

the data item to be traversing the tree, beginning at the 

root. Each interior node is programmed with a splitting 

rule, which partitions the domain of one (or more) of 

the data’s attributes. Based on the splitting rule, the 

data item is sent forward to a node’s children. This 

testing and forwarding are repeated until the data item 

reaches a leaf node. 

Decision trees can be used with both numerical 

(ordered) and categorical (unordered) attributes. There 

are also techniques to deal with missing or uncertain values. Typically, the decision rules are 

univariate. That is, each partitioning rule considers a single attribute. Multivariate decision rules have 

also been studied. They sometimes yield better results, but the added complexity is often not 

justified. Many decision trees are binary, with each partitioning rule dividing its subspace into two 

parts. Even binary trees can be used to choose among several class labels. Multiway splits are also 

common, but if the partitioning is into more than a handful of subdivisions, then both the 

interpretability and the stability of the tree suffers. 

Let’s now introduce mathematical notation to describe the data, its attributes, the class labels, 

and the tree structure. A data item 𝑥 is a vector of 𝑑 attribute values with an optional class label 𝑦. 

In addition, denote the set of attributes as 𝑨 = {𝐴1, 𝐴2, . . . , 𝐴𝑑}. Thus, define now 𝑥 as 

Figure 2.4 - Example of a Decision Tree 
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{𝑥1, 𝑥2, . . . , 𝑥𝑑}, where 𝑥1 ∈ 𝐴1, 𝑥2 ∈ 𝐴2, . . . , 𝑥𝑑 ∈ 𝐴𝑑. Let 𝑌 =  {𝑦1, 𝑦2, . . . , 𝑦𝑚} be the set of class 

labels. Each training item 𝑥 is mapped to a class value 𝑦 where 𝑦 ∈ 𝑌. Together they constitute a data 

tuple (𝑥, 𝑦). The complete set of training data is 𝑋. The following table illustrates a summary of 

notation for data and partitions. 

 

Table 2.1 - Data and Partitions for DT 

Symbol Definition 

𝑋 Set of all training data =  {𝑥1, . . . , 𝑥𝑛} 

𝐴 Set of all attributes =  {𝐴1, . . . , 𝐴𝑑} 

𝑌 Domain of class values =  {𝑦1, . . . , 𝑦𝑚} 

𝑋𝑖 A subset of 𝑋 

𝑆 A splitting rule 

𝑋𝑆 A partitioning of 𝑋 into {𝑋1, . . . , 𝑋𝑘} 

 

A partitioning rule 𝑆 subdivides dataset 𝑋 into a set of subsets collectively known as 𝑋𝑆; that is, 

𝑋𝑆  =  {𝑋1, 𝑋2, . . . , 𝑋𝑘} where ⋃ 𝑋𝑖𝑖  =  𝑋. A decision tree is a rooted tree in which each set of children 

of each parent node corresponds to a partitioning (𝑋𝑆) of the parent’s dataset, with the full dataset 

associated with the root. The number of items in 𝑋𝑖 that belong to class 𝑦𝑗 is |𝑋𝑖𝑗|. The probability 

that a randomly selected member of 𝑋𝑖 is of class 𝑦𝑗 is 𝑝𝑖𝑗  =  
|𝑋𝑖𝑗|

|𝑋𝑖|
. 

The decision tree algorithm can be written almost entirely as a single recursive function which can 

be widely found in the literature. The idea behind it, is that given a set of data items, which are each 

described by their attribute values, the function builds and returns a subtree. First, the function 

checks if it should stop further refinement of this branch of the decision tree. If so, it returns a leaf 

node, labelled with the class that occurs most frequently in the current data subset 𝑋′. Otherwise, it 

proceeds to try all feasible splitting options and selects the best one. A splitting rule partitions the 

dataset into subsets. What constitutes the “best” rule is perhaps the most distinctive aspect of one 

tree induction algorithm versus another. The algorithm creates a tree node for the chosen rule. 

If a splitting rule draws all the classification information out of its attribute, then the attribute is 

exhausted and is ineligible to be used for splitting in any subtree. For example, if a discrete attribute 

with 𝑘 different values is used to create 𝑘 subsets, then the attribute is “exhausted”. As a final but 

vital step, for each of the data subsets generated by the splitting rule, recursively call the function 

which builds the subtree. Each call generates a subtree that is then attached as a child to the principal 

node. The produced tree is returned now as output of the function [13] . 
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There exist many specific decision tree algorithms but the most notable of them include: 
 

● ID3 (Iterative Dichotomiser 3) 

● C4.5 (successor of ID3) 

● CART (Classification and Regression Tree) 

● Chi-Square automatic interaction detection (CHAID). Performs multi-level splits when 

computing classification trees. 
 

Algorithms for constructing decision trees usually work top-down, by choosing a variable at each 

step that best splits the set of items. Different algorithms use different metrics for measuring "best". 

These generally measure the homogeneity of the target variable within the subsets. These metrics 

are applied to each candidate subset, and the resulting values are combined (e.g., averaged) to 

provide a measure of the quality of the split. Some examples of them are given below.  

 

● Gini impurity: used by the CART algorithm for classification trees, Gini impurity is a measure 

of how often a randomly chosen element from the set would be incorrectly labelled if it was 

randomly labelled according to the distribution of labels in the subset. The Gini impurity can 

be computed by summing the probability 𝑝𝑖 of an item with label 𝑖 being chosen times the 

probability ∑ 𝑝𝑘𝑘≠𝑖 = 1 − 𝑝𝑖 of a mistake in categorizing that item. It reaches its minimum 

when all cases in the node fall into a single target category. 

 

● Information gain: used by the ID3, and C4.5 tree-generation algorithms. Information gain is 

based on the concept of entropy and information content from information theory. Entropy 

is defined as: 

𝐻(𝑇) = 𝐼𝐸(𝑝1, 𝑝2, . . . , 𝑝𝐽) = − ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝐽

𝑖=1

 

Where 𝑝1, 𝑝2, . .. are fractions that add up to 1 and represent the percentage of each class 

present in the child node that results from a split in the tree. 

𝐼𝐺(𝑇, 𝑎)  =  𝐻(𝑇)  −  𝐻(𝑇|𝑎) in other words, information gain equals entropy (of the parent) 

minus weighted sum of entropy (of the children). 
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The following table demonstrates some of the most common advantages and disadvantages when 

using decision tree classifier [14]: 

 

Table 2.2 - DT Merits and Demerits 

Decision Tree Classifier 

Merits Demerits 

Able to handle both numerical and categorical 
data 

Not well suited for multivariate partitions 

Easy to interpret and to produce 
understandable rules 

Complex calculations if many values are 
uncertain 

Runs fast even with lots of observations and 
variables 

Less appropriate when the goal is to predict 
continuous attribute 

Can learn incrementally Computationally expensive to train 

 

 

2.4.2 k-Nearest Neighbour (kNN) 

 

Nearest Neighbour algorithms are among the simplest of all ML algorithms. The idea is to 

memorise the training set and then to predict the label of any new instance based on the labels of its 

closest neighbours in the training set. The rationale behind such a method is based on the assumption 

that the features that are used to describe the domain points are relevant to their labelling in a way 

that makes close-by points likely to have the same label. Furthermore, in some situations, even when 

the training set is immense, finding a nearest neighbour can be done extremely fast (for example, 

when the training set is the entire Web and distances are based on links). In contrast with other 

classification algorithms nearest neighbour method figures out a label on any test point without 

searching for a predictor within some predefined class of functions. 

Assume 𝑋 is an instance domain with a metric function 𝜌. That is, 𝜌: 𝑋 ×  𝑋 →  ℜ is a function 

that returns the distance between any two elements of 𝑋. For example, if 𝑋 =  ℜ𝑑 then 𝜌 can be the 

Euclidean distance,  

𝜌(𝑥, 𝑥′) = ||𝑥 − 𝑥′|| = √∑ (𝑥𝑖 − 𝑥𝑖
′)2𝑑

𝑖=1 . 

Let 𝑆 = (𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚) be a sequence of training examples. For each 𝑥 ∈ 𝑋 let 

𝜋1(𝑥), . . . , 𝜋𝑚(𝑥) be a reordering of {1, . . . , 𝑚} according to their distance to 𝑥, 𝜌(𝑥, 𝑥𝑖). That is, for 

all 𝑖 < 𝑚,  
 

𝜌(𝑥, 𝑥𝜋𝜄(𝜒)) ≤ 𝜌(𝑥, 𝑥𝜋𝜄+1(𝜒)). 
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For a number 𝑘, the 𝑘 −NN rule for binary classification is defined as follows: 

 

𝑘 −NN 

Input: a training sample 𝑆 = (𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)  

Output: for every point 𝑥 ∈ 𝑋, return the majority label among {𝑦𝜋𝑖(𝑥): 𝑖 ≤ 𝑘} 

 

For 𝑘 = 1, the 1-NN rule is established:  

ℎ𝑆(𝑥) = 𝑦𝜋1(𝑥). 
 

On the right an illustration of the decision boundaries of the 1-NN rule 

is presented. The points depicted are the sample points, and the 

predicted label of any new point will be the label of the sample point 

in the centre of the cell it belongs to. These cells are called a Voronoi 

Tessellation of the space [15]. 

 

 

Curse of dimensionality 
 

The kNN classifier is simple and can work quite well, provided it is given a good distance metric 

and has enough labelled training data. In fact, it can be shown that the kNN classifier can come within 

a factor of 2 of the best possible performance if N → ∞ (Cover and Hart 1967). However, the main 

problem with kNN classifiers is that they do not work well with high dimensional inputs. The poor 

performance in high dimensional settings is due to the curse of dimensionality. 

To explain the curse, let’s look at an example. Consider applying a kNN classifier to data where the 

inputs are uniformly distributed in the D-dimensional unit cube. Suppose there is a need to estimate 

the density of class labels around a test point 𝑥 by “growing” a hyper-cube around 𝑥 until it contains 

a desired fraction 𝑓 of the data points. The expected edge length of this cube will be 𝑒𝐷(𝑓) = 𝑓1/𝐷. 

If 𝐷 = 10, and the goal is to base the estimate on 10% of the data then 𝑒10(0.1) = 0.8, so the need 

now is to extend the cube 80% along each dimension around 𝑥. Even if only 1% of the data is used, it 

turns out 𝑒10(0.01) = 0.63. Since the entire range of the data is only 1 along each dimension the 

method is no longer very local, despite the name “nearest neighbour”. The trouble with looking at 

neighbours that are so far away is that they may not be good predictors about the behaviour of input-

output function at a given point [16]. 
 

Figure 2.5 - DT boundaries of the 1-
NN rule. The points depicted are the 
sample points, and the predicted 
label of any new point will be the 
label of the sample point in the 
centre of the cell it belongs to [15]. 
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Figure 2.6 - Illustration of the curse of dimensionality. In (a) a small cube of side s inside a larger unit cube is embedded. In (b) the 
edge length of a cube needed to cover a given volume of the unit cube as a function of the number of dimensions [16]. 

 

Table 2.3 - kNN Merits and Demerits 

kNN 

Merits Demerits 

Easy to implement and debug Sensitive to irrelevant or redundant features 

Robust regarding the search space Expensive to find the nearest neighbour in a 
large training set 

Sensitive to the local structure of the data Dimensionality reduction preferred in a high 
dimensional space 

 

 

2.4.3 Logistic Regression 

 

Logistic regression is a classification algorithm used extensively in numerous disciplines, including 

web, engineering, economics, marketing applications and medical and social science fields. In logistic 

regression a family of functions ℎ is mapped from ℜ𝑑 to the interval [0,1]. However, logistic 

regression is used for classification tasks: One can interpret ℎ(𝑥) as the probability that the label of 

𝑥 is 1. The hypothesis class associated with logistic regression is the composition of a sigmoid function 

(name “sigmoid” means “S-shaped”, referring to the plot of the function shown)  𝜑𝑠𝑖𝑔: ℜ → [0,1] 
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over the class of linear functions 𝐿𝑑. In particular, the sigmoid function used in logistic regression is 

the logistic function, defined as 
 

𝜑𝑠𝑖𝑔(𝑧) =
1

1+𝑒𝑥𝑝(−𝑧)
. 

 

The hypothesis class is therefore (where for simplicity homogeneous linear functions are used): 
 

𝐻𝑠𝑖𝑔 = 𝜑𝑠𝑖𝑔 ∘ 𝐿𝑑 = {𝑥 → 𝜑𝑠𝑖𝑔(𝑤 ∙ 𝑥): 𝑤 ∈ ℜ𝑑} 
 

Note that when 𝑤 ∙ 𝑥 is very large then 𝜑𝑠𝑖𝑔(𝑤 ∙ 𝑥) 

is close to 1, whereas if 𝑤 ∙ 𝑥 is very small then 

𝜑𝑠𝑖𝑔(𝑤 ∙ 𝑥) is close to 0. Recall that the prediction 

of the halfspace corresponding to a vector 𝑤 is 

𝑠𝑖𝑔𝑛( 𝑤 ∙ 𝑥). Therefore, the predictions of the half 

space hypothesis and the logistic hypothesis are 

very similar whenever |𝑤 ∙ 𝑥| is large. However, 

when |𝑤 ∙ 𝑥| is close to 0 then 𝜑𝑠𝑖𝑔(𝑤 ∙ 𝑥) ≈
1

2
. Intuitively, the logistic hypothesis is not sure about 

the value of the label so it guesses that the label is 𝑠𝑖𝑔𝑛( 𝑤 ∙ 𝑥) with probability slightly larger than 

50%. In contrast, the half space hypothesis always outputs a deterministic prediction of either 1 or -

1, even if |𝑤 ∙ 𝑥| is very close to 0. 

Next, the goal is to specify a loss function. That is, define how bad it is to predict some ℎ𝑤(𝑥) ∈

[0,1] given that the rule label is 𝑦 ∈ {±1}. Clearly, it would be preferable ℎ𝑤(𝑥) to be larger if 𝑦 = 1 

and 1 − ℎ𝑤(𝑥) (i.e., the probability of predicting −1) to be large if 𝑦 = −1. Note that 
 

1 − ℎ𝑤(𝑥) = 1 −
1

1+𝑒𝑥𝑝(−𝑤∙𝑥)
=

𝑒𝑥𝑝(−𝑤∙𝑥)

1+𝑒𝑥𝑝(−𝑤∙𝑥)
=

1

1+𝑒𝑥𝑝(𝑤∙𝑥)
. 

 

Therefore, any reasonable loss function would increase monotonically with 
1

1+𝑒𝑥𝑝[𝑦(𝑤∙𝑥)]
, or 

equivalently, would increase monotonically with 1 + 𝑒𝑥𝑝[(−𝑦(𝑤 ∙ 𝑥)]. The logistic loss function used 

in logistic regression penalises ℎ𝑤 based on the log of 1 + 𝑒𝑥𝑝[(−𝑦(𝑤 ∙ 𝑥)] (recall that log is a 

monotonic function). That is, 
 

𝑙(ℎ𝑤 , (𝑥, 𝑦)) = 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝[(−𝑦(𝑤 ∙ 𝑥)]). 
 

Therefore, given a training set 𝑆 = (𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚), the ERM (Empirical Risk Minimisation) 

problem associated with logistic regression is 
  

𝑎𝑟𝑔𝑚𝑖𝑛𝑤∈ℜ𝑑
1

𝑚
∑ 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝[(−𝑦𝑖(𝑤 ∙ 𝑥𝑖)])𝑚

𝑖=1 . 

 

The advantage of the logistic loss function is that it is a convex function with respect to 𝑤; hence the 

ERM problem can be solved efficiently using standard methods. The ERM problem associated with 

logistic regression is identical to the problem of finding a Maximum Likelihood Estimator (MLE), a 

Figure 2.7 - The sigmoid function 



 
 

19 

 

well-known statistical approach for finding the parameters that maximise the joint probability of a 

given dataset assuming a specific parametric probability function [17]. 

Some other algorithms that are used to calculate the parameters of a logistic regression model 

include: 
 

● Steepest descent (or gradient descent): 𝜃𝑘+1 =  𝜃𝑘 −  𝜂𝑘𝑔𝑘, where  𝜂𝑘 is the step size or 

learning rate. The tricky part in gradient descent is how to set the step size. If someone uses 

a constant learning rate but makes it too small convergence will be very slow, but if it is made 

too large, the method can fail to converge at all; 

 

● Newton’s method: an iterative algorithm which consists of updates of the form 𝜃𝑘+1 =  𝜃𝑘 −

  𝜂𝑘𝐻𝑘
−1𝑔𝑘. It is used for minimising a strictly convex function making thus 𝐻𝑘 positive definite. 

 

● Quashi-Newton (variable metric) methods: the mother of all second-order optimization 

algorithm is Newton’s algorithm. Unfortunately, it may be too expensive to compute 𝐻 

explicitly. QuasiNewton methods iteratively build up an approximation to the Hessian using 

information gleaned from the gradient vector at each step. 

 

Table 2.4 - LR Merits and Demerits 

Logistic Regression 

Merits Demerits 

Easy to implement and efficient to train Requires large sample size to achieve stable 
results 

It outputs well-calibrated predicted 
probabilities 

Limited to linear relationships between 
variables 

No parameters to tune or scale Sensible to outliers 

 

 

2.4.4 Naive Bayes Classifier 

 

A widely used framework for classification is provided by a simple theorem of probability known 

as Bayes’ theorem or Bayes’ rule. Based on the product rule, together with the symmetry property 

on probabilities it is easy to obtain the following Bayes’ theorem, 
 

𝑝(𝑌|𝑋) =
𝑝(𝑋|𝑌)𝑝(𝑌)

𝑝(𝑋)
 (*), 
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which plays a central role in ML, especially classification. Using the sum rule, the denominator in 

Bayes’ theorem can be expressed in terms of the quantities appearing in the numerator 
 

𝑝(𝑋) = ∑ 𝑝(𝑋|𝑌)𝑝(𝑌)𝑌 . 
 

The denominator in Bayes’ theorem can be regarded as being the normalisation constant required to 

ensure that the sum of the conditional probability on the left-hand side of equation (*) over all values 

of Y equals one. 

The Naive Bayes classifier is based on Bayes' theorem, and is particularly suited when the 

dimensionality of the inputs is high. Despite its simplicity, the Naive Bayes classifier can often achieve 

comparable performance with some sophisticated classification methods, such as decision tree and 

selected neural network classifier. Naive Bayes classifiers have also exhibited high accuracy and speed 

when applied to large datasets. 

Let us first define the problem setting as follows: Suppose a training set {(𝑥(𝑖), 𝑦(𝑖))} is given 

consisting on 𝑁 examples, each 𝑥(𝑖) is a 𝑑 −dimensional feature vector, and each 𝑦(𝑖) denotes the 

class label for the example. Assume furthermore random variables 𝑌 and 𝑋 with components 

𝑋1, . . . , 𝑋𝑑 correspond to the label 𝑦 and the feature vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑑). Note that the 

superscript is used to index training examples for 𝑖 = 1, . . . , 𝑁, and the subscript is used to refer to 

each feature or random variable of a vector. In general, 𝑌 is a discrete variable that falls into exactly 

one of 𝐾 possible classes {𝐶𝑘} for 𝑘 ∈ {1, . . , 𝐾}, and the features of 𝑋1, . . . , 𝑋𝑑 can be discrete or 

continuous attributes. 

Our task is to train a classifier that will output the posterior probability 𝑝(𝑌|𝑋) for possible values 

of 𝑌. According to Bayes’ theorem, 𝑝(𝑌 = 𝐶𝑘|𝑋 = 𝑥) can be represented as  

 

𝑝(𝑌 = 𝐶𝑘|𝑋 = 𝑥)  =  
𝑝(𝑋=𝑥|𝑌=𝐶𝑘)𝑝(𝑌=𝐶𝑘)

𝑝(𝑋=𝑥)
=

𝑝(𝑋1=𝑥1,𝑋2=𝑥2,...,𝑋𝑑=𝑥𝑑|𝑌=𝐶𝑘)𝑝(𝑌=𝐶𝑘)

𝑝(𝑋1=𝑥1,𝑋2=𝑥2,...,𝑋𝑑=𝑥𝑑)
 (**) 

 

One way to learn 𝑝(𝑌|𝑋) is to use the training data to estimate 𝑝(𝑋|𝑌) and 𝑝(𝑌). Then use these 

estimates, together with Bayes’ theorem, to determine the probability 𝑝(𝑌|𝑋 = 𝑥(𝑖)) for any new 

instance 𝑥(𝑖).  

It is typically intractable to learn exact Bayesian classifiers. Considering the case that 𝑌 is Boolean 

and 𝑋 is a vector of 𝑑 Boolean features, the need then is to estimate approximately 2𝑑 parametres 

𝑝(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑑 = 𝑥𝑑|𝑌 = 𝐶𝑘). The reason is that, for any particular value 𝐶𝑘, there are 

2𝑑 possible values of 𝑥, which need to compute 2𝑑 − 1 independent parameters. Given two possible 

values for 𝑌, a total of 2(2𝑑 − 1) such parameters are to be estimated. Moreover, to obtain reliable 

estimates of each of these parameters, observe each of these distinct instances multiple times, which 

is clearly unrealistic in most practical classification domains. For example, if 𝑋 is a vector with 20 

Boolean features, then more than 1 million parameters must be computed. 

To handle the intractable sample complexity for learning the Bayesian classifier, the Naive Bayes 

classifier reduces this complexity by making a conditional independence assumption that the features 

𝑋1, . . . , 𝑋𝑑 are all conditionally independent of one another, given 𝑌. For the previous case, this 
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conditional independence assumption helps to dramatically reduce the number of parameters to be 

estimated for modelling 𝑝(𝑌|𝑋) from the original 2(2𝑑 − 1) to just 2𝑑. Consider the likelihood 𝑝(𝑋 =

𝑥|𝑌 = 𝐶𝑘) of equation (**), then  

 

𝑝(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑑 = 𝑥𝑑|𝑌 = 𝐶𝑘) 

       = ∏ 𝑝(𝑋𝑗 = 𝑥𝑗|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑗−1 = 𝑥𝑗−1, 𝑌 = 𝐶𝑘)𝑑
𝑗=1   

       = ∏ 𝑝(𝑋𝑗 = 𝑥𝑗|𝑌 = 𝐶𝑘)𝑑
𝑗=1      (***) 

 

The second line follows from the chain rule, a general property of probabilities, and the third line 

follows directly from the above conditional independence, that the value for the random variable 𝑋𝑗 

is independent of all other feature values, 𝑋𝑗′for 𝑗′ ≠ 𝑗, when conditioned on the identity of the label 

𝑌. This is the Naive Bayes assumption. It is a relatively strong and very useful assumption. When 𝑌 

and 𝑋𝑗 are Boolean variables, 2𝑑 parameters are required to define 𝑝(𝑋𝑗|𝑌 = 𝐶𝑘). 

After substituting (***) in Equation (**), one obtains the fundamental equation for the Naive 

Bayes classifier 

 

𝑝(𝑌 = 𝐶𝑘|𝑋1. . . 𝑋𝑑) =
𝑝(𝑌 = 𝐶𝑘) ∏ 𝑝(𝑋𝑗|𝑌 = 𝐶𝑘)𝑗

∑ 𝑝(𝑌 = 𝑦𝑗)𝑖 ∏ 𝑝(𝑋𝑗|𝑌 = 𝑦𝑖)𝑗

 

 

If concentrating on the most probable value of Y, then the Naive Bayes classification rule becomes: 

 

𝑌 ← 𝑎𝑟𝑔 𝑚𝑎𝑥𝐶𝑘

𝑝(𝑌=𝐶𝑘) ∏ 𝑝(𝑋𝑗|𝑌=𝐶𝑘)𝑗

∑ 𝑝(𝑌=𝑦𝑗)𝑖 ∏ 𝑝(𝑋𝑗|𝑌=𝑦𝑖)𝑗
, 

 

Because the denominator does not depend on Ck, the above formulation can be simplified to the 

following 
 

𝑌 ← 𝑎𝑟𝑔 𝑚𝑎𝑥𝐶𝑘
𝑝(𝑌 = 𝐶𝑘) ∏ 𝑝(𝑋𝑗|𝑌 = 𝐶𝑘)𝑗 . 

 

 

Maximum-Likelihood Estimates for Naive Bayes Models 
 

Next, once MLE is the most common technique used to determine the parameters of the Naive 

Bayes classifier, let’s shortly go over its outline. The Naive Bayes model has two types of parameters 

that must be estimated. The first is  
 

𝜋𝑘 ≡ 𝑝(𝑌 = 𝐶𝑘) 
 

for any of the possible values 𝐶𝑘 of 𝑌. The parameter can be interpreted as the probability of seeing 

the label 𝐶𝑘, under the constraints 𝜋𝑘 ≥ 0 and ∑ 𝜋𝑘
𝐾
𝑘=1 = 1. Note there are 𝐾 of these parameters, 

(𝐾 − 1) of which are independent. 
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For the 𝑑 input features 𝑋𝑖, suppose each can take on 𝐽 possible discrete values, and use for that 

reason 𝑋𝑖 = 𝑥𝑖𝑗  to denote that. The second is 
 

𝜃𝑖𝑗𝑘 ≡ 𝑝(𝑋𝑖 = 𝑥𝑖𝑗|𝑌 = 𝐶𝑘) 
 

For each input feature 𝑋𝑖, each of its possible values 𝑥𝑖𝑗, and each of the possible values 𝐶𝑘 of 𝑌. The 

value for 𝜃𝑖𝑗𝑘 can be interpreted as the probability of feature 𝑋𝑖 taking value 𝑥𝑖𝑗, conditioned on the 

underlying label being 𝐶𝑘. Note that they must satisfy ∑ 𝜃𝑖𝑗𝑘𝑗 = 1 for each pair of 𝑖, 𝑘 values, and 

there will be 𝑑𝐽𝐾 such parameters, and note that only 𝑑(𝐽 − 1)𝐾 of these are independent [18]. 

As in any previous algorithm seen, NB classifier comes with its advantages and disadvantages, most 

important of which are presented in the following table: 
 

Table 2.5 - NB Merits and Demerits 

Naive Bayes Classifier 

Merits Demerits 

Entire covariance matrix needs to be calculated Strong feature independence assumptions 

Easy to deal with missing attributes Precision and recall keep low on small datasets 

Empirically successful Low in accuracy 

 

 

2.4.5 Support Vector Machine (SVM) 

 

Another approach to classification is achieved by using a family of algorithms called support vector 

machines (SVM). They can work with both linear and non-linear scenarios, allowing high performance 

in many different contexts. Together with neural networks, SVMs probably represent the best choice 

for many tasks where it's not easy to find a good separating hyperplane. For example, for a long time, 

SVMs were the best choice for MNIST dataset classification, thanks to the fact that they can capture 

very high nonlinear dynamics using a mathematical trick, without complex modifications in the 

algorithm [19]. 

The goal of SVM is to produce nonlinear boundaries by constructing a linear boundary in a large, 

transformed version of the feature space. But let’s have a better inside by considering first separable 

classes and a training dataset consisting of 𝑁 pairs (𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁), with 𝑥𝑖 ∈ ℜ𝑝 and 𝑦𝑖 ∈

{−1,1}. Define a hyperplane by 
 

{𝑥: 𝑓(𝑥) = 𝑥𝑇𝛽 + 𝛽0 = 0}, 
 

Where 𝛽 is a unit vector: ||𝛽|| = 1. A classification rule induced by 𝑓(𝑥) is 
 

𝐺(𝑥) = 𝑠𝑖𝑔𝑛[𝑥𝑇𝛽 + 𝛽0]. 
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Figure 2.8 - Support vector classifiers. The left panel shows the separable case. The decision boundary is the solid line, while 

broken lines bound the shaded maximal margin of width 2𝑀 = 2/||𝛽||. The right panel shows the nonseparable (overlap) case. 
The points labelled 𝜉𝑗

∗ are on the wrong side of their margin by an amount 𝜉𝑗
∗ = 𝑀𝜉𝑗 ;points on the correct side have 𝜉𝑗

∗ = 0 [20] 

 

Since the classes are separable, it is possible to find a function for which 𝑓(𝑥) = 𝑥𝑇𝛽 + 𝛽0 with 

𝑦𝑖𝑓(𝑥𝑖) > 0 ∀𝑖 such that 𝑓(𝑥) gives the signed distance from a point 𝑥 to the hyperplane 𝑓(𝑥) =

𝑥𝑇𝛽 + 𝛽0 = 0. Hence, one can establish a hyperplane that creates the biggest margin between the 

training points for class 1 and -1. The optimisation problem 
 

𝑚𝑎𝑥𝛽,𝛽0,||𝛽||=1𝑀 

subject to 𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) ≥ 𝑀, 𝑖 = 1, . . . , 𝑁  ($),  

 

captures this concept. The band in the figure is 𝑀 units away from the hyperplane on either side, and 

hence 2𝑀 units wide. It is called the margin. 

This problem can be more conveniently rephrased as 
 

𝑚𝑖𝑛𝛽,𝛽0
||𝛽|| 

subject to 𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) ≥ 1, 𝑖 = 1, . . . , 𝑁  (#), 

 

where the norm constraint on 𝛽 is dropped. Note that 𝑀 = 1/||𝛽||. Expression (#) is the usual way 

of writing the support vector criterion for separable data and it is characterised as a convex 

optimisation problem (quadratic criterion, linear inequality constraints). 

Suppose now that the classes are not separable and that they overlap in feature space. One way 

to deal with the overlap is to still maximise 𝑀, but allow for some points to be on the wrong side of 

the margin. Define the slack variables 𝜉 = (𝜉1, . . . 𝜉𝛮). There are two natural ways to modify the 

constraint in ($): 
 

𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0)  ≥  𝑀 − 𝜉𝑖,  

or 

𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0)  ≥  𝑀(1 − 𝜉𝑖),  
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∀𝑖, 𝜉𝑖 ≥ 0, ∑ 𝜉𝑖
𝑁
𝑖=1 ≤ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. The two choices lead to different solutions. The first choice seems 

more natural, since it measures overlap in actual distance from the margin; the second choice 

measures the overlap in relative distance, which changes with the width of the margin 𝑀. However, 

the first-choice results in a nonconvex optimization problem, while the second is convex; thus (12.6) 

leads to the “standard” support vector classifier, which is extensively used. 

Here is the idea of the formulation. The value 𝜉𝑖 in the constraint 𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) ≥ 𝑀(1 − 𝜉𝑖) is 

the proportional amount by which the prediction 𝑓(𝑥𝑖) = 𝑥𝑖
𝑇𝛽 + 𝛽0 is on the wrong side of its 

margin. Hence by bounding the sum ∑ 𝜉𝑖, one bounds the total proportional amount by which 

predictions fall on the wrong side of their margin. Misclassifications occur when 𝜉𝑖 > 1, so bounding 

∑ 𝜉𝑖 at a value 𝐾 say, bounds the total number of training misclassifications at 𝐾. 

We can then drop the norm constraint on 𝛽 define 𝑀 = 1/||𝛽||, and write (#) in the equivalent 

form 

𝑚𝑖𝑛||𝛽|| subject to 𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0)  ≥  1 − 𝜉𝑖  ∀𝑖 

                                         and 𝜉𝑖 ≥ 0, ∑ 𝜉𝑖 ≤ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (##) 
 

This is the usual way the support vector classifier is defined for the non-separable case.  

 

Lagrangian multipliers on SVM 
 

The (##) formulation introduced above is quadratic with linear inequality constraints, hence it is a 

convex optimization problem. A quadratic programming solution is described using Lagrange 

multipliers. Computationally it is convenient to re-express (##) in the equivalent form 
 

𝑚𝑖𝑛𝛽,𝛽0

1

2
||𝛽||2 + 𝐶 ∑ 𝜉𝑖  

𝑁
𝑖=1 (^) 

Subject to 𝜉𝑖 ≥ 0, 𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) ≥ 1 − 𝜉𝑖 ∀𝑖, 

 

Where the “cost” parameter 𝐶 replaces constraint in (##); the separable case corresponds to 𝐶 = ∞.  

The Lagrange (primal) function is 
 

𝐿𝑃 =
1

2
||𝛽||2 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1 − ∑ 𝛼𝑖[𝑦𝑖(𝑥𝑖

𝑇𝛽 + 𝛽0)𝑁
𝑖=1 − (1 − 𝜉𝑖)] − ∑ 𝜇𝑖𝜉𝑖

𝑁
𝑖=1   ($$), 

 

Which is minimised w.r.t 𝛽, 𝛽0 and 𝜉𝑖. Set the respective derivatives to zero, to get 
 

𝛽 =  ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑁
𝑖=1  (1), 

0 = ∑ 𝛼𝑖𝑦𝑖
𝑁
𝑖=1   (2), 

𝛼𝑖 = 𝐶 − 𝜇𝑖, ∀𝑖 (3), 
 

As well as the positivity constraints 𝛼𝑖, 𝜇𝑖, 𝜉𝑖  ≥  0 ∀𝑖. By substituting the above 3 equations to ($$), 

the Lagrangian dual objective function is produced 
 

𝐿𝐷 = ∑ 𝛼𝑖
𝑁
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝑎𝑖′𝑦𝑖𝑦𝑖′𝑥𝑖

𝑇𝑥𝑖′  𝑁
𝑖′=1

𝑁
𝑖=1 (4), 
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Which gives a lower bound on the objective function (^) for any feasible point. Then, maximise 𝐿𝐷 

subject to 0 ≤ 𝛼𝑖 ≤ 𝐶 and ∑ 𝛼𝑖𝑦𝑖
𝑁
𝑖=1 = 0. In addition to (1)-(3) the Karush–Kuhn–Tucker conditions 

include the constraints 
 

𝛼𝑖[𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) − (1 − 𝜉𝑖)]  =  0 (5) 

𝜇𝑖𝜉𝑖  =  0  (6) 

𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) − (1 − 𝜉𝑖)  ≥  0 (7) 

 

For 𝑖 = 1, . . . , 𝑁. Together these equations (1)-(7) uniquely characterise the solution to the primal 

and dual problem [20]. 

 

Table 2.6 - SVM Merits and Demerits 

SVM 

Merits Demerits 

Can handle multiple continuous and categorical 
variables 

Parameters of a settled model are hard to 
decipher 

Supports both regression and classification 
tasks ranking problems 

Do not specifically give probability estimates 

Works good with imbalanced data Lack of transparency of results 

 

 

2.4.6 Artificial Neural Network (ANN)   

 

An artificial neural network is a model of computation inspired by the structure of neural networks 

in the brain. In simplified models of the brain, it consists of a large number of basic computing devices 

(neurons) that are connected to each other in a complex communication network, through which the 

brain is able to carry out highly complex computations. Artificial Neural Networks (ANN) are formal 

computation constructs that are modelled after this computation paradigm. 

Learning with neural networks was proposed in the mid-20th century. It yields an effective 

learning paradigm and has recently been shown to achieve cutting edge performance on several 

learning tasks. A neural network can be described as a directed graph whose nodes correspond to 

neurons and edges correspond to links between them. Each neuron receives as input a weighted sum 

of the outputs of the neurons connected to its incoming edges [21].  

The purpose of a mathematical model to describe this is that it extracts only the bare essentials 

required to accurately represent the entity being studied, removing all of the extraneous details. 

McCulloch and Pitts produced a perfect example of this when they modelled a neuron as: 
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● a set of weighted inputs 𝑤𝑖 that correspond to the synapses 

● an adder that sums the input signals (equivalent to the membrane of the cell that collects 

electrical charge) 

● an activation function (initially a threshold function) that decides whether the neuron fires 

(‘spikes’) for the current inputs 
 

On the left of the picture are a set of input nodes labelled 𝑥1, . . . , 𝑥𝑚. These are given some values, 

and if 𝑥𝑖 = 0 it means neuron 𝑖 didn’t fire and 1 means it did. Each of these other neuronal firings 

flowed along a synapse to arrive at the neuron, and 

those synapses have strengths, called weights. The 

strength of the synapse affects the strength of the 

signal, so multiply the input by the weight of the 

synapse. Now when all these signals arrive into the 

neuron, it adds them up to see if there is enough 

strength to make it fire. Thus, write that as 
 

ℎ = ∑ 𝑤𝑖𝑥𝑖

𝑚

𝑖=1

 

 

which just means sum all the inputs multiplied by their 

synaptic weights. Then the need is to decide a threshold value 𝜃 so that if ℎ > 𝜃 then neuron fires, 

whereas if ℎ < 𝜃 it does not. Having said that the McCulloch and Pitts neuron is a binary threshold 

device one writes the decision whether a neuron fires (which is known as an activation function) as: 
 

𝑔(ℎ) = 1, 𝑖𝑓 ℎ > 𝜃 or 

𝑔(ℎ) = 0, 𝑖𝑓 ℎ ≤ 𝜃. 
 

Perceptron 
 

The Perceptron is nothing more than a collection of McCulloch and Pitts neurons together with a 

set of inputs and some weights to fasten the inputs to the neurons. On the left of the figure, shaded 

in light grey, are the input nodes. These are not neurons, they are just a nice schematic way of 

showing how values are fed into the network, and how many of these input values there are (which 

is the dimension in the input vector).  The neurons are shown on the right with both the additive part 

Figure 2.9 - A picture of McCulloh and Pitts' mathematical 
model of a neuron. The inputs 𝑥𝑖 are multiplied by the 
weights 𝑤𝑖, and the neurons sum their values. If this sum is 
greater than the threshold θ then the neuron fires; 
otherwise it does not [22]. 
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(shown as a circle) and the thresholder. Although in the picture neurons are as much as inputs this is 

not always the case and it could be 𝑚 inputs and 𝑛 neurons. 

When looking at the McCulloch and Pitts neuron, the weights were labelled as 𝑤𝑖, with the 𝑖 index 

running over the number of inputs. Here, there is also a need to work out which neuron the weight 

feeds into, so labelling them as 𝑤𝑖𝑗, where the 𝑗 

index runs over the number of neurons. Now, to 

compute the activation function and determine 

which neuron fires the two above equations are 

used for each neuron to receive a vector with zeros 

and ones.  

The interesting part comes in when a neuron 

fired when it shouldn’t and vice versa. Then, it is 

obvious that the values of the weights should be 

changed so neuron gets it right next time. Let’s label 

the neuron that is wrong as 𝑘, then the weights that 

are of interest are 𝑤𝑖𝑘, where 𝑖 runs from 1 to 𝑚 and 

one has to compute 𝑦𝑘 − 𝑡𝑘  (the difference 

between the output 𝑦𝑘, which is what the neuron 

did, and the target for that neuron, 𝑡𝑘, which is what the neuron should have done. This is a possible 

error function). To get around with different signs of inputs’ elements compute 𝛥𝑤𝑖𝑘 = −(𝑦𝑘 −

𝑡𝑘) × 𝑥𝑖 so the new value of the weight is the old value plus this value.  

Note that there are cases when the threshold value of some neuron must change. Take for 

example an input with value 0. In that case, even if a neuron is wrong, changing the relevant weight 

doesn’t do anything so the need now is to change the threshold. This is done by multiplying the value 

above by a parameter called the learning rate, usually labelled as 𝜂. The value of the learning rate 

determines how fast the network learns.  Hence, the final rule for updating a weight 𝑤𝑖𝑗  is: 
 

𝑤𝑖𝑗 ← 𝑤𝑖𝑗 − 𝜂(𝑦𝑗 − 𝑡𝑗) ⋅ 𝑥𝑖 
 

Multi-layer Perceptron 
 

We previously saw that basically the learning in the neural network happens in the weights. So, to 

perform more computation it seems sensible to add more weights. There are two things that 

someone can do: add some backwards connections, so that the output neurons connect to the inputs 

again or add more neurons. The first approach leads into recurrent networks. These have been 

studied but are not that commonly used. Consider instead the second approach, in which the neurons 

between the input nodes and the outputs are added. This will make more complex neural networks, 

as in the figure. Nevertheless, this approach will generate an issue, namely, how to train this network 

so that the weights are adapted to generate the correct (target) answers? If considering the method 

used for the Perceptron one needs to compute the error at the output. That’s fine, since the targets 

there are already known, so the difference between the targets and the outputs is to be computed. 

Figure 2.10 - The perceptron network, consisting of a set of 
input nodes connected to neurons using weighted 
connections. 
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But now the question becomes which weights were wrong: those in the first layer, or the second? 

Worse, what are the correct activations for the neurons in the middle of the network? This fact gives 

the neurons in the middle of the network their name; they are called the hidden layer (or layers), 

because it isn’t possible to examine and correct their values directly. 

It took a long time for people who studied neural networks to work 

out how to solve this problem. In fact, it wasn’t until 1986 that 

Rumelhart, Hinton, and McClelland managed it. However, a solution to 

the problem was already known by statisticians and engineers but they 

just didn’t know that it was a problem in neural networks! Here only the 

neural network solution proposed by Rumelhart, Hinton, and 

McClelland is considered, and that is the Multilayer Perceptron (MLP), 

which belongs to the group of the most commonly used ML methods 

around. 

 

Back-propagation of error 
 

Training the MLP consists of two parts: working out what the outputs are for the given inputs and 

the current weights, and then updating the weights according to the error, which is a function of the 

difference between the outputs and the targets. Computing the errors at the output is no more 

difficult than it was for the Perceptron but working out what to do with those errors is more difficult. 

The method that is considered here is s form of gradient descent and it is called back-propagation of 

error, which makes it clear that the errors are sent backwards through the network. 

The error function that was used for the Perceptron was ∑ 𝐸𝑘
𝑁
𝑘=1 = ∑ 𝑦𝑘 − 𝑡𝑘

𝑁
𝑘=1 , where 𝑁 is the 

number of the output nodes. To get around though again with the different signs of these errors, it 

makes sense to consider the sum-of-squares error function, which calculates the difference between 

𝑦 and 𝑡 for each node, squares them, and adds them all together: 
 

𝐸(𝑡, 𝑦) =
1

2
∑(𝑦𝑘 − 𝑡𝑘)2

𝑁

𝑘=1

 

 

Another issue that has to be overcome is the discontinuity of the threshold function which doesn't 

allow to differentiate at the point of discontinuity. To avoid this, let’s use instead the sigmoid function 

whose most commonly used form is: 
 

𝑎 = 𝑔(ℎ) =
1

1+𝑒𝑥𝑝(−𝛽ℎ)
(= 𝑡𝑎𝑛ℎ(ℎ) =

𝑒𝑥𝑝(ℎ)−𝑒𝑥𝑝(−ℎ)

𝑒𝑥𝑝(ℎ)+𝑒𝑥𝑝(−ℎ)
). 

 

Where the expression in the parenthesis is the hyperbolic tangent function sometimes included in 

texts. This is a different but similar function; it is still a sigmoid function, but it saturates (reaches its 

constant values) at ±1in contrast with 0 and 1, which is sometimes useful. 

To sum it up, the key thing of the procedure of the algorithm is to understand that the gradients 

of the errors with respect to the weights are computed, so that the weights are changed in order to 

Figure 2.11 - Example of an 
Artificial Neural Network. 
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go downhill, which makes the errors get smaller. To do this try differentiating the error function with 

respect to the weights, by applying the chain rule and differentiate with respect to known things. This 

leads to two different update functions, one for each of the sets of weights, and then just apply these 

backwards through the network, starting at the outputs and ending up back at the inputs.  
 

Multi-layer Perceptron (continued) 
 

Assume 𝐿 input nodes, plus the bias, 𝑀 hidden nodes, also plus the bias, and 𝑁 output nodes, so 

that there are (𝐿 + 1) × 𝑀 weights between the input and the hidden layer and (𝑀 + 1) × 𝑁 

between the hidden layer and the output. The sums will start from 0 if they include the bias nodes 

and 1 otherwise, and run up to 𝐿, 𝑀, or 𝑁, so that 𝑥0 = −1 is the bias input, and 𝑎0 = −1  is the bias 

hidden node. The algorithm that is described could have any number of hidden layers, in which case 

there might be several values for 𝑀, and extra sets of weights between the hidden layers. Let’s also 

use 𝑖, 𝑗, 𝑘 to index the nodes in each layer in the sums, and the corresponding (𝜄, 𝜁, 𝜅) for fixed indices. 

Here is a quick summary of how the algorithm works, and then the full MLP training algorithm 

using back-propagation of error is described [22]. 
 

1. an input vector is put into the input nodes 
 

2. the inputs are fed forward through the network 
 

2.1. The inputs and the first-layer weights (here labelled as 𝜐) are used to decide whether 

the hidden nodes fire or not. The activation function 𝑔(⋅) is the sigmoid function that 

is given above 
 

2.2. The outputs of these neurons and the second-layer weights (labelled as 𝑤) are used 

to decide if the output neurons fire or not  
 

3. the error is computed as the sum-of-squares difference between the network outputs and 

the targets 
 

4. this error is fed backwards through the network in order to 
 

4.1. first update the second-layer weights 
 

4.2. and then afterwards, the first-layer weights 
 

Table 2.7 - MLP Merits and Demerits 

MLP 

Merits Demerits 

Capability to learn non-linear models Requires tuning several hyper parameters 
(hidden neurons, layers) 

Capability to learn models in real-time Sensitive to feature scaling 
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    The Multi-layer Perceptron Algorithm

 
● Initialisation 

○ Initialise all weights to small (positive and negative) random values 

● Training 

○ Repeat 

■ For each input vector: 

Forward phase: 

➔ Compute the activation of each neuron 𝑗 in the hidden 

layer(s) using: 

ℎ𝜁 = ∑ 𝑥𝑖𝜐𝑖𝜁

𝐿

𝑖=0

 

       𝑎𝜁 = 𝑔(ℎ𝜁) =
1

1+𝑒𝑥𝑝(−𝛽ℎ𝜁)
 

➔ work through the network until you get to the output 

layer neurons, which have activations: 

  ℎ𝜅 = ∑ 𝑎𝑗𝑤𝑗𝜅𝑗  

  𝑦𝜅 = 𝑔(ℎ𝜅) =
1

1+𝑒𝑥𝑝(−𝛽ℎ𝜅)
 

    Backwards phase: 

➔ compute the error at the output using: 

 𝛿𝜊(𝜅) = (𝑦𝑘 − 𝑡𝑘)𝑦𝑘(1 − 𝑦𝑘) 

➔ compute the error in the hidden layer(s) using: 

 𝛿ℎ(𝜁) = 𝑎𝜁(1 − 𝑎𝜁) ∑ 𝑤𝜁𝛿𝜊(𝑘)𝑁
𝑘=1  

➔ update the output layer weights using: 

 𝑤𝜁𝜅 ← 𝑤𝜁𝜅 − 𝜂𝛿𝜊(𝜅)𝑎𝜁
ℎ𝑖𝑑𝑑𝑒𝑛  

➔ update the hidden layer weights using: 

 𝜐𝜄 ← 𝜐𝜄 − 𝜂𝛿ℎ(𝜅)𝑥𝜄 

■ (if using sequential updating) randomise the order of the input vectors so that 

you don’t train in exactly the same order each iteration 

○  until learning stops 

● Recall 

○ use the Forwards phase in the training section above 
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2.5 Evaluation Methods 
 

After applying the algorithm to the test subset of the data an essential part of the project follows; 

evaluating the effectiveness of the algorithm. For that reason, some of the existing binary 

classification model evaluation techniques follow: 

 

❖ Accuracy: it is one of the most common metrics used and it refers to the fraction of correctly 

classified samples of the model 

 

❖ Confusion matrix: a comprehensive way to represent the result of evaluating binary 

classification. It is a two by two array, where the rows correspond to the true classes, and the 

columns correspond to the predicted classes. 

Each entry counts for how many data points 

in the class given by the row the prediction 

was the class given the column. Usually, this 

measure reveals more accurately the 

performance of the algorithm in a class 

imbalanced dataset, where a significant 

disparity between the number of positive 

and negative labels occurs. There also exist 

additional metrics based on the actual versus 

the predicted classes by the model [23]. 

These are:  
 

➢ Precision: the ratio of the correctly positive labelled by the algorithm to all positive 

labelled; 
 

➢ Sensitivity (or recall or true positive rate): the ability of a model to find all the relevant 

cases within the dataset. It’s the number of correctly positive labelled divided by the 

number of correctly positive labelled plus the number of incorrectly negative labelled; 
 

➢ Specificity: measures the proposition of actual negatives that are correctly identified 

as such; 
 

➢ False positive rate: used in building the ROC curve among others and is calculated as 

the ratio between the number of negative events wrongly categorised as positive and 

the total number of actual negative events  
 

Figure 2.12 - A confusion matrix. 
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➢ f1-score: a measure that considers both precision and recall. Specifically, it equals the 

harmonic mean of precision and recall and consequently it achieves best value if the 

two above measures are balanced 

  

In the next table the exact mathematical formula for each measure is presented: 
 

Table 2.8 - Performance Evaluation Measures 

Measure Formula 

accuracy 𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

precision 𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

recall 𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

specificity 𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 

fp rate 𝐹𝑃

𝐹𝑃 +  𝑇𝑁
 

f1-score 2 ∗  𝑟𝑒𝑐𝑎𝑙𝑙 ∗  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 +  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

  

❖ Logarithmic loss: this evaluation metric quantifies the accuracy of a classifier by penalising 

false classifications. The target consists of minimising the logarithmic loss (or log loss) which 

equivalently maximises the accuracy of the model. Mathematically the log loss is defined as: 

 

−
1

𝑁
∑ ∑ 𝑦𝑖𝑗𝑙𝑜𝑔𝑝𝑖𝑗

𝑀
𝑗=1

𝑁
𝑖=1     

  

Where N is the number of samples, M is the number of possible labels, 𝑦𝑖𝑗  is a binary indicator 

of whether or not label j is the correct classification for instance i, and 𝑝𝑖𝑗 is the model 

probability of assigning label j to instance i. As it can easily implied from the above, an ideal 

classifier would have a log loss of precisely zero. In the case of binary classification, the log 

loss is simplified to the following expression 
 

−
1

𝑁
∑[𝑦𝑖𝑙𝑜𝑔𝑝𝑖 + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝𝑖)].

𝑁

𝑖=1

 

 

 As a note only the term for the correct class actually contributes to the sum. 
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❖ ROC curve & AUC: an essential task of any classification problem is to take advantage of the 

ROC (Receiver Operating Characteristics) curve in order to visualise, organise, and select 

classifiers based on their performance. It is a probability curve which interprets how much 

the model is capable of distinguishing between 

classes. ROC graphs are two-dimensional graphs 

in which recall (or true positive rate) is plotted on 

the y-axis and false positive rate is plotted on the 

x-axis. Such a graph depicts relative trade-offs 

between benefits (true positive) and costs (false 

positives). Several points in ROC space are 

important to note. The lower left point (0,0) 

represents the strategy of never issuing a positive 

classification; such a classifier commits no false 

positive errors but also gains no true positives. 

The opposite strategy, of unconditionally issuing 

positive classifications, is represented by the 

upper right point (1,1) and the point (0,1) 

represents perfect classification. 

 

AUC (Area Under Curve) represents degree or measure of separability. Higher the AUC, the 

better the model is at predicting 0s as 0s / 1s as 1s and in analogy the better the model is at 

distinguishing between patients with disease and no disease. An excellent model has AUC 

near to 1 which means it has good measure of separability. On the other hand, a poor model 

has AUC near to 0 which means it has worst measure of separability and in fact it means it is 

reciprocating the result, namely predicting 0s as 1s and 1s as 0s. And when AUC is 0.5, it 

means model has no class separation capacity whatsoever [24].  

 

❖ k-fold cross validation: probably the 

simplest and most widely used method for 

estimating prediction error. Ideally, if 

enough data is given, one would set aside a 

validation set and use it to assess the 

performance of the prediction model. Since 

data are often scarce, this is usually not 

possible. To finesse the problem, k-fold 

cross validation uses part of the available 

data to fit the model, and a different part to test it. So split the data into k roughly equal sized 

parts and for the kth part, fit the model to the other (k−1) parts of the data. Then, calculate 

the prediction error of the fitted model when predicting the kth part of the data. Do this for 

k = 1, 2, …, K and combine the k estimates of prediction error [25]. 

Figure 2.13 - ROC curve illustrating an accurate and a 
less accurate model. 

Figure 2.14 - k-fold cross validation interpretation 



 
 

34 

 

2.6 Underfitting/Overfitting and trade-off 
 

The main goal when using an ML algorithm is to fit it to the data in a way that it is easy to generalise 

any new input sample from the problem domain in a proper way. Following this tactic leads to results 

free of bias but first two commonly seen step backs namely underfitting and overfitting must be 

overcome. 

 

❖ Overfitting: building a complex model that does well on the training set but does not 

generalise to new unseen data. 

 

❖ Underfitting: stopping a model from satisfactorily comprehend some meaningful relations in 

the data which causes it to learn an estimation that is not as precise as hoped 

 

❖ Capacity: the ability of an algorithm to model the complexity of the data 

 

❖ Generalisation: the models’ ability to predict values that it has not seen in the training set 

 

❖ Bias-Variance trade-off is the problem of simultaneously minimizing the error originating 

from two sources: 
 

● Bias which is an error caused by false assumptions held by the predictor. High bias 

can cause an algorithm to miss the relevant relations between features and target 

outputs (underfitting). 

 

● Variance that occurs when the model is overly sensitive to small fluctuations in the 

training set. This can cause an algorithm to model the random noise in the training 

data, impacting its ability to generalize on unseen data (overfitting). 

This is referred to as a trade-off because reducing one of 

these two error types might raise the other. In practice 

achieving both low variance and low bias is possible but 

difficult. A method to achieve that is by first choosing a 

model with high enough capacity of modelling the data 

so that it reduces the bias to low levels. Then regularise 

the model to reduce the variance. Regularisation means 

the technique that puts a constraint on the model during 

its training phase, so that is isn't so sensitive to the 

variance of the data. 

 

Figure 2.15 - Understanding bias-variance 
trade-off. 
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Chapter 3  
 

Dataset Insight 
 

 

3.1 Mesothelioma Disease 
 

Mesothelioma is an aggressive, malignant cancer caused when inhaled asbestos fibres lodge in 

the lining of the lungs, abdomen or heart. More than 80% of mesothelioma cases are caused by 

exposure to asbestos. As of 2013, about 125 million people worldwide have been exposed to asbestos 

at work. High rates of disease occur in people who mine asbestos, produce products from asbestos, 

work with asbestos products, live with asbestos workers, or work in buildings containing asbestos. 

There exist four different types of mesothelioma disease which are named after the position of the 

body where they develop. These are: Pleural Mesothelioma (soft tissue covering the lungs), 

Peritoneal Mesothelioma (lining surrounding the abdomen), Pericardial Mesothelioma (soft tissue 

around the heart) and Testicular Mesothelioma (lining of the testes). The first two are the most 

common whereas the rest occur with less than or equal to 1% of the cases. 

Symptoms of the disease can include shortness of breath, difficulty breathing, persistent cough, 

significant weight loss and chest pain.  After a doctor confirms a mesothelioma diagnosis and 

determines the stage of the disease, they will be able to provide a prognosis. Treatment for 

mesothelioma is similar to other types of cancer. The most aggressive treatment is a multimodal 

approach of surgery, chemotherapy and radiation, though these treatments may be used individually 

as well. Because mesothelioma latency is 20-50 years many people with mesothelioma are in their 

60s or 70s. The life expectancy for most mesothelioma patients is approximately 12 months after 

diagnosis but nonetheless early diagnosis may lead to patient’s life expectancy improvement. 

 

 

3.2 UCI and Mesothelioma Disease Dataset 
 

The dataset selected for this thesis was pulled from the University of California Irvine (UCI) ML 

Repository. The UCI ML Repository is a collection of databases, domain theories, and data generators 

that are used by the ML community for the empirical analysis of ML algorithms. The archive was 

created as an ftp (file transfer protocol) archive in 1987 by David Aha and fellow graduate students 

at UC Irvine. Since that time, it has been widely used by students, educators, and researchers all over 
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the world as a primary source of ML datasets. As an indication of the impact of the archive, it has 

been cited over 1000 times, making it one of the top 100 most cited papers in all of computer science.   

 Mesothelioma Disease Dataset specifically consists of 324 observations with 35 attributes. Each 

example corresponds to a single patient with potential mesothelioma symptoms. One of the total 35 

features is the diagnosis label “class of diagnosis”. Concerning the imbalance of the dataset 96 

patients (29.63%) suffer from mesothelioma whereas 228 patients (70.37%) do not suffer from 

mesothelioma. The dataset was prepared by Abdullah Cetin Tanrikulu from Dicle University, Faculty 

of Medicine, Department of Chest Diseases and Orhan Er from Bozok University, Faculty of 

Engineering, Department of Electrical and Electronics Eng. both in Turkey. The first analysis of the 

dataset was published in October 2011 and later in January 2016 it was released publicly on the UCI 

ML Repository. 

 

 

3.3 Attributes Explanation 
 

The following table displays information about value range and measurement units for all 

attributes of the mesothelioma disease dataset.    

         

Table 3.1 - Attributes range and value type 

DATA ATTRIBUTES 

INPUT (34 features) VALUE RANGE MEASUREMENT UNIT 

age [19, 85] years 

gender 0, 1 category 

city [0, 8] category 

asbestos exposure 0, 1 Boolean 

type of MM 0, 1, 2 category 

duration of asbestos exposure [0, 70] years 

diagnosis method 0, 1 Boolean 

keep side 0, 1, 2 category 

cytology 0, 1 Boolean 

duration of symptoms [0.5, 52] years 

dyspnoea 0, 1 Boolean 
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ache on chest 0, 1 Boolean 

weakness 0, 1 Boolean 

habit of cigarette 0, 1, 2, 3 category 

performance status 0, 1 category 

white blood [742, 21500] cells per mcL (microlitre) 

cell count (WBC) [4, 22] cells per mcL (microlitre) 

hemoglobin (HGB) 0, 1 Boolean 

platelet count (PLT) [111, 3335] kilo platelets per mcL (microlitre) 

sedimentation [7, 129] mm/hr (millimetres per hour) 

blood lactic dehydrogenise (LDH) [55, 1128] IU/L (international units per litre) 

alkaline phosphatise (ALP) [41, 489] IU/L (international units per litre) 

total protein [3.1, 8.5] g/dL (grams per decilitre) 

albumin [1.5, 6.9] g/dL (grams per decilitre) 

glucose [60, 421] mg/dL (milligrams per decilitre) 

pleural lactic dehydrogenise [110, 7541] IU/L (international units per litre) 

pleural protein [0, 6.7] g/L (grams per litre) 

pleural albumin [0, 4.4] g/dL (grams per decilitre) 

pleural glucose [2, 151] mg/dL (milligrams per decilitre) 

dead or not 0, 1 Boolean 

pleural effusion 0, 1 Boolean 

pleural thickness on tomography 0, 1 Boolean 

pleural level of acidity (pH) 0, 1 Boolean 

C-reactive protein (CRP) [11, 103] mg/L (milligrams per litre) 

OUTPUT   

class of diagnosis 1, 2 (1: Healthy, 2: Mesothelioma) 

https://doi.org/10.1371/journal.pone.0208737.t001 

https://doi.org/10.1371/journal.pone.0208737.t001
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In the next table a more descriptive list of attributes is given together with a detailed explanation 

with supplementary information of each feature. 

 

Table 3.2 - Attributes meaning 

ATTRIBUTE MEANING 

ache on chest presence or absence of pain in the chest area 

asbestos exposure if a patient has been exposed to asbestos during life 

cytology exam of pleural fluid test to detect cancer cells and certain other cells in the area that surrounds the 
lung 

dead or not if a patient is still alive 

diagnosis method if the patient has had a mesothelioma diagnosed by a common diagnosis method 

dyspnoea shortness of breath 

hemoglobin normality test test that measures how much hemoglobin is in blood 

pleural effusion presence of effusion, common symptom that can inhibit the normal function of 
the organ 

pleural level of acidity (pH) if the pleural fluid pH is lower than the normal pleural fluid pH, that it’s neutral 

pleural thickness of thickness any form of thickening involving either the parietal or visceral pleura 

weakness lack of strength 

city place of provenance of the patients 

gender female or male 

habit of cigarette four categories for the habit of smoking 

lung side the side of the lungs which is experiencing pleural plaques or mesothelioma traces 

performance status patient’s ability to perform normal tasks 

type of malignant mesothelioma mesothelioma stage to which the symptoms seem to belong, according to the 
TNM Classification of Malignant Tumours 

age the age of the patients 

duration of asbestos exposure how long has been the environmental exposure to asbestos 

duration of symptoms the time period, in years, in which the patients show symptoms 

albumin level of blood albumin 

alkaline phosphatase (ALP) test used to help detect liver disease or bone disorders 

C-reactive protein (CRP) acute phase reactant, significantly elevated in patients with pleural mesothelioma 
(MPM) 
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glucose test which measures the amount of glucose in a sample of blood 

lactate dehydrogenase test (LDH) protein that helps produce energy in the body 

platelet count (PLT) test to measure how many platelets patients have in the blood 

pleural albumin level of albumin in the pleural fluid 

pleural fluid WBC count the count of leukocytes in the pleural fluid 

pleural fluid glucose low level can be linked to infection or malignancy 

pleural lactic dehydrogenase its levels indicate if the fluid is exudate or transudate 

pleural protein pleural effusions are classified as transudates or exudates on the basis of the fluid 
protein level 

sedimentation rate test to measure how quickly erythrocytes settle in a test tube in one hour 

total protein biochemical test for measuring the total amount of protein in serum 

white blood cells (WBC) test measures the number and quality of white blood cells 

https://doi.org/10.1371/journal.pone.0208737.t002 

 

  

https://doi.org/10.1371/journal.pone.0208737.t002
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Chapter 4  
 

Implementation Pipeline 
 

 

This chapter presents, the concrete steps in order to carry out the desired analysis on the 

mesothelioma disease dataset. For that reason, Chapter 4 is split into three subchapters, namely 

Exploratory Data Analysis (EDA), Data Preprocessing, and Predictive Modelling. In 4.1 the data is 

explored and potential correlation between dataset’s attributes is investigated. This is mainly 

achieved by plots and visualisations together with statistical measures. Next, 4.2 encapsulates all the 

necessary procedures demanded so that prepare the data as an appropriate input for the ML 

algorithms. Finally, 4.3 provides the implementation of the tools used to execute binary classification 

along with evaluation and performance metrics. 

  

 

4.1 Exploratory Data Analysis (EDA) 
 

Beginning the analysis, the mesothelioma malignant disease dataset from the UCI Repository is 

loaded. For a quick recap, it consists of 324 observations with 35 features. There are no missing values 

or faulty entries, so each attribute contains 324 numeric values representing either a 

categorical/Boolean variable or a numerical one. The next table splits the features into three 

categories depending on the type of their values. 

 

Table 4.1 - Features classification by value type 

Numerical Boolean  Categorical 

age asbestos exposure gender 

duration of asbestos exposure diagnosis method city 

duration of symptoms cytology type of MM 

white blood dyspnoea keep side 

cell count (WBC) ache on chest habit of cigarette 

platelet count (PLT) weakness performance status 

sedimentation hemoglobin (HGB)  
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blood lactic dehydrogenise (LDH) dead or not  

alkaline phosphatise (ALP) pleural effusion  

total protein pleural thickness on tomography  

albumin pleural level of acidity (pH)  

glucose   

pleural lactic dehydrogenise   

pleural protein   

pleural albumin   

pleural glucose   

C- reactive protein (CRP)   

 

As one may observe the dataset has 17 numerical, 11 Boolean, and 6 categorical variables. Boolean 

as well as categorical attributes take integer values with some of them being ordinal (i.e. attributes 

have natural ordered categories) and some not. As a matter of fact, from categorical attributes those 

that are of ordinal type are: type of MM, and habit of cigarette. Performance status takes values 0 

and 1 but it is suggested as categorical, so it is considered as such. Let’s first inspect though the 

balance of the dataset before proceeding to the next steps.  

 

    
Figure 4.1 - Inspect the balance in the dataset. 

The majority of people are healthy (70.4%) and to be more precise 228 people are healthy (class of 

diagnosis = 1) and 96 people suffer from mesothelioma disease (class of diagnosis = 2). Now, proceed 

with taking deeper dives into the attributes. 
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Figure 4.2 - Count samples by class of diagnosis, gender, type of MM, habit of cigarette, and dead or not. 

The following observations from the above tables can be made: 
 

➔ Only 23.6% of the men (gender=1) are infected whereas 38% of the women suffer from 

mesothelioma. That's strange because usually men are more likely to be exposed to asbestos 

considering that it is a construction material; 

  

➔ 91% of the infected people are diagnosed with the early stage0 of the disease whereas there 

are 6 people surprisingly with stage1 of the disease that are not infected. On the other hand, 

there are no healthy people with stage2 of the disease from which one can perhaps suppose 

that at this level there is no doubt cancer is malignant; 

 

➔ From those that are infected 40.6% of them smoke (habit of smoke=0 assumed non-smokers) 

which seems a reasonable percentage; 

 

➔ Only 5% of the people in the dataset in total are alive. From people diagnosed with 

mesothelioma the possibility of a man and a woman being dead is 97.7% and 94.1% 

respectively. This comes to reassure the fact that on an average value patients’ life 

expectancy after diagnosed with the disease is unfortunately under a year as experts state.  
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To continue with let’s look at the distribution of numerical attributes in the dataset that lie inside the 

knowledge of a person with no medical background. Specifically, consider the distribution of age 

variable, next the duration of symptoms that he/she experienced and finally the duration of asbestos 

exposure he/she had. 

 
Figure 4.3 - Distribution of age for healthy and infected people in the dataset. 

Most people in the dataset are between 45 and 65 years of age regardless of the disease existence. 

Perhaps this is explained by the attribute duration of asbestos exposure which is illustrated right 

below. 

 

 
Figure 4.4 - Distribution of duration of symptoms and duration of asbestos exposure in the dataset. 

One can clearly observe both patients diagnosed with malignant disease and those not, have 

experienced asbestos exposure for approximately a mean value of 40 years, a fact that gives an 

explanation to the mean of age values that takes place in the dataset. On the other hand, feature 

duration of symptoms is unequally distributed among its values.  

 

  



 
 

44 

 

Next, have a look to the following plots to gain more information. 

 

 
Figure 4.5 - Data exploration for features duration of asbestos exposure, habit of cigarette, city and the target attribute class of 
diagnosis. 

Again, one can notice that: 
 

➔ The mean value of the duration of asbestos exposure for people suffering from mesothelioma 

is 40 years and from that group women seem to experience more years to asbestos exposure; 
 

➔ It's interesting that the group of ill people that are excessive smokers has the greatest age 

variance among other groups. But in general, it looks like habit of cigarette doesn't contain 

much information about the mesothelioma disease; 
 

➔ Most of the measurements have been taken from cities 0 and 6 and from those infected most 

of them come from city 0. 
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Consider afterwards some categorical attributes to count their discrete values and observe that: 

 
Figure 4.6 - Examples count by cytology, asbestos exposure, weakness and keep side separated by class of diagnosis. 

 

➔ only 27% of the people that suffer from mesothelioma have taken a cytology exam of pleural 

fluid (it is a test to detect cancer cells and certain other cells in the area that surrounds the 

lungs) which is an interesting fact and the reason might be that patients were infected on a 

different part of their body; 
 

➔ 84.6% of healthy people were exposed to asbestos when 90.6% of people with malignant 

tumours were exposed to asbestos as expected; 
 

➔ 62.5% of the mesothelioma group have experienced a lack of strength, but again weakness 

doesn’t seem yet to be correlated with class of diagnosis; 
 

➔ 73% of the people with keep side (the side of the lungs which is experiencing pleural plaques 

or mesothelioma traces) 2 suffer from the disease.  
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Carrying on with class of diagnosis versus continue as well as discrete attributes. 
 

 
Figure 4.7 - Count and bar plots for categorical and continuous attributes respectively. 

 

Here the following remarks can be made: 
 

➔ everyone that took a common diagnosis method had a joyful outcome, whereas unexpectedly 

not a single person diagnosed with mesothelioma took one of these tests; 
 

➔ females suffering from mesothelioma seem to experience more years the symptoms of the 

disease than men; 
 

➔ 50% from the people of class 2 experience problems with performing daily tasks. This also 

applies to healthy people with class 1 so it may be safe to disregard attribute performance 

status; 
 

➔ from people suffering from mesothelioma both those that experience pain in the chest and 

those that are not have been exposed to asbestos for a mean value of 33 years. 

 

There are many people in the dataset under 45 years of age that suffer from mesothelioma disease 

even if there have not been exposed to asbestos. In addition to that people that experience dyspnoea 

and are infected are more likely to be between 40 and 60 years of age as the next plots illustrate. 
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Figure 4.8 - Violin plots for asbestos exposure and dyspnoea versus age. 

 
 

Before proceeding to take a glance at the 

numerical attributes, let’s observe how class of 

diagnosis is affected by patients’ habit of smoke 

depending on their gender. Notice that, coloured 

with blue, women that don’t smoke are very 

likely not to suffer from mesothelioma disease. 

Nevertheless, surprisingly even though smoking 

regularly increases the probability of being 

infected, being a female excessive smoker 

reduces dramatically the probability of suffering 

from mesothelioma. 

 

Almost half of the attributes in the dataset are 

numerical and the vast majority of them involve 

medical information. Thus, a useful approach 

would be to look at the correlation matrix between those attributes once lack domain knowledge in 

the subject exists. Even if it wouldn’t though this can be a good technique to extract helpful 

knowledge and produce afterwards a more effective classification model. In the next figure a 

heatmap of a correlation matrix between all numerical attributes in the mesothelioma dataset is 

provided to find out that indeed there exists a special close connection.  

Figure 4.9 - How class of diagnosis differs while varying habit 
of cigarette and gender. 
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Figure 4.10 - Heatmap for continuous attributes. The browner a cell is the more correlated the associate attributes are. 

 

 

Attributes pleural albumin (level of albumin 

in the pleural fluid) and pleural protein 

(pleural effusions are classified as 

transudates or exudates on the basis of fluid 

protein level) are highly correlated and as 

proof of this a simple linear regression 

model is fit to this data. 

 

 

 

 

 
Figure 4.11 -A Linear Regression fit to pleural albumin and pleural protein. 
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4.2 Data Preprocessing 
 

The mesothelioma disease dataset allocated on the UCI Repository has no missing values, it is 

clean, and it already has label encoded all 6 categorical attributes that is contains. Nevertheless, as 

stated above, not all categorical features are ordinal and for that reason dummy encoding is used to 

attributes keep side and city. This method automatically increases the dimension of the dataset which 

might cause weakness to the models and hence a feature selection and/or extraction method 

eventually should be handy. 

So, for now let’s gradually explore all numerical attributes to detect outliers and shape a more 

delegate dataset.  
 

 
Figure 4.12 - Pair plot of numerical attributes separated by class of diagnosis (part 1). 
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To avoid overfitting not all outliers are excluded from the dataset. As it can be seen from above 

attributes duration of symptoms and cell count (WBC) contain outliers, so remove samples for which: 

Duration of symptoms ≥ 20, and cell count (WBC) ≥ 20 

 

 
Figure 4.13 - Pair plot of numerical attributes separated by class of diagnosis (part 2). 

 

Next several outliers appear on the next numerical attributes. Precisely to erase instances for which: 
 

 platelet count (PLT) > 1000, blood lactic dehydrogenise (LDH) ≥ 850, 

          alkaline phosphatise (ALP) > 400,  total protein < 4,  and albumin > 6. 
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So far, the number of observations in the dataset is reduced by 4.3%. Let’s have a look at the 

remaining numerical variables of the mesothelioma dataset. 
 

 
Figure 4.14 - Pair plot of numerical attributes separated by class of diagnosis (part 3). 

 

Some small eliminations can be done here and particularly for instances which hold values that have: 
 

glucose > 300, pleural lactic dehydrogenise > 5000, and pleural glucose > 130 
 

At the end one ends up with a new dataset of 304 examples and 45 features (remember an extra 

11 new dimensions were added when dummy encoded attributes keep side and city that contained 

3 and 8 discrete values respectively). As a result, the size of the dataset has been shrunk for about 

6.1% in total. 
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Some exploration next on the new smoothed dataset. Let’s observe for example the duration of 

asbestos exposure a patient experienced versus the attribute habit of cigarette, separated by the 

class of diagnosis as most of the times. Also, look at the feature duration of symptoms against the 

type of malignant mesothelioma a patient experienced again, separated by the class of diagnosis. The 

distribution as monitored in both plots is uniformly expanded.  

 

 
Figure 4.15 – Box plots applied on the processed dataset. 

 

Then, consider two shaded bivariate densities for healthy people and for people suffering from 

mesothelioma disease. For both cases plot the duration of symptoms patients experienced versus 

their age. Most healthy people have faced symptoms of the disease for at least 2 years while their 

age is around 58 years. Whereas people with malignant mesothelioma disease have encountered the 

disease symptoms mostly for at least 5 years and at the same time their larger part are at about 45 

years of age.   
 

 
Figure 4.16 - Two shaded bivariate densities. 
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Now, as a last step before proceeding to implement the classification algorithms one must scale 

the data. This is a usual procedure for many ML estimators especially when dealing with attributes 

on a different scale as it happens here, where for example there exist attributes counting years and 

at the same time others counting the size of the cells. 

To that end, it is mandatory to use standardisation 

to scale the independent variables of the data and in 

this procedure the standard score of a sample 𝑥 is 

calculated as 𝑧 =
𝑥−𝑢

𝑠
 , where 𝑢 is the mean of the 

training samples, and 𝑠 is the standard deviation of 

the training samples. This method removes the 

mean and scales the data to unit variance. It is also 

important to compute the mean and the standard 

deviation considering only the training set and then 

use that for later scaling. In addition, it is obvious 

that scaling is needed in both train and test sets or 

otherwise the algorithm will produce misleading output. The process of scaling the data in the 

implementation is embedded in a pipeline and it is followed by the classification process. 3 

 

 

4.3 Predictive Modelling 
 

Reaching the final and most important part of the analysis, the time has come to implement the 

appropriate ML classification algorithms to predict malignant mesothelioma disease. This is achieved 

by gradually getting to the desired point of high-performance rates with the use of preprocessing 

methods, hyperparameter optimisation 

techniques, as well as validation processes. For 

the sake of the analysis the selected 

mesothelioma dataset must be split into a train 

and a test subdataset. The first as the name 

reveals, is used to train the algorithm and form its 

necessary parameters so that get ready next to be 

fed with the unseen data, namely the test dataset. 

And always keeping in mind that the aim is to 

classify each patient as healthy or unhealthy 

depending on the prediction.  

So to begin with, choose at first to fit each 

algorithm purely to the train dataset without any 

 
1 S. Balanchine, “Challenges & Requirements for Building a Predictive Analysis Model” https://bit.ly/2J5bb7R 

Figure 4.17 - Standardisation formula 

Figure 4.18 - The processes that the predictive model lifecycle 
consists o𝑓1. 

https://bit.ly/2J5bb7R
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preprocessing technique applied or any other alteration made and  thereupon attempt to predict the 

target labels on the test dataset. By approaching the problem in this way, it becomes easier later to 

notice and highlight any potential performance improvement after properly preparing the data 

according to each algorithm’s needs. Nevertheless, evaluation measures are not always increased 

after some data handling as long as there exist some occasions eventually, as presented afterwards, 

when an ML algorithm reaches high accuracy measures regardless of any prior data manipulation. 

The reason behind this can vary from the ability of the algorithm to easily generalise, to its robustness 

to outliers. 4 

Carrying on with the next stage of the predictive modelling part of the analysis, the natural 

procedure of executing classification tasks5 on a given dataset is followed. Hence, collect the new 

dataset formed after performing the preprocessing tasks suggested in the previous sub chapter. 

Particularly to sum them up those were first drop features that are proven to be correlated with other 

variables to reduce the dimensions of the dataset. Next, label encode all the categorical attributes 

that were not already label encoded in the first place. This is done by executing dummy encoding 

which is nothing more than defining a new dimension in the dataset for each possible value of a 

categorical feature, and as a result this new feature becomes a binary variable easy and safe to use. 

Going on with scaling the data on both train and test datasets by means of standardisation methods 

as previously introduced. Thus, now it is time to fit each algorithm to the new dataset and investigate 

through several performance metrics how effective the established predictions were. Some of these 

metrics and methods include cross validation, macro average accuracy score, ROC curve and 

confusion matrix. Furthermore, an attempt to perform hyperparameter optimisation as well as 

feature extraction and oversampling is performed in order to handle the class imbalance and the 

small size of the dataset. 

 

 

  

 
1 P. Barba, “Hyperparameter Theft” https://bit.ly/2VWfZ4F 
2 A. Patil, “Dealing with Imbalanced Data” https://bit.ly/2BspejS 

Figure 4.19 - Hyperparameter optimisation proces𝑠1 and oversampling the underrepresented clas𝑠2 . 

 
 

https://bit.ly/2VWfZ4F
https://bit.ly/2BspejS
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Chapter 5  
 

Results and Discussion 
 

 

5.1 Algorithms Individual Results 
 

In this chapter, the individual results of each algorithm are presented as well as an aggregate 

comparative analysis on the outcomes received from the classification algorithms. This includes 

statistical measures, plots as well as confusion matrices both prior and after the preprocessing 

methods that were applied to the mesothelioma dataset. In addition, information is included 

concerning the results of specific classification algorithms such as MLP or SVM for which 

supplementary techniques like oversampling, and/or feature extraction were added to enhance their 

efficiency and demonstrate the contrast. 

 

 

5.1.1 Decision Tree 

 

Decision tree classification algorithm belongs to the group of those algorithms that reached high 

performance rates regardless of any preprocessing method or any other data manipulation applied 

to the mesothelioma dataset. This also includes the 

case where the algorithm was fit to the purely 

imported dataset without even encoding the 

necessary variables. The decision tree drawn on the 

left was produced after applying the algorithm on 

the preprocessed dataset which consists of 304 

examples with 45 features. As it indicates attribute 

X4, which is type of MM, was able to completely 

distinguish patients’ diagnoses for each of 182 

samples that are contained on the train dataset. 

Precisely, decision tree classifier scored a 100% 

balanced accuracy score. For a reminder balanced 

Figure 5.1 - DT for mesothelioma dataset 
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accuracy score is defined to be the average of recall obtained 

on each class. As a matter of fact, when plotting the confusion 

matrix of the DT classifier using a 10-fold cross validation 

evaluation method, the algorithm manages to correctly predict 

211 healthy patients and 93 patients that suffer from 

malignant mesothelioma. Remember by removing the outliers 

this immediately reduces the original size of samples for about 

6.2% of the total examples. 

 

 

 

5.1.2 k-Nearest Neighbour (kNN) 

 

There were two classification algorithms during the prediction analysis step of the work that 

appeared an absorbing performance because they gradually exhibited an increase of their evaluation 

metrics, while executing hyperparameter optimisation and other tuning methods. kNN classifier was 

indeed one of the above algorithms specified and thus let’s consider its achievements and assess the 

success of the model. At first, just like in any other case investigate how well the model performs on 

the pure subset of the given dataset as it is offered on the UCI library. It is immediately noticed a low 

accuracy of value around 60% on the test dataset but as the dataset is not properly prepared for the 

required predictive modelling, it is demanded next to 

proceed with the preprocessing phase. The performance of 

the algorithm rose 11.6% to reach a balanced accuracy score 

of around 65%, which encouraged later new approaches to 

be considered. But for now, highlight the accuracy above 

which was managed with k=3, the distance between points 

being the Euclidean metric and all points in each 

neighbourhood were assigned the same weight. The 

confusion matrix can give a better insight but even better 

observe the ROC curve, AUC and precision-recall curve to 

have a more solid overview of the classifier.  

 

Figure 5.2 - Confusion matrix for DT. 

Figure 5.3 - Confusion matrix for kNN. 
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Figure 5.4 - ROC and precision-recall curves for kNN (k=5). 

  

At first glance the model exhibits some skill with the AUC being equal to 0.806. On the right of the 

ROC the precision-recall curve is specialised to binary classification problems and it clarifies that the 

model needs extra manipulations once a model with perfect skill is depicted as a point at [1.0, 1.0], 

and a skilful model is represented by a curve that bows towards [1.0, 1.0] above the flat line of no 

skill. Therefore, next execute a best fit exploration starting by examining the performance of kNN for 

different odd values of k between 1 and 21, keeping the rest of parameters fixed. Thus, on the left 

plot one monitors how accuracy is 

affected by different values of k and 

observes that best accuracy is 72.56% 

which is achieved for k=3. Nevertheless, 

there is more that can be done and let’s 

try to detect that straight away by 

considering all those possible 

combinations for k=[3, 5, 7, 9, 11, 13] 

and metric=['Minkowski', 'Euclidean', 

'Manhattan', 'Chebyshev']. After a 10-

fold cross validation as usual the 

accuracy rose to 82.96% accomplished 

by k=7 and the metric being Manhattan 

with p=2. 

Figure 5.5 - Accuracy behaviour while varying k. 
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Figure 5.6 - - ROC and precision-recall curves for kNN (k=3). 

It can directly be seen the improvement the model experienced both on the ROC and the 

precision-recall curve approaching the points [0.0, 1.0] and [1.0, 1.0] respectively. In the following 

table the most important metrics obtained for the kNN classification algorithm are summed up. 

 

Table 5.1 - kNN parameters 

kNN f1-score precision recall AUC 

k=3, metric=Euclidean 69.87% 82.9% 77.97% 0.806 

k=7, metric=Manhattan 74.7% 90.09% 71.62% 0.924 

 

 

5.1.3 Logistic Regression 

 

Another algorithm that belongs to the group of those that reached exceptional performance 

metrics is logistic regression. The confusion matrix as shown next can reassure, that similarly with the 

DT classifier case, LR successfully classified all samples of both 

classes. In particular, the model took only 7 iterations to 

converge when the maximum number of them was set to 100. 

Moreover, the tolerance parameter which makes the 

optimisation algorithm to terminate was decided to be 1e-4 

and the inverse of regularisation strength parameter C, which 

is responsible for avoiding the risk of overfitting, was given the 

value 1.  Finally, for the LR classifier it was used the L2-norm for 

penalisation and that is: 

 ||𝑣||2 = √||𝑣1||2 + ||𝑣2||2+. . . +||𝑣𝑛||2.  Figure 5.7 - Confusion matrix for LR. 



 
 

59 

 

5.1.4 Naive Bayes Classifier 

 

Although it is well known that NB classifier assumes strong independence between features, it can 

in practice produce realistic results and work efficiently. Applying NB to the mesothelioma disease 

dataset produced 100% balanced accuracy score whatever 

preprocessing method had been applied to the data earlier. 

Particularly, the likelihood of the features was assumed to be 

Gaussian:  

𝑃(𝑥𝑖|𝑦) =
1

√2𝜋𝜎𝑦
2

𝑒𝑥𝑝(−
(𝑥𝑖−𝜇𝑦)2

2𝜎𝑦
2

), where parameters 𝜎𝑦 

and 𝜇𝑦 were estimated using maximum likelihood. Also, the 

portion of the largest variance of all the features that is added 

to variances for calculation stability and named 

var_smoothing was determined to be 1e-09 in order to 

improve prediction strength and enhance the overall 

evaluation metrics.    

 

 

5.1.5 Support Vector Machine (SVM) 

 

When it comes to the SVM classifier, two different kernels were tested to examine the difference 

of their performance. The first kernel that was used is linear where the classifier didn’t face any 

difficulty in predicting exceptionally all samples of each class just like DT, NB, and LR. Analogously 

with the LR classifier the parameters of the model were C=1, tolerance=1e-4, and the norm for 

penalisation was again the L2-norm. Nevertheless, in this case the algorithm took 498 iterations to 

converge in contrast with the LR classifier. On the other hand, rbf (radial basis function) kernel, which 

as a reminder is given from the formula 𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝(−
||𝑥−𝑥′||2

2𝜎2
), where 𝑥, 𝑥′ denote two samples 

of the dataset, after a 10-fold cross-validation method reached a balanced accuracy score of 97%. 

The algorithm wrongly classified 8 patients as healthy and 1 patient as sick. In addition, during the 

hyperparameter optimisation there were different values tested for parameters C, gamma (the 

kernel coefficient), and the kernel itself of course between rbf and linear in order to examine the best 

combination among them. It turned out after 720 different fits that the penalty parameter C of the 

error term could be reduced to a half and the tolerance for stopping criterion to be increased to value 

1e-2, all these under the constraint of a linear kernel. 
 

Figure 5.8 - Confusion matrix for NB. 
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Figure 5.9 - Confusion matrices for SVM using radial and linear kernels respectively. 

 

 

5.1.6 Artificial Neural Network (ANN)  

 

Finally, the last but undoubtedly the most interesting classification method turned out to be the 

Multilayer Perceptron algorithm with back propagation learning method. Progressively, the 

escalation that the performance of MLP developed was outstanding starting from around 50% and 

reaching at the end 96%. Initially, the algorithm was applied to the purely imported dataset to 

establish a rough idea. MLP scores around 55% accuracy and carrying on with the more interesting 

part: the algorithm applied to the processed dataset. There, the model reaches a balanced accuracy 

score of 76% with the parameters being as follows: 

 

Table 5.2 - Parameters of MLP applied on processed dataset 

parameter value description 

Activation function Relu - the rectified linear unit function, 
returns f(x) = max(0, x) 

Activation function for the hidden layer 

alpha 1e-04 L2 penalty (regularization term) 
parameter 

solver Adam i.e. a stochastic gradient-based 
optimizer proposed by Kingma, 
Diederik, and Jimmy Ba 

The solver for weight optimization 

beta1 0.9 Exponential decay rate for estimates of 
first moment vector in adam, should be 
in [0, 1) 

beta2 0.999 Exponential decay rate for estimates of 
second moment vector in adam, should 
be in [0, 1) 

epsilon 1e-08 Value for numerical stability 
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Hidden layer sizes (100,) The ith element represents the number 
of neurons in the ith hidden layer 

Learning rate constant Learning rate schedule for weight 
updates (constant, invscaling, or 
adaptive) 

Learning rate constant 1e-03  

Maximum iterations 200 this determines the number of epochs 
(how many times each data point will 
be used), not the number of gradient 
steps 

tol 1e-04 Tolerance for the optimization. When 
the loss or score is not improving by at 
least tol for n_iter_no_change 
consecutive iterations 

n_iter_no_change 10 Maximum number of epochs to not 
meet tol improvement 

  

Looking next at the ROC and precision-recall curves to explore the model a bit more. The AUC equals 

0.806 and the algorithm exhibits some skill but as later be seen the model accommodates a bit more 

modifications so that to achieve better results. 
 

  
Figure 5.10 - ROC and precision recall curves for MLP applied on the processed dataset (hidden layers size = 100). 

For that reason, let the size of hidden layers as well as the activation functions to vary to test each 

possible combination and find the best fit. These values were: hidden_layer_sizes= [(10,), (20,), (50,), 

(100,), (200,)], and activation fn = ['identity', 'logistic', 'tanh', 'relu']. It turned out that for 

hidden_layer_sizes = (200,0) and activation function = ‘identity’ the model reached the fascinating 

percentage in balanced accuracy score of 98.65% and the new corresponding ROC and precision-

recall plots are: 
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Figure 5.11 - ROC and precision recall curves for MLP (hidden layer size =200). 

It is already noticed and highlighted the imbalance occurred in the dataset and due to the small 

number of samples, for the last part on the MLP classifier case, an attempt to conduct two different 

techniques simultaneously is performed in order to elaborately examine the problem of binary 

classification on the mesothelioma dataset. The first of these is oversampling which attempts 

apparently to generate more samples for the under-represented class, that is people suffering from 

mesothelioma (target class = 2), so that it increases its population. For this purpose, the SMOTE 

(Synthetic Minority Over-sampling Technique) method to resample the data is used.  

To illustrate how this commonly used algorithm works consider some training data which has 𝑠 

samples, and 𝑓 features in the feature space of the data. Note that these features, for simplicity, are 

continuous. As an example, consider a dataset of birds for classification. The feature space for the 

minority class for which one wants to oversample could be beak length, wingspan, and weight (all 

continuous). To then oversample, take a sample from the dataset, and consider its 𝑘 nearest 

neighbours (in feature space). To create a synthetic data point, take the vector between one of those 

𝑘 neighbours, and the current data point. Multiply this vector by a random number 𝑥 which lies 

between 0, and 1. Add this to the current data point to create the new, synthetic data point. Many 

modifications and extensions have been made to the SMOTE method ever since its proposal. For the 

mesothelioma dataset specifically the parameters of the algorithm were: 𝑘 = 5, sampling_strategy= 

resample all classes but the majority class and at the end it increased overall 38.4% the size of the 

train dataset. 

On the other hand, while an attempt was made to bring some balance to the dataset, it seems 

essential to reduce its feature space once after label encoding the necessary attributes the dimension 

of the dataset has risen to 44 features. This is done by applying the PCA method, which after all 

reduced in this case the features to a total number of 15. Testing different parameters for the new 

balanced and shrunk dataset the new modified MLP algorithm scored 95.6% accuracy after a usual 

10-fold cross validation method. The selected parameters for the best fit were 

variance_threshold=0.005, pca_components=5, mlp hidden layer sizes= (20,), and mlp activation 

fn=’identity’. 
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5.2 Comparative Analysis 
 

Now that the discovery of the individual performances of each classification method has ended, it 

is safe to continue with the comparative evaluation of algorithms’ accuracies. This is accomplished 

under the constraint that the mesothelioma dataset is processed in the way that each algorithm 

demands so there is no room left to make faulty deductions. To that end, conduct a 10-fold cross 

validation technique in order to on the one hand receive a better estimate of the models’ 

performances and on the other hand to handle the 

imbalance of the dataset. Hence, the following table 

displays the aggregate mean as well as the standard 

deviation of all accuracies obtained from each fold for 

every algorithm. Observe that there exist particular 

algorithms that did not achieve exceptional figures and 

these were SVM using a radial kernel, kNN (with k=3), and 

MLP. Nevertheless, the two latter methods have even 

experienced performance improvements based on feature 

extraction and oversampling the under-represented class. 

Next, take a glance at the bar plot which encapsulates the 

information of the above table in a more friendly and colourful way. But never forget that one must 

take into account the confusion matrices that present a more comprehensive way of the results. 

These together with the statistical measures contained in the table at the end of this subchapter will 

point us to the most successful and effective binary classification procedure that was used on the 

selected dataset. 

 

 
Figure 5.13 - Average CV Mean Accuracy 

 

  

Figure 5.12 - Cross validation mean and 
standard deviation scores for all algorithms. 
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Let’s glance now at all confusion matrices of the 7 algorithms applied to the mesothelioma disease 

dataset and always keeping in mind they were produced using a 10-fold cross validation technique. 

                                                                       

 
Figure 5.14 - Confusion matrices for every algorithm applied on the dataset. 

 

For a final comparison let’s present the measures precision, recall, f1-score as well as AUC to 

confirm the results escalation. This includes the cases of the algorithms collocated with default 

parameters, with hyperparameter optimisation and with feature extraction wherever applied.  
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Table 5.3 - Aggregate performance table 

algorithm(s) accuracy precision  recall f1-score AUC 

NB, SVM, LR, DT 100% 100% 100% 100% 100% 

kNN (k=3) 72.56% 82.9% 67.74% 69.87% 80.6% 

kNN (k=7) 82.96% 90.09% 71.62% 74.69% 92.4% 

MLP (default) 78.73% 85.22% 78.73% 80.94% 92.9% 

MLP (grid search) 98.65% 99.42% 98.65% 99.02% 100% 

MLP (PCA, SMOTE) 95.6% 97.01% 95.22% 96.05% 99.36% 

 

It is evident that the algorithm that features the most impressive results is the MLP classifier. 

Starting from the implementation to the purely imported mesothelioma dataset and ending to the 

full processed dataset with balancing and feature extraction methods, MLP distinguishes itself from 

other classification techniques for its unique property to adapt to new data and successfully predict 

target labels. On the other hand, though kNN algorithm also exhibited an interesting performance 

while altering parameters to make the model discover its best fit. As a matter of fact, even if by testing 

different values of k, k=3 was discovered to be the best choice for the number of nearest neighbours, 

it turned out that k=7 was producing even better balanced accuracy score (namely 82.96%) as long 

as the distance metrics were varied with the best being Manhattan with p=2. Lastly, the group of 

those algorithms reaching exceptional results from the first place unexpectedly have proven to be 

unaffected from several oversampling techniques that were used to bring back balance in the 

dataset. Particularly, only LR algorithm revealed a minor decrease in its performance while executing 

Random Over Sampler (over-sample the minority class by picking samples at random with 

replacement) or even SMOTE. The rest displayed undeviating outcomes that compensate the opinion 

that due to their simplicity they cannot generalise effectively to new unseen data.  
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Chapter 6  
 

Conclusions and Proposals for future work 
 

 

6.1 Conclusions 
 

In this thesis, the problem of executing binary classification on the malignant mesothelioma 

disease dataset located on the UCI ML Repository was addressed. The dataset consists of 324 

instances each of which corresponds to measurements of a single patient. Features vary among 

different medical characteristics and the target attribute “class of diagnosis” indicates whether a 

patient suffers from the disease or not. The pipeline of analysing the selected dataset was achieved 

by using a knowledge discovery process consisting of the following phases: exploratory data analysis 

(EDA), preprocessing techniques on the data, choosing an appropriate data mining approach to 

classify the instances and finally evaluate the performances that the ML classification algorithms 

reached together with a comparative evaluation of these techniques.  

At first, concerning the EDA part of the analysis the data was explored in whole and tried to 

investigate hidden correlations. The most common approach was through plots illustrating behaviour 

of attributes themselves or even against each other both concerning continuous and discrete values. 

Interesting facts were revealed, like for example that it is more likely a woman to be infected with 

the disease, or that the habit of cigarette does not considerably affect the class of diagnosis. Another 

useful point was that attributes pleural albumin and pleural protein were highly correlated with each 

other which let us ignore one of them to make the model more efficient and converge faster. 

In the next phase, concentration was given on processing the dataset in a way that prepares 

algorithms to successfully fit and later predict the target attribute. Although the dataset was clean in 

the first place, dummy encoding was performed producing a new dimension for each possible value 

of a categorical feature. This way, all attributes became either binary (0 or 1) or taking continuous 

values which enabled the models to produce more realistic results. Furthermore, even though 

outliers did not affect dramatically the performance of the majority of classification algorithms as 

proven, taking a legit threshold a small percentage of them was removed so that allow and simplify 

further methods like oversampling to be applied.    

When it comes to classifying the instances, the mesothelioma disease dataset was split into 2 

subdatasets from which the first of total 182 samples (56.1%) was used to train each algorithm and 

form its necessary shape and parameters. The second of total 122 examples (43.9%) was used to test 

the performance of the algorithm, that was already been shaped, onto new unseen data. From the 
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selected classification algorithms there were those that performed well without any preprocessing 

technique applied, and those that as the manipulation steps proceeded the evaluation metrics were 

steadily increasing and reaching almost exceptional levels. In the first group of algorithms belong 

decision tree classifier, logistic regression, Gaussian Naive Bayes, and linear SVC. Whereas, kNN and 

ANN using back propagation learning algorithm took several steps to enhance their performance. 

Such steps were hyperparameter optimisation techniques as well as feature extraction/selection 

methods. Constructing an implementation pipeline, the parameters as well as kernel functions were 

let to vary in order to find the best fit the algorithms could achieve.  

Cross-validation, balanced accuracy score, confusion matrices, ROC/AUC and precision/recall 

curves were broadly employed to test the success of the models and come to safe deductions. Despite 

the simplicity of the models that reached excellent evaluation measures, they also managed to 

perform equally well on the resampled data with reduced dimensions. On the other hand, there is no 

room for someone not to admit that MLP with back propagation learning method is the algorithm 

which displayed the most interesting and accretive performance. And this is the reason why such a 

technique has the best potential to generalise good enough and the safest for a future realistic 

diagnosis. 

 

 

6.2 Future Work 
 

Obviously, the work undertaken in this thesis does not cover all the approaches one could follow 

to accommodate every possible concept or limitation of the subject. In addition, there is no doubt 

there are enough different adaptations, tests, and experiments that are left for the future to be 

examined. Some of them could concern deeper analysis of particular mechanisms, new proposals to 

try different methods, or simply curiosity. Nevertheless, whatever a future method will be chosen to 

be, when dealing with analysing medical data and in particular with carcinoid tumours, the analyst 

should keep in mind the seriousness of faulty classifying an instance as this case could probably 

interpret a realistic classifying problem. In other words, computing the accuracy of a model alone 

does not necessarily hold all the demanding information needed to make safe deductions and 

conclude to a data driven decision. After exploring the area of the analysis, both from domain as well 

as from the ML perspective, a few proposals and concepts have come across that would potentially 

include some interest for fellow students, researchers or data analysts.  

From the early stage of this work the small dataset was identified to be an issue. A first suggestion 

for future work is to try these methods and features on a larger dataset. With such a dataset, it would 

also be interesting to have completely separated data for testing, that is not even used in the k-fold 

cross validation technique. This might lead to a minor decrease of the values of evaluation metrics 

but on the other hand it also raises the adaptation to the real-world problem. The data gathering 

process could be fulfilled by getting in touch with medical centres or other organisations that are 
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capable of providing such amount and quality of data, unless more sophisticated approaches of 

producing reasonable data are considered. 

Another plausible perspective which also applies to most of the ML problems is raising the domain 

knowledge of the analyst. It is not an exaggeration to say that domain knowledge on the subject can 

have equal value as the technical skills because apart from others, it empowers collaboration with 

domain experts and as a result better models and techniques are chosen. Having clarified the 

meaning and the physiology of all the features along with their values in a dataset together with the 

nature of the problem can have positive effects to the results. They enable analysts to take an active 

part in the choice of the model, as well as the feature selection and data cleaning phases of the 

analysis. Thus, when dealing with complex areas like medicine it is always preferable to get a deeper 

dive in the field so that to produce effective models with accurate and interpretable results. 

Finally, the last proposition has to do with the so-called ensemble learning in ML. This technique 

is widely used in many prestigious ML competitions and it comprises a combination of several 

algorithms. Those models are gathered to enhance predictions while reducing the variance and the 

bias of the algorithm. There exist numerous fixed such mixtures and they are split into two categories 

depending on the generation of the base learners whether they are produced in parallel or 

sequential. However, both groups of methods aim to improve the stability and the accuracy of the 

algorithm.     
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