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Summary 

Cancer is a complex and intricate disease, and the scientific community has been 

struggling for decades to identify any feebleness or rudimentary characteristics to 

discover effective treatments. Next generation sequencing technologies have eased the 

way for the systematic discovery of diagnostic biomarkers for cancers and other 

pathologies. Melanoma continues to be a rare form of skin cancer but causes the majority 

of skin cancer related deaths. For many years research has focused on the investigation 

of the pathogenesis leading to melanoma, with the aim of better understanding its 

complexity and the potential advancement of therapeutic strategies. 

In this PhD thesis a computational model for the integrated analysis of multi-source 

cancer datasets is proposed, using cutaneous melanoma as disease-model, in order to 

identify robust composite biomarkers that allow the classification between healthy and 

disease state. Along this road, for the first time primary cutaneous melanoma biopsies 

from Greek patients were subjected to whole exome sequencing and were analysed in 

order to derive their mutational profile landscape. Moreover, in the context of big data 

analytical methodologies, integration of exome sequencing and transcriptomic data was 

performed, in an attempt to achieve a multi-layered analysis and infer a tentative disease 

network for primary melanoma pathogenesis, offering deeper insight in the underlying 

mechanisms affected by melanoma and potentially contributing to the valuable effective 

epidemiological characterisation of this disease.  

This study exhibits a modular and distributed workflow that can integrate 

heterogeneous, multidimensional (omics, histological images and clinical) data for the 

multi-angled portrayal and classification of melanoma patients. All the proposed 

methodologies achieve satisfying performance through the proposed framework. The 

specific architecture aspires to lower the barrier for the introduction of personalised 

therapeutic approaches, towards precision medicine.  

  



8 
 

 

  



9 
 

Περίληψη 

Ο καρκίνος αποτελεί μια πολύπλοκη ασθένεια που έχει απασχολήσει την 

επιστημονική κοινότητα παγκοσμίως για δεκαετίες, στοχεύοντας στον εντοπισμό τυχόν 

αδυναμιών ή στοιχειωδών χαρακτηριστικών που θα οδηγήσουν σε αποτελεσματικές 

θεραπείες. Οι τεχνολογίες αλληλούχισης νέας γενιάς έχουν διευκολύνει τη συστηματική 

εξεύρεση διαγνωστικών βιοδεικτών για καρκίνους και άλλες παθολογίες. Το μελάνωμα 

αποτελεί μια σπάνια μορφή καρκίνου του δέρματος, αλλά ευθύνεται για την πλειοψηφία 

των θανάτων που σχετίζονται με τον συγκεκριμένο τύπο καρκίνου. Για πολλά χρόνια οι 

αιτίες και η παθογένεια που οδηγούν στο μελάνωμα αποτελούν αντικείμενο έρευνας, με 

στόχο την καλύτερη κατανόηση της πολυπλοκότητάς του και της πιθανής εξέλιξης των 

θεραπευτικών στρατηγικών που ακολουθούνται. 

Στην παρούσα διδακτορική διατριβή προτείνεται ένα υπολογιστικό μοντέλο για την 

ολιστική ανάλυση πολλαπλών πηγών καρκινικών δεδομένων, χρησιμοποιώντας το 

δερματικό μελάνωμα ως ασθένεια-μοντέλο, με στόχο να εντοπιστούν εύρωστοι σύνθετοι 

βιοδείκτες που επιτρέπουν την ταξινόμηση μεταξύ υγιούς και νοσηρής κατάστασης. Κατά 

τη διάρκεια αυτής της ανάλυσης, για πρώτη φορά οι πρωτογενείς βιοψίες δερματικού 

μελανώματος από Έλληνες ασθενείς υποβλήθηκαν σε αλληλούχιση εξωνίων (WES) και 

αναλύθηκαν προκειμένου να αντληθεί το προφίλ μεταλλάξεών τους. Επιπλέον, στο 

πλαίσιο ανάλυσης μεθοδολογιών μεγάλων δεδομένων (big data), ολοκληρώθηκε η 

ενσωμάτωση και σύντηξη των εξωνικών με μεταγραφικά δεδομένα, σε μια προσπάθεια 

επίτευξης μιας πολύ-επίπεδης ανάλυσης και εξαγωγής ενός γενικευμένου δικτύου 

ασθένειας για το μελάνωμα, επιτρέποντας την εμβάθυνση της γνώσης των υποκείμενων 

βιολογικών μηχανισμών που επηρεάζονται και συμβάλλοντας ενδεχομένως στον 

πολύτιμο αποτελεσματικό επιδημιολογικό χαρακτηρισμό αυτής της ασθένειας. 

Αυτή η μελέτη παρέχει μια αρθρωτή και κατανεμημένη ροή εργασίας που μπορεί 

να ενσωματώνει ετερογενή, πολυδιάστατα δεδομένα (omics, ιστολογικές εικόνες και 

κλινικά)  για τη διεξοδική ταξινόμηση ασθενών με μελάνωμα. Όλες οι προτεινόμενες 

μεθοδολογίες επιτυγχάνουν ικανοποιητικές επιδόσεις μέσω του προτεινόμενου πλαισίου. 
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Chapter 1. Introduction 

1.1 Purpose & Research questions 

 The purpose of this research is to find the best combination of molecular, 

histological and clinical features to create an automated integrative processing system 

for the detection of cutaneous malignant melanoma. 

The questions that will be addressed are the following: 

1. Can the integration of diverse molecular data offer new knowledge on melanoma? 

2. Which composite biomarkers differentiate between malignant melanoma and 

benign nevus? 

3. Which feature combination presents better performance on an automated 

processing system for the detection of melanoma? 

4. Which classification method performs better on a given feature combination? 

 

 The motivation is to attain a breakthrough in the translational biomedical research, 

focusing in the pervasive study of such an important disease as melanoma. The goal is 

to design and implement a layered analytical framework, which can integrate high-volume 

molecular omic data with imaging data of skin lesions (dermoscopy). 

 The output of this study is a novel method which combines molecular components 

with image processing for the detection of melanoma with high accuracy. 

Another goal is the reduction of the number of features that are used for classification. An 

important aspect is that the presented analysis scheme can be utilised for diverse 

classification problems, i.e. cutaneous melanoma subtype classification, given that 

enough training input data becomes available. Finally, the ultimate goal is the production 

of an approach that is based on high throughput technology that is cost-effective at the 

same time.  
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1.2 Prologue 

 The following thesis is a multi-disciplinary analysis concerning cutaneous 

melanoma (CM), or melanoma of the skin. Various biological and computational aspects 

are explored to understand the deeper mechanisms leading to the disease’s 

manifestation and offer new insights in the distinction between healthy and disease state.   

 A concept that needs to be discussed is the difference between data integration 

and fusion. The two terms are often used interchangeably, still in many applications a 

difference can be observed. Fusion refers to the process of combining input data into a 

common representational arrangement, probably transforming the original input, while 

integration refers to the use of multi-source information to assist in a particular task 

(Mitchell, 2012). In this thesis, we mostly use the term data integration, to avoid any 

misinterpretation.  

 Several chapters in this dissertation contain material that has been published 

previously. These do not essentially represent the final published form and might have 

been edited slightly. At the end, the list of publications related to this study, finalised or 

under preparation, is presented. In some cases, supplementary data has not been 

included but can be found online in the corresponding publication.        

 As declared, this is a multi-disciplinary research analysis and the various biological 

and computational aspects need to be explored. Partly this research focuses on 

unearthing important associations between molecular, histological and clinical features 

concerning the characterisation of melanoma. This, requested separate analysis of the 

different levels of data and feature selection, followed by statistical analysis or machine 

learning techniques. Then, emphasis was given on examining which combination of 

features improves classification performance upon various classifiers. The structure of 

this thesis is as follows:   

o The remains of chapter 1 discuss several basic concepts used throughout this 

analysis and a general introduction on the subject is given. 
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o In chapter 2, the related work of the field is presented. In the first subsection of the 

chapter, the literature concerning the imaging field is presented, while in the 

second subsection the biological background is provided. 

o Chapter 3 includes the data acquisition and methodology used for analysis. More 

specifically, the bioinformatic and machine learning framework is given, along with 

specific commands used for the analysis. The software and hardware information 

are also denoted. 

o In chapter 4, a number of case studies that utilise the proposed parts of the 

framework, along with their results, is presented. The first subsection presents the 

initial molecular analysis and integration of mutational and transcriptomic data, the 

second subsection gives an extended description of the molecular analysis and 

the resulting molecular biomarkers, while the third and final subsection describes 

the classification systems built and the integration of imaging and molecular data.  

o Chapter 5 includes a final discussion of the outputs of this dissertation and the 

conclusion. 

 Answers to the research questions are given throughout this dissertation, 

predominantly in chapter 4, where the analysis is performed, and the results are 

presented. Firstly, a broad molecular network implicated in CM is given at section 4.1, 

where integration of diverse molecular data takes place, elucidating the important 

mechanisms involved in this type of cancer; some formerly concealed by the statistical 

cut-offs. Secondly, the composite biomarkers that can discriminate melanoma from 

healthy nevus are given as lists (Tables Table 14 and Table 15), after molecular and 

imaging data integration and successful classification at section 4.3. For the third 

question, the composite features are statistically evaluated, again in section 4.3. For the 

fourth question, multiple algorithms are evaluated to achieve the highest accuracy 

possible. Figure 1 presents the basic outline and processing pipeline of this research. The 

basis of this study is the experimental and bioinformatic analysis of exome sequencing 

data, deriving from new patients. Through integration with transcriptomic data (top 

rectangle of Figure 1, pink shade), a broad molecular network implicated in CM is given, 
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elucidating the important mechanisms involved in this type of cancer. Through integration 

with skin imaging characteristics and machine learning modalities, the creation of 

classification systems (see bottom rectangle of Figure 1, green and grey shades) for the 

layered scheme is acquired.   

 

Figure 1: Processing pipeline of the presented research 

 

1.3 Biomarkers 

 The term “biomarker” refers to a wide subgroup of signs indicating a medical state 

that can be measured accurately in a reproducible manner. These signs differ from 

medical symptoms, which are limited to the warnings of disease perceived by patients 

themselves (Strimbu and Tavel, 2010). A biomarker is “any substance, structure or 

process that can be measured in the body or its products and influence or predict the 

incidence or outcome of disease” (Organization and Safety, 2001). A more updated 

definition for biomarker is “a defined characteristic that is measured as an indicator of 

normal biological processes, pathogenic processes, or responses to an exposure or 

intervention, including therapeutic interventions. Molecular, histologic, radiographic, or 

physiologic characteristics are types of biomarkers” (FDA-NIH Biomarker Working Group, 

2016).  



25 
 

 Medical imaging can be a source of diagnostic, predictive, prognostic, and 

monitoring biomarkers, and has already been used extensively in many applications 

(Weaver and Leung, 2017). In clinical oncology, imaging can act as an operative cancer 

diagnostic tool, offering non-invasive and low-cost handling. By accumulating innovative 

and auspicious means to precision medicine, the customisation of cancer care can be 

achieved (Parmar et al., 2015). 

 Biomarkers’ role in the drug development process and the general biomedical 

research initiative is crucial. The association of an easily measurable biological aspect 

with a clinical result is vibrant to escalating the medicinal actions against disease, 

deepening the knowledge of human physiology (Strimbu and Tavel, 2010). An important 

aspect of biomarker discovery is procedure stability, in terms of sample variation or 

robustness of selection processes. Biomarker robustness can influence any succeeding 

biological validation and reinforce the confidence of a selection scheme. 

 Currently in biomedicine, next generation sequencing (NGS) technologies are 

invaluable for biomarker discovery through applications of computational biology. “NGS, 

massively parallel or deep sequencing are related terms that describe a DNA sequencing 

technology which has revolutionised genomic research. Using NGS an entire human 

genome can be sequenced within a single day. In contrast, the previous Sanger 

sequencing technology, used to decipher the human genome, required over a decade to 

deliver the final draft” (Behjati and Tarpey, 2013). NGS applications include whole-

genome sequencing (WGS), whole-exome sequencing (WES) and RNA sequencing 

(RNA-seq), among others. This study mostly focuses on WES, though other 

methodologies are discussed, as well. Specially in the case of cancer, high-dimensional 

technologies have become state-of-the-art for the comparison between healthy and 

disease state (Abeel et al., 2010).  

 Combining different levels of information concerning a problem can improve the 

total knowledge on that problem and assist in the effort of finding a solution (Lanckriet et 

al., 2004). The combination of high-dimensional, multimodal, multivariate models and 

data sets can provide a more comprehensive view of the response to disease. The 

ascending products of such combination can be described with the term “composite 
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biomarkers”. Through coalescing different levels of information and utilising diverse 

approaches, researchers can generate cancer-specific or patient-specific tactics 

dedicated to Precision Medicine (Lambin et al., 2013). 

 

1.4 Machine learning 

 Machine learning (ML) is the field of artificial intelligence that relies on statistical 

and mathematical algorithms to detect patterns in complex data sets, with the prospect 

of inferring knowledge on these and additional similar data sets. Computers can “learn” 

from former instances and decipher the patterns to allow classification of new data. This 

ability is highly compatible with biomedical applications, especially in the case of complex 

NGS technologies. To this end, ML has been frequently utilised in cancer research (Cruz 

and Wishart, 2006). Various ML techniques have been used in cancer detection and 

diagnosis for over 30 years (Cicchetti, 1992; Maclin et al., 1991; Simes, 1985).       

 From the ML perspective, selection of biomarkers can be viewed as a feature 

selection task for classification, where the objective is to identify the set of features that 

correctly differentiate the samples. This set of features can serve as a signature for the 

disease under investigation, given that the results allow reproducibility and are biologically 

validated (Abeel et al., 2010). 

 Current advances in high-performance computing in the fields of artificial 

intelligence and deep learning, have increased the accessibility of bulky annotated data 

sets, moving forward to the development of innovative frameworks, ensuing the 

unparalleled acceleration of these fields. Potentially any level of data -molecular, imaging, 

clinical- can be viewed through the artificial intelligence standpoint, offering critical 

insights and aiding therapeutics and diagnostics (Zhavoronkov, 2018). 
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1.5 Genomics & Big Data era 

 As general terminology "omics" sciences include genomics for DNA variants, 

transcriptomics for RNA analysis, proteomics for proteins, and metabolomics for 

metabolic products (Romero et al., 2006). Genomics refers to the study of genes and their 

functions, and associated techniques. Genomics addresses all genes aiming to 

investigate their relationship to categorise shared impact on the development of an 

organism (“WHO | WHO definitions of genetics and genomics”, n.d.). Hence, genomics 

comprises of studies that are conducted at the level of the genome (“genomics | Learn 

Science at Scitable”, n.d.).  

 Utilising high-throughput sequencing technologies, genomics has shed light to new 

prospects for the characterisation of diseases and drug discovery. The potential of 

genomics revolution is endless, allowing powerful openings with social, economic, and 

cultural impact, apart from the obvious effect on science. The research community has 

and will continue to embrace genomics technologies, gaining extraordinary power for 

novelties and modernisations, to confront any challenge menacing the human kind 

(Jimenez-Sanchez, 2015). 

 “Precision medicine” aims to accurately categorise patients, sharing a mutual 

biological root for a disease, into specific subgroups to improve treatment and outcome. 

To succeed, it requires data efficacy from various bases and in vast volumes, including 

data gathering, supervision and analytics. A required step is including omic information 

for each patient into the electronic health record (EHR) (Wu et al., 2017). The widespread 

implementation of EHR for the entire population delivers a foundation for healthcare 

efficiency and wellbeing. The arrival of high-throughput omic analyses, like NGS, has led 

to the fast accretion of omic data (Hillestad et al., 2005). Omic analysis regularly aims at 

discovering biomarkers using high-throughput technologies, through the extraction of 

molecular and disease profiles, identifying the substantial genes and networks altered in 

a given state by statistical models and validation. EHR holds patients’ disease information 

with the prospect of predicting imminent outcome, based on individual and population 

characteristics. The incorporation of omic knowledge on EHR can enable efficient 
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therapeutics and empower disease diagnosis, prognosis, and treatment. Up until this day, 

disease variability, specially in the case of cancer, is the highest challenge, so accurate 

classification into subtypes necessitates methodical big data models for validation and 

reliable group allocation (Wu et al., 2017). To keep up with the continuous fruition of 

technologies implemented in EHR, decision support systems must be offered in the same 

pace (Andreu Perez et al., 2015). 

 The decreasing cost of data generation has led science to the Big Data era. The 

ever-growing technological developments permit the detailed profiling of biological 

systems, at the same time demanding the constant improvement of biological/clinical data 

mining and analysis tools (Greene et al., 2016). 

 The uncovering of hidden outlines, correlations, and other perceptions has been 

made possible through the exploratory investigation of large-scale data sets. 

Implementation of additional technological advancements in EHR can allow patient-

centred precision medicine in clinical practice (He et al., 2017). The cumulative amount 

of medical imaging data increased the challenge of systematising, mining, and 

information extraction from large-scale medical imaging datasets. Novel modalities are 

constantly emerging, while others are attaining universal acceptance as state-of-the-art 

(Andreu Perez et al., 2015). 

 Big Data structures offer the incorporation and manipulation of genomic 

information in wide-ranging EHRs, delivering a viable prospect of developing operative 

tactics for variant discovery, personalised medicine and patient stratification (He et al., 

2017). Still, variant discovery for an individual genome remains a complex procedure and 

requires high computational power, for population and medical genomics (Stephens et 

al., 2015). 

 Big Data refers to data sets possessing the five Vs, i.e. Volume, Velocity, Variety, 

Verification/Veracity, and Value (Huang et al., 2015). Big data in medicine describes 

datasets that are generated quickly, in high levels and are difficult to interpret due to 

variability and heterogeneity (Andreu Perez et al., 2015). This describes data sets of 
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immense volume and high complexity that require special processing methodologies and 

are subjected to technological developments (He et al., 2017).  

 Among the Big Data domains, genomics is the most demanding, bearing in mind 

the computational strains required for data acquisition, long-time storage, data 

distribution, and, of course, analysis. Any novel approach needs to take these under 

consideration, though it is highly unlikely that a sole development or technology can solve 

genomics’ complexity (Stephens et al., 2015). 

 Big Data developments on various fields, like medical informatics, bioinformatics, 

imaging and sensors, will have an excessive effect on forthcoming clinical research 

(Andreu Perez et al., 2015). 

 

1.6 Skin cancer & Melanoma 

 Predominantly in Dermatology, skin cancers are the world’s most common cancer. 

Currently one in every three cancers diagnosed is a skin cancer, and according to the 

Skin Cancer Foundation Statistics (“The Skin Cancer Foundation”, n.d.), three out of ten 

Caucasians will develop skin cancer during their lifetime. The most common skin cancer 

is basal cell carcinoma, which is rarely deadly since it generally does not metastasise. In 

contrast, melanoma is a rare type of skin cancer but is considered among the most lethal 

forms of cancers. Non-melanoma skin cancers rarely spread to other parts of the body, 

but melanomas are considered a metastatic type of cancer. A characteristic of all skin 

cancers is that their incidence has increased in the last decades. Specifically, in the case 

of cutaneous melanoma, its incidence rates in Caucasian populations have risen faster 

than those of any other malignant entity over the last 30 years. Melanoma’s incidence 

has been increasing since the mid-60s in most fair skinned populations and is predicted 

to continue increasing for at least two more decades (“The Skin Cancer Foundation”, 

n.d.). 

 Melanoma is a malignant tumour that originates from melanocytes; the cells 

specialised to produce melanin pigment. Melanocytes derive from the neural crest, a 
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transient embryonic structure, consisting of highly migratory pluripotent cells, which give 

rise to a number of different cell types (Uong and Zon, 2010). During development, 

melanocyte progenitors migrate, differentiate and colonise the skin- epidermis and hair 

follicles, the uvea of the eye and mucous membranes throughout the body. Consequently, 

melanoma can arise at all these sites, leading to phenotypically, histologically, clinically 

and genetically diverse types of disease. In Caucasian populations, the most common 

type of melanoma is Cutaneous Melanoma (CM), originating from the epidermal 

melanocytes of non-glabrous skin. Among skin cancers, melanoma is the most 

aggressive, and although it accounts for less than 5% of skin cancer incidence, it is 

responsible for the majority of related deaths (Nikolaou and Stratigos, 2014). In this 

dissertation, discussion primarily focuses on CM, as there are many differences in the 

genetic background implicated in different types of melanoma, such as mucosal or uveal 

melanoma. A distinct melanoma subtype, often referred to as a subtype of CM, is acral 

melanoma, occurring on glabrous (nonhair-bearing) acral skin of palms, soles and nail 

beds, which is not further discussed, as it is not part of the analysis of this thesis. 

 CM development is a complex multi-factorial process, arising through multiple 

etiologic pathways and involving the interplay of genetic and environmental risk factors. 

Among them, the most well-established risk factors are exposure to ultraviolet (UV) 

radiation, family history, and phenotypic traits carrying a strong genetic component- 

including hair and eye colour, and the number of common and atypical melanocytic nevi 

on the body (Nikolaou and Stratigos, 2014). 

 During the last decades, a continuous increase of CM frequency rates has been 

observed in Caucasian populations worldwide, making CM the cancer with the most 

rapidly increasing occurrence. CM incidence varies significantly between populations 

from different geographic regions, with Australia and New Zealand presenting the highest 

incidence rates worldwide. In Europe, rates are lower, but still have shown a three-fold to 

five-fold increase during this time period (Garbe and Leiter, 2009). CM occurrence differs 

substantially between European countries, with Switzerland showing the highest rate and 

Greece belonging to the group of low-incidence countries (“EUCAN”, n.d.; Forsea et al., 

2012). 



31 
 

 CM diagnosis requires visual detection through dermoscopy, followed by lesion 

excision, biopsy and histopathological confirmation of malignancy. Regarding the 

classification of melanoma, clinical morphologists have traditionally divided the disease 

into several subgroups, including superficial spreading melanoma, nodular melanoma, 

acral lentiginous melanoma, and lentigo maligna melanoma, plus other uncommon 

variants such as desmoplastic melanoma and nevoid melanoma (De Vries et al., 2005). 

Concerning the molecular characterisation of melanoma, the arrival of NGS technologies 

in the marketplace has changed our understanding regarding the complexity of its 

genomic profile, characterised by heterogeneity and a notably high mutation rate; in fact, 

any significant progress towards the characterisation of the somatic mutational landscape 

of melanoma, can be mainly attributed to the rapid evolution of sequencing technologies 

during the last fifteen years. An increasing number of studies employing NGS have 

suggested that characterising the patient’s mutation profile could be the first step towards 

the administration of tailored drugs. Current medical informatics standards are being 

adapted to manage efficiently extremely large medical images. In order to achieve 

medical imaging and non-imaging integration, there should be multidisciplinary work, 

including collaboration between informaticians, engineers, pathologists, technicians, 

clinicians, primary care professionals, and administrators. Digital images can play a 

significant role in disease early detection and prevention (e.g. cervical cancer screening) 

(De Vries et al., 2005). 

 

1.7 Biological terminology 

 In this subsection, important biological terms that are used throughout this study 

are clarified to the reader. Melanoma is caused by genetic mutations in oncogenes or 

tumour suppressor genes that lead to the unrestrained proliferation of melanocytes 

(Schramm and Mann, 2011; Walia et al., 2012). Gene expression and cellular 

mechanisms are also affected, so understanding every molecular component implicated 

is imperative. 
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 Nucleotides are organic molecules that create long consecutive chains with other 

nucleotides, tied with special bonds, building long genetic sequences and constituting 

DNA and RNA molecules, containing the genetic information of an organism. There are 

four main nucleotides on DNA with diverse nucleobases, adenine (A), cytosine (C), 

guanine (G) and thymine (T). A mutation – switch of any nucleotide to another on a given 

spot – is a permanent alteration in a genetic sequence. If only a single nucleotide is 

affected, then we have a point mutation. This can be insertion/ deletion of one nucleotide 

or substitution, classified as transition (purine for a purine-A/G- or pyrimidine for a 

pyrimidine-C/T) or transversion (purine for a pyrimidine, or opposite). Large-scale 

mutations affect chromosomal structure, and include amplifications (or gene duplications, 

leading to multiple copies, increasing the dosage of the genes located within them) and 

deletions of large chromosomal regions (leading to loss of the genes within those 

regions). Genes and chromosomes can mutate in either somatic or germinal tissue, and 

these changes are called somatic and germline mutations, respectively. If a somatic 

mutation occurs in a single cell from developing somatic tissue, then this cell is the 

progenitor of a population of identical mutant cells, all of which are carrying the mutation 

(Griffiths et al., 2000). A single nucleotide polymorphism (SNP) is a variation at a single 

position in a DNA sequence among individuals. A particular SNP may not cause a 

disorder, but some SNPs are associated with certain diseases. A single-nucleotide variant 

(SNV), or single-nucleotide alteration, is a variation in a single nucleotide without any 

limitations of frequency and may arise in somatic cells (“Scitable | Learn Science at 

Nature”, n.d.). 

 Gene expression is the process through which information from a gene is used in 

the synthesis of a functional gene product. Misexpression of wild-type gene products, can 

cause instabilities in the cellular processes, leading to mutant phenotypes (Prelich, 2012). 

Differential gene expression refers to the difference in the expression of a gene between 

two states, i.e. change in the amount of the output product, so that a gene can be up-

regulated or down-regulated, or similarly over-expressed or under-expressed, in one state 

as opposed to another state. For example, a gene may be over-expressed in a disease 

state, as opposed to the healthy state, changing the balance and effect on cellular 

processes, implicating this misexpression to the disease phenotype. 
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 A biological pathway is a series of interactions among molecules in a cell that leads 

to a certain product or a change in a cell. A pathway can trigger the assembly of new 

molecules, turn genes on and off, or spur a cell to move. Mutations and gene expression 

have direct effects on pathways and any other molecule in that pathway. 

 Cell cycle is a mechanism where a cell duplicates its DNA sequence and divides 

to produce two new cells. It consists of phases: G0 (resting), G1 phase, S phase 

(synthesis), G2 phase and M phase (mitosis and cytokinesis). 

 In terms of cancer, “a driver mutation is causally implicated in oncogenesis. It has 

conferred growth advantage on the cancer cell and has been positively selected in the 

microenvironment of the tissue in which the cancer arises. A driver mutation need not be 

required for maintenance of the final cancer, but it must have been selected at some point 

along the lineage of cancer development”. “A passenger mutation has not been selected, 

has not conferred clonal growth advantage and has therefore not contributed to cancer 

development” (Stratton et al., 2009). 

 The following chapter delivers the related research performed on CM to the reader. 

In the first subsection of the chapter, the literature concerning the skin imaging field is 

presented, while in the second subsection the biological background is provided. 
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Chapter 2. Related work 

2.1 Skin Imaging & Dermoscopy background 

 Melanocytic neoplasms vary from benign lesions, labelled as nevi, to malignant 

lesions, labelled as melanomas (Shain and Bastian, 2016). Melanoma diagnosis can be 

challenging and relies on the experience of the dermatologist or physician (“Melanoma 

Research Foundation”, n.d.). The most common technique for detection of melanoma is 

dermoscopy (or dermatoscopy or epiluminescence microscopy ELM), which performs the 

examination through an optical system (magnifying glass) with a light source (polarised 

light), allowing an in depth visualisation of features used for the diagnosis (Arroyo and 

Zapirain, 2014).  

 Over the past decades efforts have been made to create computer-based systems 

that will improve detection of skin cancer and will also allow repeatability of results (Arroyo 

and Zapirain, 2014; Maglogiannis and Kosmopoulos, 2006; Mishra and Celebi, 2016). 

Concerning the digital dermoscopy analysis various approaches based on image analysis 

exist for the diagnosis of melanoma lesions. The Menzies scale, the Seven-point scale, 

the Total Dermoscopy Score based on the ABCD rule, and the ABCDE rule (Asymmetry, 

Border, Colour, Diameter, Evolution) comprise some examples (Argenziano et al., 1998, 

2003; Betta et al., 2005). As human interpretation of image content can be subjective, 

advanced computerised techniques may aid clinicians in the diagnostic process 

(Manousaki et al., 2006; Ogorzałek et al., 2011). In this context, expert computer systems 

have been proposed as alternatives to the naked-eye expert prediction. The majority of 

the existing systems focus on the detection of malignant melanoma and its discrimination 

from dysplastic or common nevus. However there exist systems aiming at the detection 

of different modalities. The most common installation type seems to be the video camera, 

obviously due to the control features that it provides (Tomatis et al., 1998; Umbaugh et 

al., 1991, 1997). The still camera is of use in some installations, e.g. (Herbin et al., 1993), 

while infrared or ultraviolet illumination (in situ or in vivo) using appropriate cameras is a 

popular choice as well, e.g., (Bono et al., 1996; Chwirot et al., 1998; Lohmann and Paul, 
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1988) correspondingly. Microscopy (or epiluminence microscopy) installations are 

applied in the works of (Ganster et al., 2001; Sanders et al., 1999) and digital video 

microscopy in (Grana et al., 2003). 

 Dermoscopic images offer a better view of diagnostic features compared to 

normally magnified images (Rahman and Bhattacharya, 2010), thus improve the 

diagnostic accuracy. This technique enables the use of methods such as pattern analysis 

(Pehamberger et al., 1987), the ABCD rule (Stolz and Landthaler, 1994), the Menzies 

method (Menzies et al., 1996) and the 7-point checklist (Argenziano et al., 1998) which 

are the most common detectors for melanoma (Arroyo and Zapirain, 2014). Pattern 

analysis focuses on diagnosing pigmented skin lesions. The ABCD rule describes the 

asymmetry of shape, border irregularity, colour variety and shape diameter 

(“Dermoscopy”, n.d.) or differential structures (Maglogiannis et al., 2005). The Menzies 

scoring method is based on specific features that are either present or not. The 7-point 

checklist detects melanoma based on the existence of specific patterns. When melanoma 

is confirmed a biopsy and excision of the malignant region is carried out (Arroyo and 

Zapirain, 2014). 

 One major issue of dermoscopy is the inability to detect early melanoma or cases 

that lack optical features (Goodson and Grossman, 2009). To deal with that issue 

researchers have focused on molecular techniques. 

 Aim of this part is to present the state-of-the-art concerning the detection methods 

of malignant melanoma and describe the contributions made in this area of research. 

 

2.1.1 Basic methods for melanoma detection using a computer-

based approach 

 An automated system for the detection/ diagnosis of melanoma consists of five 

rudimentary steps (Arroyo and Zapirain, 2014; Mishra and Celebi, 2016):  

1) image acquisition,  
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2) pre-processing,  

3) segmentation of lesion area,  

4) detection and classification using important features,   

5) diagnosis 

 The first step is to acquire the image of the lesion that is under investigation. A 

major concern at this point is to ensure the reproducibility of results by standardising 

camera positioning, distance from the lesion and lighting parameters. These can ensure 

an accurate comparison for follow-up studies (Maglogiannis et al., 2001). Calibration of 

an XYZ system on particular RGB (Red Green Blue) colour space can be applied, to 

describe each instrument, so as to easily compare images among different studies and 

to achieve better results (Grana et al., 2004). Alternatively, methods for error detection 

upon acquisition time, utilising spatial domain frequency methods in combination with 

morphological methods are used (Gutenev et al., 2001). 

 The pre-processing step includes colour correction, resizing, masking, cropping 

and hair removal (Abbas, Garcia, Celebi and Ahmad, 2013; Yuan et al., 2006; Zouridakis 

et al., 2004). Various software correction algorithms can be implemented, such as 

calibration to black and white, shading correction (Maglogiannis et al., 2001), median 

filtering (Celebi et al., 2009; Chiem et al., 2007; Maglogiannis et al., 2001; Messadi et al., 

2009; Motoyama et al., 2004), Gretag-McBeth colour calibration chart (Maglogiannis et 

al., 2001), gaussian filtering, anisotropic diffusion filters (Celebi et al., 2009), contrast 

enhancement (Abbas, Garcia, Celebi, Ahmad, et al., 2013; Chiem et al., 2007), Dull-

Razor algorithm (Lee et al., 1997) for thick hair removal, Karhunen-Loeve transform 

(Messadi et al., 2009).  

 The segmentation of lesion area in an image is the most important step of the 

process. Several segmentation algorithms can be utilised to ensure correct segmentation. 

Most groups use thresholding (Celebi et al., 2009, 2013; Chiem et al., 2007; Jain et al., 

2015; Maglogiannis et al., 2001, 2005; Taouil et al., 2006), weighted functions 

(Maglogiannis et al., 2001, 2005), region growing (Celebi et al., 2009; Maglogiannis et al., 
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2001, 2005), principal components transform (PCT) (Maglogiannis et al., 2001, 2005; 

Zouridakis et al., 2004), CIELAB colour space transform (Maglogiannis et al., 2001, 

2005), sigmoid, fuzzy c-Means (Zouridakis et al., 2004), dynamic thresholding (Ganster 

et al., 2001), clustering algorithms (Mete et al., 2011), model-based, morphological, active 

contours (Celebi et al., 2009; Nasir et al., 2018; Zhou et al., 2013). Segmentation based 

on declarative knowledge, implementing multilayer perceptron neural network algorithm 

and following specific segmentation rules has also been implemented (Kwasnicka and 

Paradowski, 2005). Common methodology is the application of different algorithms or 

combinations of them; Taouil et al. (Taouil et al., 2006) use thresholding based on Otsu 

method (Otsu, 1975), a combination of thresholding and active contours (snakes) and a 

combination of morphology functions and snakes method for segmentation, and Jain et 

al. (Jain et al., 2015) utilise the Otsu method on RGB colour planes. Several groups have 

tested the efficiency of the segmentation algorithms by comparing computer-calculated 

border with the border manually defined by a dermatologist (Maglogiannis et al., 2001).  

 The fourth step depends on feature extraction based on pixel-calculation on the 

segmented image of the lesion. Several categories of features can be examined at this 

point. The categories include border-based features, such as border irregularity or 

asymmetry, colour features, which include colour plane measurements, such as RGB, 

HIS (Hue, Intensity, Saturation), HSV (Hue, Saturation, Value), YIQ (Y component for 

luma information In phase Quadrature), HLS (Hue, Lightness, Saturation), CMY (Cyan, 

Magenta, Yellow) or colour variegation (Arroyo et al., 2011; Kaur et al., 2015; 

Maglogiannis et al., 2001), and size and shape features (Ganster et al., 2001; Ruela et 

al., 2017; Sadeghi et al., 2013). Another very basic feature for melanoma detection is the 

pigment network, also known as reticular pattern. Many of the proposed techniques are 

solely based on the presence or not of pigment network for classification of melanoma 

(Arroyo and Zapirain, 2014; Dreiseitl et al., 2001; Grana et al., 2004; Sadeghi et al., 2011). 

Ganster et al. (Ganster et al., 2001) utilised two algorithms for feature selection, 

sequential forward floating selection (SFFS) and sequential backward floating selection 

(SBFS), with the SFFS algorithm outperforming SBFS by selecting the smaller number of 

features. Tanaka et al. (Tanaka et al., 2004) examined over 100 features and evaluated 

them statistically so as to narrow down the number to the top 10, showing that only a 
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number of features can prove useful for diagnosis. Chiem et al. (Chiem et al., 2007) used 

wavelet packet transform (WPT) for feature extraction and continued with principal 

components analysis (PCA) for feature number reduction.  

 The extracted dermoscopy image features that are used for automated lesion 

characterisation are usually the ones that are associated with colour in various colour 

spaces (RGB, HIS, CIELab), e.g, colour values in (Maglogiannis et al., 2005; Umbaugh 

et al., 1991, 1997; Zhang et al., 2003) and Colour bin (i.e., the percentage of the lesion 

coloured foreground pixels) (Zhang et al., 2003). Some of the systems combine features 

in more than one colour spaces for better results, e.g., HIS and RGB in (Hansen et al., 

1997; Herbin et al., 1993; Sanders et al., 1999; Tomatis et al., 1998), or RGB and colours 

peculiar to malignant melanomas (Motoyama et al., 2004). The intensity characteristics 

are also used in works like (Chwirot et al., 1998). Asymmetry and border features are also 

quite common e.g., (Ganster et al., 2001; Grana et al., 2003; Zhang et al., 2003), while 

features based on differential structures are very rare. Some works (Boldrick et al., 2007; 

Stanley et al., 2003), rely also on the whole ABCD rule for lesion characterisation, while 

others combine these with geometrical features (Jain et al., 2015; Maglogiannis and 

Doukas, 2009). Shape and colour features, like Area and Elevation, calculated manually 

by dermatologists, have also been used (Zhang et al., 2003). 

 For the classification, data is divided into groups. Several algorithms have been 

implemented. Blanzieri et al. (Blanzieri et al., 2000) suggested a multi-classifier system 

utilising discriminant analysis, decision tree and k-nearest neighbour (kNN) that would 

improve the performance compared to a single classifier. Lefevre et al. (Lefevre et al., 

2000) compared two methods of basic belief assignment (Denoeux’s method (Denoeux, 

1995) and Appriou’s method (Appriou, 1999)) with a novel method for the classification 

of lesions. Dreiseitl et al. (Dreiseitl et al., 2001)  compare several algorithms (kNN, logistic 

regression, artificial neural networks, decision tree and support vector machine) for the 

detection of pigment network and classification into either 3 (common nevi vs. dysplastic 

nevi vs. melanoma) or 2 (common/ dysplastic nevi vs melanoma and common nevi vs. 

dysplastic nevi/ melanoma) classes. Maglogiannis et al. (Maglogiannis et al., 2001) used 

linear discriminant analysis and neural networks to compare a combination of groups, 
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first, the entire region of melanoma with dysplastic nevus, and second, the dark region of 

melanoma against dysplastic nevus. In 2005, Maglogiannis et al. (Maglogiannis et al., 

2005) followed the same techniques using features for each comparison. In 2004, 

Maglogiannis & Zafiropoulos (Maglogiannis and Zafiropoulos, 2004) compared those 

previously used classification algorithms with support vector machine (SVM) algorithm. 

Zhang et al. and Messadi et al. (Messadi et al., 2009; Zhang et al., 2003) implement 

neural network algorithm for their diagnostic system. Ensemble learners have been 

employed by (Abedini et al., 2015; Schaefer et al., 2014). Grana et al. (Grana et al., 2003) 

use discriminant analysis to propose an algorithm that improves border description for 

classification. Similarly, Tanaka et al. (Tanaka et al., 2004) used discriminant analysis on 

a low number of features. d’Amico et al. (d’Amico et al., 2004) implement size functions 

and SVM in their classifier. Motoyama et al. (Motoyama et al., 2004) classify groups by 

using only colour information. Betta et al. (Betta et al., 2005) propose a simple algorithm 

that detects important criteria from the 7-point checklist, focusing mostly on ‘irregular 

steaks’ and ‘atypical pigment network’. Yuan et al. (Yuan et al., 2006) apply SVM 

algorithm for texture classification. Chiem et al. (Chiem et al., 2007) compared back-

propagation neural networks (BNN) to SVM for the classification. Serrano & Acha 

(Serrano and Acha, 2009) used supervised classification of Markov random fields (MRF) 

for pattern analysis resulting to melanoma detection. Rahman & Bhattacharya (Rahman 

and Bhattacharya, 2010) incorporate a classifier combination (SVM, Gaussian maximum 

likelihood, kNN) for melanoma distinction, where each classifier is given different input 

features. Sadeghi et al. (Sadeghi et al., 2011) present a graph-based approach for the 

detection of pigment network, proposing a feature extraction part of a system for 

melanoma detection. Garcia Arroyo & Garcia Zapirain  use a decision tree classifier 

(Arroyo and Zapirain, 2014) and fuzzy classification of pixels (Garcia-Arroyo and Garcia-

Zapirain, 2018) to detect reticular pattern. Deep learning approaches have also been 

applied (Codella et al., 2015, 2017).  

 Maglogiannis et al. (Maglogiannis et al., 2001) add an extra step after 

segmentation denoted as registration, needed for monitoring the progress or possible 

changes that may occur on skin lesions. An image registration algorithm exports four 

parameters: magnification, rotation, horizontal and vertical shifting (Venot et al., 1988). 
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The measurements of two pictures can be compared using statistical correlation. An 

optimisation algorithm is used to maximise the similarity of the measurements. In 

particular, the group implemented a deterministic algorithm that utilises cross-correlation 

of the log-polar Fourier spectrum (Cideciyan, 1995), so as to compare magnification and 

rotation measurements (Maglogiannis et al., 2001, 2005). 

 

2.1.1.1 Evaluation of the basic methods using a computer-based 

approach 

 This section focuses on the performance and contribution of the methods 

described above. An evaluation and comparison of the methods cannot be absolute 

because of the different datasets used for each study. As mentioned before, repeatability 

and reproducibility of results, and of course standardisation of image acquisition and 

processing, are crucial. 

 Blanzieri et al. (Blanzieri et al., 2000) achieved low numbers of sensitivity and 

specificity when using single classifiers but improved most of their results using a 

combination of the classifiers (over 80% sensitivity and over 70% specificity). Apart from 

that, their system performs equally, when compared to diagnosis from dermatologists. 

Lefevre et al. (Lefevre et al., 2000) achieve 98.8% of good classification with their method 

as opposed to Appriou’s 97.5% and Denoeux’s 91.35%. Dreiseitl et al. (Dreiseitl et al., 

2001) showed that logistic regression, artificial neural networks and SVM perform equally 

good in classification accuracy and that kNN and decision tree, although they do not 

perform as good, produce results comparable to the accuracy of expert diagnosis. 

Maglogiannis et al. (Maglogiannis et al., 2001) achieved accuracy of 96.2% and 96% 

using discriminant analysis, whereas neural networks had 100% in both cases (4 principal 

components), but reduced accuracy when 2 principal components were used (84.6% and 

96%). Similarly, in 2005 the same group showed accuracy of 97% in both cases with 

discriminant analysis, 97% and 100% for neural network model of 4 components and 85% 

and 94% for neural network using 2 components (Maglogiannis et al., 2005). 

Maglogiannis & Zafiropoulos (Maglogiannis and Zafiropoulos, 2004) achieved 94.1% 
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accuracy using SVM as opposed to 88% for discriminant analysis and 94.1% for 4 

component neural network. They suggest ‘Using Area’ and ‘Thinness Ratio’ as important 

features for the diagnosis of melanoma. Ganster et al. (Ganster et al., 2001) showed that 

melanoma detection can be more difficult when comparing 3 groups (benign nevi, 

dysplastic nevi and melanoma) both for automated classification and clinical diagnosis 

achieving 73% and 72% sensitivity respectively. When combining dysplastic nevi and 

melanoma in one group they showed 87% sensitivity and 92% specificity. When 

combining benign with dysplastic nevi, sensitivity was 77% and specificity 84%. Overall, 

they showed that results improve when dealing with two categories for classification. 

(Zhang et al., 2003)’s system achieves 92% of correctly diagnosed results using neural 

networks with an automatic border detector, as opposed to 81% of average correct 

diagnostic rate performed by 16 dermatologists.  Grana et al. (Grana et al., 2003) manage 

80% diagnostic accuracy with 85.88% sensitivity and 74.12% specificity. As in (Zhang et 

al., 2003), they propose automatic assignment of border parameters. Tanaka et al. 

(Tanaka et al., 2004) achieve 90% classification ratio for melanoma (sensitivity), with 

98.3% specificity (96% accuracy), on the basis of 10 features. d’Amico et al. (d’Amico et 

al., 2004) showed over 84% sensitivity and over 83% specificity in their tests, managing 

100% sensitivity at 63.65% specificity. (Motoyama et al., 2004)’s results may not present 

great accuracy (only 26%) but showed the importance of using several features (they 

used only one colour space) in the detection of melanoma. Yuan et al. (Yuan et al., 2006) 

achieve about 70% accuracy for their SVM algorithm suggesting optimal values for 

window size and degree. Chiem et al. (Chiem et al., 2007) have compared BNN to SVM 

showing 95% and 85% accuracy of classification, respectively. Messadi et al. (Messadi, 

Bessaid, and Taleb-Ahmed 2009) reach 74.5% accurate classification rate with 67.5% 

sensitivity and 80.5% specificity. Serrano & Acha (Serrano and Acha, 2009) achieve a 

correct classification rate of 86%, not focusing on feature extraction, but using pattern 

analysis instead. Rahman & Bhattacharya (Rahman and Bhattacharya, 2010) classify 

between 3 groups achieving a 83.75% accuracy for the malignant category using a 

classifier combination as opposed to 72.45% accuracy when using only one classifier 

(SVM had the best performance). Sadeghi et al. (Sadeghi et al., 2011) present 94.3% 

accuracy in pigment network detection, suggesting their method to be used as part of a 
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diagnostic system for melanoma. Garcia Arroyo & Garcia Zapirain (Arroyo and Zapirain, 

2014) achieve 86% sensitivity and 81.67% specificity in detection of pigment network 

using a decision trees approach, similarly to fuzzy sets (Garcia-Arroyo and Garcia-

Zapirain, 2018). Kasmi & Mokrani (Kasmi and Mokrani, 2016) attain 91.25% sensitivity 

and 95.83% specificity using an automatic ABCD scoring methodology. More recently, 

97.5% accuracy was achieved using SVM on entropy-based selected features (Nasir et 

al., 2018). 

 

2.1.2 Diverse techniques for melanoma detection 

 Apart from the declared image analysis techniques, several alternatives have been 

suggested the last two decades. Claridge et al. (Claridge et al., 2003) suggested that 

image colouration represents specific histological measurements. The classification, in 

this case, is based on physical maps created for each histological parameter, such as 

melanin and blood concentration and collagen thickness. This combination achieved 

80.1% sensitivity and 82.7% specificity for their classification results, as well as 96.2% 

sensitivity using the presence of melanin as a diagnostic feature.  A procedure which also 

differs from the ‘classic’ steps was introduced by Buzug et al. (Buzug et al., 2006). The 

group used infrared imaging to distinguish between malignant melanoma and healthy 

skin, based on the fact that cancerous tissue shows increased metabolism and blood 

flow, thus assuming higher temperature and higher absorbance. Similarly, side-

transillumination, which displays both subsurface and surface features, paired with cross 

polarisation, which only displays surface features, can help highlight a malignant 

specimen, demonstrating a much larger area due to increased blood vessels (Zouridakis 

et al., 2004). These led to 75% accurate classification on a small dataset. Total body 

photography to monitor high-risk patients (carrying many dysplastic nevi) and facilitate 

their skin examination has been eagerly used (Banky et al., 2005; Edmondson et al., 

1999; Feit et al., 2004), and specific algorithms for mole identification, counting and 

segmentation, have proven very valuable (Lee et al., 2005). This kind of methodology 
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could help in the identification of new nevi and comparison with existing nevi, which could 

prove very useful in cancer detection (Goodson and Grossman, 2009). 

 

2.1.3 Molecular techniques for melanoma detection 

 Molecular techniques for the diagnosis of malignant melanoma include non-

invasive methods (tape stripping) (Wong et al., 2006), tissue microarrays (Rothberg et 

al., 2009) or fluorescence in situ hybridisation (FISH) (Gerami et al., 2009).  In 

(Wachsman et al., 2007, 2011) genomic microarray analysis is utilised to identify genetic 

biomarkers that can accurately detect melanoma. The group achieved 100% accuracy, 

using a 5-gene discrimination method, in 2007, and showed 100% sensitivity and 88% 

specificity, this time using a 12-gene classifier, in 2011. Chandler et al. (Chandler et al., 

2012) presented single nucleotide polymorphism genomic microarray (SNP-GMA), 

achieving high degrees of accuracy in detection of malignancy - reached 89% sensitivity 

and 100% specificity. Liu et al. (Liu, Peng, et al., 2013) proposed a model that evaluated 

the significance of existent datasets from (Hoek et al., 2004; Riker et al., 2008; Rose et 

al., 2011; Scatolini et al., 2010; Smith et al., 2005) to produce a 12-gene biomarker. For 

their classification model they utilised support vector machine and leave-one-out-method, 

achieving an average of 99.1% accuracy. Another aspect that should be mentioned is the 

potential benefits emerging from the development of content-based image retrieval 

(CBIR) systems. A database of already diagnosed cases of melanoma has been 

proposed by Rahman et al. (Rahman and Bhattacharya, 2010). Iakovidis et al. (Iakovidis 

et al., 2009) presented an approach for CBIR based on pattern similarity measures, 

associated with feature clustering; PANDA framework (PAtterns for Next generation 

DAtabase systems). 

 

2.1.4 Data Integration 

 Combining different levels of information concerning a problem can improve the 

total knowledge on that problem and assist in the effort of finding a solution (Lanckriet et 
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al., 2004). This leads to the conclusion that diagnosis should be based on the correct 

integration of molecular, histological as well as clinical features, so as to be more 

accurate. The association of the phenotypical characteristics of nevi with genetic variants 

has been shown and reinforces the use of multi-source data integration (Cuéllar et al., 

2009; Vallone et al., 2018; Zalaudek et al., 2007). Combining those complementary 

pieces of information can be expected to enhance not only diagnosis, but biomarker 

detection as well. It has been well accepted that research engagement will be most 

productive when illuminating the intersection made up of genetics, clinical data, and 

imaging features (Jaffe, 2012). The integration of multi-level biological data, including 

prognostic quantitative imaging biomarkers and signatures, and clinical variables, can 

generate more robust, detailed descriptors that can aid diagnosis and supplementary 

personalised patient plans (Katrib et al., 2016).  

 Lanckriet et al. proposed a statistical model that combines heterogeneous data in 

order to achieve better performance on a given statistical task, based on kernel functions. 

Each kernel function offers specific information for the data. To combine the kernels, they 

utilised the semidefinite programming method. For classification they used support vector 

machine, which is kernel-based. This method can find use in any biological problem with 

heterogeneous features (Lanckriet et al., 2004). Feature level image fusion for multimodal 

medical images using wavelet transform has been applied, showing that the fused image 

offers more valuable information, evaluated by standard deviation, entropy, cross entropy 

and gradient parameters (Kor and Tiwary, 2004). Classification can be upgraded by 

accumulation of lesion depth and structure information, obtained from the multivariate 

images on the surface representative information obtained from the dermoscopic images 

(Patwardhan et al., 2005). Winnepenninckx et al. (Winnepenninckx et al., 2006) 

suggested that there is a correlation of genomic profiling and clinical outcome and used 

statistical analysis (Pearson’s correlation values) to study the correlation of gene 

expression and histological features. A similar approach to (Lanckriet et al., 2004) was 

utilised by Ye et al. (Ye et al., 2008) for the study of Alzheimer’s disease (AD). The group 

integrated imaging with genetic measurements to achieve accurate prediction for AD, 

based on kernel methods. They further extended their research to identifying biomarkers 

from the heterogeneous dataset. Again, support vector machine was used for 
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classification. Similarly, Metsis et al. (Metsis et al., 2012) presented a computational and 

machine learning based framework for integrating heterogeneous gene expression and  

metabolomic  data  to  classify  the  different types of brain tumours and extract 

biomarkers, using naïve Bayes and support vector machines for classification. Kashani-

Sabet et al. (Kashani-Sabet et al., 2009) presented a multi-marker model for the 

prediction of melanoma, based on immunohistochemical features derived from genomic 

profiling. To assess the correlation of the two datasets Cox regression and Kaplan-Meier 

analyses were utilised. Rothberg et al. (Rothberg et al., 2009) proposed a multi-marker 

molecular model for melanoma classification, derived from microarray, 

immunohistochemical and image association, performed by statistical tests. Li & Patra (Li 

and Patra, 2010) proposed a ‘random walk with restart on heterogeneous network’ 

(RWRH) algorithm for better understanding of the gene-phenotype relationship. This 

method can optimise data fusion and offer a ranking for biomarker extraction. Mann et al. 

(Mann et al., 2013) presented a prediction model based both on clinical features and 

genomic data, that showed improved accuracy over unimodal datasets. Concerning 

glioblastoma, Zinn et al. (Zinn et al., 2011) combined molecular with magnetic resonance 

imaging (MRI) volumetrics, accessing public datasets to invent a new diagnostic imaging 

technique, like Jamshidi et al. (Jamshidi et al., 2013) who used expression and MRI data. 

Regarding non-small cell lung cancer, Gevaert et al. (Gevaert et al., 2012) explored the 

clinical prognostic value of radio-genomic imaging, concluding that it is highly possible to 

leverage expression data to determine prognosis and therapeutic response as a function 

of image features.  

 More recently, Moutselos et al. (Moutselos et al., 2014) and Valavanis et al. 

(Valavanis, Maglogiannis, and Chatziioannou 2015)  presented a methodology that 

integrates fusion of imaging and microarray data for the study of melanoma. They use a 

number of feature extraction algorithms (principal components analysis, linear 

discriminant analysis and random forests) for the discovery of composite biomarkers that 

would achieve higher performance upon classification. Lazova et al. (Lazova et al., 2017) 

integrated molecular with mass spectrometry imaging to assist in the classification of 

diagnostically challenging atypical Spitzoid melanomas, as well as diagnosis and 

prediction of outcome. Clustering analysis can be used to determine likely clusters formed 
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when integrating datasets from different platforms, as shown by (Hoadley et al., 2014), 

who extracted different biomarkers to characterise each cluster deriving from twelve types 

of cancer. In 2016, Kavakiotis et al. presented a methodology for integrating multiple 

immunogenetic and clinico-biological data sources, for the study chronic lymphocytic 

leukaemia. Their method is based on ranking aggregation approach and formalisation of 

voting systems (Kavakiotis et al., 2016). Another approach is using several fusion 

methods simultaneously in a dispersed system to reach a decision. This was done by 

(Przybyła-Kasperek et al., 2017) using two separate datasets, utilising basic statistical 

fusion methodologies, and improving the final outcome as compared to the discrete 

analyses. 

 

2.1.5 Discussion 

 Due to high mortality rate and the difficulty of treatment, in case of late diagnosis 

of malignant melanoma, the sensitivity of a method is more important. Success of 

classification depends mainly on feature selection. A summarisation of the 

aforementioned surveyed works concerning skin imaging classification systems is 

presented in Table 1. 

Table 1: Comparative table for the surveyed classification systems 

Reference 
Classification 

System 
Information 

Groups for 

comparison 
Results * 

(Blanzieri et al., 

2000) 

Discriminant 

analysis, decision 

trees, kNN 

Single vs. multi-

classifier 

methodology 

Melanoma vs. 

nevus 

Multi-class. 

Sens>80%, 

Spec>70%, 

Acc=98.8% 

(Lefevre et al., 

2000) 

Basic relief 

assignment 

vs. similar 

methods 
2 Acc=98.8% 

(Dreiseitl et al., 

2001) 

Logistic 

regression, ANN, 

SVM, kNN, 

decision trees 

Detection of 

pigmentation 

network 

3 or 2 groups, 

Nevus vs. 

dysplastic vs. 

melanoma 

Logistic 

regression 

~ANN~SVM 

>kNN, decision 

trees 
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(Ganster et al., 

2001) 

Automated 

classification 

3 group 

comparison vs. 

clinical diagnosis 

3 or 2 groups, 

dysplastic & 

melanoma vs. 

nevus / melanoma 

vs. dysplastic & 

nevus 

3 class. Auto. 

Sens=73%, Clin. 

Sens=72%, 

dys&mel 

Sens=87%, 

Spec=92%, 

dys&nev 

Sens=77%, 

Spec=84% 

(Maglogiannis et 

al., 2001) 

LDA, neural 

networks 

PCA, focus on 

regions 

2 

Melanoma vs. 

dysplastic 

LDA 4PCs 

Acc=96.2% / 

2PCs Acc=96% 

NN 4PCs 

Acc=100% / 2PCs 

Acc=84.6% 

(Grana et al., 

2003) 

Discriminant 

analysis 

Automatic 

assignment for 

border parameters 

2 

Acc=80%, 

Sens=85.88%, 

Spec=74.12 

(Zhang et al., 

2003) 
Neural networks 

Automatic 

assignment for 

border parameters 

2 Acc=92% 

(d’Amico et al., 

2004) 

Size function on 

SVM 
ABCDE rule 2 

Sens>84%, 

Spec>83%,  

→Sens=100% -

Spec=63.65% 

(Maglogiannis and 

Zafiropoulos, 

2004) 

SVM, LDA - 2 
SVM Acc=94.1%, 

LDA Acc=88% 

(Tanaka et al., 

2004) 

Discriminant 

analysis 
10 features 2 

Acc=96%, 

Sens=90%, 

Spec=98.3% 

(Betta et al., 2005) Criteria detection 7-point checklist 2 - 

(Yuan et al., 2006) SVM 
Texture 

classification 
2 Acc=70% 

(Chiem et al., 

2007) 

Back-propagation 

neural networks, 

SVM 

BNN to SVM 2 
BNN Acc=95%, 

SVM Acc=85% 
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(Messadi et al., 

2009) 
Neural networks - 2 

Acc=74.5%, 

Sens=67.5%, 

Spec=80.5% 

(Serrano and 

Acha, 2009) 

Supervised 

classification of 

Markov fields 

Pattern analysis 2 Acc=86% 

(Rahman and 

Bhattacharya, 

2010) 

SVM, Gaussian 

maximum 

likelihood, kNN 

Class. 

combination 
3 

Acc=83.75%, 

SVM-only 

Acc=72.45% 

(Sadeghi et al., 

2011) 
Graph-based 

Pigmentation 

network detection 
2 Acc=94.3% 

(Arroyo and 

Zapirain, 2014) 

Decision tree for 

reticular pattern 

Pigmentation 

network detection 
2 

Sens=86%, 

Spec=81.67% 

(Schaefer et al., 

2014) 

Ensemble 

classifiers 
SVM fusion 2 

Sens=93.76%, 

Spec=93.84% 

(Abedini et al., 

2015) 

Ensemble 

classifiers 

Discriminant 

analysis, ANN, 

kNN, SVM, 

decision trees 

2 

Acc=91%, 

Sens=97%, 

Spec=65% 

(Codella et al., 

2015) 
Deep learning 

Sparse coding, 

SVM 

2, melanoma vs. 

non-melanoma, 

melanoma vs. 

atypical 

Mel vs. non 

Acc=93.1%, 

Sens=94.9%, 

Spec=92.8% 

Mel vs. atyp 

Acc=73.9%, 

Sens=73.8%, 

Spec=74.3% 

(Kasmi and 

Mokrani, 2016) 
Automatic scoring ABCD rule 2 

Sens=91.25%, 

Spec=95.83% 

(Codella et al., 

2017) 
Deep learning - 2 Acc=76% 

(Garcia-Arroyo 

and Garcia-

Zapirain, 2018) 

Fuzzy class. of 

image pixels 

Based on decision 

trees 
2 

Acc=88%, 

Sens=90.71%, 

Spec=83.44% 

(Nasir et al., 2018) SVM 
Entropy-based 

features 
2 Acc=97.5% 

* Acc: Accuracy, Sens: Sensitivity, Spec: Specificity 
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 The techniques mentioned here offer very promising results for the detection of 

melanoma. This part of the thesis was mostly focused on comparing classification 

methods and investigating which machine learning method delivers the best results. A 

number of different classifiers have been utilised, with neural networks, support vector 

machines and discriminant analysis achieving the highest accuracy (d’Amico et al., 2004; 

Arroyo and Zapirain, 2014; Blanzieri et al., 2000; Celebi et al., 2009; Dreiseitl et al., 2001; 

Garcia-Arroyo and Garcia-Zapirain, 2018; Grana et al., 2003; Maglogiannis et al., 2001, 

2005; Maglogiannis and Kosmopoulos, 2006; Maglogiannis and Zafiropoulos, 2004; 

Messadi et al., 2009; Nasir et al., 2018; Rahman and Bhattacharya, 2010; Sadeghi et al., 

2011; Serrano and Acha, 2009; Tanaka et al., 2004; Yuan et al., 2006; Zhang et al., 

2003). Other groups were concerned mostly about the feature extraction step, using 

statistical methods and supervised learning to lower the feature level, to achieve better 

performance on classification. The number of features that was used in each case varies, 

as does their nature. It is clear, though, that the success of classification depends mainly 

on feature selection (Chiem et al., 2007; Ganster et al., 2001; Maglogiannis et al., 2005; 

Nasir et al., 2018; Tanaka et al., 2004). 

 The most common classification methods are rule-based, e.g., (Bono et al., 1996; 

Chwirot et al., 1998; Dreiseitl et al., 2001; Grana et al., 2003; Sanders et al., 1999; Stanley 

et al., 2003; Tomatis et al., 1998). More advanced techniques such as neural networks 

and support vector machines are presented in works like (Boldrick et al., 2007; Ercal et 

al., 1994; Maglogiannis and Zafiropoulos, 2004; Nasir et al., 2018; Rubegni et al., 2002; 

Umbaugh et al., 1991, 1997; Zhang et al., 2003), while the k-nearest neighbourhood 

classification scheme is applied in (Ballerini et al., 2013; Ganster et al., 2001). Evidence 

Theory (upper and lower probabilities induced by multivalued mapping) based on the 

concept of lower and upper bounds for a set of compatible probability distributions is used 

in (Lefevre et al., 2000) for melanoma detection. The success rates for the methods 

presented in the literature indicate that the work towards automated classification of 

lesions and melanoma may provide good results. Detailed descriptions and results 

regarding the methods used in existing dermoscopy analysis systems are presented in 

(Korotkov and Garcia, 2012; Mishra and Celebi, 2016).   
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 Molecular techniques have led to the discovery of a number of biomarkers for the 

detection of the disease. The biological function of these biomarkers is known, proving 

that linkage to histology and imaging is possible. Still only few efforts have been made to 

understand the molecular or histological level of association with the clinical view (image), 

to base the prediction on this association. Research by (Buzug et al., 2006; Claridge et 

al., 2003; Zouridakis et al., 2004) showed that there is a clear connection between 

histological and image features, suggesting a combination of parameters to be used as 

features for detection. Suggestions that the phenotypical characteristics of nevi are 

correlated to genetic variants have been given (Cuéllar et al., 2009; Vallone et al., 2018; 

Zalaudek et al., 2007). Some groups have used data fusion to improve predictions 

concerning melanoma (Kashani-Sabet et al., 2009; Mann et al., 2013; Moutselos et al., 

2014; Rothberg et al., 2009; Valavanis et al., 2015; Winnepenninckx et al., 2006). 

Research on the latter issue is at least scanty, therefore further investigation is needed.  
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2.2 Biological background 

 Melanoma is caused by genetic mutations in oncogenes or tumour suppressor 

genes that lead to the unrestrained proliferation of melanocytes (Schramm and Mann, 

2011; Walia et al., 2012). In this part, we summarise the progress towards the genomic 

characterisation of CM.       

 

2.2.1 Germline susceptibility 

 Regarding the genetic background predisposing to melanoma, several 

susceptibility loci acting as high, moderate or low penetration genes, have been identified. 

CDKN2A (Cyclin-dependent kinase inhibitor 2A), the first familial melanoma gene 

identified (Hussussian et al., 1994; Kamb et al., 1994), is found mutated in approximately 

40% of melanoma high-density families. CDKN2A encodes for two distinct proteins, 

p16INK4A (p16) and p14ARF (p14), both involved in the regulation of the cell cycle (de 

Snoo and Hayward, 2005). The p16 and p14 mRNAs are transcribed from alternative first 

exons, so the related proteins have no similarity in their amino acid sequence, since they 

are translated in alternative reading frames. Mutations in p16 are predominantly loss of-

function missense mutations, distributed throughout the protein, while in p14 inactivating 

mutations like whole gene deletions, insertions or splice-site mutations are mainly 

observed. Germline mutations in CDK4 are much less frequent and were initially identified 

by screening for p16 interacting partners. A mutational hotspot in codon 24, leading to an 

arginine substitution, abrogates the capacity of p16 to inactivate the kinase, thus 

promoting the G1-S phase transition of the cell cycle. Other mutations have been 

identified in genes of more moderate penetrance, including BAP1, TERT, POT1, ACD, 

TERF2IP and MITF (Aoude et al., 2015). Genome-wide association studies (GWASs) 

have also revealed numerous recurring single nucleotide polymorphisms (SNPs) 

associated with melanoma risk (Antonopoulou et al., 2015; Athanasiadis et al., 2014; 

Chatzinasiou et al., 2011; Law et al., 2015). 
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2.2.2 Somatic alterations 

 Identifying somatic mutations in the genome of melanoma is of great importance 

in order to understand the molecular basis of the disease’s genesis and progression. A 

number of oncogenes and tumour suppressor genes have been found to carry causative 

mutations. The first oncogene identified in melanoma was NRAS (Padua et al., 1984), 

which is also found mutated in other cancers. In 2002, the BRAF V600E somatic mutation 

was identified (Davies et al., 2002), which is the most frequent mutation found in CM 

patients. Since then, the advances in sequencing technology have enabled the 

application of massively parallel sequencing, thus dramatically changing our 

understanding of the somatic mutation landscape of melanoma. The first catalogue of 

somatic mutations of a cancer genome, at the whole-genome level, concerned a 

melanoma cell line (Pleasance et al., 2010), indicating the presence of a great number of 

mutations per Mb and suggesting a mutational signature related to UV exposure. Whole-

exome sequencing studies exploiting clinical samples demonstrated that NF1, ARID2, 

PPP6C, RAC1, SNX31, TACC1, and STK19 are genes significantly mutated in melanoma 

(Hodis et al., 2012; Krauthammer et al., 2012). The Cancer Genome Atlas Skin 

Cutaneous Melanoma (SKCM-TCGA) project confirmed, through exome sequencing, 

previously reported melanoma oncogenes and tumour suppressors (BRAF, NRAS, 

CDKN2A, TP53, and PTEN) and identified several additional significantly mutated 

melanoma genes, namely, MAP2K1, IDH1, RB1, and DDX3X (“The Cancer Genome 

Atlas”, n.d.). The study proposed the classification of CM into four major genomic 

subtypes, related to the presence of specific mutations in established driver genes. In 

particular, the proposed genetic subtypes are the BRAF mutant, RAS mutant, NF1 

mutant, and the triple wild-type (no mutations in the aforementioned genes). Low-

frequency mutations were identified in the triple wild-type subtype 

in KIT, CTNNB1, GNA11, and GNAQ. More recently, the first large-scale study exploiting 

whole-genome sequencing supported the involvement of the non-coding genome in 

melanoma pathogenesis and revealed diverse carcinogenic processes across the 

different melanoma subtypes. Figure 2 summarises the research on melanoma during 

the last decades, pinpointing key milestones in understanding its complexity. 
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Figure 2: (upper) Number of publications per year on Pubmed (until 4th December 2018) using 

terms ‘melanoma’ and ‘cutaneous melanoma’, (lower) Major landmarks concerning the study of 

melanoma 

 

2.2.2.1 Mutation burden and specific signatures in melanoma 

 Sequencing of different cancers has revealed that the melanoma genome shows 

a substantial prevalence of somatic mutations (Alexandrov et al., 2013; Greenman et al., 

2007; Pleasance et al., 2010). Particularly, in CM an increased abundance of cytidine to 

thymidine (C > T) transitions is observed. This specific alteration is considered 

characteristic of a UV-light-induced mutational signature. A recent study, exploiting 

whole-genome sequencing of cutaneous, acral and mucosal melanomas, revealed 

distinct mutation profiles among these melanoma subtypes. The number of base 

substitutions and short insertions and/or deletions in CM was generally much higher than 

of those observed in acral and mucosal melanomas. In addition, the UV-related C > T 

transition was not observed in the latter melanoma subtypes. In contrast, somatic 
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structural rearrangements were more frequent in acral and mucosal subtype (Hayward et 

al., 2017). These data suggest that different etiologic pathways are involved in the 

manifestation of diverse melanoma subtypes. 

 

2.2.2.2 Genes bearing causative somatic mutations in melanoma 

 One of the most well-established pathways commonly affected in melanoma is the 

mitogen activating protein kinase (MAPK) signalling cascade, governing cell growth and 

survival. BRAF, NRAS and NF1 are the most frequently mutated genes of this pathway. 

Other pathways found significantly altered in CM, include the phosphoinositide 3-kinase 

(PI3K) pathway, Tumour Protein 53 (TP53) signalling, cell cycle regulation and the 

telomere length maintenance pathway. In the next sections, the most significant genes 

involved in such key processes, harbouring driver mutations, are summarised. 

 

BRAF 

 The BRAF gene encodes a serine/threonine protein kinase, belonging to the RAF 

family. This protein acts as a downstream effector of RAS-signalling in the MAPK 

cascade, affecting cell proliferation and survival. Mutations in this gene have been 

identified in various cancers. According to the COSMIC database (“COSMIC database”, 

n.d.; Forbes et al., 2017),  44% of melanomas arising from skin tissue bear mutations in 

BRAF. In non-acral CM, the BRAF mutation of the kinase-activation domain at amino acid 

position 600, is the most common somatic mutation. Interestingly, BRAF V600E mutation 

results from a T > A transversion and not a C > T substitution, which is characteristic of 

UV light induced mutagenesis. Nevertheless, epidemiological and genomic evidence 

implies that UV radiation contributes to the formation of BRAF V600E. Soon after the 

characterisation of BRAF V600E mutation in melanomas, it became apparent that its 

distribution greatly differs among different melanoma subtypes (Maldonado et al., 2003). 

In particular, BRAF V600E mutations are more common in younger CM patients, whose 

melanomas arise on intermittently sun-exposed skin, on anatomical sites, such as the 
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trunk and proximal extremities. In contrast, melanomas arising on chronically sun-

damaged skin, usually on anatomical sites like head, neck and the distal extremities of 

older individuals, have infrequent BRAF mutations, with BRAF V600K being more 

frequent than BRAF V600E (Bastian, 2014). Acral melanomas bear BRAF mutations 

much less frequently. Targeting the BRAF-V600E mutant protein with specific inhibitors 

exposed new therapeutic aspects for the management of such an aggressive disease. 

The oncogenic activation of BRAF mutations is considered a necessary but not sufficient 

condition to transform melanocytes to melanoma cells, a suggestion which is also 

supported by the frequent occurrence of such mutations in benign nevi (Bastian, 2014).  

 

RAS 

 RAS proteins are small GTPases (enzymes that control signal transduction) 

functioning as GDP–GTP-regulated binary switches that control many fundamental 

cellular processes. RAS proteins connect a great variety of upstream signals from 

activated membrane receptors to downstream pathways controlling cell cycle, growth, 

apoptosis, and senescence (Simanshu et al., 2017). The HRAS, KRAS, and NRAS 

oncogenes were the first human oncogenes to be discovered (Cox and Der, 2010). In the 

case of CM, NRAS mutations are found in 17% of the cases, according to COSMIC 

database (“COSMIC database”, n.d.; Forbes et al., 2017). NRAS hot-spot mutations are 

mutually exclusive of BRAF hot-spot mutations. HRAS and KRAS mutations are much 

less frequent in CM. Regarding NRAS, the most common mutations cause a change of 

the amino acid at position 61, lying at the GTP-binding domain. These substitutions 

disrupt the GTPase activity of the protein, locking it in its active conformation (Fedorenko 

et al., 2013). 

 

NF1 

 NF1 is a tumour suppressor gene encoding for a direct negative regulator of RAS 

signalling (Vigil et al., 2010). In particular, NF1 is a GTPase-activating protein known to 
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downregulate RAS activity by stimulating the hydrolysis of GTP and returning the protein 

to its inactive form. A significant enrichment of NF1 mutations was found in BRAF and 

NRAS wild-type melanomas (Hodis et al., 2012; Krauthammer et al., 2012). In the TCGA 

study, NF1 was found as the third most frequently observed significantly mutated gene of 

the MAPK pathway (“Genomic Classification of Cutaneous Melanoma”, 2015). Mutations 

in the NF1 gene are loss of function mutations, mainly nonsense point mutations 

(Cirenajwis et al., 2017), which can be considered as an alternative way to activate the 

MAPK signalling pathway.  

 

TERT 

 The TERT gene encodes for the telomerase reverse transcriptase, the catalytic 

subunit of the telomerase ribonucleoprotein, essential for the maintenance of telomeres 

and chromosomal stability. Recurrent somatic mutations in the TERT promoter have been 

characterised in CM, with high frequency in sporadic melanoma. Specifically, the two hot-

spot mutations, located at -124 and -146bp relative to the transcriptional start site, are C 

> T transitions, consistent with a UV signature mutational profile (Horn et al., 2013; Huang 

et al., 2013). In a recent study exploiting whole genome sequencing, 86% of CM cases 

were found mutated at one or more out of four positions upstream of the transcriptional 

start site (Hayward et al., 2017). All these mutations are mutually exclusive and create 

new binding sites for the E26 transformation-specific (ETS) family transcription factor GA- 

binding protein (GABP). Recent evidence suggests that TERT promoter mutations result 

in TERT over-expression (Shain et al., 2018; Zhao et al., 2016). They are established 

after MAPK-pathway activating mutations, but still during the early stage of melanoma 

progression (Shain et al., 2018). 

 

CDKN2A 

 CDKN2A is a well characterised tumour-suppressor gene, found to harbour 

somatic alterations in a wide variety of different tumour types (Zhao et al., 2016). 
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Regarding CM, in addition to its association with familial melanoma, somatic alterations 

resulting in CDKN2A inactivation are also frequently observed in sporadic melanoma. The 

most frequent alteration is the deletion of the CDKN2A gene, reported in 41% of CM 

(Palmieri et al., 2018). CDKN2A expression is additionally regulated at the epigenetic 

level, mainly by methylation of its promoter and subsequent gene silencing. The two 

proteins encoded by CDKN2A, p16 and p14, have distinct roles in the regulation of cell 

cycle. p16 modulates G1 to S phase transition by inhibiting the kinase activity of cyclin 

dependent kinases 4 and 6 (CDK4 and CDK6), while p14 acts through TP53 stabilisation. 

Biallelic loss of CDKN2A and subsequent disruption of the G1/S checkpoint, is believed 

to be a crucial step in melanoma progression towards transition to the invasive phenotype 

(Shain et al., 2018). 

 

TP53 

 TP53 is a well-known tumour suppressor gene, involved in the transcriptional 

regulation of several target genes. TP53 is mutated in 27 different types of cancer (Bailey 

et al., 2018). Regarding melanoma, 15% of cases harbour mutations in TP53 (“COSMIC 

database”, n.d.; Forbes et al., 2017). Based on mutational studies, comparing primary 

melanomas and metastases, TP53 was found to be more frequently mutated in 

melanoma metastases, indicating that TP53 mutations may arise later during melanoma 

progression (Bastian, 2014).  

 

PTEN 

 PTEN is a tumour-suppressor gene, coding for the phosphatidyl-inositol-3,4,5-

triphosphate 3-phosphatase. PTEN phosphatase is a fundamental regulator of the 

PI3K/AKT pathway, exerting its inhibitory effects on AKT signalling, by dephosphorylating 

PIP3. PIP3 acts as a second messenger, triggering a number of signalling cascades- 

among them AKT- which play a key role in processes like cell survival and 

proliferation, apoptosis, and cellular metabolism (Ortega-Molina and Serrano, 2013). 
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Somatic mutations in PTEN, primarily deletions but also loss-of-function SNVs- 18 % and 

8%, respectively in CM (Palmieri et al., 2018), result in PTEN inactivation and promote 

cell survival through sustained activation of the PI3K signalling pathway (Helgadottir et 

al., 2018). 

 

MITF 

 Microphthalmia-associated transcription factor (MITF) is a basic helix–loop–

helix/leucine zipper transcription factor required for melanocyte development. MITF is 

essential for establishing the melanocytic lineage during differentiation of neural crest 

cells (Mort et al., 2015). Transcriptional targets of MITF, include genes encoding for 

components of melanosomes, enzymes of the melanin synthesis pathway, as well as 

genes involved in cell cycle regulation and cell survival. Somatic amplification of MITF 

has been identified in melanomas, but MITF activity is mainly altered by its upstream 

activators and suppressors acting on the transcriptional, post-transcriptional and post-

translational levels. 

 

Other genes 

 Other genes causatively implicated in melanomagenesis and progression include 

KIT, RAC1 and ARID2. KIT encodes for a tyrosine kinase, which is the receptor of the 

Stem Cell Factor. Upon ligand binding, multiple signalling pathways affecting cell growth, 

proliferation, survival, and migration are activated. In CM, mutations in KIT occur most 

commonly in melanomas originating from chronically sun damaged skin and in the acral 

subtype (Bastian, 2014). The RAC1 gene encodes for a GTPase of the Ras superfamily 

with important roles in cell motility. A hot spot mutation at P29S, is the result of a C > T 

transition, consistent with the molecular signature associated with UV damage 

(Krauthammer et al., 2012). The ARID2 gene encodes for a subunit of the switch/sucrose 

non-fermentable (SWI/SNF) chromatin remodelling complex, a multiprotein complex that 

alters chromatin structure to regulate gene expression (Mehrotra et al., 2014). Recent 
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evidence suggests that components of the SWI/SNF complex, function as tumour 

suppressors in several types of cancer. In the case of CM, loss-of-function mutations in 

the ARID2 gene are the most frequent among SWI/SNF enzymes. 

 

2.2.2.3 Affected pathways & gene expression  

 As have been mentioned, among the major affected pathways during the 

development and progression of melanoma are the MAPK pathway, cell cycle, DNA 

damage response and cell death pathways, and PI3K/Akt pathway (“Genomic 

Classification of Cutaneous Melanoma”, 2015). Additional pathways that have been 

shown to be implicated in the process of melanoma-genesis include Notch, Wnt, TGF-β, 

NF-κB, PKC, JNK/c-JUN, BCL-2, and APAF-1 (Kong et al., 2010). Basically, each gene 

taking part in those mechanisms may have altered expression, leading to the 

advancement of melanoma. Shain et al. (Shain et al., 2018) revealed the sequential 

events that lead to the evolution from pre-malignant lesions to melanoma. MAPK 

activation is proceeded by telomerase up-regulation, then chromatin modulation, cell 

cycle checkpoint and p53 pathway disruption, and PI3K path activation. TERT expression 

is significantly elevated. EZH2 is up-regulated in the presence of immune infiltration, and 

its expression in melanoma cells silences the immune response (Zingg et al., 2017). 

Extracellular signal-regulated kinase (ERK) activity plays a role in immune evasion by 

melanoma cells, since targeting of BRAF and MAPK decreases production of the 

immunosuppressive factors IL-10, VEGF (vascular endothelial growth factor), or IL-6. 

Therefore, constitutive activation of the MAPK pathway not only promotes increased 

proliferation of melanoma cells but also is important for immune evasion of this disease 

(Kong et al., 2010). The PI3K/Akt pathway is often activated in melanoma because of 

mutations in the tumour suppressor gene PTEN or activation of AKT. Loss of functional 

PTEN in tumour cells causes AKT phosphorylation and activation, leading to reduced 

apoptosis or amplified mitogenic signalling (Kong et al., 2010). Low expression level of 

PTEN has been observed in melanoma samples (Zhou et al., 2000), perhaps as a 

consequence of inactivation by epigenetic silencing, altered subcellular localisation, or 
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ubiquitination. In  metastatic melanoma, a higher percentage of PTEN methylation is 

observed (Mirmohammadsadegh et al., 2006), suggesting that this gene plays a role 

during melanoma progression. AKT3 is also responsible for progression (Dai et al., 2005; 

“Genomic Classification of Cutaneous Melanoma”, 2015; Kong et al., 2010; 

Madhunapantula and Robertson, 2009). High frequency of amplifications and over-

expression of AKT3 in RAS-mutant, NF1-mutant, and triple wild-type melanoma subtypes 

has been observed (“Genomic Classification of Cutaneous Melanoma”, 2015). AKT’s 

activity has been implicated with up-regulation of cell adhesion protein Mel-CAM, as well 

as high expression of MMP-2 and MMP-9, through activation of nuclear factor κB (NF-

κB) (Kong et al., 2010). MITF is amplified in primary and metastatic melanomas, as 

opposed to nevi (Garraway et al., 2005). Over-expression of both MITF and mutant BRAF 

may induce transformation of normal melanocytes to cancerous, implicating MITF as an 

oncogene (Kong et al., 2010). TP53 is often over-expressed in melanomas whereas 

expression is absent in nevi (Ragnarsson-Olding et al., 2004). Expression of BRAF 

V600E in cells induces up-regulation of IGFBP7, which inhibits BRAF-MEK-ERK 

signalling and induces senescence or apoptosis (Wajapeyee et al., 2008). Down-

regulation of pro-apoptotic genes occurs promptly in the development of invasive 

melanoma (Jensen et al., 2007). These include tumour suppressor genes (TPL73L and 

P53AIP1, involved in cellular apoptosis), tumour necrosis factors and receptors 

(TNFSF10, TNFRSF25, Apo-2, Apo-3, DR3, DR4, LARD, involved in cell death) and the 

caspase family of proteases (fundamental role in the apoptotic pathway).  

 

2.2.3 FFPE samples 

 The majority of studies utilising NGS for the characterisation of melanoma genome 

are using fresh-frozen tissue samples (Zhang et al., 2016). Nevertheless, formalin-fixed, 

paraffin-embedded (FFPE) tissue is the most common specimen available for molecular 

assays on tissue after diagnostic histopathological examination, and a number of archived 

samples are available for retrospective studies. The major restraint for using FFPE 

samples in molecular biology analyses is that nucleic acids isolated from FFPE tissue 
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often suffer from degradation and chemical modifications. Particularly in the case of 

primary melanomas, which generally have a small size at the time of diagnosis, most of 

the tissue is used for diagnostic evaluation, rendering an additional issue of tissue-

availability. However, several protocols have been developed to improve the isolation of 

DNA/RNA from FFPE specimens (Pikor et al., 2011; Sengüven et al., 2014) as well as 

specialised library construction methods allowing NGS-based analyses starting from 

nucleic acids of limited quantity and poor quality (De Paoli-Iseppi et al., 2016). Studies 

evaluating the quality of genomic variant calling and/or gene expression quantification by 

NGS, based on nucleic acids isolated from FFPE specimens as compared to fresh–frozen 

tissue, revealed that this approach, although challenging, can produce accurate data (De 

Paoli-Iseppi et al., 2016; Menon et al., 2012; Spencer et al., 2013; Van Allen et al., 2014; 

Zhang et al., 2017). 

 

2.2.4 Discussion 

 In this part, the main genetic features contributing to the development of CM were 

presented. Marked advances in dealing with this complex disease have been achieved 

over the last years, due to the diligent efforts of researchers to shed light on the biological 

mechanisms involved in melanoma manifestation, assisted by the advent of NGS 

technologies. Elucidating the mechanisms underlying melanoma biology and progression 

can enable the development of targeted and immune-related therapeutic approaches. 

Still, melanoma remains one of the most lethal types of cancer. Additional understanding 

of the resistance to targeted therapies is crucial, and ought to remain a central aspect of 

cancer research. 
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2.3 Bioinformatics & Cancer genomic data 

 Hi-tech developments have urged the research community to consider advanced 

methodologies to deal with the large‐scale genomic data, with the prospect of aiding 

clinical outcomes. Great efforts are requested to generate a global database, with all 

available information, aiding scientific research in the fight against disease (Bean and 

Hegde, 2016). This section focuses on the genomic resources and bioinformatics tools 

developed for the analysis of large-scale data, mainly NGS technologies.  

 

2.3.1 Genomic Data Resources 

 From the computational biology point of view, genomics embodies the assembly 

and storage of massive amounts of data, involving any essential information for an 

organism’s life processes, in digital format. This information can be available to public 

and general scientific community through genomic databases. Few of the numerous and 

widespread databases include NCBI (National Centre for Biotechnology Information) 

database [www.ncbi.nlm.nih.gov/], EMBL (European Molecular Biology Laboratory) 

database [www.ebi.ac.uk/embl/], and DDBJ (DNA Database of Japan) database 

[www.ddbj.nig.ac.jp/]. Most of the databases incorporate scientific results, storing 

nucleic/amino acid sequences, allowing universal access to all public; essentially, the 

matching data incorporated is reachable and reusable by the means of genomic 

databases (Akhtar et al., 2017). 

 The NGS revolution has directed the formation of many databases that not only 

store the information but can relate to additional effects of a given variant. This addition 

can be based on previous evidence from literature search, or built-in database tools and 

prediction models (Bean and Hegde, 2016). 

 The following paragraphs present briefly several of the major public databases and 

repositories that can be consulted for general functional analyses, or explicit cancer 

research. 

http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/embl/
http://www.ddbj.nig.ac.jp/
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 The Gene Expression Omnibus (GEO) [https://www.ncbi.nlm.nih.gov/geo/] is a 

public repository of NCBI, which files and dispenses full datasets of high-throughput 

genomic data, like microarray or NGS, succumbed by the research community globally. 

Apart from storage, a variety of web-based applications are available in GEO, allowing 

users to download and analyse the data, and extract the gene expression profiles offered 

(Barrett et al., 2013; Edgar et al., 2002). 

 The Cancer Genome Atlas (TCGA) [https://gdc.cancer.gov/] represents a 

revolutionary multidisciplinary cancer genomics programme, where over 20,000 primary 

malignancies from 33 distinct cancers were molecularly characterised, along with 

matched normal samples. TCGA programme belongs to the National Cancer Institute’s 

(NCI) Genomic Data Commons (GDC) next generation cancer knowledge network, 

whose major goals include the importation and tuning of genomic and clinical data, the 

coordination of sequence data (genome or transcriptome), and the standardisation of 

state-of-the art approaches for manifold data, like variant calling or gene expression. 

Ultimate aim is to deliver a unified data repository for cancer research, through enabling 

driver identification, therapy outcome, and various resources for storage, quality 

regulation, data integration, and redeployment of cancer genomic sets (Grossman et al., 

2016). Amongst these resources lies cBioPortal for Cancer Genomics (Cerami et al., 

2012; Gao et al., 2013), a free-access, open-source repository for the exploration and 

visualisation of most cancer sets included in GDC, aiming to abridge the complexity of 

genomic data by offering high-quality admission to molecular profiles and translational 

clinical applications. 

 The Gene Ontology (GO) [http://geneontology.org/] resource offers a 

computational depiction of the up-to-date scientific information regarding gene function 

from various organisms; humans to bacteria. GO permits genes’ functional annotation 

through the incorporation of biomedical knowledge on the molecular and cellular level of 

an organism, or closely related phylogenetic families. GO is allied to many other similar 

ontologies, underpinning computer science applications in biology and medicine  

(Ashburner et al., 2000; The Gene Ontology Consortium, 2019). 

https://www.ncbi.nlm.nih.gov/geo/
https://gdc.cancer.gov/
http://geneontology.org/
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 Reactome [https://reactome.org/] is a free access, manually curated, peer-

reviewed pathway database, aiming to deliver bioinformatics approaches for visualising, 

clarifying and investigating molecular mechanism information to clinical research and 

systems biology. Emphasis is given on signalling and metabolic reactions, and molecule 

inter-relations, extracting biological pathways and processes, through evidence 

supported by literature (Fabregat et al., 2018). 

 dbNSFP (database for Nonsynonymous SNPs' Functional Predictions) 

[https://sites.google.com/site/jpopgen/dbNSFP]  is an established resource specializing 

on functional prediction and annotation of all potential non-synonymous SNVs located on 

the human genome. Currently, dbNSFP includes more than 84 million non-synonymous 

SNVs and splice site SNVs (splicing-site SNVs).  Prediction scores are compiled by 

various prediction algorithms and databases (Liu, Jian, et al., 2013; Liu, Wu, et al., 2016). 

 The Catalogue of Somatic Mutations in Cancer (COSMIC) 

[https://cancer.sanger.ac.uk/cosmic] is the largest database for somatic mutation 

evidence concerning human cancers and is manually curated by proficient researchers. 

COSMIC comprises of millions of mutations, incorporating thousands of cancer types and 

subtypes. It contains the Cancer Gene Census list, with detailed disseminations and 

effects of driver mutations, and curated annotations for cancer genomes in the direction 

of target discovery. COSMIC updates occur every three months  (“COSMIC database”, 

n.d.; Forbes et al., 2017). 

 The Network of Cancer Genes (NCG) [http://ncg.kcl.ac.uk/] is a manually curated 

cancer database, containing information based on the literature. This information is 

evaluated, providing evidence on the experimental validation backing up the addition of 

cancer genes; including annotations of gene functionality. Currently, more than 2300 

genes are included in NCG (An et al., 2016; Repana et al., 2019).    

 Genomic data resources can assist the scientific community on the integration and 

analysis of varied large-scale projects. Their contribution on functional annotations and 

relationship disclosure of the diverse features included is irreplaceable for combating 

https://reactome.org/
https://sites.google.com/site/jpopgen/dbNSFP
https://cancer.sanger.ac.uk/cosmic
http://ncg.kcl.ac.uk/
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disease and general clinical research (Akhtar et al., 2017). At this stage, focus was given 

on the databases used in this dissertation. 

 

2.3.2 Bioinformatic cancer genomic data analysis exploiting NGS 

 As mentioned, nowadays, NGS has become the state-of-the-art tool in cancer 

research and is the most common and advanced technology for de novo somatic mutation 

detection. NGS technologies are in continuous development and improvement, both at 

the level of the applied protocols for library preparation and sequencing chemistry, but 

also at the bioinformatics level. A large number of bioinformatics tools have been 

developed for general pre-processing and basic analysis of NGS (WES/WGS) data with 

the aim of revealing altered variants for the cases under investigation. This part of the 

thesis focuses on tools developed for somatic mutation calling, which can be described 

as the first level of analysis, bypassing those needed to reach this step of the analysis. 

Furthermore, we present most of the available tools for driver-mutation identification, 

including the approaches that are used to achieve this step. Discriminating driver  from 

passenger mutation remains a challenge from the experimental as well as the 

bioinformatics points of view (Gonzalez-Perez et al., 2013; Gonzalez-Perez and Lopez-

Bigas, 2012; Hodis et al., 2012; Lawrence et al., 2013; Raphael et al., 2014). In the case 

of melanoma, which is one of the cancers with the highest mutation burdens and 

heterogeneity, this problem is even more difficult to address, due to the confounding 

impact of melanoma’s high mutation rate. More detailed evaluations and comparisons of 

the tools are available by (Raphael et al., 2014; Xu, 2018; Zhang et al., 2014).  

 The basic approach for somatic variance identification is to compare paired 

samples, i.e. analyse matched tumour-normal samples collected from the same patient. 

Most callers are structured after this notion and use different approaches to extract the 

desired list of variants, meeting certain criteria. Among the strategies utilised are heuristic 

approaches combined with statistical tests, analysis and evaluation of a joint genotype 

likelihood, allele frequency or haplotype-based analyses, or exploitation of machine 

learning methods for variant classification. Apart from these, there are specialised tools 
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that offer single-sample somatic mutation calling (lack of normal samples), through 

association with databases like COSMIC (“COSMIC database”, n.d.; Forbes et al., 2017) 

and application of machine learning and statistical algorithms. Table 2 lists most somatic 

mutation callers based on their aforementioned strategic approaches. 

 

Table 2: Somatic variance calling tools 

Analysis Tactic Variant Callers 

Heuristic 

approaches 

qSNP (Kassahn et al., 2013), RADIA (Radenbaugh et al., 2014), Shimmer (Hansen et al., 

2013), SOAPsnv (“SOAP :: Short Oligonucleotide Analysis Package”, n.d.), VarDict (Lai et al., 

2016), VarScan2 (Koboldt et al., 2012) 

Joint genotype 

analysis 

CaVEMan (Jones et al., 2016), FaSD-somatic (Wang, Wang, et al., 2014), JointSNVMix2 

(Roth et al., 2012), SAMtools (Li, 2011), Seurat* (Christoforides et al., 2013), SNVSniffer (Liu, 

Loewer, et al., 2016), SomaticSniper (Larson et al., 2012), Virmid (Kim et al., 2013) 

Allele frequency 

deepSNV (Gerstung et al., 2012), EBCall (Shiraishi et al., 2013), LoFreq (Wilm et al., 2012),  

LoLoPicker (Carrot-Zhang and Majewski, 2017), MuTect (Cibulskis et al., 2013), Strelka 

(Saunders et al., 2012) 

Haplotype 

analysis 

FreeBayes (Garrison and Marth, 2012), HapMuC (Usuyama et al., 2014), LocHap (Sengupta 

et al., 2016), MuTect2 (Cibulskis et al., 2013), Platypus (Rimmer et al., 2014) 

Machine Learning 
BAYSIC (Cantarel et al., 2014), MutationSeq (Ding et al., 2012), SNooPer (Spinella et al., 

2016), SomaticSeq (Fang et al., 2015) 

Single-sample 

analysis 

GATKcan (Hsu et al., 2017), ISOWN (Kalatskaya et al., 2017), OutLyzer (Muller et al., 2016), 

Pisces (Dunn et al., 2018), SiNVICT (Kockan et al., 2017), SomVarIUS (Smith et al., 2016) 

Structural or 

Copy Number 

variation calling 

APOLOH (Yang et al., 2013), BIC-Seq (Xi et al., 2010), BreakDancer (Chen et al., 2009), 

Break-Pointer (Drier et al., 2013), CNVkit (Talevich et al., 2016), CoNIFER (Krumm et al., 

2012), Delly (Rausch et al., 2012), HYDRA (Malhotra et al., 2013), GASV (Sindi et al., 2009), 

GASVPro (Sindi et al., 2012), Meerkat (Yang et al., 2013), PeSV-Fisher (Escaramís et al., 

2013), VariationHunter-CommonLaw (Hormozdiari et al., 2011) 

RNA-seq variant 

calling 

eSNVdetect (Tang et al., 2014), SNPiR (Piskol et al., 2013), VarDict (Lai et al., 2016), 

VarScan2 (Koboldt et al., 2012) 

 

 As a latter step, after obtaining a list of somatic mutations, it is important to 

distinguish the driver mutations which actively contribute to carcinogenesis (Stratton et 

al., 2009). This step can be described as the second level of analysis. Driver-mutation 

discrimination can be accomplished through mutation frequency analysis, functional 

impact investigation or machine learning algorithms based on known sets of 
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driver/passenger genes. Another approach followed is enrichment analysis on known 

pathways or networks. Table 3 summarises several tools which focus on driver mutation 

identification, classified by the strategic approach used. It is important to mention that 

distinction of driver/passenger genes faces many challenges mostly due to lack of 

annotation, additive effects of passenger mutations or a possible change in roles during 

cancer progression and the development of tumour heterogeneity (Zhang et al., 2014). 

  

Table 3: Driver mutation calling tools 

Analysis Tactic Driver Callers 

Functional impact 

CanPredict (Kaminker, Zhang, Watanabe, et al., 2007), Condel (González-Pérez and 

López-Bigas, 2011), FATHMM (Shihab et al., 2013), GERP++ (Davydov et al., 2010), 

GOSS (Kaminker, Zhang, Waugh, et al., 2007), MutationAssessor (Reva et al., 2007, 

2011), MutationTaster (Schwarz et al., 2014), Oncodrive-fm (Gonzalez-Perez and Lopez-

Bigas, 2012), PMUT (Ferrer-Costa et al., 2005), PolyPhen-2 (Adzhubei et al., 2010), 

PROVEAN (Choi et al., 2012), SIFT (Ng and Henikoff, 2001), SNPs3D (Yue et al., 2006), 

TransFIC (Gonzalez-Perez et al., 2012) 

Mutation frequency 
DrGaP (Hua et al., 2013), MuSiC (Dees et al., 2012), MutSig /MutSigCV (Lawrence et al., 

2013), Youn et al. (Youn and Simon, 2011) 

Machine Learning CHASM (Carter et al., 2009; Wong et al., 2011), DMI (Tan et al., 2012) 

Structural or Copy 

Number focus 

ADMIRE (van Dyk et al., 2013), CMDS (Zhang et al., 2010), GISTIC2 (Mermel et al., 

2011), JISTIC (Sanchez-Garcia et al., 2010) 

Positional/Structural 

clustering 
iPAC (Ryslik et al., 2013), NMC (Ye et al., 2010) 

Pathway/Network 

analysis 

BioInfoMiner (Koutsandreas et al., 2016), Dendrix (Vandin et al., 2011), GSEA 

(Subramanian et al., 2005), HotNet (Vandin et al., 2011), MEMo (Ciriello et al., 2012), 

Multi-Dendrix (Leiserson et al., 2013), NetBox (Cerami et al., 2010), PathScan (Wendl et 

al., 2011), Patient-oriented gene sets (Boca et al., 2010), RME (Miller et al., 2011) 
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Chapter 3.  Materials & Methods 

 The techniques and methodologies mentioned in the previous chapter offer 

auspicious results for the detection of melanoma. Dermoscopy images are low-cost and 

extensively available, permitting a feasible option for early diagnosis. The success rates 

given by literature show that the work towards automated classification of lesions and 

melanoma may provide decent results; still there is always room for improvement. 

Dermoscopy images are frequently accompanied by numerous irregularities and huge 

deviations between specimens. For this reason, it is critical to find the appropriate means 

to overcome these oddities and attain a truthful finding (Mishra and Celebi, 2016). Image 

processing constitutes an important aspect of disease confrontation. Coupled with the 

biological facet, together they can contribute to an exemplary outcome, enabling the 

simultaneous co-optation of therapeutic approaches. Towards this idea, this thesis offers 

a multi-layered approach, bridging the aforementioned aspects, a concept lacking in 

existing research. 

 

A number of methods were utilised at the different stages of this study: 

 Molecular techniques for the extraction of biological material  

 Bioinformatics techniques for NGS analysis and biomarker detection 

 Statistical analysis techniques to examine the correlation of different groups of data 

features 

 Supervised machine learning techniques for the classification 

 

 A more comprehensive outline of the analysis performed is given by Figure 3. The 

basis of this study is the experimental and bioinformatic analysis of WES data, deriving 

from new patients. Through exome and transcriptomic data integration (top rectangle of 
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Figure 3, pink shade), a broad molecular network implicated in CM is given, elucidating 

the important mechanisms involved in this type of cancer; lists of significant genes and 

mechanisms is the output. Specifically, for the newly analysed WES data, the list of 

extensively analysed mutated genes acts as input for classification and CM detection – 

genes as potential biomarkers. Through integration with imaging features (list acquired 

from data previously analysed by collaborator) and creation of classification systems (see 

bottom rectangle of Figure 3, green and grey shades) for the layered scheme, another 

output is the list of potential composite biomarkers.   

 The following sections of this chapter present the methodology and approaches 

used for this study, describing the algorithms and tools used in detail, with the 

corresponding hyper-parameter settings. 
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Figure 3: Comprehensive processing pipeline of the presented research 
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3.1 Biological material and molecular analysis 

3.1.1 Melanoma Samples 

 All samples were acquired in the context of the 12CHN-204 PROMISE project 

[12CHN 204 Entrepreneurial Program Competitiveness & Entrepreneurship & Districts in 

Transition, (Action Bilateral Research and Technology Cooperation between Greece and 

China) “Personalisation of melanoma therapeutic management through the fusion of 

systems biology and intelligent data mining methodologies-PROMISE”], under the strict 

conformity to the rules of the call. The samples derived from FFPE tissue blocks from 

excisional biopsies histo-pathologically confirmed as melanomas. Areas from tumour and 

adjacent healthy nevus tissue were assessed and separated by a pathologist. Paired 

tissue samples, tumour and normal individually, from nine patients, both male and female, 

with cutaneous melanoma were collected. All patients had no reported family history of 

melanoma and all examined melanoma tissues were from the primary lesion. More 

information concerning the patients and excised lesion can be found at Table 4 and 

Appendix Tables A1. 

 

Table 4: Patient and melanoma lesion characteristics, Border R-regular, I-irregular 

Patient 
No. 

AGE SEX 
PRE-X 
NEVUS 

ASYMMETRY BORDER 
SIZE 

INCREASED 
DIAMETER 

COLOR 
CHANGE 

SITE 

3 52 ♀ yes yes I yes >5mm yes waste 

5 82 ♂ yes no R yes >5mm yes back 

8 80 ♂ no yes I yes >5mm yes head 

10 77 ♀ no yes I yes >5mm yes 
subungual 

(foot) 

11 72 ♂ yes yes I yes >5mm yes back 

12 56 ♀ no yes I yes >5mm yes head 
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13 69 ♀ no yes R yes >5mm no back 

14 73 ♀ yes yes I yes >5mm NA tibia 

15 38 ♂ no no R yes >5mm no abdomen 

 

3.1.2 DNA Extraction and Exome Sequencing 

 DNA was isolated from the samples using QIAamp DNA FFPE Tissue protocol 

from QIAGEN (Hilden, Germany), with several modifications to deparaffinisation, washing 

and proteinase K digestion steps, to ensure better quality and higher quantity of the 

extracted DNA. More specifically, deparaffinisation of FFPE samples was performed with 

xylene (×2 times) at 56 °C for 3 min and the precipitate was sequentially washed with 

100%, 70% and 50% ethanol (Sengüven et al., 2014). Proteinase K digestion was 

performed at 56 °C while stirring the samples and the incubation time was increased to 3 

days with daily re-addition of proteinase K. The quantity and purity of the samples were 

checked using Nanophotometer (IMPLEN, Munich, Germany). The extracted DNA was 

prepared and captured with the Agilent SureSelect Human All Exon 50 Mb kit (Agilent 

SureSelect v5, Santa Clara, CA, USA) and whole exome sequencing was performed on 

an Illumina HiSeq 4000 sequencer (San Diego, CA, USA), as paired-end (PE) reads. 

 

3.2 Variant calling & mutational biomarker discovery  

 The following analysis was performed utilising various state-of-the-art tools. 

Unless stated otherwise, all bioinformatics analyses were performed using shell interface 

command line, on a Linux-based 64GB RAM/ 12 processor cluster server. Whole exome 

sequencing was performed on 18 DNA samples (paired normal/tumour from each patient) 

with an average of 14911,30 Mb of raw bases given by the Illumina sequencer. After 

removing low-quality reads, we obtained on average 93500006 clean reads (12953,84 

Mb). The clean reads of each sample had high Q20 and Q30, which showed high 
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sequencing quality. The average GC content was 47.88%. The complete tables of quality 

control for the whole exome sequencing procedure can be found at Appendix Tables A2. 

The clean reads were received in fastq format, 2 files per sample (PE reads), 4 per patient 

(paired normal/tumour analysis).  

 The first step of the analysis was to align the reads from the fastq files to the 

reference genome (hg19, version b37), using BWA (Burrows-Wheeler Aligner) (Li and 

Durbin, 2010) for DNA reads, version 0.7.5, adjusted for paired-end sequencing and ran 

in consecutive steps for finding the correct coordinates and generate the final alignment 

per sample, in SAM format. Figure 4 includes the 3 commands given to BWA so as to 

perform the alignment for each sample. 
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Figure 4: Commands to run BWA, specific parameters used are given in brackets 

 

 The second step was performed using Picard (“Picard Tools - By Broad Institute”, 

n.d.), version 1.98. This step was required for the pre-processing of the aligned reads, to 

ensure the reads were in the correct format for further analysis. This included sorting 

sequences based on the reference sequence, marking duplicate reads and building an 

index for the output sample file, which allows fast look-up of data, essential for 

supplementary steps. Figure 5 includes the 3 commands given to Picard for the pre-

processing of each sample, with the output acquiring BAM format. 
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Figure 5: Commands to run Picard 

 

 Third step was processing the reads with GATK (Genome Analysis Toolkit) 

(McKenna et al., 2010), to certify the good quality of reads (all reads are given quality 

scores and can be dismissed if necessary) and perform realignments and recalibrations 

based on the scores and references (commands given on Figure 6), to optimise the output 

reads and permit the succeeding variance and somatic mutation investigation. For this 

study, version 3.6 of GATK was used, which incorporates somatic SNP calling with 

somatic indel (insertions & deletions) calling, as carried out by MuTect2, based on the 

original MuTect (Cibulskis et al., 2013) and Indelocator (“Indelocator”, n.d.), comparing 

the tumour-normal pairs in order to characterise somatic mutations. MuTect2 permits 

varying allelic fraction for each variant, as is often seen in tumours with lower purity, 

multiple subclones, and/or copy number variations. It also incorporates information from 

COSMIC database (“COSMIC database”, n.d.; Forbes et al., 2017), annotating previously 

described somatic mutations from preceding studies. Germline variants were identified 

using the HaplotypeCaller tool, by comparing the normal samples with the reference 

sequence. This tool can call SNPs and indels simultaneously, through performing local 

de novo assembly of haplotypes at a given active region. Specific coding SNPs were 

investigated from a known panel of germline variants associated with melanoma based 

on GWAS studies and established databases (Antonopoulou et al., 2015; Kypreou et al., 

2016; MacArthur et al., 2016), focusing on those found on coding regions. Basic coding 

to perform HaplotypeCaller and MuTect2 analyses is given in Figure 7. Both tools output 

lists of sites describing the altered alleles, along with specific coordinates on the DNA, 

various quality scores and precise quantifications for each sample, in vcf format. Strand-

specific artefacts, i.e. SNPs that the alternate allele was not supported by both forward 

and reverse orientation of the DNA, were considered as false positives- possibly due to 

DNA damage resulting from formalin fixation and storage time- and were excluded 
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manually from the results. The aforementioned analysis was restricted on the exome 

region, where possible, utilising the target coordinates of the exome that were used during 

the sequencing procedure for capturing DNA (Agilent SureSelect v5, S04380110_v5 in 

bed format file), to ensure more accurate results and faster realisation of the workflow. 

Most of the GATK tools that were used require assistance to distinguish true variants from 

false positives or known sites of variation, which is given by the synchronised use of 

additional resources like the 1000 Genomes Project (‘1000 Genomes | A Deep Catalog 

of Human Genetic Variation’ n.d.) and dbSNP database (“Home - SNP - NCBI”, n.d.), 

build_132.b37.  
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Figure 6: Commands to run GATK RealignerTargetCreator, IndelRealigner, Base Recalibrator and 

PrintReads in consecutive steps 
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Figure 7: Commands to run GATK HaplotypeCaller and MuTect2 

 

 The next stage of the analysis was to annotate the resulting sites, SNPs or somatic 

mutations, using Oncotator (Ramos et al., 2015), which utilises several databases to link 

the sites to specific genes. Oncotator is a web application, as well as stand-alone tool, for 

annotating human genomic point mutations and indels with data relevant to cancer. For 

this analysis, we used stand-alone Oncotator version 1.5.1.0, which requires the 

download of multiple database annotations in a specific folder, to perform genomic, 
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protein, cancer and non-cancer variant annotations, by specifying the input file, its format, 

the genomic build, and gives the result in MAF text format.  

 Significantly mutated genes among the patients were identified using MutSigCV 

(version 1.41) (Lawrence et al., 2013), which ranks the genes by estimating a background 

mutation rate (BMR) through the number of silent versus non-coding mutations in the 

gene and the surrounding regions. This BMR model is not constant and changes due to 

patient- and genomic position-based factors. Figure 8 shows the command for MutSigCV. 

 

Figure 8: Commands to run MutSigCV 

 

 BioInfoMiner (Koutsandreas et al., 2016) was used for the functional analysis of 

the mutated genes, so as to identify the molecular pathways influenced by these 

mutations, and to isolate the genes with central role, implicated in diverse and major 

mechanisms from various vocabularies; for this analysis GO (Ashburner et al., 2000; 

The Gene Ontology Consortium, 2019) and Reactome (Fabregat et al., 2018) were 

utilised. BioInfoMiner combines the StRAnGER2 (Pilalis and Chatziioannou, 2013) and 

GOrevenge (Moutselos et al., 2011) algorithms and is an online tool. Figure 9 shows a 

draft experiment on BioInfoMiner, requiring a gene list, species and database 

specifications, and statistical cut-off. The output can be lists and illustrations of pathways 

and genes with a significant role emerging from the original list. 
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Figure 9: BioInfoMiner online tool 

 

 For the extended molecular analysis (chapter 4.2), we performed additional 

investigations and database searches. For the functional prediction of the somatic 

mutations we utilised dbNSFP (Liu, Wu, et al., 2016) through Oncotator, a database that 

provides information for functional predictions and annotations for human non-

synonymous variants. Copy number variation (CNV) analysis was performed using 

CNVkit (Talevich et al., 2016), version 0.8.5, which specialises on CNV detection on 

targeted DNA sequencing (including WES). CNVkit also runs on the exome region, 

utilising the target coordinates of the exome (Agilent SureSelect v5, S04380110_v5 in 

bed format file) and anti-targets to avoid, to ensure more accurate results. Figure 10 

presents the commands used to run CNVkit in consecutive steps, first creating target and 

anti-target regions, then merging the normal samples in one ‘global’ reference for copy 

numbers and finally comparing each pair of patient samples, incorporating this global 

reference. 
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Figure 10: Commands to run CNVkit in consecutive steps 

 

 Expression of mutated genes was evaluated through TCGA’s cBioPortal datasets 

(Cerami et al., 2012; Gao et al., 2013). Genes with TPM (transcripts per million) between 

0.5 and 10 were considered to have low expression, between 11 and 1000 medium, and 

if TPM was over 1000, the genes were considered as highly expressed in a given case. 

Overall, genes were considered as expressed when encompassing at least low 

expression in over 30% of the cases. 

 Figure 11 presents the workflow of analysis starting from raw whole exome 

sequencing data for the identification of variance and somatic mutations concerning the 

disease under investigation. Final output is a list of genes -potential biomarkers- that are 

affected and play a crucial role in the manifestation of melanoma. 
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Figure 11: Workflow of analysis for the identification of variance and somatic mutations 

 

3.2.1 NGS complexity and information 

 The complexity of NGS data is high, due to the high amount of information 

contained in each separate sample (compressed ~10GB per sample/ 20GB per patient/ 

~150GB for all) and the fact that several distinct parameters need to be adjusted at each 

step, so as to optimise the performance and the quality of the results (i.e., BWA needs to 

be adjusted for paired-end sequencing and run in consecutive steps to find the correct 

coordinates and generate the final alignment in proper format). It is worth noting that the 

complete workflow for a pair of samples (tumour and normal samples from one patient) 

needs approximately 35 hours running time, summarising the results in ~10MB. 

 

3.3 Transcriptomics microarray data analysis 

 The microarray dataset was downloaded from NCBI’s Gene Expression Omnibus 

(GEO) database (Barrett et al., 2013). Transcriptomic differential expression analysis was 

performed on R programming environment (Development, n.d.) version 3.5.1, using 
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RStudio version 1.0.136, on a Windows-based 8GB RAM/ 4 processor/64-bit personal 

computer. In the experiment GSE3189, taken from (Talantov et al., 2005), total RNA was 

isolated from 45 primary melanomas, 18 benign skin nevi, and 7 normal skin tissue 

specimens and was used for gene expression analysis, using the Affymetrix Hu133A 

microarray chip containing 22,000 probe sets. The dataset was analysed using 

GEOquery (Davis and Meltzer, 2007) and limma (Ritchie et al., 2015) packages. Figure 

12 presents the commands used to run the microarray analysis.  

 

 

Figure 12: Microarray analysis commands using GEOquery and limma 
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3.4 Machine learning techniques for data integration & 

classification 

 Machine learning analysis was performed utilising various algorithms, i.e. 

classification was performed using random forests, Gaussian linear modelling, stochastic 

gradient boosting, decision trees, linear discriminant analysis, support vector machines, 

k-nearest neighbours and logistic regression. For feature selection the topological 

prioritisation of Bioinfominer was used, as well as entropy-based (information gain and 

gain ratio) criteria. Unless stated otherwise, all further analyses were performed on R 

programming environment (Development, n.d.) version 3.5.1, using RStudio version 

1.0.136, on a Windows-based 8GB RAM/ 4 processor/64-bit personal computer. 

 

3.4.1 Mutational data 

 The concept is to build a classifier exploiting the data that were produced. Since 

the number of patients analysed was limited, melanoma samples from TCGA database 

were added, through cBioPortal (Cerami et al., 2012; Gao et al., 2013), to expand the lists 

of samples. As healthy state (non-melanoma) mutational data from dysplastic nevus that 

were acquired through similar experimental procedure (Melamed et al., 2017) were used. 

For feature selection, we reduced the list of mutated genes by prioritising them according 

to their centrality (genes taking part in numerous distinct mechanisms are ranked higher), 

using BioInfoMiner (Koutsandreas et al., 2016). The samples (samples of dysplastic 

nevus and melanoma) were separated under two labels, dysplastic nevus (represented 

by DNS) and melanoma (represented by MEL) and each sample is attributed a multi-

dimensional binary vector, showing if the corresponding gene contains a mutation or not. 

To deal with unbalanced classes, the SMOTE (Chawla et al., 2002) algorithm was utilised 

to generate synthetic data for the DNS label. Several classification algorithms (random 

forests, Gaussian linear modelling, stochastic gradient boosting, decision trees, linear 

discriminant analysis, support vector machines, k-nearest neighbours and logistic 

regression) were examined, to find the one with the best outcome. An exhaustive grid 
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search for fine-tuning of classification parameters was performed. Figures Figure 13-

Figure 15 present the commands used for this part of the study. 

 

 

Figure 13: Commands to run SMOTE in R 

 

 

Figure 14: Commands used to build the classifiers in R 
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Figure 15: Commands to create Random Forests classifier and test its accuracy in R 

 

 The packages used to run the aforesaid analysis were caret (Kuhn 2015), DMwR 

(Torgo 2016), pROC (Robin et al. , e1071 (Meyer et al., 2019), glmnet (Friedman et al., 

2018), klaR (Roever et al., 2018), C50 (Kuhn et al., 2018), gbm (Greenwell et al., 2019), 

ROCR (Sing et al., 2015), cvAUC (LeDell et al., 2014). 

 

3.4.2 Imaging data & Integration 

 Concerning skin imaging, data from Moutselos et al. (Moutselos et al., 2014) were 

acquired, where 1041 dermoscopy samples of 32 features are characterised. The feature 

list included is based on the ABCD-rule of dermatology (Border, Colour, Textural features) 
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after analysing the 1041 (69 MEL/ 972 DNS) images. To deal with unbalanced classes, 

as before, the SMOTE algorithm was utilised, this time to generate synthetic data for the 

MEL label. Classification algorithms were explored as described above. 

 In order to validate the proof of concept of the proposed design a final integrative 

dataset, containing molecular and imaging data for the melanoma case, was explored. 

More specifically, a synthetic dataset was constructed to incorporate images from 

different nevi (dysplastic or melanomas) together with molecular measurements, 

integrating the two datasets from before. Again, a classification system was explored. 

Several classification algorithms were examined (random forests, Gaussian linear 

modelling, stochastic gradient boosting, decision trees, linear discriminant analysis, 

support vector machines, k-nearest neighbours and logistic regression), to find the one 

with the best outcome. An exhaustive grid search for fine-tuning of classification 

parameters was performed and comparisons were made between this and the ones 

described before. 

 A challenge that may arise when dealing with such an analysis is overfitting, i.e., 

data fitting the training set well, but achieving poor performance in the validation set. This 

might be the case when building a complex risk prediction model with the inclusion of 

many biomarkers. Information gain and gain ratio were used to prioritise the integrated 

biomarkers and comparisons were made between the classification systems. Those are 

entropy-based metrics that express the amount of information contained in a given 

attribute, which can characterise one class from another. 
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Chapter 4.  Analysis & Results 

4.1 Initial molecular analysis and integration 

 The complexities of cellular metabolism and regulatory pathways involved have, 

until recently, obstructed the formulation of a unified description for melanoma (Dummer 

and Hoek, 2004). Thus, despite the descent of gene signatures for various cancers, e.g. 

breast or colon cancer, a similar progress remains elusive for malignant melanoma. This 

could be attributed to the intricate nature of the molecular basis of cutaneous melanoma, 

which needs neatly stratified epidemiological cohorts to effectively address the issue of 

the high heterogeneity of this disease. Anyhow, melanoma genomic studies are limited 

by the availability and quality of the biological material and therefore are relatively sparse. 

In any case, genomic studies are limited by the shortage of similar melanoma cohorts, 

collecting and maintaining frozen tumour tissue, therefore rendering gene expression 

profiling studies of melanoma relatively scarce (Winnepenninckx et al., 2006). Still, efforts 

have been made to overcome any issues and shed some light on the underlying 

mechanisms associated with melanoma pathogenesis and metastases (Raskin et al., 

2013; Winnepenninckx et al., 2006). A number of important emerging biological pathways 

and gene targets recently identified in melanoma are reported in (Dutton-Regester and 

Hayward, 2012). Key biological pathways, where several significant genes (e.g. CDKN2A, 

CDK4, RB1) are involved, include proliferation, transcriptional control, extracellular matrix 

remodelling, glutamate signalling, and apoptosis. 

 In this part of the study, focus was given on integrating different levels of molecular 

data through functional analysis to improve our understanding of the underlying 

mechanisms involved in melanoma. Established microarray datasets were incorporated 

with next generation sequencing mutational data creating a potential disease network for 

melanoma. This stage was presented in (Kontogianni et al., 2016). 

 The following sections describe the results deriving from the analysis of next 

generation sequencing and transcriptomic data (methodology parts 3.2, 3.3). Particularly, 
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focus was given on the NGS analysis results and the integration with the transcriptomic 

dataset. 

 

4.1.1 Initial molecular analysis 

 WES data derived from tumour and normal samples were aligned to the human 

genome, with an average sequence coverage of > 100x (number of reads aligning to 

known reference bases), ideal for achieving the mutational profile required. Overall, the 

individual samples have depth of coverage > 90, with only one sample achieving a lower 

score. Still this lower score is found only in normal sample, which does not affect further 

analysis, since high coverage is necessary mainly for the tumour samples, to overcome 

endogenous heterogeneity. Table 5 shows the number of putative sites of somatic 

mutations, after the MuTect analysis, as well as the count of missense and nonsense 

mutations for each patient. These mutations affect gene products, by amino acid 

substitutions or protein truncation, and require further analysis as candidate genetic 

biomarkers. Figure 16 shows how the patients are grouped based on their mutational 

profiles, using Ward’s criterion (Ward, 1963) for hierarchical clustering.  

 

Table 5: Number of somatic mutations, missense/nonsense mutations, and unique genes 

affected per patient  

patient 
Sites of somatic 

mutations 

Missense/Nonsense 

Mutations 

Unique genes 

affected 

3 855 224 214 

5 1134 309 295 

8 826 281 265 

10 73 10 10 

11 944 275 265 



90 
 

12 5985 1811 1474 

13 812 226 200 

14 922 224 219 

15 1111 224 214 

 

 

 

Figure 16: Hierarchical clustering of the patients, based on the mutational profiles, red-present 

mutation, blue-absent 

 

4.1.2 Pathway analysis 

 In order to discover the molecular pathways affected by the specific mutations, 

after annotating the mutations to specific genes, we performed functional analysis of the 

union of affected genes from all the patients (on 2685 unique genes), which revealed 40 

statistically significant biological processes (p-value < 0.05), shown in Table 6.  
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Table 6: Table of the significant biological processes influenced by the mutated genes. 

Enrichment represents the ratio of the number of genes in the input list annotated with a GO 

term to the total number of genes annotated to this specific term, Hypergeometric and 

Corrected p-values represent the statistic score used for ranking the terms, given by 

BioInfoMiner  

Term id Term Definition Enrichment 
Hypergeometric 

p-value 

Corrected 

p-value 

GO:0007156 homophilic cell adhesion via 
plasma membrane adhesion 

molecules 

69/150 4.33E-20 0.0014 

GO:0007155 cell adhesion 148/531 2.17E-15 0.0027 

GO:0050911 detection of chemical 
stimulus involved in sensory 

perception of smell 

105/389 1.68E-10 0.0037 

GO:0030198 extracellular matrix 
organisation 

84/313 1.38E-08 0.0048 

GO:0086010 membrane depolarization 
during action potential 

17/30 1.10E-07 0.0063 

GO:0007411 axon guidance 95/375 3.64E-08 0.0068 

GO:0006811 ion transport 82/319 1.53E-07 0.0101 

GO:0022617 extracellular matrix 
disassembly 

39/117 2.98E-07 0.0108 

GO:0006814 sodium ion transport 37/106 1.59E-07 0.0115 

GO:0055085 transmembrane transport 162/767 7.19E-07 0.012 

GO:0007608 sensory perception of smell 61/224 7.06E-07 0.0125 

GO:0019228 neuronal action potential 16/31 1.42E-06 0.0144 

GO:0035725 sodium ion transmembrane 
transport 

30/89 5.11E-06 0.0145 

GO:0007268 synaptic transmission 97/428 5.75E-06 0.0178 

GO:0042391 regulation of membrane 
potential 

36/117 6.79E-06 0.0195 

GO:0007186 G-protein coupled receptor 
signalling pathway 

192/976 9.61E-06 0.0198 

GO:0030574 collagen catabolic process 26/74 9.12E-06 0.0203 

GO:0007605 sensory perception of sound 39/133 1.03E-05 0.0223 

GO:0034765 regulation of ion 
transmembrane transport 

35/118 2.18E-05 0.0257 

GO:0060080 inhibitory postsynaptic 
potential 

8/11 2.26E-05 0.0257 

GO:0070588 calcium ion transmembrane 
transport 

38/129 1.19E-05 0.0258 

GO:0018108 peptidyl-tyrosine 
phosphorylation 

37/130 3.53E-05 0.0287 

GO:0016339 calcium-dependent cell-cell 
adhesion via plasma 

membrane cell adhesion 
molecules 

13/27 3.64E-05 0.0306 

GO:0070509 calcium ion import 13/28 5.89E-05 0.0323 

GO:0007018 microtubule-based 
movement 

24/74 8.72E-05 0.0331 
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GO:0001539 cilium or flagellum-dependent 
cell motility 

6/7 5.96E-05 0.034 

GO:0032228 regulation of synaptic 
transmission, GABAergic 

7/10 0.0001 0.0353 

GO:0007399 nervous system development 72/322 0.0001 0.0376 

GO:0007169 transmembrane receptor 
protein tyrosine kinase 

signalling pathway 

33/119 0.0002 0.0382 

GO:0034220 ion transmembrane transport 65/286 0.0002 0.0395 

GO:0001964 startle response 10/20 0.0002 0.0399 

GO:0050907 detection of chemical 
stimulus involved in sensory 

perception 

28/96 0.0002 0.0405 

GO:0007416 synapse assembly 17/47 0.0002 0.0445 

GO:0071625 vocalization behaviour 7/12 0.0006 0.0447 

GO:2000821 regulation of grooming 
behaviour 

4/4 0.0005 0.0455 

GO:0016337 single organismal cell-cell 
adhesion 

30/109 0.0003 0.0465 

GO:0030534 adult behaviour 12/29 0.0004 0.0468 

GO:0034332 adherent junction 
organisation 

14/38 0.0006 0.0476 

GO:0034329 cell junction assembly 22/76 0.001 0.0492 

GO:0015721 bile acid and bile salt 
transport 

11/27 0.0009 0.0493 

 

 The transcriptomic analysis from the microarray dataset revealed 1425 unique 

differentially expressed genes. Enrichment analysis showed 36 statistically significant 

biological processes (p-value < 0.05), which are presented in Table 7.  

 

Table 7: Table of the significant biological processes influenced by the differentially expressed 

genes. Enrichment represents the ratio of the number of genes in the input list annotated with a 

GO term to the total number of genes annotated to this specific term, Hypergeometric and 

Corrected p-values represent the statistic score used for ranking the terms, given by 

BioInfoMiner 

Term id Term Definition Enrichment 
Hypergeometric 

p-value 

Corrected 

p-value 

GO:0030198 extracellular matrix 
organisation 

66/313 0.00000676 0.0014 

GO:0008544 epidermis development 31/109 0.00000027 0.0033 

GO:0030216 keratinocyte 
differentiation 

19/56 0.000003067 0.0043 

GO:0006094 gluconeogenesis 16/48 0.00002341 0.0053 
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GO:0048013 ephrin receptor 
signalling pathway 

21/91 0.0005 0.0078 

GO:0060512 prostate gland 
morphogenesis 

4/4 0.0001 0.0079 

GO:0033599 regulation of mammary 
gland epithelial cell 

proliferation 

4/5 0.0006 0.0094 

GO:0045861 negative regulation of 
proteolysis 

9/26 0.0011 0.0114 

GO:0061436 establishment of skin 
barrier 

7/17 0.0012 0.0116 

GO:0060326 cell chemotaxis 15/57 0.0008 0.0132 

GO:0071230 cellular response to 
amino acid stimulus 

13/48 0.0013 0.0155 

GO:0051591 response to cAMP 14/54 0.0013 0.0157 

GO:0048538 thymus development 12/45 0.0022 0.0182 

GO:0045669 positive regulation of 
osteoblast 

differentiation 

14/57 0.0023 0.0199 

GO:0001954 positive regulation of 
cell-matrix adhesion 

8/23 0.0019 0.021 

GO:0042060 wound healing 20/95 0.0024 0.022 

GO:0007155 cell adhesion 78/531 0.0028 0.0235 

GO:0061036 positive regulation of 
cartilage development 

6/15 0.0032 0.0236 

GO:0022617 extracellular matrix 
disassembly 

23/117 0.003 0.025 

GO:0045765 regulation of 
angiogenesis 

9/30 0.0033 0.027 

GO:0071526 semaphorin-plexin 
signalling pathway 

7/20 0.0036 0.0292 

GO:0048661 positive regulation of 
smooth muscle cell 

proliferation 

13/54 0.004 0.0298 

GO:0050773 regulation of dendrite 
development 

5/11 0.0038 0.0313 

GO:0048678 response to axon injury 9/32 0.0053 0.0337 

GO:0010951 negative regulation of 
endopeptidase activity 

26/144 0.0056 0.0343 

GO:0061621 canonical glycolysis 8/27 0.0059 0.0346 

GO:0070373 negative regulation of 
ERK1 and ERK2 

cascade 

12/50 0.0057 0.0374 

GO:0055086 nucleobase-containing 
small molecule 

metabolic process 

16/78 0.008 0.0402 

GO:0007160 cell-matrix adhesion 18/92 0.0084 0.0402 

GO:0060441 epithelial tube 
branching involved in 
lung morphogenesis 

6/17 0.0066 0.0405 

GO:0030032 lamellipodium 
assembly 

9/33 0.0066 0.0407 
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GO:0030324 lung development 20/106 0.0086 0.0435 

GO:0002009 morphogenesis of an 
epithelium 

7/23 0.0084 0.045 

GO:0043153 entrainment of 
circadian clock by 

photoperiod 

6/18 0.009 0.0454 

GO:0007266 Rho protein signal 
transduction 

13/59 0.0087 0.0465 

GO:0030855 epithelial cell 
differentiation 

16/79 0.009 0.0483 

 

 To facilitate a deeper examination of the datasets, we compared the gene lists 

from the mutational and transcriptomic analyses. Figure 17 illustrates the total unique and 

common genes, from the two types of datasets. Only 5% of the total genes were common 

between the two sets. Nevertheless, among the highly ranked processes, presented in 

tables Table 6 Table 7, cell adhesion, extracellular matrix organisation and extracellular 

matrix disassembly, all containing large numbers of genes, are found as significantly 

affected in both cases. 

 

 

Figure 17: Venn diagram for the significant gene lists from the two analyses 

 

 In order to create a feasible disease network for melanoma, the previous results 

were merged together, and additional functional analysis was carried out. This enrichment 

analysis revealed 45 statistically significant biological processes (p-value < 0.05), 

presented in Figure 18, ranked according to their corrected p-values. 
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Figure 18: Bar plot of significant terms with the number of associated genes (x-axis). Terms are 

ranked using the corrected p-value. The colours of the genes specify their expression fold 

change, green -on the left- for under-expressed genes and red -on the right- for over-expressed 

genes, neutral indicating somatic mutation 

 

 This potential Disease Network revealed several mechanisms with known 

significance, consistent with melanoma. Enrichment of GO terms, such as epithelial tube 

branching involved in lung morphogenesis, morphogenesis of an epithelium, epithelial 

cell differentiation, and regulation of mammary gland epithelial cell proliferation reflects 

the topological origin of cutaneous melanoma (Jogi et al., 2012; Martin-Belmonte and 
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Perez-Moreno, 2011). Furthermore, cell-matrix procedures (organisation, adhesion) have 

been previously reported as significantly altered in tumours (Hart et al., 1991; Saladi et 

al., 2010), as well as lamellipodium assembly, an essential structure for cell migration, 

which plays an important part in cell invasion and metastasis of cancer (Kato et al., 2014; 

Machesky, 2008). In relation to the ephrin receptor and Rho protein signalling pathways, 

the Eph receptor tyrosine kinases and their ephrin ligands have specific expression 

patterns in cancer cells (Pasquale, 2010), while Rho-like GTPase have been identified as 

key regulators of epithelial architecture and cell migration, both correlated to cancer 

development (Ridley, 2004; Sander and Collard, 1999). 

 As expected, the previously discussed significant pathways from tables Table 6 

Table 7 are complemented by the additional data, incorporating an increased number of 

genes, with considerable implication in melanoma manifestation and progression. Among 

the significant processes, there are several previously highlighted by the distinct datasets, 

but also a number of newly generated, after data integration. Figure 19 indicates the 

unique and common pathways in each case. 

 

 

Figure 19: Venn diagram for the significant pathway lists from the two distinct analyses, as well 

as their integration 
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4.1.3 Discussion 

 In this stage, we sought to export the broader molecular network implicated in 

cutaneous melanoma. We integrated molecular data of different levels in order to identify 

the important mechanisms that are involved in this type of cancer. This integration 

advanced our understanding about the mechanisms involved in melanoma, by observing 

the correlation between different sets and levels of data. More importantly, it allowed the 

manifestation of additional mechanisms previously concealed by the statistical cut-offs, 

thus enhancing the disease network and our general understanding of the phenomenon. 

 

4.2 Extended molecular analysis 

 CM development is a complex, multi-factorial process involving the interplay of 

genetic and environmental risk factors. The most well-established environmental risk 

factor is the exposure to ultraviolet radiation (UVR) (Nikolaou and Stratigos, 2014). 

Regarding the genetic background, several susceptibility genes have been identified, 

including highly penetrative genes such as CDKN2A, the first familial melanoma gene 

identified (Hussussian et al., 1994; Kamb et al., 1994) which is found mutated in 

approximately 40% of melanoma high-density families. Other less frequent mutations 

have been identified in genes of high or more moderate penetration, including CDK4 and 

the more recently described BAP1, TERT, POT1, ACD, TERF2IP and MITF (Aoude et 

al., 2015). Genome-wide association studies (GWASs) have also revealed numerous 

recurring single nucleotide polymorphisms (SNPs) associated with melanoma risk 

(Antonopoulou et al., 2015; Athanasiadis et al., 2014; Chatzinasiou et al., 2011; Law et 

al., 2015).  

 In the last decade, important steps towards characterising the somatic mutational 

landscape of melanoma have been achieved (Dutton-Regester and Hayward, 2012; 

Walia et al., 2012). Identifying causative melanoma mutations is of great importance in 

order to understand the molecular basis of melanoma genesis and progression. Towards 

this end, next generation sequencing (NGS) technologies are a valuable tool and have 
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been exploited in a number of recent studies, comparing sequencing data from melanoma 

tissue and a matched normal control in order to identify somatic mutations (Dutton-

Regester and Hayward, 2012; Krauthammer et al., 2012; Nikolaev et al., 2011; Stark et 

al., 2012, 2015; Wei et al., 2011). In such approaches, discriminating driver mutations 

from passenger ones remains a challenge from both the experimental as well as the 

bioinformatics point of view (Gonzalez-Perez et al., 2013; Gonzalez-Perez and Lopez-

Bigas, 2012; Hodis et al., 2012; Lawrence et al., 2013; Raphael et al., 2014). Especially 

in the case of melanoma, which is one of the cancers with the highest mutation burden 

and heterogeneity, this problem is even more difficult to address, due to the confounding 

impact of melanoma’s high mutation rate. 

 In this part, the aim was to exploit FFPE samples for the identification of somatic 

mutations and germline variants in patients with primary melanomas by exome 

sequencing and perform a more thorough search than the one described in the previous 

section. Towards this, analysis was repeated, and additional steps were included (e.g. 

CNV identification), all presented in detail in the following subsection. Regarding the 

genetic factors involved in melanoma susceptibility, a number of studies concerning 

melanoma patients from the Greek population have been reported (Kypreou et al., 2016; 

Law et al., 2015). Still, the characterisation of melanoma somatic mutations in Greek 

patients has been limited and, to the best of my knowledge, this was the first attempt to 

characterise the somatic mutational profile at the exome level of primary melanoma 

patients in Greece. This thorough analysis is presented in (Kontogianni et al., 2018). 

 

4.2.1 Sequencing Data Analysis 

 For this analysis, the paired tumour and surrounding normal skin FFPE tissue from 

nine patients with cutaneous melanoma after excisional biopsy were used. The whole 

exome sequencing (WES) data were aligned to the human genome, with an average 

alignment rate of >91%, an average sequence coverage of >100× and over 96% of 

targets with at least 20× coverage, enabling the achievement of the intended mutational 

profile (Cibulskis et al., 2013; Majewski et al., 2011; Sims et al., 2014; Van Allen et al., 



99 
 

2014). Only one sample attained a lower score in terms of coverage (normal sample for 

patient 8), but this did not affect further analysis, since high coverage is necessary in the 

tumour samples to overcome endogenous heterogeneity. Table 8 summarises the 

calculated alignment scores and sequencing depths for all the samples. 

 

Table 8: Sequencing characteristics for all the samples. 

Patients 3 5 8 10 11 12 13 14 15 

Normal 

Alignment rate (%) 96 84.2 65.6 93.8 96.8 96.8 97.4 87.9 95.6 

Average sequencing depth on 

target 
129.8 93.9 72.2 103.9 101.5 123.3 117.4 102.5 128.4 

Fraction of target covered by 

>20× (%) 
97.37 96.37 94.41 96.44 95.03 97.53 97 97.38 97.96 

Tumour 

Alignment rate (%) 95.4 89.5 93.6 92.6 96.7 96.2 96.8 88.8 92 

Average sequencing depth on 

target 
118.9 100.8 102.2 111.5 111.4 104.8 111.9 102.2 120.7 

Fraction of target covered by 

>20× (%) 
97.4 95.86 96.48 96.75 96.74 96.62 96.16 96.3 96.66 

Average sequencing depth on 

target 
108.7 

 

4.2.2 Identification of Germline Variation 

 Aiming to examine whether the patients had germline variations on possible 

melanoma susceptibility loci, focus was given on a panel of SNPs previously reported to 

be associated with CM risk. In particular, a list of SNPs from the GWAS catalogue 
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database (MacArthur et al., 2016) enriched by putative melanoma risk SNPs based on 

the MelGene database (Antonopoulou et al., 2015; Kypreou et al., 2016) was assessed. 

The analysis was restricted to 22 SNPs located in exon regions, since all SNPs on intronic 

or intragenomic regions were excluded because the data was derived from exome 

sequencing. Table 9 demonstrates the germline SNPs associated to melanoma risk found 

in the analysed patients. The relevant genes include pigmentation associated genes 

(SLC45A2, OCA2, TYR), as well as cell cycle and DNA repair genes (ATM, CDKN2A, 

ERCC5). Specific melanoma susceptibility alleles (Aitken et al., 1999; Barrett et al., 2011; 

Gerstenblith et al., 2010; Nan et al., 2009; Schrama et al., 2011; Sturm et al., 2008) were 

found in a number of patients. 

Table 9: Germline single nucleotide polymorphisms (SNPs) putatively associated with 

melanoma, based on genome-wide association studies (GWAS) and MelGene databases. 

dbSNP_ID Gene Chr 
Variant 

Classification 

Ref. 

Allele 

MA 

Allele 

# 

Hom

. Ref. 

# 

Hom

. MA 

# 

Heter. 

rs1801516 ATM 11 
Missense 

Mutation 
G A 6 0 3 

rs11515 CDKN2A 9 3′UTR C G 0 7 2 

rs16891982 SLC45A2 5 
Missense 

Mutation 
C G 0 9 0 

rs17655 ERCC5 13 
Missense 

Mutation 
G C 7 0 2 

rs1800407 OCA2 15 
Missense 

Mutation 
G A 8 0 1 

rs1042602 TYR 11 
Missense 

Mutation 
C A 2 2 5 

* The corresponding gene, chromosome position, classification type, reference allele, 

Melanoma-associated allele and the number of patients in Homozygous/Heterozygous 

state, are shown in the relevant columns.  
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4.2.3 Identification of Somatic Coding Mutations 

 In order to identify somatic mutations, the MuTect algorithm (Cibulskis et al., 2013) 

was used, which detects somatic variations at low allelic fraction with high sensitivity and 

low false positive rate, based on the paired analysis of tumour and matched-normal 

sequencing data (Xu et al., 2014). A total of 10,030 somatic mutations in all patients were 

identified (can be found at the online version of (Kontogianni et al., 2018) as Table S1). 

The majority of patients had comparable numbers of somatic mutations (median: 589), 

with the exception of two patients; patient 12, who had a total of 5324 somatic mutations, 

affecting 3752 genes, and patient 10 who had 27 somatic mutations, affecting 23 genes. 

Table 10 displays the number of somatic mutations for all the patients, the mutation 

frequency per Mb, along with the number of non-synonymous mutations and the relevant 

number of affected genes; Table 11 reports the types of the mutations per patient. In 

particular, 3955 protein-altering somatic mutations were identified. Excluding patient 10, 

the median mutation frequency was 12.75 mutations/Mb (ranging from 10.1 to 105.7), 

which is in agreement with the previously reported mutation burden of melanoma 

genome, which is considered one of the highest among cancer genomes (Alexandrov et 

al., 2013). Regarding the sample from patient 10, it was the only case of acral melanoma, 

which has been reported to have markedly less somatic mutations. Next, the distribution 

of somatic substitutions per base change was analysed and all patients, except patient 

10, showed a UVR characteristic mutational spectrum with a high ratio of C > T transitions 

(median rate 85.6%), which has been reported to characterise sun-exposed melanomas 

(Brash, 2015; Zhang et al., 2016) (Figure 20).  

 

Table 10: Somatic mutation characteristics for each patient. 

Patients 3 5 8 10 11 12 13 14 15 

Number of Mutations 522 693 901 27 935 5324 511 589 528 

Frequency per Mb 10.4 13.8 17.9 0.5 18.6 105.7 10.1 11.7 10.5 

Non-synonymous 226 284 387 18 364 2036 222 224 193 
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Genes with non-

synonymous 
216 274 360 16 338 1634 201 218 185 

 

Table 11: Characterisation of the somatic mutations for each patient 

Patients: 3 5 8 11 12 13 14 15 

3'UTR 9 9 13 14 110 9 13 12 

5'UTR 6 12 15 22 87 10 4 11 

Frame 
Shifting 
Deletion 

1 3 2 0 8 0 1 1 

Frame 
Shifting 
Insertion 

1 1 0 3 0 1 0 4 

IGR 13 20 14 19 110 9 22 19 

Intron 152 209 237 277 1523 132 197 184 

lincRNA 5 7 7 5 29 0 5 7 

Missense 198 251 356 332 1890 200 196 168 

Nonsense 17 10 15 18 84 12 15 8 

RNA 10 17 21 20 94 12 10 10 

Silent 100 135 206 214 1335 117 114 92 

Splice site 10 14 13 7 48 6 8 10 

In Frame 
Insertion 

0 1 1 2 1 0 1 1 

In Frame 
Deletion 

0 2 0 1 1 1 1 0 

De Novo Start 
In Frame 

0 1 0 0 1 1 0 0 

De Novo Start 
Out of Frame 

0 0 0 0 0 0 0 1 

Start Codon 
SNP 

0 0 0 1 3 1 2 0 

5'Flank 0 0 1 0 0 0 0 0 

Nonstop 0 1 0 0 0 0 0 0 

Total: 522 693 901 935 5324 511 589 528 
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Figure 20: Mutation spectrum for each patient. C > T transitions account for 85.6% of the 

mutations (median rate). 

 

4.2.3.1 Characterisation of Mutated Genes and Copy Number 

Variations 

 The 10,030 mutations corresponded to 6030 unique genes, of which 2890 

harboured non-synonymous mutations, most likely affecting protein functionality. Among 

them, 421 genes were found in at least two and 73 genes were common in at least three 

patients. In order to gain insights about the functional role of these common genes, the 

Network of Cancer Genes (NCG) (An et al., 2016) was accessed so as to identify all 

cancer-related genes from this 73-gene top common list. NCG is a manually curated 

literature-based repository containing 1571 cancer genes with either known involvement 

in cancer or high probability of association due to statistical analysis from numerous NGS 

studies. Out of the 73 genes, 33 were referred to as cancer genes according to NCG, 

namely DNAH7, PCLO, TTN, CSMD1, GPR98, MUC16, PKHD1L1, MYOM2, NEB, 

RELN, SPHKAP, UNC13C, ADCY8, ANK3, BAI3, CD163L1, CNTN5, COL22A1, 

DNAH14, EYS, FAT1, FAT3, FLT1, GRIN2A, KMT2D, PCDH18, PKHD1, SHROOM3, 

THSD7B, TNC, BRAF, LRP1B and RYR1. In addition, the COSMIC database (“COSMIC 

database”, n.d.; Forbes et al., 2017) was accessed to identify genes previously reported 
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in melanoma. 65 of the 73 top common genes were previously identified in melanoma 

cases, with a frequency over 5%. Figure 21 demonstrates that the majority of the 73 

genes, found mutated in at least three patients, either belonged to the candidate cancer 

gene list of NCG (containing 1571 genes) or were previously reported in COSMIC with a 

mutation frequency of >5% in melanoma samples (1181 genes). Among the seven genes 

identified only in this study, WD repeat domain 87 (WDR87), was found mutated in seven 

patients (87.5%). WDR87 is a protein coding gene, but little is known about its function 

and its implication in melanoma. In COSMIC, it is found mutated in 4.2% of the samples. 

Additionally, TCGA’s cBioPortal database (Cerami et al., 2012; Gao et al., 2013) was 

accessed to investigate preceding discoveries for WDR87. This search exposed two 

melanoma studies, with WDR87 mutated in 55% and 16% of the samples examined 

(Berger et al., 2012; Shain et al., 2015). Further analysis is needed to clarify the potential 

significance of the high mutation frequency observed for WDR87 gene in the specific 

subjects. 

 

 

Figure 21: Common genes between the 73-genes list, the 1571 Network of Cancer Genes (NCG) 

genes and the >5% mutated genes in melanoma from COSMIC 

 

 Somatic copy number variation (CNV) was assessed using differences in 

sequence coverage between each tumour specimen and all same-sex adjacent skin 
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samples utilising CNVkit, a methodology which uses both on-target and off-target reads 

to infer copy number consistently across the genome. This analysis revealed several CNV 

events in genes implicated in melanoma and reported to harbour amplifications or 

deletions (Bastian, 2014; Krauthammer et al., 2012). Specifically, CDKN2A (9p21) 

presented a deletion signal on three of the patients, and PTEN (10q23) on two. In addition, 

CCND1 (11q13.3) and MITF (3p13) were amplified in two patients and BRAF (7q34) was 

amplified in one patient (Figure 22). 

 Next, we searched the whole list of 2890 genes found to contain non-synonymous 

mutations in at least one patient, exploring the COSMIC database which contains data of 

somatic mutations for specific cancer types but also data for genes causally implicated in 

cancer. The notable melanoma-associated mutation BRAF V600E was detected in three 

patients, while RAS mutations were not detected. Among the mutated genes, only BRAF, 

CTNNB1, NF1 and TP53 carried specific mutations that have been previously reported in 

COSMIC (in more than 15 cases), as shown in Table 12. Two criteria to characterise the 

genes carrying non-synonymous mutations in this study were used; the frequency of a 

gene found mutated in melanoma and the characterisation of a gene as cancer census. 

Specifically, we searched for genes mutated in melanomas with a frequency >20% and 

in addition Cancer Census genes reported as mutated in melanoma with a frequency 

>5%, both based on COSMIC (Figure 22). Furthermore, the MutSigCV algorithm was 

used to identify significantly mutated genes, incorporating patient-specific mutation 

frequency with gene expression and replication time data. The small sample size prevents 

statistical significance in the results; still, the algorithm offers valuable information, by 

prioritising genes with putative significant mutations (denoted with * in Figure 22, top-20 

genes in Table 13), mainly after correcting for gene-specific mutation rates. It should be 

noted that among the most frequently mutated genes in these results, there were several 

constantly found mutated in cancer (e.g., PCLO, TTN) that are considered non-oncogenic 

(Lawrence et al., 2013). Still, focusing only on the top melanoma census genes from 

COSMIC, the majority of them are also mutated in the analysed cases (Figure 23). 
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Figure 22: Characterisation of genes carrying non-synonymous mutations based on COSMIC 

data. M-melanoma-associated genes (>20% mutated in COSMIC) and C-cancer-census genes 

(>5% in melanoma samples) *—denotes genes highlighted by MutSigCV. 

 

Table 12: Recurrent mutations, based on COSMIC (v84) (n>15) 

Hugo_Symbol Chr Variant_Classification Patient cDNA_Change Protein_Change 
COSMIC 

count (v84) 

BRAF 7 Missense_Mutation 14 c.1799T>A p.V600E 27133 

BRAF 7 Missense_Mutation 3 c.1799T>A p.V600E 27133 

BRAF 7 Missense_Mutation 5 c.1799T>A p.V600E 27133 

BRAF 7 Missense_Mutation 5 c.1798G>A p.V600M 31 

CTNNB1 3 Missense_Mutation 15 c.109T>G p.S37A 76 
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NF1 17 Nonsense_Mutation 12 c.4084C>T p.R1362* 16 

TP53 17 Nonsense_Mutation 13 c.438G>A p.W146* 49 

 

 

Table 13: Top 20 mutated genes, given by MutSigCV 

rank gene 
Pat. 

3 
Pat. 

5 
Pat. 

8 
Pat. 
11 

Pat. 
12 

Pat. 
13 

Pat. 
14 

Pat. 
15 

sum p-value 

1 CYP4X1 0 0 0 0 1 0 1 0 2 0.00010 

2 TP53 0 1 0 0 0 1 0 0 2 0.00018 

3 GPC5 0 1 0 0 1 0 0 0 2 0.00065 

4 BRAF 1 1 0 0 0 0 1 0 3 0.00072 

5 CHRM3 1 0 1 1 1 0 0 0 4 0.00077 

6 SYNGR1 0 0 1 1 0 0 0 0 2 0.00083 

7 IQSEC3 0 1 0 0 0 1 0 0 2 0.00100 

8 ZDHHC11 1 0 0 1 0 0 0 0 2 0.00114 

9 UGT2A3 0 1 0 0 0 1 0 0 2 0.00115 

10 DSG4 0 0 1 0 1 0 0 0 2 0.00119 

11 DENND2C 0 0 0 1 1 0 1 0 3 0.00176 

12 SAMD7 0 0 1 0 1 0 0 0 2 0.00196 

13 MYOM2 1 0 1 0 1 0 0 1 4 0.00235 

14 C12orf36 0 1 0 0 1 0 0 0 2 0.00386 

15 SPAM1 0 0 1 0 1 0 0 0 2 0.00419 

16 KEL 0 1 0 0 1 0 0 0 2 0.00429 

17 GALNT9 0 1 0 0 1 0 0 0 2 0.00469 

18 FANCB 0 0 0 1 1 0 0 0 2 0.00474 

19 C6orf120 0 0 0 0 0 1 0 0 1 0.00501 

20 FLRT2 0 1 0 0 1 0 0 0 2 0.00530 
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Figure 23: Top Census genes in melanoma from COSMIC database and the type of mutation 

found in all patients 

 

4.2.3.2 Enhanced Pathway Analysis 

 In order to examine whether the genes found to carry somatic mutations were 

related to specific biological mechanisms, we performed enrichment analysis on the union 

of non-synonymous mutations for all the patients, particularly missense, nonsense, 

frameshifting, splice site and non-stop mutations. Excluding the genes that were solely 

mutated in patient 12 (1303 genes) to avoid patient-specific bias, as well patient 10, who 

harboured very few mutated genes, a starting list of 1587 genes was obtained. Aiming to 

focus on genes putatively contributing to melanoma pathophysiology and filter out those 

carrying non-significant mutations, we applied two filtering steps at the 1587 gene list. 

Firstly, taking into account the predicted impact of each mutation on protein functionality, 

as predicted by PolyPhen2 tool (Adzhubei et al., 2010), which excluded all genes carrying 

neutral mutations. Moreover, we explored whether these genes are expressed in 

melanoma through TCGA’s cBioPortal datasets and retained for pathway analysis only 
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those appearing to have at least low expression in over 30% of the cases. These filtering 

steps reduced the list to 769 genes, which were used as input for enrichment analysis 

based on GO (Ashburner et al., 2000; The Gene Ontology Consortium, 2019) and 

Reactome (Fabregat et al., 2018). The BioInfoMiner tool was used and statistically 

significant enriched terms were revealed, which were grouped according to their 

biological relevance in Figure 24.  

 

 

Figure 24: Statistically significant biological processes with the corresponding number of genes 

found as mutated in at least one patient 

 

 A great number of genes fall in the categories of developmental processes (295 

genes) and cell adhesion (138 genes). Interestingly, 67 genes were related to neural 

system characteristic mechanisms, as indicated by GO terms such as ‘neuronal action 

potential’, ‘synapse organisation’, ‘regulation of myelination’ and ‘neuron projection 

guidance’, grouped under the label ‘synapse formation and neuronal signal transduction’. 

With the scope of distinguishing putatively causative genes, focus was given on those 

with implication in diverse cross-talking biological processes, reflecting genes with a 

central role in cellular physiology. For this reason, we performed topological analysis 
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using BioInfoMiner, which exploits semantic information to detect and rank genes based 

on their centrality, as described in different databases (e.g., GO and Reactome). This 

analysis resulted in a short list of genes (Figure 25) with possible causal implications in 

melanoma. Interestingly, in the proposed list there are several genes with a well-

established connection to cancer, like BRAF, ATM and TP53, but also others like PDPK1 

and DMD which could represent intriguing, yet poorly explored targets for further 

evaluation and possibly cancer treatment. Particularly, PDPK1 (3-phosphoinositide 

dependent kinase 1) was found altered in three patients, two of them carrying a gene 

amplification and one carrying a possibly damaging point mutation. Regarding DMD 

(Duchenne muscular dystrophy), it is a long gene of 2.5 Mb, located on chromosome X. 

In two patients, DMD was found containing protein-altering point mutations. It is worth 

mentioning that significant pathways are enriched by different genes in each patient, 

suggesting that the great diversity observed in genes affected by somatic mutations could 

reflect deregulation of common molecular mechanisms. Indeed, regarding processes with 

an established role in melanoma genesis and progression, such as the MAPK pathway 

and cell cycle (Appendix Tables A3), all patients are found to have at least one mutated 

gene annotated by GO to the aforementioned biological processes. The fact that all these 

genes are expressed and bear damaging mutations supports their potential implication in 

a malfunctioning mechanism contributing to melanoma.  
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Figure 25: 30 top-prioritised mutated genes, D-probably damaging and P-possibly damaging 

mutation, as predicted by PolyPhen2. 

 

4.2.4 Discussion 

 In this part, the characterisation of somatic mutations and germline variants in 

patients with primary melanomas from Greece by exome sequencing analysis was 

reported. This was the first analysis, to our knowledge, where primary CM tissue from a 

low-incidence, southern European country is analysed at the exome level. In particular, 

FFPE tissue paired samples were used, which represent a valuable source of knowledge 

that needs to be exploited, especially in the case of CM, where clinical practice renders 

fresh–frozen primary tissue availability limited. Towards this end, the present part 
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consisted of an investigation aiming to overcome technical difficulties and establish 

bioinformatics workflows for the exploitation of NGS approaches on FFPE clinical 

samples. Here, the consequences of the fixation procedure were minimised, ensuring the 

validity of the presented results, at the cost of the inevitable loss in sensitivity. A multi-

level analysis was performed, exploiting vastly established databases and state-of-the-

art tools to incorporate information aiming at a better understanding of the underlying 

mechanisms involved with melanoma. A short list of candidate genes with probable 

causative role in CM was obtained, which contains both well-known melanoma-

associated genes, but also potential new players, such as PDPK1 and DMD. PDPK1 was 

originally characterised as a serine-threonine kinase, phosphorylating and activating AKT 

(Alessi et al., 1997). PDPK1 is a key element at the crossroad of signal transduction 

pathways such as Ras/MAPK pathway and Myc-cascade, in addition to PI3K/AKT 

(Gagliardi et al., 2017). Furthermore, PDPK1 is frequently amplified at the gene level or 

over-expressed in several tumour types (Choucair et al., 2012; Maurer et al., 2009), 

including melanoma (Scortegagna et al., 2014). As far as DMD is concerned, it was 

recently reported as a tumour suppressor in cancers, featuring myogenic programmes 

(Wang, Marino-Enriquez, et al., 2014). In melanoma cell lines, the DMD gene was found 

bearing deletions while the protein was frequently absent or down-regulated (Körner et 

al., 2007). In addition, a recent study based on genomic data from public repositories of 

diverse cancer types, showed that DMD expression was decreased in the majority of the 

analysed tumours. Specifically in the case of melanoma, DMD was down-regulated as 

compared to benign nevi that already showed a reduced expression compared to normal 

skin (Luce et al., 2017). 

 

4.3 Data integration & Classification 

 Melanoma diagnosis can be challenging and relies solely on the experience of the 

dermatologist or physician (“Melanoma Research Foundation”, n.d.). One major issue of 

dermoscopy is the inability to detect early melanoma or cases that lack optical features 

(Goodson and Grossman, 2009). To deal with that issue one can turn to molecular 
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techniques. The onset and constant advancement of molecular technologies has enabled 

the parallel, high-throughput process of millions of sequence reads, thus ushering a new 

era with numerous, novel applications in basic, applied and clinical research. Molecular 

technologies allow the extrapolation of profiling patterns of genomic sequences (whole 

genome, whole exome (WES), or targeted sequencing of a gene panel) with classification 

ability for the different phenotypic classes of a disease/pathology. On these grounds, the 

aim was to integrate the different levels of molecular and imaging data, so as to produce 

a robust diagnostic signature for the classification of melanoma.  

 Coalescing diverse levels of information improves the total knowledge on a 

problem and promotes its resolution (Lanckriet et al., 2004). Based on this, diagnosis 

should be based on the correct integration of molecular, histological and clinical features, 

so as to become more accurate. Previous analyses were able to achieve better 

performance on given tasks, through combination of heterogeneous data (Lanckriet et 

al., 2004; Ye et al., 2008), or by building multi-marker models for accurate classification 

of melanoma (Kashani-Sabet et al., 2009; Mann et al., 2013; Rothberg et al., 2009). Better 

understanding of the etiological aspects and mechanisms of cancer development are vital 

to improve survival rate and prevention. Given this perspective, recent studies have 

shown an improved performance, when combining transcriptomics with gene regulatory 

data in ovarian cancer (Xu et al., 2016). Efficient predictive biomarkers from multiple 

approaches or different levels of analyses support optimal characterisation of the tumour 

under investigation. Gene signature strategies are tested extensively for their potential to 

transform clinical practice, i.e. to support immunotherapy-based, management of cancer-

patients (Gibney et al., 2016). 

 Previous work by our group (Moutselos et al., 2014; Valavanis et al., 2015) has 

shown that data integration offers key information on melanoma manifestation. Here, the 

intension was to extend this knowledge to mutational data. Ultimate aim is to produce a 

robust diagnostic gene signature that allows the classification of the patients and at the 

same time aid in the context of personalised medicine. 
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4.3.1 Molecular data classification system 

 The molecular data derived from exome sequencing of melanoma tissue and 

matched healthy control, from the previously described analysis. At this point, we sought 

to build a classifier exploiting the mutational data that were produced. Since the number 

of patients analysed in this work was limited, samples were added from TCGA database 

through cBioPortal (Cerami et al., 2012; Gao et al., 2013). As healthy state (non-

melanoma) mutational data from dysplastic nevi that were acquired through similar 

experimental procedure (Melamed et al., 2017) were used. On the molecular level, this 

state holds a considerably lower mutational load compared to melanoma, and few 

mutated genes in total, 232 genes, as opposed to the 1587 genes, found in this study 

(see chapter 4.2.3). For feature selection, we reduced the list of mutated genes, to a total 

of 51 genes, by distinguishing the ‘driver’ mutations, i.e. mutations with high impact on 

the product, using PolyPhen2 (Adzhubei et al., 2010), and then prioritising them according 

to their centrality (genes taking part in numerous distinct mechanisms are ranked higher), 

using BioInfoMiner (Koutsandreas et al., 2016). Table 14 presents the 51 genes used for 

the molecular signature.  

 

Table 14: Genes used as features for the molecular classifier 

PTK2B KDR MYOC BRAF FZD4 

RELN ROCK1 FLT1 SCN5A NR1H4 

CTNNB1 DMD DCN NOTCH1 SEMA3C 

COL3A1 PKP2 NPTN CDH1 ROBO2 

TEK CSF1R PPP1R9A CACNA1C NRXN1 

LRRK2 PDGFD TRPV4 ANK3 GRIN2A 

ANGPT1 ERBB4 EPHB2 LAMA2 PTPRO 

KALRN ROBO1 POSTN ITGB4 CFTR 

DOCK1 PDPK1 FLRT2 BVES DCHS1 

EPHA2 EPHA7 SEMA3E CELSR1 KMT2A 

CARMIL1  

 

 The samples (samples of dysplastic nevi and melanomas) were separated under 

two labels, dysplastic nevus (represented by DNS) and melanoma (represented by MEL) 
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and each sample is attributed a 51-dimensional binary vector showing whether the 

corresponding gene contains a mutation or not. To deal with unbalanced classes, the 

SMOTE (Chawla et al., 2002) algorithm was utilised to generate synthetic data for the 

DNS label. This data assortment is presented in Figure 26. Due to the binary type of the 

classification problem, the Random Forests (RF) algorithm (Chen and Ishwaran, 2012) 

was selected, as an appropriate and effective methodology. Additional classification 

algorithms were examined, generally showing equivalent outcome, due to the evident 

discrepancy of the two classes (see Figure 27). RF implementations are often more 

parametrizable than similar tree-based algorithms (like Decision Trees) and this permitted 

an exhaustive grid search for fine-tuning of classification parameters. Also, RF is a 

recursive algorithm, an asset that prevents being trapped in a subset of solutions and so, 

all contingencies are included, with the appropriate statistical weight.  

 

 

Figure 26:  Data assortment for classification   
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The best performance was reported for the RF classifier with the following parameters: 

• 122 samples  

• 51 predictors 

• 2 classes: 'DNS', 'MEL'  

• No pre-processing 

• Resampling: Cross-Validated (10 fold, repeated 3 times)  

• mtry = 26 

 As a criterion for the cross validation performance, the receiver operating 

characteristic (ROC) curve was used, which controls the sensitivity with respect to the 

specificity (Hajian-Tilaki, 2013). The area under the curve (AUC) of the plot gives an 

unbiased estimation of the classifier's performance at each round. The classifier 

performed very well, reaching a mean accuracy of 0.93. This result justifies the utilisation 

of this classifier as a model for class prediction (melanoma vs. dysplastic nevus) of 

unknown samples of mutation data.  
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Figure 27:  Results for the Molecular Classifier. ROC curve for rf-Random Forests, glmnet-

Guassian linear model, gbm-Stochastic Gradient Boosting, c50-Decision Trees C5.0, lda-Linear 

Discriminant Analysis, svm-Support Vector Machines, knn-k Nearest Neighbours, glm- Logistic 

Regression    

 

4.3.2 Imaging data classification system 

 The imaging data derived from our group’s previous study (Moutselos et al., 2014), 

analysing 1041 (69 melanomas / 972 dysplastic nevi) images. To deal with unbalanced 

classes, as before, the SMOTE algorithm was utilised, this time to generate synthetic data 

for the MEL label. The samples (samples of dysplastic nevi and melanomas) were 

separated under two labels, dysplastic nevus (represented by DNS) and melanoma 
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(represented by MEL), and each sample is attributed a 31-dimensional vector showing 

the measurements for each feature, since one feature was removed due to having zero 

variance in both classes. Table 15 presents the metrics used as features for the imaging 

classification system. Only 122 samples (balanced classes) were chosen, randomly, for 

analysis to make sure this set can be used for integration in a following step. 

 

Table 15: Metrics used as features for the imaging classifier 

mean-R DISSIMILARITY L-mean 

std-R ASM L-std 

mean-G GMSM-mean A-mean 

std-G GLSM-std A-std 

mean-B I-mean B-mean 

std-B I-std B-std 

PERIMETER S-mean Grad-mean 

AREA S-std Grad-std 

ECCENTRICITY H-mean Grad-max 

COMPLEXITY H-std Distance-std 

Asymmetry  Grad-min (zero variance) 

 

The best performance was reported for the RF classifier with the following parameters: 

• 122 samples  

• 31 predictors 

• 2 classes: 'DNS', 'MEL'  

• No pre-processing 

• Resampling: Cross-Validated (10 fold, repeated 3 times)  

• mtry = 2 
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Figure 28: Results for the Imaging Classifier. ROC, Sensitivity and Specificity for rf-Random 

Forests, glmnet-Guassian linear model, gbm-Stochastic Gradient Boosting, c50-Decision Trees 

C5.0, svm-Support Vector Machines, logistic- Logistic Regression, knn-k Nearest Neighbours    

 

 In order to evaluate the performance of the imaging classifiers the ROC analysis 

was used (presented in Figure 28). The RF classifier performed very well, reaching a 

mean accuracy of 0.898. This result justifies the utilisation of this classifier as a model for 

class prediction (melanoma vs. dysplastic nevus) of unknown samples of imaging data. 

 

4.3.3 Integrated data classification system 

 In order to validate the proof of concept of the proposed design we created a fused 

dataset containing molecular and clinical data for the melanoma case. More specifically, 

a synthetic dataset was constructed to incorporate images from different nevi (dysplastic 

or melanomas) together with molecular measurements which are encountered in the 

same stages, using the imaging and WES data that were available, described previously. 

The nature of the molecular features allows for this ‘random’ integration, due to the small 

number of mutations, especially in the dysplastic nevus class.  In total, tests were 

performed on three (3) different datasets i) the molecular dataset of 51 features, ii) the 

imaging dataset of 31 features and iii) the integrated dataset of 51+31 features. The 

parameters used for each RF classifier are similar (section 4.3.1), apart from the number 
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of predictors used, that equals the number of features (=82). Performance metrics 

obtained by classification modules (DNS vs. MEL) support that integrated features 

perform best, regarding the discrimination between malignant and benign sample 

classes, and constitute to an improved classifier, compared to the molecular and imaging 

classifiers. From the statistical perspective, the use of synthetic data is more conservative 

when the number of replicates is large. Essentially, it is the closest and more plausible 

approach to be adopted for simulation purposes. The corresponding results in the form 

of ROC curves are illustrated in Figure 29.   

 

Figure 29:  ROC curves for the 3 Random Forests classifiers, immo-integrated features (82) 

classifier, mo-molecular features (51) classifier, im-imaging features (31) classifier. The 

integrated feature classifier performs best, with a mean AUC of 0.9432 
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 The entropy-based information gain (IG) and the information gain ratio (GR) were 

measured for the set of features from the integrated dataset. Four extra datasets were 

created containing the top 10 and top 20 features per measurement, to evaluate the 

classification accuracy. Table 16 contains the top 20 features selected using information 

gain and information gain ratio. It is worth mentioning that both lists contain mostly gene 

features, deriving from the molecular dataset. 

 

Table 16: Top 20 features selected using information gain and information gain ratio, gene 

features in bold 

Information Gain 

L-mean 

mean-R 

ANK3 

I-mean 

RELN 

GRIN2A 

mean-G 

SCN5A 

FLT1 

H-std 

COL3A1 

KALRN 

std-B 

CFTR 

ROBO2 

LAMA2 

NRXN1 

mean-B 

DMD 

EPHA7 

Gain Ratio 

ANK3 

RELN 

mean-R 

GRIN2A 

SCN5A 

FLT1 

COL3A1 

KALRN 

CFTR 

ROBO2 

LAMA2 

NRXN1 

DMD 

EPHA7 

CELSR1 

ANGPT1 

CACNA1C 

I-mean 

PTPRO 

L-mean 
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 Performance metrics obtained by classification modules (DNS vs. MEL) support 

that all integrated feature datasets perform equally good (Figure 30). 

 

Figure 30: Results for the Integrated RF Classifiers, ROC, Sensitivity and Specificity for immo-82 

features, gr10-gain ratio top-10, gr20-gain ratio top-20, ig10-information gain top-10 and ig20- 

information gain top-20 features 

 

4.3.4 Discussion 

 Performance metrics obtained by classification modules (DNS vs. MEL) support 

that integrated features perform best, regarding the discrimination between malignant and 

benign sample classes, and constitute to an improved classifier, compared to the 

molecular and imaging classifiers. Results are similar and equally plausible when 

selecting the top features for classification, by statistical means. The performance metrics 

obtained for the classifiers support the basic notion of this study. 

 

  



123 
 

Chapter 5.  Conclusions 

General Discussion 

 Since the start of this thesis there have been exhilarating advances in the field of 

cancer research. New technologies have allowed investigators to screen cancer in new 

ways, explore tumours at higher resolution and in greater numbers than ever before and 

unearth novel aspects of the molecular characteristics of cancer development, leading to 

an explosion of new data sources and a corresponding need for new methodologies to 

analyse such big data. Computer science has met the challenges presented by this 

oncoming overflow of data, and upon continuing to do so in the next decade we will learn 

more about cancer biology than was dreamed possible at the time the field began. 

 Marked advances in dealing with melanoma have been achieved over the last 

years, due to the diligent efforts of researchers to shed light on the biological mechanisms 

involved in melanoma manifestation, as well as the classification methodologies allowing 

skin image recognition with high accuracy. Regarding this thesis, as stated in the very 

beginning, the analysis performed is multi-disciplinary, consequently having multi-level 

outcomes.  

 One of the main questions was whether integrated diverse molecular data can 

advance our knowledge concerning melanoma. Exportation of the broader molecular 

network implicated in cutaneous melanoma was established through integration of 

different molecular levels. Additional mechanisms previously concealed by the statistical 

cut-offs were revealed, thus enhancing our general understanding of the phenomenon.  

 Another main goal of this project was to infer the composite biomarkers with robust 

discriminative ability between melanoma and healthy nevus. My analysis started from raw 

whole exome sequencing data for the identification of variance and somatic mutations 

concerning the disease under investigation. For the first time the characterisation of 

somatic mutations and germline variants in patients with primary melanomas from Greece 

by exome sequencing analysis was reported. The output was a list of genes – potential 
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biomarkers – that are affected and play a crucial role in the manifestation of melanoma. 

This list signifies the molecular component, and after integration with the imaging 

component, together they represent the composite biomarkers under investigation. 

Further characterisation of the genetic risk factors in different patient populations could 

help develop more efficient prevention strategies and improve tactics for early diagnosis.  

 The ultimate purpose of this research was to find the best combination of features 

in order to create an automated integrative processing system for the detection of 

cutaneous melanoma. Success of classification depends mainly on feature selection. 

Based on this, the total list of features (82) achieves high accuracy, improved only by the 

top features taken through gain ratio. Still, cutting the number of features does not 

necessarily improve this system, since the performance was equal to begin with, plus 

extra information is considered for the therapeutic approach, when required. The total list 

offers a solution that not only is very successful in the discrimination of the classes but 

can actually assist with treatment and personalised medicine at the next stage, in a cost-

effective manner. The most important aspect is that the integration of the mutational with 

the imaging data improved the classification system, as was hypothesised. Multiple 

algorithms were tested, with Random Forests achieving the highest accuracy for the 

integrated dataset.  

 The proposed design offers a tiered analytical framework as an expansion of 

current EHR systems, which can integrate high-volume molecular omics data, imaging 

data, as well as relevant clinical observations. It enables a “molecular-enabled 

computational approach” that can be incorporated in clinical practice, revolutionising 

therapeutic strategies, not only for melanoma, but analogous complex diseases. The 

overall idea advances the importance of building a sturdy alliance between researchers 

and clinicians in the context of translational cancer research. An imperative aid towards 

this coalition is the constant decrease of NGS-based testing cost, recently shown to be 

lower than that of conventional methods (de Unamuno Bustos et al., 2017).  

 Elucidating the mechanisms underlying melanoma biology and progression aids 

the development of targeted and immune-related therapeutic approaches. A potential 

scenario for the application of this analysis would be, upon request from the physician, 
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targeted sequencing of the specific highlighted genes, screening for mutations, 

integration with the dermoscopic features, successful classification, and in case of 

melanoma diagnosis, patient-specific therapy incorporating the mutational pattern. 

 

Challenges 

 One important challenge during this analysis was using FFPE samples for NGS 

analyses. FFPE samples represent a valuable source of knowledge that needs to be 

exploited, especially in the case of cutaneous melanoma, where clinical practice renders 

fresh–frozen primary tissue availability limited. Towards this end, the presented analysis 

consisted of an investigation aiming to overcome technical difficulties and establish 

bioinformatics workflows for the exploitation of NGS approaches on FFPE clinical 

samples. The consequences of the fixation procedure were minimised, ensuring the 

validity of the presented results, at the cost of losing few “true” mutations.  

 Another restraint was the limited number of patients analysed. To deal with this a 

multi-level analysis was performed, exploiting vastly established databases and state-of-

the-art tools to incorporate information aiming at a better understanding of the underlying 

mechanisms involved with melanoma and finally, building a synthetic dataset for 

classification. The methodology used combined functional impact analysis with pathway 

enrichment, to deal with the limited dataset, in order to distinguish important genes and 

possible drivers, and based on these, inclusion of additional samples from public 

databases. Still on the same restraint, the datasets also suffered from unbalanced 

abundance of benign vs malignant samples, which was dealt with using specific 

algorithms.  

 

Algorithm complexity & Contribution 

 The offered analysis presented a workflow bridging together miscellaneous tools 

and methodologies, overcoming technical and experimental hitches, like the limited 
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sample set, to establish a strong foundation supporting the initial hypotheses. An 

important facet of the presented scheme is that it can be utilised for varied analyses, 

exploring different types of cancer with analogous characteristics. 

 As has been stated, the complexity of NGS data is high, due to the high volume of 

information contained in each sample and several distinct parameters needed specific 

adjustments, so as to optimise the performance and the quality of the results. Aside from 

that, most of the analysis carried out required specialised hardware and processing 

power. It is worth noting that exome analysis workflow for a pair of samples (tumour and 

normal samples from one patient) needed approximately 35 hours running time, starting 

from ~20GB and summarising the results in ~10MB. 

 The work in this thesis required advanced knowledge of bioinformatics 

programming and machine learning, as well as solid understanding of the biological 

background. Nevertheless, the multi-level outcomes can be used directly, lists of 

molecular/ composite biomarkers for example.   

 

Future work 

 The future goal is to expand this analysis to a greater number of patients, aiming 

to study any possible associations between the various levels of data in melanoma, i.e. 

germline and somatic alterations or phenotype/ imaging features. In order to prove the 

diagnostic value of the presented integration scheme and further validate the design of 

the implemented system, more experiments need to be carried out, incorporating “real” 

paired data. Assimilation of sufficient numbers of actual paired molecular and imaging 

data can offer new insights and paths for exploration.  

 Additionally, integration of supplementary layers of data in the presented 

framework, like RNA sequencing data, cannot only improve our understanding of disease 

manifestation, but potentially improve the classification scheme and overall accuracy, by 

introducing new biomarkers with better discrimination ability.  
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 An important aspect is that the offered analysis scheme can be utilised for diverse 

classification problems. This means that the same analysis can be expanded to specific 

CM subtype classification, rather than melanoma or healthy distinction; like discrimination 

between superficial spreading melanoma, nodular melanoma, lentigo maligna melanoma, 

desmoplastic melanoma or amelanotic melanoma, given of course that enough training 

data becomes available.  

 Furthermore, patterns or clusters of differential morphology, presented on 

dermoscopy images, can be linked to specific molecular traits – germline or somatic 

alterations – perhaps allowing the derivation of personalised treatment, through a non-

invasive aspect, directly from phenotypic features.  

 

Closing remarks 

 The presented multi-level analysis offers a flexible and distributed workflow, which 

integrates heterogeneous, multidimensional data for the multi-angled portrayal and 

classification of melanoma patients. It highlights a short list of candidate genes with a 

probable causative role in melanoma that were used as promising targets, allowing the 

successful classification of melanoma versus dysplastic nevus, achieving satisfactory 

accuracy.  

 The analysis framework may have required advanced knowledge of bioinformatics 

programming and machine learning, but the output can be used directly as a list. This list 

includes candidate genes with probable causative role in CM, containing both well-known 

melanoma-associated genes, but also potential new players.  

 Melanoma is one of the most lethal types of cancer. Additional understanding of 

the resistance to targeted therapies is crucial, and ought to remain a central aspect of 

cancer research. The intervention schemes based on combination approaches are the 

most promising therapeutic ways, in the context of personalised treatment, strengthening 

knowledge discovery and computer-aided intelligent diagnosis in the direction of precision 
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medicine. These schemes can be introduced as an extension to current EHR systems, 

aiding in clinical decisions. 

 Digital dermoscopy has been established in clinical practice for melanocytic lesion 

monitoring. The last few years NGS methodologies, mainly targeted approaches focusing 

on up to few hundreds of genes are being introduced for the characterization of several 

cancers. The presented analysis proposes a paradigm, which through the massive 

integration of multi-layered, heterogeneous data, depicting phenotypic aspects of the 

disease manifestation and the parallel processing of those streams, independently or 

together, will produce appropriate sets of composite biomarkers that ultimately assist and 

accelerate medical diagnosis and patient therapeutic management.   
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Appendix 

Tables A1: Patient and melanoma lesion 

characteristics (extended) 

Patient 
REGISTRY 
CODE AND 

DATE 
AGE SEX 

ETHNIC 
ORIGIN 

PRE-X 
NEVUS 

ASYMMETRY BORDER 
SIZE 

INCREASED 
DIAMETER 

3 8521/15 52 ♀ Caucasian yes yes Irregular yes >5mm 

5 4549/14 82 ♂ Caucasian yes no Regular yes >5mm 

8 5078/14 80 ♂ Caucasian no yes Irregular yes >5mm 

10 8152/14 77 ♀ Caucasian no yes Irregular yes >5mm 

11 12116/14 72 ♂ Caucasian yes yes Irregular yes >5mm 

12 10719/14 56 ♀ Caucasian no yes Irregular yes >5mm 

13 13762/15 69 ♀ Caucasian no yes Regular yes >5mm 

14 4764/11 73 ♀ Caucasian yes yes Irregular yes >5mm 

15 2395/12 38 ♂ Caucasian no no Regular yes >5mm 

 

Patient 
COLOR 

CHANGE 
SITE HISTOLOGY CLARK ULCERATION 

GROWTH 
PHASE 

VERTICAL 

GROWTH 
PHASE 
RADIAL 

HISTO-
GENESIS 

3 yes waste 
melanoma & 

dysplastic 
nevus 

IV no yes yes 
superficial 
spreading 
melanoma 

5 yes back 
melanoma & 

nevus 
IV yes yes no 

nodular 
melanoma 

8 yes head melanoma III no no invasive 
lentigo 

maligna 
melanoma 

10 yes 
subungual 

(foot) 
melanoma NA no no invasive 

acral 
melanoma 

11 yes back 
melanoma & 

dysplastic 
nevus 

I no no in situ 
superficial 
spreading 
melanoma 

12 yes head melanoma I no no in situ 
lentigo 

maligna 
melanoma 

13 no back melanoma V no yes no other 
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14 NA tibia 
melanoma & 
congenital 

nevus 
IV >3mm deep yes yes 

superficial 
spreading 
melanoma 

15 no abdomen 
melanoma 
metastatic 

NA no yes NA 
metastatic 
melanoma 

 

 

Patient BRESLOW MITOSES 
LYMPH 

REACTION 
CELL 
TYPE 

NEURO-
TROPISM 

MICRO-
SATELLITE 

VESSEL 
INVASION 

SATELLITES 
UV 

EXPOSURE 

3 1-2 >6 non brisk epithelioid no no no no intermittent 

5 >4 >6 non brisk epithelioid no no yes no NA 

8 <1 absent non brisk epithelioid no no no no intermittent 

10 <1 absent non brisk epithelioid no no no no NA 

11 NA NA non brisk mixed NA NA NA NA intermittent 

12 NA NA non brisk mixed NA NA NA NA intermittent 

13 >4 <6 non brisk spindle yes no no no intermittent 

14 2-4 >6 non brisk epithelioid no yes yes yes NA 

15 NA >6 brisk mixed no NA yes NA intermittent 
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Tables A2: Quality control for whole-exome 

sequencing of 18 samples 

Samples Raw reads Raw 
bases 
(Mb) 

Clean 
reads 

Clean 
bases 
(Mb) 

Clean 
data 
rate 
(%) 

Clean 
read1 
Q20 
(%) 

Clean 
read2 
Q20 
(%) 

Clean 
read1 
Q30 
(%) 

Clean 
read2 
Q30 
(%) 

GC 
content 

(%) 

10N 81,908,911 12284.46 77,892,314 10721.15 87.27 98.2 95.67 94.88 89.52 47.37 

10T 87,850,010 13177.5 82,700,876 11410.9 86.59 97.58 94.8 93.59 87.85 47.45 

11N 77,075,954 11560.04 73,717,912 10377.04 89.77 98.24 95.47 94.96 89.11 46.49 

11T 81,648,488 12245.6 78,585,616 11010.32 89.91 98.28 95.62 95.01 89.36 47.67 

12N 95,155,256 14271.78 89,782,142 12649.44 88.63 98.22 95.33 94.88 88.82 47.88 

12T 76,428,719 11462.92 73,704,040 10375.49 90.51 98.27 95.5 94.95 89.07 48.26 

13N 89,284,608 13391.6 85,843,526 12326.39 92.05 98.28 94.9 95.02 87.99 47.98 

13T 80,205,589 12029.76 77,464,946 11150.37 92.69 98.28 94.67 94.99 87.47 48.75 

14N 98,722,715 14808.4 92,258,398 12592.06 85.03 97.56 92.91 93.72 84.97 48.15 

14T 85,691,122 12853.64 81,740,696 11192.18 87.07 97.72 93.78 94.03 86.25 47.34 

15N 95,142,746 14271.41 91,161,502 12745.86 89.31 98.22 95.2 94.77 88.55 48.42 

15T 94,552,990 14182.95 90,329,490 12509.01 88.2 98.12 95 94.55 88.12 51.22 

3N 106,854,782 16028.22 99,723,498 14174.59 88.44 97.63 93.85 93.74 85.96 46.59 

3T 92,450,892 13867.63 85,702,424 12163.33 87.71 97.66 93.83 93.73 85.9 47.92 

5N 113,855,594 17078.27 104,767,924 14210.26 83.21 96.71 92.25 92.24 83.94 46.84 

5T 87,318,334 13097.73 82,535,914 10854.94 82.88 97.53 94.52 93.67 87.53 49.16 

8N 265,848,869 39876.8 240,421,486 32397.09 81.24 96.09 90.47 91.27 81.17 46.9 

8T 79,430,894 11914.63 74,667,412 10308.63 86.52 97.63 94.77 93.69 87.76 47.39 

Average 99,412,581 14911.3 93,500,006 12953.84 87.61 97.79 94.36 94.09 87.19 47.88 

The table includes the numbers for raw reads/ bases, clean reads/ bases, the fraction of clean 

reads in raw reads, the fraction of sequencing bases with quality score >= 20 and 30 (Q20/Q30) 

in clean read1 and 2, and GC content 
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ID 
Initial 

bases on 
target 

Total 
effective 

reads 

Total 
effective 

bases 
(Mb) 

Effective 
sequences 
on target 

(Mb) 

Capture 
specificity 

(%) 

Mapping 
rate (%) 

Duplicate 
rate (%) 

Mismatch 
rate in 
target 
region 

(%) 

target 
>= 
10x 
(%) 

target 
>= 
20x 
(%) 

10N 50,390,601 67,869,977 8,947.49 5,237.52 58.54 99.98 14.73 0.38 98.78 96.44 

10T 50,390,601 74,315,959 9,723.28 5,620.69 57.81 99.79 12.31 0.43 98.84 96.75 

11N 50,390,601 65,733,769 9,091.66 5,113.14 56.24 99.97 11.5 0.39 98.24 95.03 

11T 50,390,601 70,620,657 9,709.05 5,613.45 57.82 99.98 10.91 0.38 98.89 96.74 

12N 50,390,601 77,499,635 10,713.00 6,214.33 58.01 99.97 14.37 0.4 99.07 97.53 

12T 50,390,601 66,311,938 9,123.91 5,280.29 57.87 99.99 11.03 0.39 98.87 96.62 

13N 50,390,601 76,783,384 10,881.64 5,917.48 54.38 99.71 10.76 0.41 98.94 97 

13T 50,390,601 70,205,023 9,911.95 5,637.03 56.87 99.99 10.17 0.42 98.8 96.16 

14N 50,390,601 76,729,921 9,481.72 5,164.47 54.47 99.69 20.54 0.5 99.12 97.38 

14T 50,390,601 72,748,635 9,141.41 5,152.08 56.36 99.89 14.91 0.45 98.86 96.3 

15N 50,390,601 80,768,568 10,976.32 6,468.64 58.93 99.94 12.58 0.4 99.36 97.96 

15T 50,390,601 80,533,837 10,521.19 6,084.10 57.83 99.97 13.57 0.42 99.14 96.66 

3N 50,390,601 87,124,794 12,052.24 6,541.83 54.28 99.97 13.71 0.46 98.95 97.37 

3T 50,390,601 76,161,797 10,498.24 5,993.05 57.09 99.98 12.35 0.47 99.11 97.4 

5N 50,390,601 82,886,127 9,743.16 4,733.55 48.58 99.54 25.38 0.54 98.9 96.37 

5T 50,390,601 71,306,354 8,755.80 5,079.65 58.01 99.94 16.44 0.44 98.89 95.86 

8N 50,390,601 162,496,497 14,782.48 3,637.26 24.61 99.13 40.89 0.87 98.78 94.41 

8T 50,390,601 66,920,301 8,843.59 5,151.36 58.25 99.99 12.35 0.44 98.93 96.48 

Average 50,390,601 79,278,731 10,161.01 5,480.00 54.78 99.86 15.47 0.46 98.92 96.58 

The table includes the length of target regions, the number of effective reads (mapped, 

nonduplicate reads), the number of bases in total effective reads, the number of effective bases 

located on target regions, the fraction of effective bases on target regions (capture specificity), 

the mapping rate, the duplicate rate, the percentage of mismatch bases in effective bases on 

targets, and the percentage of targeted bases that were covered by at least ten/twenty reads 
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ID 
read1 
Q20 
(%) 

read2 
Q20 
(%) 

read1 
Q30 
(%) 

read2 
Q30 
(%) 

GC 
(%) 

Mapping 
rate (%) 

Duplicate 
rate (%) 

Capture 
speci-
ficity 
(%) 

Mismatch 
rate in 
target 
region 

(%) 

Average 
sequencing 

depth on 
target 

Fraction 
of 

target 
covered 

>= 1x 
(%) 

Fraction 
of 

target 
covered 

>= 4x 
(%) 

10N 98.2 95.67 94.88 89.52 47.37 99.98 14.73 58.54 0.38 103.94 99.79 99.56 

10T 97.58 94.8 93.59 87.85 47.45 99.79 12.31 57.81 0.43 111.54 99.81 99.58 

11N 98.24 95.47 94.96 89.11 46.49 99.97 11.5 56.24 0.39 101.47 99.81 99.44 

11T 98.28 95.62 95.01 89.36 47.67 99.98 10.91 57.82 0.38 111.4 99.89 99.65 

12N 98.22 95.33 94.88 88.82 47.88 99.97 14.37 58.01 0.4 123.32 99.88 99.66 

12T 98.27 95.5 94.95 89.07 48.26 99.99 11.03 57.87 0.39 104.79 99.8 99.6 

13N 98.28 94.9 95.02 87.99 47.98 99.71 10.76 54.38 0.41 117.43 99.81 99.6 

13T 98.28 94.67 94.99 87.47 48.75 99.99 10.17 56.87 0.42 111.87 99.8 99.58 

14N 97.56 92.91 93.72 84.97 48.15 99.69 20.54 54.47 0.5 102.49 99.83 99.67 

14T 97.72 93.78 94.03 86.25 47.34 99.89 14.91 56.36 0.45 102.24 99.82 99.63 

15N 98.22 95.2 94.77 88.55 48.42 99.94 12.58 58.93 0.4 128.37 99.93 99.81 

15T 98.12 95 94.55 88.12 51.22 99.97 13.57 57.83 0.42 120.74 99.92 99.78 

3N 97.63 93.85 93.74 85.96 46.59 99.97 13.71 54.28 0.46 129.82 99.82 99.59 

3T 97.66 93.83 93.73 85.9 47.92 99.98 12.35 57.09 0.47 118.93 99.83 99.65 

5N 96.71 92.25 92.24 83.94 46.84 99.54 25.38 48.58 0.54 93.94 99.9 99.68 

5T 97.53 94.52 93.67 87.53 49.16 99.94 16.44 58.01 0.44 100.81 99.89 99.71 

8N 96.09 90.47 91.27 81.17 46.9 99.13 40.89 24.61 0.87 72.18 99.94 99.76 

8T 97.63 94.77 93.69 87.76 47.39 99.99 12.35 58.25 0.44 102.23 99.91 99.71 

The table includes the percentage of sequencing bases with quality score >= 20 and 30 

(Q20/Q30) in clean read1 and 2, GC content, the percentage of mapped reads in total clean 

reads, the percentage of duplicate reads, the percentage of mismatch bases in effective bases 

on targets, the average sequencing coverage on target regions (calculated as Effective bases on 

targets divided by Initial bases on targets), and the percentage of targeted bases that were 

covered by at least one/four reads 
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Table A3: Binary tables of patients carrying mutations 

for MAPK pathway and cell cycle 

MAPK pathway 
 

patient3 patient5 patient8 patient10 patient11 patient12 patient13 patient14 patient15 

ANGPT1 0 0 1 0 0 0 0 0 0 

BRAF 1 1 0 0 0 0 0 1 0 

CUL1 1 0 0 0 0 0 0 0 0 

CUL3 0 0 0 0 1 1 0 0 0 

GPS1 0 1 0 0 0 0 0 0 0 

GRIN2A 0 1 0 0 0 1 0 1 0 

GRIN2B 0 0 1 0 1 1 0 0 0 

ITGA2B 0 0 0 0 1 1 0 0 0 

JAK1 0 1 0 0 0 0 0 0 0 

KALRN 0 0 0 0 0 0 1 0 1 

KL 1 0 0 0 1 0 0 0 0 

KSR1 1 0 0 0 0 0 0 0 0 

KSR2 0 0 1 0 0 1 0 0 0 

LRRK2 0 0 1 0 0 0 0 0 0 

MAP2K5 0 0 0 0 0 0 0 0 1 

MAP3K1 0 0 1 0 0 0 0 0 0 

MAP3K5 1 0 0 0 0 0 0 0 0 

MAPK8IP3 0 0 0 0 0 0 0 1 0 

PTK2B 0 0 0 0 0 0 0 1 0 

RAG1 0 1 0 0 0 1 0 0 0 

RASA3 0 0 0 0 0 0 0 0 1 

SPTB 0 0 0 0 0 1 0 0 1 

SPTBN1 0 0 1 0 0 0 0 0 0 

TNRC6C 0 0 0 0 0 1 0 0 1 
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Cell Cycle 
 patient3 patient5 patient8 patient10 patient11 patient12 patient13 patient14 patient15 

ANAPC5 1 0 0 0 0 0 0 0 0 

ARF6 0 0 1 0 0 0 0 0 0 

ATM 0 0 0 0 1 0 0 0 0 

CDC45 0 0 0 0 1 0 0 0 0 

CDKN1B 0 0 0 0 0 0 1 0 0 

CUL1 1 0 0 0 0 0 0 0 0 

CUL3 0 0 0 0 1 1 0 0 0 

DNA2 0 0 0 0 1 0 0 0 0 

DYNC1H1 0 0 1 0 0 1 0 0 0 

FBXO5 1 0 0 0 0 0 0 0 0 

GPS1 0 1 0 0 0 0 0 0 0 

HIST1H2BN 0 0 0 0 0 0 1 0 0 

NASP 0 0 1 0 0 0 0 0 0 

NBN 0 0 0 0 0 0 0 1 0 

NCAPG2 0 0 0 0 1 1 0 0 0 

NEK6 0 0 0 0 0 0 1 0 0 

NEK9 0 0 0 0 1 0 0 0 0 

NUP153 0 1 0 0 0 0 0 0 0 

NUP155 0 1 0 0 0 0 0 0 0 

PARD3 0 0 1 0 0 0 0 0 0 

POLD3 0 0 0 0 1 0 0 0 0 

RB1CC1 0 0 0 0 0 0 0 1 1 

RFC3 0 0 0 0 0 0 0 0 1 

SKA1 0 0 0 0 0 0 1 0 0 

SPECC1L 0 0 1 0 0 0 0 0 0 

STAG2 0 0 0 0 1 0 0 0 0 

TDRD1 1 0 0 0 0 1 0 0 0 

TERT 0 1 0 0 0 0 0 0 0 

TET2 1 0 0 0 0 0 0 0 0 

TOPBP1 0 0 1 0 0 1 0 0 0 

TP53 0 1 0 0 0 0 1 0 0 

TPR 0 1 0 0 0 0 0 0 0 

TPX2 0 0 0 0 0 0 0 1 0 

TXLNG 0 0 0 0 0 0 0 1 0 

UTP14C 1 0 0 0 0 1 0 0 0 

 

 

 


