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Abstract

oss reserving is one of the most critical actuarial procedures in non-life insurance.

This procedure projects losses to their ultimate value and estimates the total reserves.
The actual amount of the insurers’ liability is initially unknown until all claims are finally
settled. Inappropriate actuarial methods may lead to misestimation of the total reserve,
which has a significant impact on the insurers’ solvency. Each reserving method gives a
different estimate for the required reserves which means that the appropriate method
will be selected according to the judgement of the actuary. In non-life insurance, the
insurer should have reserves, for his future obligations concerning with incurred but not
reported claims and incurred but not enough reported. In this thesis, we present new
methods for estimating the ultimate claims and the total reserves, according to insurance
regulations and the market’s needs. Using the data in a log-linear way, robust estimators
are applied to the chain ladder procedure. We incorporate robust random coefficients
regression models and robust cross-section models for the estimation of the total reserves.
These models provide a solution to the problem of outlier claims, which have an effect to
the pattern of outstanding claims and lead to misreserving. We present an application of
the recursive Kalman filter algorithm, in order to estimate the reserves of an insurance
company. A robustified version of this Kalman filter algorithm is also provided. Using
quantile regression, which offers a more thorough description of the distribution than the
classical least squares estimation, we construct methods for loss reserves estimation. In
addition, we propose a loss reserving method for a non-life insurance portfolio consisting
by several correlated run-off sub-portfolios that can be embedded within the quantile
regression model for longitudinal data. Our numerical results indicate that our proposed
loss reserving methods provide more reliable results than the existing ones.
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CHAPTER

Non Life Risks

n the modern world of globalization that we live in, it is more than obvious that risk
Iand uncertainty preponderate. The main object of non life insurance is the risk which
is the uncertain future damage. What separates the risk from any other losses or expenses
is the uncertainty of the claim amount and the time that will occur. In order to limit
this uncertainty, insurance companies have been formed, which for a specified amount of
money (the premium), transfer the possible loss between two contracting parties. When
working with many of independent risks, the error of estimating the average of these

losses is reduced and therefore it is easier to manage these policies.

The insurance company is exposed to a large number of risks and many of these
risks are general in the sense that they have an impact on a wide range of companies.
Some examples are operational risk, market risk, insurance risk, and others. When a
client buys an insurance contract, the risk is being assinged to the insurance company.
In this way, the insurer is obliged to cover the losses that will come from a particular
risk for a predetermined period of time. Obviously, the insurer does not offer his services
free of charge and the insured person has to pay the premium. Then, in the event of
damage, the insurer is obliged to pay the indemnity agreed in the insurance contract to
the insured. Depending on the insurance contract type, determining the amount of final
compensation is in many cases quite difficult and time-consuming. Factors such as the
delay between the settlement and the payment of a claim make the calculation of the

necessary reserves a difficult task.
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1.1 Insurance Risks

Life is inherently risky which means that people are not able to protect themselves against
every potential risk they face. It is obvious that people can not identify where they might
be vulnerable to any loss but they can protect themselves from the impact of damage
by insurance. In insurance terms, the risk is the possibility of something unexpected to
happen. This might involve the damage, loss or theft of valuable property, or it may
involve a bodily injury. Insurance companies assess the risk they want to take and decide
the premium if a policyholder suffered a loss for something covered by the policy. For
that reason, insurers calculate the probability of an accident at the insured property and
how much it would cost to repair or replace. For that reason, insurance companies need

to hold the necessary loss reserves.

One of the most fundamental aspects of the insurance company is to handle the loss
reserves that are required to cover future payments, which arose from the incurred claims.
Insurance companies make promises to policyholders to compensate them if they have a
loss or sustain damage that is caused by a peril (claim). They may face the possibility of
paying a claim, which is too large. A large claim can be due to scarce events, such as a
car accident in which the policyholder’s car will be totally broken down or a fire which
may burn completely a house and may threaten other houses in the nearby area. The
company must have sufficient reserves to cover such demands and for that reason, it is
necessary to predict the future values of those claims. The magnitude of the reserves that
an insurer should hold requires great consideration and is an exquisitely subtle point.
The case of holding too low reserves may lead the insurance company to bankruptcy,
while on the other hand, holding too high reserves may reduce the profitability and the

competitiveness of the company in the insurance industry.

The prediction of future claims is generally made according to the insurer’s portfolio
and the line of business (LoBs), which are generally classified by the insurance type,
e.g. Property Insurance, Auto Insurance, Health Insurance, etc. The most well-known
framework which demonstrates historical payments from a single LoB involves the
visualization of the payments in a triangular manner. Then, future claims are estimated
using the triangular way, which is the run-off triangle. This is comprised of monetary
amounts due to determinate claims and dates concerning with the event, settlement,
and report of each one. It should be mentioned that using the run-off triangles for the
estimation of the future claims, makes sense only when the loss development model is the

same for all accident years (Schmidt, 2006). Thus, using this assumption, the patterns



Chapter 1. Non Life Risks

of claims occurring in the past are supposed to be the same in the future (known as a

homogeneous development pattern). It does not make sense to forecast future claims if

this assumption is not valid. To ensure a development pattern like that, LoBs should be

separated in a way that each run-off triangle consists of homogeneous observed claims
(Wiendorfer, 2012).

The most popular of all known methods which are used to make estimations for

future obligations is primarily the Chain Ladder method and secondarily the method of

Bornhuetter-Ferguson (Bornhuetter and Ferguson, 1972). The purpose is, therefore, to

make estimations for the incurred but not reported claims (IBNR) and project ultimate

loss amounts. IBNR is referring to claims that have a time lag between the incident of

the accident ant the actual payment. There are many possible reasons for this:

e Firstly, the policyholders often delay to report the occurrence of a claim.

e Secondly, it may take time to settle the real cost of a claim. For example, in Motor

Insurance, the establishment of the effects of an incident and the payments may

last many years after the contract expiration.

Mainly, the IBNR claims are referred to as the difference between the ultimate (total)

claims (claims that have been closed or matured) and the incurred claims. The basic
parts of this (Schlemmer and Tarkowski, 2013) are:

Remark 1.1.

e Pure IBNyR which is referred to the reserves that have not yet been reported.

e [BNeR or development on known claims which is referred to the estimate of ultimate

losses for known claims which have not been enough reported.

Ultimate

Claim reserves

Payments

IBNyR
IBNeR
Case reserves

Payments

e Payments are often called paid losses.

IBNR

Case reserves

Payments

[ IBNR |

Incurred

e Some terms are not consistent within the actuarial world. For instance, actuaries
often understand under IBNR only the IBNyR claims.
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e The definitions depend on the accounting standard. For instance, under IFRS 4,
the cashflows should be discounted. Moreover, the begin of the coverage period is

used instead of the accident date.

Nevertheless, it is obvious how important it is to use better methods not only to make
estimations for the reserves but also to take measures in order to compute their variability.
Chain-ladder is the benchmark in the reserving industry because of its simplicity and
its global recognition. It is the duty of the actuary to estimate the accurate amount of

variation in the reserves.

1.2 Solvency Regulations

1.2.1 Solvency 1

The protection of the policyholders and the financial stableness of the insurance industry
is a crucial aspect and the regulatory authorities intervene to ensure it. Each insurance
and reinsurance company is obliged to hold an extra reserve, which is the solvency margin
and is used to meet the underwriting liabilities for the future.

Many books are written about the solvency of an insurance company. The books
of Pentikainen (1982) and Rantala (1982) provide much information and defined the
term solvency margin which shows how the assets differ from the liabilities of a company.
Starting with simple formulas, the researchers calculated the solvency risk margin based
on the risk to invest and the technical risk (the risk of not adopting the correct claim
rates). The simplicity of the calculations was the key to understand the term but the
complexity of the market imposed the use of more sophisticated methods and paved the
way for the estamblishment of Solvency I in Europe in 2002.

The plan behind Solvency I was the development of insurance services throughout
the Furopean single market. With the new legislation, Solvency I made improvements to
the previous regulations importing robust methods to regulate the solvency of insurance
companies. Nevertheless, Solvency I maintained its simplicity. The most important
accomplishment of Solvency I was that the protection to the policyholders had been
increased while the requirements should be met constantly (see ChandraShekhar et al.,
2007).

Solvency I was primarily focused on capital adequacy for insurers and was widely rec-
ognized as being calibrated at a really too low level of capital. Hence, most regulators had

informally expected companies to hold twice the amount of capital. Moreover, Solvency I
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lacked the inclusion of risk management within companies. Thus, the introduction of an

improved regulatory system was essential.

1.2.2 Solvency 11

Solvency II (SII) was the state-of-the-art European Union (EU) legislation risk-sensitive
system which came into effect on January 1% in 2016. It has been designed in order
to make policyholders feel more secure and at the same time to create stable financial
markets. If an insurance company satisfies the criteria of SII, it obtains the right to run
its business in every EU country. Solvency II is a giant progress in the regulation of EU
insurers and reinsurers because compared to Solvency I, it provides a more transparent
risk based on the regulatory framework. It has a more complex system than the one that
Solvency I used but covers a multitude of actuarial issues. The key characteristics of

Solvency 1I system are:

e It is a three-pillar system of supervision. This is analogous to the Basel II system,
which was started for banks and dealt with quantitative capital adequacy (Pillar I),
makes the requirements for the risk management and governance of the insurance
company (Pillar II) and finally reporting and publication which ensures more

transparency (Pillar IIT).

e Pillar I is a two level pillar which requires the computation of Minimum Capital
requirement (MCR) and the Solvency Capital Requirement (SCR). The SCR is
the minimum amount of capital that an insurance undertaking must have so as
to be authorized to conduct its business in the EU. If the capital is smaller than
its SCR then the insurance undertaking can lose its authorization of conducting
its business. Note that the SCR computation is based on a Value-at-Risk (VaR).
Based on the Directive 2009/138/EC and article 101.4, the condition for solvency

at time t =0 is
Basic Own Funds at time 0 = BoF,_q = Assets;—qg — Liabilities;—y > SCR.

Moreover, at the same Directive and article 101.3, the SCR is defined as an amount
which will be the Value at Risk (VaR) of the basic own funds of the insurer or the

reinsurer using a confidence level of 99.5% for one-year. Specifically,
SCR = E[BOthl] — VCLRgg_5%[BOFt:1],

where VaRgg 5%[X] = sup{z : P(X > z) > 99.5%}.



6 Chapter 1. Non Life Risks

e Solvency II allows the usage of internal models. Then, the SCR is computed by
stochastic simulation methods, taking into account the necessary risk categories.
Nevertheless, the aforementioned models have to be approved by the supervisory
authority. The standard approach of SII is the default method and can be used

without requirements.

Various approaches have been considered when analyzing a claim portfolio. Many
sophisticated stochastic models have been widely applied so as to to investigate the
structure and the uncertainty of the data (Taylor 2000, Klugman et al., 2008). Moreover,
generalized linear models which basically are based on loss distributions have been used
in order to evaluate the claims liability of a company using the past claims data (de
Jone and Heller, 2008). Nevertheless, the existence of uncertainty and non robustness of
the mean, makes this measure sensitive to outlier claims and their liability is different
from the central estimates. Practically, the quantiles approach leads to a provision in
which a specified probability, say 80%, makes the provision sufficient to cover the run-off
claims. Adding the necessary margin to the central estimate, the evaluation of the claims
liability provides and makes the provision sufficient to cover the future liabilities. It should
be mentioned that high claims are a concerning scenario for the insurance companies
because dangerous situations may be cause at the liquidity of the company. Finally, a
more volatile portfolio requires a higher risk margin in comparison with stable portfolios
(de Jong and Heller, 2008).

1.3 Premium and Reserve Risk

In non-life market, risk is separated into the reserve and premium risk. The reserve risk
deals with the liabilities for insurance policies. On the other hand, premium risk focuses
on the future dangers such as the provision for unearned premium. These two risks are
contained in the computation of risk margins especially using the Cost-of-Capital (CoC)
approach. According to Solvency II, the time period is one year and defined by the EU
Commission (2007) as all possible claims, as well as the adverse recalculation of assets
and liabilities for a period of 12 months which are to be estimated.

The target of the reserve risk is the capability of an insurance company to pay for
the claims up to their full run-off. If Ry is the estimation of the reserves when the year
begins and (), are the total payments during the run-off period, the reserve risk is the

analysis of the distribution function of Ry — C,,. This is a stochastic claims reserving
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process and it has been studied a lot over the last years by Mack (1993), England and
Verall (2002) and many others.
If the next year the payments are C, Ry is the reserve when the year begins and R;

the estimation of the reserve when the year ends, the technical result is calculated as
T = Ro — Rl - 01

and the 1 year reserve risk is measured using the distribution of T, and the data at time
Zero.

In non-life insurance where the portfolio is divided into lines of business (LoB), the
computation of the reserve risk is the combination of all LoB’s calculation which means
that we focus on the probability distribution of the run-off result 7" for all LOB’s (Wutrich
et al., 2008).

Moreover, the premium risk is related to the contracts to be written in a specific
period, and to the risk of the unexpired contracts (CEIOPS, 2007). If C, are first year
payments and R; is the claims reserve when the year ends, then the premium risk is the
risk in the cost (él + él) Moreover, if P denotes the earned premium for that period

and E are the corresponding expenses, the quantity (see Ohlsson and Lauzeningks, 2008)
T=P—-FE—(Ci+Ry)

measures the premium risk.

1.4 Review on Loss Reserving

In order to assess the reserve liability of the insurer, the source, the form, the quantity
as well as the quality of the data which are used in the methods, should be taken into
serious consideration (Carrato, 2016).

When analyzing data, an actuarial analyst should be informed about the origin of
the triangulated data. The specialist should be informed about the relationship with the
business process and what they represent (Source). The Form is an important feature
because the data should be captured correctly at any cell in the triangle. Moreover, the
reliability of the results is also very important and is connected with the quantity of the
data. Actuaries should decide how much information is needed to make the necessary
estimations so as to include basic characteristics such as the inflation over the period or
the market conditions etc. A data triangle should include information up to the ultimate

claims and then tail factors are not necessary to be applied at the procedures. Moreover,
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in this case, there is more uncertainty of the total results. Finally, the quality of the data
is clearly an important factor because data without good quality result to corruption

and inappropriate estimations.

1.4.1 Chain Ladder Notations

Run-off triangles are used in non-life insurance in order to estimate the future obligations
of an insurance company which can be the claim numbers or the claim amounts. They
are usually used in non-life insurance because it may take some period from when a
loss occurred up to be paid. It’s very critical for the insurer to know the amount of its
liabilities for the future claims or the possible reopenings so that it can calculate the
surplus to be made. Obviously, the insurer does not know the explicit amount of ultimate
claims for each period but it should be estimated with accuracy.

The run-off triangles (see Table 1.1) are divided into cells where each cell is the
corresponding payment arising from a speciffic accident year ¢ € {1,...,n} (rows) and a
development year j € {1,...,n} (columns). The accident year shows the losses appeared
during a specific period while the development year denotes the total years that passed
after the accident when a compensation has been made. It should be mentioned that
sometimes instead of the accident year, the underwriting year can be used which is the
year commencing with the effective date of a policy (Wutrich et al., 2008).

The calendar year k is the diagonal element of the triangle and is defined as k =i+ j,
with k € {1,...,n}. Then C,; is defined as the total incremental payments in accident
year ¢ with development j, where i+ 7 < n because the calendar ¢+ 7 > n has not occurred
yet. Some reserving methods use the cumulative payments S; ; where S; ,, = ;?:1 Cijs
with S;9 = C;o. We will denote with D,, the data up to time n (which is the upper

section of the run-off triangle)
Dy, ={Cij,i+j<n}={S;i+j<n}

For any accident year i, we need to find the best estimate for the ultimate amount of a

compensation, i.e.

Sp0 = lim B[S, ;| D] = E[Sic| Dnl,

Jj—00

and the deviation with the payment made at year n will be the appropriate reserve

R = S50 — Sin—it1-
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Finally, one important quantity is the total uncertainty, measured by the variance of the

total year amount of payment
Var(S; «|Dy) or Var(gffo’oi).
For our examples, we make the assumption that all claims do not evolve after n years.

After n years they are closed, which means that C; j~, = 0.

Table 1.1: Run-off Triangle

Development Year j

Accident Yeari Year 1 Year 2 --- Year n
Year 1 Cia e Cin
Year 2

CZ,]
Year n Ch

Remark 1.2. An important point that should be mentioned is the existence of non
positive amounts such as recoveries, internal errors or cancellation of outstanding claims
which is the result of overestimating them (see Marco et al., 2005). Moreover, large
settlement amounts should be investigated because such amounts may lead to unreliable

estimations.

Remark 1.3. Usually run-off triangles (paid or paid and outstanding triangles) contain
loss adjustment expenses (LAE). Each claim may have LAE and they can be found in
the run-off triangle. Expenses which are associated to the process of a compensation
are called allocated loss adjustment expenses (ALAE). They are mainly expenses for
external partners, accountants etc. On the other side, internal loss adjustment expenses
(income of claims handling commissions, production fees, etc.) are not contained have to

be computed separated because they are not included in the claims.
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1.4.2 Chain-Ladder Model

Chain Ladderis the most famous method used in loss reserving. There are different
derivations for this model. A distribution-free one is presented below (Mack, 1991). In the
actuarial bibliography the Chain Ladder model is usually explained as a non-parametric
model using an algorithm which can easily estimate the claims reserve. In the latest years,
actuaries expressed the CL algorithm as a stochastic model (Mack, 1991). Specifically, in
1993, Mack published an article based on the computation of the variances in the Chain
Ladder method.

Proposition 1.1 (Model Assumptions).
Supposing that the development factors fo, fi,..., fn_1 exist, then for all 0 < i <n and
1 < 5 <n the following equation holds:

E[S; 4180, -, Sij-1] = E[Si;]Sij-1] = fi—1- Sij-1 (1.1)
where the accident years are independent.
Remark 1.4.

e We make the independence assumption between the accident years. This assumption
is common in almost all of the loss reserving methods. This means that the

accounting year effects have been eliminated in the triangle data.

e A stronger assumption for the cumulative claims S; ¢, S;1,... is that they form

Markov chains. In addition, the quantity
j—1
Sig [T
k=1
forms a martingale for 5 > 0.

e The estimated quantities f; are usually called loss development factors (LDF’s),
CL factors or age-to-age factors and they are one of the most important points of

concern in the Chain-Ladder model.

Using the model assumptions (Proposition 1.1) and the upper trapezoid set of

observations D,, we take that

E[SZ,TL’DH] = E[SZ,H|S’L,117Z] = Si,nfi : fnfi v fn71~ (12)
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Using (1.2), a recursive algorithm can be constructed for estimating the total claims
given by the observations D,,. For known CL factors f;, the estimated outstanding claims

for accident year ¢ based on the upper triangle D,, are given by
E[Sz,n|Dn] - Si,n—i = Si,n—i[fn—i T fn—l - 1] (13)

It should be mentioned that CL factors are not known and it is necessary to estimate

them. A common way to estimate f;_; is the following:
. S het Sk
= :
2k=0 Skj-1

Remark 1.5. The result of (1.3) is well known as the Best Estimate (BE) reserves for

accident year 7.

(1.4)

Proposition 1.2.
The CL estimator for E[S;,|D,] is

ngjCL = E[Sij|Dn] = Sin-i+ fami++ fim1, (1.5)
fori+j >n.
Lemma 1.1. We define the subset
By, ={C;j, i+j<n, 0<j5<k}CD,.
Then, under the model assumptions (Proposition 1.1) the following results are taken:
1. f;|B; is unbiased, E[f;|B;] = f;.
2. f; is unbiased, E[f;] = f;.
3. fo,.... fu_1 are not correlated. Mathematically, E[fg, ce fn,l] = E[fo] e E[fn,l].
4. §;LCL|Si,n,i is unbiased, E[gﬁlcﬂ&yn,i] = E[S;n|Dy).
1L —~CL

5. Sin  is unbiased estimator, E[S;, | = E[Sin].

Proof. 1. First of all

; SoZd B[Skl Bj-1]  Srzd Sk fi-
E[fjfl‘ijl] _ ok On£83| J 1] _ Zk Onfj] 1 Jj=-1 fj*l;
Zk:o k,j—1 Zk:o Sk,jfl

which means that there is conditional unbiasedness.
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2. Similar as in the previous part.
3. For j < k, it holds
Blfy- fil = B| By - fulBa)| = B, BfB| = B[ 4] = 1, e
4. In order to prove the Chain-Ladder estimator we have
—~CL A .
E[Sz,n |Sz',n—i} — E[Si,n—i ' fn—i e fn—1|Si,n—i]
= E[Sin-i fai- fao - Elfa-1|Bu-1]|Sin-i]
_— CL
= fnfl : E[Si,nfl ‘Sz,nfl]
Iterating this procedure many times we take the results.

5. The same as the previous part.
[ |

Remark 1.6. According to the Lemma 1.1, the Chain Ladder factors f] are not correlated.
But, it should be taken into account that they are dependent. Moreover, unbiased

estimators for the BE of the reserves E[S; ,|D,] have been produced.

1.4.3 Mack Model

In order to estimate the mean square error (MSE) of the forecast for the CL estimator,
it is important to make extensions to the Chain-Ladder assumptions and include the

second moments.

Proposition 1.3 (Model Assumptions).

Suppose that accident years are independent. Then, C;; forms a Markov Chain with
LDF’s fo, fi,-.-, fa_1 and variance parameters o2, o%,...,02_, for all0 <i < n and
1 < j < n. Moreover (see Wuthrich and Merz, 2008),

E[SZ,]’S’L,]fl] = fjfl . Si,jfla
V[Sij1Sij-1] = 071 - Sij-1-

Supposing that the development factors fo, f1,..., fu_1 exist, then for all0 <i<n
and 1 < j < n the following holds

E[Sij1Si0s -+ -5 Sija]l = E[Sij|Sij-1] = fi—1 - Sij-1,

while the accident years i are independent.
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Similarly to the results of the previous section and Lemma (1.1), the following hold

e The estimators for f; and o7 | are

n—j—1
o 2i=0 Sij+1

f' - n—j— )
. 2
1 n—j—1 S ) R
A2 i,7+1
> _ S, - —fil .

° fj\Bj are (un)conditionally unbiased estimators for f;.
° fo, fh . ,fn_l are uncorrelated.

Using the individual development factors F; ;11 = % it is observed that f] are
V)

averages of F; ;1 with weights, which means that

. n—j—1 Sz )
fi= > T

n—j—1
i=0 Zk;:o Sk,j

Lemma 1.2. Under Assumptions 1.3, the following hold:

E?.]'i'l °

1. 63|B; is unbiased, E[65|B;] = o7.

2. &3 is unbiased, E[67] = o7,

Proof. 1. We have that

Sienr ) Sienr L\

( i fk) ( s fk)

Si,k—‘rl P 7 2

( 3 —fk> (fx = ) (fk = f&)
ik

Each quantity on the right of the above equation will be separately calculated.

E =F

B,

B,

—2F +E

By, By |.

2
Si k1 Si k41 I,
( Sik Ji g “ Sik * Sik K
Using the independence of the accident years we take
Si A Si p
E ML f | (e — f)|Br| = Cov | Z24L fil By,
Sik Sik
Si k Sik+1
= : Var|— B
i S S |
o

= k-1 :
Zzﬂ:o Si,k
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For the last term of the equation we have

2
Oy

E n—k—1 S .
i=0 i,k

(fk - fk)2 By| = Var[fk|Bk] —

Putting all these terms together the following hold:

2
Si k1 A of 1 1
E : — Bl = e e
( Sik Ji g 7k Sie S FLS
and hence
2

Bl62B) = — n_zk_ls. B2 5 || =02
k k n—k—1 ~ ik Sz‘,k k k k*

2. The proof is similar to the proof of 1.
|

Moreover, the second moment of the fk plays a significant role in order to derive an
estimator for E[f2|By]

2

A A o

E[f{|Bi] = Var[fy| B + [} = <—=tra— + It
Ei:o Si,k

—~CL
So, in order to compute the prediction MSE of S;,,  we obtain

. . 2
msepSi,n\Dn (Si,nCL) = E[<Si,nCL - Si,nCL> ‘Dn:|
- 2
— Var[Sin|D,] + (si,n“ _ Esimmn) .

while for all accident years we have

n

" _—cCL 1 2
msepy”, Si,nIDn(Z Sin )= E[(Z Sin = Sz',nCL> |Dn]
i=1 -

=1
1.4.4 Bootstrap Reserving

Almost each loss reserving method make point estimates for the total reserve but the
precision of these estimates is very important. The bootstrap methodology is a useful
method which enables us to derive this precision for the point estimates. In non life
reserving procedures, bootstrap techniques not only make estimations for the adequate

reserve but also helps us to assess the variability of the predictions.
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The bootstrap technique (Michael and Robert, 2011) is a nonparametric method
which uses resampling methods. Bootstrapping is based on Monte Carlo approximation
with the usage of computers and goes back to the beginning of the early 1940s.

However, 1979, Efron published a paper in the Annals of Statistics (Efron, 1979)
where he defined a resampling procedure that he coined as bootstrap and approximated
the jackknife technique (a resampling method which was developed by John Tukey).
The basic idea of the bootstrap technique is to take several Monte Carlo samples with
replacement from the original data and make estimations. If you randomly generate
K = 10000 or 100000 bootstrap samples, then the distribution of the bootstrap estimates
will approximate the bootstrap distribution for the estimate. The basic steps of the
Monte Carlo approximation are:

Step 1: Generate a random sample with replacement from the empirical distribution
for the data (bootstrap sample).

Step 2: Compute T'(F) the bootstrap estimate of T'(F) by replacing the original
sample with a bootstrap sample.

Step 3: Repeat the first two Steps K times for large K.

If T(F}) converges to T'(F') then the bootstrap technique works but it is not guaranteed
that it will work.

Kaas et al. (2009) and England and Verrall (1999, 2002) suggested a procedure in
order to create bootstrap samples for the estimation of loss reserve. First of all, the
Pearson residuals are
Yy — i
Vg

where p; ; should be replaced by its estimation fi; ;. For run-off triangles where the

Ti,j yfor1<dj<nandi+j<n+l,

data are not big enough, the residuals produce big sample bias. For that reason, the
residuals have been adjusted (see England and Verrall (1999) and England (2002)) with

a multiplication with the correction factor

rf = N T,
VN —p

where N = (g) is the size of the data and p = 2n — 1 is the number of fitted coefficients.

Another option is the usage of a factor to adjust each residual individually (see Pinheiro

et al. (2003)) and standardize the Pearson residuals likewise linear regression does, as
follows

P _ Tij

SV

T
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where hyy is the diagonal of a hat matrix H. In order to use the bootstrap method, the
procedure can be applied by using the original Pearson residuals or any transformed
residuals. The general notation 7* will be used for the selected residuals. Afterwards, the

following bootstrap steps are performed many times, e.g. m = 10000 times.

Step 1: Take a sample with replacement using the selected residuals r* and create a new
sample of residuals 7(b). In case of fitting a GLM model, the fact that the last

accident and development years have only one observation, will lead to zero residual.

Step 2: Use these new pseudo-residuals r(b) to go back to the real data, which will be

pseudo-data:

y(b) = r(B) Vi + .

Step 3: Estimate the new total future reserve R(b).

1.4.5 The Multiplicative Model and the CL Method

At this section the multiplicative model is represented and its relationship with the Chain
Ladder method (Kremer, 1982). We will use the symbols z; and y; as the parameters in
the multiplicative model. For that model we assume that the mean of the claims can be

presented as
E(Ci;j) = xi yj, (1.6)

where C; ; is the stochastic variable of the incremental claims, x;, y; which are unknown

parameters and the following assumption holds
B+t ... +y=1 (1.7)

By the definition in (1.6) and the assumption (1.7), which means that the sum of y;
equals one, the parameter x; is
z; = E(Sin),

where S;, are the cumulative claims. Making it more explicit, (1.6) suggests that the
forecast of the incremental payments can be computed as a product of an accident year
coefficient x; and a development year coefficient y;. The fact that z; is the estimated
total claim, we can assume that the sum over j of y; is 1. In the case of C; ; to be number
of payments, then y; is the empirical frequency of a claim appeared in accident year ¢

and developed in development year j.
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(1.1) shows a stochastic model and is similar to the multiplicative model (Mack, 1994).

It can be proved by finding the parameters z; and y;. We take:

E(Cij) = E(Si;) — E(Sij-1)
= (fierfiva- - Jo) T E(Sin) = (fifjer- - fn) ' E(Sin)
= B(Su)(Upnafiva - f) 7 = Uil 1)) (18

The next step is to find the variables y; in order to make (1.8) be equal to z; y;. The

variable x; has already been recognized as x; = E(S;,). So it is clear that

yi = (fisafizz - fo) = (fifier fa) " (1.9)

For the development years 2 < j < n the variables y; are

yi=(fofs - fo)7",
yi = (fierfimo - fu) ™ = (Fifier o fa) 7l
Yn=1-— (fn)_l'

We observe that y; > 01if f; > 1 for j =1,...,n. Also, if in (1.9), we sum up its terms,
then 377, y; = 1. So, the definition of y; seems to be a good choice. The cumulative
claim for the accident year ¢ and the development year j can be written as a sum of
the incremental claims, and using y; makes it easy to see that for the accident year

1=1,...,n

E(Sin) =xi(py + ...+ yn) = Ty + 2 + ...+ Tiyp
=E(Ci) + E(Cia) + ...+ E(Ciy). (1.10)

Hence, by appropriately choosing x; and y;, it is clear that the simple stochastic model
is equivalent to the multiplicative model (Mack 1994b).

The development factor can be derived by using the identities from the multiplicative
model. For 2 < 7 < n,

E(Si,j) _ ﬂfi(yl—i-yz—l—...—l—yj) _ Yi+Yo+ ... 1Y
E(Si,jfl) xi(y1 +ys+ ...+ yjfl) Y1 +y2+...+ yj,l'

f = (1.11)

This development factor does not have the same appearance as the Chain Ladder

development factor, but it is actually the same. This can be proved by induction.



18 Chapter 1. Non Life Risks

1.4.6 The Poisson Model and the CL Method

The Poisson model can be presented as a particular case of the multiplicative method. It
has an equivalent format but it is also supposed that the incremental claims C; ; have
the Poisson distribution. According to Verral (2000), the Poisson model gives the same
estimations for the reserves as the CL method. This is true when maximum likelihood
estimators (MLE) are used.

Lets suppose that C;; are independent and follow the Poisson distribution with
E(Ci;) = ziy; and Y7, y; = 1. From the multiplicative model, the parameter z; has
already been decided. It has been mentioned that x; = F(S;,). The parameter z; is the

expected value of the cumulative claims. We have

E(Szn 7 l)y 2l
E(Cij) =z yj = E(Siy)y; = S H;F I - '11’ (1.12)

where z; = E(S; ,—i+1) and s = Z§:1 y;. Since y; can be interpreted as the percentage

of the total claims in development year j, it is logical that E(S; ;1) divided by the
proportion of claims until j = n — i+ 1 equals E(S;,,).
Equation (1.12) can be written as a formula for predicting the expectation of the

total claim E(S;,). Approximating E(S;,) with §i,n, the equation is:

a < <
Sz',n - E(Sz,n) =T = n z+1 Ur 1 — ZZZH_H_Z Uk . (113)
Verral (2000) claimed that this equation is equivalent to the CL estimator:
. . N Zn Jj+1 d »
S’”«—j-ﬁ-l,n = dn—j+17jfj+1fj+2 ‘e fn where f] = W (114)
7 12y

To make it clear that (1.13) and (1.14) are in fact equivalent, it is natural to look for
the estimators of the unknown coefficients in (1.13). The maximum likelihood function
will be used to find the estimators. In this case the observations c; ; are considered to be
known and the parameters are considered as variables. Since ¢; ; = ;y; = 2Y;/Sn—i+1,
the ML function is:

n—i+1

n . ) Cij p—%iYj/Sn—it1
_ H H (Zlyj/snfwrl) € (115)
=1 j=1

Ci,j!

Further calculations show that

dzn i+l —z n—i+1 .
e dzn i 1' Y i
L= H[ ( I (%) )] (1.16)
I cij!

% n—i+1! j=1 Sp—i+1

It should be marked that in order to take the final equation, the below calculations

were used:
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. n—i+1

n—i+1 ( Y ) (ijl yj) Sp—idl
) H e Sn—i+1 :| = e Sn—i4+1 — @SnfiJrl = e

J=1

n—i+1 n—itl

i\ Cin—i Z': Ci,j din—i

° H ZZ.Cl’]:| = ZZClelCzZ e Ziz7” i+l 2 Jj=1 — Ziv,n i+1

Jj=1

e We multiplied and divided with the quantity d; ,—;+1!

However, the equation (1.16) can be written as a product of two quantities

L=1L.Ly, (1.17)
where
n | n—i+l . Cij
_ it (yﬂ ) ’ 1.18
bl [(Hn 141 z,j‘ J];Il Sp—it1 )] ( )
while

i=1 di,nfiJrl!

n Z'di,nfﬂ»le—zi
Li=]] |%—+| (1.19)

Theorem 1.1. The quantity L. is the conditioned mazximum likelihood function where

Ci,j conditioning d; ,—i+1 follow the Multinomial distribution with probabilities

Y,
Sp—i+1

YiGj) =

Proof. The probability y;(;) is that of a payment that occurred at the year i to be
mentioned at the year j. By the equation (1.16) we take

dln Z-H@_Zl dzn z+1' n el o
| Hn z—i—l Cij H (yi(j))cw (120)

-l

din—it1! ke
Let’s suppose that C; ; fori =1,...,nand j =1,...,n —4+ 1, are independent random
variables which follow a Poisson(y;(;)) with ;) = Z_yiilyk Since this is a parameter,
the notation changes so as to make it more tangible. S:), Yi(j) = Pij) = S ]Z T, . Then
Sij,fori=1,...,nand j =1,...,n — 174 1, are independent random Varlables which

follow a Poisson distribution. This stands because S; ; is a descrete sum of independent

Poisson random variables.
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The conditioned probability distribution function is

n—i+1l Cij ,—p; o Nin—it1 o= (P1+FPn—it1)
p;re ™ P1+ ...+ Dpoiyr) o e
foi,j‘si,nfwrl (Ci,j|di,n—i+1) = ( H : ) (( s ) 1 )

j=1 Ci,j‘ pi,n—i—i—l-
Ci1 Cin—i+1
dz n— z+1' D1 L Pn—i+1
Hn i+1 Cz,] Zn i+1 pj Z?:_f+1 pj
dzn 1—0—1' C; C; c: .
ey (Pz< ) (i) - (Pin—in)

From the last expression it is easy to recognize that the distribution of C; ; conditioned

d;n—i+1 is a Polynomial distribution. [

Correspondingly, for the quantity L, it is easier to see that it is the maximum
likelihood function when S; ;11 follows the Poisson distribution(z;). So, it is feasible to
find the MLE for z;. Specifically the MLE of z; is d;,,—;+1 because S;,_;4+1 follows the
Poisson distribution.

Using the MLE of z;, the MLE for the final ultimate claims is

a dz n—i
Sin = nortl (1.21)
L= it Uk

For the accident year n — 5 + 1 this expression is

Snitin = % (1.22)
In the equation (1.22), y; is the only unknown parameter. It can be estimated by using
the MLE based on the function L, but the quantity L. can also be used. The logarithm of
L, is calculated and the final expression is derived by y;, for £k = 1,...,n. Nevertheless, it
does not have an analytic solution, so Renshaw (1998) suggested a procedure. A value for
the parameter ¢, is given, afterwards the value ¥,,_; is decided and so on. The calculations

that are used in order to find ¥, and the general formula about ¥; is shown below:

n n—i+l Cirj
log(Lc) =lcoc ) > log (Zn i+l )

=1 j=1
n—i+

:i _Z <log n —10g<nflyk>>

i=1 j=1

ol. Cln <~ Cl Cin <~ C1y
=U= — - = = = = — — =0.

o
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Using the last equation we obtain the mle

~ Cin Cin
y’I’L = 771 = —. 123
j=1C1j diy ( )

Correspondingly,

810 n—j+1 Cij n—j+1 Cij
5yn:0:> o= Y =

i=1 \ Yi = k=1 Yk

_ k=1 CGij P s )
- Zn—i+1 ~ -

Yi i=1 k=1 Yk
Finally, from the last expression it holds that
n—j+1
> i
7 = i=1 _ Clj + -+ Cnjiy
Y ( din—i+1 ) din + e R

Z 1-yn B e L
n—i+1 ~
i=1 k=1 Yk

(1.24)

Observing the equation (1.24) it is obvious that with this iterative procedure all estima-
tions for the quantities y; can be found. The next step is to find an expression for the

development factor fj using the MLE of ;. According to (1.14),

~

SR ~ Sin
fj+1fj+2...fnzu

dp—j+1,5

Inserting the expression for the quantity §n,j+17n from the equation (1.22) and using the

estimator y; instead of y;, the product of the development factors is:

1

J?‘ 1]?'2"'J?n: — — —, (1.25
T l=Yjt1 —Yjr2— - —Un )
and
Fifieae : (1.26)
ifiv1 S = —— —. :
T =Y —Yjir1— - —Un
From the equation (1.25), an expression for 1 — §j+1 — Jj+2 — ... — ¥ can be found and
used in (1.26). So,
PO - 1
fifisr- o= 1 . (1.27)

fivifivo - fu
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Finally, an estimator for the development factor can be found according to the next

equation
~ 1
| . (1.28)
! L =Gjfirifjv2- fn
Using the MLE of y,, from the equation (1.23), the development factors are
o~ 1 1 d n d n
fn == ! (1.29)

B 1 _/y\n B 1— din, dln — Cin B dl,n—l.

The estimator in (1.29) is the same with the one that was found at CL method when
jJ = n. In order to prove that the other LDF’s of the Poisson model are the same with
them of the CL method, induction can be used. Since it is proved for j = n, the first step
of the induction has already been done. The next step is to find a general formula for the
development factors fj In order to do this, the expression for y; must become simpler.
The equation (1.24) gives an expression for g; but the fractions at the denominators can
be modified using the equations (1.25) and (1.26). So,

37' _ C1j + Coj + ...+ Cn—j+1,5
T v A diprfo A dojirfieifiee o

(1.30)

If the equation of g; is examined, it is clear that it is a percentage of the final claims. The

numerator counts the claims during the whole accident years for the development year

j but the decominator counts the estimated values of the final claims during the same

accident years. The equation (1.28) is a general expression for f] The final expression

for g; is used in (1.28). So,

fi = ! 1.31

fj - Clj + ng 4+ ...+ Cn—j—i—l,j ~ ~ ~ " ( : )

1 - = == =fi+1fi+2- - [a

din + din1fo+dnjirfivifive- - fa

This is the general formula. It has already been proved that fn is the development factor
of the CL method.

As a part of the induction it is supposed that for k =75+ 1,...,n, fk is equal to the
corresponding development factor of the CL method. At the last step we must prove that
fk is equal to the corresponding development factor of the CL method but for k£ = j.
The denominator in (1.31) must be simplified showing that

n—j+1

din + dyprfo + dnjir fis1 fisn oo fn = Fis1fiva - Jn > di. (1.32)
=1
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But this is true for 7 = n — 1 because

dln o dln
dl,n—l dl,n—l

= fn(dl,n—l + d2,n—1>

dyp + d2,n—1,}?n =dy, +dap

(d1,n—1 + d2,n—1>

Similarly for j = n — 2, a similar equation emerges
din + dop 1 foo + dspofu 1o = Fa (dl,n—l +da g1 + d3,n—2ﬁ1—1>

=~ dyp—1 4+ dop_1
:fn(d - +d,n> : :
bt -t dyp—2 + dan—2

= fn—lfn (dl,nQ +dyp—2+ d3,n2>-

+ d3,nf2fn71

Doing this procedure n — j times, we can prove the equation (1.32), and the equation for

f; in (1.31) can be shortened as follows

J? B 1
]_1 Clj+02j+...+cn_j+17j/\ -~ ~
- n—j+1 fj+1fj+2 o f’n

fj+1fj+2 s fn Z di,j
=1

From all the above, it is shown that

n—j+1 n—j+1
> di > dij
f‘ _ =1 _ i=1
J T n—j+1 T on—j+1 n—j+1

Yodija Y dig— Y ciy
=1 =1 =1

So, the induction method has been completed because f] is the same with the one that
was calculated at the CL method. This means that if the maximum likelihood estimators

are used for the Poisson model, then the same estimations will be used at the CL method.

1.4.7 Run-off Triangle Interdependence and Cross

Dependence

Within a run-off triangle there are three kinds of certain dependencies that can arise.

Horizontal Dependence: The development time of an incurred accident may create
horizontal trends in a run-off triangle. This happens because the payments logically
decrease as the years pass. Of course, the payments’ development depends on the

policy and the Line of Business while the horizontal trend is apparent.
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Vertical Dependence: On the other hand, the existence of vertical trends may appear
between development years. Within the insurance industry, a cyclical pattern, may

be obvious and can create a vertical seasonal trend (Doherty et al., 1995).

Calendar Year Dependence: Payments of the same calendar year may have effects at
a run-off triangle because they are mainly macroeconomic effects such as inflation.

The closing claims of a certain year may also effect the development of the triangle.

Table 1.2: Lines of Business in Non-Life insurance

LoB number | Category name

1 Motor, vehicle liability

2 Motor, other classes

3 Marine, aviation, transport (MAT)

4 Fire and other property damage

5 Third-party liability

6 Credit and suretyship

7 Legal expenses

8 Assistance

9 Miscellaneous

10 Non-proportional reinsurance - property

11 Non-proportional reinsurance - casualty

12 Non-proportional reinsurance - MAT
Source: CEIOP’S Advice for Level 2 Implementing Measures on Solvency II: SCR Standard

Formula Calibration of Non-life Underwriting Risk.

In general insurance, the triangles are classified by LoB (see Table 1.2). So, cross
dependence indicates the dependence between the triangles. In general, a large incident
may effect many LoB at the same time. For that reason, this kind of dependency should
be taken into consideration during the aggregated reserving procedure. The existence of
the interdependence makes more obstacles to capture the cross-dependence between the
triangles. In cases that the interdependence is not computed properly, the cross-correlation
is overestimated.

CEIOPS has published a Quantitative Impact Study (QIS4) with a description on
the derivation of the correlations between the different LoBs. This study is available on

CEIOPS’ website (Table 1.3).
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Table 1.3: Correlation of LoBs

1 [2 |3 [4 |5 J6 |7 [8 |9 |10 [11 |12
1|1
2 |05 |1
3 |05 025
4 025 025
5 |05 025 0.25
6 | 025 025 025 025 05
7 105 05 025 025 05
8 |025 05 05 05 025 025 025
9 |05 05 05 05 05 05 05 05
10 | 025 025 025 025 025 025 025 05 025
11025 025 025 025 05 05 05 025 025 0.25
12025 025 025 025 025 025 025 025 05 025 025]1

Source: CEIOP’S Advice for Level 2 Implementing Measures on Solvency II: SCR Standard

Formula Calibration of Non-life Underwriting Risk.






CHAPTER

Robust Loss Reserving for Log-linear Regression
Model

t is well known that the presence of outlier events may overestimate or underestimate
Ithe overall reserve in case of using the chain-ladder method. The lack of robustness of
loss reserving estimators is a very important matter because the appearance of outlier
events (including large claims or catastrophic events) can offset the result of the ordinary
chain ladder technique and perturb the reserving estimation. A solution to this, is to
apply robust statistical procedures to the loss reserving estimation, which are insensitive
to the occurrence of outlier events in the data. Robust log-linear and ANOVA models
can be used to the analysis of loss reserving by using different type of robust estimators,
such as LAD-estimators, M-estimators, LMS-estimators, LTS-estimators, MM-estimators

(with initial S-estimate) and Adaptive-estimators.

2.1 Review on Robust Estimation

The presence of outliers due to large claims or catastrophic events is a special problem in
loss reserving calculation. Outliers can be described as points which do not follow the
trend of the majority of the data. The problem appears if a trend (due to an outlier
event) that appeared in one of the development years in a chain ladder setting carried on
for the next years resulting in an overestimation or underestimation of claim reserves. In

particular, excess claims (large claims) lead to an unsatisfactory behavior of chain ladder
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methodology. The purpose is to robustify the claim reserves calculations using robust
estimators. In simple regression (two-dimensional case), it is easy to detect outlier events
just by plotting the observations. This is no longer possible in the log-linear multiple
regression. So, in practice, one needs a procedure that is able to lessen the impact of
outliers. Kremer (1997) incorporated the ideas of robust statistics into loss reserving
techniques by using the lagfactor-method (or link-ratio method). Verdonck et al. (2009)
created a technique for detecting outlying observations in a run-off triangle of claim
amounts and solved the problem of non-robustness of the chain ladder by replacing the
mean by the median. Verdonck and Debruyne (2011) based on the influence function
approach presented a diagnostic tool for highlighting the influence of every individual
claim on the classical chain-ladder estimates. They considered the chain ladder method
as generalized linear models (GLM) and obtained robust estimates of GLM in a chain
ladder framework. Busse et al. (2010) designed a filter for outliers and large jumps, and
presented a robust version of Mack’s variance estimator. They verified the reliability of
their methods with several loss triangles. Venter and Tampubolon (2010) presented an
introduction of robust methods for loss reserving and compared development triangle
based on the sensitivity of the reserve estimates. At this work a class of robust estimators
is applied to a chain ladder procedure where the data is in a log linear form and that
was transformed into a two-way analysis of variance. This class of estimators includes
robust estimators that simultaneously attain maximum breakdown point (BP) and full
asymptotic efficiency under error normality. At this robust loss reserving estimation
we initially ignore the bias present due to the robustification of the large claims, but
add in a second stage, a share of the excess (correction term) to ultimate claims, to
obtain a final unbiasedness. This robust log-linear regression estimation can provide
quite good claim reserves estimates by guaranteeing the recovery of ultimate claims. Of
course, these robust estimators can be embedded within several loss reserving techniques
providing reliable claims reserves estimation. Very often, assumptions, made in statistics,
i.e. normality, linearity, independence are at most approximations of reality. Robust
regression models are useful for filtering linear relationships when the random variation
in the data is not normal or when the data contain significant outliers (see Hampel et
al.,1986).

Let F), be the empirical distribution function of a sample Xi, ..., X,,. Formally F,

is given by (1/n)>", A,,, where A, has point mass 1 at x. As an estimator of a
parameter 6 we consider real-valued statistics T,, = T'(F},). Sometimes also referred to

as T,,(X1, ..., X,,) by extension of the notation. In a broader sense, an estimator can be
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viewed as a sequence of statistics {7,;n > 1}, one for each possible sample size n.
Definition 1: The influence function (/F') of T at F is given by

IF(z;T, F) :limM

t—0 t ’ (2'1)

with T'(Fy) = T[(1 — t)F + tA,]. If we replace F' by F,,_y, where F,, is the empirical
distribution estimate of F' generated by the sample (x4, ..., x,), and put t = %, we realize
that the I F(z; T, F,_1) measures approximately n times the change in T' caused by an
additional observation in x when 7" is applied to a large sample of size n — 1 (see Hampel
et al., 1986). The breakdown point (BP) provides us with a rough upper bound on the
fraction of outliers for which such a linear approximation might be useful, (see Rousseeuw
and Leroy, 1987).

Definition 2: The finite-sample breakdown point of the estimator T}, at an observed

sample X = (X, ..., X,,) is defined as
e (T,X) = min[m;bias(m;Tn,x) < o0l ,
n

where bias(m; T}, z) is the maximum bias that can be caused by a contamination (presence
of outliers) and m is the number of original points replaced by arbitrary values. In other
words &5 (T, z) is the smallest fraction of contamination that can cause the estimator 7'
to take values arbitrarily far from 7},. The breakdown point usually does not depend on
the sample value z, but depends only slightly on the sample size n.

Definition 3: The gross-error sensitivity of T" at F' is defined by
v =sup|[[F(z;T, F)|,

where the supremum is taken over all z, where I F(x;T, F') exists. The «* describes the

maximal effect on T induced by a small contamination of the data set.

2.1.1 LAD and M-Estimators

The idea of least absolute deviation (LAD) also known as L; regression is actually
older than that of least squares. It is clear that outliers have a very large influence on
Ordirary Least Squares (OLS) because the residuals r; are squared. Estimates are found

by minimizing the sum of the absolute values of the residuals
min »  [ril, (2.2)
B =1

where 7; = y; — @ 3 is the ith residual.
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The LAD is a case of the general quantile regression. Unfortunately the BP of L,
regression is no better than 0%. The BP of a regression estimator is the largest proportion
of the data which can be replaced by large values (outlier events) before the estimator
breaks down. As its name implies, L; regression finds the coefficients estimate that
minimizes the sum of the absolute values of the residuals.

Moreover, M-estimators are generalization of maximum likelihood estimator proposed
by Huber (1973), who suggested that we obtain M-estimators as solutions of the following

minimization problem,
min > p (r,). (2.3
B =1

where r; is the i*" residual, p is a symmetric function with unique minimum at zero.
Differentiating this expression with respect to the regression coefficients 3 yields,

P, (r;) x; = 0, where 9 is the derivative of p and «; is the row vector of explanatory
variables of the i'" case. In practice one has to standardize the residuals by means of

some estimate of S, yielding
> (g)w (2.4)

where S is a scale parameter and must be estimated simultaneously. In practice, it is
advisable to use S = med{|r;|} as an initial value. The advantage of M-estimates is that
they can be computed in much less time than other robust estimates. The disadvantage
is that they are sensitive to high leverage points and they don’t enjoy high breakdown
point (BP). The BP of M-estimators are 0% (see Rousseeuew and Leroy 1987, p. 145).

The location-scale M-estimators of B, with an appropriate choice of ¢/, may attain
a high efficiency and at the same time be robust against large residuals. But these
estimators are not robust to outliers in the design matrix space, i.e. if the explanatory
variables are random or otherwise subject to errors the classical M-estimators may be
unreliable. In this case the domain of the 1 function has been enlarged to include the
design points, as well as the residuals. The influence function of the Huber M-estimator
(ignoring the scale) is defined as

IF(x" g, T, F) = M(EmT)*lm. (2.5)

- By
The first part of the influence function in (2.5) is called the influence of the residuals
and is bounded, but the second part that is called the influence of position in factor
space is unbounded. Thus, a single x;, which is an outlier in the factor space, will almost

completely determine the fit. In this case the Huber estimator and all estimators defined
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through (2.4), including L, are only the first step in the robustification of the regression
estimator (see Hampel et al. 1986, p. 313).

In order to find M-estimates for a regression model, an iterative algorithm is necessary.
A closed form (such as OLS) is impossible because the residuals cannot be found until the
model is fitted, and moreover the coefficient estimates cannot be found without knowing
the values of the residuals. For that reason, iteratively reweighted least squares (IRLS)
will be used:

Step 1: Before starting the iterations, set ¢ = 0 and an OLS regression is fitted to the
data. Then, the initial estimates of the regression coefficients b© are found.

Step 2: The residuals T‘EO) of the model are extracted from the preliminary OLS
regression and then used to calculate initial estimates for the weights of the regression.

Step 3: Then, a weight function is selected and applied to the initial OLS residuals
(0)

].

so as to create some preliminary weights w|r;
Step 4: If W represents the n x n diagonal matrix of individual weights, at the first

iteration, 7 = 1, the solution of the regression coefficients is
-1
o — (X’WX) X'Wy. (2.6)

Step 5: The procedure continues by using the residuals from the initial WLS in order
(2)]

to calculate the new weights, w]r;
Step 6: The new weights w[n@)] are used in the next iteration, i = 2 and using (2.6)
in order to produce the new regression coefficient estimates b®,

Step 7: Steps 4-6 are repeated until the estimate of the coefficients converges.

2.1.2 LMS Estimators and LTS Estimators

A robust equivariant regression estimator that first attained the maximum asymptotic
BP=0.5 is the least median of squares (LMS) estimator proposed by Hampel in 1975
and further developed by Rousseeuw in 1984 (see Rousseeuw and Leroy 1987). The LMS

is given by
2
min med; <yZ — Z .Tijﬁj) = min med;r?. (2.7)
B B

Apart from the regression coefficients, also the scale parameter S (the dispersion of
errors e;) has to be estimated in a robust way. The idea is that by replacing the sum
with the more robust median, the resulting estimator will be resistant to outliers. The
above estimator is very robust with respect to outliers in y as well as outliers in x. The

LMS is equivariant with respect to linear transformation on the explanatory variables.
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Unfortunately, the LMS performs poorly from the point of view of asymptotic efficiency
(at best a relative efficiency of 37%) and it does not have a well-defined influence function
because of its convergence rate of n~'/3 (Rousseeuw, 1984). Rousseeuw in order to improve
the asymptotic efficiency of LMS introduced the least trimmed squares (LTS) estimators
given by (see Rousseeuw and Leroy, 1987)

min Z:(TQ)M, (2.8)

where (1?)1., < ... < (1?).n are the ordered squared residuals (note that the residuals
are first squared and then ordered). The best robustness properties are achieved when h
is approximately n/2, in which case the BP attains 50%. Although highly resistant, LTS

suffers badly in terms of relative efficiency at about 8%.

2.1.3 S-Estimators and MM-Estimators

The S-Estimators introduced by Rousseeuw and Yohai (1984) are a generalization of LMS
and LTS and have the same asymptotic properties as corresponding to M-estimators
and also can handle 50% of the outliers present in the data and are the first high BP
regression to achieve the usual n'/?- consistency under appropriate regularity conditions.

They are defined by minimization of the dispersion of the residuals

m@in s(ri(0), ..., (0)), (2.9)

~

with final scale estimate & = s(r1(0), ..., 7,(0)). However, Héssjer (1992) showed that
S-estimators cannot achieve simultaneously high BP and high efficiency under the normal

model. The scale estimator can be obtained through the following dispersion minimization

problem
B; = arg mBin S{ri(B), ....m(B)}, (2.10)
subject to
1 & 7’1(5) _
o () =& .

with r;(8) = y; — =!I B8 and K = Fs(p), which assures the consistency of S at the normal
distribution ®. For the initial S-estimate Tukey’s bisquare p function has been used. This
is defined as (Tukey, 1977)

p(t) = { (12)6 —3(4) +3(2) i H<e (2.12)

if |t| > e
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Another class of robust estimators for the linear model, so called MM-estimators,
introduced by Yohai (1987) and has become very popular in the statistical literature.
MM-estimators have simultaneously the following properties: a) they are highly efficient
when the errors have normal distribution and b) their BP is 0.5. The MM-estimate
denoted as T is defined in a three-stage procedures as follows:

Step 1: Compute an initial estimate T of the regression coefficient 8. This initial
regression estimate is consistent robust and with high BP but not necessarily efficient.
The S-estimator defined above will be used as the initial part of an overall MM-estimate
computational strategy proposed by Yohai, Stahel and Zamar (1991).

Step 2: Compute the M-scale of the residuals r;(T°), S(3), using the function py, i.e.
in this second stage an M-estimate of the errors scale is computed using residuals based
on the initial estimate.

Step 3: Define T as any solution to the equation Y7 (

1
1 = p; that also satisfies, 327, pl(”ég)))wi <YL p1<”5(v(1‘;)))wi-

Yohai and Zamar (1997) defined some optimal functions p and 1 in the sense that,

7"i(T'l)
S(8)

)a:i = 0, where

the final M-estimate has a BP equal to 0.5 thus minimizing the maximum bias under
contamination distributions, subject to achieving a desired efficiency when the data is
Gaussian (by an appropriate choice of constant c¢). The influence function of MM-estimates
is given by

IF (2 y; T, H) = 1 (y — 2" B)xo?(B(vy, F)V) 7, (2.13)

where B(¢n, F') = Ep (@/}’1 <§>) ,V = Eg(x;x]) and S(f) is an estimate of scale estimate

which converges to o see Yohai (1987).

2.1.4 Adaptive one-step Robust Estimator

However tuning up the above estimators for high efficiency will be accompanied by an
increase in bias as an unpleasant side-effect and will never achieve maximum asymptotic
efficiency and positive breakdown point simultaneously. A new class of robust estimators
that simultaneously attain maximum BP and full asymptotic efficiency under normal
errors introduced by Gervini and Yohai (2002) so called robust and efficient weighted least
squares estimators (REWLSE). The model considers a pair of initial robust estimators

of regression and scale Ty, and S, respectively. If S,, > 0, the standardized residuals

yi*m?TOn
Shn,

consider outliers those points with |r;| > 2.5. The REWLS estimator uses adaptive cut-off

are defined as r; = . Assuming a normal-error model, it seems reasonable to

values which are constructed in a way that the resulting estimator is asymptotically
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efficient under the normal-error model and is robust under some deviations from the
linear model. For detecting outliers the empirical distribution function of standardized
absolute residuals F1(t) is compared with the distribution of the absolute errors under
the hypothetical distribution F),(t), which is never known. In practice F'* denotes the

distribution of |X| when X ~ F and 7 is some large quantile of F*. The measure of
+

proportion of outliers is defined as d,, = sup,,, {F t(t)—-FFf (t)} , where {.}* denotes the

positive part. Note that if |r|) < ... < |r|n) are the order statistics of the standardized

_l’_
absolute residuals and if 7o = max {z L]y < 77}, then d,, = sup;>;, {F+(|r|(i))—(inl)} :
These [nd,,] observations are liminated with the largest standardized absolute residuals

([x] is the larger integer < x). The resulting cut-off value is
t, = min {t:F,j(t) > 1—dn}, (2.14)

ie. t, = |r|u, = n — [nd,]. Observe that i, < iy and t, > 1. Therefore based on the
above, weights are defined of the form w; = w (!rz| / tn> and REWLS estimator is

X"'wWxX) "' X"™wy, if > 1
Tln—{( WX XWYy, it Szl (2.15)

T(]n, lf Sn - O

The weight function w[0, 00) — [0, 1] is non-increasing continuous in the neighborhood
of 0, w(0) =1, w(u) >0, for 0 < u < 1 and w(u) = 0 for u > 1. The influence function
of REWLS-estimators is given by

ly — x" B
O't()

IFTl(wTayaTbF) = Tl_l{w< )E_lw(y - wT/B) + TQIFTo("BT7y)7

where I Frp, is the initial influence of the initial estimator. The 7 = hy (%to’ 0) where

hi(s,t) = [w(s|e — t|)dF(e/o) and is continuous at (s,0) for every s > 0, and 7 =
Oha (U}to, O), where hs(s,t) = [w(s|e — t|)dF(e/o) is differentiable in the variable ¢ for
every s > 0. The Ohy /0t is continuous and bounded in both variables. For details the
reader may be referred to Gervini and Yohai (2002, p. 591).



Chapter 2. Robust Loss Reserving for Log-linear Regression Model 35

2.2 Robust Log-linear Loss Reserving Model

Estimation

In this section, we incorporate the robust estimators into loss reserving techniques. A
robust algorithm for the robustification of the log-linear model of Verrall (1991) is derived
as well as a robust estimation in the ANOVA setup of Kremer (1982).

2.2.1 Robust estimation for claims run-off triangles in the

Log-linear Model

In the following we illustrate the steps required for obtaining robust loss reserving
estimation, based on regression M-estimators. The rest of estimators, can be applied in a
similar manner by substituting the M estimator by LAD, LMS, LTS, MM (with S), and
Adaptive estimator, respectively.

ALGORITHM:

~M
Step 1: Obtain a robust estimator 8 of 8 by the following minimization problem

(see Huber and Dutter (1974)). In regression analysis M-estimators can be obtained as

solutions of the following minimization problem, i.e.
Sl (2.16)
min» p(—=), )
B =1 S

which is used to find BM, a robust estimator of B = (3, ...,Bp)/ and S, with Tukey’s

bisquare p function defined as

o(t) = { (1t>6 —3(4) +3 (1) it p<e (2.17)

it |t| > e

The solution of the minimization problem (2.16) is equivalent to simultaneously

solving the following equations;

T re\ & T r,
Zz/) — Zxkt:(), k=1,2,...,p, and ZX — | =a, (2.18)
S) = = \S

t=1 =

where ¢(u) = p'(u) and x(u) = up(u) — p(u). If we want S to be asymptotically unbiased
for normal errors we take a = [(n — p)/n|Eg(x) with ® being the normal distribution.
Step 2: Calculate the robust covariance matrix of B as

—

Cov(BM) = a2 (XTX) 7, (2.19)
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with ,
o Te{E)7
o~ =1L , 2.20
" (t—p) oA\ (2:20)
/) i v'| 3
where L is the correction factor for unbiasedness (see Huber (1973)), defined as
p Var[y'(F)]
L=1+~ = 2.21
TEW (3 220
In practice E[¢'(%)] and Var[¢/(%)] are unknown and will be estimated by
T 1 & T
ER'(=)] ~ =~ (=) = 2.22
(G G v (g)=m (222
T 1,
Var[y/'(2)] ~ - =) —m)*. 2.23
anlt/ ()] > 20 (g) — i (223)
In the special case where
¥ (u) = min[e, max(—c, u)], (2.24)
we obtain 1 )
—m
L=1+- 2.25
L — (2.25)
where m is the relative frequency of the residuals satisfying —c < % < ec.
Step 3: Calculate the robust M-estimate of 6,
~ — 1 _
Qf‘f = exp(wg;- M)gm[§(1 — wg-(XTX) Yz o). (2.26)

Step 4: The robust variance of the asymptotically unbiased estimator of Tin is obtained

as
- Y 1 ’ ’ _ _
T]%/[ij = eXp<2wijﬁM)[gm<§(1 - wij(X X) 1331’]’)3?\/1) — gm((1— ng(XTX) 15”@')5?\/[]-

Remark 2.1. The robust parameter estimation of the log-linear model and the standard
errors are obtained in a straightforward way by substituting the parameters by their

robust ones.

2.2.2 Robust Loss Reserving in the ANOVA Model

The robust ANOVA model can be implemented similarly as in the regression case in

two-stage procedures. Since in the ANOVA setup we have only factor variables, in the
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first stage procedure the least absolute deviation (LAD) estimate can be used as an
initial estimate. LAD estimate is also a robust M-estimate with p(z) = |z|. In the
second stage, by using the initial estimates, we compute robust sums-of-squares by using
robust estimates in place of the usual least squares estimates of the main effects. In the
following we obtain parameter estimation in a more general model, where more than
one observations is appeared in each cell, determined by the two factors in a two-way
ANOVA setup.

Armstrong and Frome (1979) demonstrated how LAD estimates can efficiently be
obtained for the two-way ANOVA. LAD estimates of the parameters are obtained by
solution of the following problem:

r c Mg

min Q= Y > Vi — (u+a;i+5)|. (2.27)

i=1j=1 k=1
Thus, Y;ji is the k-th observation at the 7 —th level of the first factor and the j —th level
of the second factor, «; represents the effect of the i — th level of the first factor (row
effect), B; represents the effect of the j — th level of the second factor (column effect),
and p is a typical value. There are two degrees of freedom in the assignment of values to
i, o and B3;, thus restrictions should be added to the problem. Similarly as in the least

squares estimates analysis, in the LAD analysis, estimates that minimize
T C
min Y _ |ai| + > |5l (2.28)
i=1 j=1

are provided subject to the optimal value for Q in (2.27) being maintained. This addi-
tional criterion does not necessarily provide a unique solution. Further restrictions, or a
completely different set of criteria, may determine a unique solution [see Armstrong and
Frome (1979)]. By letting 7; = p + «, the problem (2.28) can be restated and written as
a linear programming problem:

T c MNij

minz Z Z(d;k — d;jk), (2.29)

i=1j=1k=1

subject to

Ti—i‘ﬁj—Yz’jk‘Fd;}k_dfjk:O:
di, >0, d; >0, (2.30)

ijk ijk
i=1,..,r, 7=1,..¢ k=1, ..n,

where d;rjk and d;,.,; are the positive and negative deviations of the regression equation

from the observation Yj;z, respectively.
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Remark 2.2. For obtaining LAD estimates for Kremer’s (1982) model we drop the third
summation in (2.27) and (2.29) which indicates that we have only one observation in
each cell determined by the two factors in a two-way ANOVA setup. The summation of
k observations (in the case that we have more that one value in each cell) is useful when
more than one run-off triangles of similar line of business are involved for the estimation

of claims reserves.

Remark 2.3. Very often in a two way ANOVA, not a single cell but rather a bigger
substructure of the design such as a row or several rows together behaves like an outlier
showing an unusual behavior of parameter estimation. As a result of the above the
absolute residuals in the substructure tend to be large especially residuals from the robust
fit. This large variability can be detected by applying robust techniques to absolute
residuals. In some cases a robust least squares analysis of the absolute residuals might be
more informative, usually when a small substructure, but no single cells, show outlying
behavior, (see Huber, 1981).

Apart from factors with no effects we can define main effects after determination of
the grand mean. If the majority of the main effects between pairs of rows is constant
then we have a well defined main effects difference, but only for part of the data, and we
know that the remaining pairs of data contain outliers, but we don’t know which value

in each pair is an outlier. This can be done by a comparison with other rows.

Remark 2.4. Hampel et al. (1986, p. 426) discusses various ways of identifying outlier
evens where the role of prior information is very crucial which tell us whether some effect
or error is quite possible or is very surprising and unlikely. In two way tables, the median
provides a robust estimator of row and column effects. Writing the two way ANOVA
as a linear model regression, it is not always possible to apply the LMS to it because
the number of cases (cells) must be larger than twice the number of parameters. On the
other hand, the LMS becomes more useful when also interval-scaled covariates occur,

which may contain outliers (see Rousseeuw and Leroy, 1987, p. 285).

Remark 2.5. Tukey (1977) suggested that with the presence of outlier events in the
data we can use an iterative procedure called median polish that would produce better
estimates than using the mean in the two-way ANOVA. The median polish procedure
subtracts the median from each row from each observation in that row, and then subtracts
the median from each column from the updated table. This continuous until the median
of each row and column is zero. Sposito (1987) has shown the equivalence of median

polish and L; estimator.
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Remark 2.6. Transforming the ANOVA model to the regression one, we have the
advantage that a whole variety of robust estimators that appears in the literature for
the regression case can be applied. Although, the two-way ANOVA can be transferred
to an equivalent regression model, this does not imply equivalence on the results of
robust regression and robust ANOVA models. Robust results that are obtained by this
transformation are slightly different, due to the different way the robustification applied
to ANOVA and regression models.

2.3 Example on Loss Reserving for Robust

Log-linear Regression Model

In what it follows we will illustrate the LS and our robust procedures using the data
given in Taylor and Ashe (1983) (see Table 2.1).

Table 2.1: Taylor and Ashe (1983) data

1 2 3 4 5 6 7 8
357848 | 766940 | 610542 | 482940 | 527326 | 574398 | 146342 | 139950
352118 | 884021 | 933894 | 1183289 | 445745 | 320996 | 527804 | 266172
290507 | 1001799 | 926219 | 1016654 | 750816 | 146923 | 495992 | 280405
310608 | 1108250 | 776189 | 1562400 | 272482 | 352053 | 206286
443160 | 693190 | 991983 | 769488 | 504851 | 470639
396132 | 937085 | 847498 | 805037 | 705960
440832 | 847631 | 1131398 | 1063269
359480 | 1061648 | 1443370

W N |O | W N

—
W

The advantage of using this data set is that is well known and it has been widely
used in the actuarial literature (see for example Mack 1993; England and Verrall 1999,
Verdonc et al., 2010). Our first step is to identify the existence of outlier events (if there
are any) in the original data and apply a log-linear regression model, a two way ANOVA,
as well as robust estimators. In the second step, in order to investigate the effect of outlier

events in the loss reserving estimation, we create one artificial outlier by multiplying by
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ten (10) and in the sequel two artificial outliers by multiplying two specific claims by ten
(10).
Following Verrall (1991, p. 78) we apply robust estimation on the following two-way

analysis of variance in a log-normal regression setting, i.e.,
In(Cy) =Y =p+a+bj+e;, 1=2,.,10; j=2,..,10, (2.31)

where g is the overall mean, a; is the effect of the ¢ — th accident year and b; is the effect
of the j —th development year, ¢;; is the error term and the design matrix is of dimension
55 x 18.

Most robust estimators are calculated based on (2.31). The calculation of LTS and
LMS estimators failed to be implemented based on (2.31) model and for that reason we
have tried alternative models with different design matrices.

A model that works properly for the calculation of the LTS estimator is the model
where there is a unique level for each accident year and a unique value for the zero
development period. The parameters for development periods 1 to 10 are assumed to
follow some linear relationship (straight line) with the same slope or parameters s (see
Christofides, 1990, p. 19). Then the model is defined as

In(Cyj) =Y =p+a;,+d;j+¢€;, for i,j from 1 to 10, (2.32)

where dy = d, d; = s x j, for j > 1, €;; is the error term and the design matrix is of
dimension 55 x 12.
Unfortunately, the LMS estimator for the model in (2.32) failed to be implemented.

An appropriate model for the calculation of the LMS estimator is the following,
In(Cy) =Yy =ai+bj+e;, i=1,.,10; j=1,..10, (2.33)

where ¢;; is the error term and the design matrix is of dimension 55 x 2.

2.3.1 Diagnostics and Robust Loss Reserving Estimation

Outlier diagnostics are statistical methods that focus attention on observations having a
large influence on the least squares estimates, which are known to be nonrobust. Many
diagnostics are based on the residuals (see Rousseeuw and Leroy, 1987). In connection
with diagnostic statistics, there is a variety of plots used for diagnostic purposes. These
plots investigate the appearance of outlier events and compare the results of the classical
and robust fits.
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2.3.1.1 Diagnostics and Robust Loss Reserving Estimation based on the

Original Data

In Figure 2.1, the Normal QQ-Plot of residuals shows that the classical least squares
residuals are approximately normally distributed, except for one moderately sized outlier
in the left hand part of the left panel (25th observation). However, the normal QQ-Plot of
residuals from the robust fit in the left hand panel shows clearly that the 25th observation
corresponds to an outlier event, and that all the other residuals conform quite well to a

normal distribution.

Normal QQ-Plot of Residuals

Residuals

PREEF]
®25

T T T
2 -1 0 1 2

Quantiles of Standard Normal

Figure 2.1: Normal QQ-Plots for LS and Robust Residuals with original data

Standardized Residuals vs. Index (Time)
0 10 20 30 a0 50
\ L ) | . .

Standardized Residuals

Index (Time)

Figure 2.2: Standardized Residuals vs Index for the LS and Robust fits with Original
data
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The plots of Standardized Residuals versus Index (in this case observation number)
for the LS and Robust fits are shown in Figure 2.2. The horizontal reference lines at +2.5
correspond to tail probabilities of 0.006 for a standard normal random variable. The LS
residuals barely hint the presence of an outlier, corresponding to the 25th observation,
while the robust residuals clearly identify observation 25th as an outlier. These plots are

consistent with the behavior of the normal QQ-Plots in Figure 2.1.

Kernel Density of Residuals
45 10 05 00 05 10
| | . ;

L L L L L
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Figure 2.3: LS and Robust Residuals Density Estimates with Original data

The density estimate in Figure 2.3 provides a much more accurate picture of the
distribution of the error term in the model. The main mode of the density estimate for
both the LS and robust residuals is well centered on zero, and has a single bump in the
left-hand tail reflecting the presence of a single large outlier. Consequently, our original

data has an outlier and this has to be taken into account.

Table 2.2: Outstanding Reserves based on Robust Estimation - Original Data

Robust
Diagonal LS M LAD LTS LMS MM | Adaptive | —O00°

Anova
3001463 0 0 0 0 0 0 0 0

5339085 110586 103441 115638 278009 317029 107555 124637 108809
4909315 481398 508024 608036 590827 713704 519563 524978 557983
4588268 659908 612192 718506 569505 1207232 827843 829983 629323
3873311 1089378 1031823 1456540 1717002 1818476 1180906 1061998 1033773
3691712 1528635 1492761 1801564 2229653 2572737 1433696 1360182 1632835
3483130 2308095 2298118 3065129 3501744 3500711 2339766 2256340 2415429
2864498 3802283 3624321 3997726 3584548 4639652 3800707 3709255 3887952
1363294 4444529 4214877 4798948 4415824 6034796 4402712 4322244 4502493
344014 5043474 4673040 5338526 5179459 7741096 3775148 4862427 5073682
34358090 | 19468286 | 18558601 | 21900617 | 22066571 | 28545434 | 18387899 | 19052048 | 19842279
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Figure 2.4: Outstanding Reserves based on Robust Estimation - Original Data

The results based on LS and robust chain ladder estimation are shown in Tables 2.2
and 2.3. In Table 2.3, we see a difference on the value of the overall reserves based on the
log-linear model (LS value-19468286) and the value of the overall reserves based on the
robust M-estimate (value-18558601), which is due to the robustification of the outlier
event X3¢ with M-estimation. We have similar behavior to MM-estimation producing a
value of the overall reserves (value-18387899). Robust ANOVA estimation produces almost
the same results with LS estimation, which means that Robust ANOVA procedure does
not robustify the outlier event, X3¢, of the original data. Adaptive estimators produce
slightly higher estimations for the ultimate claims and the total reserves compared with
M-estimation. The rest of the Robust LAD, LMS and LTS estimators produce different
values of ultimate claims and total reserves in comparison with LS and M-estimators.
Figure 2.4 shows a summary of the outstanding reserves in a diagram based on LS and

all robust estimators.

Table 2.3: Ultimate Claims based on Robust Estimation - Original Data
Diagonal | LS M LAD LTS LMS MM | Adaptive | “oPUSt
Anova

3001463 | 3901463 | 3901463 | 3901463 | 3901463 | 3901463 | 8901463 | 3901463 | 3901463
5339085 | 5449671 | 5442526 | 5454723 | 5656114 | 5617094 | 5446640,030 | 5463722 | 5447895
1909315 | 5300715 | 5417339 | 5517351 | 5623010 | 5500142 | 5428878,836 | 5434204 | 5467298
1588268 | 5248177 | 5200460 | 5306774 | 5795500 | 5157773 | 5416111,088 | 5418251 | 5217590
3373311 | 4962691 | 4905135 | 5320852 | 5691787 | 5590313 | 5054217,039 | 4935310 | 4907084
3601712 | 5220351 | 5184473 | 5493276 | 6264449 | 5021365 | 5125408547 | 5051804 | 5324547
3483130 | 5791230 | 5328571 | GOO55S1 | G9S3S4l | GOS4S74 | 5370218277 | 5286793 | 5898559
2864498 | 6666790 | 5962831 | 6336235 | 7504150 | 6449046 | 6139216,048 | 6047764 | 6752450
1363204 | 5807834 | 5578172 | 6162243 | 7398000 | 5779118 | 5766006,544 | 5685530 | 5365787
344014 5387504 5017054 5682541 8085110 5523473 4119162,748 5206442 5417696
34358090 | 53826426 | 51938024 | 55280040 | 62903524 | 56424661 | 51767322 | 52431471 | 54200369
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Thus, regression model is equivalent to ANOVA model, robust M-regression produces
different results from those of robust ANOVA (see Remark 2.3) and this is due to the
appearance of outlier events in the original data. This is also evident looking at the
normal QQ-Plots (Figure 2.1).

Remark 2.7. In general, LTS, LMS, MM and Adaptive robust methods are minimally
influenced by outliers in the independent variables space, in the response (dependent
variables) space, or in both. But these methods provide unreliable results in cases where
the independent variables are only dummy variables (there are not leverage points in
the data), as it is in our loss reserving estimation. This is due to the fact that the
robustification of the design matrix with dummy variables may affect the estimation of

the regression coefficients, (see Rousseuew, 1987).

2.3.1.2 Diagnostics and Robust Loss Reserving Estimation with Data with
1 Artificial Outlier

We multiply the X4 4 = 1562400 value by 10 in order to create an artificial outlier.

Normal QQ-Plot of Residuals
2 -1 0 1 2
L s s

L s s s s
1 Robust

Residuals

@25

Quantiles of Standard Normal

Figure 2.5: Normal QQ-Plots for LS and Robust Residuals with 1 artificial outlier

According to Figure 2.5 we see that for the classical LS the residuals are approximately
normally distributed, except from one moderately sized outlier, corresponding to the
31st observation which is tenfold the initial loss of the (4,4) cell of the original run-off
triangle and two marginal outliers in the left hand part of the left panel. However, the

residuals QQ-Plot from the robust fit in the right hand panel confirms that there are two
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residual outliers, corresponding to the 31th and 25th observations and that all the other
residuals conform quite well to a normal distribution. Similar conclusions we may obtain

if we plot Standardized Residuals versus Index or density estimate plot.

Table 2.4: Outstanding Reserves based on Robust Estimation with 1 artificial outlier

Robust
Diagonal LS M LAD LTS LMS MM | Adaptive | 000
Anova

3901463 0 0 0 0 0 0 0 0

5339085 135125 103436 137247 315003 235655 120598 120598 108809
4909315 567567 508005 699543 709222 568192 504477 504477 560252
18649868 1073178 612170 821910 1199751 566930 12953580 | 12953580 558916
3873311 1219207 1031787 1656235 1807307 1227695 1033734 1033734 1047718
3691712 1664314 1492709 2045232 2557002 1808461 1333650 1333650 1676244
3483130 2455135 2298040 3477598 3479283 2367687 2207391 2207391 2497626
2864498 4977126 3624194 4550623 4611084 2724235 3462214 3462214 3760173
1363294 5734526 4214717 5524428 5997223 3738782 4124256 4124256 4389823
344014 6691870 4672813 6383944 7692107 4495872 4491231 4491231 4970616
48419690 | 24518048 | 18557870 | 25296760 | 28367982 | 17733508 | 30231131 | 30231131 | 19570177
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Figure 2.6: Outstanding Reserves based on Robust Estimation with 1 artificial outlier

The outstanding reserves and ultimate claims are illustrated in Tables 2.4 and
2.5. There is a significant difference between the LS and robust estimation. With the
appearance of the artificial outlier X, , = 15624000 the estimated reserves (Table 2.4)
and ultimate claims (Table 2.5) calculated using robust M-estimation and robust ANOVA
are similar to the estimated ultimate claims and reserves based on the original data. LTS-
estimators produce outstanding reserves 17733508, while the rest of robust estimators
(LAD, LMS, MM and adaptive) produce much higher ultimate claims and total reserves
(see Table 2.4). Figure 2.6 shows a summary of the outstanding reserves based on LS

and all robust estimators.
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Table 2.5: Ultimate Claims based on Robust Estimation with 1 artificial outlier

Diagonal LS M LAD LTS LMS MM | Adaptive | oPUSt

Anova
3001463 | 3001463 | 3001463 | 3901463 | 3001463 | 3901463 | 3901463 | 3901463 | 3901463
5330085 | 5474210 | 5442521 | 5476332 | 5654088 | 557470 | 5450683 | 5450683 | 5447895
4909315 | 5476882 | 5417320 | 5608858 | 5618537 | 5477507 | 5413792 | 5413792 | 5469567
18649868 | 19723046 | 5200438 | 5410178 | 10849619 | 10216798 | 17541848 | 17541848 | 5147184
3873311 | 5002518 | 4905008 | 5520546 | 5680618 | 5101006 | 4907045 | 4907045 | 4921029
3691712 | 5356026 | 5184421 | 5736944 | 6248714 | 5500173 | 5025362 | 5025362 | 5367956
3483130 | 5938265 | 5328492 | 6508050 | 6962413 | 5850817 | 5237843 | 5237843 | 5980757
2864408 | 7841624 | 5062703 | 6889132 | 7475582 | 5588733 | 5800723 | 5800723 | 6624670
1363204 | 7007820 | 5578011 | 6887722 | 7360517 | 5102076 | 5487550 | 5487550 | 5753116
344014 | 7035884 | 5016827 | 6727958 | 8036121 | 4830886 | 4835245 | 4835245 | 5314630
48419690 | 72937738 | 51937293 | 58676183 | 76787672 | 66153198 | 63610554 | 63610554 | 53928267

2.3.1.3 Diagnostics and Robust Loss Reserving Estimation with 2
Artificial Outliers

By multiplying the value of X;, = 766940 by 10 we create the second outlier event.
Figure 2.7 shows that the residuals are approximately normally distributed, except for
two moderately sized outliers, corresponding to the 31st and the 2nd observation which
is now tenfold the initial losses of the (4, 4) and (1, 2) cells of the original run-off triangle,
in the right hand part of the left panel. The normal QQ-Plot of residuals from the robust
fit in the right hand panel confirms that there are two residual outliers, corresponding
to the 31th and 2nd observations, and one marginal outlier in the left hand part of the
right panel corresponding to the 25th observation. All the other residuals conform quite

well to a normal distribution.
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Figure 2.7: Normal QQ-Plots for LS and Robust Residuals with 2 artificial outliers
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Table 2.6: Outstanding Reserves based on Robust Estimation with 2 artificial outliers

Robust
Diagonal LS M LAD LTS LMS MM | Adaptive | 0
Anova
10803923 0 0 0 0 0 0 0 0
5339085 120816 99836 155056 284415 522100 133442 133441 111958
4909315 538249 501073 773113 644780 1057266 544647 544644 572162
18649868 1025028 601180 904656 1098828 1634639 13828866 13828803 569959
3873311 1171249 1013311 1458875 1668391 2266398 1110943 1110938 1066561
3691712 1601241 1470983 2238977 2380349 2963473 1428205 1428199 1705895
3483130 2361095 2280379 3805330 3267824 3740338 2361984 2361973 2541942
2864498 4784998 3598542 4991035 4371641 4622958 3712952 3712936 3831037
1363294 5367285 4171748 5933694 5742149 5678468 4464882 4464861 4486581
344014 7824554 4648719 7251634 7441472 7226432 4759120 4759092 5018421
55322150 | 24794515 | 18385771 | 27512369 | 26899850 | 29712071 | 32345040 | 32344888 | 19904516
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Figure 2.8: Outstanding Reserves based on Robust Estimation with 2 artificial outliers

In Tables 2.6 and 2.7 we observe that in the presence of the 2 artificial outliers in the
data, the estimated ultimate claims and reserves calculated using robust M-estimation
and robust ANOVA, produce values similar with values those obtained with 1 artificial
outlier (Tables 2.4, 2.5). The rest of robust estimators, in comparison with robust M-
estimation and robust ANOVA, produce much higher values for the ultimate claims and
the total reserves. Figure 2.8 shows a summary of the outstanding reserves in a diagram

based on LS and robust estimators.
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Table 2.7: Ultimate Claims based on Robust Estimation with 2 artificial outliers

Diagonal LS M LAD LTS LMS MM | Adaptive | OPUSt
Anova
10803923 | 10803923 | 3901463 | 3901463 | 10803923 | 10803923 | 3901463 | 3901463 | 3901463
5339085 | 5459901 | 5438921 | 5494141 | 5623500 | 5861185 | 5472527 | 5472526 | 5451043
4909315 | 5447564 | 5410388 | 5682428 | 5554005 | 5966581 | 5453962 | 5453959 | 5481477
18649868 | 19674896 | 5180448 | 5492924 | 19748696 | 20284507 | 18417134 | 18417071 | 5158227
3873311 | 5044560 | 4886622 | 5332186 | 5541702 | 6139709 | 4984254 | 4984249 | 4939872
3691712 | 5202953 | 5162695 | 5930689 | 6072061 | 6655185 | 5119917 | 5119911 | 5397607
3483130 | 5844225 | 5310831 | 6835782 | 6750954 | 7223468 | 5392436 | 5392425 | 6025072
9864498 | 7649496 | 5937051 | 7320544 | 7236139 | 7487456 | 6051461 | 6051445 | 6695535
1363294 | 6730579 | 5535042 | 7206988 | 7105443 | 7041762 | 58328176 | 5828155 | 5849875
344014 | 8168568 | 4992733 | 7595648 | 7785486 | 7570446 | 5103134 | 5103106 | 5362435
55322150 | 80116665 | 51765194 | 60891792 | 82222000 | 85034221 | 65724463 | 65724311 | 54262607

At this point it is appropriate to estimate the prediction errors for the LSE and
the most stable robust estimation procedures, the M-estimation and robust ANOVA.
Table 2.8 shows the individual standard errors for the LS-estimation, M-estimation and
robust ANOVA, with the presence of no-outliers, 1-outlier and 2-outliers. The overall
standard errors (and % error) are presented at the end of the Table 2.8. We see that the
M-estimation method has a lower standard error than LSE and robust ANOVA.

Since the influence of an outlier depends on its location on the triangle, it is appropriate
to see the behavior of the run-off triangle in the presence of an outlier in each location.
Therefore, following the idea of Verdonc et al. (2009), we contaminate the data by
multiplying each observation (cell) by 10 and observe the outstanding reserve and

standard errors at each outlying observation, separately.

In the following we compare the values of reserves and standard errors of LS-estimation
with the values of M-estimation and robust ANOVA. The first line of Table 2.10 illustrates
the values of reserves and total standard errors for the 3.2.1 and M-estimation and robust
ANOVA based on the original data. From the second line and on, the first column shows
which observation (cell) was contaminated (multiplied by 10) and can be considered as

an outlier.

As we can observe in Table 2.8, the ordinary LS-estimation is very sensitive to the
presence of outlier events in the data producing very large reserves and standard errors
in comparison with M-estimation. In the presence of large claims (outliers) most of the
times we have an overestimation of the reserves, but there are cases where we have an

underestimation of the reserves.
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Table 2.8: Standard Errors for future values @

7]7

for LS, M and Robust ANOVA

No outlier One outlier Two outliers
Cell LS M R-ANOVA LS M R-ANOVA LS M R-ANOVA
6’10,2 370295 | 211105 955014 592553 | 210995 955014 1437222 | 206868 945019
69,3 310075 | 183660 1074261 535059 | 183567 1074261 714244 | 177395 1093571
6‘10,3 383365 | 220147 982683 614711 | 220032 982683 1137745 | 213173 992862
CAYgA 314663 | 177638 1242469 724450 | 177549 1104180 1003373 | 172666 1120888
6914 323738 | 181306 1095556 778431 | 181214 973619 1027121 | 175667 992730
610,4 397117 | 215652 1002163 886967 | 215539 890621 1622290 | 209471 901307
6715 149949 | 95642 640151 303725 | 95594 662566 312177 | 93904 671294
6815 180881 | 113327 701122 296765 | 113270 704577 406547 | 111177 715715
6*915 184743 | 114831 618219 316514 | 114773 621266 413048 | 112292 633883
6’10,5 224545 | 135354 565518 357218 | 135283 568305 646034 | 132696 575508
CAY&G 91859 | 59267 518555 167016 | 59238 539466 191889 | 57599 546952
(7716 106201 | 69236 563792 212949 | 69201 590578 216359 | 67383 599775
CA”&G 127205 | 81461 617489 206582 | 81420 628025 279735 | 79217 639464
@gﬁ 128788 | 81828 544476 218377 | 81786 553766 281662 | 79319 566350
Choe | 154760 | 95374 498061 243570 | 95324 506559 435257 | 92684 514194
6’,7 81385 | 48214 329211 139013 | 48190 340278 169435 | 46519 344685
CA’(;; 87517 | 52415 354849 157314 | 52388 369203 178302 | 50541 374541
@717 100473 | 60804 385805 199161 | 60773 404183 199607 | 58714 410713
@&7 119312 | 70930 422551 191531 | 70894 429811 255821 | 68438 437891
CA'W 119473 | 70474 372588 200210 | 70438 378989 254684 | 67780 387824
6‘10,7 141424 | 80931 340826 219870 | 80888 346681 387389 | 78035 352109
@478 56719 | 32366 210590 149484 | 32350 186862 180872 | 31167 189642
@578 65186 | 38024 235768 122428 | 38005 236518 146522 | 36504 240189
CA'(,-A,s 69602 | 41046 254128 137555 | 41026 256622 153079 | 39381 260993
Crs | 79221 | 47210 276298 172635 | 47186 280936 169873 | 45360 286200
Css | 93052 | 54477 302613 164192 | 54449 298750 215294 | 52300 305138
@978 91821 | 53344 266832 169092 | 53316 263425 211130 | 51049 270250
6’10,8 106407 | 59988 244085 181669 | 59956 240969 314044 | 57553 245362
6379 107944 | 71435 439640 209305 | 71399 441428 248657 | 69060 449659
64_,9 98242 | 57707 329923 265440 | 57677 293145 311705 | 55412 298890
65_,9 112086 | 67305 369367 215785 | 67271 371044 250614 | 64432 378556
66_9 118637 | 72026 398133 240300 | 71989 402584 259484 | 68909 411345
6719 133552 | 81939 432864 208222 | 81897 440727 284709 | 78505 451072
é&g 154585 | 93185 474092 279437 | 93137 468672 355438 | 89209 480921
6(919 149385 | 89376 418034 281700 | 89329 413256 341114 | 85289 425934
610,9 167477 | 97282 382398 292457 | 97230 378027 489941 | 93072 386709
6’2)10 42191 | 24459 108810 87786 | 24446 108810 98165 | 23034 111958
6’3,10 39275 | 25409 118343 81885 | 25396 118824 90246 | 24061 122502
6’4,10 35464 | 20368 88809 102994 | 20357 78909 112171 | 19157 81428
6’5,10 40092 | 23542 99427 82932 | 23530 99878 89308 | 22075 103131
CA’GJO 41954 | 24911 107170 91270 | 24898 108368 91360 | 23345 112064
(77,10 46524 | 27923 116519 111526 | 27908 118635 98668 | 26204 122887
(7&10 52719 | 31096 127617 102235 | 31080 126158 120458 | 29160 131019
(79,10 49286 | 28868 112527 99591 | 28852 111241 111628 | 26984 116039
CAHOJO 52004 | 29611 102934 97009 | 29595 101758 150142 | 27751 105353
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Table 2.9: Standard Errors for LS, M-estimation and Robust ANOVA

Least Squares M Huber Estimator Robust ANOVA

Outlier | Reserves SE % SE | Reserves SE % SE | Reserves SE % SE
- 19468286 6101444  31.34% | 18558601 3612493  19.47% | 19842279 2964004 14.94%
Cia 18308221 8826406 48.21% | 18597639 3619389 19.46% | 20719948 3268648 15.78%
Coq 17787293 7691080 43.24% | 17744100 3477427 19.60% | 20223446 3457358 17.10%
Csq 18115239 7519667 41.51% | 17568151 3079402 17.53% | 19454268 3025417 15.55%
Cia 18817623 8247422 43.83% | 18141553 3763249  20.74% | 20542392 3641893 17.73%
Cs4 19878945 9301157 46.79% | 18380006 3462032 18.84% | 20387511 3225948 15.82%
Csa1 20191754 8931295  44.23% | 18493494 4039739  21.84% | 20303095 3364249 16.57%
Cra 21494476 9377440  43.63% | 18309534 3176384  17.35% | 20309336 3396320 16.72%
Csq1 23848448 9026257 37.85% | 19158871 3596848 18.77% | 20615596 3445356 16.71%
Coq 30005476 11647462 38.82% | 27389972 5274105 19.26% | 20386257 3389146  16.62%
Cho 64862426 24078797 37.12% | 60614855 13918539 22.96% | 66598545 20895598 31.38%
Cia 19577281 9252449  47.26% | 18392957 3576225  19.44% | 20214902 3144311 15.55%
Coa 19345924 8574995  44.32% | 18096253 3337792 18.44% | 20130808 3310026  16.44%
Cs 20413645 9626407 47.16% | 18144658 3269378  18.02% | 20264828 3384797 16.70%
Cya 21275583 10606917 49.85% | 18552876 3610718 19.46% | 19910049 2957072 14.85%
Cs 20364569 8362497 41.06% | 18132834 2903904 16.01% | 19703360 2925098 14.85%
Cs2 21668208 9632939  44.46% | 18515817 3385192 18.28% | 20264707 3365793 16.61%
Cro 22430981 9148969  40.79% | 18736623 3103675 16.56% | 19986587 3004514 15.03%
Csa 25937515 10668600 41.13% | 19499438 3250120 16.67% | 20190244 3223008 15.96%
Cozo 31855834 12800182 40.18% | 28041595 5593105 19.95% | 19957068 3186062 15.96%
Ci3 20117650 8733421  43.41% | 18612355 4385652 23.56% | 20156303 3335526 16.55%
Cos 20542651 9147554  44.53% | 18541678 3971289  21.42% | 20108583 3238736 16.11%
Cs3 21310177 9686295 45.45% | 18462838 3812473  20.65% | 20145591 3268911 16.23%
Cys 21477590 9504400 44.25% | 18837637 4135333 21.95% | 19948358 3061940 15.35%
Cs3 22343862 10223909 45.76% | 18747839 3990133 21.28% | 20176181 3292139 16.32%
Cs3 22343862 10223909 45.76% | 19047612 4157201 21.83% | 20235529 3272080 16.17%
Crs 24310768 10807611 44.46% | 19076085 4097259  21.48% | 20035417 3242712 16.18%
Cs3 28014262 12603185 44.99% | 18761047 3656633 19.49% | 19142946 2882014 15.06%
Cha 20630611 8046460 39.00% | 18687793 3909517  20.92% | 20267021 3436755 16.96%
Coy 22249695 10461429 47.02% | 18684856 3937601 21.07% | 19876576 3036550 15.28%
Cs4 22667283 10406643 45.91% | 18705510 3832001  20.49% | 20093135 3172822 15.79%
Cya 24518048 13000682 53.02% | 18557870 3609162 19.46% | 19570177 2908006 14.86%
Cs 4 22779253 9385193  41.20% | 18901527 3378486  17.87% | 20061531 3052453 15.22%
Co4 23456382 9576789  40.83% | 19155170 3505763 18.30% | 20461500 3338119 16.31%
Cra 25259838 10803101 42.77% | 19510726 4429032 22.70% | 20223866 3326220 16.45%
Cis 22429788 10811508 48.20% | 18540276 3580452 19.31% | 20065393 3138556  15.64%
Cas 21357813 8724737 40.85% | 18721174 3222521 17.21% | 20129514 3217831 15.99%
Cs5 23550396 11611796 49.31% | 18536008 3386596  18.27% | 20026766 3237246 16.16%
Cys 21508813 7689022 35.75% | 19086752 3294073 17.26% | 20200353 2998589  14.84%
Cs 5 23346284 10065776 43.12% | 18874771 2646329  14.02% | 19780274 2904911 14.69%
Co5 24869408 11647766 46.84% | 18784258 3702816 19.71% | 19744418 3167619 16.04%
Cie 23951471 12916930 53.93% | 18581943 3615560 19.46% | 19641973 2936141 14.95%
Cop 21733141 8955657  41.21% | 19289723 3924210 20.34% | 20369335 3186426 15.64%
Cs 20575678 6049331  29.40% | 18938587 3358215 17.73% | 20086275 3192376 15.89%
Cyp 23437188 10544310 44.99% | 19215998 3494730 18.19% | 20400990 3339052 16.37%
Cs6 24484074 11528165 47.08% | 18748141 3590374 19.15% | 20023384 3201374 15.99%
Chry 21313505 7539055 35.37% | 19721845 4310623 21.86% | 20524783 3420288  16.66%
(&Y 24033738 11792284 49.07% | 18675868 3632869 19.45% | 19885923 3201931 16.10%
Cs7 24738817 12177617 49.22% | 18898817 3672506  19.43% | 19862547 3273394  16.48%
Cyr 22958708 8709664 37.94% | 20252613 4240824  20.94% | 21069997 3198709 15.18%
Cis 22430392 8651428  38.57% | 19540360 4759587  24.36% | 20419567 3403837 16.67%
Cog 23474250 10085995 42.97% | 18843755 3796999  20.15% | 20296462 3472717 17.11%
Css 24485861 10962561 44.77% | 18793893 3587348  19.09% | 20217493 3416093  16.90%
Clo 27410145 10466799 38.19% | 25692797 6379276  24.83% | 20900218 3566671 17.07%
Cayg 28587845 12135176  42.45% | 25482099 5366916  21.06% | 55609323 13197632 23.73%
Ci0 28171197 9697075  34.42% | 26899234 5736970  21.33% | 29119964 5440289 18.68%
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A similar phenomenon appears if we divide each observation by 10. For example, if
we divide the value of the cell Cy 4 = 1562400 by 10 the value of the outstanding reserves
becomes lower (18351108), but if we divide the value of the cell Cy5 = 766940 by 10, the
value of the outstanding reserves becomes higher (19292133).

Huber M-estimation robustifies very well most of the outliers except in the upper
right corner that contains the cells (observations), Cig1, Coo and Cy; observations, and
the lower left corner that contains the cells, C} 9, Co9 and C} 1y (see observations in
red color in Table 2.1). Verdonck et al. (2009) faced similar situations applying robust
generalized linear model techniques and explained why robust methods can fail in some
borderline cases and presented some ad-hoc solutions. Venter and Tampubolon (2010)
illustrated that these observations on the upper right corner and on the lower left corner
tend to have high impact on the estimation of outstanding reserves and suggested models
to limit the impact of these cells.

Similar behavior appears with the application of robust Anova that produces slightly
different values than M-estimation, but with similar behavior in the upper right corner
and the lower left corner. The values of standard errors based on robust Anova are
a bit lower than the standard errors based on M-estimation, in comparison with LS
estimation that produces much higher values of standard errors than M-estimation and

robust Anova.

Remark 2.8. At this point, for comparison reasons, we may suggest as the true value
of outstanding reserves a) the reserves with the original data (no artificial outlier)
based on M-estimation adding the value of the bias term due to the robustification
(18558601+41073464=19632065), or b) the corresponding value based on robust ANOVA
(19842279+459483=20301762), or c) the corresponding value based of LS - estimation
(19468286), see Table 2.2. Of course, experts’ opinion is necessary for the ultimate decision

on the true value of outstanding reserves.

2.4 Concluding Remarks

In this chapter we have shown how robust estimation techniques can be incorporated
in a loss reserving framework, providing a fair value for the estimation of outstanding
reserves. An overview of the main robust estimators has been given in the first part of
the chapter. Least squares estimators and robust estimators were applied to Ashe and
Taylor data. Table 2.10 presents an overview of the robust loss reserving estimation in a

log-linear model with the original data (without artificial outliers) and the presence of 1
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and 2 additional (artificial) outliers, based on each individual robust estimator presented
in Section 2.2. The data was tested in detail and few diagnostic plots were presented for
the investigation of outlier events. The values of claim reserves were presented and the
sensitivity of log-linear loss reserving model was shown by embedding one or two artificial
outliers to the data set. Implementing the data set we have seen the superiority of robust
M-estimator and Robust ANOVA in comparison with the least squares estimator and
the rest of robust estimators for claims reserves estimation. With the original data and
the presence of 1 and 2 outliers, the values of outstanding reserves estimated based on
robust M-estimates are almost the same to the value of outstanding reserves estimated
based on non-robust estimation techniques with the original data (pointing out again the
existence of 1 outlier in the original data). In general, M-estimation and robust ANOVA
show a consistency on the expected ultimate losses and reserves with the existence of
these two artificial extreme events. Robust estimators that are robust to outliers in
the design matrix space, such as the LMS, LTS, MM and adaptive estimators may be
unreliable for the loss reserving estimation with the presence of outlier events, which
means that these estimators robustify also the independent variables (in our case dummy
variables) and are not appropriate for the robust loss reserving estimation. Since the
influence of an outlier depends on its location on the triangle, it is appropriate to see
the behavior of the run-off triangle in the presence of an outlier in each location. As
expected, the Log-linear LS estimation cannot handle a single outlier and most of the
times produces an overestimation of the outstanding reserves, although some times we
have an underestimation of outstanding reserves, depending on the location of that
outlier. The loss reserving estimation based on M-estimation and robust ANOVA works
well independently of the location of the outlier (large or catastrophic event) in the
triangle, except in the observations in the upper right corner and in the lower left corner
of the triangle. Special attention must be paid to these sensitive observations, which
must be treated (diagnostic tests) separately, in order to obtain a complete robustness
of the loss reserving estimation. The same behavior is observed if artificial outliers are
multiplied by 100. M-estimation and robust ANOVA work also very well for the loss
reserving estimation if we apply an ordinary linear regression model instead of a log-linear

regression model.

The advantage of applying M-estimators and robust ANOVA for the estimation of
the outstanding reserves is that they are simple, can be computed in much less time than
other robust estimators and there is a wide literature on M-estimation for regression and

diagnostic tools as well. The disadvantage of M-estimators is that they don’t enjoy high
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breakdown point (BP) and we have to take into consideration the number of outliers in

the data.

Table 2.10: Overview of Loss Reserving Estimation

Behavior of LS and Robust Estimators in the presence of 0,1,2 outliers

Models Number of outliers | Overview Explanation
LS-Estimates 0 VV VYV OK Reserves (R)
LS-Estimates 1 \% High values of R
LS-Estimates 2 X Very High values of R
M-Estimates 0 V'V VvV OK Robust R
M-Estimates 1 V'V VvV OK Robust R
M-Estimates 2 V VWV OK Robust R

LAD-estimates 0 \Y High values of R
LAD-estimates 1 \Y High values of R
LAD-estimates 2 \Y High values of R
Robust ANOVA 0 VvV VYV OK Robust R
Robust ANOVA 1 V'V VV OK Robust R
Robust ANOVA 2 V V VV OK Robust R
MM-Estimates 0 VVV OK Robust R
MM-Estimates 1 X Very High values of R
MM-Estimates 2 X Very High values of R
Robust Adaptive 0 VVV OK Robust R
Robust Adaptive 1 X Very High values of R
Robust Adaptive 2 X High values of R
LTS-estimates 0 \Y, High values of R
LTS-estimates 1 X Very High values of R
LTS-estimates 2 X Very High values of R
LMS-estimates 0 X Very low values of R
LMS-estimates 1 X Very High values of R
LMS-estimates 2 X Very High values of R

Another advantage involved in the use of robust regression is the availability of R

packages for the performance of different robust regression procedures. The R-project

has the additional advantage of being interactive with other spreadsheet programs (excel)

for better organizing and presenting data and results. It should also be emphasized that

the robust statistical procedure should be followed by the practical knowledge of the

actuary for estimating the outstanding reserves. Of course, the bias term which is due to

the robustification of the original values of the triangle, must be added at the end to the

value of the ultimate claims to obtain total unbiasedness.






CHAPTER

Random Coefficients Regression Models

n insurance loss reserving applications, the concept of constancy of regression
Icoefﬁcients (RC) in consecutive observations is a matter of discussion. In some
situations in which the coefficients are random, this happens due to the fact that the
development of claims varies with accident years. The model of RC frequently implies
to various decision making problems. As far as the usual regression model is concerned,
the decision will have an effect only in the average outcome, while in the RC model not
only the average but also the variance of the outcome will be affected. In this chapter,
we illustrate two models, the individual purely random coefficients model and the RCR

cross effect model.

3.1 Individual Random Coefficients Model

In general, in loss reserving estimation, we make the assumption that the development
factors (DFs) remain the same for every accident period. Here, we relax that assumption
in order to permit the DFs be subject of the random variation. Verrall (1994) suggested
a model in order to permit the evolution of the DFs to evolve in a recursive way. Next,
we use the model of Hildreth and Houck (1968) where the response parameters in a
GLM are supposed to be random variables and we can estimate the distribution’s mean.
Swamy (1974), Raj and Ullah (1981), and Hsiao (1986, 2003) have studied RC models in
more details.

The linear regression model with many explanatory variables and RC coefficients is
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given by

p p
Yi=Bu+ Z(ﬁk + ki) Xpi + voi = 1 + Z BeXpi +ug, 1=1,...,n, (3.1)

k=2 k=2

where Y is the dependent variable and the Xs are the independent variables. We make
the assumption that vp; are independent variables with zero mean and variance o3,
while (5, and vy; are the the two parts of the parameters, with S;’s be the RC with
E(B1i) = By, for all i, Var(By;) = Var(vy;) = o3, for all i, or Var(vy;) = E(v};) = o} for
all i, Cov(Bgi, Brrir) = 0, or Cov(vg;, vg) = 0 for ¢ # @' and k # k', where ¢/ = 1,....,n
and k' =1,...,p.

In (3.1) we also have u; = vo; + v1; + Yh_o XgiUki, with E(u;) = 0, Cov(u;, uy) =
0 for i # i and Var(u;) = (62 + 03) + S h_, 0 X2 = \;. For n observations (3.1) is
written as

Y = X3 + u, (3.2)

where E(u) = 0 and A = E(uu') = diag(M1, ..., \un). The regression coefficients
B = (B, B2, .-, Bp) and their variance are estimated by

B=(XA'X)'X'A'Y, Var(B) = (X' A' X)L, (3.3)

The fact that o7’s are not known, leads to an unknown A. So, in (3.3), we use an estimator
of A. Hildreth and Houck (1968) suggested a method which is shown below.

Let r=Y — Xb = MY = Mu be the least square residuals and b is the least
squares estimator of 3, i.e., b= (X X)'X'Y and M =TI — X (X X)'X'. Then we
have Er; =0 and

(2

E(r}) = Var(r;) Zm” 4 de. E(r)=MXo, (3.4)

nand & = (0%,...,02)". We use  in

where # = (r},...,r2)", M = M x« M = {m?}; j—1
order to symbolize the Hadamard matrix product, i.e. for two matrices A = {a;;}i j=1,.n

and B = {b;;}i j=1,.n, A* B = {a;;b;;}ij=1,.n- Then (3.4) can be written as

.....

Fr=MXo+w=G.0+w. (3.5)

The formulation of (3.5) is similar to a regression LSE model with dependent variable
7 and independent variable &, with G = M X, E (w) = 0 and the variance-covariance
matrix is Cov(w) = E(ww') = 2Q, with Q = E(rr') = E(Muu' M) = MAM. Then
the generalized LSE model of ¢ in (3.5) is given by (see Hildreth and Houck, 1968)

6=(G"'q)"'GTO (3.6)
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where
Q=00 with Q=MAM (3.7)

and A = diag(\i1, ..., A1), with A; = 62 + 3P 62X 2.

3.1.1 Actual Response Coefficients in a Purely Random
Coefficients Model

Sometimes it is important to make predictions about the individual part of the actual
response coefficients 8, in order to derive all needed information about the the behavior
of all claims separately. Griffiths (1972) studied the actual response coefficients and
showed that the best estimator for them is not the same as the best estimator of the
mean response coefficients.

The vector B in (3.3) contains the mean response coefficients and the response

coefficients are given by
b=Lg+w, (3.8)

where L is a p X np matrix, b a np x 1 vector defined respectively as

11...1

AN

b = (by,by,...b,), with by, = (big,bog, ..., bt

and

! I /

v = (vy,V,,...

!

,v,), with Vg = (V1k, Vaks -oey Uni)- (3.10)

Then we obtain

0'111

’ O'QQI

A=FE(vv)= : (3.11)

oppl

If X} = diag(Xix, Xok, ..., Xnx) and Z a n X np matrix defined as

Z = (Xl,XQ,...,Xp) (312)
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then
w=2Zv and A =E(uu)=ZAZ (3.13)

Following Griffiths (1972), the kth diagonal element of V', estimates the errors derived

by the kth coefficient according to the matrix form
O = o XA (3.14)
When estimations of the disturbances are included in (3.14), it becomes
v =AZ, A . (3.15)
Then, we obtain an estimator of b as follows

b = LB+
= LIX'A'X)'XA'Y + AZ' A4, (3.16)

with @ = [I — X(X' A" X)) 'X'AY, bis

b = LIXA'X)'XA '+ AZ A T - X(X' A X) ' X' A Y.
(3.17)

3.2 Random Coefficients Model in Loss Reserving

Procedure

The run-off triangles (see Table 3.1) are divided into cells where each cell is the cor-
responding payment arising from a specific accident year i € {1,--- ;n} (rows) and a
development year j € {1,---,n} (columns). The accident year shows the losses that
occurred during a specific period while the development year specifies after how many
years of the claim reported it is getting settled.

The calendar year k is the diagonal element of the triangle and is defined as k =7 + 7,
with k € {1,--- ,n}. Then Y;; is defined as the total incremental payments in accident
year ¢ with development j, where i+ 7 < n because the calendar ¢+ 7 > n has not occurred
yet. Some reserving methods use the cumulative payments S;; where S;,, = >7_; Vi,
with S; o = Yi 9. We will denote with D,, the available data up to period n (the known

section of the triangle)
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Table 3.1: Run-off Triangle of Paid Claims

Accident Development Year j
Year ¢ 1 2 e j e n-1 n
1 Yiin Yip -+ Y o Yinor Yig
2 Yor Yoo oo Yoy o oo Yau
1 Yi,l Yz‘,n+1—z‘
n Yn,l

For accident year i, we want to get the best estimate for the ultimate amount of payment,
ie.

Sie = }g{}o E[Si| D] = E[Si 0| Dn]

and the required reserve will be calculated as the total payment amount minus the

payments done at the specific year
R = g?;oz — Sin—it1-

Finally, a critical quantity is the (total) uncertainty, which is the variance of the total
year amount of payment Var(S;.|D,) or Var(g’;f;oi). In our examples, we make the
assumption that all claims have a lifetime of n years. After n years all claims are closed,
which means that Y; j~, = 0.

The RCR model defined in (3.1) in connection with Table 3.1 is

Yl,fj 1 X11 Xp—l,l 51 Xll 0o . . . 0 vl
0 . 0
= -
Yn,ﬁj 1 Xln prl,n ﬂp 0 0o . . . X'/n, (O
(3.18)

or compactly
Y = XB+ D,v, (3.19)

where
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(i) Y = (Yi<j, -, Yn<;) isan(n+1)/2 x 1 vector of the incremental claims at the

accident year ¢ and development year j,

!

(i) X = (X4,...,X.) isan(n+1)/2 x p design matrix, with p = 2n — 1, reflecting

the position of incremental claims in Table 3.1,
(1i1) B = (B, .-, 6p)', with p = 2n — 1, are unknown parameters,

(iv) D, is a diagonal block of Xs, in the right hand side of (3.18) and X, is the i-th

row of the design matrix X,

’

(v) v = (v],...,v,) isan(n+1)/2 x 1 vector, with v; = (vi4, .., V) -

Remark 3.1. The magnitude of p depends on the choice of the appropriate design matriz
that reflects the position of the claims in the run-off triangle (see Christofides, 1990).

3.3 RCR Cross Effect Model

In the following, we present a multivariate regression model with random coefficients
that handles multiple run-off triangles from different lines of business. Here, we have a
generalization of the chain ladder model to a multivariate settings where multiple run-off
triangles are estimated simultaneously. The model is defined for the i** cross-section unit
(i*" triangle) different years of observations. Hence, we consider a RCR model with cross
effects as developed by Swamy (1971, 1974), it allows for differences in behavior over
multiple run-off triangles (units) and within each unit (triangle) the data are varying
over time. The dependent variable is the claim incurred experience for a certain unit
(triangle) and the time period and the explanatory variables are dummy variables that
show the position of incurred (or paid) claims in a chain ladder representation. Swamy
(1971) studied the regression coefficient vector supposing that it is a random quantity

and showed that they are similar to the Bayesian ones. The model is defined as

P
Yii = Z Brit X it + Wit (3.20)
k=1
with
Brit = Bri = Bk + €xi (3.21)

where ¢ = 1, ..., N are the cross-sectional units, t = 1,...,T represents the time period,

Y;, is the dependent variable for the i** individual at time ¢, Xj;; is the value of the k"
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independent variable for the ¥ individual at time ¢ and Bj;; shows the response of Yj
to a unit change in Xy;. Then, n cross-sectional groups with 7" known data are used.
The disturbances u;; in (3.20) are all independent such that F(u;) =0 and V (u;) = o2
The B4 are random parameters with mean (3, and variances o7, i.e. E(e;) = 0 and
V(i) = 0. Also Cov(ep, ery) = 0 for I #£ 4,1 =1,...,N. The €; and u; are jointly

independent. Then, the model (3.20) is (Swamy, 1974)

p
Yii = Z Be Xkt + wit, (3.22)
k=1
where »
Wit = Z €i X kit + Uit (3.23)
k=1

If we now write (3.22) in matrix notation for the i'" cross-section unit as

/ /

where Y; = (Yi1,....,Yir)', B = (81, 5) s, Xi = (X1, X;7) a T x p matrix and
w; = (Wi, ..., wir) , then E(w;) = 0 and

Q, = BE(w; w)) = 3.25
(wi w,) 0, if 144, (3:25)

, { o2+ X, X, if l=4,
where X is a diagonal matrix with elements 11, ..., oxx. For the full sample of observations,
(2 is a block-diagonal matrix with blocks €24, ..., €2,,. Now let Bl be the i** ordinary least
squares given by Bl = (X;Xi)_lX;YZ-, then the estimator of 3, is known as the GLS

estimator and is calculated by

BGLS = ZAiBm (3-26)
=1

which is a matrix of weighted combination of ordinary least squares estimator BZ of B,.
Following Greene (2000, p. 610) the matrix of weights is

-1

A = Lz<z+af<xéxl>1>1] 24 02X X))

=1
N ’ /

= [ Xiﬂi_lXi] X' X, (3.27)
i=1

such that 3~ | A; = I. The GLS estimator of B is given by

Bas = (X' Q' X)' X' QY (3.28)
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and the variance-covariance matrix of 8 then is given by

COV(BGLS) = [Z(E + Uf(X;Xi)—l)—ll — (X/Q—lX)—l. (3.29)

=1

The unknown matrix X can be estimated as

s- L yas-Ltyays] - Lyerxx) @
= R — — - — 0; i) .
n—1[=""" NZ ' N = '
where
‘w; 1 , ,
52 = Willi _ YT - X(X,X,)"' X,]Y.. (3.31)

" T—-n T-n

Sometimes it is useful to predict the individual component 3,, because it provides not
only information on the behavior of each individual, but also a basis for predicting future
values of the dependent variable for a given individual. Swamy (1970, 1971) has shown
that the best linear unbiased predictor, conditional on given 3,, is the least-squares
estimator ,[A‘S’Z On the other hand, if the sampling properties of the class of predictors
are considered in terms of repeated sampling over both time and individuals, Lee and
Griffiths (1979) (see also Hsiao, 2003) suggested estimating 3, by

Bl = Bus + SX(XEX, + 02I7) (Y, — X:Bays)- (3.32)

This predictor is the best linear unbiased estimator in the sense of (B: — ;) = 0, where

the expectation is an unconditional one.

3.3.1 RCR Cross Effect Model in Loss Reserving

Suppose that N same sized run-off triangles are available and ¢ € {1,2,--- , N} refers to
the " triangle while r € {1,2,--- , I} refers to the accident year and j € {1,2,---,I}
refers to the development year. Denote, Y, ; = (Y,S?, e ,Y;(’;-V))’ the NV x 1 vector with
the incremental losses at accident year r and development year j for all triangles N. The
data for the N run-off triangles is displayed in Table 3.2.
The overall outstanding reserve R that needs to be paid in future, is defined as
N T
R=> % <55f3 - Sﬁf}_m) (3.33)

i=17r=2

where for run-off triangle ¢, the cumulative claims of accident year r and development

year j are given by

) J )
SO =>vY
k=1
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and YT(Z;) are the incremental claims of run-off triangle 7, the cumulative claims of accident
year r and development year j. Our purpose is to estimate the future claims in the

bottom right corner of the run-off triangles and estimate the overall outstanding reserves.

Table 3.2: Representation of N run-off triangles

Accident Development Year j
Year r 1 2 e j e I-1 I
1 Yii. Yip - Y., o Y Y
2 Y1 Yoo - Y, o Yoo
r Yr,l YT,IJrlfr
I Y.

Denote D ={Y,;, r+j<I+1, 1<r <1I 1<j<I} as the observed losses,
D ;j={Y,; 1 <r <1, j <k} as the losses up to development year k (including it)
and D,; = {Y,;, k < j} as the losses for accident year r up to development year j
(including it). According to the data, the sets D.; and D, ; are the observed values and
should be used to estimate the adequate reserve to fund losses that have been incurred
but not yet developed.

Similarly as in Zhang (2010) and Peremans et al. (2018), the cross section effects
model defined in (3.22) and (3.23) in connection with Table 3.2 can be written in a

multivariate form as

1) 1) 9] )] 9] (1)
Y X; B; X;0 0 €; u;
0
= + +
(N) (N) (N) (N) (N) (N)
Y . X; B; 0 0 X; €; u;
(3.34)

which can be written in a matrix notation as
Y = X3+ D(X)e + u, (3.35)

where
@)Y =2, YD), with Y, = (v, . Y)Y a I(I +1)/2 x 1 vector of the
incremental claims at the accident year » and the development year j from the "

triangle,




64 Chapter 3. Random Coefficients Regression Models

N x - (xW (N)'yr (i) ; : e with » —
(4i) X =(X;7,...,X;" ), where X" isa I(I+1)/2xp design matrix, with p = 27 -1,
at development year j from each run-off triangle reflecting the position of claims in
each of the triangles i = 1,....,n. In our case we consider the same design matrix

(1) :
X ;" for all triangles.

(i) B= (B, ... with B = (8Y, ..., 8)) and p = 2T —1

(v) € = (e(-l)/

J Ljr+ =15

’

1) NY v i i "N
() w=(ul" . ™Y with ul) = (ui, .., ul)

(vi) D(X) denotes the block-diagonal matrix in the right hand side of (3.34).

3.4 Robust Estimation and Identification of

Outliers for the Insurance Application

A lot of insurance data cannot be studied by short tail distributions. Robust regression
methods are used as auxiliary tools for the ordinary least squares estimation in cases of
errors which are not normally distributed because of large deviations or outlier claims.

An unusual event such as a catastrophe or data that belongs to different populations,
can cause an outlier. Therefore, these extreme values are data that diverge from the
pattern of the whole data. A major problem is being faced when an outlier produces a
pattern in a year which affects the following years and leads to the misestimation of the
reserves. A solution to the outliers problem is the usage of robust statistics which are not
sensitive to the existence of data errors. If we generalize the Maximum Likelihood (ML)
estimators we get a class of estimators called M-estimators which minimize a function
p(x,0) of the errors (see Huber, 1981).

Not only the M-estimators can be used in the RCR model. We can use many robust
estimators and decide which one is the most appropriate according to the contamination
of the data, the efficiency of these estimators that we want to achieve and the degree of
influence of the outliers on the design matrix of the model.

For more details on these estimators see Hampel et al. (1986), Rousseeuw and Leroy
(1987), Yohai and Zamar (1997) and Gervini and Yohai (2002), Pitselis (2005). The
algorithm for obtaining robust M-estimation of the RC model is due to Pitselis (2005).



Chapter 3. Random Coefficients Regression Models 65

Remark 3.2. In general, M-estimation shows that if outrageous events appear, the total
expected losses and reserves demonstrate consistency. If we use estimators (such as the
LMS, LTS, MM and adaptive estimators) that are robust to outliers in the design matrix,
produce more reliable estimations for the reserve even if outlier claims exist. , This
means that these estimators robustify in addition to dependent variables the independent
variables (here the variables only take the values 0 and 1) and it seems that they are not

appropriate for the robust loss reserving estimation.(Pitselis et al., 2015).

3.4.1 Robust M-Estimation of the RCR model

Next, we will present how to achieve the robust M estimation of the RC model as
was shown in Section 2.1. In addition to the algorithm presented in Pitselis (2005) an
additional step is required (Step(6)) to obtain robust M-estimation of the actual response
RCR model.
ALGORITHM:

Step 1: Compute the residuals » = y — Xb, with b as a least squares estimator of 3
in the model (3.2).

Step 2: Similarly as in Huber and Dutter (1974) we can obtain a robust estimator of

2 2 2

o = (01,03,...,00)" in (3.5) by minimizing

3:1 i=1
with respect to o and S, where G (i) Is the i-th row of G. The quantity S; is an estimate
of scale and ¢;; are elements of the matrix Q = {¢;;}: =1, of the factorization with
(M)t = Q7Q. The matrix (M)9t! is symmetric with full rank.

Step 3: Calculate the robust M-estimate of Q in (3.7), i.e

—

QY = MAMM = Mdiag(3M, .., )M, (3.37)

rrnn

{ ~A9M ~A9M .
where AM = 62" 4 30 52" X2 and 62"’s corresponds to the robust estimators of o’s

calculated in Step 2.
Step 4: Let f;(8) = 1 + Yk—y Bk Xki- Then the robust estimator of 8 and scale S,

can be obtained by the following minimization problem

Q(8.5:) = (1) 3 {o [N1V; - (B)/S:] + s} S (3.38)

=1

p as mentioned before and ay = [(n — p)/n|Ee(x) with ® being the normal distribution.
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Step 5: Steps 3 and 4 are repeated until the values converge. One iterate may often

be enough which can be obtained by minimizing the following function
j= i=

where GT is the i-th row of G. S3 is an estimate of scale and w;; are elements of the
matrix W = {w,,]}” 1....n Of the factorization with (29) = (2Q%Q)"' = WI'W. The

matrix 26 is symmetric with full rank, with a3 = [(n — p)/n]Es(x) and x and ¢ as
mentioned before.
Step 6: To obtain a robust estimator b, of the actual response b in (3.8) we substitute

the non robust estimators by the robust ones, i.e.,

bt = LB" + ARZ (AR) 1" (3.40)
where the elements of u® = (4, 4%, ..., a%) are the winsdorized residuals based on

M-estimation given by (see Huber, 1981)

()
1 i=1,2,...n, (3.41)

/u/z — y
1 / i
o 2im1 Y (%)

where 1) is the derivative of 1 function and S is a scale parameter defined similarly as

in Step 2.

Some of the most well known robust functions are:

1. Huber function:

The family of Huber functions is defined as,

122, if |z] <k
pr(z) =

Ble = ), if Ja] > &

x, if |[z| <k
Yi(z) =

k sign(x), if x| >k .

When k = 1.345, there is 95% efficiency of the regression estimator.
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2. Hampel function:

The Hampel family of functions (see Hampel et al., 1986) is defined as,

37%/C, if |2 < a
(30° +a(lz] — a)) C, ifa<|z| <b

Pa, 7,1(:6) = )
' ;(2b_a+(yx|_b)(1+t@>) C, i<z <r

—_

if r < ||

where C' := p(c0) = p(r) = §(2b —a+ (r —b) = (b —a+r). When k£ = 0.901608

the efficiency of the regression estimator is 95%.

3. Bisquare function:

Tukey’s bisquare (or biweight) family of functions is defined as,

L= (1= ()27 iffa <k

pr(x) =
1, if |z| > k

with derivative p,(z) = 6vy(x)/k?, where

(x) = a:[l — <£)2:|2]{x|<k}.

When k = 4.685, the regression estimator has 95% efficiency.

3.4.2 Robust M-Estimation of RCR Cross Effect Model

An outlier claim may also be appeared in a cross-section model (maybe in every run-off
triangle) and lead to differences not only in the results of the least squares estimators but
also to the generalized least squares estimator of the cross-section model. These outliers
could dramatically change the estimations and their variances in the cross-section model.
What we suggest is the robustification of the cross-section regression by specific robust
techniques.

Krishnakumar (1995) constructed a method in order to produce robust estimators
for the regression parameters and their covariance adopting an econometric GLM. The
reader can see more details at the papers of Caroni (1987), Koenker and Portnoy (1990),
and Bilodeau and Duchesne (2000).

Using the RCR cross effect model which was fully studied in Section 2.2 and the

outcomes of the robust estimation techniques, we can obtain a robust M-estimation of
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random coefficient regression with cross effect. For further information on the algorithm
steps and their properties like the efficiency of the estimator, the reader may be referred
to Pitselis (2005). For more on robust estimation techniques see Huber and Dutter (1974),
Hampel et al. (1986), Rousseeuw and Leroy (1987) and Maronna et al. (2006).

Remark 3.3. The excess of loss reserves (bias) which occured according to the robus-
tification of our random coefficient regression model can be distributed equally to all
accident periods ultimate reserves, or according to practicient proofs. Estimators for the
parameters which arised from robust methods are asymptotically biased if the distributions
of the errors are asymmetric. It is crusial to treat the bias appears in the robustified

model. Wang et al. (2005), created a distribution-free method in order to correct this bias.

3.4.3 Robust M-Estimation of the RCR Cross Effect Model

M-Estimation of RCR cross sectional model can be evaluated by following the steps of the
algorithm below. In addition to the algorithm presented in Pitselis (2005) an additional
step is required (Step 6) to obtain a robust predictor of the individual robust regression
component.

ALGORITHM:

Step 1: Minimize [ Huber and Dutter (1974)]

(1/T) i p (yit — Zzg.l BriTrit)

t=1

) Si + a;S; (3.1)

~ R ’ . .
to find B, a robust estimator of B, = (B, ..., Bpi) and S;, for i = 1,...,n. In practice
AR
we have to calculate 8, and scale parameter S; by simultaneous iterations.
Step 2: Calculate the robust estimate of o2 in (3.8), i.e.

2
I vt ¢<S) S?
(67?2 = (3.2)

T — 2
ey [%sz(g; 1

where r;; = i — Zizl Britrkir and ¢ (u) = a% (u).

Step 3: Calculate the robust estimate of ¥ by substituting the parameters of (3.3) by

their robust ones, i.e.
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where (6F)2(X,X ;)" is the robust covariance matrix of 3.

In the case of £# not being positive definite we can proceed the same way as of
proceeding when ¥ in (3.3) is not positive definite. Having obtained X% in (3.3), by
using (3.8) a robust estimate 2%, of  can obtained.

Step 4: Substitute the values of (3.2) and (3.3) into (3.27) to obtain a robust estimate

-1
N
= | S IR @ XX @
Step 5: Calculate the robust estimate of 8 = (B4, ..., 8,)’

~R N ~R
BGLS = ZAzRIBi ) (3-5)
i=1

~R
which is a matrix weighted combination of 3; obtained in (3.1). Then the robust variance-
covariance matrix can be obtained in an analogous way of obtaining (3.29), substituting

the &; and X with the robust 4/ and 3, respectively

Cov(Bl,s) — ;(zh(&ﬁ)?(X;Xi)-l)‘l
— (X' (@Q@H'x) (3.6)

Step 6: In order to obtain a robust predictor of the individual component 3,, we substitute

the parameters in (3.32) by their robust ones, i.e.,

~R*

B! = Boys + S"X (X Z X, + (65)°Ir) (YT - X:Bows), (3.7)

where Y7 = (Y}, ..., Y7;) are pseudo-observations derived from Winsorizing the observa-
tions Yz = (Yiu PN YT’[)/7 with

Yii, if |ry < Sy,
Yi = }Afm —cSy it ry < —eSy, (3‘8>

?ti + CSti if Tty > CSti-

The constant ¢ regulates the amount of robustness; good choices are in the range
between 1 and 2, say ¢ = 1.5. Then use the pseudo-observations Y,; to calculate new

fitted values ffm (and new Sy;), and iterate to convergence. For details, see Huber (1981,

p. 18).
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3.5 Numerical Example based on RCR Model for
One LOB

In what it follows we apply the non random and random linear regression models to
the Taylor and Ashe (1983) data set. We provide estimations of the ultimate reserves
for each accident year, as well as of the total reserves. The results of these estimations
are presented in Table 3.3, where we observe that the random regression coefficients
model provides almost identical values of total reserves (21522631) from the non random
model (21522633). This provides an indication that there is no true randomness in the
regression coeflicients (see Table 3.3).

Similar results for random and non random models are obtained by applying robust
estimations. In each of Tables 3.3, 3.4 and 3.5, three different robust estimators are given
depending on three different p functions (Humber, Hambel, Bisqure). In order to study
the influence of outliers we create two fake (artificial) outliers, just by multiplying two
incremental claims by 10.

Tables 3.4 and 3.5 show the total reserves in the presence of one and two outliers.
In the presence of one outlier (Y73 = 6105420), the LS regression model provides an
underestimation of the total reserves, while in the presence of two outliers (Y] 3 = 6105420

and Yg 3 = 14433700), the LS regression model overestimates the total reserves.

Table 3.3: Reserve Estimation without Outliers

Non Random Estimation Random Estimation
Non Robust Robust Non Robust Robust
Year /Model LS Huber Hampel | Bisquare LS Huber Hampel | Bisquare
1 0 0 0 0 0 0 0 0
2 235234 230237 236131 222024 235240 230237 236123 222025
3 640016 671678 641679 711057 640007 671681 641706 711057
4 906623 676215 709952 490433 906607 676201 709823 490444
5 1064309 1091327 1094211 1137952 1064325 1091331 1094184 1137957
6 1597933 1650607 1643383 1767579 1597913 1650622 1643420 1767575
7 2662660 2777956 2744028 2960095 2662652 2777967 2744079 2960093
8 4788626 4401235 4711443 4087469 4788641 4401253 4710944 4087367
9 4614418 4544003 4541028 4501191 4614432 4544007 4540932 4501167
10 5012813 4891731 4939423 4814302 5012813 4891731 4939327 4814289
Total Reserves 21522633 20934989 | 21261278 | 20692103 21522631 20935029 | 21260538 | 20691975

In contrast to the previous indication of the non-randomness of regression coefficients,
we observe the following (see Table 3.5). In the presence of two outliers the total values
of reserves under the robust non-random regression model are different than the values
of reserves under the robust random regression model for the three p functions (Humber,
Hambel, Bisqure). For example, using the Huber function the total reserve is 21408539
under the non random model, while the total reserve is 20603298 under the random

model. This gives us a new indication of any randomness of the coefficients. Of course, in
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Table 3.4: Reserve Estimation with 1 Outlier

Non Random Estimation Random Estimation
Non Robust Robust Non Robust Robust
Year/Model LS Huber Hampel | Bisquare LS Huber Hampel | Bisquare
1 0 0 0 0 0 0 0 0
2 235234 227553 236516 210478 235215 227555 236515 210485
3 1293657 787881 676612 811298 1293659 787876 676608 811263
4 750994 622259 690500 400900 751006 622277 690504 400844
5 753052 1051983 1080595 1080334 753042 1051976 1080590 1080240
6 1112371 1617363 1631108 1810722 1112366 1617348 1631099 1810654
7 1959218 2721823 2724706 3004209 1959201 2721800 2724695 3004110
8 3773926 4312027 4623247 3662468 3773914 4311826 4623263 3662554
9 3055018 4328576 4467628 4393663 3055036 4328559 4467631 4393704
10 2000878 4429053 4804316 4552209 2000869 4429079 4804321 4552228
Total Reserves 14934349 20098519 | 20935228 | 19926282 14934309 20098296 | 20935226 | 19926083

Table 3.5: Reserve Estimation with 2 Outliers

Non Random Estimation Random Estimation
Non Robust Robust Non Robust Robust
Year /Model LS Huber Hampel | Bisquare LS Huber Hampel | Bisquare
1 0 0 0 0 0 0 0 0
2 235234 231120 234901 222469 235251 234480 238501 212258
3 1924568 930519 670459 782825 1924562 775427 673919 813196
4 1802513 804192 753764 514589 1802513 892598 880261 579029
5 1804571 1231266 1080262 1139540 1804572 1040086 1063199 1090611
[ 2163890 1809307 1629757 1775562 2163884 1523536 1570021 1765795
7 3010737 2906680 2715234 2942002 3010742 2812194 2772655 3044115
8 4825445 4477382 4702353 4290423 4825457 4348292 4667584 3648566
9 4106537 4472048 4506306 4464424 4106546 4406185 4546342 4380001
10 3052397 4546025 4846462 4675612 3052390 4570498 4889212 4612842
Total Reserves 22925891 21408539 | 21139498 | 20807448 22925916 20603298 | 21301694 | 20146412

the statistical literature there are tests of verifying the randomness of the coefficients, but

this is out of the scope of our research since this does not affect the reserve estimation.
These results that illustrate the behaviour of ultimate reserves by accident year

reflecting the results of Tables 3.3, 3.4 and 3.5 are shown in Figures 3.1, 3.2 and 3.3.

Non Random Random
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Figure 3.1: Reserves estimation using Random and Non Random regression models (no
outliers)
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Figure 3.2: Reserves estimation using Random and Non Random regression (1 outlier)
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Figure 3.3: Reserves estimation using Random and Non Random regression (two outliers)

Figures 3.4-3.11 display the residuals versus fitted values and the corresponding
histograms, respectively, based on the random coefficient regression model for the three
different p functions (Humber, Hambel, Bisqure).

Residual scatter plots show that residuals are scattered around zero almost arbitrary,
with some exemptions in cases where outliers are appeared (see Figures 3.4, 3.6, 3.8 and
3.10). The random pattern of the residuals suggests that there is no heteroscedasticity,
which could make the estimators inefficient.

The histogram of the residuals in Figures 3.5, 3.7, 3.9 and 3.11 shows a symmetric
bell - shaped histogram of the residuals, which is distributed around zero and indicates
that the normality assumption is likely to be true.

In general, both LS model and RCR model are very sensitive to outlier events (very

large values) and most of the times result to an overestimation of the total reserves.
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Figure 3.4: Residuals versus fitted - Random coefficients

No outliers 1 outlier 2 outliers
™~ ~ ~
(=N o o
@ © | @]
o o o
| W ] v
o o o
< <] <]
o o o
Iy el ]
o o o
o o o
o o o
=l =8 =g
o o o
= =y 7 = [ T ]
o o (=}
3 2 -1 060 1 2 3 2 -2 0 2 4 2 106 1 2 3 4 35
Standardized residuals Standardized residuals Standardized residuals
Figure 3.5: Histogram of residuals - Random coefficients
No outliers 1 outlier 2 outliers
o 1
< o o o
1 B
©
<4
o
[} o _ | 0 o
ERNE o 8Y ]
<] ° <] =}
@ ° @ @
< <t <4
o ° =] o oA
SRR 8 I
1<} ° o0 0® <4 <1
g o & o g N 8 o
s o
§o | ol . oce |8 g
e e = » n .
— ° ) o ° ° o
° o0 ° e °
o 4 o 0 © ©°
| o 0o ] o Fo ° o 0, © S P — CI
I ° o © o osf,,;y; Do'gc‘* 7777;%70% ) >0 0& &s Umii,,?:; . gi
o °© o ) o°% e o © ° e
o ° o o ° T o
Fitted Fitted Fitted

Figure 3.6: Residuals

versus fitted - Random coefficients (Huber)
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Figure 3.8: Residuals versus fitted - Random coefficients (Hampel)
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However, there are cases where we obtain an underestimation of the total reserves

depending on the position and the size of the outliers (for details see Pitselis et al., 2015).

Implementing the data set we see the superiority of robust M-estimator in comparison

with the least squares estimator (with fixed and random coefficients) for claims reserves

estimation.

3.6 Numerical Example based on RCR Cross
Effects Model for Two LOB

For the Random Coefficient Regression Cross Effects model we consider a data set of

two run-off triangles obtained from a private insurance company that operates in Greece.



76 Chapter 3. Random Coefficients Regression Models

Tables 3.6 and 3.7 show the incremental incurred losses (paid and outstanding claims)
for two lines of business (Company A and company B) which both operate in Greece.
Company A mainly focuses on Motor Business and underwrites all vehicle categories
apart from taxis and trucks while company B underwrites all vehicle categories for Motor
Business. Moreover, the premiums of the companies by accident year are presented next
to the run-off triangles. For the implementation of the data set we divided the losses by

the premium in order to put the accident years on a more nearly equal basis.

Table 3.6: Motor Triangle and Premiums for Company A

Accident Development Year
Year 1 2 3 4 5 6 7 8 9 10 | Premium
2007 58134 162688 101105 100964 61591 71009 34024 2746 646 10190 | 1051637
2008 51437 197139 120641 74807 76771 77276 39070 4396 13809 1190965
2009 57906 116191 143953 103883 70760 177194 35341 6088 1327568
2010 40352 121837 88389 320429 75127 70190 63723 1418348
2011 82227 279591 151260 230293 82378 47315 1504056
2012 196417 119755 228499 99894 44266 1580233
2013 67161 107098 198252 75172 1619382
2014 78293 141865 106150 1727540
2015 74472 118886 1820104
2016 43281 1883017

Table 3.7: Motor Triangle and Premiums for Company B

Accident Development Year
Year 1 2 3 4 5 6 7 8 9 10 | Premium
2007 63078 143002 144235 75007 60775 70804 27508 4757 3172 6385 | 1633833
2008 65567 177292 107870 137305 72741 68708 102864 4335 6107 1675707
2009 87394 146346 158876 199846 53161 72764 42915 10898 1636855
2010 70017 153893 119028 93771 49600 185689 28331 1689715
2011 104638 186326 335477 136857 87941 69248 1649386
2012 76390 190629 192606 121704 66297 1712587
2013 58620 184557 135174 118180 2105361
2014 87845 166511 145385 2265432
2015 53616 152751 1976188
2016 62904 1351719

It is obvious that for Company A for accident year 1, a big claim has been paid
10 years after the accident date (the amount of this claim is embedded at the total
incremental amount of X; 10 =10190 and could be represented as an outlier claim. This
claim will dramatically change the development pattern of the payments in the case
of using the Chain Ladder method because the Loss Development Factor for this year
increases from 1.01 to 1.02 (see Table 5.4).
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Table 3.8: Loss Development Factors

Company 0-1 1-2 23 34 45 56 6-7 78 89
A 293 161 137 1.13 1.15 1.07 1.01 1.01 1.02
B 325 168 130 1.12 1.15 1.08 1.01 1.01 1.01

This is commonly observed in Motor Business because there are many cases where
claims are settled many years later especially when accidents with large compensations
(such as partial or total disability, deaths, etc.) are observed. This can also be observed
in accident year 2 where a large amount is observed at the last known development year
(Yag = 13809). For company B the run-off triangle data seems to be more stable without

big fluctuations.
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Figure 3.12: Plots of incremental loss ratios for companies A and B

Figure 3.12 exhibits scatter plots for the incremental loss ratios for companies A and
B. A decreasing trend for both companies confirms that claims will close within ten years.
Figure 3.13 exhibit scatterplots for the accumulated loss ratios for companies A and B.
A comparison of the two panels shows that company A seems to be more stable than
company B.

Figure 3.14 illustrates loss ratios of company A versus company B line of business.
The plots suggest a positive (somewhat linear) relationship between company A and
company B line of business (the Pearson correlation coefficient is equal with 0.944 while

the Spearman correlation coefficient is equal with 0.916). This positive correlation reflects
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Figure 3.14: Loss Ratios of company A versus company B

the effect of some economic components (new policy of the insurance company for faster
settlement of claims, inflation rates, etc.), to all outstanding claims. Naturally, loss ratios
at the first development years are much higher than those at the future years. Moreover,
new government rules could lead to higher payments and consequently higher loss ratios
across all lines of business. Figure 3.15 presents the QQ-Plots for the Loss Ratios of the
two companies. It is obvious that the normality assumption is not the best choice for the

distribution of these quantities.
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Figure 3.15: Loss Ratio’s QQ-Plot for companies A and B
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Company B

Applying individual LS estimation for each line of business and cross section effects

model we get the coefficients that are shown in Table 3.9.

Table 3.9: Coefficients based on LS and Cross Effects

Least Squares (LS) Cross Effect
Coefficients | Company A | Company B A& B
(Intercept) 63186 54954 62098
bl 6938 16717 47616
b2 15271 22018 54784
b3 26844 14004 56320
b4 51950 59234 93184
b5 39173 30718 71680
b6 -41 10950 40960
b7 692 17052 40960
b8 -3099 1888 38400
b9 -19905 7950 86016
b10 73183 92682 47616
b1l 61492 91041 42496
b12 60430 49193 19456
b13 -18066 -13650 -48640
bl4 5211 16094 -22528
bl5 -32409 -17734 -59904
bl6 -66179 -61202 -97280
b17 -59427 -58673 -92160
b18 -52996 -48570 -139264
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For comparison reasons Table 3.10 illustrates the ultimate claims and reserves for
each line of business based on the individual LS estimation and on the cross section

effects model.

Table 3.10: Ult. Claims and Reserves based on LS and Cross Effects Model

Company A Company B

Accident Individual LS Model Cross Effects Model Individual LS Model Cross Effects Model
Year Reserves | Ult. Claims | Reserves | Ult. Claims | Reserves | Ult. Claims | Reserves | Ult. Claims
2007 0 603097 0 603097 0 598722 0 598722
2008 156097 811444 116464 771811 175658 918448 155586 898376
2009 279977 991293 226352 937667 317716 1089916 301828 1074029
2010 379285 1159332 348534 1128581 374685 1075015 339333 1039663
2011 209145 1082210 158125 1031190 231611 1152098 203057 1123543
2012 417332 1106163 358801 1047632 449831 1097457 423799 1071425
2013 318894 766577 253428 701110 367737 864268 351112 847643
2014 127952 454260 74662 400970 139650 539391 98057 497798
2015 191378 384735 140951 334309 187933 394300 134061 340428
2016 22478 65758 209534 252814 36706 99610 237991 300895
Total 2102538 7424869 1886849 7209180 2281526 7829225 2244823 7792523

Loss Ratio 49,10% 47,67% 44,24% 44,03%

We observe that the sum 2102538+ 2281526 =4384064 of individual triangle reserves
based on the LS estimation is greater than the sum 1886849+2244823=4131672 of the
claims reserves based on cross section effects model. This gives substance to the additivity
property, emphasized by Anje (1994), where a simple aggregation of the reserves of
individual triangle ignores the correlation among triangle.

The corresponding loss ratios are also provided at the end of the table, showing a
decrease (from 49.10% to 44.24% for company A and from 47.67% to 44.03% for company
B) when we apply the cross section effects model than the individual LS estimation. In
this case, insurance companies are collecting more premiums than the amount paid in
claims. Loss ratio is considered as one of the tools with which explains a company’s
suitability for coverage.

In order to test the validity of the RCR cross effects model, we display the residuals in
Figure 3.16 up to Figure 3.19. There are some outliers but the majority of the residuals
are located randomly and close to 0.

In order to study the influence of outliers we create two fake (artificial) outliers just

by multiplying two incremental claims by 10. Tables 3.11 and 3.12 show the total reserves
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Figure 3.16: Residual Plots (LS RCR Cross Effect Model)
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Figure 3.17: Residual Plots (Huber RCR Cross Effect Model)
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Figure 3.18: Residual Plots (Hampel RCR Cross Effect Model)

without the presence of outliers while Tables 3.13 up to 3.16 show the total reserves in

the presence of one and two outliers, respectively.



Chapter 3. Random Coefficients Regression Models

Residual Plot for Company A Residual Plot for Company B

Standardized residuals
Standardized residuals

° o o o o o oy % °

> %o (IO R A N o .
° ° 2 — (i o K N o % . e

T T T T T T T T T T T T
0 20000 40000 60000 80000 100000 120000 140000 0 50000 100000 150000

Fitted Fitted

Figure 3.19: Residual Plots (Bisquare RCR Cross Effect Model)

Table 3.11: RCR Cross Effect Model with no Outlier (Company A)

Accident Least Squares Robust (Huber) Robust (Hampel) Robust (Bisquare)
Year Reserves | Ultimate | Reserves | Ultimate | Reserves | Ultimate | Reserves | Ultimate
2007 0 603097 0 603097 0 603097 0 603097
2008 116464 771811 112404 767750 114525 769872 106311 761658
2009 226352 937667 222886 934202 226795 938110 211998 923313
2010 348534 1128581 284790 1064838 259273 1039320 280397 1060444
2011 158125 1031190 221525 1094589 247589 1120653 252180 1125245
2012 358801 1047632 346529 1035360 316119 1004950 324862 1013693
2013 253428 701110 264450 712133 245105 692788 247840 695523
2014 74662 400970 33274 359582 -3728 322580 21694 348002
2015 140951 334309 77566 270923 30895 224253 60055 253412
2016 209534 252814 131043 174323 85199 128480 104048 147328

Total Reserve | 1886849 | 7209180 | 1694466 | 7016796 | 1521772 | 6844103 | 1609385 | 6931716
Loss Ratio 47,67% 46,40% 45,26% 45,84%

Table 3.12: RCR Cross Effect Model with no Outlier (Company B)

Accident Least Squares Robust (Huber) Robust (Hampel) | Robust (Bisquare)
Year Reserves | Ultimate | Reserves | Ultimate | Reserves | Ultimate | Reserves | Ultimate
2007 0 598722 0 598722 0 598722 0 598722
2008 155586 898376 155797 898587 155586 898376 158264 901053
2009 301828 1074029 267395 1039595 261890 1034091 255636 1027836
2010 339333 1039663 325215 1025546 317766 1018097 330194 1030525
2011 203057 1123543 219536 1140023 226391 1146877 221757 1142243
2012 423799 1071425 345467 993094 325655 973281 208874 946500
2013 351112 847643 278977 775508 317264 813795 219948 716480
2014 98057 497798 51576 451317 55639 455380 12004 411745
2015 134061 340428 63331 269698 62647 269014 21117 227484
2016 237991 300895 150632 213536 163335 226239 84888 147792

Total Reserve | 2244823 | 7792523 | 1857925 | 7405624 | 1886172 | 7433872 | 1602682 | 7150382
Loss Ratio 44,03% 41,85% 42,01% 40,40%
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Table 3.13: RCR Cross Effect Model with one outlier (Company A)

Accident Least Squares Robust (Huber) Robust (Hampel) | Robust (Bisquare)
Year Reserves | Ultimate | Reserves | Ultimate | Reserves | Ultimate | Reserves | Ultimate
2007 0 603097 0 603097 0 603097 0 603097
2008 49303 704650 108952 764298 115996 771343 111032 766379
2009 117215 828530 220694 932009 231458 942773 214272 925587
2010 203418 983465 273414 1053461 258501 1038548 293151 1073199
2011 228884 1101949 273391 1146456 233763 1106828 351848 1224912
2012 429560 1118390 401985 1090815 330059 1018889 422276 1111107
2013 324186 1376318 318847 1370979 256018 1308150 346801 1398933
2014 145421 471729 86987 413295 4718 331026 120269 446577
2015 211710 405067 132673 326031 43860 237217 156646 350003
2016 280293 323573 184057 227337 101856 145136 200639 243920

Total Reserve | 1989989 | 7916769 | 2000999 | 7927779 | 1576229 | 7503008 | 2216933 | 8143713
Loss Ratio 52,35% 52,42% 49,61% 53,85%

Table 3.14: RCR Cross Effect Model with one outlier (Company B)

Accident Least Squares Robust (Huber) Robust (Hampel) | Robust (Bisquare)

Year Reserves | Ultimate | Reserves | Ultimate | Reserves | Ultimate | Reserves | Ultimate
2007 0 598722 0 598722 0 598722 0 598722
2008 155586 898376 155465 898255 155586 898376 157214 900004
2009 301828 1074029 272738 1044939 263230 1035431 263455 1035656
2010 339333 1039663 317868 1018199 314831 1015161 310429 1010760
2011 203057 1746771 220661 1764375 226116 1769830 226814 1770529
2012 1047027 1694653 435995 1083621 362385 1010011 994622 1642248
2013 558855 1055386 318518 815049 326288 822819 444918 941450
2014 305799 705540 93439 493180 70361 470102 238408 638149
2015 341804 548171 102842 309209 75074 281442 245027 451394
2016 445733 508637 196566 259470 175098 238002 335340 398245
Total Reserve | 3699022 | 9869949 | 2114092 | 8285019 | 1968969 | 8139896 | 3216228 | 9387155

Loss Ratio 55,77% 46,82% 46,00% 53,04%

Table 3.15: RCR Cross Effect Model with two outliers (Company A)

Accident Least Squares Robust (Huber) Robust (Hampel) Robust (Bisquare)

Year Reserves | Ultimate | Reserves | Ultimate | Reserves | Ultimate | Reserves | Ultimate
2007 0 603097 0 603097 0 603097 0 603097
2008 49303 704650 109041 764387 119080 774427 112278 767625
2009 117215 828530 212434 923749 231410 942726 213653 924969
2010 203418 983465 267642 1047690 266534 1046581 293239 1073286
2011 228884 1527785 196492 1495393 179705 1478606 243269 1542170
2012 855396 1544227 566203 1255033 504270 1193100 344234 1033065
2013 466132 1518264 359703 1411835 335584 1387716 250203 1302335
2014 287366 613674 121382 447690 82781 409089 22250 348558
2015 353656 547013 186284 379642 149071 342428 61109 254466
2016 422238 465519 248392 291673 217653 260934 104315 147595
Total Reserve | 2983608 | 9336223 | 2267573 | 8620189 | 2086088 | 8438704 | 1644549 | 7997165

Loss Ratio 61,74% 57,00% 55,80% 52,88%
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Table 3.16: RCR Cross Effect Model with two outliers (Company B)

Accident Least Squares Robust (Huber) Robust (Hampel) | Robust (Bisquare)
Year Reserves | Ultimate | Reserves | Ultimate | Reserves | Ultimate | Reserves | Ultimate
2007 0 598722 0 598722 0 598722 0 598722
2008 96966 839756 150504 893294 153078 895868 154381 897171
2009 206570 978771 264157 1036357 258223 1030423 251156 1023357
2010 212671 913002 298226 998557 307960 1008291 313399 1013729
2011 264817 1808531 232038 1775752 229434 1773149 229442 1773156
2012 1108787 1756413 431637 1079263 365761 1013387 344214 991840
2013 620615 1644729 314522 1338636 327904 1352018 246091 1270204
2014 367560 767301 100036 499777 74092 473833 49006 448747
2015 403564 609932 109425 315792 77479 283846 55375 261742
2016 507494 570398 195389 258293 176702 239606 122047 184951
Total Reserve | 3789045 | 10487555 | 2095935 | 8794444 | 1970635 | 8669144 | 1765111 | 8463620
Loss Ratio 59,26% 49,70% 48,99% 47,83%

In the presence of one outlier (YlA3 = 1011050, Yl% = 1442350), the LS regression
model provides an overestimation of the total reserves for both companies (1989989 for
company A and 3699022 for company B), which leads to an increase of 5.68% of the
loss ratio for the Company A (the loss ratio without outliers is 47.6%, while with one
outlier is 52.35%) and in an increase of 11.74% for the Company B (the loss ratio without
outliers is 44.03%, while with one outlier is 55.77%). The robust regression model (e.g
Hampel) identifies this outlier, resulting to an increase of 1.94% of the loss ratio for
the Company A and an increase of 1.97% for the Company B. This increase due to the
robust estimation is significantly less than the increase due to the LS estimation.

In the presence of two outliers for both companies (Y3 = 1011050, Yg’% = 1061500
and Y/ = 1442350, Y% = 1453850), the LS regression model provides a significantly
large overestimation of the total reserves for both companies (the estimated total reserve
for Company A is 2983608, while the estimated total reserve for Company B is 3789045),
which leads to an increase of 14.07% of the loss ratio for Company A and of 15.23% for
Company B. This increase shows that in the presence of outlier events the LS model
does not provide robust estimation of the reserves and cannot be used. The robust
regression model (e.g Bisquare) gives and increase of 5.21% for Company A and 3.8% for
Company B. Clearly, the robust regression model identifies outliers and provides reliable
estimation of the total reserves in contrast to the LS model that provides unreliable
reserve estimation. In general, the underestimation or overestimation of reserves depend

on the position of the outliers in the run of triangle (see Pitselis et al., 2015)
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According to the residuals of the least squares RCR cross effect model of both
companies, we check the dependence between the two companies. Recall that we have
observed a positive correlation between the loss ratios which might reflect the accident

and/or development year effects (see Figure 3.14).

Figure 3.20 indicates a negative relationship between the residuals of the two triangles
(rag = —0.12). This is opposed to the correlation of the loss ratios of the companies
which was computed 0.944 (and 0.916 the Spearman correlation coefficient). A possible
reason may be the effect of accident and development years, which play an important

role to the estimations (see Shi and Frees, 2011).
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Figure 3.20: Residuals Scatter Plot for companies A and B

Figures 3.21, 3.22 and 3.23 present the cumulative reserve estimation by accident year
for both companies in the presence of no outliers (Figure 3.21), of one outlier (Figure
3.22) and two outliers (Figure 3.23).
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Figure 3.21: RCR cross section cumulative reserve estimation by accident year without
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As we can see, there are cases where the LS method underestimates or overestimates

the total reserve. The robust functions seem to be more stable and can be used to identify

outliers and provide robust estimations of the total reserves.
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Figure 3.22: RCR cross section cumulative reserve estimation by accident year with one

outlier for companies A and B
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Figure 3.23: RCR cross section cumulative reserve estimation by accident year with two

outliers for companies A and B
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and robust RCR Cross Effect Models for

Based on the results displayed in Tables 3.13 up to 3.16, the values of total reserves

are shown in Figure (3.24), in the presence of no outlier, one artificial outlier and two

artificial outliers, for the RCR cross effects model and for the robustified versions of

it, based on the three robust functions (Huber, Hampel, Bisquare). In the presence of
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one or two outliers, the value of reserves for Company A and Company B based on the
RCR cross effects model become very large in comparison to reserves based on robust
estimations. Even in the presence of no artificial outlier the value of the reserves under
the RCR cross is bigger that the corresponding reserves under robust estimation. This
means that the robust functions identify and other observations as outliers in addition to
artificial outliers we set. Therefore the superiority of robust estimation against non-robust

estimation of the RCR cross effects model is evident.

3.7 Concluding Remarks

In this chapter we showed how random coefficient regression models can be incorporated
in loss reserving techniques. These models provide a fair value for the estimation of
outstanding reserves in cases we have indications that the run-off patterns are changing.
First, we proposed a univariate reserving model. We relax the assumptions that the
development factors are constant and we propose a linear regression model with random
coefficients. Second, we proposed a multivariate reserving model based on the cross
sectional regression model. Nevertheless as mentioned above RCR models are very
sensitive to outlier events (very large values) and most of the times resulting to an
overestimation of the total reserves. Although there are cases where we obtain an
underestimation of the total reserves depending on the position and the size of the
outliers.

In order to remediate the effect of outliers to the estimation of the total reserves, robust
versions of the above two random coefficient models are applied. Implementing the data
sets for both models we showed the superiority of robust M-estimator in comparison with
the non-robust estimators. The advantage of applying M-estimators for the estimation of
reserves are: a) they are simple, b) robust procedures are available in R packages and
c) these packages are interactive with other programs (excel) for better implementation
of the sets. Of course at the final step of reserves estimation, the bias term due to
robustification of the outliers (if there are true large values and not fake outliers) must

be added to the value of total reserve.



CHAPTER

Robust Kalman Filter in a State Space Model

n this chapter, a robust application of the Kalman Filter (KF) to a state-space
model recursive algorithm is going to be used, in order to estimate the reserves of the
insurer. The application of the KF algorithm to a state-space model leads to a flexible
framework, which uses the past claims data and produce future reserve estimations. The
most important point of this algorithm is the model’s parameters which can be assumed
to evolve over time in contrast with other models which assume constant parameters (see
De Jong and Zeinwirth, 1983 and Verrall, 1994).

4.1 State Space Models

The development of the state space models has been made the last 20 years. They are
important models because they mainly give a rich family of models which are easily
interpretable for data and simultaneously they lead to highly efficient estimations and
forecasting algorithms via the Kalman Filter recursions. Moreover, state space models
allow the creation of models with meaningful dynamic parameters. In non life insurance,
they can be used as a framework for automating the reserving procedure. A state space
model is regularly specified by 2 sets of equations and characterizes the dependency of

the observations and the state variable (see Koller and Friedman, 2009):

e An observation equation

Y, = Ftet + Wy, t Z O7 (41)
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where y, is a vector of observed data, 6, is the unknown state-vector, F'; is a known
matrix which connects the state vector 8, to the observations and finally w; is a

noise process.

e A state equation
041 =G0, +v4q, >0, (4.2)

which characterizes the evolution of the vector 8, in Markovian way using a
transition matrix G,.. Likewise in the observation equation, the state equation

incorporates a random error vector v;.

The main point of this approach is to make inference about 6, given the vector of the

observations y,. Generally,
e state space models represent dynamic systems,
e the states 8, of the system are not directly observable,
e these states drive the observable set of values vy,,

e the state space model has conditional independence structure.

Observations @ @ @ @ é

Figure 4.1: State space models

It is supposed that vy, is a vector of n observations, 6, is the r dimensional state
vector, F; is a matrix with dimensions r X n and G; an r x r matrix. The nuisance
vectors w; and v; are n and r dimensional vectors with variance-covariance matrices

Qt7 k= 07 ’ Rt7 k= 07

Elvvyy,] = Elwaw; ] =
0, otherwise, 0, otherwise,

where Q, is an r X r matrix and R; is an n X n matrice. Moreover, it is supposed that
Elvaw;,,]| =0Vt k.
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Remark 4.1. The fact that the variance-covariance matrices Q, and R; depend on
t means that this model assumes heteroscedasticity. This is not observed when using

common methods.

4.2 The Kalman Filter Algorithm

The estimation of 8; is based on the sequence y,,vy,, ...y, and the model assumptions
(see section 4.1) should be satisfied. The KF algorithm is comrised of some recursive
steps which are linear. The algorithm estimates the state vector 8; based on 6,_; and
the new data vector y,. The Steps of this algorithm are the following (see Kailath et al.,
2000, Li, 2006)

Step 1: ¢, = Ftéﬂt—ly

Step 2: ¢ =y, — Y,

Step 3: Oy; = 0y 1 + Py 1 Fo(Fi Py F; + R,) ey,

Step 4: 9t+1‘t = Gtﬂéﬂt,

Step 5: Py = Pyy—1 — Py 1 Fy(Fy Py Fy + Ry) ' F Py,
Step 6: Py = Giy1 PyiGlin + Quyr.

Here éﬂt is the estimate of 6; given the data vector y,,y,, ...y, till time ¢ while
P, is the variance-covariance matrix. The vector 9t+1‘t is the estimate of the vector
0.1 at time ¢t + 1 given the data vector y,,¥y,, ...y, up to time ¢ (“again”) while the
matrix P, is the variance of that estimate. This means that the KF algorithm not
only updates the estimates 9t‘t and ét+1|t but also their variance-covariance matrices.
Figure 4.2 shows the Steps of the Kalman filter procedure.

In cases of noise parameters being normally distributed, the estimates are also normally

distributed which permits the construction of a confidence interval for the parameters

ék,t|t * ta/Drkt)e = ék,tJrl\t + bar/Prktr1)t 5 (4.3)

where ékw is the k" component of 9,5‘15, Drk,¢ is the diagonal element of the matrix Py,
and t, is the upper quantile at confidence level a.

Let’s suppose that 9t|t_1 is a forecast for 6; based on the data y,,vy,,...y,_; up to
time ¢ — 1. Then, using Step 1 in the Kalman Filter equation, a good prediction for y,
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Initial Estimates

|

Ill\lll

Measurements
— Kalman Gain
\
Project into k+1 Update Estimate
/ Update Covariance <
'.I I.I
Projected Estimates Updated State Estimates

Figure 4.2: Kalman Filter Algorithm

can be made

Yy, = F.0, + wy,
Yy = Fi0,+0= Ftéﬂt—l-

It should be mentioned that the best prediction for w; based on the data y,,vy,,... Yy,
is zero because of the property of the white noise model. If 8,,_; is a good estimate of
0., then g, is a good estimate of y,, which means that w; should be zero.

In Step 2, the quality of the forecast at Step 1 can be checked by calculating the
forecast error as far as the new observations point y, is available. This means that the
quantity e;(—:t should be small! in case of a good prediction at Step 1.

Step 3 is more complicated than the previous two Steps. The estimation of 9t|t based
on the new observation y, is a combination of the forecast ét|t—1 and the forecast error ;.
When the forecast error is small, then it is deduced that 9t|t,1 may be a good estimate of
6; which means that there is no need to revise the old forecast. When the forecast error

is surprisingly large, then 9t|t_1 is not a good estimate of 8; and the old estimate should

IThis means that a criterion to estimate the unknown parameter can be constructed.
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be recalculated. The term Py, Fy(F,Py;_1Fy + R;)™! is called the Kalman Gain and
is the most important element in this Step as this is an optimal mean square weighting
quantity.
In order to derive the Kalman-Gain, we will use the simple MSE of the not known
weight B in the regression
0, = 91:\75—1 + Be; + 2.

The least squares estimate for the parameter 8 is then

CovlO, €Y1, Yi_o, - Yy |Varledy,_1, Yi_s, - - 791]71- (4.4)

Taking each part separately we have

Cov(0y, €|Y;_1,Yy_2:- - Y1) = E[(0; — 0t|t—1)(yt - @t|t—1)l]
= E[(0; — 9t|t—1)(F/(9t —0,1) +w,)|
= Py F.

In the same way we have

Varle|y, 1, Yo ;yl]il = Varly, — @t\t—l]
= VCLT[F/(Qt — 0t|t—1) + ’I.Ut]
= F/Pt|t_1F + R

Inserting the above two expressions into the least squares estimation in (4.4) we obtain
the Kalman-Gain.

For the next Step, the state space equation is firstly considered
011 =G0 + v

In the case of predicting 8,1 based on data y,,y,, ...y, (up to time ¢), the new updated

quantity %t should be used into this equation
0111 = G104,

and ;41 = 0 because of the assumption of the white noise model. This means that a full
circle which started from 6,,_; and ended to .}, has been completed.

In Step 4 the variances should also be updated and in Step 5 the updated variance
Py, is taken in cases when we have new data y,, which affect the parameters and

possibly decrease the uncertainty of the estimation.
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For the derivation of the expression P,; we have

P, = Var[éﬂt]
= Var[@y_1 + Py F(F,Py 1 F, + R) €
= Var[@y 1] + Var[Py F(F,Py, F; + R,) €]
+2C00[0y;_1, Py Fo(F, Py Fy + R) e

But,

Var[PyFy(F,Py; 1 Fi + R,) €]

= Var[Py Fy(F,Py 1 F; + R) T (F(8; — 01 +w;))]

=Py 1 F(F,Py 1 F,+ R,)  (F,Pyy_1Fi+ R,) (P, Fy(F,Py 1 F, + R,
= Py, \F\(F;Py_\F,+ R,)” ' (FiPy,_\F, + R,)(F\P,, ,F,+ R,)"'FP,, ,
=Py F\(F\Py_F,+ R,)"'FPy_,.

Similarly,
Cov[étlt—laPt|t—1Ft(F;Pt|t—1Ft +Ry) ‘e = =Py Fy(FiPy,_1F; + R))"FiPy,_,.
Using these two expressions we take
Py, =Py — Py Fy(F;Py,_F, + Rt)ilF;Pt\t—l-
In the final Step, the new variance Py ; of the new forecast of 6, is taken:

Var[@ii1lyy, ...y, = Var|Gi10ily,, . ..y, + Varfvialyy, - ..y,
=G PG + Q-

Remark 4.2. Given the data vector y,,vy,, ...y, ; till time ¢ — 1, under the model
assumptions, the estimate 9t|t_1 is the conditional mean of @, and the conditional
variance Py,_;. This means that in case of Gaussian noise errors the distribution of étltfl
is completely specified Vt. In different circumstances, the Kalman Filter algorithm gives

the best linear unbiased estimate of 6; (see Cazan, 2011).

Remark 4.3. In order to start the Kalman Filter algorithm it is crucial to have the
starting values 91|0 and Pj. For 91|0 we can use the unconditional mean F(6;) and for

P,y we can use the unconditional variance Var(6,).
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4.3 Regression Analysis into State Space

Representation

Let y; be a dependent variable and @14, o, . . ., ¢ be a set of p > 0 explanatory variables.

The regression equation can be defined as

Yye = Bo+ Lizie + ...+ Bprp + €, (4.5)

where €; denotes the sequence of random errors which follow the normal distribution with
constant variance Var(e;) = o and Sy, f1, . . ., B, are unknown parameters which must
be estimated. Then the state space representation model in (4.1) and (4.2) in connection

with the regression model in (4.5) is defined as

Yy = F10; + wy,

(4.6)
6.1 = GO,.

where

e 1, is the value of the incremental payment at time ¢,

0; = (B0, b1, - - -, Bp) is the vector of the unknown coefficients at time ¢,

e w; = ¢ is the random normal error,

F,=(1,21,...,2,) s a1l x (p+ 1) vector of the covariates,

R = 02 > 0 the known variance of the errors wy,

Giisa (p+1) x (p+ 1) identity matrix,
e Q,=0isa(p+1)x(p+ 1) matrix with elements 0.

Remark 4.4. We do not have to know the variance o2 so as to estimate the regression
coefficients because @ = 0. We can give an arbitrary value for o without affecting the
final result (Q/R =0, V R > 0). In case that Q > 0, the regression coefficients are time

dependent and the ratio Q/R is not zero and both variances should be estimated.

4.4 Optimization criteria

In order to determine the unknown model’s coefficients there are two different options
for the optimization criterion (Petris et al., 2010, Tusell, 2011):
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(i)

Least - Squares Method
Using this optimization criterion, the estimations of the Kalman filter model is

subject of the minimization of the squared residuals
n
> ele;.
i=1

Maximum Likelihood Method

The second optimization method relies on the maximum likelihood function when
the errors follow the normal distribution. In that case, the unconditional distribution
of y, and the sequence of the conditional distributions of y,|y,_;, Y;_o, ... come

from a multivariate normal distribution with density functions

- - (y: = Fi810) (Po)(y1 — Fi610)
fyy) = (2m) 72| Py 1/Qexp[— - 17110/ A7 1jo/A ! ”0}

2
and
A Y —9)'(E) "y — 9
FWlyi—y, ) = (2m) /Q‘E't‘ 2 exp [_ (v L ;) (v t):|7
where r denotes the dimension of 8. Note that y,|y,_1, Y, o, ... are independent

random variables normally distributed with mean ¢, and variance
E=Varlyy, 1, Yy o,...] = VC”’[F;et\t—l +w,] = F;Pt|t—1Ft + R,

Therefore, the common distribution function should be maximized, i.e.,

T

Fynye - y) = fu) [ fwdyey, ) = mex,
t=2

where @ are all unknown parameters including the initial values.

In cases of mumerical data, it is easier to minimize the negative log likelihood

function

T

—In(f(y1) = D_W(f(yly, 1, -- ) = n(Pyo) +

t=2

+(y, — F1010) (P10)(yy — F1610) +

M=

In(FiPy, 1 Fi + R;) +

||
N

(y, — @t)/(at)_l<yt — )

gl
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4.5 lIdentification of Outliers and Robust Kalman
Filter in the Claim Reserving State Space
Models

While studying a data set, statistical methods should be applied using either the diagnostic
or accommodation approaches because some of the observations may not be homogeneous
(Maronna, et al. 2006). These types of methods on one hand identify potential outliers
and on the other hand discard them from all calculations. All these methods are used
mainly because they can be easily applied in an estimator without making changes to the
algorithm itself. Nevertheless, discarding observations which do not follow the pattern of
the majority of the data may not be a solution because the data may contain a large
percentage of outliers. For that reason, outliers should always be examined exhaustively in
order to determine whether they follow any pattern or if they could be studied adequately
by an alternative method. The regression equivariant estimator’s maximum breakdown
point, under the assumption of general position, is given by €. = [(m —n)/2]/m, in
which we have m data points and n state variables. When using the classical recursive
KF model, m = n+ 1 are the total number of data points at each step k of the algorithm,
as long as we have n predictions (1 for each variable) and 1 data point which is used
at each period. According to Maronna, et al. 2006, the maximum breakdown point is
calculated by
e =1ln+1—=n)/2]/m=1[1/2]/m =0/m = 0.

max

In order to have a positive breakdown and flexibility to outliers, some extra observations
need to be used. If only one measurement gives m = n + 2 data points, the maximum

breakdown point is
€max = (0 +2—n)/2]/m = [2/2]/m = 1/m,

which means that the filter is able to handle more than one outliers! As we can see, the
estimator handles an extra outlier when we have 2 observations; so, m, = m—1 redundant
observations allows the estimator to manage m/2 outliers. For example, in order to be
robust to 2 outliers, i.e. m/2 = 2, we need m = 4 data points, and proportionately,
m, = 3 additional measurements. According to all these we take

6w = [(M+4—n)/2]/m = [4/2]/m = 2/m.

max
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4.5.1 Robustification of the Kalman Filter

An important assumption of the KF model is that the errors follow the normal distribution.
The majority of the models are based on basic conditions, such as the normality of the
errors in the response observations. In case that the errors’ distribution is not symmetric or
prone to outliers then the assumptions are not validated which means that the coefficient
estimations, the confidence intervals, and more statistical quantities will not be reliable.

In the Kalman Filter model, in Step 2 (see Section 4.2) the lack of normality of
the errors or the presence of outliers may not only distort the update of 8, but also a
part of the sequence of 64, V7 > 0. For that reason, a simple robust strategy for
eliminating the effects of such observations, is the replacement of the error €, with a
bounded function v (e;).

A practical procedure to find an outlier is to identify it using the studentized residuals

of the model
€; €;

s(e) ~ \JMSE(— hy)

Ty =

which depends on the errors-residuals, the mean square error (MSE) and the leverage

hi; = [H]|

i)

-1
that is the i-th diagonal element of the projection matrix H = X (X X ) XT, where
X is the design matrix. To make it clear, first it should be noted that (I — H) is

idempotent and symmetric. This gives,

Var(e) =Var[(I — H)Y|
=(I-H)Var(Y)I-H)"

Thus, Var(e;) = (1 — hy)o?.

When estimating the parameters of a model and the studentized residual of an
observation (or more) takes values greater than 3, then it can be characterized as an
outlier observation. Note that we take the absolute value of the studentized residuals.

Instead of using ¢;, the Huber function is going to be applied (see Huber, 1981)

Hy(X) = Xmin{l,HXb”}, (4.7)
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where ||-|| denotes the Euclidean norm and 0 < b < co. In that case, Step (4.2) of the

KF algorithm will be transformed as
9t|t = ét\t—l + Py Fy(F Py Fy + R/E)*le(et), (4.8)

where the value of the parameter b must be specified. An approach for the selection of b
could be the use of the efficiency that someone wants so as to have robustness in the
ideal model compared to the Kalman Filter. This efficiency counts the difference between
the robust methods and the Kalman Filter methods. When b takes small values then the

relative efficiency takes higher values (Moore and Anderson, 1980).

4.6 Forecasting, Smoothing and Interpolation the

Claims

One of the crucial aspects of Solvency II is the estimation of the one year reserve risk.
Up until now, actuaries have been concerned about the estimation of the reserve and
if it is adequate so as to be covered the ultimate loss. The arrival of Solvency II, made
the actuarial companies think the one year perspective. According to the new legislation,
the solvency capital requirement (SCR) for unpaid loss is the amount that is sufficient
to cover risk over a year. One year reserve risk shows how much the mean estimate of
the reserve can be changed during the year. According to the regulations of European
Insurance and Occupational Pensions Authority (EIOPA), that risk is calculated either
using a Standard Formula or with a specifically approved internal model. Then, we
discount the unbiased estimates and we compute the risk margin. According to Solvency
II, the one year risk estimates the SCR and the development of the reserve.

The Standard Formula makes the assumption of a lognormal distribution for every
line of business. Moreover, each line of business has been characterized by a unique
coefficient of variation (CV) that can be applied to all unpaid losses and each year and
have been a priori selected by EIOPA. Wiithrich et al. (2008) created a model which
computes the variation of the reserves over one year time horizon.

Under Solvency II, during the reserve process it is necessary to estimate the uncertainty
which comes from the re-estimation of the best estimate in two consecutive calendar years
n and n + 1. This means that not only the ultimate payments should be estimated but
also the Claims Development Result (CDR) which is an important quantity. Generally,

CDR quantifies how much the total reserves will be changed in the next year and depends
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on D, and D,,.1. In one year the prediction will be updated as
AP = Cpitt — O i = CDRy(n).

If the CDR;(n) > 0, the insurer will pay more than what was expected but if
CDR;(n) <0, the insurer will pay less. In Solvency II, E[A?|C;,—;] = 0, but the actuary
must estimate it and create a reserve for studying the uncertainty which can be described
by the quantity Var[A?|C; ,—i].

Using the Kalman Filter model, forecasting concerns about the estimation of the
parameters 0,5 or y,, ., s > 0 given the data {y,,...,y,}, till time ¢. Filtering concerns
about the case of s = 0, whilst smoothing deals with the case of s < 0 which is not

interesting. Using the state equation we have

0: 11 = G110, + V441,
yt = Ftet + Wy. (49)

Then by using (4.9) recursively we obtain

0115 = G051 + Vi g
=Gy (Gt+s—19t+s—2 + ’Ut+s—1> + Vi
= G1sG45-10115-2 + GrisVips 1 + Vg
= GGy (Gt+s—29t+s—3 + Ut+s—2> + Gy sVips—1 + Vigs

= G15G115-1G 115201153 + Gy sGris 1Viy 52 + GrygVips1 + Vigs

= ( H Gt—l—k:) 0; + ( H Gt—i—k) Uiy + ( H Gt—i—k) Virg+ .o+ Gy sVips 1 + Vi
k=1 k=2 k=3

Then, the forecast for 8, is

ét+5 - E<0t+s> - ( H Gt-i—k‘) ét|ta (410)
k=1

because the mean of v, is equal to 0 for all k.



Chapter 4. Robust Kalman Filter in a State Space Model 101

Then, using the Step 6 of the Kalman Filter algorithm, recursively we obtain

!
P, =GP 111G s + Q.
= Gt+s

/ /
Gt+s—1Pt+s—2|tG t+s—1 T Qt+s—1 G t+s T Qt+s

! / /
= Gt+sGt+s—1Pt+572|tG H—s—lG t+s + Gt-&-thJrsflG t+s + Qt+s

= H Giii | P H Gy | + H G |Qiy H Gk
k=1 k=1 k=2 k=2
+ ( H Gt+k) Q.o ( H G/t+k) + .+ G QG + Q.
k=3 k=3
The last expression can be written in a recursive way as

/
Pt+k|t = Gt+th+k—1\tG t+k T Qt+ka

starting with £ = 1 and estimate the whole sequence recursively up to k = s.

Then, the best prediction of y,, , is

Yirs = Ft+39t+s|t

and the corresponding variance of the prediction is

Var[yys — Yps) = Var[Fips(0rs — 9t+s|t) + Wiy
= Ft+sPt+s\tF/t+s + Ry .

Remark 4.5. There are many cases where the data set has missing observations. In
that case, the unobserved data (unknown claims) can be replaced by interpolating them
easily. Then, Steps 3 and 5 of the KF algorithm are replaced by the equations (Maronna
et al., 2006)

ét\t = ét|t—1,
P,,=P

tlt—1

because there is no available information to update the state-vector. If there are more
than one unobserved values, this procedure can be applied many times. If for example
the values vy, ...,y are missing, then we apply the procedure m + 1 times and the

interpolated data are estimated by

FtétJrsltfl = Ft( H Gt+m> ét71|t71> s=0,1,...,m.
m=0
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4.7 Construction of a Recursive Model on Run-Off

Triangles

In order to transform a run-off triangle into a linear model, the logarithm of the triangle
data Y; ; are used. Then,

log(Y;;) = p+ o + B; + €i . (4.11)

where > 0 is the constant of the model, «; is a parameter which describes the accident
year ¢ and f3; is a parameter which describes the development year j of the triangle.
Moreover, e, ; are the errors of the model which are normally distributed with mean 0
and variance 0% > 0 (De Jong and Zehnwirth, 1983).

For the construction of the run-off triangle as a state space model, a two way analysis
of variance model should be set up in recursive form (see Verrall, 1994). The data are

received according to the year of payment

Yis
Yio ’
Y, ’ .
1,1, [%711 ) }/2,2 )
Y31
and finally in year t the data take the form [ Yie Youq - Y }I.

According to Verrall (1989), the state space depiction of a log-normal model has the

observation equation

10 . 01]
11 oo0f|H
log(Y1,) 100 1 0 ..0 1 0 00 - Wi
log(YQ,t71> : . : B n W3, t—1
log(Y7,1) : B : Qg W1
1 1 0 ... ... 0 1 0 —_—
observation L ﬁt | measurement
vector 10 ... . 0 10 |———  noie
_ state
system matrix Viegtg '

(4.12)
for calendar year ¢t = 0,--- , I which implies (4.11) for each Y;; with ¢ =i + j, while the
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state equation is

i L T 1 0 ... 0T L | [0 ]
(051 0 e (05) 0
I Io .
— | : -0 + : (4.13)
0 ... 0 1 0
Q41 0 ... 1 0| @ uf®
L B | 0 ... 0 1]LAB. _Ugﬁ)_
——— _ N——
vsegggc?r transision matrix \/Sg?ttgr prrlz?sss
in t+1 int Vg:cttor

permits the estimation of the accident and development year parameters. According to
this notation, the set Y1,Y 5, ..., Y, of vectors, fulfill the run-off triangle. The dimension
of each vector Y, in this time series model is ¢ which means that the analysis of the data
set could be based on a multivariate time series model. For example, a linear model with

n = 3 accident years has the form

'via ] [too0o00]; 1 [ew]
Y'LQ 1 01 00 a €1,2
Y, 11000/|]™ e
2,1 2.1
= 52 + )
3/173 1 00 01 €1,3
a3
}/272 11100 ﬂ €22
Vi 1001074 |e

where p, ag, B2, a3, B3 are the unknown regression coefficients and e; ; are the nuisance
parameters.

In state space form, the observation vector is defined by

Yii=p+e,

Yio 1 01 a €12
Vo | 110 e

2,1 2,1

Ba
W
}/173 1 00 01 (e%) €13
)/272 = 1 1100 52 + €22
}/371 1 0 010 (0% €3,1
| Fs ]
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At time t the state vector is defined by

o
(&%)

0, — ”B? . (4.14)

Qi
B |
But, the state vector 6, at time ¢ is related to the state vector 6,_; at time t — 1 by the

following recursive equation

0,11 = 0,+ | |,

. . . . (o7}
where v, is a vector of the prior information about [ :
t+1

Remark 4.6. In cases that the variance of the nuisance parameters, e;;, is known
and vague priors for the unknown parameters are being used, then the estimates of
the parameters of this method are exactly the same as in the ordinary least-squares
estimation method (Verrall, 1989).

The general form which make up the run-off triangle consists of the following equations:

Y1:F101+€1

Y2 = F202 + eo
(4.15)

Y, =F.0,+e

Using the equation (4.15), the Kalman filter method can be applied so as to estimate
the unknown parameters. The state space vector 6, at time ¢ is linked with the state
vector 6,_; at time ¢t — 1 and simultaneously with the observation equation constitute

the state space model.
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4.8 Application of Kalman Filter to Loss Reserving

In the first step, we apply the linear regression Kalman Filter model (KF). Afterwards,
we suppose that the parameters are not fixed and we produce the corresponding Random
linear regression Kalman Filter model (RKF) to Taylor and Ashe (1983) data set (for
more details see Moryson, 1998, Petris et al., 2010). We suppose that Q, # 0 and we
allow the algorithm to estimate the variance. This means that the parameters of the
model are not constant but they have non-zero variance. Figures 4.3 and 4.4 show the
development of the first 9 coefficients (excluding the intercept) of KF model and the
development of the coefficients of RKF model. As we can observe from these Figures,
the estimation of some of the coefficients begins after some data are inputted into the
model. This is also the key feature of Kalman Filter’s method and explains the concept

of its dynamic estimation.

Coeff. 2: 0.361 Coeff. 3: 0.2822 Coeff. 4: 0.1712
<
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o S S
Q | < | o |
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Figure 4.3: Coeflicients of the Linear Regression Kalman Filter Model

Comparing the KF and RKF models, it is obvious that a similar pattern is observed.
Nevertheless, the estimation of the coefficients is different and the standard errors are
also different.

Table 4.1 shows the estimates of the coefficients of the non random and random
Kalman Filter model (they are compared with the linear regression model). As we can
see, the estimates of the Kalman Filter algorithm have slight differences with the linear

regression model.
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Figure 4.4: Coefficients of the Linear Regression Random Kalman Filter Model

Table 4.1: Coefficients of KF, RKF and LS Models

Kalman Filter
Coefficient | Non-random | Random LS

Intercept 12.519837 12.591888 | 12.519840
1% 0.361003 0.442485 | 0.361002
Qs 0.282241 0.348775 | 0.282240
Qy 0.171195 -0.375912 | 0.171194
Qs 0.282223 0.208921 | 0.282222
o 0.311750 0.323464 | 0.311749
ar 0.392050 0.412289 | 0.392049
Qg 0.480272 0.591932 | 0.480270
g 0.345165 0.313837 | 0.345163
a1 0.228600 0.156549 | 0.228598
Ba 0.911191 0.856685 | 0.911190
B3 0.938721 0.901726 | 0.938720
Ba 0.964982 0.870378 | 0.964981
Bs 0.383203 0.466211 | 0.383202
Bs -0.004908 0.316003 | -0.004909
b7 -0.118068 0.036046 | -0.118069
Bs -0.439275 -0.460489 | -0.439277
Bo -0.053505 -0.012819 | -0.053507
Bio -1.393338 -1.269632 | -1.393342

Table 4.2 shows the reserve estimates for each cell of the run-off triangle. The standard

error (SE) of these estimates is also provided (for more details of SE, see Section 2.3.1).
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Table 4.2: Reserve Estimations and Standard Error from Kalman Filter Method

KF Linear Model KF Random Linear Model
Cell Estimated Reserves | Standard Error | Estimated Reserves | Standard Error
T10,2 973602 671916 1004889 755891
Tg 3 1090101 729299 1168135 834331
Z10,3 1001990 692345 1053309 793914
284 1268870 840863 1471524 1034490
Toq 1120657 750780 1134698 812320
2104 1030077 712737 1023159 772969
T75 646825 427014 815581 569733
285 710403 471589 985126 694549
Tg 5 627423 421067 759635 545386
2105 576709 399731 684964 518966
Te6 404479 266741 641040 447011
76 439787 291009 704555 494086
Ts6 483014 321387 851020 602329
Z96 426595 286956 656225 472971
Z10,6 392114 272416 591719 450059
Ts7 351068 231764 432840 302365
Te7 362429 239822 487254 341698
Tr7 394066 261641 535532 377682
T 7 432800 288953 646860 460424
T 7 382246 257997 498796 361542
Z10,7 351350 244924 449765 344028
Tyg 228731 151577 147724 103851
Tsg 256033 169963 265884 187457
T8 264319 175872 299309 211843
T7g 287392 191873 328965 234152
Tgs 315640 211902 397351 285449
Tg g 278771 189201 306399 224146
108 256238 179614 276281 213287
T39 379508 253898 484712 346202
T4 340091 227843 235374 168502
T59 380684 255479 423643 304158
26,9 393005 264361 476901 343724
T79 427311 288414 524154 379922
Zs8.9 469312 318520 633116 463155
Tg9 414493 284397 488198 363686
2109 380990 269986 440209 346068
Z2,10 110928 76555 159533 120003
%310 102650 70928 145556 109710
Z4,10 91988 63649 70681 53398
%510 102968 71370 127217 96387
Z6,10 106301 73851 143210 108925
27,10 115580 80570 157400 120396
3,10 126940 88981 190120 146772
Z9,10 112113 79448 146602 115251
210,10 103051 75422 132192 109668
Total 19511642 13194628 23597356 17142859
% SE of Reserves 32.11% 36.70%
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It can be observed from Table 4.2 that the RKF model produces greater total reserves
(23597356) than the KF model (19511642). Similar results we obtain for the standard
errors (SE) as displayed in Table 4.2. For the KF model the total SE is 13194628 (32.11%
of the total reserves), while for the RKF model the total SE is 17142859 (36.70% of the
total reserves). The smaller the coefficient of variation is, the better model is, which

means that KF model is better than the RKF model.

The run-off triangle for the KF model with the estimations of the future claims and

the total reserve is shown at Table 4.3. The corresponding run-off triangle for the RKF
model is shown at Table 4.4.

Table 4.3: Run-off Triangle of KF Model and Reserve Estimation
1 2 3 4 5 6 7 8 9 10 Ult. Claims | Reserve
1 357848 | 1124788 | 1735330 | 2218270 | 2745596 | 3319994 | 3466336 | 3606286 | 3833515 | 3901463 3901463 0
2 352118 | 1236139 | 2170033 | 3353322 | 3799067 | 4120063 | 4647867 | 4914039 | 5339085 | 5450013 5450013 110928
3 290507 | 1292306 | 2218525 | 3235179 | 3985995 | 4132918 | 4628910 | 4909315 | 5288823 | 5391473 5391473 482158
4 310608 | 1418858 | 2195047 | 3757447 | 4029929 | 4381982 | 4588268 | 4816999 | 5157090 | 5249079 5249079 660811
5 443160 | 1136350 | 2128333 | 2897821 | 3402672 | 3873311 | 4224379 | 4480411 | 4861096 | 4964064 4964064 1090753
6 396132 | 1333217 | 2180715 | 2985752 | 3691712 | 4096191 | 4458621 | 4722940 | 5115945 | 5222245 5222245 1530533
7 440832 | 1288463 | 2419861 | 3483130 | 4129955 | 4569742 | 4963809 | 5251200 | 5678511 | 5794091 5794091 2310961
8 359480 | 1421128 | 2864498 | 4133368 | 4843771 | 5326785 | 5759584 | 6075224 | 6544536 | 6671476 6671476 3806978
9 376686 | 1363294 | 2453395 | 3574052 | 4201475 | 4628070 | 5010315 | 5289086 | 5703579 | 5815692 5815692 4452398
10 344014 | 1317616 | 2319606 | 3349683 | 3926393 | 4318507 | 4669856 | 4926095 | 5307085 | 5410136 5410136 5066122
Total 53869732 19511642
Table 4.4: Run-off Triangle of RKF Model and Reserve Estimation
1 2 3 4 5 6 7 8 9 10 Ult. Claims | Reserve
1 357848 | 1124788 | 1735330 | 2218270 | 2745596 | 3319994 | 3466336 | 3606286 | 3833515 | 3901463 3901463 0
2 352118 | 1236139 | 2170033 | 3353322 | 3799067 | 4120063 | 4647867 | 4914039 | 5339085 | 5498618 5498618 159533
3 290507 | 1292306 | 2218525 | 3235179 | 3985995 | 4132918 | 4628910 | 4909315 | 5394027 | 5539583 5539583 630268
4 310608 | 1418858 | 2195047 | 3757447 | 4029929 | 4381982 | 4588268 | 4735992 | 4971366 | 5042047 5042047 453779
5 443160 | 1136350 | 2128333 | 2897821 | 3402672 | 3873311 | 4306151 | 4572034 | 4995677 | 5122894 5122894 1249583
6 396132 | 1333217 | 2180715 | 2985752 | 3691712 | 4332752 | 4820006 | 5119315 | 5596216 | 5739426 5739426 2047714
7 440832 | 1288463 | 2419861 | 3483130 | 4298711 | 5003267 | 5538798 | 5867764 | 6391917 | 6549317 6549317 3066187
8 359480 | 1421128 | 2864498 | 4336022 | 5321148 | 6172168 | 6819028 | 7216380 | 7849496 | 8039616 8039616 5175118
9 376686 | 1363294 | 2531429 | 3666126 | 4425761 | 5081987 | 5580783 | 5887182 | 6375380 | 6521983 6521983 5158689
10 344014 | 1348903 | 2402212 | 3425371 | 4110334 | 4702054 | 5151819 | 5428099 | 5868309 | 6000500 6000500 5656486
Total 57955446 | 23597356
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Figure 4.5 shows the total reserves using the KF method and the RKF method for
each accident year. According to this figure, it is observed that the RKF algorithm gives
bigger values for the reserve especially at the last accident years. The reason for this
difference could be the fact that there is no much data information at the last accident
years which may lead to greater variability. On the other hand, for the first 5 accident
years, the reserves for both methods are equivalent. Note that, from Figure 4.5 we also
observe a peak at the 8" accident year. The RKF method identifies this sharp increase

of the reserve this accident year while line the KF models seems more stable.
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Figure 4.5: Reserves by Accident Year with KF and RKF Methods

Finally, we apply the robust function Kalman Filter model to the Taylor and Ashe
triangle. The coefficients of the model for different values of b are shown at Table 4.5. It is
observed that as the parameter b increases, the coefficients are stabilized. The coefficients
for big values of b are identical to the values of the parameters of the non robust Kalman
Filter. For values b > 12.8, the coefficients are equal which means that the total reserve
does not change for b > 12.8.



110 Chapter 4. Robust Kalman Filter in a State Space Model

Table 4.5: Robust KF Coefficients for Different Values of b

b [ 10 [102] 104 [106 108 [ 11 [11.2 [ 114 [ 116 [ 118 ] 12 [122 [ 124 [ 126 [ 128 | 13 |
Intercept | 11.870 | 11.916 | 11.963 | 12.010 | 12.056 | 12.103 | 12.149 | 12.196 | 12.243 | 12.289 | 12.336 | 12.383 | 12.429 | 12.476 | 12.520 | 12.520
an 0.671 | 0.649 | 0.626 | 0.604 | 0.582 | 0.560 | 0.537 | 0.515 | 0.493 | 0471 | 0.449 | 0.426 | 0.404 | 0.382 | 0.361 | 0.361

as 0.611 | 0.588 | 0.564 | 0.541 | 0.517 | 0.493 | 0.470 | 0.446 | 0.422 | 0.399 | 0.375 | 0.352 | 0.328 | 0.304 | 0.282 | 0.282
oy 0.517 | 0.492 | 0.467 | 0.443 | 0.418 | 0.393 | 0.368 | 0.343 | 0.318 | 0.294 | 0.269 | 0.244 | 0.219 | 0.194 | 0.171 | 0.171
as 0.645 | 0.619 | 0.593 | 0.567 | 0.541 | 0.515 | 0.489 | 0.463 | 0.437 | 0.411 | 0.385 | 0.359 | 0.333 | 0.307 | 0.282 | 0.282
g 0.693 | 0.665 | 0.638 | 0.611 | 0.583 | 0.556 | 0.529 | 0.501 | 0.474 | 0.447 | 0.419 | 0.392 | 0.365 | 0.337 | 0.312 | 0.312
ar 0.796 | 0.767 | 0.738 | 0.709 | 0.680 | 0.651 | 0.622 | 0.593 | 0.564 | 0.535 | 0.506 | 0.477 | 0.448 | 0.419 | 0.392 | 0.392
ag 0.918 | 0.886 | 0.855 | 0.823 | 0.792 | 0.761 | 0.729 | 0.698 | 0.667 | 0.635 | 0.604 | 0.572 | 0.541 | 0.510 | 0.480 | 0.480

g 0.841 | 0.805 | 0.769 | 0.734 | 0.698 | 0.663 | 0.627 | 0.592 | 0.556 | 0.521 | 0.485 | 0.450 | 0.414 | 0.379 | 0.345 | 0.345
Qg 0.879 | 0.832 | 0.786 | 0.739 | 0.692 | 0.646 | 0.599 | 0.552 | 0.506 | 0.459 | 0.412 | 0.366 | 0.319 | 0.272 | 0.229 | 0.229
B 1.221 | 1.199 | 1.177 | 1.154 | 1.132 | 1.110 | 1.088 | 1.065 | 1.043 | 1.021 | 0.999 | 0.977 | 0.954 | 0.932 | 0.911 | 0.911
B3 1.268 | 1.244 | 1.221 | 1.197 | 1.173 | 1.150 | 1.126 | 1.103 | 1.079 | 1.055 | 1.032 | 1.008 | 0.985 | 0.961 | 0.939 | 0.939
B 1.311 | 1.286 | 1.261 | 1.236 | 1.211 | 1.187 | 1.162 | 1.137 | 1.112 | 1.087 | 1.063 | 1.038 | 1.013 | 0.988 | 0.965 | 0.965
Bs 0.746 | 0.720 | 0.694 | 0.668 | 0.642 | 0.616 | 0.590 | 0.564 | 0.538 | 0.512 | 0.486 | 0.460 | 0.434 | 0.408 | 0.383 | 0.383
B 0.376 | 0.349 | 0.321 | 0.294 | 0.267 | 0.239 | 0.212 | 0.185 | 0.157 | 0.130 | 0.103 | 0.075 | 0.048 | 0.021 | -0.005 | -0.005
Bz 0.286 | 0.257 | 0.228 | 0.199 | 0.170 | 0.141 | 0.112 | 0.083 | 0.054 | 0.025 | -0.004 | -0.033 | -0.062 | -0.091 | -0.118 | -0.118
Bs -0.002 | -0.033 | -0.065 | -0.096 | -0.127 | -0.159 | -0.190 | -0.222 | -0.253 | -0.284 | -0.316 | -0.347 | -0.378 | -0.410 | -0.439 | -0.439
Bo 0.442 | 0.406 | 0.371 | 0.335 | 0.300 | 0.264 | 0.229 | 0.193 | 0.158 | 0.122 | 0.086 | 0.051 | 0.015 | -0.020 | -0.054 | -0.054

Bio -0.743 | -0.790 | -0.836 | -0.883 | -0.930 | -0.976 | -1.023 | -1.070 | -1.116 | -1.163 | -1.210 | -1.256 | -1.303 | -1.350 | -1.393 | -1.393

The triangle with the the reserves, when the robust Kalman Filter algorithm with
b = 10 is applied, are presented at Table 4.6. The corresponding triangle for b = 12.8 is
also presented (see Table 4.7).

Table 4.6: Run-off Triangle of Robust KF Model (b = 10) and Reserve Estimation

1 2 3 4 5 6 7 8 9 10 Ult. Claims | Reserve
1 357848 | 1124788 | 1735330 | 2218270 | 2745596 | 3319994 | 3466336 | 3606286 | 3833515 | 3901463 3901463 0
2 352118 | 1236139 | 2170033 | 3353322 | 3799067 | 4120063 | 4647867 | 4914039 | 5339085 | 5498992 5498992 159907
3 290507 | 1292306 | 2218525 | 3235179 | 3985995 | 4132918 | 4628910 | 4909315 | 5380667 | 5531613 5531613 622298
4 310608 | 1418858 | 2195047 | 3757447 | 4029929 | 4381982 | 4588268 | 4859689 | 5289410 | 5427025 5427025 838757
5 443160 | 1136350 | 2128333 | 2897821 | 3402672 | 3873311 | 4282370 | 4591503 | 5080931 | 5237666 5237666 1364355
6 396132 | 1333217 | 2180715 | 2985752 | 3691712 | 4160604 | 4591257 | 4916709 | 5431974 | 5596983 5596983 1905271
7 440832 | 1288463 | 2419861 | 3483130 | 4236801 | 4759373 | 5239328 | 5602039 | 6176293 | 6360193 6360193 2877063
8 359480 | 1421128 | 2864498 | 4370185 | 5227922 | 5822651 | 6368878 | 6781671 | 7435219 | 7644511 7644511 4780013
9 376686 | 1363294 | 2717209 | 4133213 | 4939862 | 5499166 | 6012859 | 6401066 | 7015686 | 7212512 7212512 5849218
10 | 344014 | 1747503 | 3220923 | 4761913 | 5639762 | 6248435 | 6807469 | 7229941 | 7898812 | 8113012 8113012 7768998
Total 60523970 | 26165880
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Table 4.7: Run-off Triangle of Robust KF Model (b = 12.8) and Reserve Estimation

1 2 3 4 5 6 7 8 9 10 Ult. Claims | Reserve
1 357848 | 1124788 | 1735330 | 2218270 | 2745596 | 3319994 | 3466336 | 3606286 | 3833515 | 3901463 3901463 0
2 352118 | 1236139 | 2170033 | 3353322 | 3799067 | 4120063 | 4647867 | 4914039 | 5339085 | 5450013 5450013 110928
3 290507 | 1292306 | 2218525 | 3235179 | 3985995 | 4132918 | 4628910 | 4909315 | 5288823 | 5391473 5391473 482158
4 310608 | 1418858 | 2195047 | 3757447 | 4029929 | 4381982 | 4588268 | 4816999 | 5157090 | 5249079 5249079 660811
5 443160 | 1136350 | 2128333 | 2897821 | 3402672 | 3873311 | 4224379 | 4480411 | 4861096 | 4964064 4964064 1090753
6 396132 | 1333217 | 2180715 | 2985752 | 3691712 | 4096191 | 4458621 | 4722940 | 5115945 | 5222245 5222245 1530533
7 440832 | 1288463 | 2419861 | 3483130 | 4129955 | 4569742 | 4963809 | 5251200 | 5678511 | 5794091 5794091 2310961
8 359480 | 1421128 | 2864498 | 4133368 | 4843771 | 5326785 | 5759584 | 6075224 | 6544536 | 6671476 6671476 3806978
9 376686 | 1363294 | 2453395 | 3574052 | 4201475 | 4628070 | 5010315 | 5289086 | 5703579 | 5815692 5815692 4452398
10 | 344014 | 1317616 | 2319606 | 3349683 | 3926393 | 4318507 | 4669856 | 4926095 | 5307085 | 5410136 5410136 5066122
Total 53869732 | 19511642

Table 4.8: Robust KF for Different Values of b

b Ult. Claims | Total Reserves | o? | Efficiency | %SE
10.00 | 60523969 26165879 0.17 1.43 0.36
10.20 | 59885962 25527872 0.16 1.37 0.36
10.40 | 59277788 24919698 0.15 1.32 0.35
10.60 | 58697973 24339883 0.15 1.27 0.35
10.80 | 58145135 23787045 0.14 1.22 0.35
11.00 | 57617971 23259881 0.14 1.18 0.34
11.20 | 57115261 22757171 0.13 1.14 0.34
11.40 | 56635855 22277765 0.13 1.11 0.33
11.60 | 56178672 21820582 0.13 1.08 0.33
11.80 | 55742696 21384606 0.12 1.05 0.33
12.00 | 55326970 20968880 0.12 1.03 0.33
12.20 | 54930596 20572506 0.12 1.02 0.32
12.40 54552725 20194635 0.12 1.01 0.32
12.60 | 54192561 19834471 0.12 1.00 0.32
12.80 | 53869732 19511642 0.12 1.00 0.32
13.00 | 53869732 19511642 0.12 1.00 0.32

Table 4.8, shows for different values of the parameter b, the ultimate claims, the total
reserve, the estimation of o2, the efficiency (compared to the non robust KF model) and
the %SE. It is observed that when the parameter b increases, the total reserve decreases

while the efficiency tends to 1.
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Figure 4.6 shows the evolution of the reserve when robust Kalman Filter is applied to
the data (see Table 4.8). This Figure shows also the %SE of the total reserve. We observe

that, when the parameter b increases, the ultimate reserve and the %SE decrease.

Remark 4.7. For values of b > 12.80, with ¢? = 0.12 and efficiency= 1.00, the values
of total reverses are all equal to 19511642. This is due to the fact that the increase of
the parameter b creates more tolerance in the error values of the model and thus the
errors are not considered as outliers. We also observe that this value is not very far from

the value of the total reserves under the log-linear regression model as was presented in
Table 2.2 in Section 2.
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Figure 4.6: Ultimate Reserves and %SE for different robust values of the parameter b

4.9 Concluding Remarks

Even if the state space models are complex and take long time to develop, they can
be used as a framework for automating the reserving procedure. They can incorporate
subjective expert judgement and data from any relevant source and they also allow
the parameters to be dynamic. States and predictions have probabilistic representation
which makes the state space models useful of quantifying the uncertainty of the reserves.
In contrast with other loss reserving techniques, the state space models provide future

estimates for more than one calendar years and this is very important in the reserving
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process. This loss reserving method uses the Kalman Filter, an algorithm applied to
systems that receive external physical disturbances (noises) and aims to create a new
estimate of the state of the system without disturbances. In addition, the algorithm is
extended by making it robust to extreme values, which, if ignored, will overestimate the

final reserve required for the company’s liability.






CHAPTER

Loss Reserving in a Quantile Regression Model

he protection of the policyholders and the financial stability of the insurance market
Tindustry is a crucial aspect and the regulatory authorities intervene to ensure it.
Based on Solvency II and IFRS Phase II regulations, each insurance or reinsurance
company is obliged to evaluate their insurance liabilities on a risk-adjusted basis to
allow for uncertainty in cash flows that arise from liability of insurance contracts. In
addition to the calculation of the reserve risk margin, the calculation of the confidence
level of the risk margin is also required. Australian Prudential Regulation Authority
(APRA) requires to estimate a 75" percentile of the distribution of outstanding claims
for recording in profit and loss statements and the risk margin should be established on
a basis that is intended to secure the insurance liabilities of the insurance company at a

given level of sufficiency (75%).

In recent years quantile regression has become a very popular methodology that
satisfies several of the new reforms in insurance and finance. The least squares estimators
investigate only changes in the mean when the entire shape of the claims distribution may
change dramatically. Quantile regression characterizes a particular point of a distribution
and thus provides a more complete description of the distribution in comparison to
linear regression. Quantile regression technique can differentiate risk factors that lead to
high-level claims than those lead to low-level claims. Quantile regression estimation may
be more efficient from the ordinary least squares when the distribution is not normal.
Furthermore, quantile regression is more robust against outliers and does not require

specifying any error distribution. Therefore, quantile regression may be more appropriate
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than least squares estimation in the context of the insurance industry (see Buchinsky,
1998 and Koenker, 2005).

In the actuarial literature, few papers involved with quantiles Pitt (2006) used
censored regression quantiles to analyze claim termination rates at different quantiles of
the distribution of claim duration for income protection insurance. Chan (2015) proposed
a quantile regression loss reserving model as the model offers potentially different solutions
at distinct quantiles so that the effects of risk factors are differentiated at different points
of the conditional loss distribution. Chan et al. (2007) proposed a robust Bayesian
analysis of loss reserves data using the generalized -t distribution. Dong et al. (2015)
presented in detail the use of parametric and nonparametric quantile regression in non-life
applications. One of their contributions is the use of quantile regression for loss reserving.
They have shown how one can provide an accurate estimation of risk margin and hence
provision, instead of estimating the mean then applying a risk margin. Their method is
more robust when the data is heavy-tailed. Nevertheless, the above approached which
have been used are for univariate quantile regression models and are suitable for a
simple line of business (one run-off triangle). As pointed out by Ajne (1994) and many
other researches, when dealing with a portfolio of several lines of business (LOB), the
chain ladder predictors for the whole portfolio differ from the sums of the chain ladder
predictors for the different individual LOB, because the dependence structure between

the sub-portfolios of a portfolio is not taking in to consideration.

In this chapter, we consider a quantile regression application in a multivariate context
alternative to a multivariate chain-ladder model for a portfolio of correlated run-off
triangles. We propose a reserving problem for a non-life insurance portfolio consisting of
several run-off sub-portfolios corresponding to a different line of business that can be
embedded within the quantile regression model for longitudinal data. One implication of
our model is the diversification effect of a portfolio of reserve risks and can be used as a
risk measure with applications in finance and actuarial science. Antonio et al. (2006) by
using the theory of linear mixed model built a flexible loss reserving in the framework

longitudinal data.

During the last years, many attempts were actualized to extend these methods but
that all was done for the situation where one has only one run-off-triangle. Zehnwirth et
al., (2001) was considered a more complicated situation where n correlated loss triangles
were observed. Our proposal is to apply quantile regression procedures to the loss reserving
estimation when multiple lines of business are available incorporating the correlation

which exists between them.
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5.1 Quantile Regression embedded in a Loss

Reserving Model

5.1.1 Quantile Function

For a random variable Y with cumulative distribution function Fy(y) = P(Y < y), the

0" quantile of Y is defined as the inverse function
Qy(0) = Fy'(9) = inf{y : F(y) > 0}, (5.1)

where 0 < 6 < 1. In case that F(-) is a strictly increasing and continuous probability
distribution function, then Fy'(f) is the unique real number ¢ such that F(t) = 6
(Gilchrist, 2000).

Quantiles are connected with operations of ordering the sample observations that
are used to define them. For a random sample {y1,...,y,} of Y, the general 0" sample

quantile £(#) may be formulated as the solution of the optimization problem
n

min > po(y: =€), where po(2) = 2(6 — I(z < 0)) (5.2)

and I(-) denotes the indicator function. This loss function is an asymmetric absolute loss
function because it is a weighted sum of absolute deviations, where the weight (1 — 6)
is assigned to the negative deviations while the weight # is assigned to the positive
deviations.

When Y is discrete with probability distribution function f(y) = P(Y = y), the

minimization problem takes the form:
Qy(0) = argminE[py(Y" — ¢)]

=arg£nin{(1—9)2|y—0|f(y>+92|y—0|f(y)}- (5.3)

y<c y>c

In the case of a continuous random variable Y, we substitute the summation with integrals
at 5.3:

Qv(6) = axgminElpy(Y — c)

= arg({nin{(l —0) /; ly —c|f(y)dy + 9/:0 ly — C\f(y)dy}, (5.4)

where f(y) is the probability density function of the random variable Y.
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5.1.2 Quantile Regression Estimation

Just as the sample mean, which minimizes the sum of squared residuals

fi = argmin » _ (y; — p)?,
HER =1
can be extended to the linear conditional mean function E(Y|X = x) = @’ by solving
f = argminy_ (y; — )"
PERP =1
Similarly, the linear conditional quantile function, Q(0|X = x) = x'5(f), can be
estimated by solving

B(6) = argmin > py(y; — ), (5.5)
peRr =1

for any quantile 8 € (0,1). The case # = 1/2, which minimizes the sum of absolute

residuals, corresponds to median regression, which is also known as L regression. The

minimization of (5.5) produced by Koenker and D’Orey (1994).

There are advantages of using the Quantile Regression method: Quantile regression
allows us to study the impact of predictors on different quantiles of the response dis-
tribution, and thus provides a complete picture of the relationship between ¥ and X.
Quantile regression is robust to outliers in Y observations.

In the regression case we assume a sample (Y;,x;), i = 1,...,n, where Y; is the
dependent variable and x; is a k X 1 vector of explanatory variables and B is a k x 1

vector of coefficients. The general linear model has the form
Y, =x,8 +u;, and E(Yj|z;) = x,8, (5.6)
while the 6§ — th conditional quantile of Y; given x; can be written as (see Bassett and
Koenker, 1982)
Qv. (0lz;) = 2,8, (5.7)
We consider the 0th sample quantile g;(6). Mosteller (1946) proved the limiting normality

of Egiim that provides a realization of the least estimation of the form
G = @By + ui, (5.8)

where () is a vector to be estimated and w; is the error term. For independent
observations, under certain conditions, the asymptotic variances for u;, can be obtained
as (see Koenker, 2005, p. 132)

U= () (59)
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Instead of reweighting the observations by ,/n; to correct for the heterogeneity in
sample size effect, it would be preferable to weight by 1/1/w? , to obtain the weighted
least-squares estimator

Bo = (X' Q' X)X Q' (5.10)
that achieves an asymptotic efficiency bound and has limiting covariance matrix

= (X'Q X)L (5.11)

With quantile regression we can show how various financial characteristics are different
at different quantiles. Thus, the quantile regression method allows the marginal effects
to change for claims at different points in the conditional distribution by estimating 8,
using several different values of 6, 6 € (0,1). This means that the quantile regression
allows for parameter heterogeneity across different types of claims.

In a similar way can be defined the 6§ — th quantile for the linear model. Let {x;,7 =
1,...,n} denote a sequence of (row) k-vectors of a known design matrix and suppose
{Y;,;i = 1,...,n} is a random sample on the regression process u; = Y; — ;E;B having
distribution function F. Then the # — th regression quantile 0 < 6 < 1, can be defined as
any solution to the minimization problem [see Koenker and Basset (1978), Buchinsky
(1998)]

minlim(ui):?ﬂigl( S oyi-@pls Y <1—e>m—m;ﬂ|), (512

B s iyi>x B iY;<x, B

where py(t) = (0 — I(t < 0))t is a check function, and I(-) is the indicator function.

5.2 Correlated Run-off Triangles in a Quantile
Longitudinal Model

The reserving procedure for multiple run-off triangles is an important issue of an insurance
company because the connections among the triangles may show correlations which are
initially unknown. The correlations of different lines of business may produce more
efficient estimations for the total reserve. If for example the two run-off triangles are
positively correlated, then the variability of the total reserves exceeds the sum of total
reserve variability from each triangle. Ajne (1994) notes that commonly used approach
in actuarial practice division of the portfolio into several subportfolios and then make
calculations using each single line of business. But, this method ignores the or can consist

of several lines with homogeneous the dependencies among the subportfolios.
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When the run-off triangles are linked with a known structure, such as the paid and
incurred triangles, then the Munich Chain Ladder (MuCL) model by Quarg and Mack
(2004) is a good method of estimation. Moreover, instead of studying the structural
correlations, the correlations between the triangles is an important issue and several
papers have been produced such as Braun (2004), Kremer (2005), Schmidt (2006) and
Merz and Wuthrich (2008a, 2008b). According to Holmberg (1994), correlations in a
run-off triangle may arise among losses as they develop over time or in different year of
accident. Other authors have studied correlations over calendar year incorporating the
trends of inflation which appear.

Here, we are not going to use a triangulation form to model the data. Let y;; be the
k" measurement for the i’ subject (triangle), which describes the total claims amount
or the number of claims at the ¢ run-off triangle for i =1,..., N, k =1,...,n; where
n; is the number of the observed data of the triangle . We consider the case where,

longitudinal data analyses are based on a linear regression model such as

Yik = w;,kﬁ + €k = Bi%iks + PoTire + . .. + BpTikp + €k (5.13)

where 8 = (f1,...,05,) is a p-vector of unknown regression coefficients while ¢; ;, is a
random variable with mean zero and represents the deviation of the response from the
model prediction x; ;8. Usually, zjx; = 1 foralli=1,...,Nand all k =1,...,n;, and
then the coefficient 3, is the intercept term of the regression model. In the classical linear
model, the €;; would be mutually independent N (0, 0?) random variables and represent
the error term of the model. Although the most interesting scientific interest is about
the mean response which is a function of some covariates, it is also very important the
within correlation of observations. Mathematically, the Cov(y; j, vix) of two different
observations of the same subject, is not equal to zero. In the longitudinal structure it is
expected the errors €, to be correlated within subjects (see Diggle, et al., 2002).
Harrison and Hulin (1989) used generalized estimating equations (GEE) as a promised
analytic tool that takes into consideration the correlation of responses within a specific
subject for response variables. A more interesting characteristic of these equations is the
flexibility they have so as to analyze not normally distributed response variables.

Using matrices, the regression equation for the i** subject has the following form:

where X is a n; xp matrix and €; = (¢; 1, . . ., €in;)- We should mention that in longitudinal

studies, the experimental unit is not the individual measurement y; , but the whole
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Table 5.1: N Run-off Triangle in a Longitudinal Form

Subject Observation Response Covariates
1 1 Y11 T11,1 e T11,p
1 2 Y1,2 T1,2,1 e T12p
1 nl yly”l xlvnlzl tte xlvnlzp
N 1 Yn1 ITN1,1 -« ITN1p
N 2 YN,2 ITN21 -+ IN2p
N ny YNny LINny,1 cee xN,mp

sequence, Y';, of measurements on a subject. Let X be an 3V | n; x p matrix of explanatory
variables and o2V be a block-diagonal matrix with non-zero n; x n; blocks o2V;, each
representing the variance-covariance matrix for the vector of measurements on the ith
subject. Then, y = (y,,...,Yy), is a realization of a multivariate Gaussian random

vector, Y, with
Y ~ N,(XB,0*V). (5.15)

In case we want to analyze data generated by the model 5.15, then the block-diagonal
structure of 02V is very important, because we will use each subject in order to estimate
%V without making any parametric assumptions about this form. The replication across
the subjects is a very crucial characteristic because it affects the structure of the matrix
o?V (Diggle, et al., 2002).

In order to estimate the regression parameter 3, it is usually used the weighted
least-squares estimator of B using a symmetric weighted matrix, W, which can be

produced by minimizing the quadratic form
(y— XB)W(y - XB). (5.16)

After some matrix manipulations by taking the derivative with respect to 8, the explicit

result is
By =B+ (X'WX) ' X'We (5.17)

which is unbiased estimator for 8 as far as FE[e|x] = 0, whatever the choice of the weight

matrix W. If W = I, the identity matrix, then we take the classical OLS estimator

Br=(X'X)"'X"y, (5.18)
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with
Var[B;] = cH{(X'X) ' X'VX(X'X) 1) (5.19)
If W = V!, the estimator becomes
B=(X'VIX)'X'V 1y, (5.20)
with
Var[B] = c*(X'VIX)™". (5.21)

The "hat" notation states that the estimator is the maximum likelihood estimator for
B under the multivariate Gaussian assumption which is the most efficient weighted
least-squares estimator for 8. However, in order to identify the optimal weighting matrix

it is necessary to know the complete correlation structure of the data.

5.2.1 Quantile Regression with Longitudinal Data

Fu and Wang (2012) considering the linear quantile regression model by Chen et al.
(2004), proposed a combination of the between and within subject estimating functions
for parameter estimation, which take into account the correlations and variation of
the repeated measurements for subjects. Their model is an extension of the univariate
quantile regression proposed by (Wang et al., 2009; Pang et al., 2010). Let y;, be the k
measurement for the i*" subject, where k =1,...,n; and i = 1,..., N. We also suppose
that x;; is the corresponding covariate vector and measurements from the same subject
are dependent while those from different subjects are independent. We assume that the
1000th quantile of y;, is ©1 B, where B is a p x 1 unknown parameter vector. Using this

notation we consider the following model for the conditional quantile functions

Qo(Yir|Tin) = m;‘li;ﬁm (5.22)

where 3, is the true value of the vector 8. Let the error term €;, = y,. — €4 3, which
satisfies the condition P(€; < 0) = 6. Then, we can find an efficient estimate for the
unknown vector 3 for a particular value of . According to Chen et al. (2004), under the
independence working model assumption, the estimates B ; are obtained by minimizing

the function
N ng

Lo(B) = Z Z po(Yir. — T B). (5.23)

i=1 k=1



Chapter 5. Loss Reserving in a Quantile Regression Model 123

We differentiate (5.23) with respect to 8 and take the following estimating functions to

make inferences about the unknown vector :

N n;
Wy(B) = > TwSi
i=1 k=1
where Si = 0 — I(yy — mg,;ﬁ < 0) is a discontinuous function which takes the value 6 — 1

when y; — 5 8 < 0 and the value 6 otherwise.

5.2.2 The Uniform Correlation Model

In the uniform correlation model (also known as exchangeable or compound symmetry cor-
relation model), it is assumed that there is correlation, p, between any two measurements

on the same subject. In matrix notation, this corresponds to
Vi=0-p)I,, + pdy,, (5.24)

where [,,, denotes the n; x n; identity matrix and J,,, the n; X n; matrix all of whose
elements are 1 (Searle, et al., 1992). In order to justify the uniform correlation model we

should think that the observed measurements, y;;., are realizations of random variables,
}/;k. But,

}/ik:,uik—i_Ui—’_Zikai:la--wN;kzla-";nia (525)

where ;= E[Yy], U; are mutually independent N (0,v?) random variables, Z;;, are
mutually independent N(0,#?) random variables and the U; and Z;;, are independent of
one another. We should mention that 5.25 gives a simple interpretation of the uniform
correlation model as one in which a linear regression model for the mean response

incorporates a random intercept term which has variance t? between the subjects.

Theorem 5.1. In the case of modeling the correlation between the same subject we
assume that P(ey < 0,¢5 < 0) = § for any k # | and the covariance matriz of
Si=(Si,...,Sm,)T is given by

where p is the correlation coefficient of Sy, and Sy and equals (6 — 0%)/(0 — 62), I, is

the n; x n; identity matriz and J,, is the n; X n; matriz of 1s.
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Proof. The form of the covariance matrix of S, is

L p p p
1
V,=o2|" P 71, (5.27)
p p p ... 1

because there is correlation between S;; and S;; with j # 5’ j,j/ =1,..,n;. We have

p= Corr(Siy, Suy) = ——C00u Sy) COU(SZ i), (5.28)
\/V@T(Sij) \/V&T(Sij/) 9
Moreover,
J J ]~ J

Using the fact that P(ey < 0) = 0, we have
E[SyS) = E{6 ~ I(e; < 0)]I8 ~ I(eiy < 0)]}
— 6 - QE{I(eij < 0)} - HE{I(Q-]-/ < 0)} 4 E{I(eij < 0)I(ey < 0)}
— 5,
and
E[Si] = E{H (e < 0)} _g— E{I(eij < 0)} 0, Vk.

We used the fact that I(e;; < 0) is a binary variable which takes the value 1 when ¢;; <0
and the value 0 otherwise with mean 6 and variance 6(1 — 6). Similarly, the variable
I(e;; < 0)I(e;» <0) is a binary variable with mean ¢ and variance §(1 — ). Then, we
have that

Var(Sy) = Var[d — I(yy, —x5.8 < 0)] = Var[d — I(eg < 0)] = 0(1 — 0) (5.30)
From (5.28) we take that the correlation coefficient is equal to p = g:z; Moreover, by
(5.27) and (5.30), the covariance matrix V; is

1 0 1 1 1 1
01 0 .. 0 1 1 1 1

Vi=(0-0°)(1-p) +p
) 0 0 0 1 1 1 1 1

— (0|1 = )L, + 0T,
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Let now X; = {X1,..., X, }7. In order to obtain efficient estimators we should
incorporate an appropriate weighted function that takes into account the correlation for

each subject. According to Jung (1996) based on the exchangeable correlation structure

assumption
1, j=k
COT‘T‘(Sij, Szk) = s (531)
0, j#k
the generalized least squares estimate of 8 obtained by minimizing
S,V:'s; (5.32)
and differentiating with respect to 3, the following weighted functions are used:
N
Us(B) => X V.S, (5.33)
i=1
where V! is the inverse matrix of V.
Proposition 5.1. The inverse matriz of V; can be written as
Voo (W w) (5.34)
0 — 62 ‘ ) '

where WP and W™ are quantities related to information from different subjects and

from the same subject, respectively

I
ni[1 + (n; — 1)p)

. 1 1

Wl —

Proof. Suppose A is an invertible square matrix and w, w are column vectors. Suppose
furthermore that 1+w” A~ u # 0. Then, the Sherman Morrison formula (Bartlett, 1951)
states that

A luwTAT?

A Nt =~ ==
(A +vw?) 1+wlA

(5.36)

Starting from

Vi=0"|(1=p)In, + pJy,



126 Chapter 5. Loss Reserving in a Quantile Regression Model

and supposing that pJ,, = uw’ where u = w = {p,p,...,p}" is a n; x 1 vector, by
(5.36) we take

1 1
Vﬁl 1 1 I (HInz)panl pIn.L
C el T
1—p
1 1 1
A
a?ll—p 1—p\1+4+(n;—1)p
17 1 1 n(l—p)—n; —n;(n; — 1
L I, ¢ ( (1-p) ( : )p>Jm]
o?ll—p 1—p (1+ (ni — 1)p)n;
1 1 1 1-— 1
SRER I S <Im P Im)Jn?}
o?ll—p 1—p 14 (n; — Dpln; ny
17 J.
= 5|7 _4n i - In]
o?ll—p ’+[1+(ni—1)p]nz ni(l1—p) ™

that provides (5.34). [ |

If there is no correlation between the same subject then the correlation coefficient p

is zero and the inverse matrix of V; is equal to

1
-1

V == ;ITL”

and Uy(B) is equivalent to the estimating functions Wy(8). Furthermore, from (5.33),

using the result of (5.34) we take

1 . 1 1

i=1 o ni[l+(mi—1)p] 1-p i

1 & J, 1 XN 1 1
— S x7 ng S+ =S xT (In._Jn,) S,

N D R V) P @ll—p T

1§2XT[ ! & S S/t iXT(S 1,38,/ )
= i1, . 1\ . n; i/ T 7T N o i i An; i/ T s

o? i=1 L+ (i = 1)p k=1 (1 —p)o? i=1 k=1

(5.37)
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where 1,, is a n; x 1 vector of 1s. Then, by (5.37) and (5.35) we can extract the following

two estimating functions:

bet - 1

U*(5) -

; L+ (ni—1)p
N

1 i N o

—> X7 (Si -1, > 5; /ni) =Y xTwyithing, (5.38)
—Piz1 =1 =1

Remark 5.1. Note that the estimating functions U""(B) indicate the differences within

a subject while U (B) indicate the information which comes from different subjects.

" N
XzT]-m Z S,L/nl — Z X?W?etweensi,
k=1

i=1

U5 =

5.2.3 Estimation of the Parameters

Generally, the most difficult issue when using quantile regression is the estimation of
the covariance matrix of the parameter estimators because it involves the unknown
density functions of the errors. Resampling methods have been proposed to estimate
the covariance matrix (Parzen et al., 1994), but these methods cause some potentials
especially to real data analysis. These methods are useful because the parameter estimates
can be easily obtained but the variance is difficult to be estimated. Moreover, there is no
analytical proof for the validity of the traditional bootstrap technique for the quantile
regression model (Yin and Cai, 2005). Fu and Wang, (2012) extended the smoothing
method of quantile regression with independent data proposed by Wang et al. (2009)
and proposed a method for longitudinal data.

Suppose, that Bu is the estimator which results from Uy(B). Then, under some

regularity conditions, ,éu, is a consistent estimator of 3, and
VN(B, - By) - N(O,A), (5.1

So, the resulting estimator Bu from 5.37 can be approximated by 8 + AY?Z where
Z is the standard normal distribution N(0,I,) and AY?Z is a disturbance quantity
to B. Moreover, according to 5.23, the estimating functions Uy(f) can be defined as
Uy(B) = E7{Uy(B + A'?Z)} where expectation is over Z. Nevertheless, the variance-
covariance matrix A is unknown which means that the expectation cannot be computed.
For that reason, Brown and Wang (2005) suggested the use of a known matrix I instead
of A and using appropriate iterative algorithms in order to estimate the matrix A. So,
the objective function is Ug(B) = Ez{Us(B + T*/*Z)}.

Note that

E{Ly(B+TY?Z)} =0 — P{x T2 Z > by} =60 — 1 + @{b"’“], (5.2)
Oik
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where by, =y, — 4.3 and 03 = x> Tx,. Then,

N
Ug(B)=> X]V'S,, (5.3)
i=1
where S; = (Su, e S'm) with S;, =0 —1+ @ {g’;} Differentiating (5.3) with respect
to B, we take
N
Do(B)=-> X]V'A X, (5.4)
i=1
where A, is a diagonal n; x n; matrix with diagonal element O'i_qub[?%i].

In order to produce the estimators and the corresponding covariance matrix, we need
iterative methods. We adopt the algorithm of Fu and Wang (2012) who extended the
induced smoothing method of Wang et al. (2009) and Pang et al. (2010). A similar
algorithm was applied by Stoner and Leroux (2002) for the analysis of clustered data.
The steps of the algorithm are the following:

ALGORITHM:

Step 1. Produce some initial values BO = B 1, which have been obtained by the
independence working model and T = n~11,.
Step 2. Given ,C:lk_l and T*! from the k — 1 step, update 6*~!, using the following

equation

S ni(ng — 1)

. . ~k . . .
Step 3. Update the estimation parameters B  and the matrix I'* using the equations

B =B+ {Dy(B" T} T T 5,
rt=D, (B T V(B 8D, (BT T,

Step 4. Repeat Steps 2 and 3 until convergence.

Remark 5.2. Under some reqularity conditions, n=/>{Uy — Ug} = 0,(1).

5.3 Numerical Illustrations

In this section, some numerical examples using quantile regression models will be im-

plemented. We suppose that we have two blocks of business for which we are trying to
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calculate reserve indications. Both companies operate in Greece. Company A mainly
focuses on Motor Business and underwrites all vehicle categories apart from taxis and
trucks while company B underwrites all vehicle categories for Motor Business. Tables
5.2 and 5.3 show the triangles of the incremental incurred claims (paid and outstanding

claims) for both companies.

Table 5.2: Motor Triangle and Premiums for Company A

Accident Development Year
Year 1 2 3 4 5 6 7 8 9 10 Premium
2007 58134 162688 101105 100964 61591 71009 34024 2746 646 10190 | 1051637
2008 51437 197139 120641 74807 76771 77276 39070 4396 13809 1190965
2009 57906 116191 143953 103883 70760 177194 35341 6088 1327568
2010 40352 121837 88389 320429 75127 70190 63723 1418348
2011 82227 279591 151260 230293 82378 47315 1504056
2012 196417 119755 228499 99894 44266 1580233
2013 67161 107098 198252 75172 1619382
2014 78293 141865 106150 1727540
2015 74472 118886 1820104
2016 43281 1883017

Table 5.3: Motor Triangle and Premiums for Company B

Accident Development Year
Year 1 2 3 4 5 6 7 8 9 10 | Premium
2007 63078 143002 144235 75007 60775 70804 27508 4757 3172 6385 | 1633833
2008 65567 177292 107870 137305 72741 68708 102864 4335 6107 1675707
2009 87394 146346 158876 199846 53161 72764 42915 10898 1636855
2010 70017 153893 119028 93771 49600 185689 28331 1689715
2011 104638 186326 335477 136857 87941 69248 1649386
2012 76390 190629 192606 121704 66297 1712587
2013 58620 184557 135174 118180 2105361
2014 87845 166511 145385 2265432
2015 53616 152751 1976188
2016 62904 1351719

It is obvious that for Company A for accident year 1, a big claim has been paid 10 years
after the accident date (the amount of this claim is embedded at the total incremental

amount of 10190) and could be represented as an outlier claim. This claim will dramatically



130 Chapter 5. Loss Reserving in a Quantile Regression Model

change the development pattern of the payments in case of using the Chain Ladder
method because the Loss Development Factor for this year increases from 1.01 to 1.02
(see Table 5.4). This is commonly observed in Motor Business because there are many
cases of claims which are settled many years later especially when accidents with large
compensations (such as partial or total disability, deaths, etc.) are observed. This can
also be observed in accident year 2 where a large amount is observed at the last known
development year (13809). On the other hand, for company B, the data of the triangle
seem to be more stable without big fluctuations. Moreover, the premiums of the companies
by accident year are presented at the run-off triangles. For the implementation of the
data set we divided the payments by exposures for each year of business before the
analysis is carried out. we will divide the losses by the premium to put the accident years

on a more nearly equal basis.

The number of exposures (counts of incurred losses) for each accident year is also

provided (see Tables 5.5 and 5.6) for each lines of business.

Table 5.4: Loss Development Factors

Company 0-1 1-2 23 34 45 56 67 78 89
A 293 161 137 113 1.15 1.07 1.01 1.01 1.02
B 3.25 168 130 1.12 1.15 1.08 1.01 1.01 1.01

Table 5.5: Counts of Incurred Claims for Company A

Accident Development Year
Year 1 2 3 4 5 6 7 8 9 10
2007 118 272 241 169 103 106 71 4 3 5
2008 134 287 235 192 121 117 84 14 13
2009 129 254 267 193 110 136 80 16
2010 87 255 218 152 111 86 52
2011 148 285 277 212 127 94
2012 108 255 227 185 103
2013 129 215 220 150
2014 128 277 234
2015 122 236
2016 94
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Table 5.6: Counts of Incurred Claims for Company B

Accident Development Year
Year 1 2 3 4 5 6 7 8 9 10
2007 139 286 276 170 137 140 74 15 8 6
2008 143 337 258 224 158 158 90 20 13
2009 151 273 310 239 145 135 81 11
2010 138 285 273 182 122 127 70
2011 161 372 349 282 185 129
2012 131 327 297 237 150
2013 144 345 284 222
2014 146 337 295
2015 130 301
2016 155

If we were trying to calculate the expected value of the reserve run-off, we could sim-

ply calculate the expected value for each line of business separately and add all the

expectations together. However, when we quantify a value other than the mean, such as

a quantile, we cannot simply sum across the lines of business. In such a case, we will

overstate the aggregate reserve need.

Figures 5.1 and 5.2 show claims development charts of Company A and Company B,

respectively, with individual panels for each origin period. Chain Ladder loss development

factors for each company are also presented in Table 5.4. According to the claims

development chart we observe that the pattern of of company A and company B looks

similar (see Figure 5.3).
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Figure 5.1: Claims development chart of Company A with individual panels for each

origin period
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Figure 5.3: Claims development chart of the triangles with one line per origin period.

Table 5.7 and Table 5.8 display the values of reserves and ultimate paid claims based
on individual quantile regression method, for company A and company B, respectively,
for different quantiles. The loss ratios for each quantile are also provided at the end of
each of the Tables 6 and 7. Table 5.9 and Table 5.10 display the values of reserves and
ultimate paid claims based on longitudinal quantile regression method, for company A
and company B, respectively, for different quantiles. The loss ratios are also included in
the end of the tables. Loss ratios for motor car insurance typically range from 40% to 60%.

At this case, insurance companies are collecting more premiums than the amount paid
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in claims. Loss Ratio is considered as one of the tools with which explains a company’s

suitability for coverage. A high Loss Ratio means is considered bad which leads to bad

financial health because the insurance company may not be collect enough premium to

pay claims, expenses and make a reasonable profit.

Table 5.7: Reserves and Ultimate Claims of Company A based on Individual QR

Accident Quantile 50% Quantile 60% Quantile 75% Quantile 90% Quantile 95% Quantile 99.5%
Year Reserves Ultimate | Reserves Ultimate | Reserves Ultimate | Reserves Ultimate | Reserves Ultimate | Reserves Ultimate
2007 0 603097 0 603097 0 603097 0 603097 0 603097 0 603097
2008 11702 667049 11496 666843 12348 667695 12348 667695 12348 667695 12348 667695
2009 25522 736838 25770 737085 30734 742050 30734 742050 30734 742050 30734 742050
2010 30123 810171 32114 812161 48436 828484 48436 828484 61841 841888 61841 841888
2011 84962 958027 86226 959291 102917 975981 102917 975981 102917 975981 102917 975981
2012 144793 833624 150033 838863 295824 984655 485528 1174359 485528 1174359 485528 1174359
2013 218293 665976 223617 671300 222374 670057 485688 933370 485688 933370 485688 933370
2014 376255 702563 396658 722966 439704 766012 439675 765983 400741 727049 400741 727049
2015 433878 627236 514291 707648 547762 741119 519185 712542 482151 675508 482151 675508
2016 364632 407912 377312 420592 439462 482742 396155 439435 374632 417912 374632 417912
Total 1690161 7012491 | 1817516 7139846 | 2139562 7461893 | 2520666 7842996 | 2436579 7758909 | 2436579 7758909

LR 46.37% 47.21% 49.34% 51.86% 51.31% 51.31%

Table 5.8: Reserves and Ultimate Claims of Company B

based on Individual QR

Accident Quantile 50% Quantile 60% Quantile 75% Quantile 90% Quantile 95% Quantile 99.5%
Year Reserves Ultimate | Reserves Ultimate | Reserves Ultimate | Reserves Ultimate | Reserves Ultimate | Reserves Ultimate
2007 0 598722 0 598722 0 598722 0 598722 0 598722 0 598722
2008 7915 750705 8760 751550 9338 752128 7642 750431 7642 750431 7642 750431
2009 15633 787833 15012 787213 14631 786831 20011 792211 20011 792211 20011 792211
2010 16638 716969 16780 717111 20452 720783 19694 720025 19694 720025 19694 720025
2011 64164 984651 77249 997735 156940 1077426 232413 1152900 232413 1152900 232413 1152900
2012 124174 771801 131694 779320 212699 860326 348719 996345 348719 996345 348719 996345
2013 184956 681488 196298 692830 270111 766642 413334 909865 413334 909865 413334 909865
2014 326036 725777 308932 708673 422205 821946 621763 1021504 621763 1021504 621763 1021504
2015 398134 604501 382772 589139 477907 684274 614736 821104 614736 821104 614736 821104
2016 514302 577206 499960 562864 588777 651681 742201 805105 742201 805105 742201 805105
Total 1651953 7199653 | 1637457 7185156 | 2173060 7720759 | 3020513 8568213 | 3020513 8568213 | 3020513 8568213

LR 40.68% 40.60% 43.63% 48.42% 48.42% 48.42%

Table 5.9: Reserves and Ultimate Claims of Company A based on Longitudinal QR

Accident Quantile 50% Quantile 60% Quantile 75% Quantile 90% Quantile 95% Quantile 99.5%
Year Reserves Ultimate | Reserves Ultimate | Reserves Ultimate | Reserves Ultimate | Reserves Ultimate | Reserves Ultimate
2007 0 603097 0 603097 0 603097 0 603097 0 603097 0 603097
2008 10465 665812 13163 668509 14614 669961 14998 670344 16354 671701 14284 669631
2009 15332 726647 19519 730834 24491 735807 25753 737069 27823 739139 24671 735987
2010 18773 798820 24548 804595 30472 810519 33114 813161 36000 816047 31594 811641
2011 109292 982356 146947 1020012 162394 1035459 280876 1153941 270861 1143926 271168 1144233
2012 142717 831548 195409 884240 227356 916187 388819 1077650 534912 1223743 535184 1224015
2013 121615 569298 164628 612311 205183 652866 313448 761131 303832 751515 304086 751769
2014 143793 470101 216128 542436 274426 600734 369152 695460 398023 724331 624747 951055
2015 156935 350292 245965 439323 255528 448885 319659 513016 354969 548327 355450 548807
2016 108851 152131 205266 248546 205286 248567 211902 255182 211842 255123 211977 255257
Total 827771 6150102 | 1231572 6553903 | 1399751 6722081 | 1957720 7280050 | 2154617 7476947 | 2373161 7695491

LR 40.67% 43.34% 44.45% 48.14% 49.44% 50.89%
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Table 5.10: Reserves and Ultimate Claims of Company B based on Longitudinal QR

Accident Quantile 50% Quantile 60% Quantile 75% Quantile 90% Quantile 95% Quantile 99.5%
Year Reserves Ultimate | Reserves Ultimate | Reserves Ultimate | Reserves Ultimate | Reserves Ultimate | Reserves Ultimate
2007 0 598722 0 598722 0 598722 0 598722 0 598722 0 598722
2008 14812 757602 19390 762179 21292 764082 21818 764608 23573 766363 20865 763655
2009 23811 796012 31465 803665 38726 810927 40529 812730 43425 815625 38967 811168
2010 31032 731363 42019 742349 51128 751459 54931 755262 59120 759451 52655 752985
2011 146138 1066624 203353 1123839 221691 1142178 370226 1290712 358282 1278769 358674 1279161
2012 220915 868541 313593 961219 357766 1005392 589509 1237135 806340 1453966 806747 1454373
2013 197552 694083 279346 775877 337958 834489 497873 994404 484759 981290 485153 981684
2014 217454 617195 342324 742065 418633 818374 541538 941279 583882 983622 899021 1298762
2015 243640 450007 397190 603557 410815 617182 490441 696808 541561 747928 542253 748621
2016 189118 252022 356630 419534 356665 419569 368159 431063 368056 430960 368290 431194
Total 1284472 6832172 | 1985308 7533008 | 2214675 7762375 | 2975023 8522722 | 3268999 8816698 | 3572625 9120325

LR 38.61% 42.57% 43.86% 48.16% 49.82% 51.54%

To examine the role of dependence is important to calculate the reserves for each
individual LOB, and then use the sum to compare it with the sum of the run-off triangles
resulting from the RCR cross effects (see Table 5.11).

Table 5.11: Estimated reserves using Individual Quantile Regression (IQR) and the
Longitudinal Algorithm (LALG)

Quantile 50% | Quantile 60% | Quantile 75% | Quantile 90% | Quantile 95% | Quantile 99.5%
Company A IQR 1690161 1817516 2139562 2520666 2436579 2436579
Company B IQR 1651953 1637457 2173060 3020513 3020513 3020513
Company A LALG 827771 1231572 1399751 1957720 2154617 2373161
Company B LALG 1284472 1985308 2214675 2975023 3268999 3572625
IQR - LALG 1229871 238092 698196 608436 33477 -488694

Applying individual quantile regression, a higher quantile leads to larger total reserve.
Nevertheless, for company A quantiles over 95% provide equal values of reserves, while
for company B quantiles over 90% provide equal values of reserves. The longitudinal
algorithm gives different estimations for each quantile. Applying longitudinal quantile
regression, the estimated ultimate reserves for both companies A and B are smaller than
the sum of individual estimated reserves for each company A and B based on individual
quantile regression.

For model comparison, two criteria, namely the Root Mean Squared Error (RMSE)
and Percentage Total (PT) are proposed. The Root Mean Square Error (RMSE) is a
well-known and frequently used measure of the differences between the predicted values of
a model and the actually observed values. Specifically, the RMSE represents the sample
standard deviation of the differences between the predicted and observed values. These
differences are usually known as residuals when the calculations are made over the data

sample and are called prediction errors when computed out-of-sample. The RMSE is a
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measure of how to spread out these residuals are. The RMSE aggregates the magnitudes
of the errors in predictions for all data into a single measure. RMSE is a measure of
accuracy and is useful for comparing different models for a particular data set (Hyndman
et al., 2006). RMSE is the square root of the average of squared errors. It should be
mentioned that the effect of each error on RMSE is proportional to the size of the squared
error. So, larger errors have a disproportionately large effect on RMSE. Consequently,
RMSE is sensitive to outliers (Pontius et al., 2008, Willmott et al., 2008).
For the RMSE for one triangle data we have:
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)
n =
while when using many run-off triangles the RMSE is defined as
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where k is the counter for each triangle. Moreover, the percentage total (PT) is also a

comparison criteria which is defined as
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The RMSE and PT measure the model-fit with respect to observations where PT closest
to 100 is accepted while RMSE is preferred to be the smallest.

Table 5.12: RMSE and PT of Individual QR and Longitudinal QR

Root Mean Square Error Percentage Total
Quantile | Company A Company B Londitudinal | Company A Company B Londitudinal
50% 457.52 248.60 398.07 82.78 90.37 84.02
60% 455.12 244.40 389.59 90.26 93.66 93.32
75% 511.97 263.43 388.36 123.37 106.04 106.02
90% 730.79 466.38 536.24 158.87 139.59 151.32
95% 693.67 466.38 762.02 158.87 139.59 185.72
99.5% 730.79 466.38 789.86 158.87 139.59 186.01

According to the comparison criteria, the longitudinal algorithm provides the smaller

RMSE when using the 75% quantile resulting to better fit of the data, better estimations.
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So, a combination of different companies or lines of business provides a better estimation
of the total reserve. In case of using the PT criterion, we take exactly the same results and
the 75% quantile produces the best fit. If we make estimations separately, the suggested
models for both triangles use quantiles below 75% which means weak prudence.
Backtesting is also important for comparisons. The real IBNR for Company A is
1695553 while for Company B is 2483699. Table 5.11 shows the total reserves for all
methods. As we can observe from Table 5.11, mainly the combined algorithm provides
total reserve which is smaller than the Individual Quantile Regression. Note that the
estimated reserve tends to be similar with the real one when using a quantile between
60% and 75% which leads to stable reserve estimations. This is not happening when
using the Individual Quantile Regression where these estimations use smaller quantiles.
In Figure 5.4 we have incorporated the reserve estimation according to the Chain
Ladder method. We can observe that the Chain Ladder method underestimates the
IBNR in both companies. Specifically, the Chain Ladder estimation for Company A is
1624721 which is smaller than the real IBNR (1695553). The Chain Ladder estimation
for company B is 1901883 which is significantly smaller than the real IBNR, (2483699).
Moreover, for company A, the individual quantile regression method gives the real IBNR
at quantile 50% while the longitudinal algorithm gives the real IBNR at almost 80%
quantile. For company B both methods give the real IBNR at almost 80% quantile.
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Figure 5.4: Ultimate Reserves for individual QR and londitudinal QR

Figures 5.5 and 5.6 display the reserve estimation for each accident year using the
individual quantile regression and the longitudinal quantile regression. Each plot gives

the reserve for different quantiles. For 75% quantile, the reserve estimations seem to be
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more stable in comparison with other quantiles. This is a controversial matter because

we have seen that the 75% quantile is the best choice for the algorithm to be used.
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50% Quantile

—— Longitudinal QR
-~ Individual QR

reserves
0e+00 4e+05

Accident Year

75% Quantile

wn
"
o 3—) 1 — Longitudinal QR ezl
210 7 ---- Individual QR e —,
3 ] - -
o]
! ; T T )
8 2 4 6 8 10
Accident Year
95% Quantile
[Tolu! .
2P| — vongiudinal or / \ e
%87 -~ Individual QR . _,,_.71// ~
3 /
A ‘ ‘ ‘ ‘
o 4 6 8 10

Accident Year

60% Quantile

wn
8 ? —— Longitudinal QR
g 2 -~ Individual QR ot
4
r3
3 : : )
o 6 8 10
Accident Year
90% Quantile
3
0
@ T 7 — Longitudinal QR - Lt
=8 -~ Individual QR _— e Tt~
r3
o T T T )
<] 6 8 10
Accident Year
99.5% Quantile
n
I : ‘
» @ | —— Longitudinal QR / \
2 ®© -~ Individual QR /\ et i
g ndividual Q ) —
0] g
Y % /
8 6 8 10

Accident Year

Figure 5.6: Reserves estimation for individual QR and longitudinal QR (Company B)

5.4 Risk Capital Requirement and Risk Margin

Solvency Il and IFRS bring some significant changes, particularly in relation to the

estimation of insurance liabilities. Generally, the Probability of Sufficiency is a measure

of solvency in liability valuation (Dal Moro et al., 2017):
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e Probability of Sufficiency below 50% indicates that the technical provisions are set

below the central estimate which leads to under-reserved position.

e Probability of Sufficiency with values between 50% and 60% indicates the technical
provisions are approximately at the level of central estimate which leads to weak

prudence.

e For values of Probability of Sufficiency around to 75% the technical provisions are

above the central estimate and this leads to sufficient prudence.

e Finally, if the Probability of Sufficiency is above 75%), the technical provisions are

enough so as to lead to strong prudence.

According to Figures 5.1, 5.2 and 5.4 the cumulative evolution of the claims seem to

be stable but there are some years where some big claims occurred.

5.4.1 Risk Margin

Dong et al. (2015) have shown how one can provide accurate estimation of risk margin
and hence provision, instead of estimating the mean then applying a risk margin. Their
method is more robust when the data is heavy tailed, has been used for the univariate
quantile regression model and is suitable for a simple line of business (one run-off
triangle). Moreover, the Risk Margin (RM) is exclusively based on the Solvency Capital
Requirement (SCR) estimation. The overall risk margin (RM) according to the Cost-of-
Capital methodology is calculated as follows (CEIOPS, 2009):

RV — Z SCR % CoC = ZV@R995% (Ry) — mean(Ry)
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t>() >0 (147
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where R; is the estimated reserve for the accident year t, r; is the risk-free rate for
maturity, SCR(t) is the Solvency Capital Requirement for the accident year ¢t and CoC'
is the cost of capital rate.

Along with Best Estimate (BE), Risk Margin makes up the technical provisions and
ensures that their value is equivalent to the amount that an (re)insurer would be expected
to require in order to take over and meet the insurance obligations. Generally, Risk
Margin increases the value of the technical provisions from the BE up to an amount which
is equivalent to a theoretical level needed to transfer obligations to another (re)insurer.
Risk margin represents what an (re)insurer would have to pay to the market to take on
the BE liabilities. When the market takes on your BE liabilities, they will have to set
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aside capital to cover the SCR. This has a cost as the insurer buying your BE liabilities
cannot use the capital backing the SCR for alternative profit generating activities (e.g.
writing more new business). Therefore holding the SCR incurs a cost. The Risk Margin
represents this cost.

In order to estimate the Risk Margin we are going to estimate the Solvency Capital
Requirement as the difference between the 99.5% quantile and the 50% quantile of the
reserves. The Cost of Capital is 6% (as Solvency II suggests) and we will suppose that
the risk-free rate for maturity is 7, = 1% for all accident years®. We will also estimate the
Risk Margin according to the Standard Approach where the SCR will be estimated using
the bootstrap procedure. Table 5.13 presents the results of the Longitudinal algorithm
while Tables 5.14 and 5.15 present the results of the individual quantile regression model

and the bootstrap method.

Table 5.13: Risk Margin based on Longitudinal Quantile Regression (QR)

Company A Company B
Accident SCR Capital Discounted Capital Charge SCR Capital Discounted Capital Charge
Year Charge 6% ( 1% discount rate) Charge 6% (1% discount rate)
2007 0 0 0 0 0 0
2008 3819 229 227 6053 363 360
2009 9339 560 549 15156 909 891
2010 12821 769 47 21623 1297 1259
2011 161876 9713 9334 212537 12752 12255
2012 392467 23548 22405 585832 35150 33444
2013 182471 10948 10314 287601 17256 16256
2014 480954 28857 26916 681567 40894 38143
2015 198515 11911 11000 298613 17917 16546
2016 103126 6188 5658 179172 10750 9829
Total 1545390 92723 RM=87148 2288153 137289 RM=128983

Table 5.14: Risk Margin based on Individual Quantile Regression (QR)

Company A Company B
Accident | SCR Capital Discounted Capital Charge SCR Capital Discounted Capital Charge
Year Charge 6% (1% discount rate) Charge 6% (1% discount rate)
2007 0 0 0 0 0 0
2008 646 39 38 -274 -16 -16
2009 5212 313 307 4378 263 258
2010 31717 1903 1847 3056 183 178
2011 17954 1077 1035 168249 10095 9701
2012 340735 20444 19452 224544 13473 12819
2013 267395 16044 15114 228378 13703 12909
2014 24486 1469 1370 295727 17744 16550
2015 48272 2896 2675 216602 12996 12002
2016 10000 600 549 227899 13674 12503
Total 746418 44785 RM=42387 1368560 82114 RM=76902

IThe real risk-free rate for maturity is given by EIOPA
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Table 5.15: Risk Margin based on Bootstrap (Poisson)
Company A Company B
Accident SCR Capital Discounted Capital Charge SCR Capital Discounted Capital Charge
Year Charge 6% (1% discount rate) Charge 6% ( 1% discount rate)
2007 0 0 0 0 0 0
2008 81326 4880 4831 112721 6763 6696
2009 80433 4826 4731 142344 8541 8372
2010 79564 4774 4633 127414 7645 7420
2011 152521 9151 8794 231367 13882 13340
2012 203568 12214 11621 280495 16830 16013
2013 187305 11238 10587 286199 17172 16177
2014 286217 17173 16018 500754 30045 28024
2015 462659 27760 25635 690254 41415 38246
2016 1229084 73745 67428 1110921 66655 60946
Total 2762677 165761 RM=154279 3482470 208948 RM=195234
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Figure 5.7: Bootstrap graphs for Company A

Remark 5.3. If the distribution of the reserves were known, then the mean of this
distribution would be the Best Estimate, i.e. the amount to be paid as compensation to
the beneficiaries. Nevertheless, this distribution is not known and for that reason many
methodologies are used to estimate the Best Estimate such as the Bootstrap method. In
case of Quantile Regression models, a specific quantile, which will provide estimations
close to the mean, will be used in order to estimate the Best Estimate. For that reason we
use the 50% quantile but it could be used a bigger one especially when the distribution

has a long tail.
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Figure 5.8: Bootstrap graphs for Company B

5.5 Concluding Remarks

We proposed quantile regression for longitudinal data in the framework of a general
multivariate loss reserving model. Our model considered a combination of the between
and within lines of business, taking into account the correlations and variation of run-off
triangles.

We investigated a general insurance portfolio that consists of two correlated sub-
portfolios (two auto run-off triangles). The least squares estimators investigated only
changes in the mean, while the quantile regression characterized a particular point of
a distribution, which provides a more complete description of the entire shape of the
claims distribution.

According to Solvency II and IFRS, the solvency capital requirement (SCR) was
provided based on the best estimate (BE) and in the sequel, the overall risk margin
(RM), based on the Cost-of-Capital methodology, was calculated.






CHAPTER

General Conclusions

n this thesis we presented one of the most fundamental aspects of the insurance
Icompany, the management of loss reserves. The protection of the policyholders and
the financial stability of the insurance market industry is a crucial aspect and the
regulatory authorities intervene to ensure it. Reserve risk mainly focuses on the ability
of an insurance company to cover the claims payment during the full run-off liabilities.
Reliable reserves estimation indicated that the total reserves are sufficient to cover future

payments, which arise from the incurred claims.

The key characteristics of the Solvency II were presented in Chapter 2, focusing on
non-life risk that is separated into reserve risk and premium risk. Reserve risk deals
with the liabilities of insurance policies. Solvency II is the new European Union (EU)
legislation risk-sensitive system, which has been designed in order to make policyholders

feel more secure and at the same time to create stable financial markets.

In Chapter 3 we have shown how robust estimation techniques can be incorporated
in a loss reserving framework, providing a fair value for the estimation of outstanding
reserves. Least squares estimators and robust estimators were applied to Ashe and Taylor
data. The values of claims reserves were presented and the sensitivity of log-linear loss
reserving model was shown by embedding one or two artificial outliers to the data set.
The implementation of data showed the superiority of robust M-estimator and Robust
ANOVA in comparison with the least squares estimator and the rest of robust estimators

for claims reserves estimation.

In Chapter 4 we illustrated how random coefficient regression models can be incor-
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porated in loss reserving techniques for the univariate case (one line of business) and
the multivariate cases (several lines of business). These models provided a fair value
for the estimation of outstanding reserves in cases we have indications that the run-off
patterns are changing. In order to remediate the effect of outliers to the estimation
of the total reserves, robust versions of the above two random coefficient models were
applied. Implementing the data sets for both models we showed the superiority of robust
M-estimator in comparison with the non-robust estimators.

An application of the Kalman Filter to a state-space model recursive algorithm
was presented in Chapter 5, in order to estimate the reserves of an insurance company.
The Kalman Filter algorithm was applied to systems that receive external physical
disturbances (noises), aiming to create a new estimate of the state of the system without
disturbances. In addition, the algorithm was extended by making it robust at extreme
values, which, if ignored, will overestimate the final reserve required for the company’s
liability.

Finally in Chapter 6, we considered a quantile regression application in a multivariate
context alternative to a multivariate chain-ladder model for a portfolio of correlated
run-off triangles. We proposed a reserving problem for a nonlife insurance portfolio
consisting of several run-off sub-portfolios corresponding to a different line of business
that can be embedded within the quantile regression model for longitudinal data. The
basic point of quantile regression is that it constitutes a robust method that helps to
eliminate any outliers that appeared in the loss reserving data set. In addition to the
estimation of total reserves, the risk margin was estimated based on the SCR as the
difference between the 99.5% quantile and the 50% quantile of the total reserves.

From the above analysis, we can conclude that indeed the use of stochastic modelling
can lead to the improvement of treatment for the variation problems of the total reserve

as well as the correlation issues between different Lines of Business.
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