

UNIVERSITY OF PIRAEUS

DEPARTMENT OF DIGITAL SYSTEMS

POSTGRADUATE PROGRAMME

“INFORMATION SYSTEMS & SERVICES”

BIG DATA & ANALYTICS

PIRAEUS 2019

Thesis Title: Data
Analytics Algorithms
for Multi-Dimensional
Datasets
AN IMAGE CLASSIFIER TO RECOGNIZE DIFFERENT
SPECIES OF FLOWERS
EMMANOUIL ALEXAKIS
ΕΜΜΑΝΟΥΗΛ ΑΛΕΞΑΚΗΣ
ME 1702
ACADEMIC SUPERVISOR: ASSISTANT PROFESSOR DIMOSTHENIS
KYRIAZIS

i

ii

 Ο επιβλέπων 1ος συνεξεταστής 2ος συνεξεταστής

 Δ. Κυριαζής Μ. Φιλιππάκης Δρ. Α. Μενύχτας
 Επ. Καθηγητής Αν. Καθηγητής Διδάσκων

iii

iv

Για την Γεωργία και τον Αχιλλέα…

v

vi

Preface

Hundreds of flowers exist on earth, consisting an integral part of all livings not only for the

aesthetic aspect but also for human life in many areas such as medical science, industry and environment.

It is necessary to set up a database for flower documentation by determining an effective mean to identify

the species to which they belong even from a smartphone application. As Artificial Intelligence algorithms

(Neural Networks) are more and more incorporated into everyday applications, developing such an image

classifier by creating a deep learning model trained on hundreds of thousands of images would drive as

part of the overall application architecture. In this work, there is developed and trained an image classifier

for recognizing 102 distinct species of flowers utilizing a certain type of machine learning algorithm called

Convolutional Neural Networks, resulting in very good performance on a variety of experiments, achieving

up to 94% accuracy.

Keywords: Algorithms, Artificial Intelligence, Machine Learning, Deep Learning

vii

Πρόλογος

Εκατοντάδες λουλούδια υπάρχουν στη γη, αποτελώντας αναπόσπαστο μέρος όλων των έμβιων

όντων όχι μόνο από αισθητική άποψη αλλά και για την ανθρώπινη ζωή σε πολλούς τομείς όπως η ιατρική

επιστήμη, η βιομηχανία και το περιβάλλον. Είναι απαραίτητο να δημιουργηθεί μια βάση δεδομένων για

την τεκμηρίωση των λουλουδιών, προσδιορίζοντας έναν αποτελεσματικό τρόπο αναγνώρισης των ειδών

στα οποία ανήκουν, ακόμη και από μια εφαρμογή έξυπνου τηλεφώνου. Επειδή οι αλγόριθμοι της

Τεχνητής Νοημοσύνης (Νευρωνικά Δίκτυα) ενσωματώνονται ολοένα και περισσότερο στις καθημερινές

εφαρμογές, η ανάπτυξη ενός τέτοιου ταξινομητή εικόνας δημιουργώντας ένα μοντέλο βαθιάς μάθησης

εκπαιδευμένο σε εκατοντάδες χιλιάδες εικόνες θα οδηγούσε ως μέρος της συνολικής αρχιτεκτονικής

εφαρμογών. Στη παρούσα εργασία, αναπτύχθηκε και εκπαιδεύτηκε ένας ταξινομητής εικόνας για την

αναγνώριση 102 διακριτών ειδών λουλουδιών χρησιμοποιώντας μιας συγκεκριμένης κατηγορίας

αλγορίθμων μηχανικής μάθησης που ονομάζονται Convolutional Neural Networks, με αποτέλεσμα πολύ

καλές επιδόσεις σε μια ποικιλία πειραμάτων, επιτυγχάνοντας ακρίβεια έως και 94%.

Λέξεις Κλειδιά: Αλγόριθμοι, Τεχνητή Νοημοσύνη, Μηχανική Μάθηση, Βαθιά Μάθηση

viii

Table of Contents
Ευχαριστίες ... Error! Bookmark not defined.

Αφιέρωση.. Error! Bookmark not defined.

Preface .. vi

Πρόλογος ... vii

Introduction ... 1

1 From Data Science to Artificial Intelligence .. 3

1.1 Knowledge Discovery in Data.. 4

1.2 Machine Learning Algorithms ... 5

1.2.1 Types of Machine Learning Algorithms .. 6

1.2.2 Neural Networks and Deep Learning .. 8

2 Data and Methodology ... 13

2.1 Data Provenance and Description... 13

2.2 Define the Neural Network Architecture .. 14

2.3 Methodological Approach and Tools .. 18

3 Results and Discussion .. 25

3.1 Loading and Preprocessing the image dataset ... 25

3.2 Selection between Pretrained and Untrained Model ... 27

3.3 Building the Image Classifier ... 31

3.4 Model Fine Tuning and Feature Extraction ... 31

3.5 Build, Train and Validate the Model ... 36

3.6 Saving and Loading the Model .. 40

3.7 Inference for Classification and Input Image Preprocessing .. 40

3.8 Flower Class Prediction ... 42

4 Conclusions ... 47

References ... 49

ix

1

Introduction

Hundreds of flowers exist on earth, consisting an integral part of all livings not only for the

aesthetic aspect but also for human life in many areas such as medical science, industry and environment.

It is necessary to set up a database for flower documentation by determining an effective mean to identify

the species to which they belong. To do so, the morphologic features that make each flower distinct and

differ from the others has to be determined. Generally, morphological feature analysis is not a simple task

for non-expert users, as it needs accurate observations of the flower itself and comparisons with other

samples of the same species [1]. For this reason, the need to develop an image classifier able to classify

flowers and automatically determine the species they belong to, is arising.

Machine Learning, Artificial Intelligence and Deep Learning could assist to the endeavor of

developing such a classifier. Artificial Neural Networks (ANN), and more particular Convolution Neural

Networks have led to superior performance on a variety of classification problems such as visual and

speech recognition. Leveraging on the rapid growth in the amount of the annotated data and the great

improvements in the performance of graphics processor units, the research on CNNs has achieved state-

of-the-art results on various classification tasks [2]. The purpose of this study is to highlight the importance

of machine learning algorithms for processing multidimensional data and provide a guide in order to

decide which type of algorithm is optimum to use within the analysis. In particular, in this study, there is

developed and trained an image classifier for recognizing 102 distinct species of flowers utilizing a certain

type of machine learning algorithm called Convolutional Neural Networks, resulting in very good

performance on a variety of experiments, achieving up to 94% accuracy.

2

3

1 From Data Science to Artificial Intelligence

On the one hand, Data Science uses computer disciplines such as mathematics and statistics and

incorporates techniques such as data mining, cluster analysis, visualization and Machine learning,

whereas, on the other hand Artificial Intelligence (AI) is simply a computer capable of imitating or

simulating human thought or behavior. Inside that set, there is a subset called machine learning that is

now the foundation of the most exciting part of AI. By enabling computers to learn themselves how to

solve problems, machine learning has led to a series of breakthroughs that once seemed almost

impossible. Machine learning is a branch of AI where a class of data-driven algorithms allows software

applications to become very accurate in predicting results without the need for explicit programming. Its

fundamental principle is based on the development of algorithms that receive input data and use

statistical models to predict outputs while updating them when new data becomes available. The

processes involved have a lot in common with predictive modeling and data mining. This is because both

approaches require looking in the data to identify patterns and adjust the program accordingly. To this

extend, machine learning is a subset of artificial intelligence and data science is an interdisciplinary field

for extracting knowledge from data.

Figure 1 VENN diagram of AI, Big Data and Data Science - Fraunhofer FOKUS

4

1.1 Knowledge Discovery in Data

The purpose of this chapter is to introduce data mining and the particular data mining techniques to be

able to extract the hidden information or relationships within the available datasets. The contents of this

chapter will concern an introduction of what data mining is and what purpose generally and particularly

in this study fulfills. Then, a thorough description of the calculation steps behind the specific data mining

techniques utilized in this study will follow. Within this description the need of data preprocessing will

arise making a connection to the coming chapter where the description and the preprocessing of the data

takes place. Knowledge Discovery in Databases (KDD) is the computational process of discovering patterns

in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics

and database systems [3, 4]. The KDD process is commonly defined within the following stages:

a. Data selection

b. Data pre-processing and transformation

c. Data Mining

d. Validation

a) Before implementing the data mining algorithms, a target dataset is selected. As data mining uncovers

patterns present in the data, the target dataset is supposed to be large enough in order to contain these

patterns. Additionally, the target dataset has to remain concise in order to be mined within an acceptable

time limit. b) Pre-processing is essential to analyze the multivariate datasets before data mining while in

case there is a large number of variants a certain transformation of the dataset can take place by

classifying them. If necessary, the target dataset is then cleaned by removing the observations containing

noise and those with missing data (NaN). The cleaning step should be done with care as even missing data

might indicate hidden patterns. c) Data Mining is the advanced step of KDD with the goal to extract

information from a data set and transform it into an understandable structure. Data mining involves six

classes [5]:

1) Anomaly detection: Identification of unusual data records or data errors

2) Association rule learning: Investigate relationships among variables.

3) Clustering: Discover new groups and structures in the data.

4) Classification: Generalize known structure to apply to new data.

5) Regression: Attempt to find a function which models the data with the least error.

http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Database_system

5

6) Summarization: Provide a more compact representation of the dataset, including

 visualization and report generation.

d) The final step of KDD process is to identify whether the patterns found by the data mining algorithms

are valid or not. The evaluation takes place on a test subset that data mining algorithm was not trained.

The learned patterns are applied on the test subset and the resulting output is compared to the desired

output. A number of statistical methods may be used to evaluate the algorithm, such as Receiver

Operating Characteristic (ROC) curves. In case the learned patterns do not meet the desired standards,

re-evaluation and changing the pre-processing and data mining steps is necessary. On the other hand, if

the learned patterns do meet the desired standards, the final step is to interpret the learned patterns.

1.2 Machine Learning Algorithms

To realize the aforementioned, Data Scientists and Analysts are concerned in locating and

implementing machine learning algorithms in order to address the issues they are interested in, but they

are early come up with a certain question of “which algorithm they must use?". The answer to the

question depending on many factors, such as: a) The data nature (size, quality etc.) b) The available time

and last but not least c) What do they want to do with the data. When it comes to choose an algorithm,

parameters like accuracy, training time and ease of use have always to always to be taken into account.

When a data set is available, the first thing to consider is how to get results, no matter what those

results are. Once first results have delivered and user have to familiarize with the data by spending more

time using more sophisticated algorithms to enhance their understanding of data so as to improve the

results. Even an experienced data scientist cannot judge in advance which algorithm will have the

optimum performance before they really test the different algorithms. The Machine Learning Algorithm

Cheat Sheet presented in Figure 2 is working as a driver/guide in order to find which algorithm suits for

specific problems. The propsed algorithms arise from the collection of feedbacks and advice from various

data scientists and dedicated learning engineers and developers. Further explanation and how the cheat

sheet is utilized is following.

6

Figure 2 A simplified guide to navigate through the process of choosing what is the best machine
learning algorithm [6]

If someone wants to reduce the dimensions of their data they should use Principal Component

Analysis, if they need a numerical prediction, use decision trees or linear regression, If they need an

hierarchical result, they should use hierarchical clustering, according to Figure 2. As the suggested cheat

sheets routes are intended to be rule-by-thumb recommendations, many the times there will be more

than one branch algorithm applied and other times none of them will be perfect match, thus, the only

sure way to find the best algorithm is to test all of those algorithms.

1.2.1 Types of Machine Learning Algorithms

The most popular division of machine learning algorithms types is: Supervised, Semi-Supervised,

Unsupervised and Reinforcement Learning algorithms [7]. Supervised learning algorithms make forecasts

based on a set of known examples. For instance, meteorological data can be used to estimate tomorrow’s

average temperature or wind speed. Within supervised learning, there is available an input variable

consisting of labeled training data and the desirable output variable. Then an algorithm can utilize training

7

data in order to learn the function that maps the input variable to the output one. This function implies

mapping of new, unknown examples, generalizing from the training data, to predict the results in unseen

situations. When the data is used to predict a categorical variable (i.e. type of flower), supervised learning

is called classification. This is the case when assigning a label, either rose or margarita to an image and

when there are only two labels, the problem is called binary classification while when there are more than

two categories, is called multi-class classification. When it comes to predict constant values, they become

a regression problem and when it comes to predict the future based on the past and present data it is

called forecasting.

The difficulty regarding the supervised learning is that labeling data can be time-consuming and

extremely expensive. In case that labels are limited, the use of non-labeled examples could enhance

supervised learning. As the machine learning process is not fully monitored, this particular case of learning

is called Semi-Supervised. In Unsupervised learning, the machine learning process is taking place with

completely unlabeled data. Usually, the intrinsic patterns hidden within the data, such as a clustering

structure, a low-dimensional etc., is expected to be discovered. Grouping a set of data examples so that

the examples in a group are more similar (according to some criteria) than in other groups, is called

clustering and is included in the Unsupervised machine learning process. This is often used to divide the

complete dataset into diverse groups so as to perform analysis in each group to help users find inherent

patterns. Diminishing the number of variables under consideration when primary data has very high

dimensional characteristics and some features are unnecessary or unrelated to work. Dimensionality

Reduction helps to discover the true, latent relationship and it is also included in the Unsupervised

machine learning process.

Finally, Reinforcement learning accounts the behavior of an agent based on environmental

feedback. In particular, through the process of Trial and Error, rather than telling machines what action

they need to take they instead try different scenarios to find out what the most rewarding actions are.

The test-and-error and the reward approach distinguish the reinforcement learning from other

techniques.

8

1.2.2 Neural Networks and Deep Learning

1.2.2.1 Historical Background

Neural network simulations appear to be a recent development. The field of Neural Network

modeling has been established even before the advent of computers and has survived through several

eras. The idea of neurons as structural components of the brain was firstly introduced in the work of

Ramón y Cajál, back in 1911, who was struggling to understand how the brain incurs [8]. In fact, the first

artificial neural network was developed in 1943, by Warren and Pitts, but the available means of that time

were not enough to take any advantage of the them [9]. Despite the fact that their Neural Network had a

a fixed set of weights, they suggested innovative ideas like that a neuron has a threshold level which is

still remain within the fundamental core of how ANNs operate. In 1949, Hebb created the first learning

rule; if two neurons are active at the same time then the strength of their bond should be increased [10].

In the decades to come many researchers (Rosenblatt, Minsky, Papert etc.) dealt with the concept of

perceptron [11], [12]. They created the algorithm for pattern recognition [11] but they were also

discovered that the basic perceptrons were incapable of processing the exclusive-or circuit meaning that

perceptron could not learn those functions which are not linearly separable and the research in the field

declined throughout the mid 70’s. It was then that Werbos introduced the backpropagation algorithm

that made the training of multi-layer networks feasible and efficient by distributing the error term back

up through the layers, modifying that way the weights at each node [13].

1.2.2.2 Convolution Neural Network - State of the Art

Convolution Neural Networks (CNN) is the state-of-the-art approach to object recognition and has

shown greatly advance on the performance of many compute vision tasks like object recognition and

tracking, text recognition or/and detection, pose estimation, action recognition etc. CNNs look like to

normal neural networks to the level that both can be arranged as an acyclic graph and visualized as a

collection of neurons. Their main difference is that in CNN a hidden layer neuron could be connected only

to a subset of neurons of the previous layer thus, they are capable of learning features in an implicit

manner. Their architecture can result in hierarchical feature extraction, for example in the 1st

convolutional layer, the trained filters can be visualized as set of edges, in the second layer as some

9

shapes, in the coming layer filters might learn object parts whereas the filters of the final layers can

identify the objects (Figure 3).

Figure 3 A convolution neural network architecture [14]

The predecessor of CNNs is the so called neocognitron developed in 1980 [15] but LeNet,

developed by LeCun et al. in 1990, was in fact the innovate work [16] that highlighted the full potentials

of these kind of algorithms as it successfully managed to recognize and classify handwritten digits directly

from the input image without any preprocessing. Since then, a wide range of techniques have been

developed to enhance the performance or ease the training of CNNs. Some of the most known techniques

that have been implemented are published by Krizhevsky and Goodfellow [17], [18]. The network that

Krizhevsky (Figure 4) [17] constructed, has eight learned layers – five of them convolutional and three

fully-connected. The output of the last layer is a 1000-way softmax which produces a distribution over the

1000 class labels (the ImageNet challenge is to create a classifier that can determine which object is in the

image). Because the network is too large to fit in the memory of one GPU, training is split across two GPUs

and the kernels of the 2nd, 4th, and 5th convolutional layers are connected only to those kernel maps in

the previous layer which reside on the same GPU.

10

Figure 4 The architecture of CNN, describing the delineation of responsibilities between the two
GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the

bottom. The GPUs communicate only at certain layers.

The authors single out four other aspects of the model architecture that they feel are particularly

important:

• The use of ReLU activation (instead of tanh). “Deep convolutional neural networks with

ReLUs train several times faster than their equivalents with tanh units. Faster learning has

a great influence on the performance of large models trained on large datasets “.

• Using multiple GPUs (two) and splitting the kernels between them with cross-GPU

communication only in certain layers. The scheme reduces the top-1 and top-5 error rates

by 1.7% and 1.2% respectively compared to a net with half as many kernels in each layer

and trained on just one GPU.

• Using local response normalization, which “implements a form of lateral inhibition

inspired by the type found in real neurons, creating competition for big activities amongst

neuron outputs computed using different kernels”.

• Using overlapping pooling. Let pooling layers be of size z x z, and spaced s pixels apart.

Traditionally pooling was used with s = z, so that there was no overlap between pools.

Krizhevsky et al. used s = 2 and z = 3 to give overlapping pooling. This reduced the top-1

and top-5 error rates by 0.4% and 0.3% respectively.

To reduce overfitting dropout and data augmentation (translations, reflections, and principal

component manipulation) is used during training.

11

This convolutional neural network is capable of achieving record-breaking results on a highly

challenging dataset using purely supervised learning. It is notable that network’s performance degrades

if a single convolutional layer is removed. For example, removing any of the middle layers results in a loss

of about 2% for the top-1 performance of the network.

Another renowned CNNs are the Maxout Networks [18]. These are designed to work hand-in-

glove with dropout. Training with dropout is like training an exponential number of models all sharing the

same parameters. In other words, Maxout Networks are standard multilayer perceptron or deep CNNs

that use a special activation function called the maxout unit. The output of a maxout unit is simply the

maximum of its inputs. Maxout units make a piecewise linear approximation to an arbitrary convex

function, as illustrated in Figure 5.

Figure 5 Graphical depiction of how the maxout activation function can implement the

rectified linear, absolute value rectifier, and approximate the quadratic activation function.

Under evaluation, the combination of maxout and dropout achieved state of the art classification

performance on MNIST, CIFAR-10, CIFAR-100, and SVHN (Street View House Numbers). Dropout does

exact model averaging in deeper architectures provided that they are locally linear among the space of

inputs to each layer that are visited by applying different dropout masks. In addition, rectifier units that

saturate at zero are much more common with dropout training. A zero value stops the gradient from

flowing through the unit making it hard to change under training and become active again.

12

13

2 Data and Methodology

2.1 Data Provenance and Description

Maria-Elena Nilsback and Andrew Zisserman have created a 102-category dataset, consisting of

102 distinct flower classes [19]. The flowers chosen to be flower commonly occurring in the United

Kingdom and each class consists of between 40 and 258 images. The images have large scale, pose and

light variations. In addition, there are categories that have large variations within the category and several

very similar categories. The dataset is visualized using isomap with shape (Figure 6) and colour features

(Figure 7). The images are randomly sampled from the category. The details of the categories and the

exact number of images for each class can be found on this statistics page [20]. From the available data

non site [19] “Dataset images” and “The image labels” were used to train the image classifier of the

present work.

Figure 6 The categories in the dataset using SIFT features as shape descriptors [19]

14

Figure 7 The categories in the dataset using HSV as color descriptors [19]

2.2 Define the Neural Network Architecture

The image classification problem dealt with in this study, is to determine in which of the 102

classes a given image belongs. Now that the data is ready, it's time to build and train the classifier. The

VGG19 pretrained Convolution Neural Network from torchvision models is utilized in order to get the

image features and a new feed-forward classifier is built and trained using those features. Convolutional

Neural Networks is special type of Neural Networks working in the same way as a common neural

network, but it includes a convolution layer at its beginning. Thus, rather than feeding the model, as an

array of numbers, the entire image, the image is segmented into several squared pieces (m x m pixels)

and the model tries to predict what each of these pieces is. Eventually, the model predicts the content of

the picture based upon the prediction of all the pieces. In this way, the operations are parallelized, and

the detection of the object takes place regardless of its location in the image. The method followed to

build the image classifier involves the following steps:

15

1. Load the VGG-19 pre-trained Neural Network

2. Define a new, untrained feed-forward network as a classifier, using ReLU activations and

dropout

3. Train the classifier layers by backpropagation using the pre-trained network to get the

features

4. Track the loss and accuracy on the validation set to determine the best hyperparameters

(learning rate, units in the classifier, epochs, etc.).

5. Determine the best model and save it with those hyperparameters for inference if model

is needed to be rebuilt.

In this study, VGG-19 Convolution Neural Network will be utilized and as it will be presented in

the results chapter, the accuracy regarding the image prediction is of the same magnitude whether the

model is trained from the scratch or the pretrained one is used in advance. In order to build a single layer

Convolutional Neural Network (CNN) there are 5 steps involved: a) Define the Convolution Layer (Initialize

a single convolutional layer so that it contains all your created filters) b) Pass the result from an activation

function c) Feed output from previous step in a Pooling Layer d) Flatten the vector and e) Feed it to a Fully

Connected Linear Layer (Figure 8). Steps from a to c can be repeated as many times as needed in order to

achieve the desire depth of the Neural Network.

Figure 8 Schematic Representation of a Convolution Neural Network

16

Figure 9 Left: Input Image on which 4 convolutional kernels are applied, Middle: 4 Images one from each
kernel Right: The convolution layer of depth 4.

Regarding the activation function, the only requirement is that for a network to approximate a non-

linear function, the activation functions must be non-linear. In Figure 10, are illustrated some examples of

common activation functions: Sigmoid, Tanh (hyperbolic tangent), and ReLU (rectified linear unit).

Figure 10 Three common activation functions used applied in the output of the convolution layer
transforming its input accordingly

In Figure 11, an example of a 2x2 pooling kernel, with a stride of 2 , is applied to a small patch of

grayscale pixel values; reducing the x-y size of the patch by a factor of 2. Only the maximum pixel values

in 2x2 remain in the new, pooled output.

17

Figure 11 A maxpooling layer reduces the x-y size of an input (output of the activation function) and only
keeps the most active pixel values.

VGG-19 is a convolutional neural network that is trained on more than a million images from the

ImageNet database [21]. The network is 19 layers deep and is able to classify images into 1000 object

categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich

feature representations for a wide range of images. The network has an image input size of 224-by-224

[22]. The neural network architecture is presented in Figure 12.

Figure 12 VGG19 Architecture

18

2.3 Methodological Approach and Tools

The main purpose within this work, is to build and train an image classifier so as to recognize

different species of flowers that could be utilized through a phone app that would tell the name of the

flower phone camera is looking at. The work done in this project is mainly split down into the following

steps:

1) Loading and Preprocessing the image dataset

2) Building, Training and Evaluating the image classifier

3) Use the trained classifier to predict image content

Loading and Preprocessing the image dataset: Before feeding data into the model, they should be

transformed into a format the model would “understand”. Firstly, as the gathered data samples might be

in a specific order, any information associated with the ordering of samples would influence the

relationship between images and labels. For instance, in this study data are sorted by class corresponding

to a flower category, if this data will be split into training/validation sets, these sets will not be

representative of the overall distribution of data per each category. Thus, a simple best practice to ensure

the model will not be affected from data ordering is shuffling the data and then make the split into training

and validation sets assuring that transforming both training and validation data in the same way. In this

study, the data for each category were firstly shuffled and then split to use 80% of the samples for training

and 20% for validation.

Building, Training and Evaluating the image classifier: The composition and construction of the input

layer and the intermediate layers of the model has been previously described. For a multi-class

classification, like the one in the present stud, the model should output one probability score per class

and the summation of these scores should aggregate to 1. For an example of four classes, outputting {0:

0.4, 1: 0.3, 2: 0.2, 3: 0.1 } means “40% confidence that this sample is in class 0, 30% that it is in class 1,

20% that it is in class 2 and 10% that is in class 3.” To output these scores, the activation function of the

last layer should be softmax, and the loss function used to train the model should be categorical cross-

entropy as presented in Figure 13. This study elaborates the prediction of 102 distinct flower categories.

19

Figure 13 Multi Class Classification Output Layer

Now that the model architecture has defined and all the model layers has constructed, the model

training can start taking place. This process involves making a prediction based on the current (untrained)

state of the model, calculating how “incorrect” the prediction is, and updating the weights or parameters

of the neural network so as to minimize this error and eventually make the model to predict more

efficiently. This process is repeated until the model has converged and can no longer learn. The key

learning parameters taken into account within this self-assessment and optimization process are

presented and shortly described in Table 1.

20

Table 1

Learning Parameter Description

Metric

How to measure the

performance of our model

using a metric.

Loss function - multi class

classification

A function that is used to

calculate a loss value that the

training process then attempts

to minimize by tuning the

network weights.

Optimizer

A function that decides how

the network weights will be

updated based on the output

of the loss function.

The actual training takes place using the fitting method which, depending on the dataset size, is

where the most computing cycles will be spent. For each training iteration, a batch size number of images

from the training data are used to compute the loss, whereas the weights are updated once, based on

this value. The training process completes an epoch once the model has seen the entire training dataset.

In the end of each epoch, the validation dataset is utilized in order to evaluate the model performance

with regards learning process. The training process is repeated using the dataset for a predetermined

number of epochs until the validation accuracy stabilizes between consecutive epochs, suggesting that

the model is not training anymore. The hyperparameters involved within this process concern a) the ones

of the CNN which will not be tuned in the present study as in the end the architecture of the pretrained

VGG19 will be employed for the needs of the project (presented and described in Table 2) and b) the ones

of the fully connected neural network which will be fine-tuned in the coming chapter, in order to increase

the performance of the prediction model regarding the particular dataset of the study (presented and

shortly described in Table 3)

21

Table 2 CNN Training Hyperparameters

Training hyperparameter Used in present study Description

Convolutional and MaxPool Layers CNN: VGG19 Architecture

Configuration of the

Convolutional and MaxPool

Layers

Number of units per layer 64

Feature identifiers - The

units in a layer must hold

the information for the

transformation that a layer

performs

Kernel size (3,3) or 2 (MaxPooling)
The size of the convolution

window.

Stride (1,1) or 1 or 2 (MaxPooling)

Controls how the filter

convolves around the input

volume

Padding (1,1) or 0 (MaxPooling)

Pads the input volume with

zeros around the border so as

the output volume to retain

its input dimensions

Table 3 Fully Connected Feed Forward Neural Network Hyperparameters

Training hyperparameter Description

Number of layers in the model

The number of layers in a neural

network is an indicator of its

complexity

Batch size
Number of images used for

each training iteration

22

Number of units per layer

Units in a layer hold the

information for the

transformation that a layer

performs and they are the

number of nodes (neurons)

each layer is consisted of

Dropout rate
Dropout layers are used in the

model for regularization.

Learning Rate

The rate at which the neural

network weights change

between iterations.

For defining and training the model several hyperparameters must be chosen, initially based upon

intuition, examples or/and best practice recommendations which, however, may not yield the best results

but providing a starting point for training. As every problem is different, tuning those hyperparameters

will help to refine the model in a manner that will represent better the particularities of the problem itself.

Let’s take a look at some of the aforementioned hyperparameters and what it means tuning them:

Number of layers in the model: The number of layers in a neural network is an indicator of its complexity.

The more layers allow the model to learn more information about the training data, with the precaution

of causing overfitting. Less layers could negatively affect the model’s learning ability leading to

underfitting.

Number of units per layer: The units in a layer hold the information for the transformation that a layer

performs. For the first layer, this is driven by the number of features whereas in subsequent layers, the

number of units depends on the choice of expanding or contracting the representation from the previous

layer. The question here is to successfully manage to minimize the information loss between layers.

Dropout and Learning rate: Dropout layers define the fraction of input to drop as a precaution for

overfitting used this way in the model for regularization. The rate at which the neural network weights

change between iterations is called learning rate. A large learning rate may cause large fluctuation in the

23

weights, resulting in difficulty to find their optimal values. A low learning rate would be nice, but the model

will need more iterations in order to converge.

Playing around with the values of those hyperparameters in the coming chapter will determine the

configuration of which one results in better model performance. Once the best-performing

hyperparameters are determined the model is ready to be deployed.

24

25

3 Results and Discussion

3.1 Loading and Preprocessing the image dataset

After the completion of the project, an application that can be trained on any set of labeled images

will be delivered as the neural network will be learning about flowers and end up as a command line

application. As explained in the previous chapter, the implementation is going to take place on the

platform jupyter notebook and the respective code snapshots will be demonstrated in figures throughout

the present chapter.

In the beginning the needed pytorch libraries and packages are imported as presented in Figure

14. Then the data is downloaded, loaded and the dataset is randomly split into two subsets: training and

validation (Figure 15). The training and validation datasets are comprised 80% and 20% out of the initial

dataset, respectively. In order to improve the neural network generalization ability that leads to higher

performance, different transformations such as random scaling, cropping, and flipping are applied over

the training dataset. Due to the fact that a pre-trained neural network is going to be used, the input data

is resized to 256x256 and cropped to 224x224 pixels as it is pre-requisite for the particular utilized model,

followed by data Normalization, as presented in Figure 16. As the validation set is used to measure the

model's performance on data it hasn't seen yet, there should not applied any scaling or rotation

transformations, despite resizing and then cropping the images to the appropriate size. The

implementation code that explains the aforementioned, is presented in Figure 16.

Figure 14 Importing the needed libraries

26

Figure 15 Splitting Training and Validation (labeled testing) datasets

Figure 16 Define dataloader parameters and transformations for training and validation datasets

27

The available torchvision pre-trained neural networks trained on the ImageNet dataset, have each

color channel normalized separately. This is the reason why both subsets have to have the means and

standard deviations of the images normalized because this is what the trained neural network expects.

For the means, it's [0.485, 0.456, 0.406] and for the standard deviations [0.229, 0.224, 0.225], calculated

from the ImageNet images. These values will shift each color channel to be centered at 0 and range from

-1 to 1. Another important step before proceeding to building and training the classifier is the data label

mapping; load in a mapping from category label to category name. Accompanied with the data there is a

file (JSON object that can be read in with the json module) named cat_to_name.json which in fact is a

dictionary mapping the integer encoded categories to the actual names of the flowers (Figure 17).

Figure 17 Mapping the integer encoded categories to the actual names of the flowers

3.2 Selection between Pretrained and Untrained Model

Now that the data is ready to be used, the decision whether to choose an untrained or pretrained

model has to be taken. Figure 18 (lower) shows the pretrained VGG19 model to be employed while the

training processes has been frozen within all the features layers of the neural network. For demonstration

purposes, the same architecture (Figure 19) but untrained neural network model will be trained from

scratch (Figure 18 upper) resulting in respective validation loss but after a longer period of training

28

(greater number of epochs), as it can be compared from Figure 20 and Figure 21. Thus, the pretrained

VGG19 model has been chosen to proceed from now on.

Figure 18 Upper: Loading the untrained model and allow training for all features layers, Lower: Loading the
pretrained model and freeze training for all features layers

Figure 19 Default Layers and Features of VGG19 - Model Architecture

29

Figure 20 Training and Validating the untrained VGG19 Pytorch Model with the flower dataset of
the present study

30

Figure 21 Training and Validating the pretrained VGG19 Pytorch Model with the flower dataset of
the present study

31

3.3 Building the Image Classifier

Now that the data is ready and the pretrained convolutional neural network has been selected,

it's time to build and train the classifier. The pretrained model from torchvision models will be utilized to

get the image features and the new feed-forward classifier will be developed and trained using those

features. As illustrated in the code of Figure 22, the untrained feed-forward network is defined as a

classifier, using ReLU as the activation function for each layer and dropout (p=0.5) but the number of

output features of the last layer is reduced from 1000 (classes that VGG19 has been pretrained) to 102

(classes of flowers regarding the present study) and the activation function is the LogSoftmax due to the

multi class classification. This time, the classifier is trained by backpropagation using the pre-trained

network to get the features and track the loss and accuracy on the validation set, so as to ensure that only

the weights of the feed-forward network are updated. The analytic results of the optimization process for

the different hyperparameters (learning rate, batch size, loss function, epochs, etc.) in order to find the

best model, are following in the coming subchapter. The optimized hyperparameters will be saved with

the trained model and used as the default values in the coming part of the project.

Figure 22 Definition of the untrained feed-forward network as the classifier

3.4 Model Fine Tuning and Feature Extraction

There are two types of transfer learning used to follow in the optimization process of a prediction

model: a) finetuning and b) feature extraction. In finetuning, all of the pretrained model’s parameters are

updated within the framework of the particular new task, which in other words means to retrain the

whole model whereas, feature extraction only the model’s final layer weights, from which predictions is

32

derived, are updated. It is called feature extraction because the pretrained CNN is utilized as a fixed

feature-extractor, and only the output layer is changed. Both transfer learning methods follow the same

steps:

• Initialize the pretrained model

• Reshape the final layer(s) to have the same number of outputs as the number of classes in the

new dataset

• Define for the optimization algorithm which parameters we want to update during training

• Run the training step

Running some preliminary training steps for the learning parameters presented in Table 4, it was

decided to assess the performance of the model accounting the metrics of validation loss and validation

accuracy. Due to the fact that there is a multiclass classification problem, the combination of the loss

function and optimizer that resulted in better model performance (according to the aforementioned

metrics) was the Cross – Entropy Loss and the Stochastic Gradient Descent, respectively. The

implementation code is presented in Figure 23.

Table 4 Learning Parameters for Model

Learning Parameters Used in this study

Metric Validation Loss / Accuracy

Loss function - multi class

classification
Cross-entropy loss

Optimizer Stochastic Gradient Descent

Figure 23 Defining the model hyperparameter (loss function, optimizer and learing rate)

33

The batch size was another parameter over which the model assessed by keeping the rest of the

VGG19 default parameters stable, resulting in best model performance (minimum validation loss) when

the batch size is of 32 images as presented in Table 5. A similar approach was followed for the learning

rate (Table 6), the number of inputs per layer (Table 7) and the drop out (Table 8) with the difference that

the determined optimum learning parameter from the iterative process was used as input, keeping the

rest VGG19 default parameters stable. Eventually, all the determined optimal parameters are summarized

in Table 9 which in the coming chapter will be combined in a series of model simulations in order to

determine the parameters configuration resulting in the model’s best performance.

Table 5 Assessing model performance with respect to the batch size parameter

Description Batch Size Minimum Validation Loss

Pretrained VGG19, Default

Hyperparameters, epochs = 30
8 0.76

Pretrained VGG19, Default

Hyperparameters, epochs = 30
16 0.65

Pretrained VGG19, Default

Hyperparameters, epochs = 30
32 0.28

Pretrained VGG19, Default

Hyperparameters, epochs = 30
64 CUDA Out of Memory

Table 6 Assessing model performance with respect to the learning rate parameter

Description Learning Rate Minimum Validation Loss

Pretrained VGG19, Default

Hyperparameters, batch size =

32, epochs = 160

0.001 0.28

34

Pretrained VGG19, Default

Hyperparameters, batch size =

32, epochs = 30

0.01 0.28

Pretrained VGG19, Default

Hyperparameters, batch size =

32, epochs = 30

0.1 1.17

Pretrained VGG19, Default

Hyperparameters, batch size =

32, epochs = 30

1 NaN

Table 7 Assessing model performance with respect to the number of inputs per layer

Description Number of inputs per layer Minimum Validation Loss

Pretrained VGG19, batch size =

32, Drop out = 0.5, epochs = 30

25088 (IN) -> 12544 (OUT) ->

12544 (IN) -> 6272 (OUT) ->

6272 (IN) -> 102 (OUT)

0.28

Pretrained VGG19, batch size =

32, Drop out = 0.5, epochs = 30

25088 (IN) -> 4096 (OUT) ->

4096 (IN) -> 4096 (OUT) -> 4096

(IN) -> 102 (OUT)

0.28

Pretrained VGG19, batch size =

32, Drop out = 0.5, epochs = 30

25088 (IN) -> 1632 (OUT) ->

1632 (IN) -> 408 (OUT) -> 408

(IN) -> 102 (OUT)

0.31

Pretrained VGG19, batch size =

32, Drop out = 0.5, epochs = 30

25088 (IN) -> 408 (OUT) -> 408

(IN) -> 408 (OUT) -> 408 (IN) ->

102 (OUT)

0.37

35

Table 8 Assessing model performance with respect to the drop out parameter

Description Drop Out Minimum Validation Loss

Pretrained VGG19, batch size =

32, epochs = 30
0.1 0.27

Pretrained VGG19, batch size =

32, epochs = 30
0.2 0.30

Pretrained VGG19, batch size =

32, epochs = 30
0.3 0.29

Pretrained VGG19, batch size =

32, epochs = 30
0.4 0.28

Pretrained VGG19, batch size =

32, epochs = 30
0.5 0.28

Table 9

Training hyperparameter
Value used in this study

after Fine Tuning

Number of layers in the model
Fully Connected Feed Forward

Network: 3 layers

Batch size 321

Number of inputs per layer

25088 (IN) -> 4096 (OUT) ->

4096 (IN) -> 4096 (OUT) -> 4096

(IN) -> 102 (OUT)

And

1 Maximum number due to limitation to VGA available memory

36

25088 (IN) -> 12544 (OUT) ->

12544 (IN) -> 6272 (OUT) ->

6272 (IN) -> 102 (OUT)

Dropout rate 0.1

Learning Rate 0.001 and 0.01

3.5 Build, Train and Validate the Model

A series of model simulations with various combinations of optimal hyperparameters as they were

determined in the previous chapter, is illustrated in Table 10, providing the insight of the optimal

hyperparameter configuration that will result in the model’s best performance. From the same table, the

optimal hyperparameters configuration achieved a 0.26 model validation loss and 94% model validation

accuracy and the implementation code for this is illustrated in Figure 24 while in Figure 26 the

implementation code for the calculation of the validation accuracy.

Table 10

Description Minimum Validation Loss Maximum Validation Accuracy

Pretrained VGG19, batch size =

32, Drop out = 0.1, epochs = 30,

FFC (12544->6272), lr = 0.01

0.27 0.93

Pretrained VGG19, batch size =

32, Drop out = 0.1, epochs = 30,

FFC (1632 -> 408), lr = 0.01

0.3 0.88

Pretrained VGG19, batch size =

32, Drop out = 0.1, epochs =
0.26 0.94

37

160, FFC (12544->6272), lr =

0.001

Pretrained VGG19, batch size =

32, Drop out = 0.1, epochs =

160, FFC (1632 -> 408), lr =

0.001

0.29 0.89

38

Figure 24 Implementation code for training and validating the model and determine the optimal
hyperparameters configuration

39

Figure 25 Implementation code for determining validation loss and validation accuracy

40

3.6 Saving and Loading the Model

Now that the neural network has been trained, the model should be saved so as it could be loaded

in future for making predictions. In order to completely rebuild the model later on and use it for inference

and be able to keep training it, there are other things that eventually have to be saved such as the mapping

of classes to indices, the number of epochs, the optimizer state etc. The code for saving and loading the

trained models is presented in Figure 26 and Figure 27, respectively.

Figure 26 Code for saving trained model for inference

Figure 27 Code for loading saved model for inference

3.7 Inference for Classification and Input Image Preprocessing

Now that the model can be saved and loaded, a function that would use the trained network for

inference and pass an image into the network so as to predict the class of the flower in the image, should

be developed. Before doing so, the input image should be preprocessed such that it can be used by the

41

network. As presented in Figure 28, library PIL is initially employed within process_image function to load

and convert to ‘RGB’ the image and so as to subsequently preprocess the image in the same manner used

for training so it can be used as input for the model.

Firstly, the image is resized (using resize method) making the shortest side 255 pixels and keeping

the aspect ratio and then is cropped out the center 224x224 portion of the image. Like before training

process, the network expects the images to be normalized in a specific way ([0.485, 0.456, 0.406] and for

the standard deviations [0.229, 0.224, 0.225]) which, in other words, is subtraction of the means from

each color channel, and division by the standard deviation. Due to the fact that the color channels of

images are typically encoded as integers 0-255, these values are converted to floats from 0-1 like the way

the model expects as input, which is done by utilizing Numpy Array. The code and the results of the image

processing are illustrated in Figure 29. The resulted image is surpassed into another function (developed

in the coming subchapter), called predict, that would take as input parameters an image and a trained

model, and would returns the top K most likely classes along with the probabilities.

Figure 28 Image processing for input to the prediction function

42

Figure 29 Resulted image for input in the prediction function, after processing

3.8 Flower Class Prediction

Now that the images have been converted to the correct format, it's time to write a function for

making predictions with the model. A common practice is to predict the top 7 or so (usually called top-

𝐾𝐾) most probable classes. To get the top 𝐾𝐾 largest values in a tensor the method x.topk(k) is used which

returns both the highest k probabilities and the indices of those probabilities corresponding to the classes.

Then those indices are converted to the actual class labels using class_to_idx assuring the dictionary

inversion so as to get a mapping from index to class as well. The implementation code of the prediction

function and the results is presented in Figure 30 and Figure 31, respectively.

43

Figure 30 Implementation code of the prediction function

44

Figure 31 Prediction results

In order to check whether the predictions of the trained model make sense, despite the fact that

the validation loss and accuracy is respectively low and high, it's always good to check that there are not

any rational mistakes. To do so, the probabilities for the top 7 classes are plotted, with the use of

matplotlib library, as a bar graph along with the input image, as presented in Figure 32. The conversion

from the class integer encoding to the actual flower names took place with the cat_to_name.json file

while the imshow function defined before is utilized to illustrate a PyTorch tensor as an image.

45

Figure 32 The probabilities for the top 7 classes and the corresponding image for prediction

46

47

4 Conclusions

The present study comprises an endeavor of how to process multidimensional data, in particular images,
and build an image classifier able to classify flowers and automatically determine the species they belong.
Within this framework, it is highlighted the importance of machine learning algorithms for processing
multidimensional data and provide a guide in order to decide which type of algorithm is optimum to use
for the data analysis. The employed techniques and the methodology followed in this study have led to
promising prediction results. In particular, there has been developed and trained an image classifier for
recognizing 102 distinct species of flowers utilizing a certain type of machine learning algorithm called
Convolutional Neural Networks, resulting in very good performance on a variety of experiments, achieving
up to 94% validation accuracy.

The overall methodology followed is summarized in choosing and loading a pretrained CNN model, train
and update by back propagation only the weights of the last part of the Neural Network (Fully Connected
Layer – Classifier) and validate the overall model. Then, the model fine tuning and feature extraction took
place in order to optimize model prediction performance. Based on that, despite the high validation
accuracy results there are potentials of improving prediction model performance. Limitations of GPU did
not allow to further evaluate certain model learning hyperparameters (batch size) while more learning
rate, drop out and layer inputs values could have been tested. Additionally, training the VGG19 model
from scratch could have led to better performance but it would need very long times of training and
probably broadening of the available dataset. Moreover, the modification of the model architecture itself
could have an impact on model’s performance. For instance, modify the number of the fully connected
layers within classifier or add/remove convolutional layers. Last but not least, fine tuning the
hyperparameters of the VGG19 (number of feature filters, kernel size, stride, padding, max pooling etc.)
would have a positive impact on model performance.

48

49

References

[1] C. D. Ruberto and L. Putzu, "A Fast Leaf Recognition Algorithm based on SVM

Classifier and High Dimensional Feature Vector," in International Conference on Computer

Vision Theory and Applications (VISAPP), 2015.

[2] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J.

Cai and T. Chen, , "Recent advances in convolutional neural networks," Pattern Recognition,

pp. 354-377, 2018.

[3] Clifton Christopher, Definition of Data Mining, 2010.

[4] Hastie Trevor, Tibshirani Robert, Friedman Jerome, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, 2009.

[5] Fayyad Usama, Piatetsky-Shapiro Gregory, Padhraic Smyth, From Data Mining to

Knowledge Discovery in Databases, American Association for Artificial Intelligence, 1996.

[6] Hui Li, "The SAS Data Science Blog - Which machine learning algorithm should I

use?," SAS THE POWER TO KNOW , 12 April 2017. [Online]. Available:

https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-

algorithm-use/.

[7] Shai Shalev-Shwartz, UNDERSTANDING MACHINE LEARNING - From Theory to

Algorithms, Cambridge University Press, 2014.

[8] M. Hajek, NEURAL NETWORKS, 2005.

[9] McCulloch Warren, Walter Pitts, "A Logical Calculus of Ideas Immanent in Nervous

Activity," Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115-133, 1943.

[10] Hebb, Donald, The Organization of Behavior., New York: Wiley, 1949.

50

[11] Rosenblatt, F., "The Perceptron: A Probabilistic Model For Information Storage And

Organization In The Brain," Psychological Review, vol. 65, no. 6, p. 386–408, 1958.

[12] Minsky, Marvin; Papert, Seymour, Perceptrons: An Introduction to Computational

Geometry., MIT Press., 1969.

[13] Werbos, P.J., Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences., 1975.

[14] Aphex34, "Typical CNN architecture," 16 12 2015. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Typical_cnn.png .

[15] K. Fukushima, Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position, Biological cybernetics,

1980.

[16] B. B. Le Cun, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,and L. D. Jackel,

Handwritten digit recognition with a backpropagation network, NIPS. Citeseer, 1990.

[17] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet classification with deep

convolutional neural networks," NIPS, pp. 1106-1114, 2012.

[18] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville and Y. Bengio, "Maxout

Networks," JMLR WCP, vol. 28, no. 3, pp. 1319-1327, 2013.

[19] Nilsback, M-E. and Zisserman, A., "Automated flower classification over a large

number of classes," in Proceedings of the Indian Conference on Computer Vision, Graphics

and Image Processing (2008), 2018.

[20] University of Oxford - Department of Engineering Science, University of Oxford,

"102 Category Flower Dataset," Visual Geometry Group, 20 02 2009. [Online].

[21] ImageNet., "ImageNet," [Online]. Available: http://www.image-net.org.

51

[22] Russakovsky, O., Deng, J., Su, H., et al. , "ImageNet Large Scale Visual Recognition

Challenge.," International Journal of Computer Vision (IJCV) , vol. 115, no. 3, p. 211–252,

2015.

[23] Peterson Leif E., "Scholarpedia," Center for Biostatistics, The Methodist Hospital

Research Institute, 2009. [Online]. Available: http://www.scholarpedia.org/article/K-

nearest_neighbor.

[24] Thirumuruganathan Saravanan, "A Detailed Introduction to k-Nearest Neighbor

Algorithm," WordPress, 17 May 2010. [Online]. Available:

http://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-

to-k-nearest-neighbor-knn-algorithm/.

[25] Andrews W K Donald, Asymptotic Optimality of Generalized CL, Cross-validation,

and Generalized Cross-validation in Regression with Heteroskedastic Errors, vol. 47, 1991.

[26] Agrawal Rakesh, Ramakrishnan Srikant, Fast Algorithms for Mining Association

Rules, 650 Harry Road, San Jose, CA 95120: IBM Almaden Research Center, 1994.

[27] Belur V Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern Classification

Techniques., 1991.

[28] Li K C, Cheng Ching-Shui, Optimality criteria in survey sampling, vol. 74, 1987.

[29] P. T. (2009), Multidimensional Modeling. In: LIU L., ÖZSU M.T. (eds) Encyclopedia of

Database Systems., Boston, MA: Springer, 2009.

[30] P. Pai, "Data Augmentation Techniques in CNN using Tensorflow," 25 10 2017.

[Online]. Available: https://medium.com/ymedialabs-innovation/data-augmentation-

techniques-in-cnn-using-tensorflow-371ae43d5be9.

	Preface
	Πρόλογος
	Introduction
	1 From Data Science to Artificial Intelligence
	1.1 Knowledge Discovery in Data
	1.2 Machine Learning Algorithms
	1.2.1 Types of Machine Learning Algorithms
	1.2.2 Neural Networks and Deep Learning
	1.2.2.1 Historical Background
	1.2.2.2 Convolution Neural Network - State of the Art

	2 Data and Methodology
	2.1 Data Provenance and Description
	2.2 Define the Neural Network Architecture
	2.3 Methodological Approach and Tools

	3 Results and Discussion
	3.1 Loading and Preprocessing the image dataset
	3.2 Selection between Pretrained and Untrained Model
	3.3 Building the Image Classifier
	3.4 Model Fine Tuning and Feature Extraction
	3.5 Build, Train and Validate the Model
	3.6 Saving and Loading the Model
	3.7 Inference for Classification and Input Image Preprocessing
	3.8 Flower Class Prediction

	4 Conclusions
	References

