UNIVERSITY OF PIRAEUS

DEPARTMENT OF DIGITAL SYSTEMS
POSTGRADUATE PROGRAMME

“INFORMATION SYSTEMS & SERVICES”

BIG DATA & ANALYTICS

Thesis Title: Data
Analytics Algorithms
for Multi-Dimensional
Datasets

AN IMAGE CLASSIFIER TO RECOGNIZE DIFFERENT
SPECIES OF FLOWERS

EMMANOUIL ALEXAKIS

EMMANOYHA AAE=ZAKH2

ME 1702

ACADEMIC SUPERVISOR: ASSISTANT PROFESSOR DIMOSTHENIS
KYRIAZIS

PIRAEUS 2019

O eruBAEnwv 1°¢ guvefeTaoTAG 2°S guve€eTaOTNG

A. Kupalng M. Outakng Ap. A. Meviytag
En. KaBnyntng Av. KaBnyntng Addokwv

[t tnv Mewpyio kot Tov AxtAAéa...

Preface

Hundreds of flowers exist on earth, consisting an integral part of all livings not only for the
aesthetic aspect but also for human life in many areas such as medical science, industry and environment.
It is necessary to set up a database for flower documentation by determining an effective mean to identify
the species to which they belong even from a smartphone application. As Artificial Intelligence algorithms
(Neural Networks) are more and more incorporated into everyday applications, developing such an image
classifier by creating a deep learning model trained on hundreds of thousands of images would drive as
part of the overall application architecture. In this work, there is developed and trained an image classifier
for recognizing 102 distinct species of flowers utilizing a certain type of machine learning algorithm called
Convolutional Neural Networks, resulting in very good performance on a variety of experiments, achieving

up to 94% accuracy.

Keywords: Algorithms, Artificial Intelligence, Machine Learning, Deep Learning

Vi

MNpoAoyog

Exatovtadeg AouloUSLa uTtAPXOUV OTN YN, ATIOTEAWVTOC AVOTTOOTIAOTO HEPOC OAWY TWV EUPBLWY
OVTWV OXL LOVOo amo atodntikn amodn aAld kat yia tnv avBpwrvn {wr o€ moAAOUC TOUEIC OTWCE N LATPLKN
EMLOTAUN, N Blopnyavia kat to meptfarlov. Eival amapaitnto va dnuloupyndel pa Baon Sedopévwy yla
TNV Tekunpiwaon twv AouvAoudlwy, poadlopilovtag EvVov MOTEAEGUATIKO TPOTIO AVAYVWPLONG TWV EL6WV
oTa omola avhAKouv, akoun Kal amo ula edpappoyn €€umvou tnAedwvou. Emeldr ol aiyoplBuol tng
Texvntng Nonuoolvng (Neupwvika AlKtua) EVOWRATWVOVTAL OAOEVQ KOl TIEPLOCOTEPO OTLC KOONUEPLVEG
epapUoyEG, N avanTuEn eVOg TETOLOU TAELVOUNTH ELKOVAG SNULOUPYWVTAC EVa LOVTEAO BabLag pabnong
eKTOLOEVUEVO OE £KATOVIASEG XIAMASEC €lKOVEG Ba 06nNYyoUOoE WG HUEPOG TNG CUVOALKNG QPXLTEKTOVIKAG
edbappoywv. ITn mapovoa gpyacia, avantuxdnke kal ekMaldeUTnKe Vo TOEWVOUNTAG EKOVAC Yo TV
avayvwplon 102 Sakpltwv €l6wv AOUAOUSLWY XPNOLUOTIOLWVTOCG HLOG CUYKEKPLUEVNG KOTnyoplag
oAyopiBuwyv pnxavikng puadnong nou ovopalovral Convolutional Neural Networks, pe anotéleopa moAu

KOAEG EMIOOOELG O€ IO TIOKIALO TTELPAUATWY, ETLTUYXAVOVTAC OKpiBeLla €wg Kal 94%.

Né€eic Khewdua: AAyoplBuot, Texvnti Nonpoaouvn, Mnxoviki Mdaénon, Badid Madnon

vii

Table of Contents

11
1.2

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

EUXOPLOTIEG .o cuvieeeieeeiee ettt ettt tre e et e e ate e st e e eaaeesabeeenaeesareean Error! Bookmark not defined.

Y0 1= 100 L 1o USSRt Error! Bookmark not defined.

o =Y =Tl IR SSURRNt vi

TTDOAOYOG ..ttt eeetee ettt e ettt e e eteeee bt e e teeeetbeesbeeesabeeeabaeeasbaeaabaseasbaesabeeesaeesasasesseesabeeesseesnsaesnsseesnseeans vii

T} oo [¥ o1 1 o o TS USSR 1

1 From Data Science to Artificial INtelligeNCeccovuviiiiiiiee e 3
Knowledge DiSCOVErY iN Data.....ccccccccccuiiiieee ettt e e e eeecirree e e e e e eeenrreee e e e e e e e sansraaeeaeee s 4
Machine Learning AlgOIItNMSccii it e e e e e rrrae e e e e e 5

1.2.1 Types of Machine Learning AIGOITHAITIS ... eceeeeereereersersserserssessesssesasssissessssssssassesssssans 6

1.2.2 Neural Networks and DEED LEAITIIGceeerreeereersersseessersssnseassesssssnsesssssssssisssssssssssas 8

2 Data and MethOdOIOBYccccuiiiiiiiiiie et e s s ete e e e e srta e e e snte e e e snraeeeenns 13
Data Provenance and DeSCriptioN.......cccuueiiiiiieie ettt et e e ssntee e e s saraee e 13
Define the Neural Network Archit@CtUre.........ccovcvveeiiiiiie e 14
Methodological Approach and TOOISccciciiieiiiiiiee e e e 18

I (T W] L= o Vol B Yol U Y] o] o [SRR 25
Loading and Preprocessing the image datasetcccocvuveviiiiiiiiiiiiee e 25
Selection between Pretrained and Untrained Model..........cccocvieiiiniieiincciee e, 27
BUilding the IMage Classifier ...t s seee e s saree e sans 31
Model Fine Tuning and Feature EXtraction......cccccueeiveiieeiiiiiei e sieee e 31
Build, Train and Validate the Model ... 36
Saving and Loading the MOdel.............ooiiiiiii i 40
Inference for Classification and Input Image Preprocessingccccceeeevvveeeeciveeeecveeeenans 40
TN T @ T =T [ot o o 1RSSRt 42

R @0 [ol [V 1] o 3PP 47

2] <Y =T o 1ol Y PSR ST 49

viii

Introduction

Hundreds of flowers exist on earth, consisting an integral part of all livings not only for the
aesthetic aspect but also for human life in many areas such as medical science, industry and environment.
It is necessary to set up a database for flower documentation by determining an effective mean to identify
the species to which they belong. To do so, the morphologic features that make each flower distinct and
differ from the others has to be determined. Generally, morphological feature analysis is not a simple task
for non-expert users, as it needs accurate observations of the flower itself and comparisons with other
samples of the same species [1]. For this reason, the need to develop an image classifier able to classify

flowers and automatically determine the species they belong to, is arising.

Machine Learning, Artificial Intelligence and Deep Learning could assist to the endeavor of
developing such a classifier. Artificial Neural Networks (ANN), and more particular Convolution Neural
Networks have led to superior performance on a variety of classification problems such as visual and
speech recognition. Leveraging on the rapid growth in the amount of the annotated data and the great
improvements in the performance of graphics processor units, the research on CNNs has achieved state-
of-the-art results on various classification tasks [2]. The purpose of this study is to highlight the importance
of machine learning algorithms for processing multidimensional data and provide a guide in order to
decide which type of algorithm is optimum to use within the analysis. In particular, in this study, there is
developed and trained an image classifier for recognizing 102 distinct species of flowers utilizing a certain
type of machine learning algorithm called Convolutional Neural Networks, resulting in very good

performance on a variety of experiments, achieving up to 94% accuracy.

1 From Data Science to Artificial Intelligence

On the one hand, Data Science uses computer disciplines such as mathematics and statistics and
incorporates techniques such as data mining, cluster analysis, visualization and Machine learning,
whereas, on the other hand Artificial Intelligence (Al) is simply a computer capable of imitating or
simulating human thought or behavior. Inside that set, there is a subset called machine learning that is
now the foundation of the most exciting part of Al. By enabling computers to learn themselves how to
solve problems, machine learning has led to a series of breakthroughs that once seemed almost
impossible. Machine learning is a branch of Al where a class of data-driven algorithms allows software
applications to become very accurate in predicting results without the need for explicit programming. Its
fundamental principle is based on the development of algorithms that receive input data and use
statistical models to predict outputs while updating them when new data becomes available. The
processes involved have a lot in common with predictive modeling and data mining. This is because both
approaches require looking in the data to identify patterns and adjust the program accordingly. To this
extend, machine learning is a subset of artificial intelligence and data science is an interdisciplinary field

for extracting knowledge from data.

Artificial Intelligence

Machine Learning

Neural Networks

Deep Neural Networks/
Deep Learning

Big Data

Figure 1 VENN diagram of Al, Big Data and Data Science - Fraunhofer FOKUS

1.1 Knowledge Discovery in Data

The purpose of this chapter is to introduce data mining and the particular data mining techniques to be
able to extract the hidden information or relationships within the available datasets. The contents of this
chapter will concern an introduction of what data mining is and what purpose generally and particularly
in this study fulfills. Then, a thorough description of the calculation steps behind the specific data mining
techniques utilized in this study will follow. Within this description the need of data preprocessing will
arise making a connection to the coming chapter where the description and the preprocessing of the data
takes place. Knowledge Discovery in Databases (KDD) is the computational process of discovering patterns
in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics

and database systems [3, 4]. The KDD process is commonly defined within the following stages:

a. Data selection

b. Data pre-processing and transformation
c. Data Mining

d. Validation

a) Before implementing the data mining algorithms, a target dataset is selected. As data mining uncovers
patterns present in the data, the target dataset is supposed to be large enough in order to contain these
patterns. Additionally, the target dataset has to remain concise in order to be mined within an acceptable
time limit. b) Pre-processing is essential to analyze the multivariate datasets before data mining while in
case there is a large number of variants a certain transformation of the dataset can take place by
classifying them. If necessary, the target dataset is then cleaned by removing the observations containing
noise and those with missing data (NaN). The cleaning step should be done with care as even missing data
might indicate hidden patterns. c) Data Mining is the advanced step of KDD with the goal to extract

information from a data set and transform it into an understandable structure. Data mining involves six

classes [5]:
1) Anomaly detection: Identification of unusual data records or data errors
2) Association rule learning: Investigate relationships among variables.
3) Clustering: Discover new groups and structures in the data.
4) Classification: Generalize known structure to apply to new data.
5) Regression: Attempt to find a function which models the data with the least error.

http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Database_system

6) Summarization: Provide a more compact representation of the dataset, including

visualization and report generation.

d) The final step of KDD process is to identify whether the patterns found by the data mining algorithms
are valid or not. The evaluation takes place on a test subset that data mining algorithm was not trained.
The learned patterns are applied on the test subset and the resulting output is compared to the desired
output. A number of statistical methods may be used to evaluate the algorithm, such as Receiver
Operating Characteristic (ROC) curves. In case the learned patterns do not meet the desired standards,
re-evaluation and changing the pre-processing and data mining steps is necessary. On the other hand, if

the learned patterns do meet the desired standards, the final step is to interpret the learned patterns.

1.2 Machine Learning Algorithms

To realize the aforementioned, Data Scientists and Analysts are concerned in locating and
implementing machine learning algorithms in order to address the issues they are interested in, but they
are early come up with a certain question of “which algorithm they must use?". The answer to the
guestion depending on many factors, such as: a) The data nature (size, quality etc.) b) The available time
and last but not least c) What do they want to do with the data. When it comes to choose an algorithm,

parameters like accuracy, training time and ease of use have always to always to be taken into account.

When a data set is available, the first thing to consider is how to get results, no matter what those
results are. Once first results have delivered and user have to familiarize with the data by spending more
time using more sophisticated algorithms to enhance their understanding of data so as to improve the
results. Even an experienced data scientist cannot judge in advance which algorithm will have the
optimum performance before they really test the different algorithms. The Machine Learning Algorithm
Cheat Sheet presented in Figure 2 is working as a driver/guide in order to find which algorithm suits for
specific problems. The propsed algorithms arise from the collection of feedbacks and advice from various
data scientists and dedicated learning engineers and developers. Further explanation and how the cheat

sheet is utilized is following.

Machine Learning Algorithms Cheat Sheet

Unsupervised Learning: Clustering Unsupervised Learning: Dimension Reduction

START

Dimension Topic

Reduction Modeling Probabilistic

Prefer Categorical
Probability Variables

Need to Higrarehical Have
Specify k sl Reponses

Supervised Learning: Regression

Data Is il i Speed or Predicting ' Speed or
Too Large Explainable Accuracy Numeric Accuracy

Figure 2 A simplified guide to navigate through the process of choosing what is the best machine
learning algorithm [6]

If someone wants to reduce the dimensions of their data they should use Principal Component
Analysis, if they need a numerical prediction, use decision trees or linear regression, If they need an
hierarchical result, they should use hierarchical clustering, according to Figure 2. As the suggested cheat
sheets routes are intended to be rule-by-thumb recommendations, many the times there will be more
than one branch algorithm applied and other times none of them will be perfect match, thus, the only

sure way to find the best algorithm is to test all of those algorithms.

1.2.1 Types of Machine Learning Algorithms

The most popular division of machine learning algorithms types is: Supervised, Semi-Supervised,
Unsupervised and Reinforcement Learning algorithms [7]. Supervised learning algorithms make forecasts
based on a set of known examples. For instance, meteorological data can be used to estimate tomorrow’s
average temperature or wind speed. Within supervised learning, there is available an input variable

consisting of labeled training data and the desirable output variable. Then an algorithm can utilize training

data in order to learn the function that maps the input variable to the output one. This function implies
mapping of new, unknown examples, generalizing from the training data, to predict the results in unseen
situations. When the data is used to predict a categorical variable (i.e. type of flower), supervised learning
is called classification. This is the case when assigning a label, either rose or margarita to an image and
when there are only two labels, the problem is called binary classification while when there are more than
two categories, is called multi-class classification. When it comes to predict constant values, they become
a regression problem and when it comes to predict the future based on the past and present data it is

called forecasting.

The difficulty regarding the supervised learning is that labeling data can be time-consuming and
extremely expensive. In case that labels are limited, the use of non-labeled examples could enhance
supervised learning. As the machine learning process is not fully monitored, this particular case of learning
is called Semi-Supervised. In Unsupervised learning, the machine learning process is taking place with
completely unlabeled data. Usually, the intrinsic patterns hidden within the data, such as a clustering
structure, a low-dimensional etc., is expected to be discovered. Grouping a set of data examples so that
the examples in a group are more similar (according to some criteria) than in other groups, is called
clustering and is included in the Unsupervised machine learning process. This is often used to divide the
complete dataset into diverse groups so as to perform analysis in each group to help users find inherent
patterns. Diminishing the number of variables under consideration when primary data has very high
dimensional characteristics and some features are unnecessary or unrelated to work. Dimensionality
Reduction helps to discover the true, latent relationship and it is also included in the Unsupervised

machine learning process.

Finally, Reinforcement learning accounts the behavior of an agent based on environmental
feedback. In particular, through the process of Trial and Error, rather than telling machines what action
they need to take they instead try different scenarios to find out what the most rewarding actions are.
The test-and-error and the reward approach distinguish the reinforcement learning from other

techniques.

1.2.2 Neural Networks and Deep Learning

1.2.2.1 Historical Background

Neural network simulations appear to be a recent development. The field of Neural Network
modeling has been established even before the advent of computers and has survived through several
eras. The idea of neurons as structural components of the brain was firstly introduced in the work of
Ramén y Cajal, back in 1911, who was struggling to understand how the brain incurs [8]. In fact, the first
artificial neural network was developed in 1943, by Warren and Pitts, but the available means of that time
were not enough to take any advantage of the them [9]. Despite the fact that their Neural Network had a
a fixed set of weights, they suggested innovative ideas like that a neuron has a threshold level which is
still remain within the fundamental core of how ANNs operate. In 1949, Hebb created the first learning
rule; if two neurons are active at the same time then the strength of their bond should be increased [10].
In the decades to come many researchers (Rosenblatt, Minsky, Papert etc.) dealt with the concept of
perceptron [11], [12]. They created the algorithm for pattern recognition [11] but they were also
discovered that the basic perceptrons were incapable of processing the exclusive-or circuit meaning that
perceptron could not learn those functions which are not linearly separable and the research in the field
declined throughout the mid 70’s. It was then that Werbos introduced the backpropagation algorithm
that made the training of multi-layer networks feasible and efficient by distributing the error term back

up through the layers, modifying that way the weights at each node [13].

1.2.2.2 Convolution Neural Network - State of the Art

Convolution Neural Networks (CNN) is the state-of-the-art approach to object recognition and has
shown greatly advance on the performance of many compute vision tasks like object recognition and
tracking, text recognition or/and detection, pose estimation, action recognition etc. CNNs look like to
normal neural networks to the level that both can be arranged as an acyclic graph and visualized as a
collection of neurons. Their main difference is that in CNN a hidden layer neuron could be connected only
to a subset of neurons of the previous layer thus, they are capable of learning features in an implicit
manner. Their architecture can result in hierarchical feature extraction, for example in the 1°

convolutional layer, the trained filters can be visualized as set of edges, in the second layer as some

shapes, in the coming layer filters might learn object parts whereas the filters of the final layers can

identify the objects (Figure 3).

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Figure 3 A convolution neural network architecture [14]

The predecessor of CNNs is the so called neocognitron developed in 1980 [15] but LeNet,
developed by LeCun et al. in 1990, was in fact the innovate work [16] that highlighted the full potentials
of these kind of algorithms as it successfully managed to recognize and classify handwritten digits directly
from the input image without any preprocessing. Since then, a wide range of techniques have been
developed to enhance the performance or ease the training of CNNs. Some of the most known techniques
that have been implemented are published by Krizhevsky and Goodfellow [17], [18]. The network that
Krizhevsky (Figure 4) [17] constructed, has eight learned layers — five of them convolutional and three
fully-connected. The output of the last layer is a 1000-way softmax which produces a distribution over the
1000 class labels (the ImageNet challenge is to create a classifier that can determine which object is in the
image). Because the network is too large to fit in the memory of one GPU, training is split across two GPUs
and the kernels of the 2nd, 4th, and 5th convolutional layers are connected only to those kernel maps in

the previous layer which reside on the same GPU.

Max 128 Max
pooling pooling

Figure 4 The architecture of CNN, describing the delineation of responsibilities between the two
GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the
bottom. The GPUs communicate only at certain layers.

The authors single out four other aspects of the model architecture that they feel are particularly

important:

e The use of ReLU activation (instead of tanh). “Deep convolutional neural networks with
RelLUs train several times faster than their equivalents with tanh units. Faster learning has
a great influence on the performance of large models trained on large datasets “.

e Using multiple GPUs (two) and splitting the kernels between them with cross-GPU
communication only in certain layers. The scheme reduces the top-1 and top-5 error rates
by 1.7% and 1.2% respectively compared to a net with half as many kernels in each layer
and trained on just one GPU.

e Using local response normalization, which “implements a form of lateral inhibition
inspired by the type found in real neurons, creating competition for big activities amongst
neuron outputs computed using different kernels”.

e Using overlapping pooling. Let pooling layers be of size z x z, and spaced s pixels apart.
Traditionally pooling was used with s = z, so that there was no overlap between pools.
Krizhevsky et al. used s = 2 and z = 3 to give overlapping pooling. This reduced the top-1

and top-5 error rates by 0.4% and 0.3% respectively.

To reduce overfitting dropout and data augmentation (translations, reflections, and principal

component manipulation) is used during training.

10

This convolutional neural network is capable of achieving record-breaking results on a highly
challenging dataset using purely supervised learning. It is notable that network’s performance degrades
if a single convolutional layer is removed. For example, removing any of the middle layers results in a loss

of about 2% for the top-1 performance of the network.

Another renowned CNNs are the Maxout Networks [18]. These are designed to work hand-in-
glove with dropout. Training with dropout is like training an exponential number of models all sharing the
same parameters. In other words, Maxout Networks are standard multilayer perceptron or deep CNNs
that use a special activation function called the maxout unit. The output of a maxout unit is simply the
maximum of its inputs. Maxout units make a piecewise linear approximation to an arbitrary convex

function, as illustrated in Figure 5.

Rectiler Absolyte valye Quadratic
—~ T T m

Figure 5 Graphical depiction of how the maxout activation function can implement the
rectified linear, absolute value rectifier, and approximate the quadratic activation function.

Under evaluation, the combination of maxout and dropout achieved state of the art classification
performance on MNIST, CIFAR-10, CIFAR-100, and SVHN (Street View House Numbers). Dropout does
exact model averaging in deeper architectures provided that they are locally linear among the space of
inputs to each layer that are visited by applying different dropout masks. In addition, rectifier units that
saturate at zero are much more common with dropout training. A zero value stops the gradient from

flowing through the unit making it hard to change under training and become active again.

11

12

2 Data and Methodology

2.1 Data Provenance and Description

Maria-Elena Nilsback and Andrew Zisserman have created a 102-category dataset, consisting of
102 distinct flower classes [19]. The flowers chosen to be flower commonly occurring in the United
Kingdom and each class consists of between 40 and 258 images. The images have large scale, pose and
light variations. In addition, there are categories that have large variations within the category and several
very similar categories. The dataset is visualized using isomap with shape (Figure 6) and colour features
(Figure 7). The images are randomly sampled from the category. The details of the categories and the
exact number of images for each class can be found on this statistics page [20]. From the available data
non site [19] “Dataset images” and “The image labels” were used to train the image classifier of the

present work.

Two-dimensional Isomap embedding (with neighborhood graph).

Figure 6 The categories in the dataset using SIFT features as shape descriptors [19]

13

Two-dimensional Isomap embedding (with neighborhood graph).

Figure 7 The categories in the dataset using HSV as color descriptors [19]

2.2 Define the Neural Network Architecture

The image classification problem dealt with in this study, is to determine in which of the 102
classes a given image belongs. Now that the data is ready, it's time to build and train the classifier. The
VGG19 pretrained Convolution Neural Network from torchvision models is utilized in order to get the
image features and a new feed-forward classifier is built and trained using those features. Convolutional
Neural Networks is special type of Neural Networks working in the same way as a common neural
network, but it includes a convolution layer at its beginning. Thus, rather than feeding the model, as an
array of numbers, the entire image, the image is segmented into several squared pieces (m x m pixels)
and the model tries to predict what each of these pieces is. Eventually, the model predicts the content of
the picture based upon the prediction of all the pieces. In this way, the operations are parallelized, and
the detection of the object takes place regardless of its location in the image. The method followed to

build the image classifier involves the following steps:

14

1. Loadthe VGG-19 pre-trained Neural Network

2. Define a new, untrained feed-forward network as a classifier, using ReLU activations and
dropout

3. Train the classifier layers by backpropagation using the pre-trained network to get the
features

4. Track the loss and accuracy on the validation set to determine the best hyperparameters
(learning rate, units in the classifier, epochs, etc.).

5. Determine the best model and save it with those hyperparameters for inference if model

is needed to be rebuilt.

In this study, VGG-19 Convolution Neural Network will be utilized and as it will be presented in
the results chapter, the accuracy regarding the image prediction is of the same magnitude whether the
model is trained from the scratch or the pretrained one is used in advance. In order to build a single layer
Convolutional Neural Network (CNN) there are 5 steps involved: a) Define the Convolution Layer (Initialize
a single convolutional layer so that it contains all your created filters) b) Pass the result from an activation
function c) Feed output from previous step in a Pooling Layer d) Flatten the vector and e) Feed it to a Fully
Connected Linear Layer (Figure 8). Steps from a to c can be repeated as many times as needed in order to

achieve the desire depth of the Neural Network.

e | _/ﬁ
.. —» ,_ | — [

o ; fully-connected
convolutional pooling y

layer layer layer
input image
CNN

Figure 8 Schematic Representation of a Convolution Neural Network

15

convolutional
layer

depth =4

Figure 9 Left: Input Image on which 4 convolutional kernels are applied, Middle: 4 Images one from each
kernel Right: The convolution layer of depth 4.

Regarding the activation function, the only requirement is that for a network to approximate a non-
linear function, the activation functions must be non-linear. In Figure 10, are illustrated some examples of

common activation functions: Sigmoid, Tanh (hyperbolic tangent), and RelLU (rectified linear unit).

Sigmoid TanH RelLU
12 15 10
2
10 1 _— - - 0 for z<0
. = jo tanh(z)= ——— -1 8 s ;{

. J@) =10 p lte, 4 s s TS z>0

7 0s 6
06 /
04] o / :
12 e 0.5 / 2
00 “10 0
0z ! -2

“ 4 2 0 2 4 6% 4 2 0 2 4 g 6 4 2 0 2 4 6

Figure 10 Three common activation functions used applied in the output of the convolution layer
transforming its input accordingly

In Figure 11, an example of a 2x2 pooling kernel, with a stride of 2, is applied to a small patch of
grayscale pixel values; reducing the x-y size of the patch by a factor of 2. Only the maximum pixel values

in 2x2 remain in the new, pooled output.

16

5
maxpool 90

40 50 .

« filter/patch size = 2x2
+ siride=2

Figure 11 A maxpooling layer reduces the x-y size of an input (output of the activation function) and only
keeps the most active pixel values.

VGG-19 is a convolutional neural network that is trained on more than a million images from the
ImageNet database [21]. The network is 19 layers deep and is able to classify images into 1000 object
categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich
feature representations for a wide range of images. The network has an image input size of 224-by-224

[22]. The neural network architecture is presented in Figure 12.

22Ax2 2 4n64,
112x112x128
S6x56x256 ‘ ﬂ
28x28x512 '
; T4ui4n512 i ?:;512 |
\ | maxpool | maxpuull mﬂxpuol maxpuul I
| axped | depth=256 depth=512 depth=512 (i,0-4096
depth=64 depth=128 3x3conv 3x3 conv X3 conv FC1
3x3 conv 3x3 conv Cl:ln‘l-‘3_1 I:DI'I\I"":'_J. EQ"US_]. FC2
convl 1 conv2_1 conv3_2 conv4_2 convs_2 size=1000
convl 2 conv2_2 conv3_3 conv4_3 convs_3 softmax
conv3_4 conv4_4 convs_4

Figure 12 VGG19 Architecture

17

2.3 Methodological Approach and Tools

The main purpose within this work, is to build and train an image classifier so as to recognize
different species of flowers that could be utilized through a phone app that would tell the name of the
flower phone camera is looking at. The work done in this project is mainly split down into the following

steps:

1) Loading and Preprocessing the image dataset
2) Building, Training and Evaluating the image classifier

3) Use the trained classifier to predict image content

Loading and Preprocessing the image dataset: Before feeding data into the model, they should be
transformed into a format the model would “understand”. Firstly, as the gathered data samples might be
in a specific order, any information associated with the ordering of samples would influence the
relationship between images and labels. For instance, in this study data are sorted by class corresponding
to a flower category, if this data will be split into training/validation sets, these sets will not be
representative of the overall distribution of data per each category. Thus, a simple best practice to ensure
the model will not be affected from data ordering is shuffling the data and then make the split into training
and validation sets assuring that transforming both training and validation data in the same way. In this
study, the data for each category were firstly shuffled and then split to use 80% of the samples for training

and 20% for validation.

Building, Training and Evaluating the image classifier: The composition and construction of the input
layer and the intermediate layers of the model has been previously described. For a multi-class
classification, like the one in the present stud, the model should output one probability score per class
and the summation of these scores should aggregate to 1. For an example of four classes, outputting {0:
0.4,1:0.3,2: 0.2, 3: 0.1 } means “40% confidence that this sample is in class 0, 30% that it is in class 1,
20% that it is in class 2 and 10% that is in class 3.” To output these scores, the activation function of the
last layer should be softmax, and the loss function used to train the model should be categorical cross-

entropy as presented in Figure 13. This study elaborates the prediction of 102 distinct flower categories.

18

Class 0

Class 1

Class 2

Class 3

Figure 13 Multi Class Classification Output Layer

Now that the model architecture has defined and all the model layers has constructed, the model
training can start taking place. This process involves making a prediction based on the current (untrained)
state of the model, calculating how “incorrect” the prediction is, and updating the weights or parameters
of the neural network so as to minimize this error and eventually make the model to predict more
efficiently. This process is repeated until the model has converged and can no longer learn. The key
learning parameters taken into account within this self-assessment and optimization process are

presented and shortly described in Table 1.

19

Table 1

Learning Parameter Description

How to measure the
Metric performance of our model

using a metric.

A function that is used to

calculate a loss value that the
Loss function - multi class
training process then attempts
classification
to minimize by tuning the

network weights.

A function that decides how
the network weights will be
Optimizer
updated based on the output

of the loss function.

The actual training takes place using the fitting method which, depending on the dataset size, is
where the most computing cycles will be spent. For each training iteration, a batch size number of images
from the training data are used to compute the loss, whereas the weights are updated once, based on
this value. The training process completes an epoch once the model has seen the entire training dataset.
In the end of each epoch, the validation dataset is utilized in order to evaluate the model performance
with regards learning process. The training process is repeated using the dataset for a predetermined
number of epochs until the validation accuracy stabilizes between consecutive epochs, suggesting that
the model is not training anymore. The hyperparameters involved within this process concern a) the ones
of the CNN which will not be tuned in the present study as in the end the architecture of the pretrained
VGG19 will be employed for the needs of the project (presented and described in Table 2) and b) the ones
of the fully connected neural network which will be fine-tuned in the coming chapter, in order to increase
the performance of the prediction model regarding the particular dataset of the study (presented and

shortly described in Table 3)

20

Table 2 CNN Training Hyperparameters

Training hyperparameter Used in present study

Description

Convolutional and MaxPool Layers CNN: VGG19 Architecture

Configuration of the
Convolutional and MaxPool

Layers

Number of units per layer 64

Feature identifiers - The
units in a layer must hold
the information for the
transformation that a layer

performs

Kernel size (3,3) or 2 (MaxPooling)

The size of the convolution

window.

Stride (1,1) or 1 or 2 (MaxPooling)

Controls how the filter
convolves around the input

volume

Padding (1,1) or 0 (MaxPooling)

Pads the input volume with
zeros around the border so as
the output volume to retain

its input dimensions

Table 3 Fully Connected Feed Forward Neural Network Hyperparameters

Training hyperparameter Description

The number of layers in a neural
Number of layers in the model network is an indicator of its

complexity

Batch size

Number of images used for

each training iteration

21

Units in a layer hold the
information for the
transformation that a layer
Number of units per layer
performs and they are the
number of nodes (neurons)

each layer is consisted of

Dropout layers are used in the
Dropout rate
model for regularization.

The rate at which the neural
Learning Rate network weights change

between iterations.

For defining and training the model several hyperparameters must be chosen, initially based upon
intuition, examples or/and best practice recommendations which, however, may not yield the best results
but providing a starting point for training. As every problem is different, tuning those hyperparameters
will help to refine the model in a manner that will represent better the particularities of the problem itself.

Let’s take a look at some of the aforementioned hyperparameters and what it means tuning them:

Number of layers in the model: The number of layers in a neural network is an indicator of its complexity.
The more layers allow the model to learn more information about the training data, with the precaution
of causing overfitting. Less layers could negatively affect the model’s learning ability leading to

underfitting.

Number of units per layer: The units in a layer hold the information for the transformation that a layer
performs. For the first layer, this is driven by the number of features whereas in subsequent layers, the
number of units depends on the choice of expanding or contracting the representation from the previous

layer. The question here is to successfully manage to minimize the information loss between layers.

Dropout and Learning rate: Dropout layers define the fraction of input to drop as a precaution for
overfitting used this way in the model for regularization. The rate at which the neural network weights

change between iterations is called learning rate. A large learning rate may cause large fluctuation in the

22

weights, resulting in difficulty to find their optimal values. A low learning rate would be nice, but the model

will need more iterations in order to converge.

Playing around with the values of those hyperparameters in the coming chapter will determine the
configuration of which one results in better model performance. Once the best-performing

hyperparameters are determined the model is ready to be deployed.

23

24

3 Results and Discussion

3.1 Loading and Preprocessing the image dataset

After the completion of the project, an application that can be trained on any set of labeled images
will be delivered as the neural network will be learning about flowers and end up as a command line
application. As explained in the previous chapter, the implementation is going to take place on the
platform jupyter notebook and the respective code snapshots will be demonstrated in figures throughout

the present chapter.

In the beginning the needed pytorch libraries and packages are imported as presented in Figure
14. Then the data is downloaded, loaded and the dataset is randomly split into two subsets: training and
validation (Figure 15). The training and validation datasets are comprised 80% and 20% out of the initial
dataset, respectively. In order to improve the neural network generalization ability that leads to higher
performance, different transformations such as random scaling, cropping, and flipping are applied over
the training dataset. Due to the fact that a pre-trained neural network is going to be used, the input data
is resized to 256x256 and cropped to 224x224 pixels as it is pre-requisite for the particular utilized model,
followed by data Normalization, as presented in Figure 16. As the validation set is used to measure the
model's performance on data it hasn't seen yet, there should not applied any scaling or rotation
transformations, despite resizing and then cropping the images to the appropriate size. The

implementation code that explains the aforementioned, is presented in Figure 16.

In [1]: | # Imports here
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, models
import torchvision.transforms as transforms
import numpy as np
from PIL import Image
import torch.optim as optim
import matplotlib.pyplot as plt
from collections import OrderedDict
import json
import os, random
from torch.autograd import Variable

Figure 14 Importing the needed libraries

25

In [2]: Split to Train and Test

def split_data_to_train_test_subsets({data_directory, directory_training_data, directory_testing_data, percentage_testing data):
if directory_testing_data.count('/') > 1:
rmtree(directory_testing_data, ignore_errors=False)
makedirs(directory_testing_data)

if directory training data.count('/') » 1:
rmtree(directory_training_data, ignore_errors=False)
makedirs(directory_training_data)

num_training_files = @
num_testing_files = @

for subdir, dirs, files in walk(data directory):
category_name = path.basename(subdir)

if category_name == path.basename(data_directory):
continue

training_data_category_dir = directory_training data + '/" + category name
testing_data category_dir = directory_testing data + '/' + category_name

if not path.exists(training_data_category dir):
mkdir(training_data_category_dir)

if not path.exists(testing data_category_dir):
mkdir(testing data_category dir)

for file in files:

input_file = path.jein(subdir, file)

if rand(1) < percentage testing_data:
copy(input_file, directory_testing data + '/' + category name + '/' + file)
num_testing_files += 1

else:
copy(input_file, directory training data + '/' + category name + '/' + file)
num_training_files += 1

Figure 15 Splitting Training and Validation (labeled testing) datasets

In [4]: | # Define your tronsforms for the training and validotion sets

define datalooder parameters

batch_size = 32

convert dota to @ normalized torch.FloatTensor

train_transforms = transforms.Compese([transforms.Randomrotation(3a),
transforms.RandomResizedCrop{224}),
transforms.RandomHorizentalFlip(),
transforms.ToTensor{),
transforms.Mormalizel[8.485, @.458, 2.486],

[B.229, 8.224, @.225]1)1)

valid_transforms = transforms.Compose([transforms.resize(256),
transforms.CenterCropl224),
transforms.ToTensor(),
transforms.Normalize{[8.485, 8.455, &.486],
[B.229, 8.224, 8.225])])

#test_transforms = transforms.Compose([tronsforms.Resize(255),
3 transforms. CenterCrop(224),
transforms. ToTensor()},
transforms. Normalize([8.485, 8.455, 0.486],
[8.229, ©.224, @.225])
n

LR B AL A

Logd the dotasets with Imagerolder

train_data = datasets.ImageFolder(data_dir + '/train', transform=train_transforms)
valid_data = datasets.ImageFolder(data_dir + '/valid', transform=valid_transforms)
#test_data = datasets.ImageFolder(test_dir, tronsform=test transforms)

Using the image datasets and the trainforms, define the dotaloaders

train_loader = torch.utils.data.Dataloader(train_data, batch_size=batch_size, shuffle=True)
valid_loader = torch.utils.data.Dataloader(valid data, batch_size-batch_size)

#test_looder = torch.utils.dota.betaloader(test dota, botch size=hatch size)

loaders = [train_loader, wvalid_loader]#, test_Lloader]

Figure 16 Define dataloader parameters and transformations for training and validation datasets

26

The available torchvision pre-trained neural networks trained on the ImageNet dataset, have each
color channel normalized separately. This is the reason why both subsets have to have the means and
standard deviations of the images normalized because this is what the trained neural network expects.
For the means, it's [0.485, 0.456, 0.406] and for the standard deviations [0.229, 0.224, 0.225], calculated
from the ImageNet images. These values will shift each color channel to be centered at 0 and range from
-1 to 1. Another important step before proceeding to building and training the classifier is the data label
mapping; load in a mapping from category label to category name. Accompanied with the data there is a
file (JSON object that can be read in with the json module) named cat_to_name.json which in fact is a

dictionary mapping the integer encoded categories to the actual names of the flowers (Figure 17).

In [5]: with open{'cat_to_name.json’, °"r') as f:
cat_to_name = json.load({f)

prinmt{cat_to_name}
print{"\n Length:", len{cat_to_name}}

{'21': 'fire lily', '3': 'canterbury bells', "45': 'bolerc deep blue', '1': "pink primrose®, '34': "mexican aster', "27': 'prin
ce of wales feathers', '7': 'mocn orchid', '1g': "globe-flower', '25': 'grape hyacimth', '28': 'cern poppy', '79": "toad 1ily",
'33': 'siam tulip', '24': 'red ginger', '67': 'spring crocus', "35': 'alpine sea holly', "32': 'garden phlox', '18': 'glcbe thi
stle', 'e": 'tiger 1lily', '93': 'ball moss', "323': 'love in the mist', '9': "monkshood', '182': 'blackberry lily®, "14': "spear
thistle', "12': 'balloon flower®, '12@': ‘blanket flower', "12': 'king protea’, '49': ‘'oxeye daisy’, '15': “yellow iris®, 'e1":
‘cautleys spicata', '21': ‘carnation’, '64': "silverbush', '68': 'bearded iris', "62': 'black-eyed susan', "63': 'windflower',
'62': "japanese anemone’, '2@': ‘giant white arum 1ily", '38': "great masterwort®, '4": ‘sweet pea’, 'S6': "tree mallow', '18
1': 'trumpet creeper', '42': 'daffodil', '22': 'pincushion flower', '2': 'hard-leaved pocket orchid®, 'S54': 'sunflower', "86':
‘ostecspermum’, ‘728" 'tree poppy’, "85': ‘desert-rose’, '99': “bromelia®, 'S7': "magnolia®, 's5': ‘english marigeld®, '92°: ‘be
e balm', "28': 'stemless gentian', '97': 'mallow', 'S7": 'gaura’, '42': "lenten rose', '47°: 'marigold', 'S53': 'orange dahlia“,
'4g': ‘buttercup', 's55': ‘pelargenium’, "36': ‘ruby-lipped cattleya®, '91': “hippeastrum', ‘'2e°: ‘artichoke', '71': "gazania’,
'ga': ‘canna lily', '18': 'peruvian 1lily", 'S8": "mexican petunia', 'S8': 'bird of paradise®, '38': "sweet william', "17': 'purp
le coneflower', 's2": 'wild pansy’, "84': 'columbine', "12°": "colt's foct™, "11': 'snapdragon’, '96°: ‘camellia’, '23': 'fritil
lary', 'se': 'common dandelion', '44': 'poinsettia’, 's53': ‘prieuls", '72': "aszalea', 's5': 'californian peppy', 'se": 'anthuri
um', '76': 'morning glory', "37': ‘cape flower', "Se': 'bishop of llandaff', 'e@': 'pimk-yellow dahlia', 's2': 'clematis', 'S
8": 'geranium', '75": 'thorn apple', "41': 'barbeton daisy', '95': "bougainvillea", '£3': “sword lily', 's3": 'hibiscus', '78":
'lotus lotus', "88": 'cyclamen', "94": 'foxglowe', '81": 'frangipani', '74': 'rose', "89': 'watercress', '73': 'water lily', "4
5"t 'wallflower®, "77': ‘passion flower', 'S1": 'petunia’}

Length: 122

Figure 17 Mapping the integer encoded categories to the actual names of the flowers

3.2 Selection between Pretrained and Untrained Model

Now that the data is ready to be used, the decision whether to choose an untrained or pretrained
model has to be taken. Figure 18 (lower) shows the pretrained VGG19 model to be employed while the
training processes has been frozen within all the features layers of the neural network. For demonstration
purposes, the same architecture (Figure 19) but untrained neural network model will be trained from

scratch (Figure 18 upper) resulting in respective validation loss but after a longer period of training

27

(greater number of epochs), as it can be compared from Figure 20 and Figure 21. Thus, the pretrained

VGG19 model has been chosen to proceed from now on.

In [6]: | # Lood the pretroined model from pytorch
myModel = models.vggl9({pretrained=False)

Freeze troiming for all "features" Layers
for param in myModel.features.parameters():
param.requires_grad = True

In [6]: | # Load the pretroined model from pytorch
myModel = models.vggl®{pretrained=True)

& Freeze troiming for all "features" Layers
for param in myModel.features.parameters():
param,reguires_grad = False

Figure 18 Upper: Loading the untrained model and allow training for all features layers, Lower: Loading the
pretrained model and freeze training for all features layers

In [2]: myModel

Out[%]: VGG(
(features): Sequential(

(@): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): RelLU(inplace)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): RelU(inplace)
(4): MaxPool2d(kernel size=2, stride=2, padding=@, dilation=1, ceil mode=False)
(5): Conv2d(64, 128, kernel_size=(3, 3}, stride=(1, 1}, padding=(1, 1))
(B): RelLU(inplace)
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(8): RelLU(inplace)
(9): MaxPool2d(kernel_size=2, stride=2, padding=@, dilation=1, ceil_mode=False)
(1@): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace)
(12): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): RelU(inplace)
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(15): RelLU(inplace)
(16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(17): ReLU(inplace)
(18): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(19): Conv2d(256, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(2@): RelU(inplace)
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(22): ReLU(inplace)
(23): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(24): ReLU(inplace)
(25): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(26): RelLU(inplace)
(27): MaxPool2d(kernel_sire=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(28): Convad(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(29): ReLU(inplace)
(3@): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
(31): RelU(inplace)
(32): Convad(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(33): ReLU(inplace)
(34): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(35): RelU(inplace)
(36): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

(classifier): Sequential(
(@): Linear(in_features=25@88, out_features=40%6, bias=True)
(1): RelLU(inplace)
(2): Dropout(p=8.5)
(3): Linear(in_features=4896, out_features=4a96, bias=True)
(4): RelU(inplace)
(5): Dropout(p=8.5)
(6): Linear(in_features=4896, out_features=1800, bias=True)

Figure 19 Default Layers and Features of VGG19 - Model Architecture

28

In [14]: | # mumber of epochs to train the model
n_epochs = 288

valid_loss_min = np.Inf & track change in velidation Loss
for epoch in range(l, n_epochssl):
& keep track of training and volidation Loss

train_loss
valid_loss

W

= 8.
= 8.

HENNRTET RN RATELRY
& train the modsl &
HHRRERLETRERRALEE RN
myModel . cudal). train(}
for data, target in train_loader:
move Tensors o GPU if CUDA is guwrilable
if train_on_gpu:
data, target = data.cuda(), target.cuda()
& clear the gradients of all optimized varisbles
optimizer.zero_grad(}
forward pass: compule predicted owiputs by passing inputs fo the model
output = myModel(data)
calculate the batch Loss
loss = eriterion(output, target)
backward pass: compute gradient of the Loss with respect to model parameters
loss. backward()
perform o single optimization step (parameler updote)
optimizer.step()
wpdate training less
train_loss += lpss.itenm()*data.size(a)

GHRERRLETRRRRALET R R
& volidate the model &
SERRAAEESRRARGTEERRARY
myModel.eval(}
for data, target in valid_loader:
wove temsers to GPU if CUDA is awgilable
if train_on_gpu:
data, target = data.cuda{), target.cuda()
forward pass: compute predicted cwlputs by passing fnputs to the model
output = myMedel(data)
colculate the batch Loss
loss = eriterion{output, target)
update sverage velidation Loss
valid_loss += loss.lten()*data.size(d)

colcwlate average Losses
train_loss = train_loss/len{train_loader.dataset)
walid_loss = walid_loss/leni{valid_loader.dataset)

@ print training/validation statistics
print('Epoch: {} \tTraining Loss: {:.6F} \tWalidation Less: {:.5F}".format(
epoch, train_loss, valid less))

¥ zave model if validation Loss has decreased
if walid_loss <= valid_loss_min:
print(‘Validation less decrsased ({:.6F} --» {:.6F}). Saving medel ...'.format(
walid_loss_min,
valid_less))
torch.save(myModel.state_dict(), ‘checkpeint_vggld_@ellr_28ep_32ba_lS083_4896_8296_untrained.pt')
valid_loss_min = valid_loss

Tpoch: 182 Training Locc: 2.810028 Validation Loct: Z.57851% -
Epoch: 183 Training Loss: 2. 848215 Walidation Loss: Z.568139
Epoch: 184 Training Loss: 2.831182 Walidation Loss: 2.615749
Epoch: 185 Training Loss: 2. 851488 Walidation Loss: I.597519
Epoch: 186 Training Loss: 2. 8459838 Walidation Loss: I.G51638
Epoch: 187 Training Loss: 2. 845529 Walidation Loss: I.514817
Validation loss decreased (X.563188 --» 1.514817). Saving model ...
Epoch: 138 Training Loss: 2.B29862 Walidation Loss: I.54@378
Epoch: 1a8% Training Loss: 2.B42853 Walidation Loss: 2.538831
Epoch: 198 Training Loss: 2.829562 Walidation Loss: 2.622636
Epoch: 191 Training Loss: 2.B87395 Walidation Loss: 2.5932%E
Epoch: 192 Training Loss: 2.837785 Walidation Loss: 2.543316

Figure 20 Training and Validating the untrained VGG19 Pytorch Model with the flower dataset of
the present study

29

In [11]: | # number of epochs to train the model
n_spochs = 38

valid_loss_min = np.Inf # trock change in validotion Loss
for epoch in range(l, n_epochs+1):

keep track of training ond volidotion Loss
train_loss = 2.8
valid_loss = @.@

train the model
myModel.cuda().train()
for data, target in train_loader:
move tensors to GPU if cuDA is guoilable
if train_on_gpu:
data, target = data.cuda(), target.cuda()
& clear the gradients of all optimized variobles
optimizer.zero_grad()
forward paoss: compute predicted outputs by passing inputs to the model
output = myModel{data)
colculate the botch Loss
loss = criterien{output, target)
backward pass: compute gradient of the Loss with respect to model parameters
loss.backward(}
perform a single optimizotion step (porameter update)
optimizer.step()}
update training loss
train_loss += loss.item()*data.size(e)

validate the model

myModel.eval()
for data, target in valid_lecader:
move tensors to GPU if CcUDA is ovoilable
if train_on_gpu:
data, target - data.cuda(), target.cuda()
forward pass: compute predicted outputs by passing inputs to the model
output = myModel{data)
calculate the batch loss
loss = criterien{output, target)
update gverage validotion Loss
valid loss += loss.item()*data.size(a)

calculate average Losses
train_loss = train_loss/len(train_loader.dataset)
valid_loss = valid_loss/len{valid_loader.dataset)

print training/validation stotistics

print('Epech: {} \tTraining Loss: {:.6f} \tvalidatiom Loss:
epoch, train_less, walid_loss))

-5} format(

sove model if volidotion Loss has decreased
if walid_loss valid_loss_min:
print(‘validation loss decreased (;
valid_loss_min,
valid loss))
torch. save(mydodel . state_dict(), 'checkpeint_vggla_sellr_2eeep_32ba_2sess_4e96_sase_pretrained GPU.pt')
valid loss_min = valid loss

&f} --» {:.6f}). saving model ...".format(

Epoch: 1 Training Loss: 4.255613 validation Loss: 3.445846
validation loss decreased (inf --» 2.445648). Saving model ..

Epoch: 2 Training Loss: 3.245429 validation Loss: 2.147629
validation loss decreased (3.445845 --» 2.147829). Saving model

Epoch: 3 Training Loss: 2.327855 validation Loss: 1.463341
validation loss decreased (2.147629 --» 1.453941). Saving model ..
Epoch: 4 Training Loss: 1.818564 Validation Loss: 1.85389%@
validation loss decreased (1.463341 --» 1.85383@). Saving model ...
Epoch: 5 Training Loss: 1.48817@ validation Loss: @.820887
validation loss decreased (1.85389@ --»> 2.820687). Saving model

Epoch: 6 Training Loss: 1.298643 Validation Loss: @.73867@
validation loss decreased (8.828887 --» ©.733678). Saving model ...
Epoch: 7 Training Loss: 1.172519 validation Loss: @.612783
validation loss decreased (9.73867@ --» 2.519789). Saving mode

Epoch: 8 Training Loss: 1.841657 Validation Loss: @.564265
validation loss decreased (8.515789 --»> 8.564255). Saving model ...
Epoch: 9 Training Loss: ©.283476 validation Loss: @.5424%2
validation loss decreased (9.564285 --» 2.54849@). Saving model ..
Epoch: 1@ Training Loss: ©.942167 validation Loss: @.4821e2
validation loss decreased (8.548438 --» 8.43212@). Saving model

Epoch: 11 Training Loss: ©.308232 validation Loss: @.581487
Epoch: 12 Training Loss: ©.821344 validation Loss: ©.446393
validation loss decreased (@.48219@ --» 2.446393). Saving model

Epoch: 13 Training Loss: ©.791335 Validation Loss: @.448768
Epoch: 14 Training Loss: ©.77212%5 validation Loss: @.415825
validation loss decreased (©.446393 --> 2.416626). Saving model ...
Epoch: 15 Training Loss: ©.736453 validation Loss: @.382820
validation loss decreased (8.416626 --»> 8.382888). Saving model

Epoch: 16 Training Loss: ©.5595318 validation Loss: ©.383382
Epoch: 17 Training Loss: ©.698%@1 validation Loss: @.373@15
validation loss decreased (e.3s2e8@ --»> 8.373815). Saving model

Epoch: 18 Training Loss: ©.658468 Validation Loss: @.37328@
Epoch: 19 Training Loss: 8.547225 validation

Epoch: 2@ Training Loss: ©.52@8957 validation

validation loss decreased (@.373€15 --» 2.322891). Saving

Epoch: 21 Training Loss: ©.623535 validation

Epoch: 22 Training Loss: ©.554882 validation

Epoch: 23 Training Loss: ©.584929 validation Loss: @.326531
Epoch: 24 Training Loss: @.5558%9@ validation 8.351933
Epoch: 25 Training Loss: ©.556226@ validation Loss: e@.31@228
validation loss decreased (8.323831 --> 8.318228). Saving model .
Epoch: 26 Training Loss: ©.558373 validation Loss: @.3082827
validation loss decreased (©.318228 --»> 8.3@9827). Saving model ...
Epoch: 27 Training Loss: @.5373%@ validation Loss: @.3127e3
Epoch: 28 Training Loss: ©8.58%479 validation Loss: @.383337
validation loss decreased (©.389827 --» ©.282337). Saving model ...
Epoch: 29 Training Loss: ©.5253954 validation Loss: @.325178
Epoch: 3@ Training Loss: ©.519544 validation Loss: @.288e26

validation loss decreased (8.383337 --»> 8.2886256). Saving model ...

Figure 21 Training and Validating the pretrained VGG19 Pytorch Model with the flower dataset of
the present study

30

3.3 Building the Image Classifier

Now that the data is ready and the pretrained convolutional neural network has been selected,
it's time to build and train the classifier. The pretrained model from torchvision models will be utilized to
get the image features and the new feed-forward classifier will be developed and trained using those
features. As illustrated in the code of Figure 22, the untrained feed-forward network is defined as a
classifier, using ReLU as the activation function for each layer and dropout (p=0.5) but the number of
output features of the last layer is reduced from 1000 (classes that VGG19 has been pretrained) to 102
(classes of flowers regarding the present study) and the activation function is the LogSoftmax due to the
multi class classification. This time, the classifier is trained by backpropagation using the pre-trained
network to get the features and track the loss and accuracy on the validation set, so as to ensure that only
the weights of the feed-forward network are updated. The analytic results of the optimization process for
the different hyperparameters (learning rate, batch size, loss function, epochs, etc.) in order to find the
best model, are following in the coming subchapter. The optimized hyperparameters will be saved with

the trained model and used as the default values in the coming part of the project.

In [9]: | ### Define a new, untrained feed-forward network as a classifier, using RelU activations and dropout

classifier = nn.Sequential{nn.Linear(in_features=25882, out_features=4895, bias=True),
nn.ReLU(inplace=True),
nn.Dropout(p = 8.5},
nn.Linear(in_features=4@96, out_features=4096, bias=True),
nn.ReLU(inplace=True),
nn.Dropout(p = 8.5},
nn.Linear(in_features=4@96, out_features=len(cat_to_name), bias=True),
nn.LogSoftmax(dim=1))

Figure 22 Definition of the untrained feed-forward network as the classifier

3.4 Model Fine Tuning and Feature Extraction

There are two types of transfer learning used to follow in the optimization process of a prediction
model: a) finetuning and b) feature extraction. In finetuning, all of the pretrained model’s parameters are
updated within the framework of the particular new task, which in other words means to retrain the

whole model whereas, feature extraction only the model’s final layer weights, from which predictions is

31

derived, are updated. It is called feature extraction because the pretrained CNN is utilized as a fixed
feature-extractor, and only the output layer is changed. Both transfer learning methods follow the same

steps:
e Initialize the pretrained model

e Reshape the final layer(s) to have the same number of outputs as the number of classes in the

new dataset
e Define for the optimization algorithm which parameters we want to update during training
e Run the training step

Running some preliminary training steps for the learning parameters presented in Table 4, it was
decided to assess the performance of the model accounting the metrics of validation loss and validation
accuracy. Due to the fact that there is a multiclass classification problem, the combination of the loss
function and optimizer that resulted in better model performance (according to the aforementioned
metrics) was the Cross — Entropy Loss and the Stochastic Gradient Descent, respectively. The

implementation code is presented in Figure 23.

Table 4 Learning Parameters for Model

Learning Parameters Used in this study

Metric Validation Loss / Accuracy

Loss function - multi class
Cross-entropy loss
classification

Optimizer Stochastic Gradient Descent

In [11]: | # specify Loss function (categorical cross-entropy)
criterion = nn.Crossentropyloss()

specify optimizer (stochastic gradient descent) and Learning rate = 8.81
optimizer = optim.SGD(myModel.classifier.parameters(), lr=8.81)

Figure 23 Defining the model hyperparameter (loss function, optimizer and learing rate)

32

The batch size was another parameter over which the model assessed by keeping the rest of the
VGG19 default parameters stable, resulting in best model performance (minimum validation loss) when
the batch size is of 32 images as presented in Table 5. A similar approach was followed for the learning
rate (Table 6), the number of inputs per layer (Table 7) and the drop out (Table 8) with the difference that
the determined optimum learning parameter from the iterative process was used as input, keeping the
rest VGG19 default parameters stable. Eventually, all the determined optimal parameters are summarized
in Table 9 which in the coming chapter will be combined in a series of model simulations in order to

determine the parameters configuration resulting in the model’s best performance.

Table 5 Assessing model performance with respect to the batch size parameter

Description Batch Size Minimum Validation Loss
Pretrained VGG19, Default
8 0.76
Hyperparameters, epochs = 30
Pretrained VGG19, Default
16 0.65
Hyperparameters, epochs = 30
Pretrained VGG19, Default
32 0.28
Hyperparameters, epochs = 30
Pretrained VGG19, Default
64 CUDA Out of Memory
Hyperparameters, epochs = 30

Table 6 Assessing model performance with respect to the learning rate parameter

Description Learning Rate Minimum Validation Loss

Pretrained VGG19, Default
Hyperparameters, batch size = 0.001 0.28
32, epochs = 160

33

Pretrained VGG19, Default
Hyperparameters, batch size =

32, epochs =30

0.01

0.28

Pretrained VGG19, Default
Hyperparameters, batch size =

32, epochs =30

0.1

1.17

Pretrained VGG19, Default
Hyperparameters, batch size =

32, epochs =30

NaN

Table 7 Assessing model performance with respect to the number of inputs per layer

Description

Number of inputs per layer

Minimum Validation Loss

Pretrained VGG19, batch size =

25088 (IN) -> 12544 (OUT) ->

12544 (IN) -> 6272 (OUT) -> 0.28
32, Drop out = 0.5, epochs = 30
6272 (IN) -> 102 (OUT)
25088 (IN) -> 4096 (OUT) ->
Pretrained VGG19, batch size =
4096 (IN) -> 4096 (OUT) -> 4096 0.28
32, Drop out = 0.5, epochs = 30
(IN) -> 102 (OUT)
25088 (IN) -> 1632 (OUT) ->
Pretrained VGG19, batch size =
1632 (IN) -> 408 (OUT) -> 408 0.31
32, Drop out = 0.5, epochs = 30
(IN) -> 102 (OUT)
25088 (IN) -> 408 (OUT) -> 408
Pretrained VGG19, batch size =
(IN) -> 408 (OUT) -> 408 (IN) -> 0.37

32, Drop out = 0.5, epochs = 30

102 (OUT)

34

Table 8 Assessing model performance with respect to the drop out parameter

Description Drop Out Minimum Validation Loss
Pretrained VGG19, batch size =
0.1 0.27
32, epochs =30
Pretrained VGG19, batch size =
0.2 0.30
32, epochs =30
Pretrained VGG19, batch size =
0.3 0.29
32, epochs =30
Pretrained VGG19, batch size =
0.4 0.28
32, epochs =30
Pretrained VGG19, batch size =
0.5 0.28
32, epochs =30
Table 9

Training hyperparameter

Value used in this study

after Fine Tuning

Number of layers in the model

Fully Connected Feed Forward

Network: 3 layers

Batch size

321

Number of inputs per layer

25088 (IN) -> 4096 (OUT) ->
4096 (IN) -> 4096 (OUT) -> 4096
(IN) -> 102 (OUT)

And

! Maximum number due to limitation to VGA available memory

35

25088 (IN) -> 12544 (OUT) ->
12544 (IN) -> 6272 (OUT) ->
6272 (IN) -> 102 (OUT)

Dropout rate

Learning Rate

0.001 and 0.01

3.5 Build, Train and Validate the Model

A series of model simulations with various combinations of optimal hyperparameters as they were

determined in the previous chapter, is illustrated in Table 10, providing the insight of the optimal

hyperparameter configuration that will result in the model’s best performance. From the same table, the

optimal hyperparameters configuration achieved a 0.26 model validation loss and 94% model validation

accuracy and the implementation code for this is illustrated in Figure 24 while in Figure 26 the

implementation code for the calculation of the validation accuracy.

Table 10

Description

Minimum Validation Loss

Maximum Validation Accuracy

Pretrained VGG19, batch size =

32, Drop out = 0.1, epochs =

32, Drop out = 0.1, epochs = 30, 0.27 0.93
FFC (12544->6272), Ir =0.01

Pretrained VGG19, batch size =

32, Drop out = 0.1, epochs = 30, 0.3 0.88
FFC (1632 ->408), Ir =0.01

Pretrained VGG19, batch size = 0.26 0.94

36

160, FFC (12544->6272), Ir =
0.001

Pretrained VGG19, batch size =
32, Drop out = 0.1, epochs =
160, FFC (1632 ->408), Ir =
0.001

0.29

0.89

37

In [11]: | # number of epochs to troin the model
n_epochs = 168

valid loss_min = np.Inf # trock change in wolidotion loss
for epoch in range{l, n_epochss1):

keep track of training and velidation Loss
train_loss = 8.8
valid loss = 8.8
train the model
myModel. cuda(}. traind)
for data, target in train_loader:
move tensors to GPU if D4 1s awgilable
if train_cn_gpu:
data, target = data.cuda(), target.cuda()
clear the gradients of all optimized varicbles
optimizer.zero_grad{)
forward pass: compute predicted outputs by passing inputs to the model
ocutput = myModel (data)
calculate the batch Loss
loss = criterion(output, target)
baockward pass: compute gradient of the Loss with respect to model parameters
loss.backward()
perform a single optimization step (porameter update)
optimizer.step()
update troining Loss
train_loss += loss.item()*data.size(@)

validate the model
myModel . eval()
for data, target in valid_leader:
move tensors to GPU if CUDA is avgilable
if train_cn_gpu:
data, target = data.cuda(), target.cuda()
forward poss: compute predicted outputs by passing inputs to the model
output = myModel (data)
colculate the batch Loss
loss = criterion(output, target)
update average validation loss
valid loss += loss.item{)*data.size(e)

colculote overoge losses
train_loss = train_loss/len{train_lecader.dataset)
valid_loss = valid_loss/len{valid_lcader.dataset)

print training/validation statistics
primt('Epoch: {} \tTraining Loss: {:.6f} ‘tvalidation Loss: {:.&6f}".format(
epoch, train_loss, wvalid loss))

sove model if validotion Loss has decreased
if valid loss <= valid_loss_min:
print("validation loss decreased ({:.&6f} --» {:.6f}). Saving model ...".format(
valid_loss_min,
valid loss))
torch.save{myModel.state_dict(), 'checkpeint vggls @esilr_3eep_32ba_oldrout 25888 12544 £272.pt')
valid_loss_min = valid_loss

EPOCITT IS TTEININE TOSS: LOSST U ZETIZE
Epoch: 145 Training Loss: 8.412829 Validation Loss: 8.276643 -
validation loss decreased (8.27753% --» 2.276643). Saving model ...

Epoch: 147 Training Loss: 2.4@3134 wvalidation Loss: @.284684

Epoch: 148 Training Loss: 8.4@81859 wvalidation Loss: @.271%88

validation loss decreased (8.278643 --» @.371885). Saving model ...

Epoch: 142 Training Loss: 2.41784% wvalidation Loss: @.272237

Epoch: 158 Training Loss: 8.4238587 wvalidation Loss: @.282181

Epoch: 151 Training Loss: 8.4@458% wvalidation Loss: @.283478

Epoch: 152 Training Loss: ©.393536 validation Loss: 8.28359@

Epoch: 153 Training Loss: @.393251 wvalidation Loss: 8.272153

Epoch: 154 Training Loss: 8.41%675 wvalidation Loss: @.283599

Epoch: 155 Training Loss: 8.396282 wvalidation Loss: @.285783

validation loss decreased (8.271886 --» @.265783). Saving model ...

Epoch: 156 Training Loss: ©.486657 wvalidation Loss: @.275358

Epoch: 157 Training Loss: @.395286 wvalidation Loss: @.259822

Epoch: 158 Training Loss: 8.41121@ walidation Loss: @.253258

validation loss decreased (@8.2657@3 --» @.253258). Saving model ...

Epoch: 159 Training Loss: 8.274218 wvalidation Loss: @.265355

Epoch: 1e2 Training Loss: @.393551 wvalidation Loss: @.268827 =

Figure 24 Implementation code for training and validating the model and determine the optimal
hyperparameters configuration

38

In [*]: | #8#Tragin and Validate the Model
n_epochs = 28
steps = @

running loss = @
ACCUracy = @

cuda = torch.cuda.is_available()}
if cuda:
myModel . cuda()

else:
myModel.cpu()

for e in range{n_epochs):

e
1

train_mode =
valid_mode =
for mode in [train_mode, valid_mode]:
if mode == train_mede:
mytodel.train}
else;
myModel.eval()

pass_count = @

for data in lecaders[mode]:
pass_count += 1
inputs, labels = data
if cuda == True:
inputs, labels = variable{inputs.cuda{)), Variable(labels.cuda(})
else:
inputs, labels = variable{inputs}, variable(labels)

optimizer.zero grad()

Forward

output = myModel. forward{inputs)

less = critericn{output, labels)

Backward

if mode == traln_mode:
loss.backward()
optimizer.step()

running_less += loss.item{)
ps = torch.exp(output).data
equality = (labels.data == ps.max{1}[1]}
accuracy = equality.type_as(torch.cuda.FloatTensor()).mean{}
if mode == train_mode:

print("\nEpoch: {}/{} “.format(e+1, n_epochs},

"\nTraining Loss: {:.4f} ".format{running loss/pass_count))

else;

print("validation Loss: {:.4f} ".format(running_less/pass_count),

"Accuracy: {:.4f}".format(accuracy))

running_less = @

Epoch: 5/2e
Training Loss: @.2878
validation Loss: 8.2513 Accuracy: @.3434

Epoch: &/2e
Training Loss: @.2832
validation Loss: ©.28681 Accuracy: @.3434

Epoch: 7/2e
Training Loss: @.2823
validation Loss: ©.285% Accuracy: @.3434

Epoch: 8/2e
Training Loss: @.2834
validation Loss: ©.2636 Accuracy: 2.3434

Epoch: 9/2e
Training Loss: @.3927
validation Loss: @.2751 Accuracy: @.9444

Epoch: 18/28
Training Loss: @.371%
validation Loss: @.2628 Accuracy: 8.9444

Epoch: 11/28
Training Loss: @.38567
validation Loss: @.265% Accuracy: 8.3444

Epoch: 12/28

Training Loss: @.3685

validation Loss: @.2578 Accuracy: 8.3444
Epoch: 13/28

Training Loss: @.3534
validation Loss: 8.2633 Accuracy: 8.9444

Figure 25 Implementation code for determining validation loss and validation accuracy

39

3.6 Saving and Loading the Model

Now that the neural network has been trained, the model should be saved so as it could be loaded
in future for making predictions. In order to completely rebuild the model later on and use it for inference
and be able to keep training it, there are other things that eventually have to be saved such as the mapping
of classes to indices, the number of epochs, the optimizer state etc. The code for saving and loading the

trained models is presented in Figure 26 and Figure 27, respectively.

In [15]: | # change the model name, for saving multiple files
model_name = "checkpoint_vggls Mormed_leeep_28bz 25888 4895 48%6.pt"

myModel.class to idx = train_data.class_to_idx

checkpoint = {'classifi : classifier,
"epoch: pochs,
‘batch_size': batch_size,

‘opt_state': optimizer.state dict(),
‘class_te idx": myModel.class_to idx,
"state dict': myModel.state_dict()}

with cpen{model_name, ‘wb'} as f:
torch.save{checkpoint, f)

Figure 26 Code for saving trained model for inference

In [18]: | def load_checkpoint{filename):
checkpoint = torch.load{filename)
model = models.vggle(pretrained=True)
model.classifier = checkpoint[®classifier']
model.epochs = checkpoint['epochs']
model.batch_size = checkpoint['batch_size']
model.load_state_dict({checkpoint|'state_dict'])
model.class_to idx = checkpoint['class_te idx"]
optimizer.load_state_dict{checkpoint['opt_state'])

return model, optimizer

Figure 27 Code for loading saved model for inference

3.7 Inference for Classification and Input Image Preprocessing

Now that the model can be saved and loaded, a function that would use the trained network for
inference and pass an image into the network so as to predict the class of the flower in the image, should

be developed. Before doing so, the input image should be preprocessed such that it can be used by the

40

network. As presented in Figure 28, library PIL is initially employed within process_image function to load
and convert to ‘RGB’ the image and so as to subsequently preprocess the image in the same manner used

for training so it can be used as input for the model.

Firstly, the image is resized (using resize method) making the shortest side 255 pixels and keeping
the aspect ratio and then is cropped out the center 224x224 portion of the image. Like before training
process, the network expects the images to be normalized in a specific way ([0.485, 0.456, 0.406] and for
the standard deviations [0.229, 0.224, 0.225]) which, in other words, is subtraction of the means from
each color channel, and division by the standard deviation. Due to the fact that the color channels of
images are typically encoded as integers 0-255, these values are converted to floats from 0-1 like the way
the model expects as input, which is done by utilizing Numpy Array. The code and the results of the image
processing are illustrated in Figure 29. The resulted image is surpassed into another function (developed
in the coming subchapter), called predict, that would take as input parameters an image and a trained

model, and would returns the top K most likely classes along with the probabilities.

In [11]: def process_image{img_path):

image = Image.open(img_path).convert('RGE")

in_transferm = transforms.Clompose{[transforms.Resize(255),
transforms.CenterCrop(224),
transforms.ToTensor(},
transforms.MWormalize([8.485, @.456, @.4856],
[@.229, @.224, 8.225])1)

discard the transparent, alpho channel (that's the :3) and add th

image = np.array(in_transform{image}}

e batch dimension

return image#.tronspose(2,8,1)
In [12]: im_dir = “C:/Users/user/Documents/GitHub/flower_data/valid/1/image_86739.jpg"
image = Image.ocpen{im_dir}.convert{'RGE")

fig, ax = plt.subplots()
ax.imshow(image)

out[12]: <matplotlib.image.sxesImage at 8x23al12f271d8»

Eili]
400

500

€00
00 200 300 400 500

Figure 28 Image processing for input to the prediction function

41

In [188]: tensor_image = process_image(im dir)

In [159]: | def imshow{image, ax=Mone, title=None):
""" Imshow for Tensor."™"
if ax is None:
fig, ax = plt.subplots()
PyTorch t he color channel is th

t first dimension

but mat] is the third dimension

umes
image = image.transpose((1l, 2, @))

Undo preprocessing

mean = np.array([8.485, 8.455, 8.488])
std = np.array([e.229, 8.224, 8.225])
image = std * image + mean

Image nee Lipped between & ond 1 or it Llooks Like noise when displayed

ds to be cl
image = np.clip{image, @, 1)}

ax. imshow(image)

return ax

In [17a@]: | imshow(tensor_image)

out[178]: <matpletlib.axes._subplots.axesSubplet st ex2b3zesibzos:

125
150
s
200

o 50 100 150 00

Figure 29 Resulted image for input in the prediction function, after processing

3.8 Flower Class Prediction

Now that the images have been converted to the correct format, it's time to write a function for
making predictions with the model. A common practice is to predict the top 7 or so (usually called top-
K) most probable classes. To get the top K largest values in a tensor the method x.topk(k) is used which
returns both the highest k probabilities and the indices of those probabilities corresponding to the classes.
Then those indices are converted to the actual class labels using class_to_idx assuring the dictionary
inversion so as to get a mapping from index to class as well. The implementation code of the prediction

function and the results is presented in Figure 30 and Figure 31, respectively.

42

In [22]: | def predict{image_path, model, topk=7):
'"" predict the class (or classes) of an image using a trained deep learning model.

Predict the class from an imoge fFile
move the model to cuda
cuda = terch.cuda.is_available()
if cuda:
Move model parameters to the GPU
model.cudaf}
print(“Number of GPUs:", torch.cuda.device_count()})
print("Device name:", torch.cuda.get_device name{torch.cuda.device_count{)-1})
else:
model.cpu()
print("We go for CPU")

turn off dropout
model.eval()

The image
image = process_image({image_path)

tranfer to tensor
image = torch.from_numpy(np.array{[image]}}.float()

The image becomes the imput
image = Variable(image}
if cuda:

image = image.cuda()

output = model.forward(image}
probabilities = torch.exp{output).data

getting the topk (=7) probagbilites and indexes

8 -> probabilities

1 -» index

prob = torch.topk{probabilities, topk)[e].tolist()[8] # probabilifies
index = torch.topk(probabilities, topk)[1].tolist()[@] # index

ind = []
for i in range{len(model.class_to_idx.items({))):
ind.append{list{model.class_to idx.items())[i][a]}
tronsfer index to Label
label = []
for 1 in range{7}:
label.append(ind[index[1]])

return prob, label

Figure 30 Implementation code of the prediction function

43

In [21]: | img = random.choice(es.listdir({data_dir + '/valid/3/'})
img_path = data_dir + '/valid/3/" + img

with Image.open{img_path) as image:
plt.imshow(image)

prob, classes = predict{img_path, myModel)
print{prob)

print{classes)

print{[cat_to_name[x] for x in classes]}

Humber of GPUs: 1

Device name: GeForce GTX 1878 Ti

[8.537497341632543, 0,1812994172096222, @.0739579634976387, 0.94332452345453935, ©.04283355176448822, 0.023261073976755142, 2.9
18938287998871883]

['z*, "4", "84', "11', "36', "32', "437]

['canterbury bells', 'sweet pea®, 'foxglove®', 'snapdragen®, 'ruby-lipped cattleya', 'garden phlox', 'sword 1ily']

Figure 31 Prediction results

In order to check whether the predictions of the trained model make sense, despite the fact that
the validation loss and accuracy is respectively low and high, it's always good to check that there are not
any rational mistakes. To do so, the probabilities for the top 7 classes are plotted, with the use of
matplotlib library, as a bar graph along with the input image, as presented in Figure 32. The conversion
from the class integer encoding to the actual flower names took place with the cat_to_name.json file

while the imshow function defined before is utilized to illustrate a PyTorch tensor as an image.

44

In [22]: | # Display an image along with the top 7 closses
prob, classes = predict({img_path, myModel)
max_index = np.argmax{prob}
max_probability = preb[max_index]
label = classes[max_index]

fig = plt.figure(figsize={(6,6))
axl = plt.subplot2grid((15,%), (8,2), cclspan=9, rowspan=3}
ax2 = plt.subplot2grid{(1s,2), (2,2), cclspan=5, rowspan=5}

image = Image.cpen{img_path)
axl.axis('off")
axl.set_title(cat_tc_name[label]}
axl.imshow(image)

labels = []
for cl in classes:
labels.append{cat_to_name[cl])

y_pos = np.arange(7)}

ax2.set_yticks(y_pos)

ax2.set_yticklabels{labels)

ax2.set_xlabel('Probability')

ax2.invert_yaxis()

ax2.barh(y_pos, preb, xerr-=a, align='center", color="blue'}

plt.show()

Number of GPUs: 1
Device name: GeForce GTX 187@ Ti

canterbury bells
]

canterbury bells
sneet pea
Tosg love
apdragon
ruby-lipped cattleya
garden phlox
sword lily

o0 01 02 03 04 05

Probability

Figure 32 The probabilities for the top 7 classes and the corresponding image for prediction

45

46

4 Conclusions

The present study comprises an endeavor of how to process multidimensional data, in particular images,
and build an image classifier able to classify flowers and automatically determine the species they belong.
Within this framework, it is highlighted the importance of machine learning algorithms for processing
multidimensional data and provide a guide in order to decide which type of algorithm is optimum to use
for the data analysis. The employed techniques and the methodology followed in this study have led to
promising prediction results. In particular, there has been developed and trained an image classifier for
recognizing 102 distinct species of flowers utilizing a certain type of machine learning algorithm called
Convolutional Neural Networks, resulting in very good performance on a variety of experiments, achieving
up to 94% validation accuracy.

The overall methodology followed is summarized in choosing and loading a pretrained CNN model, train
and update by back propagation only the weights of the last part of the Neural Network (Fully Connected
Layer — Classifier) and validate the overall model. Then, the model fine tuning and feature extraction took
place in order to optimize model prediction performance. Based on that, despite the high validation
accuracy results there are potentials of improving prediction model performance. Limitations of GPU did
not allow to further evaluate certain model learning hyperparameters (batch size) while more learning
rate, drop out and layer inputs values could have been tested. Additionally, training the VGG19 model
from scratch could have led to better performance but it would need very long times of training and
probably broadening of the available dataset. Moreover, the modification of the model architecture itself
could have an impact on model’s performance. For instance, modify the number of the fully connected
layers within classifier or add/remove convolutional layers. Last but not least, fine tuning the
hyperparameters of the VGG19 (number of feature filters, kernel size, stride, padding, max pooling etc.)
would have a positive impact on model performance.

47

48

References

[1]

[2]

3]

[4]

5]

[6]

[7]

(8]

[9]

[10]

C. D. Ruberto and L. Putzu, "A Fast Leaf Recognition Algorithm based on SVM
Classifier and High Dimensional Feature Vector," in International Conference on Computer

Vision Theory and Applications (VISAPP), 2015.

J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J.
Caiand T. Chen,, "Recent advances in convolutional neural networks," Pattern Recognition,

pp. 354-377, 2018.

Clifton Christopher, Definition of Data Mining, 2010.

Hastie Trevor, Tibshirani Robert, Friedman Jerome, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, 2009.

Fayyad Usama, Piatetsky-Shapiro Gregory, Padhraic Smyth, From Data Mining to

Knowledge Discovery in Databases, American Association for Artificial Intelligence, 1996.

Hui Li, "The SAS Data Science Blog - Which machine learning algorithm should |
use?," SAS THE POWER TO KNOW , 12 April 2017. [Online]. Available:
https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-

algorithm-use/.

Shai Shalev-Shwartz, UNDERSTANDING MACHINE LEARNING - From Theory to

Algorithms, Cambridge University Press, 2014.

M. Hajek, NEURAL NETWORKS, 2005.

McCulloch Warren, Walter Pitts, "A Logical Calculus of Ideas Immanent in Nervous

Activity," Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115-133, 1943.

Hebb, Donald, The Organization of Behavior., New York: Wiley, 1949.

49

[11] Rosenblatt, F., "The Perceptron: A Probabilistic Model For Information Storage And

Organization In The Brain," Psychological Review, vol. 65, no. 6, p. 386—408, 1958.

[12] Minsky, Marvin; Papert, Seymour, Perceptrons: An Introduction to Computational

Geometry., MIT Press., 1969.

[13] Werbos, P.J., Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences., 1975.

[14] Aphex34, "Typical CNN architecture,” 16 12 2015. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Typical_cnn.png .

[15] K. Fukushima, Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position, Biological cybernetics,

1980.

[16] B. B. Le Cun, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,and L. D. Jackel,

Handwritten digit recognition with a backpropagation network, NIPS. Citeseer, 1990.

[17] A. Krizhevsky, |. Sutskever and G. E. Hinton, "ImageNet classification with deep
convolutional neural networks," NIPS, pp. 1106-1114, 2012.

[18] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville and Y. Bengio, "Maxout
Networks," JMLR WCP, vol. 28, no. 3, pp. 1319-1327, 2013.

[19] Nilsback, M-E. and Zisserman, A., "Automated flower classification over a large
number of classes," in Proceedings of the Indian Conference on Computer Vision, Graphics

and Image Processing (2008), 2018.

[20] University of Oxford - Department of Engineering Science, University of Oxford,

"102 Category Flower Dataset," Visual Geometry Group, 20 02 2009. [Online].

[21] ImageNet., "ImageNet," [Online]. Available: http://www.image-net.org.

50

[22] Russakovsky, O., Deng, J., Su, H., et al., "ImageNet Large Scale Visual Recognition
Challenge.," International Journal of Computer Vision (IJCV), vol. 115, no. 3, p. 211-252,
2015.

[23] Peterson Leif E., "Scholarpedia," Center for Biostatistics, The Methodist Hospital
Research Institute, 2009. [Online]. Available: http://www.scholarpedia.org/article/K-

nearest_neighbor.

[24] Thirumuruganathan Saravanan, "A Detailed Introduction to k-Nearest Neighbor
Algorithm," WordPress, 17 May 2010. [Online]. Available:
http://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-

to-k-nearest-neighbor-knn-algorithm/.

[25] Andrews W K Donald, Asymptotic Optimality of Generalized CL, Cross-validation,

and Generalized Cross-validation in Regression with Heteroskedastic Errors, vol. 47, 1991.

[26] Agrawal Rakesh, Ramakrishnan Srikant, Fast Algorithms for Mining Association

Rules, 650 Harry Road, San Jose, CA 95120: IBM Almaden Research Center, 1994.

[27] Belur V Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques., 1991.

[28] Li K C, Cheng Ching-Shui, Optimality criteria in survey sampling, vol. 74, 1987.

[29] P. T.(2009), Multidimensional Modeling. In: LIU L., OZSU M.T. (eds) Encyclopedia of

Database Systems., Boston, MA: Springer, 2009.

[30] P. Pai, "Data Augmentation Techniques in CNN using Tensorflow," 25 10 2017.
[Online]. Available: https://medium.com/ymedialabs-innovation/data-augmentation-

techniques-in-cnn-using-tensorflow-371ae43d5be9.

51

	Preface
	Πρόλογος
	Introduction
	1 From Data Science to Artificial Intelligence
	1.1 Knowledge Discovery in Data
	1.2 Machine Learning Algorithms
	1.2.1 Types of Machine Learning Algorithms
	1.2.2 Neural Networks and Deep Learning
	1.2.2.1 Historical Background
	1.2.2.2 Convolution Neural Network - State of the Art

	2 Data and Methodology
	2.1 Data Provenance and Description
	2.2 Define the Neural Network Architecture
	2.3 Methodological Approach and Tools

	3 Results and Discussion
	3.1 Loading and Preprocessing the image dataset
	3.2 Selection between Pretrained and Untrained Model
	3.3 Building the Image Classifier
	3.4 Model Fine Tuning and Feature Extraction
	3.5 Build, Train and Validate the Model
	3.6 Saving and Loading the Model
	3.7 Inference for Classification and Input Image Preprocessing
	3.8 Flower Class Prediction

	4 Conclusions
	References

