
 

  
 

UNIVERSITY OF PIRAEUS 

DEPARTMENT OF DIGITAL SYSTEMS 

POSTGRADUATE PROGRAMME 

“INFORMATION SYSTEMS & SERVICES” 

BIG DATA & ANALYTICS 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

PIRAEUS 2019 

Thesis Title: Data 
Analytics Algorithms 
for Multi-Dimensional 
Datasets  
AN IMAGE CLASSIFIER TO RECOGNIZE DIFFERENT 
SPECIES OF FLOWERS 
EMMANOUIL ALEXAKIS  
ΕΜΜΑΝΟΥΗΛ ΑΛΕΞΑΚΗΣ 
ME 1702 
ACADEMIC SUPERVISOR: ASSISTANT PROFESSOR DIMOSTHENIS 
KYRIAZIS 



i 
 

  



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 Ο επιβλέπων                             1ος συνεξεταστής                           2ος συνεξεταστής 

 
 

 
 
 
 
 
 
                 Δ. Κυριαζής                                    Μ. Φιλιππάκης             Δρ. Α. Μενύχτας 
               Επ. Καθηγητής                                 Αν. Καθηγητής                                  Διδάσκων       



iii 
 

  



iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Για την Γεωργία και τον Αχιλλέα…  

  



v 
 

  



vi 
 

Preface 

Hundreds of flowers exist on earth, consisting an integral part of all livings not only for the 

aesthetic aspect but also for human life in many areas such as medical science, industry and environment. 

It is necessary to set up a database for flower documentation by determining an effective mean to identify 

the species to which they belong even from a smartphone application. As Artificial Intelligence algorithms 

(Neural Networks) are more and more incorporated into everyday applications, developing such an image 

classifier by creating a deep learning model trained on hundreds of thousands of images would drive as 

part of the overall application architecture. In this work, there is developed and trained an image classifier 

for recognizing 102 distinct species of flowers utilizing a certain type of machine learning algorithm called 

Convolutional Neural Networks, resulting in very good performance on a variety of experiments, achieving 

up to 94% accuracy.  

Keywords: Algorithms, Artificial Intelligence, Machine Learning, Deep Learning  
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Πρόλογος 

Εκατοντάδες λουλούδια υπάρχουν στη γη, αποτελώντας αναπόσπαστο μέρος όλων των έμβιων 

όντων όχι μόνο από αισθητική άποψη αλλά και για την ανθρώπινη ζωή σε πολλούς τομείς όπως η ιατρική 

επιστήμη, η βιομηχανία και το περιβάλλον. Είναι απαραίτητο να δημιουργηθεί μια βάση δεδομένων για 

την τεκμηρίωση των λουλουδιών, προσδιορίζοντας έναν αποτελεσματικό τρόπο αναγνώρισης των ειδών 

στα οποία ανήκουν, ακόμη και από μια εφαρμογή έξυπνου τηλεφώνου. Επειδή οι αλγόριθμοι της 

Τεχνητής Νοημοσύνης (Νευρωνικά Δίκτυα) ενσωματώνονται ολοένα και περισσότερο στις καθημερινές 

εφαρμογές, η ανάπτυξη ενός τέτοιου ταξινομητή εικόνας δημιουργώντας ένα μοντέλο βαθιάς μάθησης 

εκπαιδευμένο σε εκατοντάδες χιλιάδες εικόνες θα οδηγούσε ως μέρος της συνολικής αρχιτεκτονικής 

εφαρμογών. Στη παρούσα εργασία, αναπτύχθηκε και εκπαιδεύτηκε ένας ταξινομητής εικόνας για την 

αναγνώριση 102 διακριτών ειδών λουλουδιών χρησιμοποιώντας μιας συγκεκριμένης κατηγορίας 

αλγορίθμων μηχανικής μάθησης που ονομάζονται Convolutional Neural Networks, με αποτέλεσμα πολύ 

καλές επιδόσεις σε μια ποικιλία πειραμάτων, επιτυγχάνοντας ακρίβεια έως και 94%. 

Λέξεις Κλειδιά: Αλγόριθμοι, Τεχνητή Νοημοσύνη, Μηχανική Μάθηση, Βαθιά Μάθηση 
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Introduction 

Hundreds of flowers exist on earth, consisting an integral part of all livings not only for the 

aesthetic aspect but also for human life in many areas such as medical science, industry and environment. 

It is necessary to set up a database for flower documentation by determining an effective mean to identify 

the species to which they belong. To do so, the morphologic features that make each flower distinct and 

differ from the others has to be determined. Generally, morphological feature analysis is not a simple task 

for non-expert users, as it needs accurate observations of the flower itself and comparisons with other 

samples of the same species [1]. For this reason, the need to develop an image classifier able to classify 

flowers and automatically determine the species they belong to, is arising. 

Machine Learning, Artificial Intelligence and Deep Learning could assist to the endeavor of 

developing such a classifier. Artificial Neural Networks (ANN), and more particular Convolution Neural 

Networks have led to superior performance on a variety of classification problems such as visual and 

speech recognition. Leveraging on the rapid growth in the amount of the annotated data and the great 

improvements in the performance of graphics processor units, the research on CNNs has achieved state-

of-the-art results on various classification tasks [2]. The purpose of this study is to highlight the importance 

of machine learning algorithms for processing multidimensional data and provide a guide in order to 

decide which type of algorithm is optimum to use within the analysis. In particular, in this study, there is 

developed and trained an image classifier for recognizing 102 distinct species of flowers utilizing a certain 

type of machine learning algorithm called Convolutional Neural Networks, resulting in very good 

performance on a variety of experiments, achieving up to 94% accuracy.  
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1 From Data Science to Artificial Intelligence  

 

On the one hand, Data Science uses computer disciplines such as mathematics and statistics and 

incorporates techniques such as data mining, cluster analysis, visualization and Machine learning, 

whereas, on the other hand Artificial Intelligence (AI) is simply a computer capable of imitating or 

simulating human thought or behavior. Inside that set, there is a subset called machine learning that is 

now the foundation of the most exciting part of AI. By enabling computers to learn themselves how to 

solve problems, machine learning has led to a series of breakthroughs that once seemed almost 

impossible. Machine learning is a branch of AI where a class of data-driven algorithms allows software 

applications to become very accurate in predicting results without the need for explicit programming. Its 

fundamental principle is based on the development of algorithms that receive input data and use 

statistical models to predict outputs while updating them when new data becomes available. The 

processes involved have a lot in common with predictive modeling and data mining. This is because both 

approaches require looking in the data to identify patterns and adjust the program accordingly. To this 

extend, machine learning is a subset of artificial intelligence and data science is an interdisciplinary field 

for extracting knowledge from data. 

 

 

Figure 1 VENN diagram of AI, Big Data and Data Science - Fraunhofer FOKUS 
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1.1 Knowledge Discovery in Data 

 

The purpose of this chapter is to introduce data mining and the particular data mining techniques to be 

able to extract the hidden information or relationships within the available datasets. The contents of this 

chapter will concern an introduction of what data mining is and what purpose generally and particularly 

in this study fulfills. Then, a thorough description of the calculation steps behind the specific data mining 

techniques utilized in this study will follow. Within this description the need of data preprocessing will 

arise making a connection to the coming chapter where the description and the preprocessing of the data 

takes place. Knowledge Discovery in Databases (KDD) is the computational process of discovering patterns 

in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics 

and database systems [3, 4]. The KDD process is commonly defined within the following stages: 

a. Data selection 

b. Data pre-processing and transformation  

c. Data Mining 

d. Validation 

a) Before implementing the data mining algorithms, a target dataset is selected. As data mining uncovers 

patterns present in the data, the target dataset is supposed to be large enough in order to contain these 

patterns. Additionally, the target dataset has to remain concise in order to be mined within an acceptable 

time limit. b) Pre-processing is essential to analyze the multivariate datasets before data mining while in 

case there is a large number of variants a certain transformation of the dataset can take place by 

classifying them. If necessary, the target dataset is then cleaned by removing the observations containing 

noise and those with missing data (NaN). The cleaning step should be done with care as even missing data 

might indicate hidden patterns. c) Data Mining is the advanced step of KDD with the goal to extract 

information from a data set and transform it into an understandable structure. Data mining involves six 

classes [5]: 

1) Anomaly detection: Identification of unusual data records or data errors  

2) Association rule learning: Investigate relationships among variables. 

3) Clustering: Discover new groups and structures in the data. 

4) Classification: Generalize known structure to apply to new data. 

5) Regression: Attempt to find a function which models the data with the least error. 

http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Database_system
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6) Summarization: Provide a more compact representation of the dataset, including  

  visualization and report generation. 

d) The final step of KDD process is to identify whether the patterns found by the data mining algorithms 

are valid or not. The evaluation takes place on a test subset that data mining algorithm was not trained. 

The learned patterns are applied on the test subset and the resulting output is compared to the desired 

output. A number of statistical methods may be used to evaluate the algorithm, such as Receiver 

Operating Characteristic (ROC) curves. In case the learned patterns do not meet the desired standards, 

re-evaluation and changing the pre-processing and data mining steps is necessary. On the other hand, if 

the learned patterns do meet the desired standards, the final step is to interpret the learned patterns. 

 

1.2 Machine Learning Algorithms 

 

To realize the aforementioned, Data Scientists and Analysts are concerned in locating and 

implementing machine learning algorithms in order to address the issues they are interested in, but they 

are early come up with a certain question of “which algorithm they must use?". The answer to the 

question depending on many factors, such as: a) The data nature (size, quality etc.) b) The available time 

and last but not least c) What do they want to do with the data. When it comes to choose an algorithm, 

parameters like accuracy, training time and ease of use have always to always to be taken into account. 

When a data set is available, the first thing to consider is how to get results, no matter what those 

results are. Once first results have delivered and user have to familiarize with the data by spending more 

time using more sophisticated algorithms to enhance their understanding of data so as to improve the 

results. Even an experienced data scientist cannot judge in advance which algorithm will have the 

optimum performance before they really test the different algorithms. The Machine Learning Algorithm 

Cheat Sheet presented in Figure 2 is working as a driver/guide in order to find which algorithm suits for 

specific problems. The propsed algorithms arise from the collection of feedbacks and advice from various 

data scientists and dedicated learning engineers and developers. Further explanation and how the cheat 

sheet is utilized is following. 
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Figure 2 A simplified guide to navigate through the process of choosing what is the best machine 
learning algorithm [6] 

 

If someone wants to reduce the dimensions of their data they should use Principal Component 

Analysis, if they need a numerical prediction, use decision trees or linear regression, If they need an 

hierarchical result, they should use hierarchical clustering, according to Figure 2. As the suggested cheat 

sheets routes are intended to be rule-by-thumb recommendations, many the times there will be more 

than one branch algorithm applied and other times none of them will be perfect match, thus, the only 

sure way to find the best algorithm is to test all of those algorithms. 

 

1.2.1 Types of Machine Learning Algorithms 

 

The most popular division of machine learning algorithms types is: Supervised, Semi-Supervised, 

Unsupervised and Reinforcement Learning algorithms [7]. Supervised learning algorithms make forecasts 

based on a set of known examples. For instance, meteorological data can be used to estimate tomorrow’s 

average temperature or wind speed. Within supervised learning, there is available an input variable 

consisting of labeled training data and the desirable output variable. Then an algorithm can utilize training 
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data in order to learn the function that maps the input variable to the output one. This function implies 

mapping of new, unknown examples, generalizing from the training data, to predict the results in unseen 

situations. When the data is used to predict a categorical variable (i.e. type of flower), supervised learning 

is called classification. This is the case when assigning a label, either rose or margarita to an image and 

when there are only two labels, the problem is called binary classification while when there are more than 

two categories, is called multi-class classification. When it comes to predict constant values, they become 

a regression problem and when it comes to predict the future based on the past and present data it is 

called forecasting. 

The difficulty regarding the supervised learning is that labeling data can be time-consuming and 

extremely expensive. In case that labels are limited, the use of non-labeled examples could enhance 

supervised learning. As the machine learning process is not fully monitored, this particular case of learning 

is called Semi-Supervised. In Unsupervised learning, the machine learning process is taking place with 

completely unlabeled data. Usually, the intrinsic patterns hidden within the data, such as a clustering 

structure, a low-dimensional etc., is expected to be discovered. Grouping a set of data examples so that 

the examples in a group are more similar (according to some criteria) than in other groups, is called 

clustering and is included in the Unsupervised machine learning process. This is often used to divide the 

complete dataset into diverse groups so as to perform analysis in each group to help users find inherent 

patterns. Diminishing the number of variables under consideration when primary data has very high 

dimensional characteristics and some features are unnecessary or unrelated to work. Dimensionality 

Reduction helps to discover the true, latent relationship and it is also included in the Unsupervised 

machine learning process.  

Finally, Reinforcement learning accounts the behavior of an agent based on environmental 

feedback. In particular, through the process of Trial and Error, rather than telling machines what action 

they need to take they instead try different scenarios to find out what the most rewarding actions are. 

The test-and-error and the reward approach distinguish the reinforcement learning from other 

techniques. 
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1.2.2 Neural Networks and Deep Learning 

 

1.2.2.1 Historical Background 

Neural network simulations appear to be a recent development. The field of Neural Network 

modeling has been established even before the advent of computers and has survived through several 

eras. The idea of neurons as structural components of the brain was firstly introduced in the work of 

Ramón y Cajál, back in 1911, who was struggling to understand how the brain incurs [8]. In fact, the first 

artificial neural network was developed in 1943, by Warren and Pitts, but the available means of that time 

were not enough to take any advantage of the them [9]. Despite the fact that their Neural Network had a 

a fixed set of weights, they suggested innovative ideas like that a neuron has a threshold level which is 

still remain within the fundamental core of how ANNs operate. In 1949, Hebb created the first learning 

rule; if two neurons are active at the same time then the strength of their bond should be increased [10]. 

In the decades to come many researchers (Rosenblatt, Minsky, Papert etc.) dealt with the concept of 

perceptron [11], [12]. They created the algorithm for pattern recognition [11] but they were also 

discovered that the basic perceptrons were incapable of processing the exclusive-or circuit meaning that  

perceptron could not learn those functions which are not linearly separable and the research in the field 

declined throughout the mid 70’s. It was then that Werbos introduced the backpropagation algorithm 

that made the training of multi-layer networks feasible and efficient by distributing the error term back 

up through the layers, modifying that way the weights at each node [13].  

 

1.2.2.2 Convolution Neural Network - State of the Art 

Convolution Neural Networks (CNN) is the state-of-the-art approach to object recognition and has 

shown greatly advance on the performance of many compute vision tasks like object recognition and 

tracking, text recognition or/and detection, pose estimation, action recognition etc. CNNs look like to 

normal neural networks to the level that both can be arranged as an acyclic graph and visualized as a 

collection of neurons. Their main difference is that in CNN a hidden layer neuron could be connected only 

to a subset of neurons of the previous layer thus, they are capable of learning features in an implicit 

manner. Their architecture can result in hierarchical feature extraction, for example in the 1st 

convolutional layer, the trained filters can be visualized as set of edges, in the second layer as some 
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shapes, in the coming layer filters might learn object parts whereas the filters of the final layers can 

identify the objects (Figure 3). 

 

 

Figure 3 A convolution neural network architecture [14] 

 

The predecessor of CNNs is the so called neocognitron developed in 1980 [15] but LeNet, 

developed by LeCun et al. in 1990, was in fact the innovate work [16] that highlighted the full potentials 

of these kind of algorithms as it successfully managed to recognize and classify handwritten digits directly 

from the input image without any preprocessing. Since then, a wide range of techniques have been 

developed to enhance the performance or ease the training of CNNs. Some of the most known techniques 

that have been implemented are published by Krizhevsky and Goodfellow [17], [18]. The network that 

Krizhevsky (Figure 4) [17] constructed, has eight learned layers – five of them convolutional and three 

fully-connected. The output of the last layer is a 1000-way softmax which produces a distribution over the 

1000 class labels (the ImageNet challenge is to create a classifier that can determine which object is in the 

image). Because the network is too large to fit in the memory of one GPU, training is split across two GPUs 

and the kernels of the 2nd, 4th, and 5th convolutional layers are connected only to those kernel maps in 

the previous layer which reside on the same GPU. 
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Figure 4 The architecture of CNN, describing the delineation of responsibilities between the two 
GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the 

bottom. The GPUs communicate only at certain layers. 

 

The authors single out four other aspects of the model architecture that they feel are particularly 

important: 

• The use of ReLU activation (instead of tanh). “Deep convolutional neural networks with 

ReLUs train several times faster than their equivalents with tanh units. Faster learning has 

a great influence on the performance of large models trained on large datasets “. 

• Using multiple GPUs (two) and splitting the kernels between them with cross-GPU 

communication only in certain layers. The scheme reduces the top-1 and top-5 error rates 

by 1.7% and 1.2% respectively compared to a net with half as many kernels in each layer 

and trained on just one GPU. 

• Using local response normalization, which “implements a form of lateral inhibition 

inspired by the type found in real neurons, creating competition for big activities amongst 

neuron outputs computed using different kernels”. 

• Using overlapping pooling. Let pooling layers be of size z x z, and spaced s pixels apart. 

Traditionally pooling was used with s = z, so that there was no overlap between pools. 

Krizhevsky et al. used s = 2 and z = 3 to give overlapping pooling. This reduced the top-1 

and top-5 error rates by 0.4% and 0.3% respectively. 

 

To reduce overfitting dropout and data augmentation (translations, reflections, and principal 

component manipulation) is used during training. 
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This convolutional neural network is capable of achieving record-breaking results on a highly 

challenging dataset using purely supervised learning. It is notable that network’s performance degrades 

if a single convolutional layer is removed. For example, removing any of the middle layers results in a loss 

of about 2% for the top-1 performance of the network.  

Another renowned CNNs are the Maxout Networks [18]. These are designed to work hand-in-

glove with dropout. Training with dropout is like training an exponential number of models all sharing the 

same parameters. In other words, Maxout Networks are standard multilayer perceptron or deep CNNs 

that use a special activation function called the maxout unit. The output of a maxout unit is simply the 

maximum of its inputs. Maxout units make a piecewise linear approximation to an arbitrary convex 

function, as illustrated in Figure 5. 

 

 
Figure 5 Graphical depiction of how the maxout activation function can implement the 

rectified linear, absolute value rectifier, and approximate the quadratic activation function. 

 

Under evaluation, the combination of maxout and dropout achieved state of the art classification 

performance on MNIST, CIFAR-10, CIFAR-100, and SVHN (Street View House Numbers). Dropout does 

exact model averaging in deeper architectures provided that they are locally linear among the space of 

inputs to each layer that are visited by applying different dropout masks. In addition, rectifier units that 

saturate at zero are much more common with dropout training. A zero value stops the gradient from 

flowing through the unit making it hard to change under training and become active again. 
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2 Data and Methodology  

 

2.1 Data Provenance and Description 

Maria-Elena Nilsback and Andrew Zisserman have created a 102-category dataset, consisting of 

102 distinct flower classes [19]. The flowers chosen to be flower commonly occurring in the United 

Kingdom and each class consists of between 40 and 258 images. The images have large scale, pose and 

light variations. In addition, there are categories that have large variations within the category and several 

very similar categories. The dataset is visualized using isomap with shape (Figure 6) and colour features 

(Figure 7). The images are randomly sampled from the category. The details of the categories and the 

exact number of images for each class can be found on this statistics page [20]. From the available data 

non site [19] “Dataset images” and “The image labels” were used to train the image classifier of the 

present work.  

 

 

Figure 6 The categories in the dataset using SIFT features as shape descriptors [19] 
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Figure 7 The categories in the dataset using HSV as color descriptors [19] 

 

2.2 Define the Neural Network Architecture 

 

The image classification problem dealt with in this study, is to determine in which of the 102 

classes a given image belongs. Now that the data is ready, it's time to build and train the classifier. The 

VGG19 pretrained Convolution Neural Network from torchvision models is utilized in order to get the 

image features and a new feed-forward classifier is built and trained using those features. Convolutional 

Neural Networks is special type of Neural Networks working in the same way as a common neural 

network, but it includes a convolution layer at its beginning. Thus, rather than feeding the model, as an 

array of numbers, the entire image, the image is segmented into several squared pieces (m x m pixels) 

and the model tries to predict what each of these pieces is. Eventually, the model predicts the content of 

the picture based upon the prediction of all the pieces. In this way, the operations are parallelized, and 

the detection of the object takes place regardless of its location in the image. The method followed to 

build the image classifier involves the following steps: 
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1. Load the VGG-19 pre-trained Neural Network 

2. Define a new, untrained feed-forward network as a classifier, using ReLU activations and 

dropout 

3. Train the classifier layers by backpropagation using the pre-trained network to get the 

features 

4. Track the loss and accuracy on the validation set to determine the best hyperparameters 

(learning rate, units in the classifier, epochs, etc.). 

5. Determine the best model and save it with those hyperparameters for inference if model 

is needed to be rebuilt. 

In this study, VGG-19 Convolution Neural Network will be utilized and as it will be presented in 

the results chapter, the accuracy regarding the image prediction is of the same magnitude whether the 

model is trained from the scratch or the pretrained one is used in advance. In order to build a single layer 

Convolutional Neural Network (CNN) there are 5 steps involved: a) Define the Convolution Layer (Initialize 

a single convolutional layer so that it contains all your created filters) b) Pass the result from an activation 

function c) Feed output from previous step in a Pooling Layer d) Flatten the vector and e) Feed it to a Fully 

Connected Linear Layer (Figure 8). Steps from a to c can be repeated as many times as needed in order to 

achieve the desire depth of the Neural Network.  

 

 

Figure 8 Schematic Representation of a Convolution Neural Network 
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Figure 9 Left: Input Image on which 4 convolutional kernels are applied, Middle: 4 Images one from each 
kernel Right: The convolution layer of depth 4. 

 

Regarding the activation function, the only requirement is that for a network to approximate a non-

linear function, the activation functions must be non-linear. In Figure 10, are illustrated some examples of 

common activation functions: Sigmoid, Tanh (hyperbolic tangent), and ReLU (rectified linear unit). 

 

 

Figure 10 Three common activation functions used applied in the output of the convolution layer 
transforming its input accordingly 

 

In Figure 11, an example of a 2x2 pooling kernel, with a stride of 2 , is applied to a small patch of 

grayscale pixel values; reducing the x-y size of the patch by a factor of 2. Only the maximum pixel values 

in 2x2 remain in the new, pooled output. 
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Figure 11 A maxpooling layer reduces the x-y size of an input (output of the activation function) and only 
keeps the most active pixel values. 

 

VGG-19 is a convolutional neural network that is trained on more than a million images from the 

ImageNet database [21]. The network is 19 layers deep and is able to classify images into 1000 object 

categories, such as keyboard, mouse, pencil, and many animals. As a result, the network has learned rich 

feature representations for a wide range of images. The network has an image input size of 224-by-224 

[22]. The neural network architecture is presented in Figure 12. 

 

 

Figure 12 VGG19 Architecture 
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2.3 Methodological Approach and Tools 

 

The main purpose within this work, is to build and train an image classifier so as to recognize 

different species of flowers that could be utilized through a phone app that would tell the name of the 

flower phone camera is looking at. The work done in this project is mainly split down into the following 

steps: 

1) Loading and Preprocessing the image dataset 

2) Building, Training and Evaluating the image classifier  

3) Use the trained classifier to predict image content 

Loading and Preprocessing the image dataset: Before feeding data into the model, they should be 

transformed into a format the model would “understand”. Firstly, as the gathered data samples might be 

in a specific order, any information associated with the ordering of samples would influence the 

relationship between images and labels. For instance, in this study data are sorted by class corresponding 

to a flower category, if this data will be split into training/validation sets, these sets will not be 

representative of the overall distribution of data per each category. Thus, a simple best practice to ensure 

the model will not be affected from data ordering is shuffling the data and then make the split into training 

and validation sets assuring that transforming both training and validation data in the same way. In this 

study, the data for each category were firstly shuffled and then split to use 80% of the samples for training 

and 20% for validation. 

Building, Training and Evaluating the image classifier: The composition and construction of the input 

layer and the intermediate layers of the model has been previously described. For a multi-class 

classification, like the one in the present stud, the model should output one probability score per class 

and the summation of these scores should aggregate to 1. For an example of four classes, outputting {0: 

0.4, 1: 0.3, 2: 0.2, 3: 0.1 } means “40% confidence that this sample is in class 0, 30% that it is in class 1, 

20% that it is in class 2 and 10% that is in class 3.” To output these scores, the activation function of the 

last layer should be softmax, and the loss function used to train the model should be categorical cross-

entropy as presented in Figure 13. This study elaborates the prediction of 102 distinct flower categories.  



19 
 

 

Figure 13 Multi Class Classification Output Layer 

 

Now that the model architecture has defined and all the model layers has constructed, the model 

training can start taking place. This process involves making a prediction based on the current (untrained) 

state of the model, calculating how “incorrect” the prediction is, and updating the weights or parameters 

of the neural network so as to minimize this error and eventually make the model to predict more 

efficiently. This process is repeated until the model has converged and can no longer learn. The key 

learning parameters taken into account within this self-assessment and optimization process are 

presented and shortly described in Table 1. 
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Table 1 

Learning Parameter Description 

Metric 

How to measure the 

performance of our model 

using a metric. 

Loss function - multi class 

classification 

A function that is used to 

calculate a loss value that the 

training process then attempts 

to minimize by tuning the 

network weights. 

Optimizer 

A function that decides how 

the network weights will be 

updated based on the output 

of the loss function. 

 

The actual training takes place using the fitting method which, depending on the dataset size, is 

where the most computing cycles will be spent. For each training iteration, a batch size number of images 

from the training data are used to compute the loss, whereas the weights are updated once, based on 

this value. The training process completes an epoch once the model has seen the entire training dataset. 

In the end of each epoch, the validation dataset is utilized in order to evaluate the model performance 

with regards learning process. The training process is repeated using the dataset for a predetermined 

number of epochs until the validation accuracy stabilizes between consecutive epochs, suggesting that 

the model is not training anymore. The hyperparameters involved within this process concern a) the ones 

of the CNN which will not be tuned in the present study as in the end the architecture of the pretrained 

VGG19 will be employed for the needs of the project (presented and described in Table 2) and b) the ones 

of the fully connected neural network which will be fine-tuned in the coming chapter, in order to increase 

the performance of the prediction model regarding the particular dataset of the study (presented and 

shortly described in Table 3) 
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Table 2 CNN Training Hyperparameters 

Training hyperparameter Used in present study Description 

Convolutional and MaxPool Layers CNN: VGG19 Architecture 

Configuration of the 

Convolutional and MaxPool 

Layers 

Number of units per layer 64 

Feature identifiers - The 

units in a layer must hold 

the information for the 

transformation that a layer 

performs 

Kernel size (3,3) or 2 (MaxPooling)  
The size of the convolution 

window. 

Stride (1,1) or 1 or 2 (MaxPooling) 

Controls how the filter 

convolves around the input 

volume 

Padding (1,1) or 0 (MaxPooling) 

Pads the input volume with 

zeros around the border so as 

the output volume to retain 

its input dimensions 

 

Table 3 Fully Connected Feed Forward Neural Network  Hyperparameters 

Training hyperparameter Description 

Number of layers in the model 

The number of layers in a neural 

network is an indicator of its 

complexity 

Batch size 
Number of images used for 

each training iteration 
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Number of units per layer 

Units in a layer hold the 

information for the 

transformation that a layer 

performs and they are the 

number of nodes (neurons) 

each layer is consisted of 

Dropout rate 
Dropout layers are used in the 

model for regularization. 

Learning Rate 

The rate at which the neural 

network weights change 

between iterations. 

 

For defining and training the model several hyperparameters must be chosen, initially based upon 

intuition, examples or/and best practice recommendations which, however, may not yield the best results 

but providing a starting point for training. As every problem is different, tuning those hyperparameters 

will help to refine the model in a manner that will represent better the particularities of the problem itself. 

Let’s take a look at some of the aforementioned hyperparameters and what it means tuning them: 

Number of layers in the model: The number of layers in a neural network is an indicator of its complexity. 

The more layers allow the model to learn more information about the training data, with the precaution 

of causing overfitting. Less layers could negatively affect the model’s learning ability leading to 

underfitting.  

Number of units per layer: The units in a layer hold the information for the transformation that a layer 

performs. For the first layer, this is driven by the number of features whereas in subsequent layers, the 

number of units depends on the choice of expanding or contracting the representation from the previous 

layer. The question here is to successfully manage to minimize the information loss between layers.  

Dropout and Learning rate: Dropout layers define the fraction of input to drop as a precaution for 

overfitting used this way in the model for regularization. The rate at which the neural network weights 

change between iterations is called learning rate. A large learning rate may cause large fluctuation in the 
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weights, resulting in difficulty to find their optimal values. A low learning rate would be nice, but the model 

will need more iterations in order to converge. 

Playing around with the values of those hyperparameters in the coming chapter will determine the 

configuration of which one results in better model performance. Once the best-performing 

hyperparameters are determined the model is ready to be deployed. 
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3 Results and Discussion 

 

3.1 Loading and Preprocessing the image dataset 

 

After the completion of the project, an application that can be trained on any set of labeled images 

will be delivered as the neural network will be learning about flowers and end up as a command line 

application. As explained in the previous chapter, the implementation is going to take place on the 

platform jupyter notebook and the respective code snapshots will be demonstrated in figures throughout 

the present chapter. 

In the beginning the needed pytorch libraries and packages are imported as presented in Figure 

14. Then the data is downloaded, loaded and the dataset is randomly split into two subsets: training and 

validation (Figure 15). The training and validation datasets are comprised 80% and 20% out of the initial 

dataset, respectively. In order to improve the neural network generalization ability that leads to higher 

performance, different transformations such as random scaling, cropping, and flipping are applied over 

the training dataset. Due to the fact that a pre-trained neural network is going to be used, the input data 

is resized to 256x256 and cropped to 224x224 pixels as it is pre-requisite for the particular utilized model, 

followed by data Normalization, as presented in Figure 16. As the validation set is used to measure the 

model's performance on data it hasn't seen yet, there should not applied any scaling or rotation 

transformations, despite resizing and then cropping the images to the appropriate size. The 

implementation code that explains the aforementioned, is presented in Figure 16.  

 

 

Figure 14 Importing the needed libraries 
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Figure 15 Splitting Training and Validation (labeled testing) datasets 

 

 
Figure 16 Define dataloader parameters and transformations for training and validation datasets 
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The available torchvision pre-trained neural networks trained on the ImageNet dataset, have each 

color channel normalized separately. This is the reason why both subsets have to have the means and 

standard deviations of the images normalized because this is what the trained neural network expects. 

For the means, it's [0.485, 0.456, 0.406] and for the standard deviations [0.229, 0.224, 0.225], calculated 

from the ImageNet images. These values will shift each color channel to be centered at 0 and range from 

-1 to 1. Another important step before proceeding to building and training the classifier is the data label 

mapping; load in a mapping from category label to category name. Accompanied with the data there is a 

file (JSON object that can be read in with the json module) named cat_to_name.json which in fact is a 

dictionary mapping the integer encoded categories to the actual names of the flowers (Figure 17). 

 

 

Figure 17 Mapping the integer encoded categories to the actual names of the flowers 

 

3.2 Selection between Pretrained and Untrained Model  

 

Now that the data is ready to be used, the decision whether to choose an untrained or pretrained 

model has to be taken. Figure 18 (lower) shows the pretrained VGG19 model to be employed while the 

training processes has been frozen within all the features layers of the neural network. For demonstration 

purposes, the same architecture (Figure 19) but untrained neural network model will be trained from 

scratch (Figure 18 upper) resulting in respective validation loss but after a longer period of training 
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(greater number of epochs), as it can be compared from Figure 20 and Figure 21. Thus, the pretrained 

VGG19 model has been chosen to proceed from now on.  

 

 

 

Figure 18 Upper: Loading the untrained model and allow training for all features layers, Lower: Loading the 
pretrained model and freeze training for all features layers 

 

 

Figure 19 Default Layers and Features of VGG19 - Model Architecture 
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Figure 20 Training and Validating the untrained VGG19 Pytorch Model with the flower dataset of 
the present study 
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Figure 21 Training and Validating the pretrained VGG19 Pytorch Model with the flower dataset of 
the present study 
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3.3 Building the Image Classifier 

 

Now that the data is ready and the pretrained convolutional neural network has been selected, 

it's time to build and train the classifier. The pretrained model from torchvision models will be utilized to 

get the image features and the new feed-forward classifier will be developed and trained using those 

features. As illustrated in the code of Figure 22, the untrained feed-forward network is defined as a 

classifier, using ReLU as the activation function for each layer and dropout (p=0.5) but the number of 

output features of the last layer is reduced from 1000 (classes that VGG19 has been pretrained) to 102 

(classes of flowers regarding the present study) and the activation function is the LogSoftmax due to the 

multi class classification. This time, the classifier is trained by backpropagation using the pre-trained 

network to get the features and track the loss and accuracy on the validation set, so as to ensure that only 

the weights of the feed-forward network are updated. The analytic results of the optimization process for 

the different hyperparameters (learning rate, batch size, loss function, epochs, etc.) in order to find the 

best model, are following in the coming subchapter. The optimized hyperparameters will be saved with 

the trained model and used as the default values in the coming part of the project. 

 

 

Figure 22 Definition of the untrained feed-forward network as the classifier 

 

3.4 Model Fine Tuning and Feature Extraction 

 

There are two types of transfer learning used to follow in the optimization process of a prediction 

model: a) finetuning and b) feature extraction. In finetuning, all of the pretrained model’s parameters are 

updated within the framework of the particular new task, which in other words means to retrain the 

whole model whereas, feature extraction only the model’s final layer weights, from which predictions is 
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derived, are updated. It is called feature extraction because the pretrained CNN is utilized as a fixed 

feature-extractor, and only the output layer is changed. Both transfer learning methods follow the same 

steps: 

• Initialize the pretrained model 

• Reshape the final layer(s) to have the same number of outputs as the number of classes in the 

new dataset 

• Define for the optimization algorithm which parameters we want to update during training 

• Run the training step 

Running some preliminary training steps for the learning parameters presented in Table 4, it was 

decided to assess the performance of the model accounting the metrics of validation loss and validation 

accuracy. Due to the fact that there is a multiclass classification problem, the combination of the loss 

function and optimizer that resulted in better model performance (according to the aforementioned 

metrics) was the Cross – Entropy Loss and the Stochastic Gradient Descent, respectively. The 

implementation code is presented in Figure 23. 

 

Table 4 Learning Parameters for Model  

Learning Parameters Used in this study 

Metric Validation Loss / Accuracy 

Loss function - multi class 

classification 
Cross-entropy loss 

Optimizer Stochastic Gradient Descent 

 

 

Figure 23 Defining the model hyperparameter (loss function, optimizer and learing rate) 
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The batch size was another parameter over which the model assessed by keeping the rest of the 

VGG19 default parameters stable, resulting in best model performance (minimum validation loss) when 

the batch size is of 32 images as presented in Table 5. A similar approach was followed for the learning 

rate (Table 6), the number of inputs per layer (Table 7) and the drop out (Table 8) with the difference that 

the determined optimum learning parameter from the iterative process was used as input, keeping the 

rest VGG19 default parameters stable. Eventually, all the determined optimal parameters are summarized 

in Table 9 which in the coming chapter will be combined in a series of model simulations in order to 

determine the parameters configuration resulting in the model’s best performance.  

 

Table 5 Assessing model performance with respect to the batch size parameter 

Description Batch Size Minimum Validation Loss 

Pretrained VGG19, Default 

Hyperparameters, epochs = 30 
8 0.76 

Pretrained VGG19, Default 

Hyperparameters, epochs = 30 
16 0.65 

Pretrained VGG19, Default 

Hyperparameters, epochs = 30 
32 0.28 

Pretrained VGG19, Default 

Hyperparameters, epochs = 30 
64 CUDA Out of Memory 

 

Table 6 Assessing model performance with respect to the learning rate parameter 

Description Learning Rate Minimum Validation Loss 

Pretrained VGG19, Default 

Hyperparameters, batch size = 

32, epochs = 160 

0.001 0.28 
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Pretrained VGG19, Default 

Hyperparameters, batch size = 

32, epochs = 30 

0.01 0.28 

Pretrained VGG19, Default 

Hyperparameters, batch size = 

32, epochs = 30 

0.1 1.17 

Pretrained VGG19, Default 

Hyperparameters, batch size = 

32, epochs = 30 

1 NaN 

 

Table 7 Assessing model performance with respect to the number of inputs per layer 

Description Number of inputs per layer Minimum Validation Loss 

Pretrained VGG19, batch size = 

32, Drop out = 0.5, epochs = 30 

25088 (IN) -> 12544 (OUT) -> 

12544 (IN) -> 6272 (OUT) -> 

6272 (IN) -> 102 (OUT) 

0.28 

Pretrained VGG19, batch size = 

32, Drop out = 0.5, epochs = 30 

25088 (IN) -> 4096 (OUT) -> 

4096 (IN) -> 4096 (OUT) -> 4096 

(IN) -> 102 (OUT) 

0.28 

Pretrained VGG19, batch size = 

32, Drop out = 0.5, epochs = 30 

25088 (IN) -> 1632 (OUT) -> 

1632 (IN) -> 408 (OUT) -> 408 

(IN) -> 102 (OUT) 

0.31 

Pretrained VGG19, batch size = 

32, Drop out = 0.5, epochs = 30 

25088 (IN) -> 408 (OUT) -> 408 

(IN) -> 408 (OUT) -> 408 (IN) -> 

102 (OUT) 

0.37 
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Table 8 Assessing model performance with respect to the drop out parameter 

Description Drop Out Minimum Validation Loss 

Pretrained VGG19, batch size = 

32, epochs = 30 
0.1 0.27 

Pretrained VGG19, batch size = 

32, epochs = 30 
0.2 0.30 

Pretrained VGG19, batch size = 

32, epochs = 30 
0.3 0.29 

Pretrained VGG19, batch size = 

32, epochs = 30 
0.4 0.28 

Pretrained VGG19, batch size = 

32, epochs = 30 
0.5 0.28 

 

Table 9 

Training hyperparameter 
Value used in this study 

after Fine Tuning 

Number of layers in the model 
Fully Connected Feed Forward 

Network: 3 layers 

Batch size 321 

Number of inputs per layer 

25088 (IN) -> 4096 (OUT) -> 

4096 (IN) -> 4096 (OUT) -> 4096 

(IN) -> 102 (OUT) 

And  

                                                           
1 Maximum number due to limitation to VGA available memory 
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25088 (IN) -> 12544 (OUT) -> 

12544 (IN) -> 6272 (OUT) -> 

6272 (IN) -> 102 (OUT) 

Dropout rate 0.1 

Learning Rate 0.001 and 0.01 

 

3.5 Build, Train and Validate the Model 

 

A series of model simulations with various combinations of optimal hyperparameters as they were 

determined in the previous chapter, is illustrated in Table 10, providing the insight of the optimal 

hyperparameter configuration that will result in the model’s best performance. From the same table, the 

optimal hyperparameters configuration achieved a 0.26 model validation loss and 94% model validation 

accuracy and the implementation code for this is illustrated in Figure 24 while in Figure 26 the 

implementation code for the calculation of the validation accuracy. 

 

Table 10 

Description Minimum Validation Loss Maximum Validation Accuracy 

Pretrained VGG19, batch size = 

32, Drop out = 0.1, epochs = 30, 

FFC (12544->6272), lr = 0.01 

0.27 0.93 

Pretrained VGG19, batch size = 

32, Drop out = 0.1, epochs = 30, 

FFC (1632 -> 408), lr = 0.01 

0.3 0.88 

Pretrained VGG19, batch size = 

32, Drop out = 0.1, epochs = 
0.26 0.94 
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160, FFC (12544->6272), lr = 

0.001 

Pretrained VGG19, batch size = 

32, Drop out = 0.1, epochs = 

160, FFC (1632 -> 408), lr = 

0.001 

0.29 0.89 
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Figure 24 Implementation code for training and validating the model and determine the optimal 
hyperparameters configuration 
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Figure 25 Implementation code for determining validation loss and validation accuracy 
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3.6 Saving and Loading the Model  

 

Now that the neural network has been trained, the model should be saved so as it could be loaded 

in future for making predictions. In order to completely rebuild the model later on and use it for inference 

and be able to keep training it, there are other things that eventually have to be saved such as the mapping 

of classes to indices, the number of epochs, the optimizer state etc. The code for saving and loading the 

trained models is presented in Figure 26 and Figure 27, respectively.  

 

 

Figure 26 Code for saving trained model for inference 

 

 

Figure 27 Code for loading saved model for inference 

 

3.7 Inference for Classification and Input Image Preprocessing 

 

Now that the model can be saved and loaded, a function that would use the trained network for 

inference and pass an image into the network so as to predict the class of the flower in the image, should 

be developed. Before doing so, the input image should be preprocessed such that it can be used by the 
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network. As presented in Figure 28, library PIL is initially employed within process_image function to load 

and convert to ‘RGB’ the image and so as to subsequently preprocess the image in the same manner used 

for training so it can be used as input for the model. 

Firstly, the image is resized (using resize method) making the shortest side 255 pixels and keeping 

the aspect ratio and then is cropped out the center 224x224 portion of the image. Like before training 

process, the network expects the images to be normalized in a specific way ([0.485, 0.456, 0.406] and for 

the standard deviations [0.229, 0.224, 0.225]) which, in other words, is subtraction of the means from 

each color channel, and division by the standard deviation. Due to the fact that the color channels of 

images are typically encoded as integers 0-255, these values are converted to floats from 0-1 like the way 

the model expects as input, which is done by utilizing Numpy Array. The code and the results of the image 

processing are illustrated in Figure 29. The resulted image is surpassed into another function (developed 

in the coming subchapter), called predict, that would take as input parameters an image and a trained 

model, and would returns the top K most likely classes along with the probabilities. 

 

 

Figure 28 Image processing for input to the prediction function 
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Figure 29 Resulted image for input in the prediction function, after processing  

 

3.8 Flower Class Prediction 

 

Now that the images have been converted to the correct format, it's time to write a function for 

making predictions with the model. A common practice is to predict the top 7 or so (usually called top- 

𝐾𝐾 ) most probable classes. To get the top  𝐾𝐾  largest values in a tensor the method x.topk(k) is used which 

returns both the highest k probabilities and the indices of those probabilities corresponding to the classes. 

Then those indices are converted to the actual class labels using class_to_idx assuring the dictionary 

inversion so as to get a mapping from index to class as well. The implementation code of the prediction 

function and the results is presented in Figure 30 and Figure 31, respectively. 
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Figure 30 Implementation code of the prediction function 
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Figure 31 Prediction results 

 

In order to check whether the predictions of the trained model make sense, despite the fact that 

the validation loss and accuracy is respectively low and high, it's always good to check that there are not 

any rational mistakes. To do so, the probabilities for the top 7 classes are plotted, with the use of 

matplotlib library, as a bar graph along with the input image, as presented in Figure 32. The conversion 

from the class integer encoding to the actual flower names took place with the cat_to_name.json file 

while the imshow function defined before is utilized to illustrate a PyTorch tensor as an image. 
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Figure 32 The probabilities for the top 7 classes and the corresponding image for prediction 
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4 Conclusions 

 

The present study comprises an endeavor of how to process multidimensional data, in particular images, 
and build an image classifier able to classify flowers and automatically determine the species they belong. 
Within this framework, it is highlighted the importance of machine learning algorithms for processing 
multidimensional data and provide a guide in order to decide which type of algorithm is optimum to use 
for the data analysis. The employed techniques and the methodology followed in this study have led to 
promising prediction results. In particular, there has been developed and trained an image classifier for 
recognizing 102 distinct species of flowers utilizing a certain type of machine learning algorithm called 
Convolutional Neural Networks, resulting in very good performance on a variety of experiments, achieving 
up to 94% validation accuracy.  

The overall methodology followed is summarized in choosing and loading a pretrained CNN model, train 
and update by back propagation only the weights of the last part of the Neural Network (Fully Connected 
Layer – Classifier) and validate the overall model. Then, the model fine tuning and feature extraction took 
place in order to optimize model prediction performance. Based on that, despite the high validation 
accuracy results there are potentials of improving prediction model performance. Limitations of GPU did 
not allow to further evaluate certain model learning hyperparameters (batch size) while more learning 
rate, drop out and layer inputs values could have been tested. Additionally, training the VGG19 model 
from scratch could have led to better performance but it would need very long times of training and 
probably broadening of the available dataset. Moreover, the modification of the model architecture itself 
could have an impact on model’s performance. For instance, modify the number of the fully connected 
layers within classifier or add/remove convolutional layers. Last but not least, fine tuning the 
hyperparameters of the VGG19 (number of feature filters, kernel size, stride, padding, max pooling etc.) 
would have a positive impact on model performance. 
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