Mavertotiuio Mepaiwg — Turua NANPOEOoPIKAC

Mpoypoappa METOTITUXIOKWY ZTTOLOWVY

«Mponypéva Zuotruata MANPOPOPIKAC»

MetarttuXiokny Atotpifn

Tithog AlatpInig

(EAANVLIKA)

Anuovpyla kat Aoy prefetch apxeiwv yio Windows 10
(AyyAlkd)

Manipulating and generating Windows 10 Prefetch files

Ovopatemnwvupo dortntn

Baaoi{Ang BouBoltong

MaTPWVLHO XprioTtog
Ap1Bu6¢ MnTpwou MMMxT1/17009
ETBAETTIWV Natodkng Kwvotavtivog

Huepounvia Mapadoong 06/2019

TplueAig EEeTaoTikr Emttponn

(uTtoypagn) (uTtoypagn) (uTtoypagn)
Matodkng Kwvatavtivog ANETING EVBLIOG Toxpvtdng MFewpylog
Emikoupog Kabnyntig Emikoupog Kabnyntrig Kabnyntng

Prefetch File Manipulation

Metarmtuxiokr Alotpin Boupoutong Baaiing

Table of Contents

1 ADSTEACL..cccccreeeercneienrcntierssnnecscnssesssnsacssnsesssassesssnssssssnsesssassssssnssssssnssssssssssssassssssnsassssnssssssssssssnne 4
I 0 17 1]) N 4
1.2 GEEEK...ceeeeeerrrrreneeeeereeccssssnnnneeeesccsssssssssnssssesccssssssssasasssssssssssssasssssesssssssssssasassanansnnnee 4

2 Introduction. tessseseteeessssneteeesssnnnneeeesssnnnnanans tesssseteeeesssssneteeeessssnnteeeessssnnnnnnnnnnnnnnnnsnnne 5
2.1 FOrensiCs VAUE........eceeeeerrceeeeerrsneeecrssneecccsssneeccssssseessssssseessssassssssssssssssssssssssssssssens 5
2.2 PaY@INIOLET S...cceeeeeeerceceereesnnnssssscccesssssssssssscssscssnssssssnssse 6
2.3 PrefetCh files.......uuoceeeeeeeireeeeccrreeeeecnssnneeecssssneeccsssseeecsssnseecssssssssssssssssssssssssssssssens 7
2.4 Windows 10 prefetch files.........ccceeieeererensnnsnnssensncsnissensnssansssnsssesssssssssassssassssases 7

2.4.1 MAM file fOIMIAL.......viiiiiiieeeiie ettt ee e e erre e e e tree e raeeeeabae e e areeeeeeennnnnns 7
2.4.2 FAle HEAAET........uveeeiieeeiee ettt ettt etee et e e e ttee e e tae e e saeessaeeesnssaeeenraaaeaaaesennnns 7
2.5 Compression ENGINEeS.........cuiiuiiieiniinnseiniicssnisssicnssisssisssssssiesssssssssssssssssesssssssses 8
2.5.1 LZXPRESS HUFFMAN.......ciiiiiiiiiiiieieiiiiie ettt eeearree e e eeeeeeeeeeeeee s 8
2.5.2 Compression APL.....cooouiiiiiiiiiieeeeeeete ettt e e e e e e e e e eaas 8
RS T B -)01 811) SO TP 9

3 Standby Memory.........cceeeverveeseecsencnesnnnens teeeessatessstessatessteestesatsssstessatessttesssrtatessrsraraaees 9

4 Compress Procedure................. tereesssssesssnnnnnstttattttteteeeessssssssssssssrnsnnasasasannsesssssesannnnssnnnns 10
4.1 D@COMPIESS..cuuueerecssssareessssssssssssssssesssssssssssssasssssssssssass 10
4.2 Using the compression APL..........ciiiiiniinseicsicnsnnssnsssssssssssssssssssssssssssssssssssses 10
4.3 Generating the Headerciiiiieiiiinneinsninnennssinnssncsissssnsssssesssssscsssssscnes 11
4.4 Manipulating the prefetch file.............cooiiveivninireinsiinsinssinssercsssnicsssanicssnssees 11

5 Scenarios.......... tessetessseesssnsteesenteessnnessnsteessnsessssnsasssans ceesteessaseeessnnnasaateeeesssssssnnnnaaas 14
5.1 FAKe ENLTI@S.....cueiirirerirrrencsssnnessnnessassossassossssssssasssssasssssasssssasssssasssssssssssssessassssssnns 14
5.2 Storing INfOrmation.........eieiecieeneinenenensensensensnnsnnsnisscsissiesesssssssssssessseessessses 15
5.3 Loading into MemOTY.......ccccceviesseissaicssensssnssssssssssssssssssssssssssssssssssossssssssassssssnss 15

6 Results......ccccceeeeeeerrcneennn. tesssmseeeeessssnsteeeeesssnntteeessssnntteeeesssnnteeeeeeeeeeeetessasannnnnnnn 17

7 Python Source Code[18]......ccuiiuiinriersercssarssssissrsssasessnsossasossasssssssssssssasessassssassssassssssssassssssse 18
7.1 Python IMPOTtS......ueieeienveiniinsseinsicssnissnicsssassssssses 18
7.2 ENUMEFAtiON ClasSeS.....ceeeceeeeerrrsssnaeeeeecccssssssssseeeeaccesssssossssseesssssssssssssssssssssssssses 18
7.3 Helper FUNCHOMN.........ciiuiiniinninniisnicsncssnnsssass 18
7.4 Compression Method FUNCHON..........ccoiieinnicisnicssnisssaresssassesssssssssssssssssanssssss 18
7.5 Header Calculation FUNCHON..........cceieerrreeeccisseeeccsssnneeccssasseccssnsascssssnssecssssssnns 19
7.6 SSCA 2008 Hash FUNCHION........ccccceeeeeeeecrrrsssnneeecccccssssssassassasccsssssssssssssssssssssssses 20

8 Sample Prefetch File Structure Tables.........cciciioneinneinnienaiisaiossiosssssssssssssossosssssssssonss 21
8.1 File NEAderccccveieirueinineinnsanicnsnnicssanesssnsesssnesssssesssssessassossassossansssssssssnassssssssnnans 21
8.2 Compressed Data BIOCK.......cccceieireiciruninssanicssanesssanesssanessnsssssssssssssssssssssssssssnens 21
8.3 Uncompressed Data BIoCK........c.cccovuieieinsuiisseinininsseinsnncssenssniessssnssssnssssssnsssssanns 21

8.3.1 File HEAAET.....cccceeeieeee ettt ettt e ettt e e e e tte e e e e e araaeeeeeenssaaeaeaaaeaasaeaens 21
8.3.2 File infOrmation..........cccuiiieiiiie ettt ettt vae e e ae e e ear e e eenenr e 21
8.3.3 File MEtriCS AITAY ETITY..cccveerieeeierrieerrieeesieessieeseeesseesseesseessseessseesssessssassssesssseesnnns 22
8.4 Trace ChAINS ArTaY....ccccceeersercssnrcssaricssanesssasesssasesssasesssasesssasesssasesssssssssssssasssssssses 22

Prefetch File Manipulation

1 Abstract

1.1 English

The prefetch file format is not officially documented by Microsoft and has been understood
through reverse engineering, and trial-and-error. Without even intending to do so, prefetch files
can sometimes answer the vital questions of computer forensic analysis: who, what, when,
where, why, and sometimes even how. Even if they are designed to speed up the system’s disk
read times, can also be used for a more efficient intrusion disguise or to increase the operating
system’s attack surface. When a Windows system boots, components of many files need to be
read into memory and processed. Since windows 10, prefetch files are no more clear text, but
instead are compressed. But we now know than an attacker can re-compress prefetch files and
manipulate them by hiding or adding entries to the files.

1.2 Greek

H popor apxeiou prefetch 8ev TekunplwveTal emOAPWC aTtd T Microsoft kol €xel yivel
KOTavVONTH HE aVTIGTPOQN UNXAVIKA i doKiyaaia Kal o@aipa. Xwpi¢ KATola Ttpdbean, ta apxeia
prefetch, pmmopolv PEPIKEC QOPEC va ATIAVIAOOUV OTO (WTIKA €PWTNAHUATA TNG EYKANUOTIKAG
avdAuong: Tolog, TI, TIOTE, TIOU, YIOT, KOl HEPIKEG POPEC OKOUN Kol TIWG. AKOUN Kal av €Xouv
oXedIaoTEl yio va eTTiTax0VouV ToUg XPOVoUC avAyvwaong Tou 0iGKOU TOU CUCTAUOTOC, UTIOPoUV
ETTONG va XPNOIYOTIOINB0UVY YIa PIO TTIIO OTIOTEAECUOTIKY HETAU@iEaN €I0B0ANG 1] yia TNV avénon
NG ETUQPAVEING ETTIBECNC TOL AEITOVPYIKOD cuaThuatog. OTav ekkiveital éva obotnua Windows,
TA OTOIXEIO TIOANQV apXEiwV TIPETIEI VO QOPTWOOUV OTN PVrKN Kal VO LTIOCTOUV £TIEEEPYQTial.
Agdopévou ot atté Ta Windows 10, ta apxeio prefetch dev eival TtA¢éov kKaBapd Keipevo, oA
avTi auToU €ival CUPTIEGHEVA. TWPO OUWG YVwpPI{oupe OTI Evag €I0BOAEAC UTTOPEL VO CUUTTIECEL
Eava apxeia prefetch kai va Ta XeIpIoTEl KPUBOVTOC 1] TIPOCBETOVTAC KATAXWPNOTEIC OTO apXEia.

Prefetch File Manipulation

Metarmtuxiokr Alotpin Boupoutong Baaiing

2 Introduction

The Prefetcher is a Microsoft Windows component that was introduced in Windows XP. [1] Is
part of Windows’ Memory Manager System that can accelerate Windows' initialization process
and reduce the applications start up times. This is achieved with the loading and temporary
storage of all the files and libraries, that are required by an application to execute, into the RAM
during a program’s start up, achieving this way reduced Hard Disk read operations. This
component is covered by the USA Patent. [2] Since Windows Vista, the Prefetcher has been
extended to SuperFetch and ReadyBoost.

When the Windows Operating System starts, multiple file components must be loaded into
the RAM in order to be processed. In most of the times, multiple parts of the same file (e.g.
Registry hives) are loaded into the memory in different times. As a result, a significant amount of
time is used by jumping, multiple times, from one file to another, although a single file system
access would be much more effective. Prefetcher works by monitoring witch files are accessed
during the system'’s start up process, including the NTFS’ Master File Table, and the generation
of a monitor file of this process. Prefetcher will continue monitoring this activity until 30 seconds
after the start up of the users environment have passed or 60 seconds after the initialization of
all services or 120 seconds after the system’s start up. Whichever comes first.

Future boots can then use this information that have been monitored in this activity
monitoring file, in order to load the applications data with a more efficient way (i.e. by
reproducing disk readings to minimize or eliminate the need to access the same file multiple
times, minimizing disk drive’s movements).

Application Prefetch works in a similar way, but it is detected when starting an application.
Only the first 10 seconds of activity are tracked. [1]

The file itself will contain metadata such as the executable’s name, files and directories that
the application uses during the first 10 seconds of execution, the prefetch file size, the volume
path, the serial number, the execution number, the creation time and the last execution time of
the executable [3]. Other than these elements, in a prefetch file, there is a large set of data that
contains instructions to load what the program uses most often at startup.

The Task Scheduler is the process that is responsible for analyzing track data collected by
the Prefetcher and recording files in the prefetch folder. As a result, Prefetcher will not work
properly if Task Scheduler does not start.

To further improve access time, Task Scheduler calls Windows Disk Defragmentation every
three days. When the machine is idle, the lists of files and folders reported during the boot
process and application launches. [1] The end result is saved in the Layout.ini file in the
Prefetch folder and then passed to Windows Disk Defragmentation by rearranging these files
into successive locations on the physical hard disk.

2.1 Forensics Value

The forensic value of the contents of this file is immediately obvious. From the file metadata
an examiner can identify that cmd.exe was executed, the location, and frequency. These
artifacts might answer the “what” and the “where” of an incident. The number of times executed
will increment each time the application is run. The timestamp information indicates when the
first time the application was executed and when it was last accessed, or executed. This might
answer the “when” some activity of interest occurred. Any file that is configured to automatically
“autostart” will not register a prefetch file when it is created. If the prefetch file is deleted from
the prefetch folder, both the timestamps and the number of times executed will be reset.[4]

Prefetch File Manipulation

Cffsec (h) OO0 01 02 03 04 05 06 07 OB 09 OA OB OC OD OE OF

00000000 |7 00 0O 0O 53 43 43 41 11 00 00 00 C6 36 02 00 [l...SCCA....ES..
00000010 43 00 48 00 52 00 4F 00 4D 00 45 00 2E 00 45 00 C.H.R.O.M.E...E.
00000020 58 00 45 00 00 00 FF FF 00 00 00 00 00 00 00 00 X.E...¥%........
00000030 50 00 0O 00 80 FA FF FF 00 00 00 00 00 00 00 00 P...€4y{........
00000040 00 00 0O 00 OO 00 00 00 SE 81 2E 03 BA Bl 99 D9
00000050 00 00 0O 00 FO 00 0O 00 10 01 00 00 FO 22 00 008....... an ..

00000060 97 1C OO0 OO0 O4 7A 01 00 FA B4 00 00 00 2F 02 00 =—....Z..M .../ ..
00000070 ©1 00 ©O0 00 C6 O7 OO OO0 OB 00 00 00 01 00 00 00 ...:Bisssisusassas
00000080 99 2E 36 A7 BA A9 CF 01 00 BC 86 47 00 00 00 00 =.6§°®I..E1G....
00000090 ©O 8C B6 47 00 00 OO0 00 76 05 00 00 O7 00 00 00 .EIG..::Viusssas
Q00000A0 QO 00 00 00 00 00 OO0 QO 00 00 00 00 00 00 00 00 ..vvvvesanunanna
000000BO 0O 0C 00 00 00 00 OO0 Q0 00 00 00 00 00 00 00 00 .vesvvwasauwusanns
000000C0O Q0 00 00 Q0 00 00 OO0 QO 00 00 00 00 00 00 00 00 ..vvvivesnnnnanne
000000DO QO 00 00 Q0 00 00 OO0 Q0 00 00 00 00 00 00 00 00 ..vvvwasunananns
Q0QQCQQEQ Q0 00 00 Q0 00 00 OO0 QO 00 00 00 00 00 00 00 00 ..vvuivasunnnanne
000000F0 ©O 00 00 00 76 00 OO OO0 50 00 00 00 00 00 00 00V.u:Puusuuus

00000100 32 00 OO0 00 00 02 DO 00 2D &2 04 00 00 00 04 00 2Z2....... =Baaanas
00000110 76 00 00 00 36 00 0O OO0 31 00 00 00 66 00 00 00 w...6...1l...E...
00000120 32 00 00 00 00 02 00 OO EA C4 02 00 00 00 03 00 2Z2....... [TR

00000130 AC 00 00 00 2E 00 00 00 14 00 00 00 CC 00 00 00 =uevewsvssnalans
00000140 35 00 00 00 00 02 00 00 EO C4 02 00 00 00 03 00 5......:8Rc00vss
00000150 DA 00 00 00 06 00 Q0 Q00 05 00 00 00 38 01 00 00 W..iviwarasasBau,
00000160 35 00 00 00 00 02 00 00 CF C4 02 00 00 00 03 00 5.......1A......
Q0000170 EOQ 00 00 00 O7 Q0 00 Q0 O7 00 Q0 00 A4 0L 00 00 &...:veuvsessFous
00000180 35 00 00 00 00 02 00 00 F1 C4 02 00 00 00 03 00 5.......0R......
00000180 E7 00 00 00 52 00 00 00 30 00 00 00 10 02 00 00 G...R:ev:Quvvuvns
00000140 35 00 00 00 00 02 00 00 E4 C4 02 00 00 00 03 00 5.......8RA......
000001B0 39 01 00 00 O1 00 00 00 01 00 00 00 7C 02 00 00 S..........- |wee
000001C0O 33 00 00 00 00 02 00 00 AD 66 00 00 00 00 01 00 3.....0:0fuvunns

00000100 3A 01 00 00 85 00 00 00 ©E 00 00 00 E4 02 00 00 :..ecceu Buucenns
O00001EQ0 32 00 00 00 00 02 00 00 25 62 04 00 00 00 04 00 2....... S 1 + TR
Q00001F0 BF 01 00 00 72 00 00 00 60 00 00 00 42 03 00 00 i.eeTou:s wusduus
00000200 50 00 00 00 00 02 00 00 OA 15 03 00 00 00 02 00 P..vveerenennnas
00000210 231 02 00 00 01 00 00 00 01 00 00 00 EC 02 00 00 1....:vvvwnus
00000220 39 00 00 00 00 02 00 00 1D 26 04 00 00 00 07 00 9........ e
00000230 32 02 00 00 3A 00 00 00 32 00 00 00 60 04 00 00 2...:.v.v2uus’vun
00000240 327 00 00 00 00 02 00 00 95 E6 02 00 00 00 02 00 T....... o Sttt

00000250 €C 02 00 00 33 00 00 00 23 00 00 00 DO O4 00 00 1...3...%#...B...
ANORN2AN 32 AN AN AN N2 A0 NN AN 12 A1 A4 AN AN AN NS o =2 4

Illustration 1: Prefetch File Hex Dump

2.2 Paremeters

A registry key exists to parameterize The Prefetcher. The setting parameters are stored in the
Windows Registry at HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management\PrefetchParameters. The EnablePrefetcher value can be set as
follows: [3]

0 = Disabled

1 = Application prefetching enabled

2 = Boot prefetching enabled (default on Windows Server 2003 only)
3 = Application and Boot prefetching enabled (default)

Prefetch File Manipulation

Metarmtuxiokr Alotpin Boupoutong Baaiing
2.3 Prefetch files

Prefetch files are stored in the directory: %SystemRoot%\Prefetch. In the same folder are also
stored the following prefetch file types:

« * pf, Prefetch files,

« Ag*.dband Ag * .db.trx, SuperFetch files,[5]
* Layout.ini,

e PfPre _*.db,

* PfSvPerfStats.bin

A Prefetch file contains the name of the application that it represents, a slash separator (-),
an eight character hash value of the absolute path of the applications executable and a “.pf”
extension. The file names must be represented by higher case letters, except the file extension.
For example, a prefetch file name for the Calc program should be: CALC.EXE-4F89ABOC.pf. If
the application is executed by two different paths, (e.g. C:\calc.exe and C:\Windows\System32\
calc.exe), two different prefetch files will be generated in the prefetch folder. If an NTFS
alternate data stream (ADS) is executed then the resulting file will also generate a prefetch file
entry. Acording to MSDN, up to 128 prefetch files can be stored in the prefetch folder.

A PF consist of the following distinguishable elements:
« file header
» file metrics array
* trace chains array
» filename strings
* trailing data
o volume information
o file references
o directory names
trailing data

[}

2.4 Windows 10 prefetch files

Windows 10 prefetch files, have a different file format than the previous windows versions. No
internal strings or text is available.[6] Since Windows 10, the information are stored in a
compressed form in a MAM file similar to SuperFetch.[7]

2.4.1 MAM file format

A compressed Prefetch file consist of the following distinct elements:[7]

* File Header,

* Compressed Blocks,

* Block Terminator, (2 x 0-byte values)

The compression algorithm is Microsoft XPRESS Huffman (LZXPRESS). This compression
algorithm is different than Microsoft XPRESS (LZ77+DIRECT?2).
2.4.2 File Header

The file header has a size of 8 bytes. Three bytes with the signature 0x4d4d41 (MAM), one byte
that identifies the compression algorithm used (0x4 in our case) [8] and a potential presence of
a checksum. The next 4 bytes are the uncompressed size of the original buffer. The remaining
data is what must be decompressed with RtlIDecompressBufferEx.

Prefetch File Manipulation

2.5 Compression Engines

Windows NT comes with multiple built-in compression methods which are provided by the
RtlICompressBuffer[9] and RtIDecompressBuffer functions:

* COMPRESSION_FORMAT_LZNT1, LZNT1 compression (LZ77)
* COMPRESSION_FORMAT_XPRESS, LZXPRESS compression (LZ77 + DIRECT2).
« COMPRESSION_FORMAT_XPRESS HUFF,LZXPRESS with Huffman compression.

251 LZXPRESS Huffman

The LZXPRESS Huffman compressed data consists of multiple chunks. Each chunk consists
of:[10][11]

» aprefix code table

* Huffmann encoded bit stream

LZXPRESS Huffman prefix code table contains 512 x 4-bit prefix codes where the 4 LSB (Least
Significant Bit) of byte 0 contain the prefix code for symbol 0, the 4 MSB (Most Significant Bit)
the prefix code for symbol 1, etc. Where prefix codes:

* 0- 255 represent their corresponding byte values;

* 256 - 511 represent compression tuples (size, offset).

2.5.2 Compression API

The RtlICompressBuffer function compresses a buffer and can be used by a file system driver
to facilitate the implementation of file compression.[12] A bitmask is given as input that specifies
the compression format and engine type. This parameter must be set to a valid bit-wise OR
combination of one format type and one engine type.

Compression Format Signature
COMPRESSION_FORMAT_NONE 0x0000
COMPRESSION_FORMAT_DEFAULT 0x0001
COMPRESSION_FORMAT_LZNT1 0x0002
COMPRESSION_FORMAT_XPRESS 0x0003
COMPRESSION_FORMAT_XPRESS_HUFF 0x0004
Table 1: Compression Algorithm Signature
Compression_Engine Signature
COMPRESSION_ENGINE_STANDARD 0x0000
COMPRESSION_ENGINE_MAXIMUM 0x0100
COMPRESSION_ENGINE_HIBER 0x0200

Table 2: Compression Algorithm Signature

The RtIiCompressBuffer function takes as input an uncompressed buffer and produces its
compressed equivalent provided that the compressed data fits within the specified destination
buffer. To determine the correct buffer size for the WorkSpace parameter, the
RtIGetCompressionWorkSpaceSize function is used. As a Windows API, the functions
included can also be used by a third party application.

Prefetch File Manipulation

Metarmtuxiokr Alotpin Boupoutong Baaiing
2.5.3 Layout.ini

Starting from Windows XP, the prefetch folder, contains not only prefetch files, but also the
layout.ini file. The layout.ini file is a list of the contents of the prefetch files, specifically the
NTFS/MFT log sections that contain a list of files and their logical locations or paths. The entries
in the layout.ini file are organized in the order in which they are loaded. The entries in the
layout.ini file will then be moved or “reallocated” to a contiguous section of the hard drive, which
will result in a faster recall time by the operating system. The process of moving the physical
location of the files located in the layout.ini file occurs about every seventy-two hours when the
Task Scheduler executes the defragmenter. The focus of the defragmenter is only on the
contents of the layout.ini file and not the whole disk drive. Since these files are now physically
located contiguously on the drive they will be read much faster.

3 Standby Memory

The Standby list, contains pages that have been removed from process working sets but are still
linked to their respective working sets. The Standby list is essentially a cache. However,
memory pages in the Standby list are prioritized in a range of 0-7, with 7 being the highest. A
page related to a high-priority process will receive a high-priority level in the Standby list.[13]

For example, processes that are Shareable will be a high priority and pages associated with
these Shareable processes will have the highest priority in the Standby list.If a process needs a
page that is associated with the process and that page is now in the Standby list, the memory
manager immediately returns the page to that process' working set. However, all pages on the
Standby list are available for memory allocation requests from any process. When a process
requests additional memory and there is not enough memory in the Free list, the memory
manager checks the page's priority and will take a page with a low priority from the Standby list,
initialize it, and allocate it to that process.

Prefetch File Manipulation

4 Compress Procedure

4.1 Decompress

For decompression of the Compressed prefetch files we used Windows-Prefetch-Parser. A
Python script created to parse Windows Prefetch files: Supports XP - Windows 10 Prefetch files,
created by Adam Witt a.k.a. PoorBillionaire.[14] It uses a modified version of Francesco
Picasso’s decompression script.[15] | pinpoint that you can't use on other OSes different from
Windows, since it uses native API calls. Moreover you need Windows 8.1 at least, since the
RtIDecompressBufferEx was introduced starting from that OS version.

4.2 Using the compression API

If an API exists that can decompress the prefetch file using the Xpress Huffman, another one
should exist that can compress the contents of the prefetch file in order to for the prefetch files
to exist. We used the RtIiCompressBuffer function to re-compress compressed buffer we were
provided by RltDecompressBufferEx and then modified.[16]

Error Codes Signature
STATUS_SUCCESS 0x00000000
STATUS_BUFFER_ALL_ZEROS 0x00000117
STATUS_INVALID_PARAMETER 0xC000000D
STATUS_UNSUPPORTED_COMPRESSION 0xC000025F
STATUS_NOT_SUPPORTED 0xC00000BB
STATUS_BUFFER_TOO_SMALL 0xC0000023

Table 3: Compression Algorithm Signature

We used “ctypes”, witch is a foreign function library for Python, to access the compression
engine. It provides C compatible data types, and allows calling functions in DLLs or shared
libraries. It can be used to wrap these libraries in pure Python. With ctypes we accessed
windll.ntdll. RtICompressBuffer, witch is the compression library we wused, and
windll.ntdll. RtIGetCompressionWorkSpaceSize, to determine the correct size of the WorkSpace
buffer. The RtiCompressBuffer and RtIDecompressFragmentfunctions require an appropriately
sized work space buffer to compress and decompress successfully. The WorkSpace parameter
of the RtliCompressBuffer function must point to an adequately sized work space buffer. The
CompressBufferWorkSpaceSize parameter of the RtiGetCompressionWorkSpaceSize provides
this size.

We created the required buffers and passed them to the function RtiCompressBuffer. For the
destination buffer, we provided a buffer with the size of the Uncompressed data. After the
successful compression we can remove the empty bites at the end of the buffer by cutting the
byte array with respect to the final compressed sized return by the function.

Prefetch File Manipulation 10

Metarmtuxiokr Alotpin Boupoutong Baaiing
ntstatus = RtlCompressBuffer(

USHORT(calgo), # CompressionFormatAndEngine,
ctypes.byref(ntUnCompressed), # Uncompressed Buffer
ULONG(uncompressed_size), # Uncompressed Buffer Size
ctypes.byref(ntCompressed), # Compressed Buffer
ULONG(uncompressed_size), # Compressed Buffer Size
ULONG(chunk_size), # Uncompressed Chunk Size
ctypes.byref(ntFinalCompressedSize), # Final Compressed Size
ctypes.byref(ntWorkspace) # Work Space Size

)

After some trial and error we received a successful compression status code. We compared
the initial compressed buffer with the compressed buffer we generated as a first validation. In
order for the buffer to successfully be consumed by the system, the prefetch file header should
also be added.

4.3 Generating the Header

The uncompressed prefetch file header, is a structure of 84 bytes and consists of the format
version (witch in our case, for windows 10 is the value of 30), the “SCCA” signature, the file
size, the executable file name (as UTF-16 little-endian string with end-of-string character) and
the Prefetch hash, witch value should correspond with the hash in the prefetch filename. A
couple of undistinguished values and flags are required, adding up to the size of 84 bytes.

The prefetch hash can be calculated with the SCCA 2008 hash function. [3] In order to hash
the executable filename, the full path of the executable has to be determined and then
converted into an upper-case Windows device path, e.g. \DEVICE\
HARDDISKVOLUME{volume id}{split-ed drive path}. Before the hash function is applied, the
string must be converted into a UTF-16 little endian stream without a BOM (byte-order-mark)
nor an end-of-string character. In short, comand we end up was:

file_for_hash = FIDEVICE\HARDDISKVOLUME{volume_id}{path}.upper().encode('utf-16-
le').decode()

4.4 Manipulating the prefetch file

Till this point we were able to re-compress an uncompressed windows 10 prefetch file and
reconstruct and attach the file header. With the prefetch data as plain text, we can edit its
internals as we want. We can grub a random DLL file, rename it and then make sure it's path
and filename is included in the prefetch file.

[BE) WinPrefetchView
File Edit View Options Help

Created Time Modified Time ~ File Size Process EXE Process Path Run Counter ~Last Run Time Missing Pr..
[EZ776 EXE-0F8CA081 pf 20/12/201815:40 15/1/20191252:38 23.018 TIGEXE CAPROGRAM FILES\T-Zip\72G exe 13 15/1/2019 12:52:28, 15/1/201912:45:36, 15/1... No
[EI7ZFM.EXE-69B3961D pf 15/1/201912:47:38 15/1/201915:21:06 16.8%4 TZFM.EXE CAPROGRAM FILES\7-Zip\7zFM.exe 4 15/1/201912:53:34, 15/1/201912:53:14, 15/1... No
IR aneT eve eagaan e MAIANOTEAD 18 N0 129087 18187 AW s < e A0 1S AMIA139020 184 hn

Illustration 2: WinPrefetchView view of 7ZIP prefetch

First we used WinPrefetchView by NirSoft, to verify if our new prefetch file can be parsed by
an other application. Our target executable was 7ZFM.exe. We modified one of it's entries so it
will reflect to a specific pathf/file. The reconstructed prefetch file was compressed with
LZXPRESS Huffman algorithm and the header was added. WinPrefetchView was able to parse
the file and recognize the entry we modified. The next step was to verify that Windows 10
system could successfully execute/load the prefetch file. We rebooted the machine and
executed RamMap. Our newly modified DLL could be found Mapped in memory, listed as
Standby.

Prefetch File Manipulation 11

shell&g.dll 3/8/2018 11:39 Application extens 20.889 KB
ShellCemmeonCommenProgStub.dll 2/4/2018 02:34 Application extens 395 KB
shellstyle.dll 12/4/2018 02:34 Application extens 1129 KB
shfolder.dll 12/4/2018 02:34 Application extens 11 KB
shgina.dll 2/4/2018 02:34 Application extens 28 KB
ShiftllS.uce 12/4/2018 02:34 UCE File 17 KB
shirmeng.dll 12/4/2018 02:34 Application extens 2 KB
Illustration 3: New DLL in folder (shell66.dll)

Filename Full Path 7 Device Path
[] LoCALENLS CAWindows\System32\locale.nls \VOLUME{D1d4307d47c65¢36-28486071 NWIND(C

MPRDLL CAWindows\System32\mpr.dll \VOLUME{D1d4307d47c65¢36-28486071 NWIND(C

MSCTF.DLL CAWindows\System32\msctf.dll \VOLUME{D1d4307d47c65¢36-28486071 NWIND(C

MSVCP110_WIN.DLL CAWindows\System32\MSVCP110 WIN.DLL \VOLUME{D1d4307d47c65¢36-28486071 NWIND(C

MSVCP_WIN.DLL CAWindows\System32\MSVCP_WIN.DLL \VOLUME{O1d4307d47c65¢36-28485071 NWIND(C

MSVCRTDLL CAWindows\System32\msvert.dl \VOLUME{O1d4307d47c65¢36-28485071 NWIND(C
[NTDLLDLL CAWindows\System32\ntdl.dil \VOLUME{01d4307d47c65¢36-28485071 NWINDC
[4] NTMARTADLL CAWindows\System32\ntmarta.dil \VOLUME{01d4307d47c65¢36-2848b071 NWINDC
Efi=118 CAWindows\System32\ole32.dil \VOLUME{01d4307d47c65¢36-2848b071 NWINDC
4] oLeauT32DLL €AWindows\System32\oleaut32.dll \VOLUME{01d4307d47c55¢36-28486071 NWINDC
5] POLICYMANAGER.DLL CAWindows\System32\POLICYMANAGER DLL \VOLUME{O1d43a7d47c55e36- 28486071 \WINDC
5] POWRPROF.DLL €AWindows\System32\powrprof.dil \VOLUME{O1d43a7d47c55e36- 28486071 \WINDC
5] PrOFAPIDLL €AWindows\System32\profapi.dil \VOLUME{O1d43a7d47c55e36- 28486071 \WINDC
[] ProOPSYS.DLL CAWindows\System32\propsys.dil \VOLUME{D1 d43a7d47c65¢36-a848b071 \WINDC
[4] RMCLIENT.DLL CAWindows\System32\rmclient.dll \VOLUME{01 d43a7d47c65¢ 36-a848b071 N WINDC
[5] RPCRT4.DLL CAWindows\System32\rpertd.dil \VOLUME(Q1d43a7d47c65¢36-a8486071 NWIND(
[5] RPess.OLL CAWindows\System32\rpess.dil \VOLUME(Q1d43a7d47c65¢36-a8486071 NWIND(
[4] secHosT.oLL CAWindows\System32\sechostdll \VOLUME(Q1d43a7d47c65¢36-a8486071 NWIND(
5] SHCOREDLL CAWindows\System32\SHCore.dll \VOLUME(Q1 d4357d47c65636-3848b071 NWIND(

erm \VOLUME(D1dé: [

[] SHLWAPLDLL CAWindows\System32\shiwapi.dil \VOLUME(D1d4307d47c65¢36-a848b071 NWIND(C
[] TEXTINPUTFRAMEWGRK.DLL CAWindows\System32\ TEXTINPUTFRAMEWORK.DLL \VOLUME(D1d4307d47c65e36-a848b071 NWIND(C
i riam o aeue m) oo UMD P 1 TG 413717 25298 <o sEIAT NI

lllustration 4: WinPrefetchView of 7ZIP prefetch detailed view, we can see that our new entry
is included in the prefetch file.

| RamMap - www.sysintemals.com
ile Empty Help

Use Counts Processes Priority Summary Physical Pages Physical Ranges File Summary File Details

Fath Size PhysicalAddress List Type Priorty Image Offset

Awindows \system 32\catroot 24{127d0a 1d-4ef2-11d1-8608-D0c 04fc295ee) catdb 160K

windows \assembly\nati _v4.0.30319_ 4785 X 9bead 35377666101z \mscorlb.mi dl 4304 K
users'y vouvautsis'documents'wiils sysimemalssuiteautonns exe 128K
-\program files\ 7-zip' 7zfm exe 430K
windows winsxs'amd64_microsoft windows.comman-controls_6535b64144ccf 1df_6.0,17134.266_nonc_fbd3382d30| 1.452K
“\users'\v vouvatsistdocuments\utiis\sysirtemalssute \rammapB4. sxe 616K
\usershy vouvautsis'app windowswebcact hevD1 dat 4543K
\windows \system32\windows storage onecare.dl 160K

“wsers'v .vouvoutsisappdatalocal spotify ‘browser'cache“data_3
indows \system 32\shell66 dil

[llustration 5: RamMap (Sysinternals) view of the shell66.dll. We can see that our file has
succesfully loaded into memory.

Prefetch File Manipulation

12

MetaTttuxiokr Alatpin

BouPoutong Baagiing

992 K

(=5125000 Standby

(x5F34000 Standby

0GACT000 Standby

(= 74FBO00 Standby

(= ABZ2000 Standby
(140837000 Standby
(= 1408DEDDD Standby
(1408F3000 Standby
(= 147199F000 Standby
= 141838000 Standby
0 141E17000 Standby
(= 142280000 Standby
(142320000 Standby
= 1423AC000 Standby
(142734000 Standby
Ox14281E000 Standby
= 142994000 Standby
= 142004000 Standby
(= 142DAC0O00 Standby
(143618000 Standby
(= 14361AD00 Standby
= 143602000 Standby
(= 1436EB000 Standby
(143793000 Standby
(143794000 Standby
(143735000 Standby
0143756000 Standby
(143797000 Standby
0 1437E1000 Standby
= 1437E2000 Standby
014377000 Standby
(143F35000 Standby
(144213000 Standby
(144220000 Standby
(144282000 Standby
(= 1442C0000 Standby
(144310000 Standby
(145243000 Standby
(0 14525C000 Standby
O 14529E000 Standby
(145316000 Standby
(145332000 Standby
(145301000 Standby
(= 14584E000 Standby
(= 14583C000 Standby
(145323000 Standby
0 1471BEDDD Standby
= 147B3A000 Standby
O 147EOEDDD Standby
(= 148230000 Standby
(148422000 Standby
(= 148A43000 Standby
(148807000 Standby
= 148BECO00 Standby
(= 1450A5000 Standby

Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File
Mapped File

i I I o o e e R o o o e T I I o e o o S o e o e e e R o i i I R o S R o e S R e R e

fes
fes
Yes
Yes
fes
fes
Yes
Yes
fes
fes
Yes
Yes
fes
fes
Yes
Yes
fes
fes
Yes
Yes
fes
fes
Yes
Yes
fes
fes
Yes
Yes
fes
fes
Yes
Yes
fes
fes
Yes
Yes
fes
fes
Yes
Yes
fes
fes
Yes
Yes
fes
fes
Yes
Yes
fes
fes
Yes
Yes
fes
fes
Yes

(=1431600
(43400
O=54EGDD
OxE2400

(24400
O dF4600
(143400
O=53B600

Illustration 6: RamMaop (Sysinternals), shell66.dll detailed view, loaded into standby

memory

Prefetch File Manipulation

13

5 Scenarios

Eliminating the need for the use of external libraries is a nice to have for an attacker. Prefetch
files are an artifact of an executable file engaging with its Eco-system and not a direct artifact of
the executable. As such, if the executable is deleted, the Prefetch file persists.

Prefetch as far as we have understood so far has no control mechanisms, so the only way to
control a fake entry is to MACE timestamps of NTFS which from what we noticed can be
modified with Timestomp[17]. Timestomp's goal is to allow for the deletion or modification of
timestamp-related information on files, such as MACE values. By successfully modifying
timestamp-related information on prefetch files, the attacker can greatly decrease the possibility
to be discovered.

5.1 Fake Entries

Most analysts are familiar with Prefetch files and how they can be useful to an examination.
Prefetch files have a good bit of embedded metadata, and can be very useful during analysis.
For example, you may look at the listing of files and something unusual may immediately jump
out at you. If you include Prefetch file metadata in a timeline of a system, you should see a file
access time for the executable "near" to when a Prefetch file for that executable is created or
updated. If that's not the case, you may have an issue of time manipulation, or the original
executable may have been deleted.

= UpElLL L], WOt)
.write(decompressed)
.seek(8)

tmp = asd.resources

111 = len(tmp[12])

tmp[19] = tmp[19][@:-31]+b " \\NOEXISTEING SH_WIN.DLL'
print(tmp[19])

a = builder.build filename strings(tmp)

print{asd.filenamestringssize, len(a))
print{asd.filenames)

IIIusration : Addirllg a fake entry

Prefetch files also contain a number of strings, which are file names and full paths that point
to modules used or accessed by the executable, and even some other files accessed by the
executable. An attacker now is more than able to manipulate all this entries for his advantage.

Lets see for example a malicious application. The attacker can modify its execution times in
order to hide the frequencies the application is used and delete those entries that pinpoint to
unnatural file locations. For example, a malicious application can monitor its prefetch files and
remove entries from the file list that are associated with its malicious activities. Additional we
can replace file paths to pin point to a different file in a different location or even an non-existing
file. When the correct file is required by the application, the system will first try to load it from the
memory (as a prefetched entry) and upon failure it will loaded as normal from the disk drive, so
missing or fake entries won't disturb the normal execution of the application.

Prefetch File Manipulation 14

MetaTttuxiokr Alatpin

BouPoutong Baagiing

[#5] CODESETUP-STABLE-51B0B28134D5-36D19DFE.pf
[#5] CODESETUP-STABLE-51B0B28134D5-60E96BD4. pf
)4 CODESETUP-STABLE-A622C65B2C71-AFD37698.pf
| | CODESETUP-STABLE-AG22C65B2C71-BBFAT3DA.pf

4/12/2019 11:54:52 AM
4/13/2015 1:31:19 AM
5/26/2019 6:31:45 AM
5/26/2019 6:31:46 AM

4/12/2019 11:54:52 AM
4/13/2015 1:31:19 AM
5/26/2019 6:31:45 AM
5/26/2019 6:31:46 AM

21,563
11,345
6,183

22,836

3¢ CODE.EXE-4EF96BFF.pf 5/26/2019 6:30:33 AM 5/26/2019 6:43:49 AM 59,142 CODEEXE
)4 CODE.EXE-4EF96C00.pf 5/26/2019 6:30:17 AM 5/26/2019 6:30:57 AM 16,191 CODEEXE
)4 CODEHELPER.EXE-EDEEDD44. pf 5/26/2019 6:30:33 AM 5/26/2019 6:31:04 AM 7,683 CODEHELPER.EXE

CODESETUP-5TABLE-51B0B28134D51361CF9%
CODESETUP-5TABLE-51B0B28134D51361CF9%
CODESETUP-STABLE-AG22C65B2CT13C890FCH
CODESETUP-5TABLE-AG22CE5B2CT13CAS0FCH

CODESETUP-STABLE-C6E592B2B5770E40A98C

SO ARATTE DLILILIER Fur

[#5] CODESETUP-STABLE-C6E592B2B577-1673BEDC. pf
P71~ AR ARATTE REILIAIEN FUF AIAEANAN £

<

12/17/2018 $:17:22 AM

44NN N T 4411 kA

12/17/2018 $:17:22 AM

CUE NN £.97.ET AR

17,903

a7

Filename Full Path
| | EXTEND-NODE-611BC3497B48C490CB689EET12C5C5F25.CODE ChUsers\Name\AppData\Roaming\ Codely

| | EXTEND-NODE-BCD1763EDEF2AB492D52B6F2BBE72851.CODE ChUsers\Name\AppData\Roaming'Codel!

IS FAKESH_WIN.DLL CAMOEXISTEING\ASD\FAKESH_WIN.DLL

%] FFMPEG.DLL ChUsers\Name\AppData‘Local\Programs!,
Illustration 8: Fake Prefetch Entry to foreign file location

It should be noted that an application will, in most times, have dependencies located in the
applications file path or in the system’s path. So by linking file entries from the prefetch file to
unrelated locations it will most probably alert the forensic investigator.

5.2 Storing Information

The prefetch file specification is based on earlier work on the format and was complimented by
reverse engineering. No official documentation currently exist for this type of files. In this files,
many unknown buffers exist than mostly contain empty values. An attacker can use these small
buffers, usually with a fragmented size of less than a kilobyte, to store minimal information such
as flags or small encryption keys. More over, the attacker can spread this information to multiple
prefetch files in order to increase the amount of information he can store.

Let’'s imagine a situation where the attacker want's to hide a cryptographic key somewhere
inside the windows Operating System. Prefetch files have a number of Buffers that store
Uknown to this day values or even Empty values. These buffers are ranging from 8 bytes to 88
bytes. The maximum amount of bytes that can be stored it is possible to be able to be increased
due to the structure of the prefetch file. All the prefetch tables and data entries have an offset
relationship with other entries. So an attacker can probably add additional storage space
between the prefetch entries just by increasing the prefetch entries offset accordingly from the
corresponding tables.

From a forensics examiner’s perspective, due to the undocumented nature of the prefetch
file, it will require a great amount of effort just to even notice the information stored. No prefetch
file examine utility will provide output with respect to these Unknown buffers, and even if a utility
can provide the output we are not yet in position to recognize the maliciously stored information
us we can’t known what all of these buffers should normally store.

5.3 Loading into Memory

As we already know, files addressed in a prefetch file will be loaded in the standby memory for
later use. Although it haven't been tested, an attacker can use the prefetch files to load
malicious libraries into memory so he can use them later. Ideally, a program can parse the
memory, like RamMap, to detect a malicious library loaded from the prefetch to the standby
memory and execute them.

Let's review a scenario where after the initial compromise, the malicious application can
download a malicious PE file (The Portable Executable (PE) format is a file format for
executables, object code, DLLs, FON Font files, and others used in 32-bit and 64-bit versions of
Windows operating systems.) that will be the malware. The downloader will check the registry if
the prefetcher key is enabled and only then the prefetch file can be modified. We must also
make an entry the layout.ini since it contains a list of all prefetched files. We can also examine

Prefetch File Manipulation 15

witch of the prefetch files belong to an application in the startup list or to a service to ensure that
the malicious file will be loading into memory persistently.

We now have a malicious PE file loaded into standby memory. When an a forensic
investigator tries to analyze the system, he will be able to trace that the malicious application is
indeed loaded into the standby memory by the prefetcher. He will also be able to follow its path
and examine the application itself. But it would be extremely unlikely to find the 3™ party
malicious application that loads the PE file from memory.

Prefetch File Manipulation

16

Metarmtuxiokr Alotpin Boupoutong Baaiing

6 Results

Since the attackers now have become intelligent, they even remove all these prefetch files from
the system before leaving the system to remove any trail. Although prefetch files was mainly
used for forensics investigations, there is clearly a possibility that an attacker can easily hide the
activity of a malicious application by removing related entries from the prefetch files by
decompressing them, modified them and re-compress them, all with the help of windows
compression and decompression APIs.

The content of each prefetch file provides rich information about the applications that were
executed. There are two main sections of the prefetch file. The top, or first section, of the
prefetch file contains the metadata of the file. The metadata includes the file name, file location,
associated timestamps (file created, last accessed, and file modified), and the number of times
the file was executed. The attacker is able to obscure his activities by modifying the
aforementioned data. The modification can take place in any part of the file and the information
that contains. Execution counts and execution times in addition to the volume information are
critical for a forensic investigation but now an investigator has to double check their integrity by
taking into account creation and modification time. More over, prefetch files can be used to load
malicious code into memory.

Prefetch files do not include mechanism that can prevent modification as their structural
integrity is not critical for the operating system’s operability. They are only designed to help
boost operating systems and applications read times, but as it seems, not only they can not be
trusted for an incident investigation but they can also be used to increase the attack surface of
the operating system.

In addition to Prefetcher, Superfetcher, follows a similar architecture for the Superfetch
(Ag*.db) file storage. Both files have the same MAM signature and are compressed with the
same algorithm. Due to the fact that superfetch files have introduced later in the Windows
operating system architecture design, haven't yet been decoded sufficiently. It is possible that
can also be manipulated the same way we did with Prefetch files.

Prefetch files are good source of evidence to determine the existence and execution of
suspicious executable on a system. However, it is just one of the many Windows forensic
artifacts that can help investigators understand what a user was doing on a system at a specific
point in time. As a best practice, all Windows forensic artifacts should be examined and pieced
together to see the bigger picture of an incident because as it turned out it one can no longer
trust their integrity as they can be modified such as prefetch files generated from older windows
versions.

Prefetch File Manipulation 17

7 Python Source Code[18]

7.1 Python Imports

import sys
import ctypes
import enum
import binascii
import struct

7.2 Enumeration Classes

class CompAlgo(enum.Enum):
COMPRESSION_FORMAT_NONE = 0x0000
COMPRESSION_FORMAT_DEFAULT = 0x0001
COMPRESSION_FORMAT_LZNT1 = 0x0002
COMPRESSION_FORMAT_XPRESS = 0x0003
COMPRESSION_FORMAT_XPRESS_HUFF = 0x0004

class CompEngi(enum.Enum):
COMPRESSION_ENGINE_STANDARD = 0x0000
COMPRESSION_ENGINE_MAXIMUM = 0x0100
COMPRESSION_ENGINE_HIBER = 0x0200

class ErrorCodes(enum.Enum):
STATUS_SUCCESS = 0x00000000
STATUS_BUFFER_ALL_ZEROS = 0x00000117
STATUS_INVALID_PARAMETER = 0xC000000D
STATUS_UNSUPPORTED_COMPRESSION = 0xC000025F
STATUS_NOT_SUPPORTED = 0xC00000BB
STATUS_BUFFER_TOO_SMALL = 0xC0000023

7.3 Helper Function

def tohex(val, nbits):
"""Utility to convert (signed) integer to hex.
return hex((val + (1 << nbits)) % (1 << nbits))

7.4 Compression Method Function

def compress(

algo: CompAlgo, uncompressed, engine: CompEngi =
CompEngi.COMPRESSION_ENGINE_STANDARD, chunk_size: int = 4096

calgo = algo.value | engine.value

NULL = ctypes.POINTER(ctypes.c_uint)()
SIZE_T = ctypes.c_uint

DWORD = ctypes.c_uint32

USHORT = ctypes.c_uintl6

UCHAR = ctypes.c_ubyte

Prefetch File Manipulation

18

Metarmtuxiokr Alotpin Boupoutong Baaiing
ULONG = ctypes.c_uint32

You must have at least Windows 8, or it should fail.
Try:
RtICompressBuffer = ctypes.windll.ntdll.RtICompressBuffer
except AttributeError as e:
sys.exit("[-] {e\n"
"[-] Windows 8+ required for this script to decompress Win10 Prefetch files")

RtlIGetCompressionWorkSpaceSize =\
ctypes.windll.ntdll.RtiIGetCompressionWorkSpaceSize

ntCompressBufferWorkSpaceSize = ULONG()
ntCompressFragmentWorkSpaceSize = ULONG()

ntstatus = RtlGetCompressionWorkSpaceSize(USHORT (calgo),
ctypes.byref(ntCompressBufferWorkSpaceSize),
ctypes.byref(ntCompressFragmentWorkSpaceSize))

if ntstatus:
raise EnvironmentError(fCannot get workspace size, err: '
f{tohex(ntstatus, 32)}:{ErrorCodes(tohex(ntstatus, 32)).name}")

uncompressed_size = len(uncompressed)

ntUnCompressed = (UCHAR * uncompressed_size).from_buffer_copy(uncompressed)
ntCompressed = (UCHAR * uncompressed_size)()

ntFinalCompressedSize = ULONG()

ntWorkspace = (UCHAR * ntCompressBufferWorkSpaceSize.value)()

ntstatus = RtlICompressBuffer(

USHORT(calgo), # CompressionFormatAndEngine,
ctypes.byref(ntUnCompressed), # Uncompressed Buffer
ULONG(uncompressed_size), # Uncompressed Buffer Size
ctypes.byref(ntCompressed), # Compressed Buffer
ULONG(uncompressed_size), # Compressed Buffer Size
ULONG(chunk_size), # Uncompressed Chunk Size
ctypes.byref(ntFinalCompressedSize), # Final Compressed Size
ctypes.byref(ntWorkspace) # Work Space Size

)

if ntstatus:

raise ValueError(f'Cannot Compress Buffer, err: '
f'{tohex(ntstatus, 32)}:{ErrorCodes(tohex(ntstatus, 32)).name})
compressed = bytearray(ntCompressed)[:ntFinalCompressedSize.value]

return algo, compressed

7.5 Header Calculation Function

def header(algo, uncompressed):
if algo is 4:
sig = 0x44d414d
header = struct.pack('<LL', sig, len(uncompressed))
return header

Prefetch File Manipulation

7.6 SSCA 2008 Hash Function

def ssca_2008 hash_function(filename):
hash_value = 314159
filename_index = 0
filename_length = len(filename)

while filename_index + 8 < filename_length:
character_value = ord(filename[filename_index + 1]) * 37
character_value += ord(filename[filename_index + 2])
character_value *= 37
character_value += ord(filename][filename_index + 3])
character_value *= 37
character_value += ord(filename][filename_index + 4])
character_value *= 37
character_value += ord(filename][filename_index + 5])
character_value *= 37
character_value += ord(filename][filename_index + 6])
character_value *= 37
character_value += ord(filename[filename_index]) * 442596621
character_value += ord(filename[filename_index + 7])

hash_value = ((character_value - (hash_value * 803794207)) % 0x100000000)
filename_index += 8
while filename_index < filename_length:
hash_value = (((37 * hash_value) + ord(filename[filename_index])) %
0x100000000)

filename_index +=1

return hash_value

Prefetch File Manipulation

20

MetaTttuxiokr Alatpin

8 Sample Prefetch File Structure Tables

BouPoutong Baagiing

8.1 File header
Offset |Size |Description
0 4 Signature
0x4d, 0x41, 0x4d, 0x04 (MAM\x04)
4 4 Total Uncompressed Data Size
8.2 Compressed Data Block
Offset |Size |Description
0 Var |LZXPRESS Huffman compressed data
8.3 Uncompressed Data Block
8.3.1 File Header
Offset |Size |Description
0 4 Format Version (Win 10 is 30)
4 4 Signature (SCCA)
8 4 Unknown
12 4 File Size
16 60 Executable Filename
76 4 Prefetch Hash
80 4 Unknown
8.3.2 File information
Offset |Size |Description
0 4 File Metrics Array Offset (0x00000130)
4 4 Number of file metrics entries
8 4 Trace chains array offset
12 4 Number of trace chains array entries
16 4 Filename strings offset
20 4 Filename strings size
24 4 Volumes information offset
28 4 Number of Volumes

Prefetch File Manipulation

21

32 4 Volumes information size

36 8 Unknown

44 64 Last run times

108 16 Unknown

124 4 Run count

128 4 Unknown (Seen: 1, 2, 7)

132 4 Unknown (Seen: 0, 3)

136 88 Unknown

8.3.3 File metrics array entry

Offset |Size |Description

0 4 Unknown

4 4 Unknown

8 4 Unknown

12 4 Filename string offset

16 4 Filename string number of characters
20 4 Unknown

24 4 NTFS file reference

Table 4: Contains metrics about the files loaded by the executable

8.4 Trace chains array

Offset |Size |Description

0 4 Next array entry index
4 4 Total block load count
8 1 Unknown

9 1 Unknown

10 2 Unknown

Table 5: A trace chain is similar to a File Allocation Table (FAT) chain where the array entries
form chains and -1 (Oxffffffff) is used to mark the end-of-chain. The chains in the trace chains
array correspond with the entries in the file metrics array, meaning the first trace chain
relates to the first file metrics array entry.

Prefetch File Manipulation 22

Metarmtuxiokr Alotpin Boupoutong Baaiing

Bibliography

1: Russinovich, Mark; David Solomon, Microsoft Windows Internals (4th ed.), 2005
2: Zwiegincew; Arthur (Kirkland, WA), Walsh; James E. (Kirkland, WA), Pre-fetching
of pages prior to a hard page fault sequence , October 14, 2003

3: Joachim Metz, Prefetch, 2018, http://www.forensicswiki.org/wiki/Prefetch

4: Mark Wade, Decoding Prefetch Files for Forensic Purposes, 12/08/2010,
https://www.forensicmag.com/article/2010/12/decoding-prefetch-files-forensic-
purposes-part-1

5: Joachim Metz, Windows SuperFetch database format, 2016,

6: Francesco Picasso, A first look at Windows 10 prefetch files, 2015,

7: Joachim Metz, Windows Prefetch File (PF) format, 2019,

8: Microsoft, winsdk-10, 2017,

9: MSDN, RtlDecompressBuffer function, 2018,

10: Microsoft Docs, Procedures, 2019,

11: Joachim Metz, Windows NT compression methods, 2016,

12: MSDN, RtlCompressBuffer function, 2018,

13: Greg Shultz, Investigate memory usage with Windows 7 Resource Monitor, 2010,
14: Adam Witt, Windows-Prefetch-Parser, 2016

15: Francesco Picasso, w10pfdecomp.py, 2015

16: Microsoft, RtlICompressBuffer function, 04/16/2018

17: James C. Foster and Vincent Liu, Blackhat briefings 2005, 2005

18: Vasileios Vouvoutsis, Prefetch Ninja, 2019

Prefetch File Manipulation

23

