

Πανεπιστήμιο Πειραιώς – Τμήμα Πληροφορικής
Πρόγραμμα Μεταπτυχιακών Σπουδών

«Προηγμένα Συστήματα Πληροφορικής»

Μεταπτυχιακή Διατριβή

 Τίτλος Διατριβής (Ελληνικά)
Δημιουργία και Αλλαγή prefetch αρχείων για Windows 10
(Αγγλικά)
Manipulating and generating Windows 10 Prefetch files

Ονοματεπώνυμο Φοιτητή Βασίλης Βουβούτσης
Πατρώνυμο Χρήστος
Αριθμός Μητρώου ΜΠΣΠ/17009
Επιβλέπων Πατσάκης Κωνσταντίνος

Ημερομηνία Παράδοσης 06/2019

Τριμελής Εξεταστική Επιτροπή

(υπογραφή) (υπογραφή) (υπογραφή)

Πατσάκης Κωνσταντίνος
Επίκουρος Καθηγητής

Αλέπης Ευθύμιος
Επίκουρος Καθηγητής

Τσιχριντζής Γεώργιος
Καθηγητής

Prefetch File Manipulation 2

Μεταπτυχιακή Διατριβή Βουβούτσης Βασίλης

Table of Contents

1 Abstract..4
1.1 English..4
1.2 Greek..4

2 Introduction...5
2.1 Forensics Value...5
2.2 Paremeters...6
2.3 Prefetch files..7
2.4 Windows 10 prefetch files..7

2.4.1 MAM file format...7
2.4.2 File Header..7

2.5 Compression Engines..8
2.5.1 LZXPRESS Huffman..8
2.5.2 Compression API..8
2.5.3 Layout.ini..9

3 Standby Memory...9

4 Compress Procedure...10
4.1 Decompress..10
4.2 Using the compression API..10
4.3 Generating the Header...11
4.4 Manipulating the prefetch file...11

5 Scenarios..14
5.1 Fake Entries...14
5.2 Storing Information..15
5.3 Loading into Memory...15

6 Results..17

7 Python Source Code[18]..18
7.1 Python Imports..18
7.2 Enumeration Classes..18
7.3 Helper Function..18
7.4 Compression Method Function...18
7.5 Header Calculation Function...19
7.6 SSCA 2008 Hash Function...20

8 Sample Prefetch File Structure Tables..21
8.1 File header...21
8.2 Compressed Data Block...21
8.3 Uncompressed Data Block...21

8.3.1 File Header..21
8.3.2 File information...21
8.3.3 File metrics array entry..22

8.4 Trace chains array..22

Prefetch File Manipulation 3

1 Abstract

1.1 English

The prefetch file format is not officially documented by Microsoft and has been understood
through reverse engineering, and trial-and-error. Without even intending to do so, prefetch files
can sometimes answer the vital questions of computer forensic analysis: who, what, when,
where, why, and sometimes even how. Even if they are designed to speed up the system’s disk
read times, can also be used for a more efficient intrusion disguise or to increase the operating
system’s attack surface. When a Windows system boots, components of many files need to be
read into memory and processed. Since windows 10, prefetch files are no more clear text, but
instead are compressed. But we now know than an attacker can re-compress prefetch files and
manipulate them by hiding or adding entries to the files.

1.2 Greek

Η μορφή αρχείου prefetch δεν τεκμηριώνεται επισήμως από τη Microsoft και έχει γίνει
κατανοητή με αντίστροφη μηχανική ή δοκιμασία και σφάλμα. Χωρίς κάποια πρόθεση, τα αρχεία
prefetch, μπορούν μερικές φορές να απαντήσουν στα ζωτικά ερωτήματα της εγκληματικής
ανάλυσης: ποιος, τι, πότε, πού, γιατί, και μερικές φορές ακόμη και πώς. Ακόμη και αν έχουν
σχεδιαστεί για να επιταχύνουν τους χρόνους ανάγνωσης του δίσκου του συστήματος, μπορούν
επίσης να χρησιμοποιηθούν για μια πιο αποτελεσματική μεταμφίεση εισβολής ή για την αύξηση
της επιφάνειας επίθεσης του λειτουργικού συστήματος. Όταν εκκινείται ένα σύστημα Windows,
τα στοιχεία πολλών αρχείων πρέπει να φορτωθούν στη μνήμη και να υποστούν επεξεργασία.
Δεδομένου ότι από τα Windows 10, τα αρχεία prefetch δεν είναι πλέον καθαρό κείμενο, αλλά
αντί αυτού είναι συμπιεσμένα. Τώρα όμως γνωρίζουμε ότι ένας εισβολέας μπορεί να συμπιέσει
ξανά αρχεία prefetch και να τα χειριστεί κρύβοντας ή προσθέτοντας καταχωρήσεις στα αρχεία.

Prefetch File Manipulation 4

Μεταπτυχιακή Διατριβή Βουβούτσης Βασίλης

2 Introduction

The Prefetcher is a Microsoft Windows component that was introduced in Windows XP. [1] Is
part of Windows’ Memory Manager System that can accelerate Windows’ initialization process
and reduce the applications start up times. This is achieved with the loading and temporary
storage of all the files and libraries, that are required by an application to execute, into the RAM
during a program’s start up, achieving this way reduced Hard Disk read operations. This
component is covered by the USA Patent. [2] Since Windows Vista, the Prefetcher has been
extended to SuperFetch and ReadyBoost.

When the Windows Operating System starts, multiple file components must be loaded into
the RAM in order to be processed. In most of the times, multiple parts of the same file (e.g.
Registry hives) are loaded into the memory in different times. As a result, a significant amount of
time is used by jumping, multiple times, from one file to another, although a single file system
access would be much more effective. Prefetcher works by monitoring witch files are accessed
during the system’s start up process, including the NTFS’ Master File Table, and the generation
of a monitor file of this process. Prefetcher will continue monitoring this activity until 30 seconds
after the start up of the users environment have passed or 60 seconds after the initialization of
all services or 120 seconds after the system’s start up. Whichever comes first.

Future boots can then use this information that have been monitored in this activity
monitoring file, in order to load the applications data with a more efficient way (i.e. by
reproducing disk readings to minimize or eliminate the need to access the same file multiple
times, minimizing disk drive’s movements).

Application Prefetch works in a similar way, but it is detected when starting an application.
Only the first 10 seconds of activity are tracked. [1]

The file itself will contain metadata such as the executable’s name, files and directories that
the application uses during the first 10 seconds of execution, the prefetch file size, the volume
path, the serial number, the execution number, the creation time and the last execution time of
the executable [3]. Other than these elements, in a prefetch file, there is a large set of data that
contains instructions to load what the program uses most often at startup.

The Task Scheduler is the process that is responsible for analyzing track data collected by
the Prefetcher and recording files in the prefetch folder. As a result, Prefetcher will not work
properly if Task Scheduler does not start.

To further improve access time, Task Scheduler calls Windows Disk Defragmentation every
three days. When the machine is idle, the lists of files and folders reported during the boot
process and application launches. [1] The end result is saved in the Layout.ini file in the
Prefetch folder and then passed to Windows Disk Defragmentation by rearranging these files
into successive locations on the physical hard disk.

2.1 Forensics Value

The forensic value of the contents of this file is immediately obvious. From the file metadata
an examiner can identify that cmd.exe was executed, the location, and frequency. These
artifacts might answer the “what” and the “where” of an incident. The number of times executed
will increment each time the application is run. The timestamp information indicates when the
first time the application was executed and when it was last accessed, or executed. This might
answer the “when” some activity of interest occurred. Any file that is configured to automatically
“autostart” will not register a prefetch file when it is created. If the prefetch file is deleted from
the prefetch folder, both the timestamps and the number of times executed will be reset.[4]

Prefetch File Manipulation 5

2.2 Paremeters

A registry key exists to parameterize The Prefetcher. The setting parameters are stored in the
Windows Registry at HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management\PrefetchParameters. The EnablePrefetcher value can be set as
follows: [3]

0 = Disabled

1 = Application prefetching enabled

2 = Boot prefetching enabled (default on Windows Server 2003 only)

3 = Application and Boot prefetching enabled (default)

Prefetch File Manipulation 6

Illustration 1: Prefetch File Hex Dump

Μεταπτυχιακή Διατριβή Βουβούτσης Βασίλης
2.3 Prefetch files

Prefetch files are stored in the directory: %SystemRoot%\Prefetch. In the same folder are also
stored the following prefetch file types:

• * .pf, Prefetch files,

• Ag * .db and Ag * .db.trx, SuperFetch files,[5]

• Layout.ini,

• PfPre _ * .db,

• PfSvPerfStats.bin

A Prefetch file contains the name of the application that it represents, a slash separator (-),
an eight character hash value of the absolute path of the applications executable and a “.pf”
extension. The file names must be represented by higher case letters, except the file extension.
For example, a prefetch file name for the Calc program should be: CALC.EXE-4F89AB0C.pf. If
the application is executed by two different paths, (e.g. C:\calc.exe and C:\Windows\System32\
calc.exe), two different prefetch files will be generated in the prefetch folder. If an NTFS
alternate data stream (ADS) is executed then the resulting file will also generate a prefetch file
entry. Acording to MSDN, up to 128 prefetch files can be stored in the prefetch folder.

A PF consist of the following distinguishable elements:

• file header

• file metrics array

• trace chains array

• filename strings

• trailing data

◦ volume information

◦ file references

◦ directory names

◦ trailing data

2.4 Windows 10 prefetch files

Windows 10 prefetch files, have a different file format than the previous windows versions. No
internal strings or text is available.[6] Since Windows 10, the information are stored in a
compressed form in a MAM file similar to SuperFetch.[7]

2.4.1 MAM file format

A compressed Prefetch file consist of the following distinct elements:[7]

• File Header,

• Compressed Blocks,

• Block Terminator, (2 x 0-byte values)

The compression algorithm is Microsoft XPRESS Huffman (LZXPRESS). This compression
algorithm is different than Microsoft XPRESS (LZ77+DIRECT2).

2.4.2 File Header

The file header has a size of 8 bytes. Three bytes with the signature 0x4d4d41 (MAM), one byte
that identifies the compression algorithm used (0x4 in our case) [8] and a potential presence of
a checksum. The next 4 bytes are the uncompressed size of the original buffer. The remaining
data is what must be decompressed with RtlDecompressBufferEx.

Prefetch File Manipulation 7

2.5 Compression Engines

Windows NT comes with multiple built-in compression methods which are provided by the
RtlCompressBuffer[9] and RtlDecompressBuffer functions:

• COMPRESSION_FORMAT_LZNT1, LZNT1 compression (LZ77)

• COMPRESSION_FORMAT_XPRESS, LZXPRESS compression (LZ77 + DIRECT2).

• COMPRESSION_FORMAT_XPRESS_HUFF,LZXPRESS with Huffman compression.

2.5.1 LZXPRESS Huffman

The LZXPRESS Huffman compressed data consists of multiple chunks. Each chunk consists
of:[10][11]

• a prefix code table

• Huffmann encoded bit stream

LZXPRESS Huffman prefix code table contains 512 x 4-bit prefix codes where the 4 LSB (Least
Significant Bit) of byte 0 contain the prefix code for symbol 0, the 4 MSB (Most Significant Bit)
the prefix code for symbol 1, etc. Where prefix codes:

• 0 - 255 represent their corresponding byte values;

• 256 - 511 represent compression tuples (size, offset).

2.5.2 Compression API

The RtlCompressBuffer function compresses a buffer and can be used by a file system driver
to facilitate the implementation of file compression.[12] A bitmask is given as input that specifies
the compression format and engine type. This parameter must be set to a valid bit-wise OR
combination of one format type and one engine type.

Compression Format Signature

COMPRESSION_FORMAT_NONE 0x0000

COMPRESSION_FORMAT_DEFAULT 0x0001

COMPRESSION_FORMAT_LZNT1 0x0002

COMPRESSION_FORMAT_XPRESS 0x0003

COMPRESSION_FORMAT_XPRESS_HUFF 0x0004

Table 1: Compression Algorithm Signature

Compression_Engine Signature

COMPRESSION_ENGINE_STANDARD 0x0000

COMPRESSION_ENGINE_MAXIMUM 0x0100

COMPRESSION_ENGINE_HIBER 0x0200

Table 2: Compression Algorithm Signature

The RtlCompressBuffer function takes as input an uncompressed buffer and produces its
compressed equivalent provided that the compressed data fits within the specified destination
buffer. To determine the correct buffer size for the WorkSpace parameter, the
RtlGetCompressionWorkSpaceSize function is used. As a Windows API, the functions
included can also be used by a third party application.

Prefetch File Manipulation 8

Μεταπτυχιακή Διατριβή Βουβούτσης Βασίλης
2.5.3 Layout.ini

Starting from Windows XP, the prefetch folder, contains not only prefetch files, but also the
layout.ini file. The layout.ini file is a list of the contents of the prefetch files, specifically the
NTFS/MFT log sections that contain a list of files and their logical locations or paths. The entries
in the layout.ini file are organized in the order in which they are loaded. The entries in the
layout.ini file will then be moved or “reallocated” to a contiguous section of the hard drive, which
will result in a faster recall time by the operating system. The process of moving the physical
location of the files located in the layout.ini file occurs about every seventy-two hours when the
Task Scheduler executes the defragmenter. The focus of the defragmenter is only on the
contents of the layout.ini file and not the whole disk drive. Since these files are now physically
located contiguously on the drive they will be read much faster.

3 Standby Memory

The Standby list, contains pages that have been removed from process working sets but are still
linked to their respective working sets. The Standby list is essentially a cache. However,
memory pages in the Standby list are prioritized in a range of 0-7, with 7 being the highest. A
page related to a high-priority process will receive a high-priority level in the Standby list.[13]

For example, processes that are Shareable will be a high priority and pages associated with
these Shareable processes will have the highest priority in the Standby list.If a process needs a
page that is associated with the process and that page is now in the Standby list, the memory
manager immediately returns the page to that process' working set. However, all pages on the
Standby list are available for memory allocation requests from any process. When a process
requests additional memory and there is not enough memory in the Free list, the memory
manager checks the page's priority and will take a page with a low priority from the Standby list,
initialize it, and allocate it to that process.

Prefetch File Manipulation 9

4 Compress Procedure

4.1 Decompress

For decompression of the Compressed prefetch files we used Windows-Prefetch-Parser. A
Python script created to parse Windows Prefetch files: Supports XP - Windows 10 Prefetch files,
created by Adam Witt a.k.a. PoorBillionaire.[14] It uses a modified version of Francesco
Picasso’s decompression script.[15] I pinpoint that you can't use on other OSes different from
Windows, since it uses native API calls. Moreover you need Windows 8.1 at least, since the
RtlDecompressBufferEx was introduced starting from that OS version.

4.2 Using the compression API

If an API exists that can decompress the prefetch file using the Xpress Huffman, another one
should exist that can compress the contents of the prefetch file in order to for the prefetch files
to exist. We used the RtlCompressBuffer function to re-compress compressed buffer we were
provided by RltDecompressBufferEx and then modified.[16]

Error Codes Signature

STATUS_SUCCESS 0x00000000

STATUS_BUFFER_ALL_ZEROS 0x00000117

STATUS_INVALID_PARAMETER 0xC000000D

STATUS_UNSUPPORTED_COMPRESSION 0xC000025F

STATUS_NOT_SUPPORTED 0xC00000BB

STATUS_BUFFER_TOO_SMALL 0xC0000023

Table 3: Compression Algorithm Signature

We used “ctypes”, witch is a foreign function library for Python, to access the compression
engine. It provides C compatible data types, and allows calling functions in DLLs or shared
libraries. It can be used to wrap these libraries in pure Python. With ctypes we accessed
windll.ntdll.RtlCompressBuffer, witch is the compression library we used, and
windll.ntdll.RtlGetCompressionWorkSpaceSize, to determine the correct size of the WorkSpace
buffer. The RtlCompressBuffer and RtlDecompressFragmentfunctions require an appropriately
sized work space buffer to compress and decompress successfully. The WorkSpace parameter
of the RtlCompressBuffer function must point to an adequately sized work space buffer. The
CompressBufferWorkSpaceSize parameter of the RtlGetCompressionWorkSpaceSize provides
this size.

We created the required buffers and passed them to the function RtlCompressBuffer. For the
destination buffer, we provided a buffer with the size of the Uncompressed data. After the
successful compression we can remove the empty bites at the end of the buffer by cutting the
byte array with respect to the final compressed sized return by the function.

Prefetch File Manipulation 10

Μεταπτυχιακή Διατριβή Βουβούτσης Βασίλης
ntstatus = RtlCompressBuffer(

USHORT(calgo), # CompressionFormatAndEngine,
ctypes.byref(ntUnCompressed), # Uncompressed Buffer
ULONG(uncompressed_size), # Uncompressed Buffer Size
ctypes.byref(ntCompressed), # Compressed Buffer
ULONG(uncompressed_size), # Compressed Buffer Size
ULONG(chunk_size), # Uncompressed Chunk Size
ctypes.byref(ntFinalCompressedSize), # Final Compressed Size
ctypes.byref(ntWorkspace) # Work Space Size
)

After some trial and error we received a successful compression status code. We compared
the initial compressed buffer with the compressed buffer we generated as a first validation. In
order for the buffer to successfully be consumed by the system, the prefetch file header should
also be added.

4.3 Generating the Header

The uncompressed prefetch file header, is a structure of 84 bytes and consists of the format
version (witch in our case, for windows 10 is the value of 30), the “SCCA” signature, the file
size, the executable file name (as UTF-16 little-endian string with end-of-string character) and
the Prefetch hash, witch value should correspond with the hash in the prefetch filename. A
couple of undistinguished values and flags are required, adding up to the size of 84 bytes.

The prefetch hash can be calculated with the SCCA 2008 hash function. [3] In order to hash
the executable filename, the full path of the executable has to be determined and then
converted into an upper-case Windows device path, e.g. '\DEVICE\
HARDDISKVOLUME{volume id}{split-ed drive path}'. Before the hash function is applied, the
string must be converted into a UTF-16 little endian stream without a BOM (byte-order-mark)
nor an end-of-string character. In short, comand we end up was:

file_for_hash = f'\DEVICE\HARDDISKVOLUME{volume_id}{path}'.upper().encode('utf-16-
le').decode()

4.4 Manipulating the prefetch file

Till this point we were able to re-compress an uncompressed windows 10 prefetch file and
reconstruct and attach the file header. With the prefetch data as plain text, we can edit its
internals as we want. We can grub a random DLL file, rename it and then make sure it’s path
and filename is included in the prefetch file.

First we used WinPrefetchView by NirSoft, to verify if our new prefetch file can be parsed by
an other application. Our target executable was 7ZFM.exe. We modified one of it’s entries so it
will reflect to a specific path/file. The reconstructed prefetch file was compressed with
LZXPRESS Huffman algorithm and the header was added. WinPrefetchView was able to parse
the file and recognize the entry we modified. The next step was to verify that Windows 10
system could successfully execute/load the prefetch file. We rebooted the machine and
executed RamMap. Our newly modified DLL could be found Mapped in memory, listed as
Standby.

Prefetch File Manipulation 11

Illustration 2: WinPrefetchView view of 7ZIP prefetch

Prefetch File Manipulation 12

Illustration 4: WinPrefetchView of 7ZIP prefetch detailed view, we can see that our new entry
is included in the prefetch file.

Illustration 5: RamMap (Sysinternals) view of the shell66.dll. We can see that our file has
succesfully loaded into memory.

Illustration 3: New DLL in folder (shell66.dll)

Μεταπτυχιακή Διατριβή Βουβούτσης Βασίλης

Prefetch File Manipulation 13

Illustration 6: RamMaop (Sysinternals), shell66.dll detailed view, loaded into standby
memory

5 Scenarios

Eliminating the need for the use of external libraries is a nice to have for an attacker. Prefetch
files are an artifact of an executable file engaging with its Eco-system and not a direct artifact of
the executable. As such, if the executable is deleted, the Prefetch file persists.

Prefetch as far as we have understood so far has no control mechanisms, so the only way to
control a fake entry is to MACE timestamps of NTFS which from what we noticed can be
modified with Timestomp[17]. Timestomp's goal is to allow for the deletion or modification of
timestamp-related information on files, such as MACE values. By successfully modifying
timestamp-related information on prefetch files, the attacker can greatly decrease the possibility
to be discovered.

5.1 Fake Entries

Most analysts are familiar with Prefetch files and how they can be useful to an examination.
Prefetch files have a good bit of embedded metadata, and can be very useful during analysis.
For example, you may look at the listing of files and something unusual may immediately jump
out at you. If you include Prefetch file metadata in a timeline of a system, you should see a file
access time for the executable "near" to when a Prefetch file for that executable is created or
updated. If that's not the case, you may have an issue of time manipulation, or the original
executable may have been deleted.

Prefetch files also contain a number of strings, which are file names and full paths that point
to modules used or accessed by the executable, and even some other files accessed by the
executable. An attacker now is more than able to manipulate all this entries for his advantage.

Lets see for example a malicious application. The attacker can modify its execution times in
order to hide the frequencies the application is used and delete those entries that pinpoint to
unnatural file locations. For example, a malicious application can monitor its prefetch files and
remove entries from the file list that are associated with its malicious activities. Additional we
can replace file paths to pin point to a different file in a different location or even an non-existing
file. When the correct file is required by the application, the system will first try to load it from the
memory (as a prefetched entry) and upon failure it will loaded as normal from the disk drive, so
missing or fake entries won’t disturb the normal execution of the application.

Prefetch File Manipulation 14

Illustration 7: Adding a fake entry

Μεταπτυχιακή Διατριβή Βουβούτσης Βασίλης

It should be noted that an application will, in most times, have dependencies located in the
applications file path or in the system’s path. So by linking file entries from the prefetch file to
unrelated locations it will most probably alert the forensic investigator.

5.2 Storing Information

The prefetch file specification is based on earlier work on the format and was complimented by
reverse engineering. No official documentation currently exist for this type of files. In this files,
many unknown buffers exist than mostly contain empty values. An attacker can use these small
buffers, usually with a fragmented size of less than a kilobyte, to store minimal information such
as flags or small encryption keys. More over, the attacker can spread this information to multiple
prefetch files in order to increase the amount of information he can store.

Let’s imagine a situation where the attacker want’s to hide a cryptographic key somewhere
inside the windows Operating System. Prefetch files have a number of Buffers that store
Uknown to this day values or even Empty values. These buffers are ranging from 8 bytes to 88
bytes. The maximum amount of bytes that can be stored it is possible to be able to be increased
due to the structure of the prefetch file. All the prefetch tables and data entries have an offset
relationship with other entries. So an attacker can probably add additional storage space
between the prefetch entries just by increasing the prefetch entries offset accordingly from the
corresponding tables.

From a forensics examiner’s perspective, due to the undocumented nature of the prefetch
file, it will require a great amount of effort just to even notice the information stored. No prefetch
file examine utility will provide output with respect to these Unknown buffers, and even if a utility
can provide the output we are not yet in position to recognize the maliciously stored information
us we can’t known what all of these buffers should normally store.

5.3 Loading into Memory

As we already know, files addressed in a prefetch file will be loaded in the standby memory for
later use. Although it haven’t been tested, an attacker can use the prefetch files to load
malicious libraries into memory so he can use them later. Ideally, a program can parse the
memory, like RamMap, to detect a malicious library loaded from the prefetch to the standby
memory and execute them.

Let’s review a scenario where after the initial compromise, the malicious application can
download a malicious PE file (The Portable Executable (PE) format is a file format for
executables, object code, DLLs, FON Font files, and others used in 32-bit and 64-bit versions of
Windows operating systems.) that will be the malware. The downloader will check the registry if
the prefetcher key is enabled and only then the prefetch file can be modified. We must also
make an entry the layout.ini since it contains a list of all prefetched files. We can also examine

Prefetch File Manipulation 15

Illustration 8: Fake Prefetch Entry to foreign file location

witch of the prefetch files belong to an application in the startup list or to a service to ensure that
the malicious file will be loading into memory persistently.

We now have a malicious PE file loaded into standby memory. When an a forensic
investigator tries to analyze the system, he will be able to trace that the malicious application is
indeed loaded into the standby memory by the prefetcher. He will also be able to follow its path
and examine the application itself. But it would be extremely unlikely to find the 3 rd party
malicious application that loads the PE file from memory.

Prefetch File Manipulation 16

Μεταπτυχιακή Διατριβή Βουβούτσης Βασίλης

6 Results

Since the attackers now have become intelligent, they even remove all these prefetch files from
the system before leaving the system to remove any trail. Although prefetch files was mainly
used for forensics investigations, there is clearly a possibility that an attacker can easily hide the
activity of a malicious application by removing related entries from the prefetch files by
decompressing them, modified them and re-compress them, all with the help of windows
compression and decompression APIs.

The content of each prefetch file provides rich information about the applications that were
executed. There are two main sections of the prefetch file. The top, or first section, of the
prefetch file contains the metadata of the file. The metadata includes the file name, file location,
associated timestamps (file created, last accessed, and file modified), and the number of times
the file was executed. The attacker is able to obscure his activities by modifying the
aforementioned data. The modification can take place in any part of the file and the information
that contains. Execution counts and execution times in addition to the volume information are
critical for a forensic investigation but now an investigator has to double check their integrity by
taking into account creation and modification time. More over, prefetch files can be used to load
malicious code into memory.

Prefetch files do not include mechanism that can prevent modification as their structural
integrity is not critical for the operating system’s operability. They are only designed to help
boost operating systems and applications read times, but as it seems, not only they can not be
trusted for an incident investigation but they can also be used to increase the attack surface of
the operating system.

In addition to Prefetcher, Superfetcher, follows a similar architecture for the Superfetch
(Ag*.db) file storage. Both files have the same MAM signature and are compressed with the
same algorithm. Due to the fact that superfetch files have introduced later in the Windows
operating system architecture design, haven’t yet been decoded sufficiently. It is possible that
can also be manipulated the same way we did with Prefetch files.

Prefetch files are good source of evidence to determine the existence and execution of
suspicious executable on a system. However, it is just one of the many Windows forensic
artifacts that can help investigators understand what a user was doing on a system at a specific
point in time. As a best practice, all Windows forensic artifacts should be examined and pieced
together to see the bigger picture of an incident because as it turned out it one can no longer
trust their integrity as they can be modified such as prefetch files generated from older windows
versions.

Prefetch File Manipulation 17

7 Python Source Code[18]

7.1 Python Imports

import sys
import ctypes
import enum
import binascii
import struct

7.2 Enumeration Classes

class CompAlgo(enum.Enum):
COMPRESSION_FORMAT_NONE = 0x0000
COMPRESSION_FORMAT_DEFAULT = 0x0001
COMPRESSION_FORMAT_LZNT1 = 0x0002
COMPRESSION_FORMAT_XPRESS = 0x0003
COMPRESSION_FORMAT_XPRESS_HUFF = 0x0004

class CompEngi(enum.Enum):
COMPRESSION_ENGINE_STANDARD = 0x0000
COMPRESSION_ENGINE_MAXIMUM = 0x0100
COMPRESSION_ENGINE_HIBER = 0x0200

class ErrorCodes(enum.Enum):
STATUS_SUCCESS = 0x00000000
STATUS_BUFFER_ALL_ZEROS = 0x00000117
STATUS_INVALID_PARAMETER = 0xC000000D
STATUS_UNSUPPORTED_COMPRESSION = 0xC000025F
STATUS_NOT_SUPPORTED = 0xC00000BB
STATUS_BUFFER_TOO_SMALL = 0xC0000023

7.3 Helper Function

def tohex(val, nbits):
"""Utility to convert (signed) integer to hex."""
return hex((val + (1 << nbits)) % (1 << nbits))

7.4 Compression Method Function

def compress(

algo: CompAlgo, uncompressed, engine: CompEngi =
CompEngi.COMPRESSION_ENGINE_STANDARD, chunk_size: int = 4096

):

calgo = algo.value | engine.value

NULL = ctypes.POINTER(ctypes.c_uint)()
SIZE_T = ctypes.c_uint
DWORD = ctypes.c_uint32
USHORT = ctypes.c_uint16
UCHAR = ctypes.c_ubyte

Prefetch File Manipulation 18

Μεταπτυχιακή Διατριβή Βουβούτσης Βασίλης
ULONG = ctypes.c_uint32

You must have at least Windows 8, or it should fail.
Try:

RtlCompressBuffer = ctypes.windll.ntdll.RtlCompressBuffer
except AttributeError as e:

sys.exit("[-] {e}\n"
"[-] Windows 8+ required for this script to decompress Win10 Prefetch files")

RtlGetCompressionWorkSpaceSize = \
ctypes.windll.ntdll.RtlGetCompressionWorkSpaceSize

ntCompressBufferWorkSpaceSize = ULONG()
ntCompressFragmentWorkSpaceSize = ULONG()

ntstatus = RtlGetCompressionWorkSpaceSize(USHORT(calgo),
ctypes.byref(ntCompressBufferWorkSpaceSize),
ctypes.byref(ntCompressFragmentWorkSpaceSize))

if ntstatus:
raise EnvironmentError(f'Cannot get workspace size, err: '

f'{tohex(ntstatus, 32)}:{ErrorCodes(tohex(ntstatus, 32)).name}')

uncompressed_size = len(uncompressed)

ntUnCompressed = (UCHAR * uncompressed_size).from_buffer_copy(uncompressed)
ntCompressed = (UCHAR * uncompressed_size)()
ntFinalCompressedSize = ULONG()
ntWorkspace = (UCHAR * ntCompressBufferWorkSpaceSize.value)()

ntstatus = RtlCompressBuffer(
USHORT(calgo), # CompressionFormatAndEngine,
ctypes.byref(ntUnCompressed), # Uncompressed Buffer
ULONG(uncompressed_size), # Uncompressed Buffer Size
ctypes.byref(ntCompressed), # Compressed Buffer
ULONG(uncompressed_size), # Compressed Buffer Size
ULONG(chunk_size), # Uncompressed Chunk Size
ctypes.byref(ntFinalCompressedSize), # Final Compressed Size
ctypes.byref(ntWorkspace) # Work Space Size

)
if ntstatus:

raise ValueError(f'Cannot Compress Buffer, err: '
f'{tohex(ntstatus, 32)}:{ErrorCodes(tohex(ntstatus, 32)).name}')

compressed = bytearray(ntCompressed)[:ntFinalCompressedSize.value]

return algo, compressed

7.5 Header Calculation Function

def header(algo, uncompressed):
if algo is 4:

sig = 0x44d414d
header = struct.pack('<LL', sig, len(uncompressed))
return header

Prefetch File Manipulation 19

7.6 SSCA 2008 Hash Function

def ssca_2008_hash_function(filename):
hash_value = 314159
filename_index = 0
filename_length = len(filename)

while filename_index + 8 < filename_length:
character_value = ord(filename[filename_index + 1]) * 37
character_value += ord(filename[filename_index + 2])
character_value *= 37
character_value += ord(filename[filename_index + 3])
character_value *= 37
character_value += ord(filename[filename_index + 4])
character_value *= 37
character_value += ord(filename[filename_index + 5])
character_value *= 37
character_value += ord(filename[filename_index + 6])
character_value *= 37
character_value += ord(filename[filename_index]) * 442596621
character_value += ord(filename[filename_index + 7])

hash_value = ((character_value - (hash_value * 803794207)) % 0x100000000)

filename_index += 8

while filename_index < filename_length:
hash_value = (((37 * hash_value) + ord(filename[filename_index])) %

0x100000000)

filename_index += 1

return hash_value

Prefetch File Manipulation 20

Μεταπτυχιακή Διατριβή Βουβούτσης Βασίλης

8 Sample Prefetch File Structure Tables

8.1 File header

Offset Size Description

0 4 Signature
0x4d, 0x41, 0x4d, 0x04 (MAM\x04)

4 4 Total Uncompressed Data Size

8.2 Compressed Data Block

Offset Size Description

0 Var LZXPRESS Huffman compressed data

8.3 Uncompressed Data Block

8.3.1 File Header

Offset Size Description

0 4 Format Version (Win 10 is 30)

4 4 Signature (SCCA)

8 4 Unknown

12 4 File Size

16 60 Executable Filename

76 4 Prefetch Hash

80 4 Unknown

8.3.2 File information

Offset Size Description

0 4 File Metrics Array Offset (0x00000130)

4 4 Number of file metrics entries

8 4 Trace chains array offset

12 4 Number of trace chains array entries

16 4 Filename strings offset

20 4 Filename strings size

24 4 Volumes information offset

28 4 Number of Volumes

Prefetch File Manipulation 21

32 4 Volumes information size

36 8 Unknown

44 64 Last run times

108 16 Unknown

124 4 Run count

128 4 Unknown (Seen: 1, 2, 7)

132 4 Unknown (Seen: 0, 3)

136 88 Unknown

8.3.3 File metrics array entry

Offset Size Description

0 4 Unknown

4 4 Unknown

8 4 Unknown

12 4 Filename string offset

16 4 Filename string number of characters

20 4 Unknown

24 4 NTFS file reference

Table 4: Contains metrics about the files loaded by the executable

8.4 Trace chains array

Offset Size Description

0 4 Next array entry index

4 4 Total block load count

8 1 Unknown

9 1 Unknown

10 2 Unknown

Table 5: A trace chain is similar to a File Allocation Table (FAT) chain where the array entries
form chains and -1 (0xffffffff) is used to mark the end-of-chain. The chains in the trace chains
array correspond with the entries in the file metrics array, meaning the first trace chain
relates to the first file metrics array entry.

Prefetch File Manipulation 22

Μεταπτυχιακή Διατριβή Βουβούτσης Βασίλης

Bibliography
1: Russinovich, Mark; David Solomon, Microsoft Windows Internals (4th ed.), 2005
2: Zwiegincew; Arthur (Kirkland, WA), Walsh; James E. (Kirkland, WA), Pre-fetching
of pages prior to a hard page fault sequence , October 14, 2003
3: Joachim Metz, Prefetch, 2018, http://www.forensicswiki.org/wiki/Prefetch
4: Mark Wade, Decoding Prefetch Files for Forensic Purposes, 12/08/2010,
https://www.forensicmag.com/article/2010/12/decoding-prefetch-files-forensic-
purposes-part-1
5: Joachim Metz, Windows SuperFetch database format, 2016,
6: Francesco Picasso, A first look at Windows 10 prefetch files, 2015,
7: Joachim Metz, Windows Prefetch File (PF) format, 2019,
8: Microsoft, winsdk-10, 2017,
9: MSDN, RtlDecompressBuffer function, 2018,
10: Microsoft Docs, Procedures, 2019,
11: Joachim Metz, Windows NT compression methods, 2016,
12: MSDN, RtlCompressBuffer function, 2018,
13: Greg Shultz, Investigate memory usage with Windows 7 Resource Monitor, 2010,
14: Adam Witt, Windows-Prefetch-Parser, 2016
15: Francesco Picasso, w10pfdecomp.py, 2015
16: Microsoft, RtlCompressBuffer function, 04/16/2018
17: James C. Foster and Vincent Liu, Blackhat briefings 2005, 2005
18: Vasileios Vouvoutsis, Prefetch Ninja, 2019

Prefetch File Manipulation 23

