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Abstract: In this study, we analyze the equilibrium prices of securities in thin

financial markets. We define what a thin market is and focus on the differences to

competitive markets. Every agent is characterized by a mean variance utility function

and risky endowments, that determine the way she acts in the risk sharing allocation

with other agents. The considered market structure that we analyze is a complete

one, where agents co-design the securities they trade according to their hedging needs.

The allocation and prices of securities are an outcome of a game played by all agents

in a form of a pure-strategy Nash equilibrium. We introduce a discrete time dynamic

model and dedicate the analysis to bilateral transactions. The results of the so-called

re-trading procedure depends on agents for-looking of future rounds. More precisely,

behaving myopically or not, results in different outcomes of allocation and prices. In

the first case, equilibrium converges to the Pareto optimal risk sharing allocation, while

in the latter they stay at an ineffective equilibrium. Also, for some agent, gains may

be higher than the optimal allocation of risk sharing. Finally, we examine the case of

the evolving course of re-trading, including endogenously given transaction costs for

each round.

Keywords: thin financial markets, Nash equilibrium, re-trading, risk sharing al-

location
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Περίλιψη: Στη παρούσα εργασία, αναλύουμε τις τιμές ισορροπίας αξιογράφων (συμ-

βόλαια) σε ρηχές χρηματοοικονομικές αγορές. Εισάγουμε τις έννοιες και το πλαίσιο των

ρηχών αγορών και επικεντρωνόμαστε στις διαφορές που έχουν με τις ανταγωνιστικές

αγορές. Οι πάικτες στην αγορά αυτή χαρακτηρίζονται από συναρτήσεις χρησιμότητας

(τετραγωνικές μορφές) που αντικατοπτρίζουν τις προτημίσεις τους και το χαρτοφυλάκιο

τους είναι μια τυχαία μεταβλητή. ΄Ετσι, οι παίκτες ενεργούν στην αγορά με βάση τον κίν-

δυνο στον οποίο έχουν εκτεθεί και θέλουν αμφότεροι να τον μετριάσοουν. Η δομή της

αγοράς που αναλύουμε είναι μια πλήρης αγορά, όπου οι παίκτες σχεδιάζουν από κοινού

τα συμβόλαια που διαπραγματεύονται σύμφωνα με τις ανάγκες των κινδύνων που θέλουν

να ανταλλάξουν. Ακόμη, η κατανομή και οι τιμές των συμβολαίων είναι αποτέλεσμα ενός

παιγνίου υπό την έννοια μιας καθαρής στρατηγικής ισορροπίας Nash. Εμείς παρουσι-

άζουμε ένα διακτριτού χρόνου δυναμικτό υπόδειγμα και επικεντρωνόμαστε στις διμερείς

συναλλαγές. Τα αποτελέσματα της διαδικασίας πολλών συναλλαγών (re-trading) εξαρ-

τάται από την οξυδέρκεια των παικτών για μελλοντικές συναλλαγές. Συγκεκριμένα, είτε

οι παίκτες συμπεριφέρονται μυωπικά είτε όχι, οδηγούμαστε σε διαφορετικά αποτελέσμα-

τα της κατανομής κινδύνου και των τιμών των συμβοαλίαων. Στην πρώτη περίπτωση, η

ισορροπία συγκλίνει προς τη Pareto βέλτιστη κατανομή του κινδύνου, ενώ στη τελευταία

αυτά παραμένουν σε μια ισορροπία Nash. Επιπλέον, η χρησιμότητα στην Ναση ισορροπία

για κάποιο παίκτη μπορεί να είναι υψηλότερη από τη βέλτιστη κατανομή του καταμερισμού

κινδύνου. Τέλος, εξετάζουμε την πορεία της ανωτέρω διαδικασίας, συμπεριλαμβανομένου

του κόστους συναλλαγών (ενδογενώς δεδομένο) για κάθε γύρο.
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1 Introduction to thin markets

1.1 The definition of thin financial markets

In order to set simply what a thin financial (OTC) market is we should keep in mind

that it stands as the opposite of a liquid market. Thin markets (also called narrow

markets) have small number of participants, low number of goods, commodities or

financial products suppliers and users. Due to the small transactions either a single

order on a financial security can affect the price significantly. The price volatility shifts

in a very dramatic way and the spread between buyers and sellers is generally wider,

as a consequence of the low trading volume and the few participants in the market.

The problem, that the literature deals with in thin markets (as this study does), is

about agents strategic behavior and the liquidity issues it causes.

1.2 The price impact in thin markets

The main feature that describes the frame of a thin market is price impact of the

traders. More precisely, it is estimated that more than 70% of the daily trade volume

on the NYSE1 is traded by pension funds, mutual funds, money managers, insurance

companies, investment banks, commercial trusts, endowment funds, hedge funds, and

some hedge fund investors, namely the institutional investors. See the empirical studies

of Chan and Lakonishok [(1993, 1995)], and Keim and Madhavan [(1995, 1996, 1998)].

Also, according to these studies, only 20% of the buying and selling orders of the

elephants2 are completed within one day. In contrast to this, 50% of a typical elephant

trading orders are implemented after four days.

Intuitively, taking the position of the broker or a dealer, imagine that the trad-

ing orders look like small windows-commands. Based on the aforementioned studies,

these orders of the large investors are not taking place at once, despite that they are

executed sequencially and divided into smaller pieces (windows). This happens for the

moderation of the price impact, which may occur due to the size of the investor who

gives the orders in a transaction on the NYSE. In addition to this, transaction costs

that are related to the price impact can overwhelm the explicit costs of trade, such as

commission, order processing and brokerage fees. That is why institutional investors

are referred as elephant traders and the way they trade as iceberg orders. It is very

important to mention that due to the technological boom the transactions process has

been automated the last thirty years. Therefore, to best estimate this price effect,

novel models are developed (usually called market impact models).

1New York Stock Exchange.
2We call elephants the big guys on the market who can move large blocks of shares and have

appalling influence on the stock market’s movements.
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1.2 The price impact in thin markets

Other significant factors that affect the price of a security are the exogenous supply

or demand liquidity shocks (anticipated or unanticipated) such as an IPO (initial public

offering), issuance of new debt, inclusions of new stock in the stock market or index

weight changes. The prices overreaction passes through temporary and permanent

effects and thus makes difficult to estimate the fundamental value3 of a security. For

instance, if some big investor orders high amount of XYZ stock and keep it to her

portfolio, the price will move steeply upward before it will shift its long-run level

(new equilibrium price) in the following period. This permanent and transitory price

deviations are modeled in Rostek and Weretka [(2015)], where it is shown that the

effects in exogenous shocks are divided in fundamental and liquidity effects. The

fundamental effect depicts the new equilibrium price level, which aggregately reflects

the permanent result in the value of the security in the following period. The temporary

effect reaches its peak the time that the transaction takes place4.

The frame of the Brunnermeier and Pedersen [(2005)], gives also a novel explanation

for the price overreactions. Their model is based on the Cournot oligopoly market

structure. The concept of this study responds to the prices overreaction, where a large

trader incurs shortage of liquidity and she needs to gain cash by selling an asset, that

holds in her portfolio. In the spirit of their seminal study, the long position traders

are assumed to be as the predators while the short position ones, namely those who

need to liquidate their investment position, as the preys. In other words, the predator

drains liquidity from the market, when it is necessary at maximum, while she sells

simultaneously the same asset and moves downward the price. In an afterward period,

the predator takes long position in the asset gaining both the asset and the cash from

the price volatility.

Remark 1. The Cournot5 model is the first duopoly model that interprets the equi-

librium in oligopolies. Specifically, Cournot inspired his model after the observa-

tion of how competitive a spring water duopoly behaved. In this model the game is

played among the firms that all produce the same-homogeneous product (not an asset).

Given that each firm can predict the other firms output strategy, it chooses a profit-

maximization strategy (best response strategy). The fundamental difference between

thin market price impact modeling and Cournot model structure is, that the latter

refers to markets of goods, where the sellers develop games by choosing as parameter

their strategies, which are about the supply of the good rather than the price.

3The fundamental value of a security in essence depicts the fair value of it under the assumptions
of market efficiency. Specifically, the investors, have the same beliefs, are well informed, thus the
value of the security equilibrium price is fair. Due to thinness of the market, the security prices may
deviate from their fundamental values since use of market power leads to price impact.

4For more information you see in Rostek and Weretka [(2015)], where an extended discussion is
stated for the transitory and permanent price effects.

5See in Varian, Hal R. [(2006)], intermediate microeconomics, a modern approach (7th ed.), pub-
lished by W. W. Norton & Company.
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1.3 How do we model thin markets?

Remark 2. The fact that thin markets present slow moving capital, because of the price

volatility, distinguishes them from the competitive capital markets and consequently, we

can not use CAPM to exact the equilibrium security price. In general, the clear message

is that big blocks of orders are managed with the so-called order break-up strategy, which

constitutes the common strategy to trade in thin markets. This strategy is illustrated

by Weretka and Rostek [(2015)] and Vayanos, in [(2001)] as the equilibrium strategy,

where all traders optimizing dynamically. Hence, the price impact can be moderated.

1.3 How do we model thin markets?

Modeling in thin markets is separated in three different categories: information asym-

metry or private information models, inventory effects and non-equilibrium mecha-

nisms. The topics that are listed in thin market modeling varying among concepts

such as market power effects6, predatory trading7 and market manipulation8, which

explains the price behavior of the securities. Below we present each category with

typical references of the related literature.

(a) Information asymmetry or private information models remain the basic category

of thin market modeling with plenty of literature such as Glosten and Milgrom

[(1985)], Kyle [(1985, 1989)], Easley and O’Hara [(1987)], Back [(1992)], Foster and

Viswanathan [(1996)], Holden and Subrahmanyam [(1996)]. These models provide

price overreaction explanation through the signaling (or expectations) channel.

More precisely, the informed traders through a purchase or sale order give the

signal (or shape expectations) to the rest of the participants to move in the same

direction. This leads to price volatility of a security and the value of an asset

reduces or increases dramatically in dependence with the order that is given (sale or

purchase respectively). However, information asymmetry contributes partially in

the understanding of price impact, while other factors such as investors preferences,

6Someone who has the knowledge that she has price impact on a security in the market is said
to own market power. She can affect the equilibrium price, even if her size as an agent is small.
For instance, information asymmetry gives market power and someone can use it to gain profits.
Similarly, the government with the tax rate system that is applied can affect the price of a good or a
financial product.

7It differs from market power and as we have already mentioned the predator exploits the needs
of someone who wants to liquidate position. For example, we can thought about predatory trading
as the exact opposite concept of fierce sale. Namely, recalling the Lehman Brother collapse period
each investor had the need to get rid of whatever security was related to Lehman. So the predators
knew that, and applied their strategies to take advantage of the others needs. Also, you can see the
LTCM collapse case on September 23 in1998, which is characterized as a predatory trading looks like
arbitrage, it is not since the predator strategies are risky.

8Someone who uses her market power to make price impact of a security through strategic choices
is defined to apply market manipulation. However, the use of this term is more general and in order
to understand it better simply suppose the cartels, namely it is something like a cooperative game
strategy on behalf of a small group of people who control the selling prices of their goods to make
profit maximization.
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equally influence the price volatility and thus, they are developed more forcefully

inventory models.

(b) Inventory effects (our study is based in such a model) are also argued by nu-

merous of papers such as Ho and Stoll [(1981)] Grossman and Miller [(1988)],

Vayanos [(2001)], Attari, Mello and Ruckes [(2005)], Brunnermeier and Pedersen

[(2005)], Pritsker [(2005)], DeMarzo and Urošević [(2006)] extended by Urošević.

In such models, information asymmetry is combined with the portfolio analysis

and constitute the component of price impact. There are conditions when traders

accomplish their transactions, that can not based only in the information asymme-

try. For instance, when a company decides an IPO there are intermediaries such

as an investment bank that will buy a huge block of shares from the newly intro-

duced company to the stock market, aiming to sell them in a subsequent period

and gain a profit from the bid ask spread. Because of the market thinness if the

intermediaries face huge orders of sale or purchase for the shares from third par-

ties, they ask for minus or plus a risk premium respectively. Given that, the third

parties behave in a risk averse way and will hold the shares in their portfolio the

intermediaries (according to price shifts) ask for this premium as a compensation

for the investment risk they undertake from the IPO.

This type of models are developed under the setting and fit in both game theoretic

and general equilibrium. This means that we can make an instant comparison

between strategic models (Nash equilibrium) with the competitive (non-strategic)

ones.

(c) Non-equilibrium mechanisms is the last category of novel papers such as Bertsimas

and Lo [(1998)], Almgren and Chriss [(2000)], Subramanian and Jarrow [(2001)],

Dubil [(2002)], Almgren [(2003)], Huberman and Stanzl [(2004)], Almgren et al.

[(2005)], Engle and Ferstenberg [(2007)] that enhance the price impact through

empirical analysis of the market dynamics.

2 Description of the basic model and its findings

In principal, the pricing in thin financial markets is the milestone that we conquer with

this investigation. Before we set its conversation goals, we argue the main assumptions

and the findings of Anthropelos [(2017)], on which we base our model. In the following

sections, we present the expansion of this model in order to succeed in pricing of

financial trade-able securities. Furthermore, we set the agents’ preferences on which

the model is built. In this point, our conversations will focus in the competitive

equilibrium price allocation among the agents.
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2.1 The mean variance preferences

2.1 The mean variance preferences

We introduce a static market model and let n be the agents, who participate in this

market, while each one posses a random endowment. Every agent is exposed to a

random risk based on her endowment and hence she tries to hedge it. Note that the

payoff, that each one gains, is discounted and measured in standard monetary units (i.e.

in dollars). Since the model is one shot, we can assume so without loss of generality.

Hereafter, we denote the endowments as random variables Ei, i ∈ {1, 2, ..., n}, that are

defined in a standard probability space (Ω,F ,P)9. Therefore,
∑n

i=1 Ei = E is denoted

to be the market endowment (aggregate endowment). Each agent’s preferences are

characterized by M-V utility function, specifically:

Ui[X] = E[X]− γiV ar[X] (2.1)

The interpretation of (2.1) is, that X stands for the random payoff, such that

X ∈ L2(Ω,F , P ), E[.] and V ar[.] stand for the expectation and the variance, while γi

denotes the agent’s risk aversion coefficient. Moreover, we result to an optimization

problem, which is known from the investment portfolio theory10 and thus, we look

for the maximum of the function (2.1) in order to solve it. With a slight abuse of

notation, the Var[.] is associated with variance-covariance matrix, since we refer to

vector spaces.

2.2 The pricing of the optimal contract in the incomplete

market setting

When we refer to the incomplete market setting, we emphasize that, the risk sharing is

completed via a given vector of standardized financial trade-able securities. We assume

that these financial trade-able securities can be any structured financial derivative.

Hereafter, we simply refer to them as contracts. Each agent can search whatever of

these contracts (securities) and take the appropriate hedging position, towards to the

needs of her endowment. The main question that we set in this problem is the following:

“Which is the best price, that the agent is going to pay on the contract according

the position that she will take?” The answer is that, the price of it, depends on the

demand of the contract related to the individual’s endowment. Thus, we consider the

following proposition, which sets the appropriate optimization problem, in order to

find the agent’s demand function. Nevertheless, we mark, that trading a given vector

9It is postulated from the probability theory, that Ω illustrates the sample space, F the σ-algebra
in order to encode the information and P is called the the subjective probability measure, which is
common for every agent.

10Supposed that each agent is rational, she tries to maximize her expected payoff E[X] and simul-
taneously minimize her risk which is denoted by the term γiV ar[X].
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2.2 The pricing of the optimal contract in the incomplete market setting

of securities is not a Pareto optimal trade, while it concludes to improve the position

of each player individually.

Supposing that C is the given vector of the contracts such that C = (C1, C2, ..., Ck) ∈
(L2)k, k ∈ N , which stands for their payoff, and a ∈ Rk denotes the position that an

agent takes on the contract. In addition, the vector p ∈ Rk, indicates the price of

the contract. The answer in the aforementioned question is the solution of the next

optimization problem:

supa∈RkUi(Ei + a · C − a · p) = supa∈Rk{Ui(Ei + a · C)− a · p} (2.2)

Since function (2.1) is quasi concave (quadratic functions), its first derivative is a

linear function, which means that we have a unique set of vectors that maximizes the

function (2.2). Thus, the maximum is the solution of the optimization problem that

gives the agent’s demand function.

Proposition 1. ∀ price vector p ∈ Rk on the contracts C, the demand function of

each agent is ζi(p) :=

[
E(C)− p

2γi
− Cov(C,Ei)

]
· V ar−1[C]

Proof. Given that p is a price vector on the contracts C we define that:

ζi(p) := arg max
a∈Rk

{Ui(Ei + a · C)− a · p}

We have that

Ui = Ui(Ei + a · C − a · p) = E(Ei + a · C − a · P )− γiV ar(Ei + a · C)⇒

⇒ Ui = E(Ei) + aE(C)− a · p− γiV ar(Ei)− γia · V ar(C) · aᵀ − 2aCov(C,E )⇒

⇒ Ui = Ui(Ei) + aE(C)− a · p− γia · V ar(C) · aᵀ − 2aCov(C,E )

The quasi concavity of the agents preferences guarantees the negative definite Hes-

sian matrix, thus the maximum is given by the zeroing of the first order partial deriva-

tive. Hence, the necessary condition of the gradient must be:

∇Ui(Ei + a · C − a · p) = 0⇒ ∂Ui
∂a

= 0⇒ E(C)− 2γia · V ar(C)− 2Cov(C,E )− p = 0⇒

⇒ a =

[
E(C)− p

2γi
− Cov(C,Ei)

]
· V ar−1[C]

or equivalently

ζi(p) :=

[
E(C)− p

2γi
− Cov(C,Ei)

]
· V ar−1[C] (2.3)

11



2.2 The pricing of the optimal contract in the incomplete market setting

Hence, the demand function, for any price of vector p, is unique for each agent

following her quadratic preferences. In the sequel, we discuss the interpretation of the

model.

Based on (2.3), we are going to interpret thoroughly the demand function. We

observe that: ζi(p) : Rk → Rk is a linear function of the price vector p ∈ Rk on the

contracts C, under the M-V preferences of the agent. We illustrate, that E(C) stands

for the vector of the expected payoff of the contracts (E(C1), E(C2), ..., E(Ck)) ∈ Rk

and for every payoff X ∈ L2, Cov(C,X) denotes the vector (Cov(Cj, X))kj=1 ∈ R
k.

It is assumed that det[V ar(C)] 6= 0, namely the contracts are uncorrelated with

each other, while for every considered vector of C the variance-covariance matrix is

non-singular. Therefore, the equation (2.3) is divided in two parts:

(a) the part
E(C)− p

2γi
· V ar−1[C], which is referred to the risk premium

(b) and the part Cov(C,Ei)V ar−1[C],which illustrates the correlation between the

trade-able securities C and the agent’s endowment.

The correlation between the contract and the endowment determines the position

that an institutional investor (agent) takes. If the Cov(C,Ei) is negative the agent

takes a long position to the contract, otherwise she takes short on the contract. In

addition, we should highlight that the endowment appears only in the intercept point

of the demand function and not in the slope. This is a crucial difference of this model

in relation to the existent literature, because the most of the models in the literature

are based on the slope of the agent’s demand function.

In completion, setting the already mentioned model as a benchmark, we explain the

way, that the risk sharing allocation is completed among the agents. Assuming that

the set of matrices An×k ⊂ Rn×Rk expresses the allocation of risk sharing among the

n-agents with k-contracts. Moreover, we simply denote as ai,j, where i∈ {1, 2, ..., n}
defines the row and j∈ {1, 2, ..., k} denotes the column of an allocation matrix A ∈
An×k respectively. If the term ai,j is negative this means that agent-i should take

a short position on the contact-j, otherwise she will take the long one (ai,j> 0). It

is assumed, that the net supply of trade-able contracts is zero, which implies that∑n
i=1 ai,j = 0, for every j∈ {1, 2, ..., k}. Hence, we sketch with a strict mathematical

definition what we call as a competitive price-allocation equilibrium.

Definition 1. We will call as a competitive price-allocation equilibrium of a given

vector of contracts C ∈(L2)k, the pair (p∗, A∗) ∈ Rk ×An×k if ζi(p
∗) = a∗ for each i∈

{1, 2, ..., n}.

Note that, that the equilibrium allocation, in the incomplete market structure,

coincides with the CAPM (see Magill and Quinzii [(1996)]). Now we are ready to give

12



2.2 The pricing of the optimal contract in the incomplete market setting

the answer to the question we mentioned in order to calculate the price, the position of

the contract and the optimal contract payoff. Considering the above, the competitive

price-allocation equilibrium is unique, because of the agent’s demand function linearity.

Proposition 2. The unique pair (p∗, A∗) ∈ Rk×An×k, which derives from the CAPM,

given a vector of contracts C is:

p∗ = E(C)− 2γCov(C,E ) (2.4)

and

a∗i = Cov(C,Co
i )V ar−1[C] (2.5)

where the optimal contract is

Co
i := λiE−i − (1− λi)Ei, (2.6)

∀i∈ {1, 2, ..., n}.

Proof. It is already known, that
∑n

i=1 ζi(p
∗) =

∑n
i=1 a

∗
i,j = 0, ∀j ∈ 1, 2, ..., k, thus:[

E(C)− p∗

2γi
− Cov(C,Ei)

]
· V ar−1[C] = 0⇒ E(C)− p∗

2γi
− Cov(C,Ei) = 0⇒

⇒ p∗ = E(C)− 2γCov(C,E )

By definition we have, that a∗i = ζi(p
∗), hence we have the following:

a∗i =

[
E(C)− p∗

2γi
− Cov(C,Ei)

]
· V ar−1[C] =

[
γ

γi
Cov(C,E )− Cov(C,Ei)

]
· V ar−1[C]⇒

⇒ a∗i = [λiCov(C,E )− Cov(C,Ei)]V ar
−1[C]⇒

⇒ a∗i = [λiCov(C,E )− λiCov(C,E ) + Cov(C,Co
i )] · V ar−1[C] = Cov(C,Co

i ) · V ar−1[C]

By combining the equation (2.6) with E = Ei + E−i which is the total portfolio of

the market gives:

Co
i = λiE−i − (1− λi)Ei ⇒ Co

i = λi(E − E−i)− (1− λi)Ei ⇒

⇒ Co
i = λiE − Ei ⇒ Ei = λiE − Co

i

Finally, we have that: Cov(C,Ei) = Cov(C, λiE − Co
i ) = λiCov(C,E ) − Cov(C,Co

i ).

Recall that, E = Ei + E−i, where E depicts the aggregate market endowment and

E−i to be the aggregate endowment of the rest of the agents and γ stands for the

13



2.3 The complete of the market & the optimal risk sharing

aggregate risk aversion coefficient, such that
1

γ
:=
∑n

i=1

1

γi
. Also, the relative risk

tolerance coefficient is λi =
γ

γi
, while the rest of the players have λ−i = 1− λi.

We have shown that the equations (2.4) and (2.5) give us the unique price of the

contract and a∗i , which is the i-th row of matrix A∗ stands for the position the agent

takes on the contract.

Finally, the equations (2.4) and (2.5) clearly reflect, that the prices depend on the

expected price of the vector of contracts minus the covariance of the contract related to

the total market portfolio E . The position on the contract depends on the covariance

of the vector of securities with the optimal contract. Finally, the optimal contract,

which is given by the equation (2.6) depicts, the difference of each agent’s tolerance

on the submitted endowment, that they report individually.

2.3 The complete of the market & the optimal risk sharing

In order to complete the market, (assuming no exogenous constrains or additional

transaction costs such as brokerage fees or commissions) the agents can trade each

other through financial tradeable contracts, which they co-design. The risk sharing

allocation in such a case, is consistent with the Pareto optimal rules and so the mar-

ket is completed. The display of Pareto optimal concept responds to the question:

“How the allocation of resources is going to be accomplished?” Assuming that a social

planner governs with absolute purpose to make the optimal allocation of goods and

financial services for the institutional investors according to their needs, the unique

answer is the following: “We will find out the allocation of resources that is optimal

for the community”. By referring to the optimal allocation, it does not mean that this

allocation is fair. Pareto optimality means the optimal allocation, given the needs of

each agent’s investment position. This governor aims to match the preferences of the

agents based on their risk exposure by making the optimal risk sharing allocation.

In addition to this, irrespective of the allocation is about, there are specific pos-

sibilities for the risk sharing. More precisely, Pareto optimal risk sharing equilibrium

assumes no market power and every agent submit her true risk exposure for the shar-

ing. Each agent is going to purchase what the other agents offer and in this way,

they co-design the contracts, which are summing up to zero aggregately (zero sum of

contracts implies that the transaction is cleared out and there is no extra risk in the

market). Consequently an allocation of risk sharing will be called Pareto optimal, if

no contract is better than the existing one (constant contracts).

Therefore, in the case where no use of market power exists the sum of the contracts

equals to zero. Thus, we define the set of all the possible risk sharing contracts to be

A := {C = (C1, C2, ..., Cn) ∈ (L2)n|
∑n

i=1Ci = 0}. The term C reflects the payoff

14



2.3 The complete of the market & the optimal risk sharing

of the contract, which the agent receives. At this point we define Pareto optimal

allocation with its strict mathematical definition.

Definition 2. A vector of contracts Co ∈ A is a Pareto optimal risk sharing if ∀
C ∈ A , the following implication holds:

If for some i, Ui(Ei + Ci) > Ui(Ei + Co
i ), then ∃ j 6= i such that Uj(Ej + Cj) <

Uj(Ej + Co
j ).

Theoretically, when the transferred risk attains a Pareto allocation means, no other

risk sharing exists that some agent can increase her wealth without causing a reduction

in the wealth of another agent. Therefore, no better contract exists than the Pareto

optimal contract. If such a contract exists, the Pareto optimal risk sharing does not

hold anymore. Equivalently, we can claim that the utility for some agent is better

than the Pareto optimal, then there would be at least another agent, who suffers a

greater loss of utility than the Pareto case.

With regard to the complete market setting, where the M-V preferences hold again,

the risk sharing allocation problem is more restricted in order to find the solution of

the optimal price allocation of the vector of endowments. We assume that the agents’

vector of endowments is E = (E1,E2, ...,En) ∈ (L2)n. We recall the functions (2.4) and

(2.5) of the unique competitive equilibrium of E as a pair (po, Ao) ∈ Rn×An×n, which

implies that the price is po := E(E) − 2γ1n · V ar[E], where 1n := (1, 1, ..., 1). It is

also implied that the elements of A o are aoi,i = −λ−i aoi,j = λi, for j 6= i. Notice that

the exponent o refers to the Pareto optimal risk sharing, while the exponent ∗ refers

to the incomplete market setting. The strict mathematical interpretation of the above

are incorporated in the next proposition.

Proposition 3. Let (po, Ao) ∈ Rn × An×n be the competitive price-allocation equilib-

rium of the vector of securities E. Then, the vector of securities A o(E − po) ∈ A is

the unique Pareto-optimal risk sharing11.

Proof. We clarify that the pricing of the aggregate payoff (compensation), is the one

dimension of the problem that we study (the second dimension is the pricing of the

contract payoff), which an agent gets is estimated to be aoi ·E−aoi ·po, where aoi stands for

the vector (aoi,1, a
o
i,2, ..., a

o
i,n) ∈ Rn. It is induced by the Proposition 1. that aoiE = Co

i ,

where Co
i is the contract that agent-i gets and pays the price: πoi = aoi ·po = aoi · [E[E]−

2γ ·1n ·V ar[E]] = aoi ·E[E]−2aoi ·γ ·1n ·V ar[E] = E(Co
i )−2γCov(Co

i ,E ) to obtain it.

The covariance of E ∈ (L2)n and the market portfolio E is Cov(E,E ) = 1n · V ar[E],

since E denotes the vector of the agents’ endowments and E the aggregate endowment.

Finally, the price is:

πoi := E(Co
i )− 2γCov(Co

i ,E ) (2.7)

11We highlight that Pareto optimality does contain the prices of the financial trade-able securities.
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2.4 Risk sharing inefficiency measure

Taking into account the whole discussion of both markets, what we have to keep in

mind is: “Agent-i is going to exchange (short position) a part of her true endowment,

that she submits in the hedging transaction, with equal part (long position) of the

markets endowment, that the other agents posses.” This conclusion is robust under

the aforementioned assumption with no use of market power.

2.4 Risk sharing inefficiency measure

A basic milestone to capture is associated with the extra utility, which an agent gains

at different equilibria. Namely, the measuring of the so-called utility surplus, in order

to succeed in making comparisons between them. For each agent individually, we

assume that the utility or equivalently her wealth (here is characterized by the random

endowments) is given by:

ui(p;C) = Ui(Ei + ζi(p) · C)− ζi(p) · p (2.8)

at any price p, ∀i∈ {1, 2, ..., n}.
Hence, the difference ui(p;C) − Ui(Ei) is defined to be the agents’ utility surplus,

which gives the agent’s additional wealth compared to the utility of the preceding

equilibrium-condition. Namely, this measure is determined by identifying the surplus,

given the contract demand at price p. Moreover, for some agent the utility is expressed

at standard monetary unions. Following the literature, we set the agent’s-i optimal

utility in the situation, where strategical behavior does not exist, which is varying

according to the market setting. In particular, u∗i and uoi , indicate the incomplete

market optimal utility and the complete one respectively.

Corollary 1. The utility of agent-i at the Pareto optimal risk sharing is given by:

uoi (p
o;E) = γiV ar[C

o
i ] + Ui(Ei), (2.9)

in contrast to this the utility at the competitive price-allocation equilibrium of a contract

vector C is

ui(p
∗;C) = γia

∗
i ·V ar[C] ·a∗i +Ui(Ei) = γiCov(C,Co

i ) ·V ar−1[C] ·Cov(C,Co
i )+Ui(Ei)12

(2.10)

12The utility gain can not be less than the utility of the initial position, if this were the case the
agent will not participate in the market.
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2.4 Risk sharing inefficiency measure

Proof. We have that:

uoi (p
o;E) = Ui(Ei + Co

i − πoi ) = E(Ei + Co
i )− πoi − γiV ar(Ei + Co

i ) =

= Ui(Ei) + 2γCov(Co
i ,E )− 2γiCov(Co

i ,Ei)− γiV ar(Co
i )

Given that, Ei + Co
i =

γ

γi
E , then:

Cov(Co
i ,E ) = Cov

[
Co
i ,
γi
γ

(Ei + Co
i )

]
=
γi
γ

[Cov(Co
i ,E ) + V ar(Co

i )]

Thus, we have

Ui(Ei + Co
i − πoi ) = Ui(Ei) + 2γ

γi
γ

[Cov(Co
i ,E ) + V ar(Co

i )]− 2γiCov(Co
i ,Ei)− γiV ar(Co

i ) =

= Ui(Ei) + γiV ar(C
o
i )

Similar is the case of the incomplete market setting. Recalling the Definition 1 we

have that:

ui(p
∗;C) = Ui(Ei + ζi(p

∗) · C)− ζi(p∗) · C = Ui(Ei + a∗ · C)− a∗ · C =

= Ui(Ei) + a∗ · E(C)− γia∗ · V ar(C) · a∗ − 2γia
∗ · Cov(C,Ei)− a∗ · p

Provided that, Definition 1. holds, the demand function (2.3) gives:

2γia
∗ · V ar(C) · a∗ + a∗ · p = a∗ · E(C)− 2γi · a∗ · Cov(C,Ei)

Thus, we have that:

ui(p
∗;C) = Ui(Ei) + 2γia

∗ · V ar(C) · a∗ + a∗ · p− γia∗ · V ar(C) · a∗ − a∗ · p⇒

⇒ ui(p
∗;C) = Ui(Ei) + γia

∗ · V ar(C) · a∗

Easily, from this point onward we can determine, which is the utility “loss” of the

individuals. Given that, trading a vector of contract is not consistent with Pareto

efficient allocations (incomplete market setting), the agents suffer a loss of utility, that

we can estimate it with the measure that we quote below. This measure is indicated

by the difference uoi (p
o;E)−Ui(p∗;C), which is compared to the complete market and

non-negative. At last, under the quadratic preferences, the risk sharing inefficiency is

accounted by the difference of the aggregate utility in the optimal equilibrium minus

the aggregate utility of the sub-optimal equilibrium or the realized aggregate utility.

Thus, it is given by:
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2.5 Agents’ incentives and the best response problem

(
Risk sharing

inefficiency

)
=

(
Optimal Aggregate

Utility

)
−

(
Realized Aggregate

Utility

)
(2.11)

In the sections that follow this measure of inefficiency is defined more generally.

The idea is based on the utility that an agent gains, which differs according to different

equilibria. In this study they are thoroughly probed comparisons between competitive

and Nash equilibria. Albeit, in a thin market, each agent, also, may suffer a ”loss”,

which is indicated by a similar non-negative difference, this can not be taken as a

general rule. We notice, that the strategic behavior may lead to a higher utility

surplus, individually, in a Nash equilibrium, although the aggregate utility of the

market diminishes.

2.5 Agents’ incentives and the best response problem

The notion of the competitive equilibrium is catalyzed from the moment that agents

use their market power. The thinness of the market, i.e. the modeling of an oligopoly

with a finite number of participants, gives rise to the market power. Thus, agents

have incentives to behave strategically and use their market power to gain extra prof-

its (measured with the utility surplus individually) and improve their investment po-

sitions. Our interest is the pricing of financial tread-able securities (contracts ) in

an oligopoly, that are traded by the agents towards to their incentives. Although,

in Propositions 3 is clear that the risk sharing allocation can be transferred among

the finite number of the market participants optimally, the market power, thus the

strategic behavior results to allocation inefficiency.

The crucial query, that is labeled as the investor’s best response is quoted with the

following question: ‘‘How does she react, given that she knows the market endowment?”

Namely, each agent individually inquires for the strategy, which will respond to the

strategy of other agents (the so called dominant strategy). The main idea is based

on the contract which will be nominated by the investor, giving the explanation of

how the strategic behavior unfolds according to each market setting. We point out,

that the best response endowment is used as an intermediary step to explain the Nash

games.

2.5.1 Pricing according to the market structure - complete & incomplete

market settings

Our interest is to study the price of the contract, on which the agents are going to

trade. The key point is, that agent-i is considered to know the market endowment,

but how will she respond to it under the information asymmetry benefit. Namely, we
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2.5 Agents’ incentives and the best response problem

wonder if it is a good choice to submit her true endowment on the agreement or to use

the information asymmetry benefit, to empower her investment position. By doing so,

she will gain a better payoff than the others, who do not have the same information

with her. In particular, agent-i has to take into account the risk, that she is going

to share with the other participants of the market (complete setting) trying to take

advantage from their hedging needs. Thus, for further analysis on the game theoretic

approach, the agent will submit a different endowment than the real one that she owns,

in order to exert the best response endowment, given that she has the knowledge of

the real market portfolio or equivalently the needs for hedging of the whole market.

Imagine, that she has a list of the best answers in the needs of each other agent due

to the influence, that she can have on the market (market power).

Before we end up with the strict mathematical frame so as to define the best

response endowment, we explain how a game evolves with a simple example. Let us

consider a thin oligopolistic market which consists of only three insurance companies

(hereafter IC). We assume that each IC holds some insurance endowment and more

precisely, IC1 holds only life insurances, IC2 holds insurance calamities (i.e. natural

disasters) and IC3 holds only auto insurance. Every IC is exposed to the (random)

risk of the endowment, that she owns and due to no diversification exists to their

portfolios, each undesirable event, in the sector which the individual IC has grown its

investment position, may lead to bankruptcy. Consequently, if IC1 for instance has

the knowledge of the endowments that IC2 and IC3 posses (the risk exposure of the

other participants in the market) she can exercise the best response strategy to take

advantage of their hedging needs (acts as a predator). Therefore, the contract that

she will co-design with the rest of the participants to make the risk sharing allocation

will maximize her own payoff. Hence, the IC1 will succeed in accomplishing the so

called dominant strategy in the market. Obviously, the equilibria that we conclude

are not competitive anymore. We mark here that the best response is, as always, the

intermediary step before the presentation of the Nash equilibrium. By doing this step

initially, we ensure the existence of the solution of the problem.

Not only the IC but also each institutional investor-agent will behave strategically

in a thin market (imperfect competition from this step onward). We remind from the

introduction that a thin market setting is similar to the Cournot market structure (see

again in Remark 1 ), while the game differs in the strategies. The question that is

quoted here is: “What are the incentives, for the agent who holds the market power,

to use it in order to make the best response?” The answer is, that: Given that, she

knows the aggregate endowment E−i of the market she can be grouped between the

two following categories:

(a) either she will submit a proportion of her true endowment on the agreement
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2.5 Agents’ incentives and the best response problem

(b) either she will submit exposure to the risk that all the other agents undertake

(the response to the endowment E−i). She may act as a predator or a speculator,

especially in the case where her risk aversion tends to risk neutrality.

Both of them aim to take advantage of the hedging needs that the rest of the agents

face.

Supposing, that agent-i reports as her true endowment some random variable 13,

say B ∈ L2, then the contract, that she buys, has the next payoff:

Co
i (B) := λiE−i − λ−iB (2.12)

while the accumulated cash that she has to pay so as to obtain it, which is resulting

by the combination of equations (2.7) and (.12) respectively, determines the price of

the contract (compensation):

πoi (B) := λi(E[E−i]− 2γCov(E−i,E−i + B))− λ−i(E[B]− 2γCov(B,E−i + B))⇒

πoi (B) :=
γ

γi
(E[E−i]− 2γCov(E−i,E−i + B))− (1− γ

γi
)(E[B]− 2γCov(B,E−i + B)).

(2.13)

Notice again that λi =
γ

γi
denotes the relative risk tolerance of the investor.

The utility that an agent gain after the transaction is:

Gi(B; E−i) := Ui(Ei + Co
i (B)− πoi (B)) = E[Ei + Co

i (B)]− γiV ar[Ei + Co
i (B)]− πoi (B)

(2.14)

Apparently, we figure out, that the contract payoff, which the player will get and

the price, that she pays as a compensation are determined by the next optimization

problem. More precisely, the solution of this problem, which is unique due to the

linearity of the function is given by:

Bres
i := arg max

B∈L2

{Gi(B; E−i)} (2.15)

It is very important to mention, that the set of strategic choices is equal to

L2(Ω,F ,P), thus the endowment, that investors report is measurable with respect

to the information which is generated by the true endowments. Namely, all investors

encounter the same σ-algebra. Moreover, the solution Bres
i which defines the best

endowment response, given that she knows the true market portfolio, is unique and

gives the payoff that agent-i enjoys and the price that she pays at the equilibrium

(not competitive anymore). Specifically, we define the contract of her preferences to

be Cr
i = Co

i (Bres
i ) (mapped by the solution of (2.12)) and the price that she will pay,

which is accounted to be πri = πoi (B
res
i ) in dollars (mapped by the solution of (2.13)).

13The random variable B stands for the term best based on the game theory literature.
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2.5 Agents’ incentives and the best response problem

The solution of the equation (2.15) is given by the next mathematical proposition:

Proposition 4. The unique (up to constants) best endowment response for agent-i,

∀i ∈ {1, 2, ..., n}, given that she knows the submitted aggregate endowment of the other

players E−i is:

Bres
i =

1

1 + λi
Ei +

λ2
i

1− λ2
i

E−i (2.16)

If we observe carefully the equation (2.16), Bres
i is indeed a combination between

the agent’s-i endowment Ei and the rest of the market endowment E−i. In particular,

this reflects the endowment, that she reports in the potential agreement with the rest

of the agents (differs from the Ei). Therefore, at the equilibrium the position that she

takes is Cr
i −πri which also differs from the optimal equilibrium position Co

i −πoi . More

precisely, we will have that

Cr
i − πri =

Co
i

1 + λi
− πoi

1 + λi
+ 2γ

λiV ar(C
o
i )

λ−i(1 + λ2
i )

=
1

1 + λi
[Co

i − πoi ] + 2γ
λiV ar(C

o
i )

λ−i(1 + λ2
i )

which indicates, that the net payoff in this case is an increasing function of the variance

of optimal contract Co
i . Though, it seems to be lower than the Pareto optimal net

payoff, in the case of agent who is assumed to be a speculator,14 this interpretation

may be of great significance, while at the moment this is not the basic issue of our

study. Referring to the speculator case, a speculator is defined to be someone with

a risk aversion coefficient γi and a constant endowment, which is very low and will

submit only the same risk with her counterparty (i.e. the risk which her counterparty

is endowed).

Also, ti is induced by (2.16) that since agent-i has the knowledge of the submitted

aggregate endowment E−i of the other agents, the act of the best endowment response

is to share a proportion of her true endowment and report exposure to the risk that

the other investors face. Thus, she will try to take advantage of her counterparties,

because of their hedging needs, whereas the strategy that we mentioned will drive the

prices in the way she wants. Specifically, she increases the demand of the contract,

that she wants to sell during the transaction, which leads to a more tempting payoff,

that she will get. Namely, agent-i with this strategic application simultaneously takes

advantage of the other participants’ hedging needs to cover hers and gets a higher

price of the contract, that she sells. We recall the simplest case of the single predator

existence,15 who chooses his optimal trading strategy (which is the same with best

response endowment), given that she knows the needs for liquidation, that the rest

of the traders incur. A crucial difference in the predatory model is, that a predator,

14We define as a speculator the agent, that neither she has investment risk nor hedging needs and
she wants to undertake risk in order to take cash.

15See in Markus K. Brunnermeier & Lasse Heje Pedersen [(2005)], in section III, the predatory
phase, for more information.
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2.5 Agents’ incentives and the best response problem

who is referred as a strategic trader, is assumed to be risk neutral in relation to her

prey, while initially the agents in our model are risk averse and homogeneous (with

the same risk aversion). If we unravel the thread of Ariadne, we could say that the

predator chases the whole pie, the exploitation of the prey and the liquidation of her

own investment position as it was before the strategic application.

Another question that we should answer is: “What happens with the agent’s-i utility

after the reporting of the best endowment response strategy?” We conclude that the

utility after the strategy application is:

Gi(B
res
i ; E−i) = E[Ei + Co

i (Bres
i )]− γiV ar[Ei + Co

i (Bres
i )]− πoi (Bres

i )⇒

⇒ Gi(B
res
i ; E−i) = Ui(Ei) + [

2γi
1 + λi

+
2γλi

λ−i(1 + λi)2
− γi

(1 + λi)2
]V ar(Co

i )⇒

⇒ Gi(B
res
i ; E−i) = Ui(Ei) +

γiV ar(C
o
i )

1− λ2
i

(2.17)

Thus, we take the difference between the new utility minus the Pareto optimal one

Gi(B
res
i ; E−i)−uoi (po;E) =

λ2
i

1− λ2
i

V ar(Co
i ) which depicts that in the case of the strate-

gic application agent-i takes a surplus of utility compared to the Pareto optimal trans-

action. Note that, the percentage of the utility increase is an increasing function of

λi.

The last but not least at this point has to do with the matching between Bres
i and

the Ei which agent-i holds. If for some case Bres
i becomes equal (up to constants) to

Ei agent-i has no extra gains from the trading than the Pareto optimal with the rest

of the participants in the market. For this reason, she may act by reporting Bres
i 6= Ei

due to the incentives we have already mentioned in (a) and (b). We emphasize, that

it is the number of participants that reduces the difference Bres
i − Ei or equivalently

the market power use is less effective as much as the Bres
i − Ei vanishes.

To sum up, we have shown that the connection between the agent’s-i utility sur-

pluses and is given by:(
Utility surplus from the best

endowment response

)
=

λ2
i

1− λ2
i

×

(
Utility surplus in

competitive equilibrium

)
(2.18)

Remark 3. The game, when we refer to the incomplete market structure, is played

through the agent’s demand function. So, the parameterization is reflected in the part

of the function, which contains the hedging needs of the trader’s endowment. Namely,

the term Cov(C,Ei) and the applied strategy is called the demand best response. Even

though, the two games seem to be different, their outcomes are identical due to the

specific preferences of the agents. Apart from this, the agent reveals only a part of

her true demand for her endowment hedging needs, which also seems to be the same
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2.5 Agents’ incentives and the best response problem

strategy approximation with the complete market structure, where the agent reports

only a part of her true endowment. Referring to the basic paper, the effect of market

power on risk-sharing of Anthropelos which generates this model, it is shown, that it is

never optimal for an agent to submit her true demand function on the agreement (as

it is never to optimal to submit her true endowment in the complete setting).

However, in this market structure agent-i reveals the demand function, that clears

out the market and maximizes her utility. The way that the game evolves responds

to the next question: ”What is the price impact in the market by the agent’s use

of market power, given that she knows the demand of the other participants?” More

precisely, she exploits the information asymmetry given that she knows the hedging

needs of the market (the rest of the agents). Hence, the solution of the optimization

problem in such case is given by:

presi := arg max
a∈Rk

{φi(p; ζ−i(p))} (2.19)

where:

(a) ζ−i(p)is the demand function of the market except the agent-i who exploits the

information asymmetry and since a = ζi(p) then a + ζ−i(p) = 0⇒ ζ−i(p) = −a,

(b) φi(p; ζ−i(p)) := Ui(Ei−a·C+a·p) for a,p ∈ Rk.

Remark 4. The best response strategy is independent of the market structure as the

outcomes are identical due to the specific preferences of the agents. Therefore, from

this point onward, we will focus our study in the complete market setting.

2.5.2 The Nash equilibrium - One period model

Provided that, in the previous subsection we had a thorough conversation of the in-

centives, that agents have in order to apply the best response, we notice that they are

still the same in Nash. What is more in Nash, has to do with the behavior of the whole

market participants. Intuitively, assuming that we have a market with finite number of

participants who all have the market power, each one will adopt the strategic behavior,

that we marked in the best response strategy. Analyzing the game, the information

symmetry and the assumption that they all have the market power, each agent will

submit the same query. “How much risk should she share on the trade, given that she

knows the rest of the agents needs?” More precisely, the equilibrium in which an agent

submits a fraction of her true endowment, the rest of the agents will do the same. To

respond exactly, the Nash equilibrium is given by:

gi := arg max
B∈(L2)N

(Ui(Ei) + Co
i (B)− πoi (B); B−i)
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where B is the submitted endowment that agent-i declares, given that she knows what

the rest of the agents have submitted B−i =
∑

j 6=i Bj.

In this point, we introduce the Nash contract payoff and the price without proving

them (you can see in Athropelos [(2017)] ), since in the next sections our focus in the

extended model refers to them. Specifically, the Nash contract payoff, for the case of

two agents is:

C2 =
λ1 · E2

2
− λ2 · E1

2
=
Co

1

2

The price of the contract (compensation) in this case is given by:

πi = E(Ci)− 2γCov(Ci,B
�)

where Ci is the Nash contract and B� =
∑n

i=1 Bi the aggregate submitted endowment

(it differs from E ).

A factor of major significance is the market risk sharing inefficiency, which is ad-

justed properly here, based on the logic of the equation (2.11). We present this, for

the forthcoming challenged results of the next sections, and it is given by:

uoi (πi) := Ui (Ei + Ci − πi) = γi ·
γi + γ

γi − γ
· V ar(Ci) + Ui(Ei)

where Ci is set to be the Nash contract and πi its price in order to obtain it.

Given that, the appropriate outcomes of the static model are thoroughly stated in

the basic paper, this study will provide only comparisons between the static model

and the extended one, that it is introduced in the next section. We aim to build

a new finite horizon model (discrete time dynamic model), where the trades will be

completed in infinitely many steps in the first phase. By doing so, we will take some

crucial conclusions for the contract payoff and the compensation that an agent pays

to her counterparty in order to obtain it.

3 A discrete time dynamic model of Re-trading in

Thin Markets

The expansion of our model is based on the idea of re-trading in thin markets. Accord-

ing to the existent literature of re-trading, we notice some crucial similarities with the

model of Ghosal and Morelli [(2004)]. They present a non-cooperative model of im-

perfect competitive markets, with finite number of agents who can affect prices, which

is close to the thin markets setting and our model. Albeit, the concept of re-trading is

based in the Edgeworth’s idea of re-contracting, in the Ghosal and Morelli model this

idea is presented in the domain of imperfect competition. The problem, which is set
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in a very challenging way, is about to respond in the query, whether an allocation can

approximate the Pareto frontier. The answer is determinate and is confirmed also by

our model, that agents can attain Pareto set, in such markets, in infinitely many steps,

but the more challenging that we wonder is how? The complete reply is when agents

behave myopic and re-trade in infinitely many steps, they can obtain the Pareto opti-

mal allocation either this allocation is in commodities and goods or in assets/financial

contracts.

In Ghosal and Morelli [(2004)] the results of their model, under the assumptions

that they set, are expanded when traders behave non-myopically or they act with the

so-called far-sighted behavior. In this case, they expect that future rounds of trade

will take place between them and they act diversely. In general analysis, the equivalent

concept is that agents must re-trade since the obtained allocation is not the optimal

from the previous transactions. We recall that in a thin market, the price impact

affects negatively the whole market, even those who hold the market power. Thus, we

extent the notion of re-trading in order to avoid the price impact and succeed in pricing

financial products, which is the holy grail of this search. Before we investigate the two

cases of re-trading we introduce the definitions of myopic and far-sighted behavior.

a. A trader is set to behave myopically, when she plays her best response as the

current round of trade is the last or equivalently she does not anticipate that future

trades will occur 16. This definition is broaden in this study, due to the fact that

the game is played in the prices of tradeable financial securities (contracts) rather

than the quantities of commodities 17 in the Ghosal and Morelli’s paper. Agents,

submit a strategic schedule of the reported risk, which they want to declare for the

transaction between the contracts and cash that they want to achieve.

b. The agent, who behaves far-sighted or non-myopic, is assumed to be someone, who

expects that there will be future rounds of trades. Provided that, each player

behaves strategically, they anticipate that new trades will evolve between them in

the future. Equivalently, they take into account not only the current transaction,

but also the next-future trading round. This is the exact definition to set the

non-myopic behavior by Ghosal and Morelli [(2004)] and we adopt it here.

The myopic process is marked as a naive process, because agents, truly, will behave

in a forward looking way. Despite this fact, with this naive process we postulate,

16In the Ghosal and Morelli [(2004)], the definition of agents who behave myopically is the same.
17The non-cooperative game of the re-trading in market games by Ghosal and Morelli uses the

Shapley-Shubik game, where the agents are allowed to make the price affection by sending quantitative
signals. Contrarily, in the thin market game of our model, the price impact arises endogenously from
the market power and we use the order break-up strategy (it is incorporated in the equilibrium
strategy) to avoid it. We quote, that myopic re-trading is equivalent to the order break-up strategy,
since the transactions are completed in many steps to avoid the price impact.
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3.1 The extended model & the myopic re-trading behavior

that even though a thin market is a market of imperfect competition and suffers of

specific problems of inefficiency due to the price impact, agents transaction can reach

theoretically the Pareto frontier if they behave myopic under specific cases.

We could claim, that far-sighted behavior can result in the Pareto optimality, in

finite steps of re-trading, according to Ghosal and Morelli, which constitutes their ba-

sic argument, although this is not happening in reality. In particular, the agents have

incentives not to conclude in the optimal situation, despite the fact that there is a

way to access it. The agents varying towards their behavior, from hedgers and arbi-

trageurs to predators in consistency with Brunnermeier and Pedersen and speculators.

The predator case is analyzed in preceding sections, while the latter we recall that is

refereed to agents who have low risk averse coefficient γi and submit risk only to their

counterparty’s endowment. In the view of far-sighted behavior, it does not yield that

both agents will result in greater gains, due to these incentives.

3.1 The extended model & the myopic re-trading behavior

The main purpose of this study is the pricing of securities in thin markets. Aiming to

succeed in this purpose, we set specific mean-variance preferences in order to model the

agents in the market by recalling (2.1). By doing so, we respond to the crucial queries of

the pricing, which are clustered around the deviation of the Preto optimal risk sharing

allocation. Due to the imperfect market competition and the strategic behavior of the

agents, it is perfectly reasonable for such a departure to exist. Thus, the price of the

contract which is co-designed by the agents may result to a different price than the

optimal contract. This is how we conclude to a Nash (strategic) equilibrium for the

price of it.

It is worth to recap the meaning of strategic actions. In first place, we refer to

the necessity that some agent has in order to offset the risk, on which her endowment

is exposed, given her investment position. More precisely, all investors do not have

the same incentives to make transactions with some other. Some of them, may have

hedging needs, but some others may want to take advantage of their counterparty

hedging needs. Also, some agent may act in both strategic applications, to exploit the

needs of her counterparty and simultaneously hedge her investment position. Thus,

all these incentives, i.e. the strategic approach of the one party of the agreement may

lead the price of the contract far enough of its optimal equilibrium price. With this

discrete time dynamic model for re-trading in thin markets, we estimate this departure

of the contract price.

We focus to the examination of bilateral re-trading as it is usually the case. Un-

fortunately, the problems that occur in transactions in thin markets are a little more

complicated. The major problem is related with the price impact, which is moderated
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3.2 Setting the game conditions and the strategy

via the common slow trading strategy, the so-called order break-up equilibrium strat-

egy. It is also claimed in Rostek and Weretka [(2008)], Mitchell, Pedersen and Pulvino

[(2007)], and in our introduction for thin markets. However, in our model where we

assume, that agents re-trade in infinitely many steps, the Nash contract breaks-up in

individual contracts for every round of transactions and thus we can estimate the final

price of the sum of contracts at the end of the procedure. Thus, we claim that the

re-trading procedure incorporates also this moderation of price impact in thin markets.

On the merits of our analysis, the examination of the risk aversion coefficient

influence in the repetitive process of trades is of major importance. It is divided in

two cases, in the first case agents are called homogeneous (i.e. agents with similar risk

aversion), while in the latter they are called heterogeneous (i.e. agents with dissimilar

risk aversion). Agents, not only break-up their transactions in infinitely many rounds,

but also, they behave myopic. As we have already quoted how myopia is defined, we

shall show, in the sequel, that it leads in different results in relation to the agents’

risk aversion coefficient. Due to the fact that, the issue of the deviation from the

Pareto optimal allocation is at the very center of our study, the answer varies when

agents are homogeneous and behave myopically by contrast to the heterogeneous and

myopic agents. In the first case we illustrate, under specific assumptions that we set

in subsection 1.1, that agents attain the Pareto optimality while in the second one

the agents with the lower risk aversion coefficient (i.e. the higher risk tolerance) will

dominate the bilateral re-trading procedure. Independently of the incentives, it is

obvious that strategic equilibria could lead some agents in higher utility gains, than

the optimal risk sharing allocation.

We recall that the games between the agents are symmetric. Also, analyzing the

Nash equilibrium in which an agent submits a fraction of her true endowment (or

exposure too risk), her counterparty will act in the same way.

3.2 Setting the game conditions and the strategy

We set the conditions of the Nash game in the complete market structure. We set j to

be the trading rounds that are carried out in the moments {tj, j ∈ {1, 2, ..., N}}, where{
t1 = 1/N, t2 = 2/N, ..., tj =

j

N
, ..., tN−1 =

(N − 1)T

N
, tN = T

}
, N is the partition of

the distance period between the rounds, which is zero when N → ∞. Let Ei,j to be

the i − th agent’s endowment after the j − th round of trades. Moreover, we assume

that:

i. The interest rate r is negligible during the time of re-trading, thus we set r = 0,

in order not to affect the transactions.

ii. No reveals of new information occur between each round. This means that, the
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3.3 Two agents re-trading - Economic perspective

σ − algebra of the standard probability space, which embodies the information,

remains unchanged.

iii. There are no transaction costs, such as brokerage fees, commissions or order costs.

In essence, agents re-trade in infinitely many steps by adjusting their whole strate-

gic plan from the first (j = 1) to the last round (j = N → ∞).Namely, her strategic

approach, which is set from the beginning in a strategic schedule, it responds opti-

mally in the “trivial process”, where she submits some proportion of her counterparty’s

endowment in the transaction. Intuitively, since there is no information asymmetry

(symmetric games), she has a picture of her counterparty’s needs and she responses

optimally in each round, but this holds for her counterparty.

In deterministic time, during transactions it is logic for new information to reveal

and thus, every agent will change her strategy given the condition, which these infor-

mation incorporate. We highlight, that we follow this naive process aiming to simply

set the pricing in thin markets and investigate the circumstance of the improvement

of agents’ investment positions, under the aforementioned assumptions. In such way,

the pricing is only a matter of the risk aversions (or risk tolerance) individually. It

is shown that the agents, in thin markets where the one shot transactions are not

optimal, can be very close to Pareto optimality, under the homogeneity condition by

re-trading in infinitely many steps. Subsequently, myopic re-trading will give some

challenging results in comparison with the competitive (optimal) equilibria.

3.3 Two agents re-trading - Economic perspective

Following the notation, the contract payoff of the agent for the trading round j is

defined as Ci,j and the compensation that she pays for it as πi,j respectively. Also,

the aggregate endowment is defined as Bj−1, whereas in the trading round j = N the

agents re-trade with the declared aggregate endowment BN−1, which is obtained in

the previous round N − 1. This is consistent with the Ghosal and Morelli [(2004)].

Due to the focus on the bilateral trading we will make some technical claims to ease

the explanation of the game. Specifically, we can easily observe that C−i,j = −Ci,j
and for this reason hereafter we donate the contract as Cj. Similarly, holds the same

for the cash compensation πi,j, namely π−i,j = −πi,j and hence we depict it as πj. We

mention again that, there is a dependence of j on N .

In the sequel, we present the outcomes of the trading rounds and interpret their

economic perspective. Table 1 presents the important points on which we focus to

explain theoretically, when the partition N of trading rounds tends to infinity (N →
∞). Furthermore, in the first round, the Nash contract is the half of the Pareto optimal

one, but as the trading rounds carry on, the sum of Nash contracts converges to the

Pareto optimal, no matter the risk aversion of the agents.
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3.3 Two agents re-trading - Economic perspective

In each round, the agents trade only a proportion of their new endowment which,

is shaped in relation to their previous transactions. For instance, assuming that agent-

1, initially, owns the random endowment E1,0, after the first trading round her new

endowment will be E1,1 := E1,0 + C1. In short, for agent-2 will be accounted that

E2,1 := E2,0 − C1. Thus, endowments E1,1 and E2,1 are under set for the second round

and so on. On the subject of the compensations, we calculate them aggregately in the

end of the trading rounds, as long as this does not affects our results. Below we have

the following:

Proposition 5. The sum of Nash contacts
∑N

j=1Cj, when N →∞, converges to the

Pareto optimal contract Co
1 .

Proof. When agents enter in the j− th trading round, the declaring aggregate endow-

ment is Bj−1, thus for the contract in each round we have the following:

1. in the round j = 1: C1 =
γ2E2,0 − γ1E1,0

2(γ1 + γ2)
=
Co

1

2
, as it is seen the Pareto optimal

contract is combined with the Nash contract.

2. in the round j = 2: C2 =
γ2E2,0 − γ1E1,0

2(γ1 + γ2)
− γ1 + γ2

2(γ1 + γ2)
C1 = C1 −

C1

2
=
C1

2

3. in the round j = 3 : C3 =
γ2E2,0 − γ1E1,0

2(γ1 + γ2)
− γ1 + γ2

2(γ1 + γ2)
C1 −

γ1 + γ2

2(γ1 + γ2)
C2 = C1 −

C1

2
− C2

2
= C1 −

C1

2
− C1

4
=
C1

4

Thus, for round j = N , we imply that CN =
C1

2N−1
and we will show that the

aggregate contract converges to Pareto optimal one as the partition N tends to infinity.

We have that:

N∑
j=1

Cj = C1 + C2 + C3 + ...+ CN = C1 +
C1

2
+
C1

4
+ ...+

C1

2N−1
= C1

N−1∑
j=0

1

2j
⇒

⇒
N∑
j=1

Cj = C1

(
2− 1

2N−1

)
= Co

1

(
1− 1

2N

)

Hence, when N →∞ we presume the challenging result:

lim
N→∞

N∑
j=1

Cj = Co
1 lim
N→∞

(
1− 1

2N

)
= Co

1

The meaning of the above result, is that agents can reach the Pareto optimality

through infinitely many steps of trades. It is clear, that the Nash contract convergence

to the Pareto one, is independent of the agents’ risk aversion.
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3.3 Two agents re-trading - Economic perspective

In this part, we emphasize the pricing of the compensations, which is of major

importance. We illustrate that the aggregate pie of compensations
∑N

j=1 πj, that an

agent pays to her counterparty, grows in relation to the static model as the frequency

of trading rounds increases unlimited. We remind that the Nash compensation is given

for each round by πi,j = E(Ci,j) − 2γCov(Ci,j,Bi,j−1), where i stands for the agent

and j for the trading rounds. Because we refer to bilateral re-trading procedure, it

is implied that πj = E(Cj) − 2γCov(Cj,Bj−1). In contrast to the contract payoff

,the aggregate compensations depend on the agents risk aversions. Thus, we examine

the two cases of compensations pricing, when the agents are homogeneous and het-

erogeneous. Specifically, in this subsection we mainly argue the event of agents, that

are homogeneous. In order to succeed this, we will make a comparison between the

compensations at the limit, limN→∞
∑N

j=1 πj(= πlim), and the optimal one πo1. Also,

we denote hereafter the variance of the optimal contract to be Σo
1 = V ar(Co

1). At last,

we make the following proposition, when the agent are homogeneous.

Proposition 6. The aggregate compensation on the limit of the re-trading procedure

is: πlim = πo1 +
2 (γ1 − γ2)

3
· Σo

1.

Proof. The aggregate submitted endowment in each round is formed as shown below

1. for the round j = 1 the agg. submitted endowment is: B0 =
γ1E1,0 + γ2E2,0

2γ

2. similarly for the round j = 2: B1 =
γ1E1,1 + γ2E2,1

2γ
=
γ1E1,0 + γ2E2,0

2γ
+
γ1 − γ2

2γ
C1 =

B0 + uC1, where u =
γ1 − γ2

2γ

3. for the round j = 3: B2 =
γ1E1,2 + γ2E2,2

2γ
=

γ1E1,0 + γ2E2,0

2γ
+
γ1 − γ2

2γ
C1 +

γ1 − γ2

2γ
C2 = B0 + u (C1 + C2)

So, in the round j = N we end up with BN−1 = B0 + u (C1 + C2 + ...+ CN−1) =

B0 + u
∑N−1

j=1 Cj = B0 + u[2− 1

2N−2
]C1 = B0 + u[1− 1

2N−1
]Co

1 , where u =
γ1 − γ2

2γ
.

We examine where the agent’s aggregate compensation results from the re-trading

procedure. Substantially, it is accounted by:

N∑
j=1

πj =
∑N

j=1 E(Cj)− 2γ
∑N

j=1Cov(Cj,Bj−1) (3.1)

Obviously, the equation is divided in two parts

1.
∑N

j=1E(Cj)

2.
∑N

j=1Cov(Cj,Bj−1)
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3.3 Two agents re-trading - Economic perspective

Firstly, we calculate the second term 2. as it is quoted below. The proof is separated

in two parts, initially we calculate each factor of the sum individually and then we

calculate the sum. In order to make easier the plot of the mathematical calculations,

hereafter we depict the variance of the Nash contract V ar(C1) as Σ1.

We have the next:

• Cov(C2,B1) =
1

2
Cov(C1,B0) +

u

2
Σ1

• Cov(C3,B2) =
1

4
Cov(C1B0) +

3 · u
8

Σ1

• Cov(CN ,BN−1) =
1

2N−1
Cov(C1,B0) +

2j − 1

22j−1
uΣ1

From the aforementioned equations we can take the next sums:

•
(

1 +
1

2
+

1

4
+ ...+

1

2N−1

)
Cov(C1,B0) =

∑N−1
j=0

1

2N−1
Cov(C1,B0)

•
(

1

2
+

3

8
+ ...+

2j − 1

22j−1

)
uΣ1 = uΣ1

∑N−1
j=1

2j − 1

22j−1

We readily can show that

N−1∑
j=1

2j − 1

22j−1
=

N−1∑
j=1

1

2j−1
−

N−1∑
j=1

1

22j−1
=

(
2− 1

2N−2

)
− 2

3

(
1− 1

4N−1

)
⇒

⇒
N−1∑
j=1

2j − 1

22j−1
=

4

3
− 2

2N−1
+

2

3

1

4N−1

Therefore the 2. sum is accounted to be:

N∑
j=1

Cov(Cj,Bj−1) = Cov(C1,B0) + Cov(C2,B1) + Cov(C3,B2) + ...+ Cov(CN ,BN−1)

=

(
1− 1

2N

)
Cov(Co

1 ,B0) +
γ1 − γ2

2γ
(
4

3
− 2

2N−1
+

2

3

1

4N−1
)
Σo

1

4

= aN · Cov(Co
1 ,B0) + bN ·

γ1 − γ2

2γ

Σo
1

4

where aN , N ∈ 1, 2, 3... and bN , N ∈ 1, 2, 3... are sequences that we denote below

and Σ1 =
Σo

1

4
. Below we cite the sequences that all of them converge to a real number.

• aN = 1− 1

2N
which converges to 1 while N →∞

• bN =
4

3
− 2

2N−1
+

2

3
· 1

4N−1
which converges to

4

3
while N →∞
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3.3 Two agents re-trading - Economic perspective

In respect of the first term 1. we have that:

N∑
j=1

E(Cj) = E

(
N∑
j=1

Cj

)
= E

(
Co

1

2

(
2− 1

2N−1

))
=

(
1− 1

2N

)
·E(Co

1) = aN ·E(Co
1)

Thus, (3.1) transforms to the next equation:

N∑
j=1

πj = aN · E(Co
1)− 2γ ·

(
aN · Cov(Co

1 ,B0) + u · Σo
1

4
·
∑N−1

j=1

2j − 1

22j−1

)
=

= aN · E(Co
1)− 2γ · aN · Cov(Co

1 ,B0)− γ1 − γ2

4
· Σo

1 · bN

Hereafter, we set the compensations at the limit as πlim = limN→∞
∑N

j=1 πj and

express them in relation to the optimal compensations. As it is known from the (2.7)

we have that:

πo1 = E(Co
1)− 2γCov(Co

1 ,E )⇒ E(Co
1) = πo1 + 2γCov(Co

1 ,E )

Combining the above equation with (3.2) we have that:

N∑
j=1

πj = aN · (πo1 + 2γCov(Co
1 ,E ))− 2γ · aN · Cov(Co

1 ,B0)− γ1 − γ2

4
· Σo

1 · bN =

= aN · πo1 + 2 · aN · Cov[Co
1 , γ · (E −B0)]− γ1 − γ2

4
· Σo

1 · bN =

= aN · πo1 + aN · (γ1 − γ2) · Σo
1 −

γ1 − γ2

4
· Σo

1 · bN =

=

(
1− 1

2N

)
πo1 +

(
1− 1

4N

)
2 (γ1 − γ2)

3
Σo

1 (3.2)

Also we have that:

γ · (E −B0) = γE1,0 + γE2,0 −
γ1E1,0 + γ2E2,0

2
= (γ − γ1

2
) · E1,0 + (γ − γ2

2
) · E2,0

=
−γ1(γ1 − γ2)

2(γ1 + γ2)
· E1,0 +

γ2(γ1 − γ2)

2(γ1 + γ2)
· E2,0 =

γ1 − γ2

2
· γ2E2,0 − γ1E1,0

(γ1 + γ2)

=
(γ1 − γ2) · Co

1

2

Hence the limiting compensation is:

πlim = limN→∞
∑N

j=1 πj = limN→∞

((
1− 1

2N

)
πo1 +

(
1− 1

4N

)
2 (γ1 − γ2)

3
· Σo

1

)
=

= πo1 +
2(γ1 − γ2)

3
· Σo

1 (3.3)
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3.3 Two agents re-trading - Economic perspective

(⇒) Obviously, the pie of utility surplus increases as the rounds increase unlimited,

compared with the static model. Based on the equation (3.3), it shows that the

aggregate price πlim of transactions are equivalent to the optimal transactions πo1 plus

the term
2(γ1 − γ2)

3
Σo

1. The latter term, which is expressed in relation to the risk

aversion of each agent and the risk on the contract, that the agents undertake in order

to begin the re-trading procedure, needs some thorough interpretation. To be more

specific, if the agents are homogeneous, the term
2(γ1 − γ2)

3
Σo

1 = 0 and the submitted

aggregate endowment of the agents B0 is equal with their true agg. endowment E =

E1,0 + E2,0. In this way, the aggregate compensation after the infinitely many steps

of transactions, is equal to the optimal compensation, namely
∑N

j=1 πj = πo1, as well

the sum of Nash contracts is
∑N

j=1Cj = Co
i . This gives an explicit message, when

γ1 = γ2. When the trades are unlimited, the condition to succeed the Pareto optimal

risk sharing allocation (both agents improve their position by receiving the optimal

allocation individually) is exactly the same to succeed infinite trades to the already

mentioned prices. After all, their contract and compensations pricing converge to the

Pareto optimal while N →∞.

(⇐)Vice versa, from the equation (3.3) the πlim = πo1 if the term
2(γ1 − γ2)

3
Σo

1 = 0

and thus γ1 = γ2 or Σo
1 = 0. Regarding to the contract, if it is constant it is implied

that Σo
1 = 0 or equivalently the agents are already in a Pareto optimal transaction

(γ2E2,0 = γ1E1,0).

Corollary 2. Hence, taking into account Proposition 5 and 6, the re-trading procedure

results in Pareto optimal, through infinitely many steps of trades. Both the contract

and the prices coincide with the optimal, if γ1 = γ2 or the agents are already in Pareto

optimal position (Σo
1 = 0).

Remark 5. It is shown, that the agents will never attain the Pareto optimal risk

sharing allocation, in finite steps with myopic re-trading. Through the myopic re-

trading process, the agents achieve an allocation, where the assets or financial tradeable

securities, that are shared in each round, are inherited by the previous rounds of trades.

Recall that, these financial tradeable securities are contracts, which can be any financial

derivative. In addition to this, every trading round consists a static Nash Equilibrium,

in relation to the inherited risk sharing allocation of the former rounds. Hence, the

agents re-trading procedure approximates the competitive equilibrium price in infinitely

many steps, if they are homogeneous and behave myopically.

The conclusion is more challenging when agents are heterogeneous. Let us assume

that γ1 < γ2. Then (3.3) indicates that, although agent-2 (after the infinite trading

rounds) gains more cash from the compensations than the one shot transaction case,
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3.3 Two agents re-trading - Economic perspective

her counterparty gets a discount (the lower risk averse agent-1) to obtain the contract,

from the effect of the term
2(γ1 − γ2)

3
Σo

1. The clear message is that the lower risk averse

agent gains more profits, not only from the sum of Nash contracts payoff convergence

to the Pareto optimal one, but also from her higher risk tolerance, which yields an

extra gain by declining the cash that she will pay for the contract in the limit. In

re-trading, the compensation gives a discount on the side of the agent with lower risk

aversion.

Below, we define a measure to examine the utility that agents get from the re-

trading procedure. We set this measure as the Nash utility surplus, which measures

the extra utility of the agent at the end of each trading round. It is set as the expected

utility of the difference of her new endowment Ei,j minus the aggregate compensation∑N
j=1 πj that she pays for each new round. Hereafter, UNash

1,j will stand for surplus

which also incorporates the agent’s wealth before the re-trading U1,0(E1,0).18 Hence,

we set the utility of agent-1, in the j − th Nash equilibrium to be:

UNash
1,j = U1,j

(
N∑
i=1

E1,j −
N∑
j=1

πj

)
= U1,j

(
E1,0 +

N∑
j=1

Cj −
N∑
j=1

πj

)
(3.4)

Our purpose is to analyze the evolutionary course of the utility of agent’s aggregate

position. We use it as a measure for the market inefficiency, which is carried by both

agents, no matter their risk tolerance, in combination with the (2.11). This inefficiency

is anticipated due to the fact that the aggregate submitted endowment is B0 6= E . In

the sequel, we indicate the total utility surplus of the agent at the end of each trading

round.

Proposition 7. The utility surplus of agent-1, at the trading round N is:

UNash
1,N − U1,0(E1,0) =

(
1− 1

4N

)
· γ1 + 2γ2

3
· Σo

1 (3.5)

Proof. The limiting Nash utility surplus is given by the difference of the Nash surplus

in round N minus the position that the agent already holds before the re-trading

procedure U1(E1,0) and hence we set Usur = UNash
1,N − U1,0(E1,0):

18Following the same notation with the contract and the compensations, the UNash
i,j illustrates the

surplus of the i− th agent in the j − th round of trade. Due to the symmetric games we examine the
surplus of agent-1, UNash

1,j , adjusting the results properly for agent-2.
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3.3 Two agents re-trading - Economic perspective

Usur = UN

(
E1,N −

N∑
j=1

πj

)
− U1(E1,0) = UN

(
E1,0 +

N∑
j=1

Cj −
N∑
j=1

πj

)
− U1,0(E1,0)

= E

(
N∑
j=1

Cj

)
−

N∑
j=1

πj − γ1V ar

(
N∑
j=1

Cj

)
− 2γ1Cov

(
N∑
j=1

Cj,E1,0

)

= 2γ
N∑
j=1

Cov(Cj,Bj−1)− γ1V ar

(
N∑
j=1

Cj

)
− 2γ1Cov

(
N∑
j=1

Cj,E1,0

)

= 2 · aN · [Cov(Co
1 , (γ ·B0 − γ1 · E1,0)] +

(
bN ·

γ1 − γ2

4
− (aN)2 · γ1

)
· Σo

1

=

(
1− 1

4N

)
· γ1 + 2γ2

3
· Σo

1

Since we have that

E

(
N∑
j=1

Cj

)
−

N∑
j=1

πj = E

(
N∑
j=1

Cj

)
−

N∑
j=1

E(Cj) + 2γ
N∑
j=1

Cov(Cj,Bj−1)

= 2γ
N∑
j=1

Cov(Cj,Bj−1)

and

γ ·B0 − γ1 · E1,0 =
γ1 + γ2

2
· Co

1

finally we can prove the required.

Corollary 3. The Nash utility surplus of agent-2 is given by:

UNash
2,N − U2,0(E2,0) =

(
1− 1

4N

)
· 2γ1 + γ2

3
Σo

1

(symmetric games), we mark that:

UNash
2,j = U2,j

(
N∑
i=1

E2,j +
N∑
j=1

πj

)
= U2,j

(
E2,0 −

N∑
j=1

Cj +
N∑
j=1

πj

)

When N →∞, we have that the utility surplus of agent-1 is:

lim
N→∞

[
UNash

1,N − U1,0(E1,0)
]

=
γ1 + 2γ2

3
Σo

1
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3.4 Step by step of bilateral re-trading evolution

and due to the fact that the outcomes are symmetric for her counterparty is:

lim
N→∞

[
UNash

2,N − U2,0(E2,0)
]

=
2γ1 + γ2

3
Σo

1

The case of the utility surplus is similar to the aforementioned conversation. In partic-

ular, the Nash utility surplus converges to the optimal utility in the limit, when agents

are homogeneous. Namely, UNash
1,N = γ1 and UNash

2,N = γ2 and thus we demonstrate that

the homogeneity case with myopic re-trading approximates the competitive equilibrium.

The whole search is verified once again, reinforcing the Remark 6

So far, the re-trading explicitly leads two homogeneous agents to the Pareto optimal

allocation via unlimited continuum of transactions. The question is: “How do these

results change if the agents are heterogeneous?”. For sure, they are even more fancy

and they illustrate that the lower risk averse trader dominates re-trading. To respond

better in this question, we first introduce the outcomes of re-trading for the first j = 3

rounds and then, we determine the exact neighborhoods, in which the aversion of

the the lower risk averse trader belongs. A thorough debate is presented in the last

subsection.

3.4 Step by step of bilateral re-trading evolution

Considering the above, in this subsection we present the evolutionary course of re-

treading step by step (∀ round) in the Table 1, for the j = 3 trading rounds. Notably,

in order to present the idea how the table was formed, we refer to the meaning of

each row. In particular, we present in the table the next outcomes, the aggregate

submitted endowment (A.S.E), the purchased contract of agent-1 (P.C. of agent-1),

the compensation that is paid in each round by agent-1 (Compensation), the utility

surplus of agent-1 (U.S. of agent-1) and the market inefficiency (M.I).

We recall, that πo1 = E(Co
1) − 2γCov(Co

1 ,E ) is the Pareto optimal compensation

that agent-1 pays to agent-2, when they do not behave strategically. Furthermore, the

outcomes of the first trading round coincide with those of the static model. The price

of the contract in each round is given by:

πj =
πo1
2j

+
γ1 − γ2

2
· Σo

1

4j−1
(3.6)

where j ∈ {1, 2, ..., N}.

Remark 6. The Nash utility surplus is accounted by the equation (3.5) for every round

of trade. According to the risk sharing inefficiency measure, which is set by (2.11),

we adjust it properly for the different equilibria, the Nash equilibrium and the Pareto
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3.4 Step by step of bilateral re-trading evolution

optimal one. Thus, we generalize this measure and the aggregate market inefficiency

is given by:

(
Aggregate Market

Inefficiency

)
= (U o

1 + U o
2 )−

(
UNash

1,N + UNash
2,N

)
⇒

⇒

(
Aggregate Market

Inefficiency

)
= (γ1 + γ2) · Σo

1 −
(

1− 1

4N

)
· (γ1 + γ2) · Σo

1 ⇒

⇒

(
Aggregate Market

Inefficiency

)
=
γ1 + γ2

4N
· Σo

1

Ultimately, we quote the Table 1 outcomes:

Table 1: Bilateral re-trading evolution in each round

aggregate submitted endowment (A.S.E), the purchased contract of agent-1 (P.C. of agent-1), the compensation that

is paid in each round by agent-1 (Compensation), the utility surplus of agent-1 (U.S. of agent-1) and the market

inefficiency (M.I), u =
γ1 − γ2

2γ

trade round 1 trade round 2 trade round 3

A.S.E. B0 B1 = B0 +
u · Co

1

2
B2 = B0 +

3u · Co
1

4

P.C. of agent-1 C1 =
Co

1

2
C2 =

Co
1

4
C3 =

Co
1

8

Compensation
πo
1

2
+
γ1 − γ2

2
Σo

1

πo
1

4
+
γ1 − γ2

2

Σo
1

4

πo
1

8
+
γ1 − γ2

2

Σo
1

16

U.S. of agent-1
γ1 + 2γ2

4
Σo

1

5γ1 + 10γ2

16
Σo

1

21γ1 + 42γ2

64
Σo

1

M.I.
γ1 + γ2

4
Σo

1

γ1 + γ2

16
Σo

1

γ1 + γ2

64
Σo

1

In the last part of our discussion, knowing all the steps of the Nash re-trading, our

attention is focused in the much talked case of heterogeneous agents. Since the agents

are n = 2, we will show the final inductions in steps, like in each part of our conver-

sation. From this point onward, we expand our results arguing about the event that

agents are heterogeneous. Initially, we will determine the “efficient neighborhoods” in

which the lower risk averse agent dominates the bilateral trading. Below, we unfold

the game plot from another aspect, making the main assumption that γ1 < γ2.

We indicate for the first j = 3 trading rounds the “efficient neighborhoods” . In
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3.4 Step by step of bilateral re-trading evolution

the sequel, we endorse this event as re-trading continues indefinitely till the last Nash

equilibrium.

1. In the first trading round the Nash contract payoff is the half of the optimal one,

C1 =
Co

1

2
, and the compensation that she pays to her counterparty is given by the

equation (3.6) (see in Table 1). Consequently, by comparing the compensation with

the Pareto optimal one, it gives the next result:

π1 −
πo1
2

=
γ1 − γ2

2
· Σo

1 ⇒ π1 <
πo1
2

This means that in the beginning agent-1 pays a higher compensation than the half

of the Pareto optimal one. In order to be accurate about the efficient neighborhood,

which in fact is an open set of the subset (0,+∞) ⊂ R, we determine them. Hence,

the lower risk averse agent gains more in the transaction than her counterparty

when particularly γ1 <
2γ2

3
or

γ1 ∈ A1 =

(
0,

2γ2

3

)
.

2. Similarly, in the second trading round the Nash contract payoff is also a fraction of

the Pareto optimal one, namely C2 =
Co

1

4
, and the compensation that she pays to

her counterparty is given by the equation (3.6) (see in Table 1). Consequently, by

comparing the compensation with the Pareto optimal one, it gives the next result:

π2 −
πo1
4

=
γ1 − γ2

8
· Σo

1 ⇒ π1 <
πo1
4

This means that in the second round agent-1 pays a lower compensation than the

quarter of the Pareto optimal one. More precisely, she acquires another part of the

Pareto optimal contract,
Co

1

4
, by discount, although the compensations pie increases

as the transactions continue indefinitely. Thus, for agent-1 the compensation, that

she pays, diminishes after making trades for another round if γ1 <
10γ2

11
. In brief,

this indeed shows that the scales lean towards the lower risk averse agent. Hence,

the efficient open set is:

γ1 ∈ A2 =

(
0,

10γ2

11

)
.

3. In the third trading round the Nash contract payoff is C3 =
Co

1

8
, and the compen-

sation that she pays to her counterparty is given by the equation (3.6) (see again in

Table 1). Consequently, by comparing the compensation with the Pareto optimal
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3.4 Step by step of bilateral re-trading evolution

one, it gives the next result:

π3 −
πo1
8

=
γ1 − γ2

32
· Σo

1 ⇒ π1 <
πo1
8

Similarly the development of the game gives in this round the same conclusions

with the previous one. Thus, agent-1 obtains another part of the Pareto contract

by paying, respectively, less than the part of the optimal compensation, if γ1 <
42γ2

43
or

γ1 ∈ A3 =

(
0,

42γ2

43

)
.

Corollary 4. Therefore, to sum up the evolution course of the iterative process

of trades, afterward the trading round j = 2 the lower risk averse trader gains

even if she is slightly lower risk averse than her (higher risk averse) counterparty.

Although, a fairly large neighborhood, in which agent-1 looses utility in relation to

her counterparty, exists in the first trading round (Ac1 = (
2γ2

3
, γ2)), it diminishes in

the second one and so on. It is remarkable that the open set grows from the right

hand of γ1 tending close to γ2 but they can never be equal. Intuitively, the “efficient

neighborhood” of agent’s-1 risk aversion coefficient belongs to the open space:

Aj =

(
0,

22·j+1 − 2

22·j+1 + 1
· γ2

)
where j ∈ {1, 2, ..., N}.

Despite the fact that agent-1 gains more utility than her counterparty in the case

of heterogeneous agents, in the limit it is illustrated that the aggregate utility, when

traders behave strategically is equal to the aggregate Pareto optimal utility. Below,

it is indeed shown, that the difference between aforementioned aggregate utilities is

equal to zero. Moreover, by making the comparison of the agent’s individual Nash

utility in the limit minus the Pareto one, agent-1 is verified to be the dominant trader

in the repeated trading process.

(
Aggregate utility

on the limit

)
−

(
Aggregate utility

at the Pareto

)
= UNash

1,lim + UNash
2,lim − (U o

1 + U o
2 ) = 0

We notice that each trader is affected by two different streams. The initial stream

for each trader is originated by the utility surplus which converges to UNash
1,lim =

γ1 + 2γ2

3
·

Σo
1 and UNash

2,lim =
2γ1 + γ2

3
·Σo

1 for each agent respectively, while the Pareto utilities are

accounted to be U o
1 = γ1 · Σo

1 and U o
2 = γ2 · Σo

1 respectively.
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3.4 Step by step of bilateral re-trading evolution

In particular, for agent-1 we have that:

UNash
1,lim =

γ1 + 2γ2

3
· Σo

1 > U o
1 = γ1 · Σo

1 ⇒ γ2 > γ1

while for agent-2

UNash
2,lim =

2γ1 + γ2

3
· Σo

1 < U o
2 = γ2 · Σo

1 ⇒ γ2 > γ1

Therefore, for as long as γ1 < γ2, given that γ1 belongs to the “efficient neigh-

borhoods”, at the last Nash equilibrium, agent-1 not only gains more utility than the

Pareto optimal risk sharing allocation, since she gets the optimal contract payoff Co
1

with a discount (as it is shown below in Proposition 8 ).

The second stream, however equally important, is originated by the market inef-

ficiency, which is carried by both traders, it is proved to be higher for agent-2 in the

limit (comparing to the optimal situation). Consequently, with the measure (2.11)

for each trader individually, the difference between the utility at the limit minus the

Pareto one is accounted to be:

1. For agent-1 we have that:(
Utility at

the limit

)
−

(
Utility at

the Pareto

)
= UNash

1,lim − U o
1 =

(
γ1 + 2γ2

3
− γ1

)
Σo

1 =
2(γ2 − γ1)

3
Σo

1

2. Similarly for agent-2:(
Utility at

the limit

)
−

(
Utility at

the Pareto

)
= UNash

2,lim − U o
2 =

(
2γ1 + γ2

3
− γ2

)
Σo

1 =
2(γ1 − γ2)

3
Σo

1

Namely, the market inefficiency stream for trader-2 is equal to
2(γ1 − γ2)

3
Σo

1, which

controls that she suffers more utility loss in the limit from re-trading. Albeit, her wealth

is accounted to be
2γ1 + γ2

3
Σo

1, she is affected more negatively by her inefficiency stream

individually. Agent-2 looses utility in the Nash occasion compared to the case that no

strategic behavior exists. To be more accurate, agent-2 improves her position, but still

is distant from the Pareto. Hence, it is confirmed that for the neighborhood where

γ1 < γ2, trader-1 is the one that benefits in the limit (again). Apparently, the utility

loss, of agent-2, is a matter not only of the trader’s higher risk aversion, but also from

the mutual carriage of the different risks, that is reported by the pair of the traders.

From our scope, we follow this myopic-naive path of continuous trading, only as an

intermediate step to simply show that, even though agents behave strategically, the

pricing can result to the Pareto set, if they are homogeneous. In contrast to this, if
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3.4 Step by step of bilateral re-trading evolution

agents are heterogeneous, the scales lean towards agent-1 even in myopic case.

The whole discussion is confirmed when the procedure continues to infinitely many

steps of trades. The pie of compensation increases for agent-2 comparative to the one

shot transactions, however it is lower than the Pareto optimal in the end of re-trading

procedure. Considering the above mentioned discussion, when N → ∞ we result to

the following proposition.

Proposition 8. In the limit, the lower risk averse agent gains both the optimal con-

tract,
∑N

j=1Cj → Co
1 and a discount in the aggregate compensations that she pays,

limN→∞
∑N

j=1 πj < πo1, if and only if agents are heterogeneous (say γ1 < γ2).

Proof. Say γ1 < γ2. As we have already shown:

πlim = πo1 +
2(γ1 − γ2)

3
Σo

1 ⇒ πlim − πo1 =
2(γ1 − γ2)

3
Σo

1

(⇒) If γ1 < γ2, apparently we have that the lower risk averse agent will pay less than

the Pareto optimal compensation in the limit to obtain the optimal contract:

lim
N→∞

N∑
j=1

πj − πo1 =
2(γ1 − γ2)

3
Σo

1 ⇒ lim
N→∞

N∑
j=1

πj < πo1

(⇐) Vice versa, if we have that:

lim
N→∞

N∑
j=1

πj − πo1 =
2(γ1 − γ2)

3
Σo

1 < 0⇒ γ1 < γ2

which means that agent-1 will pay less than the Pareto optimal compensation to get

the contract, if her risk averse is lower than her counterparty. Finally, in the limit we

have that limN→∞
∑N

j=1 πj < πo1, if and only if γ1 < γ2.

Remark 7. In conclusion, the pair of agents attains the Pareto allocation if they are

homogeneous and behave myopically. Contrarily, in Proposition 8 is stated that, the

agent with the lower risk aversion, γ1, acquires the contract Co
1 , hence the optimal

payoff, through infinite steps of trade with discount, as she will pay lower cash than

πo1. As for her counterparty, the agent with the risk aversion γ2, she seems to gain

more as the pie increases, while the re-trading frequency is unlimited, but she will

never attain πo1. Also, agent-2 carries the higher part of the inefficiency in the market.

Thus, in the case of heterogeneous agents, the scales lean in favor of the agent-1, while

agent-2 will never attain the optimal compensation, which is an issue that stems from

both, her higher risk aversion and the the submitted risk that differs from the true

one. Eventually, when agents behave strategically and they are heterogeneous, it is
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strengthened the result that agent-1 dominates the bilateral re-trading even though they

are myopic. In this case, the risk share allocation can not reach the Pareto efficiency.

4 The Non-myopic problem

The pricing, taking into account agents’ strategic behavior, is probed thoroughly in

this section, setting the problem in a forward looking way. Provided that, in the

real world two agents will never attain a transaction within infinite time, we set the

conditions for the non-myopic problem. In principal, we determine the risk, that

the agents should share in the simple case of two trading rounds, by responding the

question: “How much risk should an agent share, given that she knows the aggregate

submitted endowment of her counterparty in both trading rounds? In deterministic

time, we should say that the most precise answer is the following: “The risk that

an agent submits in the current trading round, depends not only on the risk that her

counterparty submits in this round, but also in the next one (or future transaction)”.

We recall that, when agents behave non-myopic or far-sighted they expect that future

transactions will be completed between them.

Each agent will declare a fraction of both endowments, the one she holds and

the other that her counterpart owns, in the trade. These proportions are vectors of

the Euclidean space, say (αj, βj) ∈ R2 × R2, where j = 1, 2, ..., N (we have the same

notation for j−dependence on time likewise in the previous section of the myopic case)

and αj reflects the declared proportion of risk sharing in accordance with the aggregate

endowment for agent-1, while βj reflects the same for agent-2 respectively.

Specifically, agent-1 will report in the first trade, α1 =(α1,1 coefficient of E1,0, α1,2

coefficient of E2,0), whereas agent-2 will respond by reporting β1 =(β1,1 coefficient of

E1,0, β1,2 coefficient of E2,0). The coefficients stand for the submitted risk of every

endowment that they will report for the transaction. Similar is the occasion of the

second trading round, where α2 and β2 vectors demonstrate the submitted risk sharing

of agent-1 and agent-2 respectively. In the sequel, we present this simple case of

two trading rounds bilateral transactions. Thus, we result to the next optimization

problems from each one’s scope.

Supposing that agent-1 has the knowledge of the β1 and β2 vectors, she will make

the best endowment response by reporting α1 and α2 vectors, in the trade, respectively.

Hence, the maximum utility that agent-1 will gain is given by the solution of the

problem, which is defined below:

max
(α1,α2)∈R2×R2

{
U1,2

(
e1 · E +

2∑
j=1

Co
j (αj, βj)− πo1(α1, β1)− πo2(α2, β2); (β1, β2)

)}
(4.1)
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Contrarily, given that agen-2 knows that agen-1 will submit α1 and α2 vectors in

each trading round, the best endowment response of agent-2 is β1 and β2 respectively.

The corresponding optimal problem for the second trader gives her individual utility

maximization as it is quoted below:

max
(β1,β2)∈R2×R2

{
U2,2

(
e2 · E −

2∑
j=1

Co
j (αj, βj) + πo1(α1, β1) + πo2(α2, β2); (α1, α2)

)}
(4.2)

where e1 = (1, 0), e2 = (0, 1), E = (E1,0,E2,0) the vector of the endowments, the

contract payoff is Cj := Co
j (αj, βj) ∈ (R2)N × (R2)N and the price of the contract is

πj := πoj (αj, βj) with j ∈ 1, 2, ..., N . Each optimizer expression, gives the unique Nash

equilibrium ∀ agent towards her own scope.

We have the following for the contract and the compensations in each round:

• The contract payoff in the first round is: Co
1(α1, β1) = λ1(β1 · E )− λ2(α1 · E )

• The contract payoff in the second round is: Co
2(α2, β2) = λ1(β2 · E )− λ2(α2 · E )

• The price in the first round is: πo1(α1, β1) = −2γCov [Co
1(α1, β1), (α1, β1) · E ]

• The price in the second round is:

πo2(α2, β2) = −2γCov [Co
2(α2, β2), (α1 + α2, β1 + β2) · E ]

Notably, the aggregate endowment 19 is B1 = (α1, β1) · E in trading round 1

and B2 = (α1 + α2, β1 + β2) · E in trading round 2. Without loss of general-

ity we can assume that E(E ) = E(E1,0) = E(E2,0) = 0 and this induces that

E(
∑2

j=1C
o
j (αj, βj)) = 0, given that:

2∑
j=1

Co
j (αj, βj) = Co

1(α1, β1) + Co
2(α2, β2) = (λ1(β1 + β2)− λ2(α1 + α2)) · E

By solving the optimization problems that are marked by the (4.1) and (4.2) we

will result to the risk sharing between the agents, when they behave strategically and

non-myopic. We remind that the M-V preferences are ticked off by the quadratic (2.1)

equation and hence we denote as U1,2 the utility function for agent-1 at the end of

the second round and as U2,2 the corresponding one for agent-2. Thus we have the

following.

19For the j − th round we can say that Bj =
∑N

j=1(αj , βj) · E , where j = 1, 2, ..., N . Furthermore,
the risk sharing allocation between the agents is completed on the inherited endowments by the
previous round of trade.
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The utility for agent-1 is accounted to be:

U1,2 = U1,2

(
e1 · E +

2∑
j=1

Co
j (αj, βj)−

2∑
j=1

πj(αj, βj)

)
⇒

⇒ U1,2 = −

(
2∑
j=1

πj(αj, βj)

)
− γ1 · V ar

(
e1 · E +

2∑
j=1

Co
j (αj, βj)

)
(4.3)

The aggregate compensations for both rounds are given below:

2∑
j=1

πj(αj, βj) = πo1(α1, β1) + πo2(α2, β2) = −2γ (Cov(Co
1(α1, β1),B1) + Cov(Co

2(α2, β2),B2)) =

= −2γ [(α1 + β1) · Σ · (λ1β1 − λ2α1)ᵀ + (α1 + α2 + β1 + β2) · Σ · (λ1β2 − λ2α2)ᵀ]

where Σ = V ar(E ), namely the variance-covariance matrix of the endowments. We

assume that the endowments are uncorrelated or equivalently the inverse matrix of Σ

exists. We can do so, since there is no affection in the final outcomes of the game.

Concerning with the variance between agent’s-1 endowment and the sum of contracts,

we end up with the following:

V ar

(
e1 · E +

2∑
j=1

Co
j (αj, βj)

)
= V ar ((e1 + λ1(β1 + β2)− λ2(α1 + α2)) · E ) =

= (e1 + λ1(β1 + β2)− λ2(α1 + α2)) · Σ · (e1 + λ1(β1 + β2)− λ2(α1 + α2))ᵀ

Equivalently, the utility for agent-2 is accounted to be:

U2,2 = U2,2

(
e2 · E −

2∑
j=1

Co
j (αj, βj) +

2∑
j=1

πj(αj, βj)

)
⇒

⇒ U1,2 =

(
2∑
j=1

πj(αj, βj)

)
− γ2 · V ar

(
e2 · E −

2∑
j=1

Co
j (αj, βj)

)
(4.4)

Where the variance between agent’s-2 endowment and the sum of contracts is the

following:

V ar

(
e2 · E −

2∑
j=1

Co
j (αj, βj)

)
= V ar ((e2 − λ1(β1 + β2) + λ2(α1 + α2)) · E ) =

= (e2 − λ1(β1 + β2) + λ2(α1 + α2)) · Σ · (e2 − λ1(β1 + β2) + λ2(α1 + α2))ᵀ
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4.1 The solution of non-myopic re-trading

4.1 The solution of non-myopic re-trading

In this point, we are going to clarify the non-myopic problem by solving the individual

problems that are asserted by the equations (4.3) and (4.4) mutually. Accurately, we

will apply the matching between the two problems, in order to succeed it. Particularly,

the solution of the linear equations system, in which we end up from the combination

of the necessary conditions is unique. We expected that because of the linearity of the

partial derivatives (quadratic forms of M-V preferences).

Another fact to be mentioned is the relaxation of the assumptions that set in the

non-myopic problem, especially the ii) and the iii). Albeit, we ought to and readily

relax the second assumption so as to determine the model in a forward looking or far-

sighted way, this is not obvious in the model at the moment. Furthermore, we have

not incorporated the appropriate coefficient for the transaction costs or the penalty

of the continuous trading. These issues can be left for further research, but firstly we

need to solve the problem and then we can incorporate them. We need to find the

solution and then we will adjust the model properly.

The necessary conditions to find the optimal risk sharing for each agent is quoted

below: The gradient of the equation (4.3) must be:

∇U1,2

(
e1 · E +

2∑
j=1

Co
j (αj, βj)− πo1(α1, β1)− πo2(α2, β2)

)
= 0⇒ (

∂U1,2

∂α1

,
∂U1,2

∂α2

) = (0, 0)

The partial derivatives for agent’s-1 utility are:

∂U1,2

∂α1

= [(2γ1λ2 + 2γ) (λ1(β1 + β2)− λ2(α1 + α2))− 2γλ2(α1 + β1) + 2γ1λ2e1] · Σ

∂U1,2

∂α2

=

= [(2γ1λ2 + 2γ)(λ1β2 − λ2α2)− 2γλ2(α1 + α2 + β1 + β2)− 2γ1λ2(λ1β1 − λ2α1 + e1)] · Σ

The gradient of the equation (4.4) must be:

∇U2,2

(
e2 · E −

2∑
j=1

Co
j (αj, βj) + πo1(α1, β1) + πo2(α2, β2)

)
= 0⇒ (

∂U2,2

∂β1

,
∂U2,2

∂β2

) = (0, 0)

The partial derivatives for agent’s-2 utility are:

∂U2,2

∂β1

= [−(2γ2λ2 + 2γ) (λ1(β1 + β2)− λ2(α1 + α2))− 2γλ1(α1 + β1) + 2γ2λ1e2] · Σ
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4.1 The solution of non-myopic re-trading

∂U2,2

∂β2

=

= − [(2γ2λ1 + 2γ)(λ1β2 − λ2α2) + 2γλ1(α1 + α2 + β1 + β2) + 2γ2λ1(λ1β1 − λ2α1 − e2)] · Σ

We remind from section 2, that the relative risk tolerance ∀ agent, is denoted as

λi =
γ

γi
where i = 1, 2 in our case. Therefore, it is λ1 + λ2 = 1. Hence, we conclude to

the following linear system:

(
∂U1,2

∂α1

,
∂U1,2

∂α2

,
∂U2,2

∂β1

,
∂U2,2

∂β2

) = (0, 0, 0, 0)

which results to the next equations:

• λ2(1 + λ1)α1 + λ2α2 − λ2
1β1 − λ1β2 = λ2e1, (1)

• λ2 · α1 + λ2 · (1 + λ1) · α2 − λ2
1 · β2 = λ2e1, (2)

• λ2
2α2 + λ2α1 − λ1(1 + λ2)β1 − λ1β2 = −λ1e2, (3)

• λ2
2α2 − λ1β1 − λ1(1 + λ2)β2 = −λ1e2, (4)

Considering and setting as a benchmark the above system of linear equations, we

will have the following:

• By calculating

(1)− (2)⇒ α1 = α2 +
λ1

λ2

β1 + β2 (4.5)

• From the equations

(3)− (4)⇒ α2 = −λ2

λ1

α1 + β1 − β2 (4.6)

• By combining the equations (4.5) & (4.6)

α2 = −β2 (4.7)

• Finally, we have, that by combining (4.5) with (4.7), then

α1 =
λ1

λ2

β1 (4.8)

The final step to take the solution of the system, by combining the equations (1),

(2), (3), (4) an (4.5), (4.6), (4.7), (4.8), is quoted below:

•
λ1β1 − β2 = λ2e1
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4.2 The contract payoff and the compensations

•
λ1tβ1 + β2 = λ1e2

•
β1 =

λ2

2λ1

e1 +
λ1

2λ1

e2 ⇒ β1 = (
λ2

2λ1

,
1

2
)

•
β2 = (−λ2

2
,
λ1

2
)

•
α2 = (

λ2

2
,−λ1

2
)

•
α1 = (

1

2
,
λ1

2λ2

)

The sufficient condition, in order to find the maximum, is a negative definite Hes-

sian matrix. Since the variance-covariance matrix is positive definite, we can easily

prove this for both problems, (4.1) and (4.2), that the sufficient condition holds. For

our scope the Hessian matrix is omitted due to the easy way to check it and provided

that we assumed uncorrelated endowments, the variance covariance matrix is positive

definite.

4.2 The contract payoff and the compensations

We emphasize, that on the merits of the far sighted discussion, even if the re-trading

window of opportunity exists, the agents prefer to trade in one shot process. Inde-

pendently from the trading rounds, they respond in the last round of the potential

ones, the submitted endowment, that they report in order to negotiate. The non-

myopic case induces, that they want to gain instantly the optimal share of the pie

based on the strategical approach, which they set. This explicit message is confirmed

by the verification of the outcomes, that are originated on the matching of the two

problems. Specifically, in the first round if agent-1 reports α1 her counterparty will

respond risk β1 =
λ2

λ1

α1 (equation(4.8)). This will give as a result, that the contract

payoff is C1(α1, β1) = 0 and the price also πo1(α1, β1) = 0. In the second trading round,

if agent-1 submits α2 her counterparty will respond the exact opposite risk β2 = −α2

(equation (4.7)). In this occasion, the contract payoff results to half of the Pareto

optimal contract which coincides with the outcomes of the static model and the same

holds for the prices. Namely, the outcomes of the non-myopic case in the second round

coincide with the static Nash equilibrium of the first period transactions in Table 1.

The reverse conversation can be unfold, with the same outcomes, if we wonder how
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4.2 The contract payoff and the compensations

the agent-1 is going to respond, given that she knows the risk of each endowment, will

be submitted by her counterparty.

Proposition 9. The contract payoff, when agents behave far-sighted is C2(α2, β2) =
Co

1

2
and its price is πo2(α2, β2) = π1 or equivalently they coincide with the corresponding

payoff and prices of the Nash equilibrium of the static model.

Proof. The contract payoff and the prices in the first trading round, where α1 and β1

are known from equation (4.8), give us the following:

C1(α1, β1) = λ1β1 · E − λ2α1 · E = λ1

(
λ2

2λ1

E1,0 +
1

2
E2,0

)
− λ2

(
1

2
E1,0 +

λ1

2λ2

E2,0

)
= 0

πo1(α1, β1) = −2γCov [Co
1(α1, β1), (α1, β1) · E ] =

= −2γ

[
(
λ1

λ2

β1 + β1) · Σ · (λ1β1 − λ2
λ1

λ2

β1)

]
= −2γ(

β1

λ2

) ·

(
σ2

1 0

0 σ2
2

)
· (0, 0)ᵀ = 0

The contract payoff and the prices in the second trading round, where α2 and β2

are known from equation (4.7), are depicted below:

C2(α2, β2) = λ1β2 · E − λ2α2 · E = (λ1 + λ2)β2 · E = (−λ2

2
,
λ1

2
) · (E1,0,E2,0) =

Co
1

2
,

where Co
1 is the optimal contract.

πo2(α2, β2) = −2γCov [Co
2(α2, β2), (α1 + α2, β1 + β2) · E ] =

= −2γ [(α1 + α2 + β1 + β2)) · Σ · (λ1β2 − λ2α2)] = −2γ(
β1

λ2

) ·

(
σ2

1 0

0 σ2
2

)
· (−λ2

2
,
λ1

2

ᵀ

) =

= −2γ(− λ2

4λ1

σ2
1 +

λ1

4λ2

σ2
2) =

γ2
1

2(γ1 + γ2)
σ2

1 −
γ2

2

2(γ1 + γ2)
σ2

2 = π1

where σ2
1 = V ar(E1,0), σ2

2 = V ar(E2,0) and π1 = E(C1) − 2γCov(C1,B0). In com-

pletion, the price of the contract in the non-myopic problem coincides with the Nash

equilibrium price of the one period static model.

Remark 8. We highlight, that Proposition 9 is equivalent with the statement: “The

contract payoff and its price, when agents behave far-sighted, coincide with the corre-

sponding payoff and the price of the static Nash equilibrium of the one period model.”

The query, that we can postulate in this point is, whether it is enough for a pair

of traders, to attain the Pareto efficiency by behaving non-myopically. The precise

answer is that: “The traders by being far-sighted, they will not be led in the Pareto

optimality.” Far-sighted behavior does not imply, that they will approximate the Pareto
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frontier. The reason is the incentives of the traders, which are ranged from hedgers or

arbitragers to predators or speculators. These incentives in correlation with the thin-

ness of the market, will lead them to trade in the last round of re-trading (the second

round in this problem). Namely, if the rounds of trade were j, the traders would com-

plete transactions, where the aggregate prices are zero for j − 1 rounds (i.e. no trade

until the last round,
∑N

j=1 πj−1 = 0), while in the j − th round, they would attain the

static Nash equilibrium of the one period model outcomes.

5 The explicit costs analysis

The deviation of Pareto optimal risk sharing allocation, not only in thin markets, but

also in the competitive ones, is related with the much talked issue of transaction costs,

which can have any form such as commissions, brokerage fees, fares etc. Practically, if

the intermediary fees are very low (i.e δ = 0), there may be a chance for agents to attain

the Pareto optimal risk sharing allocation, when no strategic behavior exists or after

infinite steps of trades according to myopic re-trading procedure (strategic behavior).

In order to set simply the problem of transaction costs, we introduce a discount factor,

say δ, which constitutes the measure of these explicit costs. We stress that this factor

δ ∈ (0, 1), though it is postulated to be increasingly high under circumstances, where

the price of the agreement is too high or equivalently agents share too much risk.

Hence, they expect much higher gains.

Our study targets the determination of this factor δ, that makes some agent indif-

ferent for the trade, given that the costs overwhelming the aggregate utility surplus

during the evolving course of re-trading. Hence, we will result to an (upper) bound δ̄,

which reflects, that no other trade will incur because it will be unprofitable for some

trader. Agents loose some part of the expected wealth, which is anticipated after new

rounds of transactions due to the explicit costs. Since these costs are ex-ante we ex-

amine the δ̄j in the j− th round which is this upper bound or the terminal factor that

makes them indifferent for a new agreement. Given that, the market structure, that

we study, is a thin (oligopoly) complete market structure, where both agents co-design

the contracts and have the power to influence the prices, the explicit costs can be

shared equally to each one without loss of generality. Because of the market power,

that agents possess the whole skeptical of this terminal factor application, in order not

to trade, if the new round is too much costly for some trader, it can be assumed as an

equal divide of the costs between them.

Suppose that, the price of the optimal contract is πo1 > 0 ⇒ Cov(Co
1 ,E ) < 0 and

γ1 ≤ γ2, our analysis focuses in the case of the δ̄ from the scope of agent-2 in each

round of trade. We mention that the negative covariance between the optimal contract

and the total market endowment depicts the state where agents gain the higher profits
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from re-trading process. Furthermore, we have shown that agent-1 is the dominant

trader for as much as her risk aversion is lower than her counterparty’s and belongs to

the “efficient neighborhoods”. Thus, the utility surplus with the incorporation of the

discount factor δ is adjusted to be for every agent as below:

• The utility surplus of agent-1:

U δ
1,j

(
E1,0 +

N∑
j=1

Cj −
N∑
j=1

πj − δ ·
N∑
j=1

πj

)
− U1,0 (E1,0) (5.1)

• The utility surplus of agent-2:

U δ
2,j

(
E2,0 −

N∑
j=1

Cj +
N∑
j=1

πj − δ ·
N∑
j=1

πj

)
− U2,0 (E2,0) (5.2)

If agents are heterogeneous, the process of re-trading is presented step by step until

the N − th round of re-trading. Particularly, in the first trading round:

• Agent’s-1 investment position is accounted to be: E1,0 + C1 − π1 (1 + δ), while

her “new” utility surplus is shaped to be:

U δ1
1,1 − U1,0 (E1,0) =

γ1 + 2γ2

4
· Σo

1 − δ · π1

• Similarly, agent’s-2 investment position is accounted to be: E2,0−C1 +π1 (1− δ),
while her “new” utility surplus is shaped to be:

U δ1
2,1 − U2,0 (E1,0) =

2γ1 + γ2

4
· Σo

1 − δ · π1

Therefore, the agent-2 will be indifferent to the transaction from the moment that

her anticipated gains are zero or U δ1
2,1 − U2,0 (E2,0) = 0⇒ δ̄1 =

(2γ1 + γ2) · Σo
1

4 · π1

.

From the second trading round,the economic discussion is gathered only in the

utility of agent-2, as it is mentioned above, until the end of the re-trading procedure:

• Agent’s-2 investment position is accounted to be: E2,0 − C1 + (π1 + π2) (1− δ),
while her utility surplus is shaped to be:

U δ2
2,2 − U2,0 (E1,0) =

10γ1 + 5γ2

16
· Σo

1 − δ · (π1 + π2)

As a consequence, agent-2 will be indifferent to the transaction from the moment

that her anticipated gains are zero or U δ2
2,2 − U2,0 (E2,0) = 0⇒ δ̄2 =

(10γ1 + 5γ2) · Σo
1

16 · (π1 + π2)
.

In the third trading round:
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• Similarly, agent’s-2 position is accounted to be: E2,0−C1 +(π1 +π2 +π2) (1− δ),
while her utility surplus is the following:

U δ3
2,3 − U2,0 (E2,0) =

42γ1 + 21γ2

64
· Σo

1 − δ · (π1 + π2 + π3)

Agent-2 will be indifferent to the transaction when U δ3
2,3 − U2,0 (E2,0) = 0 ⇒ δ̄3 =

(42γ1 + 21γ2) · Σo
1

64 · (π1 + π2 + π3)
.

Finally, in the N − th round of trades, given the outcomes of the transactions, the

discount factor concludes to the following:

• Agent’s-2 position is: E2,0 − C1 + (1− δ)
∑N

j=1 πj, whereas her utility surplus is

the following:

U δN
2,3 − U2,0 (E2,0) =

(
1− 1

4N

)
2γ1 + γ2

3
· Σo

1 − δ ·
N∑
j=1

πj

Agent-2 will be indifferent to the transaction when

U δN
2,N − U2,0 (E2,0) = 0⇒ δ̄N =

(
1− 1

4N

)
2γ1 + γ2

3
· Σo

1∑N
j=1 πj

⇒

⇒ δ̄N =

[
2
(
4N − 1

)
γ1 +

(
4N − 1

)
γ2

]
Σo

1

3 (4N − 2N)πo1 + 2 (4N − 1) (γ1 − γ2) Σo
1

Recall that
∑N

j=1 πj is the aggregate compensations that are known from the equation

(3.2).

Proposition 10. Assuming that πo1 > 0, the sequence
(
δ̄j
)
j∈N is a strictly decreasing,

uniformly bounded from below and its limit is δ̄∗ =
(2γ1 + γ2) Σo

1

3πo1 + 2 (γ1 − γ2) Σo
1

.

Proof 1. In order to show the monotony of the sequence, we will show that:

δ̄N < δ̄N−1
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δ̄N < δ̄N−1 ⇒

(
1− 1

4N

)
2γ1 + γ2

3
· Σo

1∑N
j=1 πj

<

(
1− 1

4N−1

)
2γ1 + γ2

3
· Σo

1∑N−1
j=1 πj

⇒

⇒
(

1− 1

4N

)N−1∑
j=1

πj <

(
1− 4

4N

)(N−1∑
j=1

πj + πN

)
⇒ 3

4N

N−1∑
j=1

πj <

(
1− 4

4N

)
πN ⇒

⇒ 3

(
1− 2

2N

)
πo1 + 2

(
1− 4

4N

)
(γ1 − γ2) Σo

1 <
(
4N − 4

) [ πo1
2N

+
2 (γ1 − γ2)

4N
Σo

1

]
⇒

⇒ πo1 <
4N − 4

3 (2N − 2)
πo1 ⇒ 1 <

4N − 4

3 (2N − 2)

which holds because we have that:

4N − 4 > 3
(
2N − 2

)
⇒ (2N)2 − 3 · 2N + 2 > 0⇒ χ2 − 3 · χ+ 2 > 0

∀χ > 2 and thus ∀N > 1 (we set χ = 2N).

Provided that, δ̄N is strictly decreasing and uniformly bounded from below it con-

verges to:

δ̄∗ = lim
N→∞

δ̄N =
(2γ1 + γ2) Σo

1

3πo1 + 2 (γ1 − γ2) Σo
1

by recalling the equation (3.2) for the aggregate compensations.

Hence the proposition is confirmed with regard to the reasoning above.

Corollary 5. If δ̄ < δ̄∗, they may continue to re-trade for infinite steps, while the

traders will not attain the Pareto since they loose a fraction of their anticipated profits.

As the iterative rounds of trades progress, the discount factor δ̄has a diminishing

trend, due to the fact that the gains in each “new” round of transactions follow a de-

creasing course. As we have seen, the re-trading procedure, when agents face frictions

such as transaction costs, stops in a very small number of trades and as a consequence

the Pareto optimality is practically excluded. Either agents are myopic or non myopic

the re-trading procedure will stop instantly since agent-2 anticipates greater loss than

gains from the transaction. We remind that, even if agents act far-sighted, it does not

imply that they can approximate Pareto optimality, let alone the occasion in which

they incur transaction costs.

In this point we mark the homogeneous agents version, who share different risks,

V ar(E1,0) 6= V ar(E2,0). We have shown, when agents are homogeneous, that after

infinitely many steps they can attain the Pareto optimal risk share if they act my-

opically. No matter the noncompetitive structure of the thin markets, agents can

approximate the optimal risk sharing allocation. If γ1 = γ1 = g, where g is defined to
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be the common risk aversion of the agents we show that agents fix jointly the same

indifference point δ̄g. Actually, Proposition 10. holds also for the new upper bound,

i.e. δ̄j,g =
(4j − 1) gΣo

1

2j (2j − 1) πo1
and due to the fact that

(
δ̄j,g
)
j∈N is strictly decreasing and

lower bounded the δ̄∗g =
gΣo

1

πo1
.

Remark 9. An important consideration, with regard to δ̄ is related with the variance

of t the contract. It can be easily shown that δ̄(Σo
1) is an increasing function of Σo

1 in

each case of assents’ risk aversion. Provided that,

Σo
1 =

γ2
2V ar(E2,0)− 2γ1γ2Cov(E1,0,E2,0) + γ2

1V ar(E1,0)

(γ2 + γ1)2

if the Cov(E1,0,E2,0) < 0, the discount factor tends to be increasingly high, but the gains

of the potential trade are expected to be quite higher than the explicit costs. In short, if

they make the deal, they expect to pay a huge amount of transaction costs. In essence,

the discount factor reflects the benefits of the transaction. When the covariance of

the endowments is negative, we have the perfect matching between the risks that are

transferred from the agents and thus the δ̄ is expected to be its highest levels. Even if,

it is increasingly high, the investor is willing to pay the price in order to complete the

trade. Conversely, if the Cov(E1,0,E2,0) > 0, then δ̄(Σo
1) tends to its lowest levels.

Equally important to notice is the term
Σo

1

πo1
. If we re-define it, we conclude to the

next induction:

Σo
1

πo1
=

1
πo1
Σo

1

=
1

−2γCov(Co
i ,E )

V ar(Co
i )

=
1

2γ(−β̂)

where β̂ reflects the sensitivity of the price of the contract in the various fluctuations

of the contract.

Equivalently, the term
Σo

1

πo1
can be written as below:

Σo
1

πo1
=

γ2
2V ar(E2,0)− 2γ1γ2Cov(E1,0,E2,0) + γ2

1V ar(E1,0)

−2γ (γ1 + γ2) (γ2V ar(E2,0)− (γ2 − γ1)Cov(E1,0,E2,0)− γ1V ar(E1,0))

Corollary 6. In the event of far-sighted agents, by combining the Proposition 9. and

Proposition 10. the indifference point for agent-2 to make the transaction with her

counterparty is δ̄F =
(2γ1 + γ2) · Σo

1

4 · π1

20. Far-sighted agents prefer to trade in one shot

process, i.e they will not trade until the last round of re-trading procedure, while the

outcomes coincide with the static model.

20The exponent F is used to define the upper bound of the far-sighted trader.
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5.1 Comparative statics for δ

5.1 Comparative statics for δ

We analyze the state where the agents are homogeneous and heterogeneous, empha-

sizing the case of the negative covariance of the contract with the total market endow-

ment, in which the profits of the trade are at their maxima. In the various fluctuations

of δ, the discount factor moves to its lowest and highest values (as a percentage of the

contract price), provided that δ is an increasing function of Σo
1.

Below we quote some special occasions of the discount factor fluctuations, where

it is obvious that after the trading round N = 10 converges to its lower bound δ̄∗.

1. In the following diagrams we present the state where agents are heterogeneous in

two different occasions. We mention that the covariance of the endowments is

slightly higher that zero (i.e. Cov(E1,0,E2,0) > 0). As it is obvious agent-2 will

trade with her counterparty since the δ̄ is at its lowest values as a percentage of the

aggregate price on which is accounted the re-trading process. In the first diagram

δ̄1 = 1.48% and δ̄∗ = 0.98%, while in the second one δ̄1 = 5.83% and δ̄∗ = 3.745%.

trading rounds N
2 4 6 8 10 12 14

d
is
co
u
n
t
fa
ct
o
r
δ̄ N

0.009

0.01

0.011

0.012

0.013

0.014

0.015

Homogeneous agents, γ
1
=0.05,γ=6.45, N=15

δ
N

δ*
=0.0098

N=8

2. Here we present the second diagram of heterogeneous agents, where the Cov(E1,0,E2,0) >

0 and quite higher than zero. The two crucial differences are, firstly, the aforemen-

tioned domain of δ̄, which moves in higher values than the first diagram (it was

anticipated due to the monotony of the discount factor towards Σo
1) and secondly

the δ̄ converges to δ̄∗ after N = 11 rounds.
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trading rounds N
2 4 6 8 10 12 14

d
is
co
u
n
t
fa
ct
o
r
δ̄ N

0.035

0.04

0.045

0.05

0.055

0.06

Heterogeneous agents, γ
1
=0.1, γ

2
=10.85, N=15

δ
N

δ*
=0.0374

N=11

3. In the next diagrams, we present two different cases of homogeneous agents, where

it is apparent that δ̄ is quite higher than the preceding case. As we can see in

the third diagram δ̄1 = 7.27% and δ̄∗ = 4.84%, while in the forth one δ̄1 = 9.62%

and δ̄∗ = 6.41%. In the third diagram the covariance of the endowments is slightly

higher than zero.

trading rounds N
2 4 6 8 10 12 14

d
is
co
u
n
t
fa
ct
o
r
δ̄ N

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Homogeneous agents, γ
1
=γ

2
=1, N=15

δ
N

δ*
=0.0484

N=12

4. The following diagram depict the case where the Cov(E1,0,E2,0) > 0 (quite higher

that zero) and hence the discount factor as an increasing function of the Σo
1 moves

in fairly higher levels than the previous diagram.

trading rounds N
2 4 6 8 10 12 14

d
is
co
u
n
t
fa
ct
o
r
δ̄ N

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Homogeneous agents, γ
1
=γ

2
=1, N=15

δ
N

δ*
=0.0641

N=12
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The key question to answer here is, why the transaction costs are higher in the

situation of homogeneous agents than the situation of heterogeneous. According to

all the above, if δ is increasingly high, then agent-2 will pay some great value for the

transaction. Given that, for the risk aversions holds the inequality γ1 < γ2, she does

not have the will to do so, because the gains of the transaction are in favor of agent-1.

Namely, the transaction will be made if the δ̄ is at its lowest values, which is justified

by the first and the second diagram too. Diversely, in the case of homogeneity, since

the profits are higher for agent-2, she has the will to pay a higher amount for the

transaction costs. This is verified from the third and the fourth diagram.
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